. Abbeel, An application of reinforcement learning to aerobatic helicopter ight, 2007.

C. Souplet, Programming by feedback, International Conference on Machine Learning, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980839

. Arvin, Colias: An Autonomous Micro Robot for Swarm Robotic Applications, International Journal of Advanced Robotic Systems, vol.194, issue.4, pp.110-2014, 2014.
DOI : 10.5772/58730

. Auer, Finite-time analysis of the multiarmed bandit problem, Machine learning, vol.47, issue.2-3, p.235256, 2002.

. Auer, Models for Autonomously Motivated Exploration in Reinforcement Learning -(Extended Abstract), ALT'11, p.1417, 2011.

E. Daniel and . Berlyne, Conict, arousal, and curiosity, 1960.

P. Dimitri, . Bertsekas, N. John, and . Tsitsiklis, Neurodynamic programming: an overview, Decision and Control Proceedings of the 34th IEEE Conference on, p.560564, 1995.

. Bird, Bill Bigge and Paul Brown. Implicit tness functions for evolving a drawing robot, Applications of Evolutionary Computing, pp.473478-473495, 2008.

M. Christopher and . Bishop, Neural networks for pattern recognition, 1995.

A. Boeing, S. Hanham, and T. Braunl, Evolving autonomous biped control from simulation to reality, Proceedings of the 2nd International Conference on Autonomous Robots and Agents, p.1315, 2004.

&. Bolton, J. Richard, . Bolton, J. David, and . Hand, Statistical fraud detection: A review, Statistical science, p.235249, 2002.

&. Bongard, . Lipson, H. Bongard, and . Lipson, Once more unto the breach: Co-evolving a robot and its simulator, Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (AL- IFE9), pp.5762-5783, 2004.

. Bongard, Josh Bongard, Victor Zykov and Hod Lipson. Resilient machines through continuous self-modeling, Science, vol.314, issue.5802, pp.11181121-11181134, 2006.

L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement learning and dynamic programming using function approximators, 2010.
DOI : 10.1201/9781439821091

URL : http://orbi.ulg.ac.be/jspui/handle/2268/27963

. Capdepuy, Maximization of potential information ow as a universal utility for collective behaviour, Articial Life, 2007. ALIFE'07. IEEE Symposium on, p.207213, 2007.

. Celebi, A comparative study of ecient initialization methods for the k-means clustering algorithm, Expert Systems with Applications, vol.40, issue.1, p.2013, 200210.

G. Andrew, . Barto, P. Satinder, and . Singh, Intrinsically motivated reinforcement learning, Advances in neural information processing systems, p.12811288, 2004.

E. Gonzalez, J. Mezura-montes, and . Santos, Robotic behavior implementation using two dierent dierential evolution variants, Advances in Articial Intelligence, p.216226, 2013.

&. Csikszentmihalyi and . Csikzentmihaly, Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. Flow: The psychology of optimal experience, 1991.

R. Deci, R. M. Deci, and . Ryan, Intrinsic Motivation and Self-Determination in Human Behavior, Plenum, 1985.
DOI : 10.1007/978-1-4899-2271-7

. Delarboulas, Pierre Delarboulas, Marc Schoenauer and Michèle Sebag. Open-ended evolutionary robotics: an information theoretic approach In Parallel Problem Solving from Nature, PPSN XI, pp.334343-71, 2010.

D. Chiara, Gaetano Di Chiara Drug addiction as dopamine-dependent associative learning disorder, European journal of pharmacology, vol.375, issue.1, p.1330, 1999.

D. Paolo, Crawling out of the simulation: Evolving real robot morphologies using cheap, reusable modules, Articial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Articial Life, p.94, 2004.

&. Doncieux and . Hamdaoui, Stéphane Doncieux and Mohamed Hamdaoui. Evolutionary Algorithms to Analyse and Design a Controller for a Flapping Wings Aircraft, New Horizons in Evolutionary Robotics, p.6783, 2011.

S. Doncieux and J. Mouret, Behavioral diversity measures for Evolutionary Robotics, IEEE Congress on Evolutionary Computation, p.18, 2010.
DOI : 10.1109/CEC.2010.5586100

URL : https://hal.archives-ouvertes.fr/hal-00687641

. Doncieux, New horizons in evolutionary robotics: Extended contributions from the 2009 evoderob workshop, 2011.
DOI : 10.1007/978-3-642-18272-3

URL : https://hal.archives-ouvertes.fr/hal-01300712

. Duda, Pattern classication, 2001.

. Duda, Pattern classication, 2012.

&. Dunlop, D. Dorothy, . Dunlop, C. Ajit, and . Tamhane, Statistics and data analysis: from elementary to intermediate, 2000.

. Fricke, From Microbiology to Microcontrollers: Robot Search Patterns Inspired by T Cell Movement, Advances in Artificial Life, ECAL 2013, pp.10091016-2013
DOI : 10.7551/978-0-262-31709-2-ch151

. Friston, Perceptions as Hypotheses: Saccades as Experiments, Frontiers in Psychology, vol.3, p.2012
DOI : 10.3389/fpsyg.2012.00151

URL : http://doi.org/10.3389/fpsyg.2012.00151

. Fukuda, Robot hand manipulation by evolutionary programming, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), p.24582463, 1999.
DOI : 10.1109/ROBOT.1999.770474

. Fürnkranz, Preference-based reinforcement learning: a formal framework and a policy iteration algorithm, Machine Learning, pp.123156-2012
DOI : 10.1007/s10994-012-5313-8

. Geist, Around inverse reinforcement learning and score-based classication, Reinforcement Learning and Decision Making Meetings, p.2013

&. Goldberg, E. David, . Goldberg, H. John, and . Holland, Genetic algorithms and machine learning, Machine learning, vol.3, issue.2, p.9599, 1988.

&. Gomi and . Ide, Evolution of gaits of a legged robot, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), p.159164, 1998.
DOI : 10.1109/FUZZY.1998.687476

. Gottlieb, Information-seeking, curiosity, and attention: computational and neural mechanisms, Trends in Cognitive Sciences, vol.17, issue.11, pp.585593-2013
DOI : 10.1016/j.tics.2013.09.001

URL : https://hal.archives-ouvertes.fr/hal-00913646

&. Kaplan and . Oudeyer, Frederic Kaplan and Pierre-Yves Oudeyer. Motivational principles for visual know-how development, 2003.

&. Kaplan, F. Kaplan, and P. Oudeyer, In search of the neural circuits of intrinsic motivation, Frontiers in Neuroscience, vol.1, issue.1, p.225, 2007.
DOI : 10.3389/neuro.01.1.1.017.2007

. Karafotias, Giorgos Karafotias, Evert Haasdijk and Agoston Endre Eiben. An algorithm for distributed on-line, on-board evolutionary robotics, Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp.171178-2011, 2011.

. Kawai, Katsumi Kawai, Akio Ishiguro and Peter Eggenberger Incremental evolution of neurocontrollers with a diusion-reaction mechanism of neuromodulators, IROS, p.23842391, 2001.

. Kim, Evolutionary programming-based univector eld navigation method for past mobile robots. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol.31, issue.3, p.450458, 2001.

. Kim, Reward Shaping for Model-Based Bayesian Reinforcement Learning, Twenty-Ninth AAAI Conference on Articial Intelligence, p.2015

&. Kober and . Peters, Policy search for motor primitives in robotics, Machine Learning, p.171203, 2011.

&. Kober and . Peters, Reinforcement learning in robotics: A survey, Reinforcement Learning, pp.579610-579636, 2012.

. Kober, Reinforcement learning in robotics: A survey, The International Journal of Robotics Research, vol.32, issue.11, pp.12381274-12381301, 2013.

&. Lim, H. Auer-2012-]-shiau, P. Lim, and . Auer, Autonomous Exploration For Navigating In MDPs, Journal of Machine Learning Research -Proceedings Track, pp.4024-2012

&. Lipson, B. Pollack-jordan, and . Pollack, Automatic design and manufacture of robotic lifeforms, Nature, vol.406, issue.6799, p.974978, 2000.

. Lipson, Evolutionary Robotics for Legged Machines: From Simulation to Physical Reality, IAS, pp.1118-1136, 2006.

&. Lisman, E. Grace-john, . Lisman, A. Anthony, and . Grace, The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory, Neuron, vol.46, issue.5, p.703713, 2005.
DOI : 10.1016/j.neuron.2005.05.002

. Lisowski, Dierential evolution to enhance localization of mobile robots, Fuzzy Systems (FUZZ), 2011 IEEE International Conference on, p.241247, 2011.

. Lopes, Exploration in model-based reinforcement learning by empirically estimating learning progress, Advances in Neural Information Processing Systems, pp.206214-56, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755248

&. Manning and . Schütze, Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language processing, 1999.

&. Marocco and . Floreano, Active vision and feature selection in evolutionary behavioral systems, From Animals to Animats, vol.7, p.247255, 2002.

. Martínez-soto, Genetic Algorithm Optimization for Type-2 Non-singleton Fuzzy Logic Controllers, Recent Advances on Hybrid Approaches for Designing Intelligent Systems, pp.318-2014, 2014.
DOI : 10.1007/978-3-319-05170-3_1

&. Matari¢, . Cli-maja, D. Matari¢, and . Cli, Challenges in evolving controllers for physical robots, Robotics and Autonomous Systems, vol.19, issue.1, p.6783, 1996.
DOI : 10.1016/S0921-8890(96)00034-6

[. Quinn, Evolving teamwork and role-allocation with real robots, Articial Life, vol.8, issue.8, p.302, 2003.

. Michalski, Machine learning: An articial intelligence approach, 2013.
DOI : 10.1007/978-3-662-12405-5

&. Michini, B. How, . Michini, P. Jonathan, and . How, Bayesian Nonparametric Inverse Reinforcement Learning, Machine Learning and Knowledge Discovery in Databases, pp.148163-2012
DOI : 10.1007/978-3-642-33486-3_10

URL : http://acl.mit.edu/papers/michini-ecml-2012.pdf

. Miglino, Evolving Mobile Robots in Simulated and Real Environments, Artificial Life, vol.2, issue.4, p.417434, 1995.
DOI : 10.1177/105971239400300102

. Modayil, Multitimescale nexting in a reinforcement learning robot, Adaptive Behavior, vol.22, issue.2, pp.146160-2014

&. Montanier, . Bredeche, . Jean-marc, N. Montanier, and . Bredeche, Embedded Evolutionary Robotics: The (1+1)-Restart-Online Adaptation Algorithm
DOI : 10.1007/978-3-642-18272-3_11

URL : https://hal.archives-ouvertes.fr/inria-00566898

&. Montanier, . Bredeche, . Jean-marc, N. Montanier, and . Bredeche, Emergence of altruism in open-ended evolution in a population of autonomous agents, Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, GECCO '11, pp.2526-2011
DOI : 10.1145/2001858.2001873

URL : https://hal.archives-ouvertes.fr/inria-00601791

C. Kay and . Montgomery, The role of the exploratory drive in learning, Journal of Comparative and Physiological Psychology, vol.47, issue.1, p.60, 1954.

. Moulin-frier, Self-organization of early vocal development in infants and machines: the role of intrinsic motivation, Frontiers in Psychology, vol.4, 2013.
DOI : 10.3389/fpsyg.2013.01006

URL : https://hal.archives-ouvertes.fr/hal-00927940

&. Mouret, . Doncieux, J. Mouret, and S. Doncieux, Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study, Evolutionary Computation, vol.341, issue.1, pp.91133-50, 2012.
DOI : 10.1016/0020-0190(92)90136-J

URL : https://hal.archives-ouvertes.fr/hal-00687609

. Muelling, Learning strategies in table tennis using inverse reinforcement learning, Biological Cybernetics, vol.5, issue.3, p.117, 2014.
DOI : 10.1007/s00422-014-0599-1

&. Murata and . Onoda, Hiroshi Murata and Takashi Onoda Estimation of power consumption for household electric appliances, Neural Information Processing Proceedings of the 9th International Conference on, p.22992303, 2002.

. Nakamura, Hiroshi Nakamura, Akio Ishiguro and Y Uchilkawa. Evolutionary construction of behavior arbitration mechanisms based on dynamically-rearranging neural networks, 2000.

. Nakanishi, Operational Space Control: A Theoretical and Empirical Comparison, The International Journal of Robotics Research, vol.27, issue.6, p.737757, 2008.
DOI : 10.1177/0278364908091463

. Nelson, Fitness functions in evolutionary robotics: A survey and analysis, Robotics and Autonomous Systems, vol.57, issue.4, pp.15-16, 2009.
DOI : 10.1016/j.robot.2008.09.009

. Ng, Policy invariance under reward transformations: Theory and application to reward shaping, ICML, pp.278287-278320, 1999.

. Ng, Algorithms for inverse reinforcement learning, Icml, pp.34-35, 2000.

. Nodelman, Expectation maximization and complex duration distributions for continuous time Bayesian networks. arXiv preprint, p.2012

&. Nol and . Floreano, Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines, 2000.

&. Nol and . Floreano, Stefano Nol and Dario Floreano. Evolutionary robotics The biology, intelligence, and technology of self-organizing machines, 2001.

. Nol, How to evolve autonomous robots: Dierent approaches in evolutionary robotics, Articial life IV: Proceedings of the 4th International Workshop on Articial Life, numéro LIS-CONF-1994-002, p.190197, 1994.

[. Dowd, The distributed coevolution of an embodied simulator and controller for swarm robot behaviours, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference on, p.49955000, 2011.

&. Oudeyer, F. Oudeyer, and . Kaplan, What is intrinsic motivation? A typology of computational approaches, Frontiers in Neurorobotics, vol.1, issue.41, pp.40-42, 2007.
DOI : 10.3389/neuro.12.006.2007

. Pessin, Intelligent control and evolutionary strategies applied to multirobotic systems, 2010 IEEE International Conference on Industrial Technology, p.14271432, 2010.
DOI : 10.1109/ICIT.2010.5472498

&. Pfeifer, R. Gomez, G. Pfeifer, and . Gomez, Interacting with the real world: design principles for intelligent systems, Artificial Life and Robotics, vol.9, issue.1, p.16, 2005.
DOI : 10.1007/s10015-004-0343-3

. Pilarski, Dynamic switching and real-time machine learning for improved human control of assistive biomedical robots, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp.296302-2012
DOI : 10.1109/BioRob.2012.6290309

B. Warren and . Powell, AI, OR and control theory: a Rosetta Stone for stochastic optimization, 2012.

&. Prashanth and . Andresen, Sankaran Prashanth and Daniel Andresen Using implicit tness functions for genetic algorithm-based agent scheduling, Proceedings of the 2001 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'2001), 2001.

. Price, Dierential evolution: a practical approach to global optimization, 2006.

. Prieto, Self-organizing Robot Teams Using Asynchronous Situated Co-evolution, From Animals to Animats 11, p.565574, 2010.
DOI : 10.1007/978-3-642-15193-4_53

L. Martin and . Puterman, Markov decision processes: discrete stochastic dynamic programming, 2009.

. Ratli, Maximum margin planning, Proceedings of the 23rd international conference on Machine learning, p.729736, 2006.

. Ratli, Boosting structured prediction for imitation learning, Robotics Institute, p.54, 2007.

&. Redgrave and . Gurney, The short-latency dopamine signal: a role in discovering novel actions?, Nature Reviews Neuroscience, vol.9, issue.4, p.967975, 2006.
DOI : 10.1038/nrn2022

. Richiardi, Machine Learning with Brain Graphs: Predictive Modeling Approaches for Functional Imaging in Systems Neuroscience, IEEE Signal Processing Magazine, vol.30, issue.3, pp.5870-2013
DOI : 10.1109/MSP.2012.2233865

&. Roy, A. Roy, and . Mccallum, Toward optimal active learning through monte carlo estimation of error reduction, ICML, 2001.

&. Russell and . Norvig, Stuart Russell and Peter Norvig Articial Intelligence: A Modern Approach, 2010.

&. Ryan, M. Richard, . Ryan, L. Edward, and . Deci, Intrinsic and extrinsic motivations: Classic denitions and new directions Which is the best intrinsic motivation signal for learning multiple skills?, Contemporary educational psychology Frontiers in neurorobotics, vol.25, issue.7, pp.5467-2013, 2000.

. Saunders, Experimental verication of soft-robot gaits evolved using a lumped dynamic model, Robotica, vol.29, issue.06, p.823830, 2011.

. Saxena, Robotic Grasping of Novel Objects using Vision, The International Journal of Robotics Research, vol.13, issue.3, p.157173, 2008.
DOI : 10.1177/0278364907087172

. Saxena, Learning 3-D object orientation from images, 2009 IEEE International Conference on Robotics and Automation, 2009.
DOI : 10.1109/ROBOT.2009.5152855

URL : http://ai.stanford.edu/~asaxena/learninggrasp/learning3dorientation_nipsworkshop2007.pdf

&. Schaal, G. Christopher, and . Atkeson, Robot juggling: implementation of memory-based learning, IEEE Control Systems, vol.14, issue.1, p.5771, 1994.
DOI : 10.1109/37.257895

J. Alexander and . Smola, Learning with kernels: Support vector machines, regularization, optimization, and beyond, 2002.

. Schultz, Roboshepherd: Learning a complex behavior Robotics and Manufacturing: Recent Trends in Research and Applications, p.763768, 1996.

S. Seo, . Hyun, D. Erik, and . Goodman, Genetic Programming-Based Automatic Gait Generation in Joint Space for a Quadruped Robot, Advanced Robotics, vol.54, issue.15, p.21992214, 2010.
DOI : 10.1163/016918610X534312

W. Bernard and . Silverman, Density estimation for statistics and data analysis, 1986.

. Spears, An overview of evolutionary computation, Machine Learning: ECML-93, p.442459, 1993.
DOI : 10.1007/3-540-56602-3_163

&. Sporns and . Lungarella, Olaf Sporns and Max Lungarella Evolving coordinated behavior by maximizing information structure, Articial life X: proceedings of the tenth international conference on the simulation and synthesis of living systems, p.323329, 2006.

&. Storn and . Price, Dierential evolutiona simple and ecient heuristic for global optimization over continuous spaces, Journal of global optimization, vol.11, issue.4, p.341359, 1997.

&. Sutton, . Barto, S. Richard, . Sutton, G. Andrew et al., Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, pp.33-40, 1998.
DOI : 10.1109/TNN.1998.712192

S. Richard and . Sutton, Learning to predict by the methods of temporal dierences, Machine learning, vol.3, issue.30, pp.944-973, 1988.

. Syed, Apprenticeship learning using linear programming, Proceedings of the 25th international conference on Machine learning, ICML '08, p.10321039, 2008.
DOI : 10.1145/1390156.1390286

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.4348

&. Taylor, E. Matthew, P. Taylor, and . Stone, Transfer learning for reinforcement learning domains: A survey, The Journal of Machine Learning Research, vol.10, p.16331685, 2009.

. Thompson, Explorations in design space: unconventional electronics design through artificial evolution, IEEE Transactions on Evolutionary Computation, vol.3, issue.3, p.167196, 1999.
DOI : 10.1109/4235.788489

&. Roy, Z. Wen-2014-]-benjamin-van-roy, and . Wen, Generalization and exploration via randomized value functions. arXiv preprint

&. Vapnik and . Vapnik, Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory, 1998.

N. Vladimir and . Vapnik, An overview of statistical learning theory, Neural Networks IEEE Transactions on, vol.10, issue.5, p.988999, 1999.

G. Miguel, C. A. Villarreal-cervantes, J. Cruz-villar, and E. Alvarez-gallegos, Dierential evolution techniques for the structure-control design of a ve-bar parallel robot, Engineering Optimization, vol.42, issue.6, p.535565, 2010.

. Wang, Multi-Behaviour Robot Control using Genetic Network Programming with Fuzzy Reinforcement Learning, In Robot Intelligence Technology and Applications, vol.3, issue.69, pp.151158-2015
DOI : 10.1007/978-3-319-16841-8_15

K. Manfred, J. Warmuth, G. Liao, M. Rätsch, and . Mathieson, Santosh Putta and Christian Lemmen Active learning with support vector machines in the drug discovery process, Journal of Chemical Bibliography Information and Computer Sciences, vol.43, issue.2, p.667673, 2003.

. Watson, Embodied evolution: embodying an evolutionary algorithm in a population of robots, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), p.13, 1999.
DOI : 10.1109/CEC.1999.781944

J. Paul and . Werbos, Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research. Systems , Man and Cybernetics, IEEE Transactions on, vol.17, issue.1, p.720, 1987.

W. Robert and . White, Motivation reconsidered: the concept of competence, Psychological review, vol.66, issue.5, pp.297-335, 1959.

&. Williams, H. Browne, . Williams, N. Will, and . Browne, Integration of Learning Classier Systems with simultaneous localisation and mapping for autonomous robotics, pp.69-70, 2012.

. Wilson, A bayesian approach for policy learning from trajectory preference queries, Advances in Neural Information Processing Systems, pp.11331141-2012

&. Wirth, C. Fürnkranz, J. Wirth, and . Fürnkranz, EPMC: Every Visit Preference Monte Carlo for Reinforcement Learning, Asian Conference on Machine Learning, p.483497, 2013.

&. Wirth, C. Fürnkranz, J. Wirth, and . Fürnkranz, A Policy Iteration Algorithm for Learning from Preference-Based Feedback, Advances in Intelligent Data Analysis XII, p.427437, 2013.
DOI : 10.1007/978-3-642-41398-8_37

&. Wirth, C. Fürnkranz, J. Wirth, and . Fürnkranz, Preference- Based Reinforcement Learning: A preliminary survey, Proceedings of the ECML/PKDD-13 Workshop on Reinforcement Learning from Generalized Feedback: Beyond Numeric Rewards, 2013.

D. Sandberg and M. Wahde, Evolutionary optimization of a bipedal gait in a physical robot, Evolutionary ComputationIEEE World Congress on Computational Intelligence), 2008.

. Yildirim, Sinan Yildirim, A Taylan Cemgil and Sumeetpal S Singh. An Online Expectation-Maximisation Algorithm for Nonnegative Matrix Factorisation Models. arXiv preprint, 2014.

&. Zagal and . Ruiz-del-solar, Juan Cristóbal Zagal and Javier Ruiz-Del-Solar. Combining simulation and reality in evolutionary robotics, Journal of Intelligent and Robotic Systems, vol.50, issue.1, 1939.

&. Zhan, E. Matthew, and . Taylor, Online Transfer Learning in Reinforcement Learning Domains, 2015.

&. Zhang and . Sebag, Guohua Zhang and Michèle Sebag. Coupling Evolution and Information Theory for Autonomous Robotic Exploration, Parallel Problem Solving from NaturePPSN XIII, pp.852861-2014, 2014.

. Zhang, Evolutionary computation meets machine learning: A survey, Computational Intelligence Magazine, IEEE, vol.6, issue.4, p.6875, 2011.

&. Zhifei, E. M. Zhifei, and . Joo, A survey of inverse reinforcement learning techniques, International Journal of Intelligent Computing and Cybernetics, vol.5, issue.3, pp.293311-293345, 2012.
DOI : 10.1108/17563781211255862

. Zhou, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, vol.1, issue.1, p.3249, 2011.
DOI : 10.1016/j.swevo.2011.03.001