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Résumé

Avec 'avénement du Cloud Computing et des Big Data, de nouveaux systémes de
gestion de bases de données sont apparus, connus en général sous le vocable sys-
témes NoSQL. Par rapport aux systémes relationnels, ces systémes se distinguent
par leur absence de schéma, une spécialisation pour des types de données par-
ticuliers (documents, graphes, clé/valeur et colonne) et 'absence de langages de
requétes déclaratifs. L’offre est assez pléthorique et il n’y a pas de standard au-
jourd’hui comme peut l'étre SQL pour les systémes relationnels. De nombreuses
applications peuvent avoir besoin de manipuler en méme temps des données stock-
ées dans des systémes relationnels et dans des systémes NoSQL. Le programmeur
doit alors gérer deux (au moins) modéles de données différents et deux (au moins)
langages de requétes différents pour pouvoir écrire son application. De plus, il doit
gérer explicitement tout son cycle de vie. En effet, il a & (1) coder son application,
(2) découvrir les services de base de données déployés dans chaque environnement
Cloud et choisir son environnement de déploiement, (3) déployer son application,
(4) exécuter des requétes multi-sources en les programmant explicitement dans son
application, et enfin le cas échéant (5) migrer son application d’un environnement
Cloud a un autre. Toutes ces taches sont lourdes et fastidieuses et le programmeur
risque d’étre perdu dans ce haut niveau d’hétérogénéité.

Afin de pallier ces problémes et aider le programmeur tout au long du cycle
de vie des applications utilisant des bases de données multiples, nous proposons
un ensemble cohérent de modeles, d’algorithmes et d’outils. En effet, notre travail
dans ce manuscrit de thése se présente sous forme de quatre contributions. Tout
d’abord, nous proposons un modéle de données unifié pour couvrir I’hétérogénéité
entre les modéles de données relationnelles et NoSQL. Ce modéle de données est
enrichi avec un ensemble de régles de raffinement. En se basant sur ce modéle,
nous avons défini notre algébre de requétes. Ensuite, nous proposons une interface
de programmation appelée ODBAPI basée sur notre modeéle de données unifié,
qui nous permet de manipuler de maniére uniforme n’importe quelle source de
données qu’elle soit relationnelle ou NoSQL. ODBAPI permet de programmer des
applications indépendamment des bases de données utilisées et d’exprimer des re-
quétes simples et complexes multi-sources. Puis, nous définissons la notion de
bases de données virtuelles qui interviennent comme des médiateurs et interagis-
sent avec les bases de données intégrées via ODBAPI. Ce dernier joue alors le role
d’adaptateur. Les bases de données virtuelles assurent I'exécution des requétes
d’une fagon optimale grace a un modele de cotlit et un algorithme de génération
de plan d’exécution optimal que nous définis. Enfin, nous proposons une ap-
proche automatique de découverte de bases de données dans des environnements
Cloud. En effet, les programmeurs peuvent décrire leurs exigences en termes de
bases de données dans des manifestes, et grace & notre algorithme d’appariement,
nous sélectionnons 'environnement le plus adéquat a notre application pour la



déployer. Ainsi, nous déployons ’application en utilisant une API générique de
déploiement appelée COAPS. Nous avons étendue cette derniére pour pouvoir dé-
ployer les applications utilisant plusieurs sources de données. Un prototype de la
solution proposée a été développé et mis en ceuvre dans des cas d’utilisation du
projet OpenPaaS. Nous avons également effectué diverses expériences pour tester
I'efficacité et la précision de nos contributions.

Mots-clés: Nuages des données, Données volumineuses, Bases de données NoSQL,
Bases de données relationnelles, Optimisation et évaluation des requétes de join-
ture, Persistance polyglotte, Découverte & base de manifestes



Abstract

The production of huge amount of data and the emergence of Cloud computing
have introduced new requirements for data management. Many applications need
to interact with several heterogeneous data stores depending on the type of data
they have to manage: traditional data types, documents, graph data from social
networks, simple key-value data, etc. Interacting with heterogeneous data models
via different APIs, and multiple data stores based applications imposes challenging
tasks to their developers. Indeed, programmers have to be familiar with different
APIs. In addition, the execution of complex queries over heterogeneous data mod-
els cannot, currently, be achieved in a declarative way as it is used to be with
mono-data store application, and therefore requires extra implementation efforts.
Moreover, developers need to master and deal with the complex processes of Cloud
discovery, and application deployment and execution.

In this manuscript, we propose an integrated set of models, algorithms and
tools aiming at alleviating developers task for developing, deploying and migrat-
ing multiple data stores applications in cloud environments. Our approach focuses
mainly on three points. First, we provide a unified data model used by applications
developers to interact with heterogeneous relational and NoSQL data stores. This
model is enriched by a set of refinement rules. Based on that, we define our query
algebra. Developers express queries using OPEN-PaaS-DataBase APT (ODBAPT),
a unique REST API allowing programmers to write their applications code inde-
pendently of the target data stores. Second, we propose virtual data stores, which
act as a mediator and interact with integrated data stores wrapped by ODBAPI.
This run-time component supports the execution of single and complex queries
over heterogeneous data stores. It implements a cost model to optimally execute
queries and a dynamic programming based algorithm to generate an optimal query
execution plan. Finally, we present a declarative approach that enables to lighten
the burden of the tedious and non-standard tasks of (1) discovering relevant Cloud
environments and (2) deploying applications on them while letting developers to
simply focus on specifying their storage and computing requirements. A prototype
of the proposed solution has been developed and implemented use cases from the
OpenPaaS project. We also performed different experiments to test the efficiency
and accuracy of our proposals.

Keywords: Cloud Computing, Big Data, REST-based API, NoSQL data stores,
relational data stores, join queries optimization and evaluation, polyglot persis-
tence, manifest based matching
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CHAPTER 1

(zeneral Introduction

Contents
1.1 Research Context . . . ... ... i ittt
1.2 Research Problem . ... ... ..................
1.3 Thesis Principles And Objectives . . . . . .. ... ......
1.4 Thesis Contributions . . . . ... ... ... ..........
1.5 Thesis Outline . . . . . . . . . . ... tteeann.

S O Ot W

1.1 Research Context

Cloud computing has recently emerged as a new computing paradigm enabling
on-demand and scalable provision of resources, platforms and software as services.
Cloud computing is often presented at three levels [4]: the Infrastructure as a
Service (IaaS) giving access to abstracted view on the hardware, the Platform
as a Service (PaaS) providing programming and execution environments to the
developers, and the Sofwtare as a Service (SaaS) enabling software applications to
be used by Cloud’s end users.

Due to its elasticity property, Cloud computing provides interesting execution
environments for several emerging applications such as big data management. Ac-
cording to the National Institute of Standards and Technology' (NIST), Big Data
is data which exceed the capacity or capability of current or conventional methods
and systems. It is mainly based on the 3-Vs model where the three Vs refer to
volume, velocity and variety properties [5]. Volume means the processing of large
amounts of information. Velocity signifies the increasing rate at which data flows.
Finally, variety refers to the diversity of data sources. Several researchers have
also proposed to add more Vs to this definition. Veracity is widely proposed and
represents the quality of data (accuracy, freshness, consistency etc.). Against this
background, the challenges of big data management result from the expansion of
the 3Vs properties. In our work, we mainly focus on the variety property and more
precisely on multiple data store based applications in the Cloud.

Different interaction forms between applications and data stores are possible
in a Cloud environment. In order to define the application requirements in term
of data storage, we analyze three possible scenarios (see Fig.1.1). Regardless the

"ttp://www.nist.gov/



2 General Introduction

scenario, applications are deployed in the Cloud because they require scalability
and elasticity. These properties will interact with other requirements and mainly
with the requirements related to the consistency property. The first requirement
is:

e Ry: Ensuring scalability and elasticity.

Application 1

D
1

Apphcatlon 2 Apphcatlon 3

— 1.

2 3

—Scenario 1— —Scenario 2—— —Scenario 3——

Figure 1.1: Three possible scenarios of applications interactions with data stores
in Cloud environments

In the first scenario S; one or more applications use the same Cloud data store.
Indeed, the Cloud provider supplies just one data store for applications. In Fig.1.1,
this scenario is depicted by continuous lines. So, implementing an application in
such case will be simple and convenient since we will find a unique API to manage
the data store. However, it is difficult to a single data store in one Cloud to support
the needs of all applications. Furthermore, some clients will be obliged to migrate
their applications in another Cloud in order to meet their data requirements.

The second scenario Sy corresponds to applications that use Cloud environ-
ments providing multiple data stores. Each client can choose its appropriate data
store according to his/her application needs. This scenario is depicted in Fig.1.1
by the dashed lines. In addition, due to these multiple data stores, clients are not
obliged to migrate to another Cloud. However, a single application can only use
one data store to store all its data. So in some cases, an application may want to
migrate its data from one data store (e.g. a relational data store) to another (e.g.
a NoSQL data store). The problem here is to decide if a data store is convenient
for an application and if not how to efficiently migrate data from one data store
to another. Added to the requirement Ry, we identify two new data requirements:



Research Problem 3

e [?1: Choosing a data store based on data requirements. In this context,
we present three sub-requirements: (R;;) defining application needs and
requirements towards data, (R12) defining data store capabilities, and (R;3)
defining a matching between application needs and data stores capabilities.

e Ry: Migrating application from a data store to another (i.e. migrating data
and adapting the application source code to the new API).

In the third scenario S3, an application can use multiple data stores. For
instance, an application can use a relational data store and a NoSQL data store
at the same time or partition its data into multiple data stores. This scenario
is illustrated by the dotted lines in Fig.1.1. Moreover, these data stores may
belong to different Clouds (e.g. a public and private Clouds). This ensures a
high level of efficiency and modularity. This case corresponds to what is popularly
referred to as the polyglot persistence [2]|. Nevertheless, it represents some limits
and difficulties. Linking an application with multiple data stores is very complex
due to the different APIs, data models, query languages or consistency models.
If the application needs to query data coming from different data sources (e.g.
joining data, aggregating data, etc.), it can not do it declaratively unless some
kinds of mediation have been done before. Finally, the different data stores may
use different transaction and consistency models (e.g. classical ACID and eventual
consistency). It is not easy for programmers to understand these models and to
properly code their applications to ensure desired properties. For this scenario,
three new requirements are added:

e R3: Kasy access to multiple data stores.
e R,: Transparent access to integrated data stores.

e [5: Easy programming of consistency guaranties with different data stores.

1.2 Research Problem

Spurred by the Cloud Computing popularity, researches are increasingly abundant
and are focusing on various axes in this area. In this context, data management in
the Cloud is an inherent research topic that recently received particular attention.
A plethora of modern applications and researches, such as Bigtable [6], PNUTS [7],
Dynamo [8], take into account the data management in the Cloud (especially sce-
narios S; and Sy presented in Section 1.1). Nevertheless, they are not sufficient
to address the requirements Ry, R5, and Rg of the scenario S3 which is the case
of multiple data stores based applications in Cloud environment. This lack of so-
lutions implies that developers need to address these requirements by themselves
and so they have to be aware of many technical details. In order to satisfy the
different storage requirements, Cloud applications usually need to access and in-
teract with different relational and NoSQL data stores having heterogeneous APIs,
query languages, data models, consistency models, etc. The heterogeneity of the
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data stores induces several problems when developing, deploying and migrating
multiple data store applications. Developers are central to this high heterogeneity
and they have to cope with the arising problems and related difficulties. Below,
we list the main four problems that a developer may encounter that are tackled in
this thesis:

Pby

Pb,

Pbs

Pb,

Heavy workload on the applications developers: Nowadays data stores
have different and heterogeneous proprietary APIs. Developers of multiple
data store based applications need to be familiar with all these APIs when
coding their applications. As developers are central to this plethora of APIs,
they should understand data models and APIs of each data store to properly
code a polyglot persistence based application. In this context, the developers
task is cumbersome and requires a high adaptation time to the APIs that
can be judged as a wasted time.

No declarative way for executing complex queries: Due to the het-
erogeneity of data models and the absence of schemas in NoSQL data stores,
there is currently no declarative way to express and execute complex queries
over several data stores. This is mainly due to the absence of a global schema
unifying the access to relational and NoSQL data stores. In addition, NoSQL
data stores are schemeless; That means developers have to cope themselves
with the implementation of such queries in their application source code.
Doing so, the execution of complex queries will be naive and non optimal.
It is worth noting that a complex query may be a join, a union, etc.

Code adaptation: When migrating applications from one Cloud environ-
ment to another, application developers have to re-adapt their application
source code in order to interact with new data stores and migrate their data
from the old data stores to the new ones. However, this is a tedious task since
developers have potentially to learn and master new proprietary APIs. This
may cause an important delay during the migration process and hamper the
application lifecycle.

Tedious and non-standard discovery and deployment processes:
Once an application is developed or before is migrated, developers have to
deploy it into a Cloud provider with respect to its requirements. To do so,
developers must discover the most suitable Cloud environment providing the
required data stores and data characteristics. However, this step is tedious
and meticulous because it lacks of automation and developers have to do
it manually. Indeed, developers must discover data stores services of each
Cloud provider and try to match between their requirements and the Cloud
providers capabilities. This would be less complex if the application interacts
with a single data store.

Consistency is also an important issue in multiple data stores based applica-
tions. In fact, Cloud data stores in general implement different consistency mod-

els (e

.g. strong consistency model for RDBMS and weak consistency models for
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NoSQL DBMS). This implies that the consistency model at the application level
is not really defined. We do not address this issue in this thesis, focusing only on
querying. The interested reader may read [9] which proposes a middleware service
addressing the problem of client-centric consistency on top of eventually consistent
distributed data stores (Amazon S3 for example).

1.3 Thesis Principles And Objectives

In this thesis, we aim to propose solutions for supporting multiple based appli-
cation developers in Cloud environments. Our objective is fourfold: (1) unifying
relational and NoSQL data models, (2) easing the programming of polyglot per-
sistence based applications, (3) automating multiple data stores discovery and
applications deployment, and (4) evaluating and optimizing complex queries exe-
cution.

In our approach, we consider the following principles:

e Cloud Computing and Big Data: This thesis is developed within the field of
Cloud Computing and Big Data. Indeed, we should take into account the
different characteristics of each area namely the big volume of data and the
variety of data stores regarding the Big Data area, and the dynamicity (i.e.
application migration) and the abundance of data stores services with regard
to the field of Cloud Computing.

e NoSQL data stores support: The different proposed solutions should take
into account relational and NoSQL data stores.

e Multiple data stores based applications: The different solutions should sup-
port multiple data stores based applications since an application may meet
its requirements in different data stores services in a Cloud environment.

e Fasy access to heterogeneous data stores: In this thesis, solutions should
take into account the importance of facilitating the access to relational data
stores in order to easily express queries and correctly evaluate and optimize
their execution.

e Automation: The different solutions should be automatic in order to re-
lieve utmost developers task by removing the burden of managing the high
heterogeneity of data stores in Cloud environments.

1.4 Thesis Contributions

In this thesis, we propose an integrated set of models, algorithms and tools aiming
at alleviating developers’ tasks for developing multiple data stores based appli-
cations, discovering Clouds data stores capabilities, executing complex queries,
deploying and migrating applications in Cloud environments. It is worthy to say
that we take into account relational and NoSQL data stores.
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First, we define a unified data model used by applications developers to interact
with different data stores. This model tackles the heterogeneity problem between
data models and the schemes absence in NoSQL data stores. It is used to express
CRUD and complex queries. In addition, we used the proposed unified data model
to evaluate and optimize complex queries execution (tackling therefore problems
P b1 and P bg).

Second, we propose OPEN-PaaS-DataBase API (ODBAPI) that developers
may use to express and execute any type of queries. This API is a streamlined and
a unified REST-based API for executing queries over relational and NoSQL data
stores. The highlights of ODBAPIT are twofold: (i) decoupling Cloud applications
from data stores in order to facilitate the migration process, and (ii) easing the
developers task by lightening the burden of managing different APIs (tackling
therefore problems Pby, Pby, and Pbs).

Third, we propose virtual data stores (VDS) to evaluate and optimize queries
execution - especially complex ones- over different data stores. In order to support
queries definition and execution over heterogeneous data models, we use the unified
data model that we extend with correspondence rules. The VDS implements a
dynamic programming based algorithm to generate optimal execution plans using a
cost model that we have defined. Our solution is based on algebraic trees composed
of data sources and algebraic operators and algebraic trees annotation (tackling
therefore problem Pby).

Fourth, we present a declarative and an automatic approach for discovering ap-
propriate Cloud environments and deploying applications on them. The proposed
approach lets developers simply focus on specifying their storage and computing
requirements. The key ingredients of this solution are (1) the use of manifests to
expose applications requirements and data stores capabilities, and (2) the match-
ing algorithm that elects the most appropriate Cloud provider to an application.
For the deployment step, we propose to extend and use the COAPS API which is a
deployment API proposed in our team and in the CompatibleOne project (tackling
therefore problems Pb; and Pby).

A prototype of our approach has been developed and has been used to imple-
ment use cases from a french PaaS project called OPEN-PaaS. We will detail the
different aspects of the realized implementations as a proof of concept. In addition,
we will describe the realized scenarios and perform some experiments to evaluate
our proposals.

1.5 Thesis Outline

The remainder of this manuscript is organized as follows. Chapter 2 contains two
main parts. On the one hand, we provide a description of the different concepts
needed for the understanding of our work. In fact, we give the definitions of Cloud
Computing and Big Data areas. We also define the different variants that we aim to
use in this work resumed in relational and NoSQL data stores, polyglot persistence,
and data integration. On the other hand, we give an overview of the state of the
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art related to unifying data models, easing access to multiple data stores, ensuring
transparent access to integrated data stores as well as capturing data requirements
and Cloud data stores capabilities. Therein, we will cite the different work in each
part with a discussion to show the advantages that we would like to have in our
solution and the drawbacks that we would like to escape.

Chapters 3, 4 and 5 are the core of our thesis which elaborate our end-to-end
solution to support multiple data stores based applications developers in a Cloud
environment.

In Chapter 3, we present first an overview of the different contributions pro-
posed in this thesis and show how they are linked between each others. Afterwards,
we introduce our first two contributions. First, we present our unified data model
to unify the view over relational and NoSQL data stores. Herein, we present a
formal and non formal representation of our unified data model. Based on that,
we introduce our global schema that developers use to express simple and complex
queries and a mediator layer used to evaluate and optimize queries execution. At
the end of this part, we propose a query algebra that is used by the VDS to support
complex queries execution.

Second, we introduce some use cases in order to motivate our second contribu-
tion which is ODBAPI. It is noteworthy that these motivating examples will be
used also to motivate the other contributions presented in the two next chapters.
Then, we give a overview of ODBAPI and we present the different operations en-
sured by our API. Finally, we present three examples illustrating how we unify the
execution of queries and we express filtering and join queries.

In Chapter 4, we present our approach to evaluate and optimize query execution
using the VDS. First, we introduce our query evaluation principles and we define
our query execution plan. We finish this part by giving an example of join query
evaluation. Second, we present our query optimization principles. In this part, we
define the different parameters of our catalog and our cost model. Based on that,
we introduce our algorithm to generate an optimal execution plan.

In Chapter 5, we present our last contribution which is the automation of
resources discovery and multiple data stores based application deployment in Cloud
environments. First, we introduce the principles of the discovery step and the
structure of the abstract application manifest and the offer manifest. Based on
that, we introduce our matching algorithm. Second, we present the principles of
the deployment step and we show how we extend the COAPS API to support
multiple data stores based application deployment. We finish this part by defining
the structure of the deployment manifest. Finally, we give an example of multiple
data stores discovery.

In Chapter 6, we present the different aspects of evaluation of our proposals.
It details the proof of concept, the evaluation environment and scenarios as well
as the results and findings.

Finally, we sum up our contributions in Chapter 7. We conclude this last
chapter with some perspectives that we aim to realize at short, medium and long
term.
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2.1 Introduction

In this work, we aim to provide an end-to-end solution for supporting developers
of multiple data stores based applications in Cloud environments. For ease of
understanding the remainder of this manuscript, one should have a basic knowledge
on different paradigms and concepts. In addition, it is mandatory to provide an
overview of the current stat of the art.

Hence, we dedicate this chapter to briefly introduce these basics to the reader
in Section 2.2. Then, we present an overview and a synthesis on the related work
in Section 2.3.
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2.2 Background

In this section, we present the basic concepts related to our work. We start by
introducing in Section 2.2.1 and Section 2.2.2 the environment of our work which
involves Cloud Computing as well as the Big Data areas. Afterwards, we define
in Section 2.2.3 the different variants that we aim to use in this work resumed in
relational and NoSQL data stores, polyglot persistence, and data integration.

2.2.1 Cloud Computing

Cloud Computing is an emerging paradigm in information technology. It is defined
by the National Institute of Standards and Technology [10] as a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or
service provider interaction. Figure 2.1 shows an overview of Cloud Computing
reference architecture viewed by NIST. It identifies the major actors, their activ-
ities and functions in the Cloud. This figure aims to facilitate the understanding
of the requirements, uses, characteristics and standards of Cloud Computing.

i

Service
Intermediation

Cloud Carrier ]

Figure 2.1: Cloud Computing Conceptual Reference Model defined by NIST

Cloud Computing is characterized by its economic model based on "pay-as-
you-go" model. This model allows consumers to consume computing resources as
needed. Moreover, resources in the Cloud are accessible over the network through
standard mechanisms that promote their use by different platforms. The resources
are offered to consumers using a multi-tenant model with heterogeneous resources
assigned to consumer on demand. These resources are provisioned in an elastic
manner that allows to rapidly scale up or down in line with demand. Furthermore,
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Cloud resources usage can be monitored and controlled in order to respect the
"pay-as-you-go" model.

Services in the Cloud are basically delivered under three well discussed layers
namely the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS)
and the Software as a Service (SaaS). We present these layers below:

e TaaS: Consumers are able to access Cloud resources on demand. These
resources can be virtual machines, storage resources and networks. The
provider takes the responsibility of installing, transparently managing and
maintaining these resources.

e PaaS: Consumers are able to develop, deploy and manage their applica-
tions onto the Cloud using the libraries, editors and services offered by the
provider. The provider takes the responsibility to provision, manage and
maintain the Infrastructure resources.

e SaaS: Consumers are able to use running applications on an [aaS or a PaaS
through an interface. They are not responsible of managing or maintaining
the used Cloud resources.

Nowadays, more models appeared and are generally referred to as XaaS tar-
geting a specific area. For example there is the DaaS for Database as a Service,
NaaS for Network as a Service, etc.

At the same time, Clouds can be provisioned following different models accord-
ing to the users needs. If the Cloud is used by a single organization, we talk about
Private Cloud. In this case, this organization owns the Cloud and is responsible
of its management and maintenance. However, if the Cloud is owned by different
organizations, we are talking about community or federation Cloud. Whenever the
Cloud is exposed to public use, we are talking about Public Cloud. In this case,
an organization owns the Cloud and manages it while it is used by other organiza-
tions. Finally, there exists another model in which the Cloud is composed of two
or more Clouds. In these Clouds, Public or Private Clouds are glued together.

2.2.2 Big Data

According to the NIST Big Data Public Working Group 2 (NIST), Big Data is
data which exceed the capacity or capability of current or conventional methods
and systems. In [1], IBM defines the term Big Data as information that can not be
processed or analyzed using traditional processes or tools. It is mainly based on
the 3-Vs model where the three Vs refer to volume, velocity and variety properties
(as shown in Figure 2.2). We define these properties as follows:

e Volume: It means the processing of large amounts of information. Indeed,
over the past decades, several high technologies appear and they are accom-
panying people in their everyday life. If they can track and record something,

*http://bigdatawg.nist.gov/_uploadfiles/M0392_v1_3022325181.pdf
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Figure 2.2: IBM characterizes Big Data by its volume, velocity, variety - or simply
V3 [1]

they typically do it. For instance, taking your smartphone out of your hol-
ster, checking-in for a plane, passing your badge into work, buying a song
on iTunes, etc. everyone of these simple actions generates events and data.
Managing this big volume of data may be overwhelming big data organi-
zation and arises several challenges nowadays. To deal with this, we can
find a plethora of modern solutions to analyze data in order to gain a better
understanding of our data and to efficiently use it.

e Velocity: It signifies the increasing rate at which data flows. IBM considers
that this property means how quickly the data is collected and stored, and
its associated rates of retrieval [1]. It is noteworthy that velocity follows the
evolution of the volume characteristic and when it is about a fast moving
data, we can call this streaming data or complex event processing. Whether
we can handle the data velocity, it will help researchers and business experts
in making valuable decisions and efficient data use. To deal with data velocity
issues, some researches suggest to do data sampling and data streaming
analysis.

e Variety: It refers to the diversity of data sources and data structures. With
the emergence of new technologies (e.g. Cloud Computing, sensors, smart
devices, social networks, etc.) resulted data has been complex since it is
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a combination of structured, semi-structured and unstructured data. To
deal with this characteristic, we find today several kind of data stores (e.g.
relational data stores, NoSQL data stores, etc.) allowing to store those het-
erogeneous data. In addition, it exists a plenty of approaches and solutions
allowing data integration based on either a mediator/ wrapper or a unique
API, and data analysis without the heterogeneity burden.

In addition to these three characteristics, several people have also proposed
to add more Vs to the basic definition. For example, we can cite the veracity
which is widely proposed and represents the quality of data (accuracy, freshness,
consistency etc.). There is also the data volatility representing how long is data
valid and how long should it be stored. In our work, we mainly focus on the variety
property and more precisely on multiple data stores based applications in a Cloud
environment.

2.2.3 Using Multiple Data Stores In Cloud Environment

In our work, we are interested in multiple data stores based applications in a Cloud
environment. For ease of understanding of our approach, we propose to introduce
the basic concepts. Indeed, we give a brief introduction of relational and NoSQL
data stores which are the main data stores deployed in a Cloud environment (see
Section 2.2.3.1 and Section 2.2.3.2) and we present a comparison between them (see
Section 2.2.3.4). Then, we present the polyglot persistence concept (see Section
2.2.3.5). We finish this section by talking about the mediation approach (see
Section 2.2.3.6).

2.2.3.1 Relational Data Stores

The relational model for databases had been invented by Edgar Frank Codd in 1969
[11]. In this model, data is represented in terms of tuples (or rows), and grouped
into relations (or tables). This model enables users to specify and query data based
on a declarative way. A constructed database with respect to a relational model
is called a relational database. In [12], 6zsu et al. define a relational database as
a table based structured collection of data related to some real-life that we are
trying to model. Users directly define what information the database contains and
what information they desire from it, and let the database management system
software take care of describing data structures for storing the data and retrieval
procedures for answering queries. To do so, relational data stores use Structured
Query Language (SQL), which is a standard user application that provides an easy
programming interface for database interaction.

Operations across databases are grouped and managed based on transactions.
A transaction is a unit of work performed by a database management system
against a database and treated in a coherent and reliable way independent of other
transactions. For example, a transfer of funds from one bank account to another,
even involving multiple changes such as debiting one account and crediting another,
is a single transaction. In a relational database management system, transactions
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are processed with respect to the Atomicity, Consistency, Isolation and Durability
(ACID) properties in order to ensure accuracy, completeness and data integrity.
These properties are defined by Jim gray [13] as follows:

e Atomicity: It means that a transaction must be treated as an atomic unit of
operations. Indeed, either all of its operations are executed or none. Hence,
we can say that there is no state where a transaction is left partially com-
pleted. States should be defined either before the execution of the transaction
or after its execution (it can be an abortion or a failure).

e Consistency: This property signify that the transaction preserves consis-
tency of stored data in the database and none of the integrity constraints
will ever be violated. In other words, if the database was in a consistent
state before the execution of a transaction, it must remain consistent after
the execution of the transaction as well.

e Isolation: Isolation means that one transaction cannot read data from an-
other transaction that is not yet completed. If two transactions are con-
currently executing, each one will see the world as if they were sequentially
executing, and if one needs to read data that is written by another, it will
have to wait until the other is finished.

e Durability: After committing a transaction, the changes it has made sur-
vive any failure in the database management system. Indeed, the database
should be durable enough to hold all its latest updates even if the system
fails or restarts.

Over the past decades, relational database management systems had been
widely used and dominated the commercial markets with systems such as Ora-
cle, MySQL, Sql Server, etc. They had also been amply deployed in a Cloud
environment.

2.2.3.2 NoSQL Data Stores

NoSQL that stands for Not only SQL refers to a new generation of data stores. This
kind of data stores do not use either the relational model or the SQL language.
They are mostly open source, schema-less, largely distributed database systems
that enable rapid, ad-hoc organization and analysis of extremely high-volume, dis-
parate data types [14]. They mainly come from web companies developing very
high intensive web applications such as Facebook, Amazon, etc. Unlike the rela-
tional data stores, they are not standardized. Indeed, each NoSQL data store has
its data model, its query language, its API, etc. NoSQL data stores are sometimes
referred to as Cloud databases, non-relational databases, Big Data databases and
a myriad of other terms. To query and store data, each NoSQL data store has
its own querying mechanism. We can find some NoSQL systems that provide a
simple interface/API. Indeed, NoSQL users can access data using for example a
text-based protocol or a HI'TP REST API with JSON inside. Some other NoSQL
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data stores use declarative query languages (i.e. SQL-like, SPARQL-like, etc).
This kind of querying mechanism is quite common in graph data stores and is
more user-friendly than the other mechanisms.

Relational database management systems respect the ACID properties in order
to try to exhibit a strong consistency and availability of their data. Nevertheless,
once we start looking at the NoSQL data stores, these properties are not available
and new properties appear which are Basically Available, Soft-State and Eventually
Consistent. These properties are from the CAP theorem stating that a distributed
system con not ensure consistency, availability and partition tolerance at the same
time [15 17|. In general, they are referred to as BASE properties or eventual
consistency and they enable to ensure a weak consistency and a high Availability
and Partition Tolerance. NoSQL data stores are classified in four families of data
stores depending of their underlying data model that we present below:

e Key-value data stores: Data are stored as a couple of an alpha numeric
identifiers called keys and an associated values. These data are grouped in a
simple and standalone table referred to as hash table or dictionary. In key-
value data stores, data are stored, retrieved, and managed by only keys. We
can find nowadays dozens of key-value data stores as Redis, Riak, Berkeley
DB, etc. Regarding data querying, it may be done only through the keys
since values do not have known structures. Indeed, we can execute CRUD
operations using keys and list a set of values by defining some restriction on
the keys. These operations may be executed by using either a proprietary
API (e.g. Redis) or a HTTP API (e.g. Riak). These data stores work
differently compared to the relational data stores. In fact, this latter pre-
define the data structure in the database as a series of tables containing
fields with well defined data types. However, key-value systems treat the
data as a single nontransparent collection which may have different fields
for every record. This offers considerable flexibility mainly for dynamic data
structures.

e Document data stores: Data are stored in documents and grouped to-
gether in collections. While each document data store implementation differs
on the details of this definition, they all store data in some standard formats
or encodings such as XML, JSON, BSON, etc. Practical usability of these
data stores can be guessed by the fact that there are a plethora of document
data stores available and widely used such as MongoDB, CouchDB, etc. As
we previously said the querying method differs from one NoSQL data store
to another. For instance, in CouchDB data are accessed using their unique
identifier through a HTTP REST API using a browser (i.e. REST client)
or the curl method. In addition, it is possible to query data by anything
else than an identifier using views. A view is defined based on a map-reduce
function. Whereas, in MongoDB data are accessed using a set of non HTTP
operations provided by a MongoDB Client. The operation allowing the data
querying is find and it can be combined with some functions in order to
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make it more efficient. Compared to relational data stores, collections cor-
respond to tables and documents to records or rows. However, there is one
major difference, every record in a table has the same number of fields, while
documents in a collection have different numbers of fields.

e Graph data stores: A graph data store is structured as a network contain-
ing nodes and edges relating these nodes to represent relationships among
them. The nodes and the edges may also contain properties that describe
some data contained within each object. A relationship connecting two
nodes, is identified by its name, and can be traversed in both directions.
Many graph data stores are available Neo4j is the most popular one among
them. In general, querying mechanisms in graph data stores are declarative.
Indeed, they are either SQL-like or SPARQL-like query language. For in-
stance the query language of Neodj is called Cypher. This latter provides
a familiar way to create and query data. This language borrows from SQL
the clause-based structure of its queries and some keywords such as "where",
"group by", etc. Whereas the AllegroGraph data store uses directly SPARQL
query language.

e Columnar data stores: This kind of data stores is a database management
system that stores data tables as sections of columns of data rather than as
rows of data. This storage model is very efficient because of its capability to
achieve high level of compression. Consequently columnar data stores offer
very high performance and a highly scalable architecture. Nowadays, we
find a variety of columnar data stores like HBase, BigTable and HyperTable,
Vertica, etc. Most of parallel massively relational systems are columns based
and are used in data warehouse environments. Columnar NoSQL data stores
are basically key/value stores (family of specific mechanisms to columns)
which improve access to data.

2.2.3.3 An Illustrative Example

In this section, we propose an example of the same data model represented with
a relational data store, a graph data store and a document data store. Through
this example, we will bring out the high level of heterogeneity between relational
and NoSQL data stores. Doing so, we can present how the same data store can be
represented according to the data model of each data store. Then we concretely
show how querying mechanisms differ from one data store to another.

For this purpose, we choose a very simple example which is the person data
store. In this latter, we assume that a person is identified by unique identifier, a
name (i.e. a first name and a last name), and a country where he/she lives. In
addition, we propose to describe a relationship between two persons. For instance,
a relationship may be of type co-authorship between two persons, a person that
knows another person, etc. In Figure 2.3, we give three examples of representing
the person data store. Indeed, we present it by two relational tables. The first table
is called person and has three columns personld, personName, and personCountry
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(see Figure 2.3a). The second table is called relationship and has three columns
also initiator, receptor, and relationaship. These columns denote the initiator of a
relation, the receptor of a relation and the name of the relation respectively. Then
we showcase how we represent the person data store with a document data store
(see Figure 2.3b). In fact, we present each person by a JSON file. Reader should
notice that the information about a person is not represented in a unique way. For
instance, the first name and the last name of a person is denoted by using either
one attribute which is personName or two attributes that are personFirstName
and personLastName. In addition, we use the name of a relationship to denote
a new attribute as a JSON array element (i.e. this element may have multiple
values). Finally, we propose to represent the person data store with a graph data
store (see Figure 2.3¢). Indeed, each node in this data store represents a person
and each relationship denotes either co-authorship between two persons or a person
that knows another person.

personName: John
Hopcroft
personld per personCountry PersonCountry:

United Kingdom United States

1 Leslie Valient

2 John Hopcroft United States

3 Jeffrey Ullman United States

Knows Co-author

o)

personName: Leslie personName: Jeffrey
Valient Ullman
PersonCountry: PersonCountry:
person United Ki United States

Person

initiator || receptor

1 2 know

2 3 coauthor

Relationship

(a) Example with are- (b) Example with a document (c) Example with a graph
lational data store data store data store

Figure 2.3: Examples of illustrating the same data model with different types of
data stores

In the rest of this section, we propose to show how the querying mechanism dif-
fers from one data store to another by giving examples of the same query processed
across the three data stores:

e Query 1: The first query is get the person having id equals 1. Itisex-
pressed over a relational data store using the declarative query language SQL
as follows: SELECT * FROM person WHERE id=1. In the graph data store,
let us suppose that we are using the Neo4j data store, the query will be writ-
ten using the Cypher query language as follows: MATCH n WHERE n.id=1
RETURN n. Finally, in the document data store, if we suppose that we
are using the CouchDB data store, the query will be written as follows:
curl -X GET http://127.0.0.1: 5984/person/1.

e Query 2: The second query is get the list of persons having therelati-

onship of authorship. Using SQL syntax, the query can be expressed as

follows: SELECT P1.personName, P2.personName FROM Person P1, Person P2,

Relationship R WHERE R.relationship="coauthor" AND P1.personId=R.



18 State Of The Art

initiator AND P2.personId=R.receptor. Based on Cypher query lan-
guage, the query is written as follows: MATCH (n)-[:co-author]->(m )
RETURN n, m. Finally, we express the same query with the CouchDB syntax
using the view notion since this query requires filtering. It can be written as
follows:

function(doc) {
if (doc.personName && doc.co-author.length > 0) {
for(var idx in doc.co-author) {
emit (doc.personName, doc.co-author[idx]);

2.2.3.4 NoSQL vs RDBMS

NoSQL systems are gaining popularity as a new generation of database manage-
ment systems against RDBMS. Nevertheless, we do not deny that each system
stresses strengths and limitations. In the remainder of this section, we try to show
that the NoSQL systems are not meant as the silver bullet to overtake RDBMS
problems since they also showcase some notable limitations:

e Consistency: Consistency has been widely studied in the context of trans-
actions (see [12] for a general presentation of distributed transaction process-
ing). A strong consistency model has emerged for relational DBMSs named
ACID. This model is difficult to scale that is the reason why large scale web
applications have popularized a new kind of consistency model named the
BASE model. BASE ensures scalability but at the cost of a more complex
writing of applications, because programmers have to manually ensure part
of the consistency. For example, applications have to access only data in a
single node, avoiding the use of costly distributed protocols to synchronize
nodes.

e Scalability: On the one hand, relational data stores are scalable and we can
find a lot of products designed to ensure this property (e.g. OracleRAC).
This kind of products work efficiently during data querying. However, it may
fail when it comes to function with distributed data, to execute join queries
across distributed tables, to update distributed data, etc [18|. This will lead
to a problem of consistency. In addition, it is very expensive since they are
not free. On the other hand, we can scale NoSQL data stores by replicating
and distributing data over many servers. As NoSQL data stores support
the execution of simple operations (i.e. read ans write operations), this will
efficiently work and it will increase the number of queries per second.

e Data model: Relational data stores are based on the relational data model
which is a generic model for all data stores that we find nowadays (e.g.
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MySQL, Oracle, etc.). This is a very interesting point since it allows users to
model their databases whatever the complexity of their problems. In addition
it is very useful in several situation such as integrating several relational data
stores that requires only the definition of a global schema grouping the local
schemes of the integrated data stores. Unlike NoSQL data stores that provide
a specific data model for each data store. This data model is well tailored
to a specific use case. Indeed, each NoSQL data store has been defined for
specific tasks and goals and it has been tailored one or few specific usage
patterns. In addition, even if NoSQIL data stores expose a data model, this
latter remains poor in information compared to relational one.

e Queries type: Thanks to the consistency of the relational data model,
users can efficiently execute complex queries over their data. Hence, they
maximize the exploitation of their data and its analysis. Querying relational
data is ensured through the standardized and declarative query language
SQL. Although this kind of queries is important, their execution may fail
in a context of Big Data as relational data stores are not really scalable.
Regarding NoSQL data stores, this kind of data stores supports only CRUD
operations. This can be seen as one of the shortcomings of NoSQL data
stores. Indeed, the fact that NoSQL data stores do not enable complex
execution minimize the use of data. To deal with this, such queries can be
processed in a programmatic way by coding each operation in source code
of the application. This alternative is not optimal for users and remains a
troubleshooting solution.

2.2.3.5 Polyglot Persistence

At first glance, reader can think that either types of DBMS can support the appli-
cation needs and ensure data storage and retrieval providing higher scalability and
availability; however, we can not deny that it is more powerful whether NoSQL-
DBMS is coupled to a RDBMS and vice versa. This phenomenon is widely called
polyglot persistence [2]. This latter consists of the use of multiple data stores and
several approaches to data persistence in order to support the whole application
needs. For ease of understanding the polyglot persistence, we present the classical
example of an e-commerce platform depicted in Fig.2.4. In this example, we illus-
trate five data stores. In fact, the users’ information (e.g. his/her name, his/her
address, his/her credit card, etc.) are stored in a key/value store and the products’
catalog are stored in a document store. The financial records (e.g. products’ prices,
amount of an order, etc.) are saved in a RDMS. Finally, binary data (e.g. images
of products, videos, etc.) and customer social graph are stored respectively in a
blob store and a graph store.

Polyglot persistence introduces several advantages. For instance, it allows an
application to coexist within multiple data stores in order to cover all its needs.
Consequently, application programming will be more flexible. Furthermore, it is
the solution for data storage when it consists on scaling an application. In fact,
data quantities and types will increase; thus the complexity of data managing will
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Figure 2.4: Example of polyglot persistence implemented in an e-commerce plat-
form [2]
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increase. Hence, this complexity will be weighed against the right data storage.
Nonetheless, we can not deny that polyglot persistence represents some limits. Due
to the various data stores, the data interaction and manipulation are complex. In-
deed, joining, querying, aggregating, etc. data across heterogeneous data stores
are not a walk in the park. These operations must be implemented in the appli-
cation source code by the developer. Moreover, whether we scale an application
that is based on shards, partitions and joins, all these elements will accompany
the application. This would cause some problems such as managing the partitions
or querying with joins. In addition, we must not overlook the strong heterogeneity
between the proprietary API. This APIs heterogeneity induces two main problems.
First, it ties Cloud applications to specific data stores hampering therefore their
migration. Second, it requires developers to be familiar with different APIs.

2.2.3.6 Data Stores Integration

Data integration [19] refers to a set of techniques and approaches used (1) to
combine data residing in different data stores and (2) to provide users with a
unified view of these data. This unified view is called in general global schema.
There is a plenty of techniques and approaches allowing data integration. There
are some substantial work proposing schema mappings based solution to integrate
heterogeneous data. This solution has four key ingredients: (1) local sources that
are data stores to be integrated, (2) local schemas that are schema of sources, (3)
a global schema and (4) a set of schema mappings that specifies how local sources
and the global schema are related. The first category of solutions to integrate data
is the federated database systems [20,21]. In fact, they are database management
systems which transparently maps multiple autonomous database management
systems into a single one. The three key ingredients of such system are: the
autonomy, the heterogeneity and the distribution. This kind of systems is able to
decompose the query into sub-queries and then to constitute the final result set.
Afterwards, there is a conventional wisdom about the use of mediation systems.
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Indeed, the mediation is a classical approach for querying heterogeneous sources
and a mediation-based architecture is usually based on two main parts: the me-
diator and the adapter (also called wrapper) [22]. Indeed, the mediator allows
an application to interact with heterogeneous data stores by seamlessly answering
their queries. A mediator requires a global schema, a common query language
and a pivot model. Consequently, the mediation approach needs a common data
model representing the integrated data sources, a unique query language allow-
ing an application to query in a uniform way, and a pivot model enabling query
rewriting. Moreover, the adapter provides access to the integrated data stores by
converting application queries into the native format of a target data store. Then,
the adapter converts the result set from the native format to a common format
understandable by the mediator. It is worth noting that in such architecture, each
data store exposes its local data model (also called local schema) and has a unique
adapter.

In the mediation approach, the sources contain the real data, while the global
schema provides an integrated and virtual view of the sources. Modeling the
relation between the sources and the global schema represents an important step
in this approach and can be ensured by two methods: global as view (GAV) and
local as view (LAV). By modeling the relation, we mean the mapping between
local schemas and the global schema and translating the queries to the proprietary
query language to interact with the integrated sources. In the GAV method, we
process in bottom up by expressing the global schema in terms of data stores.
The major advantage of this method is the easiness of queries rewriting and its
main shortcoming is the lack of dynamicity. Indeed, if we add a new data store
in the system, we are obliged to redefine the global schema. Regarding the LAV
method, it is a top-down method and we define the global schema independently
from the sources. Then, we define the relationships between the global schema
and the sources as views. The advantage of this method is its dynamicity since
adding a new source does not imply the redefinition of the global schema. Its main
shortcoming is the fact that the queries re-writing algorithm is very expensive.

Recently, new techniques appear to integrate heterogeneous data. As an ex-
ample, we can cite the work of Paton et al. [23]. In their solution authors propose
to integrate data using schema mappings that are validated against user require-
ments in a pay as you go fashion. To do so, they collect the users’ feedback and
compute some metrics based on that. Then, they annotate schema mappings to
decrease the error percentage. In this section, we mainly focus on the mediation
systems since we this kind of systems in our work in order to integrate relational
and NoSQL data stores.

In this first main part of this chapter, we introduced the basic concepts related
to our work. We defined the Cloud Computing and Big Data areas. Afterwards,
we presented basic elements to well understand multiple data stores use in a Cloud
environments. Indeed, we defined relational and NoSQL data stores and showcase
a comparison between these two families of data stores. Then, we introduced the
polyglot persistence and outline its advantages and its limits. Finally, we gave an
overview of data stores integration.
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In the next main part, we will go further in our investigations. We will give a
detailed study of the state of the art related to our proposals in this manuscript.

2.3 Related Work

Supporting the lifecycle of multiple data stores based applications in Cloud envi-
ronments is not deeply explored. Indeed, it involves developing applications in-
teracting with relational and NoSQL data stores, discovering the suitable Clouds
data stores to the applications, deploying applications in Cloud environments, mi-
grating applications from one Cloud environment to another, and running the
applications. It is noteworthy that running applications includes complex queries
execution over relational and NoSQL execution. Meanwhile, there is a plethora of
work dealing with these aspects long before the apparition of Cloud paradigm and
NoSQL data stores especially.

In this section, we present different work that focused on ensuring a transpar-
ent access to heterogeneous data stores as well as discovering multiple data stores.
We start by presenting the work which are interested in unifying data models in
Section 2.3.1. Afterwards, we present state of the art of approaches easing access
to multiple data stores in Section 2.3.2. In Section 2.3.3, we present some data
integration based solutions. Finally, we introduce some solutions interested in cap-
turing application requirements in terms of data and cloud data stores capabilities
in Section 2.3.4. We conclude each section by a synthesis of the presented solu-
tions comparing them on the basis of the criteria that we dressed in our research
objectives.

2.3.1 Unifying Data Models

The cornerstone of a solution supporting multiple data stores based application
is a unified data model. This latter is invoked during the lifecycle of an applica-
tion. Indeed, it is used by developers to express their queries in their applications
source codes. Then, it is used to define the resource model of REST-based APIs
enabling the interaction with relational and NoSQL data stores in Cloud environ-
ments. Afterward, it helps developers to have a global view on data stores to well
describe their requirements and deploy their applications in Cloud environments.
Finally, it is used to evaluate and optimize the execution of complex queries over
relational and NoSQL data stores. For this purpose, we present in this section
some substantial work proposing different unified data models to manage data
heterogeneity [24-32|.

Unifying relational and object-oriented database systems [24,25] Won
Kim proposes a unified data model enabling the interaction with relational and
object-oriented data stores. This data model contains the same components of
a relational schema defined with an object-oriented syntax. Indeed, a table is a
class, a row is an instance, a column is an attribute, a procedure is a method, a
table hierarchy is a class hierarchy, a child table is a subclass and a parent table
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is a superclass. Based on this data model, the author proposes the UNISQL/X
which is a commercial unified relational and object-oriented database system and
implements SQL/X as a query language [24]. Although this model is interesting, it
still lacks of generalization as it does not represent data stores and the environment
where they are deployed. In addition, it does not take into account NoSQL data
stores. In this context, we want to stress that Won Kim tackles the importance
of having a unified data model to interact with NoSQL data stores. We refer the
interested reader to [33].

GARLIC data model [26] The GARLIC data model is an extension of the
ODMG-93 object model. The main building blocks of this model are objects and
values. Each object is uniquely identified and has a type expressed in the data
model through an object interface. This latter is composed of a set of attributes,
relationships and methods. Whereas values can be either base values (e.g. inte-
gers, strings, object references, etc.) or structured values (i.e. interfaces without
identity). The extension of the ODMG-93 data model enables to support the man-
agement of integrity constraints and object references. However, this data model
unifies only the access to relational and object oriented data. In addition, it does
not take into account the modeling of data stores and the environment where they
are deployed.

OEM: Object Exchange Model [27,28] The Lightweight Object REpository
(LORE) is a database management system for semi-structured data. Its query
language is referred to as LOREL which has a syntax closer to a select-from-where
syntax and its data model is called Object Exchange Model (OEM). This latter
is a simple nested object model that is represented using a labeled and directed
graph. It is also a self-describing model since it is based on labeling in order to
describe objects’ meaning. This avoids to define a fixed schema in advance and
enables to ensure more flexibility during data modeling. In other word, we can
say that each object represents its own schema. Each object in the OEM model
is structured by four fields that are a label, a type, a value and an object Id.
They denote a variable-length character string describing an object, a data type
of an object’s value (atomic e.g. integer, string, etc. or complex e.g. set, list,
etc.), an object’s value, and a unique identifier of an object respectively. Although
authors propose a very interesting data modeling in order to ensure a unique view
over heterogeneous data sources, the OEM is still lack of some abstractions. In
fact, in their modeling they take into account only collections of data and their
values. They do not consider data stores representation and environments in which
these data stores are deployed. This may be necessary especially when it comes
to evaluate and optimize complex queries execution across relational and NoSQL
data stores. In addition, representing values of data in a unified data model is not
always useful and it is costly in a Big Data context.

The generalized data model of Cloudy [29] Cloudy is a modular Cloud
storage system based on a generic data model. It can be customized to meet ap-
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plication requirements. Cloudy offers to an application several external interfaces
(key/value, SQL, XQuery, etc.) while supporting different storage engines (such
as BerkeleyDB or in-memory hash-map). Each Cloudy node in the system is an
autonomous running process executing the entire Cloudy stack. Its generic data
model is based on the DPI data structure. This latter is a set of fields that allows
to identify, transfer, and query data. It contains (1) a key to uniquely identify
data, (2) information about the data structure, (3) the data itself, and (4) some
metadata. Data in this data structure are handled using three kind of operations
to read, write and delete. Even though Cloudy’s data model is generic, it is not
enough. Indeed, it does not support other types of NoSQL data stores and it does
not enable complex queries execution. In addition, this data model does not take
into account the modeling of data stores where data are stored and the environ-
ment where they are deployed. This is very important in order to evaluate and
optimize queries execution in multiple data stores based applications.

SQL++ data model [30] SQL++ is a semi-structured query language and
enables the interaction with relational and JSON native data stores. It is based
on a simple data model which is a super-set of JSON format and SQL data model
(especially relational tables). Indeed, a tuple in the relational model corresponds
to a JSON object. A relational column (i.e. string, integer, booleen, etc.) is
similar to the respective JSON scalar. Finally, a JSON array is equivalent to a
relational table with order. Nevertheless this data model does not represent all
kind of NoSQL data stores (namely key/value, column, and graph data stores).
In addition, it does not take into account the representation of databases and
the environment where they are deployed. This proves that their model lacks of
abstraction and dynamicity.

Heterogeneous data resource collaborative management model [31] Tao
Sun et al. propose a heterogeneous data resource collaborative management model
in Cloud environment. This model represents massive resources storage and mas-
sive storage networks generation. It enables the update and balancing of workloads,
the security management and some monitoring methods. This model includes four
main components: (1) The physical storage layer that stores the heterogeneous
data in relational, NoSQL and all type files based data stores. (2) The data re-
source network layer which allows the management and the use of Cloud storage
services by abstracting all the physical nodes (i.e. data stores) into logical nodes
and interconnecting these nodes between them. It is noteworthy that each logical
node may store various types of data. (3) The data conversion layer that unifies the
data resource formats by transforming them into GroupDB database center’s for-
mat. (4) The GroupDB data management layer which enables data management
(e.g. data integration, data fusion, etc.). Nevertheless, authors remain superficial
in their proposed model and abstract their data in a high level way. Indeed, they
ignore the representation of data collections (e.g. tables, document collections,
etc) and data (tuples, documents, attributes, etc.). These omissions can prevent
users from controlling their data as well as to express multi-sources queries.
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xR2RML: a non-relational databases to RDF mapping language [32]
xR2RML is a language enabling the description of mappings of various types of
data stores to RDF. It takes into account relational, XML, object-oriented and
some NoSQL data stores. It is an extension of R2ZRML that belongs to the W3C
Recommendation and is a language for expressing mappings from relational data
stores to RDF datasets. Once the RDF data set is created, user can seamlessly
query it using a declarative query language. Nevertheless, using their approach,
users can not express complex queries especially when it comes to interact with
NoSQL data stores. In addition, converting result sets (especially SQL result sets)
into RDF is likely to be quite inefficient. This can be justified by the absence of
semantics during the construction of mappings.

Synthesis

In this section, we present an overview of the related work to unifying relational
and NoSQL data models. Hereinafter, we emphasize the shortcomings of these
works based on the synthesis showcased in Table 2.1. In this synthesis we consider
six criteria. Indeed, we take into account if the data model has a dynamic aspect
or not. We characterize a data model by dynamicity if it represents the data, the
data stores where they are stored, and the environment where these data stores are
deployed. In addition, we verify if the studied solutions enable to unify relational
and NoSQL data models. Then, we check if they are understandable by the users
and allow to express complex and multi sources queries. Finally, we verify if these
data models are defined to represent Cloud data stores or not. In Table 2.1, we
show for each work, whether it responds or not to our criteria. In this table, the 4
is used to say that the proposed work treats a given criteria. While, the — is used
to say that the related work does not propose a solution for a given criteria. It is
worth noting that we use this notation throughout this the related work section
to synthesis the studied works.

Based on this synthesis, we conclude that the majority of the studied works do
not support NoSQL data stores. In addition, the studied unified data models lack
of understandability and they are not closer to the user. This prevents users from
expressing complex queries across heterogeneous data stores. Finally, authors in
their modeling do not take into account Cloud environments.

2.3.2 Easy Access To Multiple Data Stores

In some cases, applications want to store and manipulate explicitly their data in
multiple data stores. Applications know in advance the set of data stores to use
and how to distribute their data on these stores. However, in order to simplify the
development process, application developers do not want to manipulate different
proprietary APIs especially when interacting with multiple relational and NoSQL
data stores. Furthermore, it is impossible to write queries manipulating data
coming from different data stores (such as a join between two data stores). Two
classes of solutions can be used in this case. The first one is based on the definition
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Table 2.1: Synthesis of the related works unifying data models

of a neutral API capable to support access to the different data stores. The second
class is based on the model-driven architecture and engineering methodology [34].

In this section, we focus exclusively on the first class of solutions to ease access
to multiple data stores (especially NoSQL and relational data stores). Stone-
braker [35] exposes the problems and the limits that a user may encounter while
using NoSQL data stores especially. These problems derive from the lack of stan-
dardization and the absence of a unique query language and API, not only be-
tween NoSQL data stores but also between relational data stores and NoSQL data
stores. To rule out these problems, there are nowadays some substantial research
works proposing solutions to provide transparent access to heterogeneous data
stores [30,36—-40]. In this context, some of them are based on the definition of a
neutral API; others are based on a framework capable to support access to different
data stores.

JDBC: Java DataBase Connectivity [36] Developers used to use JDBC for
java application in order to interact with different types of relational data stores
(i.e. Oracle, MySQL, etc.). However, interacting with different types of data stores
is more complex in the Cloud’s context because there is a large number of pos-
sible data stores, which are quite heterogeneous in all dimensions: data models,
query languages, transaction models, etc. In particular, NoSQL data stores [41]
are widely used in Cloud environment and are not standardized at all: their data
models are different (key/value, document, graph or column-oriented), their query
languages are proprietary and they implement consistency models based on even-
tual consistency.
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A REST-based API for Database-as-a-Service systems [37] Haselmann
et al. present a universal REST-based API concept. This API allows to interact
with different Database-as-a-Services (DaaSs) whether they are based on relational
or NoSQL data stores. They propose a new terminology of different concepts in
either types of data stores. In fact, they introduce the terms entity, container, and
attribute to represent respectively (i) an information object similar to a tuple in
a relational data store, (ii) set of information objects equivalent to a table, and
(iii) the content of an information object. These terms represent the resources
targeted by their API. This API enables either CRUD operations or complex
queries execution. However, authors remain only to the conceptual model and do
not give any details about the implementation level of their API. In addition, their
resource model is not generic to each category of data store. Haselmann et al. do
not deny that proposing such an API is an awkward task. Indeed, they point out
in their paper a list of problems that encounter their API.

OData: an Open Data Protocol [30] OData is a REST-based web protocol
allowing data querying and updating by building and consuming RESTful APIs.
Operations may be either CRUD operations or some complex queries expressed
using the OData-defined query language. OData enables to publish and edit re-
sources via web clients within corporate network and across the internet using
simple HTTP messages. Resources are identified using URIs and defined based
on an abstract data model. Data are represented using a JSON-based format or
a XML-based format. Even if this approach seems quite promising, it is more a
specification than an implementation especially for the management of complex
queries. The query language is also not well very defined for the moment.

Spring Data Framework [38] The Spring Data Framework provides some
generic abstractions to handle different types of NoSQL and relational data stores.
These abstractions are refined for each data store. In addition, they are based on
a consistent programming model using a set of patterns and abstractions defined
by the Spring Framework. Nevertheless, adding a new data store is not so easy
and the solution is strongly linked to the Java programming model.

SOS: A uniform access to non-relational data stores [39] Atzeni et al.
propose a common programming interface to seamlessly access to NoSQL and
relational data stores referred to as Save Our Systems (SOS). SOS is a database
access layer between an application and the different data stores. To do so, authors
define a common interface to access different NoSQL data stores and a common
data model to map application requests to the target data store. They argue that
SOS can be extended to integrate relational data store; meanwhile, there is no
proof of the efficiency and the extensibility of their system.

ONDM: an object NoSQL Datastore Mapper [40] Object-NoSQL Data-
store Mapper (ONDM) is a framework aiming at facilitating persistent objects
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storage and retrieval in NoSQL data stores. In fact, it offers to NoSQL-based
applications developers an Object Relational Mapping-like (ORM-like) API (e.g.
JPA API). However, ONDM does not take into account relational data stores.

Synthesis

In this section, we introduced an overview on existing works related to accessing
multiple data stores in a unique way. In the following, we will show how the
presented works failed to cover some of the objectives that we dressed in Chapter
1 especially when it consists on accessing NoSQL data stores. Nowadays, NoSQL
data stores enter the stage of providing more scalability and flexibility in terms
of databases in Cloud environment. Nevertheless, there is a gap to fill in terms
of developer support. Indeed, each type of NoSQL data stores exposes different
traits, drivers, APIs, and data models. In most of the time, application developers
are lost in this plethora of data stores and they have to manage that by hook or
by crook. All that will degrade the developer productivity.

We propose a synthesis of the studied works based on criteria derived directly
from our main objective which is supporting multiple data stores based applications
developers in Cloud environment (see Table 2.2). This can be provided by ensuring
a unique access for relational and NoSQL data stores. For this purpose we fix
a set of six requirements. Indeed, we check if the proposed works are unique
APT and based on REST architecture. Then, we verify whether these works take
into account relational and NoSQL data stores or not. Afterward, we make sure
that these works allow the portability of the source code of the application or
not. Portability means the possibility of using different programming languages.
Finally, we check the extendability of the proposed APIs. By extendability we
mean the possibility of adding a new data store in the API.

2.3.3 Transparent Access To Integrated Data Stores

Ensuring transparent access to heterogeneous data stores is a classical problem
which has been widely addressed by the mediation community [42]. Two compo-
nents are used to allow different data sources to be integrated and manipulated in a
transparent way: a mediator and adapters. The mediator hides the sources to ap-
plications. It implements a global schema described in a neutral data model and
including all the information to share. Applications issue queries on the global
schema using the query language associated to the neutral data model and the
mediator rewrites these queries as sub-queries and sends them to the target data
sources. Each data source is encapsulated by an adapter transforming a neutral
query into a (set of) data source query.

In this section, we present some substantial works proposing different mediation-

based approaches to ensure transparent access heterogeneous data stores [22,43—
50].
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TSIMMIS: a mediation-based system [22] The Standford-IBM Manager of
Multiple Information sources (TSIMMIS) is a mediation-based system to integrate
data stores. The key ingredients of this system are: (1) a unified data model called
OEM (see Section 2.3.1), (2) a mediator, (3) wrappers, and (4) the LOREL query
language. Although this work represents an important reference in the field of data
integration, it is not available today to integrate NoSQL data stores and manage
data with big size.

GARLIC: integrating relational and non-relational data stores into a
federation [43] GARLIC is a solution to build a federated database system
that effectively exploits the query capabilities of the underlying data stores of
type IBM DB2, while using a query processor component to develop optimized
execution plans and compensate for any functionality that the data sources may
lack. IBM DB2 are database management systems that involve relational data,
object-oriented data, and non-relational data like JSON and XML. In GARLIC,
applications express their queries using SQL and send them to the federated server.
This latter cooperates with wrappers of the integrated data stores to construct an
optimal execution plan. This execution plan contains the decomposition of the
query into sub-queries and the optimal sequencing of the execution of the sub-
queries in the integrated data stores. Result sets of these queries are returned
to the federated server in order to construct the final result set and return it to
the application. Despite its widespreadness, GARLIC presents some shortcomings.
For instance, it does not support NoSQL data stores integration which is necessary
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nowadays.

Data integration over NoSQL stores using access path based mappings
[44,45] Curé et al. [44] propose a data integration system to enable querying
NoSQL and relational data stores. Their approach considers the following as-
sumptions: (1) the global schema is a standard relational data model since the
majority of end-users are familiar with this model and its query language, and (2)
the sources can be of type relational or NoSQL. To support the execution queries
over NoSQL data stores, they define a mapping language to map attributes of the
data stores to the global schema and a Bridge Query Language (BQL) to rewrite
queries. In a second step, Curé et al. [45] extend their solution by using an Ontol-
ogy Based Data Access (OBDA). Additionally, they replace BQL with SPARQL?.
Although their proposal is promising, there are some lacking functionalities (i.e.,
no query optimization at the global level, no complex query execution, etc.). In-
deed, authors do not define a cost model to optimize the execution of the queries.
In addition, they do not support all NoSQL data stores (only document one).

BigIntegrator: a mediation based relational and Clouds’ data stores
integration [46] The Biglntegrator is a mediation based system enabling the
integration of relational and Cloud-based (i.e. Bigtable) data stores. In this sys-
tem, authors propose to use SQL as a query language in order to join data stored
in Bigtable and relational data stores and they define a RDBMS wrapper and a
Bigtable wrapper for each kind of the integrated data store. In addition, they
propose the Biglntegrator query processor layer that plays the role of the media-
tor. This layer enables queries re-writing into trees and Datalog queries, queries
optimization and algebra operations based execution plan generation. The key in-
gredients of this layer are (1) the absorber manager that takes the Datalog query
and, for each source predicate referenced in the query, calls the corresponding
absorber of its wrapper, and (2) the finalizer manager that takes the algebra ex-
pression and, for each access filter operator referenced in the algebra expression,
calls the corresponding finalizer of its wrapper. Despite its importance, the Big-
Integrator system stresses some limitations. Indeed, it suffers from the lack of
generecity since it supports just one particular NoSQL data store (i.e. Bigtable).
Besides, if a user wants to integrate a new data store, he/she has to define a well
tailored wrapper to this data store, an absorber manager, and a finalizer manger.

Bridging relational and document-centric data stores [47] Roijackers et
al. propose a hybrid mediation approach in which they integrate relational and
document data stores. To do so, they define a logical representation to store
document data in relational data stores, and they extend the SQL query language
in order to seamlessly query data. The proposed extended-SQL language is called
NoSQL query pattern (NQP). Based on that, they develop a basic approach for

*http://www.w3.org/TR/rdf - sparql-query/
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processing such extended queries, and present a range of practical optimizations.
Nevertheless, this approach does not take into account other NoSQL data stores.

CloudMdsQL: querying heterogeneous Cloud data stores with a com-
mon language [48] Valduriez et al. propose the Cloud multidatastore query
language (CloudMdsQL) which is a common language for relational and NoSQL
data stores querying. Indeed, it enables to query multiple heterogeneous data
stores using a single query containing nested sub-queries. Each sub-query targets
a particular data store and may contain embedded invocations to the data store’s
native query interface. Due to the absence of schemes in NoSQL data stores,
authors propose to use table expressions which is generally an expression that
returns a table. This notion allows to represent a nested query and especially tar-
gets schemeless data stores. These table expressions are saved in data stores; hence
this yields important optimization opportunities (e.g. minimizing data transfers
between nodes, reusing queries decomposition and optimization techniques, etc.).
They also propose a query engine that follows a distributed mediator/wrapper
based architecture where they refer to the mediator as master and to the wrap-
pers as workers. Although their proposal is promising, authors do not propose a
cost model to optimally execute a query. In addition, they do not specify whether
CloudMdsQL may work in a Big Data context or not.

Ontop: an OBDA based relational data integration [49,50] Ontop is an
Ontology Based Data Access (OBDA) for relational data integration. It exposes
relational data stores as virtual RDF graphs by linking the term in the ontology
to the data stores through mappings got using the mapping language R2RML.
Then the resulted RDF graph is queried using SPARQL. The ontop framework
is composed of four inputs that are: (1) an ontology to uniquely represent data
stores, (2) a set of mappings to link data stores to the ontology, (3) the integrated
data stores, and (4) the queries written in SPARQL. Although the ontop represents
a new flavor to integrate data, it showcases some limits. Indeed, it does not enable
NoSQL data stores integration. In addition, it does not support complex queries
execution such join queries over relational and NoSQL data stores. Finally, it is
not meant to be deployed in a Cloud environment.

Synthesis

In this section, we present a synthesis of the works that we have analyzed above
in Table 2.3. Indeed, we investigate whether these solutions enable the integration
of relational and NoSQL data stores in Cloud environment. In addition, we take
into account application using a big size of data. During our study, we check also
if these approaches enable the execution of complex queries across relational and
NoSQL data stores or not. Finally, we are interested in the works that invoke cost
models to optimize queries execution.

In this context, the source of all these challenges is the appearance of NoSQL
data stores. This new kind of data stores represents a plethora of categories and
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Table 2.3: Synthesis of the related works ensuring transparent access to integrated
data stores

variants causing a high level of heterogeneity. Additionally, NoSQL data stores are
schemaless i.e., there is no local schemas to represent the integrated data stores.
Subsequently, it will be complicated to construct a global schema in the mediator.
Added to that, the studied works do not involve Cloud computing and Big Data
areas. Finally, few of them propose a cost model to optimize the execution of
queries.

2.3.4 Capturing Data Requirements And Cloud Data Store Ca-
pabilities

Choosing one or multiple data stores based on data requirements is a very impor-
tant step before deploying and running applications in Cloud environments. In this
context, we have to (1) define application needs and requirements towards data,
(2) expose data stores capabilities, and (3) define a matching algorithm between
application needs and data stores capabilities.

For this purpose, we present and discuss some previous works that provide
the requirements cited above. We introduce first the CAMP standard in order to
discover the application needs and the data stores requirements [51]. Then, we give
a short overview of the CDMI standard that allows to describe and discover data
storage capabilities [52]. We want to emphasize that it is also possible to obtain
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data stores capabilities using the data stores proprietary API. Finally, we discuss
some works that enable an application to negotiate its requirements with Cloud
data stores and to express these requirements in data contracts (or manifests)
[53-58]. This latter is an agreement between the application and the Cloud data
stores.

Cloud Application Management for Platforms [51] Cloud application man-
agement for platforms (CAMP) is a specification defined for applications manage-
ment, including packaging and deployment, in the PaaS. Indeed, CAMP provides
to the application developers a set of interfaces and artifacts based on the REST
architecture in order to manage the application deployment and their use of the
PaaS resources. An application may be thereafter deployed, run, stopped, sus-
pended, snapshotted, and patched in the PaaS. Concerning the relationship data
storage/application, CAMP allows an application to define its needs especially in
terms of data storage.

CAMP proposes a PaaS resource model. This model allows the developer to
control the whole life cycle of his/her application and its deployment environment.
This model contains the four following resources:

e Platform: This resource provides an overview on the PaaS and allows to
discover which application is running. Indeed, this resource references the
deployed applications, the running applications and the PaaS capabilities
which are called respectively Assembly Templates, Assemblies, and Compo-
nents. It also enables the PaaS capabilities and requirements discovery. In
our case it allows to get a primary view on the application and the data
storage platform.

o Assemblies: This resource exists under two possible forms. The first one is
the Assembly Template and it defines a deployed application and its depen-
dencies. Whereas, the second is the Assembly and it represents an application
instance.

e (Components: This resource may exist in two kinds that are Application Com-
ponent and Platform Component. Each kind may be under two forms also.
On the one hand, the Application Component and Application Component
Template define respectively an instantiated instance of an application com-
ponent and a discrete configuration of a deployed application component.
On the other hand, we have Platform Component and Platform Component
Template that represent an instantiated instance of a platform component
and a discrete configuration of a platform component.

e Capabilities and Requirements: A capability defines the configuration of Ap-
plication Components or Platform Components. Whereas a requirement ex-
presses the dependency of an application on an Application Component or
Platform Component and it is created by the application developer or ad-
ministrator.
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As we see through the PaaS resource model of CAMP, there are various re-
sources that are focusing on defining the capabilities of either application or data
storage platform. These resources are Platform, Assembly Template, Application
Component Template, Platform Component Template, and Capabilities and Re-
quirements. Hence, it enables the discovery and the publication of application
needs in terms of data storage. Moreover, it allows to define the data stores capa-
bilities.

Cloud Data Management Interface [52] The Storage Networking Industry
Association (SNIA), an association of producers and consumers of storage net-
working products, has defined a standard for Infrastructure as a Service (IaaS)
in the cloud. This standard is referred to as Cloud Data Management Interface
(CDMI). Based on the REST architecture, CDMI allows to create, retrieve, up-
date, and delete data in the cloud. It provides an object model in which the root
element is called Root Container. This latter represents the main container that
will contain all the needed data by an application. This element is related to the
following elements:

e Container: The Root Container element may contain zero or more sub-
containers. Each container is characterized by a set of capabilities that will
be inherited by the data objects that it contains.

e Data object: Each container may store zero or more data objects. These are
used to store data based on the container capabilities.

e Queue object: The Queue objects stores zero or more values. These values
are created and fetched in a first-in first-out manner. The queue mechanism
organizes the data access by allowing one or more writers to send data to a
single reader in a reliable way.

e Domain object: This element allows to associate the client’s ownership with
stored objects.

o Capability object: The capability objects describe the container’s capabilities
in order to discover the cloud capabilities in terms of data storage.

This international standard supports several features. Indeed, it enables the
available capabilities discovery in the cloud storage offering. In addition, it sup-
ports the containers and their contents management. It defines also meta-data to
be associated with containers and the objects they contain. So, CDMI allows to
define the data stores requirements but at a lower level (it is more infrastructure
oriented than platform oriented).

Data contracts for Cloud-based data marketplaces [53—-55] Truong et al.
propose to model and specify data concerns in data contracts to support concern-
aware data selection and utilization. For this purpose, they define an abstract
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model to specify a data contract and the main data contract terms. Moreover,
they propose some algorithms and techniques in order to enforce the data contract
usage. In fact, they present a data contracts compatibility evaluation algorithm
and they define how to construct, compose and exchange a data contract. In
[54], they introduce their model for exchanging data agreements in the Data-as-a-
Service (DaaS) based on a new type of services which is called Data Agreement
Exchange as a Service (DAES). This model is called DEscription MOdel for DaaS
(DEMODS) [55]. However, Truong et al. propose this data contract for data and
not to store data or to help the developer to choose the appropriate data stores
for his/her application.

An approach to identify and monitor SLA parameters for storage-as-a-
service cloud delivery model [56] Ghosh et al. identify non-trivial parame-
ters of the Service Level Agreement (SLA) for Storage-as-a-Service Cloud which are
not offered by the present day Cloud vendors. Moreover, they propose a novel SLA
monitoring framework to facilitate compliance checking of Service Level Objectives
by a trusted third part. Although Ghosh et al. try to enrich the SLA parameters
to support the Storage-as-a-Service, this is still inadequate for our purpose in this
paper which is discovering data stores based on application requirements and data
stores capabilities.

An automated approach to Cloud storage service selection [57,58] Ruiz-
Alvarez et al. propose an automated approach to select a PaaS storage service
according to an application requirements. For this purpose, they define a XML
schema based on a machine readable description of the capabilities of each storage
system. The goal of this XML schema is twofold: (i) expressing the storage needs
of consumers using high-level concepts, and (ii) enabling the matching between
consumers requirements and data storage systems offerings. Nevertheless, they
consider in their work that an application may interact with only one data store
and they did not invoke the polyglot persistence aspect.

An ontology-based system for Cloud infrastructure services discovery
[59] Zhang et al. propose the Cloud Computing Ontology (CoCoOn) that en-
ables to denote functional and non functional concepts, attributes and relations
of infrastructures services in Cloud environments. Using the CoCoOn ontology,
Cloud providers expose a description of their services. In addition, they propose
CloudRecommender which is a system implementing their ontology in a relational
model. This system enables the selection of infrastructure services using SQL
queries to match user requests to the services descriptions. However, this ap-
proach is intended to work in the IaaS and not in the PaaS. In addition, users can
not discover multiple resources in one query.

Cloud service selection based on variability modeling [60] Wittern et
al. propose to use Cloud feature modeling based on variability modeling in order
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to present users requirements and Cloud services capabilities. Based on that,
they define also a Cloud service selection process as a methodology for decision
making. Although this approach is automatic and dynamic, it does not support
the discovery and the selection of multiple services.

Synthesis

In this section, we present a synthesis about the presented works above. To do
so, we fix a set of six criteria on which we rely to evaluate these works. We
check whether these works propose a solution to (1) describe multiple data stores
based application requirements, (2) expose data stores capabilities and (3) apply
matching techniques to elect the most suitable Cloud provider to an application.
We also verify if these works use manifests to describe requirements and capabilities
in terms of data stores. Finally, we point out that we target applications in PaaS.
This analysis is showcased in Table 2.4.
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Table 2.4: Synthesis of the related works capturing Data Requirements And Cloud
Data Store Capabilities

Against this analysis, we conclude that all the studied works do not support
multiple data stores based applications discovery. In addition, few of them are
intended to support data stores in the PaaS layer of a Cloud environment. Finally,
these works do not propose to describe applications requirements and data stores
capabilities in manifest even if this modeling ensures more automaticity in data
stores discovery.
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2.4 Conclusion

Approaches about unifying data models, easing access to heterogeneous data stores,
integrating data, and Cloud services discovery exist way before the appearance of
NoSQL data stores and the notion of polyglot persistence. So, there is a plethora
of works dealing with them. In this chapter, we first introduced the basic concepts
that are straightforwardly related to our work. Then, we provide an overview of the
existing work in each area. Tables 2.1, 2.2, 2.3, and 2.4 present illustrative pictures
to show how each work responds to the objectives listed in Chapter 1. Despite all
these proposals, challenges introduced by Cloud environments and NoSQL data
stores are not fully addressed. In general, these proposals do not support NoSQL
data stores and are not well integrated in Cloud applications lifecycle.

In our work, we will propose four solutions that respond to all the dressed ob-
jectives. Indeed, these solutions concern the support of multiple data stores based
applications in Cloud environments. We propose an integrated set of models, al-
gorithms and tools aiming at alleviating developers task for developing, deploying,
executing complex queries and migrating multiple data stores based applications
in Cloud environments. It is worthy to say that we take into account relational
and NoSQL data stores.

In the next chapter, we will introduce our first two contributions. Indeed, we
will present our unified data model covering the heterogeneity between relational
and NoSQL data stores. Afterwards, we will present ODBAPI which is a REST
based API that allows the execution of queries across relational and NoSQL data
stores in a unique way. This API has been defined based on a resource model
mapping the different concepts in our unified data model.
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3.1 Introduction

Storing and manipulating data from multiple data stores in Cloud environments is
gaining momentum. However, applications developers are central to that. Indeed,
they supposed to develop this kind of applications, to deploy it, to execute their
queries, to manage its migration from one Cloud environment to another, etc. To
cope with this, developers must be familiar with data models and APIs of each
data stores including new data stores in case of migration. Our main purpose in
this work is to rid developers from these heavy and cumbersome tasks. Indeed,
we provide them a set of tools, techniques, and algorithms aiming at developing,
deploying and migrating multiple data stores based applications in Cloud environ-
ments.

In this chapter, we start by giving an overview of our contributions that we
will detail in next chapters (see Section 3.2). Then, we present our unified data
model that we use to cover the heterogeneity between relational and NoSQL data
stores by ensuring a unique view on these data stores (see Section 3.3). Finally,
we introduce our REST based API, ODBAPI that enable to uniformly execute
queries across relational and NoSQL data stores (see Section 3.4).

3.2 Overview Of Our Approach

For ease of presentation of our work, we propose to introduce the main constituents
of our approach that we detail in next chapters. We show in particular how these
elements enable overcoming the problems (Pby - Pby) listed in the first chapter
of this manuscript (see Chapter 1). Figure 3.1 depicts how these constituents
intervene during the development, discovery, deployment and execution steps. Our
approach relies on the following 4 elements:

Discovery

l tanifest edited by the user Wanifest sutomatically edited |

Figure 3.1: An end-to-end overview of our solution

e Unifying data models: We define a data model which abstracts the un-
derlying (explicit/implicit) integrated data stores models, and we provide
a common and unified view so that developers can define and execute their
queries over heterogeneous data stores. We propose to refine this data model
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by the refinement rules in order to provide more information to the devel-
opers. During the development step, the developers dispose of a global data
model expressed according to our unified model and which integrates local
data store models. Our unified data model decouples query definitions from
the data stores specific languages. During the execution step, the unified
data model is used by the virtual data stores in order to process complex
queries and to optimally execute it (contributing to resolving thereafter.

e ODBAPI, a REST-based API: Based on our unified data model, we
define a resource model upon which we develop a streamlined and a uni-
fied REST API. We called it ODBAPI that stands for OpenPaas DataBase
API. This API enables to interact with relational and NoSQL data stores
in a unique and uniform way. Our API decouples the interactions with
data stores from their specific drivers. The proposed unified data model
enables to express queries and to interact with heterogeneous data stores
using ODBAPI. Hence, developers do not have to deal with various query
languages and APIs. In addition, they do not have to adapt their code when
migrating their applications. ODBAPT is also used in our solution integrat-
ing NoSQL and relational data stores to execute complex queries. Indeed,
it plays the role of wrappers in order to convert queries and result sets from
the sources format to the virtual data stores (VDS for short) format and vice
versa.

e Virtual data stores: Wrapper REST services (i.e. ODBAPI services) en-
able executing simple queries over the involved data stores. However, they
are not meant to execute complex queries (such as join, union, etc.) on mul-
tiple data stores or entity sets. In our approach, we consider VDS a specific
component responsible for executing queries submitted by a multiple data
store application. A VDS holds the global data model integrating the differ-
ent data stores and which is specified according to our unified data model
and a set of the refinement rules. Besides, it is accessible as a REST ser-
vice complying to the ODBAPI and maintains the end-points of the wrapper
REST services (in other word the integrated data stores). A multiple data
store application submits CRUD and complex queries to the VDS which is
responsible of their execution by interacting with appropriate data stores
via their REST services. VDSs enable developers to express their complex
queries over multiple data stores in a declarative way and take in charge the
burden of their executions.

e Dedicated components for discovery and deployment: In our ap-
proach, we consider two components: the discovery and deployment mod-
ules. They are responsible of finding appropriate cloud environments and
deploying multiple data store applications on them respectively. As depicted
in Fig. 3.1, developers first express their requirements about the used data
stores as well as the computation environment via an abstract application
manifest. Based on that manifest, the discovery component finds and elects
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the appropriate cloud environment and produces an offer manifest. This
manifest will be in turn used by the deployment component to deploy the
application on that selected environment. The discovery and deployment
modules relieves the application developers from the burden of dealing with
different APIs and discovery/deployment procedures.

3.3 Unifying Data Models

In this section, we present our integrative and unified data model used by appli-
cation programmers to express their access to the different data stores they use
and by virtual data stores to execute complex queries. In order to abstract the
different data models of the data stores, we define a unified data model capable to
express all data constructions. We present the different concepts needed to define
the unified data model (see Section 3.3.1) and we formally define them (see Section
3.3.2). The unified data model is used to express the "global" schema of an ap-
plication, that is the description of all entity sets used in the application together
with their the refinement rules (see Section 3.3.3). Finally, a query algebra is pre-
sented, allowing to express complex queries as algebraic trees in order to optimize
and evaluate their execution (see Section 3.3.4).

3.3.1 Informal Description Of The Unified Data Model

Our proposed data model unifies the different concepts coming from existing data
stores nowadays. As a first step of this work, we propose to do a comparison
between the different data stores and their concepts. In Table 3.1, we represent
a comparison chart between the different concepts used in four categories of data
stores which are commonly used in Cloud environments: MySQL a relational data
store, Riak a key/value data store, Cassandra a column data store, and MongoDB
a document data store. For instance, a table in MyS@L is equivalent to a collection
in MongoDB, to a Column family in Cassandra and to a database in Riak. We
propose to refer to this concept by Entity Set in our unified data model. In
addition, a row in MySQL, a document in MongoDB, a Column key/Column value
pair in Cassandra and a key/value pair in Riak are represented by the Entity
concept. In order to organize elements of type databases belonging to one Cloud
environment, we define a new concept that we call Environment that includes all
resources.

Based on Table 3.1, we define the unified data model (see Figure. 3.2) based
on five concepts. For ease of understanding our data model, we based ourselves
on Figure 3.3 in which we depict three EntitySets of type MongoDB, Riak, and
MySQL from right to left.

1 1. 1 1% 1 1. 1 1.
Environment Database EntitySet Entity Attribute

Figure 3.2: Unified data model
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Relational | MongoDB Riak Cassandra Unified data
concepts concepts concepts concepts model concepts
Database | Database | Environment Keyspace Database
Table Collection Database Column family Entity Set
Row Document | Key/value Column key/ Entity
Column value
Column Field key Column key Attribute

Table 3.1: Comparison chart of concepts used in different data stores

e The Attribute concept: It represents an attribute in a data store. In Fig-
ure 3.3, the elements personName, Rank, and year are concepts of type
Attributes.
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Figure 3.3: Exemples of EntitySet concepts of type MongoDB, Riak, and MySQL
from right to left

e The FEntity concept: An FEntity is a set of one or multiple Attributes. In
Figure 3.3, we show Entities in the EntitySet called Conference ranking
identified by the Attributes Conference.

e The EntitySet concept: An EntitySet is a set of one or multiple concepts of
type Entity. In Figure 3.3, dblp, Conference ranking and Person represent
EntitySets of type respectively document collection, Key/Value database,

and relational table.

e The Database concept: A Database contains one or multiple concepts of
type EntitySet. In Figure 3.4, we showcase an application A interacting with
three Databases called dblpDB of type MongoDB data store, personDB of

type relational data store, and RankDB of type Riak data store.

These

Databases contain respectively the EntitySets dblp, Person, and Conference
ranking illustrated in Figure 3.3.

e The Environment concept: The root concept in our model is Environment.
This concept represents a pool of data stores and an application can choose
some of them to interact with. As a concrete example, we can give the
example of the Cloud environment in which the application A interacts with
the three data stores (see Figure 3.4).
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Application A

personDB
Relational
data store

dblpDB
MongoDB
data store

RankDB
Riak
data store

Figure 3.4: An application interacting with three data stores in a Cloud environ-

ment

3.3.2 Formal Description Of The Unified Data Model

For a good modeling of data stored in the integrated data stores and an efficient
definition of the queries and their execution, we propose to define our query algebra
with respect to the unified data model. For this purpose, we present in this section
a formal definition of the unified data model concepts:

e Attribute concept: A concept a of type Attribute is characterized by a pair

of the elements {t,q}: (1) an Attribute type t, and (2) a qualified name ¢
allowing to identify the path to the appropriate Attribute. A type Attribute
may be either atomic (i.e. it is a predefined type t such as integer, String,
etc.) or recursively composed by applying type constructors (record and set)
on existing types (either atomic or composed). We note by A the set of the
Attribute.

Entity concept: We define a concept e of type Entity as follows: e =
{ai,..,a,} where Qijic{1.n} € A. It represents the set of all possible attributes
of an entity, that is a specific data may not used part of these attributes. We
denote by E the set of the Entity.

Entity set concept: We define a concept es of type EntitySet as follows:
es = {e1,..,en} where €;;c(1.n) € E. We denote by ES the set of EntitySet.

Database concept: We define a concept d of type Database as follows: d =
{es1,..,esn} where es;jic(1.ny € ES. We note by D the set of Database.

Environment concept: We define a concept env of type Environment as
follows: env = {di, .., d,} where djjic(1.,y € D. We denote by ENV the set
Environment.

Let us now give an example of a formal presentation of the document EntitySet

dblp that belongs to a database named dblpDB deployed in the Cloud environment
OurEnvironment:
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e OurEnvironment € ENV, Our Environment = {dblpD B} where dblpDB €
D,

dblpDB € D, dblpDB = {dblp} where dblp € ES,

dblp € ES, dblp = {e} where e € E,

e € E, e = {author,year, title, Conference} where author, year, title,
Conference € A,

author, year, title, Con ference € A,

author = {set of String, Our Environment.dblpD B.dblp.author },
year = {String, Our Environment.dblpD B.dblp.year},

title = {String, Our Environment.dblpD B.dblp.title},

Conference = {String, Our Environment.dblpD B.dblp. Con ference}.

3.3.3 Global Schema

Integrating relational and NoSQL data stores is very important since it allows com-
bining data residing in different sources and providing users with a unified view of
these data. This is indeed unrealizable since NoSQL data stores are schema-less,
but some kind of global schema is needed to allow users to express and execute
their queries. For this sake, we propose in this section to define a simple and min-
imalist global schema describing all the EntitySets accessible by an application.
It is noteworthy that our global schema provides users by the minimum informa-
tion required to express their queries but it does not define any kind of schema
integration like in classical mediation systems.

The global schema that we propose is our unified data model enriched by a set of
refinement rules. The refinement rules help applications programmers to correctly
express their queries. For instance, we define the Correspondence rules to express
the logic expression in a join query and to remove semantic ambiguities between
attributes. In the following, we propose to define some kinds of the refinement
rules.

Definition 3.3.1 (Correspondence rules) A correspondence rule is defined as
follows: Let us consider Ay < t1,q1 >, Az < ta,q2 >€ A. Aj is equivalent to Ag if
and only if t1 and to are compatible, and A1 and Ao denote the same information
(they have the same semantic). To represent such relation, we use the binary
operator = to denote q1 = qo.

We denote by CR the set of the correspondence rules.

In Fig. 3.5, we illustrate the corresponding data model to the dblp, person, and
conferenceRanking EntitySets. In this schema, we precise the database name and
the environment where we can find these EntitySets. In addition, we showcase
two correspondence rules using dashed lines. The first is between the Attributes
personName and author in the person and dblp EntitySets respectively. Whereas
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dblpDB

ConferenceRanking

Conference

Figure 3.5: The corresponding data model to the dblp, person, and conferenceR-
anking entity sets

Conference

the second rule is between the two Attributes conference in both conference Ranking
and dblp EntitySets. Based on this, we can write (For ease of presentation, we do
not note the whole qualified name of each Attribute. We remove the name of an
environment and a database and we start from the name of an EntitySet):

cr1 conferenceRanking.conference = dblp.con ference.

cry person.personName = elementO f(dblp.author). We use the function elementO f
in order to express the equivalence between a person.personName and one
element of the multi-valuated attribute dblp.author.

Definition 3.3.2 (Concatenation rules) A concatenation rule is defined as fol-
lows: Let us consider Ay < t1,q1 >, As < to,qo >, Az < t3,q3 >€ A. the concate-
nation of Ay to As is equivalent to As if and only if t1, to and t3 are compatible,
and (A1, As) and As denote the same information (they have the same semantic).
To represent such relation, we use the binary operator = and the concatenation
symbol e to denote q1 ® qgo = q3.

We denote by COR the set of the concatenation rules.

Based on the Definition 3.3.2, we give the following example: Let us suppose
that we have two data stores with the address domain. In the first one, there
is only one attribute called fullAddress. Whereas the second one contains four
attributes that are Address, City, Country, and ZIP. According to this, we can
write the following concatenation rule:

cory Address e City e Country e ZIP = full Address.

With the same idea, it is possible to add new types of annotations on the
global schema. For instance, it would be interesting to add views (represented as
virtual entity sets) and rules defining views as operations on actual entity sets.
In this way, our global schema may be closer to an integrated schema. We would
investigate this as a future work.
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3.3.4 Query Algebra

Codd [61] defined the query algebra as a family of algebra with a well-founded
semantics used for modeling the data stored in relational databases, and defining
queries on it. Indeed, it is a theory in which we define a set of operations that
can be executed on relations containing a set of tuples. The query language that
we propose is based on a query algebra defined on EntitySets/Entities and not
on relations/tuples. This query algebra is simple and is composed by the classi-
cal unary operations (e.g. selection and projection) and binary operations (e.g.
Cartesian product, join, union, etc.). For manipulating complex attributes like
those defined in our unifying model, more complex algebra can be used, notably
NINF algebra [62]. In our work, we define two kind of operations coming from the
N1NF algebra that are the nest and unnest operations. In the rest of this section,
we define the projection, the selection, the Cartesian product, the join, the union,
end the intersection. Besides, we present the nest and unnest operations.

Readers must notice that for ease of presentation of the examples in this section,
we propose to denote EntitySets by tables as the relational model. In addition, we
will use the person and dblp EntitySets to illustrate the examples (see Table3.2
and Table 3.3).

personld personName personCountry personAffiliation
1 Leslie Valient | United Kingdom | Harvard University
2 John Hopcroft United States Cornell University
3 Serge Abiteboul France INRIA Saclay

Table 3.2: Sample of three Entities from the person EntitySet

author title year | Conference
Leslie Valient Robust Logics 1999 STOC
Serge Abiteboul | Issues in Monitoring Web Data | 2002 DEXA

Table 3.3: Sample of two Entities from the dblp EntitySet

3.3.4.1 Projection Operation

A projection is a unary and mathematical operation that takes as input an Entity-
Set and returns as output an EntitySet. The resulted EntitySet contains Entities
restricted to a set of At¢tributes. During the projection, whether an Entity does not
contain one or multiple target Attributes, this Entity will be discarded of the out-
put. This problem can be encountered in the case of an EntitySet of type NoSQL
because this kind of data stores is schema-less. Formally, we define the projection
operation as follows:

Definition 3.3.3 (Projection operation) 7uriputes : ES — ES
Let E ={ey,...,en} CES and R = {ry,...,r;} C ES.
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The projection from E is defined as follows: R = Tapriputes(E) = {r|r formed
only by attributes of the projection }

We graphically represent the projection as depicted in Figure 3.6. For in-
stance, if we apply the projection on the person EntitySet taking into account the
attributes personld and personName. We can denote the projection as Result =
Tpersonld, personName(Person) and the EntitySet Result is illustrated in Table 3.4.

personld personName
1 Leslie Valient
Set of
E — attributes R 2 John Hopcroft
3 Serge Abiteboul

Table 3.4: Result of the projection of

Figure 3.6: The graphic notation of the the person EntitySet using the attributes

projection operation personld and personName

3.3.4.2 Selection Operation

A selection is a unary and mathematical operation that takes as input an Entity-
Set and returns as output an EntitySet. The resulted EntitySet contains the set of
Entities satisfying a given prepositional logic expression that we name predicates.
During the selection, if a predicate contains an Attribute that is missing, the ap-
propriate Entity will be ignored. Formally, we define the selection operation as
follows:

Definition 3.3.4 (Selection operation) oy, cgicates : ES — ES
Let E ={ey,...,en} CES and R = {ry,...,m} C E.

The selection from E is defined as follows: R = Opredicates(E) = {r|r € EA
predicates(r)}

We graphically represent the selection as depicted in Figure 3.7. For instance,
if we apply the selection on the person EntitySet taking into account the predicate
personld = 1, we can denote the selection as Result = 0personrd=1(person) and
the EntitySet Result is illustrated in Table 3.5.

E—P> personld personName personCountry personAffiliation

1 Leslie Valient | United Kingdom | Harvard University

Table 3.5: Result of the selection of the person EntitySet

Figure 3.7: The graphic taking into account the predicate personld = 1
notation of the selection

operation

3.3.4.3 Cartesian Product

A Cartesian product is a binary and mathematical operation that takes as input
two EntitySets and returns as output an EntitySet. The resulted EntitySet contains
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the set of all unions combining two Entities belonging to the each input EntitySet.
Formally, we define the Cartesian product function as follows:

Definition 3.3.5 (Cartesian product operation) x : ES «ES — ES
Let E ={e1,...,en} CES, F={f1,...., fm} CES and R = {ry,...,r;} C ES.

The Cartesian product of E and F is defined as follows: R = ExXF = {(ejef1),
(61 ° fg), ceey (61 ° fm); sy (62‘ ° fj): sy (en ° fm)}

We graphically represent the Cartesian product as depicted in Figure 3.8. For
instance, if we apply the Cartesian product of dblp and person EntitySets, we can
denote Result = dblp x person and we obtain the resulted EntitySet represented
in Table 3.6.

R

Figure 3.8: The graphic notation of the Cartesian product operation

=
= .2
. : E
e g 5 =
= E &
: |= z 3 =
5 = = = = =
S . - < g g 2 2
= — < 3 o o = o
=] = ) 2 ) @ [} 3
& = > O 2 a =8 ja”
Leslie Robust 1999 | STOC 1 Leslie United Harvard
Valient Logics Valient Kingdom | University
Leslie Robust 1999 | STOC 2 John United Cornell
Valient Logics Hopcroft States University
Leslie Robust 1999 | STOC 3 Serge France INRIA
Valient Logics Abiteboul Saclay
Serge Issues in 2002 | DEXA | 1 Leslie United Harvard
Abiteboul | Monitoring Valient Kingdom | University
Web Data
Serge Issues in 2002 | DEXA | 2 John United Cornell
Abiteboul | Monitoring Hopcroft States University
Web Data
Serge Issues in 2002 | DEXA | 3 Serge France INRIA
Abiteboul | Monitoring Abiteboul Saclay
Web Data

Table 3.6: Result of the Cartesian product of the dblp and person EntitySets
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3.3.4.4 Join Operation

A join operation can be seen as a conditional Cartesian product where an element of

the join result has to satisfy the join condition. The EntitySet resulted from a join

operation contains the set of all combinations of Entities in the input EntitySets

that are equal on a given common attributes denoted by a logical expression cond.
Formally, we define the join operation as the following function:

Definition 3.3.6 (Join operation) X.,,q: ES «ES — ES

Let E = {ey,...,en} CES, F ={f1,....,fm} CES and R = {ry,...,r;} C ES,
the join operation of E and F is defined as follows: R = E Xeona F' = {r|r €
E x F A cond(r)}

We graphically represent the join operation as depicted in Figure 3.12. For
instance, if we apply the join between dblp and person EntitySets based on the
logical expression person.personName in dblp.author, we can denote Result =
DETSON X person personName in dblp.authordblp and we obtain the resulted EntitySet
represented in Table 3.7. It is worth noting that the logical expression is defined
based on the global schema thanks to the correspondence rules (see Section 3.3.3).

E F

cond

R
Figure 3.9: The graphic notation of the join operation
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Leslie Robust 1999 | STOC 1 Leslie United Harvard

Valient Logics Valient Kingdom | University
Serge Issues in 2002 | DEXA | 3 Serge France INRIA
Abiteboul | Monitoring Abiteboul Saclay
‘Web Data

Table 3.7: Result of the join between the dblp and person EntitySets
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3.3.4.5 Union Operation

A union is a binary and mathematical set operation that takes as input two En-
titySets and returns as output an EntitySet. The resulted EntitySet contains the
set of all distinct Entities belonging to the one of the EntitySets in entry. It is
noteworthy that the involved EntitySets must be union-compatible (i.e. the two
EntitySets must have the same set of attributes). Formally, we define the union
function as follows:

Definition 3.3.7 (Union operation) U : ES «ES — ES
Let E ={ey,...,en} CES, F={f1,.... fm} CES and R = {ry,...,m} C ES.
The union of E and F is defined as follows: R=FEUF ={rlr€ EVr e F}

We graphically represent the union as depicted in Figure 3.10. To give an
example of the union operation between two EntitySets, let us consider that the
person EntitySet is constructed from two EntitySets called P1 and P2 respectively
(see Table 3.8 and Table 3.9). For instance, if we apply the union of P1 and P2
EntitySets, we can denote person = P1U P2 and we obtain the resulted EntitySet
represented in Table 3.2. It is worth noting that the entity having personld equals
to 2 appears in both EntitySets P1 and P2 and appears in the EntitySet person
just one time since the resulted EntitySet represents the set of all distinct Entities
belonging to the one of the EntitySets in entry.

E F

R

Figure 3.10: The graphic notation of the union operation

personld | personName personCountry personAffiliation
1 Leslie Valient | United Kingdom | Harvard University
2 John Hopcroft United States Cornell University

Table 3.8: Sample of two Entities from the P1 EntitySet

3.3.4.6 Intersection Operation

An intersection is a binary and mathematical set operation that takes as input two
EntitySets and returns as output an EntitySet. The resulted EntitySet contains all
Entities belonging to both EntitySets in entry. It is noteworthy that the involved
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personld personName personCountry | personAffiliation
2 John Hopcroft United States | Cornell University
3 Serge Abiteboul France INRIA Saclay

Table 3.9: Sample of two Entities from the P2 EntitySet

EntitySets must be intersection-compatible (i.e. the two EntitySets must have the
same set of attributes). Formally, we define the intersection function as follows:

Definition 3.3.8 (Intersection operation) N:ESxES — ES
Let E = {e1,....,en} CES, F={f1,...., fm} CES and R = {ry,...,m;} C ES.

The intersection of E and F' is defined as follows: R=FENF ={r|r € EAr €
F}

We graphically represent the intersection as depicted in Figure 3.11. To give
an example of the intersection operation between two EntitySets, let us consider
that the person EntitySet is constructed from two EntitySets called P3 and P4
respectively (see Table 3.10 and Table 3.11). For instance, if we apply the inter-
section of P3 and P4 EntitySets, we can denote person = P1 N P2 and we obtain
the resulted EntitySet represented in Table 3.2.

E F

R

Figure 3.11: The graphic notation of the intersection operation

personld personName personCountry personAffiliation
1 Leslie Valient | United Kingdom | Harvard University
2 John Hopcroft United States Cornell University
3 Serge Abiteboul France INRIA Saclay
) Martins Krikis United States Yale University

Table 3.10: Sample of two Entities from the P1 EntitySet

3.3.4.7 Nest and Unnest Operations

The operations we have introduced so far are used to handle simple attributes. In
this section, we give more importance to the complex attributes (e.g. an attribute
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personld personName personCountry personAffiliation
1 Leslie Valient | United Kingdom | Harvard University

John Hopcroft

United States

Cornell University

France
United States

INRIA Saclay
Yale University

2
3 Serge Abiteboul
4 Dana Fngluin

Table 3.11: Sample of two Entities from the P2 EntitySet

composed by multiple attributes, a multivalued attribute, etc.). In particular, we
focus on the nest and unnest operations that allow to create a complex structure
and to flatten it respectively.

The unnest operation takes as input an FEntitySet E having at least two at-
tributes including one complex attribute called a (i.e. a is composed of a set of
attributes) and F' the set of the other attributes. This operation outputs the En-
titySet F with the attribute o flatten into a set of sub-attributes. Below we define
the unnest operation (see Definition 3.3.9).

Definition 3.3.9 (Unnest operation) unnest : ES x A — ES

Let E = {e1,...,en,a} C ES, a = {a1,...,am} C ABagke(i.m}> ax = {Vr1-Vkp} a

complez attribute (i.e. E = {e,...,en,{a1,....,an}t}) and R = {ry,...,r} C ES.
The unnest operation is defined as follows:

R = unnest(E, ax) = {rjjjeq1.3] 3t € {1..p}, 75 = {ijic i mp\{r) } ® {0kt }}

In Table 3.12, we showcase an example of a complex attribute which is the
author attribute. This latter is multivalued and has two values: John Hopcroft
and Jeffrey Ullman. By applying the unnest operation, we denote it as follows:
unnest(dblp, author) and we obtain two new entities and each one contains mono-
valued attribute called author (see Table 3.13).

Conference
WAW

title
Manipulation resistant reputations
using hitting time

author year

2007

John Hopcroft
Jeffrey Ullman

Table 3.12: Sample of complex attributes from the dblp EntitySet

author title year | Conference
John Hopcroft | Manipulation resistant reputations | 2007 WAW
using hitting time
Jeffrey Ullman | Manipulation resistant reputations | 2007 WAW
using hitting time

Table 3.13: Result of the unnest operation

The nest operation takes as input an EntitySet E and a non-empty set of
attributes a and returns as output an EntitySet R containing a complex attribute
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composed from the attributes of a. This operation is defined as follows in Definition
3.3.10.

Definition 3.3.10 (Nest operation) Nest:ESx A — ES
Let E = {e1,...,en} C ES, a = {a1,...,am} C ABaypefi.my> ax € {vr1-vrp} an
attribute to nest and R = {r1,...,r;} C ES.

The nest operation is defined as follows:

R =nest(E,ar) = {rjjen.n| v = {ajicq.mp ey} @ {vr-vrp}}

In Table 3.14, we showcase an example of an entity set containing simple at-
tributes. The two last entities contain the same values of the attributes title, year,
and Conference. However, the value of the author attribute is different. Hence,
we propose to apply the nest operation based on the author attribute. We can
denote the following operation: nest(dblp, author). We showcase the result of this
operation in the Table 3.15.

author title year | Conference
Leslie Valient Robust Logics 1999 STOC
John Hopcroft | Manipulation resistant reputations | 2007 WAW
using hitting time
Jeffrey Ullman | Manipulation resistant reputations | 2007 WAW
using hitting time

Table 3.14: Sample of the dblp EntitySet

author title year | Conference
Leslie Valient Robust Logics 1999 STOC
John Hopcroft | Manipulation resistant reputations | 2007 WAW
Jeffrey Ullman using hitting time

Table 3.15: Result of the nest operation

3.3.4.8 Algebraic Tree

All these operations that we defined in the previous sections will be used by the
virtual data stores in order to evaluate and optimize query execution (see Chapter
4). Indeed, once the virtual data store receives a query, it rewrites it as an algebraic
tree in order to reduce the size of data and the time of the query execution.

An algebraic tree contains two kinds of nodes that are either roots and a leaf
representing FntitySets or internal nodes representing the elementary operations.
These nodes are linked between each others using incoming edges representing the
operands and outcoming edges representing resulted EntitySet of an operation. In
Figure 3.12, we give an example of rewriting a query in an algebraic tree including
all the operations defined above. For instance, let us consider the query allowing
to join dblp and person EntitySets in order to get the affiliation of authors of
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the paper entitled "Robust Logics". To answer this query, we have to do (1) a
selection based on "dblp.title=Robust Logics", (2) a join using the logic expression
person.personName in dblp.author, and (3) a projection to get the affiliation of
authors and their names.

dblp Person

title = Robust Logics

Person.authorName in dblp.author

personAffiliation
personName

Result

Figure 3.12: Exeple of an algebraic tree

In the next section, we will present our second contribution in this manuscript
which is ODBAPI. This latter is a REST based API that allows the execution
of queries across relational and NoSQL data stores in a unique way. This API
has been defined based on a resource model mapping the different concepts in our
unified data model.

3.4 ODBAPI: a unified REST API for relational and
NoSQL data stores

In order to satisfy different storage requirements, cloud applications usually need
to access and interact with different relational and NoSQL data stores having
heterogeneous proprietary APIs. This APIs heterogeneity induces two main prob-
lems. First it ties cloud applications to specific data stores hampering therefore
their migration. Second, it requires developers to be familiar with different APIs.

In this section, we introduce the OpenPaaS Project in which we propose
ODBAPI and two possible use cases (see Section 3.4.1). Then, we present a
generic resource model defining the different concept used in each type of data
store (see Section 3.4.2). This resources model is defined based on the unified
data model presented in the previous Section 3.3. These resources are managed
by ODBAPI a streamlined and a unified REST API enabling to execute CRUD
and complex operations on different NoSQL and relational databases (see Section
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3.4.2). ODBAPI decouples Cloud applications from data stores alleviating there-
fore their migration. Moreover it relieves developers task by removing the burden
of managing different APIs.

3.4.1 Use Cases And Motivation

In this section, we propose to present two use cases in order to motivate the utility
of our API. Indeed, we introduce two possible scenarios of the use of our API:
application migration from one data store to another (see Section 3.4.1.1), and
multiple data store use in one cloud environment (see Section 3.4.1.2).

3.4.1.1 First scenario: Application migration from one data store to
another

Cloud environment usually provides one data store for the deployed applications.
However, in some situations, this data store model does not support the whole
applications requirements. Subsequently, an application needs to migrate from
one data store to another in order to find a more convenient data store to its
requirements (in the same Cloud provider or another one). It is worth noting that
an application may migrate to another cloud environment to find the most suitable
data store according to some new requirements.

In Figure 3.13, we exemplify a migration scenario where the Application A
needs to migrate from Cloud provider 1 where it interacts with the document data
store CouchDB to Cloud provider 2 in order to meet new data requirements. In the
new Cloud environment, the application connects to another document data store
Mongo DB. In this case, developers need (1) to discover another environment that
can support new storage requirements, (2)to re-adapt the code so that application
A can interact with MongoDB API, (3)to migrate data from the old data store to
the new one, and (4) to deploy their application on the new environment.

Application A

CouchDB
data store

Application A

/Vligration.\

Cloud
provider 2

Cloud
provider 1

Mongo DB
data store

Figure 3.13: Application migration from one cloud environment to another scenario

At first glance, application migration seems simple and automatic; but behind
this scenario there are onerous responsibilities to be ensured by applications’ de-
velopers. In the rest of this section, we will only focus on the first task of the
developer which is the re-adaption of the application source code in order to in-
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teract with the new data store. To deal with this, developers must first of all
be familiar with the old (resp. new) data model and API of the old (resp. new)
data store. Based on that, he/she will adapt the source code of the application
by looking on each instruction and modifying it using the new API. This work is
costly in terms of time and manpower. Indeed, developers have to discover the
new proprietary APT (resp. APIs) and to be familiar with it (resp. them). Then,
he/she must update the source code.

3.4.1.2 Second scenario: Polyglot persistence

In a Cloud environment, an application can use multiple data stores that corre-
sponds to what is popularly referred to as the polyglot persistence. In Figure
3.14, we show an example of this situation. Application A interacts with three
heterogeneous data stores: a relational data store, a document data store that is
CouchDB, and a key value data store which is Riak. The main advantage is to use
specialized data stores, well adapted to special requirements.

Application A

Riak
data store

Relational
data store

CouchDB
data store

Figure 3.14: Using multiple data stores in Cloud environment

Nevertheless, this scenario presents some limits. Linking an application with
multiple data stores is very complex due to the different APIs, data models, query
languages and consistency models. If the application needs to query data coming
from different data sources (e.g joining data, aggregating data, etc.), it can not
do it declaratively. Finally, the different data stores may use different transaction
and consistency models (for example classical ACID and eventual consistency).
It is not easy for programmers to understand these models and to properly code
their application to ensure desired properties. In either scenarios, we see how the
developer’s task is cumbersome in order to develop and manage the source code of
an application since this application interacts with heterogeneous data stores with
different APIs. Hence, the developer has to be familiar with a plethora of APIs.

To deal with this problem, we propose in this section a streamlined and uni-
fied REST API enabling to execute operations on different NoSQL and relational
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databases. This API is called ODBAPI and its goal is twofold: First, it simplifies
the developer’s task during the application migration from one data store to an-
other. By using a unique API, the adaptation of the source code of an application
becomes easier. Second, it alleviates the burden of interacting with various data
stores at the same time by using just ODBAPI.

3.4.2 ODBAPI: OpenPaaS DataBase API

Based on our unified data model, we define a generic resource model defining
the different concepts used in each category of data store. These resources are
managed by ODBAPI. This API enables the execution of CRUD operations on
different types of data stores. Doing so, we give an overview of ODBAPI (see
Section 3.4.2.1). Then, we introduce the different operations ensured by ODBAPI
(see Section 3.4.2.2).

3.4.2.1 Panorama Of ODBAPI

In this section, we turn the focus on ODBAPI. This latter is designed to provide
an abstraction layer and seamless interaction with data stores deployed in Cloud
environments. Developers can execute CRUD and complex queries in a uniform
way regardless of the type of the data store whether it is relational or NoSQL. We
want to support three types of queries within ODBAPI:

e Simple CRUD queries on a single data store: ODBAPI allows to
express these queries in a uniform way from the target data store.

e Complex queries on a single data store: Some data stores may support
a highly expressive query language. We want to let developers used this
language even if it is not compatible with our query algebra (see Section
3.3). In this case, ODBAPI encapsulates queries in the body of the query
using JSON format.

e Complex queries on multiple data stores: Using virtual data stores,
several data stores can be abstracted in a uniform way. In this case, complex
queries can be expressed using our query algebra (we use SQL-like statement
for that).

An overview of ODBAPI is given in Figure 3.15. The figure is divided in four
parts that we introduce in the following starting from the right to the left side:

e Data stores: We have first of all the deployed data stores that a developer
may interact with during his/her application coding. In the figure, we show-
case that a developer may use a relational data store, a document data store
that is CouchDB and a key/value data store that is Riak.

e Proprietary APIs and drivers: Second, we find the proprietary API and
driver of each data store implemented by ODBAPI. For instance, we use in
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our API implementation the JDBC API and MySQL driver to interact with
a relational DBMS.

e ODBAPI interface: The third part of Figure 3.15 represents the ODBAPI
interface and the different implementations of each data stores. In fact, it rep-
resents the shared part between all the integrated data stores and it provides
a unique view to the application side. It contains specific implementations
of each data store. The current version of ODBAPI implementation includes
four data stores: (1) relational DBMS, (2) CouchDB, (3) MongoDB and (4)
Riak. It is note worthy that if a user wants to integrate a new data store and
define interactions with it in ODBAPI, he/she has simply to add the specific
implementation of that data store by including its driver and its APIL.

e ODBAPI operations: Finally, we show the different operations that ODBAPI
offers to the user. These operations are introduced in the next section.
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Figure 3.15: An overview of ODBAPI

3.4.2.2 Operations of ODBAPI

In this section, we introduce the list of operations provided by ODBAPI. In Figure
3.16, we propose a box based representation of the different operations ensured by
ODBAPI. Each box contains the name of a resource (e.g. /odbapi/entityset /es-
Name, /odbapi/entityset/esName/entity/entityID, etc) and the different opera-
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tions

that are intended to this resource. Fach operation is ensured by a REST

method (e.g. GET, PUT, etc).

"interface"
Resource

GET()
PUT()
POST()
DELETE()

i

pi pi/entitySet/{esName} /odbapi/entitySet/{esName}/ /odbapi/entitySet/{esName}/ /odbapi/database/{dbName}/
metadata entity/{entityID} query
GET - getEnvMetaData() GET )
PUT - createEntitySet() GET- getESMetaData() GET- getEntityByld() POST - executeQuery()
DELETE -deleteEntitySET() PUT-
POST - createEntity()
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metadata entity/
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GET - getDBMetaData() GET - getAllEniity()

Figure 3.16: ODBAPI operations

In our specification, we consider two families of operations which inputs and
outputs are JSON-based data. In the one hand, we have the family of operations
that is dedicated to get meta-information about the resources using the GET
REST method. In the other hand, we have the family of operations that allows to
execute queries on resources of type Database, EntitySet or Entity. We start first
by introducing four operations to manage meta-data about ODBAPI resources:

Get information about the user’s access right: This operation is pro-
vided by getAccessRight and allows a user to discover his/her access rights
concerning the deployed data stores in a Cloud environment. To do so, the
user must append the keyword accessright to his/her request.

Get information about a resource of type Environment: This opera-
tion is ensured by getEnvMetaData and lists the information about a resource
of type Enwvironment. To execute this kind of operation, a user must pro-
vide the keyword metadata in his/her request. This keyword should be also
present in the following two operations.

Get information about a resource of type Database: A user can re-
trieve the information about a resource of type Database by executing the
operation getDBMetaData and providing the name dbName of the target
Database. This operation outputs information about a Database (e.g. dupli-
cation, replication, etc) and the EntitySets that it contains.

Get information about a resource of type EntitySet: This operation is
provided by getESMetaData and enables to discover the information about a
resource of type EntitySetl by giving its name esName. For instance, it helps
the user to know the number of Entities that an EntitySet contains.
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The second operations family represents the CRUD and complex queries ex-
ecuted on resources of type Database, EntitySet and Entity. In this context,
ODBAPI provides the following operations:

e Get an EntitySet by its esName: By executing the operation getFnti-
tySetByName, a user can retrieve an EntitySet by giving its name esName.
It is ensured by the GET method.

e Create an EntitySet: The operation createEntitySet allows a user to create
an KEntitySet by giving its name esName. This operation is provided by the
REST method PUT.

e Delete an EntitySet: An EntitySet can be deleted by using the operation
deleteEntitySet and giving as input its name esName. It is ensured by the
DELETE REST method.

e Get list of all EntitySet: A user can retrieve the list of all EntitySet
by executing the operation getAllEntitySet and using the keyword allES. Tt
returns the names of the EntitySets and several information (e.g. number of
entities in each entity set, the type of database containing it, etc.).

e Get an Entity by its entitylD: By executing the operation getEntityByld,
a user can retrieve an FEntity by giving its identifier entitylD. 1t is ensured
by the GET method.

e Update an Entity: An Entity can be updated by using the operation
updateEntity and its identifier entitylD. It is ensured by the PUT method.

e Create an Entity: The operation createEntitySet allows a user to create
an Entity by giving its identifier entity/D. This operation is provided by the
REST method POST.

e Delete an Entity: An Entity can be deleted by using the operation dele-
teEntity and giving as input its identifier entitylD. It is ensured by the
DELETE method.

e Get list of all Entities: A user can retrieve the list of all Entities of an
EntitySet by executing the operation getAllEntity and using the keyword
allE. Tt outputs the identifiers of the Entities and their contents.

e Query one or multiple EntitySets: A user can run a query across one
or multiple heterogeneous EntitySets by executing the operation POST and
using the keyword query. It outputs a new EntitySet. When executing this
kind of query, one has to write his/her query in a JSON format using a
SQL-like syntax. Indeed, the input JSON-based file contains three elements
that are select, from and where and these elements are JSON Arrays of type
String. A user can execute filtering queries across one EntitySet and complex
queries across one or multiple EntitySets. A complex query can be a join,
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union, etc. It is noteworthy that we consider this kind of queries as specific
retrieve queries.

e Query a specific Database: A user can run a native query on a specific
database in order to benefit from its expressive query language (e.g. a graph
query). In this case, the query is just serialized in JSON and executed via
the operation POST and using the keyword query. One can notice that in
this case ODBAPI does not standardize the expression of the query but just
the way it is issued.

3.4.2.3 Examples Of Queries

In this section, we give some examples of queries expressed using ODBAPI syntax.
Indeed, we give first an example of unifying query execution. Then we present an
example of a filtering query and an example of a join query.

Unifying query execution We present in this section three examples of the
same operation targeting the three data stores of type CouchDB, MySQL and
Riak named respectively dblp, Person, and ConferenceRanking and defined in the
previous section (see Figure 3.3). This operation consists in retrieving an Entity
by its entityID. Hence, we show how ODBAPIT unifies the access to heterogeneous
data stores to execute CRUD operations.

We give the first example which is a HT'TP request and response of retrieving
an Entity of type document illustrated below. User should specify the type of the
HTTP method that is GET followed by the target resource /odbapi/entityset/dblp
/entity/111. Added to that, he/she should precise the type of the target data
store database/couchDB and the content type application/json that is an ac-
ceptable for the response. In our case, it is the JSON format. As a response to
this request, we have the status code 200 0K accompanied by the asked resource
written in the JSON format. Reader should note that each output is written in
JSON and starts with the element data.

> GET /odbapi/entityset/dblp/entity/111
> Database-Type: database/couchDB
> Accept: application/json

< HTTP/1.1 200 OK
< Content-Type: application/json

<A

< "data'":

< [

< {

< "entityID": "111",

< "author": ["Leslie Valiant"],
< "year": "1999",

< "title": "Robust Logics",
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"conference'": "STOC"

AN AN AN A

We illustrate bellow the example that is a HTTP request and response of
retrieving an Entity of type value. In this request, the user should specify the key
/odbapi/entityset/ConferenceRanking/entity/1 of the target value and the
type of the target data store database/Riak that is the key value DBMS Riak.
This request should return the status code 200 0K and the asked resource written
in the JSON format.

> GET /odbapi/entityset/ConferenceRanking/entity/STOC
> Database-Type: database/Riak
> Accept: application/json

< HTTP/1.1 200 OK
< Content-Type: application/json

"data":

[

"conference": "STOC",
IIRankll : IIA*Il

The last example is presented below and consists in a HT'TP request and re-
sponse of retrieving an Fntity of type relational tuple. In fact, user should precise
the HT'TP method GET followed by the resource /odbapi/entityset/person/entity/1
that he/she wants to retrieve. In addition, he/she should specify the type of the
target data store Database-Type: database/MySQL that is the relational DBMS
MySQL and the content type application/json. In this example, the response
of this request is the status code 200 0K and the requested resource written in the
JSON format.

\4

GET /odbapi/entityset/person/entity/100
Database-Type: database/MySQL
Accept: application/json

A4

A

HTTP/1.1 200 OK
Content-Type: application/json

A
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< {

< 'data":

< L

< {

< "personId": "1",

< "personName": "Leslie Valiant",

< "personCountry":"United Kingdom",

< "personAffiliation": "Havard University"
< 3

< ]

<%

Example of filtering query In this section we give the example of a filter-
ing query. In this kind of query we invoke the selection and projection oper-
ations in order to filter Attributes in an EntitySet. In the example below user
precises the HT'TP method POST followed by the URL /odbapi/query. In ad-
dition, he/she should specify the type of the target data store Database-Type:
database/VirtualDataStore that is the VDS and the content type application/
json. In the body of his/her query, the user specifies (1) in the element select the
attributes personName and personCountry that he/she wants to project, (2) in
the element from the name of the target EntitySet person and (3) in the element
where the predicate of the selection that is personld = 1. The response of this
request is the status code 200 0K and the answer is written in the JSON format.

POST /odbapi/query
Database-Type: database/VirtualDataStore
Accept: application/json
{
"select": ["personName", "personCountry"],
"from": ["person"],
"where": ["personId = 1"]

HTTP/1.1 200 OK
Content-Type: application/json
{

"data":

"personName": "Leslie Valiant",
"personCountry":"United Kingdom"

AN AN AN AN AN AN AN A ANANA
pr
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Example of a join query In this section we give the example of a join query
between person and dblp EntitySets. The user precises the HT'TP method POST,
the URL /odbapi/query to inform the VDS about the type of query, and the
type of the target data store Database-Type: database/VirtualDataStore that
is the VDS. In the body of his/her query, the user expresses his/her query. Indeed,
he/she specifies in the element select the attributes personName, personCountry,
and title that he/she wants to project as a result to his/her query. Then, he/she
expresses in the element from the name of the person and dblp EntitySets to join.
Finally, he/she defines in the element where the predicate of the selection that
is personld < & and the logical expression of join personName in author. The
response of this request is the status code 200 0K and the answer is written in the
JSON format below. Answering this kind of queries will be tackled in the next
chapter.

> POST /odbapi/query
> Database-Type: database/VirtualDataStore
> Accept: application/json

> {

> "select": ["personName", "personCountry", title],
> "from": ["person", "dblp"],

>  '"where": ["personId <3", "personName in author"]
>}

< HTTP/1.1 200 OK

< Content-Type: application/json

<A

< "data":

< L

< {

< "personName": "Leslie Valiant",

< "personCountry":"United Kingdom",
< "title": "Robust logics"

< 3,

< {

< "personName": "John Hopcroft",

< "personCountry":"United States"

< "title": "Manipulation-Resistant
< Reputations Using Hitting Time"
< }

< ]

<}
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3.5 Conclusion

In this chapter, we presented our first two contributions. The first one represents
the unified data model that allows to provide a unique view on relational and
NoSQL data stores. Then we presented a global schema that is the unified data
model enriched with a set of the refinement rules to allow complex queries expres-
sion and execution. Finally, we presented our query algebra defined based on the
formal definition of the unified data model.

The second one is the unique REST API that enables the management of the
described resources in a uniform manner based on our unified data model. This
API is called ODBAPI and allows the expression and execution of CRUD and
complex queries on relational and NoSQL data stores. It is designed to provide
utmost control for the developer against heterogeneous data stores. ODBAPI
eases the interaction with data stores at the same time by replacing an abundance
of APIs. Moreover, it decouples cloud applications from data stores alleviating
therefore their migration.

The proposed API is not meant as the silver bullet to solve all heterogeneity
problems between relational and NoSQL data stores. However, we proved that we
are aware of this problem and we are trying to alleviate this burden by unifying
the execution of CRUD operations. We presented also how we propose to express
complex queries such as join. But, we do not deny that it still remains the problem
of executing this kind of queries that we try to tackle in the next chapter. Indeed,
we will present the VDS component that we propose to support the optimization
and evaluation of complex queries across relational and NoSQL data stores.
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4.1 Introduction

Although ODBAPI solves the problem of heterogeneity between relational and
NoSQL data stores by proposing a unique layer to execute different operations,
it is unable to support complex queries execution (i.e. multi-data store queries).
As a remedy to this, we propose in this chapter the virtual data store (VDS)
component which supports the evaluation and optimization of complex queries
execution across NoSQL and relational data stores. The VDS implements a dy-
namic programming based algorithm to generate optimal execution plan using a
cost model.

In the upcoming sections, we introduce first a motivating example of a join
query across three heterogeneous data store (see Section 4.2). Then, we present the
principles of our solution to evaluate queries execution (see Section 4.3). Finally,
we describe our solution to optimize complex queries execution using a cost model
and the algorithm to generate an optimal execution plan (see Section 4.4).

67
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4.2 TUse Cases And Motivation

In this section, we motivate our solution to evaluate and optimize queries execution
across relational and NoSQL data stores. Doing so, we propose to use the second
use case presented in the previous chapter in Section 3.4.1.2 which is the case of
the polyglot persistence. Indeed, we gave the example of the application A that
interacts with a document data store called dblpDB, a relational data store called
personDB, and a key/value data store called RankDB (see Figure 3.3 and Figure
3.5). Suppose now that application A needs at some point to retrieve the affiliation
and the name of authors having at least a paper published in a conference ranked
"A". This query may be expressed using ODBAPI syntax as follows:

> POST /odbapi/joinquery

> Database-Type: database/VirtualDataStore

> Accept: application/json

> {

"select": [
"person.personName",
"person.personAffiliation"

1,

"from": [
"person",
"dblp",
"ConferenceRanking"

1,

"where": [
"person.personName in dblp.author",
"dblp.conference = ConferenceRanking.conference",
"ConferenceRanking.Rank=A"

YV VV V V V V V V V V V V V.YV

Answering such query is, nowadays, challenging since it involves a relational
and two NoSQL data stores. In fact, since dblpDB, ConferenceRanking, and per-
sonDB use different data models, the developers have to identify the sub-queries
by hand, interact with each data store separately and implement the join opera-
tion by themselves. This remains (1) purely programmatic, (2) not optimal and
naif, and (3) time consuming. For this sake, we propose in this chapter a solution
allowing the execution of complex queries expressed using ODBAPI syntax. The
main component of this solution is the virtual data store (VDS). The key ingre-
dients of this latter are the global schema (i.e. the unified data model and the
correspondence rules), a catalog and a cost model. All these components are well
introduced in the upcoming sections and represent the basis of our algorithm to
generate the optimal execution plan of a complex query.



Query Fvaluation 69

4.3 Query Evaluation

In this section, we introduce our approach to execute queries. Indeed, we present
in Section 4.3.1 the principles of this solution, Afterward, we define in Section
4.3.2 the structure of the execution plan and the different operations constituting
it. We end this section by giving an example of queries evaluation in Section 4.3.3.

4.3.1 Query Evaluation Principles

Compared to classical mediation architectures, our solution differs in that (1) we
do not have a real global schema but just a collection of entity sets (i.e. the uni-
fied data model) and some refinement rules, (2) some data stores have poor query
capabilities (no join support for example) and (3) some entity sets may be very
large (several Gigabytes or more). Against this background, we propose a media-
tion based approach handling the execution of queries sent by multiple data stores
based applications. We showcase in Figure 4.1 an overview of the architecture of
this solution. Each input query is expressed using ODBAPI syntax and is pro-
cessed by a single component which is the VDS. This latter acts as a mediator in
a classical mediation architecture. It involves a catalog to evaluate and optimize
queries execution (see Section 4.4.1), a global schema to re-write the queries (see
Section 3.3.3), and an execution manifest to interact with the integrated sources.
Each integrated data store is encapsulated by an ODBAPI service (i.e. it plays
the role of the wrapper) capable to execute ODBAPI calls against a specific data
store and to transform results into JSON structures. Considering our unified data
model and the associated query algebra, we need a NoSQL data store supporting
complex queries to implement the VDS. In our prototype, we choose CouchDB
which is a JSON-based document data store with join capabilities.
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Figure 4.1: Mediation architecture
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In our work, we consider that we can have three kinds of operations. Indeed,
simple (i.e. CRUD) operations are directly executed by the target wrapper with-
out any global optimization at the VDS level. In this case, the VDS just routes
the query to the target wrapper which processes the query and transforms its re-
sult in JSON if needed before sending it back to the client application. Native
complex queries are also directly executed by the target wrapper without the need
of rewriting and optimization. Finally, complex queries are supported by the VDS
that acts as a mediator and implements query optimization techniques. It analyzes
the input query, splits it in sub-queries, sends them to the involved data stores
through wrappers and combines/transforms the results before sending it back to
the application.

The query optimization and evaluation process is composed of five steps (see
the list of the steps in Figure 4.1). First, the query is parsed and represented by an
algebraic tree composed of data stores and algebraic operators (see Section 3.3.4).
Second, this tree is optimized using basic algebraic optimization by pushing unary
operators towards data stores. Third, data stores in the tree are annotated by
metadata extracted from the catalog (see Section 4.4.1). These annotations are
used to transform the tree in a combination of several ODBAPI expressions on
single data stores. An optimal combination is constructed using a cost function
and dynamic programming (see Section 4.3.2). This latter is composed of several
ODBAPI sub-queries expressed on a single data store and others sub-queries to
recombine the partial results into the final one. Fourth, the optimization is done
using a cost function [63] defined by a linear combination of the response time of
the CPU, the time of the input/output, and the time of the communication or the
data shipping (Cost model = axtcpy+B+*trjo+vy*tconm). A calibration is needed
to adjust the cost model to an actual infrastructure (see Section 4.4.2). Finally, the
query is evaluated. To present in details our query evaluation and optimization
process, we will focus especially on join queries but the same principles can be
applied to other complex queries.

4.3.2 Query Execution Plan

The main step in evaluating queries in a mediation based solution is to generate a
query execution plan. This latter represents a set of ordered operations that the
VDS has to follow to interact with the integrated data stores in order to execute
the sub-queries and return to the application the result set. An execution plan
may be represented either graphically or textually. In our work, we propose to
use the graphical representation through a tree where nodes denote the operations
and edges represent the dependencies between two operations (see the example in
Figure 6.8). It is noteworthy that leaves represent the first operations with which
we should start and the root represents the last operation to execute. Hence, we can
explain the notion of dependencies between operations in a query execution plan by
the fact that an operation can be executed if and only if their two child operations
finish their execution. An operation may be one of the following operations:

e Push-down Operation: This operation is a sub-query that can be eval-
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uated on a single data store. In most cases, it is a simple combination of
restriction and projection but it can involve more complex operations like
joins if the data store is capable to compute them. It enables to reduce the
volume of entity sets before executing other operations on another data store.
In the query execution plan, this kind of operation represents the leaves.

e Virtual Data Store Join (VDS Join) Operation: This operation cor-
responds to a join operation executed in the VDS. It is a binary operation
since it enables to join two entity sets.

e External Join Operation: This operation corresponds to a join operation
delegated to one of the integrated data stores. It happens when a data store
supporting join queries execution contains an entity set with a very large
size. In this case, we prefer to migrate the other entity set to this data store
and execute the join their because shipping big size of data is costly. It is
worth noting that knowing the ability of a data store to execute a join query,
the size of an entity set, etc. is provided through the annotations that we
define below (see Section 4.4.1).

e Projection and Selection Operations: These operations are unary and
denote a projection and selection respectively. They may be executed either
in the VDS or in an integrated data store. These operations are very useful
since they allow to reduce the size of data before transferring it from a site
to another. In addition, they are used to construct the final result set.

e Union and Intersection Operations: This kind of operations represent
the union and the intersection between two entity sets. They may be exe-
cuted in either the VDS or an integrated data store.

e Extract-transform-Ship-load (ETSL) Operation: Unlike the other op-
erations, this operation is particular since its role is to prepare an entity set
to be the input of one of the operations introduced above. It represents the
fact of (1) extracting an entity set from its location, (2) transforming the
format of an entity set to adapt it to the format of the data store where the
operation will be executed, (3) shipping an entity set from its location to the
data store where the operation will be executed, and (4) loading an entity
set in the data store where the operation will be executed.

For the moment, we do not define operations for computing nest and unnest
operations. The addition of these operations would complexify the optimization
process. It is considered as a future work.

In order to optimally execute a query, we have to define an optimal query
execution plan which is not resource hungry and costly in time. For this purpose,
we find several mechanisms for electing and constructing the optimal one. In
section 4.4.3, we present our algorithm to generate the optimal query execution
plan. In addition, we propose to enrich this latter by annotating each node (i.e.
operation) using either a set of information from the VDS catalog (see Section
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4.4.1) or some computed parameters based on the catalog also. These annotations
are very useful since they enable to obtain more information about an operation
and its output entity set. For instance, we can save the cost of an operation, the
cost of generating the resulted EntitySet, etc. The purpose of these annotations is
twofold. First, they maintain required information to execute a query with respect
to the query execution plan. Second, they contain information essential for the
proper functioning of our algorithm to generate the optimal query execution plan
and especially to generate a subsequent operation.

4.3.3 Queries Parsing and Algebraic Optimization

In this section, we use the example of the join query between three entity sets
presented in Section 4.2. Once the VDS receives the query, it constructs the
corresponding algebraic tree (see Fig. 4.2a). This tree is naively constructed from
the query without any optimization. Then, it is optimized using algebraic rewriting
rules to privilege the execution of unary operations first in the integrated data
stores in order to reduce the size of the transferred entity sets (see Fig. 4.2b).

dblp

ConferenceRanking Person

ConferenceRanking.Conference
=dblp.Conference

ConferenceRanking dblp Person

personAffiliation
personName

=dblp.Conference

Person.authorName in dblp.author

personAffiliation personAffiliation
personName personName

Result Result

(a) Algebraic tree (b) Optimized algebraic tree

Figure 4.2: Examples of algebraic trees

4.3.4 Queries Annotation

In the following, we use two scenarios involving different data stores and annota-
tions for our join query above:

e Scenario 1 - A join between two entity sets in the same data store:
Let us consider just for this scenario that the two entity sets dblp and con-
ference ranking are in the same data store of type MySQ@L and the Person
entity set is a document data store of type MongoDB.

e Scenario 2 - A very large size of the relational entity set: Let us
consider now that the entity sets person, dblp, and conference ranking belong
to a relational data store MySQL, a document data store MongoDB and a
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Figure 4.3: Annotated algebraic tree according the Scenario 1

key value data store Riak respectively. The size of the relational entity set
is very large.
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Figure 4.4: Annotated algebraic tree according the Scenario 2

After some preliminary optimization made on the algebraic query, the VDS
annotates the algebraic tree with metadata about the target DBMS and data got
from the catalog (see Fig. 4.3 for the scenario 1 and Fig. 4.4 for scenario 2). The
annotations are put on the leaves of the tree (the entity sets that are on the top of
the algebraic trees) and are propagated to the other nodes using estimation models
for statistics (for example to estimate the output size of a join). For example, for
the algebraic tree of scenario 1 in Fig. 4.3, we depict that the join between the
entity sets ConferenceRanking and dblp can be done on a MySQL RDBMS located
on hostl (i.e. both operands are on the same data store and the same node) and
has an estimated output size of 4 Mbytes. Whereas the algebraic tree of scenario
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2 in Fig. 4.4, we can see that the same join can not be done on the same data
store because these inputs came from two different data stores (a Riak DBMS and
a MongoDB DBMS).

This annotated tree will be transformed into an optimized query execution
plan in two steps. The first step will extract the sub-queries that can be evaluated
on a single data store. The principle here is to maximize the work done by the
integrated data stores. This extraction is done based on the annotations defining
the location of the entity sets. At the end of this step, two situations are possible
that we present below:

e There is a single extracted sub-query. It corresponds to the case of a
query involving just one entity set, or a query involving two or multiple entity
sets located in the same data store (if this data store supports the execution of
complex operations i.e. join, union, etc.). The VDS automatically routes the
query to the target wrapper and it will be executed by the target store itself.
Then, the wrapper returns the final result to the VDS in order to answer
the application. If the data store does not support complex operations, the
complex operations will be executed by the VDS before sending back the
results to the application.

e There are several extracted sub-queries. It corresponds to the case of a
query involving two or multiple entity sets in two or multiple data stores. In
this situation, we have to determine where and how to recombine the partial
results. Both scenario 1 and 2 correspond to this situation.

The second step consists in constructing the optimal query execution plan able
to recombine the partial results and to determine on which node evaluating each
recombining operation (the VDS or the specific node storing a very large entity
set). In addition to the algebraic operations, a query execution plan can use an
other ETSL operation that enables the transfer of result set and the conversion of
the result set. In fact, when we have binary operations with inputs coming from
different data stores, we have to move and possibly convert at least one input set.

In Fig. 6.8, we showcase the optimal execution plan for the scenario 2. The
size of the relational data store is very large (8 Gbytes). In this case, the VDS
is not the best candidate to recombine partial results. It is better to maximize
the work done by the relational data store, including recombining partial results
using join operations, even if it will pay the cost of conversion. In fact, this cost
is negligible compared to the cost of join query execution and large data transfer.
Once the optimal query execution plan is constructed, it can be evaluated. For the
moment we just consider synchronous evaluation of this plan, that is an operator
can not be evaluated until all its inputs are present (we do not support on the fly
evaluation). The evaluation consists in the query execution plan traversal.

4.4 Query Optimisation

In order to optimize queries execution, we fix the following list of principles:
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Database: VDS
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Figure 4.5: Execution plan for the Scenario 2

e Preserving the autonomy of the integrated data stores,
e Maximizing the work done by the integrated data stores,

e Optimizing a query execution plan following two possible strategies: (i) using
the VDS only to evaluate sub-queries across multiple data stores, and (ii)
using the VDS and powerful data stores (i.e. a data store is considered
powerful if it is able to evaluate complex queries) in order to avoid shipping
data having big size,

e Defining a cost function to capture the two possible strategies,
e Using dynamic programming approach based optimization,

e Applying no parallelism at an integrated data store (i.e. we suppose that a
data store executes one query at the same time).

e Applying pipeline execution (i.e. an operation can start its execution when
its operands are completely computed)

In the upcoming sections, we present our approach to optimize join queries
execution across relational and NoSQL data stores. The key ingredients of this
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solution are the catalog that we define in Section 4.4.1 and the cost model that
we introduce in Section 4.4.2. Using these two components, we present in Section
4.4.3 our algorithm to generate the optimal execution plan.

4.4.1 Catalog

In this section, we introduce the parameters of our catalog. They include the type
(i.e. relational, document, etc.) and the name of a data store, its location, its
capabilities (support of join queries for example), the size of the entity sets, etc.
Some of these information are either exported by the integrated data stores using
their proprietary APIs or estimated using some probing queries. In addition, we
can find some computed parameters that are calculated based on the collected
information. In Table 4.1, we introduce the main parameters that we use to define
our cost model. The showcased parameters represents in general the cost of an
operation. It is noteworthy that a parameter depends at least on one of the
following three costs that are the cost of the CPU, the cost of the input/output,
and the cost of the communication. If it depends on two or more costs, it is
represented by a vector; otherwise it is represented by a scalar.

Catalog’s Specification

parameters

initProjection This parameter defines the initialization cost of the

(resp. sources to execute a projection (resp. a selection).

initSelection) It is a scalar.

initJoin This parameter defines the initialization cost of the
sources to execute a join query. It is a scalar.

initUnion This parameter defines the initialization cost of the

(resp. sources to execute a union (resp. an intersection).

initIntersection) It is a scalar.

initKTSL This parameter defines the initialization cost of the
sources to execute an operation of type ETSL. It is a
scalar.

canJoin This parameter enables to denote if a data store

supports the join queries execution or not. It is a
boolean parameter. It is exclusively defined for the
integrated sources since the VDSs are defined to take
in charge join queries execution.

load This parameter defines the cost of data loading. It
differs from one data store to another since it
depends on the data store’s mechanism to load data.
This parameter is a scalar since it only involves the
cost of the Input/Output to the disc.

scan This parameter denotes the cost to scan data in an
entity set. This parameter depends on the type of the
data store that contains the involved entity set in
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7

Catalog’s
parameters

Specification

an operation. It is a scalar since it only involves
the cost of the Input/Output to the disc.

ship

This parameter represents the cost of data shipping.
It concerns transferring data from a data store to
the VDS, from the VDS to a data store, and from a
data store to another. It is considered as a scalar
since it only involves the communication cost.

convert

This parameter represents the cost of converting data.
It consists in transforming data from JSON format to
the proprietary format of data stores and vice versa.
It is considered as a scalar since it only involves

the CPU cost.

projection
(resp. selection)

This parameter represents the cost of a projection
(resp. selection). The projection (resp. selection)
may inside/outside the VDS. It is a vector including
the costs of the Input/Output and the CPU.

union
(resp. intersection)

This parameter represents the cost of a union (resp.
intersection). The union (resp. intersection) may
inside/outside the VDS. It is a vector including the
costs of the Input/Output and the CPU.

join This parameter represents the cost. The join operation
may be an external join or a VDS join. It is a vector
including a cost of the Input/Output and the CPU.

cardinality This parameter denotes the number of entities in an
entity set. It is a scalar.

selectivity This parameter defines the selectivity of attributes

and it depends on an operation. It is bound between
0 and 1. When the operation is a selection, it
denotes an attribute. However when it consists in a
join operation, it involves two attributes that are
defined by the correspondence rules. It is a scalar.

averageLengthAttribute

This parameter represents the average length of an
attribute in all entities in an entity set. It is a
scalar.

averageLengthEntity This parameter represents the average length of an
entity in an entity set. It is computed by summing
the average length of each attribute constituting this
entity. It is a scalar.

a, B, These parameters represent the coefficients that we

consider in our cost model to evaluate the cost of the
CPU, the cost the input/output, and the communica-
tion
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Catalog’s Specification
parameters

cost. These of parameters are separately defined for
each data store.

Table 4.1: Specification of our catalog’s parameters

4.4.2 Cost Model

Based on our catalog’s parameters, we define a set of cost formulas constituting
our cost model. These formulas are tailored for each operation defined in Section
4.3.2. Then, they are implemented by the algorithm of optimal execution plan
generation that we present in the next section.

The cost of an execution plan is the sum of the cost of each operation (i.e.
node in the execution plan) composing an execution plan. It is worth noting that
a cost does not directly represent the time. Of course, a larger cost implies a
larger time. It is used to compare two query execution plans but not to directly
estimate a response time. To evaluate a cost formulas, we compute the matrix
multiplication between a row vector containing the coefficients «, 5, and =, a
column vector containing the values of the parameters defined in the catalog, and a
constant variable called const which is a scalar and can be a cardinality, selectivity,
etc. In addition, if a parameter does not depend on a given metric (CPU cost,
Input/Output cost, or Communication cost), this latter will take a null value in
the column vector. The matrix multiplication is computed as follows:

lcpu
const (a I5; ’y) trjo | = const* (a*tcpy + B *trjo +7*tcom)
tcom

Let us start by the cost formulas of the projection and selection operations that
we denote by costProjection and costRestriction respectively (see Formula 4.1 and
Formula 4.2). The projection (resp. selection) operation is the linear combination
of the parameters initProjection (resp. initSelection), scan, and projection (resp.
selection). The costProjection (resp. costRestriction) takes as input the param-
eter S to denote either an integrated data store or a VDS where the join will be
executed, the variable L to denote the total size of the entity sets in entry, and an
estimation function that we call estimate. This function enables to compute how
many time the projection (resp. selection) will be executed elementary. It invokes
the selectivity and the cardinality parameters.

S: a node, L: length of an entity set, att: projection attributes

costProjection(S, L, estimate(att, L)) = init Projection(S) + scan(S) * L+

projection(S) x estimate(att, L)
(4.1)
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S: a node, L: length of an entity set, cond: restriction condition

costRestriction(S, L, estimate(con, L)) = init Restriction(S) + scan(S) * L+

restriction(S) * estimate(con, L)
(4.2)

Then we define a cost formula for the join operation that we refer to as costJoin
(see Formula 4.3). It involves the external join or the VDS join. This operation
is the linear combination of the parameters initJoin, scan, and join. The costJoin
takes as input the parameter S to denote either an integrated data store or a VDS
where the join will be executed, the variable L to denote the total size of the entity
sets in entry, and an estimation function that we call estimate. It involves the join
condition and the selectivity parameter. At best, the value of this estimation
should be equal to the cardinality of the resulted entity set. At worst, the value
of the estimation is equal to the cardinality of the Cartesian product of the two
entity sets to join.

S: a node, L: length of an entity set, cond: join condition

costJoin(S, L, estimate(con, L)) = initJoin(S) + scan(S) * L + join(S) * estimate(con, L)
(43)

Afterward, we define a cost formula for the union operation that we call costU-
nion (see Formulat 4.4). This operation is the linear combination of the parameters
imitUnion, scan, and union. It takes as input the parameter S to denote either an
integrated data store or a VDS where the union will be executed and the variable
L to denote the total size of the entity sets in entry.

S: a node, L: length of an entity set

costUnion(S, L) = initUnion(S) + L * (scan(S) + union(S))
(4.4)

We define also a cost formula for the intersection operation that we call costIn-
tersection (see Formula 4.5). It takes as input the parameter S to denote either
an integrated data store or a VDS where the intersection will be executed, the
variable L to denote the total size of the entity sets in entry, and an estimation
function that enables as to compute how many time the intersection operation will
be executed.

S: a node, L: length of an entity set

costIntersection(S, L, estimate(L)) = initIntersection(S) + scan(S) * L+

intersection(S) x estimate(L)
(4.5)
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Finally, we introduce the ETSL operation. This operation can be occurred
in three situation depending on the type of the operation that precedes it, the
forwarding data store and the addressee data store. It is worth noting that a data
store may be either a VDS or an integrated data store. Indeed, these situations are:
(1) in the case of a VDS join, the forwarding data store is an integrated one and the
addressee data store is a VDS (see Formula 4.6), (2) in the case of an external join,
the forwarding data store is a VDS and the addressee data store is an integrated one
(see Formula 4.7), and (3) in the case of an external join, the forwarding data store
and the addressee data store are integrated (see Formula 4.8). In the following,
we introduce the three cost formulas for the ETSL operation with respect to each
scenario. These formulas are a linear combination of the parameter initETSL,
scan, convert, ship and load defined in the catalog. We use also the variable N
which is the volume of data that we wish to transfer during an operation and
it is computed as follows N = cardinality * averageLengthEntity. Finally, the
variable VDS and S denote a VDS and an integrated data store respectively.

S: an integrated data store, VDS: a VDS, N: Volume of data

costETSL(S, VDS, N) = initETSL(S) + N * (scan(S) + convert(S) + ship(S) + load(V DS))
(4.6)

VDS: a VDS, S: an integrated data store, N: Volume of data

costETSL(VDS,S,N) = initETSL(VDS) + N x (scan(V DS) + convert(S) + Ship(S)+

load(V DS))
(4.7)

Sforwarding,addressee: integrated data stores, N: Volume of data

COStETSL(Sforwa'rdingg Sadd’l‘658667 N) - initETSL(Sforwa'rding) + N x (Scan(sforwarding)
+Convert(sfo7‘wa7‘ding) + Ship(sforwarding) + Convert(saddressee) + Ship(saddressee)

+l0ad(Saddressee))
(4.8)

4.4.3 Optimal Execution Plan Generation

In this section, we introduce our algorithm to generate the optimal execution
plan. The highlights of our algorithm are twofold. First, we propose to define our
algorithm based on the dynamic programming method. This latter is proposed to
solve complex optimization problems by dividing one problem into a set of sub-
problems that are easier to solve. The optimal solution of the complex problem is
constructed in a bottom-up way from the set of the optimal solutions of the sub-
problems. In our work, we apply this method to elect the optimal execution plan
which is represented as a tree (see Section 4.3.2). In fact, we start by constructing
the leaves (which are the first optimal sub-plans) and every time we go one level
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up in the execution plan by adding a new operation (which is a root in the new
optimal sub-plan). We proceed like that until obtaining the optimal execution
plan of a query. Second, we introduce parallelism between nodes but not inside a
node. Two operations which are planned on distinct nodes can be parallelized but
if they are planned on the same node they cannot. Indeed, the fact of parallelizing
operations in one data store is very resource hungry and it may hamper the node
functioning.

In order to evaluate the total cost of an operation without scanning the whole
sub-plan, we define three parameters to calculate the cost of its creation. This
enables us to avoid doing the same work every time we add a new operation.
These parameter are:

e NodeCost: It represents the total time of allocating the a node to execute
queries in a sub-plan. The value of the NodeCost of an operation is the sum
of the NodeCost of the children operations in the execution plan and the cost
of the operation itself. The nodeCost of a push down operation is null.

e WaitBegin: It denotes the waiting time of a VDS before executing the first
operation in a sub-plan, that is at the level of the push down operations.

e WaitLate: It defines the total waiting time of a VDS between the first
operation execution and the last one.

These parameters are implemented in our algorithm and they are also used to
annotate each node in the execution plan. In Figure 4.6, we showcase an example
of two children operations referred to as Left operation and Right operation and a
parent node called Parent operation. Each operation is annotated with NodeCost,
WaitBegin, WaitLate, and TotalCost. This latter contains the sum of the three
other parameters. To compute the value of the NodeCost of an operation, we have
two possible cases (i.e. parallelization of operations execution or not). Hence, we
can note (Reader should notice that the NodeCost is null when the operation is of
type push down):

TotalCost: ?
NodeCost: ?
WaitBegin: ?
WaitLate: ?
DataNode: P

TotalCost: 15 TotalCost: 10
NodeCost: 35 NodeCost: 25

WaitBegin: 30 WaitBegin: 10
WaitLate: 5 WaitLate: 10
DataNode: L DataNode: R

Figure 4.6: Example of computing an operation cost
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cost parent operation if L=R (sequential execution)

+NodeCostRright operation
+NodeCostreft operation

NOd@COStParent operation —

oSt parent operation if L # R(parallel eXBCUtiOH)

+Max(NOdeCOStRight and Left ope'rations)

Then, we compute the WaitBegin parameter by summing the values of the
WaitBegin parameters of the children nodes (namely Left and Right operations).
It is computed as follows:

WaitBeginparent operation — WaitBeginRight operation T WaitBeginLeft operation

Finally, we compute the WaitLate parameter according to the situation of the
node where the Parent operation will be executed. In fact, we check if the source
is available to the execution of another operation or not. Hence, we can define
two possible way to calculate the WaitLate parameter (Reader should notice that
the parameter delay parent operation Tepresents the waiting time of the release of a
working node):

WaitLateright operation if the node is available

+WaitLat6Left operation

WaitLatepgrent operation —
WaitLateright operation  if not

+WaitLatereft operation

+delayParent operation

In Algorithm1, we introduce our algorithm to generate the optimal execution
plan. This algorithm takes as input a query (in our case a join query) and it returns
as output the optimal execution plan of this query. For ease of presentation,
we propose to define two main steps in the algorithm that we introduce in the
following;:

e Initialization step(lines 3-24): In this step, we parse the query and we
extract all the required information to generate the optimal execution plan.
We start by focusing on the clause SELECT in order to extract each attribute
is this clause and identify the entity set containing it (lines 3-6). Then, for
each entity set in the clause FROM, we create a new node in the execution
plan (lines 7-10). This node represents a leaf in the plan and it denotes an
operation of type push-down. It is worth noting that we create a node of
type push-down for each entity set even though there is no unary operation to
execute on it. Finally, we focus on the clause WHERE (lines 11-23). For each
condition in this clause, we check its kind and we decide about the work that
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we will apply to it. Indeed, we have three possible kinds of conditions. First,
the condition may be a join condition between two entity sets co-located in
the same data store and this latter supports join queries execution, hence
we merge the two push-down nodes of the appropriate entity sets in one
push-down node and we add the join operation to it. Second, the condition
may be a join query in general (i.e. a VDS join or an external join in the
case of a big data scenario), so we save it as a join condition and we will
use it afterward during the plan generation. Third, the condition may be a
selection on an entity set, hence we modify the node push-down assigned to
this entity set by delegating the execution of the selection operation to it.

e Optimal execution plan generation (lines 24-45): In this step, we
construct the optimal execution plan following the dynamic programming
method. We start by sub-plans constructed in the initialization step which
are stored in the variable initNodes (line 24). Then, we construct the sub-
plans containing ¢ join conditions (line 25). To do so, for each join condition
(line 26), we take two sub-plans pl and p2 (lines 27-28) and we check if
we can join them through the condition (line 29). If it is the case, we add
this condition to the new sub-plan joining pl and p2 (line 30) and we create
the root node of this plan. Indeed, the root may represent either a VDS
join operation (lines 31-32) or an external join operation (lines 33-40). The
second case depends on whether the data store (i.e. a VDS or an integrated
data store) containing the entity set supports join queries execution or not.
It is worth noting that every time we add a new node in the plan, this
node is automatically annotated with information from the catalog and the
values of the parameters NodeCost, WaitBegin, WaitLate, and TotalCost. In
addition, a node of type ETSL is added after each operation of type VDS
join, external join and push-down. Based on these annotations, we prune
non optimal sub-plans, and sub-plans co-existing in the same data store that
have the same cost or are similar in term of execution scenario. A plan is
considered optimal, if it has the smallest cost when we apply our cost model.

In the rest of this section, we propose to run the Algorithm1 on the join query
introduced in Section 4.2. The first step in our algorithm is the initialization.
Indeed, we create three nodes of type push-down (see Figure 4.7). The first one
is for the entity set person which is stored in the database personDB. We precise
also the attributes that we need to answer the query that are personName and
personAffiliation. The second one corresponds to the entity set dblp. The third one
denotes the entity set conferenceRanking. It is noteworthy that in this node we fill
the parameter where with a selection condition which is Rank = A. This enables
us to maximize the work done by the integrated data stores before executing VDS
joins operation.

As we have two join conditions in our join query, we will construct the sub-
plans in two times. In Figure 4.8, we introduce the first iteration of the second step
of our algorithm which is the generation of the optimal execution plan. Indeed, we
construct three sub-plans. The first one allows to execute a VDS join operation
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Algorithm 1 Generation of the optimal execution plan

d
S

11

12:
13:
14:
15:

17:
18:
19:
20:
21:
22:
23:
24:

25
26

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

input ¢: A query
output plan: The optimal execution plan of the query g
select Attributes < ()
while (exist(attribute A in the clause SELECT)) do
select Attributes.add(entitySetO f(A), A)
end while
initNodes < ()
while (exist(entitySet ES in the clause FROM)) do
initNodes.create Pushdown(ES, select Attributes.get(ES))
end while
: JoinConditions < ()
while (exist(condition C' in the clause WHERE)) do
entitySetLe ft < siteO f Le ft EntitySet(C)
site < siteO f(entitySetLeft)
if isJoinCondition(C') then
if site == siteO f(Right EntitySet(C)) and canJoin(site) then
initNodes.merge(entitySetLe ft, Right EntitySet(C'))
else
JoinConditions.add(C')
end if
else
initNodes.addRestrictionCondition(entitySetLeft, C')
end if
end while
. plans < initNodes
: for ¢ = 1 to number of join conditions do
for each condition C' in JoinConditions do
for each plan pl in plans do
for each plan p2 in plans do
if match(pl,p2,C) then
newConditions.add(conditionsO f(pl), conditionsO f (p2), C)
node < createV DS Join(pl,p2, C)
plans.add(node)
if canJoin(siteOf(pl) then
node < createExternalJoin(pl, p2, C)
plans.add(node)
end if
if canJoin(siteO f(p2) then
node < create External Join(p2,pl, C)
plans.add(node)
end if
end if
end for
end for
end for
prune(plans)
end for

Database: personDB
EntitySet: [person]
Attributes:[personNa
me, personAffiliation]
Where: []

Database: dblpDB
EntitySet: [dblp]
Attributes:[dblp.confe
rence]

Where: []

Database: rankDB
EntitySet:
[ConferenceRanking]
Attributes:[Conferenc
eRanking.conference]
Where: [Rank=A]

Figure 4.7: The initialization step
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between the entity sets person and dblp using the join condition personName in
authors (see the arrows labeled with the number 1). The two other sub-plans
enables the execution of join query between the entity sets dblp and conferenceR-
anking using the condition dblp.conference = Con ferenceRanking.conference
(see the arrows labeled with the number 2). In fact, we can execute either an
external join in the data store rankDB or a VDS join.

Database: rankDB Database: VDS

; EntitySet: [dblp, EntitySet: [dblp,
Database: VDS {
EntitySet: [person, dblp] ConferenceRanking] ConferenceRanking]

) N Attributes:[personName, Attributes:[personName,

Attributes:[personName,
personAfiliation,
dblp.conference]
Where: [personName in
authore]

personAffiiation, author]
Where: [dblp.conference =

personAffiliation, author]

Where: [dblp.conference = @
ConferenceRanking.confer
ence]

ConferenceRanking.confer
ence]

Database: personDB | | Database: dblpDB BEEEEE il

. - EntitySet:

EntitySet: [person] Entityset: [dblp] [Con‘fm"cekankm]
t ¢ ;

me, personaffliation] | |rence] O | | Arbutes:conferenc
i eRanking.conference]

abeel] peredll Where: [Rank=A]

Figure 4.8: The first iteration

Externalloin

3 Database: VDS

EntitySet: [dblp,
ConferenceRanking]
Attributes:[personName,
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Figure 4.9: The second iteration

Once we have covered all the join conditions, we move to the second and
last iteration to finalize and elect the optimal execution plan. In Figure 4.9, we
showcase this step using the arrows labeled with the number 3. Indeed, we give just
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the example of two plans in which we illustrate the execution of a join operation
using the join condition personName in authors after having executed the join
between the entity sets dblp and conferenceRanking. We present that we can
execute it using either an external join in the rankDB or a VDS join.

4.5 Conclusion

In this chapter, we proposed the VDS component to execute complex queries
(especially joins) across NoSQL and relational data stores. For this purpose, we
defined a unified data model able to describe the heterogeneous data models of
data stores. It is used by the user to express his/her complex query and by the VDS
to process it. Once a VDS receives a complex query, it evaluates the queries based
on a set of strategies and it optimizes the queries execution using a cost model.
This latter is implemented in the optimal execution plan generation algorithm.

In the next chapter, we will introduce our last contribution. In this work, we
define a manifest based algorithm to discover Clouds’ data stores and deploy a
multiple data stores-based application in an elected Cloud environment.
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5.1 Introduction

In this contribution, we consider two components, the discovery and deployment

modules,
multiple

responsible of finding appropriate Cloud environments and deploying
data stores based applications on them respectively. Developers first

express their requirements about the used data stores as well as the computa-
tion environment via an abstract application manifest. Based on this manifest,
the discovery component implements our matching algorithm to produce an offer

manifest,

and select the appropriate cloud environment. A deployment manifest

is constructed as a result to that. This manifest will be in turn used by the
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deployment component to deploy the application on that selected environment.
The deployment process is ensured by COAPS API that we extended to support
multiple data stores based applications. The discovery and deployment modules
relieves the application developers from the burden of dealing with different APIs
and discovery /deployment procedures.

In this chapter, we motivate our contribution in Section 5.2. Then, we present
in Section 5.3 our solution to automate Clouds data stores discovery. Afterward,
we introduce in Section 5.4 our approach to automate multiple data stores-based
applications in cloud environment. Finally, we give in Section 5.5 two examples of
manifests.

5.2 Use Cases And Motivation

In this section, we rely on the previous motivating examples presented in Section
3.4.1 of Chapter 3 to motivate our contribution in this chapter. Indeed, in both
cases (in the case of either the application migration or the polyglot persistence),
the developer should discover all data stores capabilities of the available Cloud
providers and should choose the most suitable cloud provider to his/her applica-
tion’s requirements. Then, the developer deploys his/her application in the elected
Cloud provider.

At first glance, this seems trivial and easy; however the developer must support
the discovery and the deployment of his/her application since it is manually done
without any automation. Against a plethora of cloud providers, developer may
fail or omit to take into account a cloud provider or one of its services during the
discovery process. In addition, developers should first deploy the environment of
their applications (i.e. the required data stores allocation, an application container
allocation, etc.) prior to its application deployment. However this is actually a
tedious task because even if we find some automated solutions for that, it is rather
intended to deploy single data store based applications.

In this chapter, we tackle these problems and we propose a declarative approach
for discovering appropriate cloud environments and deploying multiple data stores
based applications on them while letting developers simply focus on specifying
their storage and computing requirements. One can note that even if all these
steps are automated, some of them can be done manually if unnecessary.

5.3 Automatic Discovery Of Cloud Data Stores

In this section, we present our logic to automatically discover the capabilities of
Cloud providers’ data stores while meeting the application requirements. The key
ingredient of this solution is the use of manifests enabling the description of user
requirements and data stores capabilities. In the remainder of this section, we
define our discovery principles (see Section 5.3.1). Then we introduce the abstract
application manifest and the offer manifest structure (see Section 5.3.2 and Section
5.3.3). Finally, we present our matching algorithm (see Section 5.3.4).
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5.3.1 Automatic Discovery Principles

Once the developer finishes his/her application coding using ODBAPI, he/she
should deploy it in a Cloud environment in order to run it. However, prior to
that he/she must discover Clouds’ resources. To do so, we propose in this work a
manifest based discovery process. In Figure 5.1, we showcase an overview of our
approach. First, the developer describes his/her application’s requirements in the
abstract application manifest in terms of storage and computing. Second, he/she
gives it as an input to the matching algorithm. This algorithm interacts with the
data stores directory in order to obtain the data stores capabilities of each cloud
provider stored in the offer manifest. This manifest represents the second input of
the matching algorithm which allows for obtaining the deployment manifest. This
latter is used to deploy the application in the elected Cloud provider. It is worth
noting that the data stores directory is automatically updated by interacting with
the Cloud providers (e.g. Cloud Foundry, OpenShift, etc.) using their proprietary

APIs.
lulh(’
OpensShift API

Cluud Foun: dfv AP
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Figure 5.1: Zoom-in on the discovery component

5.3.2 Abstract Application Manifest

Using a dedicated manifest, developers express what kind of data stores and exe-
cution environment their application requires. Indeed, this manifest contains two
categories of requirements. First, we have requirements in terms of data stores.
The developer provides four information about the required data stores: its type,
its name, its version, and its size. In addition, it is worth noting that when the
developer fills this manifest, he/she has the freedom to specify one or multiple in-
formation. For each information, he/she gives a constraint expressed by a constant
value, a joker (denoting any values) or some conditions (expressed as inequalities).
Hence, we will ensure more flexibility in our model and in the discovery step. For
instance, one developer precises that he/she wants a data store having the name
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MongoDB and the type document and another developer precises that he/she
wants a data store of type document without specifying its name (in this case any
data store of type document fulfill the specification). Thus, the discovery step for
the second developer will be easier and more flexible. Whereas the second category
of requirements is dedicated to the application deployment. Indeed, the developer
precises the number of the virtual machines needed to run his/her application. In
addition, he/she describes his/her application executable by giving its name, its
type and its location.

Figure 5.2 depicts the structure of the abstract application manifest. The root
element of our model is the abstract application manifest element and it is identi-
fied by the attribute name. Basically, it contains three categories of information:
the first category is expressed under the application element, the second one is
defined under the environment element and the third one is defined under the user
information element. In the following, we introduce these three elements:

Figure 5.2: Abstract application manifest model

e The user information element: This element represents the required
authentication information to access the discovery component and to interact
with the data stores repository. It contains the user login and the wser
password elements representing the developer identifiers.

e The environment element: The environment element in the abstract
application manifest specifies the requirements on the used data stores as
well as on the application execution environment. These requirements are
expressed over a set of node elements where each node refers to a data store
or an execution environment component. A node element is identified by an
1d attribute and a content type attribute. This latter can be a container or
a database to respectively denote engine resources to host and run services
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and storage resources. For each node and when a content type is equal to
a database, developers may specify the required type (e.g. a document or
a key-value data store), the name of a specific component (e.g. MongoDB
or CouchDB), any specific version, and the required size. Otherwise, if a
content type is equal to a container, users specify only the name and the
version elements.

e The application element: This element contains information on the to-
be-deployed application itself. It is characterized by a unique name attribute
and the enwvironment attribute where the application will be deployed. De-
velopers may specify several versions of the same application. And for each
version, they need to precise on the one hand information related to the
deployable artefacts and on the other hand information related to the to-
be-run instances. A wersion element is identified by a name and a label
and contains a set of deployable and instance elements. The deployable ele-
ment represents the application executable file. It is identified by a unique
1d attribute, a content_ type attribute defining the executable file type, a
name attribute denoting its name, a location attribute containing the URL
where such element can be found and retrieved, and a multitenancy level
attribute indicating the application tenancy degree. Whereas the instance
element represents the running application instances required by the user.
This element is identified by a unique id, a name, initial _state defining the
state of the application (e.g. running, stopped, etc.) and default instance
representing the running instances by default.

5.3.3 Offer Manifest

The offer manifest contains information about the capabilities of data stores of each
discovered Cloud provider considering the abstract application manifest. Indeed,
each Cloud provider may return one or multiple offers in terms of their data stores
capabilities. These offers represent all possible combinations that an environment
can propose to the application. In Figure 5.3, we present a modeling of the offer
manifest based on a class diagram. The root element is offer manifest and it
is identified by the mame attribute. It contains one or multiple cloud provider
element. This element represents a discovered cloud provider and it is identified by
a unique 7d. It contains (1) the name element defining the Cloud provider name and
(2) the offers element representing the capabilities that a Cloud provider exposes
with respect to the application requirements described in the abstract application
manifest. The offers element is composed by one or multiple offer elements that
contains one or multiple node element. This latter is similar to the node element
in the abstract application manifest.

5.3.4 Matching Algorithm

In this section, we introduce the matching algorithm enabling the election of the
Cloud provider that best supports the application’s requirements in terms of data
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Figure 5.3: Offer manifest model

stores (see Algorithm 2). We propose a flexible matching allowing to elect a Cloud
provider which does not always fulfill all the application’s requirements but it is
closed to them (which is the role of the computed distance in the algorithm). We
use also a threshold fixed by a developer or an administrator in order to compute
a bounded distance between zero and its value. Furthermore, we impose that the
result is a single Cloud provider (we do not consider deployment in multiple Cloud
providers). The algorithm takes as input the abstract application manifest and
the threshold and returns as output the deployment manifest that we introduce
in Section 5.4.2. In the following, we describe the different steps of the matching
algorithm:

Algorithm 2 Matching algorithm

1: input AAM: the abstract application manifest

2: input threshold: the threshold to limit the number of differences
3: output DM: the deployment manifest

4: OM <«—queryDataStoresRepository(AAM) # see Algorithm 3#
5: 14 0

6: while (exist(Cloud Provider CP in OM)) do

7. while (exist(Offer O in OM)) do

8 distanceli] < 0

9 for each node N in AAM do

10: for each property prop in N do

11 if (Ivalid(prop, OM.CP.O.node.prop)) then

12: distanceli] — distance[i]+ updateDistance(prop,
OM.CP.O.node.prop)

13: end if

14: end for

15: end for

16: 14— 1+1

17 end while

18: end while

19: electedC P <—electCP (distance, threshold)
20: return createDM(AAM, OM, electedCP)

1. Offer manifest construction (line 4): The algorithm constructs the offer
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manifest using the operation queryDataStoresRepository by interacting with
the data stores repository. We give more details about this operation in
Algorithm 3.

2. Distances’ calculation (lines 6-18): Algorithm 2 calculates for each
Cloud provider the number of differences between its capabilities and the
user requirements described in the abstract application manifest. We esti-
mate the distance between the abstract application manifest and the offer
manifest by the number of differences. These numbers are stored in the data
structure distance. These values are calculated as follows: For each prop-
erty in the two manifests, if they are not corresponding then we update the
distance by adding the appropriate penalty to the property. The two prop-
erties correspond if the actual value of the offer manifest property fulfill the
requirement expressed by the abstract application manifest property (which
is either a constant, a joker or a condition). These penalties are customized
according to the property importance. By default, all penalties are fixed at 1;
however the user can configure these penalties according to the importance
that he/she gives to the properties.

3. Cloud provider election (lines 19-20): Finally, we elect a Cloud provider
and construct the deployment manifest. This is done through the operation
electCP that takes as inputs the data structure distance and the threshold
and returns the identifier of the elected Cloud provider if any. This identifier
is the smallest value bounded between 0 and the threshold.

In algorithm 3, we present in more details the operation queryDataStoresRepos-
itory that returns a super-set of the result from the data stores repository. In fact,
for each Cloud provider, we extract all data stores corresponding to the data types
of the abstract application manifest. If there are no corresponding data stores, the
Cloud provider is rejected (lines 10-18). For ease of presentation of this algorithm,
we build ourselves on the Figure 5.4. Indeed, in the left side of this figure, we
construct from the abstract application manifest a simple graph in which nodes
represent the type elements in the node elements. This graph is a kind of a sample
that will be used to construct the offer manifest. In the right side of Figure 5.4,
we illustrate a data stores repository of a Cloud provider having four types of data
stores. Based on this repository and the graph based sample, we extract the list
of the Cloud provider’s offers that we represent in the form of a graph. Once we
check all Cloud providers, we group all the offers in the offer manifest (line 19).

In the case of the selection of a new data store by the discovery process, our
approach does not support neither the creation of the target schema on the selected
data stores, nor the migration of existing instances. This has to be done outside
our process. For instance, we can use ExSchema which is a tool enabling the
automatic discovery of external data schemes from the source code of multiple
data stores based applications [64].
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Algorithm 3 The queryDataStoresRepository algorithm

input AAM: the abstract application manifest
output OM: the offer manifest
length < 0
for each node N in AAM do
if (content-type —— "database") then
Tlength] < getType(N)
length < length + 1
end if
end for
for each Cloud Provider C'P in the data stores directory do
for i=0 to length do

= = =
N = O

if (CP contains T|[i]) then
13: Add all names of this type to the tree of the current CP
14: else
15: Reject the current CP
16: end if
17: end for
18: end for
19: return the resulted trees as the OM

Generating the sample from the Abstract application manifest

Abstract graph,

Offer Manifest

Figure 5.4: Generating the offer manifest

5.4 Automatic Deployment Of Multiple Data Stores
Based Applications

In this section, we introduce our solution to deploy multiple data stores based
applications in any Cloud provider. To do so, our starting point is COAPS API |65]
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that is a manifest-based deployment API proposed in our team. Nevertheless this
API supports only single data store based application. Hence, we propose to extend
COAPS API in order to enable multiple data stores based application deployment
in Cloud environments. Against this background, we define in Section 5.4.1 the
COAPS API. Then, we present in Section 5.4.2 the structure of the deployment
manifest.

5.4.1 An Extension Of The Compatible One Application and Plat-
form Service API

The Compatible One Application and Platform Service API (COAPS API) [65]
allows human and/or software agents to provision and manage PaaS applications.
This API provides a unique layer to interact with any Cloud provider based on
manifests. This REST API manages two kinds of resources. The first kind of re-
sources represents the environment which is a set of settings required by developers
to host and run their applications in Cloud environments. Indeed, these settings
may be a runtime (java 7, java 6, ruby, etc.), frameworks/containers (spring, tom-
cat, ruby, etc.) and eventually services (databases, messaging, etc.). Whereas the
second kind or resources is applications which are computer software or program
deployable in a Cloud environment. Application source archives should be pro-
vided by the developer in a bundled format (i.e. war, ear, zip, etc.) or extracted
format (i.e. a local folder with the different files and dependencies, distant URL,
etc.).

In Figure 5.5, we illustrate an overview of the COAPS API that we introduce
from the right side to the left side.

e Integrated Cloud providers (Integrated PaaSs): We have first of all
Cloud providers where a developer may deploy his/her application. In the
figure, we showcase that the developer may deploy his/her application in two
PaaSs that are CloudFoundry and OpenShift.

e COAPS API interface: The second part of Figure 5.5 represents the
COAPS API interface and different implementations of each PaaS. In fact,
it represents the shared part between all the integrated PaaSs and it provides
a unique view to the application side. It contains specific implementations of
each PaaS. The current version of the COAPS API implementation includes
two Cloud providers: (1) CloudFoundry and (2) OpenShift.

e COAPS API operations: Finally, we show the different operations that
COAPS API offers to the user. These operations are well introduced in the
rest of this section.

For ease of presentation of the COAPS API operations, we propose to describe
it through a scenario of an application deployment in a Cloud provider (see Figure
5.6). Indeed, the developer describes first his/her requirements in terms of appli-
cation and environment in the deployment manifest. Then, he/she executes the
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Figure 5.5: COAPS API overview [3]

operation create Environment to create an environment with respect to the mani-
fest. Afterward, he/she should execute the operation createApplication to create a
resource of type application and the operation deployApplication to deploy his/her
application. Finally, he/she runs his/her application by executing the operation
startApplication. Added to these operations, developers may update an environ-
ment or an application, list the deployed applications in an environment, stop and
un-deploy an application.

Create Create Deploy Start
Environment Application Application Application

Figure 5.6: An application deployment scenario [3]

Although COAPS API is efficient and allows application deployment in a Cloud
environment in a transparent way, it does not support multiple data stores appli-
cations deployment. For this sake, we propose to extend it in order to support this
kind of applications. Indeed, we propose to enable the creation of environment
resources containing multiple data stores. Then, we provide the possibility to de-
ploy over it polyglot persistence based applications. In Section 5.4.2, we present
how we extend COAPS API deployment manifest.
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5.4.2 Deployment Manifest

The deployment manifest’s structure is closest to the abstract application manifest
(see Section 5.3.2) and it is defined based on the COAPS API’s manifest [65] (see
Figure 5.7). Hence, in order to avoid the repetition, we do not describe this
manifest structure in details. However, we present how we extended the manifest
compared to that of COAPS API. This extension is two-fold. In the one hand,
we increase the number of node elements having a content type equal to database
from one to multiple. Thus, we can now support the multiple data stores based
application deployment. In the other hand, we propose to enrich each node element
having a content type equal to database with additional information. In fact, we
add new attributes about data stores services in the node element. These attributes
are the size attribute, the type attribute and the version attribute to respectively
denote the size of a data store, its type and its version.
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Figure 5.7: Deployment manifest model

5.5 XML-Based Manifest Examples

In this section, we present examples of manifests implemented in XML format.
We give below an example of an abstract application manifest (see Listing 5.1).
Indeed, the developer provides user! as a login and pswd as a password. Then,
he/she describes the environment where he/she wants to deploy his/her ODBAPI
based application. Indeed, he/she chooses as name for the environment ODBAPI-
Env and for the environment template ODBAPIEnvTemp. In this template, the
user requires tomcat as an application container, a document data store without
precising any name by filling the element name with the character * and MySQL
as a relational data store. Regarding the application configuration, the user names
his/her application ODBAPIApplication. He/She precises that the application is a
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runnable file and he/she requires to have two application instances: one is running
by default and the other is stopped.

l<abstract application manifest name="AAM">

2 <user77h1forma,tion>7

3 <user login>userl</user login>

4 <user password>pswd</user password>

5 </user information>

6 <environment name ="ODBAPIEnv'>

7 <template name="ODBAPIEnvTemp" memory="128">
8
9

<node id ="1" content_type="container">
<name> tomcat </name>
10 <version> 1 </version>
11 </node>
12 <node id ="2" content_type = "database'>
13 <name>*</name>
14 <version> 1.0 </version>
15 <type> document </type>
16 <size> large </size>
17 </node>
18 <node id —"3" caontent type — "database'>
19 <name> mysql </name>
20 <version> x </version>
21 <type> relational </type>
22 <size> small </size>
23 </node>
24 </template>

25 </environment>
26 <application name="ODBAPIApplication" environement=

27 "ODBAPIEnv">

28 <version name="versionl .0" label="1.0">

29 <deployable id="1" content type="artifact"

30 name="ODBAPIApplication.war" location="1444d7"
31 multitenancy _level="SharedInstance" />

32 <instance id="1" name="Instancel"

33 initial _state="1" default_instance="true' />
34 <instance id="2" name="Instance2"

35 initial _state="1" default_instance="false"/>
36 </version>

37 </application>
38</abstract application manifest>

Listing 5.1: XML based representation of the abstract application manifest

Based on this example of abstract application manifest, we give below an ex-
ample of the offer manifest got during the matching algorithm execution. We
illustrate this manifest by a XML-based presentation (see Listing 5.2). In fact, in
this example we take into account two cloud providers named Cloud provider 1
and Cloud provider 2. The first one proposes two offers with respect to abstract
application manifest. Whereas the second one proposes just one offer.

1<offer manifest name ="OffersOfCloudProviders">

2 <cloud provider id ="1">

3 <name> Cloud provider 1 </name>

4 <offers>

5 <offer id ="1">

6 <node id="1" content type = "container'>
7 <name> tomcat </name>

8 <version> 1 </version>

9 </node>

10 <node id="2" content_ type = "database">
11 <type> document </type>

12 <name> couchDB </name>

13 <version> 1.0 </version>

14 <size> small </size>

15 </node>

16 <node id="3" content_type = "database">
17 <type> relational </type>

18 <name> mysql </name>

19 <version> 2.0 </version>

20 <size> small </size>

21 </node>

22 </offer>

23 <offer id —"2">

24 <node id="1" content type = "container'">
25 <name> tomcat </name>

26 <version> 1 </version>

27 </node>

28 <node id="2" content type = "database'">
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<type> document </type>
<name> mongoDB </name>
<version> 1.0 </version>
<size> large </size>
</node>
<node id="3" content_type = "database'">
<type> relational </type>
<name> mysql </name>

<version> 2.0 </version>
<size> small </size>
</node>
</offer>
</offers>

</cloud provider>
<cloud provider id —"2">
<name> Cloud provider 2 </name>
<offers>
<offer id ="1">
<node id="1" content type = "container'">
<name> tomcat </name>
<version> 1 </version>
</node>
<node id="2" content type = "database'">
<type> document </type>
<name> couchDB </name>
<version> 1.0 </version>
<size> small </size>
</node>
<node id="3" content type = "database">
<type> relational </type>
<name> oracle </name>

<version> 2.0 </version>
<size> small </size>
</node>
</offer>
</offers>

</cloud provider>
</offer manifest>

Listing 5.2: XML based representation of the offer manifest

Based on these two manifests, we present an execution scenario example of
the matching algorithm. We suppose that the user’s threshold is equal to 2
and the user’s preferences regarding the penalties are: (1) Penalityry,e = 4, (2)
Penalityname = 2, (3) Penalitysi,e = 1, and (4) Penalityyersion = 1. We start
by comparing the type of data stores. Indeed, the user requires a relational and
document data store. In Figure 5.8, we illustrate the abstract graph according
to the abstract application manifest showcased in Listing 5.1. Then, we compare
each offer to the application’s requirements and we gradually compute the distance
between the offer and the abstract application manifest. By applying our match-
ing algorithm, we obtain the distances illustrated in Table 5.1. In fact, we show
that the offer 2 of the Cloud provide 1 has a null distance. Hence, we elect this
offer since it meets exactly the application’s requirements. We point out that the
Cloud provider 2 is discarded since it has a distance equals to 3 (it is computed as
follows: Penalitys;.e + Penalityname) which is greater than the threshold. This
is due to the absence of a relational data store having the name MySQL and the
size of the proposed document data store is not large. Against this, we construct
the deployment manifest presented in Listing 5.3 using the offer 2 of the Cloud
provider 1.
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Figure 5.8: The abstract grap
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, Table 5.1: Summary of the computed dis-
tances between the offer manifest and the
abstract application manifest

l<deployment manifest name="DM">

<paas_environment name ="ODBAPIEnv'">
<paas_template name="ODBAPIEnvTemp" memory="128">

<paas_node id="1" conten
name="tomcat" version="1

2
3
4
5
6 <paas_node
7
8
9

id="2" content_type="database"
name="MongoDB" version="1.0" type="document"
size="large" />
<paas_mnode id="3" content_type="database"
10 name="mysql" version="2.0" type="relational"
11 size="small" />
12 </paas template>
13 </paas environment>
14 <paas application name—="ODBAPIApplication” environement—
15 "ODBAPIEnv" >
16 <application version name—'"versionl.0" label—"1.0">
17 <deployable id="1" content type="artifact"
18 name="ODBAPIApplication.war" location="1444d7"
19 multitenancy level="SharedInstance" />
20 <instance id="1" name="Instancel"
21 initial state="1" default instance="true" />
22 <instance id="2" name="Instance2"
23 initial state="1" default instance="false"/>
24 </application version>

25 </paas_application>
26</abstract application_ manifest>

t type="container"
H7>

Listing 5.3: XML based representation of the deployment manifest

Now, we propose to give an example of an abstract application manifest where

the developer knows what he/she

desires in advance and fills the abstract appli-

cation manifest without using wildcards(see Listing 5.4). Indeed, he/she specifies

that he/she wants a MySQL relati

onal data store and a MongoDB document one.

In this case, our discovery component will only focus on Cloud providers having

the same data stores services with the required size and version.

One possible

deployment manifest is the manifest represented above in Listing 5.3.

l<abstract application manifest name="
<user information>
<user login>userl</user login>

AAM">

2
3
4 <user password>pswd</user_ password>
5 </user information>

6 <environment name ="ODBAPIEnv'">
7

8

9

<template name="ODBAPIEnvTemp" memory="128">

<node id ="1" content_ type="container">
<name> tomcat </name>
10 <version> 1 </version>
11 </node>
12 <node id ="2" content_type = "database'">
13 <name> MongoDB </name>
14 <version> 1.0 </version>
15 <type> document </type>
16 <size> large </size>
17 </node>
18 <node id —"3" content type — "database'>
19 <name> MySQL </na‘mie>
20 <version> 2.0 </version>
21 <type> relational </type>
22 <size> small </size>
23 </node>
24 </template>

25 </environment>
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<application name="ODBAPIApplication" environement=
"ODBAPIEnv">
<version name="versionl.0" label="1.0">
<deployable id="1" content type="artifact"
name="ONBAPIApplication.war" location="14444d7"
multitenancy _level="SharedInstance" />
<instance id="1" name="Instancel"
initial _state="1" default_instance="true' />
<instance id="2" name="Instance2"
initial _state="1" default_instance="false"/>
</version>
</application>
</abstract application manifest>

Listing 5.4: XML based representation of an abstract application manifest con-
taining only the type of data stores

5.6 Conclusion

In this chapter, we introduced our approach to discover data stores and to deploy
multiple data stores based application in Cloud environments. Indeed, we pre-
sented first our matching algorithm that enable the discovery of the most suitable
Cloud provider to an ODBAPI-based application requirements. It is based on the
abstract application manifest and the offer manifest and it ouputs a deployment
manifest. This latter is used by COAPS API to deploy the application in the
elected Cloud provider. We extended COAPS API in order to support multiple
data stores based application deployment.

In the next chapter, we will validate through different use cases for our four
contributions. We also performed different experiments to test the efficiency and
accuracy our proposals.
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6.1 Introduction

All along this manuscript, we proposed an end-to-end approach enabling the sup-
port of developers during the lifecycle of multiple data stores based applications.
This approach involves four main components that we try to validate and evaluate
in this chapter. For this purpose, we present (i) the implementations we have done
as a proof of concepts to realize our four components (see Section 6.2), and (ii) the
experiments we have conducted to evaluate the efficiency of our solutions. Indeed,
we evaluate the overhead of ODBAPI compared to proprietary API (see Section
6.3). Then, we assess the gain in terms of implementation time and the number of
lines in a source code of an application implemented using ODBAPI and an other
one implemented using proprietary APIs (see Section 6.4). Finally, we evaluate our
cost model and the algorithm for generating optimal execution plan (see Section
6.5). Our goal is (i) to prove that our approach is feasible and accurate in real
use-cases and (ii) to analyze the parameters that impact our results’ quality.

6.2 Proofs Of Concept

In this section, we present the proofs of concept that we have developed to re-
alize our approach. We firstly present the OpenPaaS project in which we have
integrated the proofs of concept (see Section 6.2.1). Second, we present a state of
progress about the implementation of ODBAPI and the data stores that we take

103
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into account (see Section6.2.2). Added to that, we present some ODBAPI-based
applications that illustrate the utility of our API. Third, we present a tool allow-

ing the discovery of multiple data stores based on the abstract application manifest
(see Section 6.2.3).

6.2.1 The OpenPaaS Project

The OpenPaa$S project * aims at developing a Paa$S technology dedicated to en-
terprise collaborative applications deployed on hybrid Clouds (private / public).
OpenPaaS is a platform that allows to design and deploy applications based on
proven technologies provided by partners such as collaborative messaging system,
integration and workflow technologies that will be extended in order to address
Cloud Computing requirements (see Figure 6.1).

OpenPaaS o Q g 2 ﬂ

Figure 6.1: OpenPaaS overview

One of the main objective of this projet is to specify a unified REST-based
APIT that allows an application deployed in the OpenPaaS platform to interact
(i.e. express and execute simple and complex queries) with relational and NoSQL
data stores. The OpenPaaS project focuses in particular on relational, key/value
and document data stores. In addition, OpenPaaS aims at automatically deploying
a multiple data stores based application in an appropriate Cloud provider.

6.2.2 Current State Of ODBAPI

According to the requirements of the OpenPaaS project, we provide today a version
of ODBAPI including four data stores: MySQL, Riak, MongoDB and CouchDB.

“https://research.linagora.com/display/openpaas/Open+PAAS+Qverview
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The current version is developed within JAVA and is provided as a runnable REST-
ful web application. We have worked diligently on testing ODBAPI using various
use cases in the OpenPaaS project so that we identified possible discrepancies
and made this version more stable for use. A description of the realized work
is available at http://www-inf.int-evry.fr/"“sellam_r/Tools/0DBAPI/index.
html. In this page, reader will find three links: (1) the first one allows accessing
the full ODBAPI specification, (2) the second one allows downloading a jar file
of ODBAPI, (3) and the third one provides a detailed user guide. We point out
that we used the Restlet framework® in order to implement ODBAPI. As it is a
REST-based API, ODBAPI can be implemented by any programming language
supporting the REST architecture (e.g. PHP, AngularJS, JAVA| etc.).

In order to present the different component constituting the ODBAPI, we
propose to illustrate the implementation through a package diagram. This kind of
diagram allows to gather classes that are logically linked into one module. Hence,
we provide a global view on ODBAPI. In Figure 6.2, we showcase this diagram. In
the left side of this diagram, we illustrate the main package. This package is called
server and contains the main class of the project that receives a REST query and
routes it to the target resources. To do so, this class interacts with classes from
the packages in the right side of the diagram. These packages are described as
follows:

e The all package: This package provides the required operations to list
either all entities in an entity set or all entity sets in a data store.

e The entity package: This package supplies the list of operations to query
resources of type entity. Indeed, we can create, retrieve, update and delete
an entity.

e The entitySet package: This package provides the operations enabling to
manage resources of type entity sets. In fact, we can create, retrieve and
delete an entity set.

e The query package: This package is intended to handle the execution
of complex queries. Currently, we support the execution of filtering (i.e.
selection and projection operations) and join operations.

The addition of a new data store implies the implementation of a new ODBAPI
driver. It is important to evaluate the cost of such development. For this purpose,
we rely on the package diagram of ODBAPI (see Figure 6.2). In each package,
we illustrate a set of JAVA interfaces that a developer should implement to add
a new driver to ODBAPI. In all, we present ten interfaces. Hence, we conclude
that a developer should implement ten JAVA classes for each new driver. In Table
6.1, we showcase the lines number coded in each driver. We have an average lines
number equals to 633,5. In addition, we present the implementation duration of
each driver in terms of days done by one developer. We observe that this duration

"http://restlet.org/
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<<Interface>> GetAllE

<<Interface>> AllEntityResource

JsonRepresentation getAllEntities(Representation

entity);

JSONObject retrieve(String db_name, String
es_name);

JSONObject retrieve(String es_name);

<<Interface>> AllEntitySetResource

Object getAllEntitySets(Representation entity);

<<Interface>> GetAllES

JSONObject retrieve(String db_name);
JSONObject retrieve();

<<import>>

<<import>>

<<import>>

<<import>>

<<Interface>> EntityResource

JSONObject setEntity (Representation
entity);

<<Interface>> EntityToolKi

JSONObject create(String es_name, String e_id, JSONObject
jsonEntity);

I50NObject create(String db_name, String es_name, String
e_id,JSONObject jsonEntity);

JSONObject getEntityById(Representation
entity);

ISONObject retrieve(String es_name, String e_id);

JSONObject updateEntity (Representation
entity);

JSONObject retrieve(String db_name, String es_name, String
e_id);

JSONObject deleteEntity();

JSONObject update(String es_name, String e_id, JSONObject
jsonEntity);

JSONObject update(String db_name, String es_name, String
e_id,JSONObject jsonEntity);

JSONObject delete(String es_name, String e_id);

JSONObject delete(String db_name, String es_name, String
e

<<Interface>> EntitySetResource

JSONObject setEntitySet (Representation
entity);

<<Interface>> EntitySetToolKit

JSONObject create(String es_name);

Object
getEntitysetByName (Representation
entity);

JSONObject create(String db_name, String es_name, JSONObject
jsonEntity);

JSONObject retrieve(String es_name);

JSONObject deleteEntitySET ()

JSONObject retrieve(String db_name, String es_name);

JSONObject delete(String es_name);

JSONObject delete(String db_name, String es_name);

<<Interface>> Query

JSONObject executeQuery (Representation
entity);

<<Interface>> ToolkitForQuery

Vector<String> getSelect(JSONObject jsonEntity);

Vector<String> getFrom(JSONObject jsonEntity);

Vector<string> getWhere(JSONObject jsonntity);

JSONObject executeQuery (String es_name, Vector<String>
selectlist, Vector<String> fromtList,
Vector<string>wheretlist);

JSONObject executeQuery(String es_name, String db_name,
Vector<string> selectlist, Vector<String> fromtList,
Vector<string>wheretList)

Figure 6.2: Package diagram of ODBAPI

does not exceed two days. Based on the average lines number, the classes number
as well as on the implementation duration, we conclude that adding a new driver

is not costly in terms of time and manpower.

Data store name

MySQL

MongoDB

CouchDB | Riak

Lines number

739 637

608 950

Implementation time (day)

1 2

15 1,5

Table 6.1: Lines number in each driver in ODBAPI
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In order to show the feasibility, the portability, and the utility of our API, we
provide three ODBAPI-based applications:

e Management of to-do tasks in a programming project: We imple-
mented in the Open PaaS project an ODBAPI-based module enabling the
management of to-do tasks in a programming project. In this module, we
interact with a document data store containing information about tasks and
a relational data store containing information about developers involved in
a project and their duties in a given task. Users of this module interact
with the data stores by executing either CRUD operations or multi-sources
queries (i.e. filtering and join). This module has been developed using An-
gularJS and it has been integrated in the final demonstration of the Open
PaaS project.

e Management of relational and NoSQL data stores: We also devel-
oped an ODBAPI-based application intended to handle the administration
of relational and NoSQL data stores in a Cloud provider. This application is
a PHPMyadmin-like and it is developed using PHP, HTML and Javascript.
In Fig. 6.3, we show a screenshot of the user interface of this client. In fact,
it gives an overview of two heterogeneous data stores. There is a MySQL
database called world and it contains three entity sets: city, country, and
countrylanguage. Added to that, we have a MongoDB database that is named
person and it is composed by two entity sets: Student and Teacher. We also
show an overview of the entities of the city entity set.

ODE APIClient  CornectToServer Discomnect — AddDatabase RemoveDatsbase  AccessRights  Env MetaData
Database Explorer ¢ | EntitySet Explorer
CreateE5 DeleteES DB MetaData  ES MetaData Create Entity  Update Entity  Delete Entity

B MySQL id countrycode name population
=) world
3] efy

55 AND Andorra laVella 21188

56 AGO Luanda 2022000
3 country

- 57 AGO Huamba 163100
7 countrylanguage

=] mongoDB 5% AGO Labita 120000

= person 59 AGOD Benguela 128300

7 Student 60 AGO Namibe 118200

1 Teacher 81 AlA South Hill 961

62 AlA The Valley 505

Figure 6.3: Screenshot of all databases overview

e ODBAPI client for applications programming: We propose a client
that we called ODBAPI client. This latter allows a developer to use ODBAPI
operations through JAVA methods as if he/she uses a proprietary API. This
eases the implementation of ODBAPI-based applications. We provide a jar
file that a developer should add to his/her local libraries or maven depen-
dencies. This client is used to compute the experiments related to ODBAPI
in Section 6.3 and Section 6.4.

Thanks to these three applications, we show the utility of ODBAPI. In addition,
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we prove that it is portable and can be implemented by any REST-based program-
ming language. In addition, we proved that adding a new driver to ODBAPI is
not a tedious task.

6.2.3 Selecting Multiple Data Stores And Deploying ODBAPI
Clients

In this section, we present a tool ensuring the discovery of Cloud providers and the
automatic deployment of an ODBAPI-based application. This tool implements our
matching algorithm to create the deployment manifest and the extension of the
COAPS API to deploy a multiple data stores based application. In order to show
the feasibility of this component in our work, we propose to discover data stores
of Cloud Foundry and OpenShift as Cloud providers to deploy an ODBAPI-based
application. This application is intended to interact with a relational data store
of type MySQL and a document data store in a Cloud environment. Indeed, the
application developer describes his/her requirements in the abstract application
manifest and he/she uploads it through the interface that we illustrate in Fig. 6.4.
Then, this tool executes the matching algorithm to elect the Cloud provider that
supports the ODBAPI client requirements and returns the deployment manifest.
Based on this latter, we deploy the ODBAPI client by the mean of COAPS API. We
wish to emphasize that we provide this tools and some demonstration videos at
http://www-inf.int-evry.fr/“sellam_r/Tools/0DBAPI/index.html for more
details.

Select an anbstract application model:

| select |ahstrac:_appﬂcalion_ma:ﬁfest.xnﬂ

<?xml version="1.0" gncoding="utf-8" standalone="no"?> z
<paas_application manifest i Th
<Rasz _application suvironemenc="JayaWebEnv" peme="3Isrv.
<description>User applicacion requirementas</descr
<pass_application_version label="l,0" name="versi | |
<pass application_deplovable content_type ﬂ
location="1444da79-54be-4321-80a0-d4a7ae30512b" multizenancy leve
pame =" Sanplederyles  gart/>
ags_application_version_instance defaul
initial scate="1" name=m'Inscancel”/>
<pass_applicatien_version_inscance defaul
inicvial scace="1" pame="Inscance2"/>
</pags application version> =
1 [ i = s

[_Ijownlcad_|

Figure 6.4: Screenshot of the interface allowing to import the abstract application
manifest and generate the deployment manifest
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6.3 ODBAPI Overhead Evaluation

Using ODBAPI facilitates the developer’s task greatly; however, it comes with the
cost of an overhead. In fact, ODBAPI is based on the proprietary APIs of relational
and NoSQL data stores. In this section, we propose to evaluate the overhead
related to ODBAPI. Doing so, we propose to answer the following question:

e Question;: Does this overhead decrease ODBAPI performance?

For this purpose, we implemented two applications doing the same CRUD
operations: one is using ODBAPI and the other is using JDBC. These two appli-
cations are deployed and run in the same environment. The data store, the ODBC
driver and the application run on the same server. We are aware that we are doing
extra works compared to these proprietary APIs. Indeed, for each query, our API
rewrites it into the proprietary query language of the integrated data store. Then,
it converts the result to JSON format before answering the application. In addi-
tion, since ODBAPI is a REST-based architecture API, this also may generate an
overhead due to the REST protocol and the data shipping.

The overhead A is obtained by calculating the ratio between the difference
between the response time of ODBAPI and the response time of the proprietary
API, and the response time of the proprietary API. We use the following formula

A _ (tODBAPI_tpTop'rieta/ryAPI) * 100

tprop'rietaryAPI

In the rest of this section, we limit ourselves to present only the overhead of
ODBAPI when application interacts with relational data store using JDBC. We
have started also evaluating the overhead of our API compared with MongoDB
API and the first result obtained with this APT are in line with a light overhead
as well.

We start by calculating the evolution of the response time according to the
number of the created entities using ODBAPI and JDBC. In TABLE 6.2, we
showcase the response time of this operations and the overhead. The average of
this overhead is about 6.71 %.

Entities number | 10 50 100 500
ODBAPI (ms) 715 | 2399 | 4219 | 19115
JDBC (ms) 700 | 2250 | 3883 | 17463
A (%) 2.14 | 6.62 | 8.65 | 9.46

Table 6.2: Response time of the operation create entities with ODBAPI and JDBC

We use the same principle to evaluate the overhead of deletion of a relational
entities. In TABLE 6.3, we present the obtained results and the overhead. The
average of this overhead is about 4.35 %.

We calculate also the overhead of retrieving all entities in one query with
ODBAPI and JDBC. For this, we illustrate in TABLE 6.4 the evolution of the
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Entities number | 10 50 100 500
ODBAPI (ms) 677 | 2309 | 4164 | 18238
JDBC (ms) 662 | 2205 | 3878 | 17696
A (%) 2.26 | 4.71 | 7.37 | 3.06

Table 6.3: Response time of the operation delete entities with ODBAPI and JDBC

response time according to the number of retrieved entities using ODBAPI and
JDBC. The average of this overhead is about 8.06 %. The performance of ODBAPI
degrades for 4000 entities which is probably due to a problem of memory manage-
ment.

Entities number | 100 | 500 | 1000 | 2000 | 3000 | 4000
ODBAPI (ms) | 215 | 269 | 305 | 349 | 416 543
JDBC (ms) 213 | 263 | 288 | 347 | 408 422
A (%) 0.93 | 2.28 | 5.90 | 0.57 | 1.96 | 28.67

Table 6.4: Response time of the operation retrieve all entities with ODBAPT and
JDBC

To sum up, the overhead that we obtained is quite acceptable for all type
of operations (Answering therefore Question;). However, we can enhance the
response time of our API by decreasing the conversion time that is big especially
when it comes to convert big volume of data.

6.4 Ease Of ODBAPI Use

ODBAPI is intended to ease the developers life and alleviate the burden on them
while implementing multiple data stores based applications. However, it would be
certainly worthwhile to concretely evaluate this and try to answer this question:

e Questiony: Does ODBAPI really alleviates the burden on developers?

To tackle Questiony, we evaluate the gain for developers of using ODBAPI
compared to proprietary APIs. The gain is measured in terms of implementation
time and of source code lines number. Doing so, we want to show how ODBAPI
alleviates the burden on developers of multiple data stores based application.

For this purpose, we asked four developers (two trainees, a researcher, and an
engineer) to implement two versions of an application interacting with MySQL as a
relational data store and MongoDB as a document data store. In this application,
developers should create an entity set, and create, retrieve and delete an entity in
both data stores. The first version of the application is coded using ODBAPI to
interact with both data stores and is referred to as Version;. Whereas the second
version is implemented using proprietary APIs of each data store and it is called
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Versiong. Indeed, developers should use the JDBC API and the MongoDB API
to interact with the relational and the MongoDB data stores respectively.

In Table 6.5, we illustrate a comparison chart between the implementation
time and the lines number of code sources of the same application implemented
with/without ODBAPI. It is worthy to say that the implementation time includes
the time of the familiarization to the APIs. It is comparable in both cases because
the four developers were already familiar with JDBC (just one API to learn for
both scenarios). To count lines number, we start from the first line in a JAVA
class (i.e. the name of a class) and we finish by the closing brace of the JAVA
class. We do not take into account the lines containing comments and the imports
of the libraries and the dependencies. To compare between the two versions,
we propose to evaluate the gain in terms of implementation time and the lines
of source code number. The gain in terms of implementation time (resp. lines
number) is obtained by calculating the ratio between the difference between the
implementation time (resp. lines number) of Versions and the implementation
time (resp. lines number) of Versioni, and the implementation time (resp lines
number) of Versions. We define the following formulas:

timever.s‘ionQ_timeversionl) * 100

ain; ion time =
g implementation time timeyersion2

e _ [ linesNumberyersion2—linesNumber,ersionl
gaiMiines number — ( Tines Numberyorsiona * 100

Using these two formulas, we obtain an average gain;mpiementation time €quals
to 49,5% and an average gaingnes numper €quals to 63,68%. These results are im-
portant since they prove that we really alleviate the burden on developers and we
ease his/her task. Indeed, the gain in terms of time encourages the use of ODBAPI
since (1) it improves the developers productivity and (2) it increase the adoption
of ODBAPI. Whereas the gain in terms of lines number promotes developers to
use ODBAPI. In fact, it shows the portability of applications. In addition, appli-
cations may migrate from one Cloud environment to another frequently. Hence the
adaptation of the source code of the application to the new Cloud environment will
be easier and lighter. Finally, it decreases the errors number in application and
developers fix bugs in their codes sources easily (answering therefore Questions).

by oy 2 =
[<¥] <] <] ¥
2 2 2 2
(e} o o o
5 ° 5 5
4 4 4 4
<) <% <% <%
~a A A A
— o — N — N ~ 3]
= = = = = = = =
.S 2 .2 p= 2 .S 2 .S
5| 5| E |5 5|5 E
> > > > > - > >
Implementation time (mn) 40 | 66 | 55 | 103 | 45 | 112 | 57 | 118
Lines of source code number | 20 | 57 | 22 52 23 62 20 65
9N implementation time (70) 39,94 46,60 59,82 51,69
9N ines number (%) 64,91 57,69 62,9 69,23

Table 6.5: Evaluation of ODBAPI in terms of the implementation time and source

code lines number
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In Listing 6.1, we present an example of an application programmed using
ODBAPI. This application interacts with a MongoDB and a MySQL data stores.
In fact, it enables the creation of an entity set called person of type MongoDB (see
lines 3-6). Then it creates a document having an id equals to 1 (see lines 9-12),
it retrieves it (see lines 15-17) and it deletes it (see lines 20-22). In addition, this
sample of code source allows the creation of an entity set of type MySQL (see lines
25-27). This entity set is referred to as city. It also enables to create (see lines
30-32), retrieve (see lines 35-36) and delete an entity (see lines 39-40). In Listing
6.2, we present the same application implemented using the proprietary APIs of
MySQL (see lines 3-41) and MongoDB (see lines 43-52).

Create an entity set of type MongoDB
JSONObject jsonEntitySetl = getJsonQuery (" file/EntitySetl.json');
CreateEntitySetImpl ces = new CreateEntitySetImpl();
ces.createEntitySet ("http://localhost:8182/odbapi/entityset/person',
"database /MongoDB" |, "test", jsonEntitySetl);

~~~~~~~~ Insert a document in a MongoDB database
JSONObject jsonEntityl = getJsonQuery (" file/Entityl.json");
10 CreateEntityIlmpl ce = new CreateEntityImpl();
11 ce.createEntity ("http://localhost:8182/odbapi/entityset/person/entity /1",

OO WN -

12 "database/MongoDB", "test", jsonEntityl);
13
14 /oxkkkkkkkx Retrieve a document in MongoDB database s sksk sk +

15 RetrieveEntitylmpl re = new RetrieveEntitylmpl ();
16 re.retrieveEntity ("http://localhost:8182/odbapi/entityset/person/entity /1",

17 "database/MongoDB", "test'");
18
19 Delete a document in MongoDB database

20 DeleteEntitylmpl de — new RetrieveEntityImpl ();
21 de.retrieveEntity ("http://localhost:8182/odbapi/entityset/person/entity /1",

22 ‘"database/MongoDB", "test");
23
24 [/ ko ok ok ok ok ok Create an entity set of type MySQLo k% %% *

25 JSONObJect jsonEntitySet2 = getJsonQuery (" file/EntitySet2. Json"),
26 ces.createEntitySet ("http: //localhost 8182/odbapi/entityset/city"

27  "database/MySQL", "world", jsonEntitySet2);
28
29 ek Insert a tuple n MySQL database s sx%x

30 JSONObJect jsonEntity2 = gethonQuery(”flle/hnhtybetz json");
31 ce.createEntitySet("http://localhost:8182/odbapi/entityset/city/entity/2_

32 "database/MySQL", "world", jsonEntity2);

33

34 « Retrieve a tuple in MySQL database ssskskokoksk

35 re.retrieveFlntity(”http://localhost:8182/0dbap1/entltyset/mty/entlty/ !
36 "database/MySQL", "world");

37

B8 [k sk sk ok okok ok ok Delete a tuple in MySQL database sskskskskskskk

39 de. retrleveEntlty(”http //localhost: 8182/0dbap1/entltvset/mtv/e11t1ty/2
40 "database/MySQL", "world");

41

Listing 6.1: Sample of a code source of an ODBAPI-based application interacting
with a MySQL and MongoDB data stores

1

2 JDBC part I

3 Connection conn = null;

4 Properties connectionProps = new Properties ();

5 connectionProps.put("user", "root'");

6 connectionProps.put("password"”, "root'");

7 conn = DriverManager.getConnection ("jdbc:mysql://localhost:3306"4+ "/world'",
8 connectionProps);

9 System.out.println ("Connected_to_database');

10 String queryO="DROP_TABLE_city ;";

11 Statement stmt0 — conn.createStatement ();

12 stmt0.executeUpdate (query0);

13 String query—"CREATE_TABLE_city (id _.INT_PRIMARY_KEY, _nom_VARCHAR(100));";

14 Statement stmt — conn.createStatement ();
15 stmt.executeUpdate(query );
16 Statement stmt2 = conn.createStatement ();

17 String query2="INSERT_INTO_city _VALUES_ (1, France ’);"
18 stmt2.executeUpdate(query2);
19 Statement stmt3 = conn.createStatement ();
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20
21

23
24
25
26
27
28
29
30
31

33
34

36
37
38
39
40
41
42
43

45
46

48
49
50
51
52
53

String query3="SELECT_x_FROM_city _.WHERE_id=1;";
ResultSet rs = stmt3.executeQuery(query3);
while (rs.next()) {
System .out.printin{(rs.getInt(1)+"_"+rs.getString (2));
}

Statement stmt4 = conn.createStatement ();
String query4="DELETE_FROM_city _WHERE_id=1;";
stmt4.executeUpdate (query4 );
Statement stmt5 = conn.createStatement ();
String query5="SELECT_%_FROM_city ;";
ResultSet rsb = stmt5.executeQuery (query3);
while (rsb.next()) {
System .out.println (rsb.getInt(0)+"_"+rsb.getString (1));

stmt.close ();
stmt2. close ()
stmt3.close ()
stmtd.close ()
stmt5.close ()
rs.close ();
rsb5.close ():
conn.close ();

5
5
5
5

MongoDB API t
MongoClient mongoClient = new MongoClient ();

MongoDatabase database = mongoClient.getDatabase("test");
MongoCollection<Document> collection = database.getCollection ("person');
Document doc = new Document(“name”, "Rami").append("type", "sellami");
collection .insertOne (doc);

Document myDoc = collection . find (eq("name’", "Rami")). first ();

System .out.println (myDoc.toJson ());

collection . deleteOne(eq("name”", "Rami"));

Document myDocl = collection . find{eq("name", "Rami")).first ();

System .out.println (myDocl.toJson ());

Listing 6.2: Sample of a code source of a proprietary APIs-based application
interacting with a MySQL and MongoDB data stores

To sum up, in this section we answer the Questions. Indeed, it is not costly in
terms of time and manpower. Then, we conducted some experiments to demon-
strate that ODBAPI really facilitates developers tasks. It increases their produc-
tivity. In addition, it encourages them to adopt it in their applications.

6.5 Complex Queries Optimization

In order to validate our approach for optimal execution plans generation and the
proposed cost model, we first verified that their behaviors are similar to what we
have intuitively expected. In fact, to check the reliability of Algorithm 1, we tested
it with different scenarios that either are trivial or allow us to intuitively predict
the optimal execution plan.

Afterwards, we propose to perform some experiments in order to evaluate the
cost of an optimal execution plan. In parallel with this, we evaluate the running
time our algorithm (i.e. the optimization time) and the size of the research area
in terms of number of nodes in all execution plans. These experiments will enable
us to answer the following questions:

e Questions: Does the parallelism of operations execution reduces the total
cost of a query?

e Questiony: Does the external joins reduce the total cost of a query?

e Questions: Does the parallelism and the external joins are complementary
and reduce the total cost of a query?
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To perform these experiments, we propose to use two variants of join queries
that we illustrate by a directed graph. In this latter, the nodes represent the
entity sets and the edges represent the join between two given entity sets. The
first variant has a linear form in which each entity set may join at least one entity
set and at most two entity sets (see Figure 6.5a). This kind of queries is usually
used in relational data stores. Whereas the second variant has a star form in
which all entity sets invoked in a query join only the same entity set (see Figure
6.5b). This kind of queries is generally used to interact with data warehouses.
These two variants of queries are executed in four different scenarios in which we
parallelize subqueries execution (or not) and we enable external joins execution
(or not). These scenarios are as follows :

(a) Example of a linear join (b) Example of a join
query query as a star

Figure 6.5: Example of a join queries

e Scenario 1: It consists in sequentially running a join query while only using
the VDS and integrated data stores for the push-down operations. It is
noteworthy that this scenario is the most naive one.

e Scenario 2: It consists in sequentially running a join query using the VDS
and the integrated data stores for the external joins and the push-down
operations.

e Scenario 3: It consists in running a join query in parallel while only using
the VDS. It is worthy to say that the parallelism, in this case, is done at
that integrated data stores to execute push-down operations.

e Scenario 4: It consists in running a join query in parallel using the VDS
and the integrated data stores. We parallelize the execution of the external
joins and the push-down operations.

To conduct these experiments, we propose to use four queries for each variant
of join queries (i.e. linear or star) and to increment the number of joins by two
starting by three joins. In the following, we present an example of a linear join
query and a join query as a star. Both of these queries contain five joins and
involve six entity sets (i.e. A, B, C, D, E and F). Each entity set contains at
least a join attribute and may contain some other attributes over which we apply
projection and selection operations.
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LINEAR JOIN QUERY

> POST /odbapi/query
> Database-Type: database/VirtualDataStore
> Accept: application/json
> {
"select" : ["D.tag", "idA", "C.dataC", "F.tag"],
"from" : ["A", "B", "C", "D", "E", "F"I,
"where"
L

"rank=3",

"A.idA=B.fkeyBA",

"B.idB=C.fkeyCB",

"D.fkeyDA=A.idA",

"E.fkeyED=D.idD",

"F.fkeyFE=E.idE"

V V V V V V V V V V V.V

JOIN QUERY AS A STAR
POST /odbapi/query
Database-Type: database/VirtualDataStore
Accept: application/json
{
"select" : ["D.tag", "idA", "C.dataC", "F.tag"l,
"from" : ["A", "B", "C", "D", "E", "F"],
"where"
L
"rank=3",
"A.idA=B.fkeyBA",
"A.idA=C.fkeyCA",
"A.idA=D.fkeyDA",
"A.idA=E.fkeyEA",
"A.idA=F.fkeyFA",

During our experiments, we consider the following constraint on the catalog’s
parameters. Indeed, we set the parameters «, (3, and 7 to the same value since
we assign the same importance to the cost of the CPU, the input/output, and
the communication respectively. Then, we set the parameters convert, ship, scan,
load, and initE'TSL to the same value at the VDS and the integrated data stores.
We suppose that the integrated data stores are more efficient in executing join
queries than the VDS (especially when it comes to handle a very large size of
data). Hence, the values of initJoin and join parameters are larger at the VDS.
Finally, we approximately set the same cardinality and the selectivity parameters



116 Evaluation € Validation

for the involved entity sets.

In Table 6.6 and Table 6.7, we showcase the results of executing a linear join
query and a join query as a star while changing the number of joins and the
scenarios. We also present in Figure 6.6 and Figure 6.7 the total cost evaluation
according to the scenarios 1 to 4 and the joins number. Thanks to these results, we
validate the key ingredients of our approach to generate an optimal execution plan
(independently of the variant of the join query). Against this, we compute the
average gain in the four scenarios. We provide an overview of the gains between
the different scenarios in Table 6.8. The gain is obtained by calculating the ratio
between the difference between the total cost of the worst scenario and the total
cost of the best scenario, and the total cost of the worst scenario. We use the
following formula :

- totalCostpgiveScenario—totalCostyesiScenario
ain = ‘ * 100
g < totalCostpaiveScenario

e Importance of the external joins: In both scenarios 2 and 4 we show
that involving the integrated data stores in the execution of join queries is
important. Indeed, we obtain a better total cost compared to scenarios that
are exclusively using the VDS. We compute the average gain between the
gain in scenarios 1 and 2, and in scenarios 3 and 4. We have an average gain
equals to 89,23%.

e Importance of the parallelism: In both scenarios 3 and 4 we prove that
parallelizing the execution of external joins and pushdown operations is ben-
eficial and generates an important gain compared to the two other scenarios
(in which the execution is sequential). The average gain of this two scenarios
compared to the two others is equal to 83,61%.

e Importance of combining different optimization strategies: In the
scenario 4, we maximize the work done by the integrated data stores and we
execute queries in parallel. This scenario has the best total cost compared to
the naive scenario which is the scenario 1. Indeed, the average gain is equal

t0 99,97%.

e A small optimization time: Although we propose a dynamic program-
ming based algorithm, the optimization time is small and reasonable espe-
cially when we take into account the size of the research area.

At this stage, we answer the Questions and Questiony. Indeed, we prove the
importance of the external joins and the parallelism to obtain an optimal total
cost.

In Figure 6.8, we showcase an example of an optimal execution plan of a linear
join query. This query involves eleven entity sets. First we remark that we only
have nine nodes of type push-down. Indeed, we have defined in the catalog that
the entity sets B and C belongs to the data store S2 and this data store supports
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3 joins 5 joins 7 joins 9 joins
Total cost (107) 16900,61 | 1136059 | 874579,4 | 1092576,37
Scenario 1 | Optimization time(ms) 6 14 31 116
Research Area (nodes) 8 26 43 94
Total cost (107) 1215,24 | 9088,11 | 37046,65 | 51682,33
Scenario 2 | Optimization time (ms) 10 36 60 149
Research Area (nodes) 36 285 605 2050
Total cost (107) 27,73 249,62 | 316734 1204,53
Scenario 3 | Optimization time (ms) 7 15 32 119
Research Area (nodes) 8 26 43 94
Total cost (107) 6,06 12,51 535,12 693,76
Scenario 4 | Optimization time (ms) 11 44 72 167
Research Area (nodes) 36 285 605 2005

Table 6.6: Results obtained for the case of linear queries

3 joins 5 joins 7 joins 9 joins
Total cost (104) 23180,71 | 46897,97 | 119899,13 | 305455,02
Scenario 1 | Optimization time(ms) 8 33 126 1090
Research Area (nodes) 16 86 456 2314
Total cost (10%) 1080,46 | 3039,93 | 4853,58 8158,75
Scenario 2 | Optimization time (ms) 19 67 196 859
Research Area (nodes) 110 821 5475 34487
Total cost (10%) 30,06 57,58 113,11 219,88
Scenario 3 | Optimization time (ms) 9 40 136 1113
Research Area (nodes) 16 86 456 2314
Total cost (10%) 5,35 10,23 16,43 24,85
Scenario 4 | Optimization time (ms) 22 86 228 958
Research Area (nodes) 110 821 5475 34487

Table 6.7: Results obtained for the case of queries as star

Total cost

Linear join queries

3 5

7

Joins number

1,00E+10
1,00E+08 +
1 00E+06 - M S5cenariol
M 5cenario 2
1,00E+04 +
W Scenario3
1,00E4+02 - Scenario d
1,00E+00 -

Figure 6.6: Total cost evaluation according to the scenarios 1 to 4 and the joins

number- Case of linear join queries (Logarithmic Scale)

the execution of join queries. Hence, we merge these two nodes into a single node.
Added to that, we delegate the execution of the join between the entity sets B
and C to their proprietary data store. It is the same case of the entity sets G and
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Join queries as a star

1,00E+10
1,00E+08
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1,00E+07
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Total cost

M Scenario 2
W Scenaric 3

Scenariod

3 5 7 9

Joins number

Figure 6.7: Total cost evaluation according to the scenarios 1 to 4 and the joins
number- Case of join queries as a star (Logarithmic Scale)

Linear join query Join query as a star Average

3 joins | 5 joins | 7 joins | 9 joins | 3 joins | 5 joins | 7 joins | 9 joins gain

JAING cenariod\ Scenariol 92,8 92,8 95,8 95,3 95,3 93.5 96,01 97.3 94,85
AN S conario Seenariol | 99,81 99,8 99,6 99,6 99,9 99,9 99,9 99,9 99,8
AN S conariof Seenariol 100 100 99,9 99,9 100 100 100 100 99,97
JAING conariod\ Scenario? 99,5 98,6 98,7 98,7 99,5 99,7 99,7 99,7 99,26
AN S conarion Seenarios | 82,96 | 82,96 83,1 83,05 80,5 82,22 | 85,46 | 88,69 83,61

Table 6.8: Gain between scenarios

H that belong to the data store S5. Second, there is a part of the work done by
the integrated data stores. For instance, the external join between the entity sets
J and K in the data store S7 and the external join between a resulting entity set
from an external join and a resulting one from a VDS join. Third, we invoke in
some other cases the VDS to execute join when it is costly if an integrated data
store executes it.

In Table 6.9 and Table 6.10, we illustrate the results obtained after executing
queries across a very large size of data (see the total cost evaluation according to
the joins number in Figure 6.9 and Figure 6.10). It is noteworthy that values of
the total cost in these figures are divided by 10'! in order to clearly show the gain
between different scenarios. To conduct these experiments, we propose to use the
same four queries used below and the same scenarios. We just modify the catalog
by increasing the cardinality of entity sets. Indeed we multiply each cardinality by
100. These experiments show that we also obtain an optimal total cost in the case
of scenario 4. We provide an overview of the gains between the different scenarios
in Table 6.11. The average gain between the scenarios 1 and 4 is equals to 100%.
The gain becomes more important compared to the previous results. Hence, we
conclude that maximizing the work of integrated data stores is very important
especially when it comes to query a very large amount of data.
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Figure 6.8: Example of an execution plan - Case of a linear join query

3 joins 5 joins 7 joins 9 joins
Total cost (10'1) 2,12.10° | 3,68.101% | 1,49.10'1 | 1,56.10'!
Scenario 1 | Optimization time(ms) 6 15 31 114
Research Area (nodes) 8 26 43 94
Total cost (10'1) 2,37.10% | 4,26.10°% 4,03.10° 4,58.10°
Scenario 2 | Optimization time (ms) 10 37 61 151
Research Area (nodes) 36 285 605 2050
Total cost (1011) 1,61.102 | 1,81.107 | 2,53.10°5 | 3,19.10%
Scenario 3 | Optimization time (ms) 6 15 32 119
Research Area (nodes) 8 26 43 94
Total cost (10'1) 9,35 2,64.10° 4,55.107 5,74.107
Scenario 4 | Optimization time (ms) 11 43 74 166
Research Area (nodes) 36 285 605 2005

Table 6.9: Results obtained for the case of linear queries - Big data context

6.6 Conclusion

Although our solution is intended to support developers of multiple data stores
based applications, consumers do not accept to adopt a solution that did not proved
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3 joins 5 joins 7 joins
Total cost (1011) 1,28.10% | 3,28.10'° | 2,63.1017
Scenario 1 | Optimization time(ms) 8 33 127
Research Area (nodes) 16 86 456
Total cost (1011) 1,30.10° | 3,48.10'% | 2,43.10%°
Scenario 2 | Optimization time (ms) 19 69 222
Research Area (nodes) 110 821 5475
Total cost (1011) 1,61.10% | 2,57.10° 5,15.109
Scenario 3 | Optimization time (ms) 9 36 138
Research Area (nodes) 16 86 456
Total cost (1011) 8,35 1,34.10° 3,29.10°
Scenario 4 | Optimization time (ms) 22 84 228
Research Area (nodes) 110 821 5475

Table 6.10: Results obtained for the case of queries as star - Big data context

Linear join queries - Big data context
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Figure 6.9: Total cost evaluation according to the scenarios 1 to 4 and the joins
number- Case of linear join queries in a big data context (Logarithmic Scale)

Join query as a star - Big data context
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Figure 6.10: Total cost evaluation according to the scenarios 1 to 4 and the joins
number- Case of join queries as a star in a big data context (Logarithmic Scale)
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Linear join query Join query as a star Average
3 joins | 5 joins | 7 joins | 9 joins | 3 joins | 5 joins | 7 joins gain
GAING cenario2\ Scenariol 98,9 98,8 97,1 97,4 99 99 99 98,45
GAIN G cenario3\ Scenariol 99,9 100 99,8 99,8 100 100 100 99,92
JAING cenariod\ Scenariol 100 100 100 100 100 100 100 100
GAING cenariod\ Scenario? 99,6 99,4 98,9 98,6 100 100 100 99,5
GaAING cenariod\ Scenariod 94,2 85,4 82 82 94,8 94,8 93,6 89,57

Table 6.11: Gain between scenarios - Big data context

its efficiency in real environments. For this sake, we presented in this chapter some
implementations and experiments to validate our approach. Indeed, we presented
some proofs of concept proposed and integrated in the OpenPaaS project. We
introduced the current state of ODBAPI as well as three applications implemented
using it. Then we presented a tool allowing the automatic discovery of Clouds
data stores. Afterwards, we presented the different experiments that we realized
to prove the efficiency of our work. First, we evaluate the overhead of ODBAPI
compared to the proprietary APIs. Indeed, we obtain a quiet acceptable overhead
that it does not prevent developers to use our API. Second, we evaluate the gains
in terms of implementation time and number of lines of source code in order to
show the easiness of using ODBAPI. In fact, we proved that we really alleviate
the burden on developers (e.g. during application implementation, application
validation and testing, etc.). This will increase their productivity. In addition, we
show that ODBAPI is portable and user-friendly. Third, we evaluate our algorithm
to generate optimal execution plan. This enables us to prove the importance of
parallelizing queries execution and the invoking integrated data stores to execute
complex queries.

To sum up, the obtained results are encouraging. We showed the feasibility
and efficiency of our approach of supporting multiple data stores applications in
Cloud environments. At the same time, they opened new perspectives to our work
that we will introduce in the next chapter.
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CHAPTER 7

Conclusion & Future Works
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7.1 Contributions

The production of a huge amount of data and the emergence of Cloud computing
have introduced new requirements for data management. Many applications need
to interact with several heterogeneous data stores depending on the type of data
they have to manage: traditional data types, documents, graph data from social
networks, simple key-value data, etc. Interacting with heterogeneous data models
via different APIs, and multiple data stores based applications imposes challenging
tasks to their developers. Indeed, programmers have to be familiar with different
APIs. In addition, the execution of complex queries over heterogeneous data mod-
els cannot, currently, be achieved in a declarative way as it is used to be with
mono-data store application, and therefore requires extra implementation efforts.
Moreover, developers need to master and deal with the complex processes of Cloud
discovery, and application deployment and execution.

In this manuscript, we proposed an integrated set of models, algorithms and
tools aiming at alleviating developers task for developing, and deploying multiple
data stores applications in Cloud environments. Indeed, we introduced four main
contributions:

e Unifying relational and NoSQL data models: The main key ingredient
of data stores integration is to ensure a unified view of the heterogeneous
integrated data stores. In the light of this, we proposed a unified data model
that allows to provide a unique view on relational and NoSQL data stores.
Then we presented a global schema as the set of collections used in the
application and expressed with the unified data model enriched with a set of
the refinement rules. Finally, we proposed our query algebra defined based
on a formal definition of the unified data model and allowing complex queries
expression and execution.
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¢ ODBAPI to uniquely interact with relational and NoSQL data

stores: Based on our unified data model, we defined a generic resource
model to represent the different elements of heterogeneous data stores in a
Cloud environment. Then, we proposed a unique REST API that enables
the management of the described resources in a uniform manner. This API
is called ODBAPI and allows the execution of CRUD and complex opera-
tions on relational and NoSQL data stores. The highlights of ODBAPI are
twofold: (i) decoupling cloud applications from data stores in order to facil-
itate their development and their migration, and (ii) easing the developers
task by lightening the burden of managing different APIs. It is noteworthy
that in the current version of ODBAPI server, we took into account four
data stores: MySQL, Riak, CouchDB, and MongoDB.

Virtual data stores for complex queries execution: Although ODBAPI
enables the execution of queries across relational and NoSQL data stores, it
does not support multi-sources queries execution. To cover this gap, we pro-
posed the VDS that is a mediator based component integrating relational
and NoSQL data stores. The role of the VDS is fivefold: (1) it parses the
query in order to create the corresponding algebraic tree, (2) it performs al-
gebraic optimization by pushing down unary operations, (3) it annotates the
algebraic tree with information from the catalog, (4) it generates an optimal
execution plan, and (5) it evaluates the query. In order to ensure this, we
proposed a cost model composed of a set of cost formulas for each elementary
operation. This cost model is implemented in our algorithm generating the
optimal execution plan that is based on a dynamic programming approach.

Data stores discovery and automatic application deployment: Once
the developer has completed the development of his/her application, we pro-
vided him the possibility to express his/her application requirements (mainly
data stores) in the abstract application manifest. Then, he/she sends it to
the Cloud providers discovery component to elect the appropriate Cloud
provider to the application requirements. Indeed, this component discovers
the capabilities of Clouds data stores and returns these capabilities in the
offer manifest. Based on that, we run our matching algorithm to elect the
most suitable Cloud provider to the application requirements and generate
the deployment manifest of the application. Finally, we deploy the applica-
tion using the COAPS API that takes as input the deployment manifest. We
extended COAPS in order to support multiple data stores based applications
deployment in Cloud environments.

The contributions that we presented in this manuscript have been validated

by developing a prototype of the proposed solutions that is used to implement
use cases from the OpenPaaS project. In addition, several experiments have been
performed in order to evaluate the overhead of ODBAPI and our algorithm to
optimize and evaluate complex queries.
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To sum up, these contributions respect the research objectives that we dressed
at the beginning of this thesis as follows (see Section 1.3):

e Cloud Computing and Big Data: The different components that we pro-
posed in this manuscript are intended to work in a Cloud computing area.
We support all the lifecycle of an application from the discovery of Cloud
providers to the Cloud deployment, including the coding of the application
using ODBAPI which is a REST-base API. In addition, these different con-
tributions take into account the very large volume of data and the variety
of data stores regarding the Big Data area. In fact, our VDS-based solution
supports the optimization and evaluation of complex queries over volumi-
nous data. Besides, we consider multiple data stores based applications in
the different components.

e NoSQL data stores support: The different proposed solutions take into
account relational and NoSQL data stores.

e Multiple data stores based applications: Thanks to our end-to-end
solution, we support support multiple data stores based applications lifecycle
in a Cloud environment.

e Easy access to heterogeneous data stores: In this thesis, we facilitate
the access to relational data stores thanks to our unified data model. Using
this latter, developers can easily express complex queries and the VDS is
able to evaluate and optimize their execution.

e Automation: In order to relieve utmost developers task by removing the
burden of managing the high heterogeneity of data stores in Cloud environ-
ments, the different components of our work automatically function.

7.2 Perspectives

During our work, we faced different complex problems. We solved various of
them and we included others in our future work. The evaluation also opened
new research perspectives to follow in short, medium and long term.

As short term work, we aim to go further in applying ODBAPI and the VDS
to other qualitatively and quantitatively various scenarios and real use cases. This
allows us to identify possible discrepancies and to make our work more reliable
for public use. In addition, we are aware that the VDS component is still in early
stage and we would like to enhance it and evaluate its efficiency and accuracy
by adding new kind of operations (e.g. aggregates). Indeed, it only enables the
optimization and evaluation of a restricted set of complex queries regarding the
expressiveness of our query algebra. Moreover, our execution model needs to be
enhanced including non blocking executions. Finally, we focus to enhance our
Cloud data stores discovery component by supporting other deployment APIs (e.g.
ROBOCONTF ©). This will enable us to render our manifest-based approach more

SHome page of ROBOCONF: http://roboconf.net/fr/index.html
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generic and to test it with new solutions. To do so, we have first to discover this
API and try to express its required inputs in the deployment manifest.

As medium term future work, we will focus on two major related challenges.
First, we aim to enhance our unified data model and associated query algebra. In
fact, in the proposed unified data model, we enable the representation of complex
attributes (e.g. an attribute composed by multiple attributes, a multivalued at-
tribute, etc.). However this familly of attributes is not optimally used. Even if, we
defined the nest and unnest operations, we do not support them in the VDS com-
ponent and especially in optimization process. For that, we would like to extend
our cost model to optimally execute queries targeting complex objects in a data
model in the VDS.

Second, our unified data model suffers from a lack of semantics and exposes
some ambiguities. Even if we accomplish it by a set of refinement rules, these
latter are not sufficient. For instance, we may encounter two attributes that are
syntactically written in the same manner; but they do not semantically denote the
same meaning (e.g. nmame may denote the full name of a person or his/her first
name). In addition, one attribute may have different meaning (e.g. the attribute
conference Ranking.conference may denote a ranking of a conference or a journal).
To cover this gap, we propose to define an ontology to semantically enrich our
unified data model and remove these ambiguities (e.g. [45,66]). This will enable
us to more automate our approach and efficiently query data. In addition, we can
enrich our unified data model using virtual entity sets like relational views. These
views may be modeled as new virtual entity sets in the global schema defined as
query expressions on actual entity sets.

Finally, as long term work, we will take into account graph data stores. Indeed,
this type of data stores exposes a very specific data model since data belong either
to the nodes or to the edges. Mapping such data stores models in our unified data
model is not possible today. We believe that considering this kind of data stores in
our unified data model is mandatory because it is a family of NoSQL data stores
and it is widely used nowadays. To cope with this challenge, we may consider one
intuitive solution that consists in representing the nodes set (resp. edges set) by
an entity set. Hence, we illustrate a graph data store by two entity sets in our
unified data model. Once we achieve that, we will propose a graph data store
based implementation of ODBAPI.

Afterwards, we aim to have a better support for the execution of queries over
very large volumes of data. Although we support some optimization and evalua-
tion of queries across voluminous data, we are aware that we can further improve
their execution. To do so, we plan to investigate the integration of parallel data
execution models such as Hadoop MapReduce [67,68] or Apache Spark [69] in our
execution process. One possible solution for that is to encapsulate big data sources
by ODBAPI wrappers implemented on top of Map/Reduce and/or Spark. These
wrappers have to transform our queries in terms of HiveQL [70] or SQLSpark [71].
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