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Résumé

Ce mémoire de these porte sur I'étude de nanostructures semi-conductrices a base de GaN,
sous la forme de puits quantiques (PQs) et d’hétérostructures insérées dans des nanofils (NFs). Elles
constituent la région active de composants inter-sous-bande (ISB) a base de nitrures pour
I’optoélectronique infrarouge. Cette thése résume des efforts dans la conception de la structure de
bande des empilements dans la croissance épitaxiale et la caractérisation structurale et physique des
objets réalisés. Le dessin des nanostructures pour ajuster leur longueur d’onde
d’absorption/émission a été effectué en utilisant le logiciel Nextnano3 pour la résolution des
équations de Schrodinger-Poisson, et les structures ont ensuite été synthétisées par épitaxie par jets

moléculaires.

Le manuscrit lui-méme est composé d'un texte de 55 pages, d'une bibliographie et neuf
articles en annexe dont je suis le premier ou le deuxieme auteur. Parmi ces articles, sept sont déja
publiés dans des journaux internationaux a comité de lecture, et deux sont soumis pour publication.
Parmi ces documents, il y a un article de revue de I'état de I'art des composants inter-sous-bande
(annexe 1), et un chapitre de livre qui donne une image plus compléte de la technologie ISB a base de

nitrures (annexe 2).

Ce manuscrit est composé de sept chapitres. Un premier chapitre d’introduction générale
expose la motivation, les objectifs et I'organisation du mémoire de thése. Le chapitre 2 rappelle les
particularités des matériaux nitrures du groupe lll. Le texte commence par une description de la
structure cristalline, la polarisation spontanée et les constantes élastiques et piézo-électriques, suivie
par la déduction théorique des regles de sélection pour les transitions ISB. Ce chapitre se termine

avec une revue de I'état de I'art de la technologie ISB a base de nitrures.

Le chapitre 3 est focalisé sur les techniques expérimentales mises en ceuvre durant cette
thése, en commencgant par I'épitaxie par jets moléculaires assistée par plasma (PAMBE). On décrit les
parametres de croissance pour les PQs et les NFs a base de GaN. On explique par ailleurs, la méthode
de simulation, basé sur le logiciel Nextnano®, et les paramétres physique des matériaux utilisés. Ce

chapitre se termine avec une présentation des techniques de caractérisation structurale et optique.

Le coceur de la contribution scientifique de cette thése est décrit dans les chapitres 4 a 6. Ces
chapitres portent respectivement sur les composants THz a base de PQs polaires, les
hétérostructures GaN/AIN dans les NF, et les PQs synthétisés sur des plans cristallins d’orientations
non-polaires et semi-polaires. Les structures ont été concues a I'aide du logiciel Nextnano®, et ont été
ensuite synthétisées par PAMBE. Pour finir, ces structures ont été caractérisées optiquement et

structuralement, avec les résultats présentés dans les chapitres et démontrés dans les annexes.



Le chapitre 4 décrit la conception et la réalisation expérimentale des structures de multi-puits-
guantique (MPQ) a base de nitrures polaires avec les transitions ISB dans le domaine spectral THz.
Des architectures MPQ a base de 4 couches d’AlGaN sont proposées pour augmenter la stabilité de
I'énergie d’absorption ISB compte tenu des incertitudes des parametres de croissance. Sur ces
structures élaborées en PAMBE, nous avons montré expérimentalement une absorption de Ia
lumiére polarisée TM a environ 14 THz. Les résultats de ces expériences ont été publiés dans les
annexes 3 et 4. Afin d’aller vers des longueurs d’ondes plus longues et vers l'intégration des MPQ
dans la région active des composants ISB complexes, il a fallu réduire les champs électriques
internes. Cet objectif a été réalisé avec les MPQ de profils pseudo-carrés, avec des barrieres plus
étroites (monocouches) et des fonctions d’ondes symétriques. La réalisation de ces structures a
permis de démontrer une absorption ISB dans la gamme de 53 a 160 um (publiée dans I'annexe 5).
Les deux architectures décrites dans ce chapitre, les MPQs a base de 4 couches et les MPQs pseudo-
carrés, ont démontré une énergie d’absorption ISB stable malgré les fluctuations de I'épaisseur de
1-2 monocouches atomiques introduites par la croissance PAMBE, et malgré les fluctuations de la
composition des alliages ternaires. Cette robustesse structurelle s’appuie sur des calculs théoriques
réalisés au préalable. Enfin, ce chapitre se termine par une proposition de design de structure laser a
cascade quantique a base de GaN fonctionnant dans la gamme THz, qui incorpore les architectures

MPQ décrites précédemment.

Le chapitre 5 porte principalement sur les propriétés optiques inter-bandes et intra-bandes
des hétérostructures a base de nanodisques de GaN/AIN intégrés dans les NFs GaN avec différentes
densités de dopage de germanium. Une partie importante de ce chapitre est I'étude des propriétés
induites par I’état de contrainte liée a la présence d’une coquille d’AIN. Du point de vue optique, ces
nanodisques présentent des temps de vie des porteurs d’environ 5 ps qui ne changent pas beaucoup
avec la température. Ce phénomeéne a été attribué a I'absence de défauts dans la région active de ces
NFs et au confinement des porteurs en trois dimensions. Nous avons analysé les résultats des
mesures de photoluminescence résolue en temps par comparaison avec des simulations
tridimensionnelles de la structure électronique avec le logiciel Nextnano3. Nous avons ainsi
démontré théoriquement une séparation des fonctions d'onde de I'électron et du trou le long I'axe
de croissance du NF et perpendiculairement a cet axe. L'augmentation de la densité de dopage Ge
dans ces structures conduit a une diminution des champs électriques radial et axial qui séparent
I’électron et le trou. Cet alignement des fonctions d’ondes induit une diminution du temps de vie des
porteurs de presque deux ordres de grandeur (publiés dans I'annexe 6). En utilisant ces structures,
nous avons également montré pour la premiere fois I'absorption ISB dans les hétérostructures NFs,

autour des longueurs d’onde télécom. L’énergie des transitions ISB peut étre modifiée en changeant



la densité de dopage et I'épaisseur des nanodisques. Nos résultats montrent que les effets a N corps
tels que I'effet d’échange ou |I'écrantage par des plasmons sont des éléments essentiels a prendre en
compte pour expliquer qualitativement les énergies de transition observées dans l'infrarouge
(publiés dans I'annexe 7). La différence entre les dopants germanium et silicium est analysée par

rapport a leurs effets sur I'absorption ISB dans ces NFs hétérostructurés.

Le chapitre 6 montre la possibilité de synthétiser les hétérostructures GaN/AIN sur les
substrats non-polaires et semi-polaires. Nous avons analysé les transitions inter-bande et ISB dans les
structures a PQs déposées sur les plans m-(1-100), a-(11-20) et (11-22) du GaN et nous avons
comparé les résultats expérimentaux avec des calculs numériques. Par rapport aux plans non-
polaires, nous avons observé une supériorité des PQs dits « plans m » par rapport aux structures
« plans a » en termes de propriétés optiques et structurales. En nous focalisant sur les structures
« plan-m », nous avons montré de I'absorption ISB dans le domaine de 1,5-6,0 um (publié dans
I’annexe 8). De méme, des mesures inter-bande et ISB dans les PQs GaN/AIN semi-polaires ont été

publiées dans I'annexe 9.

Finalement, le chapitre 7 présente les conclusions de ce travail et apporte plusieurs
perspectives en ce qui concerne la fabrication des lasers a cascade quantique et des détecteurs IR a

base de NFs.
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Glossary

Abbreviation

Definition

2D

3D
ADF
AFM
BEP
FIR
FTIR
FWHM
HAADF
HRTEM
HVPE

ISB

LED

LO
MBE
MIR
ML
MOCVD
MOVPE
MQwW
n.i.d.
ND

NIR
NW
PAMBE
PL

Qcb
QcCL
QCSE
Qb
aw
QwIpP
RHEED
RMS

SL
STEM
TE

TEM
™

uv
XRD

two-dimensional

three-dimensional

annular dark field

atomic force microscopy

beam equivalent pressure

far-infrared

Fourier transform infrared spectroscopy
full width at half of the maximum value
High angle annular dark field spectroscopy
high resolution transmission electron microscopy
hydride vapour phase epitaxy

infrared

Intersubband

light emitting diode

longitudinal optical

molecular beam epitaxy

mid-infrared

monolayers

metalorganic chemical vapor deposition
metal-organic vapor phase epitaxy
multi-quantum-well

non-intentionally doped

nanodisk - those inside nanowire heterostructures
near-infrared

nanowire

plasma-assisted Molecular beam epitaxy
photoluminesence (spectroscopy)
guantum cascade detector

quantum cascade laser
guantum-confined Starck effect
guantum dot

quantum well

qguantum well infrared photodetectors
reflection high energy electron diffraction
root of the mean squared

superlattice

scanning tunneling electron microscopy
transverse electric

transmission electron microscopy
transverse magnetic

ultraviolet

X-ray diffraction



1. General Introduction

1.1. Motivation and targets

Group llI-nitride semiconductors have made the implementation of full-color optoelectronics
possible due to their large direct band gap and doping capabilities; this has led to the development
of blue and green light emitting diodes (LEDs). Heterostructures of these materials are found in the
marketplace for a variety of applications, such as for blue laser diodes (blue ray players) or LEDs for
household lighting. These materials are also currently used in high-power electronics because of
their mechanical/thermal robustness [1], high electrical breakdown fields, and high electron motility.
Furthermore, lll-nitrides are currently the only solid-state alternative to mercury lamps as ultraviolet
(UV) emitters [2]. By incorporating aluminum or indium into GaN, the bandgap of the material can
be increased or decreased, respectively. The introduction of InGaN in solar cells has also attracted
increasing interest because it can be optically active over a large spectral range — from the UV to the
near-infrared (NIR) [3]—[7]. Finally, these materials are also becoming interesting due to their large
conduction band offset [8], [9], large longitudinal optical (LO) phonon [10], [11] and their
applicability to create devices in the IR by using intersubband (ISB) transitions [12].

In ISB devices, proper understanding of the electron and hole distribution and lifetime is crucial
for the design of complex devices such as the quantum cascade laser (QCL) [13], [14]. The purpose of
this work was to further the understanding of the manipulation of nanoscale systems with the intent
of using these systems for ISB optoelectronic devices. An overarching goal for this thesis is to
establish the knowledge base necessary and the basic units needed to manipulate lll-nitride
heterostructures towards the realization of a Ill-nitride-based QCL. This is done through conduction
band engineering to accurately predict the ISB energy of these nanostructures from the NIR to the
far-infrared (FIR).

This thesis aims to push the boundaries of GaN-based ISB technologies in a three-pronged
approach focusing on c-plane GaN, in nanowires (NWs) and finally on nonpolar GaN:

— Using polar c-plane technologies, we aim to define the building blocks that will lead to the
creation of THz QCLs operating at room-temperature. By analyzing the inherent errors induced
from the plasma-assisted molecular beam epitaxy (PAMBE) system, we created conduction band
architectures eliciting ISB transitions in the THz spectral region which are insusceptible to these
errors. These primary designs were improved upon, by taking into account both the tunability of
the transition energy and tunneling transport requirements, in order to move forward towards
complete devices. By analyzing the various GaN QCL designs based on GaAs materials, we have

proposed a design specifically adapted to GaN.

— Using NW structures, we aim to create ISB devices that can operate at high efficiencies for
photodetection and eventually light emission/lasing. Towards this purpose, we have probed the
effect of nanodisk (ND) size and doping on the interband and ISB characteristics of GaN/AIN NW

heterostructures.



Finally, using alternative crystallographic orientations (nonpolar, semipolar), we aim to create
heterostructure designs that can cover the full infrared (IR) spectral region with simplified band
engineering through the reduction or cancelation of the polarization-induced electric fields. We have
first analyzed various crystallographic orientations to decide which is better in terms of optical and
structural performance. In view of the results, we have proceeded to explore the spectral

capabilities of m-plane superlattices (SLs).

In this thesis, | engineered the conduction band profiles to target certain operating wavelengths
from the NIR to FIR by simulating the structures using commercial nextnano® software [15]. | was
then in charge of the growth of these structures by PAMBE. Polar c-plane structures were grown by
me, while off-plane structures were grown either by me or by PhD student Caroline Lim. In the case
of NW heterostructures, growth was outsourced via collaboration with the group of Prof. Martin
Eickhoff at the Justus Liebig University in Giessen (Germany). | optically characterized the c-plane
samples and the NW heterostructures by photoluminescence (PL) and Fourier transform infrared
spectroscopy (FTIR), and the off-plane samples were characterized in collaboration with Caroline Lim
and Akhil Ajay. Time-resolved PL measurements were performed under the supervision of Dr. Joél
Bleuse. Structural characterization was done in collaboration with Dr. Catherine Bougerol for
transmission electron microscopy (TEM) of planar structures and the group of Prof. Jordi Arbiol in
the Institut Catala de Nanociencia i Nanotecnologia, in Barcelona (Spain) for NW heterostructures. X-
ray diffraction (XRD) spectroscopy was done with Dr. Edith Bellet-Amalric and Caroline Lim. Atomic
force microscopy (AFM) images were procured in collaboration by Arantzazu Nufiez Cascajero and

Caroline Lim.

1.2. Organization of the manuscript

After this first chapter, which describes the motivation, targets and organization of the thesis,
chapter 2 begins with a technical introduction of IlI-nitride semiconductors and their peculiarities,
namely their crystal properties as well as the spontaneous and piezoelectric polarization fields
arising from the strain relaxation mechanisms in GaN/Al(Ga)N heterostructures The physics behind
ISB transitions are then presented, including the fundamental quantum mechanical equations
involved. After this, the state of the art for ISB in llI-nitrides is explored and the problems associated
with its extension into the FIR are mentioned. Further information on the introduction of these

technologies are also found in Annex 1 [16] and Annex 2 [17].

Chapter 3 outlines the experimental techniques used throughout the thesis. It first presents the
PAMBE-growth of nanostructures including NWs, and the growth of planar heterostructures on
nonpolar, polar and semipolar substrates.. It then outlines the parameters for the simulations
performed on the thin film and three-dimensional (3D) heterostructures. Finally, it describes the
structural and optical characterisation methods that were used throughout the thesis and how to

properly treat the data to reach the conclusions obtained.

The results of the thesis are then introduced in three main chapters, associated with each of the
three above-described targets. Chapter 4 covers THz structures grown on c-plane substrates. The

existing architectures are theoretically analyzed regarding the errors induced within PAMBE growth.
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A new design is then proposed and outlined in the two papers (Annex 3 and 4) [18], [19]. Annex 3
describes the inability to reproduce the previous designs, and the proposal for a new 4-layered
multi-quantum-well (MQW) design is shown in Annex 4. Because this system was so robust, it was
hard to vary the ISB wavelength. By keeping in mind the robustness and the tunneling transport
requirements for incorporating these designs into QCL architectures, a pseudo-square design is
introduced in Annex 5 [20]. The chapter finishes with a review of existing QCL designs and
demonstrates that this pseudo-square design can be used as the building block in LO-phonon-based
QClLs.

In chapter 5, NW heterostructures are first explored from an interband approach by using
temperature-dependent and time-resolved PL, interpreted by comparison to calculations of the
guantum mechanical structure. The main results are presented in Annex 6 [21] and show that the
carrier lifetime can be varied over two orders of magnitude by changing the doping level. The ISB
properties of these structures are also probed as a function of ND thickness and dopant level. The
strain state, eigenfunctions, and ISB properties were simulated, and the results are shown in paper
Annex 7 [22].

Chapter 6 starts by comparing the growth of a-, m-, and c-plane GaN/AIN SLs by analyzing their
structural and optical properties. In terms of mosaicity, surface roughness, PL linewidth and
intensity, and ISB absorption, the m-plane SLs were deemed to be the best nonpolar choice. This
then led to the design of heterostructures with ISB transitions in the mid infrared (MIR) described in
Annex 8. Semipolar planes were also explored for ISB applications, and showed that GaN/AIN MQWs

could be fabricated with ISB transitions spanning the NIR as explained in Annex 9 [23].

Finally, chapter 7 contains the conclusions of the thesis and comments on the next steps to be
taken for each of the three targets, including the processing of QCLs, NW photodetectors, and
nonpolar architectures for quantum well infrared photodetectors (QWIPs), and how to integrate

them into existing GaAs device architectures moving towards the FIR.



2. Technical introduction

2.1. lll-nitrides and their peculiarities

AIN and GaN were first synthesized in 1907 by crystalline sublimation [24], and in 1931 by
reacting ammonia gas with metallic gallium [25], respectively, and were first made by molecular
beam epitaxy (MBE) in 1975 for AIN [26] and 1969 for GaN [27]. N-type doping is accomplished
primarily through the use of Si [28], and p-type doping, albeit less effectively, is accomplished by
using Mg [29].

GaN has been grown heteroepitaxially on a variety of substrates including SiC, Si, and Al,O;.
Various companies are supplying bulk GaN grown by HVPE [30, p. 196], ammonothermal [31], or
other methods, for optical devices such as laser diodes or to sell as substrates (see Table 1).

Company Product Growth method

Soraa GaN Ammonothermal [32]

Hamamatsu GaN HVPE on patterned substrates [33]
Hexatech AIN Physical vapor growth [34]
Lumilog GaN HVPE [35]

Ammono GaN Ammonothermal [36]

Seren Photonics semi- or nonpolar GaN (templates) | MOCVD [37]

Sumitomo/Soitec | GaN HVPE [38], [39]

Nanowin Polar/nonpolar/semipolar GaN HVPE [40]

Table 1 Various companies producing GaN substrates

In this work we will focus strictly on GaN, AIN and the ternary alloy of AlGaN. (Al,Ga)N can be
grown in cubic (B) zincblende phase as well as the hexagonal (a) wurtzite phase. This work deals
entirely with the a phase, which is the most thermodynamically stable. The wurtzite crystal structure
is described through the use of four miller-Bravais indices (hkil). Where h,k, and i are separated by
120° and sit perpendicular to the c¢ axis. The ¢ plane (0001), the m plane (10-10), and the a plane
(11—20) are indicated in Figure 1.

The [0001] axis is considered positive when the <0001> vector along the bond between the Ga
and N points from the metal atom to the nitrogen atom. Conventionally, (0001) crystals are called
Ga-polar and are typically preferred over (000—1) N-polar as they are more chemically stable and

their surface morphology can be more easily controlled during the growth.

Because of the low symmetry of the crystal, the gravity centres of the positive and negative
dipoles do not coincide and there is therefore a spontaneous polarization field along the <0001>
axis. Because this has a dependency on the ideality of the crystal, the cation-nitrogen bond length,
and the chemical properties of the cation [41], there is a difference in the magnitude of polarization
for GaN and AIN. GaN has a spontaneous polarization value (-0.029 C/m? [41] or -0.034 C/m” [42])
smaller than AIN (-0.081 C/m?” [41] or -0.090 C/m?* [42])as a result of the larger crystal non-ideality



i.e. the larger on-axis bond length, and lower aspect ratio unit cell, as well as the larger effective
charge and chemical nature of the cation. This spontaneous polarization is a determining factor for
the creation of devices and is also the reason that interband devices can function at energies below
the bandgap of GaN.

A piezoelectric polarization is also present in a GaN/AIN heterostructures that is linearly

dependent on the strain field present within the material. Stress leads to deformations in the lattice

oij = z Cijki€r
[

where Cjjy; is the elastic tensor, and o and € represent the stress and strain respectively. C;jy; is

according to Hooke’s law:

transformed to C,,, by replacing m,n = {xx, yy, zz, yz, zx, xy} with m,n={1, 2, 3, 4, 5, 6}. Due to
crystallographic symmetry, many of the tensors within Cjj; are 0, and the matrix can be
represented by 5 independent tensors such that Ci;=Cz; Ci12=C21, C13=C31=C23=C33 C33, C44=Css
Cs6=0.5(C11—C21) [43], [44], [45, p. 199], [46]-[50] and the values can be seen in Table 3.

In the case of biaxial stress of a material grown along the [0001] direction (o, = 0 and o, = g,,),

the strain-induced piezoelectric polarization (P,;) can be expressed as:

Ci3 a—ap Ci3
By, = 2¢&4 (331 — €33 C_33> =2 aq (931 — €33 C_33>

where a and g, represents the out-of-plane lattice parameters of the strained and bulk materials,
and e3; and es; represent the piezoelectric constants from the piezoelectric tensor. The values for
these can be seen in Table 3.

Calculations for strain distribution in 3D structures are more complex in contrast to planar
structures. For instance, in the case of NW heterostructures, the strain distribution is numerically
calculated by assuming relaxation to the minimum total elastic energy and zero-stress boundary

conditions at the surface.

2.2. Quantum confined Stark effect

The most common orientation for growing GaN is along the [0001] direction. This is because it
has uniform atomic composition in that layer; the top is either Ga or N. This growth direction is
aligned with the spontaneous polarization in the material, which, in heterostructures generates
internal electric fields and phenomena such as the quantum confined Stark effect (QCSE). When
electrons and holes are confined in a QW, the internal electric field shifts the electron states to
lower energies, while the hole states are shifted to higher energies, reducing the permitted light
absorption and emission frequencies. Additionally, the external electric field within the quantum
well (QW) shifts electrons and holes to opposite sides of the well, decreasing the overlap integral,

which in turn reduces the recombination efficiency of the system.

Growth of GaN in nonpolar (perpendicular to the spontaneous polarization vector) and semipolar
(inclined with respect to the spontaneous polarization vector) orientations has been mainly

motivated by the reduction of the QCSE, and started in 1987 [51]. By growing on nonpolar planes,



the internal electric field is null along the growth axis, while for semipolar planes, it is greatly

decreased.

Figure 1 (a) shows a schematic of the growth planes of the wurtzite crystal and the associated
band structure and wavefunctions for heterostructures of GaN/AIN grown along the (b) ¢ and (c)

nonpolar crystal orientations.

(a) (b) cplane (c) almplane
m plane & AIN GaN AIN AIN GaN AIN
e, i
= e
c
w

Figure 1 (a) Schematic diagram of various planes within a hexagonal unit cell: m plane (1-100) , a plane (11-20)
and ¢ plane (0001). (b) Band diagram schematics for c-plane AIN/GaN/AIN QWs. The internal electric field
within c-plane GaN causes asymmetry in the wavefunctions. (c) Band diagram for a/m-plane AIN/GaN/AIN
QWs. This asymmetry is not present in the a/m-plane QW due to the absence of the internal electric field.

Nonpolar GaN has been used in devices since 2000, with the first demonstration of a laser diode
using nonpolar m-plane [52] and a-plane GaN [53] in 2003. Research has since expanded to a
number of avenues including quantum dots (QDs) [54], [55], AlGaN/GaN MQWs [56], InGaN/GaN
[57], [58], thicker films of GaN [59]—[61] or AIN [62], as well as to devices such as LEDs [63], lasers
[64] and transistors [65]. However, for nonpolar growth, there is strong anisotropy of the surface
properties resulting in layers with high defect densities. A compromise to this is seen with semipolar
planes [66].

Initial research on the growth of semipolar GaN was driven by the need for longer wavelength
laser diodes in the green [67], [68] and violet, as well as longer wavelength LEDs reaching the red
and amber [69]-[71]. It has since shown promise in its ability to more easily incorporate indium
[72]-[75], and has led to the creation of various start-ups like Soraa and Kaai [76], [77].

Substrates for epitaxial growth have been the main challenge for these systems and the best
performing devices have been obtained using substrates acquired by slicing HVPE GaN boules along
the nonpolar and semipolar planes. Research has also been done to create semipolar GaN using

preconditioned templates [78]—[84].

2.3. Intersubband transitions and the governing principles

Semiconductors can be made optically active at IR wavelengths by engineering the quantized
confinement of the electronic levels in QWs, NWs or QDs. QCLs or QWIPs are well-known
illustrations of quantum-engineered devices. These controlled-by-design devices rely on optical ISB

transitions between quantum-confined states, either within the conduction band or within the



valence band. The desired wavelength of operation can be obtained by a proper choice of the layer

thicknesses and compositions.

The first ISB transitions were seen in an n-doped Si system in 1974[85]. Since then, ISB absorption
has moved to other materials, including GaAs [86], [87], and the IlI-nitrides[88].

ISB transitions are governed by selection rules: to interact, incoming light needs to have an
electric field in parallel to that of the heterostructure (perpendicular to the semiconductor layers).
This imposes the use of TM polarized light, and necessitates the use of waveguides or surface
gratings to couple light into the active region. Furthermore, due to the inversion symmetry, only

transitions between wavefunctions of opposite parity are allowed.

A comprehensive introduction to ISB physics in QWSs can be found in the works of Bastard [89] or
Liu and Capasso [14]. In this section, we briefly introduce the polarization selection rule
characteristic of ISB transitions. For this purpose, we consider a QW with two confined states in a
single-particle approach. Transition rates W from states i to f are described by Fermi’s golden rule as

follows:
21
Wi = = (7 [H'|%)]*3(E; — i - hw) 8

where H’ is the interaction Hamiltonian, E; and Ef and ¥, and W are the energies of confinement
levels and wavefunctions of the initial and final states respectively, and Aw is the influencing
radiation energy. As the radiation wavelength is much larger than the QW width in the case of IR

radiation, a dipole approximation can be applied to the Hamiltonian.
252

, q°F,
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where g the elementary charge; F, is the amplitude of the electric field; m* the effective mass; w the

wavelength of light, and e, and p the polarization and momentum operators respectively.
2
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By expressing the wavefunctions as products of periodic Bloch functions, u, and a slowly-varying

envelope functions, f, the transition rate can be shown:
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where b and b’, and s and s’ are the band and subband indices of the initial and final states,

respectively. This can be expanded to give:

(upfsle  plup fo) = e (up [Pluy Wfslfs) + € - (up lup XfsIPIf 57) (5)



The first term describes interband transitions (if b#b’ then (u,|u,)=0). The second term describes

the ISB transitions (if b=b’ then the first term vanishes and (u;|u,’)=1). This leaves ISB transitions to
be governed by (f;|p|f’).

The motion of electrons in x and y inside thin film structures grown along the z axis by assuming a

Bloch wavefunction for both the well and barrier and assuming a; =0:
£ = ey, (2) ©
S \/Z N

where EZD and 7 are the two-dimensional (2D) wave vector and the position vector respectively; A is
the sample area and y is the envelope function component along z. This follows to a substitution

to obtain the ISB dipole matrix element:

1 = =
fs,m> =2 f d*r e~y (2)|expx + €yPy + €D, 20T X/ (2) )
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upon substitution into Equation 3, taking into account that ps 5, = im X w7, we can rewrite the
transition rate as follows:

R _ ZFOZ
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From equation 7; terms containing e, or e, vanish unless s=s” and ’:zu = PZD (identical states).
Equation 8 contains the first delta function to conserve these momentum requirements. Also,
because of the presence of e,, only electric fields in the z direction couple to discrete energy levels
of the QW. This is the basis for the polarization selection rule which leads to the use of waveguides
and surface gratings, and why only transverse magnetic (TM) polarized light interacts with the
energy levels. Furthermore, transitions between states with the same wavefunction parity are not

allowed — this is only the case for symmetric QWs.

Under the assumption that the lattice periodic function is the same in all constituent materials, a
Schrédinger equation only for the envelope function can be derived with the goal to isolate the

eigenenergies.

V2 () + VOSE) = Enfs(P) ©)

2m*

Substituting the values for f;(#) from Equation 6, and solving the differential equation leads to

the energy eigenvalues of the form

. h2 k
En(K) = Epo + Tw (10)
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where E,, depends on the potential profile VV(z). For symmetric QWs with infinite barriers, the

following eigenvalues are obtained:

2
2322 2L
nhT[ thD

2m*L2 2m*
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Zsin (T) and En(kZD) =

xn(2) = D

where L is the QW thickness. Due to the large effective mass of GaN (m*/mg=0.2) [90], versus
GaAs(m*/mg=0.067) [91], or InAs (m*/my= 0.023) [92], very thin QWs are required in the for large

ISB energies

2.4. Many body effects

The transition between quantum-confined states relies on the fact that one of the states must be
populated. In the case of absorption this requires the use of doping to occupy the ground state of
the QWs [93] and this elicits many-body effects such as the depolarization shift, the exchange

interaction, or the screening of the internal electric field.

The depolarization shift (also known as plasmon screening) and the exciton shift introduce a

correction to the ISB energy that can be expressed by:

Esrs = Estsv 1+a-p (12)

where a and 8 correspond to the depolarization and exciton shifts, respectively, and Ess to the I1SB
energy between states s”and s.

The depolarization shift is due to the external radiation interacting with the electron plasma,
which leads to a modulation of the carrier density and an increase of the transition energy, which
can be estimated as [13]

2

2
_205 q (13)
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where oy is the sheet carrier density, € the dielectric constant, €, the permitivity of vacuum. The
second half of the expression represents the ISB coulomb integral for laterally homogeneous

systems.

Additionally, the exciton shift arises from the interaction between the excited electron and the

ground-state hole [94].
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3
where A=21, B=0.7734 [13], [94], m* is the effective mass, 1y = [4?” (%) a(z)] 3,0(2) is the 3D

electron density such that [ 0(z) = ggand ag is the Bohr radius.

The exchange interaction accounts for the electron repulsion between electrons with parallel
spin as a result of the Pauli principle. This acts to lower the energy of the highly-populated ground
state and red shifts the interband, but blue-shifts the ISB. This effect is directly proportional to the
dopant concentration in the level, and via a Taylor series expansion can be represented as [95], [96]:

E, (k) = e’ks 2p( X _o32(%r (15)
XM dmeeg |m \ky T\k,

. . T , . . T _
where k; is equivalent to 7 L is the QW’s thickness, E is the elliptic integral, and kf = ,/2mos;.

The direct Coulomb interaction is as a direct result of Coulomb-Coulomb interactions and tends

to screen the internal electric field. It is given as follows [95], [97]:

30q?

_ 16
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dir
Taking into account the summation of the above-described many-body effects, the ISB transition
energy can be estimated as:

Eslseff = Esls(\/ 1+a- ﬁ) — Eexch — Eaqir (17)

2.5. State of the art for intersubband in nitrides

Ill-nitride semiconductors (GaN, AIN, InN and their alloys), with their wide band gap and a large
conduction band offset (~ 1.8 eV for GaN/AIN [98]—-[100]), have been attracting much interest for ISB
devices operating from the NIR to FIR spectral range. GaN is transparent in a large spectral region,
notably for wavelengths longer than 360 nm (band gap), except for the Reststrahlen band (from
9.6 um to 19 um). Absorption in the range of 7.3 um to 9 um has been observed in bulk GaN
substrates with carrier concentrations <10™°cm™ [101]-[103], and was attributed to the second
harmonic of the Reststrahlen band. Although this absorption might hinder the fabrication of
waveguided devices in this spectral region, its effect in planar devices with um-sized active regions is
negligible, since the absorption coefficient related to two-phonon processes is much smaller than
the one associated with ISB transitions [104], [105]. Conversely, lll-nitrides do not present problems
of inter-valley scattering, since the L and X points are much higher in energy (>2 eV) than the I

point.

Various review articles have been written following the evolution of the GaN-based ISB
technology [16], [17], [106], [107, p. -], [108]-[110]. The first observation of ISB absorption in
GaN/AlGaN QWs was published at wavelengths above 2.8 um [88] in 1999. The wavelength was then

13



tuned down to 1.75 um [111] and finally ISB was seen around the telecommunication wavelength of
1.55 pum [112] in 2000. Since them, ISB transitions have been observed at room temperature in
nitride-based QWs and QDs by a number of groups (University of Paris-Sud, Bell Labs, Nothwestern
Univ., Univ. of Boston, Cornell Univ., Univ. of Tokyo, Sophia Univ., Toshiba Corp., CHREA-CNRS, EPFL,
Chalmers Univ. of Technology, Univ. of Magdeburg, and CEA-INAC).

Energy (eV)
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Sapphire silicon(111)
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Figure 2 (a) Normalized absorption spectra for various samples showing that ISB transitions can span from the
NIR to the MIR. The substrates used for these samples are also noted above the respective wavelength ranges.
(b) An illustration of the QCSE where the well width of a GaN well is changed by 30%. With an increase in the
well width by 30%, a decrease in the ISB energy of less than 3% is seen.

Besides the telecommunications range, there has also been interest to create devices towards
longer wavelengths. Using GaN/AIN QWs, the e,-e, ISB transition can be tuned in the 1.0 to 3.5 um
wavelength range by changing the QW thickness from 1 nm to 7 nm [100], [113]—-[120]. By using
AlGaN instead of AIN in the barriers, the wavelength range can be extended further into the MIR up
to 10 um [93], [121]-[126] as seen in Figure 2 (a). However, for larger QWs (>5 nm), the first two
confined electron levels get trapped in the triangular section of the QW, which results in a saturation
of the e,-e, value by the QCSE, as seen in Figure 2 (b).

To further reduce the ISB transition energy, Machhadani et al. [127] proposed an alternative
strategy to approach a flat potential in the QW layers by engineering the internal electric field. The
investigated structures contain a stack of step-QWs, each period consisting of a GaN well, an
AlyosGaggsN step barrier and an Aly1GaggN barrier. Transmission measurements performed at 4 K
reveal TM-polarized ISB absorption at 70 and 150 pum.

The first prototypes of nitride-based ISB devices were room-temperature multi-Thit/s all-optical
switches operating at 1.5 um [128]. Meanwhile, the first demonstrations of lll-nitride photovoltaic
and photoconductive QWIPs and QD IR photodetectors were demonstrated in 2003 [129], [130] and
2006 [131]-[133] respectively for NIR frequencies, and in 2010 in the FIR [134]. Ultrafast all-optical
switches have also been demonstrated [128], [135]-[138]. The first evidence of strong electron
coupling in GaN/AIN double QWs [139] led to the demonstration of the first charge-transfer GaN-
based ISB electro-optical modulators [140]. Finally, NIR ISB luminescence from GaN/AIN QWs [141]—

[143] and QDs [144] was detected. The concept of quantum cascading in lll-nitrides has also been



demonstrated through the development of QD-based quantum cascade photodetectors (QCD)s

operating in the 1.5-2.0 um spectral range [145], [146], which opens prospects for QCLs.
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3. Experimental methods

3.1. Material Growth and strain relaxation

The growth of lll-nitrides has occurred in a variety of instruments, each with their own particular
benefits and drawbacks. Table 2 lists the typical machines used to grow GaN and AIN, including
metalorganic vapor phase epitaxy (MOVPE) / chemical vapor deposition (MOCVD), hydride vapor
phase epitaxy (HVPE)[30], MBE and reactive sputtering.

MOVPE/ — Precursors: Mixtures of trimethylindium, -gallium, or —aluminium ((CHs);M), and

MOCVD NH; [147]

— Growth temperature: 1000-1100°C [148]—[150]

— Results: High growth rate (1-3 um/h) and excellent material quality and control over
layer thickness and doping.

HVPE — Precursors: GaCl, NH; [151]

— Growth temperature: 1000-1050°C [148], [152]—-[154]

— Results: Very high growth rate (up to 100 um/h). Possibility to synthesize mm-thick
GaN crystal boules to slice free-standing wafers [155].

MBE — Precursors: High purity metals and N, or NH3

— Growth temperature: 700-800 [156]

— Results: very low growth rate, excellent control over layer composition. Can start
and stop the growth of layers with atomic precision as well as the flux of a specific
atom giving layer-by —layer control over the alloy concentration and thickness.
Furthermore, in-situ reflection high-energy electron diffraction (RHEED)
characterization greatly helps to characterize the growth. Gas-MBE also exists,
which uses ammonia or hydrazine for the N-precursor.

Sputtering | — Precursors: High purity metals or IlI-nitride blanks and N,

— Growth temperature: 300-750°C

— Results: lower crystal quality but deposition is possible in any substrate and in large
surfaces. [157]

Table 2 List of methodologies used to grow GaN and AIN.

The samples studied in this thesis are grown strictly using PAMBE. Substrates for m-plane and a-
plane exploration consisted of free-standing GaN sliced along nonpolar surfaces from (0001)-
oriented GaN boules synthesized by HVPE by Nanowin (Suzhou Nanowin Science and Technology
Co., Ltd). The semipolar substrates consisted of 2-um-thick (11-22)-oriented GaN layers deposited on
m-sapphire by MOVPE by Dr. Ph. de Mierry and Dr. G. Nataf at CRHEA-CNRS [75]. In the case of c-
plane GaN/Al(Ga)N heterostructures, growth was performed on 1-um-think AIN-on-sapphire
templates (for NIR structures) or on 4-um-thick GaN-on-Si(111) templates (for MIR structures), both
deposited by MOVPE by Dowa Electronics Materials Co., Ltd. For the fabrication of devices operating
in the NIR (1.3-3 um), the use of AIN-on-sapphire templates is preferred to maintain the structure
under compressive strain and thus prevent crack propagation. For devices operating beyond 3 um,

GaN-on-Si(111) substrates are preferred to guarantee IR transparency of the substrate [125].




The RHEED was the main in-situ measurement tool used to calibrate and ensure epitaxial quality
of all the samples grown in this thesis. By analyzing the diffraction pattern, the surface roughness, in-
plane lattice constants, and the surface morphology could be established. Measuring RHEED
intensity oscillations, the growth rate can be deciphered. Furthermore, by timing the desorption

time of the Ga excess on the GaN(0001) surface, the substrate temperature could be estimated.

This thesis focuses on GaN, AIN and the ternary alloy AlGaN. It is also possible to grow InGaN and
INN heterostructures, which would be theoretically preferred to develop an ISB technology due to
the much lower electron effective mass of InN. However, In-containing technologies are penalized by
the large lattice mismatch between GaN and InN, severe alloy inhomogeneities and
interdiffusion/segregation at the InGaN/GaN interfaces [158], [159]. Therefore, the GaN/Al(Ga)N

system is a more feasible solution for ISB devices.

The growth of (0001)-oriented GaN, AIN and AlGaN by PAMBE is extensively discussed in the
literature [160]-[166]. For the growth of GaN using PAMBE, the Ga/N ratio is a critical parameter
that directly influences the surface morphology. Too low of ratio result in a rough, facetted surface
morphology [162], too high and Ga accumulates on the surface. Thin films of GaN in this thesis are
always grown under slightly Ga-rich conditions, where the Ga flux was set to a value slightly below
the limit of accumulation. In this mode two monolayers (ML) of Ga form on the surface of the
sample in a dynamic equilibrium [160], [161], [168]—-[170], and is stable for growth temperatures
above 700°C [167]. These growth conditions have been theoretically explained through the creation
of an efficient diffusion channel underneath a thin metal layer on top of the growing surface [161],
[168], and have been proven to improve the surface morphology and decrease the defect density
[167], [171]. The substrate temperature was around 720°C as deduced from the Ga desorption
time[160], and the growth rate was determined by the flux of nitrogen and was in the range of 0.3 to
0.5 ML/s.

In the case of AIN, the deposition of layers with atomically flat surface morphology also requires
metal-rich conditions [165]. However, Al does not desorb from the surface at the standard growth
temperature for GaN. Therefore, to eliminate the Al excess at the surface, it is necessary to perform
periodic growth interruptions under nitrogen. Due to the preferential incorporation of Al into the
crystal over Ga [125], [163], [172], alloys of AlGaN can be created without having to remove the Ga-
bilayer. By opening the Al shutter, a flux of Al is incorporated into the GaN growth that displaces the
Ga atoms. For example, when growing Aly ¢sGagosN, a flux of Al at 5% of the flux of N is used.

The PAMBE growth of NWs was initially demonstrated on sapphire [173], [174], then on
Si[175].The NWs from this thesis were grown by PAMBE on Si(111) substrates at a temperature
around 790°C [176]—[180] using a Ga/N ratio of 0.25 [181]. They are grown catalyst-free in the <000-
1> direction (N-polar) [182]. These NWs are hexagonal prims with m-plane facets [183], [184]. NW
growth proceeds from two angles, either by direct material deposition, or through the diffusion of
atoms along the wire sidewalls to the apex [180], [185]-[187]. The marker technique showed that
growth occurs under different circumstances than with 2D layers due to the negligible diffusion of N
atoms [171], the Ga diffusion from the sidewalls and 3D nature of the growth [188], [189] which
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contribute to the faster axial growth rate over 2D layers. For growing heterostructures using AIN, the
diffusion of Al was found to be insignificant [186], [188], and this contributed to the natural
formation of an AIN shell. GaN/AIN heterostructures have been demonstrated axially [174], [190]-
[193], and radially [186], [188], but growing radial heterostructures has the drawback of a
shadowing effect [194], [195] that is difficult to overcome [196].

Nonpolar Growth began in 2000, with the growth of m-plane (10-10) GaN on y-LiAIO, [52]. Since
then, the growth of nonpolar GaN has been well studied. a-plane GaN has been grown on r-plane
sapphire [53], [197]-[201], and a-plane SiC [202], whereas m-plane GaN has been grown on m-plane
SiC [203]. However, in 2006 efforts to grow these materials refocused towards substrates cut from
HVPE-grown boules [204], [205]. This thesis focuses on these free-standing m- and a-plane GaN
substrates. For on-axis m-plane substrates, the problem of hillocks plagued the growth [206], and
was drastically reduced by incorporating a miscut in the c direction above 0.45° [207], above
0.7°[208], or 1°[209]. Due to the anisotropy in nonpolar crystal orientations, there is a higher risk of
generating basal plane stacking faults [59], [198], [210].

Semipolar GaN can be grown in numerous crystal orientations, such as (10-11), (10-1-3) (11-22)
on substrates such as (100) and (110) spinel [211] or on m-plane sapphire [66], [211]. In the case of
(11-22)-oriented GaN grown by PAMBE, a Ga coverage independent of exposure time is only
observed for a Ga coverage below 1 ML [212]—-[214], and smooth GaN is theoretically predicted to
grow in N-rich conditions [214]. However, optimized surface morphology is seen when there is a Ga-
excess of 1 ML [215]. By growing directly on m-plane sapphire, the structures should be grown under
Ga-rich conditions for streaky RHEED patterns, as IllI/V ratios smaller than unity lead to 3D growth
[215]. This direct growth also results in metal-polar [210] samples containing two crystalline
orientations [215]-[217]. However, by growing on an AIN buffer, a reduction in the secondary
crystalline orientation is seen [215]. The growth of AIN on m-sapphire is either (11-22) or (10-10)
depending on the Ill/V ratio [66] where, higher I1l/V ratios lead to larger inclusion of (10-10) crystals
[66]. Rougher surfaces are seen when the Ill/V ratio strays from unity, and (10-12) AIN is optimally
grown at a lll/V ratio of about 0.85 [66]. In this thesis, the GaN was grown in the (11-22) direction
on top of 2-um-thick (11-22)-oriented GaN layers deposited on m-sapphire by MOVPE [75]. The
growth rate of the PAMBE setup was set to 0.3 ML/s at a growth temperature of 715°C [215].

3.2. Simulation parameters

The simulations of the strain state, band diagram and electronic levels were performed using
nextnano® [15], taking the spontaneous and piezoelectric polarization into account. For thin films,
the 8x8kp Schrodinger-Poisson solver was used self-consistently. The k-p theory model overcomes
the assumption of parabolic band structures that are usually considered for convenience at the
bottom of the conduction band and the top of the valence band. By incorporating this non-

parabolicity, differences in ISB energy of up to 25% can be seen [218].

As GaN/AIN is a lattice mismatched system with an in-plane lattice mismatch of 2.5%, the effect
of strain and lattice relaxation plays a defining role in both the device functionality as well as the

band structure. Additionally, GaN/AlIGaN heterostructures are very sensitive to the piezoelectric



fields, which make the calculation of the strain state of GaN/Al(Ga)N heterostructures crucial for
understanding the electric fields and therefore the band profiles. The effect of the strain state has
two main effects on the band diagram: Firstly it changes the band gaps of the materials, and
secondly it changes the piezoelectric polarization within the materials. This induces changes in both
the interband and ISB energies.

Parameters GaN AIN

a 0.31892 0.3112
0.51850 0.4982

Lattice constants, nm [109, p. 200]

Spontaneous polarization, Cm™ [41] -0.029 -0.081
. , 2 e -0.49 -0.60
Piezoelectric constants, Cm™ [41]
es3 0.73 1.46
Cu 390 396
. C1z 145 140
Elastic constants, GPa [45], [47]
Ci3 106 108
C33 398 373
Dielectric constant[219] 10 8.5

Ay -5.947 -3.991
A; -0.528 -0.311
A3 5.414 3.671
Ay -2.512  -1.147

Luttinger parameters[220] As -2.510 -1.329
As -3.202 -1.952
A; 0 0

E/[eVv] 14 173
Et[eV] 14 163

dci -4.6 -4.5
acz -4.6 -4.5
D; -1.70  -2.89
Deformation potentials, eV [219] D; 6.30 4.89
D3 8.00 7.78
Dy -4.00 -3.89
Ds -4.00 -3.34
Ds -5.66 -3.94
Band offset, eV [218] 1.8

Table 3 The material parameters used in the theoretical calculations in nextnano’. The sources for each
parameter are shown beside the parameter name.

In the case of 3D calculations, the effective mass approximation was used so that the simulations
would converge at useful spatial resolutions. Simulations were done step-wise: The 3D strain

distribution was first calculated by minimizing the elastic energy and applying zero-stress boundary
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conditions at the surface. With this input, the nonlinear Poisson equation was classically solved to
obtain the 3D band structure of the complete wire. After the Poisson equation was solved in
equilibrium, the eigenfunctions were calculated by solving the Schrodinger equation in a quantum
region that covered one ND in the center of the NW, including the AIN barriers on the top and
bottom. nextnano® does not completely incorporate many-body effects, and for calculations at high

dopant levels, only the screening of the internal electric field is taken into account.

3.3. Structural characterization

The structural characterisation of the samples was done employing various methods to show the

macro- and microscopic properties of the materials:

e The periodicity of the samples was analyzed by XRD under the supervision of Dr. Edith Bellet-
Amalric, using a Seifert XRD 3003 PTS-HR system. Typical samples had 6-26 scans of the (0002)
reflections done to determine the SL periods. The experimental measurements were then
juxtaposed to simulated curves obtained from X’'Pert Epitaxy software from Panalytical and a SL
misfit strain relaxation could be calculated. Additional information of the strain state was

extracted via reciprocal space maps.

e The surface roughness of the layers was measured by AFM in the tapping mode with a Veeco
Dimension 3100 microscope. Data visualization and processing were carried out using the WSxM
software [221].

e For planar structures, TEM studies were realized by Dr. Catherine Bougerol using the microscopy
facilities of CEA/INAC. For NW heterostructures, TEM images were provided by the group of Prof.
Jordi Arbiol in the Institut Catala de Nanociéncia i Nanotecnologia, in Barcelona (Spain).

3.4. Optical characterization

Optical characterization of the samples was mostly used to identify ISB transitions via FTIR
spectroscopy, and band-to-band transitions via PL techniques.

FTIR was used to probe the ISB absorption using a variety of lamps and photodetectors
incorporated into a Bruker V70v spectrometer. The source, beam-splitter and detector for each
spectral range (NIR, MIR and FIR) are summarized in Table 4.

NIR MIR FIR
Source Tungsten Globar Hg-Arc
Beam-splitter CaF, KBr Si
Detector MCT MCT Bolometer
Temperature of sample Room (300 K) Room (300 K) Liquid He (5 K)
Temperature of detector | Liquid Nitrogen (77 K) | Liquid Nitrogen (77 K) | Liquid He (5 K)

Table 4 Source, beam-splitter and detector used to measure ISB absorption in the NIR, MIR and FIR. The
temperatures of the samples and detectors are also noted.



For their characterization, all samples grown on silicon-based templates were polished into
multi-pass waveguides with 30° facets. The angle was chosen so that the light impinging the
waveguide perpendicular to the facet had numerous interactions with the GaN, even in the case of a
small deviation of the incidence angle. Figure 3 (a) shows the schematic of the waveguide where and
the light is incident on the GaN from the Si. Focusing at the Si/GaN interface, light incidence angles
below 49° (red) result in total reflection at this interface, i.e., the light does not transmit into the
GaN layer. Incidence angles between 49° and 73° (green) lead to transmission into the GaN and total
reflection at the GaN/air interface. Finally, incidence angles larger than 73° (orange) lead to
transmission through the GaN into the air. Therefore, nominal incidence at 60° is chosen (i.e. normal
incidence to a 30° facet). If we consider now the deflection of the light at the Si/air interface, the
analysis is depicted in Figure 3 (b). For incidence angles below 18°, there is total reflection at the
GaN/Si interface, whereas for incidence angles larger than 18°, light transmits into GaN and there is
total reflection at the GaN/air interface. Transmission to air does not happen at any angle.
Therefore, our choice of 30° facet allows light incidence in a large range of angles (18° to 180° as
described in Figure 3 (b)). These calculations were made according to Snell’s law assuming the
refractive index of air to be 1, Si to be 3.48, and GaN to be 2.316 (1.55 um). Following a similar
reasoning, samples grown on sapphire-based templates or bulk GaN were polished at 45°.

Figure 3 Schematic of the interaction of light with the multi-pass waveguide where the Si is depicted in yellow
and the GaN-based active layer is depicted in white. (a) Reflection/transmission behavior at the silicon/GaN
interface as a function of the angle of incidence. The orange region (90°>6>73°) depicts the angles where light
enters the GaN is transmitted to the air. The green region (73°>6>49°) depicts the angles where there is total
internal reflection at the GaN/air interface. The red region (49°>6>0°) depicts angles where there is total
reflection at the Si/GaN interface (no interaction with the active layer). (b) Schematic of the light transmission
at the air/Si interface (30° facet). Angles <18° lead to total reflection at the GaN/Si interface.

The samples were tested in transmission mode using a polarizer to discern between the
transverse-electric (TE) and TM polarized light. By taking the selection rules into account, the ISB
absorption should appear as a dip in the TM transmission spectrum. In the case of FIR

characterization, two sample pieces were placed back-to-back to double the amount of surface

perpendicular to the incoming beam, and to increase the detected signal.

For samples exhibiting ISB activity in the FIR, a trade-off between the absorption intensity and the

FTIR signal intensity is observed. At low angles of incidence (20°<6<35°) there are fewer interactions

21



between the light and the active layers which leads to larger amounts of light reaching the
bolometer. A larger absorption is seen at high angles of incidence, but it is associated with a poor
signal-to-noise ratio. An easy approach to identify the ISB absorption was to monitor the TE/TM
transmission ratio over several angles, as seen in Figure 4. When increasing from 32° to 65° an

increase in the absorption is seen around 120 cm™.

TE/TM Transmission (arb)
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Figure 4 The division of TE light by TM light through a sample for various angles of incidence on the sample as a
function of wavenumber. An interference pattern is seen in all the samples, and is most visible at angles below
37°. After this angle, there is increased interaction with the sample. Decreased TM transmission through the
sample is seen at larger angles; which is attributed to the ISB absorption from e; to e,. The noise level of the
signal also increases with increasing angle of incidence.

e PL spectroscopy was used to probe the interband transition energy. A continuous-wave
frequency-doubled Ar® laser (A =244 nm) was used as an excitation source. The emission was
collected by a Jobin-Yvon monochromator and was detected by a UV-enhanced charge coupled
device.

e Time-resolved PL was measured by exciting with a pulsed Ti-sapphire laser source (A =270 nm,
pulse width = 200 fs). The time between pulses was 2 to 5 us as decided by a cavity damper, and
the excitation power was about 0.5-1 mW. The PL emission was acquired by a Jobin-Yvon

Triax320 monochromator and a Hamamatsu C-5680 streak camera.
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4. Results: c-plane THz intersubband devices

4.1. Introduction to THz intersubband

A compact, continuous-wave solid-state source to bridge the gap between the MIR lasers and the
oscillating transistors for gigahertz electronics is greatly sought after for many applications, for
instance in fields such as astronomy or analytical science. “Technological innovation is also allowing
THz applications into fields such as information and communications technology; biology and
medical sciences; non-destructive evaluation; homeland security; quality control of food and
agricultural products; global environmental monitoring; and ultrafast computing among others”
[222]. A significant breakthrough took place in 2001 with the first demonstration of a GaAs-based
QCL operating at ~4.4 THz [223]. Since then, rapid progress has been made in terms of device
performance. To date, THz QCLs have been demonstrated in the 0.85-12 THz range [224]-[227], with
pulsed operation up to 199 K at 3.2 THz [228], [229] or 186K at 3.9 THz [230]. These lasers have
shown output powers of 1W at 3.4 THz [231] and slightly higher by using MIR-to-THz conversion
techniques [232]. Despite advances, devices keep on working at cryogenic temperatures because of
the thermal degradation of the population inversion caused by thermal backfilling and thermally-
activated phonon scattering. The low LO phonon energy in arsenide compounds (36 meV)
constitutes a major bottleneck for operation room temperature operation. Furthermore, As-based
technologies have a Reststrahlen band reaching from 30 to 40 um [233], which hinders the
production of THz radiation at these wavelengths. GaN-based technologies, with an LO phonon at
90 meV, have become a promising alternative to create room temperature sources for THz radiation,
and cover the forbidden band of GaAs.

4.2. Intersubband absorption in GaN-based quantum wells (Annex 3, 4 and 5)

4.2.1. The step-quantum-well design

Research on lll-nitrides in the THz spectral region has proceeded over the last five years with the
introduction of the first structure to show FIR-ISB absorption in a controlled manner [134]. This first

Ill

design used a “step-quantum-well” setup to reduce the internal electric field in the QW, and to
approach the quantized states to THz levels. Figure 5(a) shows the conduction band diagram of a
step-QW design consisting of Aly1GagoN/GaN/ AlggsGagesN (3 nm / 3 nm / 13 nm), and indicates the
first and second electronic levels with their respective squared wavefunctions (W?). This 3-layer
structure is designed around the principle of polarization equivalency. The design can be separated
effectively into two portions; the first is the “barrier”, which comprises of the high-Al-content Al,Ga..

I”

«N layer and the GaN layer. The second portion is the “well”, which is the low-Al-content Al,Ga;N

|II

layer. The design creates a semi-flat band in the “well” by having the “barrier” balanced at the same
average Al percentage, i.e. the average polarization in the “barrier” is approximately equal to the
average polarization in the “well”. This allows the structure to have variations in conduction band
edge, and therefore electron confinement, but it ensures a negligible internal electric field in the
“well”. However, the asymmetry of the design leads to the confinement of W(e,) close to the GaN

layer, while the bimodality of W(e,) has the largest electron density within the middle of the “well”



lowering the overall oscillator strength. Devices that focused on this principle were fabricated at

Boston University, and showed similar ISB absorption and photodetection [234].
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Figure 5 (a) Conduction band profile, and first (el) and second (e2) electronic levels with their associated
squared wavefunctions for an Aly1GagoN/GaN/Aly¢sGagesN/GaN (3 nm /3 nm /13 nm) step QW. On top, high-
angle annular dark field (HAADF)-scanning tunneling electron microscope (STEM) image of one period of the
grown structure. (b) Shift of the wavefunction of the first electronic level [Wz(el)] associated with a decrease
of the Al concentration in the “well” layer. A lower “well” Al concentration creates a secondary confinement
area at the opposite side of the well. (c) A higher “well” Al concentration creates a more triangular well and
increases confinement towards the GaN layer. (From Annex 3)

In this thesis, the original design from Machhadani et al. [134] was structurally reproduced.
Samples with very similar structures, showed ISB absorption that was not at the same energy as
reported (Annex 3). Therefore, the robustness of the step-QW system was explored as by defining
the experimental conditions that could lead to changes in the ISB wavelength. The primary reason
for the variation of the ISB wavelength was deemed to be the uncertainties associated with the
growth method, either in terms of layer thickness or in terms of alloy compositions. For instance,
changing the aluminum concentration within the layers breaks the polarization balance, and causes
a shift in the location of the electron density function, and in the ISB transitional energy. A decrease

|II

in the Al content of the “well” results in the formation of a secondary point of low conduction band
energy at the interface between the high-Al-content barrier layer and the “well”, as illustrated in
Figure 5(b). This low point competes for W? and turns e; into a bimodal distribution. Conversely, with
an increase in the “well” Al content, the electric field in the “well” pushes W? towards the GaN layer

and increases the confinement, as shown in Figure 5(c).

In order to explore the effect of variation in the growth, TEM images and XRD spectra were
analyzed to see the extent of variation within a range of samples. By analyzing several series of
samples through XRD characterization, the variation of the SL period was lower than 10%. The
errors in the Al concentration are mostly associated with errors in the growth rate calibration, and,
to a minor degree, errors in the measurement of the Al flux. We estimate these accumulated errors
to be less than 10%, and this was taken as the normal variation for measuring the robustness of the

system.
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4.2.2. The 4-layer quantum well design

In this thesis, to surmount the limitations of the step-QW geometry, a robust alternative to this
design is presented, which includes the insertion of an additional AlGaN layer to separate the GaN
layer from the “well” (Annex 3 and 4). This “separation layer” is designed so that there is no confined
state in the GaN layer. In this architecture, the polarization is not fully compensated, which results in
a triangular profile in the active well, but greatly increases the robustness of the system and the
oscillator strength of the first ISB transition. The design, consisting on a 4-layer sequence, can be

seen in Figure 6(a).

Figure 6(b) shows the theoretical value of the ISB wavelength as the five vertices of a regular
pentagon. Each vertex has a structural parameter associated with it that was varied considering
realistic deviations in the epitaxial growth: £2 ML (~ 0.5 nm) as the error bar for thicknesses and
+10% as the error bar for the aluminum content in Al,Ga;,N. The colored area represents the
minimum and maximum values of the ISB transition wavelength associated with the indicated
variation of structural parameters. The smaller area associated with the 4-layer QW in the Figure
demonstrates that this design is much more robust than the step-QW structure. The ISB dependence
on the thickness and composition of the “separation layer” was also analyzed, and was shown to
exhibit the same robustness as the rest of the system (Annex 3 and 4).

This modified geometry was synthesized with various doping concentrations in the GaN layer. It
showed TM-polarized ISB absorption at 14 THz whose intensity and linewidth increased with doping
(Annex 3 and 4). Consistently, ISB absorption was not observed in an undoped reference.
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Figure 6 (a) Conduction band profile for an Al0.1Ga0.9N/GaN/ Al0.07Ga0.93N/Al0.03Ga0.97N (4 nm /2 nm /2
nm / 12 nm) 4-layer-QW design. On top, HAADF-STEM image of one period of the grown structure. (b)
Illustration of the robustness of the 4-layer-QW system compared with the step-QW design. In each case, the
dots indicate the nominal ISB transitional wavelength. The colored area represents the variation between the
minimum and maximum values of the ISB transition wavelength associated with the variation of the indicated
structural parameters on each vertex. The “barrier” refers to the Al0.1Ga0.9N layer, while the “well” is the
Al0.03Ga0.97N (Al0.05Ga0.95N) for the 4-layer (step-QW design).



4.2.3. The 4-layer pseudo-square quantum well design

The information gained from the above-described studies (Annex 3 and 4) confirmed the ability
of the simulations to accurately predict the band structure and ISB spacing for complex c-plane
MQW architectures. However, the 4-layer design sacrifices tunability, and does not completely
compensate the internal electric field. Furthermore, the width of the complex barrier inhibits
electron tunneling transport, which complicates the incorporation of such QWs in an electrically
driven device structure. By thinning the barriers to 1 nm as well as the GaN well, this architecture
could potentially be used for photodetectors. However, due to the confinement of the first level (e,)
to a triangular well that is defined almost entirely by the internal electric field, the device would not
be able extract/inject electrons from/to the lowest electronic state by resonant tunneling transport,
as required in quantum cascade structures. For these reasons, an alternative design is desired which
acts as a compromise between the extreme robustness of the 4-layer MQW and the tunability of the

3-layered step-QW design.

The pseudo-square design presented in Figure 7 demonstrates a trade-off between robustness
and the ability to incorporate into device architectures. The proposed geometry achieves THz ISB
absorption by compensating the polarization-induced internal electric fields, and uses potential
barriers that are thin enough to facilitate tunneling at low bias. The proposed band structure in
Figure 7(a) consists of four AlGaN layers with nominal Al concentrations of 12, 0, 5 and 7%. The
highest Al concentration (the concentration of the barrier) is chosen as the sum of the other two, so
that the structure can be realized by PAMBE using two Al effusion cells. In this pseudo-square QW,
the electric field is compensated by creating a gradual increase in polarization field throughout the
quantum “trough” formed by the 3 low-Al-content layers. Because of this gradual increase, the
electron density function is delocalized from a single layer, and is quantum-confined across all three
layers by the thickness of the trough, and not by the polarization field. Simulations show that the
oscillator strength of the pseudo-square QW is the same as the 4-layered MQW system, and an
order of magnitude greater than that of the step-QW configuration. The ISB energy of the design in
Figure 7(a) is nominally targeted at 25 meV, and can be tuned by changing the width of the trough.
At zero bias, the second electronic level, e,, is localized in the QW, but the tunneling probability of

electrons in e, increases by biasing in the <0001> direction.

The ISB transition deviations in the pseudo-square design are generally smaller than those
induced within the step-QW, and larger than those of the 4-layer QW (see robustness analysis in
Figure 7(b)). For a fair comparison of the structures, it is important to consider that they are
engineered to operate at different wavelengths. Defining the relative errors as AA/A, the average
wavelength variation that can be induced by growth uncertainties is 10%, 8.8% and 25%, for pseudo-

square QWs, 4-layer QWs and step-QWs, respectively.

Pseudo-square QWs fabricated by PAMBE present ISB absorption at 160 um, which blue shifts to
50 um with increasing doping level, and can be tuned from 100 to 75 um by changing the width of

the quantum trough (see Annex 5).
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Figure 7 (a) Conduction band profile for an Aly1,GaggsN/GaN/ Alg 0sGagosN/Algg7GagesN (3.5 nm / 3.5 nm / 12
nm / 6 nm) 4-layer pseudo-square QW design. On top, HAADF-STEM image of one period of the grown
structure. (b) Illustration of the robustness of the 4-layer pseudo-square QW system compared with the step-
QW design. In each case, the dots indicate the nominal ISB transitional wavelength. The colored area
represents the variation between the minimum and maximum values of the ISB transition wavelength
associated with the variation of the indicated structural parameters on each vertex. The “barrier” refers to the
Aly1,GaggsgN layer, while the “well” is the Alg g5GaggsN in each case.

4.3. Quantum cascade laser designs

QCLs are unipolar (electrons only) devices that operate on the principle of electron recycling.
Electrons cascade through a series of levels to create a population inversion in an active QW, which
leads to the emission of light at a designed wavelength. Figure 8 is a schematic of the types of GaAs-
based QCL structures that have been proposed for the THz spectral region. These include (a) the

chirped SL, and (b) the resonant phonon. The figures were taken from Williams et al. [235].

QCLs function on the principle that electrons are electrically injected into the system to level 2.
They then emit THz radiation and drop down to level 1. Electrons then tunnel from level 1 to the

proceeding level 2 via an extraction mechanism; this is the basic repeating unit of the QCL.

In a chirped SL configuration (Figure 8(a)), electrons are extracted from level 1 by tunnelling along
a SL of QWs where the quantized electronic levels are finely spaced to form a pseudo-miniband of
energies. Population inversion is obtained because electrons tend to relax to the lowest energetic
level in a miniband. A variation on this is the bound-to-continuum design where that the upper state
2 is a “bound defect state within the gap” [236], [237]. These bound-to-continuum designs typically
have lower oscillator strength, and better temperature and power performance than basic chirped
SL designs.

Resonant-phonon designs (Figure 8 (b)) have high oscillator strengths, and rely on the LO phonon
to create population inversion [238]-[240]. Electrons tunnel from the lower state 1 to a coupled
extractor state, and emit an LO phonon to then occupy the upper lasing state. This type of design
has large problems within the GaAs system where the LO phonon energy is 36 meV, and can
depopulate the lower laser state, but also the upper laser state [241], [242]. These designs have
smaller oscillator strengths than chirped SL designs, but compensate for that fact by having

repeating units that are half the thickness (can have twice as many repeating units) [243].
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Figure 8 Schematic band diagrams of the (a) chirped SL and (b) resonant phonon designs for GaAs-based QCLs.
In each case the wavefunctions are shown in red (noted 2), navy (noted 1) and light blue. Red wavefunctions
denote the location of the population inversion; navy wavefunctions denote the lower laser state, and are
designed to be several meV (5-100 meV) from the upper laser state. The light blue wavefunctions are for the
depopulation/extraction from the lower laser state and repopulation of the proceeding upper laser state.
GaN-based QCLs have been theorized to work up to room temperature by a variety of
researchers from the University of Leeds [244], [245], Boston University [1], [246], RIKEN (Japan)
[247]-[249], the University of Tabriz [250], [251], the University of Connecticut [252], [253], and the
National Institute of Information and Communications Technology in Japan [254], [255]. All of these

designs focus on the resonant-phonon architecture and predict functionality at high temperatures.

RIKEN in particular presented THz QCL designs based on four-well resonant-phonon GaN/AlGaN
structures [256]-[258]. The structures have been synthesized by PAMBE using a “droplet elimination
by thermal annealing” technique [259], and they have been processed in a single-metal plasmon
waveguide geometry [256], [257], [260]. Electroluminescence at 1.37 THz has been reported in a
first structure [257] grown both on a GaN-on-sapphire template and on bulk GaN. Polarization-
dependent electroluminescence was also reported at 2.82 THz that was slightly tunable by changing
the driving voltage in the 20-21V range, using a second design grown on an AIN-on-sapphire
template [260]. More recently, this group has reported electroluminescence at 6.97 THz in a double-
QW structure. The signal was integrated over 10 minutes with a signal-to noise ratio near 5. The
active region consisted of 200 repeats of 1.5nm Aly15GaggsN/ 4nm GaN/ 1.5 nm Alg15GaggsN/ 6 nm
GaN grown on an AIN-on-sapphire template. This device has been subject to much criticism in the
ISB community, due to the scarcity of characterization data, and the fact that no other lab has been

able to repeat or verify the results.

4.4. Quantum cascade laser design constraints

The design constraints for QCL architectures are listed as restrictions in order to ensure laser
functionality and evade pitfalls for inefficiencies. These restrictions focus on the effective extraction
of the electrons to depopulate the lower laser state, a high injection rate for the repopulation of the
upper laser state, and ensuring population inversion. In this thesis, using a resonant-phonon

configuration; GaN-based QCL designs are proposed. These designs use a pseudo-square QW as the
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lasing QW, and a step-QW to act as the extractor/injector. Figure 9 shows a schematic for the

eigenenergies and wavefunctions of an ideal QCL.
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Figure 9 Schematic diagram for resonant phonon QCL design. Red wavefunctions depict the upper laser state,
2, navy wavefunctions depict the lower laser state, 1, and light blue wavefunctions depict the extraction
mechanism. Yellow arrows indicate the ISB transitions and emission of THz radiation. The LO-phonon-assisted
transition is indicated within the extractor from the upper state to the injecting state. The transition between
the upper and lower laser states (2->1) emits a photon at THz frequencies. The flow of electrons goes from top
left to bottom right.

The basic design restrictions for QCLs include:

i.  The ISB energy between the upper and lower lasing levels is at the desired THz frequency
ii.  The lower lasing eigenenergy (1) is equivalent to the upper extractor level eigenenergy
iii.  The upper extractor level has wavefunction in the lasing well at the eigenenergy of (1)
iv.  The upper extractor eigenenergy is 1 x LO phonon energy above the injector state
eigenenergy
v. The upper laser level (2) is at an eigenenergy equivalent to the injector state eigenenergy

vi.  The lower laser state has wavefunction in the proceeding extractor well

Figure 10 shows a GaN/AlGaN QCL design simulated by nextnano® which uses a resonant phonon
design following the above design constraints. It is engineered using four AlGaN concentrations, (A,
B, 0, and A+B) so that it can be fabricated using a PAMBE setup with two Al-effusion cells. The
barriers are very thin (1 nm) and will easily facilitate tunnelling to the proceeding active trough. In
this design, the extractor (step QW) acts only to align the lower lasing state to the higher energetic
levels in the proceeding trough. Because of the thickness of the barriers and the alignment of the
upper lasing level to a level within the proceeding trough, population inversion will not occur
because there is not much incentive for the electrons to emit versus just tunnelling through the

barriers into the continuum.

Therefore, in order to create a device that reaches high level of population inversion it is

necessary to implement another two restrictions:

vii.  The upper lasing state does not have wavefunction in the proceeding well (extractor)

viii. ~ The LO-phonon-assisted transition occurs in the extractor and not in the lasing well
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Figure 10 Simulated nexnano’ architecture for a GaN-based resonant-phonon QCL. The colors and labels match
those in Figure 9. The flow of electrons goes from top left to bottom right. The design for the repeating unit is
as follows for material parameters and thickness: 1 nm Al 1,GaggssN /2nm GaN /12nm AlygsGagesN /6 nm
Alg.07GagpesN /1 nm Alg 1,GagoggN /1.5 nm Al 0sGag gesN /1 nm GaN

Restriction vii means that the upper lasing state will have the majority of the wavefunction in the
lasing well, but will have a portion upstream of the lasing QW. Conversely, the lower laser state will
have a portion downstream of the lasing QW. The downstream potential-barrier will inherently be
larger (or equal) for e; as it is for e,. This can be overcome by properly aligning the upper lasing state
so that it is energetically placed between two discretely quantized states of the extractor; preferably
between the first and the second excited levels of the extractor (this is because of the decreasing

spacing between higher quantized states). This will keep the electrons from tunneling to the
extractor, and will ensure population inversion.
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Figure 11 Simulated nextnano® GaN/AlGaN QCL design meeting the design restrictions mentioned above. The
colors and labels match those in Figure 9. The flow of electrons goes from top left to bottom right. The design
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for the repeating unit is as follows for material parameters and thickness: 1 nm Al 15GagogsN /2 nm GaN /8 nm
Alg 06Gag.0aaN /3 nm Alg 09Gag g91N /1 nm Alg 15Gag ogsN /4.5 nm GaN /3.25 nm Alg 06Gag ggaN

Extraction of the electron from the lower laser state should occur by coupling this level with the
first excited level of the extractor, which should be separated from the ground extractor level
(injector level) by 1xLO phonon energy. The injector level should be coupled with the upper lasing
state of the proceeding laser QW.

Taking these rules into respect, a design is proposed in Figure 11 which constitutes a three level
system over four quantized states, where the ISB energy between two of the states is 27.3 meV
(11 THz) and the other is the LO phonon.

Due to the applied electric field of 12.75 MV, this design has significant wavefunction overlap
from the injector state to the upper laser state. It also has the upper laser state aligned between the
e, and e; of the extractor and as such; has very little wavefunction downstream. This should
contribute to a strong population inversion. The part of this design which needs improvement is the
wavefunction overlap from the lower laser state to the upper extractor state, but it should not

impede the lasing properties of this device.

4.5. Conclusions

Various polar c-plane GaN/AIGaN MQWSs with ISB transitions in the THz spectral region are
proposed and experimentally demonstrated. By analysing the ISB energy’s robustness against
fluctuations in the growth process and the architecture’s feasibility of resonant tunneling transport
(incorporability into real devices), a “pseudo-square” MQW architecture was chosen as the best
approach for the lasing well in QCL designs. This architecture consists of four layers of AlGaN with
different Al compositions, and can exhibit ISB absorption from 6 to 2 THz in agreement with
theoretical calculations. Using this “pseudo-square” structure, polar-GaN-based QCL structures were
conceived, and the design restrictions for the creation of these structures are explained.
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5. Results: Nanowires for intersubband devices

5.1. Introduction to nanowires

As optoelectronic devices push towards higher efficiencies, the control of carrier relaxation
becomes a key aspect for device engineering, which is particularly relevant in the case of ISB
optoelectronics such as QWIPs, QCDs, and QCLs. Longer intraband lifetimes have been proven to
exist in laterally confined systems, including QDs [133], [261]-[263] and NWs [264], [265]. In the
case of NWs, their large surface-to-volume ratio allows misfit strain to be elastically released,
extending the viable active region size and composition beyond the limits of planar systems or QDs.
For these reasons, NWs are under study to improve the performance of THz QCLs [266], [267],
whose operating temperatures are currently limited by nonradiative scattering processes that
quickly depopulate the upper laser level.

Semiconductor NWs have already become a powerful kind of nano-material with promising
applications in electronics[268], optoelectronics [269], [270], energy conversion [271], [272], and
sensorics [273], [274]. Research on NWs has also stemmed out towards the creating of single photon
emitters [275], and THz emitters [276]. By using NWs in these instances, the emission of a single
photon can be controlled [277]-[280]and high correlation can be observed. NWs have also been
theorized to induce effects that show quantum entanglement [281] and show evidence of majorana
fermions [282]-[284].

From the experimental-ISB viewpoint, IR absorption associated with ISB transitions between
laterally confined states have been observed in bismuth NWs [285]-[287], and their properties have
proven relevant to understand the operation of Si-NW field effect transistors [288]. However, ISB
absorption has not been demonstrated in as-grown NWs due to the presence of stacking faults and
polytypisms in GaAs [289]-[292]. Conversely, ISB electroluminescence was recently obtained from
nanopilars that were lithographically defined on a standard GaAs/AlGaAs QCL structure (top-down
approach) [293].

GaN is a model material for the study of ISB transitions in NW heterostructures, because the
presence of stacking faults or extended defects can be limited to the first hundred nanometers close
to the substrate. At the beginning of this thesis, the only experimental result for ISB absorption had
been reported by Tanaka et al. [294] in a sample containing GaN/AIN (1 nm/2.7 nm) NW
heterostructures. In order to fully understand the NW heterostructures and how the strain and
material characteristics influence the 3D confinement and the positioning of the electronic levels in

these systems, their ISB and interband characteristics were explored.

5.2. Samples under study

In this thesis, a theoretical and experimental study of the electronic structure of GaN/AIN NW
heterostructures is presented. The samples consisted of N-polar AIN/GaN NW heterostructures
synthesized by PAMBE on Si(111) substrates. These heterostructures consist of a non-intentionally
doped (n.i.d.) GaN NW base with a length of 600 nm and a radius ranging from 25 to 40 nm. This
base is followed by 40 periods of GaN:Ge/AIN NDs, and a 20-nm-thick n.i.d. GaN cap layer. Ge was



used as a dopant instead of Si as it introduces less strain in GaN being similar in size to Ga [295],
[296], and it induces negligible change in the NW aspect ratio, even for high Ge doping levels
(3.3x10%° cm?®) [176]. Additionally, Si was proven to migrate to the surface of the NWs [297]
decreasing the doping efficiency. The thickness of the GaN NDs was varied between 3 nm and 8 nm,
while the thickness of the AIN sections (barriers) was kept constant at 4 nm. The Ge concentration in

the NDs was varied in the 5x10" to 3x10%° cm™ range.

Figure 12 shows annular dark field (ADF) and high-resolution transmission electron microscopy
(HRTEM) images of two of the samples, which confirm the growth of the wires along the <0001>
direction for both the GaN and AIN, with a perfect epitaxy consecutively achieved between both
materials. The GaN/AIN heterostructures are enveloped by a thin (2-5 nm) AIN layer, starting from
the top-most AIN barrier extending along the GaN stem. In the HRTEM images, the AIN sections

often present {1-102} facets close to the sidewalls.
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Figure 12 (a) ADF image of a set of GaN NWs from sample S6, containing 40 periods of AIN/GaN NDs. (b)
Zoom-in of the squared area in (a). (c) HRTEM image of several GaN NDs and AIN barriers. (d,e) ADF images of
sets of wires from sample S9. (f) HRTEM image of several GaN NDs, separated by AIN barriers.

5.3. Understanding band-to-band dynamics (Annex 6)

In order to probe the band-to-band characteristics of these NWs, they were characterized by PL
(see Annex 6). The low-temperature (T =5 K) PL emission of the structures red shifts for increasing
ND thickness, and blue shifts and broadens for increasing doping levels, which can be assigned to the

screening of the internal electric field by the free carriers. For all the samples the PL intensities
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remain almost constant up to about 100 K, after which they drop to 60 to 80% of their maximum
values, at room temperature. This behavior is characteristic of GaN/AIN nanostructures with 3D
confinement, in contrast to planar structures which generally exhibit a PL quenching of several
orders of magnitude at room temperature [298].
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Figure 13 (a) Time resolved PL measurement of sample N3 from Annex 6. The green stripe depicts the
relaxation scheme at the wavelength of maximum peak intensity. The yellow line depicts the wavelength
intensity profile at the relaxed peak wavelength. of maximum intensity after the laser-induced screening has
subsided. The red stripe follows the maximum intensity by varying the wavelength with time. (b) Evolution of
the PL spectra as a function of time. The time of maximum intensity is taken as t = 0. The spectra were
acquired at the times indicated with arrows on the right hand side of Figure 13(a), with a time integration
window of 0.4 ns. (c) Evolution of the PL peak intensity as a function of time for each of the schemes shown in
Figure 13(a). The black line represents the integration of the full spectrum over all 116 nm. The integration
linewidths are 116 nm, 5 nm, 5 nm, and 0.1 nm for the black, yellow, green and red lines respectively. The blue
dashed line is an exponential fit to the PL decay for times longer than 60 ns from the relaxation scheme that
incorporates the red-shift from the descreening.

To confirm the screening of the internal electric field with doping, the samples were further
analyzed by time-resolved PL. As a typical example, Figure 13(a) shows a time-resolved PL
measurement of one of the samples (N3 in Annex 6) at low temperature (T =5 K). The PL spectra at



different times are seen in Figure 13(b). The emission presents a red shift of 45 nm during the first
~60 ns before a steady-state is obtained. This spectral shift is systematic through all the investigated
samples and ranges from 0.1 to 0.3 eV, and decreases with increasing doping levels. Figure 13(c)
depicts different analyses of the normalized intensity decay profile: integrating the whole spectra, a
stripe at the wavelength of maximum peak intensity, a stripe at the relaxed peak wavelength (peak
wavelength at 180 ns), and finally a stripe which follows the maximum intensity by varying the
wavelength with time. The intensity profiles are drastically different and present 1/e relaxation

times that vary by a factor of 5. It is therefore important to follow the correct analysis procedure.

In the samples under study, the initial red shift and non-exponential behavior are attributed to
the perturbation of the band structure induced by the excitation (screening of the polarization
fields), and to band filling, as previously observed in GaN/AIGaN QWs [218]. Therefore, in our
analysis, only the time constants extracted during the exponential decay regimes (dashed line in
Figure 13(c)) were considered. This regime reflects the carrier dynamics of the original band
structure, once the photo-induced perturbation from the laser is dissipated.

The evolution of the characteristic PL decay time was analyzed as a function of temperature with
the results plotted in Figure 14. In all cases, the PL decay times remain constant (+10%) from 10 K to
300 K, as previously observed in the case of Stransky-Krastanov GaN/AIN QDs [299]. This
demonstrates that the 3D confinement in the NDs efficiently suppresses thermally-activated non-
radiative recombination channels up to room temperature. The thermally stable PL decay time led
us to attribute the thermal quenching of the integrated PL intensity to carrier losses during the

relaxation of the hot photoexcited carriers towards the exciton ground states.
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Figure 14 The characteristic PL decay times extracted from the exponential part of the PL decays (similar to
Figure 13(c)), plotted as a function of temperature and Ge-dopant level. The macroscopic PL emission
wavelengths are indicated in the figure. The PL decay times of an n.i.d. GaN/AIN QW (labeled n.i.d. QW)
emitting at approximately the same wavelength that N1 are superimposed. (After Annex 6)

In addition to this stability, the low- and high-temperature PL lifetimes of the dots varied by

nearly two orders of magnitude when changing the dopant concentration. At high dopant
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concentrations the lifetimes were as low as several ns, while at low dopant concentrations they
were on the us scale. These results are juxtaposed to a QW with the same e;-h, energetic spacing as
the lowest doped wire. Even at 5K, the lifetime within the wire is an order of magnitude longer and
the QW has a drastically shorter lifetime at higher temperatures.
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Figure 15 Normalized PL intensity as a function of time at T=10K for samples with ND thicknesses from 3 to 8
nm. The decay times are extracted and plotted in the inset as a function of the ND thickness. The decay times
range from several nanoseconds to nearly 1 us for the largest NDs.

In addition to the screening of the internal electric field via doping, the carrier relaxation rate as a
function of the ND size was also monitored. Figure 15 shows the decay profiles as a function of time
and the 1/e times as a function of the ND size has been inset. These NDs were doped to an
intermediate level ([Ge] = 9 x 10%° cm™). A drastic increase in the relaxation time is seen as a

function of the dot thickness.
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Figure 16 Schematic for the NW heterostructures. The GaN cap and stem are shown in green while the AIN
barriers and shells are shown in yellow. The white portions are the GaN NDs which were doped to the
appropriate concentrations. The figures are shown for the (a) flat AIN barriers and (b) truncated hexagonal
pyramid AIN barriers.

To understand the above-described results, the NW heterostructures were simulated in 3D using
nextnano’. The NWs are represented as hexagonal prisms set on a GaN substrate, to provide a
reference in-plane lattice parameter. The NDs were first simulated as flat disks of GaN inserted into
an AIN prism, which acted as both the shell and the barriers (Figure 16(a)). However, as described
above, the NDs were not actually flat hexagonal disks; they exhibited {1-102} facets at the interface

between the NDs and the shell. The model was therefore changed to more correctly incorporate



these facets. The material model of the NWs was redefined by a series of hexagonal prisms and
truncated hexagonal pyramids to fully create the schematic of the NW as shown in figure 16 (b). The
guantum mechanical states of these NW heterostructures were then simulated, and the ISB and
interband properties were studied in addition to the shapes of the wavefunctions. The presence of
the {1-102} facets leads to 10% lower interband energy and 6% higher ISB energy in comparison to
rectangular-section NDs.

In the case of NW heterostructures, the strain distribution is paramount to understand the band-
to-band dynamics. The surface strain relaxation results in non-zero g,, and g, shear strain
components, which in turn lead to radial piezoelectric polarization associated with the non-zero ess
piezoelectric constant in the wurtzite lattice. At low dopant concentrations, these phenomena
create a radial band bending which separates the electron and hole wavefunctions in the radial
direction (see Figure 17), with holes located axially on top of the ND and radially close to the surface,
and electrons located axially at the bottom of the ND and radially centered. However, the relatively
weak radial electric field can be rapidly screened by doping, which leads to both a radial and axial
centralization of the hole underneath the electron. This results in an increase in the overlap integral
between the electron and hole, and consequently a decrease in the radiative lifetime, in addition to
the luminescence blue shift.

= =
o o
o 2 [000-1] Q.
0 — D

4f -4

22 216 20 224 212 216 220 224
Depth (nm) Depth (nm)
15\ (€ J 0.0 f(d)

< o0sF 1 < -0}
d d
- 00} 4 o -15F
2 2
205} [11-20] {1 2 20} [11-20]
L e L e

-1.0 25k

1.5 \-/ 3.0k

20 -10 0 10 20 20 -10 0 10 20
Radial distance (nm) Radial distance (nm)

Figure 17 Calculations of the conduction and valence band profiles and first electronic levels of electrons
(green) and holes (pink). (a, b) Conduction and valence band profiles along [000—1] taken at the center of the
NW, for (a) undoped NDs and (b) Ge-doped NDs (sample N3). The ground electron and hole levels are
indicated by dashed lines. In (a), the ground hole level is not indicated because the value of the squared
wavefunction along the center of the NW is zero. (c, d) Radial conduction and valence band profiles for the (c)
undoped and (d) Ge-doped ND in the center of the stack. Note that the conduction band was taken at the
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bottom of the disk, while the valence band was taken at the top of the ND. The squared wavefunctions of the
ground electron and hole states are indicated in the figures. (After Annex 6)

5.4. Intraband absorption in nanowire heterostructures (Annex 7)

By simulating the electronic structure and extracting several hundred quantized levels within the
NW heterostructures, the secondary quantized states (p,, px py) can be extracted. Because the NDs
are quite large (quantum mechanically speaking) in the radial direction, the energy levels that are
separated in the radial sense are energetically very close. For instance, the p, and p, orbitals show
energy levels that are 27-29 meV away from the first excited state s, but are several hundred meV

from p,.

The ISB properties of NW heterostructures with differing doping levels and ND thicknesses were
probed using FTIR spectroscopy. In Annex 7, the observation of TM-polarized IR absorption lines
assigned to the s-p, intraband transition is reported. The s-p, and s-p, intraband transitions were not
observed, most likely due to fluctuations of the NW radius and to the preferential coupling of TM
light to the NW geometry. Doping induces a blue shift of the s-p, absorption line attributed to many-
body effects, namely the exchange interaction and depolarization shift, which overpower the red
shift induced the screening of the internal electric field. Conversely, the s-p, transition red shifts with
increasing ND thickness as theoretically expected. Figure 18(a) shows the intraband transition
wavelength along with the calculations of the ISB wavelength by including various many-body effects
for various doping levels.
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Figure 18 (a) shows the IR transmission curves for NDs with differing dopant concentrations. Absorption is
seen in the TM-polarized light attributed to the e;-e, (or s-p,) transition. (b) the simulated shape of the
wavefunctions for the first (s) and second (p,) excited states levels inside the NDs including their axial and
radial positions within the NDs. (c) The experimental values for the ISB transition plotted as a function of
dopant concentration. The simulations of ISB energy are overlayed and show that with the inclusion of the (1)
screening of the internal electric field (2) exchange interaction, and (3) depolarization shift that they can
predict the ISB energy within the NW heterostructure. (After Annex 7)



5.5. Note on silicon vs. germanium for n-type doping.

As a first approach to study intraband phenomena in GaN/AIN NW heterostructures, Si was used
as a dopant because of its well-known properties as an n-type dopant of GaN. Upon experiencing
difficulties for the observation of intraband absorption, germanium was explored as an alternative
dopant for both PAMBE [300] and MOCVD growth [301], [302]. This was because its size is more
similar to Ga. Additionally, In the case of NWs, Ge was used as a dopant over Si due to the fact that
Si migrates to the surface of GaN NWs [297], Ge introduces less strain in GaN being similar in size to
Ga [295], [296] and the change of the NW aspect ratio is negligible even for high Ge doping levels
(3.3x10% cm’) [176].

In terms of optical properties of the NW heterostructures, a shift in the ISB wavelength was seen
in GaN/AIN NW heterostructures doped with Si and Ge at the same beam equivalent pressure (BEP),
as illustrated in Figure 19. The red shift observed in the Si-doped NDs was associated with an inferior

incorporation of the dopants into the heterostructure.
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Figure 19 The transmission of TE (dashed) and TM (solid) light for Ge- (red) and Si-doped (blue) NW
heterostructures. The dashed lines indicate the local minima for the TM-polarized light. The difference
between the TM and TEM polarized light is attributed to the e;-e, ISB transition. The structures were doped to
a similar BEP and exhibited ISB transitions at 1.9 and 2.15 um for the Ge- and Si-doped structures respectively.

5.6. Conclusions

We have studied the optical properties (interband and intersubband) of GaN/AIN NW
heterostructures doped with germanium. In terms of interband properties, we report GaN/AIN NW
heterostructures displaying PL decay times on the order of microseconds that persist up to room
temperature. Doping the GaN ND insertions with Ge can reduce these PL decay times by up to two
orders of magnitude. These phenomena are explained by the 3D electric field distribution within the
GaN NDs, which has an axial component in the range of a few MV/cm associated with the
spontaneous and piezoelectric polarization, and a radial piezoelectric contribution associated with
the shear components of the lattice strain (several hundred KV/cm). At low dopant concentrations, a
large electron-hole separation in both the axial and radial directions is present. By increasing the Ge-

dopant concentration within the NDs, the electric field creating this separation is screened, and the
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electron and hole wavefunction can be aligned in space, which consequently decreases the PL

lifetime.

These GaN/AIN NW heterostructures display TM-polarized infrared absorption in the NIR
assigned to the s-p, ISB transition in the NDs. The ISB energy of these s-p, transitions within the NDs
can be shifted either by changing the thickness of the NDs, or the dopant concentration within the
NDs. From a theoretical analysis, we conclude that the AIN shell generated during the
heterostructure growth applies a uniaxial compressive strain which blue shifts the interband optical
transitions, but has little influence on the ISB transitions. The presence of surface states at the
density levels expected for m-plane GaN leads to the depletion of the GaN base of the NWs, but is
insufficient to screen the polarization-induced internal electric field in the heterostructures. With the
addition of dopants, the ISB transitions are blue shifted due to many-body effects, namely the
exchange interaction and depolarization shift, which exceed the red shift induced by carrier

screening.
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6. Results: Alternate crystal orientations

6.1. Introduction to nonpolar and semipolar orientations

In nonpolar samples, the lack of the internal electric field and high conduction band offset
theoretically allows for ISB devices to be designed in the same fashion as GaAs devices. By
eliminating the effect of the internal electric fields, the ISB energy can be straightforwardly
decreased to unprecedentedly low levels. In spite of these advantages, ISB activity in GaN has mainly
focused on the c plane because of the inability to obtain high quality SL structures along other crystal
orientations. The availability of high quality substrates and the challenge to control 2D growth on the
highly anisotropic nonpolar surfaces have been the limiting factors for these technologies.

Until relatively recently, ISB absorption had not been shown from non- or semipolar crystal
planes. Nonpolar cubic GaN was the first to show ISB activity [303], [304] in 2007. In 2008, ISB
transitions at 2.5 and 3.75 um were observed using semipolar (11-22) GaN/AIN heterostructures
[305]. Nowadays, m-plane growth of SLs has been well studied [306]-[308], and MIR absorption has
been shown in samples grown by MOCVD from 4.2 to 5 um [126]. QWIPs in the MIR on m-plane
substrates have been demonstrated at 9 and 7.5 um [309]. Furthermore, m-plane samples have
shown FIR-ISB absorption [310], and resonant tunneling capabilities [311], which confirm their
applicability for THz applications. Oddly enough, m-plane ISB absorption has not been shown in the

NIR, and the relaxation mechanisms within these SL structures have not been fully explored.

6.1. Optical: a- vs m- vs c-plane substrates

By placing all three substrates (a-, m-, and c-plane) on the same molyblock, the morphology of
the samples can be determined from identical growth conditions and samples with identical QW
thicknesses can be compared. Heterostructures containing 40 repeats of 4 nm of AIN and GaN:Si QW
thicknesses of 1.5, 2.5 and 3.5 nm were grown under the optimum growth conditions for c-plane
growth (Ga bilayer, 720°C). The samples were grown simultaneously on bulk m- and a-plane
substrates, as well as on c-plane AIN-on-sapphire templates. All samples were capped with 30-40nm
of AIN. The samples were rigorously tested using FTIR, PL, AFM and XRD and the results are shown

against simulated values from nextnano®.

Figure 20(a) shows the experimental low-temperature (5 K) PL data for samples. Using nextnano?,
the electronic structure of m- and c-plane heterostructures were simulated, and can be seen in
Figure 20(b). Figure 20(a) shows that m-plane samples have PL intensities systematically twice as
high as a-plane samples, and 20 times higher than the c-plane samples, in agreement with literature
[312]. This occurred for samples over all QW widths, and is due to the internal electric field in the ¢
plane that separates the electron and hole in space and reduces the overlap integral. Furthermore,
c-plane samples show interband energies that are systematically lower than the bandgap energy of
GaN except for very small wells. This is because of the onset of the QCSE after a thickness of 1.5-1.75
nm. It can also be noted that samples grown on the a and m planes show asymptotic behaviour
when approaching the GaN bandgap for larger well widths; demonstrating the lack of an internal

electric field within these systems.
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Figure 20 (a) PL spectra of samples grown on various substrates (indicated by color), and with various QW
widths (indicated by solid, dashed or dotted lines). The grey line marks the GaN bandgap. (b) The extracted
peak PL wavelength as a function of the QW width. Simulations are shown as lines for polar (red) and nonpolar
(brown) crystal orientations. The strain state was either strained on AIN (solid) or on GaN (dashed), and the
experimental points are shown as a function of well width for each crystal orientation. The error bars for the
experimental data comes from variations in the QW width due to growth.

The ISB energies of these samples were also simulated with nextnano® and measured using FTIR.
Samples exhibited TM-polarized ISB absorption in agreement with the simulated values (Figure 21).
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Figure 21 ISB energy of the e;-e, transition as a function of the well width for polar and nonpolar crystal
orientations. Simulations are shown as lines for polar (red) and nonpolar (brown) crystal orientations. The dots
represent experimental data for samples grown on the a, m, and c planes.

Optically, m-plane samples are shown to be superior to a-plane samples. This is concluded from

the higher and narrower PL intensities and similar performance for ISB transitions.
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6.2. Structural: a- vs m- vs c-plane substrates
Figure 22 shows the AFM images of each of the samples grown on a- and m- plane substrates.
They can be compared to the c-plane image showing step-like growth. Note that samples grown on

a-plane substrates are systematically rougher than for m-plane samples.
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Figure 22 The 2x2 um AFM images extracted for the samples grown on the a, m, and ¢ planes for various QW
widths. Samples grown on the ¢ plane all showed root-mean-square (RMS) roughness values near 0.5 nm and

step-like growth.

The mosaicity of the samples was analyzed by XRD. Data for the samples with a QW thickness of
2.3 nm is summarized in Table 5. The full width at half maximum (FWHM) of the rocking curves were
measured for the substrate and the MQW along the (3-300) and (11-20) reflections for m-plane and
a-plane samples, respectively. Scans with ¢ = 0° and ¢ = 90° were performed (Awc and Awa,
respectively for the m-oriented samples, and Awc and Amm, respectively for the a-oriented sample),
which provide information on the sample mosaicity in the ¢ and a directions for the m-plane sample,
and in the ¢ and m directions for the a-plane sample. Comparing these values in Table 5, it appears
that, even though the crystalline quality of a-plane substrates in terms of mosaicity was better than
for the m-plane substrates, all the m-plane MQWs present better quality than the a-plane MQWs.

Substrate A ey — Average Al | XRD Period XRD FWHM XRD FWHM
plane w B content (%) (nm) MQW (°) GaN (°)

m 23 35 60 5.8 Aw.=0.44 Ao, =0.037




Aw,=0.30 Aw, =0.040

Aw.=0.53 Ao, =0.019
a 23 3.5 60 5.8

Aw,=0.40 Aw, =0.023

Table 5 Structural data for the sample with QW thickness of 2.3 nm and barriers nominally at 4 nm. The
crystallographic orientation (substrate), QW thickness (tqw), barrier thickness(tg), average Al concentration
throughout the heterostructure, RMS roughness, period extracted from XRD, FWHM of the (3-300) reflection
of the MQW and the substrate, as well as the extracted strain relaxation characteristics are shown.

Upon comparison of the PL data to the AFM images, the discrepancy in the optical performance

between the a- and m-plane samples seems to be due to a higher structural defect density.

6.3. Longer wavelength intersubband transitions in the m plane (Annex 8)

Based on these results, a series of m-plane GaN/AlGaN MQWs were designed to determine the
accessible spectral range in the MIR. The QWs were enlarged to achieve the desired spectral shift,
and the AIN barriers were replaced by AlGaN to reduce the lattice mismatch and keep the highest
qguantized electronic level just below the conduction band edge to potentially act as QWIPs. The
barriers were chosen to be 22.6 nm thick, in order to prevent coupling between QWs. The well
widths were varied from 2 to 3.1 nm with barrier-Al concentrations ranging from 44 to 26%. These
samples were simultaneously grown on bulk m-plane substrates and c-plane GaN-on-Si templates.
The structural and optical properties of these samples were studied using PL, FTIR, XRD, and are

summarized in Table 6.

taw tg (nm) [Al Measured PL emission Theoretical ISB Measured ISB e,-e;
(nm) Content (%)] (eV) [theory (eV)] e,-e; energy (meV) energy (meV)
3.11 22.6 [26] 3.60 [3.59] 186 253

2.83 22.6 [31] 3.61[3.62] 223 229

2.54 22.6 [35] 3.64 [3.65] 260 264

1.98 22.6 [44] 3.68 [3.74] 356 337

Table 6 Structural and optical properties of samples grown to exhibit ISB transitions spanning the MIR spectral
range. The measured QW thickness (tqw), barrier thickness (tg), barrier-Al content as well as optical properties
for the PL and ISB characteristics are shown, with their respective simulated values from nextnano’.

Figure 23(a) shows the ISB absorption of the GaN/AIGaN with various QW thicknesses. Figure
23(b) compares the experimental ISB energies with their simulated values from nextnano?®. ISB
absorption is demonstrated in the 350-200 meV range (3.5 to 6 um), the limit being set by the GaN

substrate absorption associated with the second-order harmonic of the Reststrahlen band.
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Figure 23 (a) ISB plotted absorption as a function of energy for samples with varying well widths grown on the
m plane. The ISB absorbance varies from 250 to 350 meV with decreasing well width. (b) The extracted peak
ISB wavelength values and plotted as a function of well width. The experimental values are shown as dots,
while the lines represent the values extracted from nextnano® simulations assuming a relaxation to the
average-Al-content of the MQWs.

6.4. Growth on semipolar substrates (Annex 9)

Due to the strong anisotropy of growth on the a and m planes, semipolar planes have been an
alternative to reduce the electric field within thin-film structures [313] while still avoiding this
anisotropy [66]. By growing GaN/AIN MQW samples with various well thicknesses, the band-to-band
and ISB properties of c- and semipolar architectures can be directly compared [23]. Samples were
grown by PAMBE with well thicknesses varying from 1.2 to 3 nm. The band-to-band properties of
these samples were probed by PL and showed a decrease in the internal electric field similar to that
shown for nonpolar samples. Figure 24(a) shows the ISB absorption as a function of the QW width
for the polar and semipolar samples, while Figure 24(b) shows their ISB properties compared to the
values extracted from nextnano’ simulations strained on AIN and GaN substrates. The ISB
absorptions of semipolar samples show a significant red shift with respect to the polar ones due to
the reduction of the internal electric field in the QWs.

In view of these promising results, we tried to extend the ISB further into the MIR. Semipolar
samples were designed and grown with AlGaN barriers and thicker QWs. However, these samples
did not demonstrate ISB absorption. The samples were analyzed using HAADF-STEM in collaboration
with Prof. P. Ruterana (CIMAP, CNRS-ENSICAEN, Caen, France) and the results are shown in Figure
25. Strong alloy inhomogeneities are observed in the AlGaN barriers. Similar features were observed
in thick AlGaN layers grown at various substrate temperatures. Due to these fluctuations, we
decided to focus our efforts on the m plane as the best crystallographic plane to reduce the internal
electric field in the QWs.
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Figure 24 (a) the ISB absorption found in the TM polarization for samples with various well thicknesses for
(top) semipolar, and (bottom) polar crystallographic growth conditions. The well width is varied from 1.2 to 3
nm and ISB absorption spans from 1.5 to 3.4 um. (b) The extracted peak absorption values plotted as a
function of the well width for polar (green) and semipolar (orange) orientations. Simulated values are shown
as lines for polar (dashed) and semipolar (solid) crystal orientations. The strain state was either strained on AIN
(red) or on GaN (black). The error bars for the experimental data comes from variations in the QW width due

to growth.

Figure 25 Left: HAADF-STEM images of GaN/AlGaN heterostructures grown with 40 repeats of 12 nm
Alg,GaggN and 16 nm GaN. Right: Zoom showing alloy inhomogeneities in the AlGaN barriers.
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6.5. Conclusions

The feasibility of using alternate crystallographic planes for ISB applications was explored,
including nonpolar (1-100) m and (11-20) a planes, and the semipolar (11-22) plane. Regarding
nonpolar structures, through studies of GaN/AIN MQWs in the NIR we demonstrate that growth on
m-plane substrates is optically and structurally superior to the growth on a-plane substrates.
Focusing on m-plane growth and extending the study to ternary alloys (GaN/AlGaN MQWs), we
demonstrate ISB absorption in the 1.5 to 6 um range, where the limit was set by the substrate
absorption associated with the second order of the Reststrahlen band. In the case of the (11-22)
semipolar plane, it showed promise for GaN/AIN heterostructures, but the ISB spectral range could

not be extended to the MIR or FIR, due to strong alloy fluctuations within the AlGaN ternary alloy.
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7. Conclusions and prospects

7.1. Conclusions

This thesis pushes the boundaries of GaN-based ISB technologies in a three-pronged approach
focusing on extending the viable region for ISB transitions in c-plane GaN QWs into the THz spectral
region, exploring the feasibility of NW-based ISB technologies, and assessing the capabilities of

nonpolar/semipolar GaN MQWs for ISB optoelectronics.

Extending the viable ISB transition energy into the FIR using GaN/AlGaN MQWs with single
barriers and single QWs is not easily accomplished due to the QCSE. By analyzing the sources of error
associated with the growth of MQW structures and the feasibility of tunneling transport through the
barriers (incorporability into real devices), a “pseudo-square” MQW architecture consisting of four
layers of AlGaN with different Al compositions was proposed as the best approach for the lasing
well in QCL designs. These MQWs were fabricated by PAMBE and exhibited tunable ISB transitions
from 6 to 2 THz by changing the QW thickness and dopant concentration. Using this pseudo-square
structure, the design restrictions for the creation of LO-phonon—based QCLs were explained, and a

final design for a c-plane GaN QCL was proposed.

Motivated by demonstrations of long lifetimes, and essentially-defect-free active regions in
laterally-confined systems such as QDs and NWs, GaN/AIN NW heterostructures were explored as an
alternative active media for ISB devices. In terms of interband properties, GaN/AIN NW
heterostructures were found to display PL decay times on the order of microseconds that persist up
to room temperature. This phenomenon is explained by the 3D electric field distribution within the
GaN NDs, which has an axial component in the range of a few MV/cm associated with the
spontaneous and piezoelectric polarization, and a radial piezoelectric contribution associated with
the shear components of the lattice strain (hundreds of kV/cm). It was demonstrated that this radial
electric field leads to a spatial separation of the electron and hole that can be screened by increasing
the Ge-dopant concentration within the NDs; aligning the electron and hole wavefunctions in space.
This alighment was demonstrated to reduce the PL lifetime of these NW heterostructures by two
orders of magnitude. The ISB properties of these NWs were also probed with respect to ND
thickness and dopant level. It was shown that with increasing dot thickness, the ISB energy red-shifts
from 1.5 to 1.8 um, and with increasing dopant concentration, the ISB transition is strongly blue
shifted. This blue shift is attributed to many-body effects, namely the exchange interaction and

depolarization shift, which exceed the red shift induced by carrier screening.

The feasibility of using alternate crystallographic planes for ISB applications has also been
explored, including the nonpolar (1-100) m and (11-20) a planes, and the semipolar (11-22) plane.
Regarding nonpolar structures, GaN/AIN MQWs for NIR applications were grown simultaneously on
m-, a-, and c-plane substrates. Samples grown on m-plane substrates were superior to those grown
on a-plane substrates in terms of surface roughness, mosaicity, PL linewidth and intensity, as well as
ISB absorption in the 1.5 to 3 um range. Focusing on m-plane growth and extending the study to
ternary alloys (GaN/AIGaN MQWs), ISB absorption is demonstrated in the 1.5 to 6 um range, the

long-wavelength limit being set by the substrate absorption associated with the second order of the



Reststrahlen band, starting around 7 um. Along the lines of reducing the internal electric field while
reducing the in-plane anisotropy, GaN/AIN MQWSs were grown on the (11-22) semipolar plane.
These structures demonstrated tunable ISB energies spanning the NIR from 1.5 to 3.3 um. However,
semipolar GaN/AIGaN MQWs targeting the MIR and FIR did not show ISB absorption due to strong
alloy fluctuations within the AlGaN ternary alloy.

7.2. Prospects

7.2.1. THz quantum cascade laser fabrication

Because GaAs QCL technologies have been constantly improving over the last 12 years, there is a
wealth of knowledge in terms of wavefunction engineering that can be applied to GaN technologies.
Through the implementation of hybrid designs (between chirped superlattice and LO-phonon) GaAs
QCLs have improved in both their temperature and power performance. Because existing GaN
designs consist only of two basic wells (the extractor and the lasing well), the addition of other wells
(such as an injector) could increase the lasing efficiency and lead to higher-temperature and higher-
power lasers. By growing these structures on bulk substrates, this will drastically lower the defect
densities, and therefore the threshold currents. If these substrates are doped with Si or Ge, it will

also allow for back contacts to be created on the devices.

Besides the design of the active region, THz QCLs also rely on waveguiding to properly direct the
emission of light. Metal-metal waveguides are typically used in the GaAs system [314], but due to
the challenge of creating an etch-stop layer in GaN-based structures, it is very difficult to create this
type of back-etched structures in a reliable way. Surface plasmon waveguides seem to be the easiest
way to accomplish this waveguiding [238][247], [248]. Spoof surface plasmon waveguides have also
been theorized to decrease waveguide losses by a factor of 10, but require many more lithographic
steps [315], [316].

Upon the creation of solid state THz sources and detectors operating at room temperature, there
are many opportunities to use these devices for applications ranging from ultrafast wireless data
transfer to portable characterization tools. Eventually, these devices could replace existing
technologies for characterizing materials in the industry and at home. Additionally, these lasers
could be used in the diagnosis of epidermal diseases such as melanoma, and with increased laser
power would come the ability to probe deeper tissues and materials. Diagnostics could be extended
to complete 3D body scans to search for cancer, bone diseases, or at higher resolutions could come
the tracking of chemical flow on a micron scale. These high-power sources could also be used for
non-destructive defect analysis, or security screenings, and could also be used to verify the

authenticity of high quality wines or archeological artifacts.

7.2.2. Nanowire intersubband technology

NWs are seated to improve the performance of ISB devices, particularly QCLs, whose operating
temperatures are limited by nonradiative scattering processes, and photodetectors, by increasing

the collection efficiency of photoexcited carriers. Critical steps in this direction involve the
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assessment of the accessible spectral range, and the evaluation of NW heterostructures in terms of
light emission/lasing and detection. In order to move the response of these NW heterostructures to
longer wavelengths, the ISB energy should be decreased by increasing the thickness of the NDs, and
decreasing the Al content of the barriers. It will be particularly challenging to get into the FIR
because of the expected alloy inhomogeneities, which could be a major hurdle for creating
homogeneous barriers. Additionally, processing technologies need to be developed to increase the
waveguiding properties of NW ensembles, due to the fact that that ISB transitions occur

perpendicular to the NW growth axis.

7.2.3. Nonpolar Intersubband devices

Nonpolar ISB absorption has been shown to cover nearly the entire IR spectrum and simulations
have successfully been able to predict the ISB wavelength. By emulating the designs of GaAs QClLs,
the research that has occurred in this material system can be used. Such designs have already been

theorized [316]-[318], but have not yet been experimentally demonstrated.

If QCL structures are to be fabricated, it would also be beneficial to pursue more methods of
creating large nonpolar substrates, either by increasing the growth rate and crystal quality of HVPE-
grown boules or by improving the quality of nonpolar ammonothermal substrates. An alternative
approach would be the use of patterned substrates and facetted growth surfaces.
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Abstract

[II-nitride nanostructures have recently emerged as promising materials for new intersubband
(ISB) devices in a wide variety of applications. These ISB technologies rely on infrared optical
transitions between quantum-confined electronic states in the conduction band of
GaN/Al(Ga)N nanostructures, namely quantum wells or quantum dots. The large conduction
band offset (about 1.8 eV for GaN/AIN) and sub-picosecond ISB relaxation of III-nitrides
render them appealing materials for ultrafast photonic devices in near-infrared
telecommunication networks. Furthermore, the large energy of GaN longitudinal-optical
phonons (92 meV) opens prospects for high-temperature THz quantum cascade lasers and ISB
devices covering the 5-10 THz band, inaccessible to As-based technologies due to phonon
absorption. In this paper, we describe the basic features of ISB transitions in III-nitride
quantum wells and quantum dots, in terms of theoretical calculations, material growth,
spectroscopy, resonant transport phenomena, and device implementation. The latest results in
the fabrication of control-by-design devices such as all-optical switches, electro-optical

modulators, photodetectors, and lasers are also presented.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Historical introduction

Semiconductor materials can be made optically active at
infrared (IR) wavelengths regardless of their band gap
by engineering the electron quantum confinement in thin
layers. Such controlled-by-design devices rely on optical
intersubband (ISB) transitions between electronic confined
states, and the desired transitional wavelength can be obtained
through engineering of the layer thicknesses. The first studies
of ISB absorption date back to 1974, when Kamgar et al [1]
recorded optical transitions between bound electronic levels
in an accumulation layer on n-type Si(100) under far-IR
illumination. Since then, a number of works on Si space-
charge regions and III-V surface layers have contributed
to a more detailed understanding of quantum confinement
in thin-film structures, many-body effects, ISB absorption
selection rules, oscillator strengths and line shapes [2]. The

0268-1242/13/0740224-26$33.00

extrapolation of these principles to GaAs/AlGaAs quantum
wells (QWs) to shift the transition wavelength to the mid-IR
was first suggested by Esaki and Sakaki [3], and subsequent
experimental [4, 5] and theoretical studies [6, 7] led to the first
experimental measurement of strong ISB absorption in a series
of multiple QWs (MQWs), performed by West and Eglash [8].
These results set the basis for the fabrication of the first QW
infrared photodetector (QWIP), by Levine er al [9, 10]. In
1994, Faist et al [11] presented a major breakthrough in the
ISB technology: an alternative to the conventional laser diode,
with a novel operating principle—the quantum cascade laser
(QCL). This was the beginning of tremendous development of
the ISB technology which resulted in commercially available
devices operating in the mid- and far-IR.

Nowadays, ISB optoelectronic devices (photodetectors
and emitters) based on the III-As material system
(GaAs/AlGaAs, InGaAs/AllnAs, or GalnAs/AlAsSb) can
be tuned from the mid-IR to the THz spectral range.
Operation at shorter wavelengths (<3 um) is limited by the

© 2013 IOP Publishing Ltd  Printed in the UK & the USA
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available conduction band offset and by material transparency.
[II-nitride semiconductors (GaN, AIN, InN and their alloys),
with their wide band gap and a large conduction band offset
(~1.8 eV for GaN/AIN [12-14]), are attracting much interest
for ISB devices operating in the near-IR spectral range,
particularly in the 1.3-1.55 pum wavelength window used
for fiber-optic communications [15-17]. GaN is transparent
in a large spectral region, notably for wavelengths longer
than 360 nm (band gap), except for the Rehstrahlen band
(from 9.6 to 19 um). Absorption in the range of 7.3 to
9 pum has been observed in bulk GaN substrates with carrier
concentrations <10'® cm~3 [18-20], and was attributed to the
second harmonic of the Restrahlen band. Although this second
band might hinder the fabrication of waveguided devices in
this spectral region, its effect in planar devices with pum-
sized active regions (for instance, QWIPs) is negligible. This
is because the absorption coefficient related to two-phonon
processes is much smaller than the one associated with ISB
transitions. This has been experimentally demonstrated by the
identification of ISB absorption in AIGaN/GaN QWs within
such a band [21, 22]. On the other hand, III-nitrides do not
present problems of inter-valley scattering, since the L and X
points are much higher in energy (>2 eV) than the I" point.

The feasibility of a GaN-based ISB technology in
the telecommunication spectral range was early predicted
by Suzuki et al [15, 23], who additionally estimated an
ISB relaxation time around 80 fs at 1.55 um, i.e. about
30 times shorter than that in InGaAs QWs, and high third-
order nonlinear susceptibility (around 1.6 x 10715 m?> V=2
for a carrier concentration n = 1 x 10'"® cm™3). These
characteristics led them to propose GaN/AlGaN QWs as the
active media for multi-terabit/s ISB all-optical switches. In
the next decade, their prediction proved valid and the first
prototypes of GaN-based ISB devices operating at 1.55 um
have closely fulfilled their expectations.

On the other hand, there is an interest to push the I[II-nitride
ISB technology toward longer wavelengths, particularly to
the THz frequency range. The potential of this spectral
region in applications like security screening, quality control
and medical diagnostics has driven extensive development
of optoelectronic components. Due to the large LO-phonon
energy of GaN (about three times that of GaAs), room
temperature operation becomes feasible for ISB devices
covering the IR band that was typically inaccessible to As-
based semiconductors due to phonon absorption.

1.2. Physics of intersubband transitions: polarization
selection rule

For a comprehensive introduction to ISB physics in QWs, we
refer the readers to the work of Bastard [24] or Liu and Capasso
[25]. In this section, we briefly introduce the polarization
selection rule characteristic of ISB transitions in QWs and
we derive an expression for the ISB absorption coefficient.
For this purpose, we consider a QW with two confined states
in a single-particle approach. Any transition from a state i to a
state f, interband or ISB, can be described with Fermi’s golden
rule:

2 , 2
Wy = ?I(llfle [Yi)"8(Ey — Ei — ho), (D

where H' is the interaction Hamiltonian, hw is the radiation
energy, and ¥ and E are the wave functions and energies of the
confinement levels for the initial () and final (f) states. As the
radiation wavelength is much larger than the lattice periodicity
in the case of interband transitions, and larger than the QW
width in the case of ISB transitions, it is possible to apply the
dipole approximation:
_ TR
H= v © P @
where g denotes elementary charge, Fy is the electric field
amplitude, m= is effective mass, and & and p are the
polarization vector and the momentum operator, respectively.
Substituting equation (2) in equation (1) we obtain
272
mw=%j£§tﬂWAﬁﬁwﬂ%aw—a—mw.(@
Applying the envelop function formalism, the wavefunc-
tion of an electron v; (F) can be expressed as a product of a
periodic Bloch function, u, (¥), and a slowly varying enve-
lope function, f, (), where n denotes the quantum numbers
of the problem. Under the assumption that the lattice-periodic
function is the same in all constituent materials a Schrodinger
equation only for the envelope function can be derived:

—h
—— V21, (F) + V() fu(F) = E, f, (7), @)

2me
where V() is the potential profile and E, are the energy
eigenvalues. Introducing the envelop function expression in
aQW:
1

ﬁm=7?mﬁrau@, (5)

where S is the sample area, x (z) is the envelop function
component along the growth axis, and k. and 7 denote the
two-dimensional (2D) vectors (k,, ky) and (x, y), the solution
of equation (4) leads to energy eigenvalues of the form
Rk

2m+’ ©
where the subband energies E,( depend on the potential profile
V(z). For a symmetric QW with infinite barriers, the following
eigenvalues are obtained:

E, (kl) =E,+

27272 22
n°h°k; Rk L 7
2mx L2 2m*
where L is the QW thickness. Note that, due to the relatively
large electron effective mass of GaN (m* /my~0.2) compared
to GaAs (m*/my~0.067) or InAs (m*/my~0.023), very thin
GaN QWs are required to attain large ISB transition energies.

Coming back to equation (3), the matrix element (y/¢|€"-

pls) splits into

(Wpl€"- plv) = € (| Pluy ) {ful fur) + €+ (vl ) ful L)
®)

E, (k1) =

where v and v’ and n and n’ are the band and subband
indices of final and initial states, respectively. The first term
describes the interband transitions and it vanishes in the
case of transitions within the same band. It consists of a
dipole matrix element of Bloch functions, which dictates the
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interband polarization selection rules, and an overlap integral
of the envelope functions, which gives rise to selection rules
concerning the electron and hole subband quantum numbers.
The second term represents the ISB processes, and it consists
of an overlap integral of Bloch functions, which is nonzero
when two envelope states are taken from the same band, and a
dipole matrix element of the envelope functions, which defines
the polarization selection rule:

2.5 1 i f *
{fal & Plfw) = §€z5(h — k) / dzx, @pxw (). (9)

Thus, only the z-component of the electric field couples
to the ISB transition, i.e. structures respond only to transverse-
magnetic (TM) polarized light, which imposes the use of
surface gratings or waveguide configurations to couple the
light into the active region.

Inserting equation (9) in equation (3) and taking into
account that the momentum can be described as p,, =
im % wry,,y, the ISB transition rate can be rewritten as
27 ¢°Fy

h 4
x 8(K\ — K )8(E; — E; — ho).

Wy = ?

e2l(xr @zl xi(2))
(10)

The ISB absorption coefficient between states i and
f is wusually defined through the ratio of the absorbed
electromagnetic energy per unit time and volume, hoWy;/V,
and the intensity of the incident radiation, / = %nceoFOZ: where
&o is the vacuum permittivity, n is the refractive index of the

material and c is the speed of light:

_ g’ (Ef — E)

Ol((l)) - ncsth

x &2 3 20(xr @l xi @) PLFED) — fFENIBS(Ef — E; — ho),
if

(11
with f(E) being the Fermi function. The sum can be expressed
as the difference of carrier surface density of the two subbands,
S — nS:

i f
> 2Af(E) — f(E)] = S(n} —nf),
if
where S is the crystal surface. Therefore, the ISB absorption
coefficient between two subbands can be written as
b (E f— E,')
(@) = nceghlL

(12)

(nls — n?) azzu%er(Ef — E; — hw),
(13)

where iy = q<)(_f (z)|z|xl~ (z)) is the ISB dipole matrix
element.

The dipole matrix element only involves the envelop
wavefunctions for the initial and final subbands. Thus, as z
is odd, only transitions between subbands with opposite parity
of the envelope wavefunctions are allowed in symmetric QWs.
This selection rule does not apply for asymmetric potential
profiles.

The coupling efficiency between the two subbands is given
by the oscillator strength, which is shown as

_ 2mo(Ef —E) ,

= (14)
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Figure 1. (¢) Band diagram of GaN/AIN QWs in an infinite
superlattice with 3 nm thick AIN barriers and 2 nm thick GaN QWs.
The structure is considered strained on an AIN substrate. The
electron wavefunctions of the ground hole state, /4, the ground
electron state, ¢;, and the excited electron states, e, and e, are
presented. (b) Variation of the e,—e; and e;—e; ISB transition energy
as a function of the QW thickness in GaN/AIN MQW structures
with 3 nm thick barriers. Triangles indicate experimental data and
solid and dashed lines correspond to theoretical calculations
assuming the structure fully strained on AIN and on GaN substrates,
respectively. Reprinted with permission from [28]. Copyright 2008,
American Institute of Physics.

2. Intersubband absorption in III-nitride
nanostructures

2.1. GaN/AlGaN polar quantum wells

2.1.1. Modeling. The optical properties of (000 1)-oriented
nitride QWs are strongly affected by the presence of an
internal electric field arising from the piezoelectric and
spontaneous polarization discontinuity between the well and
barrier materials [26]. This is one of the most influential
characteristics of III-nitride semiconductors, and plays a major
role in determining the band structure. Figure 1(a) presents
the band diagram of a GaN/AIN (2 nm/3 nm) superlattice
calculated using the nextnano3 8-band k.p Schrédinger—
Poisson solver [27] with the material parameters described
in [28]. The structures were considered strained on the AIN
substrate. The electronic potential takes on a characteristic
saw-tooth profile due to the internal electric field. The electron
wavefunctions of the ground hole state /;, the ground electron
state e; and the excited electron states e, and e3 are presented
in the figure. Due to the built-in electric field, the electron
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wavefunctions are shifted toward the [0 0 0 1] direction and the
hole wavefunctions toward the [0 0 O 1] direction (quantum-
confined Stark effect, QCSE). In narrow QWs (~1 nm) the
energy difference between e; and e, is mostly determined by
the confinement in the QW, whereas for larger QWs (>2 nm)
this difference is mostly determined by the QCSE, since
both electronic levels lie in the triangular part of the QW
potential profile. A detailed description of the evolution of
the ISB transitions e;—e; and ez—e; with the QW thickness
and strain state is presented in figure 1(b) and compared with
experimental data from GaN/AIN MQWs. The increase in the
e,—e; ISB energy difference in the calculations for the MQW
strained on GaN is related to the enhanced electric field, due
to the larger piezoelectric coefficients of the AIN barrier in
comparison to the GaN QW [28].

The band structure simulations show that certain
QW thicknesses can result in a configuration where the
e1— e transition has approximately the same energy as the
e,— e3 (or for very thick barrier layers the e;— e4) transition.
This is an interesting experimental situation because it can
result in the enhancement of second-order and third-order
nonlinear effects such as two-photon absorption [29], second-
harmonic generation [30] or saturable absorption [31].

In nitride heterostructures, the charge distribution depends
not only on the Si doping level in the QWs, but also on
the presence of non-intentional dopants and on the carrier
redistribution due to the internal electric field. The polarization
discontinuity between heterostructure layers leads to strong
band bendings, which typically result in the formation of
a depletion layer on one side of the active region and
an accumulation layer on the other side (see figure 2(a)).
Therefore, a realistic view of the charge distribution in a
device is only achieved by extending the electronic modeling
to the complete structure. As an illustration of this phenomena,
Kandaswamy et al have studied the contribution of the internal
electric field induced by a 50 nm thick Al,Ga;_,N cap layer
to the ISB absorption of 40-period non-intentionally doped
GaN/AIN (1.5/1.5 nm) MQWs grown on AIN [28]. The Al
mole fraction of the cap layer was x =0, 0.25, 0.5 and 1 for the
samples under study. Measurements of ISB absorption in these
samples, presented in figure 2(c), confirm a monotonic increase
and broadening of the absorption when increasing the Al mole
fraction of the cap layer. These results are consistent with the
simulations of the electronic structure in figures 2(a) and (),
where we observe that the use of AIN as a cap layer lowers
the conduction band of the first GaN QWs below the Fermi
level (dash-dotted line at 0 eV in the figures), whereas the use
of GaN as a cap layer results in the depletion of the MQW
active region. Therefore, we conclude that the internal electric
field induced by the cap layer can result in a significant (even
dominant) contribution to the infrared absorption in GaN/AIN
MQW structures.

2.1.2. Growth and defect analysis. A main requirement
for the growth of the Ill-nitride nanostructures required
for ISB devices is a precise control of the thickness and
interfaces. Molecular-beam epitaxy (MBE) seems to be the
most suitable technique for this application thanks to its
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Figure 2. Band diagram of nonintentionally doped GaN/AIN
(1.5/1.5 nm) MQW structures with (a) AIN cap layer and (b) GaN
cap layer. (¢) Room-temperature TM-polarized ISB absorption
spectra of nonintentionally doped GaN/AIN (1.5/1.5 nm) MQW
structures finished with a 50 nm thick Al,Ga; N cap layer with
different Al mole fractions. Reprinted with permission from [28].
Copyright 2008, American Institute of Physics.

low growth temperature that hinders GaN-AIN interdiffusion
[32]. Plasma-assisted MBE (PAMBE) was the first method to
produce III-nitride nanostructures displaying ISB transitions
at telecommunication wavelengths (1.3, 1.55 pm) [33-39].
The growth of (000 1)-oriented GaN, AIN and AlGaN by
PAMBE is extensively discussed in the literature [40—45].
Deposition of III-nitride 2D layers requires a precise control of
the III/V flux ratio during the growth; particularly, it demands
slightly metal-rich conditions, and hence growth optimization
requires the determination of stoichiometric flux conditions
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and precise control of the growth temperature. In the case of
GaN, at a substrate temperature higher than 700 °C, there is
a certain range of Ga fluxes for which the Ga excess remains
in a situation of dynamic equilibrium on the growing front,
i.e. the Ga coverage is independent of the Ga exposure time.
Smooth surfaces are generally achieved under a moderate Ga
excess [40, 42, 46, 47], when the Ga excess arranges into
a so-called laterally-contracted Ga bilayer, which consists
of two Ga layers adsorbed on the Ga-terminated (000 1)
GaN surface [40, 41, 47-49]. Some groups prefer growing
under higher Ga fluxes, in the droplet formation regime. They
periodically consume the Ga excess by shuttering the Ga cell
and exposing the surface to active nitrogen [50, 51]. This
method provides high-quality layers, but it is important to
predict the additional GaN thickness from consuming the
excess, which depends on the impinging Ga flux, the active
nitrogen flux and the substrate temperature. Finally, it has
also been reported that smooth surface morphologies can
be achieved via stoichiometric growth at high temperature
(~780-790 °C), when GaN decomposition is already active
[52]. However, this growth method has not been applied to ISB
devices or GaN/AlGaN QWs, and problems associated with
material interdiffusion are expected [53].

An alternative to the above-described GaN growth
conditions is the use of a surfactant to promote 2D growth
[54]. Indium has been reported to behave as a surfactant for
the PAMBE growth of (ALG)aN, since it favors 2D growth
under slightly N-rich conditions [41, 44, 55-57]. The utility of
this growth method to synthesize GaN/AIN QWs displaying
ISB absorption has been demonstrated [28].

In the case of AIN, the deposition of layers with atomically
flat surface morphology also requires metal-rich conditions
[45]. However, Al does not desorb from the surface at the
standard growth temperature for GaN. Therefore, to eliminate
the Al excess at the surface, it is necessary to perform periodic
growth interruptions under nitrogen. An alternative approach
to achieve 2D growth of AIN and low Al content (<50%)
Al(Ga)N layers is to use Ga (or In) as a surfactant, with
the Al flux corresponding to the required Al mole fraction
[28, 43, 58].

GaN/AIN QWs displaying ISB transitions in the near-IR
can also be synthesized by metalorganic vapor phase epitaxy
(MOVPE) [59-61]. In this case, a critical parameter to attain
devices in the telecommunication spectral range (1.3 um,
1.55 pm) is the reduction of the growth temperature from
the 1050-1100 °C optimum range for GaN growth down to
900-950 °C (or even to 770 °C [62]), in order to minimize
the GaN-AIN interdiffusion. Furthermore, deposition under
compressive strain (e.g. using AIN substrates) is recommended
at these growth temperatures to prevent the red shift of the ISB
transition due to instabilities of the GaN/AIN interface [63].

Since GaN/AIN is a lattice mismatched system (2.5%
in-plane lattice mismatch), it is important to understand the
effects of strain and misfit relaxation at the contact layer/active
region interface, as well as the strain generated by layer
alternation within the active region of the ISB device. The
mechanisms of strain relaxation can be elastic, i.e. undulation
of the surface, or plastic, i.e. by introduction of extended

defects, which can affect the device properties causing
nonradiative recombination, carrier scattering, or enhanced
diffusion of dopants and impurities. There are several types
of plastic relaxation: crack propagation (commonly observed
in II-nitrides under tensile stress), decohesion of the layer,
introduction of misfit dislocations (MDs) or glide of pre-
existing threading dislocations (TDs). The density of edge-
type TDs should be kept to a minimum since they cause
losses in the transmission of TM polarized light, which
adversely affects the performance of ISB devices [64]. These
TDs propagate from the heteroepitaxial substrates (typical
TD densities in commercial GaN-on-sapphire or AIN-on-
sapphire templates are in the 108 cm~2 and 10° cm™2 range,
respectively), but they are also generated during the growth due
to the plastic strain relaxation, since MDs often fold toward
the growth direction, giving rise to the edge-type TDs [65].

Plastic relaxation in semiconductors with cubic symmetry,
such as silicon and GaAs, usually takes place along the (1 10)
{111} main slip system, either by nucleation of dislocation
half loops at the growth surface or by bowing of pre-existing
threading dislocations into the heterointerface [66]. However,
it is not clear how semiconductors with hexagonal symmetry,
such as III nitrides, relax the misfit stress. In the case of nitride
heterostructures grown along the [000 1] axis, the formation
of regular networks of MDs is hindered since the most
crystallographically favorable slip system, the (000 1) basal
plane with (11-20) {0002} slip directions, lies parallel to
the heterointerfaces. This means that the resolved misfit stress
on the main slip plane is zero [67]. Thus, only secondary slip
systems that are oblique to the basal plane can have a resolved
misfit stress and may contribute to plastic relaxation. It has
been observed that MDs following the secondary (11-23)
{11-22} slip system can be generated at heterointerfaces
when shear stress is intentionally or unintentionally induced
by three-dimensional (3D) growth [68, 69], by crack formation
[65, 70], or in close proximity to V-defects [71]. Therefore, the
relaxation mechanism depends not only on the structure itself,
but also on the growth conditions. In general, GaN/AlGaN
heterostructures grown under tensile stress on GaN substrates
tend to crack along the (11-20) crystallographic direction at
a certain critical thickness [70, 72, 73]. In the case of crack-
free GaN/AlGaN superlattices deposited under compressive
strain, the main relaxation mechanism is the tilt of the a-type
TDs towards (1-100), the inclination angle depending on the
lattice misfit between the MQWs and the underlayer [74]. It
has been proposed that the diagonal movement is due to a
staircase-like movement of the dislocations through the stack,
with a misfit segment at each well. Strain relaxation via TD
inclination has also been observed in AlGaN layers deposited
on mismatched AlGaN [75].

In PAMBE growth, the metal-to-N ratio and the growth
temperature are key parameters that define the strain relaxation
rate during growth [76]. Ga-rich conditions delay crack
propagation and minimize strain relaxation [58]. They
also allow good control of the layer thickness and Al
incorporation in AlGaN alloys. In the case of GaN/AIN
MQWs and in addition to the relaxation mechanisms described
above, the periodic misfit relaxation appears associated with
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Figure 3. Room-temperature TM-polarized ISB absorption spectra
from 20-period Si-doped GaN/AIN MQW structures with 3 nm
thick AIN barriers and different GaN QW thickness. All the samples
were grown on 1 um thick AIN-on-sapphire templates without cap
layer. The absorption peaks labeled e,—e; and e;—e; are assigned to
the corresponding intra-conduction-band transitions as described in
figure 1(a). Reprinted with permission from [28]. Copyright 2008,
American Institute of Physics.

the formation of stacking fault loops that initiate at the
beginning of the AIN barrier deposition, propagate through
the barrier and close within the following QW [58]. In
contrast, transmission electron microscopy (TEM) images
from GaN/AlGaN superlattices (ternary alloy barriers) do not
reveal stacking faults or other periodic defects [77].

2.1.3. Intersubband optical characterization. Figure 3 shows
the ISB absorption of Si-doped AIN/GaN MQWs with
3 nm thick AIN barriers and QW thickness of 5, 6, 7
and 9 ML [14, 28]. The samples show a pronounced TM-
polarized absorption, attributed to the transition from the
first to the second electronic levels in the QW (e;—ey),
while no absorption was observed for TE-polarized light
within experimental sensitivity. For large QWs (=8 ML), the
e;— e3 transition is observed, as indicated in figure 3; this
transition is forbidden in symmetric QWs [78], but is allowed
in nitride QWs because the internal electric field in the well
breaks the symmetry of the potential. The experimental values
of e,—e; and e3—e; as a function of the QW width are presented
in figure 1, showing a good fit with theoretical calculations.
The line width of the absorption remains in the 70—
100 meV range for QWs doped at 5 x 10'° cm™2, and the ISB
absorption efficiency per reflection attains 3-5%. A record
small line width of ~40 meV has been achieved in non-
intentionally doped structures [79]. The spectra present either
Lorentzian shape or are structured with two or three well-
defined Loretzial-shaped peaks [14]. These multiple peaks
correspond to the expected values of the e;—h; line in QWs
whose thickness is equal to an integer number of GaN
monolayers. For very narrow QWs, a variation in the thickness
by 1 ML implies an important shift in the ISB transitions (about
100 meV for QWs of 4-5 ML). This value is comparable to

the full width at half maximum (FWHM) of the absorption
lines, and hence results in well resolved PL peaks instead of
broadening the emission lines. Thickness fluctuations might
originate from a drift of the growth rate with time, resulting in a
variation in the QW thickness. However, in situ measurements
of the growth rate and TEM studies confirmed that structured
absorption spectra appear in samples where no growth rate
drift is detected. In these samples, cathodoluminscence studies
confirmed the presence of in-plane thickness fluctuations
which appear associated with dislocations or extended
defects [28].

Regarding the thermal stability of the ISB transition in
GaN/AIN MQWs, it has been found that the ISB absorption
energy decreases only by ~ 6 meV at 400 °C relative to its
room temperature value [80].

Using GaN/AIN QWs, the e,—e; ISB transition can be
tuned in the 1.0-3.5 um wavelength range by changing the QW
thickness from 1 to 7 nm [14, 28, 35, 36, 38, 60, 73, 80, 81]
with AIN barriers thicknesses in the 1.5-5.1 nm range. For
larger QWSs (>5 nm), the first two electron-confined levels get
trapped in the triangular section of the QW, which results
in a saturation of the e,—e; value. Therefore, to shift the
absorption toward longer wavelengths, it is necessary to
reduce the effect of the internal electric field in the QWs.
A first approach consisted of using GaN/AlGaN MQWs,
thereby reducing the Al mole fraction in the barriers. By
changing the geometry and composition, the ISB absorption
can be tailored to cover the near-IR range above 1.0 um
and mid-IR region up to 5.3 um [33, 34, 82-90]. To attain
longer wavelengths, the requirement of substrate transparency
imposes the replacement of sapphire-based templates by semi-
insulating Si(1 1 1) as a substrate [21]. Using GaN-on-Si(1 1 1)
templates, Kandaswamy et al have demonstrated the extension
of the ISB absorption range of GaN/AlGaN QWs up to 10 um
[21], as illustrated in figure 4(a). A slight red shift of the ISB
transition is observed when increasing the compressive strain
in the QWs, as theoretically predicted [87].

To further reduce the ISB transition energy, Machhadani
et al [91] propose an alternative strategy to approach a flat
potential in the QW layers by engineering the internal electric
field. The investigated structures contain a stack of step-QWs,
each period consisting of a GaN well, an Al ysGagosN step
barrier and an Aly ;Gag 9N barrier. Transmission measurements
performed at 4 K reveal TM-polarized ISB absorption at
~2 THz, in good agreement with simulations, as shown in
figure 5.

2.1.4. Effect of doping. In order to observe ISB absorption,
it is necessary to control the carrier concentration in the
QWs to guarantee that the first electronic level is populated.
High doping levels also have an effect on the targeted
operating wavelength. The ISB absorption energy can blue
shift markedly due to many-body effects [22, 38], mostly due
to exchange interaction and depolarization shift, as illustrated
in figures 4(b) and (c¢). On the other hand, studies of the effect
of the dopant location have shown a dramatic reduction of the
ISB absorption line width by using a §-doping technique with
Si donors placed at the end of the QW [92]. This line width
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Figure 4. (a) Room-temperature TM-polarized IR photo-induced
absorption spectra measured in GaN/AlGaN MQW structures with
different barrier Al contents and QW width, grown either on
sapphire or on Si(1 1 1) templates. Reprinted with permission from
[21]. Copyright 2009, American Institute of Physics. (b) Infrared
absorption spectra for TM-polarized light measured from
GaN/Aly,GaggN (3 nm/3 nm) MQWs with different doping levels.
Spectra are vertically shifted for clarity. Reprinted with permission
from [22]. Copyright 2010, American Institute of Physics. (¢) IR
absorption spectra for TM-polarized light measured from
GaN/AljGagoN (7 nm/4 nm) MQWs with different doping levels.
Spectra are vertically shifted for clarity. (After [22].)

reduction is attributed to an improvement of the interfacial
roughness.

When integrating III-nitride nanostructures in a complete
device, it is necessary to keep in mind that the magnitude
of the carrier distribution depends not only on the Si
doping level in the QWs, but also on the presence of non-
intentional dopants, and on the carrier redistribution due to the
internal electric field. The large polarization discontinuities
in the III-N material system can result in a significant (even
dominant) contribution to the IR absorption in GaN/AIN
superlattices [28].

2.2. Coupled quantum wells

The design of advanced ISB devices, like optically or
electrically pumped ISB lasers, requires the exploitation of
multi-level system with finely tuned oscillator strengths and
lifetimes. Coupled QWs are the basic element for such
systems. In Il-nitrides, the realization of coupled QWs is
complicated by the relatively heavy electron effective mass
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Figure 5. (a) Conduction band profile and squared envelope
functions of the first two electronic levels (e, e) for a step-QW
sample with 15 nm thick step barrier. (b) Transmission spectra for
TM- (square) and TE- (circle) polarized light at 7= 4.7 K.
Reprinted with permission from [91]. Copyright 2010, American
Institute of Physics.

and the large conduction band offset. As a result, very thin
barriers (1-3 ML) are required to achieve strong interwell
coupling in the GaN/AIN material system [93].

Coupling between GaN QWs was first experimentally
investigated by Gmachl et al [34, 37] by using double GaN
QWs coupled by AlGaN barriers with large (0.65 or 0.9) Al
mole fractions. The coupling barrier thicknesses varied from
0.7 to 6 nm. Degenerate doping of the QWs (10%° cm™3) was
used to establish acommon reference energy at the Fermi level,
which decreases the uncertainties related to intrinsic internal
electric fields. The broadening and structuration of the ISB
absorption peaks were attributed to transitions toward excited
states exhibiting anticrossing.

Coupled GaN/AIN QWs were first demonstrated by
Tchernycheva et al [94] using 0.5 nm thick AIN coupling
barriers. The intersubband absorption spectra present two
distinct peaks attributed to the transition, firstly between the
ground states of the two coupled wells, and secondly between
the ground state and the delocalized excited state between
the two wells. As an alternative approach, Driscoll ef al have
opted to decrease the Al content of the coupling barrier to
39-53%, so that strong coupling is achieved with thicker
barriers (~5 ML). In this fashion, the barrier’s Al content
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can be used as a tunable parameter to control the coupling
strength [95].

The influence of polarization-induced electric fields
on the ISB absorption and the associated variation of
the refractive index in AIN/GaN coupled QWs has been
theoretically analyzed by Cen et al [96, 97] using a self-
consistent Schrodinger—Poisson solver. The results are used
to discuss the application of these structures in ultrafast two-
color optoelectronic devices and electro-optical modulators
operating within the optical communication wavelength range.

2.3. In containing superlattices: AlInN/GaN, AlInN/GalnN
and GaN/GalnN

As described above, the lattice mismatch between GaN and
AIN can lead to high defect densities and risk of cracking
in GaN/AIN superlattices. An alternative material approach
to overcome this problem is the use of AllnN alloys. AlInN
with an In composition around 17-18% is lattice matched
to GaN and presents a refractive index contrast equivalent to
AlGaN with 46% Al content (6% contrast with GaN at 1.55 um
wavelength). Therefore, AlInN is a promising material to form
distributed Bragg reflectors and thick waveguide layers [98].
However, lattice-matched AlInN/GaN heterostructures still
exhibit an electric field as large as 3 MV cm ™!, solely generated
by the spontaneous polarization discontinuity.

The potential of AIInN/GaN lattice-matched systems for
application in ISB technology has been explored [99, 100].
However, this material system is not adapted to serve as active
region for telecommunication devices since the conduction
band offset is in the range of ~1 eV [101]. Nevertheless, ISB
absorption in the near-IR spectral region has been reported
at 2.3-2.9 um in lattice-matched GaN/AlInN superlattices
grown by MOVPE [99] and by MBE [102].

An alternative approach to manage the strain in the
structure while retaining access to shorter wavelengths is
possible by adding small concentrations of In (below 10%)
both in the barrier and in the QW, forming an AlInN/GalnN
superlattice [103, 104]. This material combination reduces the
probability of crack propagation in comparison to GaN/AIN,
although it maintains a certain degree of strain. Room-
temperature ISB absorption in the 1.52-2.45 um wavelength
range has been demonstrated in AlInN/GalnN MQWs
[103]. Efforts to simulate the electronic structure of these
superlattices have been recently reported [105]; however, it
remains challenging to control precisely the In mole fraction
during the superlattice growth.

Regarding the GaN/GalnN system, only theoretical
calculations of the ISB transition energy have been published
so far [106].

2.4. Quantum dots

An alternative approach to QW structures for the fabrication
of devices is based on optical transitions between bound states
in the conduction band of quantum dot (QD) superlattices
[107, 108]. Quantum dot IR photodetectors (QDIPs) are
expected to ultimately outperform QWIPs in terms of low
dark current, high photoelectric gain and sensitivity [109].

Furthermore, under certain conditions, intraband bound-to-
continuum transitions in QDs can be nearly independent of
the polarization of excitation [110-112].

In the case of Il-nitrides, GaN/AIN QD structures can
be synthesized by PAMBE through GaN deposition under
compressive strain and under N-rich conditions [79, 113]. In
this situation, 2D growth proceeds normally to create a 2-ML-
thick wetting layer. Due to the lattice mismatch between AIN
and GaN, further GaN deposition leads to the formation of
3D islands above this 2D wetting layer (Stranski—Krastanov
growth mode). These GaN QDs are well-defined hexagonal
truncated pyramids with {1-103} facets [114], and no Ga—
Al interdiffusion has been observed [115]. The QD size can
be tuned by modifying the amount of GaN in the QDs,
the growth temperature or the growth interruption time after
deposition of the QDs (Ostwald ripening). By adjusting the
growth conditions, QDs with height (diameter) in the range
of 1-1.5 nm (1040 nm), and density between 10'! cm~2 and
10'> cm™2 can be synthesized (see atomic force microscopy
image in figure 6(a) as an example) [116]. To populate the
first electronic level, silicon can be incorporated into the QDs
without significant perturbation of the QD morphology.

Similar GaN/AIN QDs can be synthesized by ammonia-
MBE by performing a growth interruption after deposition
of a GaN thickness larger than 3 ML (~0.8 nm), which
instantaneously leads to the formation of 3D islands [117].
Regarding MOVPE, the formation of 3D GaN islands has
been first demonstrated using Si as an antisurfactant [118].
With this method, the shape and the density of GaN QDs
can be controlled by the Si dose, the growth temperature, the
growth time and the Al content of the AlGaN layer below
the islands [119]. GaN/AIN QDs have also been synthesized
by low-pressure MOVPE using very low V/III ratios [120].
Depositing over a critical thickness of 4 ML of GaN results
in a spontaneous transition from the 2D to the 3D growth
mode. The density of the QDs can be tuned between 10 and
10'° cm~2, keeping typical QD diameter and height around 20
and 2 nm, respectively. The size of the QDs can be controlled
to a considerable extent by changing the growth temperature
and V/III ratio.

Andreev et al have calculated the electronic structure of
GaN/AIN QDs using the k x p model and taking the internal
electric field into account [121-123]. These calculations have
been complemented by Ranjan et al [124] through the use
of the tight-binding theory and a self-consistent treatment
to account for carrier screening of the electric field. The
models show that the polarization-related internal electric field
localizes the electrons at the pyramid apex, whereas the holes
are located close to the wetting layer. In addition to the carrier
separation along the growth axis, the electric field can provide
a strong additional lateral confinement for carriers localized in
the dot, which greatly modifies their electronic structure and
optical properties [123].

From the experimental viewpoint, early studies of
intraband phenomena in GaN QDs showed photoinduced IR
absorption in the 1.27-2.4 pm spectral range in undoped
nanostructures synthesized by ammonia-MBE [125]. Later on,
PAMBE-grown Si-doped QD superlattices have been reported
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Figure 6. (a) Atomic force microscopy image of a GaN QD layer
synthesized on AIN by PAMBE, showing a high density

(~10" cm~3) of small (height ~1.3 nm; base diameter ~11 nm)
QDs. (b) Polarization-dependent spectral response (photocurrent) of
a GaN/AIN QD stack measured in wedge illumination. The
normalized response of both s—p, in the near IR and s—p, , in the
mid-IR; the s—p, peak is about ten times larger than the s—p, , peak.
(¢) Mid-IR spectral response of two GaN/AIN QD stacks with
smaller (full line) and larger (dash line) QDs measured at 7= 12 K
under front illumination and 10 V bias. Sapphire cutoff is at 0.22 eV.
Reprinted with permission from [127]. Copyright 2009, American
Physical Society.

to exhibit strong TM-polarized intraband absorption at room
temperature, which can be tuned from 0.74 eV (1.68 pum) to
0.90eV (1.38 um) as a function of the QD size [116, 126]. The

broadening of the absorption peak can be as small as ~80 meV
for the most homogeneous samples. This absorption line is
attributed to transitions from the ground state of the conduction
band, s, to the first excited electronic state confined along the
growth axis, p,. The lateral confinement in the QDs should give
rise to additional transitions under TE-polarized excitation.
However, taking into account the lateral dimension of the QDs
~7 nm, the s—py , transitions should be masked by the sapphire
absorption for A > 5 um. The optical signature associated
with s—p,, was first observed by Vardi et al who studied
mid-IR intraband transitions in GaN/AIN QDs using in-plane
electronic transport at low temperatures [127], as illustrated in
figures 6(b), (c). The measured s—p, y energy separation (0.1—
0.3 eV) presented in figure 6(c) was significantly larger than
the equivalent transition energy in InGaAs\GaAs QDs. Their
analysis shows that the appearance of large energy s—pyy in
GaN\ AIN QDs is due to the strong internal electric field in the
QDs which results in stronger confinement of the electrons at
the QD top facet.

The homogeneous line width of the s—p, intraband
transition at 1.55 pum in GaN/AIN QDs was assessed by
means of nonlinear spectral hole-burning experiments [128].
These measurements demonstrated that electron—electron
scattering plays a minor role in the coherence relaxation
dynamics, since the homogeneous line width of 15 meV at 5 K
does not depend on the incident pump power. This suggests the
predominance of other dephasing mechanisms such as spectral
diffusion.

TM-polarized IR absorption in the 1.6-2 um wavelength
range, attributed to s—p, intraband transitions, has also been
reported in ternary AlGaN/AIN QDs measured at room
temperature. The s—p, transition red shifts for increasing
Al mole fraction in the QDs as a result of the reduction
of the band offset, in good agreement with theoretical
calculations [129].

2.5. Alternative crystallographic orientations

The already high design complexity of ISB devices further
increases in materials with internal electric field like polar ITI-
nitrides. A simple solution to this problem consists in using
non-polar crystallographic orientations like the m-plane {1-
100} or the a-plane {11-20} [130]. However, epitaxy for these
orientations is an arduous task, due to strong anisotropy of the
surface properties, resulting in a high density of crystalline
defects. An alternative approach is the growth on semipolar
planes [130], which are those (hkil) planes with at least two
non-zero h, k or i Miller indices and a nonzero [ Miller
index. Semipolar planes allow a considerable reduction in the
internal electric field [131] while presenting a lower in-plane
anisotropy than non-polar surfaces [132, 133].

Regarding nonpolar materials, ISB optical absorption at
A~ 2.1 um with a FWHM = 120 meV has been reported in
Si-doped 1.75 nm thick GaN QWs with 5.1 nm thick AIN
barriers grown by PAMBE on r-plane sapphire and displaying
pure a-plane orientation [134].

Near-IR ISB absorption has also been reported on
semipolar (11-22)-oriented GaN/AIN MQWs grown by
PAMBE [133]. The band structure of these semipolar
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Figure 7. Left: Variation of e,—e; energy as a function of well width
in polar and semipolar GaN/AIN MQW:s with 5 nm thick AIN
barriers, strained on GaN and AIN. Right: band diagram of (000 1)-
and (11-22)-oriented GaN/AIN (2.5 nm/5 nm) MQWs, assuming
the structure fully strained on AIN and on GaN. Adapted with
permission from [133]. Copyright 2008, American Institute of
Physics.

GaN/AIN QWs strained on GaN and on AIN is represented
in figure 7. In comparison to polar QWs, semipolar structures
exhibit quasi-square potential band profiles with symmetric
wavefunctions, due to the reduced electric field in the range
of 0.5-0.6 MV cm™! in the QWs. The evolution of the e,—
e ISB transition energy with the QW thickness is represented
in figure 7, where symbols correspond to experimental
measurements obtained from identical polar and semipolar
samples consisting of 40 periods of GaN/AIN with 3 nm thick
AIN barriers. The absorption FWHM (~80-110 meV [133])
is comparable to the one measured in polar structures [14, 28].
However, in semipolar structures, the reduction in the internal
electric field results in a red shift of the ISB energy. Also the
spectral shape of semipolar absorption is Gaussian, in contrast
to the Lorentzian shape described for polar GaN/AIN QWs.
This is due to the spectral dispersion generated by thickness
fluctuations and by the presence of stacking faults in semipolar
material, both inducing carrier localization in the range of a
few meV, much smaller than the FWHM of the ISB absorption
line.

Another approach to eliminate the internal electrical
field in II-nitride heterostructures is the use of Ill-nitride
semiconductors crystallized in the zinc-blend crystallographic
phase. The LO phonon energy in cubic GaN is almost the same
as in wurtzite GaN (92.7 meV [135]), but the effective mass
is significantly smaller (m* = 0.11-0.17myq [136, 137]) than in
wurtzite GaN (m* = 0.2my), which should result in higher gain
and lower threshold current in QCLs. The cubic orientation can
be selected by PAMBE using 3C-SiC substrates. However,
due to their thermodynamically unstable nature, cubic films
present low structural quality with a high density of stacking
faults. ISB absorption in the 1.40—4.0 pum spectral range
has been reported in cubic GaN/AIN MQWs [138, 139], in
agreement with theoretical calculations assuming a conduction
band offset of 1.2 eV and an effective mass m* =
0.11myg (see figure 8). ISB THz absorption at 4.7 THz has also
been observed in cubic GaN/Alj5GagosN (12 nm/15 nm)
QWs [139].
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Figure 8. («) ISB transition energy in cubic GaN/AIN MQWs
calculated within effective mass approximation compared to the
experimental data (red squares). The following parameters are used
in the calculations: conduction band offset = 1.2 eV for all curves;
black diamonds: m;, = 0.11myg, mj, . = 0.8mg, m = 0.19m,
mhh AN = 1.2myg; blue squares: m’g, = 0.14my, mj, GoN = = 0.86my,
mg an = 0.28myg, my, o = 1.44my; green circles: mg, = 0.17my,
Mgy Gan = mog, my g = 0.3mo, my, \ = 1.39mq. (b) ISB
absorption cnergies calculated for different conduction band offset
values, compared to the experimental data (red squares). The
following effective masses are used: ng, = 0.11mg, my, . =
0.8myg, m} oy = 0.19mg, and m;;, = 1.2my. In both plots, the error
bars correspond to = 1 ML thickness fluctuation for the abscissa
and to the FWHM of the transition for the ordinate. Reprinted with
permission from [139]. Copyright 2009, American Physical Society.

3. All-optical switches

The development of multi-terabit optical time division
multiplexing (OTDM) networks depends on the
implementation of all-optical switches and wavelength
converters operating at room temperature. In these devices,
the switching is based on ISB absorption bleaching by an
intense control pulse, as originally demonstrated at long
IR wavelengths using GaAs/AlGaAs [140]. These devices
should demonstrate an ultrafast response capable of sustaining
high repetition rates with low switching energy and high
contrast ratio. Attempts to realize these features lead to the
consideration of resonant nonlinearities in semiconductor
nanostructures [ 141]. Thanks to the ultrafast ISB recovery time
(in the 140400 fs range [37, 142—146]) associated with the
strong interaction of electrons with LO phonons, GaN/AIN
QWs or QDs have been proposed as the active medium for
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all-optical switches (saturable absorbers) operating at Tbit/s
data rates and at telecommunication wavelengths.

The use of GaN/AlGaN QW:s for all-optical modulators at
telecommunication wavelengths was first proposed by Suzuki
et al [15, 147]. Since then, all-optical switching at ~1.55 um
with sub-picosecond commutation time has been demonstrated
by several groups [31, 64, 144, 145, 148-151]. In general,
these devices consist of GaN/AIN MQWs embedded in aridge
waveguide. In such structures, a critical parameter to reduce
transmission losses is the reduction of edge-type dislocations.
These defects introduce acceptor centers where electrons can
be captured, and therefore can effectively act as a wire-grid
polarizer which leads to selective attenuation of the TM-
polarized signal [152]. Control switching energies as low as
38 pJ for 10 dB modulation depth [149] and 25 pJ for 5 dB
contrast [151] have been demonstrated using a waveguide with
an AIN cladding below the active GaN/AIN QWs, and GaN
or SiyNy as the upper cladding layer, respectively. Theoretical
calculations predict a reduction of the switching energy by a
factor of 30 by replacing the GaN/AIN QWs with properly
designed AIN/GaN/AlGaN coupled QWs [153, 154].

From the material viewpoint, the parameter responsible
for absorption saturation is the optical third-order
susceptibility, x®. Comparative studies using the forward
degenerate four-wave mixing technique in a boxcars
configuration point to an increase of x® by a factor of 5 in QDs
compared to QWs [155]. From the experimental viewpoint, the
intraband absorption saturation of GaN/AIN QDs has been
probed by Nevou et al [31], obtaining values in the range of
15-137 MW cm~2 (0.03-0.27 pJ um™2). In spite of the large
signal variation (a consequence of the focusing uncertainty in
the sample), even the upper estimate of the saturation intensity
for QDs is smaller than the corresponding value for GaN/AIN
QWs (9.46 W pum~2 [149]).

4. Resonant tunneling transport

4.1. Mesa-structured resonant tunneling diodes

Understanding electron resonant transport is of critical
importance for the fabrication of electrically driven ISB
devices. Furthermore, resonant tunneling diodes (RTDs) are
attractive for terahertz frequency applications, since oscillators
based on RTDs have recently shown operation frequencies up
to 1.1 THz [156, 157]. III-N heterostructures in particular are
expected to provide a larger peak-to-valley ratio (PVR) in the
resonant tunneling current due to their large and adjustable
band offsets compared to other materials.

Studies of electron transport through single
GaN/AIN/GaN barriers indicate that bias induces a re-
distribution of charges in the GaN layers, but does not
significantly modify the polarization-induced electric field in
the barrier [158, 159]. For 0.5 and 1 nm thick AIN barriers,
electron tunneling is confirmed by optical characterization.
For AIN barriers in the 1-3 nm range, conductive AFM
measurements reveal efficient current blockage, with pure
screw dislocations being the main source of leakage current
[159, 160]. Finally, leakage due to AIN relaxation and
interband tunneling was observed for 5 nm thick barriers
[159, 161].
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The first theoretical investigation into resonant tunneling
in GaN/AlGaN double-barrier heterostructures was presented
in 2001 by Grinyaev and Ruzzhuvalov [162]. Since then, the
development of a nitride-based RTD became a hot topic. First
reports of resonant tunneling in Al(Ga)N/GaN double barriers
[163—166] were highly controversial because of the scarcity
and irreproducibility of the published data. In 2002, Kikuchi
et al reported the first measurements of resonant tunneling
in PAMBE-grown AIN/GaN heterostructures consisting of
40 pum square encapsulated mesa-diodes [163]. A negative
differential resistance (NDR) was recorded at 2.4 V bias, with
apeak current density of 180 A cm~2and PVR of 32. However,
the NDR was only observed in forward bias' and only when
scanning from negative toward positive bias. Theoretical
calculations accounting for polarization effects [167—171] can
explain some of the features observed by Kikuchi, namely the
asymmetric current—voltage characteristics, but not the current
hysteresis. Since then, many other groups have faced similar
problems of hysteresis and instabilities [159, 172-178].

The development of III-N RTDs still remains a
challenging task due to the presence of trap-like defects and
impurities in the heterostructures. These traps are thermally
activated, and therefore their effect on the tunneling current is
minimized when the temperature decreases [179], resulting in
a larger PVR at lower temperatures. Improved reproducibility
of the NDR is achieved by decreasing the substrate dislocation
density [173, 175, 176], decreasing the device mesa size
[159, 180], or using low-aluminum-content AlGaN/GaN
double-barriers [178]. The NDR reproducibility is also
drastically improved when scanning the voltage from a
sufficiently negative starting bias due to the detrapping of
charges via the Poole-Frenkel effect [159, 180].

Resonant electron transport through MQWs, namely a
seven-period GaN/AIN stack, has also been reported [181].
The devices show asymmetric current—voltage characteristics
displaying NDR features at room temperature under forward
bias. These features, which persist for multiple scans and
are reproducible for both upward and downward sweeping
voltage, are interpreted as a consequence of the resonant
tunneling between the fundamental and excited states of
adjacent QWs.

4.2. Resonant tunneling transport in nanowires

III-Nitride nanowire (NW) heterostructures offer an alternative
approach by minimizing the effects of strain relaxation, which
not only provides dislocation-free material, but also attenuates
the piezoelectric effects. Nano-scale RTDs based on NW
heterostructures were first demonstrated using InP/InAs [182].
Recently, electron resonant tunneling transport was presented
in single defect-free n-i-n GaN NWs containing closely spaced
(4 nm) AIN double barriers grown by PAMBE [183], as
illustrated by the TEM image in figure 9(a). The devices
were fabricated with a back-gate NW-field effect transistor
geometry, placing the double-barrier structure in between the
source and drain contacts. The transistor’s low-temperature

! Tt is conventionally considered that the positive electrode is the top contact
in samples grown along the [000 1] axis.
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Figure 9. (a) High-resolution TEM image a GaN NW section
containing a double-barrier heterostructure, i.e. a pair 2 nm thick
AIN barriers (bright contrast) separated by a 6 nm thick GaN
section. The GaN lateral growth around the AIN barriers is resolved
in the image (white arrows). The sharp contrast observed at the right
facet of the NW (black arrow) corresponds to native gallium oxide.
(b). Source-drain current—voltage (Isp — Vsp) characteristics at 4.2 K
of GaN NWs with two closely-spaced AIN tunnel barriers in
comparison with that of n-i-n GaN NWs. (c) Isp— Vsp characteristics
showing the evolution of the NDR appearing at negative Vsp for
different values of gate voltage V. Adapted with permission from
[183]. Copyright 2010, American Chemical Society.

current—voltage characteristics (figure 9(b)) exhibit NDR
features, attributed to the onset of tunneling via the confined
levels between the AIN barriers. The bias value displaying
NDR features can be tuned by adjusting the electrostatic
potential via the back-gate bias (figure 9(c)). The NDR features
in these NW-RTDs are reproducible for both bias sweeping
directions and no degradation of the device characteristics are
found after repeated measurements.

Rigutti et al studied the electrical transport through GaN
NWs containing multiple GaN/AIN nano-disks [184]. They
found that the presence of a spontaneously formed GaN shell
surrounding GaN/AIN nano-disks significantly influences the
device characteristics. When the GaN shell does not exist,
the current mainly flows though the multiple nano-disks and
reproducible NDR is observed, which is attributed to the
electron tunneling through the electronic states available in
those nano-disks. In contrast, the NDR feature disappears
when the GaN shell is present, as the current mainly flows
through the shell close to the NW sidewalls.
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Finally, there has been an attempt to take advantage of the
suppressed internal electric field in AIN/GaN heterostructures
grown in the non-polar orientation by growing the AIN/GaN
double barriers on the m-plane sidewall of a GaN NW [185].
The electron transport was measured using an SEM equipped
with nano-manipulators, capable of contacting individual
NWs. NDR characteristics were found in the ensemble and
individual AIN/GaN core shell NWs, and are explained by
the resonant tunneling through the AIN/GaN double barrier.
Individual NW measurements show NDR at room temperature

with a peak current density of 5 x 10° A cm™2.

5. Electro-optical modulators

Electro-optical modulators are essential components for fiber-
optic communication at A = 1.55 um, since they aid to
overcome the inherent speed limitations and positive chirp of
conventionally used interband semiconductor lasers. Electro-
optical amplitude and phase modulators allow for control of the
amplitude, phase and/or polarization state of an optical beam
as a function of a bias voltage. State-of-the-art technologies in
this field include modulators based on the QCSE of interband
transitions in InGaAsP QWs [186], and others based on the
electro-optic effect in materials like LiNbO3; within a Mach—
Zehnder configuration [187]. These devices present several
drawbacks, such as low saturation power and positive chirp
in the former case, and the need for high driving voltage
and larger size in the latter case. Achieving a significant
improvement in device performance requires a change of
technological approach. Exploiting ISB transitions in QWs
has been proposed as a means to reduce the driving voltage
and increase the bandwidth [188—190]. Moreover, the higher
ISB transitional oscillator strength in comparison to interband
transitions, should allow for further miniaturization of the
devices.

The first electro-absorption ISB modulation experiments
on AIN/GaN QWs were based on the electrical depletion of a
five-period AIN/GaN (1.5 nm/1.5 nm) MQW structure grown
on a thick GaN buffer [191]. The absorption spectrum of such
a sample presents two distinct peaks related to ISB transitions
in both the QWs and in the 2D electron gas located at the
interface of the lowest AIN barrier and the underlying GaN
buffer. The ratio of these two absorption peaks can be adjusted
by applying an external field, which influences the overall
band structure and, more specifically, the free carrier density
in the QWs. To increase the modulation depth, the interaction
of light with the active medium should be enhanced, which can
be achieved with a waveguide geometry [17]. Through the use
of a 1-um-thick AlysGagpsN waveguiding layer on AIN, and
with three active GaN/AIN QWs operating at A = 1.55 um,
a modulation depth of 13.5 dB was observed for a —9V/+7V
voltage swing (10 dB for 5 V voltage swing).

The intrinsic speed limit can be greatly improved by
emptying active QWSs into a local reservoir, instead of
transferring carriers over the whole active region. This is
the principle of the coupled-QW modulator: The electro-
modulation originates from electron tunneling between a
wide well (reservoir) and a narrow well separated by an
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Figure 10. Differential transmission AT/T for applied bias pulses
of +30 V (squares), +20 V (triangles), +10 V (circles), and —5 V
(diamonds). The arrow ponts the energy at which a discontinuity of
the derivative of the FTIR spectrum occurs. The dashed line shows
the calculated transmission change for 0.8 V bias across the active
region. The inset shows the conduction band profile and energy
levels for one period of coupled QWs. Right panel: high-resolution
TEM image showing five periods of coupled QWs in the active
region. Adapted with permission from [192]. Copyright 2007,
American Institute of Physics.

ultrathin (~1 nm) AIN barrier (see the inset of figure 10).
Experiments on GaN QW coupling via AIN [94] or AlIGaN
[95] barriers have set the basis for the demonstration
of room-temperature ISB electro-modulated absorption at
telecommunication wavelengths in GaN/AIN coupled QWs
with AlGaN contact layers [192-194]. Figure 10 illustrates
the design and performance of a modulator with 1 nm
thick AIN coupling barriers [192, 193]. Positive bias favors
electron transfer from the reservoir well to the active well,
which increases the ISB absorption at 1.3-1.6 pm. Under
reverse bias, the electrons tunnel back to the reservoir well
and the structure becomes transparent at telecommunication
wavelengths. The BW 345 cut-off frequency is limited by the
resistance x capacitance (RC) time constant and is as high
as 3 GHz for 15 x 15 um? mesas. This frequency could
be further improved by reducing the access resistance of the
AlGaN contact layers. According to Holmstrom, the high-
speed performance of such modulators will ultimately be
determined by the ISB absorption line width I', since their
capacitance depends on the line width as C~T"3 [188, 189].

All the above-described electro-optical modulators rely
on light amplitude modulation via ISB absorption. Based
on Kramers—Kronig relations, the ISB absorption should
also translate into a variation of the refractive index at
wavelengths close to the transition, which can be used for
phase modulation. This concept was verified experimentally
at mid-IR (~10 pwm) wavelengths using the stark shift of ISB
transitions in GaAs/AlGaAs step QWs [195]. The strongly
nonlinear susceptibility observed in GaN/AIN QWs [155,
196] has led to the first theoretical proposals of all-optical
cross-phase modulators [96].
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Figure 11. (@) Normalized transmittance of 100 periods of
GaN/AIN QWs measured in multi-pass waveguide configuration as
described in the inset. (b) Measured refractive index dispersion due
to ISB absorption in the GaN/AIN MQWs interaction layer (solid
red line). Kramers—Kronig computation of the FTIR measured
absorption shown on the left (green dashed line). The measured
reference sample refractive index dispersion (blue dotted-dashed
line) is of the order of 10~*. (Adapted from [198].)

Using a depletion modulator consisting of 3 GaN/AIN
QWs inserted in an AlysGagsN/AIN ridge waveguide on
sapphire, Lupu et al [197] reported a variation of the
refractive index around ~1.5 um deduced from the shift of
the beating interference maxima for different order modes.
The change in the refractive index was derived to be
An = —5 x 1073 as the population was changed from
complete depletion to full population of the QWs. This result
is in close agreement with the observation of a refractive index
dispersion between —5 x 1072 to 6 x 107 in a 100-period
Si-doped GaN/AIN (1.5 nm/3 nm) MQWs using a free-space
Mach—Zehnder interferometer configuration [198]. Figure 11
illustrates the ISB absorption and variation of refractive index
measured in such samples. The values of An are comparable
to those obtained at the same wavelength in phase modulators
based on interband transitions in InGaAsP/InP QWs using the
quantum confined Stark effect [199], and they are one order of
magnitude higher than the index variation obtained in silicon
[200]. These results open the way for the realization of ISB
Mach—Zehnder interferometer phase modulators in the optical
communication wavelength range.
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6. Infrared photodetectors

6.1. Quantum well/quantum dot infrared photodetectors

Quantum well infrared photodetectors (QWIPs) have found
widespread application for thermal imaging, using mature
materials such as GaAs. In nitrides, however, with the
possibility of tuning ISB transitions in the 1.3-1.55 um
range, and with rapid carrier relaxation (~140 fs), the
main motivation for QWIPs is high-speed detectors for
optical communications. Photoconductive GaN/AIN QWIPs
operating at 1.6—1.76 um have been demonstrated [201, 202].
The responsivity was estimated to be 0.1 mA W~! at 10 K;
however, the photocurrent signal could only be observed up
to 120-170 K, even though the optical absorption remained
unchanged up to room temperature. Later, Uchida et al
demonstrated GaN/AIN QWIPs operating at 1.55 ;«m at room
temperature with a responsivity of 0.11 mA W~ under 15 V
bias. Finally, photoconductive IR photodetectors based on
cubic GaN/AIN QW superlattices have also been reported
[203]. These devices exhibit a photovoltaic effect that
is overtaken by the dark current for temperatures above
215 K. This photoresponse is consistent with ISB transition
phenomena, but the mechanism behind the photovoltaic
behavior remains unknown.

Lateral QDIPs have also been fabricated by depositing
planar contacts on samples consisting of 20 periods of Si-
doped GaN/AIN QDs, first operating at liquid nitrogen
temperature [204] and then at room temperature [127, 205].
The devices exhibit photocurrent for TM-polarized excitation
in the 1.4-1.9 um spectral range, following the intraband
s-p, selections rules. At low temperature (7 = 10 K), mid-
IR photoresponse to TE-polarized light is also observed and
attributed to s—py , transitions. The appearance of photocurrent
due to these bound-to-bound transitions is attributed to
conductivity via lateral hopping [127]. Further studies have
shown that deep levels in the AIN barriers may also contribute
to the photocurrent, giving rise to negative photoconductivity
effects [206].

In spite of these early demonstrations, photoconductive
devices keep presenting a low yield due to the large dark
current originating from the high density of dislocations
in heteroepitaxial Il-nitrides (~10° cm™2), particularly
in GaN/AIN devices targeting near-IR wavelengths. An
alternative to bypass the leakage problem consists of exploiting
the device’s photovoltaic response, where zero-bias operation
guarantees a minimum dark current. Photoconductive QWIPs
already displayed a photovoltaic response [207], which was
less sensitive to defects [202], particularly to those associated
with the yellow band in GaN [208], in agreement with
observations in photovoltaic versus photoconductive interband
detectors [209].

The photovoltaic operation of GaN/AIN QWIPs at
telecommunication wavelengths and at room temperature was
first studied in detail by Hofstetter et al [29, 59, 210-212].
The working principle of photovoltaic ISB detectors is based
on resonant optical rectification processes in asymmetric QWs
[29], as described by Rosencher and Bois in asymmetric
GaAs/AlGaAs QWs [213]. In a GaN/AIN superlattice, due
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to the QW asymmetric potential profile, the excitation of
an electron into the upper quantized level is accompanied
by a small displacement in the growth direction, and an
electrical dipole moment is created. For a high electron density
and many QWs, these microscopic dipole moments add up
to a macroscopic polarization of the crystal, which can be
detected as an external photovoltage. A strong performance
enhancement (responsivity increase by a factor of 60) of these
detectors has been achieved by using QDs instead of QWs
in the active region [214]. The improvement is attributed to
the longer electron lifetime in the upper QD states and the
increased lateral electron displacement.

An interesting application of photovoltaic ISB
photodetectors is the so-called multi-spectral detectors,
operating in various wavelength ranges, with potential
applications in surveillance, failure analysis and meteorology.
Hofstetter et al [215, 216] have combined optical interband
and ISB transitions with a monolithic integration of a
photoconductive UV interband (solar-blind) detector based
on an AlGaN thin film and a photovoltaic near-IR ISB
detector based on an AIN/GaN superlattice, as illustrated
in figure 12. The two detectors exhibit spectrally narrow
responsivity curves, thus enlarging the UV-to-visible rejection
ratio in the case of the UV device, and improving the noise
behavior in the case of the IR detector at room temperature.

6.2. Quantum cascade detectors

Quantum cascade detectors (QCDs) are photovoltaic devices
consisting of several periods of an active QW coupled
to a short-period superlattice which serves as an extractor
[217, 218]. Under illumination, electrons from the ground
state, ey, are excited to the upper state of the active QW, e;, and
then transferred to the extractor region where they experience
multiple relaxations toward the next active QW. This results in
a macroscopic photovoltage in an open circuit configuration.
As major advantage, their dark current is extremely low and
the capacitance can be reduced by increasing the number of
periods, which enables high frequency response.

GaN/AlGaN QCDs operating in the near-IR have been
reported [219, 220], with their structure illustrated in figure 13.
These devices take advantage of the polarization-induced
internal electric field to design an efficient AlGaN/AIN
electron extractor where the energy levels are separated by
approximately the LO-phonon energy (~90 meV), forming
a phonon ladder. The peak responsivity of these GaN/AlGaN
QCDs at room temperature was ~10 mA W~ (~1000 V W1
[219]. Detectors containing 40 periods of active region with
the size 17 x 17 um? exhibit the BW 34 cut-off frequency at
19.7 GHz [221]. However, the speed of these quantum cascade
detectors is governed by their RC constant, and not by an
intrinsic mechanism. Pump and probe measurements of these
devices pointed to an ISB scattering time in the active QW of
0.1 ps and a transit time through the extractor of 1 ps [222].
With these data, the intrinsic frequency bandwidth is expected
to be above 160 GHz, significantly higher than theoretical
predictions by Gryshchenko et al [223].

Sakr et al [224] have shown a significant improvement of
a GaN/AlGaN QCD in terms of responsivity and bandwidth,
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Figure 12. (@) Schematic cross section through the sample showing
the relative positions of the UV and the IR detector. The QWs are
used as the detection layer for the IR, while the AlGaN buffer is the
detection layer for the UV radiation. (b) Measured spectral
responsivity curves for the UV (1.5 to 4.0 V in steps of 0.5 V at
300 K) and the IR detector (10 and 300 K) (after [216]).
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Figure 13. (@) Band diagram and energy levels in one stage of the
structure. (b) HRTEM image of a period of the structure (active GaN
QW followed by five-period AlGaN/AIN extractor), viewed along
the (11-20) axis. Reprinted with permission from [219]. Copyright
2008, American Institute of Physics.

reaching atleast 9.5 + 2mA W~! for 10 x 10 um? devices at
1.5 um peak detection wavelength at room temperature, with
a BW_34p frequency response of ~40 GHz. The enhanced
responsivity is achieved by illuminating the side facet of the

QCDs (illumination perpendicular to the growth axis), as a
result of the good coupling between TM-polarized waveguide-
propagated light and ISB transitions. The frequency bandwidth
is improved by reducing the top contact resistance and the
contact layer resistivity, as well as the device capacitance
through increasing the number of periods.

Based on the presence of the internal field in III-
nitride QWs, symmetry breaking of the potential permits ISB
transitions not only between the ground electronic state and
the first excited state, e;—>e,, but also between e; and the
second excited state, ez, a transition forbidden in symmetric
QWs [14]. This feature was exploited for the fabrication of
a two-color GaN-based QCD operating at 1.7 and 1 um at
room temperature absorption wavelengths associated to the
ej—e; and ep—e3 transitions, respectively [225]. It should be
noted that although the oscillator strength associated with
e1— e3 1s 21 times smaller than that of e;— e, the responsivity
at 1 um is only 12 times smaller than that at 1.7 um. This
is a consequence of the increased transfer efficiency into the
extractor for electrons in the e3 subband due to the lower
effective barrier and of the multiple relaxation paths to the
extractor stage.

Finally, a simplified QCD design where the extractor
superlattice has been replaced by an AlGaN layer has been
proposed [226]. The thickness and composition of the extractor
alloy is chosen so that the energy separation between the
ground state of the extractor and the ground state of the active
QW is close to the LO-phonon energy. An alloy-extractor
device presenting peak photovoltaic response at 1.9 um has
been demonstrated [226].

6.3. THz intersubband photodetectors

The first demonstration of a nitride-based THz ISB
photodetector has been reported by Sudradjat ef al [227]. In the
far-IR spectral region, a reduction of the dislocation density
allows for the fabrication of photoconductive QWIPs. A key
design element for these devices is the optimization between
two conflicting requirements: (i) the need for large oscillator
strength of the absorbing transitions, which is favored by the
use of well-confined upper subbands, and (ii) the efficient
escape of the photoexcited electron out of the QW, which
is favored by absorbing from a bound level directly into the
continuum. A good compromise is attained with QWs whose
first excited state is nearly resonant with the conduction band
edge in the barriers, leading to what are commonly referred
to as bound-to-quasi-bound absorbing transitions [10]. This
was achieved in nitride-based THz ISB photodetectors by
creating a nearly flat potential profile using the step-QW
design [91], so that the first excited subband can be positioned
at any desired energy relative to the top of the barriers
by changing the QW thickness (see figure 14(a)), imitating
the design of As-based structures. The fabricated devices
present a photocurrent spectrum centered at 23 m wavelength
(=13 THz frequency), well resolved from low temperature
(T =20Kin figure 14(b)) up to T = 50 K, with a responsivity
of approximately 7 mA W~ [227].
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Figure 14. (a) Conduction band profile of an AlGaN far-IR QWIP
structure under bias, where each repeat unit consists of an

Alg 16Gag 84N barrier and a GaN/ Al 0sGag o,N step-QW. The
squared envelope functions of the ground-state and first excited state
of each QW are also shown, referenced to their respective energy
levels. The vertical and horizontal arrows indicate, respectively,
photon absorption and photoelectron escape into the continuum of
unbound states over the barriers. (b) Photocurrent spectrum of a
double-step-QW AlGaN THz QWIP measured at 7 = 20 K under
0.8 V bias (solid line), and Gaussian fit (dashed line). The grey band
near the horizontal axis indicates the Restrahlen band of GaN. The
vertical arrow marks the calculated transition energy. Reprinted with
permission from [227]. Copyright 2012, American Institute of
Physics.

7. Toward the quantum cascade laser

7.1. Light emission in superlattices

ISB luminescence is an inefficient process due to competition
with nonradiative electron relaxation via interactions with LO
phonons (sub-picosecond), or electron—electron interactions
and impurity scattering (tens of picoseconds). However, this
does not hinder the realization of QCLs: in the population
inversion regime, short radiative lifetime and high stimulated
gain can be achieved thanks to the strong ISB transitional
oscillator strength.

Despite of the inefficiency of the process, room-
temperature ISB luminescence in the 2-2.3 pm spectral range
has been observed in GaN/AIN MQWs under optical pumping
[228-230]. The QWs were designed to exhibit three bound
states in the conduction band. The emission arises from the e3—
e, ISB transition. Photoluminescence excitation spectroscopy
shows that the emission is only observed for TM-polarized
excitation at wavelengths corresponding to the e;—e; ISB
transition.

Room-temperature intraband emission has also been
observed in optically pumped GaN/AIN quantum dots [231].
The p,-s intraband luminescence was observed at . = 1.48 um
under optical excitation at A = 1.34 um perpendicular to the
[000 1] growth axis. The population of the p, state arises from
Raman scattering by GaN A; longitudinal optical phonons.
Based on the emission spectral shape, we estimate that the
homogeneous linewidth of the s-p, intraband transition is less
than 4 meV.

In spite of these observations, further work is required in
terms of growth optimization, processing and dedicated laser
active region and cavity design in order to develop quantum
fountain lasers.
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7.2. Quantum cascade laser structures

QCLs rely on transitions between quantized conduction band
states of a suitably designed semiconductor MQW structure
[11]. Due to the polarization selection rules associated with
ISB transitions, these devices are in-plane emitters, with their
electric-field vector perpendicular to the plane of the layers.
An electron injected into the active QWs first undergoes an
ISB lasing transition, and is rapidly extracted by a fast non-
radiative transition, which maintains the population inversion.
Then, the electron tunnels through the injector region toward
the upper level of the next active QWs. By using several tens
or even hundreds of periods of active region + injector in a
series (a cascade), higher optical gains and multiple photons
per electron are obtained. The emitting wavelength can be
tuned in the range of a few microns to well above 10 um,
by changing the design parameters, such as the quantum well
(QW) thickness and barrier height.

Typical QCLs have been engineered and fabricated using
arsenide-based systems such as AlGaAs and InGaAs and
AllnAs/GalnAs/InP. These complex GaAs-based structures
require precise structure control and excellent homogeneity of
the material, both in plane and along the multiple periods that
compose the active region. Due to the large lattice mismatch
and defect structure of the GaN/AIN system, the fabrication
of GaN-based QCLs operating in the near-IR does not appear
feasible, despite several theoretical proposals [16, 232, 233]
and promising results in terms of waveguide fabrication [234].
However, there is an increasing interest and research effort for
the fabrication of the first GaN QCL in the far-IR, particularly
in the so-called THz domain, spectral region where the lattice
mismatch of the structure is reduced, and where it should be
possible to exploit the large LO phonon of III-nitrides in order
to realize devices operating at room temperature.

Since the first demonstration of a THz QCL in 2001 [235]
rapid progress has been made in terms of device performance.
To date, QCL has been demonstrated in the 0.85-5 THz range
[236], with pulsed operation up to 186 K [237, 238], and
pulsed output powers of up to 250 mW [239]. The devices
have evolved through different designs including the resonant-
phonon, the chirped superlattice, bound-to-continuum and
hybrid designs [237, 240]. There are two major processes
that cause the degradation of population inversion (and thus
gain) in THz QCLs at high temperature: thermal backfilling
and thermally activated phonon scattering. Backfilling of the
lower radiative state with electrons from the heavily populated
injector occurs either by thermal excitation (according to
the Boltzmann distribution), or by reabsorption of non-
equilibrium LO-phonons (the hot-phonon effect) [241]. The
other main degradation mechanism is the onset of thermally
activated LO-phonon scattering, as electrons in the upper
radiative state acquire sufficient in-plane kinetic energy to emit
an LO-phonon and relax nonradiatively to the lower radiative
state. This causes the upper-state lifetime t,; to decrease

exponentially according to
712 o exp[— (Ero — hv) /ksTy], (15)

where hv is the THz photon energy, and kg is the Boltzmann
constant. Both of these mechanisms greatly depend on the
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wave functions of the active region of the proposed AlGaN THz
QCL structure. Two periods are shown, each with 3 QWs with layer
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be on the order of the longitudinal optical phonon (90 meV). With
an applied bias of 70 kV cm™!, tunneling between states 1 and 3
occurs in for the cascade effect and carrier recycling. Reprinted
from [243], with permission from Elsevier.
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electron gas temperature 7., which is 50-100 K higher than
the lattice temperature during device operation.

In general, resonant-phonon QCL designs show the best
temperature performance. In this scheme, injector states
are designed so that the lower radiative state is resonantly
coupled into the upper injector level, which is separated by
approximately the LO-phonon energy from the second injector
level, providing efficient depopulation of the lower lasing
state and a fast relaxation path toward the upper radiative
state. The explicit inclusion of an LO-phonon scattering event
for depopulation means that resonant-phonon designs present
a relatively large energetic barrier (about one LO phonon)
to thermal backfilling. However, the low LO-phonon energy
in arsenide compounds constitutes a major bottleneck for
operation at higher temperatures. Furthermore, the LO phonon
of GaAs systems causes an unobtainable emission gap in lasing
systems (Restrahlen band at 8-9 THz), which is an intrinsic
property of the material system.

Nitride semiconductors, namely GaN, have an LO phonon
energy of 92 meV, much higher than the ambient thermal
energy. A number of designs for a GaN THz QCL have been
proposed [214, 242-249], all focusing on the resonant-phonon
architecture first theorized in 2003 [240]. Figure 15 presents
the basic device structure for polar Ill-nitrides. Below we
summarize the efforts of various groups working on this topic,
who have introduced design improvements but keep the same
underlying concept.

Researchers from the University of Leeds (UK) have
engineered one of the first designs for GaN-based QCLs
using a fully consistent scattering rate equation model [242],
and an energy balance method [250]. Both electron-LO-
phonon and electron—electron scattering mechanisms are taken
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into account. They have created a contour plot outlining the
wavelengths of emission theorized with different well and
barrier thickness within a superlattice, after appropriate strain
balancing [232]. They have also proposed a 34 um wavelength
QCL design in both the a and ¢ planes [242]. Population
inversions in active laser states up to 19% for the a-plane,
and up to 40% for the c-plane design, are predicted and, based
on estimated modal gain and waveguide/mirror losses, they
conclude that the observation of laser action in GaN/AlGaN
cascades should be feasible in both planes.

Terashima and Hirayama (RIKEN, Japan) have presented
THz QCL designs based on four-well resonant-phonon
GaN/AlGaN structures [246, 251, 252]. The structures have
been synthesized by PAMBE using a ‘droplet elimination
by thermal annealing’ technique [51], and they have been
processed in a single-metal plasmon waveguide geometry
[246, 252]. Electronluminescence at 1.37 THz has been
reported in a first structure [251], and polarization-dependent
electroluminescence at 2.82 THz, slightly tunable by changing
the driving voltage in the 20-21 V range, has been reported
using a second design [252].

The group of Paiella and Moustakas at Boston University
has proposed a QCL design emitting at 2 THz, designed
using a Schrodinger-equation solver based on the effective-
mass approximation, with the characteristic built-in electric
fields of nitride heterostructures included explicitly [245].
They have also performed a rigorous comparison between
a GaAs/AlGaAs and the GaN/AlIGaN THz QCLs emitting
at the same wavelength using a microscopic model of carrier
dynamics in QCL gain media based on a set of Boltzmann-
like equations solved with a Monte Carlo technique [245, 253].
Results show that the population inversion within GaN lasers is
much less dependent on temperature than conventional GaAs
designs, as presented in figure 16. From the experimental
viewpoint, they have explored tunneling effects in cascade-
like superlattices, their temperature dependence and the effect
of bias for multiple device architectures [254].

Mirzaei et al have proposed a dual-wavelength QCL to
emit at both 33 and 52 pum with similar behavior of the
output optical power for both wavelengths [249]. The design
uses the LO-phonon resonance to extract electrons from the
lower radiative levels, and incorporates a miniband injector,
theorized via rate equation analysis to operate properly up to
265 K.

Chou et al have modeled GaN-based resonant-phonon
THz lasers using a transfer matrix method, paying particular
attention to the effect of the strain state [248]. They
predict higher THz power in GaN/AlGaN heterostructures
as compared to heterostructures incorporating In [255].

Finally, Yasuda et al have used the non-equilibrium
Green’s function to model GaN THz QCL devices, namely
a four-well resonant-phonon InAlGaN/GaN structure on
(000 1)-oriented GaN [247], and a two-well non-polar
GaN/AlGaN structure [256].

Overall, many different designs from various simulation
models have been presented. They all focus on the
resonant-phonon architecture and predict functionality at
high temperatures. Some devices have been fabricated, but
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Figure 16. Conduction-band profile and squared envelope functions
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gain media both for emision at 2 THz. The two structures are plotted
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injection barrier (indicated by the arrow) and moving downstream,
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74/56/156 A for the GaAs structure (the boldfaced numbers refer
to the barrier layers). (¢) Calculated fractional population inversion
of the THz QCL structures in (@), indicated by the solid line, and
(b), indicated by the dotted line. Reprinted with permission from
[245]. Copyright 2008, American Institute of Physics.
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none have shown lasing properties. All the current research
suggests that THz QCL devices are feasible, but there are
still numerous problems for device engineering including
the unavailability of substrates, difficult band engineering,
weak current transport as well as the problems from lattice
mismatch [232], doping [234] and waveguide construction
[233]. The above-summarized papers have provided solutions
toward managing the optical/electronic design, the lattice
mismatch and fabrication methodology, but the fabrication of
a functioning laser device remains a challenge.

8. Conclusions and perspectives

In this paper, we have reviewed recent research on III-
nitride ISB optoelectronics. IlI-nitride heterostructures are
excellent candidates for high-speed ISB devices in the near-IR
thanks to their large conduction band offset (~1.8 eV for the
GaN/AIN system) and subpicosecond ISB scattering rates.
However, bandgap engineering requires exquisite control of
material growth and modeling that are notoriously difficult in
GaN/AlGaN. First prototypes of nitride-based ISB devices are
room-temperature multi-Tbit/s all-optical switches operating
at 1.5 pum, photovoltaic and photoconductive QWIPs,
QDIPs and ISB electro-optical modulators. Near-IR ISB
luminescence from GaN/AIN QWs and QDs has been
reported. The concept of quantum cascade applied to III-
nitrides has been demonstrated by the development of QCDs
operating in the 1.0-4.5 um spectral range.

An emerging field for GaN-based ISB devices is the
extension toward the far-IR spectral range, with several
theoretical designs of GaN QCLs recently reported. At far-
IR wavelengths, the large GaN LO-phonon energy (92 meV)
becomes a valuable property to achieve ISB operation at
relatively high temperatures, and also to cover IR wavelengths
that are not accessible by other III-V semiconductors due
to Restrahlen absorption. However, the extension of this ISB
technology toward longer wavelengths requires a reduction of
the polarization-induced internal electric field, which sets new
material challenges.
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244 Gallium Nitride (GaN): Physics, Devices, and Technology

GaN/Al(Ga)N semiconductors have emerged within the last decade as promising
materials for founding new intersubband (ISB) technologies relying on infrared (IR)
optical transitions between quantum-confined electronic states in the conduction
band of nanostructures (quantum wells [QWs], quantum dots [QDs], and nanow-
ires). The large conduction-band offset (about 1.8 eV for GaN/AIN) and the sub-
picosecond ISB relaxation time render III-nitrides suitable for the fabrication of
ultrafast photonic devices for optical telecommunication networks in the near-IR
range. Furthermore, the high energy of GaN longitudinal optical phonons (92 meV)
opens prospects for high-temperature THz quantum cascade lasers (QCLs) and ISB
devices covering the 5- to 10-THz band, inaccessible to As-based technologies due
to phonon absorption.
Key words: nitride, infrared, intersubband, quantum well.

8.1 INTRODUCTION

The term “intersubband” is used to describe electronic transitions between confined
states in either the conduction band or the valence band of semiconductor nano-
structures. In such systems, ISB optical transitions at a desired operation wavelength
can be obtained by the adequate choice of layer thicknesses, which is the base of
the “band-structure engineering” concept. The first studies of ISB absorption date
back to the 1970s [1,2] and refer to electronic transitions between confined levels in
an accumulation layer on n-type Si (100), observed under far-IR illumination. The
extrapolation of these principles to GaAs/AlGaAs QWs to shift the transition wave-
length to mid-IR was first suggested by Esaki and Sakaki [3], and subsequent experi-
mental [4,5] and theoretical studies [6,7] led to the first experimental measurement
of strong ISB absorption in a series of multiple quantum wells (MQWSs) performed
by West and Eglash [8]. These results lead to the fabrication of the first quantum well
infrared photodetector (QWIP), by Levine et al. [9,10]. In 1994, Faist et al. [11] pre-
sented a major breakthrough in ISB technology: the QCL. This was the beginning
of tremendous development of the ISB technology, which resulted in commercially
available devices operating in the mid- and far-IR. For a comprehensive introduction
to ISB physics in QWs, we refer the readers to the work by Bastard [12] or Liu and
Capasso [13].

Nowadays, ISB optoelectronic devices based on the III-As material system
(GaAs/AlGaAs, InGaAs/AllnAs, or GalnAs/AlAsSb) can be tuned from the mid-IR
to the THz spectral range. Operation at shorter wavelengths (<3 um) is limited by the
available conduction-band offset and by material transparency. III-Nitride semicon-
ductors (GaN, AIN, InN, and their alloys), with their wide bandgap and large conduc-
tion-band offset (~1.8 eV for GaN/AIN [14-16]), are attracting much interest for ISB
devices operating in the near-IR spectral range, particularly in the 1.3- to 1.55-um
wavelength window used for fiber-optic communications [17-20]. GaN is transpar-
ent in a large spectral region, notably for wavelengths longer than 360 nm (bandgap),
except for the Restrahlen band (from 9.6 to 19 um). Absorption in the range of 7.3-9
um has been observed in bulk GaN substrates with carrier concentrations < 10' cm=
[21-23] and was attributed to the second harmonic of the Restrahlen band. Although
this second band might hinder the fabrication of waveguided devices in this spectral
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region, its effect in planar devices with micrometer-sized active regions is negligible,
since the absorption coefficient related to two-phonon processes is much smaller
than the one associated with ISB transitions [24,25]. On the other hand, III-nitrides
do not present problems of inter-valley scattering, since the L and X points are much
higher in energy (>2 e€V) than the I" point.

There is also an interest to push the III-nitride ISB technology toward longer wave-
lengths, particularly to the THz frequency range [20]. The potential of this spectral
region in applications like security screening, quality control, and medical diagnos-
tics has driven extensive development of optoelectronic components. Because of the
large LO-phonon energy of GaN (about three times that of GaAs), room temperature
operation becomes feasible for ISB devices covering the IR band that was typically
inaccessible to As-based semiconductors due to phonon absorption.

8.2 INTERSUBBAND ABSORPTION IN
II-NITRIDE NANOSTRUCTURES

8.2.1 GAN/ALGAN PoLAR QUANTUM WELLS

8.2.1.1 Modeling

The optical properties of (0001)-oriented nitride QWs are strongly affected by the
presence of internal electric fields arising from the piezoelectric and spontaneous
polarization discontinuity between the various nitride compounds [26]. Figure 8.1a
presents the band diagram of a GaN/AIN (2 nm/3 nm) superlattice calculated using
the nextnano® 8-band k.p Schrodinger—Poisson solver [27] with the material parame-
ters described by Kandaswamy et al. [28]. The electronic potential takes on a charac-
teristic saw-tooth profile due to the internal electric field. The electron wave functions
of the ground hole state h,, ground electron state e;, and excited electron states e, and
e; are presented in Figure 8.1. In narrow QWs (~1 nm) the energy difference between
e, and ¢, is mostly determined by the confinement in the QW, whereas for larger QWs
(>2 nm) this difference is ruled by the internal electric field, since both electronic
levels lie in the triangular part of the QW potential profile. The evolution of the e,—e,
and e;—e, energy differences with the QW thickness and strain state is presented
in Figure 8.1b and compared with experimental data from GaN/AIN MQWs. The
increase in the e,—e, ISB energy calculated when considering the MQW strained on
GaN is related to the enhancement of the electric field in the QW, due to the larger
piezoelectric coefficients of the AIN barrier in comparison with the GaN QW [28].
On the other hand, the band structure simulations show that certain QW thicknesses
can result in a configuration where the e,—e, transition has approximately the same
energy as e,—e; (or as e,—e, for very thick barrier layers), which can result in the
enhancement of second-order and third-order nonlinear effects such as two-photon
absorption [29], second-harmonic generation [30], or saturable absorption [31].

In nitride heterostructures, charge distribution depends not only on the Si doping
level in the QWs but also on the presence of non-intentional dopants and on the carrier
redistribution due to the internal electric field. The polarization discontinuity between
heterostructure layers leads to strong band bending, which typically results in the for-
mation of a depletion layer on one side of the active region and an accumulation layer
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FIGURE 8.1 (a) Band diagram of GaN/AIN quantum wells (QWSs) in an infinite superlattice

with 3-nm-thick AIN barriers and 2-nm-thick GaN QWs. The structure is considered strained
on an AIN substrate. The electron wave functions of the ground hole state, /,, ground electron
state, e;; and excited electron states, e, and e, are presented. (b) Variation of the e,—e, and
e;—e, intersubband (ISB) transition energy as a function of the QW thickness in GaN/AIN
multiple quantum well structures with 3-nm-thick barriers. Triangles indicate experimental
data, and solid and dashed lines correspond to theoretical calculations, assuming that the
structure fully strained on AIN and on GaN substrates, respectively. (From Kandaswamy
etal., J. Appl. Phys., 104(9), 093501, 2008 [28].)

on the other side (Figure 8.2a). Therefore, a realistic view of the charge distribution in
a device is only achieved by extending the electronic modeling to the complete struc-
ture. As an illustration of this phenomena, Kandaswamy et al. [28] have studied the
contribution of the internal electric field induced by a 50-nm-thick Al Ga, N (x =0,
0.25, 0.5, and 1) cap layer to the ISB absorption of 40-period non-intentionally doped
GaN/AIN (1.5/1.5 nm) MQWs grown on AIN [28]. Measurements of ISB absorption
in these samples confirm a monotonous increase and broadening of the absorption
when increasing the Al mole fraction of the cap layer. This trend is consistent with
the simulations of the electronic structure in Figure 8.2a and b, where the use of AIN
as a cap layer lowers the conduction band of the first GaN QWs below the Fermi level
(dash-dotted line at O eV in the figures), whereas the use of GaN as a cap layer results
in the depletion of the MQW active region.

8.2.1.2 Growth and Defect Analysis

A main requirement for the growth of IIl-nitride nanostructures for ISB devices
is the precise control of thickness and interfaces. Molecular beam epitaxy (MBE)
seems to be the most suitable technique for this application thanks to its low growth
temperature, which hinders GaN—-AIN interdiffusion [32]. Plasma-assisted molecular
beam epitaxy (PAMBE) was the first method to produce III-nitride nanostructures
displaying ISB transitions at telecommunication wavelengths (1.3, 1.55 um) [33-39].
The growth of (0001)-oriented GaN, AIN, and AlIGaN by PAMBE is extensively
discussed in the literature [40—45]. Deposition of III-nitride two-dimensional (2D)
layers requires a precise control of the III/V flux ratio during the growth; it demands
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8.2.

slightly metal-rich conditions, and hence growth optimization requires the determi-
nation of stoichiometric flux conditions and precise control of the growth tempera-
ture. In the case of GaN, at a substrate temperature higher than 700°C there is a
certain range of Ga fluxes for which the Ga excess remains in a situation of dynamic
equilibrium on the growing front, that is, the Ga coverage is independent of the
Ga exposure time. Smooth surfaces are generally achieved under moderate Ga-rich
conditions [40,42,46,47], when the Ga excess arranges into a so-called laterally con-
tracted Ga bilayer, which consists of two Ga layers adsorbed on the Ga-terminated
(0001) GaN surface [40,41,47-49].

In the case of AIN, the deposition of layers with atomically flat surface morphol-
ogy also requires metal-rich conditions [45]. However, Al does not desorb from the
surface at the standard growth temperature for GaN. Therefore, to eliminate the Al
excess at the surface it is necessary to perform periodic growth interruptions under
nitrogen. An alternative approach to achieve 2D growth of AIN and low Al content
(<50%) of Al(Ga)N layers is to use Ga as a surfactant, with the Al flux corresponding
to the required Al mole fraction [28,43,50].
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GaN/AIN QWs displaying ISB transitions in the near-IR can also be synthe-
sized by metalorganic vapor phase epitaxy (MOVPE) [51-53]. In this case, a criti-
cal parameter to attain devices in the telecommunication spectral range (1.3 pm,
1.55 um) is the reduction in growth temperature from the 1050°C-1100°C optimum
range for GaN growth down to 900°C-950°C (or even to 770°C [54]), to minimize
the GaN-AIN interdiffusion. Furthermore, deposition under compressive strain
(e.g., using AIN substrates) is recommended at these growth temperatures to prevent
the red shift of the ISB transition due to instabilities of the GaN/AIN interface [55].

Since GaN/AIN is a lattice-mismatched system (2.5% in-plane lattice mismatch),
it is important to understand the effects of strain and misfit relaxation. The density
of edge-type threading dislocations (TDs) should be kept to a minimum since they
cause losses in the transmission of transverse-magnetic (TM)-polarized light, which
adversely affects the performance of ISB devices [56]. These TDs propagate from
the heteroepitaxial substrates (typical TD densities in commercial GaN-on-sapphire
or AIN-on-sapphire templates are in the 108 cm=? and 10° cm~2 range, respectively),
but they are also generated during the growth due to the plastic strain relaxation,
since misfit dislocations (MDs) often fold toward the growth direction, giving rise to
edge-type TDs [57].

It is not clear how semiconductors with hexagonal symmetry, such as III-nitrides,
relax the misfit stress. In the case of nitride heterostructures grown along the [0001]
axis, the formation of regular networks of MDs is hindered since the most crystal-
lographically favorable slip system, (0001) basal plane with <11-20> {0002} slip
directions, lies parallel to the heterointerfaces. This means that the resolved misfit
stress on the main slip plane is zero [58]. Thus, only secondary slip systems that are
oblique to the basal plane can have a resolved misfit stress and may contribute to
plastic relaxation. It has been observed that MDs following the secondary <11-23>
{11-22} slip system can be generated at heterointerfaces when shear stress is inten-
tionally or unintentionally induced by three-dimensional (3D) growth [59,60], by
crack formation [57,61], or in close proximity to V-defects [62]. Therefore, the relax-
ation mechanism depends not only on the structure itself but also on the growth
conditions. In general, GaN/AlGaN heterostructures grown under tensile stress on
GaN substrates tend to crack along the <11-20> crystallographic direction at a cer-
tain critical thickness [61,63,64]. In the case of crack-free GaN/AlGaN superlattices
deposited under compressive strain, the main relaxation mechanism is the tilt of the
a-type TDs toward <1-100>, the inclination angle depending on the lattice misfit
between the MQWs and the underlayer [65]. It has been proposed that the diagonal
movement is due to a staircase-like movement of the dislocations through the stack,
with a misfit segment at each well. Strain relaxation via TD inclination has also
been observed in AlGaN layers deposited on mismatched AlGaN [66].

In PAMBE growth, the metal to N ratio and the growth temperature are key
parameters that define the strain relaxation rate during growth [67]. Ga-rich condi-
tions delay crack propagation and minimize strain relaxation [50]. They also allow
good control of the layer thickness and Al incorporation in Al1GaN alloys. In the case
of GaN/AIN MQWs and in addition to the relaxation mechanisms described earlier,
the periodic misfit relaxation appears to be associated with the formation of stack-
ing fault loops that initiate at the beginning of the AIN barrier deposition, propagate
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through the barrier, and close within the following QW [50]. In contrast, transmis-
sion electron microscopy (TEM) images from GaN/AlGaN superlattices (ternary
alloy barriers) do not reveal stacking faults or other periodic defects [68].

8.2.1.3 Intersubband Optical Characterization

Figure 8.3 shows the ISB absorption of Si-doped AIN/GaN MQWs with 3-nm-thick
AIN barriers and QW thicknesses of 5, 6, 7, and 9 ML [16,28]. The samples show AU: Please
a pronounced TM-polarized absorption, attributed to the transition from the first to specify what
the second electronic levels in the QW (e,—e,), whereas no absorption was observed ML refers to.
for transvers-electric (TE)-polarized light within experimental sensitivity. For large
QWs (>8 ML), the e,—e, transition is observed, as indicated in Figure 8.3; this tran-
sition is forbidden in symmetric QWs [69] but is allowed in nitride QWs because
the internal electric field in the well breaks the symmetry of the potential. The
experimental values of e,—e, and e;—e, as a function of QW width are presented in
Figure 8.1, showing a good fit with theoretical calculations.
The line width of the absorption remains in the 70- to 100-meV range for QWs
doped at 5 x 10" cm, and the ISB absorption efficiency per reflection attains
3%-5%. A record small line width of ~40 meV has been achieved in non-intention-
ally doped structures [70]. The spectra either present Lorentzian shape or is struc-
tured with two or three well-defined peaks in Lorentzian shape [16]. These multiple
peaks correspond to the expected values of the e,—e, line in QWs whose thickness
is equal to an integer number of GaN monolayers. For very narrow QWs, a variation
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FIGURE 8.3 Room-temperature transverse-magnetic-polarized intersubband absorption
spectra from 20-period Si-doped GaN/AIN multiple quantum well structures with 3-nm-thick
AIN barriers and different GaN quantum well thickness. All the samples were grown on
1-um-thick AIN-on-sapphire templates without cap layer. The absorption peaks labeled ¢,—e,
and e,—e; are assigned to the corresponding intra-conduction-band transitions as described in
Figure 8.1a. The spectra are vertically shifted for clarity. (From Kandaswamy et al., J. Appl.
Phys., 104(9), 093501, 2008 [28].)
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in the thickness by 1 ML implies an important shift in the ISB transitions (about 100
meV for QWs of 4 to 5 ML). This value is comparable to the full width at half maxi-
mum (FWHM) of the absorption lines and hence results in well-resolved absorption
peaks. Thickness fluctuations might originate from a drift of the growth rate with
time, resulting in a variation in the QW thickness. However, in situ measurements
of the growth rate and TEM studies confirmed that structured absorption spectra
appear in samples where no growth rate drift is detected. In these samples, cath-
odoluminescence studies confirmed the presence of in-plane thickness fluctuations,
which appear to be associated with dislocations or extended defects [28]. Regarding
the thermal stability of the ISB transition in GaN/AIN MQWs, it has been found that
the ISB absorption energy decreases only by ~6 meV at 400°C relative to its room
temperature value [71].

Using GaN/AIN QWs, the e,—e, ISB transition can be tuned in the 1.0- to
3.5-um wavelength range by changing the QW thickness from 1 to 7 nm
[16,28,35,36,38,52,64,71,72] with AIN barrier thicknesses in the 1.5- to 5.1-nm
range. For larger QWs (>5 nm), the first two electron-confined levels get trapped
in the triangular section of the QW, which results in a saturation of the e,—e, value.
Therefore, to shift the absorption toward longer wavelengths it is necessary to reduce
the effect of the internal electric field in the QWs. A first approach consisted of
using GaN/AIGaN MQWs, thereby reducing the Al mole fraction in the barriers. By
changing the geometry and composition, the ISB absorption can be tailored to cover
the near-IR range above 1.0 um and the mid-IR region up to 5.3 um [33,34,73-82].
To attain longer wavelengths, the requirement of substrate transparency imposes the
replacement of sapphire-based templates by semi-insulating Si (111) as a substrate
[24]. Using GaN-on-Si (111) templates, Kandaswamy et al. [24] have demonstrated
the extension of the ISB absorption range of GaN/AlGaN QWs up to 10 um, as
illustrated in Figure 8.4a. A slight red shift of the ISB transition is observed when
increasing the compressive strain in the QWs, as theoretically predicted [78].

8.2.1.4 Effect of Doping

To observe ISB absorption, it is necessary to control the carrier concentration in
QWs to guarantee that the first electronic level is populated. High doping levels also
have an effect on the targeted operating wavelength. The ISB absorption energy can
blue shift markedly due to many-body effects [25,38,83], mostly due to exchange
interaction and depolarization shift, as illustrated in Figure 8.4b and (c). On the other
hand, studies of the effect of dopant location have shown a dramatic reduction of the
ISB absorption line width by using a d-doping technique with Si donors placed at
the end of the QW [84]. This line width reduction is attributed to an improvement of
interfacial roughness. It has also been theorized that doping in the wells should pro-
vide red-shifted [85] and stronger [86] ISB absorptions versus doping in the barriers.

When integrating [II-nitride nanostructures into complete devices, it is necessary
to keep in mind that the magnitude of the carrier distribution depends not only on the
Si doping level in the QWs but also on the presence of non-intentional dopants and on
the carrier redistribution due to the internal electric field. The large polarization dis-
continuities in the III-N material system can result in a significant (even dominant)
contribution to the IR absorption in GaN/AIN superlattices [28].
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FIGURE 8.4 (a) Room-temperature transverse-magnetic (TM)-polarized infrared (IR)
photo-induced absorption spectra measured in GaN/AIGaN multiple quantum well (MQW)
structures with different barrier Al contents and quantum well (QW) width, grown either on
sapphire or on Si (111) templates [24]. (b) Infrared absorption spectra for TM-polarized light
measured from GaN/Alj,Ga, (N (3 nm/3 nm) MQWs with different doping levels. Spectra are
vertically shifted for clarity [25]. (c) IR absorption spectra for TM-polarized light measured
from GaN/Al,,Ga,,N (7 nm/4 nm) MQWs with different doping levels. Spectra are vertically
shifted for clarity. (From Kandaswamy et al., Appl. Phys. Lett., 96(14), 141903, 2010 [25].)
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8.2.2 FAR-INFRARED MULTILAYER ARCHITECTURES

AlGaN/GaN QWs displaying ISB transitions at 9.08 um (136 meV) have been
demonstrated [24]. However, in large QWs the internal electric field associated
with the spontaneous and piezoelectric polarization discontinuities in the GaN/
AlGaN system becomes the dominating characteristic for determining energy lev-
els, which are no longer sensitive to changes in QW thickness. To further reduce
the ISB transition energy, the first proposed architecture consisted of a three-layer
well (step QW) with a virtually flat potential profile [87-89]. Figure 8.5a shows
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FIGURE 8.5 (a) Conduction-band profile, and first (¢;) and second (e,) electronic levels with
their associated wave functions for an Al sGa, sN/Al, ,Ga, N/GaN (10 nm/3 nm/3 nm) step
quantum well (QW) [88]. (b) Shift of the wave function of the first electronic level associated
with a variation of the Al concentration in the well layer. A higher step-well Al concentration
(top) creates a more triangular well and increases confinement toward the GaN layer. A lower
step-well Al concentration (down) creates a secondary confinement area at the opposite side
of the well. To illustrate the effect clearly, the band profiles correspond to Al0.07Ga0.93N/
Al ,Ga,,N/GaN (10 nm/3 nm/3 nm) (top) and Al ;Ga, o;N/Al, ,Ga,,N/GaN (10 nm/3 nm/3
nm) (bottom) [88]. (c) Illustration of the robustness of the step-QW system. The dashed line
indicates the nominal transition wavelength for an Al sGa,sN/Al, ,Ga,,N/GaN (10 nm/3
nm/3 nm) step QW. The error bars represent the minimum and maximum values attributed to
the uncertainties associated to growth. The barrier and GaN well thicknesses were changed
from 3 nm to 2.5 nm and 3.5 nm. The barrier Al content was changed from 10% to 11% and
9%. The step-well alloy was changed from 5% to 4.5% and 5.5% (£10%). The step-well thick-
ness was changed from 10 nm to 12 nm and 8 nm. The strain error bar illustrates the varia-
tion of the intersubband transition when evolving from a structure fully strained on GaN to a
structure fully strained on Al ;Ga, (N [88]. (d) Transmission spectra for transverse-magnetic-
(square) and transverse-electric- (circle) polarized light at 7 = 4.7 K. (From Machhadani
et al., Appl. Phys. Lett., 97(19), 191101, 2010 [87].)

K22181_C008.indd 252 @ 6/3115 10:53 AM



®

II-Nitride Semiconductors: New Infrared Intersubband Technologies 253

the conduction-band diagram of a step-QW design, in this example consisting
of Al ,Ga,,N/GaN/Al, ,;Ga0.95N (3 nm/3 nm/10 nm). This three-layer structure
is designed around the principle of polarization equivalency. The design can be
broken effectively into two portions: The first is the “barrier,” which comprises
the high-Al-content Al Ga, N layer and the GaN layer. The second portion is
the “well,” which is the low-Al-content Al Ga, N layer. The design creates a
semi-flat band in the well by having the barrier balanced at the same average Al
percentage, that is, the average polarization in the barrier is approximately equal
to the average polarization in the well. This configuration is associated with the
minimum energy spacing between the ground electronic state and the first excited
state, as described by Wu et al. [90]. Samples following the step-QW design in
Figure 8.5a have been synthesized by PAMBE on GaN templates on float-zone
Si (111) to evade problems of substrate transparency [24], and ISB absorption at
~2 THz (~70 pm) (illustrated in Figure 8.5d) and at ~13 THz (~22 um) has been
reported [87,89].

The weakness of the step-QW design lies in the fact that any deviation from this
balance results in an internal electric field in the well, which shifts the wave func-
tion associated with the first electronic level toward the GaN layer (Figure 8.5b top,
for higher Al content in the well) or toward the high-Al-content layer (Figure 8.5b
down, for lower average Al content in the well). Thus, any imbalance in the structure
has a drastic effect on ISB wavelength. The limitations of the step-QW configura-
tion can be surmounted by the insertion of an additional AlGaN layer to separate
the GaN layer from the low-Al-content Al,Ga, _ N well [88]. The “separation layer”
is designed so that there is no confined state in the GaN layer. This architecture,
described in Figure 8.6a, does not evade the quantum-confined Stark effect, but the
GaN layer contributes to reduce the average spontaneous polarization of the complex
barrier structure (Al,,Ga,,N/GaN/Al,,,Ga,;N), which results in a lower electric
field in the QW. The robustness of this design is analyzed in Figure 8.6¢ and shows
much less variation of the ISB transition energy than the step-QW architecture with
respect to the growth uncertainties.

The incorporation of separation layer results in a geometry where the internal
electric field is not fully compensated, that is, the QW keeps a triangular potential
profile. As a consequence, the four-layer MQW system is more sensitive to changes in
strain state versus the step-QW design. The strain error bar in Figure 8.6¢ illustrates
the variation of the ISB transition when evolving from a structure fully strained on
GaN to a structure fully strained on Al,,Ga,,N. These error bars are comparable to
those generated by uncertainties in the structural parameters. However, the MQWs
are expected to evolve toward a minimum elastic energy configuration indepen-
dently of the substrate [68], so that the uncertainty in the strain state of the structure
(neglecting the initial relaxation) is much smaller (<+0.025% variation of the in-
plane lattice parameter) than the values simulated in Figure 8.5¢ (+0.12%).

AlGaN/GaN 40-period MQW structures following the four-layer MQW design
in Figure 8.6b were deposited by PAMBE. Figure 8.6d shows the low-temperature
(T = 5-10 K) far-IR transmission spectra of samples with different doping
concentrations. In the sample with a lower doping level ([Si] = 1.5 x 10 cm™),
a TM-polarized absorption dip centered around 27-29 um (~14 THz), which gets
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FIGURE 8.6 (a) Conduction band profile, and first (e;) and second (e,) electronic levels with
their associated wave functions for an Al, ,Ga,,N/GaN/Al,;,Ga,;N/Alj (3Gag e, N (4 nm/2
nm/2 nm/12 nm) four-layer quantum well (QW) design. (b) Schematic drawing of the struc-
ture synthesized by plasma-assisted molecular beam epitaxy (PAMBE). (c) llustration of the
robustness of the four-layer QW system (black) compared with the step QW (gray). The dashed
lines indicate the nominal transition wavelengths for an Al ,sGa, osN/A,; ,Ga,,N/GaN (10 nm/3
nm/3 nm) step QW and an Al ,Ga,,N/GaN/Al,,Ga,;N/Al; 1;Gay ;N (4 nm/2 nm/2 nm/12
nm) four-layer QW. The error bar represents the minimum and maximum values attributed
to the uncertainties associated with growth. In the four-layer QW, the barrier thickness was
changed from 2 nm to 1.5 nm and 2.5 nm. The barrier Al content was changed from 10% to
11% and 9%. The GaN layer thickness was changed from 2 nm to 1.5 nm and 2.5 nm. The well
thickness was changed from 12 nm to 11.5 nm and 12.5 nm, and its Al content was changed
from 3% to 2.7% and 3.3% (+10%). The separation layer thickness was changed from 2 nm to
1.5 nm and 2.5 nm, and its Al content was changed from 7% to 6.3% and 7.7%. The strain error
bar illustrates the variation of the ISB transition when evolving from a structure fully strained
on GaN to a structure fully strained on Al;,Gay,N. (d) Far-IR transmission measurement of
four-layer multiple quantum wells with different doping levels for transverse-electric- and
transverse-magnetic (TM)-polarized light. The spectra have been normalized by the response
of a similar undoped superlattice, which exhibits no intersubband activity. The noise observed
for wavelengths < 10 um is due to the GaN Restrahlen absorption. The dip in TM-polarized
transmission at 27-30 pm is assigned to the transition between the first and the second elec-
tronic levels in the QWs. (From Beeler et al., Appl. Phys. Lett., 103(9), 091108, 2013 [88].)

deeper and broader with increasing doping level, is observed. This absorption line is
attributed to the transition from the first to the second electronic level in the QW, in
good agreement with theoretical calculations.

The normalized absorption line width for the sample with a doping level
[Si] = 1.5 x 10" em™ is Aflf ~ 0.25 [88], which is a significant improvement in
comparison to results in step QWs (Af/f ~ 0.5 in the study by Machhadani et al. [87]).
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From progress on the four-layer design, robustness was deemed a key attribute to
create these devices. However, the four-layer design used complex barrier systems to
achieve this desired robustness. Such complex barrier structures inhibited tunneling
transport, and therefore the incorporation of the architecture into ISB devices using
the quantum cascade principle. This led Beeler et al. [91] to propose a pseudo-square
QW, a four-layer architecture where the compensation of the polarization-induced
internal electric field is obtained by creating a gradual increase in polarization field
throughout the quantum “trough” generated by three low-Al-content layers (see
schematic description in Figure 8.7). This design has single-layer barriers that can
permit tunneling transport under bias. Experimentally, it is shown that the ISB wave-
length can be varied from 150 to 75 pm by changing the size of the quantum trough,
and from 100 to 50 pm by changing the doping level, as illustrated in Figure 8.7d.

8.2.3 CouprLeD QUANTUM WELLS

The design of advanced ISB devices, like optically or electrically pumped ISB
lasers, requires the exploitation of multilevel systems with finely tuned oscillator
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FIGURE 8.7 (a) Band profile of a pseudo-square quantum well (QW) where the first and

second confined electronic levels are indicated as ¢, and e,, respectively. The nominal com- AQ: Please
positions of the layers are indicated earlier. (b) Schematic description of the structure that was specify sec-
grown on an AIN-on-sapphire substrate. (c) [llustration of the robustness of the pseudo-square tion number.
QWs. The dashed lined indicates the nominal transition wavelengths. The error bars repre- AU For this
sent the minimum and maximum values attributed to the uncertainties associated with growth sou;ce line,
(geometries changed by +0.5 nm and alloys changed by +10%). Similar data for step QWs and please update
four-layer QWs are included for comparison [17]. (d) Spectral absorption of transverse-magnetic publishing
(TM)-polarized light in samples with different doping levels. Spectra are found from dividing year, volume
transverse-electric (TE)- by TM-polarized light, then normalizing this division against refer- number, and
ence spectra not showing absorption. (From Beeler et al., Appl. Phys. Lett. [91].) page range.
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strengths and lifetimes. Coupled QWs are the basic element for such systems. In
[II-nitrides, the realization of coupled QWs is complicated by the relatively heavy
electron effective mass and the large conduction-band offset. As a result, very thin
barriers (1-3 ML) are required to achieve strong interwell coupling in the GaN/AIN
material system [92].

Coupling between GaN QWs was first experimentally investigated by Gmachl
et al. [34,37] by using double GaN QWs coupled by AlGaN barriers with large
(0.65 or 0.9) Al mole fractions. The coupling barrier thicknesses varied from
0.7 to 6 nm. Degenerate doping of the QWs (102° cm~) was used to establish a
common reference energy at the Fermi level, which decreases the uncertainties
related to intrinsic internal electric fields. The broadening and structuration of
ISB absorption peaks were attributed to transitions toward excited states exhibit-
ing anticrossing.

Coupled GaN/AIN QWs were first demonstrated by Tchernycheva et al. [93]
using 0.5-nm-thick AIN coupling barriers. The ISB absorption spectra present
two distinct peaks attributed to the transition: first, between the ground states of
the two coupled wells and, second, between the ground state and the delocalized
excited state between the two wells. As an alternative approach, Driscoll et al.
have opted to decrease the Al content of the coupling barrier to 39%—-53%, so
that strong coupling is achieved with thicker barriers (~5 ML). In this fashion, the
barrier’s Al content can be used as a tunable parameter to control the coupling
strength [94].

The influence of polarization-induced electric fields on ISB absorption and the
associated variation of refractive index in AIN/GaN-coupled QWs has been theo-
retically analyzed by Cen et al. [95,96] for their application in ultrafast two-color
optoelectronic devices and electro-optical modulators operating within the optical
communication wavelength range.

8.2.4 IN-CONTAINING SUPERLATTICES: ALINN/
GAN, ALINN/GAINN, AND GAN/GAINN

The lattice mismatch between GaN and AIN can lead to high defect densities and the
risk of cracking in GaN/AIN superlattices. An alternative material approach to over-
come this problem is the use of AlInN alloys. AlInN with an In composition around
17%—-18% is lattice matched to GaN and presents a refractive index contrast equiva-
lent to AIGaN with 46% Al content (6% contrast with GaN at 1.55-um wavelength).
Therefore, AlInN is a promising material to form distributed Bragg reflectors and
thick waveguide layers [97]. However, lattice-matched AlInN/GaN heterostructures
still exhibit an electric field as large as 3 MV/cm, solely generated by the spontane-
ous polarization discontinuity.

The potential of AlInN/GaN lattice-matched systems for application in ISB tech-
nology has been explored [98,99]. However, this material system is not adapted to
serve as the active region for telecommunication devices since the conduction-band
offset is in the range of ~1 eV [100]. Nevertheless, ISB absorption in the near-IR
spectral region has been reported at 2.3-2.9 um in lattice-matched GaN/AlInN
superlattices grown by MOVPE [98] and by MBE [101].
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An alternative approach to manage the strain in the structure while retaining
access to shorter wavelengths is possible by adding small concentrations of In (below
10%) both in the barrier and in the QW, forming an AlInN/GalnN superlattice
[102,103]. This material combination reduces the probability of crack propagation in
comparison with GaN/AIN, although it maintains a certain degree of strain. Despite
the challenges to precisely control the In mole fraction, room-temperature ISB
absorption in the 1.52- to 2.45-um wavelength range has been theorized [104,105]
and was demonstrated in AIInN/GalnN MQWs [102].

Regarding the polar GaN/GalnN system, only theoretical calculations of ISB
transition energy have been published so far [106,107].

8.2.5 QuanTtuM Dors

An alternative approach to QW structures for the fabrication of devices is based
on optical transitions between bound states in the conduction band of QD superlat-
tices [108,109]. Quantum dot infrared photodetectors (QDIPs) are expected to ulti-
mately outperform QWIPs in terms of low dark current, high photoelectric gain,
and sensitivity [110]. Furthermore, under certain conditions intraband bound to con-
tinuum transitions in QDs can be nearly independent of the polarization of excitation
[111-113].

In the case of Ill-nitrides, GaN/AIN QD structures can be synthesized by
PAMBE through GaN deposition under compressive strain and under N-rich condi-
tions [70,114]. In this situation, 2D growth proceeds normally to create a 2-ML-thick
wetting layer. Due to the lattice mismatch between AIN and GaN, further GaN depo-
sition leads to the formation of 3D islands above this 2D wetting layer (Stranski—
Krastanov growth mode). These GaN QDs are well-defined hexagonal truncated
pyramids with {1-103} facets [115]. The QD size can be tuned by modifying the
amount of GaN in the QDs, growth temperature, or growth interruption time after
deposition of the QDs (Ostwald ripening). By adjusting the growth conditions, QDs
with height (diameter) in the range of 1-1.5 nm (10—40 nm) and density between
10" cm™2 and 10" cm™ can be synthesized (see atomic force microscopy image in
Figure 8.8a as an example) [116]. To populate the first electronic level, silicon can be
. . . . . AU: Please
incorporated into the QDs without significant perturbation of the QD morphology. ety

Andreev et al. [117-119] have calculated the electronic structure of GaN/AIN  and p refer
QDs using the k X p model and taking the internal electric field into account. These to.
calculations have been complemented by Ranjan et al. [120] through the use of the
tight-binding theory and a self-consistent treatment to account for carrier screening
of the electric field.

The models show that the polarization-related internal electric field localizes the
electrons at the pyramid apex, whereas holes are rather located close to the wetting
layer. In addition to the carrier separation along the growth axis, the electric field
can provide a strong additional lateral confinement for carriers localized in the dot,
which strongly modifies their electronic structure and optical properties [119].

From the experimental viewpoint, Si-doped QD superlattices have been reported
to exhibit strong TM-polarized intraband absorption at room temperature, which can
be tuned from 0.74 eV (1.68 pm) to 0.90 eV (1.38 pm) as a function of the QD size
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FIGURE 8.8 (a) Atomic force microscopy image of a GaN quantum dot (QD) layer syn-
thesized on AIN by plasma-assisted molecular beam epitaxy (PAMBE), showing a high
density (~10'? cm3) of small (height, ~1.3 nm; base diameter, ~11 nm) QDs. (b) Polarization-
dependent spectral response (photocurrent) of a GaN/AIN QD stack measured in wedge illu-
mination. The normalized response of both s—p_ in the near infrared (IR) and s—p, , in the
mid-IR; the s—p, peak is about 10 times larger than the s—p, | peak. (From Vardi et al., Phys.
Rev. B, 80(15), 155439, 2009 [122].)

[116,121]. The broadening of the absorption peak can be as small as ~80 meV for the
most homogeneous samples. This absorption line is attributed to transitions from the
ground state of the conduction band, s, to the first excited electronic state confined
along the growth axis, p.. The lateral confinement in the QDs should give rise to
additional transitions under TE-polarized excitation. However, taking into account
the lateral dimension of the QDs, ~7 nm, the 5Dyy transitions should be masked by
the sapphire absorption for A > 5 um. The optical signature associated with s—p,
was first observed by Vardi et al., who studied near-IR and mid-IR intraband transi-
tions in GaN/AIN QDs using in-plane electronic transport at low temperatures [122],
as illustrated in Figure 8.8b. The measured s—p,, energy separation (0.1-0.3 €V)
was significantly larger than the equivalent transition energy in InGaAs\GaAs QDs.
Their analysis shows that the appearance of large-energy s—p, , in GaN\AIN QDs is
due to the strong internal electric field in the QDs, which results in stronger confine-
ment of the electrons at the QD top facet.

The homogeneous line width of the s—p_ intraband transition at 1.55 um in GaN/
AIN QDs was assessed by means of nonlinear spectral hole-burning experiments [123].
These measurements demonstrated that electron—electron scattering plays a minor role
in the coherence relaxation dynamics, since the homogeneous line width of 15 meV at
5 K does not depend on the incident pump power. This suggests the predominance of
other dephasing mechanisms such as spectral diffusion.

TM-polarized IR absorption in the 1.6- to 2-um wavelength range, attributed
to s—p, intraband transitions, has also been reported in ternary Al,Ga, _ N/AIN
QDs (x =0-0.42) measured at room temperature. The s—p, transition red shifts for
increasing Al mole fraction in the QDs as a result of the reduction in band offset,
in good agreement with theoretical calculations [124,125].
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8.2.6 NANOWIRE HETEROSTRUCTURES

Using the enhanced quantum-confined properties of QDs, a variety of structures can
be created. However, QDs can only be grown under specific strain situations, limit-
ing the degree to which these QD devices can be engineered. Nanowires do not have
these limitations and due to the unique strain relaxation mechanisms can provide a
much larger array of material pairings, beyond the limitations of planar and QD sys-
tems. Nanowire heterostructures in particular offer a unique situation for a variety
of devices requiring low-defect-density active regions and large lattice-mismatched
materials.

Following these benefits, nanowire heterostructures of Ge-doped GaN/AIN
have been grown by PAMBE, with the result illustrated in the TEM images in
Figure 8.9a and b [126]. The nanowire disk sizes were varied in the 2- to 8-nm
range, and the doping level was varied over two orders of magnitude. The ISB
energies were measured via Fourier transform infrared (FTIR), and Figure 8.9¢c
displays the results in a series of samples with different doping levels. The
TM-polarized absorption is assigned to the s—p_ intraband transition in the
Ge-doped GaN/AIN nanodisks. The s—p_ absorption line experiences a blue shift
with increasing Ge concentration and a red shift with increasing nanodisk thick-
ness. Theoretical calculations in Figure 8.9d show that the intraband transitions
are strongly blue shifted due to many-body effects, that is, the exchange interac-
tion and depolarization shift.

8.2.7  ALTERNATIVE CRYSTALLOGRAPHIC ORIENTATIONS

The presence of internal electric field in polar materials increases the design
complexity of ISB devices. A simple approach to circumvent this problem consists
of using nonpolar crystallographic orientations like m-plane {I1-100} or a-plane
{11-20} [127]. However, epitaxy for these orientations is an arduous task, due to
strong anisotropy of surface properties, resulting in a high density of crystalline
defects. An alternative approach is the growth on semipolar planes [127], which
are those (hkil) planes with at least two nonzero h, k, or i Miller indices and
a nonzero / Miller index. Semipolar planes allow considerable reduction in the
internal electric field [128] while presenting a lower in-plane anisotropy than
nonpolar surfaces [129,130].

Regarding nonpolar materials, ISB optical absorption at A ~ 2.1 pum with
FWHM = 120 meV has been reported in Si-doped 1.75-nm-thick GaN QWs with
5.1-nm-thick AIN barriers grown by PAMBE on r-plane sapphire and displaying pure
a-plane orientation [131]. Furthermore, ISB absorption has been shown at THz fre-
quencies in m-plane GaN/AIGaN MQW structures [132]. The ISB energy was tuned
in the 15.6- to 26.1-meV range by changing the well sizes and alloy compositions of
the barriers.

Near-IR ISB absorption has also been reported on semipolar (11-22)-oriented GaN/
AIN MQWs grown by PAMBE [130,133], as illustrated in Figure 8.10a. In comparison
with polar QWs, semipolar structures exhibit quasi-square potential band profiles with
symmetric wave functions, due to the reduced electric field in the range of 0.5-0.6
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FIGURE 8.9 (a) Annular dark field transmission electron microscopy image of a set of
GaN nanowires from a sample containing 40 periods of AIN/GaN nanodisks. (b) Zoom-in of
the squared area in (a). (c) Room-temperature infrared transmission spectra for transverse-
electric (TE)- (dashed) and transverse-magnetic (TM)-polarized (solid) light measured for
Ge-doped GaN/AIN (4 nm/4 nm) heterostructured nanowires with different doping levels in
the GaN nanodisks (NDs). The spectra are vertically shifted for clarity. (d) Variation of the
intraband transition wavelength as a function of the estimated Ge concentration. Dots are
experimental values from (c); the dashed line labeled (1) is a one-dimensional calculation of
the intraband transition accounting for the screening of the internal electric field; the dotted
line (2) incorporates corrections associated with both screening and exchange interaction; the
solid line (3) accounts for screening, exchange interaction, and depolarization shift. (From
Beeler et al., Nano Lett., 14(3), 1665-1673, 2014 [126].)

MV/cm in the QWSs. The evolution of e,—e, ISB transition energy with QW thickness
is represented in Figure 8.10b, where symbols correspond to experimental measure-
ments obtained from identical polar and semipolar samples consisting of 40 periods
of GaN/AIN with 3-nm-thick AIN barriers. The absorption FWHM (~ 80-110 meV
[130,133]) is comparable to the one measured in polar structures [16,28]. However, in
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FIGURE 8.10 Intersubband (ISB) absorption spectra for (a) polar and (b) semipolar GaN/
AIN quantum wells (QWs) with different well thicknesses. (c) Calculated and measured ISB
absorption energy versus well thickness. (From Machhadani et al., J. Appl. Phys., 113(14),
143109, 2013 [133].)

semipolar structures the reduction in internal electric field results in a red shift of the
ISB energy. Also, the spectral shape of semipolar absorption is Gaussian, in contrast
to the Lorentzian shape described for polar GaN/AIN QWs. This is due to the spectral
dispersion generated by thickness fluctuations and presence of stacking faults in semi-
polar material, both inducing carrier localization in the range of a few millielectron
volts, much smaller than the FWHM of the ISB absorption line.

8.2.8 Cusic HI-NITRIDES

Another approach to eliminate the internal electrical field in III-nitride heterostruc-
tures is the use of III-nitride semiconductors crystallized in the zinc-blend crystal-
lographic phase. The LO-phonon energy in cubic GaN is almost the same as in
wurtzite GaN (92.7 meV [134]), but the effective mass is significantly smaller (m* =
0.11-0.17 [135,136]) than in wurtzite GaN (m* = 0.2), which should result in higher
gain and lower threshold current in QCLs. It has also been theorized that these sys-
tems could be used to create QD photodetectors with high gain and sensitivity [137].
The cubic orientation can be selected by PAMBE using 3C-SiC substrates.

However, due to their thermodynamically unstable nature cubic films present low
structural quality with a high density of stacking faults. ISB absorption in the 1.40-
to 4.0-um spectral range has been reported in cubic GaN/AIN MQWs [138-140], in
agreement with theoretical calculations assuming a conduction-band offset of 1.2 eV
and an effective mass of m* = 0.11. ISB THz absorption at 4.7 THz has also been
observed in cubic GaN/Al, 1sGa,¢sN (12 nm/15 nm) QWs [139,140]. Using slightly

. . . . . AU: Please
different material properties (a conduction-band offset of 1.6 eV and an effective e
mass m* = 0.11), Radosavljevic et al. have theorized that MIR ISB absorption could MIR refers
be tuned by applying a bias perpendicular to the layers [141]. to.
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8.3 ALL-OPTICAL SWITCHES

The increasing bandwidth demand in optical communication networks impels the
development of all-optical devices, particularly targeting the 1.55-um transmission
band of optical fibers. In particular, there is a need for all-optical switches capable
of sustaining high repetition rates (sub-picosecond response time) with low switching
energy and high modulations depths. These specifications led researchers to consider
the use of resonant nonlinearities [142], to exploit phenomena like nonlinear absorp-
tion, self- and cross-phase modulation, self- and cross-gain modulation, and four-wave
mixing. In this case, switching can be achieved through absorption saturation by an
intense control pulse, as originally demonstrated in GaAs-based structures [143]. Using
GalN/AlGaN, the switching is achieved by ISB absorption bleaching. Thanks to the
ultrafast ISB recovery time (in the 140- to 400-fs range [37,144—148]) associated with
the strong interaction of electrons with LO phonons, GaN/AIN QWs or QDs have been
proposed as the active medium for all-optical switches (saturable absorbers) operating
at terabit-per-second data rates and at telecommunication wavelengths.

The use of GaN/AIGaN QWs for all-optical modulators at telecommunication
wavelengths was first proposed by Suzuki et al. [17,149]. Since then, all-optical
switches at ~1.55 pm with sub-picosecond commutation times have been demon-
strated by several groups [31,56,146,147,150—-153]. In general, these devices consist
of GaN/AIN MQWs embedded in a ridge waveguide. In such structures, a critical
parameter to reduce transmission losses is the reduction of edge-type dislocations.
These defects introduce acceptor centers where electrons can be captured and there-
fore can effectively act as a wire-grid polarizer, which leads to selective attenuation
of the TM-polarized signal [154]. Control switching energies of 38 pJ for 10-dB
modulation depth [151] and 25 pJ for 5-dB contrast [153] have been demonstrated
using a waveguide with an AIN cladding below the active GaN/AIN QWs and GaN
or Si,N, as the upper cladding layer, respectively. Theoretical calculations predict a
reduction of the switching energy by a factor of 30 by replacing the GaN/AIN QWs
with properly designed AIN/GaN/AlGaN-coupled QWs [155].

From the material viewpoint, the parameter responsible for absorption saturation
is the optical third-order susceptibility, ¥®. Comparative studies using the forward
degenerate four-wave mixing technique in a boxcars configuration point to an increase of
¥ by a factor of five in QDs compared to QWs [156]. From the experimental viewpoint,
the intraband absorption saturation of GaN/AIN QDs was probed by Nevou et al. [31],
obtaining values in the range of 15-137 MW/cm? (0.03-0.27 pJ/um?). In spite of the
large signal variation (a consequence of the focusing uncertainty in the sample), even
the upper estimate of the saturation intensity for QDs is smaller than the corresponding
value for GaN/AIN QWs (9.46 W/um? [151]). Based on these results, Monteagudo-Lerma
et al. made a comparison of the performance as saturable absorbers of 3 periods of GaN/
AIN QWs and QDs inserted in a GaN-on-AIN waveguide structure [157]. In the case of
5-um-wide QW-based waveguides, a 10-dB change in transmittance was achieved for
input energies of ~24 pJ with 150-fs pulses. This value was improved by almost a fac-
tor of two by the replacement of QW by QDs as active elements. The reduction of the
waveguide width to 2 um (monomode waveguide) resulted in a further decrease in the
required control pulse energy to ~8 pJ for 10-dB modulation (Figure 8.11).
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FIGURE 8.11 Schematic description of a quantum dot (QD)-based AIN/GaN all-optical
switch in a ridge-waveguide configuration. Transmittance increase versus control pulse
energy for transverse-magnetic (TM)-polarized light measured in a 1.5-mm-long 2-um-wide
QD-based waveguide. (Data from Monteagudo-Lerma et al., Opt. Express, 21(23), 27578,
2013 [157])

8.4 ELECTRO-OPTICAL MODULATORS

Electro-optical amplitude and phase modulators allow tuning the amplitude, phase,
and/or polarization state of an optical beam as a function of the control voltage.
State-of-the-art technologies in this field include modulators based on the quantum-
confined Stark effect of interband transitions in InGaAsP QWs [158] and on the
electro-optical effect in materials like LiNbO, within a Mach-Zehnder configuration
[159]. These devices present several drawbacks, such as low saturation power and
positive chirp in the former case and the need for high driving voltage and larger
size in the latter case. Achieving a significant improvement in device performance
requires a change in technological approach. Exploiting ISB transitions in QWs has
been proposed as a means to reduce the driving voltage and increase the bandwidth
[160—162]. Moreover, the ISB transitional oscillator strength is higher in compari-
son to interband transitions and should allow for enhanced miniaturization of the
devices.

The first electro-absorption ISB modulation experiments on AIN/GaN QWs were
based on the electrical depletion of a 5-period AIN/GaN (1.5 nm/1.5 nm) MQW
structure grown on a thick GaN buffer [163]. The absorption spectrum of such a
sample presents two distinct peaks related to ISB transitions in both the QWs and the
2D electron gas located at the interface of the lowest AIN barrier and the underlying
GaN buffer. The ratio of these two absorption peaks can be adjusted by applying an
external field, which modifies the charge distribution.

To increase the modulation depth, the interaction of light with the active medium
should be enhanced, which can be achieved with a waveguide geometry [19].
Through the use of a 1-um-thick A, ;Ga, ;N waveguiding layer on AIN, and with
three active GaN/AIN QWs operating at A = 1.55 um, a modulation depth of 13.5 dB
was observed for a -9 V/+7 V voltage swing (10 dB for a 5-V voltage swing).
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The intrinsic speed limit can be greatly improved by emptying active QWs into a
local reservoir, instead of transferring carriers over the whole active region. This is
the principle of the coupled-QW modulator: The electro-modulation originates from
electron tunneling between a wide well (reservoir) and a narrow well separated by
an ultrathin (~I-nm) AIN barrier. Experiments on GaN QW coupling via AIN [93]
or AlGaN [94] barriers have set the basis for the demonstration of room-temperature
ISB electro-modulated absorption at telecommunication wavelengths in GaN/AIN-
coupled QWs with AIGaN contact layers [164—166]. Such devices displayed a BW
s cutoff frequency is limited by the resistance x capacitance (RC) time constant
to 3 GHz for 15 x 15 um? mesas, but it could be further improved by reducing the
access resistance of the AlGaN contact layers. According to Holmstrom, the high-
speed performance of such modulators will ultimately be determined by the ISB
absorption line width T, since their capacitance depends on the line width as C ~ I'®
[160,161].

All the aforementioned electro-optical modulators rely on light amplitude mod-
ulation via ISB absorption. Based on Kramers—Kronig relations, the ISB absorp-
tion should also translate into a variation of the refractive index at wavelengths
close to the transition, which can be used for phase modulation. This concept was
experimentally verified at mid-IR (~10 pm) wavelengths using the Stark shift of
ISB transitions in GaAs/AlGaAs step QWs [167]. The strongly nonlinear suscep-
tibility observed in GaN/AIN QWs [156,168], which might be even enhanced in
three-layer QW designs [169], has led to the first theoretical proposals of all-opti-
cal cross-phase modulators [95].

Using a depletion modulator consisting of three GaN/AIN QWs inserted in an
Al sGa, sN/AIN ridge waveguide on sapphire, Lupu et al. [170] reported a varia-
tion of the refractive index around ~1.5 um deduced from the shift of the beating
interference maxima for different order modes. The change in refractive index was
derived to be An =-5 x 103 as the population was changed from complete depletion
to full population of the QWs. This result is in close agreement with the observation
of a refractive index variation from =5 x 10 to 6 x 10~ in 100-period Si-doped
GaN/AIN (1.5 nm/3 nm) MQWs using a free-space Mach-Zehnder interferometer
configuration [171]. The values of An are comparable to those obtained at the same
wavelength in phase modulators based on interband transitions in InGaAsP/InP QWs
using the quantum-confined Stark effect [172], and they are one order of magni-
tude higher than the index variation obtained in silicon [173]. These results open the
way for the realization of ISB Mach-Zehnder interferometer phase modulators in the
optical communication wavelength range.

8.5 INFRARED PHOTODETECTORS

8.5.1 QuaNnTUM WELL/QUANTUM DOT INFRARED PHOTODETECTORS

The main motivation for the development of III-nitride QWIPs is their potential
application in optical communications, thanks to the possibility to tune ISB tran-
sitions in the 1.3- to 1.55-um range with sub-picosecond carrier relaxation times.
Photoconductive QWIPs based on hexagonal [174,175] and cubic [176] Si-doped
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GaN/AIN QW superlattices have been reported; however, these devices operate at
cryogenic temperatures and exhibit a non-explained photovoltaic effect. Lateral
QDIPs have also been fabricated by depositing planar contacts on samples consisting
of 20 periods of Si-doped GaN/AIN QDs, first operating at liquid nitrogen tempera-
ture [177] and then at room temperature [122,178]. These devices exhibit photocur-
rent for TM-polarized excitation in the 1.4- to 1.9-um spectral range, which follows
the intraband s—p. selections rules. At low temperatures (7 = 10 K), mid-IR photore-
sponse to TE-polarized light is also observed and attributed to s—p, , transitions. The
appearance of photocurrent due to these bound to bound transitions is attributed to
conductivity via lateral hopping [122]. Further studies have shown that deep levels
in the AIN barriers may also contribute to the photocurrent, giving rise to negative
photoconductivity effects [179].

In spite of these early demonstrations, photoconductive devices keep presenting a
low yield due to the large dark current originating from the high density of structural
defects in heteroepitaxial III-nitrides, particularly in highly mismatched GaN/AIN
devices targeting near-IR wavelengths. An alternative to bypass the leakage problem
consists of exploiting the device’s photovoltaic response, where zero-bias operation
guarantees a minimum dark current. Photoconductive QWIPs have already displayed
a photovoltaic response [180], which was less sensitive to defects [175], in agreement
with observations in photovoltaic versus photoconductive interband detectors [181].

The photovoltaic operation of GaN/AIN QWIPs at telecommunication wave-
lengths and at room temperature was first studied in detail by Hofstetter et al.
[29,51,182—184], as illustrated in Figure 8.12. The working principle of these
photovoltaic ISB detectors is based on resonant optical rectification processes
[29,185]. In a GaN/AIN superlattice, due to the asymmetric potential profile in
QWs, the excitation of an electron into the upper quantized level is accompanied
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FIGURE 8.12 (a) Photovoltage measurements on a sample consisting of a 1.5-nm
GaN/1.5-nm AIN superlattice with a 50-nm-thick AIN, measured in transverse-magnetic
polarization at 15, 70, and 300 K. Note the good agreement with the absorbance spectra
shown as a dotted line. Inset: photograph of the mounted device [182]. (b) The measured
spectral photovoltage response as a function of barrier thickness. The enhancement for larger
barriers is associated with the higher internal electric field in the wells. (From Hofstetter,
Appl. Phys. Lett., 91(13), 131115, 2007 [29].)
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by a charge displacement in the growth direction, so that an electrical dipole
moment is created. For a high electron density and many QWs, these microscopic
dipole moments add up to a macroscopic polarization of the crystal, which can
be detected as an external photovoltage. This interpretation is consistent with the
enhancement of the photovoltaic response observed in structures with larger barri-
ers, where electron tunneling is not possible (Figure 8.12b). A strong performance
enhancement (responsivity increase by a factor of 60) of these detectors has been
achieved by using QDs instead of QWs in the active region [186]. The improvement
is attributed to the longer electron lifetime in the upper QD states and the increased
lateral electron displacement.

An interesting application of GaN-based photovoltaic ISB photodetectors is the
so- called multispectral detectors, which operate in various wavelength ranges.
Hofstetter et al. [187] have combined optical interband and ISB transitions with a
monolithic integration of a photoconductive ultraviolet (UV) interband (solar-blind)
detector based on an AlGaN thin film and a photovoltaic near-IR ISB detector based
on an AIN/GaN superlattice, as illustrated in Figure 8.13. The two detectors exhibit
spectrally narrow responsivity curves, thus enlarging the UV to visible rejection
ratio in the case of the UV device and improving the noise behavior in the case of the
IR detector at room temperature.

In the far-IR spectral region, the reduction of lattice mismatch in the structure
makes it more accessible to fabricate photoconductive QWIPs. The first demonstra-
tion of a nitride-based THz ISB photodetector is reported by Sudradjat et al. [188]
using a bound to quasi-bound configuration following the step-QW design [87], so
that the first excited subband can be positioned at any desired energy relative to the
top of the barriers by changing the QW thickness (Figure 8.14a). The fabricated
devices present a photocurrent spectrum centered at 23-um wavelength (13-THz
frequency), well resolved from low temperature (7' = 20 K in Figure 8.14b) up to
T =50 K, with a responsivity of ~7 mA/W [188].

More recently, Pesach et al. demonstrated InGaN/(Al)GaN QWIPs fabricated on
freestanding nonpolar m-plane GaN substrates [189]. Devices consisting of 2.5-nm
Ing 49sGay 49sN/56.2 nm Al ;Ga, ;N and 3-nm In,,Ga,(N/50 nm GaN superlattices
displayed photocurrent peaks at 7.5 um and 9.3 um, respectively, when characterized
at a low temperature (14 K).

8.5.2 QuaNTUM CASCADE DETECTORS

Quantum cascade detectors (QCDs) are photovoltaic devices consisting of several
periods of an active QW coupled to a short-period superlattice, which serves as
extractor [190,191]. Under illumination, electrons from the ground state, e,, are
excited to the upper state of the active QW, e,, and then transferred to the extrac-
tor region where they experience multiple relaxations toward the next active QW.
This results in a macroscopic photovoltage in an open circuit configuration. A
major advantage is that their dark current is extremely low and the capacitance
can be reduced by increasing the number of periods, which enables high frequency
response.
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FIGURE 8.13 (a) Schematic cross section through the sample showing the relative positions
of the ultraviolet (UV) and the infrared (IR) detectors. Quantum wells (QWSs) are used as the
detection layer for the IR, whereas AlGaN buffer is the detection layer for the UV radiation.
(b) Measured spectral responsivity curves for the UV (1.5-4.0 V in steps of 0.5 V at 300 K)
and the IR detector (10 and 300 K). (From Hofstetter et al., Electron. Lett., 44(16), 986,
2008 [187].)
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FIGURE 8.14 (a) Conduction band profile of a far-infrared (IR) quantum well infrared
photodetector (QWIP) under bias. Each repeat unit consists of an Al Ga,s,N/GaN/
Al 0sGay o, N step quantum well (QW). The squared envelope functions of the ground state
and first excited state of each QW are also shown, referenced to their respective energy levels.
The vertical and horizontal arrows indicate, respectively, photon absorption and photoelec-
tron escape into the continuum of unbound states over the barriers. (b) Photocurrent spectrum
of a double-step-QW AlGaN THz QWIP measured at 7 = 20 K under 0.8-V bias (solid line)
and Gaussian fit (dashed line). The gray band near the horizontal axis indicates the Restrahlen
band of GaN. The vertical arrow marks the calculated transition energy. (From Sudradjat
et al., Appl. Phys. Lett., 100(24), 241113, 2012 [188].)

GaN/AlGaN QCDs operating in the near-IR have been reported [192,193], with
their structure illustrated in Figure 8.15. These devices take advantage of the polar-
ization-induced internal electric field to design an efficient AIGaN/AIN (or GaN/
AlGaN) electron extractor where the energy levels are separated by approximately
the LO-phonon energy (~90 meV), forming a phonon ladder. The peak responsiv-
ity of these GaN/AlGaN QCDs at room temperature was ~10 mA/W [192,194].
Detectors containing 40 periods of active region with a size of 17 x 17 um? exhibit
an RC-limited BW_; 4 cutoff frequency at 19.7 GHz [195]. However, pump and
probe measurements of these devices (Figure 8.15d) pointed to an ISB scattering
time in the active QW of 0.1 ps and a transit time through the extractor of 1 ps
[196]. With these data, the intrinsic frequency bandwidth is expected to be above
160 GHz, significantly higher than the theoretical predictions by Gryshchenko
et al. [197]. Sakr et al. have shown improved performance by illuminating the side
facet of the QCDs (illumination perpendicular to the growth axis), and by reduc-
ing the top contact resistance as well as the contact layer resistivity. They reached
a responsivity of at least 9.5 £ 2 mA/W for 10 x 10 um? devices at 1.5-pm peak
detection wavelength at room temperature with a BW ; , frequency response of
~40 GHz [194].

Based on the presence of the internal field in III-nitride QWs, symmetry break-
ing of the potential permits ISB transitions not only between the ground electronic
state and the first excited state, e,—e,, but also between e, and the second excited
state e;, a transition forbidden in symmetric QWs [16]. This feature was exploited for
the fabrication of a two-color GaN-based QCD operating at 1.7 and 1 pm at room
temperature [198].
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FIGURE 8.15 (a) Schematic description of a GaN/AIN/AlGaN quantum cascade detector
(QCD). (b) High-resolution transmission electron microscopy image of a period of the struc-
ture (active GaN quantum well followed by 5-period AlGaN/AIN extractor), viewed along
the <11-20> axis [192]. (c) Band diagram and energy levels in one stage of the structure [192].
(d) QCD photocurrent as a function of pump—probe delay at room temperature under zero
bias conditions. Full line: simulation fit based on rate equations and phonon scattering theory
(From Vardi et al., Appl. Phys. Lett., 99(20), 202111, 2011 [196].)

Finally, a simplified QCD design replacing the extractor superlattice by an
AlGaN layer has been proposed [199]. The thickness and composition of the
extractor alloy is chosen so that the energy separation between the ground state
of the extractor and the ground state of the active QW is close to the LO-phonon
energy. An alloy-extractor device presenting peak photovoltaic response at 1.9 um
has been demonstrated [199]. The photoresponse of such detectors at normal inci-
dence can be increased by a factor of 30 by using a 2D nanohole Ti/Au array inte-
grated on top of the detector [200].

8.6 TOWARD THE QUANTUM CASCADE LASER

8.6.1 LIGHT EMISSION IN SUPERLATTICES

ISB luminescence is an inefficient process due to the competition with nonradiative
electron relaxation via interactions with LO phonons (sub picosecond), or electron—
electron interactions and impurity scattering (tens of picoseconds). However, this
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does not hinder the realization of QCLs: In the population inversion regime, short
radiative lifetime and high stimulated gain can be achieved thanks to the strong ISB
transitional oscillator strength.

Despite the inefficiency of the process, room-temperature ISB luminescence in
the 2- to 2.3-um spectral range has been observed in GaN/AIN MQWs under optical
pumping [201-203]. The QWs were designed to exhibit three bound states in the con-
duction band. The emission arises from the e;—e, ISB transition. Photoluminescence
excitation spectroscopy shows that the emission is only observed for TM-polarized
excitation at wavelengths corresponding to the e,—e; ISB transition. Further research
has also provided mid-IR ISB electroluminescence measurements on chirped
AlGaN/GaN MQW structures [204]. The emission line was shifted from 115 meV
(FWHM = 38 meV) to 180 meV (FWHM = 58 meV) by changing the applied bias
from 7 V to 14 V.

Room-temperature intraband emission has also been observed in optically
pumped GaN/AIN QDs [205]. The p_—s intraband luminescence was observed at
A = 1.48 pm under optical excitation at A = 1.34 um perpendicular to the [0001]
growth axis.

The population of the p—z state arises from Raman scattering by GaN A, longi-
tudinal optical phonons. Based on the emission spectral shape, we estimate that the
homogeneous line width of the s—p_ intraband transition is less than 4 meV.

8.6.2 QuANTUM CASCADE LASER STRUCTURES

QCLs rely on transitions between quantized conduction-band states of a suitably
designed semiconductor MQW structure [11]. Due to the polarization selection rules
associated with ISB transitions, these devices are in-plane emitters, with their elec-
tric-field vector perpendicular to the plane of the layers. An electron injected into
the active QWs first undergoes an ISB lasing transition and is rapidly extracted by
a fast nonradiative transition, which maintains the population inversion. Then, the
electron tunnels through the injector region toward the upper level of the next active
QWs. By using several tens or even hundreds of periods of active region + injector
in a series (a cascade), higher optical gains and multiple photons per electron are
obtained. These complex structures require precise structure control and excellent
homogeneity of the material, both in plane and along the multiple periods that com-
pose the active region. Due to the large lattice mismatch and defect structure of the
GaN/AIN system, the fabrication of GaN-based QCLs operating in the near-IR does
not appear feasible, despite several theoretical proposals [18,206,207] and promising
results in terms of waveguide fabrication [208]. However, there is increasing interest
and research effort in the fabrication of the first GaN QCL in the far-IR, particu-
larly in the so-called THz domain, spectral region where the lattice mismatch of the
structure is reduced and where it should be possible to exploit the large LO phonon
of III-nitrides to realize devices operating at room temperature.

Since the first demonstration of a GaAs-based THz QCL in 2001 [209], rapid
progress has been made in terms of device performance. To date, QCLs have been
demonstrated in the 0.85- to 5-THz range [210], with pulsed operation up to 186 K
[211,212] and pulsed output powers of up to 250 mW [213]. The devices have evolved
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through different designs including the resonant-phonon, chirped superlattice,
bound to continuum, and hybrid designs [211,214]. There are two major processes
that cause the degradation of population inversion (and thus gain) in THz QCLs at
high temperature: thermal backfilling and thermally activated phonon scattering.
Backfilling of the lower radiative state with electrons from the heavily populated
injector occurs either by thermal excitation (according to the Boltzmann distribution)
or by reabsorption of nonequilibrium LO phonons (the hot-phonon effect) [215]. The
other main degradation mechanism is the onset of thermally activated LO-phonon
scattering, as electrons in the upper radiative state acquire sufficient in-plane kinetic
energy to emit an LO phonon and relax nonradiatively to the lower radiative state.
Both of these mechanisms greatly depend on the electron gas temperature, which
is 50-100 K higher than the lattice temperature during device operation. The low
LO-phonon energy in arsenide compounds constitutes a major bottleneck for opera-
tion at higher temperatures. Furthermore, the LO phonon of GaAs systems causes an
unobtainable emission gap in lasing systems (Restrahlen band at 8 to 9 THz), which
is an intrinsic property of the material system.
GaN has a LO-phonon energy of 92 meV, much higher than the ambient thermal
energy. A number of designs for a GaN THz QCL have been proposed [186,216—
223], all focusing on the resonant-phonon architecture first theorized in 2003 [214].
Figure 8.16 presents the basic device structure for polar III-nitrides. Later, we sum- AU: Please
marize the efforts of various groups working on this topic, who have introduced Pprovide sec-
design improvements but keep the same underlying concept. tion number.
AE, = 91 meV (>E, = 90 meV) @
AE,,= 28 meV (>44.3 um)
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FIGURE 8.16 Band structure, subband energy separations, and envelope wave functions
of the active region of the proposed AlIGaN THz quantum cascade laser (QCL) structure.
Two periods are shown, each with three quantum wells (QWs) with layer thicknesses (in
nanometers) 3, 4, 3, 2.5, 2, and 2.5. Wells are underlined, and barriers are plain. The transi-
tion from 3-2 is engineered through a coupled QW to be 28 meV, whereas the 2-1 transition
is engineered to be on the order of the longitudinal optical phonon (90 meV). With an applied
bias of 70 kV/cm, tunneling between states 1 and 3 occurs for the cascade effect and carrier
recycling. (From Sun et al., Superlattice. Microst., 37(2), 107-113, 2005 [217].)

K22181_C008.indd 271 @ 6/3115 10:53 AM



®

272 Gallium Nitride (GaN): Physics, Devices, and Technology

Researchers from the University of Leeds, United Kingdom, have engineered one
of the first designs for GaN-based QCLs using a fully consistent scattering rate equa-
tion model [216] and an energy balance method [224]. Both electron—LO phonon
and electron—electron scattering mechanisms are taken into account. They have cre-
ated a contour plot outlining the wavelengths of emission theorized with different
well and barrier thicknesses within a superlattice, after appropriate strain balancing
[206]. They have also proposed a 34-pm-wavelength QCL design in both a and ¢
planes [216].

The group of Paiella and Moustakas at Boston University has proposed a QCL
design emitting at 2 THz, designed using a Schrodinger-equation solver based on
the effective-mass approximation [219]. They have also performed a rigorous com-
parison between a GaAs/AlGaAs and GaN/AlGaN THz QCLs emitting at the same
wavelength using a microscopic model of carrier dynamics in QCL gain media
based on a set of Boltzmann-like equations solved with a Monte Carlo technique
[219,225]. Results show that the population inversion within GaN lasers is much less
dependent on temperature than conventional GaAs designs. Furthermore, they have
theoretically studied methods to create lattice-matched QCL structures using qua-
ternary InAlGaN alloys [226]. From the experimental viewpoint, they have explored
tunneling effects in cascade-like superlattices, their temperature dependence, and
effect of bias for multiple device architectures [227].

Sun et al. [228] have modeled a QCL structure based on a three-well design that
depopulates via the LO phonon and emits at 6.77 THz and have proposed the use of
a spoof surface plasmon waveguide instead of a normal surface plasmon waveguide,
which should result in an order of magnitude less losses in the guiding structure.

Mirzaei et al. [223] have proposed a dual-wavelength QCL to emit at both 33 and
52 um with similar behavior of the output optical power for both wavelengths. The
design is based on the LO-phonon resonance to extract electrons from the lower
radiative levels and incorporates a miniband injector, theorized via rate equation
analysis to operate properly up to 265 K.

Chou et al. [222] have modeled GaN-based resonant-phonon THz lasers using a
transfer matrix method, paying particular attention to the effect of the strain state
[222]. They predict higher THz power in GaN/AlGaN heterostructures compared to
heterostructures incorporating In [229].

Yasuda et al. have used the nonequilibrium Green’s function to model GaN
THz QCL devices, that is, a four-well resonant-phonon InAlGaN/GaN structure on
(0001)-oriented GaN [221], and a two-well nonpolar GaN/AIGaN structure [230].

Finally, Terashima and Hirayama (RIKEN, Japan) have presented THz QCL
designs based on four-well resonant-phonon GaN/AlGaN structures [220,231,232].
The structures have been synthesized by PAMBE using a “droplet elimination by
thermal annealing” technique [233], and they have been processed in a single-metal
plasmon waveguide geometry [220,231,234]. Electroluminescence at 1.37 THz has
been reported in a first structure [231] both grown on a GaN-on-sapphire template
and grown on bulk GaN, and polarization-dependent electroluminescence at 2.82
THz, slightly tunable by changing the driving voltage in the 20- to 21-V range, has
been reported using a second design [234] (band diagram and emission shown in
Figure 8.17) grown on an AIN-on-sapphire template. More recently, this group has
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FIGURE 8.17 (a) Conduction band profile and square wave functions for a GaN/AlGaN
quantum cascade laser (QCL) structure grown on an AIN template emitting at 6.67 and/or
2.85 THz under a biased external electric field of 67.4 kV/cm. (b) Electroluminescence spectra
with each polarization direction for the THz QCL structure grown on an AIN template. The
solid and dotted lines are spectra taken under transverse-magnetic- and transverse-electric-

polarization directions, respectively. (From Hirayama, H., and Terashima, W., Proc. SPIE, ﬁ,[iﬁlz flaisfe
8993, 89930G-89930G-9, 2013 [234].) the i .
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. . . f j 1
reported electroluminescence at 6.97 THz in a double QW structure. In this case, Zbﬂ:r);rl?;ion

the active region consisted of 200 repeats of 1.5 nm Al sGa, 3sN/4 nm GaN/1.5 nm  and volume
Al ;5sGa, ¢sN/6 nm GaN grown on an AIN-on-sapphire template. number is

correct. @

8.7 CONCLUSIONS AND PROSPECTS

In this chapter, we have reviewed recent research on III-nitride ISB optoelectronics.
III-Nitride heterostructures are excellent candidates for high-speed ISB devices in
the near-IR thanks to their large conduction-band offset (~1.8 eV for the GaN/AIN
system) and sub-picosecond ISB scattering rates. However, bandgap engineering
requires exquisite control of material growth and modeling, which is notoriously
difficult in GaN/AlGaN. First prototypes of nitride-based ISB devices are room-
temperature multi-Tbit/s all-optical switches operating at 1.5 um, photovoltaic and
photoconductive QWIPs, QDIPs, and ISB electro-optical modulators. Near-IR ISB
luminescence from GaN/AIN QWs and QDs has been reported. The concept of
quantum cascade applied to III-nitrides has been demonstrated by the development
of QCDs operating in the 1.0- to 4.5-um spectral range.

An emerging field for GaN-based ISB devices is the extension toward the
far-IR spectral range, with several theoretical designs of GaN-based THz QCLs
being recently reported. At far-IR wavelengths, the large GaN LO-phonon energy
(92 meV) becomes a valuable property to achieve ISB operation at relatively high
temperatures, and also to cover IR wavelengths that are not accessible by other I1I-V
semiconductors due to Restrahlen absorption. Overall, many different designs of
GaN-based QCLs have been presented, all focusing on the resonant-phonon archi-
tecture and predicting functionality at high temperatures. All the current research
suggests that room-temperature THz QCL devices are feasible, but there are still
numerous problems for device engineering, including unavailability of substrates;
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difficult band engineering; weak current transport; as well as the problems from lat-
tice mismatch, doping, and waveguide construction. The papers summarized in this
chapter provide solutions toward managing the optical/electronic design and the lat-
tice mismatch and fabrication methodology, but the fabrication of a high-efficiency
laser device still remains a challenge.
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Various designs of AlGaN/GaN structures displaying intersub-
band absorption in the THz spectral range are reported upon.
Firstly, samples with 3-layer quantum wells (step-quantum-
wells) displaying far-infrared intersubband absorption are
presented. Theoretical analysis of the reproducibility issues
associated to this architecture is done, and a more robust design
based on 4-layer quantum wells is proposed. Such a structure has

1 Introduction The THz spectral region is currently
under intense study due to its potential applications in
material characterization, security screening, medical diag-
nosis, or radar. The generation/detection of THz radiation
using solid-state devices faces many roadblocks from a
technological standpoint because of the low energy of the
electronic transitions involved, and because of the ultra-high
frequencies in relation to conventional microelectronics.
GaAs-based quantum cascade lasers operating in this
spectral range are limited by intrinsic material properties,
namely the longitudinal-optical (LO) phonon, which exists
at 36 meV (34 pm). This phonon has motivated research on
the AlGaN system, which has a large LO-phonon energy
(92meV, 13 wm) that theoretically permits room-tempera-
ture operation of quantum cascade lasers [1-3], and the
fabrication of intersubband (ISB) devices covering the 5—
10 THz band, inaccessible to As-based technologies.

Using ISB optical transitions in GaN-based structures,
reliable devices have been designed to operate in the near-
infrared spectral range, particularly at telecommunication
wavelengths [4]. Using AlIGaN/GaN quantum wells (QWs)
it is possible to decrease the ISB transitional energy to the
outskirts of the far infrared [5—10]. This can be done by

Wiley Online Library

been fabricated by plasma-assisted molecular-beam epitaxy
using two Al effusion cells to produce three AlGaN concen-
trations, without growth interruptions. Samples have been
structurally validated by transmission electron microscopy and
X-ray diffraction. Fourier transform infrared spectroscopy
measurements show far-infrared absorption of TM-polarized
light, which gets broader and deeper for increasing doping levels.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

reducing the height of the quantum barriers and increasing
the size of the QWs. However, in large QWs, the internal
electric field associated to the spontaneous and piezoelectric
polarization discontinuities in the GaN/AlGaN system
become the dominating characteristic for determining the
energy levels. Machhadani et al. [11] proposed a way to
decrease the effect of the internal electric field by creating a
3-layer well (step-QW) with a virtually flat potential profile.
This approach has been explored by Wu et al. [12], who
found that the creating this flat band structure is very
sensitive to small changes in aluminum concentration and
well depth. Despite these deficiencies, ISB transitions in
the THz region have been reported [11], and a QW infrared
photodetector has been demonstrated [13].

In this work, we discuss the properties of AlGaN-based
QWs designed to present ISB electronic transitions in
the THz spectral range. We demonstrate ISB absorption
in the THz range in samples with step-QWs, and we
theoretically analyze the reproducibility issues associated
to this architecture. As an improvement, we propose a more
robust design based on a 4-layer QW. The structure has been
realized by PAMBE, and shows distinct absorption of TM-
polarized light centered around 25-30 pm.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 Experimental Theoretical calculations of the elec-
tronic profiles were performed using the self-consistent
nextnano® 8-band k - p Schrodinger—Poisson solver [14] with
the material parameters in Ref. [15], neglecting all the
bowing parameters for AlGaN, and assuming the structure
strained on GaN (unless indicated).

Samples were synthesized by PAMBE on GaN
templates on float-zone Si (111) to evade problems of
substrate transparency [5]. These templates incorporate a
complex buffer layer to manage the thermal expansion and
lattice parameters between GaN and Si. To simplify the
structural characterization, identical samples were grown
simultaneously on 1-pwm-thick AIN-on-sapphire templates.
During the deposition, the flux of active nitrogen was fixed at
0.32 monolayers per second and the growth temperature was
~720°C. All the layers were grown under self-regulated
Ga-rich conditions [15].

The samples were analyzed by high-angle annular dark
field scanning transmission electron microscopy (HAADF-
STEM) performed in an FEI Titan 80-300 microscope
working at 200kV. An ABSF filter was used to discern
the small variations of contrast between the layers, which are
associated to the small alloy compositional changes. High-
resolution X-ray diffraction (HRXRD) measurements were
carried out in a Seifert XRD 3003 PTS-HR system, with a
beam concentrator in front of the Ge(220) four-bounce
monochromator, and a Ge(220) two-bounce analyzer
inserted in front of the detector.

ISB absorption was probed by Fourier transform infrared
spectroscopy (FTIR) with a Bruker V70v spectrometer using
an Hg lamp and a Si bolometer. To account for the ISB
transition selection rules, the sample facets were polished at a
60° angle to form a multi-pass waveguide with 3—4 total
internal reflections.

3 Results and discussion

3.1 The step-quantum-well design Figure 1la
shows the conduction band diagram of a step-QW design
[in this example consisting of AlyGagoN/GaN/
Aly95GapgosN (3nm/3nm/13 nm)], and indicates the first
and second electronic levels with their respective squared
wave functions (l1/2). This 3-layer structure is designed
around the principle of polarization equivalency. The design
can be broken effectively into two portions; the first is
the “barrier”, which comprises of the high-Al-content
Al,Ga;_,N layer and the GaN layer. The second portion
is the “well”, which is the low-Al-content AL, Ga, ,N layer.
The design creates a semi-flat band in the “well” by having
the “barrier” balanced at the same average Al percentage, i.e.
the average polarization in the “barrier” is approximately
equal to the average polarization in the “well”. This allows
the structure to have variations in conduction band edge, and
therefore electron confinement, but it ensures a negligible
internal electric field in the “well”. However, the asymmetry
of the design leads to the confinement of '1/2(61) close to the
GaN layer, while the bimodality of ¥(e,) has the largest
electron density within the middle of the “well”. This forces
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Figure 1 (a) Conduction band profile, and first (¢;) and second (e,)
electronic levels with their associated squared wave functions for an
Al 1Gag oN/GaN/Alp 95Gag osN/GaN (3 nm/3 nm/13 nm) step QW. On
top, HAADF-STEM image of one period of the grown structure. (b)
Shift of the wave function of the first electronic level [¥*(e;)] associated
to a variation of the Al concentration in the “well” layer. A lower “well”
Al concentration creates a secondary confinement area at the opposite
side of the well. (c) A higher “well” Al concentration creates a more
triangular well and increases confinement towards the GaN layer.

the ISB transitions to be mainly diagonal and lowers the
overall oscillator strength.

Starting from the base structure in Fig. la, minor
changes in layer thickness can cause perturbations leading to
the narrowing or broadening of llfz, but the relative location
of the electron density peak for e, and e; remains stationary.
However, changing the aluminum concentration within the
layers breaks the polarization balance, and causes a shift in
the location of the electron density function, and in the ISB
transitional energy. A decrease in the Al mole fraction of the
“well” results in the formation of a secondary point of low
conduction band energy at the interface between the high-Al-
content barrier layer and the “well”, as illustrated in Fig. 1b.
This low point competes for ¥ and turns ¢, into a bimodal
distribution. On the other hand, with an increase in the “well”
Al content, the electric field in the “well” pushes ¥* towards
the GaN layer and increases the confinement, as shown in
Fig. lc.

Following the step-QW design, a series of samples
have been fabricated consisting of 40 periods of
Alo.lGaO.gN/GaN/A10A05GaOA95N (3 nm/3 nm/13 nm) QWS
The GaN layer was either non-intentionally doped or doped
with [Si] = 3.0 x 10"° cm 3. A HAADF-STEM image of the
structure on top of the band diagram in Fig. 1a illustrates the
agreement of the thicknesses and chemical contrast with
the nominal structure. HRXRD measurements in Fig. 2a
confirm a periodicity of 18.6 + 0.2 nm.

The samples were then tested using a Fourier transform
infrared spectrometer. Measurements were performed at a
temperature 7= 5-10 K. The ISB absorption is identified as
a dip in the transmission spectra for TM-polarized light, that
appears centered at 22 wm in the figure. The predicted value
for this structure was calculated to be 36 um. Such a
deviation can be explained considering realistic deviations in
the epitaxial growth: An error bar of 10% in the aluminum
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Figure 2 (a) HRXRD w — 26 scan of the (0002) reflection of the
step-QW structure grown on an AIN-on-sapphire template. (b) Far-
infrared transmission for TE- and TM-polarized light. The noise
observed for wavelengths <18 wm is due to the GaN Restrahlen
absorption. The TM/TE transmission ratio presents a minimum at
22 wm, which is attributed to ISB absorption.

mole fraction in the Al,Ga;_,N well (i.e. Aljos5GagossN
instead of Al 950Gag.9s50N) can induce up to 40% variance in
the ISB transition energy.

3.2 The 4-layer quantum well design As dis-
cussed above, the e,—e; ISB transition energy in the step-QW
design is very sensitive to variations of the Al mole fraction
of the layers, even within the uncertainties associated to
PAMBE growth. Such a problem is due to the fact that the
design is based on a very delicate polarization balance
between the “barrier” and the “well”. Furthermore, the effect
of the GaN layer on the e; wave function is difficult to
engineer. To surmount these limitations, we propose a
modified design with an additional AlGaN layer to separate
the GaN layer from the “well” [16]. This “separation layer”
is designed so that there is no confined state in the GaN layer.
In this architecture, the polarization is not fully compensated,
which results in a triangular profile in the active well, but
greatly increases the robustness of the system. The design,
consisting of a 4-layer Aly;GagoN/GaN/Alg g7;Gag o3N/
Al 03Gago7N (4nm/2 nm/2nm/12 nm) sequence, can be
seen in Fig. 3. The structure can be synthesized by PAMBE
through the use of two Al cells.

The robustness of this system with respect to the
uncertainties associated to PAMBE growth has been
analyzed in Fig. 4, and compared to the step-QW design.
The figure shows the theoretical value of the ISB wavelength
as the five vertices of a regular pentagon. Each vertex has a
structural parameter associated to it. Such parameters were
varied considering realistic deviations in the epitaxial
growth: 2 monolayers (2ML ~0.5nm) as the error bar
for thicknesses and £10% as the error bar for the aluminum
content in Al,Ga;_,N. The colored area represents the
minimum and maximum values of the ISB transition
wavelength associated to the indicated variation of structural
parameters along each radial axis. The smaller area
associated to the 4-layer QW in the figure demonstrates
that this design is much more robust than the step-QW
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Figure 3 Conduction band profile for an Alg;GagoN/GaN/
Alp 07Gag.93N/Alp 03Gag.97N (4 nm/2 nm/2 nm/12 nm) 4-layer-QW
design. On top, HAADF-STEM image of one period of the grown
structure.

structure. The ISB dependence on the thickness and
composition of the “separation layer” has also been
analyzed, and has been shown to exhibit the same robustness
as the rest of the system [16].

The robustness of the 4-layer structure is due to the fact
that the profile of ¥ does not change significantly within the
error bars associated to the PAMBE growth. The e, energy
level always remains confined near the edge of the layers
with 3 and 10% Al content. The e, energy level is also
confined within the triangular quantum well, and does not
drastically change in shape or position while changing the
design parameters. A major benefit of this design is that
there is the significant spatial overlap between the e¢; and e,
wave functions. This translates into an increase in the
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Figure 4 Illustration of the robustness of the 4-layer-QW system
compared with the step-QW design. In each case, the dots indicate
the nominal ISB transitional wavelength. The colored area
represents the variation between the minimum and maximum
values of the ISB transition wavelength associated to the indicated
variation of structural parameters along each axis. The “Barrier”
is AlpGagoN, while the “Well” is the Aljy3Gagg7N or the
Aly9sGag osN for the 4-layer and step-QW designs, respectively.
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Figure 5 (a) HRXRD w — 26 scan of the (0002) reflection of a
4-layer-QW structure grown on an AIN-on-sapphire template. The
experimental measurement is compared with simulations using the
X’Pert Epitaxy software. (b) Far-infrared transmission measure-
ment of 4-layer QWs with different doping levels for TE- and
TM-polarized light. Measurements were performed at 5-10 K. The
noise observed for wavelengths <18 wm is due to GaN Restrahlen
absorption. The dip in the TM-polarized transmission at 25-30 wm
is assigned to the ISB absorption.

oscillator strength by a factor of three over the step-QW
design.

This modified geometry has been synthesized
with various doping concentrations in the GaN layer
(non-intentionally doped, and [Si]=3.0 x 10 em 2, and
1.3 x 10*cm™?) were synthesized, and characterized by
HAADF-STEM, HRXRD, and FTIR (Figs. 3 and 5a and b,
respectively). Structural characterization confirms a period-
icity of 19.74+0.2nm (versus the nominal 20nm). The
transmission dip at 25-30 pwm for TM-polarized light seen in
Fig. 5b is assigned to ISB absorption, theoretically predicted
at 26.5 pm. Consistently, this feature is not observed in an
undoped reference, and it becomes broader and deeper for
increasing doping levels.

The incorporation of the separation layer results in a
geometry where the internal electric field is not fully
compensated, i.e. the QW keeps a triangular potential profile.
As a result, the tunability of this design towards longer
wavelengths is partially sacrificed. Increasing the well
thickness to 40 nm, for instance, should shift the absorption
wavelength towards 70 wm. Extension to longer wave-
lengths with layer thickness below 20 nm requires drastically
modified geometries.

The normalized absorption line width for the sample
with a doping level [Si]=3.0x 10" em™? is Aflf<0.3,
which is an improvement in comparison to previous results
in step QWs in Ref. [11] (Aflf~0.5). Unfortunately, the
results in Fig. 2b are spectrally distorted from the Restrahlen
band, rendering direct comparison inutile. In the 4-layer QW
sample with a higher doping level ([Si] = 1.3 x 10*’cm ),
the enhanced broadening is associated to the higher carrier
concentration.

4 Conclusions We have theoretically analyzed the
reproducibility issues associated to the step-QW architecture

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

for GaN/AlGaN ISB absorbers in the far infrared. As an
improvement, we have introduced a modified design of
GaN-based ISB absorber for the THz spectral range
consisting of a 4-layer QW structure. Particular attention
was paid to the robustness of the design regarding the
uncertainties associated to the growth. The structure has
been realized by PAMBE, and shows distinct absorption of
TM-polarized light centred around 25-30 pm. This absorp-
tion gets deeper and broader with increasing doping levels,
and is consistent with the predicted ISB transition.
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We report on AlGaN/GaN multi-quantum-well structures displaying intersubband absorption in the
THz spectral range. First, we theoretically analyze the weaknesses of the state-of-the-art GaN-based
step-quantum-well architecture from an optoelectronic standpoint. We then propose a modified
geometry with improved structural robustness considering the uncertainties associated to the growth.
This later structure, consisting of 4-layer quantum wells, has been grown by plasma-assisted
molecular-beam epitaxy and characterized structurally and optically. Low temperature absorption of
samples with different Si doping levels confirms intersubband transitions in the far-infrared, centred
at 28 um. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819950]

Wide-bandgap AlGaN/GaN heterostructures are inten-
sively studied as a promising alternative to replace GaAs as
the dominant material in solid-state THz optoelectronics.
GaAs-based quantum cascade lasers operating in this spectral
range are limited by intrinsic material properties, namely the
LO phonon, which exists at 36 meV (34 um). On the contrary,
the large energy of GaN longitudinal-optical phonons
(92meV, 13 um) opens prospects for GaN-based high-temper-
ature THz quantum cascade lasers' and other intersubband
(ISB) devices covering the 5-10 THz band, inaccessible to
As-based technologies.

ISB transitions in GaN/AlGaN multi-quantum-wells
(MQWs) can be tuned from 1.0 um to 10 um by reducing the
Al mole fraction in the barriers and increasing the quantum
well (QW) width® "2 (see Ref. 13 for a review). This strategy
faces a roadblock at longer wavelengths because of the quan-
tum confined Stark effect (QCSE) present in these polar
materials. The polarization-induced internal electric field
results in QWs with a triangular profile, and the lower energy
electronic levels get confined into a small fraction of the
QW, so that changes in well width do not induce propor-
tional changes in ISB energy. Therefore, to shift the absorp-
tion towards longer wavelengths, it is necessary to engineer
the conduction band to reduce the internal electric field
within the QWs. This has led to a 3-layer step-QW architec-
ture aimed to flatten the band structure of the QW.I4
Following this design, ISB transitions in the THz region
have been reported,14 and a QW infrared photodetector has
been demonstrated.'> However, this design suffers from
issues with reproducibility and the inability to easily predict
the ISB transitional energy. To progress towards more com-
plex and performing devices, it is therefore important to
introduce a different architecture with a higher robustness
with regard to the growth uncertainties.

In this work, we discuss the properties of AlGaN-based
MQWs designed for ISB optoelectronics in the THz spectral
range. We analyse the reproducibility issues associated to
the current step-QW architecture, and we propose an alterna-
tive, robust design based on a 4-layer QW. We demonstrate

0003-6951/2013/103(9)/091108/4/$30.00

103, 091108-1

that this structure, fabricated by plasma-assisted molecular-
beam epitaxy (PAMBE), presents TM-polarized ISB absorp-
tion at 26 um, with magnitude and line width that increases
with the doping level.

The experimentally observed reproducibility problems
associated to the step-QW geometry were analyzed theoreti-
cally using the self-consistent nextnano’ 8-band k-p
Schrédinger-Poisson solver.'® Calculations were performed
using the material parameters in Ref. 17, neglecting all the
bowing parameters for AlGaN, and assuming the structure
strained on GaN. Figure [ illustrates the electronic profile of
an Alg 0sGag osN/Aly 1GagoN/GaN (10 nm/3 nm/3 nm) step-
QW, which presents an energy difference between the first
and the second electronic levels of 35meV (35.6 um), a sig-
nificant deviation from the measured value of 17.5meV
(70 um)."* The robustness of this system with respect to the
uncertainties associated to PAMBE growth has been ana-
lyzed in Figure 1. There are 5 degrees of freedom within the
structure, namely the thickness of each layer and the Al mole
fraction in each Al,Ga,; N layer. Each degree of freedom
was varied considering realistic deviations in the epitaxial
growth: =2 monolayers (ML) as the error bar for thicknesses
and =10% as the error bar for the aluminium mole fraction
in Al,Ga; 4N, which corresponds to a temperature differ-
ence of £4°C for the Al effusion cells in the compositional
range of this design. While some parameters evoke little var-
iance, errors induced upon the GaN well width and the Al
concentration in the step-QW induce a drastic change in ISB
wavelength, which can reach up to 40% variance, from
35 um to 50 um.

This 3-layer structure is designed around the principle
of band edge equivalency. The step-QW can be broken
effectively into two portions: the first is the “barrier,” which
comprises of the high-Al-content Al;Ga; N layer and the
GaN layer. The second portion is the well, which is the low-
Al-content Al,Ga; N layer. Having the “barrier” balanced
at the same average Al percentage as the well ensures semi-
flat band conditions in the well. This configuration is associ-
ated to the minimum energy spacing between the ground

© 2013 AIP Publishing LLC
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FIG. 1. (a) Conduction band profile, and first (e;) and second (e,) electronic
levels with their associated wave functions for an AlgosGagosN/
Al 1GagoN/GaN (10 nm/3 nm/3 nm) step QW. (b) Shift of the wavefunction
of the first electronic level associated to a variation of the Al concentration
in the well layer. A higher step-well Al concentration (top) creates a more
triangular well and increases confinement towards the GaN layer. A lower
step-well Al concentration (down) creates a secondary confinement area at
the opposite side of the well. To illustrate the effect clearly, the band profiles
corresponds to Alg 7Gag.o3N/Aly 1 GagoN/GaN (10 nm/3 nm/3 nm) (top) and
Al 03Gag 97N/Aly 1Gag oN/GaN (10 nm/3 nm/3 nm) (bottom). (c) Illustration
of the robustness of the step-QW system. The dashed line indicates the nom-
inal transition wavelength for an AlgsGagosN/AlpGagoN/GaN (10 nm/
3nm/3nm) step QW. The error bars represent the minimum and maximum
values attributed to the uncertainties associated to growth. The barrier and
GaN well thicknesses were changed from 3nm to 2.5nm and 3.5 nm. The
barrier Al content was changed from 10% to 11% and 9%. The step well
alloy was changed from 5% to 4.5% and 5.5% (*10%). The step well thick-
ness was changed from 10nm to 12nm and 8 nm. The strain error bar illus-
trates the variation of the ISB transition when evolving from a structure
fully strained on GaN to a structure fully strained on Al ;Gag gN.

electronic state and the first excited state, as described in
Ref. 18. The weakness of this design lies in the fact that any
deviation from this balance results in an internal electric field
in the well, which shifts the wavefunction associated to the
first electronic level towards the GaN layer (Fig. 1(b) top, for
higher Al content in the well) or towards the high-Al-content
layer (Fig. 1(b) down, for lower average Al content in the
well). Thus, any imbalance in the structure has a drastic
effect on the ISB wavelength.

To surmount the limitations of the step-QW configura-
tion, we propose a design which includes the insertion of an
additional AlGaN layer to separate the GaN layer from the
low-Al-content Al,Ga; (N well. The “separation layer” is
designed so that there is no confined state in the GaN layer.
This architecture, described in Fig. 2(a), does not evade the
quantum confined Stark effect, but the GaN layer contributes
to reduce the average spontaneous polarization of the com-
plex barrier structure (Alg1GagoN/GaN/Alg;Gago3N),
which results in a lower electric field in the QW. The robust-
ness of this design is analyzed in Fig. 2(c) and shows much
less variation of the ISB transition energy than the step-QW

Appl. Phys. Lett. 103, 091108 (2013)
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FIG. 2. (a) Conduction band profile, and first (¢;) and second (e,) electronic
levels with their associated wave functions for an AlgGagoN/GaN/
Aly.07Gag.93N/Alg03Gag 97N (4 nm/2nm/2nm/12nm) 4-layer-QW design.
(b) Schematic drawing of the structure synthesized by PAMBE. (c)
Tllustration of the robustness of the 4-layer-QW system (black) compared
with the step-QW (gray). The dashed lines indicate the nominal transition
wavelengths for an Al osGag osN/Aly ;GagoN/GaN (10 nm/3 nm/3 nm) step
QW and an Aly Gag 9N/GaN/Aly (7Gag 93N/Alg 03Gag 97N (4 nm/2 nm/2 nm/
12nm) 4-layer QW. The error bar represents the minimum and maximum
values attributed to the uncertainties associated to growth. In the 4-layer-
QW, the barrier thickness was changed from 2nm to 1.5nm and 2.5 nm. The
barrier Al content was changed from 10% to 11% and 9%. The GaN layer
thickness was changed from 2nm to 1.5nm and 2.5 nm. The well thickness
was changed from 12nm to 11.5nm and 12.5nm, and its Al content was
changed from 3% to 2.7% and 3.3% (£10%). The separation layer thickness
was changed from 2nm to 1.5nm and 2.5nm, and its Al content was
changed from 7% to 6.3% and 7.7%. The strain error bar illustrates the vari-
ation of the ISB transition when evolving from a structure fully strained on
GaN to a structure fully strained on Aly ;Gag gN.

architecture with respect to the growth uncertainties. The
“separation layer” also has an inherent robustness on the
order of the rest of the structure and should not affect
the overall robustness of the system.

The incorporation of separation layer results in a geome-
try where the internal electric field is not fully compensated,
i.e., the QW keeps a triangular potential profile. As a result,
this 4-layer MQW system is more sensitive to changes in
strain state versus the step-QW design. The strain error bar
in Fig. 2(c) illustrates the variation of the ISB transition
when evolving from a structure fully strained on GaN to a
structure fully strained on Aly1GagoN." These error bars
are comparable to those generated by uncertainties in the
structural parameters. However, the MQWs are expected to
evolve towards a minimum elastic energy configuration in-
dependently of the substrate,”” so that the uncertainty in the
strain state of the structure (neglecting the initial relaxation)
is much smaller (<*0.025% variation of the in-plane lattice
parameter) than the values simulated in Fig. 2(c) (£0.12%).

An additional effect of the internal electric field is the
localization of the wave functions, which affects the oscilla-
tor strength of the ISB transitions. In the 4-layer MQW
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FIG. 3. HAADF-STEM image showing several 4-layer-QWs in a non-
intentionally doped sample with structure described in Fig. 2(b).

design, both el and e?2 are shifted in the [0001] direction [see
Fig. 2(a)], which translates into a large oscillator strength. In
contrast, the el of the step-QW design experiences a shift in
the [000-1] direction, while €2 shifts in the [0001] direction
[see Fig. 1(a)], which creates a mismatch between the first
and second localized states and translates into lower oscilla-
tor strength. Simulations show that the oscillator strength of
the e;-e; transition within the 4-layer MQW system is about
three times larger than that of the step-QW configuration.
AlGaN/GaN 40-period MQW structures following the 4-
layer MQW design in Fig. 2(b) were synthesized by PAMBE
on GaN templates on float-zone Si (111) to evade problems of
substrate transparency.” These templates incorporate a com-
plex buffer layer to manage the thermal expansion and lattice
mismatch between GaN and Si. To simplify the structural
characterization, identical samples were grown simultane-
ously on 1-um-thick (0001)-oriented AIN-on-sapphire tem-
plates. During the deposition, the flux of active nitrogen was

Appl. Phys. Lett. 103, 091108 (2013)

fixed at 0.32 ML/s, and the growth temperature was ~720°C
as deduced from the Ga desorption time. The three Al concen-
trations were obtained using two PAMBE cells, where one
flux was set to 0.03 x 0.32ML/s and the second was set to
0.07 x 0.32ML/s. The third Al concentration (10%) is
obtained from the summation of the two fluxes. All the layers
were deposited under self-regulated Ga-rich conditions'’
without growth interruptions. This growth method allows for
planar growth of (Al)GaN heterostructures with interface
sharpness on the atomic scale. The GaN layers were Si-doped,
in order to populate the first electronic levels in the structure.
Four samples with different doping concentrations (non-inten-
tionally doped, and [Si]=1.5 x 10 em 2, 3.0 x 10 cm ™3,
and 1.3 x 10°°cm ™) were synthesized. Figure 3 depicts four
periods of the non-intentionally doped structure viewed by
high-angle annular dark field scanning transmission electron
microscopy (HAADF-STEM) performed in an FEI Titan
80-300 microscope working at 200kV. An Average
Background Subtraction filter was used to discern the small
variations in contrast between the layers, which are associated
to the alloy compositional changes. The layer thicknesses
obtained from the image are 42ML Aly3Gagoe7N/7 ML
A1007G3093N/7 ML GaN/14 ML A101Ga09N

High-resolution x-ray diffraction (HRXRD) measure-
ments were carried out in a Seifert XRD 3003 PTS-HR
system, with a beam concentrator in front of the Ge(220) four-
bounce monochromator and a Ge(220) two-bounce analyzer
inserted in front of the detector. Figure 4 shows the w-26 scan
of the (0002) and (0004) x-ray reflections and a reciprocal
space map around the (—1015) reflection of the MQW struc-
ture doped with [Si] =3.0 x 10'” cm > and grown on an AIN-
on-sapphire template. From these measurements, we extract a
superlattice period of 19.7 = 0.2 nm. The experimental meas-
urements in Figs. 4(a) and 4(b) are compared with a simula-
tion using the X’Pert software, assuming an Al,Ga; N/
Al,Ga,_ N/GaN/Al, ;,Ga;_,_yN (11.7nm/2nm/2 nm/4 nm)
MQW period, where the layer thickness are proportional to
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FIG. 5. Far-IR transmission measurement of 4-layer MQWs with different
doping levels for TE- and TM-polarized light. The spectra have been nor-
malized by the response of a similar undoped superlattice which exhibits no
ISB activity. The noise observed for wavelengths <10 um is due to the GaN
Restrahlen absorption. The dip in TM-polarized transmission at 27-30 um is
assigned to the transition between the first and the second electronic levels
in the QWs.

the number of monolayers measured by HAADF-STEM.
From the reciprocal space map in Fig. 4(c), we extracted the
relaxation state of the GaN buffer (86% relaxed on the AIN
substrate), and the in-plane lattice parameter of the MQWs
which is almost totally strained on the GaN buffer layer. By
adjusting the Al mole fractions in the MQWs to get a best fit
to the (0002) and (0004) experimental diffractograms, we
obtain x =0.025 + 0.005 and y=0.07 = 0.01. These values
are in good agreement with the nominal values within the
uncertainties considered above.

ISB absorption was probed by Fourier Transform
Infrared spectroscopy (FTIR) with a Bruker V70v spectrom-
eter using a Hg lamp and a Si bolometer. To account for the
ISB transition selection rules, the sample facets were pol-
ished at a 60° angle to form a multi-pass waveguide with
3—4 total internal reflections. The four samples were tested in
transmission mode using a far-IR polarizer to discern
between TE and TM polarized light. Figure 5 shows the far-
IR transmission spectra of the doped samples at low temper-
ature (T =5-10K). In the sample with a lower doping level
([Si]=1.5x 1019cm_3), we observe a TM-polarized absorp-
tion dip centred around 27-29 um (~14 THz), which gets
deeper and broader with increasing doping level. This
absorption line is attributed to the transition from the first to
the second electronic level in the QW, in good agreement
with our theoretical calculations, which predict a transition
at 26.5 um. The normalized absorption line width for the
sample with a doping level [Si]=1.5x 10""cm ™ is Af/
f~0.25, which is a significant improvement in comparison
to results in step QWs (Af/f ~ 0.5 in Ref. 14).

Appl. Phys. Lett. 103, 091108 (2013)

In conclusion, we have introduced a modified design of
nitride-based ISB absorber for the THz spectral range consist-
ing of a 4-layer MQW structure. Particular attention was paid
to the robustness of the design with regarding the uncertainties
associated to the growth. The structure has been realized by
PAMBE and shows distinct absorption of TM-polarized light
centred around 27-30 um (~14 THz). This absorption gets
deeper and broader with increasing doping levels and is con-
sistent with the predicted electronic transition between the first
and the second electronic levels in the QWs.
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J. Dussaud, and D. Boilot for their technical support.
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(#278428) project.

1G. Sun, R. A. Soref, and J. B. Khurgin, Superlattices Microstruct. 37, 107
(2005).

2N. Vukmirovié, V. D. Jovanovi¢, D. Indjin, Z. Ikoni¢, P. Harrison, and
V. Milanovi¢, J. Appl. Phys. 97, 103106 (2005).
3E. Bellotti, K. Driscoll, T. D. Moustakas, and R. Paiella, J. Appl. Phys.
105, 113103 (2009).

“W. Terashima and H. Hirayama, Phys. Status Solidi C 6, S615 (2009).
3B. Mirzaei, A. Rostami, and H. Baghban, Opt. Laser Technol. 44, 378
(2012).
®N. Suzuki and N. Tizuka, Jpn. J. Appl. Phys., Part 2 38, L363 (1999).

P. K. Kandaswamy, H. Machhadani, C. Bougerol, S. Sakr, M.
Tchernycheva, F. H. Julien, and E. Monroy, Appl. Phys. Lett. 95(14),
141911 (2009).

8N. Péré-Laperne, C. Bayram, L. Nguyen-The, R. McClintock, and M.
Razeghi, Appl. Phys. Lett. 95, 131109 (2009).
°P. K. Kandaswamy, H. Machhadani, Y. Kotsar, S. Sakr, A. Das, M.
Tchernycheva, L. Rapenne, E. Sarigiannidou, F. H. Julien, and E. Monroy,
Appl. Phys. Lett. 96, 141903 (2010).

19C. Bayram, J. Appl. Phys. 111, 013514 (2012).

'C. Edmunds, L. Tang, J. Shao, D. Li, M. Cervantes, G. Gardner, D. N.
Zakharov, M. J. Manfra, and O. Malis, Appl. Phys. Lett. 101, 102104
(2012).

2w, Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N.
Dai, Y. Y. Fang, Z. H. Wu, C. H. Yu, and C. Q. Chen, J. Appl. Phys. 112,
063526 (2012).

B3m. Beeler, E. Trichas, and E. Monroy, Semicond. Sci. Technol. 28,
074022 (2013).

4. Machhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli,
J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F. H.
Julien, Appl. Phys. Lett. 97(19), 191101 (2010).

5E. F. Sudradjat, W. Zhang, J. Woodward, H. Durmaz, T. D. Moustakas,
and R. Paiella, Appl. Phys. Lett. 100(24), 241113 (2012).

163 Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and
P. Vogl, IEEE Trans. Electron Devices 54(9), 2137 (2007).

7p K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou,
M. Tchernycheva, A. Michon, F. H. Julien, E. Baumann, F. R. Giorgetta,
D. Hofstetter, T. Remmele, M. Albrecht, S. Birner, and L. S. Dang,
J. Appl. Phys. 104(9), 093501 (2008).

"E. Wu, W. Tian, W. Y. Yan, J. Zhang, S. C. Sun, J. N. Dai, Y. Y. Fang,
Z.H. Wu, and C. Q. Chen, J. Appl. Phys. 113, 154505 (2013).

19The calculations also show that by decreasing the in-plane lattice parame-
ter of the MQWSs (compressive strain), a decrease in ISB energy is seen in
the 4-layer design, which is consistent with a reduction of the internal elec-
tric field due to the smaller piezoelectric constants of GaN in comparison
to AIN. In contrast, an increase of the ISB energy is seen in the step-QW
design due to the tendency of the first electronic level to keep confined
close to the GaN layer.

20y, Kotsar, B. Doisneau, E. Bellet-Amalric, A. Das, E. Sarigiannidou, and
E. Monroy, J. Appl. Phys. 110, 033501 (2011).



Annex 5






APPLIED PHYSICS LETTERS 105, 131106 (2014)

@ CrossMark

Pseudo-square AlGaN/GaN quantum wells for terahertz absorption

M. Beeler," C. Bougerol,"* E. Bellet-Amalric,"? and E. Monroy'?

"Wniversité Grenoble Alpes, 38000 Grenoble, France

2CEA-Grenoble, INAC/SP2M/INPSC, 17 avenue des Martyrs, 38054 Grenoble, France
3Institut Néel-CNRS , 25 avenue des Martyrs, 38042 Grenoble Cedex 9, France

(Received 12 July 2014; accepted 17 September 2014; published online 29 September 2014)

THz intersubband transitions are reported down to 160 um within AIGaN/GaN heterostructures
following a 4-layer quantum well design. In such a geometry, the compensation of the polarization-
induced internal electric field is obtained through creating a gradual increase in polarization field
throughout the quantum “trough” generated by three low-Al-content layers. The intersubband tran-
sitions show tunable absorption with respect to doping level as well as geometrical variations which
can be regulated from 53 to 160 um. They also exhibit tunnel-friendly designs which can be easily
integrated into existing intersubband device architectures. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896768]

Wide-bandgap AlGaN/GaN heterostructures are inten-
sively studied as a promising alternative to replace GaAs in
solid-state THz optoelectronics. GaAs-based quantum cas-
cade lasers operating in this spectral range are limited by
intrinsic material properties, namely, the longitudinal-optical
(LO) phonon, which exists at 36 meV. On the contrary, the
large energy of the GaN LO phonon (92 meV) opens pros-
pects for GaN-based high-temperature THz quantum cascade
lasers'™ and intersubband (ISB) devices covering the 5-10
THz band, inaccessible to As-based technologies.

ISB transitions in GaN/AlGaN multi-quantum-wells
(MQWs) can be tuned from 1.0 um to 10 um by reducing the
Al mole fraction in the barriers and increasing the quantum
well (QW) width®!? (see Ref. 13 for a review). This strategy
faces a roadblock at longer wavelengths because of the quan-
tum confined Stark effect. The polarization-induced internal
electric field results in QWs with a sawtooth profile and with
lower electronic levels confined to a small fraction of the
QW, so that changes in well width do not induce propor-
tional changes in ISB energy. Therefore, to shift the absorp-
tion towards longer wavelengths in polar structures, it is
necessary to engineer the conduction band to reduce the
effect of the internal electric field within the QWs.
Polarization effects can be eliminated by growing on a non-
polar crystallographic plane'* or using cubic nitride hetero-
structures,’”” but such approaches must face additional
growth challenges. In the well-known (0001) orientation,
attempts to reduce the electric field have led to 3-layer step-
QW architectures, where ISB transitions in the THz region
have been reported,'® and a THz photodetector has been
demonstrated around this principle.'” However, the 3-
layered design in Ref. 16 suffers from issues with repro-
ducibility and the inability to easily predict the ISB tran-
sitional energy.'® Alternative geometries have been
proposed which increase the robustness of the ISB transi-
tion to accommodate errors in growth rate and interfacial
roughness.'® This was accomplished by introducing a
complex barrier system which sacrifices tunability and
does not completely compensate the internal electric field.
Furthermore, the width of the complex barrier inhibits
electron tunneling transport, which complicates the
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incorporation of such QWs in an electrically driven de-
vice structure.

In this work, we introduce an AlGaN-based pseudo-
square QW design for ISB devices operating in the THz
spectral range. The proposed geometry achieves THz ISB
absorption thanks to the compensation of the polarization-
induced internal electric fields, and the potential barriers are
thin enough to facilitate tunneling at low bias. These QWs
exhibit wave functions which are much more symmetric than
previous designs, which translate to higher oscillator
strengths. Pseudo-square QWs fabricated by plasma-assisted
molecular-beam epitaxy (PAMBE) present ISB absorption at
160 um, which blue shifts to 50 um with increasing doping
level, and can be tuned from 100 to 75 um by changing the
width of a quantum trough.

AlGaN-based pseudo-square QWs have been simulated
using the self-consistent nextnano’ 8-band k-p Schrodinger-
Poisson solver.'” Calculations were performed using the mate-
rial parameters in Ref. 20, and assuming the structure strained
on GaN. The proposed band structure in Fig. 1(a) consists of
four compositionally different AlGaN layers with nominal Al
concentrations of 12%, 0%, 5%, and 7% for the barrier, GaN,
A, and B layers, respectively. The highest Al concentration
(the concentration of the barrier) is chosen as the sum of the
other two, so that the structure can be realized by PAMBE
using two Al effusion cells. In this pseudo-square QW, the
electric field is compensated by creating a gradual increase in
polarization field throughout the quantum “trough” formed by
the 3 low-Al-content layers. Because of this gradual increase,
the electron density function is delocalized from a single
layer and is quantum confined across all three layers by the
effective size of the trough and not by the polarization field.
Simulations show that the oscillator strength of the pseudo-
square QW is the same as the 4-layered MQW system,'®
and an order of magnitude greater than that of the step-QW
configuration.'® The ISB energy of this design is nominally
targeted at 25meV, and can be tuned by changing the
width of the A layer of the quantum trough. At zero bias,
the second electronic level, e,, is localized in the QW, but
the tunneling probability of electrons in e, increases by
biasing in the (0001) direction.

© 2014 AIP Publishing LLC
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FIG. 1. (a) Band profile of a pseudo-square QW where the first and second
confined electronic levels are indicated as e and e,, respectively. The nomi-
nal compositions of the layers are indicated above. (b) Schematic description
of the structure which was grown on an AIN-on-sapphire substrate. (c)
Ilustration of the robustness of the pseudo-square QWs. The dashed lines
indicate the nominal transition wavelengths. The error bars represent the
minimum and maximum values attributed to the uncertainties associated to
growth (geometries changed by =0.5nm and alloys changed by *10%).
Similar data for step-QWs and 4-layer QWs are included for comparison (af-
ter Ref. 18).

The ISB transition in this pseudo-square system has
been tested against the uncertainties associated to PAMBE
growth with the results described in Fig. 1(c). There are 7
degrees of freedom within the superlattice, namely, the
thickness of each layer and the Al mole fraction in each
Al,Ga;_,N layer. Each of these parameters were varied con-
sidering =2 monolayers (ML) as the error bar for thick-
nesses, and =10% of the nominal concentration as the error
bar for the aluminium mole fraction in Al,Ga;_,N. The 10%
variation in alloy is roughly equivalent to a temperature dif-
ference of *£4°C for the Al effusion cells in the composi-
tional range of this design. Figure 1(c) shows that the
variation of most of the layer thicknesses results in ISB
wavelength differences of nearly 5 um, conversely parame-
ters such as the “B alloy” and the “A width” are almost
insensitive to changes. The results of this robustness assess-
ment are compared to the previously reported data for step
QWs and 4-layer QWs,'® also in Fig. 1(c). The ISB transition
deviations in the pseudo-square design are generally smaller
than those induced within the step QW, although larger than
those of the 4-layer QW. For a fair comparison of the struc-
tures, it is important to consider that they are engineered to
operate at different wavelengths. Defining the relative errors
as AJ/A, the average wavelength variation that can be
induced by growth uncertainties is 10%, 8.8%, and 25%, for

pseudo-square  QWs, 4-layer QWSs, and step-QWs,
respectively.
AlGaN/GaN 40-period superlattices following the

pseudo-square design in Fig. 1 were synthesized by PAMBE
on GaN templates deposited on float-zone Si(111).” These

Appl. Phys. Lett. 105, 131106 (2014)

templates use a complex buffer layer to minimize the effects
of the lattice mismatch between GaN and Si(111), as well as
mitigate the effects of thermal expansion. Identical samples
were simultaneously grown on 1-um-thick AIN-on-sapphire
templates to simplify the structural characterization. During
deposition, the growth rate was 0.32 ML/s and the substrate
temperature was ~720 °C. The structure was grown uninter-
rupted under self-regulated Ga-rich conditions.””*" To popu-
late the ground conduction band level in the quantum trough,
ey, 1.5nm of each GaN layer was doped with Si. The struc-
tural parameters and doping level of the samples under study
are summarized in Table I. A first set of samples (series I in
Table I) was synthesized following the geometry in Fig. 1(b)
with different doping concentrations in the GaN layer. Then,
a second set of samples (series II in Table I) with a slightly
modified geometry was used to determine the experimental
effect of trough size, which was varied by changing the
width of the Alg o5GagosN layer (layer A).

Figure 2(a) shows a high-angle annular dark field scan-
ning transmission electron microscopy (HAADF-STEM)
image of three periods of sample 1.2 obtained in an FEI Titan
80-300 microscope at 200kV. An average background sub-
traction filter was used to increase the atomic contrast
between the layers. The interfaces appear straight and sharp,
and the difference in gray scale indicates the alloy concentra-
tion, confirming the nominal chemical sequence.
Furthermore, energy dispersive x-ray spectroscopy per-
formed on a (S)TEM FEI-Osiris microscope operated at
200kV render Al compositions very close to nominal values,
namely, 11.9%, 0%, 5.6%, and 7.3% for the barrier, GaN, A,
and B layers, respectively, with an estimated standard devia-
tion of +0.4%.

The periodicity of the samples was analyzed by high-
resolution x-ray diffraction (HRXRD) using a Seifert XRD
3003 PTS-HR system with a beam concentrator before a
Ge(220) four-bounce monochromator, and a Ge(220) two-
bounce analyzer in front of the detector. Figure 2(b) depicts
the w—20 scans of the (0002) reflections of samples II.1 and
I1.2 grown on AIN-on-sapphire templates. From these meas-
urements, we extracted the superlattice periods summarized
in Table I. The experimental measurements in Fig. 2(b) are
juxtaposed to simulated curves assuming nominal Al concen-
trations and a superlattice misfit compressive strain relaxa-
tion of 93.5% and 94.5%, respectively,22 which is in
accordance with previous observations of relaxation proc-
esses stating that GaN/AlGaN superlattices tend to relax
towards their average aluminum concentration independent
of the layer underneath.”’

All samples grown on GaN-on-Si templates were pol-
ished at the Brewster angle of 60° to form multipass wave-
guides allowing 3-4 interactions with the active region.
These samples were measured by Fourier Transform Infrared
spectroscopy (FTIR) in transmission mode using a far-
infrared polarizer to discern between the transverse-electric
(TE) and transverse-magnetic (TM) polarized light. All
measurements were performed at 5 K. Taking the selection
rules into account, the ISB absorption peaks are identified by
dividing the transmission spectra for TE polarization by the
TM transmission. Figure 3(a) shows the low-temperature
far-IR absorption spectra of TM-polarized light for samples
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TABLE I. Structural parameters, doping level in the GaN layer, superlattice period measured by HRXRD, and peak ISB absorption wavelength of the samples
under study. (*) Thickness extrapolated from I-1, consistent with HAADF-STEM. (**) Thickness extrapolated from I-1.

Sample GaN layer (nm) A (nm) B (nm) Barrier (nm) [Si] (cm’3) Period (nm) Absorption (um)
Series I I-1 3.1 10.7 53 3.1 3.3 % 10" 222+02 160
12 3.1 10.7 53 3.1 13x10" (%) 83
I3 3.1 10.7 53 3.1 1.3x 10" (%) 53
Series II II-1 35 6.0 6.0 3.5 48x10'® 19.5+0.2 77
11-2 3.5 8.0 6.0 3.5 4.8 x10" 21.2+02 87
113 35 10.0 6.0 35 4.8x10'® 234+02 95

from series I, which displays a peak assigned to the ISB tran-
sition from the first to the second electronic levels in the
QWs. Maximum interaction of light with the active layer
occurred for an angle of incidence of 55°-65°. At lower
angles of incidence, the ISB absorption peak decreases as
illustrated in Fig. 3(c). Samples with doping level of
3.0x 10", 1.3x 10", and 1.3x10"”em™> exhibit ISB
absorption at 160, 83, and 53 um, respectively, as summar-
ized in Table I. Unintentionally doped samples, grown as a
reference, do not show significant absorption across the spec-
trum. This blue shifting ISB absorption with higher dopant
level indicates that many-body effects (depolarization shift,
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FIG. 2. HAADF-STEM image of sample 1.2, which follows the architecture
in Fig. 1. The nominal concentrations of each layer are shown above, where
5% represents Al 0sGagosN. Layer thicknesses of 41 ML Al ¢sGag o5N/22
ML Alp07Gago3N/12 ML Alj 1,Gag ggN/12 ML GaN are seen in the image.
(b) HRXRD w—20 scans around the (0002) reflection of samples II.1 (top)
and I1.3 (bottom). The simulations assume nominal Al concentrations and a
superlattice relaxation of 93.5% and 94.5%, respectively.

exchange interaction) play a large role in determining the
ISB energy. The depolarization shift, estimated from,”>** is
negligible for the architectures under study due to the small
ISB transition energies under consideration. On the contrary,
calculations of the exchange interaction following Bandara
et al.,25 assuming the wave vector k=0, k= V27e with o
being the two-dimensional electron density in the QW, and
with a k-independent equation, give absolute values compa-
rable to the energy of the ISB transition itself, as illustrated
in Fig. 3(d). This is in accordance with Helm** and Guo
et al.*® which show that with large well widths, and small
ISB energies (<20meV), the energetic summation of the
many body effects becomes as large as the ISB energy itself.

Samples with varying well width (series II) have also
been measured in the fashion described above with the result
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FIG. 4. Surface plots of the ISB transition wavelength for sample II-3 where
the Al mole fraction in layers A and B is varied while monitoring the effect
on the ISB energy, calculated with the nextnano3 software excluding the
exchange interaction and depolarization shift. Nominal compositions with
their error bars are marked by a square. The dashed line indicates the experi-
mental measurement of ISB absorption. The solid line indicates the alloy
configuration compatible with HRXRD measurements assuming the super-
lattice 93.5% relaxed.

in Fig. 3(b). Increasing well width leads to a decrease of the
ISB energy. Thus, samples grown with an A layer thickness
of 6, 8, and 10nm show red-shifting ISB absorption at 77,
87, and 95 um, respectively, as summarized in Table I. This
confirms that the energies of these quantum confined levels
can be modified by structurally changing the size of the
quantum trough.

Figure 4 shows a simulated surface plot of the ISB tran-
sition wavelength for the structure of sample II-3 where the
Al mole fraction in layers A and B are varied while monitor-
ing the effect on the ISB energy. This is done excluding the
exchange interaction and depolarization shift, while assum-
ing the structure to be fully relaxed on GaN.?’ Nominal com-
positions are marked by a square with their error bars. The
dashed line indicates the experimental measurement of ISB
absorption. The solid line indicates the alloy configurations
compatible with HRXRD measurements assuming the super-
lattice 93.5% relaxed and at the nominal average aluminum
concentration. The intersection between these two lines
occurs out of the compositional error bars, and suggests alloy
values of 5.7 and 6.0 for the A and B layers, respectively.
Upon the inclusion of the blue-shifting many body effects,
this intersection occurs at values even further from the nomi-
nal values. We therefore conclude that further research is
required to improve the convergence between theoretical cal-
culations and experimental results.

In conclusion, we have demonstrated a tunable nitride-
based ISB absorber for the THz spectral range consisting of
a pseudo-square QW superlattice. The proposed architecture
utilizes a quantum trough engineered with 3 AlGaN layers to
confine the wave function which mitigates the effect of the
internal electric field. The design is robust regarding the
uncertainties associated to the PAMBE growth and can be
used as the building block for further THz systems such as
quantum cascade devices thanks to the use of thin AlGaN

Appl. Phys. Lett. 105, 131106 (2014)

barriers which should allow tunneling transport under bias.
Fabricated superlattices show ISB absorption tunable from
53 to 160 um with respect to doping level and geometrical
variations.

The authors would like to thank Y. Curé, Y. Genuist, J.
Dussaud, and D. Boilot for their technical support. This
work was supported by the EU ERC-StG “TeraGaN” (No.
278428) project.

IG. Sun, R. A. Soref, and J. B. Khurgin, Superlattices Microstruct. 37, 107
(2005).

2N. Vukmirovi¢, V. D. Jovanovi¢, D. Indjin, Z. Ikoni¢, P. Harrison, and V.
Milanovié, J. Appl. Phys. 97, 103106 (2005).
3E. Bellotti, K. Driscoll, T. D. Moustakas, and R. Paiella, J. Appl. Phys.
105, 113103 (2009).

“W. Terashima and H. Hirayama, Phys. Status Solidi C 6, S615 (2009).

SB. Mirzaei, A. Rostami, and H. Baghban, Opt. Laser Technol. 44, 378
(2012).

°N. Suzuki and N. Tizuka, Jpn. J. Appl. Phys., Part 2 38, L363 (1999).

P. K. Kandaswamy, H. Machhadani, C. Bougerol, S. Sakr, M.
Tchernycheva, F. H. Julien, and E. Monroy, Appl. Phys. Lett. 95(14),
141911 (2009).

SN. Péré-Laperne, C. Bayram, L. Nguyen-The, R. McClintock, and M.
Razeghi, Appl. Phys. Lett. 95, 131109 (2009).

°P. K. Kandaswamy, H. Machhadani, Y. Kotsar, S. Sakr, A. Das, M.
Tchernycheva, L. Rapenne, E. Sarigiannidou, F. H. Julien, and E. Monroy,
Appl. Phys. Lett. 96, 141903 (2010).

10C, Bayram, J. Appl. Phys. 111, 013514 (2012).

e, Edmunds, L. Tang, J. Shao, D. Li, M. Cervantes, G. Gardner, D. N.
Zakharov, M. J. Manfra, and O. Malis, Appl. Phys. Lett. 101, 102104
(2012).

2W. Tian, W. Y. Yan, X. Hui, S. L. Li, Y. Y. Ding, Y. Li, Y. Tian, J. N.
Dai, Y. Y. Fang, Z. H. Wu et al., J. Appl. Phys. 112, 063526 (2012).

M. Beeler, E. Trichas, and E. Monroy, Semicond. Sci. Technol. 28,
074022 (2013).

14C. Edmunds, J. Shao, M. Shirazi-HD, M. J. Manfra, and O. Malis, Appl.
Phys. Lett. 105, 021109 (2014).

1SH. Machhadani, M. Tchernycheva, S. Sakr, L. Rigutti, R. Colombelli, E.
Warde, C. Mietze, D. J. As, and F. H. Julien, Phys. Rev. B 83, 075313
(2011).

Y. Machhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J.
Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F. H.
Julien, Appl. Phys. Lett. 97(19), 191101 (2010).

R F. Sudradjat, W. Zhang, J. Woodward, H. Durmaz, T. D. Moustakas,
and R. Paiella, Appl. Phys. Lett. 100, 241113 (2012).

M. Beeler, C. Bougerol, E. Bellet-Amalric, and E. Monroy, Appl. Phys.
Lett. 103, 091108 (2013).

19 Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and
P. Vogl, IEEE Trans. Electron Devices 54, 2137 (2007).

20p_ K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou,
M. Tchernycheva, A. Michon, F. H. Julien, E. Baumann, F. R. Giorgetta
etal.,J. Appl. Phys. 104, 093501 (2008).

2lY. Kotsar, B. Doisneau, E. Bellet-Amalric, A. Das, E. Sarigiannidou, and
E. Monroy, J. Appl. Phys. 110, 033501 (2011).

22Relaxation is defined as R = (cs;. — can)/(CsLo — Camn)s Where g is the
measured average lattice parameter of the superlattice along (0001), c¢sp o
is the average lattice parameter of the relaxed superlattice, and ¢y is the
lattice parameter of the AIN substrate.

28, 1. Allen, D. C. Tsui, and B. Vinter, Solid State Commun. 20, 425
(1976).

24ML Helm, in Intersubband Transitions in Quantum Wells: Physics and
Device Applications I, edited by H. C. Liu and F. Capasso (Academic
Press, San Diego, 2000).

K. M. S. V. Bandara, D. D. Coon, O. Byungsung, Y. F. Lin, and M. H.
Francombe, Appl. Phys. Lett. 53, 1931 (1988).

*X. G. Guo, Z. Y. Tan, J. C. Cao, and H. C. Liu, Appl. Phys. Lett. 94,
201101 (2009).

27 Assuming that the superlattice relaxes to the in-plane lattice parameter cor-
responding to its average Al mole fraction implies a red shift of the calcu-
lated ISB transition by AZ/2=1.3%.



Annex 6






PHYSICAL REVIEW B 91, 205440 (2015)

Long-lived excitons in GaN/AIN nanowire heterostructures

M. Beeler,"2 C. B. Lim,"2 P. Hille,? J. Bleuse,-? J. Schérmann,®> M. de la Mata,* J. Arbiol,*>
M. Eickhoff,> and E. Monroy'+?
'Université Grenoble Alpes, 38000 Grenoble, France
2CEA-Grenoble, INAC, SP2M-NPSC, 17 av. des Martyrs, 38054 Grenoble, France

31. Physikalisches Institut, Justus-Liebig-Universitdit Gieflen, Heinrich-Buff-Ring 16, D-35392 Giefsen, Germany
4Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Barcelona, Catalonia, Spain

SICREA and Institut Catala de Nanociéncia i Nanotecnologia (ICN2), 08193 Barcelona, Catalonia, Spain

(Received 24 December 2014; published 27 May 2015)

GaN/AIN nanowire heterostructures can display photoluminescence (PL) decay times on the order of
microseconds that persist up to room temperature. Doping the GaN nanodisk insertions with Ge can reduce
these PL decay times by two orders of magnitude. These phenomena are explained by the three-dimensional
electric field distribution within the GaN nanodisks, which has an axial component in the range of a few MV/cm
associated to the spontaneous and piezoelectric polarization, and a radial piezoelectric contribution associated to
the shear components of the lattice strain. At low dopant concentrations, a large electron-hole separation in both
the axial and radial directions is present. The relatively weak radial electric fields, which are about one order of
magnitude smaller than the axial fields, are rapidly screened by doping. This bidirectional screening leads to a
radial and axial centralization of the hole underneath the electron, and consequently, to large decreases in PL

decay times, in addition to luminescence blue shifts.

DOI: 10.1103/PhysRevB.91.205440

I. INTRODUCTION

Carrier lifetimes are directly related to detection, sponta-
neous emission, and stimulated emission efficiencies. Short
radiative lifetimes in the picosecond or nanosecond range
are useful in light emitters to compete with nonradiative
recombination processes. On the other hand, long carrier
lifetimes (microsecond) increase the collection probability of
photogenerated carriers in solar cells or photodetectors, and
can enhance the population inversion in lasers.

One approach to tune the band-to-band radiative time is
controlling the electron-hole spatial separation. The carrier
separation is achieved through the use of type II heterojunc-
tions [1,2], or through the introduction of internal electric fields
via doping or compositional gradients. In the case of polar
materials, such as wurtzite Ill-nitride or II-oxide semicon-
ductors [3,4], internal electric fields appear spontaneously in
heterostructures due to the polarization difference between bi-
nary compounds [5]. In particular, adding up spontaneous and
piezoelectric polarization, AIN/GaN quantum wells present
an internal electric field on the order of 10 MV /cm [6],
which leads to efficient electron-hole separation along the
polar (0001) axis, and considerably increases the band-to-band
radiative recombination time [7-13].

Further control of the carrier lifetime in typical device archi-
tectures can be achieved by confining carriers in an additional
dimension, i.e., using three-dimensional (3D) nanostructures
such as quantum dots. Excitons trapped in such quantum
nanostructures are efficiently isolated from dislocation or
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surface related nonradiative recombination centers [ 14], which
attenuates the quenching of the carrier lifetime with temper-
ature. The synthesis of quantum dots as nanodisks inserted
in nanowires (NWs) offers an exciting alternative to avoid
the inherent constraints of Stranski-Krastanov growth. In NW
geometries, the 3D elastic strain relaxation via the surface
in the form of plane bending [15] permits a wider range of
quantum dot sizes and compositions before forming misfit
dislocations, i.e., plastic relaxation [15,16]. In the case of
GaN/AIN quantum dots or nanodisks, the large band offsets
(~1.8 eV in the conduction band [17]) provide efficient
exciton confinement, so that the observed long (microsecond)
photoluminescence (PL) decay times [9,12] can persist up to
room temperature [18].

Micro-PL studies of GaN nanodisks in NWs show excitonic
emission lines stemming from discrete levels, as verified
by photon-correlation measurements [19], which confirm
their quantum-dot-like behavior. The PL spectral positions
present signatures of both quantum confinement and of the
polarization-induced Stark effect [16,19-23]. However, the
spectral shift associated to the Stark effect is smaller in
nanodisks than in quantum wells [16,19,23], which has been
attributed to dislocations [16], to the surface band bending [24]
and to the 3D strain configuration [19,25]. Studies of the PL
decay times in GaN N'Ws show exponential or biexponential
PL decays with subnanosecond characteristic times [26,27].
In GaN/AIN NW heterostructures, subnanosecond PL decay
times have been reported in the case of small nanodisks
(~1 nm), where the emission properties are dominated by
the carrier confinement and the quantum confined Stark effect
is still negligible [19]. In the case of nanodisks larger than
2 nm, where the emission becomes dominated by the carrier
separation due to the polarization-induced internal electric
field, time-resolved PL reports are so far limited to the
descreening of the polarization-induced internal electric field,
in the tens of nanoseconds range [16,28], where the use of

Published by the American Physical Society
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excitations rates larger than 50 MHz (less than 20 ns between
pulses) has hindered the observation of the characteristic PL
decay times.

In this work, we report the observation of long-lived
(microsecond) excitons in GaN/AIN NW heterostructures at
room temperature, and we present a comprehensive analysis
of the carrier dynamics by combining continuous-excitation
and time-resolved PL measurements with 3D calculations of
the electronic structure. Electric fields in the axial and radial
directions translate into in-plane carrier separations that govern
the carrier dynamics at low dopant concentrations, and are
rapidly screened by Ge doping in the nanodisks. As a result,
screening effects in nanodisks are significantly stronger than
in planar structures. By varying the Ge concentration in the
GaN nanodisks, the lifetime of photoinduced carriers can be
varied by nearly two orders of magnitude.

II. EXPERIMENT

N-polar AIN/GaN NW heterostructures were synthesized
by plasma-assisted molecular-beam epitaxy (PAMBE) on
Si(111) substrates at a growth temperature of ~790°C. At
this temperature and under N-rich growth conditions, PAMBE
is known to produce N-polar catalyst-free GaN NWs with
a radius in the range of a few tens of nanometers [29-34].
The structures under study consist of a nonintentionally
doped (NID) GaN NW base with a length of 600 nm and
a radius ranging from 25-40 nm, followed by 40 periods
of GaN:Ge/AIN (nominally 4 nm/4 nm) nanodisks, and a
20-nm-thick NID GaN cap layer. The GaN nanodisks were
doped with Ge, using a beam equivalent pressure ranging from
0.5 — 1.5 x 10~° mbar. Ge was used as a dopant instead of Si
as it introduces less strain in GaN being similar in size to Ga
[35,36], and the change of the NW aspect ratio is negligible
even for high Ge doping levels (3.3 x 10% c¢m [3]) [37]. The
dopant concentrations of the samples under study, estimated
from secondary ion mass spectroscopy measurements in
reference samples [37], are summarized in Table 1.

Structural and morphological characterization of the het-
erostructures was performed by high-resolution transmission
electron microscopy (HRTEM) and high-angle annular dark
field (HAADF) scanning transmission electron microscopy
(STEM) using a FEI Tecnai F20 field emission gun microscope
operated at 200 kV. For microscopy studies, the NWs were
directly scratched from the substrate with a holey carbon TEM
grid. The periodicity of the samples was analyzed by high-
resolution x-ray diffraction (HRXRD) using a PANalytical
X’Pert PRO MRD system.

PHYSICAL REVIEW B 91, 205440 (2015)

PL spectra were obtained by exciting with a continuous-
wave frequency-doubled Ar laser (A = 244nm), with an
excitation power around 50 uW focused on a spot with
a diameter of ~100 pm, giving a power density of about
7 kW/m?. The emission from the sample was collected
by a Jobin Yvon HR460 monochromator equipped with an
ultraviolet-enhanced charge-coupled device (CCD) camera. In
the case of time-resolved PL, samples were excited using a
frequency-tripled Ti:sapphire laser (A = 270 nm) with pulse
width of 200 fs. This laser was augmented with a cavity
damper section with a base pulse repetition rate of 54 MHz.
This allowed the period between pulses to be varied from
20 ns to 5 ps. The excitation power was about 500 uW.
The luminescence was dispersed by a Jobin Yvon Triax320
monochromator and was detected by a Hamamatsu C—5680
streak camera.

III. RESULTS

Figure 1(a) shows an HAADF image of GaN NWs
containing an NID GaN base, followed by the GaN/AIN
heterostructure and the GaN cap. The different GaN:Ge and
AIN sections can be easily distinguished by the image contrast,
which scales with the atomic number of the observed material.
A magnified detail of the first GaN:Ge/AIN periods near the
base are displayed in temperature color in Fig. 1(b). No trace of
GaN-AlIN interdiffusion is appreciated in the images. Statistics
performed on the nanodisks and barrier thicknesses are in
good agreement with the nominal values. Figure 1(c) displays
a HRTEM image of three GaN:Ge nanodisks embedded
in AIN barrier material. In the HRTEM image shown, the
darker contrast corresponds to the GaN:Ge insertions while
the brighter lattice contrast is the AIN barrier, evidencing
the presence of an AIN shell with thickness roughly equal
to the size of the barriers. This shell is generated by
direct deposition of the impinging Al atoms due to the low
Al diffusion length at this growth temperature [16,38—41].
Furthermore, the GaN/AIN interfaces often present {1 — 102}
facets close to the NW sidewalls, highlighted by a dashed line
in Fig. 1(c), due to the plane bending phenomena related to
the elastic strain relaxation [15,16,25].

TEM images provide a local view of selected NWs, whereas
HRXRD measurements give a structural assessment of the
NW ensemble. Figure 1(d) depicts the w — 26 scans of the
(0002) x-ray reflections of one of the samples under study.
From the satellites of the GaN/AIN superlattice reflection, the
superlattice periods are extracted and summarized in Table I.

TABLE 1. Characteristics of the GaN/AIN NW heterostructures under study: Germanium beam equivalent pressure (BEPg.) during the
nanodisk growth, Ge concentration deduced from reference Ge-doped GaN NW samples measured by time-of-flight secondary ion mass
spectroscopy, GaN/AIN period extracted from HRXRD measurements, low-temperature (7' = 5 K) PL peak wavelength, and values of the E,

and a parameters in Eq. (3) extracted from the fits in Fig. 2(b).

Sample BEPg. (mbar) [Ge] (cm™3) Period from HRXRD (nm) PL peak wavelength (nm) E, (meV) a

N1 0 NID 7.54+0.2 454 40+ 10 9+2
N2 5.0 x 10710 9.0 x 10" 7.6+0.2 429 54410 31£5
N3 1.0 x 107 1.7 x 10% 7.4+0.2 392 53+10 42 +£11
N4 1.5%x107° 3.1 x 10% 7.4+0.2 384 68 + 10 131 £50

205440-2



LONG-LIVED EXCITONS IN GaN/AIN NANOWIRE ...

GaN:Ge (C)
AIN=— -
GaN:Ge
=~ AIN
GaN:Ge
AIN

[
o
=

©
O
s
£
<

x
o
<

Intensity (a.u.)

34 36

2Theta (degree)

FIG. 1. (Color online) (a) HAADF STEM image of the GaN/AIN
NW heterostructures. The AIN barriers (darker) and GaN disks
(brighter) have nominal thicknesses of 4 nm. (b) Zoom into the
squared region in (a) displayed in temperature color code. (c) HRTEM
image of the first three GaN:Ge disks (near the GaN stem). (d)
HRXRD w — 26 scan around the (0002) reflection of sample N3,
together with a simulation. The simulation is down shifted for clarity.

These superlattice periods were in good agreement with those
measured locally by means of TEM.

The optical properties of the NW heterostructures were
first analyzed by continuous-wave PL spectroscopy. Fig-
ure 2(a) shows the low-temperature (7 = 5K) emission of
the samples, displaying a blue shift with increasing dopant
concentration, which is attributed to the screening of the
internal electric field [25,28]. The peak PL wavelengths are
summarized in Table I. Figure 2(b) shows the variation of
the normalized integrated PL intensities as a function of
temperature. The PL intensities remains almost constant up
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FIG. 2. (Color online) (a) Normalized PL spectra of samples
N1-N4 measured at low temperature (7 = 5K). The spectra are
normalized and vertically shifted for clarity. The dotted vertical line
indicates the location of the GaN band gap. (b) Normalized integrated
PL intensity of the samples shown in (a) as a function of temperature.
Solid lines are fits to Eq (3). Inset: Simplified three-level model of
the PL dynamics.
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FIG. 3. (Color online) (a) Time-resolved PL spectra of sample
N3. The red stripe follows the intensity maximum as a function of
time. (b) Evolution of the PL spectra as a function of time. The time of
maximum intensity is taken as ¢ = 0. The spectra are acquired with
a time integration window of 0.4 ns. (c) Evolution of the PL peak
intensity as a function of time. The dashed line is an exponential fit
to the PL decay for times longer than 60 ns.

to about 100 K, after which, at room temperature, they drop to
20-40% of their maximum values. This behavior is char-
acteristic of GaN/AIN nanostructures with 3D confinement
[42—45], in contrast to planar structures, which generally
exhibit a PL quenching of several orders of magnitude at room
temperature [44].

To probe the band-to-band carrier dynamics within this
system, the decay of the PL under pulsed excitation was
analyzed. As a typical example, Fig. 3(a) shows the time-
resolved evolution of the PL spectra of sample N3 measured
at low temperature (7 = 5K). The emission presents a red
shift of 45 nm during the first ~60 ns before a steady state
is obtained, as illustrated in Fig. 3(b). This spectral shift is
systematic through all the investigated samples and ranges
from 0.1-0.3 eV, decreasing for increasing doping levels.
Following the PL intensity at the maximum of the spectrum
as a function of time [trajectory indicated by the red line in
Figs. 3(a) and 3(b)], the intensity decay in Fig. 3(c) is obtained.
Comparing Figs. 3(b) and 3(c), the initial red shift is associated
to a pronounced nonexponential drop of the PL intensity during
the first ~60 ns, followed by an exponential decay. These
PL dynamics are qualitatively the same for all the samples
regardless of doping level.

205440-3
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FIG. 4. (Color online) (a) PL decay for samples N1-N4 mea-
sured at low temperature (7 = 10K). The decays were taken
following the method described in Fig. 3. (b) PL decay characteristic
times extracted from the exponential part of the PL decays [similar
to Fig. 1(c)], plotted as a function of temperature. The emission
wavelengths are indicated in the figure. Superimposed, PL decay
times of an NID GaN/AIN quantum well (labeled NID QW) emitting
at approximately the same wavelength that N1.

The initial red shift and nonexponential behavior are
attributed to the perturbation of the band structure induced by
the excitation (screening of the polarization fields), and to band
filling, as previously observed in GaN/AlGaN quantum wells
[11]. Therefore, in subsequent analyses, only the time constant
extracted during the exponential decay regime [dashed line
in Fig. 3(c)] is addressed. This regime reflects the carrier
dynamics of the original band structure, once the photoinduced
perturbation from the laser is dissipated.

Figure 4(a) shows the low-temperature (7 = 5K) PL
evolution for the NW heterostructures with different dopant
concentrations. A drastic decrease of the decay time with
increasing Ge concentration is observed: the NID sample
displays a decay time on the order of several us, whereas the
decay times for higher dopant concentrations decrease by more
than an order of magnitude (to around 100 ns). These decay
times are orders of magnitude longer than shown in previous
literature reports [16,28], where the PL decay times were
even shorter than those of equivalent quantum well structures.
This discrepancy could be explained by the measurement
procedure: in Refs. [16,28], the decay times were estimated
from measurements exciting with a pulse repetition rate of
78 MHz (time between pulses = 12.8 ns). Based on the data
from Ref. [28], the PL from undoped (highest doped) samples
would have only dropped to about 60% (14 %) of the maximum
value before the next laser pulse hit. From their data, a 1/e
decay time can be extracted assuming exponential relaxation.
However, our experiments prove that the initial relaxation is
strongly nonexponential due to the screening of the electric
field induced by the laser pulse. With the lower excitation
power, after 12.8 ns none of the samples have entered the
exponential regime [dashed line in Fig. 3(c)], and only the most
heavily doped sample would have recovered from the initial
blue shift induced by the laser. We therefore conclude that the
measurements in Ref. [28] provide information mostly about
the recovery of the screening of the internal fields induced by
the measuring laser. This is in accordance to the decay time’s
(and the spectral shift’s) dependency on laser power reported
by Hille ez al. [28].
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The evolution of the characteristic PL decay time has been
analyzed as a function of temperature with the results plotted
in Fig. 4(b), where the relaxation times were extracted from
the exponential decay profiles as indicated in Fig. 3(c). In
all cases, the PL decay times remain constant (£10%) from
10 — 300K, as previously observed in the case of Stransky-
Krastanov GaN/AIN quantum dots [18]. This demonstrates
that the 3D confinement in the nanodisks efficiently suppresses
thermally activated nonradiative recombination channels up to
room temperature. In contrast, temperature-dependent time-
resolved measurements of GaN/AIN quantum well samples
show a decrease in relaxation time over this temperature range
by several orders of magnitude, as described in Ref. [18] and
illustrated in Fig. 4(b).

The thermally stable PL decay time in Fig. 4(b) lead us to
attribute the thermal quenching of the integrated PL intensity
in Fig. 2(b) to carrier losses during the relaxation process of
the hot photoexcited carriers to the exciton ground states. A
simplified view of the process can be provided by the three-
level model schematically described in the inset of Fig. 2(b). In
steady-state conditions the carrier generation rate, ®, equals
the relaxation rate to the exciton emitting state (1) plus the
nonradiative recombination rate:

o= 0 0 (1)
TNR  TRO

where ny is the optically excited population of the (0)
level, and tngr and tg( are the characteristic times associated
to the nonradiative processes and to the relaxation to the
exciton emitting state, respectively. By neglecting nonradiative
recombination once the excitons are trapped in the nanodisk,
assumption supported by the observation of a PL decay
constant with temperature, the PL intensity can be described as:
ni no )

L R R S
TRl Tro 1+ Tro/TNR

@)

where n, is the population of the exciton emitting state in the
nanodisk and tp; is the associated characteristic time.

Assuming that the photogeneration (®) is constant with
temperature, and that nonradiative processes from state (0)
are thermally activated, the PL intensity as a function of
temperature, /(7), can be described by:

(T = 0)
1 + aexp(—E,/kT)’

I(T) = 3
where E, represents the activation energy of the nonradiative
process, kT being the thermal energy, and a being a constant
coefficient. Solid lines in Fig. 2(b) are fits of the experimental
data to Eq. (3). The extracted values of E, and a are
summarized in Table I. An increase in both parameters with
larger doping concentration is observed, which points to an
enhanced probability of nonradiative processes with increasing
carrier density.

IV. DISCUSSION

The strong acceleration of the PL decay with increasing Ge
concentration points to a screening of the electric field in the
nanodisks that drastically defines the radiative carrier lifetime.
The magnitude of this effect is much larger than previously
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reported for GaN quantum wells [18,46]. Comparing the
low-temperature PL lifetimes of NID quantum wells and
nanodisks emitting at approximately the same wavelength, i.e.,
with the same electron-hole separation in energy, the decay
time in the case of the nanodisks is significantly longer. This
juxtaposition is illustrated in Fig. 4(b) for the decay times
of quantum wells emitting around 450 nm. This discrepancy
points to a significantly larger electron-hole separation in
space, which implies a different electric field distribution.

In order to understand the electric field distribution leading
to this giant screening effect, 3D calculations of the NW
strain state, band diagram and quantum confined states were
performed using the NEXTNANO3 software [47] with the
material parameters described in Ref. [48]. The NW was
defined as a hexagonal prism consisting of a long (50 nm) GaN
stem followed by a sequence of 10 AIN/GaN stacks and capped
with 18 nm of GaN. The radius of the GaN base was 20 nm,
the growth axis was [000—1] and the sidewall faces were
{1—100} planes. The structure was defined on a GaN substrate,
to provide a reference in-plane lattice parameter. The GaN stem
and the AIN/GaN heterostructure were laterally surrounded
by an AIN shell, and the whole structure was embedded in a
rectangular prism of air, which permits the elastic deformation
of misfit strain. Surface states were modeled as a surface charge
density of 2 x 10> cm™2 at the air/semiconductor interfaces
[49]. The presence of {1—102} facets in the AIN sections was
taken into account, as illustrated in Fig. 5(a), which shows a
(1—100) cross-section view of three nanodisks in the stack.

The 3D strain distribution was calculated by minimizing the
elastic energy and applying zero-stress boundary conditions at
the surface. The effect of doping on the strain distribution
was neglected [35,36]. Figures 5(b) and 5(c) display (1—100)
cross-sectional views of the strain components along the
(11-20) direction, &y, and (0001) direction, ¢, for three
nanodisks in the stack. Regarding the ¢,, component, the
center of the disk is compressed by the AIN sections (¢, =
—1.29%) and there is an elastic relaxation close to the
sidewalls. In contrast, the ¢,, strain component is almost zero
(e,; = —0.025%) along the center of the nanodisk, however
near the sidewalls the GaN gets significantly compressed due
to the presence of the AIN shell (up to &, = —2.2%). The
radial inhomogeneous strain results in nonzero &,, and &,
shear strain components, as illustrated in Fig. 5(d), which in
turn leads to radial piezoelectric polarization associated to the
nonzero e;s piezoelectric constant in the wurtzite lattice. On
the other hand, this particular strain distribution results also in
an increase of the GaN band gap by ~120 meV when moving
from the center of the nanodisk to the sidewalls (data obtained
using the deformation potentials from Ref. [50]).

The strain calculation provides a 3D map of the polarization
in the heterostructure. With this input, the nonlinear Poisson
equation was solved classically to obtain the 3D band structure
of the complete wire. After the Poisson equation was solved
in equilibrium, the eigenfunctions were calculated by solving
the Schrodinger equation in a quantum region that covered one
nanodisk in the center of the NW, including the AIN barriers on
the top and bottom. Figures 6(a) and 6(b) show the conduction
and valence band profiles along the [000—1] growth axis along
the center of the NW for Fig. 6(a) undoped nanodisks and
6(b) nanodisks with an n-type dopant concentration Np =
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FIG. 5. (Color online) (a) Schematic representation of three
GaN/AIN nanodisks in the center of the nanowire heterostructures,
as they are described in the input file for NEXTNANO3. The structure
is viewed along the [1—100] plane. White areas correspond to
GaN and yellow areas correspond to AIN. (b) Calculation of
the &, strain component (strain along [11—20]) for these same
disks. (c) Calculation of the ¢,, strain component (along [000-1]).
(d) Calculation of the ¢, shear strain component.

1.7 x 10 cm~3 (sample N3). In both cases, the polarization-
induced internal electric fields result in a sawtooth profile with
the electron level shifted towards the bottom of the nanodisk
and the hole level towards the top of the nanodisk. In the
doped structure, the internal electric field is reduced from 5.9
to 2.5 MV/cm due to carrier screening.

Figures 6(c) and 6(d) show the radial conduction and
valence band profiles along the [11—20] axis for undoped
and doped (Np = 1.7 x 10%° cm™3) nanodisks. In both cases,
the conduction (valence) band profile was taken at the bottom
(top) interface of the nanodisk. The squared wave functions
of the first electron and hole levels are also represented. In
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FIG. 6. (Color online) (a)—(d) Calculation of the conduction and
valence band profiles and first electronic levels of electrons and holes.
(a), (b) Conduction and valence band profiles along [000—1] taken
at the center of the NW, for (a) undoped nanodisks and (b) Ge-
doped nanodisks (sample N3). The ground electron and hole levels
are indicated by dashed lines. In (a), the ground hole level is not
indicated because the value of the squared wave function along the
center of the NW is zero. (c), (d) Radial conduction and valence band
profiles for the (c) undoped and (d) Ge-doped nanodisk in the center
of the stack. Note that the conduction band was taken at the bottom
of the disk, while the valence band was taken at the top of the disk.
The squared wave functions of the ground electron and hole states
are indicated in the figures.

the case of undoped nanodisks, the band bending induced
by the AIN shell pushes the electrons towards the center of
the NW, whereas the radial valence band profile has local
maxima near the NW sidewalls. This result is in agreement
with calculations by Rigutti et al. [51]. (GaN/AIGaN NW
heterostructures with AlGaN shell) and Rivera et al. [52]
(GaN/AlGaN NW heterostructures without shell), and in the
same line that the calculations of Marquardt et al. [53] for
InGaN/GaN NW heterostructures. Therefore, in addition to
the polarization-induced vertical separation of electron and
holes, the 3D geometry of the nanodisks leads to a radial
separation of carriers, which explains the delay of the radiative
recombination with respect to the quantum well case. Note
that the strain-induced enlargement of the GaN band gap at
the ~5 nm closest to the nanodisk sidewalls contributes to
separate the carriers, particularly the holes, from the core/shell
interface. The presence of {1—102} facets at the top interface
of the AIN sections, which enlarges the GaN disks close to
the surface, does not have a relevant effect on the radial
location of the hole. This is because the spontaneous and
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piezoelectric polarization shifts the hole towards the top of
the GaN nanodisk. However, these facets modify the electron
wave function, which results in a shift of the band-to-band
transition by ~300 meV.

At low dopant concentrations (below 10! cm?®), the electric
field along the [11—20] axis at the top GaN/AIN inter-
face, depicted in Fig. 6(e), presents a maximum value of
~0.6 MV/cm, i.e., one order of magnitude smaller than the
field along [000—1]. Increasing the doping concentration
leads to the screening of the lateral electric field, causing the
spatial broadening of the electron wave function described in
Fig. 6(d). In the valence band, the flattening of the potential
profile shifts the hole wave function towards the center of the
NW radially aligning them with the electron wave function.
The improved electron-hole wave function overlap explains
the drastic decrease of the radiative recombination lifetime.
Figure 7(b) also shows the attenuation of the electric field in
the radial direction as a function of the doping concentration.
The transition of the hole towards the center of the NW, i.e.,
the inversion of the electric field sign, takes place for a doping
concentration around 3.5 x 10" cm™3.

These calculations consider the presence of negatively
charged surface states with a density of 2 x 10'>cm~2. The
negatively charged surface attracts the holes, butis not a critical
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FIG. 7. (Color online) Calculation of the electric field along
[11—20] at the top of the nanodisk for various doping concentrations
in the nanodisks, (a) neglecting surface charges, and (b) with surface
charges at a concentration of o = —2 x 10'2cm~2. With higher
doping levels, the electric field in the disk is attenuated. Positive
electric field implies that it points in the [11—20] direction. The sign
of the electric field sees a crossover at a dopant concentration of (a)
~ 2 x 10" cm™3, and (b) ~ 4 x 10! cm™3. The magnitude of the
radial electric field is (a) 0.42 MV/cm, and (b) 0.58 MV/cm. A null
electric field was seen (a) 14 nm and (b) 17 nm from the center of the
wire.
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factor to determine the carrier distribution, since the electric
field is mostly associated to the piezoelectric phenomena.
Figure 7(a) describes the radial electric field in a similar
structure without surface charges. A complete suppression of
the surface charges lowers the required doping concentration
to invert the electric field to 2.0 x 10" cm™ and results in a
radial shift of the zero-field position (which corresponds to the
maximum of the hole wave function) by about 3 nm towards
the center of the NW for low doping levels.

The above-described calculations demonstrate that the
radial misalignment of the electron and hole wave functions is a
determining factor for the band-to-band dynamics in GaN/AIN
nanodisks. At low dopant levels, the radial electron-hole
separation leads to radiative lifetimes that are significantly
longer than in GaN/AIN quantum wells emitting at the
same wavelength. Upon increasing the dopant concentration,
carrier screening leads to a radial centralization of the hole
underneath the electron, and a large decrease in the radiative
lifetime. These results are also in agreement with the radiation
model shown in Fig. 2(b), which concurs that with higher
centralization of the hole and electron within the nanowire,
there will be a higher energetic barrier (E,) for carriers to
recombine nonradiatively at the edges of the nanowire.

V. CONCLUSIONS

The carrier dynamics in 40-period GaN/AIN (4 nm/4 nm)
NW heterostructures have been explored as a function of the
Ge dopant concentration in the GaN disks. Long PL decay
times, on the order of microseconds, are measured in nonin-
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tentionally doped disks and persist up to room temperature.
This confirms the efficiency of quantum confinement in the
nanodisks to inhibit nonradiative recombination. The long
relaxation times are explained as the result of internal electric
fields present in the nanodisks, with an axial component in
the range of a few MV/cm associated to spontaneous and
piezoelectric polarization, and a radial component associated
to the radial variation of lattice strain. Simulations show that
at low dopant concentrations, a large electron-hole separation
in both the axial and radial directions is present, with holes
located axially on top of the nanodisk and radially close to
the surface, and electrons located axially at the bottom of
the nanodisk and radially centered. The relatively weak radial
electric fields, calculated to be one order of magnitude smaller
than the axial fields, are rapidly screened by doping, which
leads to both a radial and axial centralization of the hole
underneath the electron. This bidirectional dopant-induced
giant screening leads to large decreases in radiative lifetime by
about two orders of magnitude, in addition to the luminescence
blue shift.
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ABSTRACT: We report the observation of transverse-mag-
netic-polarized infrared absorption assigned to the s—p,
intraband transition in Ge-doped GaN/AIN nanodisks (NDs)
in self-assembled GaN nanowires (NWs). The s—p, absorption
line experiences a blue shift with increasing ND Ge
concentration and a red shift with increasing ND thickness.
The experimental results in terms of interband and intraband
spectroscopy are compared to theoretical calculations of the
band diagram and electronic structure of GaN/AIN hetero-
structured NWs, accounting for their three-dimensional strain
distribution and the presence of surface states. From the
theoretical analysis, we conclude that the formation of an AIN
shell during the heterostructure growth applies a uniaxial
compressive strain which blue shifts the interband optical
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transitions but has little influence on the intraband transitions. The presence of surface states with density levels expected for
m-GaN plane charge-deplete the base of the NWs but is insufficient to screen the polarization-induced internal electric field in
the heterostructures. Simulations show that the free-carrier screening of the polarization-induced internal electric field in the NDs
is critical to predicting the photoluminescence behavior. The intraband transitions, on the other hand, are blue-shifted due to
many-body effects, namely, the exchange interaction and depolarization shift, which exceed the red shift induced by carrier

screening.
KEYWORDS: Nanowire, GaN, intraband, intersubband

As optoelectronic devices push toward higher efficiencies,
the control of carrier relaxation becomes a key aspect for
device engineering, which is particularly relevant in the case of
intraband/intersubband (ISB) optoelectronics (quantum well
infrared photodetectors, quantum cascade detectors, quantum
cascade lasers). Longer intraband lifetimes have been proven to
exist in laterally confined systems, including quantum dots
(QDs)' ™ and nanowires (NWs).>¢ In the case of NWs, their
large surface-to-volume ratio allows misfit strain to be elastically
released, extending the viable active region size and
composition beyond the limits of planar systems or QDs. For
these reasons, NWs are under study to improve the
performance of THz quantum cascade lasers,”® whose
operating temperature is currently limited by nonradiative
scattering processes which quickly depopulate the upper laser
level.

Semiconductor NWs have already become a powerful kind of
nanomaterial with promising applications in electronics,”
optoelectronics,lo’11 energy conversion,'>'* and sensorics."*"

-4 ACS Publications  © 2014 American Chemical Society
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However, not much information has been reported so far on
NW intraband electronic transitions. From the experimental
viewpoint, infrared (IR) optical absorption associated to
intraband transitions between laterally confined states have
been observed in bismuth NWs,'® and intraband effects have
proven relevant to understand the operation of Si-NW field
effect transistors.'” However, conduction band fluctuations
associated to stacking faults and polytypism'®>® have hindered
the realization of intraband optoelectronic devices using self-
assembled GaAs-based heterostructured NWs (bottom-up
approach). As an alternative, intraband electroluminescence
was recently obtained from nanopilars lithographically defined
on a standard GaAs/AlGaAs quantum cascade laser structure
(top-down approach).*!

GaN could be a model material for the study of intraband
transitions in heterostructured NWs, since the presence of
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stacking faults or extended defects can be limited to the first
hundred nanometers close to the substrate. IlI-nitrides have
recently emerged as promising semiconductors for new
intraband devices.”> >* GaN is transparent over a large spectral
region, notably for wavelengths longer than 360 nm, reaching
into the far-IR, excluding the Restrahlen band (from 9.6 to 19
um). Additionally, the large energy of GaN’s longitudinal-
optical (LO) phonons (92 meV) opens prospects for high-
temperature THz quantum cascade lasers and intraband devices
covering the 5—10 THz band, inaccessible to As-based
technologies due to phonon absorption. Furthermore, their
large conduction band offset (about 1.8 eV for GaN/AIN>"%7)
and subpicosecond intraband relaxation times**~>" render them
appealing materials for ultrafast photonic devices from the near
to the far-IR.>*** Currently, ISB absorption in GaN/AlGaN
quantum wells (QWs) can be tuned from 1.0 to 10 um,>*%
and in the THz range (>20 um).*¥*~* Room-temperature
transverse-magnetic (TM) polarized near-IR intraband absorp-
tion in GaN/AIN QDs has also been reported.'”* This
absorption was attributed to transitions from the ground state
of the conduction band, s, to the first excited electronic state
confined along the growth axis, p,. The lateral confinement in
the QDs gives rise to additional transitions that react to
transverse-electric (TE) polarized excitation. The optical
signature associated to s—p,,, was observed in the mid-IR by
Vardi et al.* using in-plane electronic transport at low
temperatures. However, shifting the s—p, transition toward
the mid- or far-IR is hindered by the requirement of lattice
mismatch for the QD formation following the Stranski—
Krastanov growth mode. Regarding GaN NWs, the only
experimental result has been reported by Tanaka et al,** who
observed polarization-dependent near-IR absorption in a
sample containing GaN/AIN (1 nm/2.7 nm) NW hetero-
structures. Furthermore, the feasibility of electron transport via
quantized levels in the conduction band of GaN/AIN
heterostructured NWs was demonstrated by the fabrication of
resonant tunneling diodes.*>*

In this Letter, we first present a theoretical study of the
intraconduction-band electronic structure of GaN/AIN hetero-
structured NWs, accounting for the strain distribution and the
presence of surface states. Then, we report the experimental
observation of TM-polarized IR absorption assigned to the s—
p. intraband transition in Ge-doped GaN/AIN nanodisks
(NDs) inserted in self-assembled GaN NWs grown on Si(111)
by plasma-assisted molecular-beam epitaxy (PAMBE). The s—
p. absorption line experiences a blue shift with increasing ND-
doping level and a red shift with increasing ND thickness. The
experimental results in terms of interband and intraband
spectroscopy are compared with the theoretical calculations,
and the inclusion of many-body effects is found to be critical in
estimating the electronic transitions. Carrier screening of the
polarization-induced internal electric field is critical for
understanding the photoluminescence (PL) behavior of the
NDs, and the intraband transitions are blue-shifted from the
exchange interaction and depolarization shift, which overpower
the red shift induced by carrier screening.

Theoretical Calculations. Three-dimensional (3D) calcu-
lations of the NW strain state, band diagram, and quantum
confined states were performed using the Nextnano3
Schrodinger-Poisson equation solver.* The parameters used
for GaN and AIN calculations are summarized in a previous
paper.* We assumed a residual n-type doping Np = 5 X 10
cm™>, and the dopant concentration in the GaN NDs was Np, =

1666

§ X 10" ecm™. The NW was defined as a hexagonal prism
consisting of a long (50 nm) GaN section followed by a
sequence of 14 AIN/GaN stacks and capped with 18 nm of
GaN. The growth axis was [000—1].*%*” The NW GaN base
radius was simulated to be 20 nm. The structure was defined on
a GaN substrate, to provide a reference in-plane lattice
parameter. The NW GaN base and the AIN/GaN hetero-
structures were laterally surrounded by an AIN shell,** and the
whole structure was embedded in a rectangular prism of air,
which permits elastic deformation. A schematic view of the
structure excluding and including the AIN shell is presented in
Figure la and b, respectively.

The 3D strain distribution was calculated by minimization of
the elastic energy*®* through the application of zero-stress
boundary conditions at the surface, which allowed the NW to
deform in all three spatial directions. Figure la and b displays
cross-sectional views of the strain components along the (0001)
direction, e, and along the <11—20> direction, e,,, for a NW
containing a 4 nm/4 nm GaN/AIN sequence, excluding and
including a S-nm-thick AIN shell, respectively. Figure Ic
compares the e, profile in both cases. In the absence of a shell,
the heterostructure evolves toward an equilibrium situation
where the GaN NDs are compressively strained and the barriers
are tensile strained. In the center of the NW, the relationship
between e,, = —1.23% and e,, = 0.66% approaches the biaxial
strain configuration (e,/e,, = —2c;3/cy3 & 0.5327, with the
elastic constants ¢;3 = 106 GPa and c;; = 398 GPa for GaN*°).
However, at the air—NW interface, the structure is almost fully
relaxed. The presence of an AIN shell results in the application
of a uniaxial compressive stress along (0001). As a result, in the
center of the NDs, e,, = —1.28% is still dominated by the
pseudomorphic axial heterostructures, but the deformation
along the growth axis is reduced to e, = 0.006%.

For the calculation of the band profiles the spontaneous
polarization and the piezoelectric fields resulting from the strain
distribution were taken into account. The effect of surface states
was simulated by introducing a two-dimensional (2D) charge
density at the air/NW interface. We considered a surface charge
of 6 = =2 X 10" cm™, which is a low value for a chemically
clean GaN m-surface according to the measurements of Bertelli
et al>' Figure 2a displays the conduction band profile at the
center of the NW, comparing the cases of a NW
heterostructure including and excluding the AIN shell, with
and without surface states. The presence of surface charges fully
depletes the GaN NW base, in agreement with previous studies
and calculations.*”**”>* The difference between the GaN
polarization and the average polarization of the GaN/AIN
heterostructure results in the formation of a depletion region at
the base/heterostructure interface and an accumulation region
at the heterostructure/cap layer interface. The GaN/AIN
sequence presents the sawtooth profile characteristic of GaN/
AIN superlattices, due to the spontaneous and piezoelectric
polarization differences between GaN and AIN. The effect of
surface charges in the heterostructure region is negligible; that
is, the density of surface states considered is not enough to
screen the polarization effect. Given the N polarity of the NW,
the internal electric field in the NDs shifts the conduction band
ground state toward the base of the NW, whereas the valence
band ground state is shifted toward the top of the NW. The
magnitude of the electric field is not significantly affected by the
presence of the AIN shell, and it remains at 4.7 + 0.1 MV/cm
for all of the NDs, identical to the value expected for GaN/AIN
(4 nm/4 nm) QWs. This is due to the fact that the change in

dx.doi.org/10.1021/nl5002247 | Nano Lett. 2014, 14, 1665—1673
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Figure 1. (a) From top to bottom, schematic material description of
the simulated structure and cross-sectional views of the e, and e,
strain components for a NW without AIN shell. The simulated NW
incorporates 14 GaN/AIN (4 nm/4 nm) sections, and it has a radius
of 20 nm in the <11-20> direction. Left: cross-sectional view along
[1-100] at the center or the NW. Right: cross-sectional view along
[0001] taken at the center of the eighth GaN ND (vertical dashed line
on the left). (b) The same for a nanowire with a S-nm-thick AIN shell
as indicated in the schematic material description. (c) Comparison of
the e,, profile at along (0001) down the center of the NW, for a
structure without shell and one with a S-nm-thick AIN shell.

piezoelectric polarization in the GaN NDs is compensated by
the corresponding change in the AIN barriers.

The conduction (valence) band profiles along <11-—20>
obtained near the top (bottom) of a GaN ND are presented in
Figure 2 for the cases of (b) a NW without shell and (c) a NW
with a S-nm-thick AIN shell. Results with and without surface
states are indistinguishable in both cases. Cross sections of the
squared wave functions, ['¥(r)l,” for the lower confined level in
the conduction band and the higher confined level in the
valence band are included. Conduction band profiles were
taken at different heights within the GaN ND. Starting from the
bottom of the ND, and moving upward, the conduction band
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Figure 2. (a) Simulated conduction band profile along (0001) at the
center of the NW for structures with and without shell, with and
without surface states. Below, conduction (valence) band profiles
obtained at the bottom (top) of the eighth GaN ND in (b) a NW
without shell and (c) a NW with a S-nm-thick AIN shell. A cross
section of the probability density distribution, ¥(r)I* for the lower
confined level in the conduction band and the higher confined level in
the valence band is included. Dashed lines describe the variation of the
conduction band profile when moving from the bottom to the top of
the GaN ND; distances from the bottom of the ND are indicated. (d)
Theoretical energy of the band-to-band transition energy as a function
of the GaN ND thickness. Data are compared to the transition in the
case of GaN/AIN QWs (2D layers).

profile can be seen at different points throughout the ND, as
illustrated with dashed lines. At the bottom of the ND, the
potential minimum is located at the center of the NW, whereas
at the top of the ND, the potential minimum is located near the
surface or at the ND/AIN-shell interface, that is, when
migrating from the bottom to the top of the ND, the
conduction band profile seems to inflate in the center. The
addition of the AIN shell induces band pinning at the ND/AIN-
shell interface, in conjunction with an increased rate of
conduction band inflation. This band profile evolution is a
direct consequence of the radial strain distribution in the ND.

Figure 2d describes the evolution of the band-to-band
transition in the ND as a function of the ND thickness,
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comparing NWs including and excluding the AIN shell to
GaN/AIN QWs. The lateral confinement within the NW
geometry induces a blue shift of the interband transition, which
cannot be justified solely by a change in the strain distribution
(as explained above, the center of the NW keeps the biaxial
strain configuration and the relaxation is limited to the vicinity
of the surface). In the presence of the AIN shell, the uniaxial
compressive strain along (0001) results in an increase of the
GaN band gap, which further blue shifts the band-to-band
transition. This uniaxial strain component is fundamental to
understanding the PL from GaN/Al(Ga)N heterostructured
NWs 3248

Figure 3a presents cross-sectional views of the square wave
function, ['¥(r)l,” for the three lowest electron states (s, p,, p,)

(a) .
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Figure 3. (a) Probability density distribution, I¥(r)I?, for the three
lowest electron states (s, p,, p,) in a GaN/AIN (4 nm/4 nm) ND in a
NW with a radius of 20 nm (data correspond to a NW with a S-nm-
thick AIN shell). Below, first excited states due to confinement along
the growth axis (p,, p, pz‘y). The energies of the electron states with
respect to the conduction band ground state, s, are calculated to be E,.
=27.6 meV, E, =288 meV, E, = 496 meV, E,., = 496 meV, E,y =
496 meV. (b) Variation of the s—p, transition as a function of the GaN
ND thickness in the case of a NW with an AIN shell, without shell
without surface states, and without shell with a surface charge 6 = —2
X 10" cm™ Data are compared to the ¢,—e; energy difference in the
case of GaN/AIN QWs, calculated following ref 44.

in a GaN/AIN (4 nm/4 nm) ND, and the first excited states
with secondary nodes along the growth axis (p,, p, . p.,)- The
data corresponds to a NW with a 5-nm-thick AIN shell, but it is
qualitatively similar for NWs without a shell. As a result of the
polarization-induced internal electric field, the lower electron
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state (s) is shifted toward the bottom of ND (maximum
probability density ~0.7 nm above the bottom of the ND). In
contrast, the first excited state with a secondary node along the
growth axis (p,) presents a ring-shaped maximum probability
density spatially located at the vertical center of the ND (~2.0
nm from the bottom of the ND). This difference in location
means that the wave function is distorted by the potential
distribution in the center of the ND, presented in Figure 2b and
¢, where the potential minimum is located near the ND/AIN-
shell interface, as opposed to in the center. Therefore, the s and
p. wave functions are not only vertically shifted due to the
polarization-induced electric field, but also laterally due to the
radial strain distribution in the ND. This lateral shift does not
appear in the case of GaN/AIN QDs, where the hydrostatic
compressive strain radially confines all the ground-state and
excited electrons, as well as holes toward the center of the
QD.>>*¢ In comparison to QWs/QDs, the ND’s lack of spatial
overlap between the excited and ground electronic states results
in a reduced oscillator strength, which should translate into
slower (and nonexponential) intraband carrier relaxation, with
a high dependence on the NW radius.

It is important to note that the shape of the wave functions
depends on the geometry of the NDs. Current calculations are
performed assuming that the NDs are hexagonal prisms. In the
case of a ND stack where the radii of the disks decrease from
top to bottom, the asymmetric strain distribution along (0001)
results in a modified lateral potential profile, which shifts the
conduction band potential minima toward the ND/AIN-shell
interface even at the bottom of the NDs.** This reshapes the s
wave function and generates a local I¥(r)* minimum at the
center of the NW and renders the wave function more ring-like.

Figure 3b displays the evolution of the s—p, intraband
transition as a function of the ND thickness, comparing various
NW configurations with the e;—e, transition in GaN/AIN (4
nm/4 nm) QWs. In this calculation it is assumed that the in-
plane lattice parameter of the QW superlattice evolves to the
minimum_energy configuration, as has been experimentally
observed.”” The effect of the AIN shell is smaller for intraband
transitions (~50 meV) than for interband transitions (~300
meV). This intraband energy shift is also smaller than the
typical intraband absorption line width in GaN/AIN QWs or
QDs (50—100 meV**).

To study the influence of the NW radius, calculations were
performed for NWs containing GaN/AIN NDs with 4-nm-thick
AIN barriers and different ND thicknesses (2—8 nm) as well as
different NW radii (14—26 nm). The interband and s—p,
intraband transition energies were calculated, and each showed
changes of less than 4% over the investigated NW radial range.
On the contrary, when analyzing the s—p, or s—p, transitions,
the radius of the NW plays a large role in the discretization.
Considering a ND of height 4 nm, the s—p, or s—p, transition
occurs around 45 meV (~27 um) for a NW radius of 14 nm,
versus 3 meV (~410 um) for a NW radius of 26 nm. This is
attributed to the laterally confined states whose energy levels
approach at higher NW radii.

Materials and Experimental Methods. N-polar GaN/
AIN heterostructured NWs were grown catalyst-free by
PAMBE on floating-zone Si(111) substrates in N-rich
atmosphere (III/V ~ 0.25) at ~790 °C.** The NW vertical
growth rate was 390 nm/h. They consist of a nonintentionally
doped (n.i.d.) GaN base with a length of 600 nm and a radius
of about 25—40 nm, followed by 40 periods of GaN/AIN
sections, and a 20-nm-thick n.i.d. GaN cap layer. The thickness
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of the GaN sections (NDs) was varied between 3 and 8 nm,
while the thickness of the AIN sections (barriers) was kept
constant at 4 nm. The GaN NDs were doped with Ge, using a
beam equivalent pressure (BEP,) in the range of 0.5—1.5 X
107 mbar. Ge is known to dope n-type GaN NWs and to easily
incorporate at large concentrations with weak impact on the
NW morphology.”® The structural details of the samples under
study are summarized in Table 1.

Table 1. Description of the Samples under Study: GaN ND
Thickness, BEP, during the ND Growth, Low-Temperature
(T = 5 K) PL Peak Wavelength, and Room-Temperature ISB
Absorption Peak Wavelength

ND PL peak
thickness BEPg, wavelength ISB absorption peak
sample (nm) (mbar) (nm) wavelength (ym)

S1 4 0 454

S2 4 5.0 x 1071 429 1.95
S3 4 1.0 X 107° 392 1.65
S4 4 1.5 X 107° 384 1.60
Ss 3 9 x 107 363 1.58
S6 4 9x 10710 390 1.62
S7 6 9 x 10710 410 1.74
S8 7 9x 10710 419 1.75
S9 8 9x 1071 438 1.75

Structural and morphological characterization of the
heterostructures was performed by high-resolution transmission
electron microscopy (HRTEM) and annular dark field (ADF)
scanning transmission electron microscopy (STEM) using a
FEI Tecnai F20 field emission gun microscope operated at 200
kV. For microscopy studies, the NWs were directly scratched
from the substrate with a holey carbon TEM grid.

PL spectra were obtained by exciting with a continuous-wave
frequency-doubled Ar laser (1 = 244 nm), with an excitation
power around 50 yW focused on a spot with a diameter of
~100 pum. The emission from the sample was collected by a
Jobin Yvon HR460 monochromator equipped with a UV-
enhanced charge-coupled device (CCD) camera. Intraband
absorption was probed by Fourier transform infrared spectros-
copy (FTIR) performed in a Bruker V70v spectrometer using a
halogen lamp, a CaF, beam splitter, and an HgCdTe detector.
The transmission was measured at room temperature, in
vacuum, with the sample tilted at the Brewster angle. The
transmission spectra for TE- and TM-polarized light are
corrected by the corresponding transmission of a sample
containing 1-pum-long nid. GaN NWs on floating zone
Si(111).

Results and Discussion. For a correct interpretation of the
optical studies, the geometry and dimensions of the
heterostructures have been analyzed by transmission electron
microscopy methods. Figure 4 shows ADF and HRTEM
images of samples S6 and S9, which confirm the growth of the
wires along the (0001) direction for both phases, GaN and
AIN, with a perfect epitaxy consecutively achieved between
both materials. The GaN/AIN heterostructures are enveloped
by a thin (2—5 nm) AIN layer, starting from the topmost AIN
barrier extending along the GaN stem. Electron energy loss
spectroscopy (EELS) measurements demonstrate that there is
no interdiffusion of Ga or Al, confirming sharp interfaces
between the NDs and the barriers.
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Figure 4. (a) ADF image of a set of GaN NWs from sample S6,
containing 40 periods of AIN/GaN NDs. (b) Zoom-in of the squared
area in (a). (c) HRTEM image of several GaN NDs and AIN barriers.
(d,e) ADF images of sets of wires from sample S9. (f) HRTEM image
of several GaN NDs, separated by AIN barriers.

In the HRTEM images, we observe that the AIN sections
often present {1—102} facets close to the surface. To quantify
the effect of this AIN {1-102} faceting on the electronic
transitions, we have modeled NWs containing GaN/AIN
heterostructures with a GaN ND thickness varying from 2 to
8 nm and with AIN barriers consisting of a hexagonal prism of 2
nm followed by a 2-nm-thick hexagonal truncated pyramid with
{1-102} facets. Compared with the nonfaceted structures
presented above, faceted structures have on average a 10%
lower interband energy difference, as well as a 6% higher s—p,
intraband energy difference.

The measurement of intraband absorption requires the first
electronic level of the nanostructures to be populated with
electrons. Therefore, we analyzed a series of NWs containing a
40-period GaN:Ge/AIN (4 nm/4 nm) heterostructure with
different Ge doping levels (samples S1—S4 in Table 1).
According to time-of-flight secondary ion mass spectroscopy
(ToF-SIMS) measurements,”® the various BEP, (5.0 X 1071,
1.0 X 107% and 1.5 X 107 mbar) should produce Ge
concentrations of [Ge] ~ 9 X 107" 1.7 x 107%, and 3.1 X
1072° cm™>, respectively. Figure S presents the results of (a)
interband (PL) and (b) intraband (FTIR) optical character-
ization of this series. The low-temperature (T = $ K) PL peak
wavelength of the structures blue shifts more than 70 nm (see
Table 1) and broadens for increasing doping levels, which can
be assigned to the screening of the polarization-induced
internal electric field in the NDs by the free carriers.’® This
further supported by the agreement between the experimental
results and theoretical calculations for the band-to-band
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Figure S. (a) Low-temperature PL spectra of Ge-doped GaN/AIN (4 nm/4 nm) heterostructured NWs with different doping levels in the GaN NDs
(samples S1—S4 in Table 1). The spectra are normalized by their maximum and vertically shifted for clarity. The BEPg, used for Ge doping is
indicated by each curve. The emission wavelength of the GaN base is indicated by a vertical dashed line. (b) Room-temperature IR transmission
spectra for TE-(dashed) and TM-polarized (solid) light measured for Ge-doped GaN/AIN (4 nm/4 nm) heterostructured NWs with different
doping levels in the GaN NDs. The spectra are vertically shifted for clarity. (c) Variation of the PL peak wavelength as a function of the estimated Ge
concentration. Dots are experimental values from (a); the solid line is a theoretical calculation of the band-to-band transition at low temperature
using a 3D model of the structure. (d) Variation of the intraband transition wavelength as a function of the estimated Ge concentration. Dots are
experimental values from (b); the dashed line labeled (1) is a 1D calculation of the intraband transition accounting for the screening of the internal
electric field; the dotted line (2) incorporates corrections associated to both screening and exchange interaction; the solid line (3) accounts for

screening, exchange interaction, and depolarization shift.

transitions using a 3D model and including the screened
internal electric fields (see Figure 5¢).%°

The intraband absorption was investigated at room temper-
ature by measuring the IR transmission of the samples in an
FTIR system, with the results depicted in Figure Sb. The dip in
the IR transmission for TM-polarized light is assigned to the s—
p. transition, following the intraband polarization selection
rules. This intraband absorption line shifts systematically
toward shorter wavelengths with increasing dopant concen-
tration, in contradiction to simulations considering only the
screening of the polarization-induced internal electric field.*®
This discrepancy between simulations and experiments is
attributed to many-body effects. We have previously shown the
relevance of these many-body phenomena in the case of GaN/
Al(Ga)N QWs,*"%> where their magnitudes can be comparable
to the value of the e,—e, transition energy.

To explain the experimental results, two kinds of many-body
effects must be considered, namely, those modifying the energy
levels (exchange interaction) and those modifying the intra-
band absorption energy (plasmon screening and excitonic
shift).** The exchange interaction is due to the repulsion
between electrons with the same spin, following the Pauli
exclusion principle. We have estimated the shift induced by the
exchange interaction, E., following a one-dimensional (1D)
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approach, using the Hartree—Fock method with the approx-
imation by Bandara et al.®>

—e?ky
E_. (k) =
exch ( ) 4re

[3E(k/kF) - 0.32(kF/kL)]
T (1)

0

where e is the electron charge, € the dielectric constant, &, the
vacuum permittivity, kg = (27ng)"/? with ng being the surface
charge density in the well, k; = #/L with L being the QW
thickness, and E(k/kg) is a complete elliptical integral of the
second kind.

The shift of the intraband absorption energy induced by
plasmon screening (depolarization shift) and by the Coulomb
interaction between the excited electron and the quasi-hole left
in the ground state (excitonic or final-state interaction), was
calculated as®*

Ep,=(e,—e)yl+a—p ()

where e; and e, are the energies of the first and second
electronic levels in the well, and @ and f# (both >0) represent
the depolarization shift and the exciton interaction, respectively.
The frequency shift @ was calculated by numerical methods
following®**”

dx.doi.org/10.1021/nl5002247 | Nano Lett. 2014, 14, 1665—1673



Nano Letters

----- TE polarization
== TM polarization

1 T v 1 T
(a) ;
Pl
k7]
k= nm 3
-
30 , g | 8 I
N /\ =
© | |l x|
£ \\7\ B
o A
A I — e 7nm ] i
8 nm
i 1 1 1 1 ] 1 1 1 1
350 400 450 500 550 1

. Wavelength (nm) c

£ 500 : r T :g =

£ ®» 3 35k
© < &
S_-, = 450F 3 }: =3 3.0F

c - S 25
= 2 400t ] ¢
oo 30 20

2 350 2 sk

2 == 2
ND Thickness (nm) - ND Thickness (nm)

Figure 6. (a) Low-temperature PL spectra of Ge-doped GaN/AIN heterostructured NWs with 4-nm-thick AIN barriers and various GaN ND
thicknesses as indicated (samples S5—S9 in Table 1). The spectra are normalized by their maximum and vertically shifted for clarity. (b) Room-
temperature IR transmission spectra for TE- and TM-polarized light measured for Ge-doped GaN/AIN heterostructured NWs with different GaN
ND thickness. The spectra are vertically shifted for clarity. (c) Variation of the PL peak wavelength as a function of the ND thickness. Dots are
experimental values from (a); the solid line is a theoretical calculation of the band-to-band transition at low temperature using a 3D model of the
structure and assuming [Ge] = 1.5 X 10* cm™>; the dashed line assumes [Ge] = 2.4 X 10*° cm™. (d) Variation of the intraband transition
wavelength as a function of the ND thickness. Dots are experimental values from (b); the dashed line labeled (1) is a 1D calculation of the intraband
transition accounting for the screening of the internal electric field; the dotted line (2) incorporates corrections associated to both screening and
exchange interaction; the solid line (3) accounts for screening, exchange interaction, and depolarization shift.

2 experimentally observed. This might be explained, by the
a= ¢ _hs ) / / ¥ (2 )¥(2') dz' P o Y & > Y
1

3 dispersion introduced by the fluctuations in the NW radius, or
(3) by the fact that the NW geometry is expected to preferentially
with W,(2’) and W,(z") being the wave functions associated to

interact with TM coupled light and hence hinder the
: / / absorption of TE-polarized light.”**®

e; and ¢,, respectively. The values of W,(z’), ¥,(2z'), e}, and e,

were extracted using the Nextnano3 Schrédinger—Poisson

In conjunction to these experiments, we have analyzed a
equation solver. The values of  (after eq 59 in ref 64) were series of NWs containing 40-period GaN:Ge/AIN hetero-
found to be at least 2 orders of magnitude smaller than a (as it

structures with 4-nm-thick AIN barriers and various GaN ND
is also in the case of GaAs QWs) and were therefore neglected thicknesses (samples S5—S9 in Table 1), all of them were
in the calculations.

doped with Ge using BEP, = 9 X 107'° mbar (estimated [Ge]
Figure Sd depicts the predicted red shift of e,—e; with

~ 1.5 X 10*° cm™3). The low-temperature (T = 5 K) PL peak
increasing doping level, based on the Nextnano3 calculations

eeg(e, — €

energy from these samples, presented in Figure 6a, blue shifts

taking the screening of the internal electric field into account for increasing ND thickness. This evolution is qualitatively
(dashed line). Introducing the corrections associated to the described by theoretical calculations of the band-to-band
exchange interaction (eq 1) and depolarization shift (egs 2 and transition using a 3D model which takes the screening of the
3) translates into a blue shift of the absorption which can reach internal electric field into account (see Figure 6c). % The blue
several hundreds of nanometers (solid line). The theoretical shift of the experimental data with respect to the model could
results are in good agreement with the experimental data, be explained by an underestimation of the effective dopant
assuming fully ionized Ge dopants, with a density that is concentration (note the good agreement with the dashed-line
estimated from the BEPg, and compared to ToF-SIMS calculations, which assume [Ge] ~ 2.4 X 10®° cm™).
measurements in ref 58. Room-temperature IR transmission measurements of this
The s—p, and s—p, transitions, predicted in the far-IR around series are summarized in Figure Sb. As described above, the dip
40—50 pm and sensitive to TE-polarization, were not in the IR transmission for TM-polarized light is assigned to the
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s—p, transition, which shifts systematically toward longer
wavelengths for thicker NDs. Figure 6d compares the
experimental data to predictions made by Nextnano3 taking
the screening of the internal electric field into account (dashed
line). Introducing the corrections associated to the exchange
interaction (eq 1) and depolarization shift (eqs 2 and 3)
translates into a blue-shifted transition, which fits the
experimental absorption data.

Limitations. It is important to keep in mind the limitations
associated with the calculations of many-body effects. The
models of the exchange interaction and the depolarization shift
described above are approximations that consider these effects
as a perturbation of the Hartree—Fock equation.** Equation 1
is an approximation that accounts for the deformation of the
ground state assuming square QWs,*>%® and eq 3 is extracted
from a two-level model which requires that there is significant
oscillator strength for transitions to only one excited state.%’
Looking at the order of magnitude of the experimental spectral
shifts, comparable to the e,—e; energy, the validity of these
approximations is arguable. They provide a valid qualitative
description, but a rigorous solution of the Hartree—Fock
equation would be required, which is beyond the scope of this
work.

Conclusions. From the theoretical analysis of the band
diagram and electronic structure of GaN NWs containing a
sequence of GaN/AIN NDs, we conclude that the formation of
an AIN shell during the heterostructure growth results in a
uniaxial compressive strain that blue shifts the interband optical
transitions but does not have a critical influence on the
intraband transitions. The presence of surface states with the
density levels expected for the m-GaN plane causes a charge
depletion of the base of the NWs, but it is not high enough to
screen the polarization-induced internal electric field in the
heterostructures. Variations in the NW radius do not modify
significantly the interband or s—p, intraband transitions, but
they shift the intraband levels associated to the lateral
confinement (p,, p,).

From the experimental viewpoint, we report the observation
of a TM-polarized IR absorption line assigned to the s—p,
intraband transition in Ge-doped GaN/AIN NDs inserted in
self-assembled GaN NWs grown on Si(111) by PAMBE. The
s—p, and s—p, intraband transitions are not observed, most
likely due to fluctuations of the NW radius and to the
preferential coupling of TM light to the NW geometry. For
increasing doping levels, we observe a broadening and blue shift
of the PL as a result of the screening of the polarization-
induced internal electric field in the NDs. Regarding intraband
transitions, doping induces a blue shift of the s—p, absorption
line attributed to many-body effects, namely, the exchange
interaction and depolarization shift, which dominate the red
shift induced by internal electric field screening. The s—p,
transition red shifts with increasing ND thickness as
theoretically expected.
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ABSTRACT

This paper assesses nonpolar m- and a-plane GaN/Al(Ga)N multi-quantum-wells grown
on bulk GaN for intersubband optoelectronics in the short- and mid-wavelength infrared
ranges. The characterization results are compared to those for reference samples grown on
the polar c-plane, and are verified by self-consistent Schrodinger-Poisson calculations. The
best results in terms of mosaicity, surface roughness, photoluminescence linewidth and
intensity, as well as intersubband absorption are obtained from m-plane structures, which
display room-temperature intersubband absorption in the range from 1.5 to 2.9 um. Based on
these results, a series of m-plane GaN/AlGaN multi-quantum-wells were designed to
determine the accessible spectral range in the mid-infrared. These samples exhibit tunable
room-temperature intersubband absorption from 4.0 to 5.8 um, the long-wavelength limit
being set by the absorption associated with the second order of the Reststrahlen band in the

GaN substrates.



I. INTRODUCTION

GaN/AlGaN nanostructures have recently emerged as promising materials for new
intersubband (ISB) devices covering a large portion of the infrared spectrum.' Their large
conduction band offsets and sub-picosecond ISB relaxation times make them appealing for
ultrafast photonics devices operating at telecommunication wavelengths.* Additionally, the
large energy of the longitudinal-optical phonon in GaN (92 meV, 13 um) opens prospects for

room temperature THz lasers.®’

So far, studies on ISB transitions in group-IlI-nitride multi-quantum-wells (MQWs)
have mostly focused on polar c-plane structures. However, this crystallographic orientation
comes with the complicating factor of a polarization-induced internal electric field, resulting
in an asymmetric triangular potential in the quantum wells (QWs). The electric field renders
ISB transition energies more sensitive to the strain state of the QWs,® and hampers the
extension of ISB transitions towards far-infrared wavelengths. This quantum-confined Stark
effect is a major hurdle for device design, although it has been partially compensated by the
implementation of more complex step-QW designs.”'? The use of nonpolar a or m
crystallographic orientations allows for GaN/Al(Ga)N systems to operate without the
influence of this electric field" and facilitates the device design while still maintaining the

benefits of GaN.

Regarding nonpolar materials, ISB optical absorption at A ~ 2.1 um has been reported in
1.75-nm-thick a-plane GaN MQWs with 5.1-nm-thick AIN barriers grown by plasma-
assisted molecular-beam epitaxy (PAMBE) on r-plane sapphire.14 Recently, using free-
standing m-plane GaN substrates, low-temperature (7 = 9 K) ISB absorption has been shown
at far-infrared wavelengths (47.5-79.5 um) using m-GaN/AlGaN MQWs grown by

PAMBE."” Room temperature mid-infrared (MIR) ISB absorption in the 4.20 to 4.84 pm



range has also been observed recently on m-plane GaN/AlysGapsN MQWs grown by
metalorganic vapor phase epitaxy (MOVPE).' Finally, Pesach et al.'’ have demonstrated
QW infrared photodetectors (QWIPs) consisting of InggosGagoosN/Alp07GagesN (2.5 nm /
56.2 nm) and Iny ;GagoN/GaN (3 nm /50 nm) MQWs, which displayed photocurrent peaks at

7.5 um and 9.3 um, respectively, when characterized at 14 K.

In this paper, we compare GaN/AIN MQWs simultaneously grown on the nonpolar a-
and m-planes as well as on the polar c-plane displaying ISB transitions in the short
wavelength infrared (SWIR) region. In terms of mosaicity, surface roughness,
photoluminescence (PL) linewidth and intensity, and ISB absorption, the best nonpolar
results are obtained from m-plane structures. With respect to polar structures, the ISB
transitions are redshifted, and present similar line widths. Based on these results, we
designed a series of m-plane GaN/AlGaN MQWs to determine the accessible spectral range
in the MIR. These samples show tunable room-temperature ISB absorption from 4.0 to
5.8 pm, where the long-wavelength limit is set by the absorption associated with the second

order of the Reststrahlen band in the bulk GaN substrates.

Il. EXPERIMENTAL

The samples were grown by PAMBE at a substrate temperature 7s = 720°C and with a
nitrogen-limited growth rate of 0.4 ML/s (= 360 nm/h). Growth was performed under the
optimum conditions for c-plane GaN, i.e. slightly Ga-rich conditions.*'*" For a- and m-
plane GaN/Al(Ga)N heterostructures, the substrates were free-standing semi-insulating GaN
sliced along the respective nonpolar surfaces from (0001)-oriented GaN boules synthesized
by hydride vapor phase epitaxy (resistivity >10° Qcm, dislocation density <5x10° cm™). For

the c-plane GaN/Al(Ga)N heterostructures, growth was performed either on 1-pm-thick



AlN-on-sapphire templates (for SWIR structures) or on 4-um-thick GaN-on-Si(111)
templates (for MIR structures), both deposited by MOVPE. The heterostructures were
simulated using the Nextnano® 8x8 k.p self-consistent Schrodinger-Poisson solver,” with

the material parameters described by Kandaswamy e al.®

The surface morphology of the layers was studied by field-emission scanning electron
microscopy (SEM) using a Zeiss Ultra 55 microscope, and by atomic force microscopy
(AFM) in the tapping mode using a Dimension 3100 system. The periodicity and structural
properties of the MQWs were studied by X-ray diffraction (XRD) using a Seifert XRD 3003
PTS-HR diffractometer with a beam concentrator in front of a Ge(220) 2- or 4-bounce

monochromator and a 0.15 degree long plate collimator in front of the detector.

Photoluminescence (PL) spectra were obtained by exciting with a continuous-wave
solid-state laser (A =244 nm), with an excitation power around 100 uW focused on a spot
with a diameter of =100 um. The emission from the sample was collected by a Jobin Yvon
HR460 monochromator equipped with an ultraviolet-enhanced charge-coupled device

camera. All PL measurements were performed at 5 K.

Fourier transform infrared spectroscopy (FTIR) was used to probe the ISB absorption
using a halogen lamp and a mercury-cadmium-telluride detector incorporated into a Bruker
V70v spectrometer. All samples were polished at 45° (bulk GaN or sapphire substrates) or at
30° (Si substrates) to form multipass waveguides allowing 4-5 interactions with the active
region. The samples were tested in transmission mode using an MIR polarizer to discern
between the transverse-electric (TE) and transverse-magnetic (TM) polarized light.
Observation of ISB absorption requires a component of the electric field perpendicular to the
QW plane, i.e. TE polarized light is not absorbed.”' All FTIR measurements were performed

at room temperature.



lll. RESULTS

A. SWIR absorption in GaN/AIN MQWs

To compare the different crystal orientations a series of 40-period GaN/AIN MQWs was
grown along the m-, a- and c- crystallographic directions simultaneously. This comparison
was possible because each of the three crystallographic planes grows two-dimensionally
under Ga-rich conditions in PAMBE.”*** These structures were designed to display ISB
transitions in the 292-795 meV (1.4-4.2 pm) spectral range. The QWs were doped with Si at
a concentration of ~1x10" cm™. The geometry of the samples and their experimentally-

obtained optical properties are summarized in Table I.

To evaluate their structural quality, the surface morphology of the samples was assessed
by SEM and AFM, as illustrated in Figure 1 for samples S3a and S3m. On a large scale, the
SEM images of the nonpolar samples show smooth surfaces with cracks propagating along
the c axis (average distance between cracks =10 pum), resulting in {1120} or {1100} facets
for m- or a-oriented samples, respectively. In the polar case, crack propagation occurs when
GaN/AlGaN heterostructures are grown under tensile strain. In this case, cracks are
isotropically distributed, and present vertical {1100} facets.”>*® Due to the anisotropy of the
nonpolar lattices, relaxation along the ¢ and a/m directions must be analyzed independently.
Cracks propagating along the in-plane axis m have been described in a-AIN grown on a-
plane 6H-SiC,”’ which was explained as due to the tensile strain along the ¢ axis (—1.1%
lattice mismatch) in combination with a lack of low-energy slip systems available for plastic
relaxation. However, in a highly compressed configuration (with larger mismatch such as a-
GaN on r-sapphire having +1.2% and +16.1% lattice mismatch along ¢ and m, respectively),

cracks are observed to propagate preferentially along the ¢ axis.”*? In the case of m-AlGaN,



cracks propagating along the in-plane axis a have been repor‘[e:d.30’31 For the samples in this
study, it appears that these defects do not develop during the growth, but instead during the
cooling process as a result of the temperature-dependent GaN/AIN lattice mismatch.’* On
the AFM scale, the root-mean-square (rms) surface roughness measured in images of an area
of 5x5 umz was 1.1+0.2 nm, 2.0+£0.6 nm, and 3.7+1.2 nm for ¢-, m-, and a-plane samples,
respectively, i.e. m-plane growth systematically resulted in smoother surfaces than a-plane

growth.

The periodicity and strain state of the samples were analyzed by XRD. Figure 2 presents
the 820 scans of the (3300) reflection of samples S1m, S2m, and S3m, and the (1120)
reflection of samples Sla and S2a. Table I summarizes the MQW period extracted from the
inter-satellite distance in the XRD measurements. The full width at half maximum (FWHM)
of the rocking curves were measured for the substrate and the MQW zero-order reflection
with ¢ = 0° and ¢ = 90° (Aw, and Aw,, respectively for the m-oriented samples, and Aw, and
Ao, respectively for the a-oriented sample), which provides information on the sample
mosaicity in the ¢ and a directions, respectively for the m-oriented samples, and in the ¢ and
m directions, respectively for the a-oriented samples. Comparing the values in Table I, it

appears that the m-plane MQWs exhibit better crystalline quality than the a-plane structures.

To assess the MQW strain state, reciprocal space maps were measured. Figure 3
illustrates the results for sample S2m, where the (3300), (3302), and (3210) reflections
were considered. The reciprocal space is presented using the GaN substrate as a reference.
The shift in q(0001) (projection of the reciprocal space vector along [0001]) of the MQW
(3300) reflection with respect to the substrate (see Fig. 3(b)) reveals a tilt of the epitaxial

structure. The tilt angles towards the in-plane directions (8w, and dw, for m oriented

samples, and d®, and dwy, for a oriented samples) are summarized in Table 1. Taking the



measured tilt into account, the strain states along the a, m and ¢ axis can be described as

& = PP where gp is the strain along the axis p (a, m or c), p is the measured lattice

Pr

parameter along this axis, and p, is the theoretical value of p assuming that the structure is
relaxed. Using the lattice parameters of Vurgaftman e al>* and Wright er al’
(agan = 3.1891 A; aan=3.112 A; cgan=5.1850 A; can =4.980 A), the lattice mismatch
between AIN and GaN is —2.4% in the a and m directions and —3.9% in the ¢ direction. The
larger mismatch along ¢ explains the larger tilt towards this direction (0.05° to 0.29°). This
tilt is a way to relax the in-plane lattice mismatch, and thus to reduce the number of

dislocations necessary to release the strain.™

Figure 4 presents the values of strain extracted from the reciprocal space maps,
compared with the in-plane lattice mismatch between the relaxed MQWs (considered as a
relaxed AlGaN alloy with the average Al composition of the structure) and the GaN
substrates. Due to the lattice mismatch, all the structures undergo in-plane tensile strain, and
as a result of Hooke’s law, they are compressively strained in the growth direction. In the
case of m-oriented samples, all the MQWs are about 50% relaxed along the in-plane a axis,

whereas almost full relaxation is observed along c.

The PL spectra of all the samples were measured at low temperature (7 = 5 K), with the
results in terms of emission wavelength and intensity summarized in Table I. As an
illustration, Figure 5(a) shows the spectra of samples S2¢, S2m and S2a. For all samples, the
c- and a- orientations systematically lead to broader emission peaks than those measured for
the m-orientation. In addition, the PL from m-plane samples is twice as intense as that from

a-plane, and more than twenty times as intense as that from c-plane QWs.

In Figure 5(b), the PL peak emission energies are compared with theoretical calculations

assuming that the in-plane lattice parameters correspond to those of an AlGaN ternary alloy



with an Al composition equal to the average Al content of the MQW. For nonpolar samples,
their luminescence is systematically above the GaN band gap, supporting the absence of
internal electric field. For the c-plane samples, the emission energy shifts below the GaN
band gap when increasing the well width. In general, the emission energies are in agreement
with the theoretical calculations. The deviation from the calculations observed for S1 is
attributed to carrier localization in thickness fluctuations in such small QWs (the thickness of

a GaN monolayer being ~ 0.25 nm).

The ISB absorption in the SWIR range was measured at room temperature by FTIR
spectroscopy. To identify the ISB transition in the samples, the TE transmission spectra were
divided by the respective TM transmission spectra, and the results are presented in Figure
6(a) and Table I. As expected, the absorption is red-shifted when decreasing the QW width.
In the case of nonpolar MQWs, the absence of the internal electric field results in a red shift
of the ISB energy, in comparison to c-plane structures, where the triangular potential profile
in the wells contributes to the separation of the quantized electron levels. A similar result was
observed in the case of semipolar (1122) MQWs due to the reduction of spontaneous and
piezoelectric polarizations.*® Nonpolar m-plane samples exhibit an absorption linewidth
similar to that of polar MQWs absorbing at the same wavelengths. In contrast, the TM
polarized absorption of a-plane sample S2a undergoes a significant broadening and deviation

from the calculations, and no ISB absorption was observed for sample S3a.

In summary, ISB transitions in m-oriented GaN/AIN MQWs can cover the SWIR spectral
range with performance comparable to polar MQWs, with the advantage of design simplicity
in a geometry with square potential band profiles. Furthermore, m-plane structures display
better results in terms of mosaicity, surface roughness, PL linewidth and intensity, and ISB

absorption than those obtained when growing on the nonpolar a plane.



B. MIR absorption in GaN/AlIGaN MQW:s

In a second stage, we have analysed the possibility of covering the MIR spectral region
with nonpolar QWs. Based on the previous results, only the m crystallographic orientation
was considered. The QWs were enlarged to achieve the desired spectral shift, and the AIN
barriers were replaced by the ternary alloy AlGaN with a twofold purpose: reducing the
lattice mismatch in the MQW and approaching the excited level in the QW to the continuum,
to mimic the band diagram of a QWIP. The barriers were chosen to be 22.6 nm thick, in
order to prevent coupling between QWs even in the largest QWs. Four m-plane structures
were designed to display ISB transitions between the ground conduction band level and the
first excited level (e;—e;) in the 186-356 meV (3.4-6.7 um) range, using the QW
thicknesses and Al contents in the barriers summarized in Table II. Note that the use of bulk
GaN as a substrate sets an additional limit for characterization. Even though the GaN
Reststrahlen band spans from 9.6 um to 19 um, absorption in the range of 6.7 um to 9 um
has been observed in bulk GaN substrates with carrier concentrations <1016cm'3, and was
attributed to the second harmonic of the Reststrahlen band.>’ ™ Figure 7 shows the band
diagrams of the m-plane MQWs, together with those of structures with the same dimensions
but grown along the ¢ direction. In the case of the c-oriented MQWs studied in this work,
characterization of ISB absorption in the spectral range between 6.7 um and 9 um is possible

due to the use of floating-zone silicon substrates, as previously demonstrated.*’

A series of 50-period GaN/AlyGa;xN MQWs was grown along the m- and c-
crystallographic directions simultaneously, following the designs in Table II. As a first
evaluation of the structural quality, the surface morphology was assessed by AFM and SEM,
as illustrated in Figure 8 for sample S4m. Similar to the SWIR samples, SEM images of the
nonpolar samples reveal cracks propagating along the c-axis. However, the distance between

cracks increased to =15-30 um. At the AFM scale, all the nonpolar samples in Table II



present similar morphology: large-scale (5%5 um? to 10x10 pm? images) roughness in the
range of 7-15 nm, whereas at a smaller scale (1x1 pm? images) the surfaces are smooth, with

rms roughness in the 1-2 nm range.

The periodicity, strain state and mosaicity of sample S7m were analyzed by XRD. To
assess the MQW strain state, we measured various reciprocal space maps for sample S7m
(the error bars of this technique were too large to extract reliable conclusions in samples
containing lower Al content). The extracted strain states are g, =0.03+£0.15%, ¢,=—
0.43+0.40%, and €. =—0.27+£0.40%. Compared to the relaxed lattice mismatch between the
GaN/Aly44GagseN MQW and the GaN substrate (—0.98% in the a and m directions and —
1.6% in the ¢ direction), they point to a certain relaxation in spite of the large error bars of
the measurement. The FWHM of the rocking curves of the MQW reflection were
Ao, =0.28° and Aw, = 0.22°, pointing to a significant improvement of the MQW crystalline
quality with respect to the GaN/AIN QWs (see Table I) owing to the reduced lattice

mismatch.

The PL spectra of all the samples were measured at low temperature, as illustrated by
Figure 9(a). In Figure 9(b), the PL emission energies are compared with theoretical
calculations as a function of the QW width. For the c-plane samples, the luminescence is
systematically below the GaN bandgap due to the internal electric field, and it exhibits
superimposed oscillations due to Fabry-Perot interferences. For nonpolar samples, the
emission remains above the GaN band gap energy. In both cases, decreasing the QW width
leads to a red shift of the PL energy, with emission energies in agreement with the

calculations.

The ISB absorption in the MIR range was measured at room temperature by FTIR

spectroscopy. To identify the ISB transition in the samples, the substrate transmission
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spectrum was divided by the respective TM transmission spectra, with the results displayed
in Figures 10(a) and (b). In nonpolar structures, increasing the QW width leads to a red shift
of the ISB energies from 308 to 213 meV (4.0 to 5.8 um), in agreement with calculations as
shown in Figure 10(c). The deviation observed in the sample with the largest QWs
(calculated transition at 186 meV) is attributed to the proximity of the second order of the
Reststrahlen band at 184 meV (6.7 um), which sets the onset of substrate absorption
[shadowed area in Figures 10(a) and (c)]. For all polar samples, two absorption peaks are
observed. The peak at lower energy corresponds to the (e;—e;) transition, whereas the
higher energy peak is assigned to ISB transitions involving upper states (e;—es3, e;—¢€4), as
previously observed in GaN/AIN QWs.*! In symmetric structures, the e;—e;3 transition is
forbidden due to parity, whereas e;—e4 is allowed. However, both transitions are possible in
asymmetric polar QWs, and the second peak might hence correspond to the combination of
both transitions. In this series of samples, the absorption in m- and c-oriented MQWs is
located in the same spectral range, both theoretically and experimentally. This coincidence is
due to the choice of the Al content in the barriers, which determines the energetic location of
e; in the c-plane structures. Increasing the Al content of the barriers would introduce only
slight corrections to (e;—e¢;) in m-plane MQWs, but it would induce a major blue shift of

this transition in the c-plane MQWs due to the internal electric field.

IV CONCLUSIONS

In summary, we have shown room temperature SWIR ISB absorption in a series of
nonpolar a- and m- plane and polar c-plane GaN/AIN MQWs with various QW thicknesses.
Comparing the two nonpolar crystallographic planes, the best results in terms of mosaicity,

surface roughness, PL linewidth and intensity, and ISB absorption were obtained for m-

11



oriented samples. We have demonstrated that ISB transitions in m-GaN/AIN MQWs can
cover the whole SWIR spectrum (1.5-2.9 pm) with performance comparable to polar MQWs
and with the advantage of design simplicity. The ISB absorption is systematically red shifted
with respect to polar structures with the same geometry due to the triangular potential profile
induced by the internal electric field. Drawing from the experience in the SWIR range, we
have designed a series of m-plane GaN/AlGaN MQWs with ternary barriers and with larger
QWs, to shift the (e;—e;) ISB energy towards the MIR. We have demonstrated
experimentally that the ISB absorption in these m-plane samples can be tuned in the range of
4.0-5.8 um, the longer wavelength limit being set by the second order of the GaN

Reststrahlen band when using bulk substrates.
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TABLES

Table I: Structural and optical characteristics of the GaN/AIN MQW samples on GaN
substrates: QW thickness (fow) (barrier thickness is 3.6 nm for all samples); MQW period
measured by XRD; broadening of the w-scan of the (3300) XRD reflection in the ¢ and a
directions (Aw. and Awm,, respectively) for m-oriented samples and substrates, and

broadening of the m-scan of the (1120) XRD reflection in the ¢ and m directions (Ao, and

A, respectively) for a-oriented samples and substrates; tilt between the MQW and the

GaN substrate towards the ¢ and a directions (dw. and dw,, respectively) for m-oriented

samples, and towards the ¢ and m directions (0w, and dw,, respectively) for a-oriented

samples; strain state in the 3 perpendicular directions m, a and ¢ (g, &4, and €. respectively);

PL peak energy and intensity normalized with respect to S1m; simulated and measured ISB

transition energy.

oy XRD  XRD XRD Til Sl M
Sample ‘9% Period FWHM FWHM o Strain (%) gy e
(nm) (m) MOQW (%) GaN (°) MQW/GaN (°) [normalized  ISB transition
intensity | (meV)
&, = 0.38+0.15
Ao, =033 Aw,=0.028  d®,=020
SIm 1.5 5.1 <~ < <~ £.=—1.03£040  3.871] 712 /799
Ao, =039 Ao, =0028 80,004 T U
&, = 0.44+0.15
Ao, =044 Aw,=0037  80,=0.08
S2m 23 59 <~ < < £,=—0.50£0.40 3.8 [0.94] 437/ 578
Ao, =030 Ao, =0.040  Bw,=0015 7T HLlE
_ _ - &= 0.41£0.15
S3m 3.1 67 imc;g‘gg i“":g'gig g‘”";g'gf £, =—0.63£0.40  3.7[0.58] 296 / 425
©a =T ®a =T ©a= V- g. = —0.23+0.40
j j j £, = 0.3340.15
Sla 15 5.1 2‘”";%27? ﬁmﬁ;%'gzg g"”";gég &, =—0.56£0.40 3.9 [0.56] 712/ 815
Om =L On =1 On =0 £, = —0.62+0.40
£, = 0.3240.15
Ao.=053 Aw,=0019  dw.=029 >
S2a 23 59 <~ <~ <" &, =—0.42£0.40  3.7[0.24] 431/755
Ao, =040 Aw,=0023  Bw,=0015 7
S3a 31 67 - - - ~ 3.7[0.11] 296 / -
Sle 15 5.1 - - - ~ 3.7[0.014] 814/815
S2c 23 5.9 - - - - 3.2 [0.008] 6571731
S3¢ 31 67 - - - - 3.0 [0.003] 603 / 624
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Table II: Structural and optical characteristics of the GaN/AlIGaN MQW samples: QW

thickness (fqw) (barrier thickness is 22.6 nm for all samples); MQW period measured by

XRD; Al composition in the barrier (xg); PL peak energy; simulated and measured first

(e1—ey), second (e;—e;) and third (e;—e,) ISB transition energies. Samples S4, S5, and S7

were Si-doped with [Si] ~2x10" cm”. Sample S6 was doped with [Si] = 8x10" cm™. (*)

Thickness extrapolated from XRD measurements of other samples in the same series.

XRD X PL peak Simul. (e;—e,) / Simul. (e;—es, e;—¢4) /
Sample tow (nm) Period ((;) energy Meas. ISB Meas. ISB transition
(nm) k eV) transition (meV) (meV)
S4m 3.1 257 (%) 26 3.60 186 /222 --
S5m 2.8 254 (%) 31 3.64 223 /213 --
Sém 2.5 251 (%) 35 3.39 261/251 --
S7m 2.0 24.6 (*) 44 3.40 356 /308 --
S4c 3.1 25.7(*) 26 3.61 162 /188 227,256 /270
S5¢ 2.8 254 31 3.68 200 /209 264,294 /319
Séc 2.5 25.1 35 341 226 /241 292,323 /326
S7c 2.0 24.6 44 3.46 290 /286 358,387 /378
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Figure captions

Figure 1. SEM and AFM images of samples (a) S3a and (b) S3m.

Figure 2. XRD 0-20 scans of the (3300) reflection of samples S1m, S2m, and S3m, and the
(1120) reflection of samples Sla and S2a. The corresponding QW thicknesses are indicated

at the right side of the figure.

Figure 3. Reciprocal space maps of sample S2m around asymmetric reflections (a) (3302)
with the c-axis in the diffraction plane and (c) (3210) with the g-axis in the diffraction plane,

and symmetric reflection (b) (3300) oriented along c. (cps= counts per second)

Figure 4. Strain state of the MQWs extracted from XRD measurements. (a) In-plane lattice
parameter a (m samples) or m (a samples). (b) In-plane lattice parameter c. (¢) Out-of-plane
lattice parameter. Positive (negative) values of strain correspond to compressive (tensile)
strain. Dashed lines indicate the lattice mismatch between a relaxed AlGaN layer with the

average Al concentration of the MQW and the GaN substrate.

Figure 5. (a) PL spectra of samples measured at low temperature (7= 5 K). (b) PL peak
energies as a function of the QW width. Error bars correspond to the FWHM of the PL
peaks. Solid lines are theoretical calculations assuming that the in-plane lattice parameters of
the MQWs correspond to those of a relaxed AlGaN alloy with the average Al composition of

the structure. Dashed lines mark the location of the GaN band gap.

Figure 6. (a) TM-polarized ISB absorption of the samples in Table I measured at room
temperature. Data are normalized and vertically shifted for clarity. The corresponding QW
thicknesses are indicated on the right side. (b) ISB energies as a function of the QW width.

Solid lines correspond to theoretical simulations assuming that the in-plane lattice
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parameters of the MQWs correspond to those of a relaxed AlGaN alloy with the average Al

composition of the structure.

Figure 7. Conduction band diagram with first four energy levels and electron wavefunctions

of a QW in the center of the active region of samples (a) S4m, (b) S7m, (c) S4c, and (d) S7c.

Figure 8. Typical (a) SEM and (b) AFM images of the GaN/AIGaN MQWs in Table II.

Measurements correspond to sample S4m.

Figure 9. (a) PL spectra of the m- and c-plane GaN/AlIGaN MQWs in Table II measured at
low temperature. Data are normalized and vertically shifted for clarity. The corresponding
QW thicknesses are indicated on the left side. (b) PL peak energies as a function of the QW
width. Error bars correspond to the FWHM of the PL emission. Solid lines are theoretical
calculations of the band-to-band transition assuming that the in-plane lattice parameters of
the MQWs correspond to those of a relaxed AlGaN alloy with the average Al composition of

the structure. Dashed lines mark the location of the GaN band gap.

Figure 10. TM-polarized ISB absorption spectra for (a) the m-plane and (b) c-plane
GaN/AlGaN MQWs in Table II measured at room temperature. Data are normalized and
vertically shifted for clarity. The corresponding QW thicknesses are indicated on the right
side. ISB energies as a function of QW width for all (c) m-plane and (d) c-plane samples.
Solid lines are theoretical calculations assuming that the in-plane lattice parameters of the
MQWs correspond to those of an AlGaN alloy with the average Al composition of the
structure. Shadowed areas in graphs (a) and (c) mark the second order of the Reststrahlen

band of GaN.

18






T T v7//

£
c
-
)

2.2 nm
1.3 nm

....... o
......... «
||||||||| 1
z 4L
.......... -
I Y ks 1
....... 1o
4«
P b
]
5l
o o ~
m c g
8 s O glE-----mH
© - o
oY = = * 1©
N T [ 1
V] = ]
e TMas T TEreagzsve ]
v 4
SRR -SSR 49
hilhs “TETE S o} 3
PP PP TP TP WP ST PP SPIN SR sl wPOPI WP ey

(‘n"e) AlIsuaju| pazijewloN

2Theta (°)



q(1100) [A1]

q(1100) [A1]

q(0001) [A]

(¢) (3210)
5 -

5.55

21 205 2 -195
q(1120) [AY]

q(0001) [A1]
cps

5000




Strain (%)

F T T T 7 T 7 T H4fT T 7 T~ 1 71T "qF" T T T T T

[ JE ]| e samples
i 1 ,,-"’ © asamples

@71 .- ® 1 © ]

1 L 1 1 i 1 1 1 1 L 1 | -

3 L n i L n
15 20 25 3.0

ik L : .
16 20 25 30
QW Width (nm)

15 2.0 25 3.0



PL Intensity (cps)

Wavelength (nm)

480 440 400 360 320
ET T T T
E ——m plane
aplane @
6| cplane
10F
F 7=5K
I
10 —
33
V >
4 =
10F )
E w
103_ A mplane
E 30 O aplane
L > ol
! 3 O cplane
10, PR S S S R PR I 1 1 1 1 1 1 1 1
25 3.0 35 4.0 15 20 25 30

Energy (eV)

QW Width (nm)

N
o
=]

Wavelength (nm)



Normalized Absorption

Wavelength (um)
6 4 3 2 1.5

3.1 nm

Energy (eV)

0.8

(2
[

o
IS

0.2

L

O aplane
O cplane
1

I 1 1 1 1 1 I
04 06 08 10
Energy (eV)

QW Width (nm)

PR R R B
15 20 25 30

o

Wavelength (um)



Energy (eV)

Energy (eV)

12
1.0
0.8
0.6
04
0.2
0.0

12
1.0

Band edge

T T T T T T T el e2
-(a) S4m +(b) STm e3 e4
L e [

- — vV — B ]
A N
o _ N

t t t t H t t t t
-(c) S4c +(d) S7¢ E
L 1 - /.

20 25 30 35 15 20 25 30 35

Position (nm)

Position (nm)




I - = '-- ‘
00 s =
11-20]




Normalized Intensity

Wavelength (nm)

400 380 360 340 320
BRI e ——r——7—
(a) GaN{ ——m plane A moplane (b) 4
- : ¢ plane E cpl
7=5K H piane
: 3.7+ 1
[2.0nm E ) I 7
: N 3.6 ]
: L
2.5 nm : b § 7
: @ I D\
: LIC.I 3.5 P
| 2.8 nm i i .
: 3.4F I{J
3.1nm : r .
C 1 Lo 1 3.3 1 1 4
32 34 36 38 40 2.0 2:5 3.0

Energy (eV)

QW Width (nm)

w
B
o

350

Wavelength (nm)

w
o
o



Wavelength (um)

Normalized Absorption

T
0.40F

0.35

Energy (eV)
© o
N w
[4)] (=)

e

N

o
T

o
-
)]

87 6 5 4 3 87 6 5 4 3
(a) m plane (b) c plane 7=300 K
‘//-/"\-\- - -
/\'! i 2.0 nm |
% " i 2.5nm]|
P B 2.8 nm-
1 1 1 1 L 1 1 3.1 nlm_
02 03 04 05 02 03 04 05
Energy (eV)
(c) m plane " |l (d)cplane ' i

.

1
2.0

QW Width (nm)

D
Wavelength (um)

[6)]

o0 ~N O



Annex 9






®

JOURNAL OF APPLIED PHYSICS 113, 143109 (2013)
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We report on the observation of intersubband absorption in GaN/AIN quantum well superlattices
grown on (1122)-oriented GaN. The absorption is tuned in the 1.5-4.5 um wavelength range by
adjusting the well thickness. The semipolar samples are compared with polar samples with
identical well thickness grown during the same run. The intersubband absorption of semipolar
samples shows a significant red shift with respect to the polar ones due to the reduction of the
internal electric field in the quantum wells. The experimental results are compared with
simulations and confirm the reduction of the polarization discontinuity along the growth axis in the
semipolar case. The absorption spectral shape depends on the sample growth direction: for polar
quantum wells the intersubband spectrum is a sum of Lorentzian resonances, whereas a Gaussian
shape is observed in the semipolar case. This dissimilarity is explained by different carrier
localization in these two cases. © 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4801528]
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I. INTRODUCTION

Since the pioneering work of West and Eglash in 1984,"
intersubband (ISB) transitions in semiconductor quantum
wells (QWs), i.e., the transitions between the confined levels
within the same band, have attracted great attention. This in-
terest has been motivated by the development of a new kind
of optoelectronic devices based on ISB transitions such as
quantum cascade lasers (QCLs)2’3 and quantum well infrared
photodetectors (QWIPs).*© The spectral domain accessible
for ISB devices is limited on the short wavelength side by
the available band offset in the heterostructure and the mate-
rial transparency. To access the near-infrared spectral range,
nitride heterostructures started to be intensively explored
from the late 1990s.” Thanks to their large conduction band
offset, ISB absorption in the 1.3—4 um range has been dem-
onstrated in GaN/AIN QWs grown along the [0001] polar
direction.®” Nitride heterostructures grown along the [0001]
polar axis possess an intense internal electric field due to
spontaneous and piezoelectric polarization.'” The built-in
field can be extremely strong up to 10 MV/cm for AIN/GaN
QWSs.'! The presence of this internal field complicates the
design of ISB devices'? since it induces band bending effects
and the formation of depletion/accumulation regions, while
reducing the oscillator strength associated with the ISB tran-
sition. For optoelectronic applications, it is, therefore, desira-
ble to reduce the internal electric field. This can be achieved
by using II-nitride materials synthesized in the cubic

DElectronic mail: houssaine.machhadani@gmail.com

0021-8979/2013/113(14)/143109/5/$30.00

113, 143109-1

phase'®~'® or by changing the growth direction to set the

polarization vector at 90°."

The later strategy has been implemented using nonpolar
growth planes, namely, the m-plane {1010}'® or the a-plane
{1120}."” However, growth of nonpolar Ill-nitrides is chal-
lenging due to the strong anisotropy of the surface properties,
resulting in layers with a high density of crystalline defects.
An alternative approach is the growth along semipolar
planes, such as {1122}. The advantage of semipolar orienta-
tions is that they allow a considerable reduction of the inter-
nal electric field®® while presenting lower in-plane
anisotropy with respect to non-polar surfaces.”’ We have
previously reported the observation of ISB absorption in
non-intentionally doped semipolar GaN/AIN QWs using a
photoinduced absorption spectroscopic technique relying on
the photogeneration of electron-hole pairs in the QWs.*

In this work, we present a systematic study of the photo-
luminescence (PL) and ISB absorption of polar and semipolar
GaN/AIN QWs grown by plasma-assisted molecular beam
epitaxy (PAMBE). With respect to previous studies, efficient
Si doping enabled the direct observation of the ISB absorption
in both polar and semipolar samples with the same well thick-
ness, grown during the same run. The optical properties are
compared with structural characterizations and simulations,
confirming a strong reduction of the internal field in the case
of the semipolar orientation. By increasing the well thickness
from 1.2 to 3 nm, the peak ISB absorption wavelength is tuned
from 1.5 to 3.3 um for semipolar samples, and from 1.5 to
2 pum for polar samples. The spectral lineshape of the absorp-
tion is Gaussian in the case of the semipolar orientation, while
it is a sum of Lorentzian functions for the polar orientation.

© 2013 AIP Publishing LLC
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Il. RESULTS AND DISCUSSION
A. Sample growth and structural characterization

GalN/AIN semipolar QWs have been grown by PAMBE
using the optimized growth conditions described in Ref. 22.
Substrates consisted of 2-um-thick (1122)-oriented GaN
layers deposited on m-sapphire by MOVPE.”* The PAMBE
growth starts with a 100 nm thick GaN buffer layer. Then, a
stack of 40 GaN/AIN QWs was deposited and overgrown
with a 10-nm-thick AIN cap layer. The thickness of the AIN
barriers and GaN QWs are summarized in Table I. To popu-
late the ground electron state, the QWs were n-doped with Si
at a nominal concentration ngy = 5 x 10"cm~3. For com-
parison purposes, polar samples with an identical structure
were grown during the same runs on AIN on c-sapphire tem-
plates. It should be noted that these designs do not target the
maximization of the ISB optical dipole, as it was done in
Ref. 24 but they were chosen to evaluate the effect of the
electric field in the semipolar GaN/AIN binary system.

The structural quality of the GaN/AIN semipolar MQWs
has been studied by high resolution transmission electron mi-
croscopy (HRTEM).

Figure 1 displays the HRTEM images of semipolar
GaN/AIN QWs viewed along the [1010] and [1123] zone
axes. The QWs present a two-dimensional nature in both
crystallographic orientations, and the interfaces are chemi-
cally sharp. The interface thickness fluctuations extend over
0.5-0.7 nm. From larger images, we estimate a density of ba-
sal stacking faults of around 3 x 10°cm™'.

B. Optical spectroscopic measurements
1. Photoluminescence spectroscopy

PL spectra were collected at liquid-helium temperature
using a f=0.46m Jobin Yvon HR spectrometer equipped
with a liquid-nitrogen-cooled charge-coupled device (CCD)
camera. The excitation was provided by a frequency-doubled
continuous-wave Art™ laser at 4 = 244 nm.

Figure 2 shows the PL spectra of semipolar (top) and po-
lar (bottom) samples measured at 4 K. As expected, the PL
peaks energy is red shifted when increasing the QW thick-
ness in both polar and semipolar QWSs. In polar QWs, the PL
energy becomes smaller than the GaN gap energy for QW
thickness larger than 1.8 nm. This is due to the quantum con-
fined Stark effect induced by the high internal electric field
in the QWs. In semipolar QWs, the PL energy peak remains
systematically above the GaN gap, attesting the reduction in

TABLE I. Structural parameters for the GaN/AIN polar and semipolar sam-
ples. Low and Ly are the well and barrier thicknesses, respectively.

Sample Low (nm) Lz (Nm) Now (cm™?)
A 1.2 5 -

B 1.8 3 5% 10"
C 2.1 3 5x 10"
D 225 3 5x 10"
E 2.6 3 5x 10"
F 3 3 5x 10"
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FIG. 1. Cross-section high-resolution TEM image of semipolar GaN/AIN
quantum wells (sample C) viewed along the [1010] and [1213] zone axes.

the internal electric field in the QWSs. The full width at half
maximum (FWHM) of the PL spectra of semipolar QWs
increases with the PL transition energy. This is due to QW
thickness fluctuations, whose effect on linewidth increases
when decreasing the well thickness. The value of the FWHM
in semipolar QWs is 2 to 3 times larger than that in polar
QWs as a result of the larger QW thickness fluctuations and
to the presence of stacking faults.
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FIG. 2. Low-temperature (4 K) photoluminescence of semipolar (top) and
polar (bottom) GaN/AIN QWs. The dashed line indicates the GaN band gap.
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FIG. 3. Photoluminescence energy calculated as a function of QW thickness
and strain state for polar and semipolar QWs.

PL results have been interpreted by comparison with
calculations of electronic structure using the NEXTNANO®
8-band-Kk.p Schrodinger-Poisson solver. The material param-
eters applied in the simulations are summarized in Ref. 25.
As shown in Figure 3, the measured PL energies are in good
agreement with calculations, with the experimental points
from polar samples located within the band limited by the
red and black solid lines, which correspond to the two
extreme strain states (strained on GaN and strained on AIN).
However, the emission wavelength from semipolar layers
presents a certain red shift when compared with theoretical
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FIG. 4. Intersubband absorption spectra for semipolar (top) and polar (bot-
tom) GaN/AIN QWs with different well thicknesses. The spectrum labeled
with a star has been obtained by photoinduced absorption measurement.
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TABLE II. ISB peak energy with corresponding broadening for polar and

semipolar samples.

QWs ISB

thickness energy FWHM

Sample (nm) (eV) (meV)
A (0001) 1.2 0.85 123
(1122) 1.2 0.81 195
B (0001) 1.8 0.69 100
(1122) 1.8 0.59 153
C (0001) 2.1 0.66 90
(1122) 2.1 0.54 156
D (0001) 2.25 0.63 87
(1122) 2.25 0.49 152
E (0001) 2.6 0.61 100
(1122) 2.6 0.40 160
F (0001) 3 0.61 105
(1122) 0.38 100

calculations, which can be attributed to carrier localization
due to the presence of stacking faults and to larger thickness
fluctuations than in the polar case.

2. Intersubband spectroscopy

The ISB absorption of the QWs was investigated using
Fourier transform infrared spectroscopy (FTIR). The sample
facets were polished at 45° angle to form a multipass wave-
guide. The sample transmission for p and s polarized light was
measured at room temperature. Figure 4 shows the ISB absorp-
tion spectra of polar and semipolar QWs. All samples show
direct absorption of p-polarized light except the spectrum la-
beled with a star, which was measured by photoinduced
absorption spectroscopy. For both polar and semipolar sam-
ples, the e;-e, ISB absorption red shifts when increasing the
QW thickness. It covers the 1.5-3.3 um wavelength range for
semipolar QWs, compared to 1.5-2 um for polar QWs. The
ISB peak energy and the FWHM for all samples are indicated
in Table II. As seen in Fig. 4, the ISB peak wavelength satu-
rates at 2 um for polar QWs with a well thickness larger than
2.25 nm, which is not the case for semipolar QWs.

Figure 5 compares the experimental ej-e, ISB peak
energy with simulations for semipolar and polar structures.
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FIG. 5. Calculated and measured ISB absorption energy versus well thickness.
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The simulation confirms a significant red shift of the transi-
tion energy in large semipolar QWs with respect to the polar
case due to the reduction of the electric field in the wells.
The saturation of the ISB transition for large QWSs is
explained by the fact that both e; and e, are located in the tri-
angular section of the polar QWs, so that they are confined
by the internal electric field in at distance smaller than the
total QW thickness, as illustrated in Fig. 6. It should be noted
that for the chosen barrier thickness (3 nm) there is no effect
of the quantum coupling between adjacent QWs.

Assuming an infinite GaN/AIN superlattice, the internal
fields in the QW and in the barrier are related to the respec-
tive polarizations and layer thicknesses by

AP L
Fon = —— AN : (1)
&0 Laivecan + LGaneaiv
AP L
Faw = — Gay )

b
&0 Lavegan + Leaneaiv

where AP is the difference between the total polarization
(piezoelectric and spontaneous) of the well and the barrier,
ean and &g,y are the dielectric constants for AIN and GaN,
respectively, while Ls,y and Lg,y are the corresponding
layer thicknesses. Taking & = (&av + éanv)/2, for polar
GaN/AIN MQWs we calculate AP /gpe, = 10.4 MV /cm for
MQWs strained on AIN, and AP/ge, = 12.3 MV/cm for
MQWs strained on GaN. For semipolar GaN/AIN MQWs,
the value of AP/¢gpe, deduced from the simulations is 0.93
MV/cm for MQWs strained on AIN and —0.83 MV/cm for
MQWs strained on GaN. The significant reduction in the
polarization discontinuity is due to the fact that the

Wavelength (um)

QW thickness (nm)

spontaneous and piezoelectric polarization differences at the
interfaces have opposite signs, the piezoelectric component
being dominant in the MQWs strained on GaN resulting in
negative AP.

3. Nature of ISB broadening

By analyzing the ISB absorption spectra of polar and
semipolar samples, we observe that the broadening and the
spectral shape are very different. In semipolar QWs, the
FWHM is around 100-195 meV, which is larger than that in
polar QWs (90-105 meV). In addition, in polar samples with
a QW thickness below 2.1 nm (samples A, B, and C), the
ISB absorption spectra present well-defined multiple struc-
tures, which are not present in semipolar spectra. The multi-
structured lineshape of polar samples is well reproduced by a
sum of Lorentzian curves. In contrast, for semipolar QWs,
the ISB absorption resonance can be well fitted by a
Gaussian function, as shown in Figure 7.

This difference is related to the sample structure and to
the presence of internal electric field. In polar samples, the
multistructured shape of the ISB absorption is interpreted as
originating from absorption in well regions with different
thickness, as discussed in Ref. 11. Due to internal electric
field, for QW thickness below ~2nm, a variation of the
thickness of the QW of =1 atomic layer translates into an
ISB energy shift comparable to the broadening factor, and
therefore results in structuring of the absorption spectrum
instead of an inhomogeneous broadening.

For semipolar GaN/AIN QWs, the thickness fluctuations
are larger (=2-3 atomic layers, as observed in Figure 1), but
the energetic shift induced by each additional atomic layer is
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= S FIG. 7. (left) ISB absorbance of semipo-
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T% 156 meV -g Lorentzian fitting curves (dotted lines).
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smaller, which results in an inhomogeneous broadening.
Furthermore, the presence of stacking faults, as an additional
perturbation of the bands, contributes to the absorption line
broadening. We note that Gaussian lineshapes of the ISB
absorption has also been observed in cubic GaN/Al(Ga)N
QWs'® and can be explained in the same manner.

lll. CONCLUSION

In summary, we have systematically performed an exper-
imental and theoretical study of ISB transitions in semipolar
GaN/AIN quantum wells grown on (1122) GaN. The semipo-
lar samples are compared with the polar samples grown in the
same run. The ISB transition shows a significant red shift with
respect to the polar case due to the reduction of the internal
electric field in the quantum wells. The absorption peak is
tuned from 1.5 um to 3.3 um by adjusting only the well width.
The ISB absorption line shape exhibits a Gaussian shape
which is explained by thickness fluctuations of the QWs, and
by the presence of stacking faults.
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GaN/Al(Ga)N nanostructures have emerged during the last decade as promising materials for new
intersubband (ISB) optoelectronics devices, with the potential to cover the whole infrared (IR) spectrum.
These technologies rely on electron transitions between quantum-confined states in the conduction band of
nanostructures —quantum wells (QWs), quantum dots (QDs), nanowires (NWs). A variety of GaN-based
ISB optoelectronic devices have recently been demonstrated, including photodetectors, switches and
electro-optical modulators. However, a number of issues remain open, particularly concerning the
extension towards longer wavelengths and the improvement of electrically pumped devices performance.

One of the main challenges to extend the GaN-ISB technology towards the far-IR comes from the
polarization-induced internal electric field, which imposes an additional confinement that increases the
energetic distance between the electronic levels in the QWs. In order to surmount this constraint, I propose
alternative multi-layer QW designs that create a pseudo-square potential profile. The robustness of the
designs in terms of variations due to growth uncertainties, and the feasibility of their integration in devices
architectures requiring resonant tunneling transport are discussed. Experimental realizations by
molecular-beam epitaxy displaying TM-polarized THz absorption are presented. A quantum cascade laser
design incorporating pseudo-square QWs is introduced.

An alternative approach to obtain square potential profiles is the use of nonpolar orientations.
Room-temperature ISB absorption in the range of 1.5-5.8 um is demonstrated.

Longer intraband lifetimes have been proven to exist in laterally confined systems, which motivates
studies to incorporate NWs as active elements in ISB devices. In this thesis, I report the experimental
observation of TM-polarized IR absorption assigned to the s-p, intraband transition in Ge-doped GaN/AIN
nanodisks inserted in self-assembled GaN NWs. Results are compared with theoretical calculations
accounting for the 3D strain distribution, surface charges and many-body effects.

Keywords: Quantum engineering, nitrides, thin films, nanowires, intersubband, infrared

Ces dix dernieres années ont vu 1’essor des nanostructures GaN/Al(Ga)N en raison de leur potentiel pour
le développement de technologies intersousbandes (ISB) en optoélectronique, et ce dans le spectre
infrarouge (IR) complet. Ces technologies sont basées sur des transitions électroniques entre des états
confinés de la bande de conduction de nanostructures, telles que les puits quantiques (PQ), les boites
quantiques (BQ) et les nanofils (NF). Récemment, plusieurs technologies optoélectroniques ISB basées sur
le GaN ont été développées, comprenant des photodétecteurs, des switchs, et des modulateurs
électro-optiques. Cependant, plusieurs défis restent a relever, en particulier concernant I’extension vers les
grandes longueurs d’ondes et I’amélioration des performances des appareils pompés électriquement.

Une des difficultés principales opposées a 1’extension des technologies GaN ISB vers le lointain
infrarouge résulte de la présence d’un champ électrique interne. Pour pallier a ce probléme, on propose une
structure de PQs alternative, dont les multiples couches créent un potentiel pseudo-carré. On discute la
robustesse de ce design quant aux variations causées par les incertitudes de croissance, et la possibilité de
I’intégrer dans des structures nécessitant un transport électronique par effet tunnel résonnant. On décrit
¢galement les structures fabriquées par épitaxie par jets moléculaires et présentant de 1’absorption de
lumiere polarisée TM dans la gamme THz. Enfin on propose un design de laser a cascade quantique basé
sur ces PQs pseudo-carrés.

L’utilisation d’orientations non-polaires est une autre fagon possible d’obtenir des potentiels carrés. On
démontre des absorptions ISB a température ambiante dans la fenétre 1.5-5.8 um.

L’existence de temps de vie plus longs dans les systémes confinés latéralement a ét¢ démontrée et motive
I’intégration des NFs en tant qu’élément actif dans les technologies ISB. Dans ce manuscrit, on décrit
I’observation expérimentale d’absorption de lumicre IR polarisée TM attribuée a la transition intrabande
s-p, dans des nanodisques GaN/AIN dopés avec du Ge et insérés dans des NFs de GaN. On compare les
résultats obtenus avec les calculs théoriques, qui prennent en compte la distribution en trois dimensions de
la tension, les charges de surface et les effets a corps multiples.

Mots clés : Ingénierie quantique, nitrures, puits quantiques, nanofils, inter-sous-bande, infrarouge



