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Estimation de quantiles conditionnels basée sur la quantification opti-
male

Résumé : Les applications les plus courantes des méthodes non paramétriques concernent l’esti-
mation d’une fonction de régression (i.e. de l’espérance conditionnelle). Cependant, il est souvent
intéressant de modéliser les quantiles conditionnels, en particulier lorsque la moyenne condition-
nelle ne permet pas de représenter convenablement l’impact des covariables sur la variable dépen-
dante. De plus, ils permettent d’obtenir des graphiques plus compréhensibles de la distribution
conditionnelle de la variable dépendante que ceux obtenus avec la moyenne conditionnelle.

À l’origine, la « quantification » était utilisée en ingénierie du signal et de l’information. Elle
permet de discrétiser un signal continu en un nombre fini de quantifieurs. En mathématique, le
problème de la quantification optimale consiste à trouver la meilleure approximation d’une distri-
bution continue d’une variable aléatoire par une loi discrète avec un nombre fixé de quantifieurs.
Initialement utilisée pour des signaux univariés, la méthode a été étendue au cadre multivarié et
est devenue un outil pour résoudre certains problèmes en probabilités numériques.

Le but de cette thèse est d’appliquer la quantification optimale en norme Lp à l’estimation
des quantiles conditionnels. Différents cas sont abordés : covariable uni- ou multidimensionnelle,
variable dépendante uni- ou multivariée. La convergence des estimateurs proposés est étudiée
d’un point de vue théorique. Ces estimateurs ont été implémentés et un package R, nommé
QuantifQuantile, a été développé. Leur comportement numérique est évalué sur des simulations
et des données réelles.

Mots-clés : Régression quantile, Quantification optimale, Estimation non paramétrique.
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Conditional quantile estimation through optimal quantization

Abstract : One of the most common applications of nonparametric techniques has been the
estimation of a regression function (i.e. a conditional mean). However it is often of interest
to model conditional quantiles, particularly when it is felt that the conditional mean is not
representative of the impact of the covariates on the dependent variable. Moreover, the quantile
regression function provides a much more comprehensive picture of the conditional distribution
of a dependent variable than the conditional mean function.

Originally, the “quantization” was used in signal and information theories since the fifties.
Quantization was devoted to the discretization of a continuous signal by a finite number of “quan-
tizers”. In mathematics, the problem of optimal quantization is to find the best approximation
of the continuous distribution of a random variable by a discrete law with a fixed number of
charged points. Firstly used for a one-dimensional signal, the method has then been developed in
the multi-dimensional case and extensively used as a tool to solve problems arising in numerical
probability.

The goal of this thesis is to study how to apply optimal quantization in Lp-norm to conditional
quantile estimation. Various cases are studied: one-dimensional or multidimensional covariate,
univariate or multivariate dependent variable. The convergence of the proposed estimators is
studied from a theoretical point of view. The proposed estimators were implemented and a
R package, called QuantifQuantile, was developed. Numerical behavior of the estimators is
evaluated through simulation studies and real data applications.

Keywords : Quantile regression, Optimal quantization, Nonparametric estimation.
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Résumé substantiel

La première partie de cette thèse a pour but de définir et d’étudier (d’un point de vue théo-
rique dans le Chapitre 2 et numérique dans le Chapitre 3) un nouvel estimateur des quantiles
conditionnels en utilisant un outil de discrétisation appelé quantification optimale en norme Lp.

La notion de quantile conditionnel, ou régression quantile, a tout d’abord été introduite par
Koenker and Bassett (1978). Une motivation majeure était le besoin d’alternatives robustes à
la moyenne conditionnelle. Les quantiles conditionnels permettent en effet de mieux représenter
l’impact des variables explicatives X sur la variable dépendante Y . Depuis le travail de Koenker
and Bassett (1978), qui les ont étudiés dans un contexte paramétrique, la littérature sur ce
sujet s’est fortement développée ces dernières années et des estimateurs non paramétriques ont
également été étudiés.

Dans la suite, nous appellerons X le vecteur de variables explicatives (de dimension d) et Y
la variable dépendante, définie comme une fonction de X et d’une erreur. Dans des situations
pratiques, nous ne connaissons pas la distribution conditionnelle de Y sachant X = x et nous
voulons l’étudier à partir d’un échantillon de taille n en estimant des fonctions de quantiles
conditionnels. Un intérêt majeur de ceux-ci est qu’ils permettent de construire des courbes de
référence et des intervalles de confiance. Ces graphes de référence sont largement utilisés dans de
nombreux domaines comme en médecine, économie, écologie, analyse de durée de vie, etc.

Les quantiles conditionnels peuvent être définis de deux façons équivalentes. Nous avons fait
le choix dans notre étude de nous baser sur la définition de ceux-ci comme solution du problème
d’optimisation suivant :

qα(x) = arg min
a∈R

E[ρα(Y − a)|X = x],

où la fonction ρα est une fonction de perte qui généralise la valeur absolue.
Lorsque nous voulons estimer le quantile conditionnel sachantX = x à partir d’un échantillon,

nous devons sélectionner les observations dont la partie en X est proche de ce point x. Le choix de
cette sélection est la clé de nombreuses méthodes d’estimation non paramétrique des quantiles.
Certaines méthodes existantes utilisent par exemple un noyau ou sélectionnent les plus proches
voisins. Notre méthode utilise le concept de quantification. Plus de détails sur cette notion se
trouvent dans la Section 1.1. Avant d’expliquer l’avantage de notre méthode de sélection sur
d’autres méthodes, commençons par définir précisément ce concept.
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Dès les années 1950, la quantification optimale était utilisée en ingénierie et permettait de
discrétiser un signal continu grâce à un nombre fini de quantifieurs. Ces quantifieurs doivent être
placés de manière à transmettre le signal aussi efficacement que possible, d’où le côté optimisation
de la quantification. En mathématique, cela consiste à trouver la meilleure approximation de la
distribution d’un vecteur aléatoire (continue, le plus souvent) par une loi discrète. Le support
de cette loi discrète porte le nom de grille, et est de taille N . Nous projetons alors le vecteur
sur cette grille pour le discrétiser. Un résultat classique en quantification assure l’existence d’une
grille optimale (c’est-à-dire, une grille minimisant l’erreur de projection commise) à condition
que la loi de ce vecteur ne charge pas les hyperplans. Lorsque nous considérons une grille de
quantification fixée, nous pouvons définir des cellules de quantification, caractérisées par un
centre. À chaque point de la grille correspond une cellule dont le centre est ce point, et cette
cellule est composée de l’ensemble des points de l’espace dont la projection sur la grille est le
centre de cette cellule. Plus de détails sur ce concept peuvent être trouvés dans la Section 1.2.

Le point de départ du travail a consisté à remplacer dans la définition des quantiles condition-
nels le vecteur de variables explicatives X par une version discrétisée obtenue par quantification
optimale (cf. Section 2.2). Ceci nous a permis de définir une approximation des quantiles condi-
tionnels, et la convergence de cette approximation a été étudiée lorsque N tend vers l’infini.
Deux résultats de convergence ont été prouvés. Tout d’abord, un résultat de consistance à x fixé
a été obtenu (cf. Théorème 2.2.2). Plus précisément, nous avons montré que notre approximation
converge uniformément en x vers les quantiles conditionnels théoriques. Nous avons également
étudié la convergence de cette approximation en X, et dans ce cas nous avons obtenu une vitesse
de convergence (cf. Théorème 2.2.1).

Dans un second temps, nous avons défini dans la Section 2.3 un estimateur des quantiles
conditionnels en prenant une version empirique de cette approximation. Partant d’un échantillon
(Xi, Yi) de taille n, le quantile conditionnel de Y sachant X = x est alors estimé en pratique
simplement en prenant le quantile empirique des Yi pour lesquels les Xi correspondants sont pro-
jetés sur le même point de la grille optimale que le point x (en d’autres mots, ceux pour lesquels
les Xi appartiennent à la même cellule que le x considéré). La convergence en probabilité de cet
estimateur vers notre approximation a également été obtenue lorsque la taille de l’échantillon n
tend vers l’infini et pour N fixé (cf. Théorème 2.3.1). Cependant, si ces résultats asymptotiques
étaient très intéressants, il est apparu en pratique que, pour une petite taille d’échantillon, les
courbes correspondantes n’étaient pas suffisamment lisses. Ceci était principalement dû au fait
que l’algorithme utilisé pour construire notre grille de quantification optimale ne tournait pas
suffisamment longtemps que pour que la grille fournie soit effectivement optimale. Pour cette
raison, nous avons défini une version bootstrap de notre estimateur, ce qui en a amélioré signifi-
cativement les performances. Une illustration de cette amélioration apparaît dans la Figure 2.2.
Les courbes de quantiles conditionnels des graphes de gauche ont été estimées en utilisant la mé-
thode initiale, et celles de droite en utilisant la version bootstrap. Au vu de cette amélioration,
nous n’utiliserons plus dans le suite que la version bootstrap. Les preuves des théorèmes ont été
regroupées dans les Sections 2.4 et 2.5. Un premier article reprenant ces différents résultats et
définitions a été publié dans le Journal of Statistical Planning and Inference (Charlier et al.,
2015a).
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Après cette étude théorique, il était important de se pencher sur le comportement numérique
de notre estimateur. Ceci fait l’objet du Chapitre 3 et d’un deuxième papier qui a été publié
dans Computational Statistics and Data Analysis (Charlier et al., 2015b). Nous avons d’abord
mis au point une méthode de sélection du paramètre N intervenant dans la construction de
celui-ci, méthode n’utilisant que les observations (cf. Section 3.2). Cette méthode a démontré
son efficacité sur 500 réplications de différents modèles et pour différentes tailles d’échantillon.
Nous avons donc été en mesure de comparer les estimations fournies par notre estimateur boots-
trap avec celles d’autres estimateurs classiques des quantiles conditionnels (cf. Section 3.3). À
nouveau, nous avons généré 500 réplications de divers modèles et observé de très bons résultats.
Plus précisément, nous avons noté de très bonnes performances de notre estimateur face aux
compétiteurs classiques, et parfois une domination sur son principal concurrent, l’estimateur de
type spline, plus particulièrement quand la fonction de lien du modèle est complexe. Les figures
de la Section 3.3.3 illustrent ces différentes remarques et représentent les boxplots des ISE (Inte-
grated Squared Error), une mesure de l’erreur commise. Notre estimateur bootstrap est en bleu,
un estimateur de type spline en orange, un estimateur de type plus proches voisins est en vert,
et deux estimateurs de type noyau sont en mauve et en rouge. Ces bons résultats s’expliquent
notamment par le fonctionnement même de notre estimateur, et plus précisément par le choix
des observations prises en compte lors de la sélection. En effet, notre méthode sélectionne les
observations pour lesquelles la composante Xi est dans la même cellule de quantification que
le point x considéré. Cela présente l’avantage d’être adaptatif avec x. D’une part, le nombre
de points sélectionnés dépend de la taille de la cellule et varie donc avec x, au contraire d’une
sélection de type plus proches voisins où le nombre de voisins est fixé. D’autre part, le « rayon »
de la cellule varie également avec x (c’est-à-dire la distance entre le centre et le point de la cellule
qui lui est le plus éloigné), au contraire des méthodes de type noyau où la taille de fenêtre est le
plus souvent choisie de manière identique pour tout x.

L’étude numérique et les simulations de ces sections se concentrent sur le cas d = 1, d étant
la dimension de X. Nous étudions de plus brièvement dans la Section 3.4 le cas d = 2 puisque
tous les définitions et résultats théoriques sont valides en dimension quelconque.

Un package, nommé QuantifQuantile, reprenant notre méthode d’estimation a été déve-
loppé sous R et est désormais en libre accès sur le CRAN, ce qui assure la disponibilité de cet outil
à tout utilisateur de R. Ce package est composé de plusieurs fonctions, à choisir en fonction de
la dimension du vecteur X. Ces fonctions fournissent des estimations des quantiles conditionnels
après avoir sélectionné automatiquement la valeur optimale pour N grâce à notre méthode. De
plus, une représentation graphique des courbes (dans le cas d = 1) ou surfaces (dans le cas d = 2)
de quantiles conditionnels peut être obtenue via la fonction plot. Tous les détails sur ce package
et ses différentes fonctionnalités se trouvent dans la Section 3.5. Un troisième papier expliquant
le fonctionnement de ce package et fournissant des exemples et illustrations a été accepté pour
publication au R journal (Charlier et al., 2015c).

L’approche numérique de la Section 3.3 a été complétée par une application sur des échan-
tillons de données réelles dans la Section 3.6.

Après cette première partie permettant de caractériser le lien entre une variable dépendante
unidimensionnelle et un vecteur de covariables de dimension quelconque, il était naturel de s’in-
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téresser au cas d’une variable dépendante de dimension m, avec m > 1. Ceci a fait l’objet de la
Partie II.

Cependant, si la notion de quantile est standard pour une variable réelle, il n’en est pas de
même en dimension supérieure. En effet, cette notion repose sur l’ordre naturel dans les réels
et la généralisation à un contexte multivarié n’est donc pas directe. Une littérature assez vaste
a été consacrée à l’extension de ce concept au cadre multivarié. Nous présentons et comparons
dans la Section 4.1 différentes notions de quantiles multivariés existantes afin de choisir celle qui
sera utilisée dans cette partie. Notre choix s’est porté sur celle définie par Hallin, Paindaveine,
and Šiman (2010a), qui se démarque des autres en satisfaisant toutes les propriétés généralement
attendues de la part d’un concept de quantiles, comme des propriétés d’affine-équivariance, tout
en mettant en exergue un lien avec l’important concept de profondeur statistique.

La définition des quantiles multivariés ayant été fixée (et leur version conditionnelle s’obte-
nant directement), nous avons généralisé les résultats du Chapitre 2 dans ce contexte à réponse
multiple. Plus précisément, nous avons remplacé dans la définition des quantiles conditionnels
à réponse multiple le vecteur de variables explicatives X par sa version discrétisée obtenue par
quantification optimale (cf. Section 5.2). Ceci a à nouveau permis de définir une approximation
des quantiles conditionnels qui a été étudiée lorsque N tend vers l’infini. Nous avons prouvé la
consistance à x fixé de cette approximation (cf Théorème 5.2.1).

Dans un second temps, nous en avons déduit un estimateur des quantiles conditionnels à
réponse multiple dans la Section 5.3 en prenant une version empirique de cette approximation.
L’estimation du quantile conditionnel de Y sachant X = x est en pratique obtenue comme dans
le cas d’une réponse scalaire : en prenant le quantile multivarié empirique des Yi pour lesquels
les Xi correspondants sont projetés sur le même point de la grille optimale que le x considéré.
Nous avons obtenu la convergence en probabilité de cet estimateur vers notre approximation à
N fixé et pour n → ∞ (cf. Théorème 5.3.1). Vu l’amélioration obtenue dans la première partie
en définissant une version bootstrap de l’estimateur, nous avons fait de même dans ce contexte.
Les preuves des Sections 5.2 et 5.3 ont été regroupées respectivement dans les Sections 5.4 et 5.5.

Nous nous sommes alors penchés sur le comportement numérique de cet estimateur dans
le Chapitre 6. Suivant le même plan que dans le Chapitre 3, il a d’abord fallu développer une
méthode de sélection du paramètre N . Celle-ci est simplement une extension de celle utilisée
dans le cas d’une réponse scalaire. La différence majeure consiste en l’ajout d’une moyenne car
l’ordre des quantiles est maintenant également composé d’une direction u ∈ Sd−1, l’hypersphère
unité dans Rd. L’estimateur que nous proposons a été implémenté dans R. Avec cette méthode,
nous avons donc été en mesure de comparer notre estimateur aux alternatives existantes (cf.
Section 6.3). Étant donné que la notion de quantile multivarié n’est pas standard, la littérature
en régression quantile multivariée est bien moins importante que précédemment. Nous nous
sommes donc uniquement comparés aux estimateurs de type noyau introduits dans Hallin, Lu,
Paindaveine, and Šiman (2015). Cette étude comparative a été réalisée en deux temps : d’abord
d’un point de vue graphique, où nous avons représenté pour chaque méthode les contours de
quantiles estimés, et ensuite du point de vue de l’erreur commise, en calculant des ISE empiriques.
Nous avons à nouveau noté de très bonnes performances de notre estimateur qui domine souvent
ses compétiteurs de type noyau. Cette observation généralise donc les résultats obtenus pour une
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réponse scalaire.
Une application sur un jeu de données réelles a terminé cette étude numérique dans la Sec-

tion 6.4. Le jeu de données considéré avait également été étudié par nos compétiteurs, ce qui a
permis de compléter l’étude comparative réalisée précédemment et de confirmer les bons résul-
tats de notre estimateur. Un article reprenant les résultats des Chapitres 5 et 6 est en cours de
rédaction.

Enfin, le Chapitre 7 fournit une conclusion et discute des perspectives de ce travail.
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In this work, we develop a new nonparametric estimator of conditional quantiles, based on
optimal quantization. The first part is dedicated to single-output conditional quantile regression,
while the second part aims to extend the results in a multiple-output framework. In each part,
this work will be twofold. First, a theoretical investigation of the estimator is realized, and uses
classical results in optimal quantization. Then, numerical simulations are performed, since it is
crucial to evaluate the finite-sample performances of our estimator for practical purposes.

This first chapter aims to define the key concepts of this thesis. We first recall the notion of
quantiles (ordinary and conditional) and optimal quantization.
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1.1 The notion of conditional quantiles

y

f(y) = dF
dy (y)

qα

α

Figure 1.1 – The 0.3-quantile for the Normal distribution N (0, 1), where f is the probability density func-
tion (pdf) of this distribution.

1.1 The notion of conditional quantiles

The notion of conditional quantiles, or regression quantiles, was first introduced by Koenker and
Bassett (1978) in the linear model. These conditional quantiles are the natural generalization
of ordinary quantiles when the interest variable is a dependent variable. A major motivation
was the need for robust alternatives to the conditional mean and the least square estimator. As
one will explain in more details at the end of this section, conditional quantiles are particularly
interesting to model when it is felt that the conditional mean is not representative of the impact of
the covariates on the dependent variable that one considers (see Figure 1.3). Indeed, conditional
quantiles enable us to explore more thoroughly heterogeneous covariates effects. The literature on
quantile regression became really large in recent years. The work of Koenker and Bassett (1978)
introduced it in a parametric framework and since then it was investigated in other frameworks
(see, e.g., Koenker (2005) for a review).

We first define ordinary quantiles (see Section 1.1.1) and we then explain how to generalize
this notion to a framework with a dependent variable in Section 1.1.2. We then conclude this
section on conditional quantiles with the importance of estimating them and some examples of
applications (see Section 1.1.3).

1.1.1 Definition of ordinary quantiles

Let Y be a real random variable with cumulative distribution function (cdf) F .

Definition 1.1.1 (Indirect characterization). For α ∈ (0, 1), the quantile of order α of Y is
defined as the real number qα such that qα = inf{y ∈ R : F (y) ≥ α}.

When the cdf of Y , i.e. F , is invertible, it can be rewritten in a simpler way as qα = F−1(α).
This definition is illustrated in Figure 1.1.

There exists another equivalent definition of the α-quantiles, where they are seen as the
solutions of an optimization problem. Let us motivate this definition.

Let us consider the expectation E[Y ]. It is well known as the solution of the optimization
problem E[Y ] = arg mina∈R E[(Y − a)2]. Similarly, the median is the solution of med(Y ) =

arg mina∈R E[|Y −a|] and these two results are easily obtained by derivation. This property can be

2
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z

ρα(z)
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Figure 1.2 – The convex loss function ρα(z) for different values of α: in purple, α = 0.2; in orange, α = 0.4; in
blue, α = 0.5 (the absolute value function with a factor of 1/2); in yellow, α = 0.6 and in green, α = 0.8.

generalized for the quantiles: since the median is nothing else that the 1/2-quantile, one can show
that the α-quantiles are the solutions of the optimization problem qα = arg mina∈R E[ρα(Y − a)]

where ρα(z) is a convex loss function that generalizes the absolute value appearing in the median
case. Let us denote by IA(x) = I[x∈A] the indicator function of x belonging to A.

Definition 1.1.2 (Direct characterization). The quantile of order α of Y can be equivalently
defined as the solution of the following optimization problem:

qα = arg min
a∈R

E[ρα(Y − a)],

where ρα(z) = −(1− α)zI[z<0] + αzI[z≥0] = z
(
α− I[z<0]

)
is called the check function.

This check function also rewrites as ρα(z) =
(
|z|+ (2α−1)z

)
/2 and this rewriting points out

the link with the absolute value for the median case. Indeed, taking α = 0.5 gives ρ0.5(z) = |z|/2.
The function ρα is thus a generalization of the absolute value when α is between 0 and 1 (up to
a factor of 1/2). This convex loss function is represented in Figure 1.2 for different values of α.

1.1.2 Definition of conditional quantiles

However, it happens regularly that there exist some variables providing information on the vari-
able Y that one considers. These variables are called covariates and have to be used when one
investigates the behavior of Y . It is then classical to consider the conditional mean and variance
functions

x 7→ E[Y |X = x] and x 7→ Var[Y |X = x].

However, a more thorough picture can be obtained by considering some extension of the notion
of quantile functions in this setting, for various α ∈ (0, 1). This motivates us to define conditional
quantiles of Y given X = x, where X is a covariate taking values in Rd. The conditional quantiles
are defined analogously to the standard case: one replaces the cdf F and the expectation by their
conditional versions in Definitions 1.1.1 and 1.1.2 respectively. Denote by F (y|x) the conditional
distribution of Y given X = x. The conditional quantiles are defined as follows.

3
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Figure 1.3 – (a) The conditional mean curve of Y given X is represented in blue. (b) Five different conditional
quantile curves: in green, α = 0.5, in orange, α = 0.25 for the lower one and α =0.75 for the upper one, in red,
α = 0.05 for the lower one and α =0.95 for the upper one.

Definition 1.1.3 (Indirect characterization). For α ∈ (0, 1), the conditional quantile of order α
of Y given X = x is defined as the number qα(x) such that qα(x) = inf{y ∈ R : F (y|x) ≥ α}.

Here again, it can be more simply rewritten as qα(x) = F−1(α|x) when F (·|x) is invertible.
The following definition gives us the conditional quantiles as solution of an optimization problem
and is then analogous to Definition 1.1.2.

Definition 1.1.4 (Direct characterization). The conditional quantile of order α of Y given
X = x can be equivalently defined as the solution of the following optimization problem:

qα(x) = arg min
a∈R

E[ρα(Y − a)|X = x].

When one considers these conditional quantiles with fixed x, they provide a confidence interval
for Y given X = x. If one considers them when x varies, they provide reference curves (if d = 1,
hypersurfaces otherwise). More precisely, when x is fixed, the interval Iα(x) = [q1−α(x), qα(x)]

contains 100(2α − 1)% if α > 1/2 and the reference curves are defined by the sets of points{(
x, q1−α(x)

)}
and

{(
x, qα(x)

)}
.

1.1.3 Estimation of conditional quantiles

In practice, one does not know the conditional distribution F (·|x) and one wants to investigate
it from a sample

{
(Xi, Yi)

}
of size n. The aim of quantile regression is thus to quantify the

relationship between Y and X thanks to conditional quantiles. A major motivation is that a
collection of conditional quantiles gives us an impression of the entire conditional distribution

4



Chapter 1 : Introduction

when graphed. Therefore, it is a more complete and informative method than standard regression
which fits only the average relationship between them. It can then happen that some changes
in shape will not be displayed using standard regression. In particular, standard regression does
not allow to detect heteroscedasticity. This fact is illustrated in Figure 1.3. One has represented
the same data points in both subfigures. In the left one, the blue curve represents the conditional
mean of Y given X. In the right one, the five curves represent conditional quantile curves for
different values of α. It is obvious that the conditional quantile curves allow us to quantify in a
better way the shape, the location and the propagation of the data. Another important interest of
conditional quantiles is that they allow us to construct reference curves and conditional prediction
intervals within which one expects the majority of points to lie, as explains after Definition 1.1.4.

These reference charts are widely used in many different areas, as in medicine, economics,
ecology, lifetime analysis, etc. Let us illustrate it on two examples. Figure 1.4 represents the
reference curves for the weight given the age of boys from birth to 5 years. This graph comes
from the World Health Organization1 and are incorporated in national health cards in several
countries. These child growth standards were developed using data collected by the WHO. It
allows the parents to control the growth of their child (their weight here, but similar charts exist
for height or head circumference).

Figure 1.5 provides another application of conditional quantiles for the annual compensation
in millions of Chief Executive Officers (CEO) given the firm market value in billions. Instead
of looking for conditional quantile curves, this example provides boxplots of the compensation
given the firm market value. To do so, the covariate (i.e. the firm market value) was clustered
into ten groups, and then, looking at each group separately, the boxplot of the corresponding
compensations was calculated. For each boxplot, the horizontal lines delimiting the dotted line
correspond to the 0.1-quantile (lower one) and 0.9-quantile (upper one), while the lower and upper
limits of the box represent the quantiles of order 0.25 and 0.75 respectively. The horizontal line
in each box is the median (i.e. the 0.5-quantile). This figure comes from Koenker and Hallock
(2001) and allows to put the light on some features, as a tendency for compensation to rise with
firm size.

There exist several methods to estimate conditional quantiles. As above mentioned, quan-
tile regression was introduced in the seminal paper of Koenker and Bassett (1978) where the
focus was on linear regression. Since then, the literature became very large on this subject
and more general regression frameworks were considered, as the nonparametric one. Kernel and
nearest-neighbor estimators of conditional quantiles were investigated in Bhattacharya and Gan-
gopadhyay (1990), while Yu and Jones (1998) focused on local linear quantile regression and
double-kernel approaches. Koenker et al. (1994) and He et al. (1998) developed spline-based
methods. Many other estimators were also considered; we refer to Fan et al. (1994), Hallin et al.
(2009), Gannoun et al. (2002), Heagerty and Pepe (1999), or Yu et al. (2003), and Koenker (2005)
for a review. In this work, we introduce a new nonparametric quantile regression method, based
on optimal quantization. This concept is defined in the following subsection.

1The WHO child growth standards: http://www.who.int/childgrowth/standards/en/
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WHO Child Growth Standards
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Figure 1.4 – The World Health Organization child growth standards for weight given the age of boys from birth
to five years. The conditional quantile curves considered here are for α = 0.03, 0.15, 0.5, 0.85 and 0.97 (from
bottom to top).

Figure 1.5 – Boxplot of annual compensation of CEO given 10 clusterings of firms ranked by market value. This
graph comes from Koenker and Hallock (2001).
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1.2 Lp-norm optimal quantization

We now give an overview on the concept of Lp-norm optimal quantization. After a brief descrip-
tion of the origin of quantization, we define it precisely and give the main property and results.
As we will see, the choice of the quantization grid is of major importance and there exists no
theoretical result characterizing an optimal grid. We then discuss about an algorithm allowing
to construct such a grid and about the convergence of this algorithm.

1.2.1 Origin of quantization

The term quantization originates in the fifties where it was mainly used in signal and information
theory. In this context, the word quantization meant discretising a continuous signal using a
finite number of points, called the quantizers. The aim was obviously to have an efficient and
parsimonious transmission of the signal. Consequently, the number of quantizers (and more
precisely their geometric location) has to be optimized for this purpose.

As above mentioned, this tool was first used by engineers in signal compression, but it was
later used in cluster analysis, pattern and speech recognition. The quantization occurred more
recently in mathematics. In this case, the problem of optimal quantization consists in finding the
best approximation of the continuous distribution PX of a d-dimensional random vector X by a
discrete distribution with a fixed number N of charged points. In other words, it concerns the
best approximation of X by a random vector X̃N which has at most N values in its image. The
vector X̃N is called the quantized version ofX and the quantization is thus a spatial discretization
method. Quantization was then considered in probability theory; see, e.g., Zador (1964) or Pagès
(1998) and was extensively investigated in numerical probability, finance, stochastic processes,
and numerical integration ; see, e.g., Pagès et al. (2004a), Pagès et al. (2004b), or Bally et al.
(2005).

Quantization, however, was seldom used in statistics. To the best of our knowledge, its appli-
cations in statistics are restricted to Sliced Inverse Regression (Azaïs et al., 2012) and clustering
(Fischer, 2010, 2014). As announced above, we use in this work quantization in a nonparametric
quantile regression framework.

Let us now give a more precise definition of this concept and the main properties and results.
The following sections are based on Pagès (1998), Pagès and Printems (2003), Pagès et al.
(2004b), Bally et al. (2005) and Graf and Luschgy (2000).

1.2.2 Definitions

Let X be a random vector on a probability space (Ω,F , P ) taking its values in Rd and denote by
PX the distribution of X on Rd. Fix a real number p ≥ 1 such that E[|X|p] < ∞ (throughout,
| · | denotes the Euclidean norm). Optimal Lp-mean quantization consists in studying the best
Lp-norm approximation of X by a random vector X ′ = π(X) taking at most N values in Rd. Our
goal is then to find such a vector so that the Lp-mean quantization error ‖X − π(X)‖p will be
minimized, with ‖Z‖p :=

(
E[|Zp|]

)1/p. This optimization problem is decomposed in two phases.
The first one consists in considering a fixed number N of values and a fixed subset of N

points in Rd, x = (x1, . . . , xN ) ∈ (Rd)N , that we call a grid. This N -tuple being set, one wants

7



1.2 Lp-norm optimal quantization

to find a quantizer πx : Rd → {x1, . . . , xN} such that

‖X − πx(X)‖p = inf
{
‖X − π(X)‖p , π : Rd → {x1, . . . , xN} is a Borel function

}
.

The solution of this problem is geometric and consists in the projection on the closest neighbor,
induced by the Voronoi tessellation of x.

Definition 1.2.1. Let x = (x1, . . . , xN ) ∈ (Rd)N . A Borel partition
(
Ci(x)

)
i
, i = 1, . . . , N , of

Rd is a Voronoi tessellation of x if, for every i ∈ {1, . . . , N}, Ci(x) satisfies

Ci(x) ⊂
{
y ∈ Rd : |xi − y| = min

1≤j≤N
|xj − y|

}
.

The set Ci(x) is called the Voronoi cell of center xi. This Voronoi tessellation allows us to
define the closest neighbor projection.

Definition 1.2.2. The closest neighbor projection or Voronoi quantizer function πx induced by
the Voronoi tessellation

(
Ci(x)

)
i=1,...,N

, is defined for every ξ ∈ Rd by

πx(ξ) =
∑

1≤i≤N
xiICi(x)(ξ).

Thanks to those definitions, one is now able to define the quantized version of the random
vector X.

Definition 1.2.3. The random vector X̃x = πx(X) =
∑

1≤i≤N xiICi(x)(X) is called a Voronoi
quantization of X. The N -tuple x is often called a N -quantizer.

It is important to note that, whatever the choice of the Voronoi tessellation, the closure and
the boundary of the ith cell Ci(x) are the same. Moreover, this boundary is included into at most
N − 1 hyperplanes. If the distribution of X, PX , does not charge hyperplanes, i.e. if PX(H) = 0

for each hyperplane H of Rd, then all the Voronoi tessellations are PX -equal and all the Voronoi
quantizations X̃x have the same distribution.

The second optimization problem consists in minimizing the function x→ ‖X − X̃x‖p, that
is minimizing the Lp-mean quantization error. One can notice that this error (at power p) can
be rewritten as follows.

‖X − X̃x‖pp =

∥∥∥∥∥X −
N∑
i=1

xiICi(x)(X)

∥∥∥∥∥
p

p

= E

[∣∣∣∣∣X −
N∑
i=1

xiICi(x)(X)

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
N∑
i=1

(X − xi)ICi(x)(X)

∣∣∣∣∣
p]
,

and, given that every mixed terms are equal to 0 since the Ci(x)’s are a partition of Rd, this
becomes

‖X − X̃x‖pp =

N∑
i=1

E
[∣∣(X − xi)ICi(x)(X)

∣∣p] =

N∑
i=1

E
[
|X − xi|p ICi(x)(X)

]
.
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Notice that the only term in this sum that is different of 0 is the term corresponding to the index j
such thatX ∈ Cj(x). However, by definition of Cj(x), it means that |X−xj | = mini=1...,N |X−xi|,
which allows to rewrite ‖X − X̃x‖pp as

‖X − X̃x‖pp = E

[
min

1≤i≤N
|X − xi|p

]
=

∫
Rd

min
1≤i≤N

|xi − ξ|pPX(dξ).

These definitions lead to two natural questions: does this function actually reach a minimum?
How does this minimum behave as N goes to infinity? One will answer these questions in the
following section.

1.2.3 Main properties and results

Thanks to the previous rewriting of the Lp-mean quantization error, one notices that this one
depends on X through its distribution PX . The first result sets that the function x→ ‖X−X̃x‖pp
reaches a minimum, called the Lp-optimal N -quantizer and denoted γN . Let DN = {x ∈ (Rd)N :

xi 6= xj iff i 6= j} and, for the sake of simplicity of notation, Dp
N = Dp,PX

N (x) = ‖X − X̃x‖pp
the pth power of the quantization error. This letter D refers to the word “distortion” used in
Information Theory. In addition, we write C := Conv(SX), where SX := supp(X) .

Proposition 1.2.4 (Pagès, 1998, Prop. 5). Assume that SX is infinite and that PX admits a
p-moment. Then, (i) the function x→ Dp

N (x) is continuous on (Rd)N and reaches its minimum
on C. Moreover, arg minx∈(Rd)N D

p
N (x) ⊂ DN ; (ii) the sequence N → minCN D

p
N (x) decreases

to 0.

A proof is given in Pagès (1998). This proposition implies that the function x→ ‖X − X̃x‖pp
reaches an absolute minimum on (Rd)N at some point γN ∈ (Rd)N , and that this minimum has
pairwise distinct components, i.e. |X̃γN (Ω)| = N . Moreover, the quantization error tends to zero
as N goes to infinity.

Recall that the Lp-mean quantization error is an error bound since one approximates the
vector X by X̃γN . Thanks to the Proposition 1.2.4, one already knows that minCN ‖X − X̃x‖pp
goes to 0 as N goes to infinity. However, the question of the rate of convergence is a much
more challenging problem. Its solution is often referred to as Zador’s theorem (Zador, 1964) and
provides the rate of convergence of the quantization error; see, e.g., Graf and Luschgy (2000) for
a proof.

Theorem 1.2.5 (Graf and Luschgy, 2000, Th. II.6.2). Assume that ‖X‖p+δ < ∞ for some
δ > 0. Let PX(du) = f(u)λd(du) + ν(du) be the Lebesgue decomposition of PX , where λd is the
Lebesgue measure on Rd and ν⊥λd. Then

lim
N→∞

(
N

p
d min
x∈(Rd)N

‖X̃x −X‖pp
)

= Jp,d

(∫
Rd

(f(u))
d
p+d du

)1+ p
d

,

with Jp,d = minN
(
Np/d minx∈(Rd)N D

p,U
N (x)

)
, where Dp,U

N (x) denotes the (pth power of the)
quantization error, obtained for the uniform distribution over [0, 1]d, when considering the grid
x ∈ (Rd)N .

9



1.2 Lp-norm optimal quantization

In dimension d = 1, one has Jp,d = 1
2p(p+1) . For d > 1, little is known about Jp,d, but it can

be shown that Jp,d ∼
(
d

2πe

)p/2 as d→∞ (Graf and Luschgy, 2000).
This theorem says that minx∈(Rd)N ‖X − X̃x‖p = CX,p,dN

−1/d + o(N−1/d). Consequently,
one obtained that, for any distribution PX , optimal quantization produces for every N the best-
matching N -grid for PX and that, asymptotically, a sequence of optimal quantizers yields the
lowest possible constant CX,p,d, which is of high numerical interest. The following proposition is
proved in Graf and Luschgy (2000) and is a generalization of a result of Pierce (1970).

Proposition 1.2.6 (Graf and Luschgy, 2000, Cor. II.6.7). Assume that ‖X‖p+δ <∞ for some
δ > 0. Then, for some C,D ∈ R and N0 ∈ N, we have that

‖X̃γN −X‖pp ≤
1

Np/d

(
C‖X‖p+δp+δ +D

)
,

for all N ≥ N0.

In the sequel, one denotes by X̃N the vector X̃γN when one wants to emphasize the size of
the optimal grid instead of the optimal grid itself.

At this stage, one knows that there exists some Lp-optimal N -quantizer γN , also mentioned
as optimal N -grid, that reaches the minimum of the function x→ ‖X − X̃x‖p, but one has not
obtained the uniqueness of such a minimizer. Up to now, no result of unicity for the optimal grid
could be proved. The question of how to get an optimal N -grid comes then naturally in mind.
The aim of the following section is to solve this optimization problem thanks to some algorithms.

1.2.4 How to determine an optimal N-grid?

Except in some very exceptional cases (such as the uniform over a compact interval of the
real line), optimal N -grids have no closed form. That is, there exists no result that describes
the geometric structure of such grids. However, one can attempt to obtain (approximations of)
optimal N -grids through some algorithms. Let d ≥ 1, X be a Rd-valued random vector having
an absolutely continuous distribution µ = PX . Let N ≥ 1 be an integer and recall that Dp

N (x)

denotes the Lp-mean quantization error, that is, for every x = (x1, . . . , xN ) ∈ (Rd)N ,

Dp
N (x) = ‖X − X̃x‖p =

(
E

[
min

1≤i≤N
|X − xi|p

])1/p

=

(∫
Rd
dpN (x, ξ)PX(dξ)

)1/p

,

where dpN (x, ξ) := min1≤i≤N |xi − ξ|p. The function dpN (x, ξ) is often called local Lp-distortion.
In this section, we will deal with the optimization problem{

Find a N -tuple γN = (γN1 , . . . , γ
N
N ) s.t.

Dp
N (γN1 , . . . , γ

N
N ) ≤ Dp

N (x1, . . . , xN ), ∀x = (x1, . . . , xN ) ∈ (Rd)N .

The Lloyd’s method I

Historically, the first attempt to solve this optimization problem was in the particular case of
p = 2 and d = 1 and was called the Lloyd’s method I. This method, also called the fixed point

10



Chapter 1 : Introduction

approach, is an iterative procedure. It defines by induction the grid Γs+1 of size N given a grid
Γ0 of size N as follows:

Γs+1 = E[X|ProjΓs(X)](Ω) = (E[X|X ∈ Ci(Γs)])1≤i≤N , s ∈ N.

It can be shown that the sequence {‖X − ProjΓs(X)‖2, s ∈ N} is non-increasing and converges
toward some random vector X̃ taking N values as s goes to infinity, under some appropriate
assumptions. Moreover, this X̃ satisfies the stationary quantizer property and is a solution of
the original optimization problem arg min{‖X − Y ‖2, |Y (Ω)| ≤ N}.

Some problems appear if the dimension d becomes greater than 1. Indeed, the convergence
may fail and, if some convergence holds, one keeps the stationarity property of the limit X̃ but it
is not guaranteed that it minimizes the quadratic quantization error. This procedure has actually
two main drawbacks. The first one is that it is a local procedure since it does not explore the
whole space. The second one, and not the least, is that it becomes numerically intractable since
it requires the computation of d-dimensional integrals. However, when X is simulatable, one
can randomize the Lloyd’s method by using a Monte Carlo simulation to compute the above
integrals. This version is sometimes used as a final step of the optimization procedure to refine
locally the results obtained by other methods. More details on this method can be found in Pagès
and Printems (2003).

The stochastic gradient algorithm

This procedure is based on the smoothness of the Lp-quantization error function. In this pro-
cedure, one uses an important property of this error function. Indeed, Dp

N (x) is smoother than
Lipschitz continuous and is continuously differentiable at every x ∈ (Rd)N satisfying some ad-
missibility conditions, for p > 1 (see Pagès (1998) for a proof).

Proposition 1.2.7 (Pagès, 1998, Prop. 9). If p > 1, Dp
N is continuously differentiable at every

x = (x1, . . . , xN ) ∈ DN such that PX(
⋃N
i=1 ∂Ci(x)) = 0. Furthermore,

∇Dp
N (x) = p

(∫
Ci(x)

|xi − ξ|p−1 xi − ξ
|xi − ξ|

PX(dξ)

)
i=1,...,N

,

with the convention 0
|0| = 0. This result holds for p = 1 with the additional condition PX is

continuous.

Thanks to this result, one obtained the gradient of Dp
N and one observes that ∇Dp

N has an
integral representation with respect to PX . If the distribution PX is simulatable, this suggests
to implement a stochastic gradient descent derived from this representation to approximate
some local minimum of Dp

N (more details on stochastic gradient descent in this context can be
found in Pagès and Printems (2003)). However, this would require the computation of many
multidimensional integrals and then becomes unrealistic as soon as d ≥ 2. For this reason, the
stochastic gradient algorithm is defined as the corresponding stochastic procedure, obtained by
replacing ∇Dp

N (x) by its empirical version in the gradient descent approach.

11



1.2 Lp-norm optimal quantization

Let (Xt)t∈N∗ , N∗ = N \ {0}, be a sequence of i.i.d. PX -distributed random variables and let
(δt)t∈N∗ be a deterministic (0,1)-valued sequence satisfying

∞∑
t=1

δt = +∞ and
∞∑
t=1

δ2
t < +∞.

These Xt, t ∈ N∗, are used as stimuli in this algorithm. One starts with a deterministic initial
N -tuple γ̂N,0 = x0 with N pairwise distinct components, since it is the admissibility condition
for Dp

N to be continuously differentiable at x ∈ (Rd)N . In other words, x0 is our initial N -grid
that one wants to transform in an optimal way. One then defines recursively for every t ≥ 0

γ̂N,t+1 = γ̂N,t − δt+1

p
∇xdpN (γ̂N,t, Xt+1), (1.2.1)

where∇xdpN (x, ξ) stands for the gradient with respect to the x-argument of the local quantization
error, with x = (x1, . . . , xN ) ∈ (Rd)N and ξ ∈ Rd. Note that, for any ξ, the ith entry of this
gradient is (

∇xdpN (x, ξ)
)
i

= p|xi − ξ|p−1 xi − ξ
|xi − ξ|

IC(xi)(ξ).

Therefore, this gradient is a vector with exactly one non-zero component, the one corre-
sponding to the point of the grid x that is the closest to ξ. This implies that, at each step of the
algorithm, only one point of the grid γ̂N,t is updated when defining the grid γ̂N,t+1. This point is
the point from γ̂N,t that is the closest to Xt+1. Moreover, it is really important to note that this
recursive formula provides at every step a new grid with pairwise distinct points. This is crucial
since one wants to take advantage of the differentiability of Dp

N .
The problem of this procedure is that the assumptions usually made that ensure the a.s. con-

vergence of such a procedure are not fulfilled by Dp
N . It comes from the fact that Dp

N (x1, . . . , xN )

does not go to infinity as max1≤i≤N |xi| goes to infinity and ∇Dp
N is not a Lipschitz function.

However, some weaker a.s. convergence results have been obtained under some assumptions on
PX in the case p = 2, as we will detail in Section 1.2.5. The quadratic case p = 2 is then the most
commonly implemented for applications, since one also checks on simulation that it does behave
better, and it is known as the Competitive Learning Vector Quantization (CLVQ) algorithm.

Let us now explain in more details the recursive formula (1.2.1). Set γ̂N,t := (γ̂N,t1 , . . . , γ̂N,tN ) ∈
(Rd)N the grid at step t.

Step 1 (Competitive Phase) Select the index i(t + 1) ∈ arg mini |γ̂N,ti −Xt+1|, i.e. the index
corresponding to the closest neighbor of Xt+1 among the points of the grid determined
by γ̂N,t, called the “winning index”. This index depends both on the grid γ̂N,t and on
Xt+1.

Step 2 (Learning Phase) Update the grid γ̂N,t as follows: γ̂N,t+1
i(t+1) := γ̂N,ti(t+1) − δt+1

γ̂N,t
i(t+1)

−Xt+1

|γ̂N,t
i(t+1)

−Xt+1|
|γ̂N,ti(t+1) −X

t+1|p−1

γ̂N,t+1
i := γ̂N,ti if i 6= i(t+ 1)

.

The fact that only one point moves at each step appears here clearly.

12
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Step 3 (Companion Procedure) One can define some “companion” procedures that are costless
since they use some by-products of the two previous phases, and they yield parameters
of numerical interest. Assume that X ∈ Lp(1+η) for some η ∈ (0, 1] and let (δ̃t)t≥1 be a
deterministic (0,1)-valued sequence satisfying

∞∑
t=1

δ̃t = +∞ and
∞∑
t=1

δ̃1+η
t < +∞.

Then, one defines recursively the following sequences

p0
i := 0,

∀t ≥ 0, pt+1
i := pti(1− δ̃t+1) + δ̃t+1Ii=i(t+1),

Dr,0
N := 0,

∀t ≥ 0, Dr,t+1
N := Dr,t

N (1− δ̃t+1) + δ̃t+1|γ̂N,ti(t+1) −X
t+1|r,

for all i = 1, . . . , N and with r ∈ [1, p]. One can prove that, under the event {γ̂N,t a.s.−−−→
t→∞

γN}, one has

∀i ∈ {1, . . . , N}, pti
a.s.−−→ PX

(
Ci(γ

N )
)
, as t→∞,

∀r ∈ [1, p], Dr,t
N

a.s.−−→ Dr
N (γN ), as t→∞.

In the particular case where δ̃t = 1/t, one can rewrite the recursive formula for pti and
Dr,t
N as simple synthetic expressions, namely

pti =
1

t

∣∣{s ∈ {1, . . . , t}|Xs ∈ Ci(γ̂N,s−1)
}∣∣ and Dr,t

N =
1

t

t∑
s=1

|γ̂N,s−1
i(s) −Xs|r. (1.2.2)

These companion procedures yield (approximations of) the PX -weight of the Voronoi cells
Ci(γ

N ) and the Lp-mean quantization error ‖X−X̃γN ‖p needed for a numerical use of the
quantizer γN . An important fact is that they work under the assumption {γ̂N,t a.s.−−→ γN}
whatever the limiting N -tuple γN is, i.e. whatever the grid provided by the algorithm.
This fact shows their consistency.

Concerning the practical implementation of this algorithm, it has to be noticed that, in the
particular quadratic case p = 2, i.e. the CLVQ algorithm, the N -tuple γ̂N,t+1 remains at each
step in the convex hull of γ̂N,t and Xt+1. This induces a stabilizing effect on the procedure
observed in simulations which explains why the CLVQ algorithm is more often implemented
than its non-quadratic counterparts.

One now turns to the discussion about a problem that arises in practice: the choice of the
initialization grid and of the step. Let start by the initialization of the N -quantizer. In the case of
a Normal distribution, Pagès and Printems (2003) suggests to consider two methods according to
the value of N . Indeed, if N ≤ 10, i.e. if N is small, it proposes to adopt a random initialization,
so that γ̂N,0 ∼ (N (0, Id))

⊗N . However, when N gets larger, the so-called splitting initializing
method should be preferred. This method consists in adding one further point to the optimal
N -quantizer in order to obtain a starting quantizer of this procedure with N + 1 components.
This further point is usually the optimal 1-quantizer, i.e. 0Rd for the Normal distribution (the
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1.2 Lp-norm optimal quantization

expectation of the law in a general setting). The problem of the splitting method is that it could
provide only sub-optimal stationary quantizers. However, it turns out to be a good compromise
between stability and efficiency. In this work, one will use quantization for estimating conditional
quantile. Therefore, this method cannot be used since we only have at our disposal a sample and
we do not know the underlying distribution. The initialization in our setting will be detailed in
the corresponding chapter.

One now considers the choice of the step parameter. A common choice is to take δt > 2N3/d

π2t

which is the critical step for the uniform distribution to get a Central Limit Theorem for large
enough t. Consequently, the parameter sequence (δt)t≥0 will be set equal to δt = δ0

a
a+δ0bt

, with
a = 4N1/d and b = π2N−2/d. It remains to choose the initial step δ0. It is chosen either equal to
the square root of the distortion computed at last step, or to 1 if this distortion is greater that
1. This choice is motivated by the fact that mini 6=j |xi − xj | ≤ 2(E|X − xi|2)1/2.

One applied this algorithm to the bivariate standard Normal distribution. One chose the step
parameter as explained above and N = 500. This algorithm is performed with 106 iterations.
The obtained optimal grid is represented in Figure 1.6. One observes that the grid is more dense
around the center of the distribution, 0R2 , and that the grid is symmetric, which is not surprising
since the Normal distribution is itself symmetric.

Finally, let us illustrate2 the efficiency of this algorithm to provide an optimal grid on two
examples (one with d = 1 and the other one with d = 2). In Figure 1.7, we used this algorithm
to construct an optimal quantization grid of size N = 15 for the uniform law U(−2, 2). The
left panel is composed of three figures. The top one represents the initial grid γ̂N,0 in red and
the optimal grid γ̂N,500 in green, provided by the algorithm after 500 replications (the grey
points are the stimuli Xt). The middle and the bottom figures plot the empirical cumulative
distribution functions of the projections of the stimuli Xt onto the initial grid and the optimal
grid respectively. The right panel is obtained analogously, but with n = 5, 000. The initial grids
are of course quite far from the expected optimal ones, but the grid provided by the algorithm
are really close to the optimal grid corresponding to the uniform law (i.e. an equispaced grid
on the support). Of course, the larger n is, the more the green grid is close to the optimal one.
Therefore, the right green grid is more desirable than the left one.

The second example is similar for d = 2, except that we do not represent the empirical
cumulative distribution functions. The law of X is here a uniform law on the square (−2, 2)2.
The top figures of Figure 1.8 plot initial grids in red, and the bottom ones optimal grids in green,
provided by the algorithm. The left ones are obtained after 2,000 replications of the algorithm,
and the right ones 20,000.

2Figures 1.7 and 1.8 were obtained thanks to the choice.grid function of the R package QuantifQuantile,
see Section 3.5 for more details.
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Figure 1.6 – Optimal quantization grid of size N = 500 for the bivariate standard Normal distribution (with
Voronoi tessellation).
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Figure 1.7 – The left panel corresponds to a number of stimuli n = 500 while the right one to n = 5, 000.
The top figures represent the stimuli Xt (grey), the initial grid (red) and the optimal grid (green). The middle
and bottom figures plot the ecdf of the projections of the observations onto the initial grid and the optimal grid
respectively.
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Figure 1.8 – For n stimuli uniformly distributed on (−2, 2)2, with n = 2, 000 (left) and n = 20, 000 (right), the
initial and optimal grids (top and bottom respectively).
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1.2 Lp-norm optimal quantization

1.2.5 Convergence of the CLVQ algorithm

Here we state several results showing that the grids provided by the CLVQ algorithm converge
to optimal grids as the number of iterations t goes to infinity.

We start with the univariate case (d = 1). Assume that the support of PX is compact and
let its convex hull C be [a, b]. Write F+

N := {x = (x1, . . . , xN ) : a < x1 < · · · < xN < b} for the
set of N -grids on C involving pairwise distinct points stored in ascending order, and let F̄+

N be
its closure; see Pagès (1998).

Theorem 1.2.8 (Pagès, 1998, Th. 27). In the univariate setup above, we have the following.

(i) Assume that PX is absolutely continuous with a density f : [a, b] → R+ that is positive
on (a, b), and assume either that f is strictly log-concave or that it is log-concave with
f(a+)−f(b−) > 0. Then x 7→ D2,PX

N (x) has a unique minimizer γN in F̄+
N , which coincides

with the unique solution of ∇D2,PX
N (x) = 0 in F̄+

N (when PX is the uniform over [0, 1], the
optimal grid is γN =

(
a+ 2k−1

2N (b− a)
)

1≤k≤N ).

(ii) Irrespective of the initial grid γ̂N,0 ∈ F+
N , every trajectory (γ̂N,0, γ̂N,1, γ̂N,2, . . .) of the CLVQ

algorithm is a.s. such that γ̂N,t ∈ F+
N for all t. If PX is absolutely continuous and if there

are finitely many grids x (∈ F̄+
N ) such that ∇D2,PX

N (x) = 0, then γ̂N,t
a.s−−→ γN as t → ∞,

with ∇D2,PX
N (γN ) = 0.

Part (i) of the result provides a particular family of distributions for which the optimal grid
is unique (recall that existence always holds). Beyond stating that trajectories of the CLVQ
algorithm live in F+

N (with grids that therefore stay of size N), Part (ii) of the result provides
mild conditions under which the algorithm almost surely provides a limiting grid that is a critical
point of the quantization error, hence, under the assumptions of Part (i), is optimal.

Unfortunately, the picture is less clear for the multivariate case (d > 1). While it is still so
that the grid γ̂N,t will have pairwise distinct components for any t, some of the components of
the limiting grid γN , if any, may coincide.

(a) If, parallel to the univariate case, this does not happen, then the a.s. convergence of γ̂N,t to
a critical point of the quantization error D2,PX

N (·) can be established under the assumption
that PX has a bounded density with a compact and convex support.

(b) Otherwise, no convergence results are available; the only optimality results that can then
be obtained relate to approximations involving grids of size k < N , where k is the number
of distinct components in the limiting grid γN , which is quite different from the original
N -quantization problem considered initially. Indeed, one cannot prove that the points of
the grid stay at strictly positive distance from each other when the number of iterations
tends to infinity. Therefore, it could appear that the limiting grid has strictly less than N
points.

These features are detailed in Pagès (1998). For practical purposes, though, one should not
worry too much, as all numerical exercices we conducted were compatible with case (a) (with
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d = 1 and N = 15 d = 2 and N = 30

n = 100 n = 1, 000 n = 10, 000 n = 200 n = 5, 000 n = 20, 000

CPU 0.012 0.116 1.145 0.556 0.883 3.468
AVE[e] 0.132 0.0993 0.0843 0.364 0.322 0.315
SD[e] 0.0196 0.0115 0.00657 0.0315 0.0130 0.00835

Table 1.1 – Averaged computation times (CPU, in seconds) dedicated to the CLVQ algorithm with grid size N ,
along with the averages (AVE[e]) and standard deviations (SD[e]) of the sample quantization errors in (1.2.3),
obtained from 50 independent samples of size n; see Section 1.2.6 for details.

increasing t, the smallest distance between two components of γ̂N,t always seemed to stabilize
rather than decrease to zero).

In the sequel, we will write throughout that the grids provided by the CLVQ algorithm are
optimal. Strictly speaking, though, the grid γ̂N,n resulting from this algorithm, for any fixed n,
does not minimize the quantization error, hence is not optimal. Yet, the previous results show
that γ̂N,n converges to an optimal grid as the number of iterations n tends to infinity (with
N fixed), under mild assumptions. Clearly, only moderate-to-large values of n are expected to
provide good approximations of genuine optimal N -grids.

1.2.6 Numerical performances of CLVQ

We end this section by quickly evaluating the performances of the CLVQ algorithm, both for d = 1

and d = 2. To do so, we generated, for the various combinations of n and N considered in
Table 1.1, 50 mutually independent random samples of size n from the uniform distribution
over [−2, 2]d and performed in each case the CLVQ algorithm with the corresponding value
of N . For each (n,N), this leads to 50 CPU times to completion and 50 sample quantization
errors

e =

√√√√ 1

n

n∑
i=1

(
Xi − Projγ̂N,n(Xi)

)2
. (1.2.3)

Table 1.1 reports the corresponding averaged CPU times, along with the averages and standard
deviations of the various collections of 50 quantization errors. Since the number of iterations of
the algorithm is equal to n, it is no surprise that the error decreases with n while the computation
time increases with n.

1.3 Objectives and structure of the thesis

This thesis consists in two parts, each of them composed of several chapters. We motivated
in Section 1.1 the importance of conditional quantiles and gave an overview of the numerous
applications of this concept. Efficient estimators of conditional quantiles are then highly desirable
and the goal of the first part of this thesis consists in constructing new estimators of conditional
quantiles, using Lp-mean optimal quantization.
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1.3 Objectives and structure of the thesis

Chapter 2 aims to define this quantization-based estimator. The starting point consists in
replacing X in the definition of conditional quantiles by its quantized version. The resulting
approximation of conditional quantiles is studied from a theoretical point of view in Section 2.2
and convergence results are derived when N tends to infinity. From this approximation, an
estimator of conditional quantiles is defined in Section 2.3. The convergence in probability of
this estimator toward the approximation is obtained when n tends to infinity and for N fixed.
However, even if these asymptotic results are really interesting, we observe in practice that the
resulting conditional quantile curves are not sufficiently smooth for small-to-moderate sample
sizes n. For this reason, we define a bootstrap version of our estimator that considerably improves
its performances. Sections 2.4 and 2.5 gather the proofs of Sections 2.2 and 2.3 respectively.

This theoretical investigation naturally requires to address the numerical behavior of our
estimator. This is the object of Chapter 3. We first develop in Section 3.2 a data-driven selection
method for the parameter N (the size of the quantization grid) required in the construction of our
estimator. This method shows its efficiency on several replications. With this selection method,
our estimation procedure is entirely functional and we are then able to compare our performances
with the ones of alternatives estimators in Section 3.3. The comparison study of this section only
deals with univariate covariates. Therefore, Section 3.4 briefly compares our estimator with its
main competitor in the case of a bidimensional covariate. We also developed an R package,
called QuantifQuantile, allowing anyone to perform our method in a quite automatic way.
Section 3.5 focuses on the different functions of this package and illustrates them. The numerical
investigation is completed in Section 3.6 with real data applications.

These first chapters tackle the regression setup of a univariate response variable and a uni-
or multivariate covariate. It is then natural to wonder whether it is possible to extend the results
of the first part to a multivariate response variable. This requires to generalize the concept of
quantile in a multidimensional setting, which is not direct due to the lack of natural ordering in
the Euclidean space for dimension greater than one. This is then the subject of Part II of this
thesis where we first discuss in Chapter 4 the choice of a concept of multivariate quantiles and
compare the different existing notions.

Chapter 5 adresses the theoretical investigation of some quantization-based estimator of
multiple-output conditional quantiles and is the natural generalization of Chapter 2. It follows
the same structure since 1) an approximation is defined and studied in Section 5.2, and 2) a
new estimator is introduced in Section 5.3 by taking an empirical version of this approximation.
A bootstrap version of the estimator is also defined. Sections 5.4 and 5.5 gather the proofs of
Sections 5.2 and 5.3 respectively.

Finally, Chapter 6 focuses on the numerical behavior of our estimator. It generalizes the
first sections of Chapter 3. Indeed, Section 6.2 extends the data-driven selection method for the
parameter N (the size of the quantization grid) while Section 6.3 compares our performances
with the ones of alternative estimators. The numerical investigation is completed in Section 6.4
with a real data application.

We then conclude this thesis in Chapter 7 and we point out some perspectives.
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Part I

Single-output quantile regression
through optimal quantization
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Glossary

Notation Meaning
qα Quantile of order α of the random variable Y

qα(x) Conditional quantile of order α of the random variable Y given X = x

IA Indicator function of the set A

|z| , ‖z‖p Euclidean norm, Lp-norm of z

PX , SX Distribution of the random vector X and its support

γN Optimal quantization grid of size N

X̃N Projection of X onto the quantization grid γN

Cx Quantization cell containing all points projected on the same grid point as x

R(Cx) Radius of Cx, i.e. largest distance between the center and a point of the cell

B(z, r) Ball of center z and radius r

γ̂N,n Approximation of γN provided by CLVQ after n replications

X̂N,n Projection of X onto the approximated quantization grid γ̂N,n

q̃Nα (x) Approximation of qα(x) constructed using X̃N

q̂N,nα (x) Estimator of qα(x) constructed from a sample of size n, using γ̂N,n

q̄N,nα,B (x) Bootstrap-based estimator of qα(x)

N (µ, σ2) Normal distribution of mean µ and variance σ2

U(a, b) Uniform distribution on the interval (a, b)

Beta(a, b) Beta distribution with shape parameters a and b

χ2
k Chi-square distribution with k degrees of freedom

ISEˆ
α(N) Infeasible criterion for selecting N based on q̂N,nα (x)

ISE¯
α,B(N) Infeasible criterion for selecting N based on q̄N,nα,B (x)

ÎSE
ˆ

α(N) Data-driven criterion for selecting N based on q̂N,nα (x)

ÎSE
¯

α,B(N) Data-driven criterion for selecting N based on q̄N,nα,B (x)
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Glossary

q̂ sp
α (x) Spline method-based estimator of qα(x)

q̂α;kNN(x) k-nearest neighbor estimator of qα(x)

q̂YJ
α (x) Local linear estimator of qα(x)

q̂YJc
α (x) Local constant estimator of qα(x)
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Conditional quantile estimation through optimal quantization
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2.1 Introduction

In this chapter, we define a new estimator of conditional quantile. As above mentioned, this
estimator is constructed using optimal quantization. In Section 2.2, we explain the first step
of the construction. It consists in replacing the covariate X in Definition 1.1.4 of conditional
quantile to get an approximation of them. An estimator is then defined in a second step by
taking an empirical version of this approximation, as detailed in Section 2.3. This estimator and
the asymptotic results given below are the subject of the paper Conditional quantile estimation
through optimal quantization (Charlier et al., 2015a) with Davy Paindaveine and Jérôme Saracco,
published in Journal of Statistical Planning and Inference.

Throughout the chapter, X is a d-dimensional random vector of covariates while Y is a scalar
response variable, unless otherwise stated.

2.2 Approximation of conditional quantile

Fix p ≥ 1 such that ‖X‖p <∞. The idea of this approximation is to replace X by a discrete ran-
dom vector in the definition of conditional quantile. This discrete random vector is its quantized
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2.2 Approximation of conditional quantile

version X̃N . As explained in Section 1.2, X̃N is the projection of X onto an Lp-norm optimal
quantization N -grid γN . Therefore, X̃N can only take N values (the N points of γN ) and the
x for which we consider qα(x) has also to be replaced by its projection on the grid in the con-
ditioning of the expectation since P (X̃N = x) = 0 for all x ∈ Rd \ γN . Then, for any positive
integer N , one may consider the approximation

q̃Nα (x) = arg min
a∈R

E
[
ρα(Y − a)|X̃N = x̃

]
, (2.2.1)

where x̃ is the projection of x onto γN . Since X̃N−X goes to zero asN →∞ by Proposition 1.2.4,
one may expect that q̃Nα (x) provides a better and better approximation of qα(x) as N increases.
The main goal of this section is to quantify the quality of this approximation.

Let us denote R+
0 := {z ∈ R : z > 0}. We will need several assumptions and we will motivate

each of them.

Assumption (A) (i) The random vector (X,Y ) is generated through Y = m(X, ε), where
the d-dimensional covariate vector X and the error ε are mutually independent; (ii) the link
function (x, z) 7→ m(x, z) is of the form m1(x) + m2(x)z, where the functions m1(·) : Rd → R
andm2(·) : Rd → R+

0 are Lipschitz functions; (iii) ‖X‖p <∞ and ‖ε‖p <∞; (iv) the distribution
of X does not charge any hyperplane.

Point (i) of this assumption simply sets that Y depends on the covariate X and also on
an error term independent of X. Point (ii) characterizes the link function m. The assumptions
on m are quite mild and we observe that choosing non-constant m2(·) provides heteroscedastic
models. They are particularly of interest since detecting heteroscedasticity is a major advantage
of quantile regression with respect to standard regression. Combining Point (ii) with second part
of Point (iii) implies that the link function m(·, ε) of the model is a Lipschitz function, i.e. that
there exists C > 0 such that m(·, ε) satisfies

∀u, v ∈ Rd, ‖m(u, ε)−m(v, ε)‖p ≤ C|u− v|. (2.2.2)

The resulting Lipschitz constant — that is, the smallest real number C for which (2.2.2) holds
— is [m]Lip ≤ [m1]Lip + [m2]Lip‖ε‖p, where [m1]Lip and [m2]Lip are the corresponding Lipschitz
constants of m1 and m2, respectively. Indeed, for any u, v ∈ Rd,∥∥m(u, ε)−m(v, ε)

∥∥
p

=
∥∥(m1(u)−m1(v)

)
+
(
m2(u)−m2(v)

)
ε
∥∥
p

≤
∥∥m1(u)−m1(v)

∥∥
p

+
∥∥(m2(u)−m2(v)

)
ε
∥∥
p

≤
(
E
[
|m1(u)−m1(v)|p

])1/p
+
(
E
[
|m2(u)−m2(v)|p|ε|p

])1/p
≤ [m1]Lip|u− v|+

(
E
[
[m2]pLip|u− v|

p|ε|p
])1/p

≤ [m1]Lip|u− v|+ [m2]Lip|u− v|
(
E[|ε|p]

)1/p
=
(
[m1]Lip + [m2]Lip‖ε‖p

)
|u− v|.

Finally, first part of Point (iii) is mandatory to perform quantization and Point (iv) is necessary
to ensure the existence of an Lp-optimal quantization N -grid γN , as explained in Section 1.2.
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Chapter 2 : Conditional quantile estimation through optimal quantization

The following reinforcement of Assumption (A) is necessary if we want to obtain convergence
rates. This assumption actually comes from Theorem 1.2.5 allowing to get convergence rate for
the quantization error.

Assumption (A′) Same as Assumption (A), but with (iii) replaced by (iii)′ there exists δ > 0

such that ‖X‖p+δ <∞, and ‖ε‖p <∞.

The last assumption of this section is a technical assumption used to prove both theorems.

Assumption (B) (i) The support SX of PX is compact; (ii) ε admits a continuous density f ε :

R→ R+
0 (with respect to the Lebesgue measure on R).

We can then prove the following result (see Section 2.4 for the proof). It gives an upper
bound for the Lp-norm difference between qα(X) and its approximation. In this bound appears
the quantization error that we control as N goes to infinity thanks to Proposition 1.2.6.

Theorem 2.2.1. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B),

‖q̃Nα (X)− qα(X)‖p ≤ 2 max
( √α

1− α
,

√
1− α
α

)
[m]

1/2
Lip

∥∥LN (X)
∥∥1/2

p
‖X − X̃N‖1/2p ,

for N sufficiently large, where (LN (X)) is a sequence of X-measurable random variables that is
bounded in Lp; (ii) under Assumptions (A′)-(B),

‖q̃Nα (X)− qα(X)‖p = O(N−1/2d),

as N →∞.

Of course, fixed-x consistency results are also quite appealing in quantile regression. Such a
result is provided in the following theorem (see Section 2.4 for the proof).

Theorem 2.2.2. Fix α ∈ (0, 1). Then, under Assumptions (A)-(B),

sup
x∈SX

∣∣q̃Nα (x)− qα(x)
∣∣→ 0,

as N →∞.

Unlike in Theorem 2.2.1, Theorem 2.2.2 does not provide any rate of convergence. This is a
consequence of the fact that, while the convergence of X̃N towards X can be shown to imply the
convergence of x̃ towards x for each fixed x, it does not seem possible to show that the rate of
convergence in the fixed-x convergence is inherited from the convergence involving X. In other
words, one does not have fixed-x analogous result to Proposition 1.2.6 that is the major result
that provides the rate of convergence.

We then constructed an approximation of conditional quantile using optimal quantization,
that converges to conditional quantile as the tuning parameter N tends to infinity. It was a first
step to construct what mostly interests us: a conditional quantile estimator. This will be done
in the next section by taking an empirical version of this approximation.
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2.3 Estimation of conditional quantile

2.3 Estimation of conditional quantile

2.3.1 The proposed estimators and their consistency

Consider now the problem of estimating the conditional quantile qα(x) on the basis of independent
copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ). For any N(< n), the approximation q̃Nα (x) in (2.2.1) leads
to an estimator q̂N,nα (x) of the conditional quantile qα(x), through the following two steps.

Step 1: Selection of the grid

As mentioned in Section 1.2, there does not exist any result allowing to calculate an optimal
quantization grid and we have to use the stochastic gradient algorithm to construct it. Moreover,
in our setting, we only have at our disposal n copies of the X and we do not know its distribution.
Therefore, the number of replications for the algorithm is fixed by the sample size: each Xi,
i = 1, . . . , n, will play the role of stimuli to construct an “optimal” grid. Optimal is now in
quotes since, with the number n of iterations fixed, the grid provided by the algorithm is only an
approximation of an optimal one. It is thus expected that only moderate-to-large n will provide
reasonable approximations of optimal N -grids.

First of all, we have to choose an initial grid to perform the stochastic gradient algorithm.
Since we do not know the distribution of X, the methods described in 1.2.4 and usually applied
do not seem suitable here. Therefore, a reasonable choice appears to be the following: the initial
grid γ̂N,0 is obtained by sampling randomly among the Xi’s without replacement, and with the
constraint1 that the same x-values cannot be picked more than once. This choice ensures us to
start with an initial grid with pairwise distinct components.

Afterwards, the algorithm is performed with n iterations, based on Xt = Xt, t = 1, . . . , n.
We write γ̂N,n = (x̂N,n1 , . . . , x̂N,nN ) for the resulting grid and X̂N,n = Projγ̂N,n(X) for the cor-
responding (empirical) quantization of X; to make the notation less heavy, we will stress the
dependence on n in these quantities only when necessary.

Let us point out the notation. Throughout this chapter, we will use both optimal grid in the
sense minimizing the quantization error, and optimal grid in the sense provided by the algorithm.
We chose the notation in order to make clear what kind of optimality we are considering. The
grid that minimizes the quantization error is always denoted γN and the projections on this grid
wear the tilde symbol (as X̃N and x̃ that are the projections of X and x on γN respectively).
The grid provided by the algorithm is always denoted with a hat symbol and the projections
on this grid also wear a hat symbol instead of a tilde symbol (as X̂N,n and x̂N,n that are the
projections of X and x on γ̂N,n respectively).

Step 2: Estimation

After having constructed an optimal grid γ̂N,n, we project the X-part of the sample onto this
grid. Let X̂N

i = X̂N,n
i = Projγ̂N,n(Xi). We thus consider now the sample {(X̂N

i , Yi)}i=1,...,n. The

1If the Xi’s are i.i.d. with a common density f , sampling without replacement among the Xi’s of course implies
that this constraint will be met with probability one. One often needs to impose it, however, in real-data examples
(due to the possible presence of ties) or when performing bootstrap (see later).
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Chapter 2 : Conditional quantile estimation through optimal quantization

approximation q̃Nα (x) = arg minaE[ρα(Y − a)|X̃N = x̃] is then estimated by taking an empirical
version, i.e.

q̂N,nα (x) = arg mina∈R
∑n

i=1 ρα(Yi − a)
I
[X̂N
i

=x̂N ]

#
{
j∈{1,...,n}:X̂N

j =x̂N
} ,

where x̂N = x̂N,n = Projγ̂N,n(x). Equivalently, we rather define

q̂N,nα (x) = arg mina∈R
∑n

i=1 ρα(Yi − a) I
[X̂N
i =x̂N ]

. (2.3.1)

Of course, q̂N,nα (x), in practice, is simply evaluated as the sample α-quantile of the Yi’s whose
corresponding X̂N

i is equal to x̂N .

This projection of Xi’s thus proceeds according to their belongings to Voronoi cells that are
partitioning the covariate space Rd (see Section 1.2). This estimator can therefore be viewed as
a nonparametric partitioning regression estimator. Partitioning ideas were already used in the
construction of least square estimators; see, e.g., Györfi et al. (2002) for a complete overview and
Kohler et al. (2006) or Cattaneo and Farrell (2013) for more recent results.

For fixed N (and x), the convergence in probability of q̂N,nα (x) to q̃Nα (x) as n → ∞ can be
obtained by making use of the convergence results for the stochastic gradient algorithm discussed
in Section 1.2.5. In order to do so, we need to restrict to p = 2 (that is, to the CLVQ algorithm)
since this is the only case for which convergence results were established. We also need to adopt
the following assumption.

Assumption (C) PX is absolutely continuous with respect to the Lebesgue measure on Rd.

We then have the following result, whose proof is given in Section 2.5.

Theorem 2.3.1. Fix α ∈ (0, 1), x ∈ SX and N ∈ N0. Then, under Assumptions (A), (B)(i),
and (C), we have that, as n→∞,

|q̂N,nα (x)− q̃Nα (x)| → 0,

in probability, provided that quantization is based on p = 2.

In the previous section, we showed that, as N → ∞, q̃Nα (x) − qα(x) goes to zero almost
surely, hence in probability. Theorem 2.3.1 then suggests that q̂N,nα (x)− qα(x) might go to zero
in probability as both n and N go to infinity in some appropriate way. Obtaining such a double
asymptotic result, however, is extremely delicate, since, to the best of our knowledge, all con-
vergence results for the stochastic gradient algorithm in the literature are as n → ∞ with N

fixed. In any case, this is of academic interest only; in practice, indeed, the sample size n is of
course fixed and the user needs to choose appropriately the size N of the quantization grid. We
propose in Chapter 3 a method that allows to choose this smoothing parameter N by achieving
a bias-variance trade-off (see Figure 2.2 below).
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2.3 Estimation of conditional quantile

2.3.2 Numerical example and bootstrap modification

For the sake of illustration, we evaluated the estimator q̂N,nα (x) for N = 10, 25 and 40, in a
sample of n = 300 mutually independent observations (Xi, Yi) obtained from the model

Y =
1

5
X3 + ε, (2.3.2)

where X = 6Z − 3, with Z ∼ Beta(0.3, 0.3), and ε ∼ N (0, 1) are independent. The left panels in
Figure 2.2 plot the corresponding quantile curves x 7→ q̂N,nα (x) for α = 0.05, 0.25, 0.5, 0.75, and
0.95 (actually, these curves were evaluated only at 300 equispaced points in (−3, 3)).

It is seen that the number N of quantizers used has an important impact on the curves. For
small N , the curves are not smooth and show a large bias. For large N , bias is smaller but the
variability is large. This may seem contradictory at first sight, since one stated in Section 1.2
that the quantization error decreases with N . However, this result only holds for an optimal
grid γN and not for the grid provided by the algorithm. Indeed, the number of iterations of this
algorithm is fixed by the sample size, and only one point moves at each iteration. It is then
obvious that the larger N is, the more iterations one needs to have a good approximation of
the optimal grid γN . One should then keep in mind that, for large N , the grid provided by the
CLVQ algorithm poorly approximates the corresponding optimal N -grid, since a fixed number n
of iterations is used in the algorithm (that should not be too small compared to N).

Smoother quantile curves can be obtained from the bootstrap. The starting idea of this pro-
cedure comes from the observation that performing the CLVQ algorithm several times provides a
different optimal grid every time. This is due to the fact that the initial grid is chosen differently
since one selects it randomly among the observations, as explained in Section 2.3.1. We also
notice that, even if we start from the same initial grid, the resulting grid differs if we use the
observations in a different order when updating the grid. However, there is no reason to prefer
one of these grids rather than another one. The bootstrap method is then based on these remarks
and generates B optimal grids, then B corresponding estimations of qα(x). These estimations
are all acceptable, and then we take the mean. Let us detail this procedure, that is illustrated
step by step in Figure 2.1.

Generating B grids

For some integer B, we first generate B samples of size n with replacement from the initial
sample X1, . . . , Xn, that we denote (ξtb)t, t = 1, . . . , n and b = 1, . . . , B. We also generate initial
grids γ̂N,0b as above, by sampling randomly among the corresponding (ξtb)t under the constraints
that the N values are pairwise distinct. We then perform B times CLVQ with iterations based
on ξtb, t = 1, . . . , n and with initial grid γ̂N,0b . This provides B optimal grids γ̂N,nb , b = 1, . . . , B

(each of size N).

Bootstrap based estimator

Each of these grids is now used to estimate conditional quantiles. Working again with the original
sample (Xi, Yi), i = 1, . . . , n, we project the X-part onto the grids γ̂N,nb , b = 1, . . . , B. Therefore,

30



Chapter 2 : Conditional quantile estimation through optimal quantization
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Figure 2.1 – Step by step construction of the bootstrap based estimator q̄N,nα,B (x).

(2.3.1) provides B estimations, denoted q̂(b)
α (x) = q̂

(b),N,n
α (x) of qα(x). This allows to consider the

bootstrap estimator

q̄N,nα,B (x) =
1

B

B∑
b=1

q̂(b)
α (x), (2.3.3)

obtained by taking the mean of these B estimations. Bootstrapping, thus, focuses on the con-
struction of the grids and we come back to the original sample in the estimation step.

The right panels of Figure 2.2 plot the resulting bootstrapped quantile curves x 7→ q̄N,nα,B (x)

for the same values of α and N as in the original (non-bootstrapped) versions. Bootstrapping
clearly smooths all curves, and moreover significantly reduces boundary effects for small N .
These advantages require to take B large enough. But of course, very large values of B should
be avoided in order to keep the computational burden under control.

Figure 2.2 also shows that the number N of quantizers has an important impact on the
resulting quantile curves. For small N (N = 10), the curves show a large bias and a small
variability. For larger N (N = 50), the bias is smaller but the variability is larger (with or without
bootstrap). This bias-variance trade-off is standard in the selection of a smoothing parameter.
The intermediate value N = 25, that achieves a nice balance between those two extreme cases,
was actually obtained from an original N -selection method we describe in Section 3.2 below.

2.4 Proofs of Section 2.2

In this section, we prove Theorems 2.2.1 and 2.2.2, which requires to establish several lemmas.
We first introduce some notation. Let

Ga(x) = E[ρα(Y − a)|X = x],

G̃a(x̃) = E[ρα(Y − a)|X̃N = x̃].

Since the proof of Theorem 2.2.1 requires Theorem 2.2.2 (i.e. its corresponding with x fixed),
one will first prove Theorem 2.2.2.
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Figure 2.2 – Estimated conditional quantile curves x 7→ q̂N,nα (x) (left) and their bootstrapped counterparts
x 7→ q̄N,nα,B (x) for B = 50 (right), based on N = 10 (top), N = 25 (middle), and N = 50 (bottom). The sample
size is n = 300, and the quantiles levels considered are α=0.05, 0.25, 0.5, 0.75, and 0.95. See (2.3.2) for the data
generating model.
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2.4.1 Proof of Theorem 2.2.2

Since q̃ = q̃Nα (x) = arg mina∈R G̃a(x̃) and q = qα(x) = arg mina∈RGa(x), it is natural to try to
control the distance between G̃a(x̃) and Ga(x). This is achieved in Lemma 2.4.2, the proof of
which requires the following preliminary result. This first lemma proves the Lipschitz property
of the functions ρα(·) and Gα(·) and gives their corresponding Lipschitz constant. Recall that
m(·, ε) is the link function of our model.

Lemma 2.4.1. Fix α ∈ (0, 1) and a ∈ R. Then, under Assumption (A), (i) ρα : R → R is
Lipschitz, with Lipschitz constant [ρα]Lip = max(α, 1 − α), and (ii) Ga : Rd → R is Lipschitz,
with Lipschitz constant equal at most to [Ga]Lip = max(α, 1− α)[m]Lip.

Proof of Lemma 2.4.1. (i) Fix α ∈ (0, 1). We consider different cases.

• If z1 and z2 are both positive, then |ρα(z1)− ρα(z2)| = α|z1 − z2|.

• If they are both negative, then |ρα(z1)− ρα(z2)| = (1− α)|z1 − z2|.

• Finally, if z1z2 ≤ 0, then (without loss of generality, we may assume that z1 > 0 and z2 ≤ 0),
|ρα(z1) − ρα(z2)| = |αz1 − (1 − α)z2| ≤ α|z1| + (1 − α)|z2| ≤ max(α, 1 − α)(|z1| + |z2|) =

max(α, 1− α)|z1 − z2|.

Combining these three cases provides the result.
(ii) Note that, for any u, v ∈ Rd,

|Ga(u)−Ga(v)| =
∣∣E[ρα(Y − a)|X = u]− E[ρα(Y − a)|X = v]

∣∣
=
∣∣E[ρα(m(X, ε)− a)|X = u]− E[ρα(m(X, ε)− a)|X = v]|,

so that the independence of X and ε entails

|Ga(u)−Ga(v)| ≤ E[|ρα(m(u, ε)− a)− ρα(m(v, ε)− a)|] ≤ [ρα]Lip[m]Lip|u− v|,

where the last inequality follows from Point (i) of the result and equation (2.2.2).

We still need the following lemma to prove Theorem 2.2.2. The first point sets that the
supremum of the Euclidean distance of any point x and its projection onto an optimal grid tends
to zero as N goes to infinity. Point (ii) shows that the supremum of the radius of a Voronoi cell
tends also to zero as N goes to infinity. Remember that a Voronoi cell is formed of all points in
Rd that are projected onto the same point called the center of the cell (see Section 1.2). These
results are natural: if N becomes greater, it is expected that the distance between any point
and its projection will decrease. Similarly, if the number of cells increases, then their radius
decreases since we assume that X has a compact support. These two first points are used to set
the convergence to zero of the distance between Ga(x) and its quantized version G̃a(x̃), hence of
the distance between their respective minimum.
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Lemma 2.4.2. Fix α ∈ (0, 1) and x ∈ SX . For any integer N , let x̃ = x̃N = ProjγN (x) and
Cx = CNx = {z ∈ SX : ProjγN (z) = x̃}. Then, under Assumptions (A)-(B),
(i) supx∈SX |x− x̃| → 0 as N →∞;
(ii) supx∈SX R(Cx)→ 0 as N →∞, where we let R(Cx) := supz∈Cx |z − x̃|;
(iii) supx∈SX supa∈R |G̃a(x̃)−Ga(x)| → 0 as N →∞;
(iv) supx∈SX |mina∈R G̃a(x̃)−mina∈RGa(x)| → 0 as N →∞.

Proof of Lemma 2.4.2. (i) Assume by contradiction that there exists ε > 0 such that, for in-
finitely many N (for N ∈ N (ε), say), we have supx∈SX |x̃

N − x| > ε. For any such value
of N , one can pick x ∈ SX (that may depend on N) with |x̃N − x| > ε. Since x̃N is by
definition the closest point of the grid to x, no point of the optimal grid γN belongs to the
ball B(x, ε) = {z ∈ Rd : |z − x| < ε}. This implies that, for all z ∈ B(x, ε/2), |z̃N − z| > ε/2,
where z̃ is the projection of z onto γN . Therefore, for N ∈ N (ε),

‖X̃γN −X‖pp =

∫
SX

|z̃N − z|p dPX(z) ≥
∫
B(x,ε/2)

|z̃N − z|p dPX(z)

>
(ε

2

)p
inf
y∈SX

PX
[
B(y, ε/2)

]
=: δε > 0, (2.4.1)

where the last inequality follows from the fact that y 7→ PX
[
B(y, ε/2)

]
is a continuous function

taking only strictly positive values on the compact set SX . Since the cardinality of N (ε) is
infinite, (2.4.1) prevents ‖X̃γN −X‖p to go to zero as N →∞, a contradiction.
(ii) The result directly follows from Point (i) since Cx ⊂ SX .
(iii) Fix a ∈ R. First note that it comes directly from the definitions that the event [X̃N = x̃] is
equivalent to [X ∈ Cx]. Then, one has

|E[ρα(Y −a)|X̃N = x̃]−E[ρα(Y −a)|X = x̃]| ≤ sup
z∈Cx

|E[ρα(Y −a)|X = z]−E[ρα(Y −a)|X = x̃]|.

Therefore,

|G̃a(x̃)−Ga(x)| = |E[ρα(Y − a)|X̃N = x̃]− E[ρα(Y − a)|X = x]|

≤ |E[ρα(Y − a)|X̃N = x̃]− E[ρα(Y − a)|X = x̃]|+ |E[ρα(Y − a)|X = x̃]− E[ρα(Y − a)|X = x]|

≤ 2 sup
z∈Cx

|E[ρα(Y − a)|X = z]− E[ρα(Y − a)|X = x̃]|,

where the last inequality comes from the fact that x is a particular point of Cx. Using the
independence between X and ε and the Lipschitz properties of ρα and m then yields

|G̃a(x̃)−Ga(x)| ≤ 2 sup
z∈Cx

|E[ρα(m(z, ε)− a)− E[ρα(m(x̃, ε)− a)]|

≤ 2 max(α, 1− α)[m]Lip sup
z∈Cx

|z − x̃|

= 2 max(α, 1− α)[m]LipR(Cx).
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Since the last right hand side does not depend on a, it implies that

sup
a∈R
|G̃a(x̃)−Ga(x)| ≤ 2 max(α, 1− α)[m]LipR(Cx).

Hence,
sup
x∈SX

sup
a∈R
|G̃a(x̃)−Ga(x)| ≤ 2 max(α, 1− α)[m]Lip sup

x∈SX
R(Cx).

The result then follows from Point (ii).
(iv) Letting I+ = I

[mina∈R G̃a(x̃)≥mina∈RGa(x)]
, we have

|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|I+ =
(
G̃q̃Nα (x)(x̃)−Gqα(x)(x)

)
I+

≤
(
G̃qα(x)(x̃)−Gqα(x)(x)

)
)I+

≤ sup
a∈R
|G̃a(x̃)−Ga(x)|I+.

Proceeding similarly with I− = I
[mina∈R G̃a(x̃)<mina∈RGa(x)]

, this yields

|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|I− =
(
Gqα(x)(x)− G̃q̃Nα (x)(x̃)

)
I−

≤
(
Gq̃Nα (x)(x)− G̃q̃Nα (x)(x̃)

)
I−

≤ sup
a∈R
|G̃a(x̃)−Ga(x)|I−,

so that |mina∈R G̃a(x̃) −mina∈RGa(x)| ≤ supa∈R |G̃a(x̃) − Ga(x)|. The result therefore follows
from Point (iii).

We can now prove Theorem 2.2.2. The idea of the proof is to derive the convergence to zero
of the difference of the argmin from Points (iii) and (iv) of Lemma 2.4.2.

Proof of Theorem 2.2.2. First note that, for any x ∈ SX ,

|Gq̃Nα (x)(x)−Gqα(x)(x)| ≤ |Gq̃Nα (x)(x)− G̃q̃Nα (x)(x̃)|+ |G̃q̃Nα (x)(x̃)−Gqα(x)(x)|

≤ sup
a∈R
|Ga(x)− G̃a(x̃)|+ |min

a∈R
G̃a(x̃)−min

a∈R
Ga(x)|

≤ sup
x∈SX

sup
a∈R
|Ga(x)− G̃a(x̃)|+ sup

x∈SX
|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|.

Therefore, Lemma 2.4.2(iii)-(iv) readily implies that, as N →∞,

sup
x∈SX

|Gq̃Nα (x)(x)−Gqα(x)(x)| → 0. (2.4.2)

Now, let Ñ be such that, for any N ≥ Ñ , we have |Gq̃Nα (x)(x)−Gqα(x)(x)| ≤ 1 for all x ∈ SX .
As we will show later in this proof, this implies that there exists M such that

|q̃Nα (x)− qα(x)| ≤M, (2.4.3)
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for all x ∈ SX and N ≥ Ñ .
One can easily check that, for any x ∈ SX , a 7→ Ga(x) is twice continuously differentiable,

with derivatives

dGa(x)

da
= F ε

(
a−m1(x)

m2(x)

)
− α and

d2Ga(x)

da2
=

1

m2(x)
f ε
(
a−m1(x)

m2(x)

)
,

where F ε(·) denotes the cdf of ε. We then perform a second-order expansion about a = qα(x). It
provides

Gq̃Nα (x)(x) = Gqα(x)(x) +
dGa(x)

da

∣∣∣∣
a=qα(x)

(q̃Nα (x)− qα(x)) +
d2Ga(x)

da2

∣∣∣∣
a=qNα∗(x)

(q̃Nα (x)− qα(x))2

2

= Gqα(x)(x) +
1

2m2(x)
f ε
(
qNα∗(x)−m1(x)

m2(x)

)
(q̃Nα (x)− qα(x))2,

for some qNα∗(x) between q̃Nα (x) and qα(x), where the last equality comes from the fact that qα(x)

is a minimum in a of the function Ga(x). The first derivative is then equal to zero in this point.
Hence,

Gq̃Nα (x)(x)−Gqα(x)(x) =
1

2m2(x)
f ε
(
qNα∗(x)−m1(x)

m2(x)

)
(q̃Nα (x)− qα(x))2.

Isolating the term of interest (q̃Nα (x)− qα(x))2 and taking the supremum over x ∈ SX yield

sup
x∈SX

(q̃Nα (x)− qα(x))2 ≤
2 supx∈SX m2(x)

infx∈SX f
ε
(
qNα∗(x)−m1(x)

m2(x)

) sup
x∈SX

|Gq̃Nα (x)(x)−Gqα(x)(x)|. (2.4.4)

Since m2(·) is a continuous function defined over the compact set SX , it is bounded and we have

sup
x∈SX

m2(x) ≤ Ca (2.4.5)

for some positive constant Ca. Using (2.4.3), we have

|qNα∗(x)−m1(x)| ≤ |qα(x)|+ |qNα∗(x)− qα(x)|+ |m1(x)|

≤ |qα(x)|+M + |m1(x)|.

Moreover, since qα(·), m1(·), and m2(·) are continuous functions also defined over this compact
set (with m2(·) taking strictly positive values), we get that, for N ≥ Ñ ,

sup
x∈SX

|qNα∗(x)−m1(x)|
m2(x)

≤
supx∈SX

(
|qα(x)|+ |m1(x)|+M

)
infx∈SX m2(x)

≤ Cb,

for some constant Cb. Jointly with the continuity of the (strictly) positive function f ε(·), this
implies that the infimum in (2.4.4) admits a strictly positive lower bound that is independent
of N (for N ≥ Ñ). Using this, (2.4.2) and (2.4.5), we conclude from (2.4.4) that

sup
x∈SX

(q̃Nα (x)− qα(x))2 → 0,

as N →∞, which was to be proved.
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It remains to show that the claim in (2.4.3) indeed holds true. By contradiction, assume that
for all M , there exists x = xM (and N ≥ Ñ) such that |q̃Nα (xM )− qα(xM )| > M . The convexity
of a 7→ Ga(x) implies that, for all a between qα(xM ) and q̃Nα (xM ), the image of a by Ga(xM ) is
less than its image by the straight line between qα(xM ) and q̃Nα (xM ). This line admits as equation

y = Gqα(xM )(xM ) +
|Gq̃Nα (xM )(xM )−Gqα(xM )(xM )|

|q̃Nα (xM )− qα(xM )|
|a− qα(xM )|,

which implies

Ga(xM ) ≤ Gqα(xM )(xM ) +
|Gq̃Nα (xM )(xM )−Gqα(xM )(xM )|

|q̃Nα (xM )− qα(xM )|
|a− qα(xM )|.

Given the fact that |Gq̃Nα (x)(x)−Gqα(x)(x)| ≤ 1 for all x ∈ SX (for N ≥ Ñ) and that |q̃Nα (xM )−
qα(xM )| > M , we have, for any a with |a− qα(xM )| ≤M ,

Ga(xM ) ≤ Gqα(xM )(xM ) +
1

M
|a− qα(xM )|. (2.4.6)

This property is illustrated in Figure 2.3 for the case qα(xM ) ≤ a ≤ q̃Nα (xM ). In particular,

Gqα(xM )+1(xM ) ≤ Gqα(xM )(xM ) +
1

M
(2.4.7)

for any integer M . The smoothness of a 7→ Ga(x) ensures that, for any M , there exists qM
between qα(xM ) and qα(xM ) + 1 such that

Gqα(xM )+1(xM ) = Gqα(xM )(xM ) +
1

2

d2Ga(xM )

da2

∣∣∣∣∣
a=qM

.

In view of (2.4.7), the sequences (xM ) and (qM ) are such that

1

m2(xM )
f ε
(
qM −m1(xM )

m2(xM )

)
=
d2Ga(xM )

da2

∣∣∣∣∣
a=qM

→ 0

as M → ∞. Using again the fact that m2(·) is a continuous function defined over the compact
set SX , we conclude that

f ε
(
qM −m1(xM )

m2(xM )

)
→ 0 (2.4.8)

as M → ∞. By proceeding as above, we can however show that the argument of f ε in (2.4.8)
remains bounded as M → ∞, so that (2.4.8) contradicts the continuity of f ε : R → R+

0 .
Therefore, the claim (2.4.3) is indeed true and this concludes the proof of Theorem 2.2.2.

2.4.2 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 still requires the following three lemmas. Lemma 2.4.3 and 2.4.4 are
the analogous to Lemma 2.4.2 (iii) and (iv) for global X and not fixed x. The third lemma that
we will prove is a technical lemma.

In this section, q and q̃ will stand for qα(X) and q̃Nα (X), respectively, for simplicity of notation.
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x

2 4 6 8

y

0.5

1

Gqα(x)(x)

qα(x)

Gq̃Nα (x)(x)

q̃Nα (x)

Ga(x)

a

> M

≤ 1

y = Gqα(x)(x) + 1
M (a− qα(x))

Ga(x)

Figure 2.3 – Illustration of the convex function Ga(x) and the resulting property (2.4.6).

Lemma 2.4.3. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B), we have∥∥supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤ 2 max(α, 1− α)[m]Lip

∥∥X̃N −X
∥∥
p

; (2.4.9)

(ii) under Assumptions (A′)-(B), we have that∥∥supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p

= O
(
N−1/d

)
,

as N →∞.

Lemma 2.4.4. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B), we have
∥∥G̃q̃(X̃N ) −

Gq(X)
∥∥
p
≤ 2 max(α, 1 − α)[m]Lip

∥∥X̃N − X
∥∥
p
; (ii) under Assumptions (A′)-(B),

∥∥G̃q̃(X̃N ) −
Gq(X)

∥∥
p

= O(N−1/d) as N →∞.

Lemma 2.4.5. Let Assumption (B) hold and fix α, β ∈ (0, 1). For any x ∈ SX , let L(x) =

1/fY |X=x(qα(x)) and LNβ (x) = 1/fY |X=x(cNβ (x)), where cNβ (x) is the infimum of all c’s between
qα(x) and tβ(x) = tβ(q̃Nα (x), qα(x)) = βq̃Nα (x) + (1− β)qα(x) for which∫ max(qα(x),tβ(x))

min(qα(x),tβ(x))
fY |X=x(y) dy = fY |X=x(c) |tβ(x)− qα(x)| (2.4.10)

(existence follows from the mean value theorem). Then ‖LNβ (X)‖p → ‖L(X)‖p as N →∞.

Notice that, under Assumption (A), the conditional density fY |X=x(y) rewrites as fY |X=x(y) =
1

m2(x) f
ε(y−m1(x)

m2(x) ).
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Proof of Lemma 2.4.3. Point (ii) of the result readily follows from Point (i) and Proposition 1.2.6,
so that we may focus on the proof of Point (i). Note that Ga(X̃N ) stands for the conditional
expectation of ρα(Y − a) given that X = X̃N , which is different from E[ρα(Y − a)|X̃N ]. For
any a, ∣∣G̃a(X̃N )−Ga(X)

∣∣ ≤ ∣∣G̃a(X̃N )−Ga(X̃N )
∣∣+
∣∣Ga(X̃N )−Ga(X)

∣∣
≤ supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣+ supa

∣∣Ga(X̃N )−Ga(X)
∣∣

almost surely, so that

sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣ ≤ supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣+ supa

∣∣Ga(X̃N )−Ga(X)
∣∣

almost surely. The triangular inequality then yields

‖supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤
∥∥supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣∥∥
p

+
∥∥supa

∣∣Ga(X̃N )−Ga(X)
∣∣∥∥
p
.

(2.4.11)
Since X̃N is X-measurable, we have that

G̃a(X̃
N ) = E

[
ρα(Y − a)|X̃N

]
= E

[
E[ρα(Y − a)|X]|X̃N

]
= E

[
Ga(X)|X̃N

]
,

which gives

supa
∣∣G̃a(X̃N )−Ga(X̃N )

∣∣ = supa
∣∣E[Ga(X)−Ga(X̃N )|X̃N ]

∣∣
≤ E

[
supa|Ga(X)−Ga(X̃N )|

∣∣∣X̃N
]
,

almost surely. From Jensen’s inequality, we then obtain∥∥supa
∣∣G̃a(X̃N )−Ga(X̃N )

∣∣∥∥
p
≤
∥∥supa

∣∣Ga(X)−Ga(X̃N )
∣∣∥∥
p
.

Substituting in (2.4.11) and using Lemma 2.4.1(ii) yields

‖supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤ 2
∥∥supa

∣∣Ga(X)−Ga(X̃N )
∣∣∥∥
p

≤ 2 max(α, 1− α)[m]Lip

∥∥X̃N −X
∥∥
p
,

which establishes the result.

Proof of Lemma 2.4.4. The idea of this proof is really similar to the one of Lemma 2.4.2 (iv).
Letting I+ = I

[G̃q̃(X̃N )≥Gq(X)]
, note that

|G̃q̃(X̃N )−Gq(X)| I+ ≤
(
G̃q̃(X̃

N )−Gq(X)
)
I+ ≤

(
G̃q(X̃

N )−Gq(X)
)
I+

≤
(

sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣)I+,

almost surely. Similarly, with I− = I
[G̃q̃(X̃N )<Gq(X)]

, we have

|G̃q̃(X̃N )−Gq(X)| I− ≤
(
Gq(X)− G̃q̃(X̃N )

)
I− ≤

(
Gq̃(X)− G̃q̃(X̃N )

)
I−

≤
(

sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣)I−,

almost surely, so that |G̃q̃(X̃N ) −Gq(X)| ≤ supa
∣∣G̃a(X̃N ) −Ga(X)

∣∣, almost surely. The result
then directly follows from Lemma 2.4.3.
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Proof of Lemma 2.4.5. We have to prove that, as N →∞,∫
SX

1(
fY |X=x(cNβ (x))

)p dPX(x)→
∫
SX

1(
fY |X=x(qα(x))

)p dPX(x). (2.4.12)

First note that Assumption (B) ensures that, for any x ∈ SX ,

y 7→ fY |X=x(y) =
1

m2(x)
f ε
(
y −m1(x)

m2(x)

)
is continuous. Therefore, Theorem 2.2.2, which clearly entails that cNβ (x)→ qα(x) for any x (and
even uniformly in x) as N →∞, implies that

1(
fY |X=x(cNβ (x))

)p → 1(
fY |X=x(qα(x))

)p ,
still for any x as N → ∞. To establish (2.4.12), it is then sufficient — in view of Lebesgue’s
dominated convergence theorem — to prove that, for any x and any (sufficiently large) N ,

1

fY |X=x(cNβ (x))
=

m2(x)

f ε
(
cNβ (x)−m1(x)

m2(x)

) ≤ C (2.4.13)

for some constant C that does not depend on N .
To show (2.4.13), note that Theorem 2.2.2 and the continuity of m1(·) and m2(·) (with m2(·)

taking strictly positive values) over the compact set SX entail that, for N sufficiently large,∣∣∣∣cNβ (x)−m1(x)

m2(x)

∣∣∣∣ =

∣∣∣∣(qα(x)−m1(x)) + (cNβ (x)− qα(x))

m2(x)

∣∣∣∣
=

∣∣∣∣εα +
cNβ (x)− qα(x)

m2(x)

∣∣∣∣
≤ |εα|+

|cNβ (x)− qα(x)|
D1

≤ |εα|+
1

D1
= D2,

for some constants D1, D2 (that do not depend on N), where εα denotes the α-quantile of ε
(
it is

direct from the expression of m(·, ε) that εα = (qα(x)−m1(x))/m2(x)
)
. Consequently, (2.4.13)

directly follows from the continuity of m2(·) and f ε(·) : R→ R+
0 .

Finally, we prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Throughout the proof, we write q(x) and q̃(x) for qα(x) and q̃Nα (x),
respectively. Remember that q and q̃ stand for qα(X) and q̃Nα (X) respectively. For any r, s ∈ R
and β ∈ (0, 1), we also let tβ(r, s) := βr + (1− β)s.

(i) Let first r, s ∈ R with r ≤ s. It is then easy to show that, for all y ∈ R, one has

ρα(y − r)− ρα(y − s) ≥ −(1− α)(s− r)I[y≤tα(r,s)] + α(s− r)I[y>s]. (2.4.14)

Indeed,

• if y > tα(r, s), then ρα(y− r)−ρα(y−s) is positive. Multiplying by it the trivial inequality
1 ≥ I[y≤tα(r,s)] + I[y>s] provides directly (2.4.14);
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• if r < y ≤ tα(r, s), then ρα(y − r) − ρα(y − s) = α(s − r) + (y − s). (2.4.14) follows since
y > r;

• if y ≤ r, then ρα(y − r)− ρα(y − s) = −(1− α)(s− r), hence the result.

Therefore, using (2.4.14),{
ρα(Y − q̃)− ρα(Y − q)

}
I[q̃≤q] ≥

{
− (1− α)(q − q̃)I[Y≤tα(q̃,q)] + α(q − q̃)I[Y >q]

}
I[q̃≤q].

For simplicity of notations, we will write in the sequel tα = tα(q̃, q). Taking conditional expecta-
tion on X then yields

|Gq̃(X)−Gq(X)|I[q̃≤q] =
(
Gq̃(X)−Gq(X)

)
I[q̃≤q]

≥
{
− (1− α)(q − q̃)P [Y ≤ tα|X] + α(q − q̃)P [Y > q|X]

}
I[q̃≤q]

= (1− α)(q − q̃)
(
α− P [Y ≤ tα|X]

)
I[q̃≤q]

≥ min(α, 1− α)|q̃ − q|
(
P [Y ≤ q|X]− P [Y ≤ tα|X]

)
I[q̃≤q]

= min(α, 1− α)|q̃ − q|P [tα < Y ≤ q|X]I[q̃≤q], (2.4.15)

almost surely.
Now, for r, s ∈ R with r > s, we prove similarly that

ρα(y − r)− ρα(y − s) ≥ −(1− α)(s− r)I[y≤s] + α(s− r)I[y>t1−α(r,s)],

for all y ∈ R. Hence,{
ρα(Y − q̃)− ρα(Y − q)

}
I[q̃>q] ≥

{
− (1− α)(q − q̃)I[Y≤q] + α(q − q̃)I[Y >t1−α(q̃,q)]

}
I[q̃>q].

Taking expectation conditional on X, this gives (throughout with t1−α = t1−α(q̃, q), where we
stress that q̃ and q still stand for q̃Nα (X) and qα(X), respectively)

|Gq̃(X)−Gq(X)|I[q̃>q] =
(
Gq̃(X)−Gq(X)

)
I[q̃>q]

≥
{
− (1− α)(q − q̃)P [Y ≤ q|X] + α(q − q̃)P [Y > t1−α|X]

}
I[q̃>q]

= α(q − q̃)
(
P [Y > t1−α|X]− (1− α)

)
I[q̃>q]

≥ min(α, 1− α)|q̃ − q|
(
P [Y ≤ t1−α|X]− P [Y ≤ q|X]

)
I[q̃>q]

= min(α, 1− α)|q̃ − q|P [q < Y ≤ t1−α|X]I[q̃>q], (2.4.16)

almost surely.
Our strategy consists in combining (2.4.15)-(2.4.16) to obtain an almost sure lower bound

for |Gq̃(X)−Gq(X)|. We will need to consider the cases α ≤ 1/2 and α > 1/2 separately.
(a) In the case α ≤ 1/2, we have, under q̃ > q, that tα ≤ t1−α, so that (2.4.16) entails

|Gq̃(X)−Gq(X)|I[q̃>q] ≥ min(α, 1− α)|q̃ − q|P [q < Y ≤ tα|X]I[q̃>q]. (2.4.17)
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Summing (2.4.15) and (2.4.17) then provides∣∣Gq̃(X)−Gq(X)
∣∣ ≥ min(α, 1− α)|q̃ − q|P [min(tα, q) < Y ≤ max(tα, q)|X]. (2.4.18)

Now, for any x ∈ SX ,

P [min(tα, q) < Y ≤ max(tα, q)|X = x] =

∫ max(q(x),tα(x))

min(q(x),tα(x))
fY |X=x(y) dy

= fY |X=x(cNα (x)) |tα(x)− q(x)| = |tα(x)− q(x)|
LNα (x)

,

where tα(x) = tα(q̃(x), q(x)), cNα (x) and LNα (x) were defined in Lemma 2.4.5. It follows that

P [min(tα, q) ≤ Y < max(tα, q)|X] =
|tα − q|
LNα (X)

almost surely. Since |tα − q| = α|q̃ − q| ≥ min(α, 1− α)|q̃ − q|, we have

P [min(tα, q) ≤ Y < max(tα, q)|X] ≥ min(α, 1− α)
|q̃ − q|
LNα (X)

almost surely.
Plugging into (2.4.18) yields that it almost surely holds that

|q̃ − q|2 ≤ 1

(min(α, 1− α))2
LNα (X)|Gq̃(X)−Gq(X)|

or equivalently, that

|q̃ − q|p ≤ 1

(min(α, 1− α))p
(LNα (X))p/2|Gq̃(X)−Gq(X)|p/2.

Taking expectations, applying the Cauchy-Schwarz inequality, then computing pth roots, provide

‖q̃ − q‖p ≤
1

min(α, 1− α)

∥∥LNα (X)
∥∥1/2

p
‖Gq̃(X)−Gq(X)‖1/2p . (2.4.19)

From Lemmas 2.4.3-2.4.4, we obtain∥∥Gq̃(X)−Gq(X)
∥∥
p
≤
∥∥Gq̃(X)− G̃q̃(X̃N )

∥∥
p

+
∥∥G̃q̃(X̃N )−Gq(X)

∥∥
p

≤
∥∥supa|Ga(X)− G̃a(X̃N )|

∥∥
p

+
∥∥G̃q̃(X̃N )−Gq(X)

∥∥
p

≤ 4 max(α, 1− α)[m]Lip

∥∥X̃N −X
∥∥
p
.

The result (in the case α ≤ 1/2) then follows by plugging this into (2.4.19) (the boundedness of
LN (X) = LNα (X) in Lp for all β ∈ (0, 1) is a direct corollary of Lemma 2.4.5).

(b) We now turn to the case α > 1/2. Here, we have that tα ≤ t1−α under q̃ ≤ q, so
that (2.4.15) yields

|Gq̃(X)−Gq(X)|I[q̃≤q] ≥ min(α, 1− α)|q̃ − q|P [t1−α < Y ≤ q|X]I[q̃≤q]. (2.4.20)

Summing (2.4.16) and (2.4.20) then provides∣∣Gq̃(X)−Gq(X)
∣∣ ≥ min(α, 1− α)|q̃ − q|P [min(t1−α, q) < Y ≤ max(t1−α, q)|X]. (2.4.21)
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The rest of the proof is entirely similar to the case α ≤ 1/2. Indeed, for any x ∈ SX ,

P [min(t1−α, q) < Y ≤ max(t1−α, q)|X = x] =

∫ max(q(x),t1−α(x))

min(q(x),t1−α(x))
fY |X=x(y) dy

= fY |X=x(cN1−α(x)) |t1−α(x)− q(x)| = |t1−α(x)− q(x)|
LN1−α(x)

,

where t1−α(x) = t1−α(q̃(x), q(x)), cN1−α(x) and LN1−α(x) were also defined in Lemma 2.4.5. It
follows that

P [min(t1−α, q) ≤ Y < max(t1−α, q)|X] =
|t1−α − q|
LN1−α(X)

almost surely. Since |t1−α − q| = (1− α)|q̃ − q| ≥ min(α, 1− α)|q̃ − q|, we have

P [min(t1−α, q) ≤ Y < max(t1−α, q)|X] ≥ min(α, 1− α)
|q̃ − q|
LN1−α(X)

almost surely. Then, we obtain similarly

‖q̃ − q‖p ≤
1

min(α, 1− α)

∥∥LN1−α(X)
∥∥1/2

p
‖Gq̃(X)−Gq(X)‖1/2p , (2.4.22)

and the result follows as in part (a).
(ii) The result directly follows from Point (i) and Corollary 1.2.6.

2.5 Proofs of Section 2.3

Let γN = γN (X) = {x̃1, . . . , x̃N} be an optimal grid and denote by γ̂N,n = γ̂N,n(X1, . . . , Xn) =

(x̂N,n1 , . . . , x̂N,nN ) the grid provided by the CLVQ algorithm. Throughout this section, we assume
the almost sure convergence of the empirical quantization of X to the population one, that is

X̂N,n = Projγ̂N,n(X)
a.s.−−−→
n→∞

ProjγN (X) = X̃N , (2.5.1)

which is justified by the discussion in Section 1.2.5.
The proof of Theorem 2.3.1 then requires Lemmas 2.5.1-2.5.2 below.

Lemma 2.5.1. Let Assumptions (B)(i) and (C) hold. Fix N ∈ N0 and x ∈ SX , and write
x̃ = ProjγN (x) and x̂N = Projγ̂N,n(x). Then, with X̂N

i = Projγ̂N,n(Xi), i = 1, . . . , n, we have

(i) 1
n

∑n
i=1 I

[X̂N
i =x̂N ]

a.s.−−−→
n→∞

P [X̃N = x̃];

(ii) after possibly reordering the x̃i’s, x̂
N,n
i

a.s.−−−→
n→∞

x̃i, i = 1, . . . , N (hence, γ̂N,n a.s.−−−→
n→∞

γN ).

Proof. Under (2.5.1), Point (i) was shown in Bally et al. (2005) (see also Pagès (1998)) and
Point (ii) only states the a.s. convergence of the supports γ̂N,n to γN , which is a necessary
condition for the corresponding convergence of random vectors in (2.5.1).
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Lemma 2.5.2. Fix α ∈ (0, 1), x ∈ SX and N ∈ N0, let K(⊂ R) be compact, and define

ĜN,na (x̂N ) :=

1
n

∑n
i=1 ρα(Yi − a) I

[X̂N
i =x̂N ]

1
n

∑n
i=1 I

[X̂N
i =x̂N ]

.

Then, under Assumptions (A), (B)(i) and (C), (i) supa∈K |Ĝ
N,n
a (x̂N )− G̃a(x̃)| = oP(1) as n→

∞; (ii) |mina∈R Ĝ
N,n
a (x̂N )−mina∈R G̃a(x̃)| = oP(1) as n→∞; (iii) |G̃

q̂N,nα (x)
−G̃q̃Nα (x)| = oP(1)

as n→∞.

Proof. (i) Since

G̃a(x̃) = E[ρα(Y − a)|X̃N = x̃] =
E[ρα(Y − a)I

[X̃N=x̃]
]

P [X̃N = x̃]
,

it is sufficient — in view of Lemma 2.5.1(i) — to prove that, as n→∞,

sup
a∈K

∣∣∣∣ 1n
n∑
i=1

ρα(Yi − a) I
[X̂N
i =x̂N ]

− E[ρα(Y − a)I
[X̃N=x̃]

]

∣∣∣∣ = oP (1).

Notice that ĜN,na (x̂N ) can be seen as an empirical version of G̃a(x̃), but taking the grid provided
by the algorithm instead of γN since the latter is not available in practice. It is natural to consider
the following decomposition, where we add and subtract the term corresponding to ĜN,na (x̂N )

with γ̂N,n replaced by γN :

sup
a∈K

∣∣∣∣ 1n
n∑
i=1

ρα(Yi − a) I
[X̂N
i =x̂N ]

− E[ρα(Y − a)I
[X̃N=x̃]

]

∣∣∣∣ ≤ sup
a∈K
|Ta1|+ sup

a∈K
|Ta2|,

with

Ta1 =
1

n

n∑
i=1

ρα(Yi − a)
(
I
[X̂N
i =x̂N ]

− I
[X̃N
i =x̃]

)
and

Ta2 =
1

n

n∑
i=1

ρα(Yi − a) I
[X̃N
i =x̃]

− E[ρα(Y − a)I
[X̃N=x̃]

],

where X̃N
i = ProjγN (Xi) for i = 1, . . . , n. Using the fact that m1(·) and m2(·) are continuous

functions defined over the compact set SX , we obtain that, for any a ∈ K, there exist positive
constants C1 and C2 such that

ρα(Y − a) ≤ max(α, 1− α)|Y − a| ≤ max(α, 1− α)(|m1(X)|+ |m2(X)| |ε|+ |a|) ≤ C1 + C2|ε|,

that is in L1 (recall that ε is assumed to be in Lp, p = 2), the uniform law of large numbers (see,
e.g., Theorem 16(a) in Ferguson, 1996) shows that supa∈K |Ta2| = oP (1) as n→∞.

Turning to Ta1, consider the set In = {i = 1, . . . , n : I
[X̂N
i =x̂N ]

6= I
[X̃N
i =x̃]
} collecting the

indices of observations that are projected on the same point as x for γN but not for γ̂N,n (or
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vice versa on the same point as x for γ̂N,n but not for γN ). Theses ones correspond to the terms
of the sum in Ta1 that are not zero. For any a ∈ K, we then have

|Ta1| ≤
1

n

∑
i∈In

∣∣ρα(Yi − a)
∣∣ ≤ max(α, 1− α)

n

∑
i∈In

(|m1(Xi)|+ |m2(Xi)| |εi|+ |a|)

≤ #In
n
× 1

#In

∑
i∈In

(C1 + C2 |εi|) =: S1 × S2.

Clearly, Lemma 2.5.1(ii) implies that #In/n = oP (1) as n→∞, while the independence between
In (which is measurable with respect to theXi’s) and the εi’s entails that E[S2] = O(1) as n→∞,
so that S2 is bounded in probability. Consequently, supa∈K |Ta1| goes to zero in probability
as n→∞. Point (i) of the result follows.

(ii) Fix δ > 0 and η > 0. Writing q̂ = q̂N,nα (x) and, as in the previous section, q̃ = q̃Nα (x),
first choose n1 and M large enough to have |q̃| ≤ M and P [|q̂| > M ] < η/2 for any n ≥ n1

(Lemma 2.5.1(i) implies that q̂ is the sample quantile of a number of Yi’s that increases to infinity,
so that |q̂|, with arbitrarily large probability for n large, cannot exceed 2 supx∈SX |qα(x)|). Then,
with I+ = I

[mina∈R Ĝ
N,n
a (x̂N )≥mina∈R G̃a(x̃)]

, we have

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)|I+ =
(
ĜN,nq̂ (x̂N )− G̃q̃(x̃)

)
I+

≤
(
ĜN,nq̃ (x̂N )− G̃q̃(x̃)

)
I+

≤ sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)|I+, (2.5.2)

almost surely. Now, with I− = I
[mina∈R Ĝ

N,n
a (x̂N )<mina∈R G̃a(x̃)]

, we have that, under |q̂| ≤M ,

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)|I− =
(
G̃q̃(x̃)− ĜN,nq̂ (x̂N )

)
I−

≤
(
G̃q̂(x̃)− ĜN,nq̂ (x̂N )

)
I−

≤ sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)|I−. (2.5.3)

By combining (2.5.2) and (2.5.3), we obtain that, under |q̂| ≤M ,

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| ≤ sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)|.

Consequently, for any n ≥ n1, we obtain

P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ
]

= P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ, |q̂| ≤M
]

+ P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ, |q̂| > M
]

≤ P
[

sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)| > δ
]

+
η

2
.

From Point (i) of the lemma, the first term is smaller than η/2 for any n ≥ n2. We conclude
that, for any n ≥ n0 := max(n1, n2), we have

P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ
]
< η,
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which shows Point (ii) of the result.
(iii) The proof proceeds in the same way as in (ii) above. First we pick n1 andM large enough

to have P [|q̂| > M ] < η/2 for any n ≥ n1, which yields

P
[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ

]
≤ P

[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ, |q̂| ≤M

]
+
η

2
. (2.5.4)

Now, from the triangular inequality, we obtain

P
[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ, |q̂| ≤M

]
≤ P

[
|G̃q̃(x̃)− ĜN,nq̂ (x̂N )| > δ/2, |q̂| ≤M

]
+ P

[
|ĜN,nq̂ (x̂N )− G̃q̂(x̃)| > δ/2, |q̂| ≤M

]
≤ P

[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ/2
]

+ P
[

sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)| > δ/2
]
,

which, from Point (i) and Point (ii) of the lemma, can be made arbitrarily small for n large
enough. Jointly with (2.5.4), this establishes the result.

We can now conclude with the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Since the function ρα(·) is strictly convex, G̃a(x̃) is also strictly convex
in a. Its minimum in a (for any fixed x) is therefore unique, and the convergence in probability
of G̃q̂(x̃) towards G̃q̃(x̃) implies the convergence in probability of the corresponding arguments.

2.6 Final comments

The emphasis in this chapter was mainly on theoretical aspects. We derived and proved some
convergence results. The first step consisted in replacing the covariate X by some quantized
version X̃N and to quantify how well the resulting quantization-based conditional quantile q̃Nα (x)

approximates the original conditional quantile as N grows. This result had two parts: one with
fixed x, one with global X. A second step aimed to define a new estimator of conditional quantile
thanks to this approximation. Taking then an empirical version of the approximation allowed
to construct a sample quantization-based conditional quantile q̂N,nα (x) and the convergence in
probability of this estimator to its population version (i.e. q̃Nα (x)) was proved. It is important to
point out that all the theoretical results were obtained for any dimension d of the covariate X.
The required assumptions were quite mild and were essentially assumptions on the link function
m between the response variable Y and its covariate X, and assumptions necessary to perform
quantization. Moreover, the convergence result for the estimator is only valid if the quantization
is based on p = 2.

Practical implementation, however, was barely touched in this chapter, and finite-sample
performances were not investigated. We only illustrated our estimator on a simulated sample,
and improved it thanks to the bootstrap-based estimator q̄N,nα,B (x). The practical investigation will
then be the goal of the next chapter where our method will be widely applied on many simulated
samples (for different models and sample sizes). As we will explain, we will also compare our
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estimator q̄N,nα,B (x) with some well-known competitors: a k- nearest neighbor estimator, two kernel
estimators and a spline-based estimator. In particular, the key philosophy of each concept will
be confronted.

Another point has not been treated yet: the choice of the tuning parameter N . As above
explained, this parameter corresponds to the size of the quantization grid. We derived convergence
results with N fixed when n tends to infinity for the estimator (and for N going to infinity for
the approximation), but in practice we deal with finite sample with fixed size n. It then seems
crucial to choose N with respect to n since we observe in Figure 2.2 that the choice of N has a
significant impact on the conditional quantile curves. Indeed, we noticed larger bias when N is
too small and larger variability when N is too large. Therefore, it appears of major interest to
be able to select an optimal value of N for which a bias-variance compromise will be reached.
Moreover, in practical situations, we only have at our disposal the sample and we do not know the
theoretical conditional quantiles. For this reason, this N -selection method should be data-driven
in order to be feasible in practice. This will be treated in the next chapter.
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3.1 Introduction

This chapter completes the theoretical study conducted in Chapter 2. As above mentioned, the
first aim of this chapter is to provide a criterion for selecting the size N of the quantization
grid. The selection method is constructed in two steps. The starting point consists in evaluating
the square difference between our estimations and the true conditional quantiles on some grid of
points of the support of X. The evaluation is realized for different values of N . As we will see,
we observed on the basis of numerous simulations that there exists an optimal value of N that
minimizes this error. This N should then be chosen. Section 3.2.1 details this first step.

Unfortunately, the theoretical conditional quantiles are unknown in practice – hence the need
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of an estimator, and this selection method is unfeasible on real data sets. For this reason, we
explain in Section 3.2.2 how replacing the theoretical conditional quantiles appearing in the first
step by some bootstrap version depending only on the data. The optimal values for N selected
by both methods are then compared and we will see that the data-driven selection method is
really satisfying.

Once an efficient selection method for the tuning parameter is established, our estimation
procedure is completely operational. We are then able to compare it with some famous competi-
tors, which is the aim of Section 3.3. We first recall in Section 3.3.1 the competitors that we
consider, i.e. the k-nearest neighbor estimator of Bhattacharya and Gangopadhyay (1990), the
local linear and local constant estimators of Yu and Jones (1998) and quantile regression splines
of Koenker et al. (1994). We then compare these competitors with our bootstrap based estimator
q̄N,nα,B (x). This comparison is based on visual inspection of estimated conditional quantile curves
in Section 3.3.2 and on empirical integrated square errors in Section 3.3.3, for different models
and sample sizes.

The numerical exercises and simulations of these sections focus on the case d = 1. We then
briefly investigate the case d = 2 in Section 3.4 since the definitions and results of the last chapter
are valid for any dimension d. These first sections (and a real data application) are the object of
the paper Charlier et al. (2015b), published in Computational Statistics and Data Analysis.

We then constructed an R package allowing to perform quantization-based quantile regression,
called QuantifQuantile. The different functions of the package are described in Section 3.5 and
some illustrations are provided. This section is the subject of the paper Charlier et al. (2015c),
accepted for publication in the R-journal.

After that, our quantization-based estimator is illustrated on some real data examples in Sec-
tion 3.6. Section 3.6.1 is devoted to a sample corresponding to the concentration of immunoglobulin-
G in children aged from 6 months to 6 years (investigated in Charlier et al. (2015b)). Section
3.6.2 investigates a list of several variables collecting in different towns of Gironde, France.

We conclude the chapter with some final comments.

3.2 Selection method of the tuning parameter N

In this section, we first define a natural criterion to select an optimal value for N by considering
the square difference between our estimator and the corresponding theoretical conditional quan-
tiles (Section 3.2.1). More precisely, we look at an integrated square error (ISE) quantity that is
essentially convex in N , which allows to identify an optimal value Nopt for N . As we will see,
ISEs involve the true unknown conditional quantiles, so that Nopt cannot be obtained from the
data. This criterion is then infeasible in practice. Therefore, we propose a data-driven selection
method for N obtained by replacing the true ISEs with bootstrap versions (Section 3.2.2). We
then investigate how close the resulting N̂opt is to Nopt.
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3.2.1 Starting idea: infeasible selection of N

For any fixed N , we can consider the square difference between q̂N,nα (x) (resp. q̄N,nα,B (x)) and qα(x)

in any point x of the support SX . In other words, the ISEs are given by∫
SX

(
q̂N,nα (x)− qα(x)

)2
dx and

∫
SX

(
q̄N,nα,B (x)− qα(x)

)2
dx,

associated with the non-bootstrap and bootstrap estimators, respectively. Of course, we only
investigate in practice these square differences for a finite set of points of the support SX , that
is these ISEs are approximated by discrete integrals of the form

ISEˆ
α,J(N) =

1

J

J∑
j=1

(
q̂N,nα (xj)− qα(xj)

)2 and ISE¯
α,B,J(N) =

1

J

J∑
j=1

(
q̄N,nα,B (xj)− qα(xj)

)2
,

where x1, . . . , xJ are a finite set of J points of interest in SX . In the sequel, we consider X
univariate and we choose them equispaced between the minimum and the maximum values of
X1, . . . , Xn. It is of course natural to consider optimal a value of N that minimizes these ISEs,
which leads to considering

Nˆ
α,J ;opt = arg min

N∈N0

ISEˆ
α,J(N) and N¯

α,B,J ;opt = arg min
N∈N0

ISE¯
α,B,J(N).

These optimal N -values may depend on α, which explains the notation. The dependence on J
of these ISEs and of optimal N -values is way less crucial than their dependence on α and B;
accordingly, we simply write ISEˆ

α(N), ISE¯
α,B(N), Nˆ

α;opt and N¯
α,B;opt in the sequel.

Looking at each N ∈ N0 is computationally heavy since our estimation procedure has to run
separately for each value of N . In practice, we then look only at a finite subset of values for N
chosen according to the sample size n.

To illustrate these definitions, we simulated random samples of size n = 300 according to the
models

(M1) Y = 1
5X

3
1 + ε,

(M2) Y = f(X2) + ε′,

where X1 = 6Z1 − 3 (with Z1 ∼ Beta(0.3, 0.3)), X2 = 3Z2 − 1.5 (with Z2 ∼ Beta(2, 2)),
ε ∼ N (0, 1), and ε′ ∼ χ2

2 are mutually independent. Denoting the standard normal density
as ϕ, the link function f is defined as f(x) = 1

2 ϕ(x) + 10
∑3

`=1(0.2)`ϕ(10(x− `
2 + 1)), a choice

that is inspired by Marron and Wand (1992). Obviously, qα(x) = x3

5 + Φ−1(α) for (M1) and
qα(x) = f(x) + Ψ−1

2 (α) for (M2), where Φ and Ψ2 denote the cumulative distribution functions
of the N (0, 1) distribution and of the χ2

2 distribution, respectively. We evaluated the ISEs above
with J = 300 points.

Figure 3.1 focuses on Model (M1). Its top panels plot the graphs of N 7→ ISEˆ
α(N) and N 7→

ISE¯
α,B(N) (with B = 50) for a single sample, while the bottom panels plot the corresponding

graphs averaged (pointwise in N) over m = 500 independent samples. For the sake of brevity,
Figure 3.2, that is related to Model (M2), only reports the corresponding plots for bootstrapped
estimators.
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α(N), m = 500
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Figure 3.1 – Plots of the mappings N 7→ ISEˆ
α(N) (top left) and N 7→ ISE¯

α,B(N) with B = 50 (top right) for
a random sample of size n = 300 from Model (M1). The bottom panels report the corresponding plots obtained
by averaging these mappings over m = 500 mutually independent replications (all mappings are actually only
evaluated at N = 5, 6, 7, . . . , 29, 30, 35, 40, . . . , 150).
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Figure 3.2 – The same plots as in the right panels of Figure 3.1, but for Model (M2).

Figures 3.1–3.2 show that ISE curves are indeed essentially convex in N : while random vari-
ability prevents perfect convexity for a single sample, the smoothest case based on 500 replications
with q̄N,nα,B leads to strictly convex IMSE curves. Besides, these curves are quite flat in a neigh-
borhood of Nˆ

α;opt or N¯
α,B;opt (except for α = 0.95), so that picking a value of N that is close

to (but not exactly equal to) the optimal N -value will not have an important impact on the
resulting ISE values. It seems that, as expected, Nˆ

1−α;opt = Nˆ
α;opt and N¯

1−α,B;opt = N¯
α,B;opt

when the error ε has a symmetric distribution (observed when looking at the smoothest case
ISEˆ

α(N) with m = 500). In contrast, asymmetric errors (Figure 3.2) lead to optimal values of N
that are not symmetric in α and depend more strongly of α. We notice in particular that the
optimal value for N increases as α decreases. This is due to the dispersion of the data in a model
with a chi-squared error term.

To conclude this section, we stress that the existence of such an optimal value of N does not
contradict the theoretical results from Chapter 2. One might indeed have guessed from Theo-
rem 2.2.1 that the ISE functions above would be monotone decreasing (rather than convex) in N .
The result in Theorem 2.2.1, however, (i) involves the population quantile approximation q̃Nα (x)

and not its sample counterpart q̂N,nα (x), and (ii) requires that the projection, for any N , is per-
formed on an optimal quantization grid. As pointed out earlier, the CLVQ algorithm provides
a good approximation of an optimal grid only if the number of iterations, that is equal to the
sample size n, is large compared to N . Consequently, in the present setup where the sample
size n is fixed, increasingly large values of N will result into CLVQ grids that are less and less
optimal, which explains the increasing ISE values for such values of N .
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3.2.2 Data-driven selection of N

In practice, observations (X1, Y1), . . . , (Xn, Yn) are available, but the population conditional
quantile function qα(·) is unknown. This is the reason why we aim to estimate them and the crite-
rion of Section 3.2.1 does not make sense since it uses the unknown quantity we want to estimate.
It is therefore impossible to obtain optimal N -values by minimizing ISEˆ

α(N) and ISE¯
α,B(N) as

above. We then propose the following approach.
Consider again the grid {x1 = X(1), x2, . . . , xJ−1, xJ = X(n)} of equispaced points between

the minimal and maximal observed X-values. We replace the theoretical conditional quantiles
by some estimates using bootstrap, in the spirit of the construction of q̄N,nα,B (x). This procedure
works as follows.

Generating B̃ grids

For some integer B̃, we first generate B̃ samples of size n with replacement from the initial sample
X1, . . . , Xn. We write here the newly generated samples (ξt

B+b̃
)t, for b̃ = 1, . . . , B̃, to distinguish

them from the corresponding samples obtained in the construction of q̄N,nα,B (x). We also generate
initial grids γ̂N,0

B+b̃
, b̃ = 1, . . . , B̃, as before, by sampling randomly among the corresponding

(ξt
B+b̃

)t under the constraint that the N values are pairwise distinct. We then perform B̃ times

CLVQ with iterations based on ξt
B+b̃

, t = 1, . . . , n and with initial grid γ̂N,0
B+b̃

. This provides B̃

optimal grids γ̂N,n
B+b̃

, b̃ = 1, . . . , B̃.

Bootstrap based selection method for N

Each of these grids is now used to estimate conditional quantiles and to replace them in the
infeasible criterion of Section 3.2.1. Working again with the original sample (Xi, Yi), i = 1, . . . , n,
we project the X-part onto the grids γ̂N,n

B+b̃
, b̃ = 1, . . . , B̃. Therefore, for all j = 1, . . . , J , (2.3.1)

provides B̃ estimations, denoted q̂(B+b̃)
α (xj) = q̂

(B+b̃),N,n
α (xj). This allows to consider the square

difference between q̄N,nα,B (xj) and q̂
(B+b̃)
α (xj), b̃ = 1, . . . , B̃ instead of the one between q̄N,nα,B (xj)

and qα(xj). We then take the mean of these B̃ differences and we define

ÎSE
ˆ

α,B̃,J(N) =
1

J

J∑
j=1

(
1

B̃

B̃∑
b̃=1

(
q̂N,nα (xj)− q̂(B+b̃)

α (xj)
)2) (3.2.1)

and

ÎSE
¯

α,B,B̃,J(N) =
1

J

J∑
j=1

(
1

B̃

B̃∑
b̃=1

(
q̄N,nα (xj)− q̂(B+b̃)

α (xj)
)2)

. (3.2.2)

As in their infeasible counterparts, we will not stress the dependence on J in these samples
ISEs, nor the dependence on B̃, that we choose equal to 30 throughout.

It is important to notice that evaluating ÎSE
¯

α,B(N) thus requires generating B+B̃ bootstrap

samples of size n: B for the construction of q̄N,nα (xj), and B̃ to obtain q̂(B+b̃)
α (xj), b̃ = 1, . . . , B̃.

The construction of ÎSE
¯

α,B(N) (jointly with the one of q̄N,nα,B (x)) is illustrated in Figure 3.3. These
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(Xt)t

(ξt1)t (ξtB)t (ξtB+1)t (ξt
B+B̃

)t

sampling with replacement sampling with replacement

γ̂N,01 γ̂N,0B γ̂N,0B+1
γ̂N,0
B+B̃

generating initial grid generating initial grid

γ̂N,n1 γ̂N,nB γ̂N,nB+1
γ̂N,n
B+B̃

CLVQ CLVQ

q̂
(1)
α (xj) q̂

(B)
α (xj) q̂

(B+1)
α (xj) q̂

(B+B̃)
α (xj)

estimation estimation

q̄N,nα,B (xj)

mean

(q̄N,nα,B (xj)− q̂
(B+1)
α (xj))

2 (q̄N,nα,B (xj)− q̂
(B+B̃)
α (xj))

2

ÎSE
¯

α,B(N)

mean

Figure 3.3 – Construction step by step of the sample ISE, ÎSE
¯

α,B(N).

sample ISEs are to be minimized in N . Since not all values of N can be considered in practice,
we rather consider

N̂ˆ
α;opt = arg min

N∈N
ÎSE

ˆ

α(N) and N̂¯
α,B;opt = arg min

N∈N
ÎSE

¯

α,B(N), (3.2.3)

where the cardinality of N (⊂ N0) is finite (and may be chosen as a function of n).
We now use these sample ISE to construct some graphs analogous to Figure 3.1. Our aim is to

check if the curves of ÎSE
ˆ

α(N) and ÎSE
¯

α,B(N) are convex as their theoretical versions and if they

are minimized for the same value of N . Figure 3.4 plots the mappings N 7→ ÎSE
ˆ

α(N) and N 7→
ÎSE

¯

α,B(N) and, for the sake of comparison, the (infeasible) mappings N 7→ ISEˆ
α(N) and N 7→

ISE¯
α,B(N), in the setup of Model (M1) with sample size n = 300 (more precisely, the average of

the corresponding plots, over 500 mutually independent replications, are plotted there). It is seen
that, for large N , the (averaged) sample ISE functions quite poorly estimate their theoretical
versions. Our primary interest, however, rather is in the agreement of the corresponding argmins,
which are associated with the feasible or infeasible optimal N -values. In that respect, the results
show that the values of N minimizing the sample ISE functions tend to over-estimate the optimal
N -values, with a bias of about 10. Note that this bias is not alarming since Figure 3.1 shows that
virtually the same performances in terms of ISE are obtained with or without bias (particularly
so for intermediate values of α). Finally, we point out that, when considering a single sample
(instead of 500 replications), the estimated optimal N -value stays in the same interval (the plots
are not provided here).

To sum up, the sample ISE functions introduced above allow us to obtain a data-driven value
of N that, for all practical purposes, is as satisfactory as the infeasible optimal N -value based
on the original ISE functions.
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Figure 3.4 – Plots of the mappings N 7→ ISEˆ
α(N) (top left), N 7→ ISE¯

α,B(N) with B = 50 (top right), and

of the sample mappings N 7→ ÎSE
ˆ

α(N) with B̃ = 30 (bottom left), N 7→ ÎSE
¯

α,B(N) with B̃ = 30 and B = 50

(bottom right), averaged over 500 mutually independent replications of Model (M1) with sample size n = 300.
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3.3 Comparison with some famous competitors

Thanks to Chapter 2 and Section 3.2, we have now developed a conditional quantile estimation
method that 1) possesses interesting convergence results and 2) provides an efficient data-driven
selection method for the tuning parameter. Our method is then entirely functional. It is then
natural to wonder now if our estimator is competitive with respect to some well-known other
conditional quantile estimators. Let us first define the competitors considered.

3.3.1 The competitors considered

The first competing estimator we consider is associated with quantile regression spline methods
(Koenker et al., 1994). More precisely, this estimator, q̂ sp

α , say, is defined as

q̂ sp
α = q̂ sp

α,λ = arg min
g∈G

{ n∑
i=1

ρα(Yi − g(Xi)) + λP (g)

}
,

where λ is a nonnegative real number, G is an appropriately chosen space of functions, and the
penalty P (g) =

∫ 1
0 |g

′′(x)| dx is the total variation of the first derivative of g. It can be showed
that q̂ sp

α is always piecewise polynomial. As usual in penalization methods, λ governs the trade-
off between fidelity to the sample and smoothness of the resulting estimator. Several methods
to select an appropriate value of λ are available in the literature. Below, we will use the AIC
criterion, which selects the value λ = λ̂α;opt minimizing

AIC(λ) = log

[
1

n

∑
i

ρα
(
Yi − q̂ sp

α,λ(Xi)
)]

+
pλ
n
,

where pλ is the number of knots defining the spline. The reader can refer to Koenker et al.
(1994) and Koenker and Mizera (2004) for more details on how to choose λ (or G). When
implementing this method, we used the rqss function from the R package quantreg (Koenker,
2015) to compute q̂ sp

α and performed the λ-selection via the R function AIC (the package quantreg
does not propose an automatic λ-selection procedure). Notice that the current implementation
of quantreg provides piecewise linear estimated curves.

Another competitor is the k-nearest neighbor estimator, mentioned in the sequel as the kNN
estimator, which is defined as follows (Bhattacharya and Gangopadhyay, 1990). Let k be any
integer between 1 and n. The idea is to select the k observations for which the Xi is the nearest of
the considered x, and to take the α-quantile of the associated Yi. More precisely, we permute the
observations {(Xi, Yi)}i=1,...,n in such a way that |Xi−x| is increasing in i. After this permutation,
we define the kNN estimator, denoted q̂kα;kNN(x), as the α-quantile of Y1, . . . , Yk.

In many conditional quantile estimation methods, the crucial point is to select, for x fixed,
the observations (Xi, Yi) that will be taken into account in the calculation of the quantile. Of
course, it is felt that the Xi should be quite close to the x, but the definition of this closeness is
not trivial. Actually, any method uses a different choice. For the kNN estimator, the choice is to
use the k observations for which Xi is the closest to x. Therefore, if many observations are close
to x, it corresponds to a small bandwidth while if there are few observations around x, this is a
large bandwidth. The bandwidth is then in a way adaptive with x.
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As the size N of our quantization grid, the number k of neighbors is the tuning parameter of
this method and it has to be selected. There does not seem to exist an efficient and well-accepted
data-driven method to choose k in the literature. For this reason, we select an optimal value for
k, denoted kα;opt as follows:

kα;opt = arg min
k∈K

1

J

J∑
i=1

(
q̂kα;kNN(xj)− qα(xj)

)2
,

where {x1, . . . , xJ} is chosen as in Section 3.2 and K denotes some set of possible values for k.
In other words, this selection method consists in evaluating the square difference between the
estimation and the true value for a grid of values for x, and to choose the k that minimizes
this difference. Clearly, k cannot be chosen this way in practical situations since the theoretical
conditional quantiles qα(x) are typically unknown. In the sequel, we throughout considered

q̂α;kNN(x) = q̂
kα;opt

α;kNN(x),

the kNN estimator for the choice k = kα;opt. To the best of our knowledge, no R package allows
to compute q̂α;kNN(x) and we therefore wrote our own implementation to conduct the simulations
below.

The last estimators we consider are the kernel (local linear or local constant) estimators
introduced in Yu and Jones (1998). The local linear estimator is of the form q̂YJ

α (x) = â, with

(â, b̂) = arg min
(a,b)∈R×R

n∑
i=1

ρα
(
Yi − a− b(Xi − x)

)
K

(
Xi − x
h

)
,

where K is a kernel function and h is the bandwidth. In the sequel, K will be the standard
normal density, and we choose

h = ĥα;opt =
α(1− α)(
ϕ(Φ−1(α))

)2 hmean,

where ϕ and Φ are respectively the standard normal density and distribution functions, and
where hmean is the optimal choice of h for mean regression, selected through cross-validation; see
Yu and Jones (1998). The local constant version of this estimator is defined as q̂YJc

α (x) = â, with

â = arg min
a∈R

n∑
i=1

ρα
(
Yi − a

)
K

(
Xi − x
h

)
,

where K and h will throughout be chosen as for the local linear estimator. Here, the Xi’s
taken into account are chosen thanks to a bandwidth that appears in the weight function K.
As for q̂α;kNN(x), the simulations below are based on our own R implementation of q̂YJ

α (x)

and q̂YJc
α (x).

3.3.2 Comparison of estimated quantile curves

In this section, we now compare our proposed quantization-based estimators with their com-
petitors described above. Since we saw in Section 2.3 (and particularly in Figure 2.2) that the
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bootstrapped estimators q̄N,nα,B (x) are to be favored over their original versions q̂N,nα (x), we restrict
to q̄N,nα,B (x) below, with the corresponding data-driven value of N , namely N̂¯

α,B;opt, that was pro-
posed in Section 3.2. In this section, we also do not consider the local constant estimator q̂YJc

α (x)

since the results in Section 3.3.3 below show that it is usually outperformed by its local linear
version in terms of ISEs. We start the comparison by investigating estimated quantile curves
computed from n independent observations generated according to the models

(M1) Y = 1
5X

3
1 + ε,

(M2) Y = f(X2) + ε′,

(M3) Y = sin(X3) +
(
0.5 + 1.5 sin2(π2X3)

)
ε,

where X1 = 6Z1 − 3 (with Z1 ∼ Beta(0.3, 0.3)), X2 = 3Z2 − 1.5 (with Z2 ∼ Beta(2, 2)),
X3 = 6Z2 − 3, ε ∼ N (0, 1), and ε′ ∼ χ2

2 are mutually independent. The link function f is
the same as in Section 3.2. For n = 300, the resulting estimated quantile curves are plotted
in Figures 3.5-3.7 for Models (M1)-(M3), respectively. For the sake of comparison, Figure 3.8
provides the results for Model (M1) and n = 1, 000.

The quantization-based quantile curves are smooth and adapt well to the polynomial or
more complex nature of the link function at hand. In contrast, while the piecewise linear curves
obtained from the spline estimator are beneficial for polynomial link functions (see Figure 3.5),
they hurt for more complex link functions (Figure 3.6, e.g. shows that the spline-based curves
miss some of the underlying bumps). The curves resulting from kNN estimation are relatively
close to the theoretical ones in each model, but show some peaks or constant pieces, hence are less
pleasant from a visual point of view. Eventually, the curves associated to q̂YJ

α (x) lack smoothness
for medium values of the covariate in Figure 3.5 (further numerical experiments, not reported
here, reveal that this follows from the non-uniform covariate distribution). Also, the local linear
estimator q̂YJ

α (x) does not catch correctly the link function in Figure 3.7.
The empirical quantile curves obtained through quantization in Figures 3.5-3.7 do not present

crossings, which is in line with what occurs at the population level. In principle, there may be
such crossings, though, since, in order to achieve highest possible efficiency for any given α, we
allowed the optimal data-driven N -value to depend on α. An easy way to guarantee that no
quantile crossings occur is to select (possibly at the expense of efficiency) an optimal N -value
that does not depend on α, as follows:

N̂¯
opt = arg min

N∈N
ÎSE

¯
(N), with ÎSE

¯
(N) = AVEα

[
ÎSE

¯

α,B(N)
]
, (3.3.1)

where AVEα denotes the average over all the alpha values considered.
Let us conclude this section with some observations on the tuning parameters gathered in

Table 3.1. If it provides more details on the values used to construct the different figures, it also
allows to notice some coherence between the different methods. Indeed, some of them have to
select the observations that will be taken into account when estimating qα(x) with respect to
x. It would then be natural that if one method selects a large number of points, other methods
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Figure 3.5 – For a random sample of size n = 300 generated according to Model (M1), conditional quantile
curves obtained from quantization-based estimation (upper left), spline methods (upper right), nearest-neighbor
estimation (lower left), and local linear kernel methods (lower right). In all cases, the quantile levels considered
are α = 0.05 (red), 0.25 (orange), 0.5 (green), 0.75 (orange), and 0.95 (red). The lighter curves correspond to
population conditional quantiles.
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Figure 3.6 – The same plots as in Figure 3.5, but for Model (M2) and n = 300.
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Figure 3.7 – The same plots as in Figures 3.5-3.6, but for Model (M3) and n = 300.
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Figure 3.8 – The same plots as in Figures 3.5-3.7, but for Model (M1) and n = 1, 000.

63



3.3 Comparison with some famous competitors

α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95

N̂¯
α,B;opt 20 23 23 18 18

(M1) λ̂α;opt 0.595 0.971 1.075 0.638 1.033
n = 300 kα;opt 25 32 30 28 27

ĥα;opt 0.202 0.170 0.164 0.170 0.202
N̂¯
α,B;opt 23 23 19 16 15

(M2) λ̂α;opt 0.556 0.672 0.632 0.504 0.716
n = 300 kα;opt 16 38 42 43 55

ĥα;opt 0.135 0.113 0.109 0.113 0.135
N̂¯
α,B;opt 13 10 9 10 9

(M3) λ̂α;opt 0.518 1.127 1.490 0.840 0.516
n = 300 kα;opt 70 61 38 28 34

ĥα;opt 0594 0.498 0.482 0.498 0.594
N̂¯
α,B;opt 32 43 43 41 33

(M1) λ̂α;opt 1.122 1.117 0.927 1.120 1.208
n = 1, 000 kα;opt 72 54 84 74 94

ĥα;opt 0.148 0.124 0.120 0.124 0.148

Table 3.1 – Values of the various tuning parameters involved in the conditional quantile estimators considered
in Figures 3.5-3.8.

act similarly (and vice versa). For Model (M2), we see that the optimal value for N decreases
with α, which is due to the chi-square error term, implying that estimation of conditional α-
quantiles should be based on increasingly many data points as α grows. In accordance with this,
the optimal number of neighbors kα;opt in kNN estimation increases with α. Such a monotonic
pattern is not observed for the bandwidth ĥα;opt used in kernel estimators since it is chosen
such a way that ĥα;opt = ĥ1−α;opt. Finally, the parameter λ̂α;opt, that is a monotone decreasing
function of the number of knots of the splines, is related to α in a quite unclear fashion.

3.3.3 Comparison of the ISEs

Obtaining well-behaved curves is of course desirable, particularly so in applied statistics, but
this should not be achieved at the expense of efficiency. That is why we now compare the
various estimators in terms of ISEs. To do so, we generated 500 independent samples from
Models (M1)-(M3) with sample sizes n = 300 and n = 1, 000. In each case, we evaluated the
ISEs corresponding to the quantization-based estimators and to their four competitors defined in
Section 3.3.1. For each model, sample size, and quantile order α considered, it provides a series
of 500 observed ISEs for each estimator. Figures 3.9-3.11 draw the boxplots of those 500 ISE
values for Models (M1)-(M3), respectively. ISEs are, as expected, smaller for n = 1, 000 than
for n = 300, but otherwise are quite similar.

For most models and quantile orders considered, the quantization-based estimators, spline
estimators, and kNN estimators provide smaller ISEs than the local constant and local linear
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Figure 3.9 – Boxplots, for α = 0.05, 0.25, 0.50, 0.75, and 0.95, of the ISEs of various conditional α-quantile
estimators obtained from 500 independent random samples from Model (M1), with size n = 300 (top) and
n = 1, 000 (bottom). The estimators considered are the quantization-based estimator q̄N,nα,B (in blue), the spline
estimator q̂ sp

α (in orange), the kNN estimator estimator q̂α;kNN (in green), the local linear estimator q̂YJ
α (in purple)

and the local constant estimator q̂YJc
α (in red).

estimators. Since the kNN estimators are based on a selection of k that is infeasible, the main
competitors to our quantization-based estimators are those based on splines. Results reveal that
polynomial link functions (see Figure 3.9) usually are more favorable to spline-based methods
(Figure 3.9b provides an exception, though, which shows that the sample size may also play a
role). On the contrary, quantization-based estimators are better for more complex link function
(see Figures 3.10-3.11), which is in line with the comparison of the quantization-based and spline-
based estimated curves in Section 3.3.2 (note, however, that an exception also appears in Figure
3.11b).

Let us comment the good performances of q̄N,nα,B (x) with respect to the ones of kernel esti-
mators. The main advantage of quantization is that the radius of a Voronoi cell (i.e. the larger
distance between a point of the grid and any point projected on it) is adaptive: when there are
many points in a region, the number of quantizers is more important in this region than in other
less dense regions. The radius of the cells can be seen as a data-adaptive bandwidth parameter.
It is then not surprising that q̄N,nα,B outperforms the kernel estimators q̂YJc

α and q̂YJ
α in situations

where this feature appears, since the bandwidth h is the same for any x in q̂YJ
α (x).

Since the computational burden is also an important issue, we gather in Table 3.2 the compu-
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Figure 3.10 – The same boxplots as in Figure 3.9, but for Model (M2).

tation times (in seconds) used by each estimator to produce Figure 3.9a. To study computation
times in the light of efficiency, we further report there, for each estimator, a global measure of
efficiency (Eff), defined as the sum, over the five α-values considered in that figure, of the medi-
ans of the 500 fixed-α observed ISEs. Since the choice of the grid N plays an important role in
the selection of the optimal N -value (at least from a computational point of view), we consid-
ered two grids, namely N1 = {5, 6, . . . , 29, 30} and N5 = {5, 10, . . . , 25, 30} (the latter one, that
may seem too coarse, is actually the one that led to the good ISE performances in Figures 3.9).
Table 3.2 confirms that there is no free lunch, as it shows that the gain in terms of efficiency
(for Model (M1) and n = 300) has a price in terms of computation time. This price, however,
is quite reasonable. Moreover, the Mac and Linux versions of our R package QuantifQuantile
offer an option for parallel computing, which divides the computing times shown in Table 3.2 by
a factor of 4, which clearly makes our estimators very competitive in this respect. In addition, the
computation times for the kNN estimator should be considered with care, since the procedure
here is not based on a (typically always quite computationally intensive) data-driven selection
of smoothing parameters. This table also gathers the efficiency measures Eff associated with
Figures 3.10a and 3.11a (we do not provide the corresponding CPU times, that barely depend
on the model considered). The grids N1 and N5 actually differ across models but not their size.
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Figure 3.11 – The same boxplots as in Figures 3.9-3.10, but for Model (M3).

q̄N,nα,B (N1) q̄N,nα,B (N5) q̂ sp
α q̂α;kNN q̂YJ

α q̂YJc
α

CPU 11,108.3 2,583.8 2,258.6 541.4 1,319.8 1,178.4

Eff

(M1) 0.503 0.518 0.368 0.522 0.845 1.001
(M2) 1.938 2.211 2.614 1.412 3.535 2.950
(M3) 1.108 1.109 1.223 1.046 1.618 1.784

Table 3.2 – (First line:) Computation times (CPU, in seconds) used by each estimator to obtain Figure 3.9a.
(Subsequent lines:) ISE-based global efficiency measures (Eff) associated with Figures 3.9a, 3.10a, and 3.11a; see
Section 3.3.3 for details.

3.4 Extension to multivariate regressors (d > 1)

The numerical exercises and simulations in Sections 3.3 focused on the case of a single covariate
(d = 1). All previous definitions and results, however, cover the general case (d ≥ 1): this not only
includes the theoretical results from Chapter 2, but also the CLVQ algorithm and the proposed
data-driven method to select N . It is therefore natural to investigate how well quantization-based
conditional quantile estimation performs for d > 1.

To do so, we focus on the bivariate case d = 2 to be able to plot the resulting conditional
quantile hypersurfaces. We first generated a random sample of size n = 3, 000 from the model

(M4) Y = sin(X1 +X2) +
(
0.5 + 1.5 sin2(π2 (X1 +X2))

)
ε,

withX = (X1, X2)′ = (6Z1−3, 6Z2−3)′ (Zi ∼ Beta(2, 2), i = 1, 2) and ε ∼ N (0, 9), where Z1, Z2

and ε are mutually independent. Conditional quantile hypersurfaces of this model for α =0.05,
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(a) (b) (c)

Figure 3.12 – Various conditional α-quantile surfaces for Model (M4) and α = 0.05, 0.25, 0.5, 0.75 and 0.95.
The quantile surfaces are the population ones (left), the ones estimated (from 3, 000 independent observations)
through quantization (center), and through triogram-based splines (right); see Section 3.4 for details.

0.25, 0.5, 0.75, and 0.95 are plotted in Figure 3.12a. Figure 3.12b provides the corresponding
sample quantile surfaces obtained from our estimator q̄N,nα,B , with B = 50 and the optimal N -
values that are obtained through our data-driven N -selection procedure for the various values
of α. The quantile surfaces were readily obtained from the R packageQuantifQuantile, that can
therefore also be used for d > 1. Clearly, q̄N,nα,B provides very smooth surfaces that properly catch
the link function, even though the amplitude, for extreme values of α, is a bit under-estimated.

The results of Section 3.3 suggest restricting the comparison to spline-based estimators. For
this purpose, we consider the triogram-based bivariate splines from Koenker and Mizera (2004),
that is implemented in the rqss function of the R package quantreg. The resulting estimated
quantile surfaces, based on the same λ-selection method as for d = 1 in Section 3.3, are plotted
in Figure 3.12c. Clearly, these quantile surfaces exhibit more variability than the quantization-
based ones. Incidentally, note that, unlike the proposed estimator, this spline-based estimator
does not extend easily to d > 2.

Parallel to our investigation of the case d = 1, we complement the results above with some
efficiency results in terms of ISE. To do so, we generated 50 independent random samples from
Model (M4) above with sample size n = 3, 000 and computed, for each sample and various values
of α, the quantization-based and spline-based conditional quantile estimators. The corresponding
50 resulting ISEs for each estimator and every α considered, that are defined in a similar way as
in Section 3.2, are represented in Figure 3.13. In line with the d = 1 results in Figure 3.11, this
shows that, for the complex link function considered, q̄N,nα,B dominates q̂ sp

α in terms of efficiency.
Note that this is particularly true for extreme values of α.
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Figure 3.13 – Boxplots, for α = 0.05, 0.25, 0.50, 0.75, and 0.95, of the ISEs of quantization-based (in blue)
and triogram-based spline (in orange) conditional α-quantile estimators obtained from 500 independent random
samples from Model (M4), with size n = 3, 000.

3.5 R-package QuantifQuantile

For the sake of ease of use, we developed a package in R called QuantifQuantile, that allows
to perform quantization-based quantile regression (Charlier et al., 2015d). We will see in the
sequel that this package aims to help the user compute the corresponding estimators in a quite
straightforward way.

This section provides a description of the various functions offered by the R package Quan-
tifQuantile. We first detail the three functions that allow to estimate conditional quantiles
through quantization (Section 3.5.1). Then we describe a function computing optimal quantiza-
tion grids (Section 3.5.2).

3.5.1 Conditional quantile estimation

QuantifQuantile is composed of three main functions that each provides estimated conditional
quantiles in (2.3.1)-(2.3.3). These functions work in a similar way but address different values
of d (recall that d is the dimension of the covariate vector X):

• The function QuantifQuantile is suitable for d = 1.

• The function QuantifQuantile.d2 addresses the case d = 2.

• Finally, QuantifQuantile.d can deal with an arbitrary value of d.

Notice that, if QuantifQuantile.d can be used whatever the dimension d, it is highly recom-
mended to use it only for d ≥ 3 since the codes inside the first two functions are more adapted for
d = 1 and d = 2, providing a gain in computing time in comparison with QuantifQuantile.d.

Combined with the plot function, the first two functions provide reference curves and refer-
ence surfaces, respectively. No graphical outputs can be obtained from the third function.
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The three functions share the same arguments, but not necessarily the same default values.
For each function, using args() displays the various arguments and corresponding default values:

R> args(QuantifQuantile)

function (X, Y, alpha = c(0.05 , 0.25, 0.5, 0.75, 0.95), x =
seq(min(X), max(X), length = 100), testN = c(35, 40, 45,
50, 55), p = 2, B = 50, tildeB = 20, same_N = TRUE ,
ncores = 1)

R> args(QuantifQuantile.d2)

function (X, Y, alpha = c(0.05 , 0.25, 0.5, 0.75, 0.95), x =
matrix(c(rep(seq(min(X[1, ]), max(X[1, ]), length = 20),
20), sort(rep(seq(min(X[2, ]), max(X[2, ]), length = 20),
20))), nrow = 2, byrow = TRUE), testN = c(110, 120, 130,
140, 150), p = 2, B = 50, tildeB = 20, same_N = TRUE ,
ncores = 1)

R> args(QuantifQuantile.d)

function (X, Y, x, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95),
testN = c(35, 40, 45, 50, 55), p = 2, B = 50, tildeB = 20,
same_N = TRUE , ncores = 1)

We now give more details on these arguments.

• X: a d × n real array (a vector of length n for QuantifQuantile, required by all three
functions). The columns of this matrix are the Xi’s, i = 1, . . . , n.

• Y: an n × 1 real array (required by all three functions). This vector collects the Yi’s, i =

1, . . . , n.

• alpha: an r×1 array with components in (0, 1) (optional for all three functions, with r the
number of α-values considered). This vector contains the orders for which qα(x) should be
estimated.

• x: a d×J real array (optional for QuantifQuantile and QuantifQuantile.d2, required by
QuantifQuantile.d). The columns of this matrix are the xj ’s at which the quantiles qα(xj)

are to be estimated. If x is not provided when calling QuantifQuantile, then it is set to a
vector of J = 100 equispaced values between the minimum and the maximum of the Xi’s. If
this argument is not provided when calling QuantifQuantile.d2, then the default for x is
a matrix whose J = 202 = 400 column vectors are obtained as follows: 20 equispaced values
are considered between the minimum and maximum values of the (Xi)1’s and similarly for
the second component. The 400 column vectors of the default x are obtained by considering
all combinations of those 20 values for the first component with the 20 values for the second
one1.

1Since the number J of points in a default value of x obtained in this fashion would increase exponentially
with the dimension d, we did not adopt the same approach for d ≥ 3.
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• testN: an m × 1 vector of pairwise distinct positive integers (optional for all three func-
tions). The entries of this vector are the elements of the set N in (3.2.3)-(3.3.1), hence
are the N -values for which the ÎSE

¯

α quantity considered will be evaluated. The default is
(35, 40, . . . , 55) but it is strongly recommended to adapt it according to the sample size n
at hand.

• p: a real number larger than or equal to one (optional for all three functions). It is the
parameter p to be used when performing optimal quantization in Lp-norm.

• B: a positive integer (optional for all three functions). It is the number of bootstrap repli-
cations B to be used in (2.3.3).

• tildeB: a positive integer (optional for all three functions). It is the number of bootstrap
replications B̃ to be used when determining N̂¯

α;opt or N̂¯
opt.

• same_N: a boolean variable (optional for all three functions). If same_N=TRUE, then a com-
mon value of N (that is, N̂¯

opt in (3.3.1)) will be selected for all α’s. If same_N=FALSE, then
optimal values of N will be chosen independently for the various α (which will provide
several N̂¯

α;opt, as in (3.2.3)).

• ncores: number of cores to use. These functions can use parallel computation to save
time by increasing this parameter. Parallel computation relies on mclapply from parallel
package (R Core Team, 2015), hence is not available on Windows.

All three functions return the following list of objects, which is of class "QuantifQuantile":

• hatq_opt: an r×J real array. If same_N=TRUE, then the entry (i, j) of this matrix is q̄
N̂¯

opt,n

αi,B
(xj).

If same_N=FALSE, then it is rather q̄
N̂¯
αi;opt,n

αi,B
(xj). This object can also be returned using the

usual fitted.values function.

• N_opt: a positive integer (if same_N=TRUE) or an r×1 array of positive integers (if same_N=FALSE).
Depending on same_N, this provides the value of N̂¯

opt or the vector (N̂¯
α1;opt, . . . , N̂

¯
αr;opt).

• hatISE_N: an r ×m real array. The entry (i, j) of this matrix is ÎSE
¯

αi(Nj). Plotting this
for fixed α or plotting its average over the various α, in both cases over testN, allows to
assess the global convexity of these ISEs. Hence, it can be used to illustrate whether or not
the choice of testN was adequate. This will be illustrated in the examples below.

• hatq_N: an r× J ×m real array. The entry (i, j, `) of this matrix is q̄N`,nαi,B
(xj), where N` is

the `th entry of the argument testN. From this output, it is easy by fixing the third entry
to get the matrix of the q̄N,nαi,B

(xj) values for any N in testN.

• The arguments X, Y, x, alpha, and testN are also reported in this response list.

Moreover, when the optimal value N_opt selected is on the boundary of testN, which means
that testN most likely was not well chosen, a warning message is printed.

The “QuantifQuantile” class response can be used as argument of the functions plot (only
for d ≤ 2), summary and print. The plot function draws the observations and plots the estimated
conditional quantile curves (d = 1) or surfaces (d = 2) — for d = 2, the rgl package is used (Adler
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et al., 2015), which allows to change the perspective in a dynamic way. In order to illustrate the
selection of N , the function plot also has an optional argument ise. Setting this argument to
TRUE (the default is FALSE), this function, that can be used for any dimension d, provides the
plot (against N) of the ÎSE

¯

α and ÎSE
¯
quantities in (3.2.3) or in (3.3.1), depending on the choice

same_N=FALSE or same_N=TRUE, respectively; see the examples below for details. If d ≤ 2, it also
returns the fitted quantile curves or surfaces.

3.5.2 Computing optimal grids

Besides the functions that allow to estimate conditional quantiles and plot the corresponding
reference curves/surfaces, QuantifQuantile provides a function that computes optimal quanti-
zation grids. This function, called choice.grid, admits the following arguments:

• X: a d× n real array (required). The columns of this matrix are the Xi’s, i = 1, . . . , n, for
which the optimal quantization grid should be determined. Each point of X is used as a
stimulus in the stochastic gradient algorithm to get an optimal grid.

• N: a positive integer (required). The size of the desired quantization grid.

• ng: a positive integer (optional). The number of desired quantization grids. The default is
1.

• p: a real number larger than or equal to one (optional). It is the parameter p used in the
quantization error. The default is 2.

Let us detail the parameter ng. In some cases, it may be necessary to have several quantization
grids. For example, in the use of this function inside QuantifQuantile and its multidimensional
versions, we need B + tildeB grids. If ng > 1, the different grids are obtained using as stimuli
a resampling version of X (the Xt’s in Section 1.2.4).

The output is a list containing the following elements:

• init_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of
the jth point of the `th initial grid.

• opti_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of
the jth point of the `th optimal grid provided by the algorithm.

3.5.3 Illustrations

In this section, we illustrate on several examples the use of the functions described above. Exam-
ples 1 and 2 restrict to QuantifQuantile/QuantifQuantile.d2 and provide graphical represen-
tations in each case. We conclude this section with an illustration of the function choice.grid.

Example 1: one-dimensional covariate

We generate a random sample of size n = 300, where X is uniformly distributed on the interval
(−2, 2) and where Y is obtained by adding to X2 an independent standard normal error term:
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R> set.seed (258164)
R> n <- 300
R> X <- runif(n, -2, 2)
R> Y <- X^2 + rnorm(n)

We test the number N of quantizers between 10 and 30 by steps of 5 and we do not change
the default values of the other arguments. We then run the function QuantifQuantile with these
arguments and we stock the response in res.

R> testN <- seq(10, 30, by = 5)
R> res <- QuantifQuantile(X, Y, testN = testN)

No warning message is printed, which means that this choice of testN was adequate. To
assess this in a graphical way, we use the function plot with ise argument set to TRUE that
plots hatISEmean_N (obtained by taking the mean of hatISE_N over alpha) against the various
N -values in testN.

R> plot(res , ise = TRUE)

Figure 3.14a provides the resulting graph, which confirms that testN was well chosen since
hatISEmean_N is larger for smaller and larger values of N than N_opt. We then plot the corre-
sponding estimated conditional quantiles curves in Figure 3.14b. The default colors of the points
and of the curves are changed by using the col.plot argument. This argument is a vector of size
1+length(alpha), whose first component fixes the color of the data points and whose remaining
components determine the colors of the various reference curves.

R> col.plot <- c("grey", "red", "orange", "green", "orange", "red")
R> plot(res , col.plot = col.plot , xlab = "X", ylab = "Y")

It is natural to make the grid testN finer. Of course, the more N -values we test, the longer
it takes. It is why we adopted this two-stage approach, where the goal of first stage was to get
a rough approximation of the optimal N -value. In the second stage, we can then refine the grid
only in the vicinity of the value N_opt obtained in the first stage.

R> testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
R> res_step1 <- QuantifQuantile(X, Y, testN = testN)
R> plot(res_step1 , ise = TRUE , col.plot = col.plot , xlab = "X",

ylab = "Y")

The resulting graphs are plotted in Figure 3.14c and 3.14d respectively. We observe that the
value of N_opt is made more precise, since we now get N_opt = 18 instead of 15. The resulting
estimated conditional quantiles curves in Figure 3.14d are very similar to the ones in Figure 3.14b.

So far, we used the default value same_N=TRUE, which leads to selecting an N -value that is
common to all α’s. For the sake of comparison, we now explore the results for same_N=FALSE.

R> testN <- c(seq(10, 30, by = 5))
R> res2 <- QuantifQuantile(X ,Y ,testN = testN , same_N = FALSE)
R> plot(res2 , ise = TRUE , col.plot = col.plot , xlab = "X",
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Figure 3.14 – For the sample considered in Example 1, this figure provides (a) the plot of N 7→ ÎSE
¯
(N) with

N ∈ {10, 15, 20, 25, 30}, and (b) the resulting reference curves. The panels (c)-(d) provide the corresponding plots
when taking N ∈ {10, 11, 12, . . . , 19, 20, 25, 30}.
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Figure 3.15 – The same results as in Figure 3.14, but when selecting optimal values of N separately for each α.
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ylab = "Y")
R> testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
R> res2_step1 <- QuantifQuantile(X,Y,testN = testN ,same_N = FALSE)
R> plot(res2_step1 , ise = TRUE , col.plot = col.plot , xlab = "X",

ylab = "Y")

The results are provided in Figure 3.15. Comparing the left panels of Figures 3.14 and 3.15,
we see that when choosing N by steps of five, we find N_opt = 15 with same_N=TRUE and N_opt

= 15 or 20 (depending on alpha) for same_N=FALSE. When we refine the grid testN, we find
analogously N_opt = 18 for same_N=TRUE and N_opt = 14, 15, or 16 for same_N=FALSE. In the
present setup, thus, both methods provide relatively close optimal N -values, which explains why
the corresponding estimated reference curves are so similar (see the right panels of Figures 3.14
and 3.15). Therefore, the grid of N -values tested in Figure 3.14, that may seem too coarse at
first sight, actually provides fitted curves that are as satisfactory as those associated with the
finer grid in Figure 3.15.

Example 2: two-dimensional covariate

The sample considered here is made of n = 1, 000 independent realizations of a random vec-
tor (X ′, Y )′, where X = (X1, X2)′ is uniformly distributed on the square (−2, 2)2 and where Y
is obtained by adding to X2

1 +X2
2 an independent standard normal error term.

R> set.seed (642516)
R> n <- 1000
R> X <- matrix(runif(n*2, -2, 2), ncol = n)
R> Y <- apply(X^2, 2, sum) + rnorm(n)

We test N between 40 and 90 by steps of 10. We change the values of B and tildeB to reduce
the computational burden, that is heavier when d = 2 than when d = 1. We keep the default
values of all other arguments when running the function QuantifQuantile.d2. Here, a warning
message is printed informing us that testN was not well-chosen. We confirm it with the function
plot with ise argument set to TRUE.

R> testN <- seq(40, 90, by = 10)
R> B <- 20
R> tildeB <- 15
R> res <- QuantifQuantile.d2(X, Y, testN = testN , B = B,

tildeB = tildeB)
R> plot(res , ise = TRUE)

Figure 3.16a provides the resulting graph. The parameter testN was not well chosen since
hatISEmean_N becomes smaller and smaller as N_opt increases. We then adapt the choice of
testN accordingly and rerun the procedure, which identifies an optimal N -value equal to 100;
see Figure 3.16b.

R> testN <- seq(80, 130, by = 10)
R> res <- QuantifQuantile.d2(X, Y, testN = testN , B = B,

tildeB = tildeB)
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Figure 3.16 – For the sample considered in Example 2, this figure plots N 7→ ÎSE
¯
(N) (a) for N ∈

{40, 50, 60, 70, 80} and (b) for N ∈ {80, 90, . . . , 120, 130}.

R> plot(res , ise = TRUE)

We then plot the corresponding estimated conditional quantile surfaces in Figure 3.17. This
figure gathers two prints of the rgl plot, but this plot is actually interactive and the user can
move it with the mouse in order to view it in any orientation.

R> col.plot <- c("black", "red", "orange", "green", "orange", "red")
R> plot(res , col.plot = col.plot , xlab = "X_1", ylab = "X_2",

zlab = "Y")

Illustration of choice.grid

We now focus on the function choice.grid in the univariate and bivariate settings. This func-
tion helps obtain optimal quantization grids and was actually used to construct the grids of
Section 1.2.4. We now give and detail the code allowing to obtain these illustrations, but we refer
the reader to Section 1.2.4 for the graphical outputs and observations.

We start with the univariate case and generate a random sample of size n = 500 from the uni-
form distribution over (−2, 2). With N = 15 and ng = 1, this function provides a single initial grid
(obtained by sampling without replacement among the uniform sample) and the corresponding
optimal grid returned by the algorithm. Figure 1.7 of Chapter 1 (top left) represents the ob-
servations (in grey), the initial grid (in red), and the optimal grid (in green). The middle and
bottom left figures plot the empirical cdf of the observations projected onto the initial grids and
the optimal grids, respectively. The same exercise is repeated with sample size n = 5, 000, and
the results are also given in Figure 1.7 (right panel).

R> set.seed (643625)
R> n <- 500
R> X <- runif(n, -2, 2)

77



3.5 R-package QuantifQuantile

(a) (b)

Figure 3.17 – For the sample considered in Example 2, this figure plots (with two different views) the estimated
conditional quantile surfaces obtained with the plot function for α =0.05, 0.25, 0.50, 0.75 and 0.95.

R> N <- 15
R> ng <- 1
R> res <- choice.grid(X, N, ng)
R> # Plots of the initial and optimal grids
R> plot(X, rep(0, n), col = "grey", cex = 0.5, ylim = c(-0.1,

1.1), yaxt = "n", ylab = " ")
R> points(res$init_grid , rep(0.5, N), col = "red", pch = 16,

cex = 1.2)
R> points(res$opti_grid , rep(1, N), col = "forestgreen", pch = 16,

cex = 1.2)
R> # To plot the ecdf
R> projX_init <- array(0, dim=c(n, 1))
R> projX_opti <- array(0, dim=c(n, 1))
R> i_init <- array(0, dim = c(n, 1))
R> i_opti <- array(0, dim = c(n, 1))
R> for (i in 1:n) {
R> RepX <- rep(X[i], N)
R> diff_init <- sqrt((RepX - res$init_grid )^2)
R> diff_opti <- sqrt((RepX - res$opti_grid )^2)
R> i_init[i] <- which.min(diff_init)
R> i_opti[i] <- which.min(diff_opti)
R> projX_init[i] <- res$init_grid[i_init[i]]
R> projX_opti[i] <- res$opti_grid[i_opti[i]]
R> }
R> plot(ecdf(projX_init), main = " ", col = "red", xlim = c(-2, 2))
R> plot(ecdf(projX_opti), main = " ", col = "forestgreen",

xlim = c(-2, 2))

We conclude this section with an illustration of choice.grid in the bivariate case. We gen-
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erate 2, 000 points from the uniform distribution over the square (−2, 2)2, and we choose N = 30
and ng = 1. The resulting initial and optimal grids are plotted in the left panels of Figure 1.8 (top
and bottom, respectively). The right panels are obtained similarly from 20, 000 points instead of
2, 000.

R> set.seed (345689)
R> n <- 2000
R> X <- matrix(runif(n*2, -2, 2), nc = n)
R> N <- 30
R> ng <- 1
R> res <- choice.grid(X, N, ng)
R> col <- c("red", "forestgreen ")
R> l <- c(" init_grid [1]", "init_grid [2]", "opti_grid [1]",

"opti_grid [2]")
R> plot(res$init_grid [1, , 1], res$init_grid [2, , 1],

col = col[1], xlab = l[1], ylab = l[2])
R> plot(res$opti_grid [1, , 1], res$opti_grid [2, , 1],

col = col[2], xlab = l[3], ylab = l[4])

3.6 Real data examples

In this section, we illustrate the behavior of q̄N,nα,B on several real data sets. Section 3.6.1 is
devoted to a first real data set that was kindly sent to us by Dr. Keming Yu. He used this data
set in a previous work with his own estimation method of conditional quantile, which allows us
to compare our results with his (see Yu and Jones, 1998). We put the accent on the statistical
methodology for this first real data example. In other words, we explain how works our estimation
procedure by detailing each step separately. We also compare it with spline methods.

The investigation of Section 3.6.2 is based on a list of data sets collected in towns located
in Gironde, France. This list will be detailed more precisely in the corresponding section. This
second example aims to highlight the package instead of the methodology (which is always
similar). We then focus on the implementation part in this second section.

3.6.1 Concentration of immunoglobulin-G given age for children

This data set, of size n = 298, corresponds to the serum concentration, in grams per liter, of
immunoglobulin-G in children aged from 6 months to 6 years. It was already investigated in Yu
and Jones (1998), where two estimators were considered, namely a kernel local linear estimator
and a double kernel estimator. The reader can refer to this paper where (smoothed versions of) the
corresponding quantile curves are plotted. Also, we do not plot the quantile curves resulting from
the kNN estimator q̂α;kNN since the selection of the parameter k is not data-driven, hence cannot
be achieved on a real data set. Consequently, we only compare the proposed quantization-based
quantile curves with those obtained from their main competitor, namely the spline estimator
q̂ sp
α .

We now describe how we obtained quantization-based quantile curves in this context, for
each α= 0.05, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.95. We chose these quantile orders with respect to

79



3.6 Real data examples

5 10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

ha
tIS

E
(N

)

0.05
0.1
0.25
0.5
0.75
0.9
0.95

(a)

4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

N

ha
tIS

E
(N

)

0.05
0.1
0.25
0.5
0.75
0.9
0.95

5 6

(b)

4 5 6 7 8 9 10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

N

ha
tIS

E
(N

)

(c)

Figure 3.18 – For the real-data example of Section 3.6.1, these figures provide (a) the plot of N 7→ ÎSE
¯

α,B(N)

over N ∈ N = {5, 10, . . . , 35, 40}, (b) the plot of N 7→ ÎSE
¯

α,B(N) over N ∈ N = {4, 5, . . . , 9, 10}, and (c) the plot
of N 7→ ÎSE

¯
(N), still over N ∈ N = {4, 5, . . . , 9, 10}.

the choice of Yu and Jones (1998).

Selection of an optimal N

The first step consists in choosing the optimal number N of quantizers. To do so, we adopted
the method proposed in Section 3.2.2, based on the minimization of ÎSE

¯

α,B(N) (see (3.2.2)),
for which we considered throughout B = 50, B̃ = 30, and a grid of J = 300 equispaced points
between the minimum and maximum values of the X-part of the sample. We first evaluated
ÎSE

¯

α,B(N) for all N ∈ N = {5, 10, . . . , 35, 40}. Figure 3.18a plots the resulting ISE curves for
each α. Irrespective of α, these curves are monotone increasing, which means that the tested
values of N are too large: we feel that the optimal value is among the smallest and also that a
finer grid is desirable. We therefore did the same exercise for N = {4, 5, . . . , 9, 10}, which led to
Figure 3.18b. For each α, this provides an optimal N (that is equal to 5 or 6).

As we explained in Section 3.3.2, identifying an optimal N -value separately for each α leads
to estimated quantile curves that in principle may cross. If one wants to protect against this,
a single optimal value of N should be chosen for all α’s using 3.3.1. The resulting ISE curve is
plotted in Figure 3.18c and leads to an optimal N -value equal to 5.

Estimation of the conditional quantiles

The second step of course consists in obtaining the estimated quantile curves themselves, based on
the selected values of N above. These are the plots of the mappings x 7→ q̄N,nα,B (x) in (2.3.3), where
we chose B = 50. The resulting quantile curves are plotted in Figure 3.19. As announced, we
compare these curves with those associated with the spline estimator q̂ sp

α . For each α considered,
the parameter λ was selected according to the AIC procedure described in Section 3.3.1, which
led to λ̂α;opt = 0.40, 0.42, 0.96, 0.63, 0.96, 0.52, and 0.69. Figure 3.19b plots the resulting quantile
curves. Clearly, these piecewise linear curves are more irregular than the quantization-based ones
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Figure 3.19 – Conditional α-quantile curves for the real-data example of Section 3.6.1 and α = 0.05, 0.1, 0.25,
0.5, 0.75, 0.9 and 0.95. The estimators considered are the quantization-based estimator q̄N,nα,B with B = 50 (left)
and the spline estimator q̂ sp

α (right).

and show some important peaks and slight crossings.

3.6.2 Employment, housing and environment in Gironde, France

This section is based on a list of data sets in R called gironde. This list is composed of several
variables, numerical or categorical. The variables of type employment, housing and services were
collected by the INSEE2 while the environmental ones by the IGN3. These data are freely avail-
able for research institutes and were conditioned into this list by the IRSTEA4, that kindly sent
it to us. These data were joined to the QuantifQuantile package.

We of course only use in our approach the 16 different numerical variables. To each variable
corresponds a data set of size n = 542 (the number of towns or villages). Table 3.3 gathers the
different variables with their names in the list, a short description and the group to which they
belong.

Among these 16 variables, any of them could play the role of the response variable or the
2French National Institute of Statistics and Economic Studies
3French National Institute of Geographical and Forest Information
4French National Research Institute of Science and Technology for Environment and Agriculture
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R Names Description Group

farmers Percentage of farmers employment
tradesmen Percentage of tradesmen and handicraftsmen employment
managers Percentage of managers and executives employment
workers Percentage of workers and employees employment
unemployed Percentage of unemployed workers employment
middleemp Percentage of middle-range employees employment
retired Percentage of retired people employment
employrate Employment rate employment
income Average income employment
density Population density housing
primaryres Percentage of primary residences housing
owners Percentage of home owners living in their primary residence housing
building Percentage of buildings environment
water Percentage of water environment
vegetation Percentage of vegetation environment
agricul Percentage of agricultural land environment

Table 3.3 – Numerical variables of the list gironde.

covariate. Therefore, we can consider any of them given another one, and observe if a possible
link is highlighted. For example, we choose as Y the percentage of farmers and we consider it
given X equal to the population density. We then perform quantization-based quantile regres-
sion using the QuantifQuantile function. We only change the testN parameter. As explained
in Section 3.5, the plot function (with ise set to TRUE) allows to check the choice of testN (see
Figure 3.20a) and to obtain directly conditional quantile curves (see Figure 3.20b).

R> set.seed (564346)
R> X <- gironde [[2]] $density
R> Y <- gironde [[1]] $farmers
R> testN <- seq(5, 25, by = 5)
R> res <- QuantifQuantile(X, Y, testN = testN)
R> col.plot <- c("grey", "red", "orange", "green", "orange", "red")
R> plot(res , ise = TRUE , col.plot = col.plot)

We observe that the percentage of farmers is inversely proportional with the population
density, which was expected.

We can perform this method with any choice of X and Y among the list. The different
functions of the package allow to massively generate reference curves for a variable given another
one of interest. We only have to focus on the rightness of the parameter testN that might be
adapted if a warning message is printed (and checked with plot with ise=TRUE).

Figure 3.21 gathers different types of reference curves that we obtained. We do not represent
here the illustration of the selection criterion but only the resulting curves. Each subfigure was
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Figure 3.20 – Illustration of the plots provided by the plot function of the package (with ise=TRUE) for the
particular choice X = farmers and Y = density.

obtained by selecting N with respect to α between 5 and 45.
As mentioned in Section 3.5, the QuantifQuantile.d function allows to perform quantile

regression with d > 2. To illustrate it, we consider the response Y = population density and the
three covariates X1 = percentage of unemployed workers, X2 = percentage of farmers,
and X3 = percentage of managers. In this setup, no graphical output is available. We therefore
restrict to a finite collection of x-values where conditional quantiles are to be estimated. Denoting
by Mj and Xj , j = 1, 2, 3, the maximal value and the average of Xij , i = 1, . . . , n = 542,
respectively, we consider the following eight values of x:

x1 =


X1

X2

X3

 , x2 =


1
2(X1 +M1)

X2

X3

 , x3 =


X1

1
2(X2 +M2)

X3

 , x4 =


X1

X2

1
2(X3 +M3)

 ,

x5 =


1
2(X1 +M1)

1
2(X2 +M2)

X3

 , x6 =


1
2(X1 +M1)

X2

1
2(X3 +M3)

 , x7 =


X1

1
2(X2 +M2)

1
2(X3 +M3)

 , x8 =


1
2(X1 +M1)

1
2(X2 +M2)

1
2(X3 +M3)

 .

The function QuantifQuantile.d is then evaluated for the response and covariates indicated
above, and with the arguments alpha = (0.25, 0.5, 0.75)′, testN = (5, 6, 7, 8, 9, 10)′, x being the
3 × 8 matrix whose columns are the vectors x1, x2, . . . , x8 just defined and ncores being the
number of cores detected by R minus 1. This provided N̂¯

α;opt = 8, 8 and 7, for α = 0.25, 0.50
and 0.75, respectively. The total computation time is 6.84 seconds. The fitted.values function
then allowed to return the following matrix hatq_opt of estimated conditional quantiles:
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Figure 3.21 – Conditional quantile curves x 7→ q̄N,nα,B (x) for different choices of X and Y among the list gironde
and α = 0.05, 0.25, 0.5, 0.75, 0.95.
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Chapter 3 : Numerical study of the estimator

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 43.39 22.22 39.19 71.88 25.19 22.33 66.14 24.45
[2,] 78.48 30.01 78.23 156.90 34.32 30.45 151.50 33.74
[3,] 142.30 45.66 306.33 321.66 53.26 46.17 450.17 53.00

This collection of (estimated) conditional quantiles allows to appreciate the impact of a
marginal perturbation of the covariates on Y ’s conditional median (location) or interquartile
range (scale). For instance, the results suggest that Y ’s conditional median decreases with X1,
is stable with X2, and increases with X3, whereas its conditional interquartile range decreases
with X1 but increases much with X2 and with X3. The eight x-values considered further allow
to look at the joint impact of two or three covariates on Y ’s conditional location and scale. Of
course, other shifts in the covariates (and other orders α) should further be considered to fully
appreciate the dependence of Y on X.

3.7 Final comments

In this chapter, we investigated the empirical performances of the quantization-based estimators
of conditional quantile that were recently introduced in Chapter 2. This led us to design an
efficient data-driven method to select the number N of quantizers to be used, that plays the
role of a smoothing parameter (Section 3.2). From extensive simulations, we concluded that
quantization-based estimators compete well with alternative conditional quantile estimators and
sometimes dominate its main competitor, spline estimators, particularly when the link function
is complex (Section 3.3). We treated real data examples, in which we showed that the proposed
methodology provides very satisfactory conditional quantile curves, and we saw that the good
properties of quantization-based estimators extend to the bivariate covariate case (Sections 3.4
and 3.6). This should make conditional quantile estimation based on quantization of interest to
practitioners; in this spirit, we wrote an R package, named QuantifQuantile, that allows to
compute in a straightforward way the proposed estimators (the data-driven selection of N is
included) and to plot the resulting quantile curves/surfaces. This package is already available on
the CRAN and was described in Section 3.5.

We conclude this chapter with a last remark. Both in Chapter 2 and in this chapter, quanti-
zation was applied to the covariate only. One may wonder whether or not it may be of interest
to move entirely to a discrete framework by applying quantization to both the covariate and the
response. Such a double quantization might involve different numbers of quantizers for X and Y
(NX and NY , say) and would lead to the approximated conditional α-quantile

q̃Y,NX ,NYα (x) = arg min
a∈R

E
[
ρα(Ỹ NY − a)|X̃NX = x̃

]
,

where Ỹ NY = ProjδNY (Y ) denotes the projection of Y onto δNY = (ỹ1, . . . , ỹNY ), an optimal
N -grid for Y (x̃ still denotes the projection of x onto the optimal NX -grid for X). If obser-
vations (X1, Y1), . . . , (Xn, Yn) are available, then the resulting estimator of q̃Y,NX ,NYα (x) is the
sample α-quantile, q̂Y,NX ,NY ,nα (x) say, of the Ŷ NY ,n

i = Projδ̂NY ,n(Yi)’s corresponding to the in-
dices i for which X̂N,n

i = x̂N,n (the optimal y-grid δ̂NY ,n = (ŷNY ,n1 , . . . , ŷNY ,nNY
) can be obtained
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3.7 Final comments

from the CLVQ algorithm). Of course, we can also define a bootstrap version q̄Y,NX ,NY ,nα,B (x) of
this estimator by proceeding as in Section 2.3.2.

To investigate the performance of double quantization, we generated a random sample of size
n = 500 from the model

Y =
1

5
X3 + ε, (3.7.1)

where X ∼ U(−3, 3) and ε ∼ N (0, 1) are independent. Figure 3.22 plots, for five values of α, the
ÎSE

¯

α,B(NX , NY ) quantities achieved by the double-quantization estimator q̄Y,NX ,NY ,nα,B (x) with
B = 50; we only considered NX ∈ {5, 10, . . . , 75, 80} and NY ∈ {5, 10, . . . , 245, 250}. In order to
get smoother surfaces, we actually averaged sample ISEs over 5 independent random samples.
Denote N̂¯

α,B;opt(NY ) the optimal value for NX at the given NY (i.e. the one that minimizes

the ISE function N 7→ ÎSE
¯

α,B(N,NY ). The white curve in each panel is the curve associated

with NY 7→ ÎSE
¯

α,B(N̂¯
α,B;opt(NY ), NY ). It is seen that, irrespective of NY and α, the optimal

number of quantizers for X stays close to 25. However, there is no optimal value for NY : the
larger NY , the smaller the averaged ISE. In conclusion, an optimal choice for (NX , NY ) appears
to be NX close to 25 and NY →∞. Since letting the size of the quantization grid go to infinity
is equivalent to not quantizing at all, this leads to favoring the solution adopted in Chapters 2
and 3 over double quantization. Quantizing X only also makes perfect sense in the problem
of estimating nonparametrically a given conditional quantile qα(x). Most estimation methods
indeed consist in selecting the observations whose X-part is the closest to x (where the meaning
of “close” depends on the method at hand) and to take the sample quantile of the corresponding
Y ’s. Quantizing Y thus does not seem natural, as it adds an unnecessary approximation error
(see Figure 3.23).
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Chapter 3 : Numerical study of the estimator

Figure 3.22 – Plots of the mapping (NX , NY ) 7→ ÎSE
¯

α,B(NX , NY ) (for the estimator q̄Y,NX ,NY ,n
α,B (x) with B =

50), for α = 0.05, 0.25, 0.50, 0.75, and 0.95, averaged over 5 mutually independent random samples from (3.7.1)
with sample size n = 500.
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Figure 3.23 – For 500 replications of sample of size n = 300 from (3.7.1), the boxplots of the ISE in the
estimation of conditional quantiles curves: in orange, q̄Y,NX ,NY ,n

α,B and in blue, q̄N,nα,B .
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Part II

Multiple-output quantile regression
through optimal quantization
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Glossary

Notation Meaning
Y Random vector of dimension m, m > 1.

Sm−1, Bm Unit sphere, open unit ball (deprived of the origin) of Rm

|z| , ‖z‖p Euclidean norm, Lp-norm of z

α = αu Order of multivariate quantile, α ∈ (0, 1), u ∈ Sm−1

Γu Arbitrary m× (m− 1) matrix such that (u,Γu) is an orthonormal basis of Rm

(aα, c
′
α)′ Coefficient of the quantile of Y of order α in the sense of HPŠ10

X Covariate of dimension d

PX , SX Distribution of the random vector X and its support(
aα(x)

cα(x)

)
Coefficients of the conditional quantile of Y of order α given X = x

qα(x) Equivalent notation for (aα(x), c′α(x))′

γN Optimal quantization grid of size N

X̃
N

Projection of X onto the quantization grid γN

Cx Quantization cell containing all points projected on the same grid point as x

R(Cx) Radius of Cx, i.e. largest distance between the center and a point of the cell(
ãNα (x)

c̃Nα (x)

)
Approximation of the coefficients of the conditional quantile of Y |X = x

q̃Nα (x) Equivalent notation for (ãNα (x), (c̃Nα (x))′)′

γ̂N,n Approximation of γN provided by CLVQ after n replications

X̂
N,n

Projection of X onto the approximated quantization grid γ̂N,n(
âN,nα (x)

ĉN,nα (x)

)
Estimation of the coefficients of the conditional quantile of Y |X = x

q̂N,nα (x) Equivalent notation for (âN,nα (x), (ĉN,nα (x))′)′

q̄N,nα (x) Bootstrap-based estimator of qα(x)
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Glossary

ÎSE
¯

α,B(N) Data-driven criterion to select N based on q̄N,nα (x)

q̂ cα(x) Local constant estimator of qα(x)

q̂ `α(x) Local bilinear estimator of qα(x)

92



4
Introduction

Contents

4.1 Multivariate quantiles . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Criterion for comparing different versions of multivariate quantiles 95

4.1.2 Multivariate quantiles based on norm minimization . . . . . . . 96

4.1.3 Multivariate quantiles functions based on depth functions . . . 99

4.1.4 Multivariate quantiles as projection quantiles . . . . . . . . . . 100

4.1.5 Multivariate quantile based on quantile regression . . . . . . . . 102

4.1.6 Choice of a notion of multivariate quantile . . . . . . . . . . . . 104

4.2 Multiple-output conditional quantiles . . . . . . . . . . . . . . 104

4.2.1 Definition of multiple-output conditional quantiles . . . . . . . 104

4.2.2 Estimation of multiple-output conditional quantiles . . . . . . . 106

4.3 Objective and structure of the part . . . . . . . . . . . . . . . . 106

4.4 Proof of Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 107

The first part of this thesis was dedicated to the framework of a unidimensional response
variable Y , while the covariate X could be multidimensional. It is then natural to be interested
in a method allowing to characterize the link between X and Y when Y is of dimensionm greater
than 1. Since Section 1.1 and Figure 1.3 convince us of the advantages of quantile regression over
standard mean regression, we then aim to generalize quantization-based quantile regression to
multiple-output (i.e. to m > 1).

However, generalizing the concept of quantile in a multivariate setting is not direct due to the
lack of natural ordering of Euclidean space for dimension greater than one. Section 4.1 is thus
devoted to the definitions and comparison of the different existing notions, in order to choose
one of them in our forthcoming investigation. With the choice of Section 4.1, Section 4.2 aims
to define precisely the notion of conditional quantile in a multiple-output setting.

For the sake of clarity of notation, multivariate variables will be represented with bold font
in this part.
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4.1 Multivariate quantiles

Many approaches of multivariate quantiles have been developed and an attractive comparison
of them has been proposed in Serfling (2002). Other interesting multivariate quantiles having
a connection with the notion of statistical depth have been defined since then. The aim of this
section is to complete the comparison study of Serfling (2002) with some recent concepts of mul-
tivariate quantiles and thus to provide a detailed overview of existing definitions of multivariate
quantiles.

Let us start with recalling some important properties and features of quantiles (thus in a
univariate context). We saw in Section 1.1 that the quantiles of order α of a random variable Y
can be defined equivalently by inverting the cumulative distribution function F (Definition 1.1.1)
or by solving an optimization problem (Definition 1.1.2).

The notion of quantile function is also of major importance. We define a quantile function
associated to F as

Q(·, F ) : (−1, 1) → R
u 7→ Q(u, F ) = F−1

(
u+1

2

)
.

(4.1.1)

We notice that Q(u, F ) corresponds to the quantile of order α = (u+ 1)/2. Therefore, a value of
u near to zero provides a central quantile when a large value of u (i.e. near to 1 in absolute value)
indicates an extreme quantile. Moreover, u gives two different information: a direction (positive
or negative) and a magnitude (between 0 and 1).

We now state some crucial properties of univariate quantiles. First, the quantile function is
affine equivariant, that is

Q(v, FaY+b) = aQ(u, FY ) + b,

where −1 < u < 1, a, b ∈ R and v = v(u, a, b, FY ) such that |v| = |u|. We can then take
v = sgn(a)u or v = −sgn(a)u.

In addition, the resulting contours satisfy some nice geometric properties as nestedness and
convexity. But a main characteristic of quantiles is their relation to depth. A depth function is
a function providing a center-outward ordering of points, with respect to the distribution F . In
other words, it is a measure of centrality valid in any dimension. A large depth corresponds with
a “central” point while a depth near to zero indicates a point distant from the center. For more
information about depth, see for instance Rousseeuw and Ruts (1999); Zuo and Serfling (2000).
In this univariate setting, we define the depth of a point x as min(F (x), 1 − F (x)). Therefore,
the only points with depth α are xα := F−1(α) and x1−α := F−1(1 − α), i.e. the quantiles of
order α and 1−α respectively. Depth is an interesting concept for its geometrical considerations
for instance while the quantile approach provides analytical and algorithmic tools. A connection
between these two concepts allows then to transfer at each the advantages of the other. For this
reason, such a connection for multivariate quantiles is highly desirable.

As we have seen in (1.1.1), the fundamental concept of quantiles relies on the natural ordering
of R. For this reason, it cannot be easily generalized in a multivariate setting since the Euclidean
space for greater dimension suffers from the lack of a natural ordering.

A huge literature has been devoted to the problem of extending this one-dimensional concept
to a multivariate setting. Different approaches were investigated. A possibility is starting from a
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property of one-dimensional quantiles and attempting to generalize it. The following step consists
then in evaluating how well the other properties expected from a quantile are satisfied.

For this purpose, we start in Section 4.1.1 with listing some questions to be asked when we
regard a new definition of multivariate quantiles and proposed by Serfling (2002). We explain a
mathematical tool introduced in this paper to evaluate and compare different notions of mul-
tivariate quantiles. Therefore, we will answer these questions in the sequel for each notion of
multivariate quantiles.

A first possible approach consists in generalizing (1.1.1) by defining multivariate quantiles
as inversion of mappings (see for instance Koltchinskii (1997)). We can also define them from
a norm minimization as an extension of (1.1.2) (Abdous and Theodorescu, 1992; Chaudhuri,
1996). These constructions are investigated in Section 4.1.2. However, as we will see in the
sequel, these multivariate quantiles do not satisfy crucial properties as affine equivariance and
have no link with a depth function. We then define in Section 4.1.3 multivariate quantiles based
on some depth function. Another step in this direction was realized by Kong and Mizera (2012)
who defined multivariate quantiles by applying quantile to some univariate functions, the more
natural choice being projections. We see in Section 4.1.4 that their multivariate quantiles have
an interesting link with halfspace depth but unfortunately the resulting contours do not enjoy
properties as nestedness or affine equivariance. A solution was proposed by Hallin, Paindaveine,
and Šiman (2010a) (hereafter, HPŠ10) where they define multivariate quantiles as hyperplanes.
This vision of multivariate quantiles solves the problems arisen with the concept of Kong and
Mizera (2012) and the corresponding multivariate quantile satisfies all desirable properties of a
quantile. Moreover, the inner region characterized by the collection of such hyperplanes coincides
with halfspace depth regions, as we explain in Section 4.1.5.

4.1.1 Criterion for comparing different versions of multivariate quantiles

In this section, we state the questions that we will investigate for each definition of multivariate
quantiles, and explain the criterion developed by Serfling (2002) to compare and evaluate the
different existing definitions. When considering a multivariate quantile, we will ask the following
questions.

Q1 Does it support probabilistic interpretation analogous to the univariate case ?

Q2 Does it satisfy suitable equivariance properties, such as affine equivariance ?

Q3 Does its empirical version support asymptotic results, as strong consistency, asymptotic
normality, Bahadur-type representation ?

Q4 Does it provide a connection to the concept of depth ?

We focus here on these questions, but other features could also be considered (see Serfling
(2002)), as the possible formulation of multivariate notions of nonparametric descriptive statis-
tics for location or scale, as the median, trimmed means, IQR (InterQuartile Range), etc. The
computational feasibility is also of considerable practical importance.

Serfling (2002) proposes to use a median-oriented quantile function to compare various def-
initions of quantiles. Let us first introduce it in the univariate setting and we will then explain
how to extend it to a multivariate context.
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A median-oriented quantile function is a function Q(u, α) defined by
Q(u, 0) = M, for u = ±1,

Q(−1, α) = F−1
(

1−α
2

)
,

Q(1, α) = F−1
(
1− 1−α

2

)
,

(4.1.2)

where α ∈ (0, 1) and M = F−1(1/2) is the median. This definition is motivated by the fact that
F−1

(
(1−α)/2

)
and F−1

(
1−(1−α)/2

)
correspond to the points with lower and upper tail regions

of probability (1−α)/2. The closed interval
[
F−1

(
(1− α)/2

)
, F−1

(
1− (1− α)/2

)]
has therefore

a probability α and is called median-oriented αth quantile inner region having probability α. In
the particular case α = 1/2, this interval is the interquartile region and when α→ 0, it reduces
to the median. Actually, each point x ∈ R can be characterized by a value of α, determining the
“outlyingness” of x. Therefore, these αth quantile inner regions entirely represent the quantile
information about F , for α ∈ (0, 1). This quantile information is then expressed in terms of this
median-oriented quantile function.

The median-oriented quantile function Q(·, ·) satisfies the following properties.

P1 For each α ∈ [0, 1), the set
{
Q(u, t) : 0 ≤ t ≤ α, u ∈ {−1, 1}

}
comprises a αth quantile inner

region with boundary points Q(u, α) and with Q(u, 0) ≡M .

P2 For each fixed direction u from M , |Q(u, α)−M | increases with α, 0 ≤ α < 1.

P3 Considered as sets, the αth quantile inner regions
{
Q(u, t) : 0 ≤ t ≤ α, u ∈ {−1, 1}

}
have

suitable structure and interpretations.

We notice that the name median-oriented quantile function comes from the fact that there is
a correspondence with the quantile function Q(·, F ), with the difference here that it is defined
with respect to the median, whence median-oriented.

It is then desirable to define in Rm the notion of median-oriented quantile functions Q(u, α)

having probabilistic interpretations, satisfying directional monotonicity and having suitable set-
theoretic interpretations, i.e. satisfying multivariate extensions of P1–P3 respectively. Now, M
denotes any multivariate median and u ∈ Sm−1(M), since we can see {−1, 1} as the sphere of null
dimension. Let us introduce a family A = {Aγ , 0 < γ < ∞} of regions nested around M , with
A0 = {M} and Aγ ⊂ Aγ′ for 0 < γ < γ′. For any α ∈ (0, 1), define γα = inf{γ : P (Aγ) > α}.
Then, Q(u, α) is given by the boundary point of Aγα in the direction u from M . This quantile
function is then defined in order to satisfy P1 and P2 but P3 depends crucially on the choice of
the family A.

We now consider different multivariate quantiles and try to construct such a family satisfying
P1 and P2, and then check if it satisfies P3. It helps answer Q1. We also investigate the three
other questions on affine equivariance property, asymptotic results for the empirical version, and
relation with any concept of depth.

In the sequel, Y denotes a random vector of Rm with F the corresponding probability mea-
sure. Let Y (n) = (Y 1, . . . ,Y n) be a n-tuple of m-dimensional random vectors with m < n. The
usual empirical measure is denoted F (n), corresponding to mass 1/n at each Y i. We will also
write Sm−1(r) and Bm(r) for the unit sphere and open unit ball centered at r ∈ Rm deprived of
its center respectively. We will omit to precise the center when r is the origin.
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4.1.2 Multivariate quantiles based on norm minimization

The aim of this section is to examine two possible extensions of (1.1.2) based on norm minimiza-
tion.

A first approach is proposed in Abdous and Theodorescu (1992). For 1 ≤ q ≤ ∞ and
0 < α < 1, they define the norm-like functions

‖y‖q,α = ‖(y1, . . . , yd)‖q,α =

∥∥∥∥ |y1|+ (2α− 1)y1

2
, . . . ,

|yd|+ (2α− 1)yd
2

∥∥∥∥
q

,

where ‖ · ‖q denotes the usual Lq-norm on Rm. Notice that this function is obtained by applying
the check function ρα to each component, and then taking the Lq-norm.

Definition 4.1.1. The multivariate αth quantile of Y ∈ Rm, α ∈ (0, 1), is defined as

QAT(q, α) ∈ arg min
θ∈Rm

E
[
‖Y − θ‖q,α − ‖Y ‖q,α

]
. (4.1.3)

Notice that the term ‖Y ‖q,α is only here to circumvent the need of first-order finite moment
for Y . These quantiles are not rotationally equivariant and answer no to the third question of
Section 4.1.1.

We aim now to associate to these quantiles a quantile function Q(u, α) in the sense of
Section 4.1.1. Serfling (2002) indicated that we cannot find a suitable family of nested inner
regions. This notion fails then to conform any satisfactory definition of median-oriented quantile
function and it fails to answer positively to Q1. We will then not investigate any longer this
definition of multivariate quantile.

Another approach is due to Chaudhuri (1996). Setting u = 2α− 1 allows a re-indexing of the
univariate quantiles by u ∈ (−1, 1) as in (4.1.1). The m-dimensional quantiles are then obtained
by extending the set (−1, 1) to Bm ∪ {0}.

Definition 4.1.2. The uth quantile QC(u) of Y ∈ Rm, for u ∈ Bm, is defined as

QC(u) = arg min
θ∈Rm

E
[
Φ(u,Y − θ)− Φ(u,Y )

]
, (4.1.4)

where Φ(u, t) = |t|+ < u, t >, with | · | denoting the usual Euclidean norm and < ·, · > the usual
Euclidean inner product. They are called spatial quantiles.

This Φ function thus generalizes the check function ρα(z) =
(
|z|+(2α−1)z

)
/2 (up to a factor

2). Indeed, the Euclidean norm and the Euclidean inner product are natural generalizations of
the absolute value and of the product respectively, with u = 2α− 1.

As for the Abdous and Theodorescu (1992) approach, the term Φ(u,Y ) allows not to assume
finite first-order moment. When the expectation of Y is finite, we simply look for a minimizer of
E
[
Φ(u,Y −θ)]. Unicity of this minimizer was proven under the assumption that the distribution

of Y is not supported on a straight line in Rm (see Chaudhuri (1996) for a proof).
We define in an analogous way the empirical version of these spatial quantiles.

Definition 4.1.3. The empirical uth quantile of Y (n) is defined as

Q
(n)
C (u) = arg min

θ∈Rm

n∑
i=1

Φ(u,Y i − θ). (4.1.5)
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The following assumption is necessary to obtain asymptotic results for the empirical spatial
quantiles.

Assumption (Dn). The observations Y i, i = 1, . . . , n, are i.i.d and the common law is
absolutely continuous with respect to the Lebesgue measure on Rm. The density f is bounded
on every bounded subsets of Rm.

Under Assumption (Dn), Chaudhuri (1996) proved consistency and asymptotic normality of
Q

(n)
C (u), and derived a Bahadur-type representation. These spatial quantiles then answer yes to

Q3.
These quantiles are not affine equivariant in general but are rotationally and location equiv-

ariant. It is already an important improvement in comparison with the quantiles defined by
Abdous and Theodorescu (1992). However, this can be fixed thanks to some “Transformation-
Retransformation” tool. It thus answers only partially to Q2. Let us explain briefly how works this
Transformation-Retransformation tool (TR). More details can be found in Chakraborty (2001).

Let β = {i0, . . . , im} a subset of size m + 1 of {1, . . . , n}. The m-dimensional data points
Y i0 , . . . ,Y im form a data-driven coordinate system, where Y i0 is the origin and Y i1 , . . . ,Y im the
coordinate axes. We define the transformation matrix as the m×m matrix Y (β) whose columns
are the differences Y ij − Y i0 , j = 1, . . . ,m. This transformation matrix is used to rewrite the
remaining data points in terms of the new coordinate system as follows:

Z
(β)
j :=

(
Y (β)

)−1
Y j ,

for all j ∈ {1, . . . , n} \ β. Notice that, under Assumption (Dn), the matrix Y (β) is invertible
with probability one. This is the Transformation step. Moreover, a transformation of the data
requires a transformation of the indexing vector u as

v(β) =


|u|∣∣(Y (β)
)−1

u
∣∣(Y (β)

)−1
u, u 6= 0,

0, u = 0,

Then, we write the empirical spatial quantile of order v(β) as R(n)
β (v), based on Z(β)

j , j ∈
{1, . . . , n} \ β. Finally, we come back in the original system with a Retransformation step, by
defining the empirical TR spatial quantile of order u as

Q
(n)
C;β(u) = Y (β)R

(n)
β (v).

It is proved in Chakraborty (2001) that the empirical TR spatial quantile Q(n)
C;β(u) is affine

equivariant. The choice of the index family β is of course an important issue, and Chakraborty
(2001) suggests to take β such that

(
Y (β)

)′
Σ−1Y (β) is the closest to a diagonal matrix of the

form λId, where Σ is the variance covariance matrix if the underlying distribution admits second
moments.

We now construct a quantile function as above. We start with Q(u, 0) = QC(0) ≡M , and
naturally associated nested median-oriented inner regions are

Bt = {QC(u′) : |u′| < t},
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for 0 ≤ t < 1. Let tα = inf{t : P (Bt) ≥ α}. We define a median-oriented function Q(u, α) by
associating the point of the boundary of Btα in the direction u from M . Notice that the points
of this boundary are those for which |u′| = tα. By construction, Q(u, α) satisfies P1 and P2.
However, the link between u′ (∈ Bm∪{0}) defining QC(u′) and (u, α) ∈ Sm−1× (0, 1) for which
QC(u′) = Q(u, α) is not clear and P3 is not well satisfied. The probabilistic interpretation is
then not so obvious, and the answer to Q1 is no.

In addition, these multivariate quantiles provide no connection to the concept of depth, failing
to satisfy Q4.

To sum up, this definition of multivariate quantiles constructed by generalizing the opti-
mization problem (1.1.2) is a really interesting concept but unfortunately fails to satisfy several
properties expected from a quantile.

We conclude this section with a link with quantiles as inversion of mapping. Indeed, Koltchin-
skii (1997) suggests to extend the notion of distribution function (of a probability measure) to
a multivariate setting in such a way that the corresponding inverse function is viewed as a mul-
tivariate quantile. As an example, one can prove that QC(u) is the unique solution θ of the
equation

u = −E

[
Y − θ
|Y − θ|

]
.

Consequently, QC(u) is obtained by inverting the mapping θ 7→ GF (θ) := −E [(Y − θ)/|Y − θ|]
from Rm to Rm. Of course, different choices of GF may lead to different notions of quantiles. We
do not investigate it any further but we refer the reader to Koltchinskii (1997).

4.1.3 Multivariate quantiles functions based on depth functions

Let us denote by D(y, F ) a nonnegative real-valued depth function on Rm. This depth function
provides a center-outward ordering based on F . This center is interpreted as a multivariate
median. The reader can refer to Rousseeuw and Ruts (1999) or Zuo and Serfling (2000) for
a precise definition and some examples of depth function. The definition of such depth-based
multivariate quantiles is explained in Liu et al. (1999) and Serfling (2002). Notice that these
quantiles answer then yes to Q4.

For any such depth function, we define the corresponding β-depth inner region by I(β,D, F ) =

{y : D(y, F ) ≥ β}, with β > 0. Notice that I(0, D, F ) = Rm.
For the particular case of the halfspace depth, we have

HD(y, F ) = inf{P (H) : H a closed halfspace,y ∈H},y ∈ Rm,

and the identity

I(β,HD,F ) =
⋂
{H : H a closed halfspace, P (H) > 1− β}.

Denote by βα = sup{β : P (I(β,D, F )) ≥ α} the largest boundary depth associated with inner
region of probability at least α. Since the inner regions decrease as β increases, a smallest inner
region having probability at least α exists and is C(α,D, F ) := I(βα, D, F ). We call it the αth
central region. The boundary ∂I(β,D, F ) of the β-depth inner region is called β-depth contour.
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Definition 4.1.4. The αth quantile surface, with 0 < α < 1, is defined as

Q(α,D, F ) = ∂I(βα, D, F ) = ∂C(α,D, F ), (4.1.6)

where D is any depth function based on F .

Notice that this notion of quantile can be called center-outward, since these surfaces become
larger as α increases, containing all the center.

We define analogously the empirical version of these quantile surfaces. It suffices to replace
F and D by their empirical versions F (n) and D(n). We then get directly empirical versions
of β-depth inner region, αth central region and αth depth contour, denoted I(β,D(n), F (n)),
C(α,D(n), F (n)) and ∂C(α,D(n), F (n)).

Definition 4.1.5. The empirical αth quantile surface, with 0 < α < 1, is defined as

Q(n)(α,D(n), F (n)) = ∂I(βα, D
(n), F (n)) = ∂C(α,D(n), F (n)). (4.1.7)

The βα-depth contour is then used to construct a depth-based median-oriented quantile
function. Now indexing each point of Q(α,D, F ) by α and its direction u ∈ Sm−1(M) allows to
define Q(u, α), u ∈ Sm−1(M) satisfying P1 and P2 of Section 4.1.1. Moreover, the depth at x
decreases monotonically in any direction from M . Therefore, the αth quantile inner region can
be interpreted as connected regions of higher depth, whose interior points having depth larger
than βα and boundary points having common depth βα. In other words, P3 is well satisfied and
Q1 is positively answered.

The usual results of depth function imply that the αth quantile inner regions are nested, con-
nected, compact and affine equivariant. These multivariate quantiles are then affine equivariant
and the answer to Q2 is yes.

However, characterizing the asymptotic behavior of sample versions is also of major interest
but the asymptotic distribution theory remains unexplored, excepted for halfspace depth. The
answer to Q3 is rather no.

Moreover, these multivariate quantiles are defined from depth regions and not from some
analytical characterization as in (1.1.1) or (1.1.2). Therefore, they do not inherit the analytical
and algorithmic tools of the quantile approach.

4.1.4 Multivariate quantiles as projection quantiles

Kong and Mizera (2012) introduced a new quantile function by using directional quantiles. As
we will see, they obtained some link with halfspace depth. Let Y be a random vector of Rm.
Recall that we denote by q(α,Z) the univariate quantile of order α of the random variable Z.

Definition 4.1.6. The directional quantile of Kong and Mizera of Y ∈ Rm of order α ∈ (0, 1)

and of direction u ∈ Sm−1 is

QKM(α,u, F ) = q(α,u′Y )u. (4.1.8)

The idea of this definition is to project the random vector in direction u in order to be able
to calculate univariate quantile, and to come back in the m-dimensional setting by multiplying
by the direction u. We also define quantile hyperplanes.
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Definition 4.1.7. The quantile hyperplane of order α = αu is the hyperplane πKM;α of equation
u′y = u′QKM(α,u, F ), y ∈ Rm.

They are often referred in the literature as projection quantiles, given their construction. We
can define empirical versions of these conditional quantiles.

Definition 4.1.8. The empirical directional quantile of Y (n) of Kong and Mizera of order α ∈
(0, 1) and of direction u ∈ Sm−1 is

Q
(n)
KM(α,u, F (n)) = q(n)(α;u′Y 1, . . . ,u

′Y n)u, (4.1.9)

where q(n)(α;Z1, . . . , Zn) is the empirical univariate αth quantile of Z(n) = (Z1, . . . , Zn) ∈ Rn.

The resulting contours of these multivariate quantiles do not satisfy some nice properties
expected from quantile contours. Indeed, they depend on the choice of the origin and can intersect
each other (the authors proved that they do not only under the assumption that the origin has
a depth greater than α).

The affine equivariance ofQKM(α,u, F ) is not entirely clear. Indeed, Kong and Mizera (2012)
only proved affine equivariance for the directional quantiles envelopes generated by some estima-
tor Q̂KM(α,u, F ) of QKM(α,u, F ) under the assumption that these estimators are translation
and scale equivariant for all u ∈ Sm−1. Therefore, the answer to Q2 is rather no.

Nevertheless, they provide a connection with halfspace depth via quantile envelopes.

Definition 4.1.9. The quantile envelope of order α of Y is defined as the set

RKM(α) =
⋂

u∈Sm−1

H(u, Q(α,u′Y )),

where H(u, q) = {y ∈ Rm : u′y ≥ q}.

We then have the following proposition.

Proposition 4.1.10. For all α ∈ (0, 1), RKM(α) = D(α) := {y ∈ Rm : HD(y, F ) ≥ α}.

Denote by D(n)(α) the empirical version of D(α). The previous theorem also holds for the
empirical version.

Proposition 4.1.11. Assume that the n (≥ m + 1) data points are in general position. Then,
for any l ∈ {1, . . . , n−m} such that D(n)(l/n) has nonempty interior, we have that R(n)

KM(α) =

D(n)(l/n) for all positive α ∈
[
l−1
n , ln

)
.

This proposition provides an interpretation of depth level sets. Indeed, any face of the poly-
hedral corresponding to the upper level set of depth α coincides with the quantile hyperplane
of order α = αu where the direction u is orthogonal to this face. However, quantile envelopes
are defined as an intersection on each direction of Sm−1: their construction is then not easy and
requires a discretization of the sphere in practice. The quality of the resulting approximation
deteriorates extremely fast as m increases. We refer the reader to HPŠ10 or Paindaveine and
Šiman (2011) for more details.
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Concerning asymptotic results, Kong and Mizera (2012) mentioned consistency of the empir-
ical versions of the quantile envelope but did not derive asymptotic normality or Bahadur-type
representation. The answer to Q3 is then no.

To conclude, these projection quantiles are interesting since it is a first approach to bridge
the gap between the two concepts of quantile and depth, but we have seen that they do not
satisfy several expected properties.

4.1.5 Multivariate quantile based on quantile regression

These multivariate quantiles were introduced by HPŠ10. The major interest of their definition
of quantiles is that they satisfy all properties usually expected from a quantile while providing a
link with halfspace depth.

These quantiles are directional quantiles as those of Kong and Mizera (2012), but stay in a
m-dimensional setting. Indeed, they are (m − 1)-dimensional hyperplanes. Since the median-
oriented quantile function used in previous sections was developed for multivariate quantile
defined as points once the direction from the median is fixed, it is not well adapted for such
multivariate directional quantiles defined as hyperplanes. We will then answer the questions of
Section 4.1.1 in a different way.

We will denote by α = αu a m-vector with α = |α| ∈ (0, 1) and u ∈ Sm−1. Let Γu be an
arbitrarym×(m−1) matrix of unit vectors such that (u,Γu) is an orthonormal basis of Rm. The
α-quantile of a m-variate random vector Y is defined as the regression α-quantile hyperplane
obtained when regressing Yu = u′Y on Y ⊥u = Γ′uY and a constant term, whence its name. The
vector u indicates now the vertical axis in the regression.

Definition 4.1.12. The α-quantile of Y ∈ Rm, with α = αu ∈ Bm, is any element of the
collection ΠHPS;α of hyperplanes πHPS;α := {y ∈ Rm : u′y = c′αΓ′uy + aα} with

(aα, c
′
α)′ ∈ arg min(a,c′)′∈RmΨα(a, c), (4.1.10)

where Ψα(a, c) := E[ρα(Yu − c′Y ⊥u − a)].

Notice that this definition extends the traditional univariate quantiles. Indeed, when m = 1,
hyperplanes of dimension m− 1 are then points and Bm is (−1, 0)∪ (0, 1). Therefore, πα is then
a classical quantile of order 1 − |α| (when α is pointing to the left) or |α| (when α is pointing
to the right).

Each quantile hyperplane (i.e. each element (aα, c
′
α)′ satisfying (4.1.10)) defines lower (open)

and upper (closed) quantile halfspaces as

H−α = H−α(aα, cα) := {y ∈ Rm : u′y < c′αΓ′uy + aα}, (4.1.11)

H+
α = H+

α(aα, cα) := {y ∈ Rm : u′y ≥ c′αΓ′uy + aα}, (4.1.12)

respectively.
Notice that, if u ranges over Sm−1, we need finite first-order moment assumption for Y . We

then adopt the following assumption.
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Assumption (E). The distribution of the random vector Y is absolutely continuous with
respect to the Lebesgue measure on Rm, with a density f that has connected support, and admits
finite first-order moments.

Proposition 4.1.13. Let Assumption (E) hold. Then, for any α ∈ Bm, the minimizer (aα, c
′
α)′

in (4.1.10), hence also the resulting quantile hyperplane πHPS;α, is unique.

We will then work under Assumption (E) in the sequel.
When u is fixed, the subfamily ΠHPS;u = {πHPS;α : α = αu, α ∈ (0, 1)} provides, for each

u, the usual interpretation of a collection of regression quantile hyperplanes. When α is fixed,
the subfamily ΠHPS;α = {πHPS;α : α = αu,u ∈ Sm−1} provides, for each α, a quantile contour.

These α-quantiles can be defined in an alternative but equivalent way with a constrained
optimization formulation. The two definitions coincide and also the corresponding lower and
upper quantile halfspaces, see HPŠ10 for more details.

We can define analogously empirical versions of these quantile hyperplanes. Let Y (n) :=

(Y 1, . . . ,Y n) a n-tuple (with n > m) of m-dimensional random vectors, and let Yiu := u′Y i

and Y ⊥iu := Γ′uY i.

Definition 4.1.14. The empirical α-quantile of Y (n) is any element of the collection Π
(n)
HPS;α

of hyperplanes π(n)
HPS;α := {y ∈ Rm : u′y = c

(n)′
α Γ′uy + a

(n)
α } such that

(a
(n)
α , c

(n)′
α )′ ∈ arg min(a,c′)′∈RmΨ

(n)
α (a, c), (4.1.13)

where Ψ
(n)
α (a, c) := 1

n

∑n
i=1 ρα(Yiu − c′Y ⊥iu − a).

We then directly define empirical analogsH(n)−
α andH(n)+

α of the lower and upper halfspaces
in (4.1.11) and (4.1.12). The following assumption is needed when considering empirical quantiles.

Assumption (En). The observations Y i, i = 1, . . . , n are i.i.d with a common distribution
satisfying Assumption (E).

Let us now focus on usual properties of quantiles satisfied by these multivariate quantiles.
Under Assumption (E), it is easy to check the affine equivariance property

πHPS;αMu/|Mu|(MY + r) = MπHPS;αu(Y ) + r, (4.1.14)

where M is a m ×m invertible matrix and r a m-vector in Rm. A direct consequence of this
equivariance property is that these multivariate quantiles are not localized at any point of Rm.
If the origin of Rm seems playing an important role in their definition, as center of the (d− 1)-
dimensional unit sphere, we now see that it is not the case. Therefore, it answers yes to Q2.

Under Assumption (En), HPŠ10 derived strong consistency results for sample α-quantiles
and related quantities. The asymptotic normality and Bahadur-type representation results were
also proven under a slightly stronger assumption. Then, Q3 is also positively answered.

These multivariate quantiles were defined as the solution of an optimization problem. Since
the objective function Ψα appearing in (4.1.10) is convex and continuously differentiable on Rm,
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the authors derived some subgradient conditions allowing to characterize the minimizer. Setting
to zero the partial derivative according to a gives

P
(
Y ∈H−α(aα, cα)

)
= α, (4.1.15)

which provides a natural probabilistic interpretation: the probability of the lower halfspace cor-
responding to the α-quantile, with α = αu, is equal to α = ‖α‖. This answers yes to Q1.

The last significant property of these quantiles is their connection to halfspace depth. We
define, for any α ∈ (0, 1), the α-quantile region RHPS(α) as

RHPS(α) :=
⋂

u∈Sm−1

∩{H+
αu},

where ∩{H+
αu} is the intersection of the collection {H+

αu} of all closed upper αu-quantile half-
spaces (4.1.12). For the particular case α = 0, we let RHPS(0) = Rm. The empirical version of
these regions are similarly defined as

R
(n)
HPS(α) :=

⋂
u∈Sm−1

∩{H(n)+
αu },

for any α ∈ (0, 1) and R(n)
HPS(0) := Rm.

Theorem 4.1.15. Under Assumption (E), RHPS(α) = D(α) := {y ∈ Rm : HD(y, F ) ≥ α} for
all α ∈ (0, 1).

Still denoting by D(n)(α) the empirical version of D(α), the previous theorem also holds for
the empirical version.

Theorem 4.1.16. Assume that the n (≥ m+1) data points are in general position. Then, for any
l ∈ {1, . . . , n−m} such thatD(n)(l/n) has nonempty interior, we have that R(n)

HPS(α) = D(n)(l/n)

for all positive α ∈
[
l−1
n , ln

)
.

These theorems then show that the halfspace depth regions coincide with the upper envelope
of directional quantile halfspaces. Moreover, the face of the polyhedral empirical depth contours
are parts of empirical quantile hyperplanes. Therefore, Q4 is positively answered and it provides
in addition nice geometrical characterizations.

We then showed that this last definition of multivariate quantiles is very attractive since it
enjoys all the properties we expected in Section 4.1.1.

4.1.6 Choice of a notion of multivariate quantile

The previous sections gave an overview on different existing notions of multivariate quantiles,
that we attempt to make as complete as possible. We first pointed out the properties expected
from a quantile, and investigated one by one each definition to determine which properties were
satisfied by this one. The original approach of HPŠ10 stands out by answering positively to all
questions of Section 4.1.1, and thus providing a connection with halfspace depth while satisfying
all nice properties expected as affine equivariance. Therefore, we choose to use the definition of
multivariate quantiles of HPŠ10 in the sequel.
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4.2 Multiple-output conditional quantiles

As for the single-output case, it happens regularly that there exist some variables providing
information on the variable Y one considers. Our choice of multivariate quantiles allows to
define multiple-output conditional quantiles that enjoy all nice properties of their single-output
counterparts.

4.2.1 Definition of multiple-output conditional quantiles

In the sequel, X denotes a vector of covariates of dimension d, and Y a vector of response
variables of dimension m. We thus consider the multivariate quantiles of HPŠ10 that are (m−1)-
dimensional hyperplanes indexed by α, ranging over Bm. The equivalent of the scalar order of
quantiles in dimension one is then here the directional index α that factorizes as α = αu, with
α = |α| ∈ (0, 1) and u ∈ Sm−1. We then define the conditional α-quantiles of Y given X = x

as follows.

Definition 4.2.1. For α := αu ∈ Bm, the conditional quantile of order α of Y given X = x

is any element of the collection Πα(x) of hyperplanes πα(x) := {(x,y) ∈ Rd × Rm : u′y =

(cα(x))′Γ′uy + aα(x)} such that

qα(x) :=

(
aα(x)

cα(x)

)
= arg min(a,c′)′∈RmE[ρα(Yu − c′Y ⊥

u − a)|X = x], (4.2.1)

where Yu = u′Y and Y ⊥
u = Γ′uY .

Notice that such a quantile is entirely characterized by qα(x). We adopt the following as-
sumption in the sequel.

Assumption (F) The distribution of the random vector Y given X = x is absolutely
continuous with respect to the Lebesgue measure on Rm, with a density that has connected
support, and admits finite first-order moments.

This assumption is analogous to Assumption (E) in this regression setup. Therefore, un-
der Assumption (F), the minimization problem in (4.2.1) admits a unique solution. Moreover,
the function (a, c) 7→ Ga,c(x) = E[ρα(u′Y − c′Γ′uY − a)|X = x] is convex and continuously
differentiable on Rm. Then, qα(x) =

(
aα(x), (cα(x))′

)′ satisfies the system of equations

∇(a,c′)′Ga,c(x) = 0.

Thanks to Lemma 4.4.1 given in Appendix 4.4, the conditional quantiles are then characterized
by the relations

0 = (∂aGa,c(x))(aα(x),(cα(x))′)′ = P [u′Y < aα(x) + (cα(x))′Γ′uY |X = x]− α (4.2.2)

and

0 = (∇cGa,c(x))(aα(x),(cα(x))′)′ = E
[
Γ′uY

(
α− I[u′Y <aα(x)+(cα(x))′Γ′uY ]

)∣∣X = x
]
. (4.2.3)
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As we will see in the sequel, twice differentiability of (a, c′)′ 7→ Ga,c(x), however, requires
slightly stronger assumptions. Consider the following reinforcement of Assumption (F).

Assumption (F)’ The distribution of the random vector Y given X = x is absolutely con-
tinuous with respect to the Lebesgue measure on Rm, with a density fY |X=x that has connected
support, admits finite second -order moments and, for some constants C > 0, r > m − 1 and
s > 0, satisfies

∣∣fY |X=x(y1)− fY |X=x(y2)
∣∣ ≤ C|y1 − y2|s

(
1 +

∣∣∣y1 + y2

2

∣∣∣)−(3+r+s)/2

, (4.2.4)

for all y1,y2 ∈ Rm.

More details on this Assumption (and particularly on (4.2.4)) can be found in HPŠ10. The
lower limit for r was slightly changed for calculation purposes.

4.2.2 Estimation of multiple-output conditional quantiles

As we saw in the first part, quantile regression issue has motivated the definition of numerous
estimators, as for instance nearest-neighbor, spline, kernel estimators, or of course quantization-
based estimators. However, much less results are available in the multiple-output case. The main
reason for this is that no definition of multivariate quantile is universally preferred, which does
not encourage to consider multiple-output quantile regression. Moreover, it is often challenging
to incorporate the covariate effect into the definition of multivariate quantiles.

We saw in Section 4.1 that the spatial quantiles defined in (4.1.4) are quite interesting since a
Transformation-Retransformation tool can make them affine-equivariant. For this reason, much
work has been devoted to the notion of spatial regression quantiles, as the ones of Chakraborty
(2003) for linear regression and Cheng and De Gooijer (2007) for nonparametric regression.
However, if the TR tool can be adapted in the linear regression framework, there does not
exist such a tool working in the general nonparametric regression framework, to the best of our
knowledge. Therefore, the resulting quantiles are not affine-equivariant.

Wei (2008) recently proposed a new concept of multiple-output regression contours. Even if
they satisfy some interesting probability properties, they have no link with depth contours and
they are not affine equivariant.

When defining multivariate quantiles, HPŠ10 also introduced multiple-output regression
quantiles, extending the famous single-output concept of Koenker and Bassett (1978). This first
approach for this definition of multivariate quantiles is quite simple and consists essentially in in-
troducing the covariate into the equations that characterize the regions and contours (see HPŠ10
for a precise definition). Empirical versions of these, however, generally provide poor results and
carry little information about the conditional distribution. For example, they could miss some
important features as parabolic trend or heteroscedasticity.

A natural step was then to extend the single-output estimation procedure to the concept
of multiple-output quantile regression of HPŠ10. Starting from the observation that local con-
stant and local linear methods perform well in the single-output framework, Hallin et al. (2015)
(hereafter, HPŠ15) developed local constant and local bilinear approaches in the multiple-output
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context. Their estimators are then the main existing competitors. In this part, we introduce a new
nonparametric multiple-output quantile regression method, that extends the quantization-based
estimator of the first part in a multivariate setting.

4.3 Objective and structure of the part

This second part is dedicated to the extension in a multivariate setting of the quantization-based
estimators defined in Part I. A motivation for such an extension of these estimators comes from
our simulation results of Chapter 3. We have indeed shown that our quantization-based estimator
q̄N,nα,B (x) generally outperforms its local linear and local constant competitors. It is then natural
to wonder if its dominance also appears when the dependent variable is of dimension greater
than one. This part is composed of several chapters.

Chapter 5 is the natural generalization of Chapter 2 in a multiple-output framework. In the
same spirit, we first replaceX by its quantized version in Definition 4.2.1 of multiple-output con-
ditional quantiles. The resulting approximation is then studied from a theoretical point of view in
Section 5.2 where convergence results are obtained. In a second time, we define in Section 5.3 an
estimator of multiple-output conditional quantiles by taking an empirical version of this approx-
imation. It is then proven that this estimator is consistent for this approximation. However, even
if these asymptotic results are really interesting, we again observe that the resulting conditional
quantile contours can be improved by defining a bootstrap version of our estimator. Sections 5.4
and 5.5 gather the proofs of Sections 5.2 and 5.3 respectively.

This theoretical investigation naturally requires to address the numerical behavior of our
estimator. This is the object of Chapter 6. We first extend in Section 6.2 the data-driven selection
method for the parameter N (the size of the quantization grid) of Section 3.2, required in the
construction of our estimator. This method showed its efficiency on several replications. With
this selection method, our estimation procedure is entirely functional and we are then able to
compare our performances with the ones of alternatives estimators in Section 6.3. The comparison
study focuses on resulting conditional quantiles contours and on some integrated square error.
The numerical investigation is completed in Section 6.4 with a real data application.

4.4 Proof of Section 4.2

This section aims to prove the relations (4.2.2) and (4.2.3) of Section 4.2. The following lemma
gives the gradient and the Hessian matrix of the function (a, c′)′ 7→ Ga,c(x).

Lemma 4.4.1. Let Assumption (F)’ hold. For any x ∈ SX , (a, c′)′ 7→ Ga,c(x) is twice continu-
ously differentiable with gradient vector

∇Ga,c(x) =
(∂Ga,c(x)

∂a
,
(
∇cGa,c(x)

)′)′
,

=

(
P
[
u′Y < a+ cΓ′uY |X = x

]
− α

E
[
Γ′uY

(
I[u′Y <a+cΓ′uY ] − α

)∣∣X = x
] ) ,
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and Hessian matrix

H
(
Ga,c(x)

)
=

∫
Rm−1

(
1 t′

t tt′

)
fY |X=x

(
(a+ c′t)u+ Γut

)
dt.

Proof. Let ηα(a, c) = −
(
α− I[u′Y −c′Γ′uY −a<0]

) (
1 (Γ′uY )′

)′
. For all (a, c′)′ and (a0, c

′
0)′ ∈ Rm,

we directly show that

ρα(u′Y − c′Γ′uY − a)− ρα(u′Y − c′0Γ′uY − a0)− (a− a0, c
′ − c′0)ηα(a0, c0)

= (u′Y − c′Γ′uY − a){I[u′Y −c′0Γ′uY −a0<0] − I[u′Y −c′Γ′uY −a<0]}

≥ 0. (4.4.1)

Therefore, ηα(a, c) is a subgradient for (a, c) 7→ ρα(u′Y − c′Γ′uY − a). Hence, interchanging
differentiation and expectation, which is justified in a standard way, provides

∇Ga,c(x) = ∇a,cE[ρα(u′Y − c′Γ′uY − a)|X = x] = E[ηα(a, c)|X = x],

which entails

∇Ga,c(x) =

(
P
[
u′Y < a+ cΓ′uY |X = x

]
− α

E
[
Γ′uY

(
I[u′Y <a+cΓ′uY ] − α

)∣∣X = x
] ) .

Let us now show that

|∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−H
(
Ga,c(x)

)
(∆a,∆

′
c)
′| = o

(
|(∆a,∆

′
c)
′|
)
,

for |(∆a,∆
′
c)
′| → 0. Previous calculations allow to obtain

∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−H
(
Ga,c(x)

)
(∆a,∆

′
c)
′

= E[ηα(a+ ∆a, c+ ∆c)− ηα(a, c)|X = x]−
∫
Rm−1

(
1 t′

t tt′

)
fY |X=x

(
(a+ c′t)u+ Γut

)
dt

× (∆a,∆
′
c)
′

=

∫
Rm−1

∫
R

(
I[z−(c+∆c)′t−(a+∆a)<0] − I[z−c′t−a<0]

)
(1, t′)′fY |X=x(zu+ Γut)dzdt

−
∫
Rm−1

(
1 t′

t tt′

)
fY |X=x

(
(a+ c′t)u+ Γut

)
dt(∆a,∆

′
c)
′. (4.4.2)

Since one directly gets that∫ (a+∆a)+(c+∆c)′t

a+c′t
(1, t′)′dz =

(
1 t′

t tt′

)
(∆a,∆

′
c)
′,

equation (4.4.2) becomes

∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−H
(
Ga,c(x)

)
(∆a,∆

′
c)
′

=

∫
Rm−1

∫ (a+∆a)+(c+∆c)′t

a+c′t

{
fY |X=x(zu+ Γut)− fY |X=x

(
(a+ c′t)u+ Γut

)}
(1, t′)′dzdt.
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By Assumption (F)’, one has

|fY |X=x(zu+ Γut)− fY |X=x
(
(a+ c′t)u+ Γut

)
| ≤ C |z − a− c′t|s(

1 + |12(z + a+ c′t)u+ Γut|2
)(3+r+s)/2

≤ C |∆a + ∆′ct|s

|(1, t′)′|(3+r+s)
,

for any z between a+ c′t and (a+ ∆a) + (c+ ∆c)
′t. This entails

|∇Ga+∆a,c+∆c(x)−∇Ga,c(x)−H
(
Ga,c(x)

)
(∆a,∆

′
c)
′|

≤ C
∫
Rm−1

|∆a + ∆′ct|1+s|(1, t′)′|−(2+r+s)dt

≤ C|(∆a,∆
′
c)
′|1+s

∫
Rm−1

|(1, t′)′|−(1+r)dt

= o(|(∆a,∆
′
c)
′|),

as |(∆a,∆
′
c)
′| → ∞. Therefore, for any x ∈ SX , (a, c′)′ 7→ Ga,c(x) is twice continuously differ-

entiable with Hessian matrix H
(
Ga,c(x)

)
.
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5.1 Introduction

In this chapter, we define a new estimator of multiple-output conditional quantile. As above
mentioned, this estimator is constructed using optimal quantization, in the same spirit as the
quantization-based estimator of Chapter 2. The structure of this chapter is thus analogous to
the one of Chapter 2. First, Section 5.2 explains the first step of the construction: replacing the
covariate X in Definition 4.2.1 of multiple-output conditional quantile to get an approximation
of them. The convergence of this approximation as the size N of the quantization grid increases
is also investigated. Further, an estimator is defined by taking an empirical version of this ap-
proximation in Section 5.3. Asymptotic results are derived, for N fixed and the sample size n
going to infinity. A bootstrap version of this estimator is then defined, given that the numerical
performances of the bootstrap estimator q̄N,nα,B were significantly better than the ones of q̂N,nα

in the first part. These two sections (and their proofs) constitute the first part of the working
paper Multiple-output quantile regression through optimal quantization with Davy Paindaveine
and Jérôme Saracco.

Throughout the chapter, X is a d-dimensional random vector of covariates while Y is a
m-dimensional vector of response variables, unless otherwise stated.
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5.2 Approximation of multiple-output conditional quantile

5.2 Approximation of multiple-output conditional quantile

As we now explain, we construct an approximation of multiple-output conditional quantiles
using optimal quantization. Similarly to the single-output case of Chapter 2, let p ≥ 1 such that
‖X‖p <∞ and let γN be an optimal quantization grid of size N , with N a positive integer, that
is γN ∈ (Rd)N . Denote X̃

N
:= ProjγN (X) obtained by projecting X onto this quantization grid

(see Section 1.2). Replacing X in (4.2.1) by this projection allows then to consider

q̃Nα (x) =

(
ãNα (x)

c̃Nα (x)

)
= arg min(a,c′)′∈RmE[ρα(Yu − c′Y ⊥

u − a)|X̃
N

= x̃], (5.2.1)

where x̃ denotes the projection ProjγN (x). An approximation of multiple-output conditional

quantiles of order α = αu is then any element of the collection Π̃
N

α (x) of the following hyper-
planes

π̃Nα (x) := {(x,y) ∈ Rd × Rm : u′y = (c̃Nα (x))′Γ′uy + ãNα (x)}.

Notice that such an approximation is entirely characterized by q̃Nα (x). In the sequel, we will then
investigate the quality of our approximation through q̃Nα (x). The classical convergence result of
quantization allows us to expect that q̃Nα (x)− qα(x) tends to zero. This will be the aim of this
section.

The following assumptions are needed.

Assumption (G) (i) The random vector (X,Y ) is generated through Y = M(X, ε), where
the d-dimensional covariate vector X and the m-dimensional error ε are mutually independent;
(ii) the link function M : Rd × Rm → Rm : (x, z) 7→M(x, z) is of the form M1(x) +M2(x)z,
where the functions M1 : Rd → Rm and M2 : Rd → M+

m(R) admit Lipschitz property, with
M+
m(R) denoting the set of square matrices of size m×m positive definite ; (iii) ‖X‖p <∞ and
‖ε‖p <∞; (iv) the distribution of X does not charge any hyperplane.

Notice that Assumptions (G)(iii) and (iv) are the same as Assumptions (A)(iii) and (iv),
while Assumptions (G)(i) and (ii) are the generalization of Assumptions (A)(i) and (ii) in this
multivariate setting. Let us comment Assumption (G)(ii). The Lipschitz property ofM2 requires
first to choose a matrix norm. We use here the operator norm on the space M+

m(R) defined, for
any matrix A ∈M+

m(R), by

||A|| = sup
x∈Rm,|x|=1

|Ax|.

Then, [M2]Lip is the smallest real number C for which

∀x1,x2 ∈ Rd, ||M2(x1)−M2(x2)|| ≤ C|x1 − x2|.

Let [M1]Lip denote the Lipschitz constant forM1. The Lipschitz property ofM1 andM2 directly
implies that there exists C > 0 such that the link function M(·, ε) is also Lipschitz. Indeed, we
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have

‖M(x1, ε)−M(x2, ε)‖p = ‖(M1(x1)−M1(x2)) + (M2(x1)−M2(x2))ε‖p

≤ |M1(x1)−M1(x2)|+
∥∥(M2(x1)−M2(x2)

)
ε
∥∥
p

≤ [M1]Lip|x1 − x2|+ ||M2(x1)−M2(x2)|| ‖ε‖p

≤ ([M1]Lip + [M2]Lip‖ε‖p)|x1 − x2|,

which implies that M(·, ε) is a Lipschitz function with Lipschitz constant [M ]Lip ≤ [M1]Lip +

[M2]Lip‖ε‖p.

Assumption (H) (i) The support SX of PX is compact; (ii) ε admits a continuous density
fε : Rm → R+

0 (with respect to the Lebesgue measure on Rm).

Notice that, under Assumption (G) and Assumption (H)(ii), the Hessian matrix of (a, c′)′ 7→
Ga,c(x) rewrites as

H
(
Ga,c(x)

)
=

1

det(M2(x))

∫
Rm−1

(
1 t′

t tt′

)
fε
(
(M2(x))−1

(
(a+ c′t)u+ Γut−M1(x)

))
dt.

(5.2.2)
In addition, one directly has that the restriction of this Hessian matrix to the derivatives with
respect to c

Hc
(
Ga,c(x)

)
=

1

det(M2(x))

∫
Rm−1

tt′fε
(
(M2(x))−1

(
(a+ c′t)u+ Γut−M1(x)

))
dt

is positive definite under Assumption (G) and Assumption (H)(ii).
We would like to prove theorems analogous to Theorems 2.2.1 and 2.2.2 of Chapter 2. The

following theorem focuses on fixed-x consistency (see Section 5.4 for the proof).

Theorem 5.2.1. Fix α = αu ∈ Bm. Then, under Assumptions (F)’, (G) and (H),

sup
x∈SX

|q̃Nα (x)− qα(x)| → 0,

as N →∞.

As for its single-output counterpart in Chapter 2, this last theorem does not provide any
convergence rate, since the convergence rate for X̃

N
toward X does not imply any rate for the

fixed-x convergence.
However, extending Theorem 2.2.1 in this multivariate setting appears extremely delicate.

Indeed, the core of the proof relies on the following structure: 1) obtaining a rate of con-
vergence for the difference

∥∥ sup(a,c′)′∈Rm |Ga,c(X) − G̃a,c(X̃
N

)|
∥∥
p
, hence for ‖Gqα(X)(X) −

Gq̃Nα (X)(X)‖p and 2) deriving a rate of convergence for ‖qα(X) − q̃Nα (X)‖p from the one of
‖Gqα(X)(X) − Gq̃Nα (X)(X)‖p. Going from Gqα(X)(X) to qα(X) requires actually to go from
aα(X) + cα(X)′Γ′uY to qα(x), which is not possible since the matrix (1 (Γ′uY )′)′(1 (Γ′uY )′)

showing up is not of maximal rank. Nevertheless, if obtaining such a theorem would have been
interesting for the convergence rate, the main result is Theorem 5.2.1 that provides fixed-x
convergence.
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5.3 Estimation of multiple-output conditional quantile

5.3.1 The proposed estimators and their consistency

Let (Xi,Y i), i = 1, . . . , n, be n independent copies of (X,Y ). We consider now the problem of
estimating multiple-output conditional quantiles using these independent copies. In this section,
we fix N (< n) and construct an estimator q̂N,nα (x) of the conditional quantile qα(x) from the
approximation q̃Nα (x). This construction is realized through the two following steps, in the same
spirit as the single-output counterpart.

Step 1: Selection of the optimal grid

As in Chapter 2, we only have at our disposal these n independent copies ofX whose distribution
is unknown. Therefore, the number of replications of the stochastic gradient algorithm (used to
construct approximation of optimal grids) is fixed by the sample size n and each Xi plays the
role of stimuli.

First, an initial grid has to be chosen to perform the stochastic gradient algorithm, and again
γ̂N,0 is selected by sampling randomly without replacement among the Xi’s. Hence, this initial
grid has pairwise distinct components and we start with a grid that is indeed composed of N
points.

The stochastic gradient algorithm is then performed, based on ξt = Xt, for t = 1, . . . , n.
The resulting optimal grid is denoted γ̂N,n = (x̂N,n1 , . . . , x̂N,nn ). In the sequel, we write X̂

N,n
=

Projγ̂N,n(X) the corresponding quantization ofX. To make the notation less heavy, we will only
stress the dependence in n when necessary. However, notice that we use throughout this chapter
notation coherent with the one of Chapter 2. Indeed, the tilde symbol always corresponds to
optimal grids (or projections onto an optimal grid) while the hat symbol refers to approximations
of an optimal grid obtained with the algorithm (or projections onto such a approximated optimal
grid). Therefore, there should be no ambiguity concerning which kind of grid is considered, or
which kind of optimality we consider.

Step 2: Estimation

We now project the X-part of the sample onto this optimal grid γ̂N,n. Let X̂
N

i = X̂
N,n

i =

Projγ̂N,n(Xi). We thus consider now the sample (X̂
N

i ,Y i), i = 1, . . . , n. The approximation

q̃Nα (x) = arg min(a,c′)′ E[ρα(u′Y −c′Γ′uY −a)|X̃
N

= x̃] is then estimated by taking an empirical
version, i.e.

q̂N,nα (x) =

(
âN,nα (x)

ĉN,nα (x)

)

= arg min(a,c′)′∈Rm

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a)
I
[X̂

N
i = x̂]

#
{
j ∈ {1, . . . , n} : X̂

N
j = x̂

} ,
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where x̂ = x̂N,n = Projγ̂N,n(x). Equivalently, we rather define

q̂N,nα (x) =

(
âN,nα (x)

ĉN,nα (x)

)
= arg min(a,c′)′∈Rm

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a)I
[X̂

N
i = x̂]

. (5.3.1)

An estimator of multiple-output conditional quantiles is then any element of the collection Π̂
N

α

of the following hyperplanes

π̂Nα := {(x,y) ∈ Rd × Rm : u′y = (ĉN,nα (x))′Γ′uy + âN,nα (x)}.

Notice that such an estimation is entirely characterized by q̂N,nα (x). In the sequel, we will then
investigate the quality of our estimation through q̂N,nα (x).

For N and x ∈ SX fixed, the following theorem derives the convergence in probability of
q̂N,nα (x) toward q̃Nα (x) as n → ∞. In this aim, we need to restrict to p = 2. Indeed, recall that
this setting is the only one providing convergence results for the stochastic gradient algorithm
(i.e, CLVQ) that are needed for our purposes (see Section 1.2). We also still make the following
assumption (that is actually the same as Assumption (C)).

Assumption (I) PX is absolutely continuous with respect to the Lebesgue measure on Rd.

We then have the following result (see Section 5.5 for the proof).

Theorem 5.3.1. Fix α = αu ∈ Bm, x ∈ SX and N ∈ N0. Then, under Assumptions (F), (G),
(H)(i) and (I), we have that, as n→∞,

|q̂N,nα (x)− q̃Nα (x)| → 0

in probability, provided that quantization is based on p = 2.

In the previous section, we showed that |qα(x)− q̃Nα (x)| goes to zero as N tends to infinity
almost surely, hence in probability. Theorem 5.3.1 suggests that it could be combined with
Theorem 5.2.1 to get an asymptotic result for |q̂N,nα (x) − qα(x)| in probability, as n → ∞
and with N = Nn going to infinity in an appropriate way. However, obtaining such a result
is extremely delicate for the same reason as in Chapter 2: to the best of our knowledge, all
convergence results for the CLVQ algorithm are as n→∞ with N fixed.

5.3.2 Numerical example and bootstrap modification

As for the single-output case, the stochastic gradient algorithm can provide a grid that is not
optimal in the case of small sample sizes. Moreover, by construction, the conditional quantiles
are constant on the quantization cell, inducing possible important jumps at the boundaries of the
cells. The resulting conditional quantile contours may then suffer from these facts. A solution is
again to perform bootstrap to obtain smoother quantile contours. The construction is the exact
same one as in Section 2.3.2.
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(S1) For some integer B, we first generate B samples of size n with replacement from the initial
sample X1, . . . ,Xn, that we denote (ξtb)t, t = 1, . . . , n and b = 1, . . . , B. We also generate
initial grids γ̂N,0b as above, by sampling randomly among the corresponding (ξtb)t under the
constraints that the N values are pairwise distinct. We then perform B times CLVQ with
iterations based on ξtb, t = 1, . . . , n and with initial grid γ̂N,0b . This provides B optimal
grids γ̂N,nb , b = 1, . . . , B (each of size N).

(S2) Each of these grids is now used to estimate multiple-output conditional quantiles. Working
again with the original sample (Xi,Y i), i = 1, . . . , n, we project the X-part onto the
grids γ̂N,nb , b = 1, . . . , B. Therefore, (5.3.1) provides B estimations, denoted q̂(b)

α (x) =

q̂
(b),N,n
α (x) of qα(x).

This allows to consider the bootstrap estimator

q̄N,nα (x) =
1

B

B∑
b=1

q̂
(b)
α (x), (5.3.2)

obtained by taking the mean of these B estimations. Recall that bootstrapping focuses on
the construction of the grids and that we come back to the original sample in the estimation
step.

Remember that B should be chosen large enough to clearly smooth quantile contours, but
not too large to keep the computational burden under control. In the sequel, we use B = 100

throughout. Similarly, the choice of the tuning parameter N has an important impact on the
contours. We generalized the selection method of Section 3.2 in this multivariate setting (see
Section 6.2 for a detailed description). Figure 5.1 illustrates this method. We generated n = 999

points from the model

(Y1, Y2) = (X,X2) +
(

1 +
3

2

(
sin
(π

2
X
))2)

ε, (5.3.3)

where X ∼ U [−2, 2] and ε ∼ N (0, 1)2 are independent. Figure 5.1a represents the regression
quantile contours estimated with our method for α = 0.2 et α = 0.4. More precisely, there are
the intersections of these contours with hyperplanes orthogonal to the x-axis at fixed x-values
−1.89,−1.87, . . . , 1.87, 1.89. We used 360 equispaced directions u ∈ Sm−1 to obtain results.
Figure 5.1b illustrates the corresponding theoretical contours.

5.4 Proofs of Section 5.2

The proof of Theorem 5.2.1 requires several lemmas. First, recall that Ga,c(x) = E[ρα(Yu −
c′Y ⊥

u − a)|X = x] and consider the corresponding quantized quantity G̃a,c(x̃) = E[ρα(Yu −
c′Y ⊥

u − a)|X̃
N

= x̃]. Since qα(x) = (aα(x), (cα(x))′)′ and q̃Nα (x) = (ãNα (x), (c̃Nα (x))′)′ are
defined as the vectors achieving the minimum of Ga,c(x) and G̃a,c(x̃) respectively, we naturally
start with trying to control the distance between Ga,c(x) and G̃a,c(x̃). This is the object of
Lemma 5.4.2 but its proof first requires the following lemma.

116



Chapter 5 : Multiple-output quantile regression through optimal quantization

-5 0 5

-5
0

5

Y1

Y
2

(a)

-5 0 5

-5
0

5

Y1

Y
2

(b)

Figure 5.1 – Intersections, with hyperplanes orthogonal to the x-axis at fixed x-values
−1.89,−1.87, . . . , 1.87, 1.89, of (a) the regression quantile contours estimated with q̄N,nα (x), based on B = 100

and N selected using the data-driven method of Section 6.2, and (b) their theoretical counterparts. The sample
size is n = 999, and the quantile levels considered are α=0.2 and 0.4. 360 equispaced directions u ∈ Sm−1 were
used to obtain results. See (5.3.3) for the data generating model.

Lemma 5.4.1. Fix α = αu ∈ Bm, a ∈ R and c ∈ Rm−1. Then, under Assumption (G),
Ga,c : Rd → R is Lispchitz, with Lipschitz constant equal at most to [Ga,c]Lip = max(α, 1 −
α)(1 + |c|)[M ]Lip.

Proof of Lemma 5.4.1. Notice that ρα is a Lipschitz function with Lipschitz constant [ρα]Lip. For
x1,x2 ∈ Rd, we have

|Ga,c(x1)−Ga,c(x2)|

=
∣∣E[ρα(Yu − c′Y ⊥

u − a)|X = x1]− E[ρα(Yu − c′Y ⊥
u − a)|X = x2]

∣∣
=
∣∣E[ρα(u′M(X, ε)− c′Γ′uM(X, ε)− a)|X = x1]− E[ρα(u′M(X, ε)− c′Γ′uM(X, ε)

− a)|X = x2]
∣∣

≤ [ρα]Lip

∣∣E[(u′ − c′Γ′u)(M(x1, ε)−M(x2, ε)]
∣∣,

using independence of X and ε. Applying Jensen inequality provides

|Ga,c(x1)−Ga,c(x2)| ≤ [ρα]Lip|u′ − c′Γ′u|
∣∣E[M(x1, ε)−M(x2, ε)]

∣∣
≤ [ρα]Lip|u′ − c′Γ′u|[M ]Lip|x1 − x2|

≤ [ρα]Lip(1 + |c|)[M ]Lip|x1 − x2|,

where the second inequality follows from the discussion below Assumption (G).
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We still need the following lemma to prove Theorem 5.2.1.

Lemma 5.4.2. Fix α = αu ∈ Bm and x ∈ SX . For N ∈ N0, let x̃ = x̃N = ProjγN (x)

and Cx = CN
x = {z ∈ SX : ProjγN (z) = x̃}. Let K(⊂ Rm−1) be compact. Then, under

Assumptions (F), (G) and (H),
(i) supx∈SX supa∈R,c∈K |G̃a,c(x̃)−Ga,c(x)| → 0 as N →∞;
(ii) supx∈SX |min(a,c′)′∈Rm G̃a,c(x̃)−min(a,c′)′∈Rm Ga,c(x)| → 0 as N →∞.

Proof of Lemma 5.4.2. (i) Fix a ∈ R and c ∈K. Since [X̃
N

= x̃] is equivalent to [X ∈ Cx], one
has

|E[ρα(Yu − c′Y ⊥
u − a)|X̃

N
= x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|

≤ sup
z∈Cx

|E[ρα(Yu − c′Y ⊥
u − a)|X = z]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|.

Hence, adding and subtracting E[ρα(Yu − c′Y ⊥
u − a)|X = x̃] to the difference between G̃a,c(x̃)

and Ga,c(x) provide

|G̃a,c(x̃)−Ga,c(x)|

≤ |E[ρα(Yu − c′Y ⊥
u − a)|X̃

N
= x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|

+ |E[ρα(Yu − c′Y ⊥
u − a)|X = x̃]− E[ρα(Yu − c′Y ⊥

u − a)|X = x]|

≤ 2 sup
z∈Cx

|E[ρα(Yu − c′Y ⊥
u − a)|X = z]− E[ρα(Yu − c′Y ⊥

u − a)|X = x̃]|

≤ 2 sup
z∈Cx

∣∣E[ρα((u′ − c′Γ′u)M(z, ε)− a
)]
− E

[
ρα
(
(u′ − c′Γ′u)M(x̃, ε)− a

)]∣∣,
using independence of X and ε. Lipschitz property of ρα and M , and Jensen inequality entail

|G̃a,c(x̃)−Ga,c(x)| ≤ 2[ρα]Lip|u′ − c′Γ′u|[M ]Lip sup
z∈Cx

|z − x̃|,

hence,
sup
x∈SX

sup
a∈R,c∈K

|G̃a,c(x̃)−Ga,c(x)| ≤ 2[ρα]LipD [M ]Lip sup
x∈SX

sup
z∈Cx

|z − x̃|,

whereD = supc∈K(1+|c|) <∞. Remember that supz∈Cx |z−x̃| corresponds to the radiusR(Cx)

of Cx, defined by the largest distance between any point of the cell Cx and the corresponding
center x̃. We proved in Lemma 2.4.2 that supx∈SX R(Cx) → 0 as N → ∞. The result then
follows.

(ii) For simplicity of notations, we write ã = ãNα (x) and c̃ = c̃Nα (x). First, notice that qα(x)

and q̃Nα (x) are the quantiles of Y given X = x and X̃
N

= x̃ respectively: they are then bounded
for any x ∈ SX . We aim to prove that, for N0 sufficiently large, there existsK = KN0 a compact
set such that, for all N ≥ N0 and for all x ∈ SX , cα(x) and c̃Nα (x) belong to K.

Let us start with x fixed in SX . We know that (a, c′)′ 7→ Ga,c(x) and (a, c′)′ 7→ G̃a,c(x̃) are
strictly convex functions and we showed in Point (i) that |G̃a,c(x̃) − Ga,c(x)| → 0 as N → ∞
uniformly in x ∈ SX , a ∈ R and c belonging to any compact set. We consider now a compact
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set containing cα(x). Therefore, it implies that the minimizer of G̃a,c(x̃) must be in the same
compact set for N sufficiently large, that we denote K(x).

We now want to prove that we can find a compact set working for any x ∈ SX . The set
∪x∈SXK(x) is a natural candidate and we have to ensure that it is bounded. Since cα(x) is
bounded for all x, a sufficient condition in the case m = 2 is that

inf
x∈SX

∂2Ga,c(x)

∂c2

∣∣∣
a=aα(x),c=cα(x)

> 0.

Remember thatHc(Ga,c(x)) is a positive definite matrix. Therefore, in the casem = 2, it implies
that ∂2Ga,c(x)

∂c2

∣∣∣
a=aα(x),c=cα(x)

> 0. Since SX is compact, the sufficient condition above is met.

This argument can be generalized in higher dimensional setting where it becomes

inf
x∈SX

v′Hc
(
Ga,c(x)

)∣∣∣
a=aα(x),c=cα(x)

v > 0 ∀v ∈ Rm−1, |v| > 0.

Since Hc
(
Ga,c(x)

)
is positive definite for all a ∈ R and c ∈ Rm−1, and since SX is compact,

this condition is met.
Therefore, there exists a compact set K such that, for all N ≥ N0 and for all x ∈ SX , cα(x)

and c̃Nα (x) belong to K. We denote this compact Kα in the sequel.
Then, with I+ = I

[min(a,c′)′∈Rm G̃a,c(x̃)≥min(a,c′)′∈Rm Ga,c(x)]
, we have∣∣∣ min

(a,c′)′∈Rm
G̃a,c(x̃)− min

(a,c′)′∈Rm
Ga,c(x)

∣∣∣I+ = (G̃ã,c̃(x̃)−Gaα(x),cα(x)(x))I+

≤
(
G̃aα(x),cα(x)(x̃)−Gaα(x),cα(x)(x)

)
I+ ≤ sup

a∈R,c∈Kα

|G̃a,c(x̃)−Ga,c(x)|I+. (5.4.1)

Now, with I− = I
[min(a,c′)′∈Rm G̃a,c(x̃)<min(a,c′)′∈Rm Ga,c(x)]

, we have that,∣∣∣ min
(a,c′)′∈Rm

G̃a,c(x̃)− min
(a,c′)′∈Rm

Ga,c(x)
∣∣∣I− =

(
Gaα(x),cα(x)(x)− G̃ã,c̃(x̃)

)
I−

≤
(
Gã,c̃(x)− G̃ã,c̃(x̃)

)
I− ≤ sup

a∈R,c∈Kα

|G̃a,c(x̃)−Ga,c(x)|I−, (5.4.2)

so that ∣∣∣ min
(a,c′)′∈Rm

G̃a,c(x̃)− min
(a,c′)′∈Rm

Ga,c(x)
∣∣∣ ≤ sup

a∈R,c∈Kα

|G̃a,c(x̃)−Ga,c(x)|.

The result then directly follows from Point (i).

We can now prove Theorem 5.2.1.

Proof of Theorem 5.2.1. First note that, for any x ∈ SX and for N ≥ N0,

|Gã,c̃(x)−Gaα(x),cα(x)(x)|

≤ |Gã,c̃(x)− G̃ã,c̃(x̃)|+ |G̃ã,c̃(x̃)−Gaα(x),cα(x)(x)|

≤ sup
a∈R,c∈Kα

|Ga,c(x)− G̃a,c(x̃)|+ |min
a,c

G̃a,c(x̃)−min
a,c

Ga,c(x)|

≤ sup
x∈SX

sup
a∈R,c∈Kα

|Ga,c(x)− G̃a,c(x̃)|+ sup
x∈SX

|min
a,c

G̃a,c(x̃)−min
a,c

Ga,c(x)|
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Therefore, Lemma 5.4.2(i) and (ii) implies that

sup
x∈SX

|Gã,c̃(x)−Gaα(x),cα(x)(x)| → 0, (5.4.3)

as N →∞.

Now, let N1 be such that, for any N ≥ max(N0, N1), we have

|GãNα (x),c̃Nα (x)(x)−Gaα(x),cα(x)(x)| ≤ 1,

for all x ∈ SX . We will show later that it entails that there exists M such that

|q̃Nα (x)− qα(x)| ≤M, (5.4.4)

for all x ∈ SX and N ≥ max(N0, N1).

Performing a second-order expansion about (a, c′)′ = (qα(x))′ provides

GãNα (x),c̃Nα (x)(x)−Gaα(x),cα(x)(x) =
1

2

(
q̃Nα (x)− qα(x)

)′
H(Ga,c(x))

∣∣∣
a=a∗,c=c∗

(
q̃Nα (x)− qα(x)

)
,

where qN∗ (x) = (a∗, c
′
∗)
′ = (a∗(x), c′∗(x))′ is such that qN∗ (x) = θqα(x) + (1 − θ)q̃Nα (x), with

θ ∈ (0, 1). Since (a, c) 7→ Ga,c(x) is convex, this Hessian matrix, denoted H in the sequel, is
positive definite and invertible. Let λ1, . . . , λm be the eigenvalues of H, sorted in descending
order, and let O be an orthogonal matrix such that H can be decomposed as H = O′ΛO, with
Λ the diagonal matrix of eigenvalues. We then have

GãNα (x),c̃Nα (x)(x)−Gaα(x),cα(x)(x) =
1

2

(
q̃Nα (x)− qα(x)

)′
H
(
q̃Nα (x)− qα(x)

)
=

1

2

m∑
j=1

λj

((
O′
(
q̃Nα (x)− qα(x)

))
j

)2
≥ 1

2
λm

m∑
i=1

((
O′
(
q̃Nα (x)− qα(x)

))
j

)2

=
1

2
λm
∣∣O′(q̃Nα (x)− qα(x)

)∣∣2 =
1

2
λm
∣∣q̃Nα (x)− qα(x)

∣∣2,
hence,

sup
x∈SX

∣∣q̃Nα (x)− qα(x)
∣∣2 ≤ 2

infx∈SX λm
sup
x∈SX

|GãNα (x),c̃Nα (x)(x)−Gaα(x),cα(x)(x)|. (5.4.5)

We then have to ensure that infx∈SX λm > 0. Since λm = λm(x) has strictly positive values
and the function that associates to a matrix its eigenvalues is continuous, it suffices to show
that x 7→ H is continuous. It is enough to prove that each element of H is continuous in x.
Since M1(x) and M2(x) are Lipschitz functions, and since the density fε(·) is also continuous
by Assumption (H), the integrands of each element of H are continuous in x and it remains
to ensure that the integrals with respect to t are still continuous in x. This is achieved if the
integrand is dominated by some integrable function that only depends on t (see Briane and
Pagès (2012, Theorem 8.5)). Let us first consider the integrand of the (1,1)-entry of H, denoted
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f1,1(x, t). We have

f1,1(x, t) = fY |X=x
(
(a∗ + c′∗t)u+ Γut

)
=

1

det(M2(x))
fε
(
(M2(x))−1((a∗ + c′∗t)u+ Γut−M1(x))

)
=

1

det(M2(x))

(
fε
(
(M2(x))−1((a∗ + c′∗t)u+ Γut−M1(x))

)
− fε((1, t′)′)

)
+

1

det(M2(x))
fε((1, t′)′).

Since fε(·) is a density, one directly has that fε((1, t′)′) is an integrable function and it remains
to deal with the first part of this last equation that rewrites as

1

det(M2(x))

(
fε
(
(M2(x))−1((a∗ + c′∗t)u+ Γut−M1(x))

)
− fε((1, t′)′)

)
= fY |X=x

(
(a∗ + c′∗t)u+ Γut

)
− fY |X=x

(
(M2(x))−1(1, t′)′ +M1(x)

)
.

Using Assumption (F)’, the compactness of SX and the Lipschitz property ofM1(x) andM2(x)

entails that there exist some constants C > 0, r > m− 1 and s > 0 (independent of x) such that∣∣fY |X=x
(
(a∗ + c′∗t)u+ Γut

)
− fY |X=x

(
(M2(x))−1(1, t′)′ +M1(x)

)∣∣
≤ C |(a∗ + c′∗t)u+ Γut− (M2(x))−1(1, t′)′ −M1(x)|s(

1 +
∣∣∣ (a∗+c′∗t)u+Γut+(M2(x))−1(1,t′)′+M1(x)

2

∣∣∣2)(3+r+s)/2

≤ C |At+ b|s(
1 + |Dt+ e|2

)(3+r+s)/2
=: g(t).

The integrability of this function g(t) requires that 3 + r + s − s > m, i.e. r > m − 3, which
results from Assumption (F)’. Therefore, the first entry of x 7→H is continuous.

The other entries of this Hessian matrix can be treated in the exact same way to obtain a
domination. The integrability condition however slightly changes, since the t or tt′ factor increases
the power of the numerator. We obtain respectively that r should be greater than m−2 or m−1,
which is ensured by Assumption (F)’. Thus, x 7→H is continuous, hence infx∈SX λm > 0. Using
this and (5.4.3), we conclude from (5.4.5) that

sup
x∈SX

∣∣q̃Nα (x)− qα(x)
∣∣2 → 0,

as N →∞, which has to be proved.
It remains to show the claim in (5.4.4). First notice that |qα(x)−q̃Nα (x)| ≤ |aα(x)−ãNα (x)|+

|cα(x)− c̃Nα (x)| and we proved in Lemma 5.4.2(ii) that there exists some compact set Kα that
contains cα(x) and c̃Nα (x) for N ≥ N0 and for all x ∈ SX . Therefore, for N ≥ N0, there exists
M1 > 0 such that |cα(x)− c̃Nα (x)| ≤M1 for all x ∈ SX .

The same argument can be used analogously to deal with |aα(x)− ãNα (x)|. Indeed, using the
strict convexity of Ga,c(x) and G̃a,c(x̃) and Lemma 5.4.2(i) entails, as in Lemma 5.4.2(ii), that
there exists for all x ∈ SX , a compact set Jα(x) containing aα(x) and ãNα (x) for N sufficiently

121



5.5 Proofs of Section 5.3

large. We now want to prove that Jα = ∪x∈SXJα(x) is bounded. Given that a ∈ R, a sufficient
condition is that

inf
x∈SX

∂2Ga,c(x)

∂a2

∣∣∣
a=aα(x),c=cα(x)

> 0,

which is direct from Lemma 4.4.1 since SX is compact and fε(·) > 0. Consequently, for all
N ≥ N1, the compact set Jα contains aα(x) and ãNα (x) for all x ∈ SX , which implies that
|aα(x)− ãNα (x)| ≤M2 for some M2 > 0 and for all x ∈ SX , hence (5.4.4).

5.5 Proofs of Section 5.3

The proof of Theorem 5.3.1 requires two lemmas. The first one is actually Lemma 2.5.1. In the
sequel, we write γN = (x̃N1 , . . . , x̃

N
N ).

Lemma 5.5.1. Let Assumption (I) hold. Fix N ∈ N0 and x ∈ SX . We write x̃N = x̃ =

ProjγN (x) and x̂N,n = x̂ = Projγ̂N,n(x). Then, with X̂
N,n

i = X̂
N

i = Projγ̂N,n(Xi), i = 1, . . . , n,
we have

(i) 1
n

∑n
i=1 I[X̂N

i =x̂N ]

a.s.−−−→
n→∞

P [X̃
N

= x̃];

(ii) after possibly reordering the x̃Ni ’s, x̂
N,n
i

a.s.−−−→
n→∞

x̃Ni , i = 1, . . . , N (hence, γ̂N,n a.s.−−−→
n→∞

γN ).

Lemma 5.5.2. Fix α = αu ∈ Bm, x ∈ SX and N ∈ N0. Let K (⊂ Rm) be compact and define

ĜN,na,c (x̂) = Ĝa,c(x̂) :=

1
n

∑n
i=1 ρα(u′Y i − c′Γ′uY i − a) I

[X̂
N
i =x̂]

1
n

∑n
i=1 I

[X̂
N
i =x̂]

.

Then, under Assumptions (F), (G) and (H),

(i) sup(a,c′)′∈K |Ĝa,c(x̂)− G̃a,c(x̃)| = oP(1) as n→∞;

(ii) |min(a,c′)′∈Rm Ĝa,c(x̂)−mina∈R G̃a,c(x̃)| = oP(1) as n→∞;

(iii) |G̃ãNα (x),c̃Nα (x)(x̃)− G̃
âN,nα (x),ĉN,nα (x)

(x̃)| = oP(1) as n→∞.

Proof. (i) Notice first that

G̃a,c(x̃) = E[ρα(u′Y − c′Γ′uY − a)|X̃
N

= x̃] =
E[ρα(u′Y − c′Γ′uY − a)I

[X̃
N

=x̃]
]

P [X̃
N

= x̃]

by definition of the conditional expectation. Therefore, using Lemma 5.5.1(i), it is sufficient to
show that

sup
(a,c′)′∈K

∣∣∣ 1
n

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a) I
[X̂

N
i =x̂]

− E
[
ρα(u′Y − c′Γ′uY − a)I

[X̃
N

=x̃]

]∣∣∣ = oP(1),

as n→∞. As for the single-output case, it is natural to decompose it as

sup
(a,c′)′∈K

∣∣∣ 1
n

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a) I
[X̂

N
i =x̂]

− E
[
ρα(u′Y − c′Γ′uY − a)I

[X̃
N

=x̃]

]∣∣∣
≤ sup

(a,c′)′∈K
|Tac1|+ sup

(a,c′)′∈K
|Tac2|,
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with

Tac1 =
∣∣∣ 1
n

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a)
(
I
[X̂

N
i =x̂]

− I
[X̃

N
i =x̃]

)∣∣∣,
and

Tac2 =
∣∣∣ 1
n

n∑
i=1

ρα(u′Y i − c′Γ′uY i − a)I
[X̃

N
i =x̃]

− E
[
ρα(u′Y − c′Γ′uY − a)I

[X̃
N

=x̃]

]∣∣∣,
with X̃

N

i = ProjγN (Xi), i = 1, . . . , n.
For all (a, c′)′ ∈K, one has

ρα(u′Y − c′Γ′uY − a) ≤ max(α, 1− α)|u′Y − c′Γ′uY − a|

≤ max(α, 1− α)
(
|u′M1(X)|+ ||u′M2(X)|| |ε|+ |Γ′uM1(X)| |c|+ ||Γ′uM2(X)|| |c| |ε|+ |a|

)
.

Since u (and then Γu) is fixed, and using Assumption (G) setting thatM1(X) andM2(X) are
continuous function defined over the compact set SX , there exist positive constants C1 and C2

such that

ρα(u′Y − c′Γ′uY − a) ≤ C1 + C2|ε|

for all (a, c′) ∈K, then is in L1 since ε is assumed to be in Lp, p = 2. The uniform law of large
numbers (see, e.g., Theorem 16(a) in Ferguson (1996)) then implies that sup(a,c′)′∈K |Tac2| =

oP(1) as n→∞.
It remains to treat Tac1. Denote by `n = {i = 1, . . . , n : I

[X̂
N
i =x̂]

6= I
[X̃

N
i =x̃]

} the set collecting
the indices of observations that are projected on the same point as x for γN but not for γ̂N,n,
and inversely. Then, for any (a, c′)′ ∈K,

|Tac1| ≤
1

n

∑
i∈`n

|ρα(u′Y i − c′Γ′uY i − a)|

≤ max(α, 1− α)

n

∑
i∈`n

(
|u′M1(Xi)|+ ||u′M2(Xi)|| |εi|+ |Γ′uM1(Xi)| |c|+ ||Γ′uM2(Xi)|| |c| |εi|

+ |a|
)

≤ #`n
n
× 1

#`n

∑
i∈`n

(C1 + C2|εi|) =: S1 × S2,

using similar argument as for Tac2. Lemma 5.5.1(ii) implies that S1 = #`n/n = oP(1) as n→∞.
Concerning S2, notice that `n is measurable with respect to the Xi’s and then independent of εi
for i = 1, . . . , n. This entails that E[S2] = O(1) as n→∞ and then S2 is bounded in probability.
Therefore, sup(a,c′)′∈K |Tac1| = oP(1), the expected result.

(ii) Fix δ > 0 and η > 0. For simplicity of notations, we write ã = ãNα (x), c̃ = c̃Nα (x),
â = âN,nα (x) and ĉ = ĉN,nα (x). We first choose N1 and M large enough to have |q̃Nα (x)| ≤ M

and P [|q̂N,nα (x)| > M ] < η/2 for any N ≥ N1. Indeed, q̂ = q̂N,nα (x) =
(
â, ĉ′

)′ is the sample
quantile of a number of Y i’s that increases to infinity so that, with arbitrary large probability
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for n large, |q̂| cannot exceed 2 supx∈SX |qα(x)|. Define KM := {z ∈ Rm : |z| ≤ M}. Then,
with I+ = I

[min(a,c′)′∈Rm Ĝa,c(x̂)≥min(a,c′)′∈Rm G̃a,c(x̃)]
, we have∣∣∣ min

(a,c′)′∈Rm
Ĝa,c(x̂)− min

(a,c′)′∈Rm
G̃a,c(x̃)

∣∣∣I+ = (Ĝâ,ĉ(x̂)− G̃ã,c̃(x̃))I+

≤
(
Ĝã,c̃(x̂)− G̃ã,c̃(x̃)

)
I+ ≤ sup

(a,c′)′∈KM

|Ĝa,c(x̂)− G̃a,c(x̃)|I+. (5.5.1)

Now, with I− = I
[min(a,c′)′∈Rm Ĝa,c(x̂)<min(a,c′)′∈Rm G̃a,c(x̃)]

, we have that, under |q̂| ≤M ,∣∣∣ min
(a,c′)′∈Rm

Ĝa,c(x̂)− min
(a,c′)′∈Rm

G̃a,c(x̃)
∣∣∣I− =

(
G̃ã,c̃(x̃)− Ĝâ,ĉ(x̂)

)
I−

≤
(
G̃â,ĉ(x̃)− Ĝâ,ĉ(x̂)

)
I− ≤ sup

(a,c′)′∈KM

|Ĝa,c(x̂)− G̃a,c(x̃)|I−. (5.5.2)

By combining (5.5.1) and (5.5.2), we obtain that, under |q̂| ≤M ,∣∣∣ min
(a,c′)′∈Rm

Ĝa,c(x̂)− min
(a,c′)′∈Rm

G̃a,c(x̃)
∣∣∣ ≤ sup

(a,c′)′∈KM

|Ĝa,c(x̂)− G̃a,c(x̃)|.

Therefore, for any N ≥ N1, we get

P

[∣∣∣ min
(a,c′)′∈Rm

Ĝa,c(x̂)− min
(a,c′)′∈Rm

G̃a,c(x̃)
∣∣∣ > δ

]

= P

[∣∣∣min
a,c

Ĝa,c(x̂)−min
a,c

G̃a,c(x̃)
∣∣∣ > δ, |q̂| ≤M

]
+ P

[∣∣∣min
a,c

Ĝa,c(x̂)−min
a,c

G̃a,c(x̃)
∣∣∣ > δ, |q̂| > M

]
≤ P

[
sup

(a,c′)′∈KM

|Ĝa,c(x̂)− G̃a,c(x̃)| > δ
]

+
η

2
.

Point (i) of the lemma implies that the first term is smaller than η/2 for any N ≥ N2. Conse-
quently, for any N ≥ N0 = max(N1, N2), we have

P

[∣∣∣ min
(a,c′)′∈Rm

Ĝa,c(x̂)− min
(a,c′)′∈Rm

G̃a,c(x̃)
∣∣∣ > δ

]
< η.

(iii) This proof proceeds in the same way as (ii). We start with picking N1 and M large
enough so that P [|q̂| > M ] < η/2 for any N ≥ N1, with η fixed. This yields

P
[
|G̃â,ĉ(x̃)− G̃ã,c̃(x̃)| > δ

]
≤ P

[
|G̃â,ĉ(x̃)− G̃ã,c̃(x̃)| > δ, |q̂| ≤M

]
+
η

2
. (5.5.3)

Using now triangular inequality entails

P
[
|G̃â,ĉ(x̃)− G̃ã,c̃(x̃)| > δ, |q̂| ≤M

]
≤ P

[
|G̃â,ĉ(x̃)− Ĝâ,ĉ(x̂)| > δ/2, |q̂| ≤M

]
+ P

[
|Ĝâ,ĉ(x̂)− G̃ã,c̃(x̃)| > δ/2, |q̂| ≤M

]
≤ P

[
sup

(a,c′)′∈KM

|G̃a,c(x̃)− Ĝa,c(x̂)| > δ/2
]

+ P
[
|min
a,c

Ĝa,c(x̂)−min
a,c

G̃a,c(x̃)| > δ/2
]
.

Points (i) and (ii) of the lemma imply that both probabilities can be made arbitrarily small for
N large enough. Combining this with (5.5.3) yields

|G̃
âN,nα (x),ĉN,nα (x)

(x)− G̃ãNα (x),c̃Nα (x)(x)| → 0,

as N →∞.
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Thanks to these lemmas, the proof of Theorem 5.3.1 is now direct and analogous to the
single-output counterpart.

Proof of Theorem 5.3.1. The strict convexity of the loss function ρα(·) entails the strict convexity
of G̃a,c(x̃) in (a, c′)′. Then, its minimum in (a, c′)′ (for any fixed x) is unique. Therefore, the
convergence in probability of G̃â,ĉ(x̃) toward G̃ã,c̃(x̃) implies the convergence in probability of
the corresponding arguments.

5.6 Final comments

As Chapter 2 for the single-output framework, this chapter mainly focused on the theoretical
aspects of multiple-output conditional quantile estimation based on optimal quantization. We
first replaced X by its quantized version in the Definition 4.2.1 of multiple-output conditional
quantile (in the sense of HPŠ10) and we evaluated how well this quantity approximates the
quantiles. Theorem 5.2.1 states the fixed-x convergence of q̃Nα (x). However, no convergence rate
(and global-X result) could have been derived. In a second step, we introduced a new estimator
q̂N,nα (x) of multiple-output conditional quantile from this approximation and we showed the
convergence in probability of this estimator q̂N,nα (x) toward the approximation q̃Nα (x). These
results were obtained for any dimension d of the covariate X and any dimension m (≥ 2) of the
response vector Y . The required assumptions were quite mild and generalized the ones necessary
in the single-output part. Again, the convergence result for the estimator is only valid if the
quantization is based on p = 2.

The following step consists in investigating the numerical performances of this new estimator
(and particularly its bootstrap version q̄N,nα (x)). This is the goal of the next chapter where our
new method will be widely applied on several samples and for different sample sizes. We will first
extend the data-driven selection method for N of Section 3.2 in this multiple-output setting. We
will then compare our estimator with the main existing competitors, i.e. the local constant and
local bilinear estimators of HPŠ15. This comparison will be based both on graphical inspection
of estimated quantile contours (as the ones of Figure 5.3.3) and on empirical integrated square
errors.
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Numerical study of the estimator
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6.1 Introduction

In Chapter 5, we introduced a new estimator of multiple-output conditional quantile based on
optimal quantization, and we investigated it from a theoretical point of view. The aim of this
chapter is to complete this investigation with a numerical angle.

We mentioned that the choice of the tuning parameter N is crucial. Since the data-driven
method developed in Section 3.2 was really satisfactory in the single-output framework, Sec-
tion 6.2 aims to extend it in this context.

With this efficient selection method of the tuning parameter, our estimating procedure is
entirely functional. We then compare it with alternative estimators of multiple-output conditional
quantiles in Section 6.3. We first define precisely the competitors considered in Section 6.3.1. We
then compare them with our method both from a graphical point of view (Section 6.3.2) and by
comparing the empirical integrated square errors (Section 6.3.3).

Finally, we illustrate our estimator on a real data example in Section 6.4 and we conclude
the chapter with some final comments. This chapter constitutes the second part of the working
paper Multiple-output quantile regression through optimal quantization with Davy Paindaveine
and Jérôme Saracco.
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6.2 Data-driven selection method of the tuning parameter N

6.2 Data-driven selection method of the tuning parameter N

This section aims to extend the N -selection criterion of Section 3.2 in this multiple-output
context. This criterion was based on the minimization of an empirical integrated square error
(ISE) quantity that is essentially convex in N , which allows to identify an optimal value Nopt of
N . Since this empirical ISE provided very satisfying results, we expect that it will be similar here
and we directly generalize the data-driven selection method (without comparing it with some
infeasible criterion as in Section 3.2.1).

A major difference between the single and the multiple-output cases lies in the order of the
quantile. We now consider α = αu, with α ∈ (0, 1) and u ∈ Sm−1. We are actually interested in
estimating qα(x) for many u ranging in Sm−1 to obtain regression quantile contours (see Fig-
ure 5.1). Therefore, the criterion developed below contains an additional mean over the different
directions u considered.

Let x1, . . . ,xJ be a finite set of J points of interest in SX and U containing 40 equispaced
directions u ∈ Sm−1. The procedure works again in two steps.

Generating B̃ grids

For some integer B̃, we first generate B̃ samples of size n with replacement from the initial sample
X1, . . . ,Xn, denoted (ξt

B+b̃
)t, for b̃ = 1, . . . , B̃. We also generate initial grids γ̂N,0

B+b̃
, b̃ = 1, . . . , B̃,

as before, by sampling randomly among the corresponding (ξt
B+b̃

)t under the constraint that the
N values are pairwise distinct. We then perform B̃ times CLVQ with iterations based on ξt

B+b̃
,

t = 1, . . . , n, and with initial grid γ̂N,0
B+b̃

. This provides B̃ optimal grids γ̂N,n
B+b̃

, b̃ = 1, . . . , B̃.

Bootstrap based selection method for N

Each of these grids is now used to estimate multiple-output conditional quantiles. Working again
with the original sample (Xi,Y i), i = 1, . . . , n, we project the X-part onto the grids γ̂N,n

B+b̃
,

b̃ = 1, . . . , B̃. Therefore, for all j = 1, . . . , J , (5.3.1) provides B̃ estimations, denoted q̂(B+b̃)
αu (xj) =

q̂
(B+b̃),N,n
αu (xj). It allows to consider the square difference between q̄N,nαu (xj) and q̂(B+b̃)

αu (xj),
b̃ = 1, . . . , B̃. We then take the mean of these B̃ differences and we define

ÎSE
¯

α,B,B̃,J,U (N) =
1

J

J∑
j=1

(
1

|U|
∑
u∈U

(
1

B̃

B̃∑
b̃=1

∣∣q̄N,nαu (xj)− q̂(B+b̃)
αu (xj)

∣∣2)).
As in its single-output counterpart, we do not stress in the sequel the dependence on J in these
ISEs, nor the dependence on B̃ and on U , that we choose equal to 30 and 40 equispaced directions
respectively throughout.

Evaluating ÎSE
¯

α,B(N) thus requires generating B+ B̃ bootstrap samples of size n: B for the

construction of q̄N,nαu (xj), and B̃ to obtain q̂(B+b̃)
αu (xj), b̃ = 1, . . . , B̃. These sample ISEs are to

be minimized in N . Since not all values of N can be considered in practice, we rather consider

N̂¯
α,B;opt = arg min

N∈N
ÎSE

¯

α,B(N), (6.2.1)
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Figure 6.1 – Plot of the mappings N 7→ ÎSE
¯

α,B(N) with B = 50, B̃ = 30 and |U| = 40, averaged over 100
mutually independent replications of Model (M1) with sample size n = 999.

where the cardinality of N (⊂ N0) is finite (and may be chosen as a function of n).
To illustrate these definitions, we simulated random samples of size n = 999 according to the

model

(M1) (Y1, Y2) = (X,X2) +
(

1 + 3
2

(
sin
(
π
2X
))2)

ε,

where X ∼ U [−2, 2] and ε ∼ N (0, 1)2 are independent. We evaluated the ISEs above for
x = −1.89,−1.83,−1.77, . . . , 1.89. Figure 6.1 plots the resulting graphs of N 7→ ÎSE

¯

α,B(N),
with B = 50 (more precisely, the average of the corresponding plots, over 100 mutually indepen-
dent replications, are plotted there). It shows that ISE curves are indeed essentially convex in N
and allows to select N equal to 8 for both values of α.

Let us motivate the choice n = 999 that could seem unnatural. We actually consider here
models and sample sizes already investigated in HPŠ15 by our competitors (see their definition
in the following section). They chose n = 999 (and n = 499) because there is a problem in the
definition of multiple-output quantile regression if the order α is a multiple of 1/n.

6.3 Comparison with some competitors

Chapter 5 and Section 6.2 described a new multiple-output conditional quantile estimator that
1) has interesting convergence results and 2) provides an efficient data-driven selection method
for the tuning parameter. A natural step is then to wonder if our estimator is competitive with
alternative estimators. We first define the competitors considered in the next section.

6.3.1 The competitors considered

As explained in Section 4.2.2, defining an estimator of multiple-output conditional quantiles first
requires to choose a definition of multivariate quantiles. Since there is no universally accepted
definition of them, the literature in multiple-output quantile regression is much less huge than in
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6.3 Comparison with some competitors

its single-output counterpart, and our main competitors are the local constant and local bilinear
estimators of HPŠ15, that extend the local constant and local linear estimators of Yu and Jones
(1998) defined in Section 3.3.

Let K be a nonnegative kernel function over Rd and h be a bandwidth. Let

X ciu =

(
1

Y ⊥iu

)
,

and

X liu =

(
1

Y ⊥iu

)
⊗

(
1

Xi − x

)
,

where ⊗ denotes the tensor product and where the superscripts c and l stand respectively for
the local constant and the local bilinear cases, and where Y ⊥iu is the projection of Y i onto Γu.
We denote analogously Y iu the projection of Y i onto u. The parameter of interest for the local
constant case is θcα(x) := q̂ cα(x) =

(
âcα(x), (ĉ cα(x))′

)′ while, for the local bilinear case, it is

θ`α(x) = vec

(
â`α(x) ĉ `α(x)̂̇a`α(x) ̂̇c `α(x)

)
,

where ̂̇a`α(x) stands for the gradient of x 7→ â`α(x) and ̂̇c `α(x) for the Jacobian of x 7→ ĉ `α(x).
The local constant and local bilinear estimators are then defined as the minimizer θrα(x) of

n∑
i=1

K
(Xi − x

h

)
ρα
(
Y iu − (θrα(x))′X riu

)
, r = c, `. (6.3.1)

As explained in HPŠ15, the local bilinear approach is more informative than the local constant
one and should be more reliable at boundary points, as in the single-output case. However, the
price to pay is an increase of the covariate space dimension (X ciu is of dimension m while X `iu is
of dimension md). More details on these approaches can be found in HPŠ15.

In the sequel, we consider d = 1. Hence, K will be the Gaussian kernel and we choose, as in
some applications in HPŠ15,

h = 3σxn
−1/5,

where σx stands for the empirical standard deviation of the regressor X.
To the best of our knowledge, no R package allows to compute q̂ cα(x) and q̂ `α(x); we therefore

wrote our own implementation to conduct the simulations below.

6.3.2 Comparison of estimated quantile contours

In this section, we compare our proposed quantization-based estimator with their competitors
described above. We saw in the first part of this thesis that the bootstrap version should be
favored to its original version in the single-output setting, and this observation is also valid in
this multiple-output setting. Therefore, we do not investigate q̂N,nα in the sequel and restrict our
comparison to q̄N,nα , with the corresponding data-driven value of N proposed in Section 6.2. We
start the comparison by investigating estimated regression quantile/depth contours computed
from n = 999 independent observations generated according to the models
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(M1) (Y1, Y2) = (X,X2) +
(

1 + 3
2

(
sin
(
π
2X
))2)

ε1,

(M2) (Y1, Y2) = (X,X2) + ε2,

(M3) (Y1, Y2) = (X,X2) + (1 +X2)ε2,

where X ∼ U [−2, 2], ε1 ∼ N (0, 1)2, ε2 ∼ N (0, 1/4)2 and X is independent of ε1 and ε2. We
actually estimate qα(x) = qαu(x) for x = −1.89,−1.83,−1.77, . . . , 1.89, α = 0.2 and 0.4, and
360 equispaced directions u ∈ S1. These models were actually already investigated in HPŠ15
where they compared the contours obtained with q̂ cα and q̂ `α with the ones from HPŠ10. Since
the latter generally provide poorer results (as mentioned in Section 4.2.2, see also HPŠ15), we
do not consider them in the sequel.

In Figure 6.2, we are plotting the regression quantile/depth contours for Model (M1), es-
timated with q̄N,nα (top left), with q̂ cα (top right) and with q̂ `α (bottom left). The correspond-
ing population halfspace depth regions are plotted in the bottom right graph. More precisely,
these plots show the intersections, with hyperplanes orthogonal to the x-axis at fixed x-values
−1.89,−1.83,−1.77, . . . , 1.89, of regression quantile regions. Figures 6.3 and 6.4 are analogous
for Models (M2) and (M3).

In each model, we did not select h following the data-driven procedure mentioned in Sec-
tion 6.3.1, but chose it equal to 0.37, as proposed in HPŠ15, Figures 1–3. Concerning the choice
of N , our method selected N equal to 10 in each model, among the grids N1 = {5, 10, 15, 20} for
Models (M1) and (M2), and N2 = {10, 15, 20} for Models (M3). We notice that the selecting
value is on the boundary of N2 for this last model. Indeed, it happens that the criterion selects
a too small value in some cases, which induces not sufficiently smooth contours. Since it is rea-
sonable given the sample size to select N greater than 10, we adapt the grid of values for N and
we do not worry about the fact that the optimal N selected is on the boundary.

We observe that q̄N,nα and q̂ `α provide really nice contours close to the theoretical ones. They
catch the heteroscedasticity in Models (M1) and (M3). Compared with the local constant ones,
they do better, particularly in the boundary of the support of X, i.e. the most extreme contours.

It is also interesting to consider another sample size and to evaluate if the previous conclusions
remain valid in this context. Figure 6.5 is then analogous to Figure 6.2 for n = 499 instead of
n = 999. Here h is again chosen equal to 0.37 while N is equal to 6, selected by our criterion
among the grid N3 = {6, 8, 10, 15, 20} (as above, it is reasonable to select N greater than a
certain value given the size n = 499). Here again, our estimator q̄N,nα provides really satisfactory
contours.

We then conclude that q̄N,nα and q̂ `α are the most satisfactory from a graphical point of view.
We also observe a slight advantage for q̂ `α, particularly on the boundaries. This is not surprising
since the bilinear estimator allows to improve estimation on the boundaries with respect to the
local constant one. However, it has to be pointed out that N was selected through a data-driven
procedure for q̄N,nα while it is not the case for h in q̂ `α. Therefore, we will compare the ISEs in
the next section using the data-driven procedure for h for more equity.

131



6.3 Comparison with some competitors

-5 0 5

-5
0

5

Y1

Y
2

(a)

-5 0 5

-5
0

5

Y1

Y
2

(b)

-5 0 5

-5
0

5

Y1

Y
2

(c)

-5 0 5

-5
0

5

Y1

Y
2

(d)

Figure 6.2 – For n = 999 points following Model (M1), the intersections, with hyperplanes orthogonal to the x-
axis at fixed x-values −1.89,−1.83,−1.77, . . . , 1.89, of regression quantile regions estimated with (a) q̄N,nα , (b) q̂ cα
and (c) q̂ `α. For the sake of comparison, the corresponding population (conditional) halfspace depth regions are
provided in (d).
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Figure 6.3 – For n = 999 points following Model (M2), the same as Figure 6.2.
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Figure 6.4 – For n = 999 points following Model (M3), the same as Figure 6.2.
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Figure 6.5 – For n = 499 points following Model (M1), the same as Figure 6.2.
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6.3.3 Comparison of the ISEs

Obtaining well-behaved regression quantile contours is of course desirable, but this should not
be achieved at the expense of efficiency. That is why we now compare the various estimators
in terms of ISEs. To do so, we generated 500 independent samples from Models (M1) − (M3)

with sample sizes n = 999, and from Model (M1) with n = 499. In each case, we evaluated the
ISEs corresponding to the quantization-based estimators and to their two competitors defined in
Section 6.3.1.

As above mentioned, the quantile order here is composed of both α ∈ (0, 1) and a direction
u ∈ S1. The aim of this section is to compare efficiency of estimators of one conditional quantile
qα(x), hence for a couple (α,u) fixed. Investigating the efficiency of the contours appears com-
plicated since it will be sensitive to the number of directions u considered. Therefore, we only
consider one direction u, and we choose u = (0, 1) ∈ S1 without loss of generality. We still work
with α = 0.2 and 0.4, and x1 = −1.89, x2 = −1.83, . . . , xJ = 1.89.

In each model, we selected h following the data-driven procedure mentioned in Section 6.3.1,
and N is chosen by our selection method among N2 for n = 999 and among N3 for n = 499.

For each model, sample size and quantile order α considered, it provides a series of 500
observed ISEs for each estimator. More precisely, we evaluate

ISEaα =

J∑
j=1

(
aα(xj)− âα(xj)

)2
,

and

ISEcα =
J∑
j=1

(
cα(xj)− ĉα(xj)

)2
,

where âα(xj) stands for āN,nα (xj), â`α(xj) or âcα(xj) and ĉα(xj) for c̄N,nα (xj), ĉ `α(xj) or ĉ cα(xj).
Figures 6.6–6.8 draw the boxplots of those 500 ISE values for Models (M1)−(M3), respectively.
The left plots correspond to ISEaα (one for each α considered), while the right ones to ISEcα. The
boxplots of q̄N,nα , q̂ `α and q̂ cα are represented in blue, purple and red respectively.

Results reveal that q̄N,nα and q̂ `α generally do clearly better than q̂ cα, particularly for the
component aα(x) of qα(x). Moreover, for most models, sample sizes and components of qα(x),
q̄N,nα also outperforms q̂ `α. The cases where this trend is inverted mostly concern the boxplots
for the component cα(x) and we notice there that the errors are really small (less than 0.05 in
median). Hence, our estimator is still really efficient.

As in the first part, the good performances of q̄N,nα (x) with respect to the ones of those
kernel estimators result from the principle of quantization: recall that the radius of the Voronoi
cell is adaptive with x. It can then be seen as a data-adaptive bandwidth parameter while the
bandwidth h for the kernel estimators is chosen in the same way for each x.
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Figure 6.6 – Boxplots, for α = 0.2 and 0.4 and u = (0, 1), of ISEaα (left) and of ISEcα (right) for various
conditional quantile estimators obtained for 500 independent random samples from Model (M1), with size n =

999. The estimators considered are the quantization-based estimator q̄N,nα (in blue), the local bilinear estimator
q̂ `α (in purple) and the local constant estimator q̂ cα (in red).
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Figure 6.7 – The same boxplots as in Figure 6.6, but for Model (M2).
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Figure 6.8 – The same boxplots as in Figure 6.6, but for Model (M3).
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Figure 6.9 – The same boxplots as in Figure 6.6, but for n = 499.
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6.4 Real data applications

In this section, we illustrate the behavior of q̄N,nα (x) on a real data set. We investigate the “body
girth measurement” data set from Heinz et al. (2003), investigated also in HPŠ10 and HPŠ15.
This data set consists of nine skeletal and twelve body girth dimensions, and of weight, height
and age, in a group of 247 young men and 260 young women. As in HPŠ15, we get rid of the
men observations. The response vector is composed of the calf maximum girth (Y1) and the thigh
maximum girth (Y2) while we deal with a single random covariate (X = weight, age, BMI1 or
height). We consider for α the values 0.01, 0.03, 0.10, 0.25, 0.40 and for x different p-quantiles
of the regressor X, i.e. p = 0.1 (black), 0.3 (blue), 0.5 (green), 0.7 (cyan) and 0.9 (yellow). We
now describe how we obtained quantization-based quantile contours in this context.

The first step consists in choosing, for each regression setup, the optimal number N of quan-
tizers. We then adopt the method of Section 6.2, based on the minimization of ÎSE

¯

α,B(N) with
the choice B = 100, B̃ = 30 and |U| = 360. As above mentioned, we then take J = 5. We
first evaluated ÎSE

¯

α,B(N) for all N ∈ N1 = {5, 10, . . . , 30} and the criterion selected N = 5 as
optimal value. The tested values are then too large and it is felt that the optimal value is among
the smallest ones. Moreover, as explained in Section 6.3.2, it is reasonable to select N greater
than a certain value, otherwise it would induce not sufficiently smooth contours. Therefore, we
did the same exercise for N ∈ N2 = {6, 7, . . . , 10}, which led to Nopt = 6. Notice that we did not
select N separately for each α. Indeed, we tested it as in the single-output case but we observed
crossings of the contours, which makes no sense. We then protected against this by choosing the
same N for each α.

In a second step, we obtain the different estimations q̄N,nα (x) for each x and α considered,
based on the selection of N above. We plot in Figure 6.10 the resulting estimated quantile
contours. Each graph corresponds to a different regressor (X = weight in (a), X = age in (b),
X = BMI in (c) and X = height in (d)). We observe that the resulting contours are quite
different with respect to the regressor considered. When X = weight (Figure 6.10a), we notice a
positive trend in the location and an increase in dispersion. A rotation of the principal direction
is also visible, going from horizontal to vertical as x increases. Similar remarks can be made for
X = BMI in Figure 6.10c. It is totally different when X = age (Figure 6.10b) where the plot
reveals no location trend and a constance for the principal direction and the dispersion. Finally,
for X = height (Figure 6.10d), the conclusion are similar as the ones for X = age, excepted for
the dispersion that seems to increase with x.

These different observations are in line with the ones of HPŠ15 for the local bilinear estimator
(but not for the local constant one). In view of the good performances of q̄N,nα and q̂ `α (and
their dominance over q̂ cα) of the previous section, this encourages us to trust these results. The
corresponding estimated contours with q̂ `α can be found in HPŠ15.

We then conclude that our quantization-based estimator q̄N,nα provides really satisfying results
since it reveals different features of the conditional distribution of Y given X = x.

1BMI=Body Mass Index, defined as weight/(height)2
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Figure 6.10 – For n = 260 points from the body girth measurements data set (women subsample, see Heinz
et al. (2003)), the intersections, with hyperplanes orthogonal to the x-axis at the empirical p-quantiles of the
regressors, for p = 0.10 (black), 0.30 (blue), 0.50 (green), 0.70 (cyan) and 0.90 (yellow), of regression quantile
regions estimated with q̄N,nα (x),with α = 0.01, 0.03, 0.10, 0.25 and 0.40. Throughout, the bivariate response
(Y1, Y2) corresponds to the calf maximum girth (Y1) and the thigh maximum girth (Y2), while a single random
regressor is used: (a) weight, (b) age, (c) BMI or (d) height.

140



Chapter 6 : Numerical study of the estimator

6.5 Final comments

In this chapter, we investigated the empirical performances of the quantization-based estimator
of multiple-output conditional quantiles that was introduced in Chapter 5. We first extended in
Section 6.2 the data-driven selection method for the tuning parameter N of Section 3.2. Sec-
ondly, we realized extensive simulations and concluded that our estimator often dominates its
competitors in terms of empirical integrated square errors. From a graphical point of view, we
plotted the resulting estimated quantile contours that were really satisfying (e.g. we detected
heteroscedasticity and were close to the theoretical ones). We then treated a real data example
that was also investigated by the competitors considered, which allows to complete the com-
parison study based on simulations. We showed that the proposed methodology provides good
results and allows to deduce some information about the variables considered, in concordance
with the conclusions made by the competitors.

The major motivation for this last part was to determine if the dominance of our quantization-
based estimator over the kernel estimators in the single-output framework was also observed in
the multiple-output framework. We indeed obtained very satisfactory results and conclude that
q̄N,nα (x) is a serious competitor for q̂ cα(x) and q̂ `α(x) in this context.
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7
Conclusion and perspectives

Quantile regression allows to represent the impact of some covariate X on a response variable Y
and is a robust alternative to standard (mean) regression. Hence, having an efficient estimator
of them is highly desirable in order to quantify at best the conditional distribution of Y . The
main goal of this thesis was to propose a new nonparametric estimator of conditional quantiles
using Lp-norm optimal quantization, a discretizing method quite rarely used in statistics. The
different preliminary notions were properly defined in Chapter 1, where this issue was also widely
motivated with several examples.

The construction of this estimator is based on two steps. First, we defined an approximation
of conditional quantiles by replacing X by its quantized version into the definition of conditional
quantiles. Secondly, we took an empirical version of this approximation to get an estimation.
Convergence of both this approximation and this estimation was studied and several theorems
were obtained, with a rate of convergence for one of them. This was the aim of Chapter 2. A
bootstrap version of our estimator was then defined, allowing to get smoother estimated quantile
curves.

Since the empirical performances are also of major importance, Chapter 3 was devoted to nu-
merical results. Starting with developing a data-driven method for selecting the tuning parameter
of our procedure (i.e., the size of the quantization grid), we then compared our estimator with
some well-known competitors, as spline, kernel and k-nearest neighbor estimators. This compar-
ison study revealed very good performances (and sometimes dominance) of our bootstrap-based
estimator. We treated some real data examples for which our methodology also provided very
satisfactory estimated curves. Therefore, quantization-based estimation should be of interest for
practitioners, which motivated the creation of an R package, named QuantifQuantile, whose
functions make the application of our procedure quite easy. This package and its different func-
tions were then introduced and illustrated in this chapter.

As above mentioned, quantile regression aims to quantify the relationship between some
response variable Y and some vector of covariates X. A natural question was then to consider a
multivariate response and this was the goal of the second part of this thesis. Since the notion of
quantile cannot be directly generalized in higher dimension, the literature is much less huge than
for a univariate response. Chapter 4 compared the different existing generalizations of the notion
of quantiles in a multivariate setting and led to select the one from HPŠ10 that stands out by
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satisfying all the properties expected from a notion of quantiles and by providing an interesting
link to the concept of depth.

This definition of multivariate quantiles directly allowed to define multiple-output conditional
quantile. Following the same construction as in Chapter 2, we defined in Chapter 5 successively an
approximation and an estimation of these multiple-output conditional quantiles, and studied their
convergence. In view of the improvement observed in the first part with bootstrap, a bootstrap
version of this estimator was also introduced.

In the same spirit as in Chapter 3 for the single-output context, Chapter 6 aimed to 1) extend
the data-driven procedure of the selection of the quantization grid size N for this new estimator
and 2) compare it with the existing alternative estimators – mainly, the ones from HPŠ15. Also
in this multiple-output context, the performances of our bootstrap-based estimator were really
satisfactory since it generally dominates its competitors in terms of some empirical integrated
square error. A real-data example confirmed these good results.

The main conclusion of this thesis is that the proposed quantization-based estimators are
serious competitors for existing conditional quantile estimators, both in single and multiple-
output frameworks. This should then be of high practical interest for practitioners that aim to
extract from data sets several information on the dependence between variables and to obtain
reference curves (or surfaces, contours).

Let us conclude this work with some perspectives. We mentioned in Section 2.3 the delicate
problem of double asymptotic result for q̂N,nα (x). Recall that we proved 1) the convergence of
q̃Nα (x) toward qα(x) as N tends to infinity and 2) the convergence of q̂N,nα (x) toward q̃Nα (x) as
n tends to infinity and for N fixed. Obtaining a result of convergence for q̂N,nα (x) as both N

and n go to infinity was beyond the scope of this thesis. Indeed, this would require convergence
results for the stochastic gradient algorithm for both N and n going to infinity. To the best of our
knowledge, such results were not proved yet and would be the key to obtain such a convergence
result for q̂N,nα (x).

Moreover, this work focused on numerical data that are fully observed. The good results
encourage us to consider other types of data. For instance, it may happen that some variables
are not fully observed due to the termination of the study or an early withdrawal of the subject.
It could be the case, e.g., in medical studies if we are interested in the survival time. Hence, the
data are only partially known (above a certain value in this example) and are called censored.
Censoring can also occur if a measure instrument is not sufficiently accurate: if we do not detect
some substance, it does not mean that the substance is absent but means that the quantity is
too low to be detected. Quantile regression in the context of censored data is also of high interest
since such data appear in many fields (medicine, economics or industrial context), see for instance
Gannoun et al. (2002). However, we cannot apply directly our method to such data. An interesting
perspective of work would then be to investigate how to adapt our estimator to such data sets.
Likewise, remember that we throughout assumed that the data are independent and identically
distributed. It would be interesting to extend this work for dependent data (coming from time
series for example, see Cai (2002)).
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