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Abstract

This thesis is concerned with building autonomous exploratory robotic controllers

in an online, on-board approach, with no requirement for ground truth or human

intervention in the experimental setting.

This study is primarily motivated by autonomous robotics, speci�cally au-

tonomous robot swarms. In this context, one faces two di�culties. Firstly, standard

simulator-based approaches are hardly e�ective due to computational e�ciency and

accuracy reasons. On the one hand, the simulator accuracy is hindered by the

variability of the hardware; on the other hand, this approach faces a super-linear

computational complexity w.r.t. the number of robots in the swarm. Secondly, the

standard goal-driven approach used for controller design does not apply as there is

no explicit objective function at the individual level, since the objective is de�ned

at the swarm level.

A �rst step toward autonomous exploratory controllers is proposed in the the-

sis. The Evolution & Information Theory-based Exploratory Robotics (Ev-ITER)

approach is based on the hybridization of two approaches stemming from Evolution-

ary Robotics and from Reinforcement Learning, with the goal of getting the best of

both worlds: (i) primary controllers, or crawling controllers, are evolved in order to

generate sensori-motor trajectories with high entropy; (ii) the data repository built

from the crawling controllers is exploited, providing prior knowledge to secondary

controllers, inspired from the intrinsic robust motivation setting and achieving the

thorough exploration of the environment.

The contributions of the thesis are threefold. Firstly, Ev-ITER ful�lls the desired

requirement: it runs online, on-board and without requiring any ground truth or

support. Secondly, Ev-ITER outperforms both the evolutionary and the information

theory-based approaches standalone, in terms of actual exploration of the arena.

Thirdly and most importantly, the Ev-ITER controller features some generality

property, being able to e�ciently explore other arenas than the one considered

during the �rst evolutionary phase. It must be emphasized that the generality of

the learned controller with respect to the considered environment has rarely been

considered, neither in the reinforcement learning, nor in evolutionary robotics.





Résumé en Français

Cette thèse porte sur la conception de contrôleurs pour robots explorateurs au-

tonomes basée sur une approche en ligne (online) intégrée, ne nécessitant pas

de vérité terrain ni d'intervention de l'expert humain au cours du processus

d'entrainement.

Le travail présenté se focalise sur le domaine de la robotique autonome et plus

particulièrement la conception de controleurs robotiques pour les essaims de robots.

Ce contexte présente deux di�cultés spéci�ques. Premièrement, les approches

basées sur l'usage de simulateur sont d'e�cacité limitée: d'une part, la précision du

simulateur est limitée compte tenu de la variabilité des robots élémentaires; d'autre

part, la complexité de la simulation est super-linéaire en fonction du nombre de

robots de l'essaim. Deuxièmement, les approches guidées par le but se heurtent au

fait que la fonction objectif n'est pas dé�nie au niveau du robot individuel, mais au

niveau de l'essaim.

Une première étape vers la conception de contrôleur explorateur autonome est

proposée dans cette thèse. L'approche proposée, appelée exploration robotique

fondée sur l'évolution et l'information (Ev-ITER) se fonde sur l'hybridation de la

robotique évolutionnaire et de l'apprentissage par renforcement utilisant l'entropie.

Cette approche procède en deux phases: (i) dans une première phase l'évolution

arti�cielle est utilisée pour générer des contrôleurs primaires (crawlers), dont les tra-

jectoires sont d'entropie élevée dans l'espace sensori-moteur; (ii) dans une seconde

phase, l'archive des trajectoires acquises par les controleurs primaires est exploitée

pour dé�nir les controleurs secondaires, inspirés de la motivation intrinsèque robuste

et permettant l'exploration rigoureuse de l'environnement.

Les contributions de cette thèse sont les suivantes. Premièrement, comme désiré

Ev-ITER peut être lancé en ligne, et sans nécessiter de vérité terrain ou d'assistance.

Deuxièmement, Ev-ITER surpasse les approches autonomes en robotique évolution-

naire en terme d'exploration de l'arène. Troisièmement, le contrôleur Ev-ITER est

doté d'une certaine généralité, dans la mesure où il est capable d'explorer e�cace-

ment d'autres arènes que celle considérée pendant la première phase de l'évolution.

Il est à souligner que la généralité du contrôleur appris vis-á-vis de l'environnement

d'entrainement a rarement été considérée en apprentissage par renforcement ou en

robotique évolutionnaire.
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Chapter 1

Introduction

This thesis is concerned with the building of autonomous exploratory robotic con-

trollers in an in-situ manner, where the learning and optimization of the controller

takes place on the robot itself, as opposed to, on a simulation platform or in-silico.

Quite a few disciplinary �elds are relevant to autonomous robotics, ranging from op-

timal control [Zhou et al. 1996] to arti�cial intelligence (AI) [Pfeifer & Gomez 2005],

evolutionary robotics (ER) [Nol� & Floreano 2000] and machine learning (ML)

(speci�cally reinforcement learning (RL) [Sutton & Barto 1998,Duda et al. 2012].

This thesis is the cross-road of evolutionary robotics (section 1.2) and reinforcement

learning (section 1.3). Let us �rst present the research questions investigated in the

presented work.

1.1 Research Background

This study is primarily motivated by autonomous robotics, speci�cally autonomous

robot swarms (Fig. 1.1), taking inspiration from the SYMBRION European project

(European Integrated Project 216342, 2008−2013). Autonomous robot swarms aim

at designing robust, scalable and �exible collective behaviors, where large numbers of

robots are coordinated through simple controllers and local interactions [Brambilla

et al. 2013,Arvin et al. 2014]. The autonomy of the individual robot is an essential

characteristics of swarms [Brambilla et al. 2013]. In this context, one faces two

di�culties:

Firstly, the standard simulator-based approach is ine�ective. On the one hand,

the computational complexity is super-linear with respect to the number of robots in

the swarm; on the other hand, the simulator accuracy is challenged by the variability

of the hardware; controllers learned or optimized in simulation are prone to the so-

called reality gap, meaning that the optimal behavior in-silico does not translate

into an e�cient behavior in-situ.

Secondly, the standard goal-driven approach used for controller design does not

apply as there is no explicit objective function. More speci�cally, the objective is

de�ned in terms of the swarm behavior whereas the design concerns the individual

robot controller.
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(a) Individual robot (b) Individual robot (c) A swarm robotic system

Figure 1.1: Examples of existing robots (a) Individual robot: RobotCub, complex

child humanoid robot; (b) Individual robot: e-puck, relatively simple individual

robot; (c) the swarm robotic system: SwarmBots. Adapted from [Lenaertz 2012].

The research question investigated in this manuscript concerns how to de�ne

rewards, that is, incentives guiding the individual robot behavior in the swarm con-

text. The proposed approach builds upon previous work in evolutionary robotics and

reinforcement learning [Delarboulas et al. 2010,Akrour et al. 2014,Lopes et al. 2012],

showing the feasibility of de�ning internal and external rewards under the require-

ments of autonomous, ground truth-less settings.

1.2 Evolutionary Robotics

Evolutionary robotics [Nol� & Floreano 2000] (chapter 2) is a �eld in which Evo-

lutionary Computation (EC) is applied to the design of both real and simulated

autonomous robots.

The bulk of research in ER concerns simulated robots, for the sake of compu-

tational and experimental conveniency. On the computational side, EC is known

for requiring a huge number of evaluations in order to yield good results; but the

time and e�ort required to conduct thousands of robotic evaluations in-situ, is over-

whelming. On the experimental side, evaluating preliminary controllers (and many

controllers) entails safety hazards for the robot itself [Koos et al. 2013]. The dark side

of evolutionary robotics in simulation is the so-called reality gap problem, already

mentioned [Jakobi et al. 1995,Lipson et al. 2006]: controllers evolved in simulation

often perform much worse on the real robot, e.g. biped walking gaits evolved in

simulation cannot run e�ciently in the real world [Boeing et al. 2004].

Some work in online on-board evolutionary robotics have been conducted to

achieve obstacle avoidance and object attraction [Nordin & Banzhaf 1997], obstacle

avoidance based on vision [Marocco & Floreano 2002], gait learning in a quadruped
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robot [Hornby et al. 2000a], and/or to overcome the reality gap and/or to adapt to

robotic failures [Lipson et al. 2006]. A common feature of on-line on-board ER is

to require considerable care and e�orts from the human designer. The key question

regards the assessment of the robot behavior (the optimization objective): to which

extent can this assessment be done in an autonomous way.

1.3 Machine Learning

Reinforcement learning [Sutton & Barto 1998] (chapter 3) is the �eld of Machine

Learning interested in learning and optimizing policies, or equivalently controllers,

associating to each state an action in order for the learning agent (the robot, here) to

maximize the rewards gathered by its behavior. Reinforcement learning is known to

be a hard problem, due to a mixture of fundamental, algorithmic and practical issues.

Many of these issues are manifested in the robotics setting [Kober & Peters 2012,

Kormushev et al. 2013]. The two main di�culties are related to the Markov Decision

Process framework at the core of RL, which does not always re�ect the real-world

context; another di�culty is to de�ne a good reward function within the MDP

setting, conducive to the desired behaviors.

The di�culties of reward design have motivated the design of a number of

approaches, concerned with implicit or unknown rewards. For example, Inverse

Reinforcement Learning (IRL) [Ng et al. 2000] learns the reward function from

the demonstrations of an expert. In Preference-based Reinforcement Learning

(PBRL) [Wirth & Fürnkranz 2013c, Akrour 2014], the reward function is learned

based on the expert feedback about the robot behaviors. While these approaches all

relax the expertise requirement from the human designer, they still require her inter-

vention in the learning or optimization loop. A new setting, referred to as intrinsic

motivation [Baranès & Oudeyer 2009,Oudeyer et al. 2012], proposes that rewards

be built-in and autonomously measured by the agent itself along its trajectory, akin

a computational �instinct�.

1.4 Main Contributions

The presented work is concerned with building exploratory robotic controllers in an

in-situ approach, addressing the challenge of de�ning intrinsic rewards without any

ground truth about the appropriateness of the robot behavior in its environment.

The main contributions are as follows:

1. A hybrid two-phase Evolution and Information Theory-Driven Exploratory

Robotics (Ev-ITER) approach is proposed, combining machine learning and
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evolutionary principles. Formally, Ev-ITER-1st phase builds primary con-

trollers, referred to as crawling controllers, using Evolutionary Robotics by tak-

ing inspiration from the information theory-based approach presented in [De-

larboulas et al. 2010]; additionally, this information-theory based approach

is extended to take into account the entropy of the actuators. The crawling

controllers gather a data repository, related to the trajectories in a �rst source

environment. In the second phase, this data repository is used to support an

information theory-based controller, selecting the most informative action in

each time step. Further, this Ev-ITER scheme is shown to outperform both

the evolutionary and the information theory-based approaches standalone, in

terms of actual exploration of the arena.

2. The Ev-ITER approach is designed to run online, on-board with no ground

truth and no human intervention, thus avoiding the reality gap; in con-

trast, many existing autonomous robotic algorithms [Lehman & Stanley 2008,

Williams & Browne 2012, Koutník et al. 2013, Koutník et al. 2014] involve

some ground truth information in order to compute the exploration indicators

(e.g. when applied for simultaneous localization and mapping in [Williams &

Browne 2012]).

3. Lastly, and most importantly, the Ev-ITER controller features some generality

property w.r.t. the robotic environments. The exploration e�ciency is also

observed when the Ev-ITER controller is launched in a target environment,

di�erent from the source environment considered by the crawling controllers.

This property of generality and robust exploration across environments is a

most original contribution of the presented work.

Its potential applications are manifold, typically when dealing with environ-

ments of di�erent di�culty: a pre-training in the source environment would

result in minimizing the exploration time needed to build a map of the target

environment. Another expected bene�t is to have the 1st-Phase taking place

in simulation, while the 2nd-Phase takes place in-situ.

1.5 Thesis Outlines

The thesis manuscript is organized as follows:

Chapter 2 presents Evolutionary Robotics, more particularly focussing on algorithm

deployment in-situ, and the reality gap issue. A second focus regards the design of

intrinsic �tness functions that can be computed on the robot itself.

Chapter 3 presents some reinforcement learning approaches aimed at autonomous
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robotics and discusses their strengths and weaknesses. Included is a discussion of

the limitations of RL and policy learning with respect to exploratory robotics, a

presentation of RL and policy learning with implicit rewards, a description of the

notion of intrinsic motivation and discovery approaches.

Chapter 4 describes the algorithmic contribution of the thesis, the Ev-ITER algo-

rithm, a new combination of Evolutionary Robotics and Reinforcement Learning

approaches toward autonomous exploration in in-situ robotics. The generality of

Ev-ITER is discussed.

Chapter 5 is devoted to the empirical validation of the proposed approach, consid-

ering di�erent arenas. The main limitation of this work is that no actual experi-

mentation in-situ were possible at the moment of writing the manuscript.

Chapter 6 concludes this Ph.D thesis by outlining some future avenues for research.





Chapter 2

Evolutionary Robotics

Evolutionary robotics (ER) aims to apply evolutionary computation techniques to

the design of both real and simulated autonomous robots. In this chapter, we �rst

present a brief general introduction to evolutionary computation, with particular

focus on the Evolution Strategy [Rechenberg 1973]. We thereafter review di�erent

categories of �tness functions used in the �eld of ER. Then the challenge of transfer-

ring controllers obtained through simulation to real robots, known as the reality gap,

is discussed. Finally, �tnesses that can be computed on the robot itself (on-board)

are presented; these enable the use of evolutionary computation algorithms in-situ,

thereby sidestepping the reality gap issue.

2.1 A Brief Introduction to Evolutionary Computation

Evolutionary Computation (EC) [Fogel 2006] uses computational models of evolu-

tionary processes as key inspiration in the design and implementation of computer-

based problem solving systems. There are a variety of evolutionary computational

modes that have been proposed and studied, which we will refer to as evolution-

ary algorithms (EAs) [Back et al. 2008]. Thus, the term EAs is frequently used

interchangeably with EC systems in the literature. These EC algorithms share the

common background of being remotely inspired from Darwins's principles of natural

selection and blind variations thereof [Darwin 1859], where individuals are compet-

ing with each other for survival and reproduction in an environment that can only

host a limited number of individuals [Eiben & Smith 2003]. Although simplistic

from a biologist's viewpoint, these EC algorithms are su�ciently complex to pro-

vide robust and powerful adaptive search mechanisms.

From a practical point of view, EC algorithms are population-based meta-

heuristics that provide the human engineer with a set of tools to address particular

optimization problems. The core principles are built upon two complementary mech-

anisms, inspired from Darwin's original principles: blind variations and survival of

the �ttest. Fig 2.1 (proposed by Zhang et al. in [Zhang et al. 2011] ) describes

the general framework with three fundamental operators (in bisque in �gure) and

two optional operators (in yellow in �gure) for most EC algorithms. The basic EC
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algorithm involves 3 steps: `population initialization', `�tness evaluation and selec-

tion', and `population reproduction and variation'. Besides the above three necessary

steps, EC algorithms sometimes additionally perform an `algorithm adaptation' or

a `local search' (LS) procedure. EC algorithms involving LS are known as memetic

algorithms [Ong et al. 2010].

Figure 2.1: The general EC framework. Evolutionary Process: starting from a popu-

lation of randomly generated individuals, each individual is evaluated and associated

a measure of performance. Individuals are thereafter selected depending on their

performance. The selected individuals go through the variation process (mutation

and recombination), thus generating a new population. The new population is then

evaluated again and the iteration continues until a termination criterion is met.

In particular, although di�erent EC algorithms have a similar framework in im-

plementation and algorithmic characteristics, their particular implementations di�er

in many details. A main di�erence regards the representation of the individuals, usu-

ally dictated by the target application problem; the various representations which

have been proposed include bit-strings, real-valued vectors, Lisp expressions, and

neural networks. Another di�erence regards the relative importance of mutation and

crossover (recombination), as well as their particular implementation, which di�er

widely across EC algorithms. Finally, the stopping criterion is problem-dependent.

The origins of EA can be traced back to at least the 1950s, and since the 1970s

several evolutionary methodologies have been proposed, including evolutionary pro-

gramming (EP), evolution strategies (ESs), genetic algorithms (GAs), genetic pro-

gramming (GP), and di�erential evolution (DE). A more detailed description will
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be provided for ESs, as this evolutionary algorithm will be used in the experimental

section of this manuscript. While all �ve paradigms rely on similar concepts, they

are applied to di�erent types of problems.

2.1.1 Evolutionary Programming

Evolutionary programming (EP) was originally applied to the evolution of �nite

state automata for machine learning problems [Fogel et al. 1966]. Traditionally,

EP has used representations that are tailored to the problem domain. For exam-

ple, in real-valued optimization problems, the individuals within the population are

real-valued vectors. Successful applications of this approach are shown in robot

navigation [Kim et al. 2001] and in robot hand manipulation problems [Fukuda

et al. 1999].

2.1.2 Genetic Algorithms

Genetic algorithms (GAs) [Goldberg & Holland 1988] are often concerned with solv-

ing combinatorial optimization problems. Solutions are represented in binary as

strings of 1s and 0s, but other encodings are also possible, such as graphs, Lisp ex-

pressions, and real-valued vectors. GA has a good application value in the design of

robotics controllers. For example, GA is used to obtain an automatic design of the

type-2 non-singleton fuzzy-logic controller [Martínez-Soto et al. 2014] and to solve

the inverse kinematics problem of a six-joint Stanford robotic manipulator under

the constrain of minimizing the error at the end e�ector [Köker 2013].

2.1.3 Genetic Programming

Genetic programming (GP) [Koza 1992] is a method to evolve computer programs

and can also be used in logical expressions. This sub-�eld is based on individuals

represented as tree structures. Some Lisp-languages that naturally embody tree

structures are frequently used with GP, although other function languages can also

be adapted in order to do it. GP has been applied to the design of robotics controllers

in multiple cases, for example: the application of GP to the evolution of robot

morphology [Gregor et al. 2012], the design of a controller used in developing a fast

gait for a quadruped robot [Seo et al. 2010], and the design of controllers used in

multi- robot scenarios [Kala 2012].

2.1.4 Di�erential Evolution

Di�erential evolution (DE) [Storn & Price 1997,Price et al. 2006] is a more recent

method proposed for global numerical optimization. Solutions are represented by
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vectors of real-values. This approach can be used over a large number of optimization

problems [Das & Suganthan 2011]. For example, DE is used as an evolutionary alter-

native method to automatically obtain robotic behaviors [Cruz-Álvarez et al. 2013],

to enhance localization of mobile robots [Lisowski et al. 2011], and to solve a non-

linear dynamic optimization problem on the structure-control design of a �ve-bar

parallel robot [Villarreal-Cervantes et al. 2010].

2.2 Evolution Strategies

One of the major EC paradigms, Evolution Strategies (ESs) [Rechenberg 1978]

are speci�cally designed for continuous optimization. Due to initial interest in hy-

drodynamic problems, ESs typically use real-valued vector representation [Spears

et al. 1993]. In this context the main variation operator considered is the muta-

tion. In ESs, mutations are mainly represented by Gaussian mutations. A parent x

generates an o�spring y as follows:

y − x+ σN (0, C) (2.1)

where σ denotes the step-size, N (0, C) denotes the standard multivariate normal

variables with mean 0 and covariance matrix C.

The key point in ES algorithms is the adaptation of the parameters of the process,

in particular the adaptation of the step-size and the adaptation of the covariance

matrix.

2.2.1 Adaptation of the step-size

The adaptation of the critical step-size σ is di�erent from one algorithm to another,

and it is this speci�cation that is used to di�erentiate the various ESs. It is important

to have an adaptative step-size, because if the step-size is constant and too small

w.r.t. the distance to the optimum, the new individual will be close to the parent

and the progression will be slow. In the other case, if the step-size is constant and

too large with regard to the distance to the optimum, the probability that the new

individual might be better than its parent will be too small. We present two di�erent

rules for adaptation the step-size : One is one-�fth rule and the other is cumulative

step-size adaptation.

• One-�fth rule

The adaptation of the step-size σ proceeds in various ways. One simple well

known approach is the one-�fth rule [Rechenberg 1973]: If more than 20% of

mutated o�spring lead to �tness improvements within the last N generations,
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then σ value is multiplied by 1.22. If less than 20% of the o�spring obtain

better �tness, then the σ is divided by 1.22. This approach and the parameters

are designed to be optimal on the sphere test function: f(x) =
∑d

i=1 x
2
i ;x ∈ Rd

[Michalewicz 1996], which is supposed to represent the typical �tness landscape

for many optimization problems when su�ciently close to the optimum.

• Cumulative step-size adaptation

The cumulative step-size adaptation (CSA) proposed in [Hansen & Oster-

meier 1996,Hansen & Ostermeier 2001] is a well-known algorithm for choosing

the step-size. The principle of this method is to compare the length of the

path followed by the algorithm to the length of the path followed under a ran-

dom selection. If the path followed by the algorithm is larger than the path

under random selection then the step-size is increased. In the other case, the

step-size is decreased.

2.2.2 Adaptation of the covariance matrix

The acknowledged best approach in continuous evolutionary evolution is the Co-

variance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen & Oster-

meier 1996, Hansen & Ostermeier 2001]. The rule used for adapting the step-size

is the CSA mentioned above. The key point is that the CMA-ES updates a full

covariance matrix for the sample distribution. We here only mention the rank-one

update situation (Algo.1) [Hansen & Ostermeier 2001] Besides, there are more com-

plex options, but this is the same idea. Consequently, CMA-ES learns all pairwise

dependencies between all parameters.

Algorithm 1 Covariance Matrix Adaptation: Rank-one update

Initialize m ∈ IRn, and C = I, set σ=1, learning rate ccov ≈ 2
n2

while not terminate

xi = m+ σyi, yi ∼ Ni(0, C),

m← m+ σyw, where yw =
∑µ

i=1wiyi : λ

C ← (1− ccov)C + ccovµw ywy
T
w︸ ︷︷ ︸

rank−one

where µw = 1∑µ
i=1 w

2
i
≥ 1

Besides, a multi-objective evolutionary algorithm is the Multi-Objective

(MO)CAM-ES [Igel et al. 2007] based on CMA-ES : brie�y, the same adaptation

implemented by the original CMA-ES is used to adapt the mutation operator carried

by each individual, whenever its application is successful, i.e., whenever it succeeds

in generating a �tter o�spring.
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The ESs algorithm has been applied to the design of robotics controllers in

multiple contributions. Successful applications of this approach are shown in sin-

gle [De Croon et al. 2013,Bredeche et al. 2010] and multi-robot problems [Schultz

et al. 1996,Pessin et al. 2010].

2.3 EC and Robotics

Evolutionary computation techniques have been most widely and successfully ap-

plied to the robot design process. [Doncieux et al. 2011] reviewed the main tech-

niques developed in the robotics �eld and then distinguished four use cases for the

application of EC methods to the �eld of robotics, which include parameter tuning,

evolutionary aided design, online evolutionary adaptation and automatic synthesis.

2.3.1 Parameter Tuning

Evolutionary algorithms are now mature tools for black-box optimization. As they

do not impose any constraint on the objective function(s), they can be employed to

tune some robot parameters the optimal value of which is not known and cannot be

found neither by analytical method (i.e. method not known) nor by an exhaustive

search (i.e. too many parameters). In this context, �nding optimized parameters is

the goal of parameter tuning and generally comes at the end of the design process.

This has been used for example in the optimization parameters of PID controllers

for a 6-DOF robot arm [Kwok & Sheng 1994], and the optimization of bio-inspired

arti�cial intelligence systems [Floreano & Mattiussi 2008].

2.3.2 Evolutionary Aided Design

Using evolutionary algorithms as an analysis and exploration tool instead of opti-

mization is a growing trend in the �eld of robotics. In this context, evolutionary

computation methods are employed to explore the design space of the system and

propose a variety of solutions to the experts, who can analyze the results in order

to gain a deeper understanding of the system. The experts are then able to propose

new solutions (whose parameters might be further tuned with EAs) in a further

step. This approach is used for example in the design of UAV's controllers [Hauert

et al. 2009] and in the friction stir welding problem [Bandaru et al. 2011]. Multi-

objective evolutionary algorithms are a special kind of evolutionary algorithm de-

signed to �nd the best trade-o�s between multiple objectives [Deb et al. 2001,Zhou

et al. 2011]. This type of algorithm has been used to �nd relations between de-

sign parameters in a process called innovization [Deb & Srinivasan 2006, Deb &
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Srinivasan 2008]. This approach has been successfully employed to design mo-

tors [Deb & Srinivasan 2008] and controllers of a �apping-wing robot [Doncieux

& Hamdaoui 2011].

2.3.3 Online Evolutionary Adaptation

Evolutionary algorithms are applied to the robotic �eld not only in an o�-line man-

ner but also in on-line manner. In this context, embodied evolution consists in using

EA not only during the design step, but also during robot lifetime, in order to allow

it to adapt on-line to drastically changing situations (in terms of environment or of

robot features). Advantages of this approach include the ability to address a new

class of problems (problems that require on-line learning), the parallelization of the

adaptation (a direct consequence of the population-based search) and a natural way

to address the reality gap (as design constraints enforce on-board algorithms). This

online evolutionary adaptation is currently being explored from di�erent perspec-

tives, ranging from endowing robots with some kind of resilient capacity [Bongard

et al. 2006] with regards to environmental changes, to adapting known evolutionary

algorithms to perform online evolution for single robot or multiple robots [Watson

et al. 1999] or to a addressing environment-driven evolutionary adaptation [Bredeche

& Montanier 2010].

2.3.4 Automatic Synthesis

Evolutionary algorithms are employed not only to optimize the robot's controller

but also to optimize the overall design, i.e. a mechatronic device and its control sys-

tem can be also automatically designed at the same time by an EA. This approach

was pioneered by [Sims 1994], which demonstrated how the morphology and the

neural systems of arti�cial creatures can be generated automatically with an EA.

This approach is used for example in the Golem project where the robot morphol-

ogy and the robot controller are optimized simultaneously [Lipson & Pollack 2000].

Evolutionary Synthesis is one promising use of EA, the long term goal of which is

to exploit robot features and the environment better than an engineer would do.

However, due to its challenging goal, it is also the less mature use of ER as many

issues remain to be studied.

2.4 Fitness Functions

Evolutionary algorithms aim at �nding controllers that solve best a given task in a

given environment [Nol� et al. 1994]. Therefore, by modifying the �tness function,
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the task or the environment, the researcher can strongly a�ect the evolutionary

process. Ideally, a �tness function in ER should reveal how well the behavior of

the controller solves the given task. In practice, many di�erent �tness function

types are used in ER experiments, which can be categorized by the quantity of a

priori information on the controller that the designer integrates to the evolutionary

process [Nol� & Floreano 2001,Nelson et al. 2009,Montanier 2013].

2.4.1 The �tness function

In ER, a �tness function is a particular type of objective function that is respon-

sible for determining which solutions within a population are better at solving the

particular problem at hand. In other words, some performance indicators must be

computationally de�ned and aggregated to determine whether a solution will sur-

vive and reproduce at a given stage of the evolutionary process. This aggregated

function is referred to as �tness function.

In particular, each design solution is referred to as controller in the �eld of evolu-

tionary robotics. The term controller is used to describe the computational portion

of an autonomous mobile robot system (either real or simulated) that receives infor-

mation from the robot's sensors, processes this information, and produces actuator

or motor commands that cause the robot to move or interact with its environment.

The controller in this sense might be thought of as the brain of the robot, and some

ER researchers use this terminology [Nelson et al. 2009].

In ER, the �tness function plays a very important role in guiding the EC methods

to obtain the best individual controllers with a large population of controllers. The

aim of EC methods is to optimize this function. Thus individual controllers in a

large population of controllers are selected or replaced based on this measure. Fig

2.2 (proposed in [Hartland 2009]) illustrates a standard evolutionary robotic process,

i.e. an optimization �tness function process. A population of random controllers is

created in the �rst generation. Each controller's performance is evaluated based on

a �tness function. The best controllers are selected and undergo variation operators

to generate o�spring. Along the course of evolution, the controllers improve in order

to maximize the �tness function.

2.4.2 Classi�cation of �tness function

Previous work on �tness functions for evolutionary robotics focused on the amount

of prior knowledge included in the �tness function [Nol� & Floreano 2001,Nelson

et al. 2009,Montanier 2013]. First, [Nol� & Floreano 2001] proposed a classi�cation

of �tness functions with respect to three dimensions: explicit/implicit (measuring
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Figure 2.2: Evolutionary robotics standard process: The �rst generation involves

randomly generated robot controllers; each controller is evaluated according to the

�tness function. The best individuals tends to be selected in order to produce new

individuals. The new individuals undergo variations. The new individuals replace

the old ones, leading to the next generation. Thanks to the �tness function, the

adequate control characteristics emerge within the individuals, increasing the per-

formance from time to time, until the algorithm reaches some termination crite-

rion. [Hartland 2009]

the way the goal is achieved versus measuring the level of attainment of the goal),

external/internal (measuring �tness through an external observer versus measur-

ing it internally with the robot), and functional/behavioral (rewarding a particular

working modality versus the quality of the behavior). Second, [Nelson et al. 2009] fo-

cused on a single axis that represents the amount of a priori knowledge incorporated

in the �tness function, and each class is listed in Table 2.1. Third, taking inspiration

from [Nelson et al. 2009] to build a classi�cation, [Montanier 2013] de�ned four main

types of �tness function seen in the literature, and the characteristics of each class

are discussed below.

All classi�cations mentioned above rely on the same claim: exploiting prior

knowledge helps ER to �nd solutions quickly, but it prevents from discovering orig-

inal solutions. To make fair comparisons between approaches, therefore, both the

performance and the level of autonomy of the evolutionary process must always

be taken into account. Furthermore, experiments with the novelty search show

that prior knowledge can be misleading [Lehman & Stanley 2008,Lehman & Stan-
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ley 2011].

Fitness function class A Priori knowledge incorporated

Training data �tness functions (for use with

training data sets) Very high

Behavioral �tness functions High

Functional incremental �tness functions Moderate-high

Tailored �tness functions Moderate

Environmental incremental �tness functions Moderate

Competitive and co-competitive selection Very low-moderate

Aggregate �tness functions Very low

Table 2.1: Fitness function classes according to [Nelson et al. 2009]. See text for

discussion.

Let us discuss the di�erent types of �tness functions, following [Montanier 2013] :

Behavioral �tness function: Behavioral �tness functions are task-speci�c

hand-formulated functions that measure various aspects of what a robot is doing

and how it is doing it [Nelson et al. 2009]. For instance in [Jakobi 1998], the

�tness function is considered a behavioral �tness function because it bases �tness

on local motor behaviors and sensor responses and does not directly measure

partial or overall completion. Another example is found in the locomotion of an

octopod robots [Gomi & Ide 1998]. This approach lets few degrees of freedom to be

optimized by the evolutionary process, which implies that the human engineer has

a precise idea of how to perform the task. Hence, if this class of �tness function is

employed, the human engineer should provide a large amount of knowledge on the

problem to solve. These types of function generally include several sub-functions

that are combined in a weighted sum, e.g. [Banzhaf et al. 1997] evolved 4 separated

behaviors using embodied evolution and GP.

Tailored �tness functions: Tailored �tness functions are based on the

measure of task completeness, but they may also contain behavioral terms as

detailed in the previous paragraph. For example, in a photo-taxis task, a tailored

�tness function might contain two parts: one is rewarding a robot that arrives at the

light source; another one is maximized when the robot faces the sun. This type of

�tness function is task-speci�c but tailored by the human engineer to accommodate

the given problem. It is one of the most used class of �tness function in the ER

�eld. Among the achievements made, one can count ball collection [Ho�mann
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& P�ster 1996], coordinated movements [Matt Quinn et al. 2003], sequential

tasks [Doncieux & Mouret 2010], and gait learning for a quadruped robot [Hornby

et al. 2000a]. Within these approaches, the human engineer should know the

elements necessary to the success of the task.

Aggregate �tness functions: Aggregate �tness functions reward the accom-

plishment of a given task or sub-task but use no information from the human engi-

neer on how to do the task. This type of function aggregates all aspects of a robot's

behavior in a single term. This is sometimes called all-in-one. For example, in a

foraging scenario, a robot is located and gathers objects and then deposits them at

a speci�c position (or a �nest�). The �tness of an evolving controller is computed

based only on whether or not it completes the task. To be speci�c, an example

for an aggregate �tness function for this task would be one that counts the number

of objects at the nest after the end of a trial period. Aggregate �tness functions

have been applied successfully in multiple cases such as gait evolution in legged

robots [Zykov et al. 2004, Chernova & Veloso 2004], simpler locomotion [Zu�erey

et al. 2002,Di Paolo 2004] and object pushing [Hornby et al. 2000a] tasks.

Until recently, aggregate �tness selection have been dismissed by the ER

community because of the so-called �bootstrap problem� [Kawai et al. 2001]. The

bootstrap problem occurs when all individuals in the randomly initialized popula-

tions have same very low �tness, preventing evolution from getting it started and

discovering promising regions. In order to overcome the bootstrap problem, some

speci�c methods have been applied such as applying environmental incremental

evolution in conjunction with aggregate selection [Nakamura et al. 2000] and

using a preliminary bootstrap mode that gives way to aggregate selection later in

evolution.

Implicit �tness functions: Implicit �tness functions operate at a more indi-

rect, abstract level: reward is given for completing some task but the robot is free

to achieve it in any possible way [Bird et al. 2008]. That is to say, when the task to

perform is not known beforehand by the human engineer, and might change with

time, the implicit �tness functions are considered by the human engineer. In this

context the optimization process is based on the pressure to survive.

The maximization of the �tness function may cause the development of di�erent

strategies depending on the environment at hand, possibly involving other robots.

Therefore, this type of �tness function can be applied to several scenarios with-

out any modi�cations: For example, this approach is mainly used in the Embodied

ER [Montanier 2013].We have also found one application investigating the notion of



18 Chapter 2. Evolutionary Robotics

creativity, where [Bird et al. 2008] use this approach to study the traces of robots as

drawing resulting the pressure to harvest energy in order to survive.Also interest-

ingly, this approach is used for genetic algorithm-based agent scheduling [Prashanth

& Andresen 2001].

2.5 The Reality Gap Problem

The reality gap problem manifests itself as controllers evolved in simulation are un-

derperforming when ported on real robots. Reality gap is the most critical issue

with regard to practical applications. In theory, the reality gap would not exist if

the optimization process could be achieved directly on the target robotics setup.

In ER, however, solutions are commonly evolved in simulation for the purpose of

speeding the search and experimental conveniency (Section 2.5.1). In practice, even

if many works in ER are successful in building non-trivial and e�cient controllers

that correspond to original and complex behaviors [Prieto et al. 2010], these con-

trollers are often locked in the simulated world because their results hardly translate

from simulated to real world. This failure of evolved solutions to �cross the gap�

from simulation to reality is termed the �reality gap� problem [Jakobi et al. 1995]

(Section 2.5.2); as said, this is one of the major challenges facing the ER �eld. Quite

a few solutions have been proposed to address this challenge and signi�cant progress

is being made (Section 2.6).

2.5.1 Evolution on simulated vs physical robots

As of now, several works have actually achieved evolution on physical robots,

such as for evolving collision-free navigation on a Khepera [Floreano et al. 1994],

optimizing the walking gait of an AIBO robot [Hornby et al. 2000b], of a pneumatic

hexapod robot with complex dynamics [Lipson et al. 2006] or even a humanoid

robot [Wol� et al. 2008]. While the optimization on the physical robot guarantees

the relevance of the obtained result, robots have multiple limitations, listed below,

which make them ill-adapted to run evolutionary algorithms on-board [Matari¢ &

Cli� 1996,Koos et al. 2013]:

Time-consuming: In practice, performing evaluation on a physical robot can

be very time-consuming. For instance in [Floreano et al. 1994], an avoidance control

scheme is evolved on a real robot named Khepera. In this work, a generation

takes approximately 39 minutes, making 65 hours for 100 generations to achieve

the design of a wander behavior. It is extremely time consuming both from the

robot and from the human supervisor viewpoint. The same experiments could be
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performed in simulation in a matter of minutes.

Cost: Physical Robots are expensive devices. On one hand, as the behavior

that corresponds to a given solution is not known before its evolution, there is the

risk that harmful behaviors might be executed onto the robot. On the other hand,

the physical hardware of a robotic system cannot survive the necessary continuous

testing without constant maintenance and repairs. None of these problems exists

in simulation.

Battery Lifetime: The unavoidable need to recharge robot batteries slows

down further the experimental procedure. In most of the Khepera-based exper-

iments described, the robot was tethered thus eliminating both the on-board

power and the computation problem. However, tethering is not possible on all

platforms and in all domains, nor does it scale up to multi-robot co-evolution

experiments. Compared to a physical robot, a simulator does not require recharging.

For these reasons, simulation models are an appealing way to run evolutionary

algorithms in a fully secure set-up, while signi�cantly speeding up the optimization

process [Harvey et al. 1992]. However, in reality, accurate simulators can be even

slower than experiments, which leads to prohibitively long optimization processes.

To obtain simulation models with lower computational costs, it is sometimes neces-

sary to neglect some complex physical phenomena, which leads to simpler simulators,

of course less accurate, but also faster [Koos et al. 2013].

2.5.2 How the Reality Gap Manifests itself

The di�culty of accurately simulating physical systems is well known in robotics

[Brooks 1995]. Since it is impossible to simulate all details of a physical system, any

abstraction made in a simulation may be exploited by the evolutionary computation

method and may result in behavior that is ill-suited to reality.

For the sake of computational and experimental conveniency, many ER research

works rely on simulators. The best controllers found in in-silico are then transferred

onto the real robot. However, evolutionary algorithms often exploit simulation's dis-

crepancies in an opportunistic manner to achieve high �tness values with unrealistic

behaviors. If one transfers a controller designed in simulation that relies on badly

modeled phenomena, the behavior observed in simulation does not match the one

observed in reality, yielding the �reality gap� [Jakobi et al. 1995]. For instance

in [Boeing et al. 2004], biped walking gaits are evolved in-silico but cannot run ef-

�ciently in-situ, i.e. in the real world. Many reality gap problems are also reported
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in [Palmer et al. 2009], regarding a 12-DOF bipedal walking robot.

The reality gap problem remains a critical issue in ER as it often prevents the

transfer of evolutionary results to real robots. More generally, it occurs whenever

a controller is designed in simulation before application to a physical target robot.

Therefore, crossing the reality gap in ER is of particular importance.

2.6 Gap Avoidance

The work in [Koos et al. 2013] distinguishes three main types of approaches of

dealing with the reality gap problem:

2.6.1 Reality-based Optimization

In this type of approach, optimization takes place, fully or partly, on the real device.

As mentioned, one extreme approach to reduce the reality gap is to evolve con-

trollers directly on the robots, as done in [Floreano & Mondada 1998], where an

avoidance control is evolved on a Khepera mobile robot. In this work, the op-

timization required to achieve design of a desired behavior takes about 60 hours

for 8000 evaluations. Other similar approaches have been implemented on real

robots [Hemker et al. 2006,Zykov et al. 2004].

An alternative to these approaches is the use of both simulators and physical

robots. For instance in [Pollack et al. 2000], the goal consists of co-evolving mor-

phologies and controllers in the GOLEM project; the solutions were mostly evolved

in simulation and only the last generations of the optimization process were con-

ducted in reality. First, the robot morphology and its controller were co-evolved in

a simulator, and then an embodied evolution took place on a population of physical

robots having the best morphology for crossing the reality gap. A similar work is

reported in [Nol� et al. 1994] where a mobile Khepera robot addressed a naviga-

tion task with 30000 evaluations in simulation followed by 3000 evaluations on the

physical robot.

2.6.2 Simulation-based Optimization

As said, simulation-based optimization approaches are used by some researchers

because of the prohibitive computational cost of performing direct optimization in

reality [Saunders et al. 2011]. A natural approach to dealing with the reality gap

would be to consider more accurate simulation models. However, simulation models

are often trade-o�s between accuracy and computational cost. Accurate models

can lead to very high computational costs, which also are hardly compatible with
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optimization techniques. Besides, for some devices, such as bird-sized unmanned

aerial vehicles that rely on little-known dynamics [de Margerie et al. 2007], perfect

simulations are still out of reach.

Another approach to dealing with the reality gap consists of building a minimal

simulation [Jakobi 1997] by only modeling meaningful parts of the target behavior.

The unwanted phenomena are hidden in an envelope of noise or not modeled at all

so that the evolved solutions cannot exploit them and have to be robust enough to

achieve high �tness values. This approach has been successfully applied to designing

walking gaits for an octopod robot [Jakobi 1998]. Moreover, the more realistic the

amount of noise is, the better the transfer should be [Miglino et al. 1995]. The

robustness of the behaviors can also be obtained by evaluating the solutions in

di�erent simulated environments and initial conditions as in [Thompson et al. 1999].

Some other works deal with the reality gap as an environment variation to be

overcome online. In [Floreano & Urzelai 2001], the synaptic plasticity of neural

network controllers is used to learn several sub-behaviors and also to overcome the

gap when a solution is transferred onto the real device, by adapting online to the

�new� environment. The robot can also explicitly build an approximate model of its

environment, in order to use it as a reference and then adapt to the environment

variation. For instance in [Hartland & Bredeche 2006], an anticipation module

allows to build a model of the motor consequences in the simulated environment.

Then, once in reality, some di�erences are encountered between this model and the

current environment, a correction module performs an online adaptation to improve

the behavior and to overcome the gap.

2.6.3 Robot-in-the-loop Simulation-based Optimization

These approaches rely mostly on simulators but also allow a few transfer experiments

during the optimization. One way is to resort to co-evolution between simulators

and controllers; the other way relies on a so-called surrogate model.

A �rst approach to dealing with the reality gap consists of resorting to co-

evolution to improve both controllers and simulators at the same time. However,

such co-evolutionary methods rely on the assumption that the simulation model can

become accurate enough allow perfect transfer with only few experiments. In [Bon-

gard & Lipson 2004], the exploration-estimation algorithm (EEA) evolves two pop-

ulations: simulators and controllers. The simulators have to model the previously

observed real data, and the controller that best discriminates between these simu-

lators is transferred onto the real device to generate new meaningful learning data

for the modeling part. This process is iterated until a good simulator is found and

thereafter relevant controllers for a given task are built using it. This approach
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has been successfully implemented with a four-legged robot [Bongard et al. 2006].

A similar method based on multi-objective evaluation of the solutions has been ap-

plied to a stabilization task with a simulated quadrotor helicopter [Koos et al. 2009].

Another similar EEA algorithm is the back-to-reality algorithm [Zagal & Ruiz-Del-

Solar 2007], which does not resort to a disagreement measure, but tries to reduce

the �tness variation observed between simulation and reality. As for EEA, it re-

sorts to an update heuristic based on a disagreement measure that allows to reduce

the number of experiments required to explore e�ciently the solution space. The

approach is applied to a ball-kicking task with a Sony AIBO robot.

The optimization process can itself directly rely on a so-called surrogate model

by evaluating the individuals with a simple model of the �tness function instead of

building an entire simulation model. The surrogate model has to be upgraded during

the optimization process by conducting some test experiments depending on a given

update heuristic; for instance, such an approach has successfully been applied to

fast humanoid locomotion [Hemker et al. 2006]. Outside of ER, similar approaches

have been applied to reality gap problems in the �eld of reinforcement learning.

Abbeel et al. notably applied such techniques to aerobatic helicopter �ight [Abbeel

et al. 2007].

2.7 Beyond classic ER

2.7.1 On-line On-board Evolution

A categorization of evolutionary robotics algorithms has been proposed by [Eiben

et al. 2010a], depending on when, where and how evolution takes place:

1. o�-line or design time vs. on-line or run time (when)

2. on-board or intrinsic vs. o�-board or extrinsic (where)

3. in an encapsulated or centralised vs. distributed manner (how)

While mostly o�-line and extrinsic �tnesses are considered in evolutionary robotics,

new issues must be considered to achieve on-line, on-board robotic evolution [Karafo-

tias et al. 2011]:

• On-board evolution implies (possibly very) limited processing power and mem-

ory, thus the evolutionary algorithm must deal with limited computational and

memory resources, limiting population size and number of evaluations;

• On-line evolution requires that the robots autonomously load and evaluate

controllers without human intervention or any other preparation: the evalua-

tion of a controller simply picks up the task where the previous evaluation left
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o�. This introduces signi�cant noise in �tness evaluations because the starting

conditions of an evaluation obviously can have great impact on a controller

performance;

• Because the evolutionary algorithm has to be able to contend with unforeseen

circumstances, it must either be able to (self-) adapt its parameter values as

it operates or its parameters must be set to robust values that produce good

performance under various conditions.

• The �tness function must be de�ned such that it can be computed on-board,

without ground truth available; such �tness functions are referred to as intrin-

sic1. Such intrinsic �tness functions must not require extensive, �absolute�,

prior knowledge; this contrasts for instance with Novelty Search [Lehman &

Stanley 2008], which requires the robot to know its position, and where all

other robots ended up their trajectories.

In summary, the on-line on-board approach is that robot controllers are evolving

during (and not before) their operational period and the computational processes be-

hind evolution all take place inside (and not outside) the robots [Eiben et al. 2010b].

The on-line on-board approach has been successfully applied to obstacle avoid-

ance and object attraction [Nordin & Banzhaf 1997], obstacle avoidance based on

vision [Marocco & Floreano 2002], and gait learning in a quadruped robot [Hornby

et al. 2000a]. However, these contributions have dealt with the above issues through

tailoring evolutionary algorithms to the task at hand. Because of the lack of general

mechanism to deal with all issues of on-line on-board algorithms, these contribu-

tions hardly extend to general ER in reality. This approach has been considered for

problems involving multiple robots [Watson et al. 1999].

2.8 Intrinsic Fitness Functions

Two approaches have been designed to support Evolutionary Robotics in the con-

text of online-onboard evolution, the intrinsic motivation, pioneered by [Oudeyer

et al. 2007, Baranès & Oudeyer 2009, Oudeyer et al. 2012] and the curiosity- and

discovery-driven controller optimization [Delarboulas et al. 2010]. As these ap-

proaches are rooted on Machine Learning and Information theory concepts, on the

one hand, and they are the main inspirations behind the proposed contributions of

this manuscript, they will be described in detail in Chapter 4.

1In some cases, a built-in �tness can be used to measure the robot reaction w.r.t. manually

de�ned experimental conditions, e.g. the robot �tness is measured from the amount of light it

perceives and the experimenter moves the light.
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2.9 Discussion

In summary, the state of the art in Evolutionary Robotics presents a number of

achievements, which address in di�erent ways two interdependent issues:

The �rst one is to encode the application objective into an optimization crite-

rion; this encoding represents a transfer of information from the human designer

to the problem solving environment. It is common in the ER framework [Flore-

ano & Mondada 1998] that �tness design proceeds by trials and errors: controllers

optimizing a given �tness function show the inadequacies of this �tness function,

that is, how far are the optima of the �tness function to address the designer goal.

Accordingly, the �tness is manually re�ned to forbid the discovery of inappropriate

solutions. This process, which might involve a few iteration steps, is referred to as

�tness shaping process.

The second issue regards the actual computation of the optimization criterion.

This step requires that either the ground truth involved in the �tness be available

(as in simulation-based approaches) or that the �tness only requires information

that is available �for free� to the robot.

Our approach will essentially aims at addressing both issues in an integrated way.

Before presenting it, let us likewise describe the Machine Learning-based approaches

to Robotics.
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Machine Learning

This chapter introduces some machine learning (ML) approaches aimed at au-

tonomous robotics and discusses their strengths and weaknesses.

After a brief overview of ML, focusing more speci�cally on reinforcement learning

(RL) and policy learning (section 3.1), their limitations with respect to exploratory

robotics are discussed in section 3.2. The de�nition of an appropriate reward func-

tion in particular raises critical issues when considering in situ robotics (as opposed

to, simulation-based robotic control). Section 3.3 therefore presents the state of the

art related to RL and policy learning with implicit or unknown rewards.

Section 3.4 introduces the notion of intrinsic motivation, originated from cog-

nitive science. Its algorithmic formalization, pioneered by [Schmidhuber 1991] and

investigated thoroughly by [Oudeyer et al. 2007,Baranès & Oudeyer 2009,Oudeyer

et al. 2012] is thereafter detailed. The key issue is to extract rewards from au-

tonomous exploration, in a way compatible with the robot bounded computational

and memory resources, and with no access to ground truth. Another approach,

rooted in the multi-armed bandit framework, is presented with the goal of e�-

ciently discovering all states within a limited distance from a starting state (section

3.5).

The chapter concludes with a discussion on the respective strengths and limi-

tations of Evolutionary Robotics and Machine Learning-based Robotics regarding

the design of exploratory robotic controllers. This discussion will inspire the ap-

proach investigated in our work, described in chapter 4, at the crossroad of ER and

ML-based Robotics.

3.1 An overview of machine learning

Aimed at building intelligent agents, the �eld of machine learning inherits its

goals and methodologies from both �elds of arti�cial intelligence (AI) [Pfeifer &

Gomez 2005] on the one hand, and statistics and data analysis [Davis & Samp-

son 1986, Silverman 1986,Dunlop & Tamhane 2000,Rice 2006] on the other hand.

AI aims at building computational agents able to achieve reasoning and e�cient

decision making based on the available information and their knowledge (about the
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world, the goals and the methods). Machine Learning aims at automatically acquir-

ing such knowledge from the available data (e.g. sensor data, expert demonstrations,

semantic Web) with some guidance of the human experts or teachers.

Machine Learning basically comes in two �avors. Statistical Machine Learning

[Bishop 1995,Vapnik & Vapnik 1998,Vapnik 1999,Bolton & Hand 2002] heavily relies

upon statistics and data analysis. Symbolic Machine Learning is more inspired

from the so-called Good Old Fashion AI [Haugeland 1985], where the intelligent

computational agent is provided with background knowledge and reasoning abilities.

Modern ML tends to borrow all related �elds (statistics, probability theory, data

mining, pattern recognition, arti�cial intelligence, adaptive control, and theoretical

computer science) their principles and algorithms to best exploit the available data

and achieve the targeted goals.

Formally, ML goal is to build models, algorithms or strategies that automat-

ically improve their performances through being provided with data or by expe-

rience [Mitchell & Michell 1997, Blum 2007], and adapt themselves to changes in

the environment. Ideally, intelligent softwares should display the ML abilities along

their life, achieving the so-called lifelong learning ability. Most machine learning

algorithms have emerged during the last two decades; their maturity is witnessed as

they achieve breakthrough performance in many application domains not amenable

to standard, speci�cation-based software engineering.

Besides its numerous applications in robotics (e.g. [Kober & Peters 2012,Pilarski

et al. 2012,Modayil et al. 2014]), machine learning has been applied successfully to

natural language processing [Manning & Schütze 1999], computer vision [Saxena

et al. 2009], speech and handwriting recognition [LeCun et al. 2004], network secu-

rity [Laskov et al. 2004], monitoring of electric appliances [Murata & Onoda 2002],

drug discovery [Warmuth et al. 2003], neurosciences [Richiardi et al. 2013], and

recommender systems to name a few.

3.1.1 Types of ML algorithms

As of now, machine learning algorithms can be classi�ed into three categories de-

pending on the input and expected output of the algorithms:

• Supervised learning:

In supervised machine learning, an application domain is represented using

descriptive features; a particular feature, called class or label, is to be ex-

plained or predicted from the other features. Supervised ML starts with a

set of examples, where each example is made of a description referred to as

instance, and the associated label value, that is, the value of the instance. In
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propositional logic, which will be the only representation considered in the

following, a training dataset E = {(xi, yi), xi ∈ X, yi ∈ Y, i = 1 . . . n} involves
pairs (xi, yi), where instance xi is represented as a vector of attribute values

in the instance space X and yi is associated class, element of the label space

Y .

A supervised learning algorithm learns a function f , f : X −→ Y , such that

f(x) = y approximates the (unknown) label y associated with any further

instance x in X. If space Y is a �nite unordered set, the learning task is

referred to as classi�cation; if Y is the real-value space or a subset thereof, the

learning task is referred to as regression.

State-of-art supervised learning algorithms include decision trees [Quin-

lan 1993], linear regression [Bishop 2006, Russell & Norvig 2010], arti�cial

neural networks [LeCun et al. 1989, Paugam-Moisy et al. 2006, Krizhevsky

et al. 2012], support vector machines [Boser et al. 1992] and kernel-based ap-

proaches [Schölkopf & Smola 2002].

• Unsupervised learning: Unsupervised learning considers a dataset simi-

lar to that of supervised learning, except for the labels, which are missing.

E = {xi, xi ∈ X, i = 1, ...N}. The purpose of unsupervised learning is to

summarize the instances by grouping them in clusters, or by estimating the

data distribution.

Unsupervised learning algorithms include k-means clustering [Jain 2010,Celebi

et al. 2013], ε- means algorithm [Duda et al. 2012], principal component anal-

ysis [Acharyya 2008], and Gaussian mixture models learned by expectation

maximisation [Nodelman et al. 2012,Yildirim et al. 2014].

• Reinforcement learning (RL): RL aims at sequential decision making,

based on the exploration of the environment and of the agent action space [Sut-

ton & Barto 1998]. Formally, the goal is to devise a policy that maximises

the cumulative reward received during the agent lifetime (see below). RL

has many applications in robotics, especially in mobile robot control [Kober

et al. 2013,Kormushev et al. 2013].

The interested reader is referred to [Bishop 2006,Hastie et al. 2009,Duda et al. 2012,

Michalski et al. 2013] for a comprehensive presentation of supervised and unsu-

pervised learning1. The ML algorithms most relevant to our goal, reinforcement

learning algorithms, are presented in next section.

1Two clustering algorithms, speci�cally k-means and ε-clustering algorithms [Duda et al. 2012]

will be used and presented in Chapter 4.
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Figure 3.1: A reinforcement learning agent acting in an environment. Adapted

from [Blynel 2000].

3.1.2 Reinforcement Learning

Reinforcement learning is a very active area of machine learning, receiving consid-

erable attention from decision theory, operation research, and control engineering,

where it has been called �heuristic dynamic programming� [Werbos 1987] and �neu-

rodynamic programming� [Bertsekas & Tsitsiklis 1995]. In short RL is the problem

faced by an agent or robot that must learn an appropriate behavior through trial-

and-error interactions with a dynamic environment, as depicted in Fig 3.1. At each

step t of interaction the agent perceives its current state st from the environment;

the agent accordingly chooses some action at; upon this action, the agent arrives

in a new state st+1 and receives feedback about its action in the form of a reward

signal rt. Its goal is to maximize the total reward it receives over time.

Classical reinforcement learning approaches are based on the Markov Decision

Process assumption (MDP; [Puterman 2009]), that is, the problem is formalized as

a �ve-tuple: M = 〈S,A, T,R, γ〉, where:

• S is the state space. A state s ∈ S contains all relevant information about the

current situation of the robot in the environment, required to select an action

and to predict accordingly its future state. For example, in the navigation

task a state can be described from the robot position and/or its sensor values.

The state space can be discrete or continuous. In the navigation problem, S
is a continuous space (e.g. the robot position is a real valued vector) or a

discrete space (in a grid world).
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• A is the action space. An action a ∈ A is used to control the state of the

system like a motor instruction in the navigation task. The action space A
include all possible decisions of the robot in any state (e.g. motor activation).

Similar to the state space, the action space can be discrete or continuous.

• T ∈ (PS)S×A is a transition function, with PS denoting the set of probability

distributions over S. The transition function T de�nes the conditional proba-

bility T (s′ | s, a) of arriving at next state s′ by selecting action a in the state

s.

• R : S × A → IR is a reward function that de�nes the instant reward received

by the robot through selecting action a in state s. In the navigation task, a

reward function usually involves penalties (re�ect the energy costs for taken

actions) and bonuses (for reaching target positions).

• γ ∈ [0, 1] is a discount factor indicating that the rewards should be gathered

as early as possibly: the reward gathered at time step t + 1 worths less than

the reward gathered at time step t, everything being equal.

The most common task in reinforcement learning is to discover an optimal policy

π∗ that maps the state to actions so as to maximize the expected return J , de�ned

as the cumulative discounted reward gathered over time. Formally, for each policy

π the policy return J(π), the expected discounted reward collected by π over time,

is de�ned as:

J(π) = IEπ

[
T∑
t=0

γtR(st, π(st)|s0 ∼ D)

]
(3.1)

where T is the time horizon (possibly in�nite) and initial state s is drawn af-

ter the initial state distribution D. RL aims at �nding the optimal policy π∗ =

argmaxJ(π). The main RL algorithms are based on learning the value function

Vπ [Sutton 1988], with

Vπ(s) = IEπ

[
T∑
t=0

γtR(st, π(st)|s0 ∼ D)

]
= R(s, π(s)) + γ

′∑
s

p(s, a, s′)Vπ(s′)

and the optimal value function:

V ∗(s) = maxπVπ(s)

While supervised learning can be applied to learn policies, too2, the learning

approach most relevant to robotic control is reinforcement learning, discussed below.

2For instance, assuming that (s0, a0, . . . sT ) records an expert demonstration, with actions at
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3.2 Challenges in robotic RL

RL is known to be a hard problem, due to a mixture of fundamental, algorithmic and

practical issues. Many of these issues are manifested in the robotics setting [Kober

& Peters 2012,Kormushev et al. 2013].

3.2.1 Curse of dimensionality

As the state and action spaces of most robots are inherently high-dimensional, con-

tinuous3, robotic systems often face the so-called �Curse of dimensionality� coined

by Bellman [Bellman 1957]. One of the most common examples is humanoid robots,

which involve high dimensional states and actions due to their many degrees of free-

dom. For instance in the ball-padding task shown in Figure 3.2, the robot state

consists of its joint angles and velocities for each seven degrees of freedom as well as

the Cartesian position and velocity of the ball, and the robot's actions are torques

or accelerations. Then this robotic system has 2 × (7 + 3) = 20 state dimensions

and 7-dimensional continuous actions [Kober & Peters 2012].

Such a high dimensionality sets a major challenge for the reinforcement learning

discipline. In pure robotics, this challenge is handled by robotic engineers through

a (manual) hierarchical task decomposition, that partially shifts complexity toward

a sub-tasks, on a lower layer of complexity.

Classical reinforcement learning approaches often consider a grid-based represen-

tation with discrete states and actions, often referred to as a grid-world. In the ball-

padding example, we may simplify the task by controlling the robot in racket space

(which is lower-dimensional as the racket is orientation-invariant around the string's

mounting point) with an operational space control law [Nakanishi et al. 2008]. RL re-

searchers commonly use quite a few tools of computational abstractions to deal with

high dimensionality, ranging from adaptive discretizations [Busoniu et al. 2010] and

function approximation approaches [Sutton 1988] to macro-actions or options [Barto

& Mahadevan 2003,Hart & Grupen 2011].

ranging in a �nite action space, this trajectory can induce a classi�cation problem, where state

st being labelled as falling in class at [Lagoudakis & Parr 2003a, Lagoudakis & Parr 2003b]. As

noted by many authors however [Chang et al. 2015], the resulting classi�er su�ers from the fact

that expert demonstrations do not visit the bad state regions. For this reason, if ever the classi�er

makes a mistake and deviates from the good state region, it does not know how to recover. The

policies learned by supervised learning thus su�er from a limited training coverage. See also section

3.3.1.
3Note that an action space A = IRd, with d a few dozens, which is common in robotics, is

considered to be large in RL [Powell 2012].
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Figure 3.2: The sate space used in the modelling of a robot reinforcement learning

task of paddling a ball. Adapted from [Kober & Peters 2012].

3.2.2 Curse of real-world samples

RL learns from data representing the agent trajectories. In robotics, the acquisition

of such real-world samples is expensive in terms of time, labor and, potentially,

�nancial cost. More speci�cally:

• Firstly, robotic hardware used to be expensive and require careful maintenance

to face wear and tear. It is true to say that the entry ticket in the �eld is much

decreased in the recent years, at least for what concerns companion robots such

as Nao or study robots like iCub4.

• Secondly, a signi�cant expertise remains needed to set up experiments and

acquire usable data. In particular, the experimenter must carefully design

and supervise the experiments.

• Thirdly, the data acquisition process faces issues related to discretization of

time and delays. As reinforcement learning algorithms are inherently im-

plemented on a digital computer, the discretization of time is unavoidable

although physical systems are inherently continuous time systems. In turn,

time discretization of the actuation can generate undesirable artifacts (e.g., the

4In 2011, the Nao and iCub are equipped in the experiment, with the prices at $15,600 and

about $3000,000 (est.) respectively [Felch & Granger 2011], and into 2015, their price drop to

$7,990 and about $275,000 (the price information from web site:

1. http://robohub.org/nao-next-gen-now-available-for-the-consumer-market

2. http://www.icub.org/bazaar.php).
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distortion of distance between states). Besides, all physical systems exhibit

delays in sensing and actuation, for example, the state of the setup (repre-

sented by the �ltered sensor signals) may frequently lag behind the real state

due to processing and communication delays.

• Finally, the decision making process faces the classical constraints of dynamic

systems: the movement cannot be paused and actions must be selected subject

to time-budget constraints.

3.2.3 Curse of modelling issues

One way to o�set the cost of real-world interaction is to use accurate models as

simulators. It is often the case that a policy is trained in simulation and subsequently

transferred to the real robot. Unfortunately, building a su�ciently accurate model

of the robot and its environment is challenging and it often requires very many data

samples. As said in Section 2.5, simulated behavior is often observed to deviate

from the one observed in the real robot; this phenomenon is referred to as reality

gap problem [Jakobi et al. 1995,Bongard & Lipson 2004,Lipson et al. 2006].

For tasks where there is no stability or safety issue (the robot does not require

active control to remain in a safe state or return to it), the transfer onto the real

robot of the policy learned in simulation often works well [Kober & Peters 2011].

Nevertheless, tasks can often be learned better in the real world than in simula-

tion due to complex mechanical interactions (including contacts and friction) that

have proven di�cult (or too computationally expensive) to model accurately. Ad-

ditionally, it is often the case that the learning algorithm can and does exploit the

inaccuracies of the simulator.

In some settings referred to as unstable [Kober & Peters 2011], small variations

have drastic consequences. For example, in a pole balancing task, the equilibrium

of the upright pole is very brittle and constant control is required to stabilize the

system. Policy transfer often performs poorly in this setting.

3.2.4 Curse of goal and reward speci�cation

In robot RL, an often underestimated problem is the goal speci�cation, which is

achieved through designing a good reward function. As mentioned, the goal of RL

algorithms is to maximize the cumulative long-term reward. In practice, designing

a good reward function in robot reinforcement learning often is a daunting task. In

many domains, providing rewards only upon task achievement, e.g., when a table

tennis robot wins the game, will result in an apparently simple, binary reward spec-

i�cation. However, a robot may receive such a reward so rarely that it is unlikely
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to ever succeed in the lifetime of a real-world system. Hence, instead of using only

simple binary rewards, additional prior knowledge in form of additional rewards

frequently needs to be provided, possibly iteratively, along some so-called reward

shaping process. The reward shaping is a technique that provides localized feed-

back based on prior knowledge to guide the learning process [Ng et al. 1999,Brys

et al. 2014, Kim et al. 2015]. The trade-o� between di�erent factors may also be

essential as hitting a table tennis ball very hard may result in a high score but is

likely to damage the robot. RL algorithms are also notorious for exploiting the

reward function in unexpected ways, especially when the RL is done locally and not

globally.

In some cases the domain can be most naturally represented using a high di-

mensional state and action space. However, this representation is hardly conducive

to reinforcement learning due to both computational and statistical limitations. In

such cases, a reward skillfully speci�ed in terms of the features of a simpler, lower

dimensional space in which the learning algorithm operates can prove remarkably

e�ective. There is a trade-o� between the complexity of the reward function and

the complexity of the learning problem. For example, an outdoor robot named

Crusher [Ratli� et al. 2007] reasons about the world on a long time horizon scale as

if it was a very simple, holonomic robot operating on a �ne grid of continuous costs.

However, the actual problem consists of minimizing both the time to reach the goal

and the risk of the robot behavior; these two objectives can hardly be modelled in

such a simple state space.

Most generally the reward function in reinforcement learning plays the same role

as the �tness function in evolutionary algorithms, and the problems encountered

when designing a reward function are similar to those related with �tness design

in evolutionary algorithms, explaining to some extent how di�cult the design of a

good reward function is (section 3.2.4).

For this reason, various algorithms have been developed to overcome the di�-

culty of reward design, speci�cally:

• Inverse Reinforcement Learning (IRL) [Ng et al. 2000] is presented in section

3.3.1, where the reward function is learned based on expert demonstrations;

• Preference-based Reinforcement Learning (PBRL) [Wirth & Fürnkranz 2013c,

Akrour 2014] is presented in section 3.3.2, where the �tness function is learned

based on the expert feedback;

• Intrinsic motivation [Baranès & Oudeyer 2009,Oudeyer et al. 2012], can be

viewed as a particular type of RL architecture [Sutton & Barto 1998], where

rewards are not designed by the human expert or engineer but built-in and
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autonomously measured by the agent itself, akin a computational �instinct�

(section 3.4).

3.3 Policy Learning with no Explicit Reward

As said, the reward function satis�es the MDP assumption in the standard RL

MDP setting. In quite a few contexts, the reward function does not comply with

the MDP setting, or is not naturally present in the environment. Let us examine two

concrete such cases. One case is when the reward is de�ned from the demonstrations

of an expert (section 3.3.1). Another case is where the expert neither de�nes an

appropriate reward function nor demonstrates a quasi-optimal policy; instead, the

expert only provides feedback as to whether the current policy improves on the

previous ones (section 3.3.2).

3.3.1 Inverse reinforcement learning

Similar to standard RL, IRL assumes that the agent is acting in a Markov Decision

Process framework, except for the fact that the reward function of the MDP is

not known to the agent. This can also be written as a MDP without a reward

speci�ed, denoted by MDP\R. IRL is a paradigm for learning a reward function

from the demonstrations of an expert [Ng et al. 2000, Zhifei & Joo 2012,Muelling

et al. 2014]. Formally, let (s0, a0s1, . . . sT ) denote an expert trajectory. Assuming

that the expert's behavior is optimal (according to his − hidden − reward function),

the idea is to learn a reward function r such that the policy associating action at to

state st is optimal in terms of cumulative discounted reward with respect to reward

function r. Once r is learned, then standard RL can be applied, with the bene�t that

this reward function makes it possible to extend and/or adapt the expert trajectory,

typically when the robot leaves the regions visited by the expert trajectories.

This general IRL algorithm is displayed in Algorithm 2 [Muelling et al. 2014].

Generally, most IRL approaches rely on a given model of the environment or assume

that it can be accurately learned from the demonstrations. A set of expert features

is �rst de�ned (e.g., for a car driving task, the informed features include the speed

of the car, the number of pedestrians the car is bumping into, whether the car

is leaving the road); the sought reward function R is de�ned as a weighted linear

combination of these m features fi (with positive weights):

R(s, a) =

m∑
i=1

wifi(s, a) = wT f(s, a) (3.2)
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where w ∈ IR+,m and f(s, a) ∈ IRm. For a given trajectory τ = s0a0, . . . , sT ,

the feature counts are given by f τi =
∑H

t=1 γ
tfi(st, at). For each feature and each

considered policy, one considers the expected feature count associated to the policy,

that is, the cumulative discounted value of this feature along the policy trajectory,

in expectation (Eπ[f ]).

Considering an initial weight vector w and the associated policy, IRL iteratively

updates the weight vector, by considering that the optimal objective value is the

one reached by the expert trajectory itself (line 6). The stopping criterion is the

convergence of the weight vector.

Algorithm 2 General IRL Algorithm

1: Input: D = {τ}Pp=1 expert demonstrations

2: Initialize: reward feature weights w0, j = 1

expert feature counts Eπ0 [f ] = 1
P

∑
τ∈D f

τ

3: repeat

4: Optimize πj based on wj−1

5: Estimate f

6: Update wj such that (wj)TEπj [f ] < wjEπ0 [f ]

7: j ← j + 1

8: until ‖wj −wj−1‖2 < ε

The problem of IRL is, by de�nition, ill-posed [Ng et al. 2000] since di�erent re-

wards can produce the same behavior [Ng et al. 1999]; accordingly, a demonstration

cannot lead to de�ne a single reward signal, neither to discriminate among an in�nite

set of reward functions. This indeterminacy is addressed [Syed et al. 2008,Van der

Spek 2014] by requiring the features weights wi to be positive with
∑

iw
∗
i = 1 [Syed

et al. 2008]. Each basis reward function fi has a corresponding basis value function

V i(π), with V i(πE) the basis value function associated with the expert demonstra-

tion. Since by linearity

V (π) =
∑
i

w∗i V
i(π)

it therefore follows that the di�erence between V (π) and V (πE) is upper bounded

by K maxi V
i(π) − V i(πE), with K the number of basis functions. The goal then

becomes to �nd a policy πA solution of the following min max problem:

π∗ = arg min
π

max
i
|V i(π)− V i(πE)| (3.3)

yielding weights w∗.

There are many other ways to resolve the indeterminacy or to perform IRL.

For example, [Ratli� et al. 2006] suggested a maximum margin planning approach.
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[Ziebart et al. 2008] suggested an algorithm where the principle of maximum entropy

was exploited. Other techniques are using a Bayesian nonparametric mixture model

[Michini & How 2012] or score-based classi�cation [Geist et al. 2013]. A recent

review of IRL algorithms can be found in [Zhifei & Joo 2012].

3.3.2 Preference-based Reinforcement Learning

Preference-based Reinforcement learning (PBRL) is a novel research direction

combining RL and preference learning [Fürnkranz & Hüllermeier 2010, Akrour

et al. 2011a]. Compared with the conventional RL, it does not assume the avail-

ability of a reward signal, but only requires preference judgments about policies,

trajectories, states or actions [Wirth & Fürnkranz 2013a]. There are two main

approaches to representing preference, namely in terms of utility functions evalu-

ating individual alternatives or preference relations comparing pairs of competing

alternatives [Fürnkranz et al. 2012].

In PBPI (Preference-based Policy Iteration) [Fürnkranz et al. 2012] and APIALP

(A Policy Iteration Algorithm for Learning from Preference Feedback) approach

[Wirth & Fürnkranz 2013b], the principle is to compare actions a and a′ in a given

state s, given a policy π used ever after (roll-out policy). The user thus emits a

preference among the two trajectories, which translates into a preference among

actions in a given state.

In [Akrour et al. 2011a, Akrour et al. 2011b, Wilson et al. 2012, Busa-Fekete

et al. 2013], the user is asked his preferences among (fragments of) trajectories.

The preference judgment is used to learn a trajectory ranker, which can be used

for creating an improved policy by utilizing evolutionary strategies [Busa-Fekete

et al. 2013] or Bayesian optimization [Akrour et al. 2011a,Akrour et al. 2011b,Wilson

et al. 2012].

For instance in Preference-based Policy Learning (PPL) [Akrour et al. 2011a],

the agent demonstrates a few policies, receives the expert's preferences about the

demonstrated policies, constructs a utility function on the trajectory space compat-

ible with all expert preferences, uses it in a self-training phase, and demonstrates

in the next iteration the policy maximizing the current utility function. In partic-

ular, in the iteration process, it is assumed that there exists a utility function U

that is linear in terms of features: U(s, a) = 〈wφ(s, a)〉 [Akrour et al. 2011a,Akrour
et al. 2011b]. The utility function of a policy can then be written as:

U(π) = 〈wφτ (π)〉

where the weight vector w is determined by standard preference learning and φτ

denote the discounted expectation of the features in φ as in the IRL setting. This
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can be achieved by solving Eq. 3.4 under the preference constraints, where Ti � Tj
stands for trajectory Ti is preferred over trajectory Tj , and Ci = φτ (Ti), Cj = φτ (Tj)

stand for the discounted features count of the state representation, as in IRL.

Minimize
1

2
‖ w ‖2 +c

∑
i,j,Ci�Cj∈ζ

ξi,j

s.t.〈w, Ci〉 − 〈w, Cj〉 ≥ 1− ξi,j and ξi,j ≥ 0 for all Ti � Tj

(3.4)

The utility function de�ned by the weight vector w associates a value to a policy,

enabling to de�ne an order on the policy space Π. The PPL process thus alternates

between learning a utility function from the preference constraints, �nding a policy

maximizing this utility function (with an exploration term), displaying a demonstra-

tion based on this policy and receiving the user's preference judgment about whether

the new demonstration improve upon the previous best one. The maximization part

is achieved using an evolutionary strategy, more specially the (1 + λ) − ES algo-

rithm by [Auger 2005] in [Akrour et al. 2011a], or Bayesian optimization in [Akrour

et al. 2014].

In [Busa-Fekete et al. 2013], stochastic optimization (CMA-ES [Hansen & Os-

termeier 1996,Hansen & Ostermeier 2001]) is used for optimizing the parameters of

a parametric policy, and it is performed directly in a policy space. Each candidate

policy π of the current iteration is used to sample a limited amount of trajectories.

The pairwise preference relation is now used to estimate how often Ti � Tj . Using

a racing algorithm witch utilizes Hoe�eding bounds enables the determination of a

ranking for the policies based on the fraction of dominating trajectories [Heidrich-

Meisner & Igel 2009]. This ranking is then used within the CMA-ES framework to

create new policies.

The main merit of the Preference-based Reinforcement Learning is that it re-

laxes the expertise requirement: it does not require an expert to design the reward

function, nor to demonstrate an optimal policy, nor even, to know how to solve the

task [Akrour et al. 2014]. The only assumption done is that the teacher can compare

two demonstrations and assess which one is more conducive to achieve the goal.

Preference-based Reinforcement Learning is driven by the human being prefer-

ences. The next section will examine other approaches, where the learning agent

is internally driven and referred to as autotelic [Csikszentmihalyi & Csikzentmi-

haly 1991,Csikszentmihalyi 2000].

3.4 Intrinsic Motivation

This section presents an overview of the intrinsic motivation system. Generally,

intrinsic motivation is a mechanism that guides curiosity-driven exploration, that
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was initially studied in psychology and is now also being approached in neuroscience

(section 3.4.1). Intrinsically motivated exploration, inspired from these approaches,

has been devised (section 3.4.2). In section 3.4.3 we present three computational

models of intrinsic motivation. Such a computational model applied in robotics,

referred to as Intelligent Adaptive Curiosity, will be reviewed in detail in section

3.4.4. Finally, in section 3.4.5, hybrid approaches based on intrinsic motivation

will be reviewed, overcoming some limitations of intrinsically motivated exploration

methods.

3.4.1 De�nitions

The notion of intrinsic motivation appears with some di�erent though related con-

tent, in psychology, neuroscience and robotics.

Psychology

The concept of intrinsic motivation has been introduced in the 1950s in animal psy-

chology [Harlow 1950] and has been further elaborated in human psychology [Deci

& Ryan 1985]. Intrinsic motivation was identi�ed in animals and humans as the

set of processes which push organisms to spontaneously explore their environment

even when their basic needs such as food or water are satis�ed. More generally,

in psychology, an activity is characterized as intrinsically motivated when there is

no apparent reward except the activity itself [Ryan & Deci 2000]. Following this

idea, most children playful or explorative activities can be characterized as be-

ing intrinsically motivated. Also, much adult behaviour seem to belong to this

category: free problem- solving (solving puzzles, crosswords), creative activities

(painting, singing, writing during leisure time), gardening, hiking, etc [Kaplan &

Oudeyer 2007]. Quite a few theories of intrinsic motivation have been elaborated

to understand which features of given activities could make them intrinsically mo-

tivating or �interesting� for a particular person at a particular moment of time. In

this context, �interestingness� was proposed to be understood as related to con-

cepts such as novelty [Hull 1943,Montgomery 1954], reduction of cognitive disso-

nances [Festinger 1957,Kagan 1972], optimal incongruity [Berlyne 1960], e�ectance

and personal causation [De Charms 1968,White 1959], or optimal challenge [Csik-

szentmihalyi 1997].

Neuroscience

Independently, some neuroscienti�c studies suggest that the neuromodulator

dopamine has long been associated with reward learning and rewarded behav-
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ior [Schultz 1998, Di Chiara 1999]. Recent studies have focused on the idea

that dopamine not only plays a critical role in the extrinsic motivational control

of behaviors aimed at harvesting explicit rewards, but also in the processing of

types of intrinsic motivation associated with novelty and exploration [Dayan &

Balleine 2002, Kakade & Dayan 2002], such as the memorization of novel infor-

mation [Lisman & Grace 2005] and the learning of novel actions [Redgrave & Gur-

ney 2006]. A key issue is whether dopamine neurons report a � prediction error�

or a � reward prediction error� [Horvitz 2000]. After [Panksepp 1998], there is

ample evidence to suggest the existence of a SEEKING system responsible for ex-

ploratory behaviours: This harmoniously operating neuroemotional system drives

and energizes many mental complexities that humans experience as persistent feel-

ings of interest, curiosity, sensation seeking and, in the presence of a su�ciently

complex cortex, the search for higher meaning [Panksepp 1998] p.145. This suggests

that intrinsic motivation systems could be present in the brain in some form or

another and that signals reporting prediction error could play a critical role in this

context.

Robotics

Following the pioneering work of Schmidhuber [Schmidhuber 1991], the con-

cept of intrinsic motivation has been used in machine learning and devel-

opmental robotics [Oudeyer et al. 2007, Baranès & Oudeyer 2009, Oudeyer

et al. 2013, Schlesinger 2013] as a means for developing arti�cial systems that can

autonomously learn several di�erent skills. The idea is that intelligent machines

and robots could autonomously acquire skills and knowledge under the guidance of

intrinsic motivations, and later exploit such knowledge and skills so to accomplish

the tasks that are useful for the user in a more e�cient and faster way than

if they would have to acquire them from scratch. This possibility would clearly

enhance the utility of intelligent arti�cial systems [Baldassarre & Mirolli 2013].

A key idea of such approaches to intrinsic motivation is that learning progress

in sensorimotor activities can generate intrinsic rewards in and for itself, and

drive such spontaneous exploration [Gottlieb et al. 2013]. Learning progress

refers to the infant's improvement of his predictions or control over activity they

practice, which can also be described as reduction of uncertainty [Friston et al. 2012].

In short, intrinsic motivation refers to a mechanism pushing individuals to select

and engage in activities for their own sake because they are inherently interesting or

enjoyable. Extrinsic motivation is contrasted with intrinsic motivation after [Ryan &

Deci 2000]: Extrinsic motivation is a construct that pertains whenever an activity is
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done in order to attain some separable outcome. Extrinsic motivation thus contrasts

with intrinsic motivation, which refers to doing an activity simply for the enjoyment

of the activity itself, rather than its instrumental value. Accordingly and as pro-

posed in [Oudeyer & Kaplan 2007], a central feature that di�erentiates intrinsic and

extrinsic motivation is the instrumentalization of the activity5.

3.4.2 Intrinsically motivated exploration

Robots are expected to deal with a wide variety of tasks like manipulating objects or

interacting with humans in a changing environment. In such an open world setting,

not all relevant information is known at design time. The challenge is to enable

the robot to interact with its physical and social environment, to learn cumula-

tively novel skills that were not initially programmed, in a way that is analogous

to human development, that is, without requiring the robot to be reprogrammed

by the designer. In such contexts, reinforcement learning or evolutionary robotics

approaches seem to be limited as they proceed by associating a speci�c reward or

�tness function to each task to learn.

In order to allow robots to learn more autonomously a wider diversity of tasks, a

few researchers have started to address the problem of designing intrinsic motivation

systems to drive active learning, inspired by research in developmental psychology

and neuroscience [Oudeyer & Kaplan 2008,Baranes & Oudeyer 2013,Moulin-Frier

et al. 2013]. The idea is that a robot controlled by such systems would be able

to autonomously explore its environment not to ful�l prede�ned tasks but driven

by some form of intrinsic motivation that pushes it to search for situations where

learning happens e�ciently. Technically, such control systems can be viewed as

particular types of reinforcement learning architectures [Sutton & Barto 1998], where

rewards are not provided externally by the experimenter but self-generated by the

agent itself. The term �intrinsically motivated reinforcement learning� has been used

in this context [Barto et al. 2004].

3.4.3 Computational models of intrinsic motivations

Computational architectures based on intrinsic motivation have been developed

since the 1990s, and can be categorised based on the measures that are used by the

learning agent to evaluate the intrinsic interestingness of an activity or a situation.

Three broad types of measures of interestingness have been proposed to implement

5Let us examplify the activity instrumentalization as follows. Assuming that a person works for

money, then her work is not done for its own sake but for the separate outcome of getting money;

the person is extrinsically motivated. Assuming on the contrary that the person works for the sake

of her work meaning, then her behavior is intrinsically motivated.
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intrinsic motivation [Oudeyer & Kaplan 2007,Oudeyer & Kaplan 2008,Baldassarre

& Mirolli 2013].

3.4.3.1 Knowledge-based models

A �rst computational approach to intrinsic motivation is related to the di�erence

between the outcome observed and the expectation of the robot. Most proposed

models of intrinsic motivation are knowledge-based as they depend on the stimuli

perceived by the learning agent (and on their relations with the agent expecta-

tions, including those related to the results of the agent actions) rather than on the

agent skills. Within this approach, there exist two approaches depending on the

way knowledge and expectations are represented: an information theoretic /distri-

butional framework and a prediction framework.

Information theoretic and distributional models. This approach is based

on distribution-based representations, where the agent estimates probabilities of

observing certain events in particular contexts. More precisely, the agent internally

builds and estimates a probability distribution of events across the whole space of

possible events, e.g. depending on its actions. Finally, the quality of this distribution

estimate is characterized with the concept of entropy.

• Empowerment: [Capdepuy et al. 2007] de�ned a measure for the maximum

amount of information that an agent could send from its actuators to its

sensors via the environment, called empowerment.

• Information gain motivation: In [Ryan & Deci 2000], intrinsic motivation

is related to the natural human propensity to learn and assimilate. Assimi-

lation is viewed as a type of compression, i.e., new inputs are embedded in

old schemas [Bruner 1991,Schmidhuber 2010]. In information theoretic terms,

this notion of assimilation or of �pleasure of learning� can be modeled by the

decrease of uncertainty in the knowledge that the robot has of the world after an

event has happened [Oudeyer & Kaplan 2008]. For instance, this information

gain motivation has been used in [Roy & McCallum 2001].

• Uncertainty motivation (UM): The tendency to be intrinsically attracted

by novelty has often been used as an example in the literature on intrinsic mo-

tivation. The motivation for introducing novelty is to avoid model habituation;

typically human babies get bored by constant stimulation and are attracted

to novel stimuli. A straightforward computational implementation is to asso-

ciate with every observed event, a reward which is inversely proportional to
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its probability of observation. This reward computation mechanism can then

be integrated within a reinforcement learning architecture. The system com-

pares the predicted next state to the actual next state, and if the prediction

is incorrect, novelty is considered to be high. For example, UM-like mecha-

nisms based modes have been implemented in [Huang & Weng 2002,Huang &

Weng 2004].

Some other information theoretic and distributional models such as distributional

surprise motivation and distributional familiarity motivation have also been used

[Oudeyer & Kaplan 2007].

Predictive models. This approach is based on the use of predictors (e.g. neu-

ral network or support vector machines) that make direct predictions about future

events, as knowledge and expectations are not always easily represented by prob-

ability distributions. In this kind of computational models of intrinsic motivation

system, these predictors are typically used to predict some properties or sensorimo-

tor states that will happen in the future given the current sensorimotor context and

possibly the past sensorimotor context. The main point is that the ground truth,

the event that actually happens is known at the next time step or after a short delay;

therefore, the prediction can be compared to the ground truth and the di�erence

thereof is used as a signal:

• Predictive novelty motivation: A simple novelty-based intrinsic motiva-

tion is to directly use the prediction error as reward, where interesting sit-

uations are those for which the prediction errors are highest, as in [Barto

et al. 2004] for instance.

• Intermediate level of novelty motivation: Human beings seem attracted

by situations which are neither completely uncertain not completely cer-

tain. [Hunt 1965] proposed the concept of optimal incongruity. He argued

that interesting stimuli are those where there was a discrepancy between the

perceived and standard levels of the stimuli. [Berlyne 1960] developed similar

notions as he observed that the most rewarding situations were those with

an intermediate level of novelty, between already familiar and completely new

situations. One manner to model optimal incongruity is to use a threshold

that de�nes this intermediate level of novelty, where interesting situations are

related to both prediction error and the threshold.

• Learning progress motivation (LPM): Here, intrinsic motivation is mod-

elled by rewarding the agent when predictions improve over time. Thus, the
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agent is expected to maximize the decrease in its prediction error, i.e. e�ec-

tively rewarding knowledge acquisition per se. This mechanism corresponds

to the concept of epistemic curiosity proposed by Berlyne, which was de�ned

as a �drive to know� that was aroused by conceptual puzzles and gaps in

knowledge [Berlyne 1965]. A �rst computational formalization thereof was

proposed in [Schmidhuber 1991], which described a model of curiosity that

rewards agents when prediction errors decrease over time. Another analogous

computational formalization was proposed in [Oudeyer & Kaplan 2007] under

the name of Intelligent Adaptive Curiosity (IAC), together with a mechanism

for automatically dividing the whole sensorimotor space into subregions within

which to compute the learning progress and on which to focus learning.

Two other prediction-based intrinsic motivations are Predictive familiarity motiva-

tion and Predictive surprise motivation, which have also been introduced in [Oudeyer

& Kaplan 2007,Baldassarre & Mirolli 2013].

3.4.3.2 Competence-based models

A second major computational approach to intrinsic motivation, referred to as

competence-based models (CBIM), is based on measuring the agent competence

for achieving self-determined tasks. In CBIM the agent is typically rewarded when

its ability to accomplish a goal improves, independently from the origin of the

goal [Chentanez et al. 2004, Schembri et al. 2007, Baranes & Oudeyer 2013, San-

tucci et al. 2013]. Importantly, competence is dependent on goals: some states, out

of all possible states, are selected as desired states, and hence the agent works to

achieve them. Indeed, CBIM is directly inspired from psychological theories of ef-

fectance [White 1959], causation [De Charms 1968], �Flow� [Csikszentmihalyi 1997]

and competence and self-determination [Ryan & Deci 2000]. Basically, these ap-

proaches argue that what motivates people is the degree of control the can have

on other people, external objects and themselves, or in other words, the amount

of e�ective interaction. Besides, in an analogous manner, the concept of optimal

challenge has been proposed, such as in the abovementioned theory of �Flow�.

A more recent model of competence based intrinsic motivations is referred to

as Self-Adaptive Goal Generation Robust-Intelligent Adaptive Curiosity (SAGG-

RIAC) [Baranes & Oudeyer 2010], which considers as interesting the local im-

provement of its competence to reach high-level self-generated goals; [Baranes &

Oudeyer 2013] goes further and develops goal-oriented exploration algorithms where

the agent self-determines goals where to make progress.
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3.4.3.3 Morphological models

A third approach is related to the structural relationship among multiple sensorimo-

tor channels, and is based on comparison information characterising several pieces

of stimuli perceived at the same time in several parts of the sensory input.

In the following, two examples of morphology-based intrinsic motivation pro-

posed by [Oudeyer & Kaplan 2007] are described; they both rely on the formaliza-

tion the sensorimotor �ow experienced by a robot. Let SM(t) denote the vector of

all sensorimotor values at time t, with 〈SM(T )〉τ the average of the sensorimotor

vector over the last τ time steps. We will use the notation SM(→ t) to denote

a sequence of sensorimotor vectors up to time t, with r(SM(→ t)) the associated

reward. Let ε denote a very small constant. Two typical examples of this type of

intrinsic motivation mechanism are as follows:

1. Stability motivation aims at keeping the sensorimotor �ow close from its

average value.

r(SM(→ t)) ∝ 1

‖SM(t)− 〈SM(T )〉τ‖+ ε

2. Variance motivation aims at a high variance of the sensorimotor vector.

r(SM(→ t)) ∝ (‖SM(t)− 〈SM(T )〉τ‖)

The choice of the model depends on the context. For example, stability moti-

vation can be used to decrease the inherent instability of perception and support a

tracking behavior [Kaplan & Oudeyer 2003]. On the contrary, variance motivation

could lead to explore unknown sensorimotor contingencies far from equilibrium. An-

other morphological model, based on information theory, has been studied in [Sporns

& Lungarella 2006], investigating how various information theoretic cost functions to

be optimised by a sensorimotor system led to self-organized coordinated behaviours.

3.4.4 Intelligent Adaptive Curiosity

Since the presented work is inspired by the models proposed and used in [Oudeyer

et al. 2005,Oudeyer et al. 2007,Baranès & Oudeyer 2009,Lopes et al. 2012,Baranes

& Oudeyer 2013], let us review these models in more detail. This section focuses in

particular on Intelligent Adaptive Curiosity (IAC) [Oudeyer et al. 2007] and Robust

Intelligent Adaptive Curiosity (R-IAC) [Baranès & Oudeyer 2009], using as intrinsic

reward the learning progress motivation mentioned above. The architecture R-IAC

is a re�nement of the IAC architecture, as described in [Baranes & Oudeyer 2013].

The central contribution of both IAC and R-IAC systems lie in the way rewards
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are de�ned and computed, i.e. through region-based hierarchical multiresolution

evaluation of learning progress [Baranès & Oudeyer 2009]. Such an approach based

on the optimization of learning progress (prediction progress) belongs to the family

of knowledge-based intrinsic motivation systems mentioned above (section 3.4.3.1).

As shown in Fig 3.3, IAC and R-IAC rely on the same general architecture

[Baranès & Oudeyer 2009], which will be technically detailed in the IAC context.

A major component of IAC is dividing the sensory-motor space into independent

regions handled by local learning experts. Another major contribution is a quanti-

tative measure for learning progress of an exploring intelligent agent.

Figure 3.3: General architecture of IAC and R-IAC adapted frmo [Baranès &

Oudeyer 2009]. The Prediction Machine PM is used to create a forward model

of the world, and measures the quality of its predictions (errors values). Then, a

split machine cuts the sensorimotor space into di�erent regions, whose quality of

learning over time is examined by Prediction Analysis Machines. Then, an Action

Selection system is used to choose experiments to perform.

The key idea of IAC is that the drive to learn is based on maximizing the

learning progress. This is achieved by creating a memory of all the exemplars

(SM(t), S(t+1)) encountered by the robot and splitting this memory into similarity-

based regions. Each region is characterized by its (disjoint) set of exemplars. Each

region is associated with a speci�c learning machine, called an expert, that is re-

sponsible for the prediction of S(t + 1) given SM(t) when SM(t) is a situation

which is covered by its associated region. More formally, the expert is trying to

map the sensorimotor information at time t to the sensory outcome at time t + 1:
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SM(t)→ S(t+ 1). Each region monitors the errors of its expert over time and gen-

erates a measure of learning progress, which is essentially the change in the current

mean error rate (relatively to the previous mean error rate). The robot explores the

regions that will expectedly yield the maximal learning progress.

On each time step the robot achieves action selection based on its current mem-

ory. It takes in a vector of the current sensory information and generates a list

of potential actions (or a sample of potential actions if the list is in�nite). Then it

concatenates each candidate action with the current sensory information and probes

the memory to �nd all matching regions. The region which gives the highest po-

tential learning progress is selected after an ε-greedy mechanism (with some low

probability ε, a random action is selected). The sensorimotor vector corresponding

to the selected action is added to the selected region as an exemplar of the region.

When a region o�ers a learnable transition model (yielding from a sensorimotor

context and an action to the next sensorimotor context), initially its expert will make

good progress and this region will be chosen frequently. As the expert succeeds in

learning the transition model, its progress will slow down, and the learning progress

of other regions will outpass this region. In this way, IAC guides the robot to explore

its environment in a sensible and adaptive way, focusing on those aspects where it

can make the best gains, and ignoring aspects that have already been learned, or

are unlearnable. It is important to note that IAC is robust with respect to non-

deterministic transition functions.

The main processing loop of IAC works as follows (the speci�c algorithm will be

given in next chapter 4):

• Let S(t) be the sensor vector corresponding to the current situation.

• Create a list of potential actions. If the action space is continuous, generate a

sample of candidate actions.

• For each candidate action, M(t), query the IAC memory with S(t).M(t), and

determine the associated region's learning progress.

• With some high probability, choose the action associated with maximal learn-

ing progress in this region, otherwise choose a random action.

• Execute the chosen action on the robot and observe the outcome S(t+ 1).

• Train the expert from the chosen region on the mapping: SM(t)→ S(t+ 1).

Note that IAC could be viewed as active learning algorithms that are particularly

suited for learning forward models in raw sensorimotor spaces with large unlearn-

able regions (due to locally very stochastic transition models for instance). Instead,
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R-IAC is far superior to IAC in a complex sensorimotor space where only a small sub-

space is �interesting�, i.e., neither unlearnable nor trivial [Baranès & Oudeyer 2009].

3.4.5 Hybrid approaches

The IAC and R-IAC intrinsically motivated active exploration methods su�er from

the main two limitations of unlearnability and unboundedness [Oudeyer et al. 2013],

respectively when the agent sensor vector is high-dimensional (in particular with

continuous sensors) and when the agent faces an open environment. The SAGG-

RIAC (Self-Adaptive Goal Generation R-IAC) [Baranes & Oudeyer 2010] proposes

to address these challenges by hybridizing the IAC and R-IAC schemes with the

Shifting Setpoint Algorithm, where models are built along tubes in the motion

space between desired points [Schaal & Atkeson 1994]. They de�ne a mutilevel

active learning algorithms, using motor babbling to build the inverse model along

tubes in actuator space, from start positions to goal positions.

3.5 Discovery

Most intrinsic motivation-related approaches have been assessed empirically, due to

the lack of well-de�ned performance measure for autonomous learning agents, and

the lack of theoretical framework supporting the closed-form analysis of their per-

formances. In the particular case of [Auer et al. 2011, Lim & Auer 2012], such a

theoretical framework and algorithms have been proposed and analysed. The con-

text is that of an MDP without external rewards. [Auer et al. 2011] proposed a

performance measure for such contexts, and [Lim & Auer 2012] designed an algo-

rithm, referred to as UcbExplore, which explores a controlled Markov process by

discovering reachable states.

3.5.1 Discovering reachable states in a controlled Markov process

The algorithm UcbExplorep aims at the discovery of reachable states, exploiting

the fact that these states can be learned (i.e. discovered) incrementally. The main

idea of the algorithm is to formulate the discovery of a reachable state as a task; in

each iteration a task is selected after the Optimism in front of the unknown principle

at the core of the Multi-Armed Bandit algorithms [Auer et al. 2002]. In each time

step, a state is selected in an optimistic way. By optimistic we mean choosing the

easiest state to reach�the one that seems to be reachable in the shortest number of

steps from the starting point s0, based on information collected so far. The algorithm

maintains a set K of known states and a set U of unknown states. A state s is L-

known when a policy πs for that state can reaches s in (1+ε)L steps, while U includes
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all states which have been identi�ed as candidate states, potential members of K.
The algorithm consists of the following steps, where L denotes the budget (number

of time steps) allowed to reach states:

1. State discovery

For each known state in K all actions are systematically explored, in order to

discover all relevant neighboring states. As the environment admits incremen-

tal learning, either one of the unknown neighboring states is reachable, or all

reachable states are already known.

2. Compute optimistic policy

For an unknown neighboring state su, compute an optimistic policy πsu (con-

sistent with the current observations so far) that reaches su with a minimum

number of time steps. In case no unknown neighboring state is optimistically

reachable in L steps, terminate the algorithm. Otherwise, choosing a state su
and corresponding policy πsu , the algorithm goes to next step.

3. Policy evaluation

The policy πsu is evaluated, then the policy πsu is executed several times (as

the underlying transition model is assumed to be non-deterministic). If su
is indeed reached in at most (1 + ε)L steps, su becomes a new known state

and the algorithm goes to Step 1. If not, the algorithm continues by choosing

another state su and its policy πsu in Step 2.

The most computationally intensive step of the algorithm is the last one, checking

the quality of policy πsu .

3.5.2 Analysis of algorithm UcbExplore

Each major iteration of the algorithm is referred to as a �round�. A successful round

consists of i) �nding a neighboring state (step 1); ii) �nding a policy to reach it (step

2); iii) checking that this policy succeeds in circa L steps on average; upon success

the new state is removed from U and added to K. Algorithm UcbExplore thus

incrementally discovers all states reachable in circa L states, continously upgrading

its knowledge about the environment by tackling increasingly more complex goals,

that is, discovering farther away states.

Note that this approach can be likened to the novelty search algorithm [Lehman

& Stanley 2008], where the goal simply is to discover new individuls. More formally,

[Lehman & Stanley 2008] uses as �tness objective the �distance� of an individual

w.r.t. the individuals in the agent memory or archive. Accordingly, the agent
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gradually gathers a sample of diverse individuals in its memory. Thereby, it creates

an open-ended memory-based evolutionary framework, aimed at novelty [Lehman

& Stanley 2011].

3.6 Discussion

As said, the work presented in this manuscript is at the crossroad of Evolutionary

Robotics (ER, chapter 2) and Reinforcement Learning-based Robotics, described in

this chapter.

The di�erences among the two approaches are threefold. A �rst issue regards

their input and how the prior knowledge involved in the algorithmic process is

provided by the human designer. A second issue regards the search space and the

optimization process. A third, related and most important issue, regards how the

information gathered along the search is reused.

3.6.1 Prior knowledge

In mainstream RL, the prior knowledge is expressed through the reward function

de�ned on the state-action space. As noted, the reward function encapsulates a high

expertise as it is responsible for ensuring that i) the associated optimal controllers

actually achieve the desired behavior; and ii) the underlying optimization process

can be e�ciently conducted. The de�nition of an accurate reward function, thus an

RL bottleneck, can be addressed using Inverse Reinforcement Learning, using the

expert demonstrations to actually learn a reward function; IRL however requires the

expert to know and be able to demonstrate the desired behavior. Preference-based

RL, relaxing the expertise requirement, uses the human in the loop to incrementally

learn an optimization objective de�ned on the policy space.

Evolutionary robotics, like direct policy search [Kober et al. 2013], starts with

an optimization objective (also called �tness) de�ned on the policy space. The

de�nition of a good �tness function raises similar di�culties as the de�nition of a

reward function: the associated optimal controllers must achieve the desired behav-

ior and the �tness function must induce a doable optimization problem. The main

di�erence is that the �tness function is not subject to the Markovian assumption:

it can consider the whole trajectory and use external, non-stationary information6.

In particular, ER optimization objective can refer to external and non-stationary

information; RL could hardly (or not tractably) do the same.

6For instance, it makes it possible to reward a controller for its �rst visit to a given location,

but not for its subsequent visits. In a Markovian setting, this would require the state space to

involve a speci�c feature, indicating whether this location has already been visited.
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3.6.2 Optimization issues

Mainstream RL aims at learning and optimizing the value function on the state

or state-action space; this optimization is alternated with the policy optimization.

This value function induces the optimal policy: by greedily selecting the action with

best value in the current state, or leading to the state with best value.

ER, like direct policy search, conducts optimization in the controller space, with

two speci�cities. Most importantly, policy optimization corresponds to a stochastic

optimization problem: �nd the controller maximizing the �tness expectation, taken

over the trajectory distribution induced by the starting state, the transition model,

the noise in the actions. The �tness expectation is approximated by an empirical

average; an important issue is to keep the computational cost of this approximation

within reasonable bounds [Heidrich-Meisner & Igel 2009].

In both cases, a key issue is to maintain a tradeo� between the representation of

the search space (the state-action space, the value function on the state-action space,

the controller space), which must be su�ciently rich to support complex behaviors,

and the di�culty of the associated optimization problem [Koutník et al. 2013].

3.6.3 Knowledge gained along search

Both approaches exploit the data acquired through the learning or optimization

process in a di�erent way. In RL, the main acquired knowledge is the value function

(and to a lesser extent the transition model), which is gradually re�ned along the

process; the desired behavior then (trivially) derives by greedy optimization of the

value function.

In ER, the acquired information is encapsulated by the controller population on

the one hand (e.g. a distribution on the weight vector of a neural net architecture),

and by an archive of the trajectories of past controllers on the other hand. This

archive makes it feasible to de�ne more sophisticated �tness functions, not satis-

fying the Markovian assumption. For instance, [Lehman & Stanley 2008, Lehman

et al. 2012] characterize and exploit the di�erence between a trajectory and the

past ones to enforce the robust sampling of the trajectory space for creative de-

sign; [Mouret & Doncieux 2012,Koos et al. 2013] likewise use this diversity, possi-

bly along a multi-objective framework; [Delarboulas et al. 2010] further de�nes a

discovery-driven �tness, computing the conditional entropy of the current trajectory

w.r.t. the trajectory archive.
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3.6.4 A hybrid goal

The above comparisons yield to identify desirable features and ask the correspond-

ing questions. Firstly, describing the target controller through a value function

appears to be desirable as far as it allows the value function to be modi�ed along

the controller lifetime, achieving lifelong learning. As with all incremental learn-

ing/optimization processes, this raises the question of the initialization of the pro-

cess. A second requirement thus is that the initial value function should encapsulate

a su�ciently global information on the environment, in order to support non-local

action selection. A second question thus is how this �initial/global� information

encapsulated in the initial value function should be gathered.

The next chapter, presenting the contribution of our work, is an attempt to

answer these questions.





Chapter 4

The Ev-ITER approach

This chapter presents our main contribution to online, on-board robotics, at the

crossroad of Evolutionary Robotics and Machine Learning-based Robotics [Hurst

et al. 2002,Williams & Browne 2012,Koutník et al. 2013, Parra et al. 2014,Wang

et al. 2015]. We �rst de�ne our goal in Section 4.1, which is to provide the agent

with an intrinsic motivation or �instinct�, supporting the building of an autonomous

exploratory controller. The desired properties of such an intrinsic motivation, fo-

cussing on the generality of the controller, are discussed. The proposed approach

inherits from the intrinsic motivation [Baranès & Oudeyer 2009,Oudeyer et al. 2012]

and the information theory-based [Delarboulas et al. 2010] approaches, respectively

discussed in chapter 3 and chapter 2; these algorithms are described with uni�ed

notations for the sake of completeness and clarity (section 4.2). The proposed ap-

proach, called Evolution and Information Theory-Driven Exploratory Robotics (Ev-

ITER) and �rst presented in [Zhang & Sebag 2014], is described in section 4.3. The

chapter concludes with a discussion and some perspectives for further research.

4.1 Position of the problen

As detailed in the previous chapters, several disciplinary �elds are concerned with

building autonomous robotic controllers:

• Optimal control is concerned with model-based settings in continous domains1;

• Machine learning and speci�cally reinforcement learning is concerned with

model-based settings in discrete domains, and model-free settings in discrete

or continuous domains [Kober et al. 2013], where the prior knowledge is usually

provided in terms of a reward function attached to each state or state-action

pair;

• Evolutionary robotics is concerned with the direct optimization of the con-

troller (and also possibly of the robot architecture), assuming strong do-

main knowledge and computational resources; ER is most often used together

1As said, optimal control is outside the scope of the presented work.
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with a simulator, at the expense of the so-called reality gap [Lipson & Pol-

lack 2000,Saxena et al. 2008].

The last two disciplines present di�erent trade-o�s between the assumedly avail-

able prior knowledge on the one hand and the computational resources on the other

hand. At one extreme, ER requires but a coarse prior knowledge (the controller per-

formance is de�ned at the trajectory level) which is exploited using strong resources

(computational resources when the controller is computed and optimized in simula-

tion; human e�orts when the controller is optimized in-situ). At the other extreme,

RL requires a strong prior knowledge (the performance is de�ned at the �ne-grained

level of the state-action pair) and is expected to make a more parcimonious use of

the computational resources (although algorithms with provable guarantees of con-

vergence toward the optimum strategy raise scalability issues with respect to the

size of the state and action space).

Exploratory robotics, as pioneered by [Schmidhuber 1991] and further inves-

tigated by [Oudeyer et al. 2007, Baranès & Oudeyer 2009, Montanier & Bre-

deche 2011a,Mouret & Doncieux 2012,Mouret & Doncieux 2012,Bredeche et al. 2012,

Oudeyer et al. 2013] tackles yet another trade-o�. On the one hand, it considers

a model-free setting, where the transition model is unknown. On the other hand,

a main challenge is to de�ne a priori a reward either at the coarse trajectory or

at the �ne-grained state-action level, such that i) it does not require ground truth

about the appropriateness of the robot behavior in its environment; ii) it enforces

an �interesting� behavior. The research question investigated in this PhD work is

to build exploratory robotic controllers, using an in-situ approach2.

The proposed approach will hybridize two approaches stemming from Evolution-

ary Robotics and from Reinforcement Learning, with the goal of getting the best of

both worlds:

• Evolutionary robotics will be used to build primary controllers, referred

to as crawling controllers, using and extending (section 4.3.1) [Delarboulas

et al. 2010] for a few generations;

• The sensori-motor data gathered by the crawling controllers is used to provide

prior knowledge to secondary controllers, referred to as Ev-ITER controllers,

2 As said, this study is primarily motivated by swarm robotics [O'Dowd et al. 2011,Brambilla

et al. 2013]. Swarm robotics aims at designing robust, scalable and �exible collective behaviors for

the coordination of large numbers of robots through simple controllers and local interactions. In this

context, the standard simulator-based approach is ine�ective. On the one hand, the computational

complexity is super-linear with respect to the number of robots in the swarm; the environment is

highly dynamic due to the fact that the actions of the robots in the systems are coupled with one

another. On the other hand, the simulator accuracy is hindered by the variability of the hardware.
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taking inspiration from the intrinsic robust motivation [Schmidhuber 1991,

Oudeyer et al. 2007, Baranès & Oudeyer 2009,Oudeyer et al. 2012]; the Ev-

ITER controllers are essentially deterministic3;

• Furthermore, the generality of the Ev-ITER controllers will be tested, consid-

ering new environments di�erent from the training environment.

Overall, the goal of Ev-ITER controllers is to be able to explore the training

environment and similar environments in a principled and e�ective way. The main

contributions of the presented approach are the following.

• Firstly, it acknowledges that a preliminary exploration of the environment

is needed to prime the pump and start gathering information. This pre-

liminary exploration corresponds to the initial stage of babbling in [Oudeyer

et al. 2007, Baranès & Oudeyer 2009], uniformly selecting the move actions

and thus following a Brownian motion.

In Ev-ITER, this preliminary exploration is achieved through launching a very

short evolutionary robotic process.

A main point is that the controller trajectories obtained by this �rst phase are

exploited, in contrast with the fact that ER does not exploit per se the informa-

tion gathered by the controllers; the controller trajectories are thrown away

as they only serve to compute the �tness of the controllers (although some

speci�c information, e.g. the end of the trajectory, is archived in the Novelty

Search approach [Lehman & Stanley 2008,Mouret & Doncieux 2012]).

Overall, this �rst phase aims at building data resources, supporting the fur-

ther computational stages, under the constraints of limited memory and com-

putational resources; the criterion is to be more e�ective than a Brownian

movement in building this data repository.

• Secondly, this data repository is exploited by a principled and essentially de-

terministic stragegy (although, as said, it is slightly mixed with a random

controller in order to avoid getting stuck in dead ends depending on the envi-

ronment).

• Thirdly and importantly, this strategy is e�ective in other environments than

the training one. It must be emphasized that the generality of the learned con-

troller with respect to the considered environment has rarely been considered,

neither in the reinforcement learning4, nor in evolutionary robotics.
3The mixing of the deterministic strategy with a uniformly random one (selecting uniformly the

actions with a very low probability) is used to prevent the robot from getting stuck in dead ends,

depending on the environment.
4Transfer reinforcement learning (see e.g. [Taylor & Stone 2009,Konidaris et al. 2012] among
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4.2 Formal Background

For the sake of clarity and using uni�ed notations, this section recaps the algo-

rithms of intrinsic motivation [Oudeyer et al. 2007,Baranès & Oudeyer 2009,Oudeyer

et al. 2012,Lopes et al. 2012] and curiosity-driven discovery [Delarboulas et al. 2010].

4.2.1 Notations

• K = (st, at)
T
t=1 denotes a T -length trajectory, where st (respectively at) de-

notes the sensor (resp. motor) value vector at time t (st ∈ IRs, at ∈ IRm).

• sit (respectively ait) denotes the ith vector value of st (resp. at).

• smt = (st, at) denotes the concatenation of the sensory and motor data of the

robot at time t, i.e., the sensori-motor value vectors at time t.

• S and A respectively stands for the set of states and set of actions.

• K→g = {K1, . . .Kg} denotes the archive of the trajectories generated by the

learning/optimization process until step g.

4.2.2 Intrinsic motivation

Let K→i denote the archive of the �rst i trajectories generated by the intrinsic

motivation process. A forward model fi is learned from Ki, estimating the transition

model in the robot environment, speci�cally the next state s′ of the robot after

selecting action a in state s:

fi : S ×A 7→ S (4.1)

The key point is that the accuracy of fi can be estimated on-board during the

next trajectory of the robot, as the robot observes the state st+1 yielded by selecting

action at in state st. The accuracy Acc(fi) of fi on the next trajectory Ki+1 thus

de�nes an intrinsic information, accessible to the robot without any external ground

truth.

Acc(fi) = Pr(st+1 = fi(st, at)|(st, at, st+1) ∈ Ki+1) (4.2)

Note that the above accuracy de�nes a misleading �tness, as a motionless controller

(st+1 = st) would easily get a very high �tness. The intrinsic motivation (IM)

�tness FIM therefore associates to a controller the instantaneous variation of the

Acc quantity:

many others) is mostly concerned with how to adapt a solution controller under variations of the

reward or transition models.
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FIM (π) = Acc(fi+1)−Acc(fi) (4.3)

Some hyperparameters are involved in the computation of the �tness, typically spec-

ifying how the accuracy is tested (size of the test set Ki+1, size and selection of the

training set extracted from K→i used to learn fi); these parameters critically control

the variance of the accuracy and therefore the noise of FIM . The state and action

spaces usually are discretized in a regular, recursive way, where each grid cell is

re�ned along the learning and evolution process to split the grid cells where the

prediction accuracy remains consistently low.

The optimization of �tness FIM thus yields controllers which explore new re-

gions of the (state,action) space, providing new samples and thereby ultimately

yielding an optimal forward model. Most interestingly, FIM does not reward the

extra-exploration of noisy regions: if a (state,action) region is noisy − due to e.g.

stochastic noise in the environment − repeated explorations of this region are useless

as they do not improve the forward model accuracy after su�cient exploration, and

thus yield a null contribution to FIM .

4.2.3 Curiosity-driven Evolutionary Robotics

Curiosity-driven ER, �rst introduced by [Delarboulas et al. 2010], likewise exploits

the past trajectories to de�ne a �tness function. Likewise, it considers a contin-

uous state and action space. The discretization is achieved incrementally using a

deterministic process, meant to enforce a steady �tness function (below).

4.2.3.1 Clustering the sensori-motor space

This discretization is based on a standard clustering algorithm [Duda et al. 2001]

with linear complexity in the size of the trajectories. The basic clustering algorithms

are the k-means (Alg.3) and the ε-clustering algorithm (Alg. 4). Let E be a set of

n points {x1 . . . xn} in a space X endowed with a metric or dissimilarity function d.

The k-means algorithm speci�es the number of clusters, set to k. Each cluster

Ci is initialized with a (uniformly or heuristically chosen) point in E . The k-means

algorithm then proceeds by incrementally associating a point xi to the closest cluster

(where the distance of a point x to a cluster C is a hyper-parameter of the algorithm,

e.g. considering the minimum or the average distance between x and the points in

C [Kleinberg 2003]. As the �nal set of k clusters heavily depends on the initialization

of the algorithm and on the order of the points, k-means usually iterates the above

process, where each round starts by taking as initial points the average or median

point in each cluster found in the previous round, and the process is shown to
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converge toward a (local) minimum (e.g. of the distortion function in the case

where the distance between a point x and a cluster C is the average over xi in C

of d(x, xi), where the distortion of sample E w.r.t. clustering C = {C1, . . . Ck} is
de�ned as:

D(E) =
n∑
i=1

d2(xi, C) d(x, C) = minkj=1d(x,Cj) (4.4)

While k-means speci�es the number of desired clusters (which might thus have

very diverse size depending on the sample and on the initialization), parameter ε

speci�es the maximum diameter of a cluster. The ε-clustering algorithm sets the

�rst point x1 to the �rst cluster. Iteratively, each point xi is compared to the existing

clusters; if the nearest cluster is within a distance less than ε of xi, xi is allocated

to this cluster; otherwise, a new cluster is created and initialized to {xi}.
The reason why ε-clustering is preferred over k-means is its stability with respect

to a dynamically extended sample E . The distortion of the clustering is bounded

by nε by construction, and the algorithm does not require several rounds in order

to converge toward a local optimum of the distortion as is the case for the k-means

algorithm. This property allows to gradually extend the clustering along evolution,

as more trajectories are considered and other regions of the sensori-motor space

are visited, while enforcing a stationary �tness function based on the clusters (see

below).

The price to pay for this stability property under the extension of E is that

the number of clusters yielded by ε-clustering is unbounded. In the worst case, it

varies exponentially in O(εd) if points xi belong to a bounded region of IRd. In

our motivating application, the designer must thus choose ε after some preliminary

trials to ensure that the ε-clustering algorithm complies with the bounded memory

resources of the robot. Conditionally to a decent number of clusters, the ε-clustering

algorithm complies with the bounded computational resources of the robot, and can

thus be run online, on-board.

4.2.3.2 Clustering-based evolutionary �tnesses

Let C be the ε-clustering built from the controller trajectories recorded so far.

Let K be a controller trajectory. For each cluster Ci in C, let pi denote the

fraction of sensori-motor vectors smt in K belonging to this cluster. The entropy of

trajectory K is classically de�ned as:

Entropy(K) = −
∑
Ci∈C

pi log pi (4.5)
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Algorithm 3 k-means Algorithm

1: Input: k the desired number of clusters; E = {x1, . . . xn} points.
2: Output: C = {C1, . . . Ck} clustering
3: for i = 1...k do

4: Ci = {ci} where ci is a uniformly chosen point in E with no replacement (all

distinct)

5: end for

6: for i = 1...n do

7: j(i) = argminj=1...k{d(xi, Cj)}
8: end for

9: repeat

10: for t = 1...k do

11: Ci = {ci =
∑
k s.t. j(k)==i(t)=i xk∑

k/j(k)=i 1

12: end for

13: goto line 4

14: until C does not change

Algorithm 4 ε-means Algorithm

1: Input: ε the desired diameter of a cluster; E = {x1, . . . xn} points.
2: Output: C = {C1, . . . Ck} clustering
3: C = {C1}, C1 = {x1};
4: for i = 2...n do

5: j(i) = argminCj∈C{d(xi, Cj)}
6: if d(xt, Cj(i)) > ε then

7: C
⋃

= C = {(xi};
8: end if

9: end for
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The curiosity-driven �tness FE associates to a controller π the entropy of a T -

long trajectory thereof. Note that this �tness yields a stochastic value, due to two

phenomenons: Firstly, the trajectory entropy depends on the initial position of the

robot. In many studies, the experimental setting requires that all robot trajectories

start in the same position to limit the variability; while such a requirement is easily

met in simulations, some human e�ort is required to ful�ll this condition for in-situ

experiments, and one would rather like the robot trajectory with a given controller

to start where the trajectory with the previous controller ended, as in open-ended

evolution [Montanier & Bredeche 2011b]. An alternative is to consider long tra-

jectories, in order to decrease the dependency on the initial state and discard the

beginning of the trajectory, akin the burn-in period of a Markov chain.

Secondly, the sensori-motor trajectory is a�ected by the sensor and actuator noise.

It is argued however by [Delarboulas et al. 2010] that the �tness is robust w.r.t

experimental noise (e.g. when the sensor value suddenly jumps to the maximum

value and gets back to its value afterwards), as pi is by construction robust w.r.t.

outliers.

The curiosity �tness of a controller �nally can be computed on-board, with lim-

ited computational and memory resources (the memory resources being controlled

depending on parameter ε). The clustering C is extended as more trajectories and

more controllers are considered; the point is that the �tness de�ned from this non-

stationary clustering is consistent, i.e. would give the same �tness value for a tra-

jectory, whatever the generation this trajectory has been observed.

The incremental stability of the clustering is used to de�ne another �tness,

dubbed discovery-driven �tness [Delarboulas et al. 2010]. Let mi de�ne the number

of sensori-motor vectors in the evolutionary robotic archive K, falling in cluster Ci,

with m =
∑

imi, and qi = mi/m. The entropy −
∑
qilog(qi), called population en-

tropy, re�ects how the past trajectories have been exploring the sensori-motor space.

It then makes sense to consider how much additional information an individual tra-

jectory brings in, relatively to the information gathered by the previous generations.

The di�erential entropy of a T -long trajectory K, noted Di�Entropy(K), is de�ned

with same notations as above, as:

Di�Entropy(K) = −
∑
Ci∈C

(
mi + piT

m+ T
log

mi + piT

m+ T
− mi

m
log

mi

m

)
(4.6)

The discovery-driven �tness FD associates to a controller π the di�erential en-

tropy of a T -long trajectory thereof. The intuition is that the discovery driven

�tness de�nes a dynamic optimization landscape, where a controller is rewarded for

discovering new clusters of sensori-motor states, and for visiting more the clusters
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IM Curiosity Discovery

No ground truth ∗ ∗ ∗
Limited memory (training set; test set) clusters clusters, # visits

Limited computation ∗ ∗ ∗
Robustness ∗ ∗∗ ∗∗
Sensitivity w.r.t.

− ∗ −
environment

Sensitivity w.r.t.
−− − −

hyper-parameters

Table 4.1: Respective merits of Intrinsic Motivation, Curiosity-Driven and

Discovery-Driven Criteria. Legend: ∗ means that the criterion is satis�ed; −, that
it is not.

which were rarely visited by its ancestors. Again, this cumulative �tness de�nition

relies on the fact that all controllers share the same clusters, and that the evolution-

ary mechanism maintains and updates the set of clusters and the number of visits

they have received along all previous generations.

Both �tness objectives are maximized using evolution strategies: the (1+1)-ES

is used online, on-board.

4.2.4 Getting the best of both worlds

Our goal, de�ning an optimization objective conducive to building e�cient ex-

ploratory controllers, is associated with several requirements; these requirements

are listed below, and how they are ful�lled by the three above criteria − intrinsic

motivation, curiosity and discovery − is reported in Table 4.1.

1. No ground truth required; the criterion must require no prior knowledge, or

truth signal obtained through a complex experimental setting (e.g. light sig-

nalling that the robot is doing well);

2. The criterion must be computable on-board: it must be compatible with lim-

ited memory and computational resources;

3. The criterion must be robust w.r.t sensor and actuator noise;

Additional aspects include the sensitivity w.r.t. the experimental setting and specif-

ically the robot arena, and the sensitivity w.r.t. the hyper-parameters of the algo-

rithm.
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By construction, none of the three criteria requires any ground truth external

to the robot; the ground truth signal is provided by the robot environment itself,

through the sensor information. Regarding the memory requirements, intrinsic mo-

tivation must store enough sensori-motor vectors to enable building and assessing

the forward model: as the IM criterion is de�ned by the increase in the forward

model accuracy, a rather precise assessment is required, implying large training and

test sets. W.r.t. the curiosity and discovery-driven �tness, one only requires to store

the cluster centers (for curiosity), plus the number of times they have been visited

(for discovery). These requirements are quite compatible with the limited memory

resources available on-board, provided that the ε parameter is set to an appropriate

value.

Regarding the computational e�ort, the clustering-based approaches required

very limited computational e�ort; the intrinsic motivation approach requires to em-

bed and launch a machine learning algorithm, which might be more expensive; still,

decision trees or random forests can be used to achieve fast learning with limited

computational cost.

Regarding the robustness wrt sensor noise, all approaches are robust; the higher

robustness of the clustering-based approaches is due to the fact that events with

low probability p would contribute p to IM �tness, and plogp to clustering-driven

approaches.

The robustness w.r.t. algorithm hyper-parameters, also an important aspect for

reproducible experiments and further transfer to industrial partners, raises complex

questions. Learning a transition model, like all learning tasks, notoriously signif-

icantly depends on the choice of the learning algorithm and the calibration of its

hyper-parameters [Hutter et al. 2015]; it is true that intrinsic motivation only in-

volves the increase or decrease of the transition accuracy; still, the bad choice of the

learning hyper-parameters (and of the size and selection of the training and test sets)

could impact FIM , adversely a�ecting the signal to noise ratio, and thus harming

the exploratory process. In the clustering-based approaches, one must adjust the

only parameter ε. The proper adjustment of ε commands the whole process: too

high and there will be a single cluster, making the �tness a trivial one; too low and

the number of clusters becomes very large (or in�nite in a truly continuous sensor

space), also yielding a trivial �tness. Parameter ε must be adjusted to match the

information richness of the environment. If the environment does not present su�-

cient variations (a desert), the �tness also is trivial and return 0 (the robot sees a

single state). Quite the contrary, if ε is too large and distinct sensori-motor vectors

falls in distinct clusters, then the �tness also trivially returns log T , T being the

length of the trajectory.
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A weakness of the curiosity-driven approach is its sensitivity to stochastic en-

vironments and periodic behaviors: a controller exhibiting periodic behaviors with

a long period (e.g. dancing in a corner of the environment) will get a high �tness.

Quite the contrary, the intrinsic motivation is immune as said to stochastic tran-

sition models, and will also stand heteroscedastic environments where the noise of

the transition model varies depending on the region of the space, by simply explor-

ing more the regions with higher transition noise. The discovery-driven approach,

which rewards the discovery of unvisited or rare states, is also less sensitive than

the curiosity-driven approach than stochastic environments.

Let us �nally consider the generality w.r.t. environments. In a new environment,

the transition model basically needs be learned from scratch, and the intrinsic mo-

tivation approach must therefore starts anew. For the curiosity-driven approach, if

the state and action spaces do not change, then the process could continue, reuse

and extend the available clustering (but ε-clustering is not very computationally

expensive anyway). In the discovery-driven process, one would rather restart the

process as the global entropy gathered in a previous arena is hardly relevant for a

new arena.

4.3 Ev-ITER overview

This section describes the Ev-ITER scheme, aimed at the best of the two intrinsic

motivation and clustering-based approaches. Ev-ITER involves three phases:

The �rst phase builds robotic crawlers, built by evolutionary robotics by taking

inspiration from [Delarboulas et al. 2010], and considering a training environment.

The second phase runs the best robotic crawlers built in the �rst phase, in the

training arena, and a data repository made of triplets (state, action, next state) is

built from their trajectories.

In the third phase, the data repository is used and updated to support the quasi-

deterministic Ev-ITER controller, operating either in the training environment −
referred to as source environment − or in another environment − referred to as

target environment.

4.3.1 Phase 1: Building robotic crawlers

The robotic crawlers, like in [Delarboulas et al. 2010], are multi-layer perceptrons

neural networks (Fig. 4.1). The input nodes receives the sensor values. The values

of the hidden nodes on the intermediate layer are computed from the input node
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Figure 4.1: The Neural Network architecture of the robotic crawlers: the robot

sensor values on the input nodes are mapped onto the hidden node values, and

these are mapped onto actuator values.

values using a non-linear transformation of a linear combination of the input:

hj(x) = g

(
s+1∑
i=1

wi,jxi

)
(4.7)

where x = (x1, . . . xs) is a sensor vector, wi, j are the �rst layer weights of the NN,

(w in IR(s+1)×h where s is the number of sensors and h is the number of hidden

neurons5, and g is a non-linear bounded activation function, usually the sigmoid

function (Fig 4.2):

g(z) =
1

1 + exp−a·z

The hidden nodes are likewise used to compute the actuator values, with

aj(x) = g

(
h+1∑
i=1

w′i,jhi

)
(4.8)

5By convention, the sensor vector in IRs is embedded onto IRs+1 by concatenation with a

constant value 1. In this way, the bias b in the standard equation

y = g(

s∑
i=1

wixi + b)

is represented as the last coordinate ws+1 of the weight vector w.



4.3. Ev-ITER overview 65

Figure 4.2: The sigmoid function.

with w′i, j the second layer weights of the NN, in IR(h+1)×m and a = (a1, . . . am) the

vector of actuator values of the robot.

The �rst phase in Ev-ITER thus optimizes the weight vector of the robotic

crawlers, with search space IRd and d = (s+1)×h+(h+1)×m = h(s+m+1)+m.

Three optimization modes are considered. Besides the curiosity-driven and

discovery-driven objectives detailed in the previous section, another objective is

considered, the entropy of the output node vectors a. Formally, let respectively ht
and at denote the hidden node vector and the output node vector computed from

the sensor node st; both vectors capture the diversity of the sensor value vector st,

and are responsible to generate the actual moves of the robot. The algorithm thus

records the at vectors for t = 1 . . . T , clusters them using ε-clustering, and uses their

entropy as optimization objective.

The rationale for considering the entropy of the output nodes6 as a good incentive

for exploratory behaviors is as follows. On the one hand, the hidden nodes constitute

a compressed representation of the sensor vector. In particular, the dimension of

the hidden node vector is a hyper-parameter of the approach, under the control of

the design engineer, whereas the dimension of the sensor vector can be very large

(typically if the robot is equipped with cameras with a few thousand or million

pixels). Likewise, the output nodes constitute a compressed representation of the

hidden nodes, and their dimension is �xed: the number of actuators is much smaller

than the number of sensors.

On the other hand, the hidden nodes are predictive of the actuator values; the

6Another possibility is to consider the entropy of the hidden nodes. This perspective is left for

further research.
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diversity of the actuator vectors at depends (through weights w') on the diversity

of the hidden node vectors ht. The only remaining question is why maximizing the

entropy of the output nodes can be conducive to an exploratory behavior. This is

explained by considering the entire chain of perception / hidden node / action: st
re�ects the position of the robot at step t; ht is deterministically computed from st;

at is deterministically computed from ht; st+1 depends on st and at, through the

transition model. Assuming that a high diversity (entropy) of the sts is associated

with an e�cient exploratory behavior, it follows that a high diversity of the hidden

nodes hts and of the output nodes at also is associated with a high diversity of the

sensor vectors st.

Overall, three optimization criteria are considered in Phase 1: the curiosity-

driven mode, referred to as sensor-entropy (SE), the discovery-driven mode, referred

to as sensor-di�erential-entropy (SDE), and the entropy of the output nodes, referred

to as actuator-entropy (AE).

Phase 1 uses a (1 + 1)-Evolution Strategy maximizing the chosen criterion for

N generations, with N lower by an order of magnitude than used in [Delarboulas

et al. 2010].

4.3.2 Phase 2: Building a data repository

In Phase 2, the best controllers with respect to the considered optimization objec-

tive are launched in the training arena, and their trajectories are recorded in the

trajectory archive K. For the sake of notational simplicity, it is assumed in the

following that K involves a single trajectory of length T . The trajectory archive is

used to initialize a data repository as follows.

Firstly, the sensor vectors (respectively the actuator vectors) are discretized.

Let ns (respectively na) denote the number of clusters obtained by ε-clustering in

Phase 1. The clusters built by ε-clustering are not well-suited to Phase 2 and Phase

3 (more on this below). For this reason, P independent k-means algorithms with

k = ns (respectively k = na) are launched in parallel on the sensor vectors (resp.

the actuator vectors), and the best clustering in terms of distortion (Eq. 4.4) out of

the P clusterings is retained.

Each (real-valued) trajectory (s0, a0, s1 . . . sT ) in the trajectory archive K, with
st ∈ IRs and at ∈ IRm, is converted into a sequence of integers (i0, j0, i1, j1 . . . iT

with it the index of the sensor cluster st belongs to, and likewise jt the index of the

actuator cluster at belongs to. The robot is said to execute action j in state i when

it = i and jt = j.

To each pair i, j is associated the list Z(i, j) of all instants t following the exe-
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Figure 4.3: Computing the Q function from a 8-length trajectory (top), with ns =

na = 4. The 4 × 4 matrix S is built, where list S(i, j) is used to compute entropy

Q(i, j) when not empty.

cution of action j in state i:

Z(i, j) = {t, 0 ≤ t ≤ T, it−1 = i and jt−1 = j} ⊆ {1 . . . T}

Let S(i, j) denote the (multi-set) of state cluster indices for t in Z(i, j) (note that a

cluster index can appear several times in S(i, j)):

S(i, j) = {it, t ∈ Z(i, j)}

Let �nally Q(i, j) denote the entropy of S(i, j). Denoting ni,j,k the number of times

state cluster index k appears in S(i, j) and ni,j the sum of ni,j,k for k ranging over

the state cluster indices:

Q(i, j) = −
∑
k

ni,j,k
ni,j

log
ni,j,k
ni,j

It is clear that the higher Q(i, j), the lesser predictable the next state of the robot

upon selecting an action falling in the action cluster j in a state falling in the state

cluster i. By slight abuse of notations, in the following we shall speak of state i

(respectively action j) instead of state s (resp. action a) falling in the state cluster

of index i (resp. action cluster of index j).

Tables Z(i, j) and S(i, j) are built and maintained online (Fig. 4.3) as First-In

First-Out registers; they can be thought of as a transition model implemented as a

look-up table. A sliding window is used to comply with the robot limited memory

resources, where only the last λ elements in Z(i, j) and S(i, j) are retained, with λ

a user-speci�ed parameter.
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4.3.3 Phase 3. The Ev-ITER controller

The Ev-ITER controller is de�ned as a mixed strategy, hybridizing a pure random

controller and a deterministic controller aimed at increasing the information stored

in table Z.

The pure random mode, referred to as babbling mode, is triggered in two cases:

when there is not enough information available in state i to compute statistically

signi�cant Q(i, j), when the sum of ni,j with j ranging over the action cluster indices

is less than a user-speci�ed parameter λ′; and with a low η probability to prevent the

degenerate behaviors incurred by a deterministic controller (below) depending on

the speci�cities of the robot arena. The selected actuator index j∗ is thus randomly

selected in {1, . . . , na}.
The other and main mode of the Ev-ITER controller referred to as Ev-ITER

mode proceeds by deterministically selecting the action maximizing the following

score function:

j∗ = arg max {score(j|i) = (1− α)Q(i, j) + α

(
1− ni,j,i

ni, j

)
, j = 1 . . . na} (4.9)

The rationale of the above score is to select the action resulting in a maximum un-

certainty (maximum entropy) about the next state; a secondary criterion enforces

the selection of an action such that it leads to a new state, since ni,j,i
ni,j

is the es-

timated probability that selecting action j in state i results in staying in state i.

Hyper-parameter α controls the balance between the two terms: increasing the local

information about the transition model in state i, and changing state.

In the two cases, letting j∗ the selected actuator cluster index, the Ev-ITER

controller runs an actuator vector at ∈ IRa which is uniformly selected in the actuator

vector falling in the actuator cluster index j∗.

The pseudo-code of the Ev-ITER algorithm is displayed below (Alg. 5). In each

time step, the Z(i, j) and S(i, j) lists are updated. Formally, upon selecting action j

in state i at time t, the oldest elements in Z(i, j) and S(i, j) are removed if ni,j = λ

and indices t+ 1 and it+1 are respectively added to Z(i, j) and S(i, j).

4.3.4 Assessment of Ev-ITER controllers

As already said, while the robotic crawlers are trained in one robotic arena (the

source environment), a main ambition of the Ev-ITER approach is to build con-

trollers with good exploratory skills in new arenas, referred to as target environ-

ments, considered in Phase 3. Accordingly, two measures of performance of the

exploratory Ev-ITER controller will be considered:
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• The �rst measure of performance is the coverage of the target environment.

Considering a �xed grid of the environment, the density of exploration is de-

picted by the cumulative density of visits to the grid cells, with V (n) denoting

the fraction of grid cells receiving at least V (n) visits during Phase 3.

• The second measure of performance regards the accuracy of the transition

model of the target environment, estimated from the S.(i, j). More speci�cally

as the target environment might also be a stochastic environment, the accu-

racy of the transition model is measured from the distance between the true

stochastic transition model p∗(i, j, k), and the estimated one p̂(i, j, k) =
ni,j,k
ni,j

,

using a KL divergence:

Accuracy = KL(p||p∗) =

ns∑
i=1

na∑
j=1

ns∑
i=1

p(i, j, k) log
p(i, j, k)

p∗(i, j, k)

Algorithm 5 The Ev-ITER controller

1: Input: state i, registers Z(i, j), parameters λ, η and α

2: Output: actuator vector a

3: if ∃j ∈ 1 . . . na s.t. ni,j < λ then

4: j∗ = j (breaking ties at random)

5: else

6: if With probability η then

7: j∗ ∼ U{1 . . . na} (uniform selection of action index) ( p1 = 5%)

8: else

9: j∗ = arg max {score(j|i) = (1 − α)Q(i, j) + α
(

1− ni,j,i
ni,j

)
, j = 1 . . . na}

(p2 = 95%)

10: end if

11: end if

12: return a uniformly selected in actuator cluster of index j∗

4.4 Summary and Discussion

As said in the preamble of this chapter, many algorithms aimed at building au-

tonomous robotic controller ambition at getting the best of both worlds of Machine

Learning and Evolutionary Robotics: see among others [Hurst et al. 2002,Williams

& Browne 2012,Koutník et al. 2013,Parra et al. 2014,Wang et al. 2015]. The main

speci�cities of the proposed Ev-ITER approach is twofold.

Firstly, the point is to be able to run online, on-board with no ground truth and

no human intervention; in contrast, the cited algorithms involve some ground truth
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information in order to compute the exploration indicators (e.g. when applied for

simultaneous localization and mapping in [Williams & Browne 2012]).

Secondly, the deterministic Ev-ITER controller in Phase 3 can be run in target

environments whereas the evolutionary training is done in a source environment,

thus featuring some generality w.r.t. the robotic environments. The property of

transferability from one environment to another one is particularly important to

deal with hostile environments: the expected bene�t is to minimize the exploration

time needed to build a map of the target environment. Another expected bene�t

is to have the Phases 1 and 2 taking place in simulation, while Phase 3 takes place

in-situ.

This approach presents some limitations and open questions, listed below and

de�ning perspectives for further research:

• The most important algorithmic limitation in our opinion is to have the sensor

and actuator clusters �xed once for all after Phase 2. They should be allowed

to evolve and be re�ned along time, as in [Baranès & Oudeyer 2009,Oudeyer

et al. 2012], all the more so when the target environment signi�cantly di�ers

from the source environment. The critical issue naturally is of doing so with

a �xed memory budget.

• An open question is whether the criterion used in the deterministic Phase 3

should consider the transition entropy as in [Delarboulas et al. 2010], or rather

the entropy reduction as in [Baranès & Oudeyer 2009,Oudeyer et al. 2012].



Chapter 5

Experimental Analysis

This chapter presents the experimental validation of the Ev-ITER algorithms de-

scribed in the previous chapter. Firstly, sections 5.1 and 5.2 respectively discuss the

goals of experiments and introduces the experimental settings and the four modes

used in Ev-ITER. Section 5.3.2 reports on the performances of the four modes used

in the evolutionary 1st-phase of Ev-ITER. The chapter last reports and discusses the

experimental results of Ev-ITER comparatively to the baseline algorithms, where

the Ev-ITER-1st phase respectively consider the entropy of the sensori-motor data

(section 5.3.3) and the actuator data (section 5.3.4).

5.1 Goals of experiments

As said in the previous chapter, the presented work takes inspiration in both the

evolutionary optimization of exploratory controllers [Delarboulas et al. 2010], and

the use of the recorded data in order to de�ne an exploratory controller taking

inspiration from the intrinsic motivation scheme [Lopes et al. 2012]. Accordingly,

the primary goal of the experiments is to assess whether the coupling of the two

approaches, achieved by Ev-ITER, can improve on the performances of each method

used as standalone. Several exploration indicators will be de�ned (section 5.2.4) and

used for the quantitative comparison of all approaches, considering their diverse

modes (Table 5.1).

A second goal is to assess the generality of the resulting controllers. General-

ity is the touchstone for machine learning approaches, meant as the hypothesis or

model learned from given data (referred to as training set) must achieve comparable

performances in expectation, and in practice, on new data (referred to as test set)

generated from the same distribution as the training set. The generality criterion

considered in this chapter (for which quantitative indicators are presented in sec-

tion 5.2.4), di�ers from the usual generality assessment used in the machine learning

litterature [Sutton & Barto 1998], in the following sense:

• A �rst arena (referred to as training arena or training environment) will be

considered in the 1st-phase of Ev-ITER;
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• A second arena (referred to as target or test arena or environment) will be

considered in the 2nd phase of Ev-ITER.

This generality assessment procedure is original in the sense that ML and speci�-

cally reinforcement learning does never consider, to our best knowlwedge, the direct

transfer of a controller from one environment to another one, since di�erent Markov

Decision Process (in particular considering di�erent transition models or reward

functions) correspond to di�erent optimal controllers by construction. The littera-

ture on transfer reinforcement learning focuses on how to adapt a controller learned

in a given MDP, to another one [Konidaris et al. 2012,Zhan & Taylor 2015].

In the Ev-ITER case, the change of environment takes place between the �rst and the

second phases. The �rst phase involves the evolutionary optimization of a controller

in the training arena, and the building of an archive recording some trajectories of

the best controllers in the training arena. The second phase uses this archive to de-

termine the controller action selection in the test or target arena, and the archive is

enriched with the resulting trajectory. The FIFO update mechanism of the archive

gradually removes the data related to the training arena, and replaces it with the

data related to the target, currently visited, arena.

Four Ev-ITER modes are considered, governing the optimization objective in

the �rst phase of Ev-ITER and summarized in Table 5.1. We considered the two

optimization objectives already investigated in [Delarboulas et al. 2010], respectively

referred to as Curiosity and Discovery (chapter 4), where the �tness associated to

a controller respectively measures the entropy of the trajectory (Eq. 4.5) or the

di�erential entropy of the trajectory (Eq. 4.6).

In [Delarboulas et al. 2010], these objectives measure the entropy or di�erential

entropy of the sensori-motor data; we additionally consider here the entropy or

di�erential entropy applied to the only actuator data, de�ned as the output of the

neural net (and yielding the motor actions through rounding).

Mode Optimization objective in Phase 1 Applied on

1 Ev-ITER-C Entropy (Curiosity)
sensori-motor data

2 Ev-ITER-D Di�erential Entropy (Discovery)

3 Ev-ITER-Ca Entropy (Curiosity)
actuator data

4 Ev-ITER-Da Di�erential Entropy (Discovery)

Table 5.1: The four Ev-ITER modes.
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5.2 Experimental setting

This section �rstly describes the robot agent (section 5.2.1) and the training and

test environments (section 5.2.2). The baseline algorithms are then listed in section

5.2.3, and the performance indicators are reported in section 5.2.4.

5.2.1 The robot agent

All experiments consider a simulated robot, and are based on the Webots simulator

emulating an E-puck robot1 (Fig. 5.1(a)).

The E-puck diameter is 7.4 cm; its height is 4.5 cm. It is equipped with 2 motors

and 8 infra-red proximity sensors, 6 in the front and 2 in the back. The placement

of the sensors and wheels is illustrated on Fig. 5.1(b). Each proximity sensor

returns a 12-bit resolution value (integer in [0, 212]), increasing with the proximity

of an obstacle to the sensor. The movement of the E-puck robot is achieved by two

stepper motors, respectively controlling the movement of the right and left wheels.

The speed is given in a number of ticks/seconds where 1000 ticks correspond to a

complete rotation of the wheel. The values are clamped between -1000 and 1000.

For the sake of computational conveniency, these values are normalized in [−1, 1].

(a) (b)

Figure 5.1: The robot agent. Left: Webots model of the e-Puck robot. Right: Top

view of the E-puck robot. The red lines represent the directions of the infrared

distance sensors, labelled with the distance sensor names in { ps0 . . . ps7 }.

1http://www.cyberbotics.com/dvd/common/doc/webots/guide/section8.1.html.
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5.2.2 The environments

Fig. 5.2 depicts the training environment, adapted from [Lehman & Stanley 2008,

Delarboulas et al. 2010] and called Hard arena in the cited papers.

Figure 5.2: Training environment, adapted from [Lehman & Stanley 2008, Delar-

boulas et al. 2010]. The starting point is in the lower left corner.

Two more complex arenas are considered (Fig. 5.3, left and right) in order to

assess the generality property. These arenas, though similar in structure to the

training arena, are designed to have many di�erent corners instead of just straight

walls, making the exploration task more di�cult. Overall, the three arenas are

ranked by increasing di�culty: i) the training arena is referred to as easy arena;

ii) the graph arena (Fig. 5.3, left); iii) themaze arena (Fig. 5.3, right). The easy

and graph arenas (respectively, the maze arena) are 0.6 m × 0.6 m (resp. 0.7 m ×
0.7 m). For the sake of comparison, each arena is discretized in 100 × 100 squares.

To cross the arena in diagonal at full speed, assuming that there is no obstacles,

the required number of time steps is 102 for the graph and easy arenas, and 122 for

the maze arena.

In all experiments, the same starting point is considered, set to the lower left

corner.

5.2.3 The baseline algorithms

The baseline algorithms are selected according to the original speci�cations, taken

from the SYMBRION European project (European Integrated Project 216342, 2008-

2013), requiring that the controller learning algorithm can run online, on-board,

without requiring any ground truth or human intervention. These speci�cations,

aimed at preventing the so-called reality gap (chapter 3), forbid for instance the use

of the Novelty scheme [Lehman & Stanley 2008], which requires one to record all

ending positions for all robot trajectories (as the robot �tness is set to its distance

between its ending position and the previous ending positions). [Koutník et al. 2013,

Koutník et al. 2014] also require the robot to know its actual location in order to
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(a) graph arena (b) maze arena

Figure 5.3: Target arenas: Left: graph arena (0.6 m × 0.6 m); Right: maze arena

(0.7 m × 0.7 m). The starting point is in the lower left corner.

compute the distance along the track axis measured from the starting line, and

these approaches likewise do not satisfy the SYMBRION requirements. For the

same reason, the approaches based on simultaneous localization and mapping (see

e.g. [Williams & Browne 2012]) are not applicable either.

Finally, the baseline algorithms considered in the following include:

• The curiosity- and discovery driven approaches [Delarboulas et al. 2010], re-

ferred to in the following as evolutionary approaches;

• The intrinsic motivation [Lopes et al. 2012];

• A Brownian walk, implementing a most simple random walk [Fricke

et al. 2013], where the action is uniformly selected in each time step in the

action space.

5.2.4 The performance indicators

All reported results are averaged out of 15 independent runs. The indicators de�ned

below are reported for a given duration of the 2nd phase, measured as number of

epochs (where each epoch involves 2,000 time steps, section 5.2.5).

p` This indicator records the fraction of squares (out of the 10,000 squares of each

arena) visited at least ` times during the 2nd phase, with ` = 1, 2, 5, 10;

ve This indicator indicates whether the controller does visit the farthest chambers

from the starting point. This indicator is visually inspected by displaying the

set of squares in each arena (colored in red when the number of visits in the

2nd phase is greater than 1 for each one out of 15 runs).
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5.2.5 Algorithm parameters

All algorithm parameters are summarized in Table 5.2. The controller search space

considered in the evolutionary approaches and in Ev-ITER is the space of multi-

layer perceptrons with 8 inputs, 2 outputs, and 10 hidden neurons, amounting to a

weight vector of dimension 112 (search space is IR112). The 112 weights are initially

randomly drawn following a normal distribution with mean 0 and variance 0.1.

For the Ev-ITER-1st phase and for the evolutionary approaches, an epoch or gener-

ation corresponds to launching a controller for 2,000 time steps (as said, it requires

circa 100 time steps to cross the easy arena from the lower left corner to the upper

high corner assuming no obstacles), starting from the lower left corner. The gener-

ated trajectory is assessed corresponding to the �tness mode (computing the entropy

or the di�erential entropy, of the sensori-motor data or of the actuator data).

• The parameters involved in the 1st phase of Ev-ITER are same as in [De-

larboulas et al. 2010], except for the ε parameter of ε-clustering as another

simulator was considered.

• The evolutionary optimization is based on the (1+1)-Evolution Strategy using

the 1/5th rule (chapter 2), with isotropic Gaussian mutation N (0, σI), with

respectively ~0 and I standing for the null vector in IR112 and I standing for

the identity matrix 112× 112 and σ = .2;

• In each run, the evolution is reinitialized after 30 �tness evaluations with no

improvement.

The Ev-ITER-1st phase and the pure evolutionary controllers only di�er in the

number of epochs, set to 2,000 for the evolutionary controllers, and to 200 for the

Ev-ITER-1st phase. In Ev-ITER, the trajectories gathered up to the 200th epoch

are recorded and used as initial information in the archive (tables Z(i, j) and S(i, j)).

The probability of uniform action selection (babbling mode) is set to η = .05. The

uniform action selection is also triggered when the information on the current state

is insu�cient (
∑

j |Z(i, j)| < λ′ = 500). Otherwise, the controller selects the action

with highest weighted sum of i) entropy of the resulting state (weight 1−α), and ii)

estimated probability of leading to another state (weight α), with parameter α = .7.

The intrinsic motivation algorithm starts with an initially empty Z(i, j) and

S(i, j), considering that Q(i, j) is a proxy for the accuracy of the forward model in

state i, j (Eq. 4.3).
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Parameters Symbol Value

Number of time steps in each trajectory T 2,000

Sensori-motor cluster radius ε 1.8

Actuator cluster radius ε′ 0.6

Sensor cluster radius ε′′ 1

Number of epochs in Evolutionary approaches 2,000

Number of epochs in Ev-ITER-1st phase 500

Bu�ering length of Z(i, j) λ 60

Bu�ering length of
∑

j |Z(i, j)| λ′ 500

Weight of changing state term α 0.7

Probability of random action selection η 5%

Table 5.2: Parameters for experiments.

5.3 Experimental results

This section reports on the comparative validation of Ev-ITER. We �rst examine the

results obtained by the Brownian move (section 5.3.1), before assessing the results

of the evolutionary approaches, and examining how the actuator-based entropy or

di�erential entropy behaves, compared to the original sensori-motor based entropy

or di�erential entropy used in [Delarboulas et al. 2010].

5.3.1 The Brownian move baseline

As was expected, the Brownian move hardly visits the chambers which are the

farthest away from the starting point (Fig 5.4): on the easy arena, on the graph

arena and even more on the maze arena, it is visible that the robot is trapped in

the �rst chambers; it never goes to further chambers due to the narrow width of the

corridors and the number of angles.

5.3.2 Asessing the four evolutionary modes: (ensori-motor vs ac-

tuator -based, entropy vs di�erential entropy

This sub-section focuses on the relative performances of the four modes used in the

evolutionary approaches (and in the 1st-phase of Ev-ITER), using same training

and test arenas. For 2,000 epochs, where each epoch involves 2,000 time steps,

controllers are evolved to maximize the entropy or di�erential entropy (respectively

Curiosity vs Discovery in [Delarboulas et al. 2010]) measured from the sensori-motor

vs actuator only data.
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(a) Easy arena (b) Graph arena (c) Maze arena

Figure 5.4: The Brownian move: in red, locations visited after 2000 epochs of 2,000

time steps each for each run out of 15 independent runs.

Fig. 5.5 reports the number of squares visited at least once over the three arenas,

averaged out of 15 runs.

As said, the Brownian controller yields bad performances, reaching a plateau af-

ter the �rst 200 epochs. The di�erential entropy and entropy optimization objectives

yield to signi�cantly better results, speci�cally on the easy and maze arenas.

Interestingly, the results are signi�cantly improved by considering actuator data

instead of sensori-motor data, everything else being equal. A tentative interpretation

for this result is the following. The actuator data is deterministically computed from

the sensor data through the neural nets; therefore, the diversity of the sensor data

is a necessary condition for the diversity of the actuator data. On the other hand,

the diversity of the sensor data is not a su�cient condition for the diversity of the

actuator data; for instance, if one sensor coordinate is not taken into account in

the controller (e.g. the evolution compensating for sensor failures as in [Bongard

et al. 2006]), its diversity makes no di�erence in the actual behavior of Maximizing

the entropy of the actuator data might therefore contribute, more robustly than

maximizing the entropy of the full sensori-motor data, to the behavioral diversity

of the robot.

As in [Delarboulas et al. 2010], it is seen that the entropy optimization (curiosity)

outperforms the di�erential entropy optimization (discovery), all the more so as

more di�cult arenas are considered. In Fig. 5.5, the di�erence increases between

Curiosity and Curiosity-a, and from Discovery to Discovery-a from the top (easy

arena) to the bottom (hard maze arena).

The di�erence is con�rmed by the map of the visited squares (Fig. 5.6), showing

that the di�erential entropy mode leads to less visiting the upper right chamber.

Graph (Fig. 5.8: top, 3rd row) and maze (Fig. 5.10: top, 4th row) arenas show

similar trends.
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Figure 5.5: Comparative performances of the entropy and di�erential entropy, ap-

plied on sensori-motor or actuator data, after 2,000 epochs on the three arenas: (a)

easy arena, (b) graph arena and (c) maze arena. The performance is the number of

squares visited at least once, averaged out of 15 independent runs, comparatively to

the Brownian controller.
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Curiosity-a Discovery-a

Curiosity Discovery

Figure 5.6: Comparative performance of the optimization objectives, maximizing

the entropy or the di�erential entropy (curiosity or discovery) of the sensori-motor

or actuator data (-a) on the easy arena: squares visited 1 times or more after 2000

epochs over the 15 runs.
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5.3.3 Comparative performances of Ev-ITER, sensori-motor

modes

Let us present the experimental validation of Ev-ITER, where the 1st-Phase of Ev-

ITER relies on optimizing the entropy or di�erential entropy of the sensori-motor

data, comparatively to the baseline algorithms, Discovery, Curiosity and Intrinsic-

Motivation.

In this section, the Ev-ITER-1st-phase is launched using the easy arena as train-

ing arena. The number of squares visited at least once during the Ev-ITER-2nd

Phase in the target arenas, ranging over the easy arena (same as the training arena),

the graph and the maze arenas, is visualized in Fig. 5.7 (a) easy; (b) graph; (c)

maze. Likewise, the evolutionary approaches are launched on the easy arena; the

generality of the evolved controllers is assessed by launching them in the target

arenas.

A more detailed account of the performance indicators p1 (` = 1, 2, 5, 10) is

reported in Table 5.3, indicating the average and median number of squares visited

1, 2, 5 or 10 times, averaged on 2,000 epochs and 15 runs.

It is noted that both Ev-ITER-C and Ev-ITER-D outperform Intrinsic-

Motivation, all the more so on the more complex arenas. Let us remind that

Intrinsic-Motivation mostly di�ers from Ev-ITER as it starts with an empty archive.

As the Ev-ITER archive includes (part of2) the trajectories of the 200 controllers

generated during Ev-ITER-1stPhase, this di�erence could result in causing a simple

delay of 200 generations in the performance curve of Intrinsic-Motivation. However,

all performance curves rise abruptly for the easy and graph arenas, and to a lesser

extent for the maze arena, and then reach a plateau. As seen from Fig. 5.7, The

growth rate of Ev-ITER-C and Ev-ITER-D compared to Intrinsic-Motivation in the

maze arena is higher than in the easy and graph arenas.

The fact that Ev-ITER starts with a diversi�ed archive seems to prime a cumu-

lative advantage phenomenon: it explores better the target arena, gathering more

diverse observations, which in turn supports a better action selection.

A most surprising result is that Ev-ITER-C and Ev-ITER-D outperform Cu-

riosity and Discovery even on the training, easy, arena, despite the fact that the

optimization objective is meant to favor the exploration of the training arena. A

tentative interpretation for this fact is twofold. On the one hand, entropy is but

a proxy for the number of squares visited. On the other hand, the space to which

belong the Ev-ITER controllers is much more complex than the neural net space. In

particular, neural net controllers are bound to be continuous, and yield same actions

2Since only the last λ (s, a, s′) events are retained in the archive, for s and a falling in a given

sensor or motor cluster, (chapter 4, section 3).
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in similar sensor contexts. Quite the contrary, the Ev-ITER controllers can select

quite di�erent actions for close sensor vectors, provided that these sensor vectors

fall in di�erent clusters.

A more expected result, Ev-ITER-C and Ev-ITER-D outperform their evolu-

tionary counter-parts, Curiosity and Discovery, on other arenas than the training

arena, all the more so as the arena is more complex: the gap between Ev-ITER and

its evolutionary counterpart widens when passing from the graph to the maze arena.

Finally, the results show that entropy is slightly more e�cient than di�erential

entropy as optimization objective in what regards the exploratory performance:

di�erential entropy slightly improves on the easy arena, but entropy catches up

after 1,000 generations on the graph arena, and outperforms di�erential entropy

from the start on the maze arena.

The good generality of Ev-ITER is visually assessed on Fig. 5.8, showing the

squares actually visited at most once after 500 epochs (left column) and 2,000 epochs

(2nd to rightmost column), on the easy arena (column 1 and 2), and the graph

and maze arenas (respectively 3rd and 4th columns). While Curiosity outperforms

Discovery, they are both lagging behind the other three approaches in all cases. On

the easy and medium arenas, the performances of IM are visually a bit behind those

of Ev-ITER-D and Ev-ITER-C for 500 epochs (complementary results omitted due

to space restrictions), and they catch up for 2,000 epochs. On the maze arena �nally,

the performances of IM are behind those of Ev-ITER-D and Ev-ITER-C for both

500 and 2,000 epochs (see the middle corridors in the maze).

These results show the merits of the hybrid Ev-ITER approach in the considered

settings. While, Ev-ITER-D and Ev-ITER-C signi�cantly both improve on the

evolutionary Discovery and Curiosity approaches, they also improve on the intrinsic

motivation approach, as they are shown to explore more densely the regions far from

the starting point.

5.3.4 Actuator-entropy based validation of Ev-ITER

Let us �nally present the experimental validation of Ev-ITER, where the 1st-Phase

of Ev-ITER relies on optimizing the entropy or di�erential entropy of the actuator

data, comparatively to the baseline algorithms, Discovery, Curiosity and Intrinsic-

Motivation.

Likewise, the exploratory performance of all algorithms is comparatively dis-

played on the easy (Fig.5.9. a), graph (Fig.5.9. b) and maze (Fig.5.9. c) arenas,

showing the number of squares visited at least once per run, and Table 5.4 reports

a more detailed account of the performance indicators, indicating the average and

median number of squares visited at least 1, 2, 5 or 10 times. These results con�rm
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Figure 5.7: Comparative performances of Discovery, Curiosity, IM, Ev-ITER-D and

Ev-ITER-C in sensori-motor mode, on the easy arena, on the graph arena and on

the maze arena. The performance is the number of squares visited at least once,

averaged out of 15 independent runs. It is reminded that Curiosity and Discovery

evolutionary approaches, as well as Ev-ITER-1st phase, are trained from the Easy

arena.
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Easy arena:500 Easy arena:2000 Graph arena:2000 Maze arena:2000

(a) Discovery (b) Discovery (c) Discovery (d) Discovery

(e) Curiosity (f) Curiosity (g) Curiosity (h) Curiosity

(i) IM (j) IM (k) IM (l) IM

(m) Ev-ITER-D (n) Ev-ITER-D (o) Ev-ITER-D (p) Ev-ITER-D

(q) Ev-ITER-C (r) Ev-ITER-C (s) Ev-ITER-C (t) Ev-ITER-C

Figure 5.8: Comparative performances of Discovery, Curiosity, IM, Ev-ITER-D and

Ev-ITER-C in sensori-motor mode (from top to bottom row), on the easy arena

(column 1, after 500 epochs; column 2 after 2,000 epochs), on the graph arena

(column 3, after 2,000 epochs) and on the maze arena (column 4, after 2,000 epochs).

The performance is the number of squares visited at least once, averaged out of 15

independent runs. Trajectories of Discovery (top row), Curiosity(2nd row), IM (3rd

row), Ev-ITER-D (4th row) and Ev-ITER-C (bottom row) on the easy, graph and

maze arenas, cumulative over 500 robots and 2,000 robots.
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Algorithm
1 visit 2 visits 5 visits 10 visits

Medi Aver(std.dev.) Medi Aver(std.dev.) Medi Aver(std.dev.) Medi Aver(std.dev.)

Results on the easy arena

Discovery 3252 3241± 643 2711 2848± 656 2270 2336± 592 2062 1968± 517

Curiosity 3489 3442± 667 3090 3084± 738 2420 2583± 786 2098 2212± 723

IM 4335 4156± 395 4270 3996± 599 3962 3651± 824 3512 3229± 868

Ev-ITER-D 4432 4427± 39 4395 4382± 59 4258 4260± 104 4095 4027± 273

Ev-ITER-C 4413 4384± 83 4374 4317± 143 4325 4152± 300. 4212 3952± 464

Results on the graph arena

Discovery 2567 2601± 959 2125 2329± 609 1605 1951± 603 1331 1636± 916

Curiosity 3286 3241± 673 2901 2972± 764 2374 2588± 835 1926 2240± 848

IM 4022 3902± 283 3967 3806± 366 3901 3625± 502 3762 3414± 616

Ev-ITER-D 4116 4111± 25 4089 4081± 25 4038 4039± 33 4000 3979± 75

Ev-ITER-C 4383 4223± 450 4352 4100± 566 4284 3872± 737 4130 3651± 899

Results on the maze arena

Discovery 1217 1530± 640 1047 1344± 619 865 1136± 571 771 1001± 542

Curiosity 1998 2045± 568 1789 1789± 533 1493 1471± 409 1208 1260± 318

IM 2786 2706± 575 2599 2494± 610 2207 2165± 641 1845 1897± 626

Ev-ITER-D 3336 3212± 317 3123 3046± 399 2675 2778± 532 2274 2503± 622

Ev-ITER-C 3402 3341± 254 3225 3163± 305 2881 2844± 400 2528 2536± 480

Table 5.3: Indicator p` in sensori-motor mode: number of square visited at least 1, 2, 5 and 10 times

after 2,000 epochs in the easy, graph and maze arenas (median and average (std-deviation) out of 15

runs).

that Ev-ITER-Ca and Ev-ITER-Da improve on Intrinsic-Motivation, which itself

outperform Curiosity-a and Discovery-a, on all arenas.

The generality property is also visually assessed on Fig. 5.10, showing the squares

visited at least once after 500 epoch on the easy arena (left column) and 2,000

epochs (on the easy arena, 2nd column; graph arena, 3rd column; and maze arena,

4th column). It is seen that the sensori-motor and the actuator yield comparable

results overall, with non-statistically signi�cant di�erences.

5.3.5 Discussion and Perspectives

The goal of the presented approach, to provide a controller achieving good ex-

ploratory performances in an on-board, online fashion without requiring human

intervention or ground truth, is successfully reached, with Ev-ITER matching the
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Figure 5.9: Comparative performances of Discovery, Curiosity, IM, Ev-ITER-D and

Ev-ITER-C in actuator mode, under same conditions as in Fig. 5.7.
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Easy arena:500 Easy arena:2000 Graph arena:2000 Maze arena:2000

(a) Discovery-a (b) Discovery-a (c) Discovery-a (d) Discovery-a

(e) Curiosity-a (f) Curiosity-a (g) Curiosity-a (h) Curiosity-a

(i) IM (j) IM (k) IM (l) IM

(m) Ev-ITER-Da (n) Ev-ITER-Da (o) Ev-ITER-Da (p) Ev-ITER-Da

(q) Ev-ITER-Ca (r) Ev-ITER-Ca (s) Ev-ITER-Ca (t) Ev-ITER-C

Figure 5.10: Comparative performances of Discovery, Curiosity, IM, Ev-ITER-D

and Ev-ITER-C in actuator mode, under same conditions as in Fig. 5.8.
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Algorithm
1 visit 2 visits 5 visits 10 visits

Medi Aver(std.dev.) Medi Aver(std.dev.) Medi Aver(std.dev.) Medi Aver(std.dev.)

Results on the easy arena

Discovery-a 3252 3241± 644 2711 2848± 656 2270 2336± 592 2062 1968± 517

Curiosity-a 3647 3683± 294 3198 3273± 383 2475 2621± 466 2036 2186± 407

IM 4335 4156± 396 4270 3996± 599 3962 3651± 824 3512 3229± 868

Ev-ITER-Da 4418 4401± 56 4381 4332± 116 4260 4148± 86) 4095 3938± 177

Ev-ITER-Ca 4397 4269± 160 4341 4204± 181 4171 4059± 299 3980 3862± 496

Results on the graph arena

Discovery-a 3454 3187± 623 3148 2915± 642 2617 2468± 631 2169 2070± 610

Curiosity-a 3646 3508± 418 3348 3260± 475 2866 2854± 521) 2441 2452± 526

IM 4022 3902± 284 3967 3806± 366 3901 3625± 503 3762 3414± 616

Ev-ITER-Da 4095 4093± 36 4068 4053± 59 4021 3967± 142 3968 3849± 239

Ev-ITER-Ca 4070 4035± 107 4036 3978± 151 3931 3862± 218 3726 3710± 294

Results on the maze arena

Discovery-a 1850 1783± 444 1610 1557± 377 1377 1310± 304 1225 1143± 265

Curiosity-a 1998 2045± 454 1789 1789± 433 1493 1471± 409 1228 1260± 318

IM 2786 2706± 575 2599 2494± 610 2207 2165± 642 1845 1897± 626

Ev-ITER-Da 3418 3236± 492 3245 3051± 583 2766 2706± 657 2406 2379± 669

Ev-ITER-Ca 3508 3365± 348 3403 3213± 406 3185 2961± 498 2875 2706± 555

Table 5.4: Indicator p` in actuator mode, under same conditions as in Table 5.3.

performance of the Intrinsic-Motivation and of the evolutionary robotic approaches

complying with the same requirements.

It appears that Ev-ITER actually yields the best of both worlds. The data

archive provided by the short preliminary evolutionary phase gives a signi�cant

advaantage to Ev-ITER compared to Intrinsic-Motivation. Furthermore, Intrinsic-

Motivation does not catch up after gathering as much data as the one provided in the

data repository, which suggests that the quality of these data provides a cumulative

advantage to the exploration: the more data acquired, the better the exploration

can be directed toward appropriate actions, thus priming a virtuous circle.

Compared to the evolutionary approaches on the other hand, Ev-ITER bene�ts

from its action selection mechanism, allowing a much more �exible controller space

than allowed by (low-dimensionality) neural nets.

The second main contribution of the proposed approach is to yield good perfor-

mances even though the data repository is gathered on a di�erent arena than the
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arena actually explored. As discussed in section 5.1, this property of generality is

original with respect to the state of the art, in reinforcement learning as well as in

evolutionary robotics.

The approch su�ers from several limitations:

• An important limitation of the approach lies in the clustering phase, which

considers a �xed cluster radius ε. A main research perspective is to integrate

more tightly the clustering phase within the evolutionary and exploratory

processes, dynamically splitting the cells with highest transition entropy.

• A (modest) limitation of the approach is that a non-negligible fraction of

time must be spent in acquiring the data archive (200 epochs, that is 1/10 of

the 2,000 epochs involved in the evolutionary approaches). Complementary

experiments showed that results were signi�cantly degraded when reducing

this time under 200 epochs.

• Overall, the key limitation of the presented results is that no experiments in-

situ could be achieved. Porting these results on real-robots is the main priority

of further experiments.

These results open several research perspectives, beyond the dynamic clustering

aspects abovementioned.

• Firstly, it is yet unclear why and when the actuator data provides a better

support than the sensori-motor data to the entropy optimization. An inter-

mediate approach would be to consider the entropy of the data in the hidden

layer of the neural nets, considering that the hidden layer provides an e�cient

representation of both the sensor data, and of the actuator data.

• Secondly, the limits of the generality property must be thoroughly assessed,

considering more and more di�erent arenas in order to understand when a

target arena is su�ciently close from a training arena. Likewise, the generality

property can be assessed by considering robots with (slightly) di�erent sensori-

motor equipments.





Chapter 6

Conclusion and Perspectives

As said, the Ev-ITER framework, which constitutes the main contribution of the

presented PhD work, is at the cross-road of evolutionary robotics and reinforcement

learning.

This combination of evolution and learning is original, to our best knowledge,

in the following sense. In most hybrid approaches in the evolutionary and learning

litterature, evolution is applied to the direct optimization of the solution, hypothesis

or model, while learning is applied to focus and guide the evolutionary search,

and/or to specialize or repair the evolutionary solution. In the proposed Ev-ITER

scheme, evolution is merely applied to optimize the data repository provided to

the learning algorithm, which will support good exploratory decisions; the learning

algorithm autonomously proceeds on the basis of its data repository (though the

strategy is mixed with a small probability of uniform exploration, to prevent the

deterministic strategy from meeting endless loops), and maintains it using a simple

FIFO mechanism.

In other words, the hybrid Ev-ITER framework suggests that an initial critical

mass of information is required to feed reasoning in an appropriate way; and the em-

pirical comparison with the Intrinsic Motivation framework [Lopes et al. 2012] (chap-

ter 5) suggests that reasoning from scratch can hardly catch up. The exploratory

controller, be it implemented through Ev-ITER or through Intrinsic Motivation,

involves two ingredients: i) an action selection algorithm, based on its current in-

formation; and ii) this current information, compressing the past trajectories of the

robot (and complying with its bounded memory resources by forgetting long past

data) and de�ning a data repository. However, the result of the action selection

algorithm (together with the robot environment) modi�es the data repository itself.

The exploratory controller thereby de�nes a dynamic system, where the current

information conditions the actions, which themselves modify the current informa-

tion. The originality thus lies in considering both ingredients as a whole, using a

rather simple action selection mechanism, and considering that this action selection

mechanism only requires to be seeded with appropriate information to function ap-

propriately, and to regenerate the data repository when the agent suddenly faces

a new environment. The bulk of optimization thus focuses on the acquisition of
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appropriate information, in the source environment. In other words, the Ev-ITER

strategy can be viewed as yet another example of the Big Data motto: Data beats

algorithms.

As said again (Chapter 5, last section), Ev-ITER ful�lls some of the initial goals:

it can (in principle) run on-board online, with bounded computational and memory

resources, without requiring any ground truth or prior knowledge; the only ground

truth is provided by the robot environment itself through the sensor information.

The most appreciable empirical property is the generality property, as the Ev-ITER

controller can apparently be transferred from one environment to another without

compromising its exploratory e�ciency1, opening many interesting potential appli-

cations.

The main limitation of the present work is the lack of experimentations in-situ.

This work opens quite a few perspectives for further research.

• A �rst direction regards the automatic adjustment of the clusters along Ev-

ITER-1st and 2nd phases, taking inspiration from [Lopes et al. 2012].

• A second direction is to extend the Ev-ITER mechanism to achieve other than

exploratory behaviors. One possibility is to involve the user in the loop along

an interactive optimization setting [Akrour et al. 2014].

• A related issue is how to organize the �ow of information among the states.

As noted by [Van Roy & Wen 2014], the main issue in reinforcement learning

is that the exploration must be planned and cannot be achieved by greedy

techniques: one must want to go in some states − although already well

explored − because they might lead to other states which need additional

exploration. In other words, some look-ahead is needed to achieve e�ective

exploration. In the Ev-ITER setting, while Phase 2 implements a myopic

and greedy exploration, it does so on data which have been gathered using

a non-myopic criterion in Phase 1 (since Phase 1 aims at maximizing the

global information gathered along a single trajectory). The fact that the

data repository o�ers a global (approximate) perspective on the arena thus

compensates to some extent the myopic strategy of the deterministic controller

(together with the mixing with a η-uniform controller).

The perspective of including some look-ahead in the score function (Eq. 4.9)

thus seems a promising perspective of this work.

1Though complementary experiments, transporting the Ev-ITER controller from one environ-

ment to another along a regular or irregular schedule, are required to assess the limits of this

generality property.
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