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SUMMARY 

 

 Mitochondria are considered as the �powerhouses� of the cell. They provide the main 

source of cellular energy via the production of adenosine triphosphate (ATP) molecules that 

is accomplished through oxidative phosphorylation (OXPHOS) from nutritional sources. 

Mitochondria are highly dynamic organelles that continuously fuse and divide to mix and 

exchange their material, including proteins, DNA and metabolites, according to cellular 

energy requirements. The brain is especially dependent on ATP due to its high energy 

demand. Mitochondria produce the energy required for almost all cellular processes, from 

cell survival and death, to the regulation of intracellular calcium homeostasis, synaptic 

plasticity and neurotransmitter synthesis. Thus, impaired mitochondrial bioenergetics and 

dynamics lead inevitably to disease, ranging from subtle alterations in neuronal function to 

cell death and neurodegeneration. For instance, early stages of Alzheimer�s disease (AD) 

are associated with impaired mitochondrial bioenergetics and dynamics (fusion/fission) in the 

brain, which is paralleled by oxidative stress, particularly in mitochondria themselves, and 

ultimately lead to neuronal death.  

 In this context, the understanding of the intrinsic mechanisms regulating mitochondrial 

activity and dynamics is becoming of major importance, especially for the search of new 

drugs for the therapy and prevention of neurodegenerative diseases, such as AD. 

 

 The purpose of the joint-PhD thesis was therefore to deepen our understanding of the 

regulation of mitochondrial function, and to identify key factors (endogenous and / or 

exogenous) that are critical in the control of mitochondrial bioenergetics and dynamics. 

Hence, these factors could be used as tools to develop strategies against diseases involving 

mitochondrial dysfunction. To achieve this goal, the thesis was divided into two main parts. 

 1) Since a growing body of evidence suggests that neurosteroids have a strong 

neuroprotective potential, the first part is based on the hypothesis that neurosteroids may 

exert a determinant action against neurodegeneration by improving mitochondrial 

bioenergetics, (A) under �healthy� physiological conditions as well as (B) under pathological 

conditions (AD). 

 2) In the second part (C), we determined whether the biological clock, which 

coordinates a whole range of daily behaviors and physiological processes, is involved in the 

endogenous regulation of mitochondrial dynamics and bioenergetics. 

 

(A) In the first part of this thesis, the ability of different neurosteroids to regulate 

mitochondrial bioenergetics and redox homeostasis in neuronal cells was evaluated in vitro. 
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Neurosteroids constitute a category of steroids that are synthetized within the nervous 

system, independently of peripheral endocrine glands, and act on the nervous system in an 

auto/paracrine configuration. Neurosteroids are involved in a broad range of brain-specific 

functions and the gradual decline of neurosteroid levels with increasing age may be 

associated with the appearance of age-related neuronal dysfunction, cognitive impairments, 

and with neurodegenerative diseases, such as AD. Indeed, a growing body of evidence 

attests that neurosteroids possess strong neuroprotective properties. In particular, many 

studies are focused on estradiol which is also known to boost bioenergetic metabolism in 

cells. However, no studies sought to test the effects of other neurosteroids on mitochondrial 

bioenergetics and redox homeostasis in neuronal cells. 

 Therefore, to gain insights into the underlying mechanism of neuroprotective action of 

neurosteroids, we selected a panel of neurosteroids (progesterone, estradiol, estrone, 

testosterone, 3"-androstanediol, dehydroepiandrosterone (DHEA) and allopregnanolone) as 

potential candidates able to modulate mitochondrial function. Before characterizing the mode 

of action of neurosteroids on bioenergetics under pathological conditions, we first aimed to 

understand their effects per se using human SH-SY5Y neuroblastoma cells. We showed that 

most of the neurosteroids we tested were able to improve the bioenergetic metabolism in 

neuronal cells by increasing ATP levels, mitochondrial membrane potential and basal 

mitochondrial respiration. Each neurosteroid appeared to have a distinct bioenergetic profile, 

possibly because different receptors were involved in their effects on mitochondria. Indeed, 

neurosteroids seemed to act via their corresponding receptor since the effects on ATP levels 

were abolished in the presence of specific steroid receptor antagonists. In parallel to an 

increased mitochondrial respiration, we observed a rise in reactive oxygen species (ROS) 

levels after treatment with neurosteroids. In response to this slight enhancement of ROS 

which may result from the rise in oxygen consumption, antioxidant activity was up-regulated, 

suggesting that neurosteroids may directly or indirectly modulate redox homeostasis in 

neuronal cells.  

 Together, these first data indicated that neurosteroids were indeed able to boost 

mitochondrial function in a delicate balance. We can speculate that neurosteroids are acting, 

at least in part, via their corresponding receptors to regulate the expression of genes 

involved in glycolysis and oxidative phosphorylation, but also the content and activity of 

mitochondrial respiratory complexes. Further investigations are required to determine the 

underlying molecular mechanisms. 

 

(B) Based on these findings, we investigated in the next step whether neurosteroids were 

able to alleviate AD-related bioenergetic deficits. For that purpose, we treated different AD 

cell culture models with neurosteroids: i) human neuroblastoma cells (SH-SY5Y) 
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overexpressing the human amyloid precursor protein (APP) and amyloid-! peptide (A!); ii) 

human neuroblastoma cells stably transfected with the wild-type tau protein (wtTau) or; iii) 

the mutant tau protein (P301L) inducting abnormal tau hyperphosphorylation and; iv) their 

respective vector control cells. We first demonstrated that the presence of APP/A! and 

abnormally hyperphosphorylated tau protein differentially impacted mitochondrial respiration 

in cellular models of AD. In line with previous studies, both AD pathogenic features induced a 

decrease in ATP level. However, abnormal tau protein only impaired the maximal 

mitochondrial respiration and spare respiratory capacity, whereas the overexpression of 

APP/A! induced in addition a decrease in basal respiration, ATP turnover and glycolytic 

reserve. All the neurosteroids tested showed beneficial effects on ATP production and 

mitochondrial membrane potential in APP/A! overexpressing cells, while only progesterone 

and estradiol increased ATP levels in mutant tau cells. In addition, we showed that 

testosterone, that is also the main male steroid hormone, was more efficient to alleviate 

mitochondrial deficits induced by APP/A!, whereas neurosteroids belonging to the family of 

female steroid hormones, progesterone and estrogens, were more efficient with productivity 

rising bioenergetic outcomes in our cellular model of AD-related tauopathies. 

 Together, our findings lend further evidence to the neuroprotective effects of 

neurosteroids in AD pathology and indicate that these molecules represent promising tools 

able to increase mitochondrial bioenergetics via enhanced mitochondrial respiration, in 

healthy and pathological conditions, respectively. Our results provide a potential molecular 

basis for the beneficial and neuroprotective effects of neurosteroids, which may open new 

avenues for drug development with regard to targeting mitochondria in neurodegeneration.  

 

(C) The aim of the second part of this thesis was to investigate more closely how 

mitochondrial function is endogenously regulated within the cells. More specifically, we 

aimed to determine whether and how mitochondrial dynamics as well as bioenergetics were 

modulated by the biological clock in a circadian manner. The circadian clock is a hierarchical 

network of oscillators which coordinate a variety of daily behavioural and physiological 

processes to the optimal time of day, anticipating the periodical changes of the external 

environment for all living organisms. Since there are increasing evidences that metabolic 

homeostasis and the circadian clock are connected in numerous ways through reciprocal 

regulation, we asked whether mitochondrial bioenergetics and dynamics may exhibit 

circadian oscillations and whether mitochondria themselves may be able to influence the 

circadian clock. Using human primary fibroblasts as a peripheral clock model, we showed 

that the mitochondrial shape and OXPHOS metabolism are under the control of the clock 

and oscillate within a period length of about 24 hrs. More precisely, we found that ATP levels 

exhibit a circadian rhythmicity that is consistent with the rhythm of mitochondrial 
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fusion/fission activity we observed in vitro and in vivo in mouse brains. This rhythmicity 

appeared to be dependent of Drp1 activity, a protein involved in mitochondrial fission, since 

inhibiting or knocking down Drp1 abolished the ATP oscillation in vitro. In addition, the 

mitochondrial respiration pattern was in line with the observed mitochondrial network-

dependent ATP oscillations together with rhythmic oscillations of by-products of 

mitochondrial activity, ROS and NAD+ levels, both indicators of the redox environment. 

Furthermore, we also found that mitochondria may themselves influence the circadian clock 

through several retrograde signals, such as the activation of AMP-activated protein kinases 

(AMPK) which can regulate clock gene expression depending on the ratio AMP/ATP. 

 Thus, in this second part, we established a detailed molecular link between circadian 

control of mitochondrial dynamics and bioenergetics, suggesting a key role of the clock-

controlled mitochondrial network to anticipate energetic requirements of diverse cellular 

functions in response to environmental constraints. 

 

 Overall, the studies performed in the present thesis importantly helped to deepen our 

knowledge about the modulation of mitochondrial function in health and disease states. First, 

our work identifies neurosteroids as very promising molecules able to counteract the 

bioenergetic deficits in neurodegenerative diseases. Second, we show that mitochondrial 

dynamics and bioenergetics are controlled by the biological clock, and vice versa. Our 

findings could have multiple implications with regard to the regulation of metabolic 

homeostasis in health and disease states associated with mitochondrial impairments and / or 

circadian disruption. 
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A. Mitochondria  

 

 Mitochondria play a central role in eukaryotic cell survival and death because they are 

orchestrating both energy metabolism and apoptotic pathways. They are considered as the 

�powerhouses of cells�, providing the main source of cellular energy under the form of 

adenosine triphosphate (ATP) molecules that is accomplished through oxidative 

phosphorylation (OXPHOX) from nutritional sources. Thus, they contribute to plenty of 

cellular functions, including apoptosis, cell growth and differentiation, regulation of 

intracellular calcium homeostasis, alteration of the cellular reduction�oxidation (redox) state 

and synaptic plasticity. In this context, mitochondria are particularly important in the nervous 

system that has high energy demand and requires for about 20% of the body�s total basal 

oxygen consumption (1). As a result, mitochondrial dysfunctions have been associated with 

neurodegenerative diseases, such as Alzheimer�s disease (AD), that are characterized by a 

cerebral hypometabolism and an impaired homeostasis of the redox status (2). 

 

1. Mitochondrial structure and pivotal roles within cells 

 

 Today, it is widely accepted that mitochondria come from the endocytosis of an "-

proteobacteria by a precursor of eukaryotic cells and that this endosymbiosis provoked a 

move forward in the evolution by permitting the aerobic life (3). As a consequence of this 

endocytosis, mitochondria carry a residual genome (approximately 16 kilobase) coding for 13 

proteins essential for mitochondrial respiratory chain function (4). In addition, mitochondria 

comprise an inner and outer membrane, the intermembrane space and the matrix (Fig 1). 

The size, aspect and organization of mitochondrial membranes vary between species, 

tissues and physiological conditions and largely differ from the classical representation of 

mitochondrial ultrastructure. 

In humans, mitochondrial DNA (mtDNA) is transmitted in a non-Mendelian manner via the 

maternal oocyte (uniparental inheritance) whereas normally the paternal mitochondria are 

destroyed directly after fertilization. The replication and segregation of mtDNA are not 

coupled to cell cycle and the underlying mechanisms remain unclear (4). However, it appears 

that the quality control of mtDNA replication is not as efficient as nuclear DNA (nDNA), 

resulting in an increased risk of mtDNA mutations (5). Thus, to avoid the accumulation of 

such mutations, mitochondria are remarkably dynamic organelles that divide and fuse to 

ensure the mixing of mtDNA but also mitochondrial metabolites and proteins. 
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Fig. 1: Classical representation of mitochondrion ultrastructure (courtesy of M. Wanner Fabio). 

 

a) Mitochondria: versatile organelles 

 

 Since mitochondria are really small organelles (from 0.5 to 1.0 #m in diameter), the 

characterization and understanding of mitochondrial ultrastructure became possible only 

when techniques for electron and confocal microscopy were perfected (3). 

 Mitochondria possess a heterogeneous and complex morphology resulting from the 

continuous fusion and fission of mitochondrial membranes (6; 7). Thus, mitochondrial 

network is often compared to a syncytium that constantly cycle between a fused, 

intermediate and fragmented state (Fig 2). 

 

 

Fig.2: Different mitochondrial shapes (Adapted from (6)) 
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As mentioned above, mitochondrial dynamics allow the mixing and exchange of 

material between those organelles but also their redistribution within the cells. This 

phenomenon is of major importance, especially in neurons, that are long, excitable and, 

highly compartmentalized cells (4). The proper distribution of mitochondria is paramount to 

sustain the spatial and temporal demand of energy in neurons, that differs within the axons 

and synapses compared to dendrites and cell body. Thus, on one hand, mitochondrial fission 

enables the renewal, redistribution and proliferation of mitochondria into synapses, where 

they are important for calcium buffering and cycling of reserve pool of synaptic vesicles. On 

the other hand, mitochondrial fusion allows mitochondria to interact and communicate with 

each other, and facilitating mitochondrial movement and distribution across long distances 

and to the synapses (Fig.3) (5). 

 
 

Fig 3: Mitochondrial dynamics. (A) Mitochondria cyclically shift between elongated (tubular) and fragmented state. 

Following the fission event, the mitochondrion can either be transported, or enter in fusion again. Defective 

mitochondrion accumulates PINK1 kinase (PTEN-induced putative kinase 1), recruiting the E3 ubiquitin ligase 

parkin, which ubiquitylates mitochondrial proteins and triggers mitophagy (adapted from (8)). 
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 Besides, mitochondrial fusion/fission activity is also integrated with mitochondrial 

quality control pathways that detect and respond to cellular and mitochondrial dysfunction, 

which leads to mitophagy (Fig 3).  

 

(i) Mitochondrial fission 

 

 Mitochondrial division involves dynamin-related GTPases such as fission protein 1 

(FIS1) and dynamin-related protein 1 (DRP1), two proteins that are conserved through 

evolution (Fig. 4). The activity of DRP1 is highly regulated by post-translational modifications. 

The inactive form of DRP1 is dispersed in the cytosol and the activation by 

dephosphorylation is required to target mitochondrial membrane (9). FIS1 was proposed to 

be a DRP1 receptor located at the outer mitochondrial membrane but the exact mechanism 

remains unresolved (8). FIS1 fixes DRP1 that wraps around the mitochondrial surface, 

assembles on the outer membrane in multimeric ringlike structures to facilitate scission of the 

double membrane. This process requires the hydrolysis of GTP. Mutations in genes coding 

for DRP1 and FIS1 result in aberrant mitochondria morphology (hyperfused network), 

heterogeneous population of mitochondria with non-uniform mtDNA distribution, varied ability 

to produce ATP, increased capacity to generate reactive oxygen species and increased 

susceptibility of cells to undergo apoptosis (10). 

 

(ii) Mitochondrial fusion 

 

 Fusion events are a two step process and also require the action of two evolutionarily 

distinct dynamin-related GTPases (Fig. 4). The fusion of mitochondrial outer membranes is 

controlled by mitofusin 1 and 2 (MFN1/2), whereas optic atrophy 1 (OPA1) controls inner 

membrane fusion (9; 4). The mechanisms underlying fusion machinery is still poorly 

understood. However, mitochondrial fusion is essential to maintain a homogenous 

mitochondrial population and ensures inter-complementation of mtDNA (5). Mutations in 

MFN2 or OPA1 cause the autosomal dominant peripheral neuropathy, Charcot Marie-Tooth 

disease 2A, and autosomal dominant optic atrophy respectively, and result in an extensive 

fragmentation of the mitochondrial network (10). 
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Fig.4: Schematic mechanisms of mitochondrial fission and fusion. The localization, as well as some interactions 

and modifications of the principal proteins involved in the two processes are shown. Once dephosphorylated, 

DRP1 is recruited to the outer membrane by FIS1. The oligomerization of DRP1 is followed by constriction of the 

membrane and mitochondrial fission. The pro-fusion proteins (MFNs on the outer membrane and OPA1 on the 

inner membrane) oligomerize to induce fusion of the membranes (adapted from (9)). 
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(iii) Mitophagy 

 

 Fusion/fission activity is also important for the removal of aged or damaged 

mitochondria through a specific form of autophagy, termed mitophagy (11). The exact 

mechanism underlying mitophagy, more specifically what triggers mitophagy, remains to be 

elucidated. In healthy conditions, mitochondria generate an electrochemical gradient, which 

powers the oxidative phosphorylation (OXPHOS) system (see section I.A.1.b.). It has been 

proposed that damages can lead to a loss of mitochondrial membrane potential. Uncoupled 

mitochondria accumulate the protein PTEN-induced putative kinase 1 (PINK1) at the surface 

of the mitochondrial outer membrane (11; 12) recruiting the E3 ubiquitin ligase parkin 

specifically to the damaged mitochondrion (Fig.3). Then, parkin ubiquitylates mitochondrial 

proteins leading to the formation of an autophagosomes and the digestion of the 

mitochondrion. This process mediates mitochondrial quality control. 

 

b) Orchestrating cellular energy production 

 

 ATP molecules are the universal fuel of living cells. These molecules are composed 

of an adenosine (nitrogen base), a ribose sugar, and three phosphate groups (Fig. 5). 

Breaking the bond between the second and third phosphates, which is a high-energy bond, 

will release the energy necessary for numberless cellular processes, including the synthesis 

of macromolecules (DNA, RNA, proteins�), transport of macromolecules (e. g. endocytosis 

and exocytosis), intra/extracellular cell signaling or locomotion (muscle contraction). In 

eukaryotic cells, ATP is mainly produced via two pathways: the glycolysis and the oxidative 

phosphorylation. 

 

 

 

Fig.5: A molecule of ATP (http://www.nature.com/scitable/topicpage/cell-energy-and-cell-functions-14024533). 
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(i) Cellular glycolysis

 

 Glycolysis is the first energy pathway which consists of converting molecules of 

glucose (coming from nutritional sources) into two molecules of pyruvates (Fig. 6). This 

requires a series of ten chemical reactions giving a net gain of two ATP molecules. Two 

NADH (nicotine adenine dinucleotide) molecules are also produced and serve as electron 

carriers for other biochemical reactions in the cell (13). Next, pyruvate enters in mitochondria 

and is converted into acetyl-CoA, a two-carbon energy carrier, that reaches the Krebs cycle, 

also known as the tricarboxylic acid cycle (TCA cycle), taking place within the mitochondrial 

matrix.  

 

Fig. 6: Cellular glycolysis. The glycolysis involves a series of enzymatic reactions (from 1 � 10) that consume two 

ATP molecules, produce 4 ATP molecules (net gain= 2 ATP) and two molecules of NADH. Molecules of pyruvate, 

end product of glycolysis, reach the Krebs cycle within mitochondria.  
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(i) Mitochondrial respiration  

 

 The enzymatic reaction involved in the Krebs cycle aims to convert: i) three NAD+ 

(nicotine adenine dinucleotide) into three reduced equivalent molecules (NADH); ii) one 

molecule of FAD+ (flavin adenine dinucleotide) into one equivalent of FADH2; iii) one 

molecule of GDP (guanosine diphosphate) into one molecule of GTP (guanosine 

triphosphate) (Fig. 7). The NADH and FADH2 generated by the Krebs cycle will be used by 

the oxidative phosphorylation (OXPHOS) pathway to generate ATP. 

 

 

 The second main pathway for the synthesis of ATP is the mitochondrial respiration, a 

process usually called oxidative phosphorylation (OXPHOS) (8; 3). Here, the electrons, 

carried by the electron donors NADH and FADH2, are used to generate a difference of 

potential across the inner mitochondrial membrane, by pumping protons from the matrix to 

the intermembrane space. The gradient of protons, which is generated during electron 

transfer, is ultimately used to power the synthesis of three additional ATP molecules for 

every electron that travels along the chain. 

 

  The transfer of electrons is carried out by four multisubunit protein complexes 

(encoded by mitochondrial or nuclear DNA) embedded in the inner mitochondrial membrane 

and known as the electron transport chain (ETC) (Fig. 7). First, NADH donates two electrons 

to the largest of the respiratory complexes, NADH dehydrogenase or complex I. These 

electrons are then passed to coenzyme Q (UQ), a lipid soluble redox carrier. The reaction is 

accompanied by the transfer of four protons from the matrix to the intermembrane space. In 

parallel, complex II, or succinate dehydrogenase that is also part of the Krebs cycle, 

catalyzes the reduction of FAD to FADH2, giving additional electrons into the quinone pool 

(UQ). Unlike complex I, no protons are pumped from the matrix by complex II that is also the 

only complex composed of proteins exclusively encoded by nuclear DNA. 

 Next, the reduced coenzyme Q freely diffuses through the inner membrane and gives 

its electrons to the complex III or ubiquinol cytochrome c oxidoreductase. The enzyme 

oxidizes coenzyme Q and transfers the liberated electrons to two molecules of another 

soluble redox protein, cytochrome c. The reaction is coupled by the translocation of four 

protons toward the intermembrane space. Finally, electrons are removed from cytochrome c 

and transferred to molecular oxygen (O2), producing two molecules of water. Again, four 

protons are pumped from the matrix into the intermembrane space. 
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Fig. 7: Bioenergetic of the electron transport chain and the Krebs cycle. Pyruvate is transferred within 

mitochondria and is converted into acetyl-coA that enters into the Krebs cycle. NADH, FADH2 and GTP molecules 

are generated in each cycle. NADH generated is shuttled to complex I and is converted to NAD+ driving 

OXPHOS. Transfer of electrons through the chain maintains the membrane potential via proton pumping into the 

intermembrane space. In this final step, ADP is phosphorylated to form ATP via complex V (ATP synthase).The 

number of subunits encoded either by nuclear or mitochondrial DNA (nDNA/mtDNA respectively) are indicated. 

UQ; coenzyme Q, Cyt c; cytochrome c. (adapted from (8) and (14)). 
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 The enzyme responsible for the OXPHOS final step is ATP synthase (Complex V), 

alternatively named F0F1 ATPase, which consists of two domains: F0, the transmembrane 

component acting as a proton channel that provides a proton flux back into the mitochondrial 

matrix; and F1, the catalytic component that uses the free energy produced during the 

generation of the oxidized forms of the electron carriers (NAD+ and Q) to drive ATP synthesis 

from ADP and inorganic phosphate (Pi). ATP synthase acts as a rotary molecular motor 

powered by the proton gradient and the mitochondrial membrane potential (MMP) generated 

by the ETC, with each turn of the rotor producing three molecules of ATP. Of note, MMP is 

estimated to be about 150�180 mV (negative in the matrix), and is a key parameter 

indicating the bioenergetic competence of mitochondria. The net gain of OXPHOS is about 

30-32 ATP molecules per molecule of glucose. 

 

(ii) Bioenergetic state and mitochondrial shape 

 

 Energy homeostasis requires a constant coordination between cellular energy 

demand (ATP consumption) and energy supply (ATP production). Thus, molecular sensors 

are available in cells, such as kinases and transcription factors, to regulate bioenergetic 

activity in answer to nutrient deprivation or to cellular stress (14). Notably, the alteration in 

the cellular AMP/ATP ratio activates the AMP-activated protein kinase (AMPK) which triggers 

an intracellular cascade of phosphorylation to activate glycolysis and OXPHOS (15). As 

mentioned in section I.A.1.a, mitochondria are dynamic organelles that cyclically shift 

between tubular and fragmented states. Increasing evidences suggest that alterations in 

energy production, notably in pathological conditions such as in AD (see section I.A.2), are 

paralleled by a disturbed mitochondrial dynamics (16-19). The causal relationship between 

both is not clear. For instance, studies showed that ATP levels and OXPHOS activity are 

affected by mitochondrial dynamics, with a decreased respiration and ATP production when 

mitochondria are in a fragmented state (20). On one hand, evidences suggested that 

mitochondrial dynamics can control energy metabolism, since a down regulation of OPA1 

and Mfn1 (involved in mitochondrial fusion) led to a decrease in OXPHOS and glucose 

utilization (20). On the other hand, studies showed that the collapse of MMP leads to 

fragmentation of the mitochondria and inhibits the fusion activity (21; 22). 

 Understanding the link between mitochondrial shape and function is a recent 

research field that aims to increase our knowledge about the underlying mechanism involved 

in the regulation of bioenergetics (see section II.C) and may offer opportunities to discover 

new drugs that target mitochondrial fusion or fission with a stimulatory effect on energy 

metabolism (14). 
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c) Mitochondrial: paradoxical organelles 

 

 As described above, mitochondria are the �powerhouses of cells�, providing energy 

via ATP generation. However, when mitochondria fulfill their physiological functions, they can 

also be compared to a double-edged sword that, on one hand, produces the energy 

necessary for cell survival, and on the other hand, induces the formation of reactive oxygen 

species (ROS) that can be harmful for cells when produced in excess with mitochondria as 

the first target of toxicity. 

 

(i) Mitochondria: source and target of reactive oxygen and nitrogen 

species 

 

 The production of ATP molecules by mitochondria requires about 85% of O2 used by 

cells. The fate of most electrons from NADH or FADH2 driven in the respiratory chain is the 

reduction of O2 into H2O by the mitochondrial complex IV. However, an inevitable by-product 

of ETC activity is the formation of superoxide anion radicals (O2$
-), mostly by complexes I 

and III (Fig. 8). Indeed, a small portion of electrons (up to 2%), escaping from ETC, can react 

with O2 to form O2$
- that can be converted into other ROS such as hydrogen peroxide (H2O2) 

and the highly reactive hydroxyl radical (OH$) through enzymatic and non-enzymatic 

reactions (23-25). 

  The exact mechanisms underlying mitochondrial ROS production requires further 

clarification to identify the precise site of O2$
- generation. Thus, O2$

- production by the 

mitochondrial complex I is still discussed. It was suggested that O2$
- was generated by 

reverse electron transfer in the absence of NAD+-linked substrates (in hypoxic conditions) 

(25; 26). The contribution of complex III in ROS-forming mechanisms is more understood 

and involves the autooxidation of ubisemiquinone anion radicals (UQ$-). Indeed, UQ$- can 

react with the O2 dissolved in the IMM, yielding to O2$
- formation, especially when the MMP is 

high (25; 27; 26). Besides the ETC, ROS can be produced by the Krebs cycle enzyme "-

KGDH ("-ketoglutarate dehydrogenase) and by monoamine oxidases (MAO) located at the 

OMM (23). Nitric oxide (�NO) is another diffusible free radical that is synthesized by three 

main isoforms of the nitric oxide synthase (NOS) (Fig. 8). �NO can combine with O2$
- to form 

reactive nitrogen species (RNS) peroxynitrite (OONO&) which can further react to yield 

hydroxyl radical �OH (25). 
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Fig.8: Pathways of reactive oxygen species (ROS) formation and detoxification. Superoxide anion radicals (O2$
-) 

are generated by complexes I and III during electron transfer through ETC. O2$
- can interact with �NO, produced 

by nitric oxide synthase (NOS), to generate peroxynitrite (ONOO-) or can also react to form �OH (hydroxyl 

radical). Detoxification involves the enzymatic activity of mitochondrial manganese superoxide dismutase (SOD) 

that converts O2$
- to H2O2 (hydrogen peroxide) and may diffuse to the cytoplasmic compartment where glutathione 

peroxidase (GPX) and catalase convert H2O2 to H2O. Of note, �NO and its derivate (reactive nitrogen species or 

RNS) belong also to the group of ROS. eNOS/iNOS/nNOS; endothelial/inducible/neuronal nitric oxide synthase, 

GSH/GSSG; reduced/oxidized glutathione, GPX; glutathione peroxidase, GR; glutathione reductase. 
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 In physiological conditions, ROS can play a role of signaling molecules and are 

involved in processes such as immune response, inflammation, as well as synaptic plasticity, 

learning and memory (28-30). However, when produced in excess, those highly reactive 

species can induce an oxidative stress, damaging proteins and DNA, and inducing lipid 

peroxidation, with the corresponding mitochondrial structures as the first targets of toxicity. 

Especially, long polyunsaturated fatty acid chains of mitochondrial membranes are very 

susceptible to oxidation and may lead to the membrane depolarization and consecutively to 

mitochondrial impairments (31). ONOO& can induce nitration of proteins and impair their 

function (32), and �NO has been shown to inhibit the complex IV activity by competitive 

binding on its oxygen site (33). Furthermore, since mtDNA is localized close to ROS 

production sites, it is directly in contact with those harmful molecules and can exhibit 

oxidative damages. Taken together, oxidative stress, caused by ROS and RNS, can trigger 

cell death and has been implicated in the pathogenesis of many neurodegenerative 

diseases, such as AD. 

 

(ii) Antioxidant defenses: weapons against oxidative stress 

 

 Fortunately, cells are armed against oxidative stress and are endowed with robust 

antioxidant defenses to counteract excessive ROS production. First, O2$
- can be detoxified by 

manganese superoxide dismutase (MnSOD) in the mitochondrial matrix or copper/zinc 

superoxide dismutase (Cu/Zn SOD) in the IMS and the cytosol, giving hydrogen peroxide 

(H2O2) (25). H2O2 is then detoxified to H2O by catalase or is supported by detoxification 

mechanisms involving glutathione (GSH) system (Fig.8). GSH constitute the most important 

redox buffer and mitochondrial antioxidant, due to its relatively high concentrations and 

inducible metabolism (25; 34). Glutathione peroxidase (GPX) degrades H2O2 and other ROS 

to water by converting GSH to its oxidized form GSSG. This latter is then reduced again to 

GSH by glutathione reductase (GR) using NADPH as a cofactor. The ratio GSH/GSSG is 

often used as a measure of cellular toxicity and regulates overall ROS levels to maintain 

physiological homeostasis (35).  

 However, it can happen that ROS production overwhelms endogenous antioxidant 

systems and can lead to harmful effects on cellular compounds. As mentioned above, 

oxidative stress can lead to a shutdown of energy production (36), possibly leading to a 

decrease of antioxidant defense (e.g. GSH). The enhancement of ROS triggers the �vicious 

cycle� of oxidative stress, mitochondrial dysfunction and apoptosis. Since neurons are post-

mitotic and excitable cells with high energy requirements, they are more sensitive to stress 

(37). Thus, this �vicious cycle� of oxidative stress has been implicated in many 

neurodegenerative diseases, notably AD but also in normal aging (38; 5; 39). However, the 
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exact cause and effect relationship between ROS production and detoxification remains 

unsolved and one can ask the question whether increased ROS production is a primary 

consequence of mitochondrial dysfunction or whether a primary defect in the ROS 

scavenging activity is responsible for an abnormal respiratory function. This ambiguous point 

is particularly challenging in many pathological cases involving mitochondrial dysfunction. 

 

(iii) Mitochondria and cell suicide 

 

 Another paradoxical aspect with regard to mitochondrial function is the role of this 

small organelle in both cell survival and cell death. Indeed, if the mitochondria are 

indispensable for cell survival by providing energy, they are also a starting point leading to 

cell suicide, a mechanism commonly known as apoptosis or programmed cell death. There 

are two main apoptotic pathways: i) the extrinsic pathway triggered by extracellular signals 

acting via plasma membrane receptor (e.g. death receptors, not described here); and ii) the 

intrinsic (or mitochondrial) pathway triggered by intracellular stimuli such as Ca2+ overload 

and over-generation of ROS (37). Mitochondria are central components of the apoptotic 

death machinery, integrating death signals through Bcl-2 family members and coordinating 

caspase activation through the release of cytochrome c (Cyt c). 

 Once the lethal signals are detected, mitochondrial permeability transition pores 

(mPTP) are opened and mitochondrial membranes become permeable (Fig. 9). This opening 

disrupts mitochondrial function and apoptotic signals are released from IMS into the cytosol, 

namely Cyt c and apoptosis-inducing factor (AIF) (40) that are regulated by pro- (bax, bak, 

bad, bim, bid) and anti-apoptotic proteins (bcl-2 and bcl-xl) of the Bcl-family (41). Here, Cyt c 

binds to Apaf-1 (apoptotic protease activating factor 1) which recruits procaspase 9 in the 

presence of deoxyadenosine triphosphate (dATP) to form the apoptosome. This results in 

the sequential activation of caspase 9 which in turn activates other caspases, such as 

caspase 3, that are in charge of the cell�s execution (42; 37).  

 In summary, mitochondria are paramount for proper cell function, especially in 

neurons that are postmitotic, excitable cells with high energy requirements. Thus, impaired 

mitochondrial function ineluctably leads to cell death and is involved in pathophysiological 

mechanisms of neurodegenerative diseases, including Alzheimer�s disease (AD). 
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Fig.9: Simplified mitochondrial pathways of apoptosis. Apoptosis can result from the activation of two biochemical 

cascades, which are known as the extrinsic and the intrinsic (or mitochondrial, detailed here) pathways. The 

release of cytochrome c (Cyt c) from the intermembrane space (IMS) triggers the caspase cascade (see details in 

the text) yielding to the cell death by apoptosis. MMP; mitochondrial membrane potential, mPTP; mitochondrial 

permeability transition pore (adapted from (37)). 
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2. Mitochondrial dysfunction in Alzheimer�s disease 

 

 AD is an age-related neurodegenerative disorder that currently affects about 2% of 

the population in industrialized countries and accounts for more than 60% of all dementia 

cases (43). The disease is marked by a progressive physical and cognitive decline due to a 

reduced size of brain regions involved in learning and memory, such as temporal/frontal 

lobes and hippocampus, as the result of neuronal death and synaptic degenerations 

(Fig.10). In addition, positron emission tomography (Pet) studies performed in AD patients 

revealed a large hypometabolism and decrease of glucose uptake in the frontal cortex and 

temporal lobes, which correlates with the neuronal loss observed in these regions (44; 45). 

 

 

 
 

Fig. 10: AD results in shrinkage of brain regions involved in learning and memory. Positron emission tomography 

(Pet) images show glucose uptake (red and yellow=high levels of uptake) in a healthy person (top) and an AD 

patient (bottom). The AD patient exhibits a drop in energy metabolism in the frontal cortex and the temporal lobes 

(adapted from http://www.google.fr/images/Alzheimerdisease and (44)). 
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 This neuropathology will become increasingly burdensome and costly in the coming 

years as AD prevalence is expected to double within the next two decades (43). A post-

mortem examination is required to clearly diagnose AD with the detection of �plaques� 

(amyloid-! (A!) deposits) and �neurofibrillary tangles� (NFT, aggregated tau protein) in the 

brain parenchyma, especially in the entorhinal cortex, hippocampus, basal forebrain and 

amygdala, that are regions involved in learning and memory processes (44). 

 

a) Clinical symptoms and etiological factors 

 

 AD is a progressive neurodegenerative disease that usually begins in late life (onset ± 

65 years old) and is first marked by episodic memory deficits with preserved alertness and 

motor functions (46). Over time, progressive deterioration of other cognitive abilities appears, 

leading to profound impairments in language, abstraction and orientation. In addition, other 

neuropsychiatric symptoms can be detected such as mood disturbances, delusions and 

hallucinations, personality changes and behavior disorders (aggressiveness, depression, 

circadian disturbances) but may vary from one patient to another (46; 47). On average, death 

occurs a mere seven years following diagnosis, typically from medical complications 

(bronchitis or pneumonia) (43). Until now, there are no treatments to cure, prevent or slow 

the disease (47). 

 The complete etiological picture of AD remains unknown. However, the disease can 

be classified into two different forms: i) The sporadic AD (SAD) which represents the vast 

majority of AD case with an onset occurring at an age over 60 years; ii) The rare familial 

forms (FAD) which represent less than 1% of the total number of AD case and are 

characterized by an early disease onset at an age younger than 60 years (48; 49). Both 

forms of AD show the same clinical symptoms and neuropathology, as memory loss, amyloid 

deposits in the brain and neurofibrillary tangles. However, FAD is marked by a more rapid 

disease progression and can be transmitted to offspring in a Mendelian manner (50). 

  Genetic studies in FAD patients have identified autosomal dominant mutations in 

three different genes: the amyloid precursor protein (APP, more than 20 pathogenic 

mutations identified) and the presenilins 1 and 2 (PS1 and PS2, over 130 mutations 

identified) (51; 50). These genes are directly linked to the accumulation of A! deposits in the 

brain due to the increased production of A! peptide from its precursor protein APP (Fig. 

11A).  
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Fig.11: Mutations in APP and tau associated with FAD and frontotemporal dementia with parkinsonism linked to 

chromosome 17 (FTDP-17) respectively. (A) Part of the APP amino-acid sequence where mutations associated 

with early-onset Alzheimer�s disease have been highlighted. Most mutations are clustered in the close vicinity of 

secretase-cleavage sites, thereby influencing APP processing, and are named after the nationality or location of 

the first family in which that specific mutation was demonstrated. (B) Mutations in the tau gene in frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17). Schematic diagram of the longest tau isoform 

(441 amino acids) with mutations in the coding region. Twenty missense mutations, two deletion mutations and 

three silent mutations are shown (adapted from (50) and (52)). 

 

 Surprisingly, no mutations in microtubules associated protein tau (MAPT), the protein 

responsible for NFT formation, has been so far detected in FAD. However, such mutations 

have been identified in familial frontotemporal dementia with Parkinsonism linked to 

chromosome 17 (FTDP-17) (52) (Fig. 11B) and lead to NFT formation. The identification of 

these genes enabled, among others, the generation of simple, double and even triple 

transgenic animal models bearing these mutations. Transgenic models have now become 

the most used tools to study AD pathogenic mechanism in vivo (51). 
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 Regarding SAD cases, no clear etiological factors have been established until now. 

The main risk factor remains age since the incidence rate for AD increases exponentially 

after 60 years, especially during the 7th and 8th decades of life (48). Epidemiological studies 

revealed that two thirds of AD patients are women and the sudden drop in estrogen levels 

after the menopause has been proposed to be one risk factor in AD (53; 54) (see section 

I.B.4). Susceptibility genes have also been identified, in particular gene coding for the E4 

isoform of apolipoprotein E (apoE4). Evidences showed that ApoE4 reduces A! clearance 

and increase A! aggregation, and individuals producing this isoform have an increased risk 

to develop AD (44; 48). Besides, the recent development of powerful and sophisticated 

genotyping approaches used in genome-wide association studies (GWAS) enabled to 

highlight others genes of �susceptibility� belonging to four main pathways: immune response, 

APP processing, lipid metabolism and endocytosis (reviewed in (48)). 

 Epidemiological findings include other risk factors such as behavioral (sedentary 

lifestyle), diets (high-calories, high-fat diets) and diverse environmental factors (low 

education level, history of head trauma). However, despite accumulating data, clear 

causative factors of AD have not been established. 

 

b) Histopathological hallmarks 

 

 The two key histopathological features of AD (amyloid deposits and neurofibrillary 

tangles) were already described in 1907 by Alois Alzheimer after post-mortem examination of 

the brain of a 51-year-old woman (Auguste D) who initially was diagnosed to suffer from a 

delusional disorder followed by a rapid loss of short term memory (55). Today, we know that 

those extracellular plaques are composed of the amyloid-beta (A!) peptide and the tangles 

(or intracellular neurofibrillary tangles, NFT) are formed by the aggregation of 

hyperphosphorylated tau, a microtubule-associated protein. These two histopathological 

hallmarks are frequently coupled with additional pathological changes including reactive 

microgliosis and, as mentioned above, neuronal loss and synaptic degeneration (47). 

 

(i) Neurofibrillary tangles and hyperphosphorylated tau 

 

 Tau belongs to the family of microtubule-associated proteins (MAP) that stabilizes 

microtubule function and assembly, and maintains appropriate functions of motor proteins 

within cells (56). Tau, which is expressed in most neurons, is mainly concentrated in axons 

and almost totally absent in dendrites (57). Since microtubules are important structures for 

axonal transport, cell polarity and shape, alterations in tau may seriously impair normal 

cellular physiology. AD and other tauopathies, like the FTDP-17, are similarly characterized 
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by an aberrant intracellular accumulation of tau within neurons, which results in tau 

hyperphosphorylation and its assembly into abnormal filaments (Fig.12) (52; 51).  

 

 
Fig.12: Hyperphosphorylated tau and neurofibrillary tangles (NFT). (A) Tau stabilizes microtubules that are 

essential for the trafficking of cellular cargo along the axons of neurons. (B) In AD, tau is abnormally 

hyperphosphorylated, which reduces its binding on microtubules and leads to tau sequestration into NFT. The 

loss of tau binding induces microtubules instability, reduces axonal transport and contributes to synaptic 

degeneration (adapted from (60)).  

 

 

 The causes of tau aggregation in AD are not fully understood and no tau mutation has 

been found in FAD. Since tau is a phosphoprotein containing 5 tyrosine residues and 80 

serine/threonine residues, it can be potentially phosphorylated by many kinases, including 

glycogen synthase kinase-3! (GSK-3!), cyclin-dependent kinase 5 (cdk5), extracellular 

signal-regulated kinase 2 (ERK2), protein kinase A and C, calcium-calmodulin dependent 
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protein kinase II (CaMKII), and mitogen-associated protein affinity-regulating kinases 

(MARK) (58). Studies have shown that tau is three to four times more phosphorylated in AD 

brain than in normal brain, especially at the microtubules binding site (59; 58). This induces 

conformational changes which result in the detachment of tau from microtubules, causing 

them to depolymerize, as well as tau aggregation in NFT (Fig.12). This histopathological 

hallmark of AD generates problems with synaptic integration that inexorably leads to 

neurodegeneration (60; 61). 

 

(ii) Amyloidogenic!pathway!and!A !deposits 

 

 Although the causative factors of AD remain unknown, the leading hypothesis is still 

that A! accumulation, a product of amyloid precursor protein (APP) processing, is an 

underlying pathological component of the disease. The discovery of mutations in genes that 

code for APP, PS1 or PS2 and responsible for FAD cases, have led Hardy and Higgins to 

propose the �Amyloid cascade hypothesis� in 1992 (62). This hypothesis posits that A! 

deposition is the causative agent of AD pathology and the direct results of this deposition are 

the formation of NFT, neuronal dysfunction and death, leading to dementia (62; 63). APP is a 

type 1 integral glycoprotein (110-130 kDa) that is ubiquitously expressed in human tissues 

(64; 65). The physiological functions of APP remain unclear but previous studies highlighted 

its role in cell adhesion, synaptic plasticity, regulation of neuronal survival and neuritis 

outgrowth (reviewed in (66)). APP is located at the plasma membrane (or the luminal side of 

the endoplasmic reticulum (ER) and Golgi apparatus) and contains a 40 or 42 amino acid 

sequence, respectively, called A!40 and A!42 (67). APP undergoes two proteolysis pathways 

by secretases: a non-amyloidogenic pathway and an amyloidogenic pathway (Fig. 13A). In 

the first one (non-amyloidogenic), APP is cleaved by the "-secretase, an enzyme that 

belongs to the ADAM family (a disintegrin and metalloproteinase family enzymes), which 

produces the "-APPs and the membrane-anchored C83 fragments (65). The latter is 

subsequently catalyzed by '-secretase (for which presenilin 1 and 2 (PS1 and PS2) act as 

catalytic subunits) to form the nontoxic or neurotrophic products, the APP intracellular 

domain (AICD) and P3 fragment (Fig. 13A). 

 In the amyloidogenic pathway, APP is first cleaved by !-secretase (mostly !-site of 

APP cleaving enzyme or BACE) that cut APP at the N-terminus to form !-APPs and C99 

fragments. The latter is subsequently cleaved by '-secretase producing A! and AICD. Of 

note, the released A! can vary in length, depending on the site of cleavage, of those A!42 

that is more hydrophobic and has a higher propensity to form fibril aggregates found in the 

brain of AD patients, whereas A!40 is more common but less fibrillogenic (Fig. 13B) (65; 50). 
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Fig. 13: APP processing and A! assembly stages. (A) APP is cleaved by "-, !- and '-secretase to produce 

various APP products, including A! peptide (see details in the text). (B) A! peptide exists in multiple assembly 

states, including monomers, oligomers, protofibrils and fibrils which can accumulate in amyloid plaques in the 

brain of AD patients (adapted from (65)).  
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 A! is produced as a monomer and does not appear to be toxic under this form (65). 

Nevertheless, A! readily aggregates to form oligomers, protofibrils and fibrils, and the 

oligomeric species of A! have been found to be the earliest pathological and toxic form, 

inducing oxidative stress, disrupting Ca2+ homeostasis, impairing synaptic plasticity and 

leading to neuronal death (Fig.14) (65; 44). However, the �Amyloid cascade hypothesis� has 

more recently been challenged by the �Alzheimer mitochondrial cascade hypothesis�, which 

place mitochondria in the center of the pathophysiological events taking place in AD.  

 

 

 

 

Fig.14: Toxic effects of A! in neurons. A! peptide-induced oxidative stress leads to lipid peroxidation (at the 

plasma and mitochondrial membranes) and to oxidation of proteins including membrane transporters, receptors 

(GTP-binding proteins�) or ion channels (voltage-dependent chloride channel, N-methyl-D-aspartate receptor). 

A! can also alter calcium homeostasis and impair endoplasmic reticulum (ER) and mitochondrial functions, 

leading to an increased ROS production, decreased ATP production and, finally, cell death (adapted from (44)). 
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c) Mitochondria: a common target of A! and tau 

 

 There is increasing evidence supporting that mitochondrial dysfunction is a prominent 

and early event of AD, since energy deficiency is a fundamental characteristic of AD brains 

(68) as well as of peripheral cells derived from AD patients (69). Indeed, brain glucose 

hypometabolism has been observed in living AD patients even before the onset of clinical 

symptoms (70). This characteristic is also observed in AD mouse models in which 

mitochondrial dysfunctions can be detected before the appearance of A! deposits, NFT and 

cognitive impairments (reviewed in (71), see APPENDIX 1). In addition, a decreased activity 

of enzymes involved in glycolysis, Krebs cycle and ETC, such as "-ketoglutarate 

dehydrogenase("-KGDH), pyruvate dehydrogenase (PDH), and cytochrome c oxidase (COX, 

complex IV) (72; 73; 69), have been reported in AD post-mortem brains as well as in 

platelets and fibroblasts coming from AD patients. In parallel, post-mortem tissues revealed 

an increased level of protein oxidation/nitration and lipid peroxidation in brain areas 

containing A! deposits and NFT (74). Taken together, these data support the hypothesis that 

mitochondrial dysfunction is a highly relevant event in AD and has been proposed as a 

possible link between A! and tau pathology. 

 

(i) A !toxicity!and!mitochondria 

 

 A! peptide has been shown to interact with mitochondria in numerous ways (Fig. 15) 

(67). Evidence demonstrated that APP harbors a mitochondrial targeting signal and, 

specifically in human AD brain, accumulates in the protein import channels of mitochondria 

and may interact with translocases of the outer and inner mitochondrial membranes (TOM 

and TIM respectively) (75). Additional findings using cellular models overexpressing APP 

showed the presence of this protein in mitochondria, which led to the hypothesis that A! 

peptide may be produced within this organelle and contribute to mitochondrial dysfunction 

(76; 77). In agreement, studies performed in AD patients and animal models of AD showed 

an accumulation of A! in mitochondria, a phenomenon occurring early in the disease 

development, well before the formation of plaques (78-80). Within mitochondria, A! may 

directly interact with proteins, such as cyclophilin D (Cyp D) which is involved in the 

mitochondrial permeability transition pore (mPTP) and potentiate free radical production, or 

can directly bind the A!-binding alcohol dehydrogenase (ABAD), a protein up-regulated in 

the brain of AD patients and involved in mitochondrial estradiol metabolism (see section 

I.B.4.b ).  
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 Metabolic effects of A! and its precursor APP in cellular models of AD are in 

agreement with observations made in postmortem brains of AD patients. Indeed, studies 

performed on mice, PC12 cells, or human SH-SY5Y neuroblastoma cells overexpressing 

APP indicated a decrease in ATP production, an impaired MMP, as well as a decrease in 

mitochondrial complex IV activity, paralleled by an increase in ROS levels (76; 81; 82; 19). 

Of note, in the presence of a '-secretase inhibitor that prevent A! production, ATP and ROS 

levels were normalized, indicating that A! is directly involved in these mechanisms (76). In a 

recent study, quantitative iTRAQ proteomics was used to quantify the amount of protein 

deregulated after the treatment of native SH-SY5Y cells with A!42 (0.5 #M, 5 days). Data 

showed that 69 proteins were deregulated by A!42, and more than 25% of those proteins 

were involved in mitochondrial function and energy metabolism, again supporting the notion 

that mitochondrial dysfunction is a target of A! toxicity (83). This assumption was confirmed 

by in vivo data coming from studies performed on various transgenic mouse models. Indeed, 

mitochondrial dysfunction was detected early in the disease progression in simple transgenic 

mice bearing a mutation in APP or in double transgenic mice bearing mutations in APP and 

PS1 or APP and PS2. These mice presented a decrease in ATP level, decreased MMP, 

decrease complex IV activity, decreased mitochondrial respiration and increased oxidative 

stress in their brains (84-89). Of note, mitochondrial deficits were paralleled by soluble A! 

accumulation and were already detected before the presence of A! deposits and cognitive 

impairments (reviewed in (71)). 

 

 Finally, in addition to its metabolic impact, A! seems also to impair mitochondrial 

dynamics. For instance, in APP overexpressing cells, mitochondria appeared to be highly 

fragmented and abnormally distributed within cells compared to control cells (19). 

Quantification of proteins involved in fusion/fission activity revealed that DRP1 and OPA1 

were reduced, whereas FIS1 was significantly increased in APP cells (17-19). The disturbed 

fusion/fission activity observed in cells overexpressing APP leads mitochondria to a 

fragmented state that might, vice versa, have an effect on bioenergetic functions of these 

organelles. 
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Fig.15: Pathogenic convergence of A! and hyperphosphorylated tau on mitochondria. A! and tau are able to 

impair mitochondrial respiration by inhibiting the ETC (more precisely, complex IV and complex I respectively) 

inducing a decrease in oxygen consumption, ATP production and an increase in ROS level. This oxidative stress 

induced by ETC dysfunction can surpass cellular and mitochondrial scavenger (MnSOD, Cu/ ZnSOD) and 

impacts on MMP as well as mitochondrial DNA (mtDNA). Within mitochondria, A! can bind ABAD and CypD, 

leading to an enhanced ROS production and the opening of the mitochondrial permeability transition pore 

(mPTP). In parallel, A! can also be responsible of metabolic impairments, by inhibiting enzymes involved in 

glycolysis and the Krebs cycle, as well as the calcium-induced excitotoxicity in neurons. Finally, A! and tau can 

disturb mitochondrial fusion/fission activity, leading to abnormal mitochondrial network. CI complex I, CII complex 

II, CIII complex III, CIV complex IV, CV complex V, cyt c cytochrome c, Cu/Zn SOD copper/zinc superoxide 

dismutase, MnSOD manganese superoxide dismutase, ROS reactive oxygen species, mtDNA mitochondrial 

DNA, *+ mitochondrial membrane potential, TOM/TIM translocases of the outer/inner mitochondrial membranes, 

ABAD A!-binding alcohol dehydrogenase, FIS, fission protein 1, CypD cyclophilin D (adapted from (67) and  

(90)). 
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(ii) Role of hyperphosphorylated tau in mitochondrial dysfunction 

 

 As mentioned above (section I.A.2.b), when tau is abnormally hyperphosphorylated, 

the binding of tau on microtubules is reduced which leads to microtubule dissociation and 

impairs the transport of distinct cargoes along the axons, including mitochondria. Indeed, 

animal studies using transgenic mice overexpressing mutant tau protein revealed an 

impaired anterograde mitochondrial transport, reducing the number of mitochondria at the 

synapse (reviewed in (59), see APPENDIX 2). In consequence, energy deprivation was 

observed at the synapse, which led to synaptic degeneration and neuronal death (91). 

Proteomic studies analyzing the brain proteins of mutant tau transgenic mice (P301L tau 

mice) showed a deregulation of metabolism-related proteins, mainly components of 

mitochondrial respiratory chain complexes (including complex V), antioxidant enzymes and 

synaptic proteins (92). Of note, a decrease in complex V levels was also observed in the 

brain of FTDP-17 patients (92). Moreover, functional analysis performed on P301L tau mice 

showed that these animals presented an age-related mitochondrial dysfunction with a 

decrease of complex I activity, a decrease in mitochondrial respiration and ATP levels, and 

an increase of ROS production (92; 89). More recently, studies using human-derived 

neuroblastoma cells (SH-SY5Y) overexpressing either the wild type tau (wtTau) or P301L 

mutant tau showed that mutant cells had a decrease in ATP levels and an increased 

vulnerability to oxidative stress (16). In addition, compared to wtTau cells, P301L-transfected 

cells displayed smaller mitochondria with globular cristae and extensive branching of cristae 

membranes, and an impaired mitochondrial motility together with a down-regulation of both 

mitochondrial fusion and fission (16). Morphological signs were consistent with reductions in 

ATP turnover in mutant cells. Little is known about the role of tau in the impairment of 

mitochondrial dynamics. However, further evidences coming from animal studies, showed 

that the overexpression of human tau induced mitochondrial elongation in both Drosophila 

and mouse neurons (93). In this study, the authors shed new lights on tau�s role in 

mitochondrial dynamics and hypothesized that disruption of mitochondrial dynamics could be 

a direct mechanism of tau toxicity in neurons in vivo. However, since AD is marked by both 

A! and tau pathologies, both molecules have to be taken into account to dissect the 

underlying mechanisms of mitochondria dysfunction. 

 

(iii) Pathogenic convergence!of!A !and!tau!on!mitochondria 

 

 Recent evidences suggest that A! peptide and abnormally hyperphosphorylated tau 

protein may act synergistically to trigger mitochondrial dysfunction in AD (73; 94; 71). Firstly, 
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in vivo studies revealed that injection of A!42 fibrils in the brain of mutant tau transgenic mice 

(P301L mice) led to a 5-fold increase in NFT pathology (95). These results were confirmed 

by in vitro studies which showed that mitochondria coming from P301L mouse brains 

displayed an enhanced vulnerability in the presence of A!42 compared to wild-type control 

brains (84; 85). Indeed, isolated mitochondria from P301L mice showed a decreased MMP 

and an impaired OXPHOS activity in the presence of oligomeric or fibrillar A!. Of note, the 

oligomeric A! was more toxic than the fibrillar A!, suggesting that they both exert different 

degrees of toxicity.  

 Secondly, crossing APP mice with mutant tau mice enabled to understand more 

precisely AD-related neurodegenerative mechanisms mediated by A! and tau. Indeed, 

APPxTau double transgenic mice exhibited NFT pathology in spinal cord and pons already at 

3 months of age, compared to 6 months of age in simple tau transgenic mice (96; 97). A! 

plaques were also detected earlier (6 months of age compared to 12 months in APP 

transgenic mice), suggesting the existence of interplays between the two key proteins (86; 

97). Together, these findings indicated that A! pathology may triggers, or at least aggravates 

tau pathology. 

 Other studies investigated more precisely mitochondrial deficits in mouse models with 

deficiencies in both A! and tau proteins. In a triple transgenic mouse model of AD (tripleAD, 

APPxPS2xP301L), proteomic mass spectrometry analysis revealed that more than a third of 

dysfunctional proteins were mitochondrial proteins with major deficiencies found in subunits 

of complex I and IV of the ETC (89). The investigation of OXPHOS function revealed that 

deregulation of complex I activity was related to tau, whereas deregulation of complex IV 

activity was dependent of A!. Interestingly, a decrease in MMP was already detected at 8 

months of age in tripleAD mice compared to 12 months of age in theirs double transgenic 

littermates (APPxPS2). Moreover tripleAD mice exhibited stronger defects on OXPHOS, 

synthesis of ATP, and reactive oxygen species, emphasizing synergistic, age-associated 

effects of A! and tau upon mitochondria ((89) and see also APPENDIX 3). Of note, as in 
tripleAD mice, mitochondrial dysfunction preceded AD symptoms in another triple transgenic 

mouse model (3xTgAD), and impairments were further associated with higher ROS levels in 

aged transgenic mice (98). Together, these findings highlighted the key role of mitochondria 

in AD pathogenesis and consolidate the notion that a synergistic effect of tau and A! 

enhances the pathological mitochondria dysfunction at an early stage of AD. 

 

(iv) Alzheimer mitochondrial cascade hypothesis 

 

 Placing mitochondria in the center of the degenerative processes is the basis of the 

�Alzheimer mitochondrial cascade hypothesis�. This hypothesis was first stated in 2004 by 
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Swerdlow and colleagues (99), and postulated that mitochondrial function may affect APP 

expression and processing as well as A! accumulation which triggers the amyloid cascade. 

In fact, the amyloid cascade hypothesis has been postulated with regard to FAD cases with 

mutations in APP or PS1/PS2 genes that represent less than 1% of total AD patients and 

cannot explain the etiology of sporadic AD (SAD) cases. As mentioned in section I.A.2.a, 

aging is the first �risk factor� of SAD. The role of mitochondria in aging has been widely 

investigated for decades (100; 101; 36) and a growing body of evidence championed the 

idea that somatic mtDNA mutations, accumulating over a person�s lifespan, may influence 

aging and may cause neurodegeneration, such as in AD (reviewed in (102)). In this way, the 

Alzheimer mitochondrial cascade hypothesis maintains that the decline of mitochondrial 

function observed during aging, namely the decreased in energy production and the increase 

in ROS production and oxidative stress, eventually surpasses a threshold and triggers the 

amyloidogenic pathway leading to A! accumulation (Fig. 16).  

 A! can perturb mitochondrial function by influencing OXPHOS activity, impairing 

mitochondrial fusion/fission activity and disturbing calcium homeostasis. The improper 

mitochondrial function generates a decrease in MMP and ATP production - paralleled by an 

increase in ROS production which, again, influences APP processing - induces mtDNA 

mutation, augments tau hyperphosphorylation and NFT formation which in turn disturbs 

mitochondrial trafficking and function. Thus, several vicious cycles are triggered, each 

accelerating the other, which finally leads to synaptic dysfunction and neuronal death by 

apoptosis (Fig.16). 

 In this context, with regard to their critical roles in the early pathogenesis of AD, 

mitochondria represent attractive targets for treatment strategies. 
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Fig.16: A hypothetical sequence of the pathogenic steps of the Alzheimer mitochondrial cascade hypothesis. The 

main cytotoxic pathway of A! (red arrows) involves A!-induced mitochondrial function, increased ROS 

production, activation of neurofibrillary tangles (NFT) formation, synaptic failure, and neurodegeneration. Several 

other pathways feed this cascade via feeding back (dark red arrows) or forward (dashed arrows) revealing several 

vicious cycles within a larger vicious cycle. All of them, once set in motion, amplify their own processes, thus 

accelerating the development of AD. ROS reactive oxygen species, mtDNA mitochondrial DNA, MMP 

mitochondrial membrane potential, TOM translocases of the outer mitochondrial membranes, ABAD A!-binding 

alcohol dehydrogenase, CypD cyclophilin D, ETC electron transport chain (adapted from (67)). 
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(v) Mitochondria as therapeutic target in neurodegeneration 

 

 The role of mitochondrial dysfunction in neurodegeneration is not restricted to AD but 

is becoming increasingly apparent in a broad range of degenerative diseases, including 

Parkinson�s and Huntington�s disease and amyotrophic lateral sclerosis (103). Accordingly, 

many studies are focused on the search of drug candidates that preferentially target 

mitochondria and current pharmacological concepts aim to: increase mitochondrial 

respiration and ATP production, reduce mitochondrial ROS production, stabilize the mPTP, 

and induce mitochondrial biogenesis. For instance, a study using APP/A! overexpressing 

cells showed that a treatment with Ginkgo Biloba extract attenuated A!-induced 

mitochondrial dysfunction by decreasing A! secretion and ROS levels, improving 

mitochondrial respiration, as well as increasing ATP synthesis and mitochondrial biogenesis 

(82). 

 

 Since oxidative stress is a redundant mechanism in neurodegeneration, various 

antioxidants, including creatine, vitamin E and C, !-carotenes or co-enzyme Q, have been 

tested in vitro, in vivo and even in human with anecdotal but no generally recognized degree 

of success (104; 103; 105; 106). More recently, new mitochondria-targeted antioxidants and 

peptides that selectively block mitochondrial oxidative damage have been developed (107; 

108). These compounds use the MMP to accumulate within mitochondria, reducing side 

effects by avoiding non-specific interaction with other targets. One of these compounds, 

MitoQ, has been shown to decrease oxidative stress, A! accumulation, astrogliosis, synaptic 

loss, and apoptosis in the brain of 3xTgAD mice, which prevented cognitive decline (107).  

 

 Other studies aimed to increase energy metabolism by boosting mitochondria or 

inducing mitochondrial biogenesis. Notably, resveratrol and thiazolidinedione represents drug 

candidates that are able to induce mitochondrial biogenesis and it was recently proposed 

that AD patients might benefit thiazolidinedione mitochondrial effects (106).  

 

 Further investigations and larger clinical trials are needed to judge the therapeutic 

efficacy of these compounds. Here, we propose neurosteroids as new candidates to boost 

mitochondrial function in health and disease states (see sections II.A and B). 
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B. Neurosteroids 

 

1. Definition 

 

 The term �neurosteroid� appears for the first time in the 80s and defines those 

steroids that are synthesized de novo in the nervous system. They accumulate within the 

nervous system, independent from peripheral steroidogenic glands (109; 110). Indeed, in 

1981, the pioneering studies of Baulieu and coworkers have demonstrated the production of 

steroids within the brain itself (111). They showed that the level of some steroids, such as 

dehydroepiandrosterone (DHEA), was even four times higher in the anterior brain of rats 

than in plasma and nearly 18 times higher than in the posterior brain with regard to its 

sulfated form (DHEAS). Later on, a number of studies showed that other steroids were 

synthesized in the brain, and enzymatic activities of proteins involved in steroidogenesis 

were shown in neurons as well as in glial cells (112; 109; 113; 110; 114). Unlike steroidal 

sex hormones that are released in the blood and act at a distance from their glands of origin 

in an endocrine way, neurosteroids were identified to be synthesized within the nervous 

system and act on the nervous system in an auto/paracrine configuration. 

 The family of neurosteroids includes different categories of steroids: i) non-exclusive 

neurosteroids such as estradiol, testosterone, pregnenolone (PREG), progesterone (PROG) 

or dehydroepiandrosterone (DHEA) that are steroidal hormones synthesized in neurons, glial 

cells or per endocrine glands, ii) semi-exclusive neurosteroids such as allopregnanolone that 

is mainly synthesized in the nervous system but also produced in substantial amounts within 

endocrine glands; iii) exclusive neurosteroids such as epiallopregnanolone that are steroids 

only produced in nerve cells (115; 116). All neurosteroids derive from cholesterol and other 

blood borne steroidal precursors, and have closely related structures based on the classic 

cyclopentanophenanthrene 4-ring structure (Fig.17). The first step of steroidogenesis takes 

place within mitochondria. 

 

 

Fig. 17: Structure of pregnenolone, illustrating the 

cycloperhydropentano-phenanthrene structure common to all steroids. 

The carbon atoms are indicated by numbers, and the rings are 

designated by letters according to standard conventions. Substituents 

and hydrogens are labeled as " or ! if they are positioned behind or in 

front of the plane of the page, respectively (adapted from (115)). 
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2. Neurosteroidogenesis 

 

 The transfer of cholesterol from the cytosol to the mitochondrial matrix constitutes the 

rate-limiting step of steroidogenesis. Cholesterol is essentially insoluble (critical micellar 

concentration, ~25�40 nM) (117) and its transfer requires the involvement of a multiprotein 

complex that is composed of protein located in the cytosol and at the outer and inner 

mitochondrial membrane (118). Once in the mitochondrial matrix, cholesterol is converted 

into pregnenolone that is further metabolized into subsequent neurosteroids either in 

mitochondria or in the endoplasmic reticulum (ER) major pathway. 

 

a) Cholesterol transfer to mitochondria 

 

 Intracellular cholesterol required for the subsequent steroid synthesis is known to 

come from three different sources (119): i) cholesterol is synthesized de novo in the 

endoplasmic reticulum (ER) from acetate. Then, it is trafficked to the Golgi apparatus where 

it can be targeted to the mitochondria by binding the protein acyl-CoA binding domain-

containing 3 (ACBD3). Passive diffusion from the ER to the mitochondria is also possible; ii) 

cholesterol comes from the plasma membrane, more specifically, in human, from plasma 

low-density lipoproteins (LDLs) derived from dietary cholesterol and is trafficked through the 

endosomal pathway (120); iii) Cholesterol can be mobilized from the lipid droplets where, 

irrespective of source, it can be esterified by acyl-coenzyme A (CoA): cholesterol 

acyltransferase (ACAT) and stored as cholesterol esters. 

 

 Once at the mitochondrial membrane, the regulation of the cholesterol flow into 

mitochondria is accomplished by a multiprotein complex, also called �transduceosome� 

(118). This multicomplex is composed of: ACBD3, the protein kinase A regulatory subunit I 

alpha (PKA-RI"), the steroidogenesis acute regulatory protein (STAR), the translocator 

protein (18 kDa, TSPO) and the voltage-dependent anion channel (VDAC) (Fig. 18). The 

main actor of this transduceosome is the translocator protein (TSPO), previously known as 

the peripheral-type benzodiazepine receptor (PBR), which is a ubiquitous mitochondrial 

protein enriched at the outer/inner mitochondrial membrane contact sites (121). Briefly, free 

cholesterol accumulates outside of mitochondria and binds to StAR protein, a hormone-

induced mitochondrial-targeted protein that initiates cholesterol transfer into mitochondria. 

Then, cholesterol is transported inside mitochondria by TSPO that forms a channel-like 

structure from its five transmembrane helices and is associated with VDAC and the adenine 

nucleotide transporter (ANT). TSPO is fundamental in neurosteroid production since the 

translocation of cholesterol from the outer membrane to the inner membrane of mitochondria 



INTRODUCTION  Neurosteroids 

43 

 

is the rate-limiting step of steroid synthesis (119). In fact, the ability of cholesterol to enter 

into mitochondria to be available to cytochrome P450 cholesterol side chain cleavage 

enzyme (P450scc), located in the inner side of the mitochondrial membrane and responsible 

for the conversion of cholesterol to pregnenolone (PREG), will determine the efficiency of 

steroidogenesis. Of note, a recent study showed that mitochondrial fusion was coupled with 

an increased steroidogenesis, suggesting that mitochondrial dynamics could play an 

essential role in steroid synthesis (122). 

 

 

 

Fig. 18: Transfer of cholesterol in mitochondria. Cholesterol, coming from different sources, accumulates outside 

of mitochondria and binds to the steroidogenic acute regulatory protein (StAR). Upon ligand activation, cholesterol 

is transported inside mitochondria by the transduceosome composed of translocator protein (TSPO), located in 

the outer mitochondrial membrane (OMM), voltage-dependent anion channel (VDAC), the protein acyl-CoA 

binding domain-containing 3 (ACBD3), protein kinase A regulatory subunit I alpha (PKA-RIa), StAR and the 

adenine nucleotide transporter (ANT). After transfer in the mitochondrial matrix, cholesterol is converted in 

pregnenolone by the cytochrome P450 side chain cleavage (P450scc) located in the inner mitochondrial 

membrane (IMM). LDLs; low density lipoproteins (adapted from (119)). 
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b) Enzymatic pathways of steroidogenesis 

 

 The enzymes involved in neurosteroidogenesis belong mainly to two families: i) 

cytochrome P450 enzymes and ii) hydroxysteroid dehydrogenase (reviewed in (123; 115)). 

The first family represents a group of oxidative enzymes containing about 500 amino acids 

and a single heme group, and can be found either in mitochondria (P450 type 1) or in the 

endoplasmic reticulum (P450 type 2). The name cytochrome P450 (pigment 450) comes 

from the fact that these enzymes absorb the light at 450 nm in their reduced states. The 

enzymes of the second family, the hydroxysteroid dehydrogenase (HSD), have molecular 

masses of about 35 to 45 kDa. They do not possess heme groups, and nicotinamide adenine 

dinucleotides (phosphates) (NADH/NAD+ or NADPH/NADP+) are the cofactors necessary to 

either reduce or oxidize a steroid by two electrons via a hydride transfer mechanism. Each 

enzyme of both families is able to catalyze several reactions involved in 

neurosteroidogenesis and can form different neurosteroids (Fig. 19).  

 

 Thus, once within the mitochondrial matrix, cholesterol is directly converted to PREG 

by P450scc. This process involves three distinct chemical reactions: the 22-hydroxylation of 

cholesterol, 20-hydroxylation of 22(R)-hydroxycholesterol, and oxidative scission of the C20�

22 bond of 20(R),22(R)-dihydroxycholesterol (the side-chain cleavage event) (115). These 

three reactions occur on a single active site that is in contact with the IMM and lead to the 

formation of PREG, the precursor of all steroids. After its synthesis within mitochondria, 

PREG can follow several pathways to form different neurosteroids (112) (Fig 19). 

 

 PREG can either be catalyzed by 3!-hydroxysteroid dehydrogenase (3!-HSD) to 

form progesterone (PROG) or by the cytochrome P450c17 enzyme (P450c17), also called 

17"- hydroxylase/17, 20-lyase, to form dehydroepiandrosterone (DHEA). P450c17 catalyzes 

the 17"-hydroxylation of PREG in a two step reaction giving, first, 17-hydroxyPREG (17OH-

PREG) and, then the final product, DHEA. Each step requires the molecules NADPH and O2. 

The same enzyme metabolizes PROG that is converted into androstenedione with the 17-

hydroxyPROG as an intermediate product of the reaction. The enzymes 3!-HSD is also 

involved in other reactions and uses NAD+ as cofactor to oxidize hydroxysteroids, such as 

17OH-PREG and DHEA, into their respective ketosteroids, 17OH-PROG and 

androstenedione. Then, androstenedione is either converted into testosterone by another 

hydroxysteroid dehydrogenase called 17!-HSD or in estrone by P450aro, also called 

aromatase. Of note, 17!-HSD possesses several isoforms, and one of them (17!-HSD- 10) 

is located in the mitochondrial matrix and is also known under the name of A! binding 
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alcohol dehydrogenase (ABAD). ABAD was recently linked to AD because of its ability to 

bind A! peptide, thus inducing mitochondrial dysfunction (124; 79) (see section I.B.4.b). 

17!-HSD and P450aro are involved in the synthesis of estradiol from estrone and 

testosterone respectively. At this level, the 5"-reductase enzyme (5"-R), a microsomal 

NADPH-dependent protein, intervenes to catalyze the transfer of two atoms of hydrogen 

from NADH to form the 5"-reduced metabolite of testosterone, dihydrotestosterone (DHT). 

Finally, the enzyme 3"-hydroxysteroid oxido-reductase (3"-HSOR), also called 3"-

hydroxysteroid dehydrogenase, catalyzed the reversible conversion of DHT in the 

neuroactive steroid 3"-androstanediol. The latter enzymes intervene also at another level, in 

the second main steroidogenic pathway that derives from PROG. In fact, PROG is 

successively metabolized by the 5"-R and the 3"-HSOR to form dihydroprogesterone (DHP) 

and 3"/5"-tetrahydroprogesterone (3"/5"-THP), also known under the name 

allopregnanolone, another neuroactive steroid. PREG and DHEA can also  be sulfated and 

de-sulfated by the hydroxysteroid sulfotransferase (HST) and sulfatase respectively, to form 

PREG sulfate and DHEA sulfate. 
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Fig.19: Schematic representation of main biochemical pathways for neurosteroids biosynthesis in the vertebrate 

brain (see details in the text). 17OH-PREG; 17-hydroxypregnenolone, 17OH-PROG; 17-hydroxyprogesterone, 

DHEA; dehydroepiandrosterone, DHP; dihydroprogesterone, ALLOPREG; allopregnenolone, DHT; 

dihydrotestosterone, P450scc; cytochrome P450 cholesterol side chain cleavage, P450c17;cytochrome P450c17, 

3!-HSD; 3!-hydroxysteroid dehydrogenase, 5"-R; 5"-reductase, Arom.; aromatase, 21-OHase; 21-hydroxylase, 

3"-HSOR; 3"-hydroxysteroid oxydoreductase,17!-HSD; 17!-hydroxysteroid dehydrogenase, HST; 

hydroxysteroid sulfotransferase, STS; steroid sulfatase. 
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 The expression and activity of enzymes involved in neurosteroid biosynthesis were 

demonstrated in different regions of the brain, and also in the peripheral nervous system (112; 109; 

113). Studies mainly performed in amphibian and bird models showed that the activity of those 

enzymes could be regulated by neurotransmitters and neuropeptides (Table 1), but little is known 

regarding the neuronal mechanisms regulating neurosteroid synthesis in the mammalian brain 

(reviewed in (112)). The fact that the ability to produce neurosteroids was conserved during 

vertebrate evolution suggests that this category of molecules plays an important role in living things. 

 

Table 1: Effects of neurotransmitters and neuropeptides on steroidogenic enzyme activity in the brain.  

 
P450scc 

3!-

HSD 
P450c17 

3"-

HSOR 
P4507" Aromatase HST 

GABA - - - nd nd < nd 

Dopamine nd - nd - nd - nd 

Glutamate nd nd nd nd nd - nd 

Melatonin nd nd nd nd - nd nd 

Endozepines = = = nd nd nd nd 

Vasotocin/mesotocin nd = = nd nd nd nd 

Neuropeptide Y (NPY) nd nd nd nd nd nd - 

=; stimulatory, -; inhibitory, <; no effect, nd; not determined (adapted from (112)). 

 

 

3. Mechanism of action of neurosteroids and physiological roles 

 

 The lipophilic nature of neurosteroids allows them to act both via membrane receptor 

or to cross cellular membranes and to act through a conventional genomic pathway via 

nuclear receptors (Fig.20). The genomic action of steroids seems to be important during 

neonatal life where it has been shown that neurosteroids, as PROG or estradiol, are able to 

promote dendritic growth, spinogenesis, synaptogenesis and cell survival, particularly in the 

cerebellum (114). Among classical nuclear steroid receptor, we found estrogen receptors 

(ER), androgen receptors (AR) and progestin receptors (PR). The most studied steroid 

nuclear receptors are the estrogen receptors " and ! (ER"/!) that are expressed in 

metabolic tissue such as adipose tissue, skeletal muscle, liver and pancreas, as well as in 

the central nervous system. Studies demonstrated that these receptors play a role in the 

regulation of glucose homeostasis and lipid metabolism (125) while other studies showed 

that they were also implicated in neuroprotection (see section I.B.5). More recently, the 

pregnane X receptor was identified as a new nuclear receptor activated by progesterone and 
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allopregnanolone, and its activation seemed to be involved in cholesterol homeostasis and 

neurosteroid synthesis (126-128). 

 

 
 

Fig. 20: Different potential mechanisms of action of neuroactive steroids, including hormonal steroids, in the 

nervous system. (A) Neuroactive steroids may bind to ion channels associated to neurotransmitter receptors (1), 

to putative steroid receptors in the plasma membrane (2), to classical nuclear steroid receptors associated with 

the plasma membrane (3) or to classical nuclear steroid receptors located in the cytoplasm (4). Intracellular 

signaling pathways activated by neuroactive steroids are depicted. The activation of classical nuclear receptors 

(4) results in their dimerization and binding to steroid responsive elements (SRE) in the promoters of specific 

genes and the consequent regulation of transcription (5). In addition, membrane and cytoplasmic signaling 

modulated by neuroactive steroids can also impact transcriptional activity (6) (adapted from (132)). (B) Schematic 

representation of structural domains of steroid nuclear receptors. AF1/2; activation function 1/2, DBD; DNA 

binding domain, LBD; ligand binding domain (adapted from (133)). 
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Neurosteroids can also act via membrane receptors as allosteric modulators of 

neurotransmitter receptors. They have been found to act as allosteric modulators of the 

GABAA/central-type benzodiazepine receptor complex, NMDA receptors, kainate receptors, 

AMPA receptors, sigma receptors and glycine receptors (129-131; 110). More precisely, 

DHEA and its sulfate ester DHEAS are known to be excitatory neurosteroids and can act as 

antagonists at GABAA receptors or as agonists at sigma receptors (115). Pregnenolone 

sulfate is also known as a negative regulator of GABAA, kainite, and AMPA receptors, and as 

positive regulator of NMDA receptors, thus acting as an excitatory neurosteroid (115; 110). In 

contrary, allopregnanolone is a positive GABAA-R allosteric modulator that strengthens the 

effects of GABA. Allopregnanolone acts on GABAA-R at nanomolar concentrations at sites 

distinct from those bound by GABA, benzodiazepines, and barbiturates, functioning as an 

allosteric modulator to open the channel and increase chloride flux (Fig 21).  

 Furthermore, it is known that neurosteroids modulate neurotransmitter binding sites or 

receptors including calcium channels and P2X receptors in the brain, spinal cord, as well as 

the dorsal root ganglia (DRG) (134). Of note, recent clinical and pharmaceutical studies 

showed that estrogens can interact with several neurotransmitter systems, as cholinergic and 

serotoninergic system, to influence cognitive performance in animals and humans (135). 

 Thus, neurosteroids seem to play an important role in the nervous system during 

development as well as in adult brain, by regulating gene transcription and different 

neurotransmitter systems. Their implication was already demonstrated in several 

pathologies, especially in AD. 

 

 

 

Fig. 21: Structure of the GABAA (A) and the NMDA (B) receptors. Both can be modulated by neurosteroids 

(adapted from (136)). 



INTRODUCTION  Neurosteroids 

50 

 

 

4. Neurosteroids, Aging and Alzheimer�s disease 

 

a) Age-related changes in brain neurosteroid levels 

 

 Because steroid hormones are lipophilic molecules, those that are synthesized by the 

peripheral steroidogenic glands can easily cross the blood-brain barrier and act on the 

nervous system in an endocrine way. The blood levels of these neuroactive steroids are 

known to decrease with age (137). In women, estrogen levels drop after the menopause, 

whereas men present a gradual reduction in testosterone over the life course eliminating 

approximately 2% of circulating testosterone every year (138; 53). Of note, the age-related 

decrease of steroid hormones has been presented as a risk factor to develop 

neurodegenerative diseases, including AD ((90), see APPENDIX 4). However, since 

neurosteroids are locally synthesized within the nervous system, steroid blood levels do not 

necessarily correspond to steroid brain concentrations (137). Thus, the age-related changes 

in neurosteroid levels are challenging to investigate in humans due to the presence of blood-

derived steroid hormones. 

 Studies performed in rats showed that the synthesis of PREG sulfate was decreased 

in the hippocampus of aged rats (2 years old) compared to young rats (3 months old) (139). 

The hippocampus is a brain region involved in learning and memory, and the decrease of 

PREG sulfate in this region correlated with cognitive impairments in old rats. Of note, these 

cognitive deficits were transiently reduced after intrahippocampal injection of PREG sulfate, 

suggesting that this neurosteroid plays a role in the maintenance of cognitive function during 

aging. More recently, Caruso and colleagues (2013) compared neurosteroid levels in the 

limbic region of young (7 months old) and old mice (24 months old) (140). They showed an 

alteration in neurosteroid levels with a general trend toward lower steroid levels in the brain 

of aged mice compared to young mice.  

 Together, these data indicate that neurosteroid levels decline gradually with 

advancing age which may induce a range of age-related neuronal dysfunction, cognitive 

impairments and neurodegeneration due to the loss of neurosteroid protective effects (see 

section I.B.5). 

 

b) Disturbed neurosteroidogenesis in Alzheimer�s disease  

 

 Studies performed in AD patients as well as in animals and cellular models of AD 

showed some alterations in the synthesis of neurosteroids that declined during brain aging 

paralleled by a loss of important nervous functions, such as memory (141; 140; 142). TSPO, 
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which regulates the first step of steroidogenesis, was over-expressed in post-mortem brains 

from AD patients, resulting in an increased level of PREG in the hippocampal region of those 

brains (119). Interestingly, the level of 22(R)-hydroxycholesterol, a steroid intermediate in the 

conversion of cholesterol to PREG, was found at lower levels in AD brain compared to 

control, which suggest that TSPO does not function normally in Alzheimer patients (141; 

121). Another study showed that DHEA was significantly elevated in AD brain and cerebro-

spinal fluid when compared to control subjects (141). Similar results were obtained in vitro in 

oligodendrocytes, where DHEA production was up-regulated under oxidative stress condition 

induced by treatment with A! peptide (143). In a study using 3xTg-AD mice, modified levels 

of specific neurosteroids, in particular in the levels of progesterone and testosterone 

metabolites, were measured in aged mice (24 months) compared to young (7 months), and 

were associated with age-related neuropathological changes in the brain, such as A! 

accumulation and gliosis (140). In accordance, several neurosteroids were quantified post-

mortem in various brain regions of aged AD patients and aged non-demented controls. 

Results showed a general trend towards lower steroid levels in AD patients compared to 

controls, associated with a negative correlation between neurosteroid levels and A! as well 

as hyperphosphorylated tau protein in some brain regions (137). Finally, several reports 

propose the role of allopregnanolone as a plasmatic biomarker for AD, since it was shown 

that the level of this neurosteroid is decreased by 25 % in the plasma of demented patients 

compared with control subjects (144; 142). 

 In accordance, recent findings corroborated that AD key proteins - A! and 

hyperphosphorylated tau - distinctly impacted neurosteroidogenesis in a cellular AD model 

(Fig. 22) ((145; 146) and see also APPENDIX 5).  

 Overexpression of wtTau protein induced an increase in the production of PROG, 3"- 

androstanediol and 17OH-PROG, in contrast to overexpression of the abnormally 

hyperphosphorylated tau bearing the P301L mutation which led to a decrease in the 

production of these neurosteroids. In parallel, a decrease of PROG and 17OH-PROG 

production was observed in APP overexpressing cells, whereas 3"-androstanediol and 

estradiol levels were increased. These results provided the first evidence that AD key 

proteins are able to modulate, directly or indirectly, the biological activity of the enzymatic 

machinery producing neurosteroids. Other in vitro experiments using native SH-SY5Y cells 

treated with aggregated A!42 fibrils for 24 h were in line with these findings (145). A treatment 

with �non-toxic� A! concentrations (within the nanomolar range, non-cell death inducing A!42 

concentrations) revealed an increase in estradiol production, whereas toxic A! 

concentrations (within the micromolar range, leading to cell death) showed the opposite 

effect (145). 
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Fig. 22: Disturbed neurosteroidogenesis in AD. PREG; pregnenolone, 17OH-PREG; 17-hydroxypregnenolone; 

PROG; progesterone, 17OH-PROG; 17-hydroxyprogesterone,  DHEA; dehydroepiandrosterone, DHP; 

dihydroprogesterone, ALLOPREG; allopregnanolone, DHT; dihydrotestosterone, Tau; abnormally 

hyperphosphorylated tau protein, A!; amyloid-! protein. 

 

 

 As mentioned in section I.A.2.c, recent reports indicate that A! may also interact 

directly with intracellular proteins such as the mitochondrial enzyme ABAD (A! binding 

alcohol dehydrogenase) in executing its toxic effects (79). ABAD belongs to the family of 

17!-hydroxysteroid dehydrogenase and is able to metabolize estradiol within the 

mitochondrial compartment. ABAD is up-regulated in AD brain areas affected by A! 

pathology such as the cortex and hippocampus, as well as in AD transgenic mouse models 

(79; 147). Studies performed in double transgenic mice overexpressing mutant APP and 

ABAD showed that the binding of A! on ABAD exacerbates mitochondrial dysfunction 

induced by A!, namely a decrease of mitochondrial complex IV activity, diminution of O2 

consumption and increase of ROS (147). Furthermore, these mice presented an early onset 

of cognitive impairment and histopathological changes compared to APP mice, suggesting 

that A!-ABAD interaction is an important mechanism underlying A! toxicity. The inhibition of 

A!-ABAD interaction, using a decoy peptide, was able to restore mitochondrial deficits 

induced by A! in vivo and improve neuronal and cognitive function (147). 

 To gain insights into the pathological mechanisms of A! upon mitochondria, we 

investigated the role of a novel small ABAD-specific compound inhibitor (AG18051) on A!-

induced mitochondrial toxicity and estradiol metabolism in SH-SY5Y cells ((124), see 
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APPENDIX 6). We found that AG18051 partially blocked A!-ABAD interaction and prevented 

the A!-induced down-regulation of ABAD activity by normalizing estradiol levels. 

Furthermore, AG18051 was protective against A! and reduced A!-induced impairment of 

mitochondrial respiration, oxidative stress and cell death. Our results emphasized the 

inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for 

the prevention and treatment of AD, and suggest that the endogenous modulation of 

mitochondrial estradiol metabolism is important for mitochondrial activity (90). 

 Taken together, these data suggest that disturbances in neurosteroid metabolism 

may be an underlying mechanism in AD. Neurosteroids may act in a delicate balance on the 

brain and mitochondrial function, and offer interesting therapeutic opportunities because of 

their pleiotropic effects in the nervous system. 

 

5. Evidence of neuroprotective action of neurosteroids against Alzheimer�s 

disease 

 

 The exact mechanisms underlying neurosteroids action in the nervous system are still 

unclear. However, studies based on behavioral responses evoked in animals by steroid 

injections suggested neurosteroid involvement in various neurophysiological processes 

including the development of the nervous system, adaptive responses of neuronal and glial 

cells under pathological conditions, and neuronal plasticity.  

 For instance, in vitro studies demonstrated that nanomolar concentration of DHEA 

and DHEAS stimulated the outgrowth of axons and dendrites, respectively, in primary 

cultures of embryonic mouse neurons (148). In accordance, subcutaneous injection of DHEA 

enabled an increased neurogenesis in the dentate gyrus of rats (149). Progesterone and 

estradiol also appears to stimulate cerebellar development since they were shown to 

promote dendritic growth, spinogenesis and synaptogenesis in developing Purkinje cells 

(114). Indeed, those neurosteroids have the ability to bind to microtubule-associated protein 

2 (MAP2), known to promote tubulin polymerization or microtubule stability, in cultured 

neurons (112). Furthermore, in vivo studies showed that testosterone, estradiol and PROG 

are able to regulate the phosphorylation of tau protein, which is essential for its association 

with axonal microtubules and the regulation of axonal growth (132). In addition, progesterone 

is able to stimulate myelin synthesis in the peripheral nervous system by acting on neuronal 

gene expression via its classic nuclear receptor (150; 151). Other studies demonstrated that 

neurosteroids, such as pregnenolone sulfate, PROG or allopregnanolone enhances memory 

in rodents and exerts behavioral effects, probably via their non-genomic action (115). 

 Taken together, these findings suggest that neurosteroids may represent promising 

therapeutics for the treatment of neurodegenerative disorders by their ability to regulate brain 
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function, from the cellular level to the modulation of high cognitive functions. Indeed, a 

growing body of evidence highlighted the role of neurosteroids in neuroprotection. Studies 

showed that these molecules were protective against excitotoxicity, brain oedema, 

inflammatory processes and oxidative stress in a wide range of diseases including brain and 

spinal cord injury, stroke, Parkinson�s disease, epilepsy or AD (reviewed in (152)). The 

following evidences are focused on the neuroprotective effects of neurosteroids in AD. 

 

 The potential neuroprotective role of neurosteroids has been widely investigated, 

especially those of sex hormone-related neuroactive steroids (non-exclusive neurosteroids). 

Indeed, epidemiological studies showed that cognitive decline and the risk to develop 

neurodegenerative diseases, such as AD, could be associated with an age-related loss of 

estrogens (estrone (E1), estradiol (E2), and estriol (E3)), testosterone as well as 

progesterone in both, women and men (153; 53; 54). Studies demonstrated that estrogen 

depletion in postmenopausal women represents a significant risk factor for the development 

of AD and that a hormonal replacement therapy (HRT) might decrease this risk and even 

delay disease progression (154; 155). But, beneficial effects of HRT are still under debate 

since results from the �Woman>s health initiative memory study� (WHIMS) showed negative 

effects of long-term HRT with, however, synthetic estradiol and medroxyprogesterone 

instead of using natural hormones, in older women (156; 157) (see APPENDIX 4). In 

contrast, animal studies showed that treatment with estradiol was able to protect the brain 

against excitotoxicity, A! peptide-induced toxicity, free radical generators and ischemia 

(158). Estrogens are able to enhance cerebral blood flow, to prevent atrophy of cholinergic 

neurons, and to modulate the effects of trophic factors in the brain (159). 

 Studies using animal models of AD have shown that a treatment with estradiol had an 

impact on APP processing, decreasing A! levels and its aggregation into plaques in mice 

expressing mutations in human APP (Swedish and Indiana mutation) compared to wild-type 

mice (160). The underlying mechanisms are still poorly understood but it has been proposed 

that estrogens are able to trigger the "-secretase pathway (non-amyloidogenic) via activation 

of extracellular-regulated kinase 1 and 2 (ERK 1 and 2) and through protein kinase C (PKC) 

signalling pathway (153). In accordance, in female AD triple transgenic mice (3xTgAD), the 

depletion of sex steroid hormones induced by ovariectomy, enhanced significantly A! 

accumulation and had a negative impact on cognitive performance (161-163). Those effects 

were prevented by a treatment with estradiol.  

 At the cellular level, estradiol can act as transcription factor by binding nuclear 

receptors, such as ER " and !. It has been shown that estradiol enhanced the expression of 

anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, and down-regulated the expression of Bim, 

a pro-apoptotic factor, preventing the initialisation of the cell death program by mitochondria 
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(153; 164). Estradiol can also exert direct and indirect antioxidant effects by: i) up-regulating 

the expression of manganese superoxide dismutase (Mn-SOD) and gluthatione peroxidase 

(165); ii) increasing glutathione (GSH) levels and decreasing oxidative DNA damage in 

mitochondria, as observed in a study using ovariectomized female rats (166); iii) modulating 

the redox state of cells by acting on several signalling pathways, such as MAPK (mitogen-

activated protein kinase), G protein regulated signalling, NF?B, c-fos, CREB, 

phosphatidylinositol-3-kinase, PKC and Ca2+ influx (167; 164). On the basis of this complex 

mode of action, estradiol seem to be able to decrease oxidative stress markers, including 

lipid peroxidation, protein oxidation and DNA damage, but can also directly regulate 

mitochondrial function (reviewed in (90)) (Fig 23). 

 

Fig.23: Estradiol and mitochondrial dysfunction in AD. In AD, mitochondrial dysfunction was found to be a central 

pathological mechanism which occurs already in early stages of the disease (see details in section I.A.2). It has 

been shown that estradiol can increase glucose utilization by cells as well as ETC activity, stabilize the MMP and 

prevent ROS production and calcium-induced excitotoxicity. In the graph, E2 designates where estradiol 

potentially acts on the mitochondria to compensate A!-induced toxicity. ABAD A!-binding alcohol 

dehydrogenase, CI complex I, CII complex II, CIII complex III, CIV complex IV, CV complex V, cyt c cytochrome c, 

Cu/Zn SOD copper/zinc superoxide dismutase, MnSOD manganese superoxide dismutase, TCA tricyclic acid, E2 

estradiol, ROS reactive oxygen species, mtDNA mitochondrial DNA, ER estrogen receptor (adapted from (90)). 
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 Human and animal studies suggested that androgen deprivation represents a risk 

factor for AD pathogenesis in men (153; 168). Notably, in a triple transgenic mouse model of 

AD (3xTgAD), it has been shown that orchiectomized males presented an increased A! 

accumulation in the brain, coupled with impaired cognitive performances compared to sham 

operated mice (169). Treatment with androgens significantly attenuated the increase in AD 

pathology (168; 169). Testosterone appears to prevent tau hyperphosphorylation in a model 

of heat shock-induced phosphorylation through GSK signalling inhibition (170). Rosario and 

colleagues (168) demonstrated less abnormal tau accumulation in gonadectimized male 

3xTgAD mice treated with testosterone. Estradiol is aromatized from testosterone and other 

androgens, and this implies that testosterone may exert indirect effects on mitochondria, 

though some studies have shown that testosterone has anti-apoptotic effects mediated 

through the androgen receptor (137). Overk and colleagues (171) examined basal levels of 

serum and brain testosterone in male 3xTgAD mice and found that testosterone levels rise 

with disease progression. This increase in testosterone in aged male 3xTgAD mice was 

correlated with reduced A! plaque pathology. This suggests that testosterone may have 

some neuroprotective benefits against the AD disease course, but that testosterone 

administration is associated more with lesser A! protein burden rather than a reduction in 

abnormal tau protein. In fact, testosterone alters processing of amyloid precursor protein and 

enhances expression of neprilysin, an enzyme responsible for A! degradation (172). 

 The effects of PROG in AD mice have also been investigated. For instance, PROG 

was able to improve the cognitive performance and reduced tau hyperphosphorylation in 

mice bearing a double mutation in APPswxPS1 compared to wild-type mice (162). Those 

mice were characterized by decreased hippocampally-mediated cognitive performances and 

presented decreased levels of allopregnanolone in the hippocampus, suggesting that a part 

of the deficit in hippocampal function may be due to reduced capacity to form 

allopregnanolone in the hippocampus. Interestingly, recent studies demonstrated a protective 

role of allopregnanolone in AD triple transgenic mice (3xTgAD), showing reduced A! 

generation in hippocampus, cortex and amygdala, increased proliferation of neuronal 

progenitor cells and reversed neurogenic and cognitive deficits compared to non-transgenic 

littermates (173; 174). 

 Together, these data suggest that neurosteroids represent interesting tools for the 

therapy and prevention of neurodegenerative diseases, especially AD. With regard to AD-

related mitochondrial dysfunction, extensive studies only focused on beneficial effects of 

estradiol, while the effects of other neurosteroids on mitochondria have not been investigated 

up to now (see section II.A and II.B). 
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C. Circadian rhythms 

 

1. Concept of circadian rhythm 

 

 Circadian rhythms are believed to be an evolutionary adaptation to daily 

environmental cycles that are synchronized by the 24 hours patterns of light and temperature 

produced by the earth�s rotation around its axis (175). They coordinate our physiology at a 

fundamental level and govern a wide variety of physiological and metabolic functions in most 

organisms, from cyanobacteria and fungi to insects and mammals (176). Circadian 

oscillations (from the Latin �circa diem� @ about a day) occur with a period length of about 24 

hours and play a key role in the adaptation of living organisms to the environmental changes, 

such as light/dark cycles which are associated with food availability. These oscillations are 

defined by their period length (Z), amplitude (A) and phase ([) (Fig. 24A). 

 

 
Fig. 24: (A) Parameters of a hypothetical rhythm. Given a variation of an element �X� in units of time �t�, several 

parameters of a rhythm can be measured, such as amplitude (A, in blue, defined as the maximum absolute value 

of a periodically varying quantity), period length (#, in green, the time spent between two peaks) and phase ([, in 

red, that represents the position of a peak in function of time). (B) Examples of circadian rhythms in human. 

Melatonin (left) is secreted during the night (gray shading) with a peak in anti-phase with the body temperature 

(middle). Cortisol secretion (right) starts during the night, with a peak at the beginning of the light phase (adapted 

from (177)). 
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 A biological rhythm (or oscillation) must meet three general criteria to be called 

�circadian�. First, the rhythm has to be innate, endogenous, with a free-running period length 

of about 24 hours, and self-sustained in constant condition (e.g. in constant darkness). This 

criterion is important to distinguish circadian oscillations from daily oscillations that are 

responses to external and environmental cues. A rhythm is considered as endogenous only if 

it persists in constant conditions. Second, the rhythm has to be entrainable (synchronized) by 

external stimuli, also called �\eitgebers� (time giver), such as light/dark cycles or 

feeding/fasting cycles. Finally, temperature compensation is the third criterion that defines 

circadian rhythms, meaning that the period length of these rhythms are unaffected by 

temperature changes within physiological permissible limits (176). 

 Overall, this allows the organism to coordinate a variety of daily behavioral and 

physiological processes to the optimal time of day by anticipating the periodic changes of the 

external environment. The most obvious circadian rhythm observed in humans (and other 

animals) is the sleep-wake cycle. During the light phase (or circadian day), catabolic 

processes are predominant to facilitate engagement with the external world. In contrast, the 

dark phase (or circadian night) promotes anabolic functions of growth, repair and 

consolidation (177). For example, body temperature drops during the night and melatonin is 

secreted, facilitating sleep during which growth hormones are released (Fig. 24B). Cortisol 

levels increase during the night, with a peak at the beginning of the activity period, preparing 

the body for physical and mental demands of awakening. 

 Molecular mechanisms underlying circadian rhythms have been unraveled during the 

last decade and involve interconnected feedback loops of gene transcription and translation 

(178).  

 

2. Clock genes and circadian machinery 

 

 The maintenance of a rhythm with a period length of about 24 hours is made possible 

by self-sustained transcriptional-translational feedback loops. In these loops, it is possible to 

distinguish positive and negative components. The first loop begins with the 

heterodimerization of transactivating (positive) components CLOCK and BMAL1 (Fig. 25), 

two transcription factors that reach the nucleus and initiate the transcription of clock-

controlled genes (CCG) containing E-box (5]-CACGTG-3]) or E]-box (5]-CACGTT-3]) cis-

regulatory elements (178). Notably, the CLOCK/BMAL1 heterodimer triggers the 

transcription/translation of the clock genes Period (isoforms Per1-3) and Cryptochrome 

(isoforms Cry1 and 2) that constitute negative (transinhibiting) components of the molecular 

feedback loop (179) (Fig. 25). In the cytoplasm, PER and CRY proteins dimerize and are 
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translocated into the nucleus where they repress transcription of their own genes by directly 

inhibiting CLOCK/BMAL1 (178). Degradation of the negative limb proteins PER and CRY is 

required to terminate the repression phase and restart a new cycle of transcription.  

 Additional components contribute to the robustness of this molecular clockwork 

circuitry. For instance, REV-ERB" (reverse orientation c-erb ") and ROR (orphan nuclear-

receptor genes) interconnect the circadian transcription of the positive and negative �limbs� 

of the molecular clock. REV-ERB" transcription is activated by CLOCK/BMAL1 complex 

through the binding to E-box sequences present in its promoter, resulting in its circadian 

accumulation. REV-ERB" protein leads to periodic repression of Bmal1 transcription. This 

repression leads to a rhythmic expression of Bmal1 in antiphase with Rev-Erb" expression 

(180). Posttranslational mechanisms such as protein phosphorylation also play important 

roles in generating oscillations of approximately 24 hours. For example, casein kinase 1^ 

(CK1^) phosphorylates PER, CRY, and BMAL1 proteins (178). Hypophosphorylated PER 

proteins have a higher metabolic stability than their hyperphosphorylated counterparts and 

this may lead to an increased accumulation of PER proteins. 

 

 

 
Fig. 25: Schematic representation of the molecular circadian clock machinery. The system consists of two 

feedback loops: CLOCK/BMAL1 heterodimer forms the positive component in this loop, while the PER/CRY 

complex acts as the negative component. Details are described in the text. CCG; clock controlled genes, P; 

phosphate (adapted from (178)). 
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 Mutations in clock genes are accompanied by a spectrum of behavioral abnormalities, 

including mania, hyperactivity or increased alcohol consumption, and disturb neurochemical 

systems, such as dopaminergic and glutamatergic neurotransmission (176). Identification of 

clock genes enabled the development of transgenic models that help to understand in more 

details the underlying mechanisms of the molecular clock machinery and its impact on 

behavioral outputs (reviewed in (181)). 

 In mammals, the circadian molecular clock is virtually present in all cells of the body 

(179). To synchronize all these clocks, the circadian timekeeping system possesses a 

complex hierarchical architecture, with a central pacemaker in the brain and subsidiary 

clocks in the rest of the body.  

 

3. Organization of the circadian clock 

 

 One of the main properties of the circadian system is its ability to synchronize the 

individual circadian clock at all levels. Thus, clocks contained in peripheral tissues (peripheral 

clocks) are kept in a stable phase-relationship to maintain a coherent function of the entire 

organism. In turn, these individual oscillators can send back information to the master clock 

present in the brain�s suprachiasmatic nuclei (SCN) that adapts organism�s physiology in 

response to environmental parameters. 

 

a) Master clock 

 

 The SCN of the anterior hypothalamus is the site of the master circadian clock in the 

mammalian brain (182). Indeed, lesion experiments in the brain of rodents enabled the 

identification of this structure located above the optic chiasma. SCN-lesioned animals were 

arrhythmic in entrained condition and presented a disruption of locomotor activity and a loss 

of rhythmicity in corticosterone secretion (183; 184). Circadian locomotor activity was 

restored in SCN-lesioned animal by transplantation of fetal SCN tissue into the third ventricle 

(185). A determinant demonstration of the clock function of the SCN was made possible 

using the Tau (Z) mutant hamster (182). The Tau mutation shortens circadian period length 

from 24 hours in the wild type to 20 hours in homozygote mutant animals. This shortened 

period length results from a missense mutation within the substrate recognition site of the 

enzyme CK1^ (see section I.C.2) (186). Again, transplantation studies revealed that SCN 

grafts from wild-type animals restores the circadian period length of Tau mutant hamsters 

suggesting that circadian parameters are determined by the genotype of the donor, not the 

host (182). In addition, in vitro studies revealed that electrical activity of SCN neurons follows 

a circadian pattern. This rhythmic firing is maintained even after three weeks in culture (187). 
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This property is the direct consequence of the tight coupling between SCN neurons via 

conventional synapses (likely GABAergic), electrical synapses (i.e. gap junctions) and 

neuropeptidergic coupling (e.g. vasoactive intestinal peptide (VIP)) to avoid the damping of 

the oscillations (176). 

 

 

 
 

Fig. 26: Subdivision of the circadian system: input to the clock, clock mechanism, and clock output. This division 

can be made at the cellular level as well as at the systemic level. SCN suprachiasmatic nuclei, CNS central 

nervous system (adapted from (179)). 

 

 

 The role of SCN in the regulation of circadian system has been investigated for many 

years (reviewed in (188) and (189)). The key function of this structure is to serve as relay 

between external environment and the body by: i) perceiving environmental inputs; ii) 

integrating time-related information; iii) transmitting adjusted timing information to other 

tissues and organs that subsequently send feedback information to the SCN (Fig. 26). 

 For example, when light is detected by the retina, signals are transmitted to the SCN 

(=input from the external environment) (Fig.27). There, signals are integrated to adjust the 

information about the time of the day (light onset: dawn or light offset: dusk). The SCN can 

send various output signals (hormones, metabolites, neuronal signals�) through which the 

generated rhythms are manifested via control of various metabolic, physiological, and 

behavioral processes. 

 Thus, SCN is on the top of the hierarchical organization of the circadian system and 

serve as a central conductor orchestrating the peripheral clocks. 
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b) Peripheral clocks 

 

 When the molecular components of the circadian clock were identified, it has been 

shown that clock genes are also expressed rhythmically outside the SCN and even outside 

the brain in many peripheral tissues (190). The mRNA expression of main clock genes, such 

as Bmal1, Reverb" or Per1-3, has been found in cells coming from different peripheral 

systems (heart, lung, liver, stomach, spleen, kidney�) (182). Of note, in the peripheral 

tissues, mRNA peaks of clock genes occurred approximately 4 hours after those in the SCN 

(191; 180; 192; 193). In addition, genome-wide transcriptome profiling studies showed that 

gene expression exhibit robust circadian oscillation in the above mentioned organs, 

suggesting that many cellular functions are under the control of the circadian clock (reviewed 

in (182) and (190)). For instance, depending on the tissue, it has been shown that between 

2% and 10% of all analyzed genes were rhythmically expressed, especially in the liver which 

contains about 1000 circadian transcripts (194). Many of these genes encode key enzymes 

involved in metabolic pathways including food processing, carbohydrate and lipid 

metabolism, cholesterol utilization and xenobiotic detoxification (190). Indeed, it makes 

sense that the production or sequestration of chemically incompatible processes may be 

potentially harmful if they take place during the same time window. For instance, if glycogen 

synthase and phosphatase were expressed at the same time, it would be incompatible with 

the conversion of glucose in glycogen, and vice versa (182). Similarly, xenobiotic 

detoxification starts slightly before feeding time, anticipating the absorption of toxins present 

in food (e.g. plant alkaloids, coumarin�) (190). Daily feeding-fasting cycles represent the 

main synchronizer (Zeitgeber) of the peripheral organs, including the liver, kidney, pancreas 

and heart muscle (Fig. 27).  

 This observation led Schiebler and colleagues (190) to propose a new hypothesis 

postulating that the most important roles of peripheral clock can be summarized in three 

points: i) the anticipation of metabolic pathways to optimize food processing; ii) the limitation 

of metabolic processes with adverse side effects to time periods when they are needed; iii) 

the sequestration of chemically incompatible reactions to different time windows. Even if 

peripheral clocks are self-sustained, autonomous oscillators, a functional SCN is required to 

maintain phase coherence between them (Fig. 27). The properties of peripheral clocks are 

similar to the master clock, which make them preferential models to understand in more 

details the circadian machinery and the implications in health and disease.  
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Fig. 27: Schematic organization of the circadian system. Circadian clocks are found in all cells of various organs. 

The master clock is located in the SCN (red clock) and synchronizes the other central clocks that are located in 

different part of the brain (cortex, thalamus�) to regulate metabolic integration and motor coordination. The main 

synchronizers are the light (yellow), food intake (green) and locomotor activity (red). SCN and other organs 

communicate via hormonal signaling (melatonin, ghrelin, leptin, insulin/glucagon, adrenaline�), metabolic 

signaling (carbohydrate, fatty acids, amino acids) or neuronal connections (adapted from (179)). 
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c) Studying circadian systems using peripheral cells 

 

 Circadian systems can be studied from cellular level and up to systemic and 

behavioral levels. In human, several protocols were developed to reveal the endogenous 

circadian component of rhythms (195). In these protocols one or more circadian markers are 

usually measured, namely melatonin (in blood or saliva), cortisol (in plasma) or core body 

temperature (see also Fig. 24B). The main issues in human is that environmental 

components can influence these markers such as light, temperature, body position, food 

intake, and many other factors. These environmental components can easily be controlled in 

animal studies. Since rodents voluntary use a running wheel in their home cage, locomotor 

activity served as a particularly reliable and convenient measure of the output of their 

circadian system (196). A panel of protocols is available to study circadian parameters in 

rodents. Usually, animals are placed in constant conditions (e.g. constant darkness: dark-

dark (DD)) with the subjective time-of-day referred to as the circadian time (CT), in contrast 

to entrainable conditions (e.g. light-dark cycle (LD): 12 hours light � 12 hours dark) where the 

time of the day is given by the zeitgeber time (ZT). Besides, the identification of the 

molecular clock machinery allowed a move forward in the understanding of the circadian 

system and promoted the development of transgenic models that are widely used in the 

circadian research fields (197; 181; 198-200).  

 

 In 1998, Balsalobre and colleagues demonstrated that immortalized rat fibroblasts in 

culture possess robust autonomous and self-sustained circadian rhythm (201). Since then, 

the identification of the molecular clock machinery in isolated human fibroblasts has been 

widely demonstrated. The cultivation and genetic manipulation of fibroblasts are easy to 

perform and these are some of the main reasons why fibroblasts are a valuable model of 

peripheral oscillator (202; 203). Indeed, protocols have been developed to measure clock 

function in skin cells using lentivirally-delivered circadian luciferase reporter vectors (Fig. 28). 

For example, fibroblast period length can be measured via cyclical expression of the 

circadian reporter Bmal1: luciferase (202-204).  

 

 As mentioned in section I.C.3.a, SCN neurons are tightly coupled one with another, 

which results in a robust circadian rhythmicity even in vitro. In contrast, rhythmic patterns of 

peripheral cells, including fibroblast, have the tendency to damp after several cycles due to 

phase desynchronization of individually oscillating cells (205; 204). Thus, fibroblasts need to 

be resynchronized after few days in culture to be able to continue to detect a circadian 

rhythmicity. Two classical methods used to synchronize peripheral oscillators are: (i) serum 
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shock, that consists in the incubation of the cells in a high percentage horse serum medium 

for 1-2 hours (201); (ii) activation of the glucocorticoid receptor by the use of dexamethasone 

(an analog of glucocorticoids) (206; 207). 

 More recently, a study performed on human primary fibroblasts cultivated from skin 

biopsies showed that the period length of human circadian behavior could be approximated 

by measurement of the circadian period length in fibroblasts (203). These data indicated for 

the first time that it may be possible to study circadian parameters of an individual using 

those of its fibroblasts and may enable to unravel relationships between circadian clock 

defects and associated diseases, using peripheral cells. 

 

 

 
 

Fig. 28: Protocol to study the circadian rhythms of human skin fibroblasts. A punch skin biopsy is harvested (1) 

and cultivated under sterile conditions. Fibroblasts that grow around the biopsy are isolated, amplified and 

infected with a circadian reporter (2) coding for firefly luciferase under a clock gene promoter, i.e. Bmal1. The 

infected cells are selected and then, after synchronization of circadian rhythms, the light emitted by the cells is 

measured in the Lumicycle (Actimetrics) (3). 
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4. Clock control of cellular metabolism and vice versa 

 

 Circadian clock may represent an evolutionary advantage, by enhancing metabolic 

efficiency through temporal separation of anabolic and catabolic reactions (Fig. 29). 

Understanding the relationship between metabolic system and the molecular clock 

represents an emerging field of research with the aim to increase our knowledge about 

metabolic impairments linked to circadian disruption, such as sleep disorders, 

cardiometabolic diseases or type 2 diabetes (208). 

 
Fig.29: Rhythmicity of metabolic processes according to time of day. The clock coordinates appropriate 

metabolic responses with the light/dark cycle and enhances energetic efficiency through temporal separation 

of anabolic and catabolic reactions in peripheral tissues. Circadian misalignment, which occurs during sleep 

disruption, shift work, and dietary alterations, disrupts the integration of circadian and metabolic systems, 

leading to adverse metabolic health effects (adapted from (209)) 
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 Recent studies have highlighted the role of some molecules coming from metabolic 

activity in the regulation of the circadian clock (210-212). One potential candidate is NAD+ 

that is, among others, involved in cellular redox reactions. Indeed, in vivo studies showed 

that the expression of the key rate-limiting enzyme in the NAD+ salvage pathway, the 

NAMPT (nicotinamide phosphoribosyltransferase), is directly regulated by CLOCK/BMAL1 

(Fig.30) (213). Other findings revealed that NAD+ display circadian oscillations in peripheral 

tissues (e.g. in the liver or in adipocytes), even when the mice are kept in DD conditions 

(constant darkness) (214). NAD+ is also a co-factor for several enzymes, including members 

of the sirtuin family. It was recently shown that the circadian clock modulates the activity of 

SIRT1 (sirtuin 1), a NAD+-dependent protein deacetylase involved in the deacetylation of 

histones and several transcription factors (215). SIRT1 (and other sirtuins) has emerged as a 

key metabolic sensor that regulates gluconeogenesis, lipid metabolism, insulin sensitivity and 

other metabolic processes (reviewed in (216)). The circadian oscillation of NAD+ levels 

appears to regulate SIRT1 activity, which then coordinates the daily pattern of metabolic 

processes mentioned above (215). In turn, SIRT1 modulates the circadian clock via a 

negative feedback loop by interacting with CLOCK, BMAL1 and PER2 (Fig.30) (217; 211). 

 In addition, the cellular redox state, translated by the ratios NAD+/NADH and 

NADP+/NADPH, seems to affect the circadian system. McKnight and colleagues (218) were 

the firsts to show that high levels of NAD+ and NADP+ (oxidized state) decrease the binding 

of CLOCK/BMAL1 to DNA, whereas the reduced forms (NADH and NADPH) increase this 

binding. Interestingly, more recent studies showed a 24 hours redox cycle in red blood cells 

that are cells devoid of nuclei, suggesting that the cellular redox state is self-sustained even 

in the absence of the transcriptional control of circadian gene expression (219; 220). 

 Finally, another measure of cellular metabolic state is the ratio AMP/ATP (ATP 

consuming pathways/ATP generating pathways). A major sensor of this ratio is the enzyme 

AMPK (adenosine monophosphate-dependent protein kinase) which is activated by 

phosphorylation when the ratio AMP/ATP increases. Studies showed that AMPK can directly 

modulate the circadian clock by phosphorylating CRY1 and PER2 (221; 222). This led to the 

degradation of both clock components and consequently affected the negative limb of the 

molecular circadian machinery. 

 Together, these data underpin the emerging relationship between the molecular clock 

and metabolic system. Of note, even if mitochondria play a central role in both metabolism 

and redox homeostasis, its implication in the regulation of the circadian system (and vice 

versa) is only hypothetical (223) and no clear link has been established until now (see 

section II.C). 
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Fig. 30: Cross talk between the core clock mechanism and metabolic pathways. The core clock can directly or 

indirectly synchronize diverse metabolic processes. The clock receives reciprocal input from nutrient signaling 

pathways (including SIRT1 and AMPK), which function as rheostats to coordinate metabolic processes with daily 

cycles of sleep/wakefulness and fasting/feeding. NAMPT; nicotinamide phosphoribosyltransferase, SIRT1; sirtuin 

1, AMPK; adenosine monophosphate-dependent protein kinase (adapted from (211)). 
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Abstract 

 

 The brain has high energy requirements to maintain neuronal activity. Consequently 

impaired mitochondrial function will lead to disease. Normal aging is associated with several 

alterations in neurosteroid production and secretion. Decreases in neurosteroid levels might 

contribute to brain aging and loss of important nervous functions, such as memory. Up to 

now, extensive studies only focused on estradiol as a promising neurosteroid compound that 

is able to ameliorate cellular bioenergetics, while the effects of other steroids on brain 

mitochondria are poorly understood or not investigated at all. Thus, we aimed to characterize 

the bioenergetic modulating profile of a panel of seven structurally diverse neurosteroids 

(progesterone, estradiol, estrone, testosterone, 3"-androstanediol, DHEA and 

allopregnanolone), known to be involved in brain function regulation. Of note, most of the 

steroids tested were able to improve bioenergetic activity in neuronal cells by increasing ATP 

levels, mitochondrial membrane potential and basal mitochondrial respiration. In parallel, 

they modulated redox homeostasis by increasing antioxidant activity, probably as a 

compensatory mechanism to a slight enhancement of ROS which might result from the rise 

in oxygen consumption. Thereby, neurosteroids appeared to act via their corresponding 

receptors and exhibited specific bioenergetic profiles. Taken together, our results indicate 

that the ability to boost mitochondria is not unique to estradiol, but seems to be a rather 

common mechanism of different steroids in the brain. Thus, neurosteroids may act upon 

neuronal bioenergetics in a delicate balance and an age-related steroid disturbance might be 

involved in mitochondrial dysfunction underlying neurodegenerative disorders. 

 

Keywords: Mitochondria, Neurosteroid, Bioenergetics, Amyloid-! peptide, tau protein. 

 

Abbreviations:  

3"-A, 3"-androstanediol; AD, Alzheimer�s disease; APP, amyloid-! precursor protein; AP, 

allopregnanolone; D, DHEA (dihydroepiandrosterone); DHR, dihydrorhodamine 123; DMSO, 

dimethylsulfoxide; E1, estrone; E2, 17!-estradiol; E3, estriol; ECAR, extracellular 

acidification rate; ETC, electron transport chain; MAS, mitochondrial assay solution; MPP, 

mitochondrial membrane potential; mtROS, mitochondrial reactive oxygen species; OCR, 

oxygen consumption rate; OXPHOS, Oxidative phosphorylation; P, progesterone; PD, 

Parkinson�s disease; PMP, plasma membrane permeabilizer; RCR, respiratory control ratio; 

roGFP, redox sensitive green fluorescent protein; ROS, reactive oxygen species; SRA, 

steroid receptor antagonist; T, testosterone; TCA, tricyclic acid. 
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1. Introduction 

 

 The brain is a highly differentiated organ with high energy requirements, mainly in the 

form of adenosine triphosphate (ATP) molecules. Despite its small size, it accounts for about 

20% of the body�s total basal oxygen consumption (1). As a result, the brain is more sensitive 

to neuronal damage during hypometabolic states and impaired redox homeostasis, as 

observed in normal aging and in neurodegenerative diseases associated with a decline in 

energy production and changes in the redox status (2). In this context, mitochondria, small 

organelles that are present in almost all cell types playing a predominant role in cellular 

bioenergetics, are particularly important in the nervous system because of its high energy 

demand. Mitochondria are not only the �powerhouses of the cell�, providing the main source 

of cellular energy via ATP generation through oxidative phosphorylation, but they also 

contribute to plenty of cellular functions, including apoptosis, intracellular calcium 

homeostasis, alteration of the cellular reduction�oxidation (redox) state and synaptic 

plasticity (3; 4). Thus, it is more and more recognized that mitochondrial dysfunction is a 

significant and early event of neurodegeneration, and that the pathophysiological 

mechanisms of a range of neurodegenerative diseases, including Alzheimer�s (AD) and 

Parkinson�s disease (PD), are associated with a decline in bioenergetic activity and an 

increase in oxidative stress, particularly in mitochondria themselves (5-10). 

 Steroid hormones are molecules involved in the control of many physiological 

processes in the periphery, from reproductive behavior to the stress response. They are 

mainly produced by endocrine glands, such as the adrenal glands, gonads and placenta, but 

in 1981 Baulieu and co-workers were the first to demonstrate the production of steroids 

within the nervous system itself (11). This last category of molecules is now called 

�neurosteroids� and is defined as steroids that are synthetized within the nervous system 

independently of peripheral endocrine glands. Neurosteroid levels remain elevated even after 

adrenalectomy and castration (12; 13) and are involved in brain-specific functions. Since the 

ability to produce neurosteroids is conserved during vertebrate evolution, one can suggest 

that this family of molecules is important for living things and that the modulation of their 

biosynthesis plays an important role in the pathophysiology of neurodegenerative disorders.  

 Studies performed in humans, animals, and cellular models have shown alterations in 

the synthesis of neurosteroids that declined during brain aging paralleled by a loss of 

important nervous functions, such as memory, and were further associated with PD and AD 

(14-16). Thus, several neurosteroids have been quantified in various brain regions of aged 

AD patients and aged non-demented controls. This showed a general trend toward lower 

steroid levels in AD patients compared to controls, associated with a negative correlation 
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between neurosteroid levels and amyloid-! (A!) and phospho-tau in some brain regions (17). 

In accordance with these observations, previous data from our groups provided first evidence 

that, vice versa, A! and hyperphosphorylated tau differentially impacted 

neurosteroidogenesis (Fig. 1) (18-20). Indeed, a decrease of progesterone and 17-

hydroxyprogesterone production was observed in amyloid precursor protein (APP)/A!-

overexpressing cells, while 3"-androstanediol and estradiol levels were increased (19). 

Moreover, in vitro treatment of human neuroblastoma cells with �non-toxic� A! concentrations 

(within the nanomolar range) revealed an increase in estradiol production, whereas toxic A! 

concentrations (within the micromolar range) showed the opposite effect (18). 

Overexpression of human wild type tau (hTau40) protein induced an increase in production 

of progesterone, 3"-androstanediol, and 17-hydroxyprogesterone, in contrast to the 

abnormally hyperphosphorylated tau bearing the P301L mutation that led to decreased 

production of these neurosteroids (19).  

 Moreover, a growing body of evidence has highlighted neuroprotective effects of 

steroids, particularly estradiol, against AD-related injury (reviewed in (21)). Because the drop 

of estrogen in a post-menopausal woman is considered as a risk factor in AD (two-thirds of 

AD patients are women), the neuroprotective action of estrogen has been widely investigated 

(reviewed in (22)). One in vivo study showed that estradiol treatment of ovariectomized 

female rats up-regulated enzymes involved in glycolysis and oxidative phosphorylation, and 

increased ATP synthase expression which was translated into an increased mitochondrial 

respiration (23). These findings were additionally confirmed in an AD mouse model by Yao 

and coworkers (24). 

 However, there is little evidence that other steroids are also able to act on 

mitochondrial function, and to our knowledge, no study has aimed to compare the effects of 

neurosteroids besides estradiol on cellular bioenergetics and redox environment in neuronal 

cells. Thus, the objective of our study was to investigate the effects of different neurosteroids 

on bioenergetic activity in vitro. For this purpose, we selected seven neurosteroids - 

progesterone, estradiol and estrone, belonging to the estrogen family; testosterone and 3"-

androstanediol, belonging to androgen family; and DHEA and allopregnanolone - known to 

be involved in brain function regulation (12; 13; 25; 18; 19; 17). Neurosteroid effects on ATP 

production, mitochondrial membrane potential (MMP), mitochondrial respiration, glycolysis 

and the consequences on the modulation of the redox environment were investigated in 

neuronal cells.  

 

2. Materials and methods 

 

2.1. Chemicals and reagents 
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 Dulbecco�s-modified Eagle�s medium (DMEM), RPMI-1640 medium, fetal calf serum 

(FCS), penicillin/streptomycin, progesterone, 17!-estradiol, estrone, 3"-androstanediol, 

DHR, TMRM, ADP, pyruvate, succinate and malate were from Sigma-Aldrich (St. Louis, MO 

USA). Glutamax, MitoSOX, DPBS, Neurobasal medium and B27 were from Gibco Invitrogen 

(Waltham, MA, USA). DHEA and allopregnanolone were from Calbiochem (Billerica, MA, 

USA). PMP and XF Cell Mitostress kit were from Seahorse Bioscience (North Billerica, MA, 

USA). Testosterone was from AppliChem (Darmstadt, Germany). Horse serum (HS) was 

from Amimed, Bioconcept (Allschwil, Switzerland). RU-486, ICI-187.780, and 2-hydroxy 

flutamide were from Cayman Chemical (Ann Arbor, MI, USA). 

 

2.2. Cell culture 

 

 Human SH-SY5Y neuroblastoma cells were grown at 37 °C in a humidified incubator 

chamber under an atmosphere of 7.5% CO2 in DMEM supplemented with 10% (v/v) heat-

inactivated FCS, 5% (v/v) heat-inactivated HS, 2 mM Glutamax and 1% (v/v) 

penicillin/streptomycin. Cells were passaged 1-2 times per week, and plated for treatment 

when they reached 80�90% confluence.  

  

2.3. Primary neuronal cultures 

 

 Mouse cortical neurons were prepared from E15 embryos according to the French 

guidelines, as previously described (26). Cells were plated in poly-L-lysine-coated plates at a 

density of 1.5 × 104 cells/well for ATP measurement (white 96-well plate) or 5 × 104 cells/well 

for measurement with the Seahorse XF24 Analyser (XF24 cell culture microplate). After 7 

days at 37 °C, 50% of the medium was replaced with fresh medium every third day. ATP 

level, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

investigated in this primary neuronal culture after a 24 h treatment with the different 

neurosteroids. 

 

2.4.  Treatment paradigm  

 

 Assessment of cell viability was performed on SH-SY5Y neuroblastoma cells to 

determine the potential toxic concentration range of neurosteroids (from 10 nM to 1000 nM, 

data not shown) and steroid receptor antagonists (SRA, from 1 nM to 1 #M, data not shown) 

using a MTT reduction assay (Roche, Basel, Switzerland). On the basis of the MTT results, 

the concentrations 10 nM and 100 nM of steroids were then selected and used in all assays. 

SH-SY5Y cells were treated one day after plating either with DMEM (untreated control 
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condition) or with a final concentration of 10 nM and 100 nM of progesterone, 17!-estradiol, 

estrone, testosterone, 3"-androstanediol, DHEA or allopregnanolone made from a stock 

solution in DMSO for 24 h (final concentration of DMSO < 0.002%, no effect of the vehicle 

solution (DMSO) alone compared to the untreated condition). In the experiment using SRA, 

cells were pre-treated for 1 h. with 100 nM of RU-486 and ICI-187.780, and 1 #M of 2-

hydroxy flutamide (2OH-flutamide), and then treated for 24 h with the corresponding 

neurosteroids. To limit cell growth and to optimize mitochondrial respiration, treatment 

medium contained only a low amount of fetal calf serum (5% FCS) as well as glucose (1 g/l) 

and was supplemented with 4 mM pyruvate. Each assay was repeated at least 3 times. 

 

2.5. ATP levels 

 

 Total ATP content of SH-SY5Y cells was determined using a bioluminescence assay 

(ViaLighTM HT, Cambrex Bio Science, Walkersville, MD, USA) according to the instruction of 

the manufacturer, as previously described (27). SH-SY5Y cells were plated in 5 replicates 

into a white 96-wells cell culture plate at a density of 1.5 × 104 cells/well. The bioluminescent 

method measures the formation of light from ATP and luciferin by luciferase. The emitted 

light was linearly related to the ATP concentration and was measured using the multilabel 

plate reader VictorX5 (Perkin Elmer). 

  

2.6.  Cell proliferation assay  

 

 To verify if our treatment had an impact on cell cycle and induced proliferation, the 

BrdU Cell Proliferation Assay (Calbiochem, Darmstadt, Germany) was used following the 

instructions of the manufacturer. Briefly, SH-SY5Y cells were plated in 6 replicates into a 96-

wells cell culture plate at a density of 1 × 104 cells/well. During the final 12 h of neurosteroid 

treatment, BrdU was added to the wells and incorporated into the DNA of dividing cells. The 

detection of BrdU was performed using an anti-BrdU antibody recognized by a horseradish 

peroxidase-conjugated anti-mouse. After addition of the substrate (TMB), the color reaction 

was quantified using the multilabel plate reader VictorX5 at 450nm. Values are proportional 

to the number of dividing cells.  

 

2.7. Determination of mitochondrial membrane potential 

 

 The MMP was measured using the fluorescent dye tetramethylrhodamine, methyl 

ester, and perchlorate (TMRM). SH-SY5Y cells were plated in 6 replicates into a black 96-

well cell culture plate at a density of 1.5 × 104 cells/well. Cells were loaded with the dye at a 
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concentration of 0.4 #M for 15 min. After washing twice with HBSS, the fluorescence was 

detected using the multilabel plate reader VictorX5 (PerkinElmer) at 530 nm (excitation)/590 

nm (emission). Transmembrane distribution of the dye was dependent on MMP.  

 

2.8. Oxygen consumption rate and extracellular acidification rate 

 

 The Seahorse Bioscience XF24 Analyser was used to perform a simultaneous real-

time measurement of oxygen consumption rate (OCR) and extracellular acidification rate 

(ECAR). XF24 cell culture microplates (Seahorse Bioscience) were coated with 0.1% 

gelatine and SH-SY5Y cells were plated at a density of 2.5 × 104 cells/well in 100 #l of the 

treatment medium containing 5% FCS, 1 g/l glucose and 4 mM pyruvate. After neurosteroid 

treatment, cells were washed with PBS and incubated with 500 #l of assay medium (DMEM, 

without NaHCO3, without phenol red, with 1g/l glucose, 4 mM pyruvate, and 1% L-glutamine, 

pH 7.4) at 37 °C in a CO2-free incubator for 1 h. The plate was placed in the XF24 Analyser 

and basal OCR and ECAR were recorded during 30 min. For primary neuronal culture, the 

same conditions were kept, except the medium; here DMEM was replaced by RPMI-1640 

medium. 

 

2.9.  Mitochondrial respiration 

 

 The investigation of mitochondrial respiration was performed using the Seahorse 

Bioscience XF24 analyser. XF24 cell culture microplates were coated with 0.1% gelatine and 

cells were plated at a density of 2.5 × 104 cells/well in 100 #l of treatment medium containing 

5% FCS, 1 g/l glucose and 4 mM pyruvate. After neurosteroid treatment, cells were washed 

with 1× pre-warmed mitochondrial assay solution (MAS; 70 mM sucrose, 220 mM mannitol, 

10 mM KH2PO, 4.5 mM MgCl2, 2 mM HEPES, 1 mM EGTA and 0.2% (w/v) fatty acid-free BSA, 

pH 7.2 at 37 °C) and 500 #l of  pre-warmed (37 °C) MAS containing 1 nM XF plasma 

membrane permeabilizer (PMP, Seahorse Bioscience), 10 mM pyruvate, 10 mM succinate 

and 2 mM malate was added to the wells. The PMP was used to permeabilize intact cells in 

culture, which circumvents the need for isolation of intact mitochondria and allows the 

investigation of the OCR under different respiratory states induced by the sequential injection 

of: i) ADP (4 mM) to induce state 3; ii) Oligomycin (0.5 #M) to induce state 4o; iii) FCCP (2 

#M) to induce state 3 uncoupled (3u); and iv) Antimycin A/rotenone (0.5 #M and 1 #M 

respectively) to shut down mitochondrial respiration. Data were extracted from the Seahorse 

XF24 software and the respiratory control ratio (RCR: State 3/State 4o), which reflects the 

mitochondrial respiratory capacity, was calculated. 
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2.10. GABAA receptor expression 

 

 Cells were lysed and total RNA was extracted using the RNeasy Mini Kit from Qiagen 

(Venlo, Netherlands), according to the instructions of the manufacturer to measure GABAA 

receptor (subunits "1 and !2) mRNA levels. The first cDNA strand was synthesized using all 

RNA extracted by reverse transcription in a final volume of 30 #l using the Ready-to-Go You-

Prime First-Strand Bead cDNA synthesis kit (GE Healthcare, Little Chalfont, UK) according to 

the supplied protocol. After reverse transcription, the cDNA was diluted 1:3 and 3 #l were 

amplified by real-time PCR (StepOne� System) in 20 #l using DyNAmy Flash Probe qPCR 

Kit (Thermo Scientific, Waltham, MA, USA) with conventional Applied Biosystems cycling 

parameters (40 cycles of 95°C, 5 s, and 60°C, 1 min). Primers for human and mouse GABAA 

receptor subunit "1 and !2 were obtained from Life Technologies (Waltham, MA, USA). 

References of the primers are: GABRA1: Hs00971228_m1; GABRB2: Hs00241451_m1; 

gabra1: Mm00439046_m1; and gabrb2: Mm00433467_m1. After amplification, the size of 

the quantitative real-time PCR products was verified by electrophoresis on 2% (wt/vol) 

ethidium bromide-stained agarose gel. CDK4 was used as control housekeeping gene to 

assess the validity of the cDNA mixture and the PCR reaction. The gene expression of CDK4 

was clearly detected in SH-SY5Y (data not shown), but not that of GABAA receptor. 

 

2.11. Reactive oxygen species detection 

 

 Total level of mitochondrial reactive oxygen species (mtROS) and specific level of 

mitochondrial superoxide anion radicals were assessed using the fluorescent dye 

dihydrorhodamine 123 (DHR) and the Red Mitochondrial Superoxide Indicator (MitoSOX), 

respectively. SH-SY5Y cells were plated in 6 replicates into a black 96-well cell culture plate 

at a density of 1.5 × 104 cells/well. After neurosteroid treatment, cells were loaded with 10 #M 

of DHR for 15 min or 5 #M of MitoSOX for 90 min at room temperature in the dark on an 

orbital shaker. After washing twice with HBSS (Sigma), DHR, which is oxidized to cationic 

rhodamine 123 localized within the mitochondria, exhibits a green fluorescence that was 

detected using the multilabel plate reader VictorX5 at 485 nm (excitation)/538 nm (emission). 

MitoSOX, which is specifically oxidized by mitochondrial superoxide, exhibits a red 

fluorescence detected at 535 nm (excitation)/595 nm (emission). The intensity of 

fluorescence was proportional to mtROS levels or superoxide anion radicals in mitochondria.  

 

2.12. MnSOD activity  
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 The DetectX Superoxide Dismutase (SOD) Activity Kit (Ann Arbor, MI, USA) was 

used to quantitatively measure manganese SOD (MnSOD) activity following the instructions 

of the manufacturer. Briefly, 1 × 106 SH-SY5Y cells were collected for protein extraction. 

After a short sonication in PBS, the cellular homogenate was centrifuged at 1.500 × g for 10 

min at 4 °C. The supernatant was then centrifuged at 10,000 × g for 15 min and the obtained 

cell pellet was treated with 2 mM potassium cyanide, and assayed for MnSOD activity. 

 

2.13. Mitochondrial redox environment  

 

 To investigate changes in mitochondrial redox environment, SH-SY5Y cells were 

transfected with a plasmid coding for a redox sensitive green fluorescent protein with a 

mitochondrial targeting sequence (pRA305 in pEGFP-N1). In an oxidized environment the 

absorption increases at short wavelengths (390 nm) at the expense of absorption at longer 

wavelengths (485 nm). The fluorescence ratio indicates oxidation/reduction, i.e., the redox 

environment in the mitochondria (28). Cells were plated in 6 replicates into a black 96-well 

cell culture plate at a density of 1.5 × 104 cells/well. After neurosteroid treatment, cells were 

washed twice with PBS and placed in a HEPES buffer (130 mM NaCl, 5 mM KCl, 1 mM 

CaCl2, 10 mM D-glucose, and 20 mM HEPES). The ratio 390 nm/485 nm was measured 

using the multilabel plate reader VictorX5 detecting fluorescence at 390 nm or 485 nm 

(excitation)/510 nm (emission). An increase of the ratio indicates a more oxidized 

environment. 

 

2.14. Statistical Analysis 

 

 Data are given as the mean ± SEM, normalized to the untreated control group 

(=100%). Statistical analyses were performed using the Graph Pad Prism software. For 

statistical comparisons of more than two groups, One-way ANOVA was used, followed by a 

Dunnett's multiple comparison test versus the control. For statistical comparisons of two 

groups, Student unpaired t-test was used. P values < 0.05 were considered statistically 

significant. Statistical correlations were determined using Pearson�s correlation coefficients. 

 

3. Results 

 

3.1. Neurosteroids modulate mitochondrial bioenergetics 

 

 To investigate the effects of neurosteroids on cellular bioenergetic activity, we first 

studied the SH-SY5Y cell line, a commonly used neuronal culture in vitro model that 



RESULTS  Grimm A. et al. (2014) 

87 

 

expresses a variety of neuronal receptors, including steroid receptors (progesterone, 

estrogen and androgen receptors) (29; 30). Cells were treated with different neurosteroids: 

progesterone (P), estradiol (E2), estrone (E1), testosterone (T), 3"-androstanediol (3"-A), 

DHEA (D) or allopregnanolone (AP), at two physiologically relevant concentrations, 10 nM 

and 100 nM (31-35) , and ATP level was measured after 24 h of treatment. All neurosteroids, 

except allopregnanolone, were able to significantly increase ATP level (Fig. 2A), ranging 

from a 10% increase after 3"-A treatment (10 nM) up to a 22% increase induced by 

progesterone (100 nM) compared to the untreated control.  

 A pre-treatment for 1 h with different steroid receptor antagonists (SRA) including the 

progesterone receptor antagonist RU-486 (assay concentration 100 nM), the estrogen 

receptor antagonist ICI-182.780 (assay concentration 100 nM), and the androgen receptor 

antagonist 2OH-flutamide (assay concentration 1 #M) completely abolished the action of P, 

E2 and E1, as well as T and 3"-A, respectively (Fig. 2B). The SRAs alone were devoid of 

the effects of ATP production. These results indicate that the action of neurosteroids may be 

mediated by nuclear receptors via gene regulation, at least for those neurosteroids that act 

via these receptors (progesterone, estrogens, and androgens).  

 To exclude that this rise in ATP was due to enhanced cell proliferation, we 

investigated the effects of the different neurosteroids. Of note, only allopregnanolone at 100 

nM induced a significant increase of cell division by about 6% compared to the control (Table 

1). Thus, our results indicate that the neurosteroid-induced up-regulation of cellular energy 

levels was independent of cell proliferation demands. 

 To verify whether the increase of ATP levels was directly linked to mitochondrial 

activity, we investigated the effects of neurosteroids on MMP, an indicator of the proton 

motive force necessary for ATP synthesis by the mitochondrial ATP synthase (36). Our 

results show that, at least for one of the two concentrations tested, neurosteroids induced a 

significant increase in MMP (Fig. 2C). The low concentration of 10 nM was particularly 

effective, ranging from an 18% increase after estradiol treatment up to a 32% increase 

induced by DHEA. Again, allopregnanolone was not able to significantly modulate the MMP. 

Thus, the observed increase in ATP is consistent with the finding of a slight hyperpolarization 

of the MMP. 

 Because molecules of ATP are produced by two main pathways, the cellular 

glycolysis and oxidative phosphorylation (OXPHOS) in mitochondria, we determined whether 

and which of those neurosteroids were able to modulate one or both pathways. For this 

purpose, we simultaneously monitored in real-time the extracellular acidification rate (ECAR), 

an indicator of glycolysis, and the oxygen consumption rate (OCR), an indicator of basal 

respiration, using a Seahorse Bioscience XF24 Analyser (Fig. 3A-C). On the one hand, 

despite a slight general increase, only estradiol and DHEA were able to significantly 
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modulate the ECAR after 24 h of treatment (about 16.4% and 19.4% respectively) (Fig. 3A). 

On the other hand, our findings demonstrate that estradiol, estrone, testosterone, 3"-A and 

DHEA significantly increased the OCR, with the most pronounced effect detected after a 

testosterone treatment at 100 nM (+26.5% compared to the control) (Fig. 3B). To compare 

the action of neurosteroids on glycolysis and basal respiration, we characterized the 

bioenergetic profile of SH-SY5Y neuroblastoma cells, representing OCR versus ECAR under 

the different treatment conditions (Fig. 3C). Notably, after treatment with the neurosteroid 

panel cells were switched to a metabolically more active state, with a tendency to increase 

both, glycolytic activity (ECAR) and basal respiration (OCR).  

 A Pearson correlation was performed to study whether the ATP levels correlated with 

OCR, ECAR or MMP (Fig. 4). A positive linear correlation between ATP level and OCR (Fig. 

4A), but not between ATP and ECAR (Fig. 4B) or MMP (Fig. 4C) was detected, suggesting 

that the improvement in ATP production was preferentially linked to an increase of 

mitochondrial respiration (oxygen consumption). 

 To investigate more deeply the effects of neurosteroids on mitochondrial OXPHOS, 

OCR was measured using permeabilized SH-SY5Y cells, which allows the evaluation of 

different respiratory states and the respiratory control ratio (RCR=state 3/state 4) (Fig. 5). 

Especially testosterone significantly up-regulated the mitochondrial respiratory capacity by 

increasing the respiratory state 3 (ADP-dependent), state 3 uncoupled (in the absence of 

proton gradient after injection of FCCP) and the RCR (Fig. 5A-C). The treatment with DHEA 

(10 nM) showed a similar effect on the RCR under these experimental conditions (Table 1), 

while the rest of the tested steroid compounds had no beneficial effect on RCR. Thus, our 

findings suggest that neurosteroids primarily act on basal respiration in neuroblastoma cells, 

and that testosterone and DHEA are additionally able to increase the capacity for substrate 

oxidation (high RCR), which is important when cells have specific or high energy demands. 

 

 Since SH-SY5Y cells and other cell lines are not as highly dependent on OXPHOS as 

primary cell cultures to produce ATP (37), we investigated the action of neurosteroids on 

primary cell cultures from mouse brain cortex. Data demonstrate that, except for the 

treatment with progesterone, the level of ATP was significantly increased with at least one of 

the two concentrations tested, ranging from a 27% increase after treatment with estrone (100 

nM) up to a 59% induced increase by DHEA (10 nM) (Fig 6A). Compared to the data 

obtained with SH-SY5Y neuroblastoma cells (Fig. 2A), the magnitude of the rise in ATP 

concentration was higher in the primary cortical cell culture (maximal increase of 22.6% in 

SH-SH5Y cells versus 59.2% in primary neurons). This result implies that primary cell 

cultures have a greater capacity to produce ATP than neuroblastoma cells. Moreover, both 

concentrations of allopregnanolone were able to increase ATP level in primary cells, which 
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was not the case in SH-SY5Y cells. Allopregnanolone mainly acts as an allosteric positive 

modulator of GABAA receptor (GABAA-R). To verify the implication of this receptor, we first 

investigated whether it was expressed in both cell types. We found that SH-SY5Y cells do 

not express the GABAA-R subunits "1 and !2 that are involved in the allopregnanolone 

binding site (38), in contrast to primary cortical neurons (Suppl. Fig. 1), indicating that 

GABAA-R may be involved in the modulation of bioenergetics by allopregnanolone in 

neurons. 

 To determine whether the increase in ATP level was due to an improvement of 

glycolytic activity or mitochondrial respiration in this cellular model, we again performed a 

simultaneous real-time monitoring of the ECAR and the OCR (Fig. 6B-D). We measured a 

significant effect on the OCR for most of the neurosteroids tested, starting with a 59% 

increase after treatment with testosterone (10 nM) up to a 128% increase induced by 3"-A 

(10 nM) (Fig. 6B). Again, the magnitude of change was higher compared to the 

neuroblastoma cell line (maximal increase of 26.5%). In parallel, we measured a slight, but 

not significant, decrease in the glycolytic activity, except for the treatment with progesterone 

at 100 nM which in contrast induced a huge increase in the ECAR (+51.% compared to the 

control condition) (Fig. 6C). The bioenergetic profile (OCR versus ECAR) revealed that after 

treatment with neurosteroids, the primary cortical neurons had the general tendency to 

switch to a more aerobic state (Fig. 6D) by increasing their oxygen consumption (OCR) and 

decreasing their glycolytic activity (ECAR), especially at the low concentration of 10 nM. 

 Taken together, these data indicate that in primary mouse neurons, most of the 

neurosteroids from the tested panel were able to increase ATP production via improvement 

of mitochondrial respiration. 

 

3.2.  Neurosteroids modulate the redox homeostasis  

 

 The increase of OXPHOS is often coupled with an increase in mitochondrial reactive 

oxygen species (mtROS) production (39; 40). Since neurosteroids were able to significantly 

increase mitochondrial respiration, we investigated whether ROS levels were also increased 

within mitochondria (mtROS) by measuring the oxidation of the fluorescent dye 

dihydrorhodamine 123 (DHR). All neurosteroids induced a significant dose-dependent 

increase in mtROS levels, ranging from a 43% increase after DHEA treatment (10 nM) up to 

a 111.3% increase induced by testosterone (100 nM) (Fig. 7A). Moreover, the specific 

measure of mitochondrial superoxide anion radicals revealed that some of the ROS 

produced were indeed superoxide anions (Table 1). However, the extent of mtROS 

production, which in excess can lead to massive oxidative stress, and finally cell death, did 
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not seem to be sufficient to trigger cell death under those experimental conditions (data not 

shown).  

 Therefore, we next tested the antioxidant defense system in mitochondria. We 

quantitatively measured the activity of the manganese superoxide dismutase activity 

(MnSOD), which is present within the mitochondrial matrix. Indeed, MnSOD activity was 

significantly increased (Fig. 7B) after treatment with the whole panel of neurosteroids, 

ranging from a 28.6% (progesterone, 100 nM) up to a 49.3% increase (testosterone, 100 

nM). The increase in mtROS was paralleled by an increase of antioxidant activity. In addition, 

mtROS level and MnSOD activity correlated with one another (Fig. 7C), suggesting that the 

increase of MnSOD activity was substrate-dependent.  

 Finally, to verify whether the mitochondrial redox environment was impacted by this 

increase of ROS versus increase of antioxidant defenses, SH-SY5Y cells stably transfected 

with a reporter gene coding for a redox sensitive green fluorescent protein (AR305 roGFP) 

located within mitochondria were treated with our panel of neurosteroids (28). Figure 7D 

displays the oxidation/reduction state in mitochondria, and indicates that, despite a slight 

switch toward a more oxidized state, only testosterone (100 nM) and DHEA (100 nM) 

significantly modified the redox environment in mitochondria.  

 Taken together, our data indicate that neurosteroids increased mitochondrial activity, 

which was paralleled by an enhancement in mtROS levels. However, cell viability was still 

unchanged and the raise of mtROS appeared to be at least in part compensated by an 

increase in antioxidant activity, which in turn led to a slight switch to an oxidized state within 

mitochondria. 

 

4. Discussion 

 

 The aim of our study was to investigate the effects of seven neurosteroids on cellular 

bioenergetics and redox homeostasis in neuronal cells. The key findings were that: i) the 

majority of these steroids increased energy metabolism, mainly via an up-regulation of the 

mitochondrial activity and at least in part via receptor activation, and ii) neurosteroids 

regulated redox homeostasis by increasing the antioxidant activity as a compensatory 

mechanism to the ROS level enhancement which might result from the acceleration in 

oxygen consumption accompanied by a greater electron leakage from the electron transport 

chain. Additionally, each neurosteroid seems to have a specific bioenergetic profile. The 

single profiles are delineated as pie charts for SH-SY5Y (Fig. 8A) and mouse primary 

cortical neurons (Fig. 8B).  

 Remarkably, each steroid doesn�t seem to act in the same way on both cell types. For 

example, allopregnanolone, which had no effects on ATP level and basal respiration in SH-



RESULTS  Grimm A. et al. (2014) 

91 

 

SY5Y cells, appeared to increase those two parameters in primary neuronal cells. On the 

contrary, progesterone was able to increase ATP production in SH-SY5Y cells, but showed a 

significant effect only on glycolysis in primary cells. One explanation could be that SH-SY5Y 

cells and primary neuronal culture may exhibit steroid receptor expression profiles that are 

slightly different. Steroid receptor expression, such as that of progesterone, estrogen and 

androgen receptors, has already been demonstrated in both SH-SY5Y cells (29; 30) and in 

mouse neurons (41-43), respectively. It is known that allopregnanolone doesn�t bind to a 

conventional steroid receptor but mainly acts as a positive GABAA receptor (GABAA-R) 

allosteric modulator that strengthens the effects of GABA. We found that SH-SY5Y cells do 

not express GABAA-R unlike in primary neurons (Suppl. Fig. 1). This indicates that 

allopregnanolone may act via GABAA-R to increase ATP level especially in primary neurons 

and explains the lack of effect on ATP in SH-SY5Y cells. Furthermore, other signaling 

pathways and receptors may be involved in the effects of allopregnanolone upon 

bioenergetics in primary cortical neurons, such as the newly characterized pregnane 

xenobiotic receptor (44). 

 Moreover, it is known that proliferative cells and tumors have a net tendency to use 

the cellular glycolysis to produce ATP instead of the OXPHOS system. This phenomenon is 

called �Warburg effect� (37). On the contrary, primary neurons, which are differentiated cells, 

rely almost exclusively on the OXPHOS system to produce ATP and glycolysis is really low 

(raw data not shown). Indeed, in the latter model, ATP level appeared to be strictly coupled 

with the basal respiration. The bioenergetic profile of primary cortical cells revealed that 

neurosteroids preferentially increased mitochondrial respiration and not the glycolytic 

pathway, while both pathways were increased in SH-SY5Ycells (Fig. 3C, Fig. 6D). 

 

  In the recent years, neurosteroids have emerged as new potential therapeutic tools 

against neurodegeneration (45). Among the steroids, the family of sex steroid hormones is 

the most widely studied. They are in the focus of research on neurodegenerative diseases 

since cognitive decline and the risk to develop AD appear to be associated with an age-

related loss of sex hormones (e.g. estradiol, testosterone but also progesterone) in both, 

women and men (46; 25), a hypothesis largely supported by epidemiological evidence (47). 

In vitro and in vivo studies demonstrated neuroprotective effects of sex hormones, 

particularly with mitochondria proposed as the primary site of action of estradiol (48; 32; 49; 

24). Indeed, estrone (E1), estradiol (E2), and estriol (E3), are known to play a fundamental 

role in the regulation of the female metabolic system (50). It has been reported that 

estrogens can regulate mitochondrial metabolism by increasing the expression of glucose 

transporter subunits and by regulating some enzymes involved in the tricarboxylic acid cycle 

(TCA cycle) and glycolysis, which leads to an improvement in glucose utilization by cells 
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(reviewed in (21)). Estrogens seem also able to up-regulate genes coding for some electron 

transport chain components such as subunits of mitochondrial complex I (CI), cytochrome c 

oxidase (complex IV), and the F1 subunit of ATP synthase. In line with these findings, our 

data demonstrated that both female sex hormones, estradiol (E2) and estrone (E1), were 

able to increase ATP levels, basal respiration, and MMP in neuroblastoma cells (Fig. 8A). Of 

note, the increase of ATP levels induced by E2 and E1 was abolished in the presence of ICI-

182.780, an estrogen receptor (" and !) antagonist (Fig. 2B) suggesting that estrogens, 

such as E2 and E1, may act via these receptors to up-regulate genes involved in cellular 

bioenergetics, as mentioned above. Estradiol seemed to be more potent that estrone, 

because both concentrations (10 nM and 100 nM) were effective to increase ATP levels and 

mitochondrial respiration. In addition, estradiol was able to regulate glycolysis. This 

difference can be explained by the observation that, despite estrone�s capability as an 

estrogenic compound, it is about 10 times less estrogenic than estradiol (21). The same 

finding was observed in primary neurons (Fig. 8B).  

 

 Regarding the predominantly male hormone testosterone, we witnessed an increase 

in ATP levels, basal respiration and mitochondrial membrane potential in neuroblastoma 

cells (Fig. 8A). Moreover, testosterone was also the only steroid besides DHEA inducing an 

acceleration of the respiratory control ratio (RCR), an indicator of the capacity for substrate 

oxidation (high RCR), which is important when cells have specific or high energy demands. 

The role of androgens on mitochondrial function, especially testosterone, has received little 

attention up to now, compared to the estrogens. Only one study demonstrated a similar 

effect of testosterone on MMP (51). Furthermore, it has been proposed that estradiol and 

testosterone can regulate energy production by inducing nuclear and mitochondrial OXPHOS 

genes, since the subunits of mitochondrial chain complexes are encoded by the nuclear and 

the mitochondrial genome, respectively, and both contain hormone responsive elements 

(52). Again, those findings are in line with our results, since we have shown that the increase 

of ATP levels was blocked in the presence of estrogen and androgen receptor antagonists 

(Fig. 2B). 

 

 Progesterone is the second main female sex hormone but it is also a precursor for 

estrogens and androgens. Progesterone, and its 3"-5"-derivate allopregnanolone (or 3", 5"-

tetrahydroprogesterone) as well as 3"-androstanediol, seem to play a role in mood 

modulation. Their therapeutic potential for the treatment of depression, anxiety (53-55) and 

more recently AD is currently under investigation (35). In the present study, we demonstrated 

that progesterone increased ATP levels and MMP without significant effects on basal 

respiration in neuroblastoma cells (Fig. 8A). An increase in glycolysis was also observed 
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after treatment in the primary neurons (Fig. 8B). Again, the up-regulatory effect of 

progesterone on ATP levels was shut down in the presence of the progesterone receptor 

antagonist RU-486 (Fig. 2B), suggesting that progesterone also modulates cellular 

bioenergetics by regulating gene expression via a progesterone nuclear receptor. Studies 

performed on ovariectomized rats revealed that a 24 h treatment with progesterone 

(subcutaneous injection, 30 #g/kg) increased OXPHOS capacity in isolated mitochondria, in 

part by enhancing cytochrome c oxidase activity and expression (32). Interestingly, the 

increase of OXPHOS capacity was suppressed by a co-treatment with estradiol and 

progesterone, suggesting a competitive mode of action between both steroids. Another study 

using wobbler ALS (amyotrophic lateral sclerosis) model mice showed that progesterone was 

able to normalize the deficits in mitochondrial complex I activity observed in motor neurons of 

the cervical spinal cord (56). Because progesterone seems to have different functional 

effects, one can speculate that its action on mitochondrial respiration may be distinct to 

specific nerve cell populations.  

 

 Allopregnanolone and 3"-androstanediol have a distinct mode of action compared to 

sex hormones because they mainly act on membrane receptors (allosteric modulator of 

GABAA-R) and not nuclear receptors (57). Their effects on mitochondrial bioenergetics 

cannot be explained by a direct regulation of genes involved in the OXPHOS system as 

previously proposed for sex hormones. In our study, 3"-androstanediol showed a similar 

effect compared to progesterone in the neuronal cell line, but was also able to significantly 

increase the basal respiration (at 100 nM) (Fig. 8A). Both concentrations were effective to 

increase ATP and respiration in primary cells (Fig. 8B). Allopregnanolone significantly 

regulated ATP levels and basal respiration only in primary neurons, whereas no effect was 

detected in the neuroblastoma cell line. Based on those observations, we can speculate that: 

i) GABAA-R is involved in the up-regulatory effect of allopregnanolone on ATP levels in 

primary cells because no increase was observed in SH-SY5Y cells lacking of this receptor 

(Suppl. Fig. 1); and ii) 3"-androstanediol could act via androgen receptor because its effect 

on ATP levels was abolished in the presence of an androgen receptor antagonist (Fig. 2B). 

However, further investigations will be required to understand the exact underlying 

mechanisms. Besides, due to the high complexity of the neurosteroid pathway synthesis, it is 

difficult to conclude that the effect which we observed on bioenergetics is due to the tested 

neurosteroid itself, or to one of its metabolites, because they all belong to crisscross 

pathways (Fig. 1). However, since blocking progesterone, estrogen and androgen receptors 

abolishes the effects of their respective agonists, we have good evidence that the 

neurosteroids themselves exhibit the mode of action. In the same way, we can exclude that 

progesterone is acting via its metabolite allopregnanolone because the latter has no effects 
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on bioenergetics in SH-SY5Y cells. Nevertheless, it is also possible that 3"-androstanediol 

doesn�t act directly on androgen receptors but is converted in dihydrotestosterone, another 

testosterone metabolite which has high affinity for this receptor. In a similar way, DHEA can 

be converted in androgens and estrogens and may act via the corresponding steroid nuclear 

receptor. 

 

 DHEA (dehydroepiandrosterone) was the first neurosteroid identified in 1981 (11), 

and its physiological action involves both genomic and non-genomic mechanisms, in part via 

activation of androgen/estrogen receptors and allosteric modulation of NMDA receptors, 

respectively (58). Human studies showed an age-related decrease in DHEA levels in the 

brain and in the blood in relation to the age-associated cognitive decline (59; 17). In vitro, we 

showed that DHEA enhanced ATP levels and basal respiration in primary neurons (Fig. 8B). 

A similar effect was observed in the neuronal cell line with an additional increase in MMP, 

glycolysis and RCR (Fig. 8A, Table 1). In agreement with our findings, DHEA was able to 

improve mitochondrial respiration in the brain of old rats (18-24 months) which exhibited a 

decline in mitochondrial function when compared to young rats (8-10 weeks) (60). More 

specifically, DHEA stimulated the respiratory state 3 in old rats which consequently was 

similar to that of untreated young rats. Furthermore, DHEA increased cytochrome c content 

in young and old mouse brains and enhanced mitochondrial dehydrogenase activities.  

 Thus, the different bioenergetic profiles we observed after treatment with our panel of 

steroids could be explained by their distinct abilities to directly or indirectly regulate the 

transcription of genes involved in glycolysis and oxidative phosphorylation (probably, via 

steroid nuclear receptors), but also the content and activity of mitochondrial respiratory 

complexes. Further investigations are required to determine in more detail which genes are 

involved in these processes. 

 

 Mitochondria are known to be paradoxical organelles. They can be compared to a 

double-edged sword that, on one hand, produces the energy necessary for cell survival, and 

on the other hand, induces the formation of ROS that can be harmful for cells when produced 

in excess with mitochondria as the first target of toxicity (39; 40). In our study, the increase in 

ATP appeared to be coupled to an increase in MMP and improved basal respiration (Fig. 

8A). In parallel, we detected higher mitochondrial ROS levels, supporting the hypothesis that 

increased mitochondrial activity generates more ROS. The only exception was observed 

after treatment with allopregnanolone where we detected more ROS but no increase in ATP 

level, MMP, or basal respiration. We can speculate that, in this model, allopregnanolone 

might be able to increase ROS-producing metabolic functions via other mechanisms. But 

with regard to the other neurosteroids, the increase of mitochondrial ROS was paralleled by 
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an increase in MnSOD activity. The MnSOD is located in the mitochondrial matrix and 

represents one of the first antioxidant defenses against ROS produced by OXPHOS (61). Its 

improved activity could be in part explained by an up-regulation of gene expression and 

protein level of MnSOD. Indeed, in studies which focused on antioxidant effects of steroids in 

ovariectomized female rats, an increase of MnSOD protein level has been observed after 

treatment with estradiol or progesterone (32), whereas DHEA preferentially up-regulated the 

expression of Cu/ZnSOD (31). In orchiectomized male rats, testosterone was also able to 

increase MnSOD protein level compared to the control (sham operated) (62). A similar 

observation was made in the wobbler ALS mouse model, where MnSOD expression was 

elevated after treatment with progesterone (56).  

 

 In our study, the correlation between mitochondrial ROS level and MnSOD activity 

implies that the increase of enzymatic SOD activity might be preferentially substrate-

dependent, but can be explained, at least in part, by an up-regulation of gene expression.  

 Based on our observation, one can speculate that pre-treatment with neurosteroids 

may exert a protective action against oxidative stress, possibly through a preconditioning 

mechanism via their ability to increase antioxidant defenses (i.e. MnSOD activity). However, 

in an already oxidized environment, the presence of neurosteroids may be deleterious for 

cells because they also appear to further increase ROS production. This observation 

reinforces the �critical window hypothesis� of the therapeutic use of steroids as debated 

recently with regard to the hormone replacement therapy in post-menopausal women (63) 

and implies that this kind of therapy should begin at an age when the redox system is still 

balanced, thus favoring the reference postulating early onset administration. 

 

 It is known that some neurosteroid levels decline during aging and are further 

modified in neurodegenerative conditions (i.e. AD and PD). In addition, mitochondrial 

dysfunction has been well-documented in aging and age-related neurodegenerative diseases 

(64). Steroids offer interesting therapeutic opportunities for promoting successful aging 

because of their pleiotropic effects in the nervous system. Our findings highlight, for the first 

time, up-regulatory effects of neurosteroids upon the neuronal bioenergetic activity via up-

regulation of the mitochondrial oxygen consumption as a common mechanism underlying 

neurosteroid action. In addition, these steroids can modulate the redox homeostasis, by 

balancing the increase of ROS production via improved mitochondrial antioxidant activity 

(Fig. 9). Thus, our results provide new insights in re-defining the biological model of how 

neurosteroids control neuronal functions. Because each steroid appeared to have a specific 

profile in bioenergetic outcome and redox homeostasis, the underlying mechanisms have to 
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be elucidated in more details in the future, as well as those in models of neurodegenerative 

diseases, such as AD. 



RESULTS                

 

 

 

 

Table 1: Effects of neurosteroids on cellular bioenergetics in neuroblastoma cells. 

  
Progesterone Estradiol Estrone Testosterone 

3"-

androstanediol 

  
10 nM 100 nM 10 nM 100 nM 10 nM 100 nM 10 nM 100 nM 10 nM 100 nM 10 nM

ATP level 113.9* 122.6* 113.4* 114.6* 116* 120.4* 110.7* 118* 110.1* 111.4* 107.6* 

Cell proliferation 98.7 100.9 98.2 100.3 97.2 99.2 97.9 102.1 100.1 103.8 97.6 

MMP 120* 108.2 118.5* 118.8* 120* 119.2* 128.1* 119.9* 123.2* 109.8 132.2* 

Glycolysis 115.4 102.7 119.4* 116.1* 113.8 111.1 108.1 105.5 105.7 106.6 106.2 

Mitochondrial 

respiration 

Basal 111 105.9 118.3* 123.2* 110.9 118.1* 115.1* 126.5* 106.9 114.1* 110.8* 

RCR 97.9 98.7 93.7 89.6 100.6 102.8 132.7* 116.5* 95.3 104 120.3* 

Mitochondrial 

ROS 

Total 108.4 151.7* 122.9 160.8* 121.8 171.3* 145.2* 211.3* 148.4* 182.8* 143.9* 

Superoxide 100.7 104* 103 106.2* 102.8 108* 103.6* 105.8* 103.8* 105.9* 105* 

MnSOD activity 110.6 128.6* 120.7 136.6* 128.7 141.9* 137.4* 149.3* 134.7* 127.6 135.3* 

Mitochondrial redox state 105.7 110.6 108.1 108.9 104.1 109.2 109.9 113.6* 109.8 109.1 104.2 

 

Values represent the mean normalized on 100% of the control group (untreated). * indicates when the percentage is significantly different from the control group. MM

mitochondrial membrane potential, RCR; respiratory control ration, ROS; reactive oxygen species, MnSOD; manganese superoxide dismutase. 
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Fig. 1: Schematic representation of the main biochemical pathways for neurosteroidogenesis in the vertebrate 

brain. Boxes represent neurosteroids tested in our study. * indicates neurosteroids whose synthesis is impacted in 

AD. PREG; pregnenolone, PROG; progesterone, 17OH-PREG; 17-hydroxypregnenolone, 17OH-PROG; 17-

hydroxyprogesterone, DHEA; dehydroepiandrosterone, DHP; dihydroprogesterone, ALLOPREG; 

allopregnanolone, DHT; dihydrotestosterone, P450scc; cytochrome P450 cholesterol side chain cleavage, 

P450c17; cytochrome P450c17, 3!-HSD; 3!-hydroxysteroid dehydrogenase, 5"-R; 5"-reductase, Arom.; 

aromatase, 21-OHase; 21-hydroxylase, 3"-HSOR; 3"-hydroxysteroid oxydoreductase, 17!-HSD; 17!- 

hydroxysteroid dehydrogenase  
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Fig. 2. Neurosteroids increase ATP level in SH-SY5Y neuroblastoma cells. (A) ATP level was significantly 

increased after neurosteroid treatment for 24 h at a concentration of 10 nM (white boxes) or 100 nM (gray 

boxes).(B) ATP level was measured after pre-treatment of cells for 1 h with either progesterone receptor 

antagonist RU-486 (100 nM), or estrogen receptor antagonist ICI-182.780 (100 nM), or androgen receptor 

antagonist 2OH-flutamide (1 #M) and then treated for 24 h with the corresponding steroid agonist. (C) 

Mitochondrial membrane potential (MMP) was significantly increased after neurosteroid treatment for 24 h at a 

concentration of 10 nM (white boxes) or 100 nM (gray boxes). (A-C) Values represent the mean ± SEM; n=12-18 

replicates of three independent experiments. One-way ANOVA and post hoc Dunnetts' multiple comparison test 

versus control (untreated), *P<0.05; **P<0.01; ***P<0.001. Student unpaired t-test, && P<0.01; &&&P<0.001. P; 

progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"-A; 3"-androstanediol, D; dihydroepiandrostanedione 

(DHEA), AP; allopregnanolone, RU; RU-486, ICI; ICI-182.780, flut.; 2OH-flutamide. 
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Fig. 3. Neurosteroids positively regulate bioenergetic activity in SH-SY5Y neuroblastoma cells. (A) Extracellular 

acidification rate (ECAR) and (B) oxygen consumption rate (OCR) were measured simultaneously using a 

Seahorse Biosciences XF24 Analyser in the same experimental conditions. (C) Bioenergetic profiling of SH-SY5Y 

cells (OCR versus ECAR) revealed increased metabolic activity after treatment with neurosteroids. Values 

represent the mean of each group (mean of the ECAR in abscissa/mean of the OCR in ordinate) normalized to 

the untreated control group (=100%). (A-C) Values represent the mean ± SEM; n=12-18 replicates of three 

independent experiments. One-way ANOVA and post hoc Dunnetts' multiple comparison test versus control 

(untreated), _P`0.05; __P`0.01; ___P`0.001; P; progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"-A; 

3"-androstanediol, D; dihydroepiandrostanedione (DHEA), AP; allopregnanolone. 
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Fig. 4. ATP levels did correlate with basal mitochondrial respiration. Graph representing ATP levels in abscissa 

versus (A) OCR or (B) ECAR or (C) MMP in ordinate. Values represent the mean of each treatment group 

normalized to the control group (=100%). Pearson correlation r=0.5074, R2=0.2575, P=0.0032. OCR; oxygen 

consumption rate, ECAR; extracellular acidification rate; MMP; mitochondrial membrane potential. 
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Fig. 5. Testosterone increased mitochondrial respiratory capacity. (A) Oxygen consumption rate (OCR), was 

measured on permeabilized SH-SY5Y cells after treatment with testosterone for 24 h, using a XF24 Analyser 

(Seahorse Bioscience). The sequential injection of mitochondrial inhibitors is indicated by arrows (see details in 

the Materials and Methods section). (B) Values corresponding to the different respiratory states are represented 

as mean ± SEM (n= 15-18 replicate of three independent experiments/group) and were normalized to the basal 

respiration of the control group (=100%). (C) The respiratory control ratio (RCR= State 3/State 4o), which reflects 

the mitochondrial respiratory capacity, was increased by testosterone. Student unpaired t-test, *P<0.05. T 10 nM; 

testosterone at a concentration of 10 nM, T 100 nM; testosterone at a concentration of 100 nM, O; oligomycin, F; 

FCCP, R/A; rotenone/antimycin A. 
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Fig. 6. Neurosteroids up-regulated the bioenergetic activity in primary cortical cells. (A) ATP level was significantly 

increased after neurosteroid treatment (24 h) at a concentration of 10nM (white boxes) and 100nM (gray boxes). 

(B) Oxygen consumption rate (OCR) and (C) extracellular acidification rate (ECAR) were measured 

simultaneously using a Seahorse Biosciences XF24 Analyser under the same experimental conditions. (D) 

Bioenergetic profile of primary cortical cells (OCR versus ECAR) revealed an increased aerobic activity (O2 

consumption) after treatment with neurosteroids. Values represent the mean of each group (mean of the ECAR in 

abscissa / mean of the OCR in ordinate) and were normalized to the control group (100%). (A-C) Values 

represent the mean ± SEM, n=4-6 replicates of three independent experiments / group, and were normalized to 

the control group (=100%). One-way ANOVA and post hoc Dunnetts' multiple comparison test versus control 

(untreated), *P<0.05; **P<0.01; ___P`0.001; P; progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"-A; 

3"-androstanediol, D; dihydroepiandrostanedione (DHEA), AP; allopregnanolone. 
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Fig. 7. Neurosteroids modulate the mitochondrial redox environment in SH-SY5Y neuroblastoma cells. (A) 

Mitochondrial reactive oxygen species (mtROS) levels were significantly increased after neurosteroid treatment 

(24 h) at a concentration of 10 nM (white boxes) and 100 nM (gray boxes). (B) This increase was accompanied by 

an up-regulation of manganese superoxide dismutase activity (MnSOD). (C) A positive correlation was observed 

between ROS levels and MnSOD activity. (D) Using a reporter gene coding for a redox sensitive green 

fluorescent protein (AR305 roGFP) located within mitochondria, the mitochondrial redox state underwent a switch 

to a more oxidized state after neurosteroid treatment compared to the untreated control. (A, B) Values represent 

the mean ± SEM and were normalized to the corresponding untreated control group (=100%). (C) Values 

represent the mean of each group (mean of the mitochondrial ROS level in abscissa / mean of the MnSOD 

activity in ordinate) normalized to the untreated control group (=100%). Pearson correlation r=0.7096, R2=0.5035, 

P=0.0022. (D) Values represent the mean ± SEM of the ratio �oxidized state/reduced state�, n@8-15 replicates of 

three independent experiments/group. Values were normalized to the control group (=100%). One-way ANOVA 

and post hoc Dunnett�s multiple comparison test versus control (untreated), *P<0.05; **P<0.01; ***P<0.001; P; 

progesterone, E2; estradiol, E1; estrone, T; testosterone, 3a-A; 3a-androstanediol, D; dihydroepiandrostanedione 

(DHEA), AP; allopregnanolone, Ox.; oxidized environment, Red.; reduced environment.  
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Fig. 8. Different action profile of neurosteroids on cellular bioenergetics. Representative diagrams of the effects of 

neurosteroids on the bioenergetic activity (ATP level, basal respiration, glycolysis, MMP) and the modulation of 

mitochondrial redox environment (mtROS levels, MnSOD activity, redox state) in SH-SH5Y neuroblastoma cells 

(A), and the bioenergetic activity in primary cortical cells (B). No effect is represented in white color. A significant 

increase of the respective parameter is marked either in yellow (significant only at 10 nM), blue (significant only at 

100 nM), or green (significant at both concentrations). mtROS; mitochondrial reactive oxygen species, MMP; 

mitochondrial membrane potential, MnSOD; manganese superoxide dismutase activity.  
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Fig. 9. Schematic representation of the effects of neurosteroids on mitochondrial bioenergetics and redox 

environment in SH-SH5Y neuroblastoma cells. * indicates that the effect was similar to that observed in primary 

cortical cells. ETC; electron transport chain, TCA; tricyclic acid, MnSOD; manganese superoxide dismutase, 

ROS; reactive oxygen species, MMP; mitochondrial membrane potential.  



RESULTS  Grimm A. et al. (2014) 

107 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl. Fig. 1. PCR analysis of GABAA receptor in SH-SY5Y human neuroblastoma cells and mouse primary 

cortical cells. Total RNA obtained from both cell types was amplified with the corresponding primers for human 

and mouse GABAA receptor subunits "1 and !2. GABRA1; human subunit "1 (82 bp), GABRB2; human subunit 

!2 (143 bp), gabra1; mouse subunit "1 (98 bp), mouse; gabrb2; mouse subunit !2 (115 bp). 
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Abstract: 

 

 Alzheimer�s disease (AD) is an age-related neurodegenerative disease marked by a 

progressive physical and cognitive decline. Metabolic and mitochondrial impairments are 

common hallmarks of AD, and amyloid-! (A!) peptide and hyperphosphorylated tau protein � 

the two foremost histopathological signs of AD - have been implicated in mitochondrial 

dysfunction. Neurosteroids have recently shown promise in alleviating cognitive and neuronal 

sequelae of AD. The present study evaluates the impact of neurosteroids belonging to the 

sex hormone family (progesterone, estradiol, estrone, testosterone, 3"-androstanediol) on 

mitochondrial dysfunction in cellular models of AD. For that purpose, we treated human 

neuroblastoma cells (SH-SY5Y) stably transfected with the human amyloid precursor protein 

(APP) that overexpress APP and A!, wild-type tau protein (wtTau), or mutant tau (P301L), 

that induces abnormal tau hyperphosphorylation for 24 hrs with neurosteroids. We showed 

that APP and P301L cells both display a drop in ATP levels but they present distinct 

mitochondrial impairments with regard to their bioenergetic profiles. The P301L cells 

presented a decreased maximal respiration and spare respiratory capacity, while APP cells 

exhibited, in addition, a decrease in basal respiration, ATP turnover and glycolytic reserve. 

All the neurosteroids tested showed beneficial effects on ATP production and mitochondrial 

membrane potential in APP/A! overexpressing cells while only progesterone and estradiol 

increased ATP levels in mutant tau cells. Of note, testosterone was more efficient to alleviate 

A!-induced mitochondrial deficits, and progesterone and estrogen were more effective in 

rising bioenergetic outcomes in our model of AD-related tauopathy. Our findings lend further 

evidence to the neuroprotective effects of neurosteroids in AD pathology and may open new 

avenues for the development of gender-based therapeutic approaches in AD. 

 

Key words: Mitochondria, Neurosteroid, Bioenergetics, Amyloid-! peptide, tau protein. 

 

Abbreviations:  

3"-A, 3"-androstanediol; A!, Amyloid-! peptide; AD, Alzheimer�s disease; APP, amyloid-! 

precursor protein; DMSO, dimethylsulfoxide; E1, estrone; E2, 17!-estradiol; ECAR, 

extracellular acidification rate; ETC, electron transport chain; MMP, mitochondrial membrane 

potential; OCR, oxygen consumption rate; OXPHOS, Oxidative phosphorylation; P, 

progesterone; P301L, tau mutation; PD, Parkinson�s disease; ROS, reactive oxygen species; 

T, testosterone; wtTau, wild-type tau. 
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Introduction 

 

 Alzheimer�s disease (AD) is an age-related neurodegenerative disease that accounts 

for more than 60% of all dementia cases. AD will become increasingly burdensome and 

costly in the coming years as prevalence is expected to double within the next two decades 

(1). The disease is characterized by cognitive deficits and memory loss and, from a 

histopathological point of view, by the presence of amyloid-! (A!) plaques and neurofibrillary 

tangles (NFT) composed of abnormally hyperphosphorylated tau protein in the brain. Genetic 

studies link mutations in the amyloid-! protein precursor (APP) to familial AD (FAD) cases. 

These mutations lead to an increased A! production in the brain of AD patients (2). 

Interestingly no mutations in the tau coding gene have been identified so far in FAD. 

However, such mutations were detected in familial frontotemporal dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17) leading to NFT formation (3). Both 

histopathological hallmarks of AD, A! and abnormal tau protein, generate problems with 

synaptic integration, oxidative stress, disrupting Ca2+ homeostasis that inexorably lead to 

neurodegeneration (4-6).  

 Mitochondria are essential components of metabolic function and serve as the 

�powerhouses� of cells, providing energy in the form of adenosine triphosphate (ATP) that is 

used by cells to power a variety of cellular processes including apoptosis, intracellular 

calcium homeostasis, alteration of the cellular reduction�oxidation (redox) state and synaptic 

plasticity (7; 8). Mounting evidence suggests that mitochondrial dysfunction serves as a 

catalyst in AD, since the disease is associated with a decline in bioenergetic activity and an 

increase in oxidative stress that can already be detected at early stages of the disease (9-

11). Indeed, brain glucose hypometabolism could be observed in living AD patients even 

before the onset of clinical symptoms (12). This disease characteristic was also observed in 

AD mouse models in which mitochondrial dysfunction is already obvious before the 

appearance of A! deposits, NFT and cognitive impairments (reviewed in (13)). With regard to 

their critical role in the early pathogenesis of AD, mitochondria therefore represent interesting 

targets for the development of novel treatment avenues. 

 Based on recent breakthroughs, interventions that concentrate on mitochondrial 

deficits, such as neurosteroids, may serve as potential strategies for the treatment of AD (14-

16). In 1981, Baulieu and colleagues characterized a new category of steroids that are 

synthesized within the nervous system and are still present in substantial amounts after 

removal of the peripheral steroidogenic glands (17). This category of molecules was dubbed 

�neurosteroids�. In a recent study, we characterized the bioenergetic modulating profile of 

seven structurally diverse neurosteroids that are known to be involved in the regulation of 
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brain functions (18-21), namely progesterone, estradiol, estrone, testosterone, 3"-

androstanediol, DHEA and allopregnanolone. We found that most of the steroids we tested 

were able to improve bioenergetic activity in neuronal cells by increasing ATP levels, 

mitochondrial membrane potential (MMP) and mitochondrial respiration (16). Our results 

provide new insights in re-defining the biological model of how neurosteroids control 

neuronal functions and further emphasize the role of neurosteroids in neuroprotection.  

 In line with our study, a growing body of evidence attests to the neuroprotective 

effects of neurosteroids, especially estrogenic compounds, against AD-related cellular injury 

(reviewed in (15)). However, little is known about the influence of neurosteroids on AD-

related mitochondrial dysfunction. Additionally, the primary focus of neurosteroid treatment in 

AD has centered in the past on A! plaques rather than tau-related NFT.  

 

 Thus, the aim of our study was to assess whether neurosteroids of the sex hormone 

family could attenuate the toxic effects of A! and/or abnormal tau on mitochondria and also 

to differentiate the influence of neurosteroids on tau-related deficits independent of A!. For 

this purpose, we investigated the effects of progesterone, estradiol, estrone, testosterone 

and 3"-androstanediol on bioenergetics in SH-SY5Y neuroblastoma cells stably transfected 

with wild type human APP (APP cells) or the empty vector (Mock cells), and wild type human 

tau (wtTau cells) or mutated tau (P301L cells), respectively. Of note, both AD cell culture 

models, APP and P301L cells, exhibit the characteristics of a mitochondrial malfunction when 

compared to their respective controls. They had in common decreased ATP levels as well as 

impaired mitochondrial respiration (22; 23), but differed in underlying mechanisms. Thus, 

APP cells presented a defect in complex IV activity (22), whereas complex I activity was 

impacted by mutant tau in P301L cells (23). On the basis of our previous findings, it was 

therefore of utmost interest to examine whether neurosteroids are able to alleviate 

mitochondrial deficits manifested in these AD cellular models. In particular, their impact on 

ATP production, mitochondrial membrane potential (MMP), mitochondrial respiration and 

glycolysis was investigated. 

 

Materials and methods 

 

Chemicals and reagents 

 

 Dulbecco�s-modified Eagle medium (DMEM), foetal calf serum (FCS), 

penicillin/streptomycin, progesterone, 17!-estradiol, estrone, 3"-androstanediol and pyruvate 

were from Sigma-Aldrich (St. Louis, MO USA). Glutamax was from Gibco Invitrogen 

(Waltham, MA USA). XF Cell Mitostress kit was from Seahorse Bioscience (North Billerica, 
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MA USA). Testosterone was from AppliChem (Darmstadt, Germany). Horse serum (HS) was 

from Amimed, Bioconcept (Allschwil, Switzerland).  

 

Cell culture 

 

 APP cells were obtained by transfecting the human neuroblastoma SH-SY5Y with 

cDNAs (pCEP4 vector) containing either vector alone (Mock cells) or the entire coding region 

of human APP (APP695, APP cells) as previously described (22; 24). Stably transfected 

human SH-SY5Y neuroblastoma cells with wild-type (wtTau cells) and P301L mutant tau 

(P301L cells) were kindly provided by Jürgen Götz, Queensland Brain Institute (QBI), 

Brisbane, Queensland, Australia (25). Cells were grown at 37 °C in a humidified incubator 

chamber under an atmosphere of 7.5% CO2 in DMEM supplemented with 10% (v/v) heat-

inactivated FCS, 5% (v/v) heat-inactivated HS, 2 mM Glutamax and 1% (v/v) 

penicillin/streptomycin. Cells were passaged 1-2 times per week, and plated for treatment 

when they reached 80�90% confluence.  

  

Treatment paradigm 

 

 Assessment of cell viability was performed on SH-SY5Y neuroblastoma cells (Mock, 

APP, wtTau and P301L cells) to determine the potential toxic concentration range of 

neurosteroids (from 10 nM to 1000 nM, data not shown) using a MTT reduction assay 

(Roche, Basel, Switzerland) on the basis of the MTT results, and according to previous data 

obtained in untransfected SH-SY5Y neuroblastoma cells (16) the concentration 100 nM was 

then selected and used in all assays. Cells were treated one day after plating either with 

DMEM (untreated control condition) or with a final concentration of 100 nM of progesterone, 

17!-estradiol, estrone, testosterone or 3"-androstanediol made from a stock solution in 

DMSO for 24 hrs (final concentration of DMSO < 0.002%, no effect of the vehicle solution 

(DMSO) alone compared to the untreated condition). To limit cell growth and to optimize 

mitochondrial respiration, treatment medium contained only a low amount of fetal calf serum 

(5% FCS) as well as glucose (1 g/l) and was supplemented with 4 mM pyruvate. Each assay 

was repeated at least 3 times. 

 

ATP levels 

 

 Total ATP content was determined using a bioluminescence assay (ViaLighTM HT; 

Cambrex Bio Science) according to the instructions of the manufacturer, as previously 

described (22). Cells were plated in 5 replicates into a white 96-well cell culture plate at a 



RESULTS  Grimm A. et al. (in preparation) 

116 

 

density of 1.5 x 104 cells/well. The bioluminescent method measures the formation of light 

from ATP and luciferin by luciferase. The emitted light was linearly related to the ATP 

concentration and was measured using multilabel plate reader VictorX5 (Perkin Elmer). 

  

Determination of mitochondrial membrane potential 

 

 The MMP was measured using the fluorescent dye tetramethylrhodamine, methyl 

ester, perchlorate (TMRM) (16). Cells were plated in 6 replicates into a black 96-well cell 

culture plate at a density of 1.5 x 104 cells/well. Cells were loaded with the dye at a 

concentration of 0.4 #M for 15 min. After washing twice with HBSS, the fluorescence was 

detected using the multilabel plate reader VictorX5 (PerkinElmer) at 530 nm (excitation)/590 

nm (emission). Transmembrane distribution of the dye was dependent on MMP.  

 

Mitochondrial respiration 

 

 The investigation of mitochondrial respiration and cellular glycolysis was performed 

using the Seahorse Bioscience XF24 analyser. XF24 cell culture microplates were coated 

with 0.1% gelatin and cells were plated at a density of 2.5 x 104 cells/well in 100 #l of 

treatment medium containing 5% FCS, 1 g/l glucose and 4 mM pyruvate. After neurosteroid 

treatment, cells were washed with 1X pre-warmed PBS and 500 #l of DMEM containing 1 g/l 

of glucose and 4 mM of pyruvate were added in each well. The oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR) were recorded simultaneously before and 

after the sequential injection of i) Oligomycin (0.5 #M), ii) FCCP (2 #M), iii) Antimycin A and 

rotenone (0.5 #M and 1 #M respectively). Data were extracted from the Seahorse XF-24 

software and bioenergetic parameters (basal respiration, ATP turn over, maximal respiration, 

spare respiratory capacity and glycolytic reserve) were calculated according to the guideline 

of the company. 

 

Statistical Analysis 

 

 Data are given as the mean ± S.E.M. Statistical analyses were performed using 

Graph Pad Prism software. For statistical comparisons of more than two groups, one-way 

ANOVA was used, followed by a Dunnett's multiple comparison tests versus the control. For 

statistical comparisons of two groups, student unpaired t-tests were used. P values < 0.05 

were considered statistically significant. 

 

Results 
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 APP and hyperphosphorylated tau differentially impair mitochondrial 

bioenergetics  

 

 To measure efficiency of mitochondrial respiration and cellular bioenergetics in 

APP/A! overexpressing cells, we simultaneously monitored in real-time the oxygen 

consumption rate (OCR) (Fig. 1A), an indicator of mitochondrial respiration, as well as the 

extracellular acidification rate (ECAR) (Fig. 1B), an indicator of glycolysis, using a Seahorse 

Bioscience XF24 Analyzer. We first performed experiments on untreated control and APP 

cells to record AD-related differences in OCR and ECAR readouts. A significant decrease 

(about 50 %) in basal respiration, ATP turnover, maximal respiration, as well as glycolytic 

reserve was observed in APP cells when compared to control cells (Fig. 1C), paralleled by a 

reduction in ATP levels (-20% compared to control cells) (Fig. 1D). Surprisingly, a slight 

increase in MMP was observed in APP cells (Fig. 1E), translating to a hyperpolarization of 

the mitochondrial membrane potential. 

 The same experiments were conducted to characterize wtTau cells and P301L cells 

(Fig. 2). No significant difference in basal respiration, ATP turnover and glycolytic reserve 

was found between the two cell lines (Fig. 2A-C). However, wtTau cells had higher maximal 

respiration and spare respiratory capacity than P301L-transfected cells, indicating that 

mutant cells have some level of metabolic impairment, especially with regard to their 

mitochondrial reserve capacity (Fig. 2C). ATP levels were also significantly reduced in 

P301L cells (-27% compared to wtTau cells) (Fig. 2D), paralleled by a depolarization of 

mitochondrial membrane potential (decreased MMP, -10% compared to wtTau cells) (Fig. 

2E). 

 Taken together, these results confirm that APP/A! and hyperphosphorylated tau 

exhibit negative impacts on mitochondrial function leading to mitochondrial respiration 

deficiency and diminished ATP outcome. Since different bioenergetic parameters are 

impaired between APP and P301L cells, A! and abnormal tau appear to exert a different 

degree of toxicity on mitochondrial function.  

 

 Sex steroid hormones distinctively increase mitochondrial bioenergetics in 

APP/A! and tau-overexpressing cells 

 

 To address whether treatment with neurosteroids can improve mitochondrial function 

in AD cell culture models, ATP levels and MMP were analyzed in APP/A! and tau-

overexpressing cells after 24 hrs of treatment (concentration 100 nM) with different steroids: 

progesterone (P), estradiol (E2), estrone (E1), testosterone (T) and 3"-androstanediol (3") 
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(Fig. 3). In APP cells, all steroids tested were able to significantly increase ATP levels (Fig. 

3A) as well as MMP (Fig. 3B). However, in P301L cells, only P and E2 induced a significant 

increase in ATP levels (Fig. 3C). P was particularly efficient since ATP levels in P301L were 

even higher (+6%) compared to those of the untreated wtTau cells. In addition, all the tested 

steroids, except testosterone, significantly increased MMP in P301L cells (Fig. 3D) with 

estrogens (E2 and E1) having the highest effect (+8% compared to untreated P301L cells). 

 To characterize the bioenergetic modulating profile of sex steroids on APP/A! and tau 

overexpressing cells, measurements with a Seahorse Bioscience XF24 analyzer were 

performed after 24 hrs of treatments (concentration 100 nM) (Fig. 4-5). In APP/A! 

overexpressing cells, only the testosterone treated group exhibited a higher basal respiration 

(Fig. 4A), ATP turnover (Fig. 4B), maximal respiration (Fig. 4C), spare respiratory capacity 

(Fig. 4D) and glycolytic reserve (Fig. 4E) compared to the untreated control group. In 

addition, 3"-androstanediol induced an improvement in the spare respiratory capacity (Fig. 

4D) and progesterone significantly increased glycolytic reserve (Fig. 4E). These data 

suggest that especially testosterone, the main male sex hormone, exhibits a beneficial 

impact on mitochondrial malfunction in AD cells modeling A! pathology.  

 Regarding the bioenergetic modulating profile of sex steroids on P301L cells, no 

significant changes were present in basal respiration (Fig. 5A). Nevertheless, the two main 

female sex hormones, P and E2, significantly enhanced ATP turnover (Fig. 5B), maximal 

respiration (Fig. 5C) as well as spare respiratory capacity (Fig. 5D) compared to the 

untreated P301L cells. Estrone (E1), another estrogen, was also able to significantly increase 

spare respiratory capacity (Fig. 5D) and 3"-androstanediol was the only steroid able to grow 

the glycolytic reserve (Fig. 5E) in P301L cells. Together, these data suggests that mainly 

female sex steroid hormones, P and E2/E1, improve mitochondrial bioenergetics in cells 

modeling tau pathology. 

 A full analysis of preference for oxidative phosphorylation as indicated by percent of 

OCR dedicated to ATP turnover (Fig. 6A, C) or spare respiratory capacity (Fig. 6B, D), 

versus the use of glycolytic reserves was performed in both APP/A! and tau-overexpressing 

cells. Tendency for greater or lesser metabolic activity is displayed on a second axis. Overall, 

APP cells were switched to a metabolically more active state after treatment with androgenic 

compounds (T and 3"), with a tendency to increase both glycolytic reserve (ECAR) and ATP 

turnover/spare respiratory capacity (OCR) (Fig. 6A-B). In P301L cells, ATP turnover and 

spare respiratory capacity were enhanced by progesterone (P) and estrogenic compounds 

(E1 and E2), leading to a more aerobic state (Fig. 6C-D). 

 Taken together, these results indicate that distinct sex steroid hormones are able to 

improve mitochondrial bioenergetics in APP/A! and tau-overexpressing cells by increasing 
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ATP levels, MMP and mitochondrial respiration which contribute to the alleviation of 

mitochondrial deficits observed in those cell lines. 

 

Discussion 

 

 In this study, we distinguished the effects of several neurosteroids on ATP synthesis, 

MMP, mitochondrial respiration and glycolysis in two AD cellular models. Key findings were 

that: i) APP/A! and mutant tau-overexpressing cells present distinct bioenergetic 

impairments, with APP/A! having the strongest deleterious effect on mitochondrial function; 

ii) the male steroid hormone, testosterone, was more efficient to alleviate mitochondrial 

deficits in a model of AD-related amyloidopathy, whereas female steroid hormones, 

progesterone and estrogen, were more efficient to increase bioenergetic outcomes in a 

model of AD-related tauopathies.  

 

 Remarkably, bioenergetic profiles were differentially impacted in APP/A!-

overexpressing cells and abnormally hyperphosphorylated tau-overexpressing cells. Only the 

maximal respiration and spare respiratory capacity were reduced in P301L cells, while APP 

cells presented, in addition, a decrease in basal respiration, ATP turnover and glycolytic 

reserve. A drop in ATP levels was observed in both cell lines as well as a decreased MMP in 

P301L. Interestingly, APP cells presented a slight hyperpolarized mitochondrial membrane 

compared to the control Mock cells. This characteristic was previously observed in PC12 

cells overexpressing APP bearing the Swedish mutation (APPsw), another cellular model 

mimicking A! pathology (26). The authors hypothesized that this hyperpolarization may be 

due to the increased nitric oxide levels present in this cell line where A! production is 

enhanced. Of note, A! secretion was similar in wild type APP-overexpressing human SH-

SY5Y cells used in the present study and in APPsw-overexpressing PC12 cells within the 

low nanomolar range (26; 24), whereas higher A! levels obviously lead to MMP 

depolarization (26). 

 

 The different bioenergetic output observed between APP/A! and abnormal tau 

overexpressing cells can be explained by the fact that A! and tau differentially target 

mitochondria. Indeed, previous data of our group showed that APP cells present a decreased 

mitochondrial complex IV activity (22), whereas complex I activity was impacted in P301L 

cells (23). Moreover, we showed that A! peptide and abnormally hyperphosphorylated tau 

protein may act synergistically to trigger mitochondrial dysfunction in a triple transgenic 

mouse model of AD (tripleAD) obtained after crossing P301L tau transgenic mice with 

APPswPS2 double-transgenic mice (27). The investigation of oxidative phosphorylation 
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(OXPHOS) activity revealed that deregulation of complex I activity was related to tau, 

whereas deregulation of complex IV activity was dependent on A!.  

 Thus, on one hand, the lower complex I activity observed in P301L cells may lead to 

a decreased ability to reach maximal respiration, which reduces the spare respiratory 

capacity of the cells. On the other hand, the reduced complex IV activity, which is directly 

involved in oxygen consumption, may decrease additional respiratory parameters, including 

ATP turnover in APP cells. 

 

 A treatment with sex steroid hormones was able to alleviate bioenergetic impairments 

observed in APP and P301L cells in general. More precisely, the male hormone testosterone 

was able to enhance all the bioenergetic parameters that were impaired in APP/A! 

overexpressing cells, namely basal respiration, ATP turnover, maximal respiration and 

cellular glycolysis. In contrast, treatment with female hormones improved maximal respiration 

and spare respiratory capacity, two bioenergetic parameters that were disturbed in P301L 

cells. ATP turnover is an indication of the coupling efficiency that is directly linked to ATP 

production in mitochondria. Bioenergetic profile revealed that male and female steroid 

hormones were able to differentially increase ATP synthesis in APP and P301L cells 

respectively. The spare respiratory capacity and glycolytic reserve give an indication of the 

ability of cells to respond to stress under conditions of increased energy demand (28). Spare 

respiratory capacity was increased by estrogens and progesterone in P301L cells, whereas 

both parameters were enhance after treatment with androgen in APP cells. Together, data 

indicated that the cells were switched to a metabolically more active state, with a tendency to 

increase both ATP synthesis and metabolic reserves.  

 The ability of neurosteroids to modulate cellular bioenergetics was the focus of a 

recent study in our group. In particular, we showed that neurosteroids, including steroids that 

were investigated in the present study, were able to increase ATP levels and mitochondrial 

respiration in native SH-SY5Y neuroblastoma cells and mouse cortical neurons (16). 

Moreover, we showed that the effects we observed were, at least in part, mediated by steroid 

(progesterone, estrogen and androgen) receptor activation since the inhibition of those 

receptors by specific antagonists shut down the effects of the corresponding steroid ligand 

on ATP production.  

 Steroid receptors are nuclear receptors involved in the regulation of gene expression. 

With regards to bioenergetics, estrogens have been shown to up-regulate genes coding for 

some electron transport chain components such as subunits of mitochondrial complex I (CI), 

cytochrome c oxidase (complex IV), and the F1 subunit of ATP synthase, but also glucose 

transporter subunits, enzymes involved in the tricarboxylic acid cycle (TCA cycle) and 

glycolysis, leading to increased glucose utilization and mitochondrial respiration (reviewed in 
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(15)). Of note, since mitochondrial genome itself contains hormone responsive elements, it 

has been proposed that estradiol and testosterone can regulate energy production by 

inducing mitochondrial oxidative phosphorylation (OXPHOS) genes encoded in the 

mitochondrial DNA (29). In a similar way, progesterone has been shown to increase complex 

IV and V (ATP synthase) expression, paralleled by enhanced mitochondrial respiratory 

activity (30). With regards to the results obtained in the present study, we can speculate that 

the underlying mechanisms are similar and that the effects we observed are mediated, at 

least in part, by an increased expression of genes involved in OXPHOS and glycolysis. 

Further investigations will be needed to identify in detail which genes are concerned. 

 It is interesting to observe that sex steroid hormones didn't have the same modulating 

profile upon bioenergetic in presence of A!-related or tau-related mitochondrial dysfunction. 

Estrogens and progesterone seem to confer beneficial effects on mitochondrial-related 

dysfunction in tau pathology, whereas testosterone was more efficient alleviating 

mitochondrial deficits in APP/A! overexpressing cells. These findings may imply that women 

and men differentially answer to mitochondrial insults mediated either by A! or by abnormal 

tau. Epidemiological studies revealed that two thirds of AD patients are women and the 

sudden drop of estrogen levels after the menopause has been proposed to be one risk factor 

in Alzheimer's disease (AD) (31; 32). Indeed, estradiol is the major product of estrogen 

biosynthesis and it remains the most abundant estrogen in a woman�s pre-menopausal life. 

After menopause, women have comparable levels of estradiol compared to men, and it is at 

this time that women become more susceptible to AD. Thus, the precipitous decline of 

estrogens during menopause may contribute to AD onset as well as a greater vulnerability to 

the disease in women (15). Men, in contrast, present with a gradual reduction in testosterone 

over the life course eliminating approximately 2% of circulating testosterone every year (33). 

However, human and animal studies also suggested that androgen deprivation represents a 

risk factor for AD pathogenesis (34-36). Notably, in a triple transgenic mouse model of AD 

(3xTgAD), it has been shown that orchiectomized males presented an increased A! 

accumulation in the brain, coupled with impaired cognitive performances compared to sham 

operated mice (37). Treatment with androgens significantly attenuated the increase in AD 

pathology (37; 35). Further studies have indicated that advancing age in men enhances tau 

hyperphosphorylation consistent with AD pathology (38). These findings confirm that steroid 

influence on tau remains a promising, but understudied research avenue in AD. Of note, no 

sex predilection has been identified in patients with FTDP-17, a disease characterized by a 

strictly tau-dependent pathology (39; 40). This might suggest that the relationship between 

hormonal loss, in both women and men, and the risk to develop AD may be preferentially 

linked to A! pathology and not tau. 
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 A few studies have focused on the impact of steroids on abnormal tau. Liu and 

colleagues (41) discovered that protein kinase A may initiate phosphorylation of tau, and 

estradiol treatment of human embryonic kidney cells attenuated protein kinase A activity and 

reduced tau phosphorylation. Estradiol also exhibited rescue of aberrant tau in primary rat 

cortical neurons and SH-SY5Y neuroblastoma cells (42). Additional studies showed that both 

estrogen and progesterone were able to modulate activities of kinases and phosphatases 

involved in the regulation of tau phosphorylation, possibly by modulating glycogen synthase 

kinase (GSK) pathway (34). Specifically, estrogen appeared to reduce GSK-3! activity and 

progesterone decreased the expression of both GSK-3! (42; 34). These results imply that 

estrogen and progesterone can function along the same or disparate molecular pathways to 

modify abnormal tau protein. Regarding AD-linked A! pathology, studies have focused on 

the impact of estrogen on the deposition and clearance of A! (43; 44). Both estrone and 

estradiol decreased polymerization and stabilization of A! (45; 44). Other studies indicate 

that deficiencies in estrogen-related steroids can exacerbate A! plaques in AD mouse 

models and that treatment with estradiol was able to reduce A! burden, possibly via the 

increase of non-amyloidogenic pathways of APP processing (43; 46). The effects of 

progesterone on A! deposition and clearance are less investigated, but a recent study 

showed that progesterone and estradiol encouraged an increase in the expression of A! 

clearance factors in vitro and in vivo (47). 

 

 In the present study, testosterone ameliorated the effects of mitochondrial dysfunction 

caused by APP/A! but not abnormal tau. In our previous study investigating neurosteroid 

effects on bioenergetics in physiological conditions, the testosterone metabolite, 3"-

androstanediol, presented an effect similar to its precursor and was able to increase MMP, 

ATP levels and mitochondrial respiration in untransfected neuroblastoma cells and primary 

cortical cells (16). Here, 3"-androstanediol was less efficient to alleviate bioenergetic deficits 

in APP cells, suggesting a distinct mode of action compared to testosterone. Neuroprotective 

effects of testosterone on hyperphosphorylated tau are less well-characterized in the 

literature. Testosterone appears to prevent tau hyperphosphorylation in an in vivo model of 

heat shock induced phosphorylation through GSK-3! signaling inhibition (38). Interestingly, 

Rosario and colleagues (2010) (36) revealed less abnormal tau accumulation in 

gonadectomized male 3xTgAD mice treated with testosterone or estradiol, but not the 

testosterone metabolite dihydrotestosterone (DHT) (36). This implies that testosterone may 

exert indirect effects on tau hyperphosphorylation via its conversion to estradiol by the 

enzyme aromatase and by acting on estrogen receptors. In the same model, testosterone 

and DHT were able to decrease A! deposits with a higher efficiency than estradiol, 

suggesting an androgen receptor-dependent mechanism. Overk and colleagues (2013) (48) 
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examined basal levels of serum and brain testosterone in male 3xTgAD mice and found that 

testosterone levels rise with disease progression. This increase in testosterone in aged male 

3xTgAD mice was correlated with reduced A! plaque pathology. This suggests that 

testosterone may have some neuroprotective benefits on the AD disease course, but that 

testosterone administration is associated more with lesser A! protein burden rather than 

abnormal tau protein. In fact, testosterone has been shown to alter processing of amyloid 

precursor protein and enhances expression of neprilysin, an enzyme responsible for A! 

degradation (49). 

 

 The decrease in sex steroid hormones was proposed to be one risk factor of AD in 

both men and women. However, there is little information concerning changes of steroid 

levels in the human brain during ageing and under dementia conditions. Steroid hormone 

originate from the endocrine glands can freely pass through the blood brain barrier and act 

on nervous tissues. Since steroids can also be synthesized within the nervous system, 

changes in blood levels of steroids with increasing age do not necessarily reflect changes in 

brain levels. Schumacher and colleagues (2003) have quantified the level of different 

neurosteroids in various brain regions of aged AD patients and aged non-demented controls 

(21). They showed a general trend towards lower neurosteroid levels in AD patients. 

Additionally, neurosteroid levels were negatively correlated with A! and abnormal tau in 

some brain regions, suggesting a link between neurosteroid homeostasis and AD 

pathogenesis. Our experiments have shown a rescue of metabolic dysfunction in models of 

AD-linked tauopathies and amyloidopathies with neurosteroids belonging to the sex hormone 

family. Taking into account the data available in the literature and in our previous study, this 

rescue may possibly occur at two levels: i) neurosteroids can directly boost mitochondrial 

function via gene regulation; ii) neurosteroids can act to decrease A! accumulation and NFT 

formation, which alleviates mitochondrial impairments induced by A! and tau. An interaction 

between these mechanisms cannot be excluded. Experiments dissecting the mechanistic 

pathways of neurosteroid function underlying the gender differences in AD are further 

potential research paths for the better understanding of how neurosteroids impact 

mitochondrial function in AD. Ultimately, our research will potentially open new avenues for 

the development of gender-based therapeutic approaches in AD. 

 



RESULTS  Grimm A. et al. (in preparation) 

124 

 

 

 

 

 
Fig. 1: Characterization of bioenergetic deficits in APP cells. (A) Oxygen consumption rate (OCR) and (B) 

extracellular acidification rate (ECAR) of Mock and APP cells were simultaneously measured using a XF24 

Analyser (Seahorse Bioscience). The sequential injection of mitochondrial inhibitors is indicated by arrows (see 

details in the Materials and Methods section). (C) Values corresponding to the different bioenergetic parameters 

are represented as mean ± SEM (n= 8-10 replicates). (A-C) Values were normalized to the basal OCR and ECAR 

of Mock cells (=100%). (D) ATP levels and (E) mitochondrial membrane potential (MMP) in Mock and APP cells. 

Values represent the mean ± SEM (n=12-18 replicates of three independent experiments) and were normalized to 

100% of Mock cells. Student unpaired t-test, *P<0.05; ***P<0.001. O; oligomycin, F; FCCP, R/A; 

rotenone/antimycin A. 
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Fig. 2: Characterization of bioenergetic deficits in P301L cells. (A) Oxygen consumption rate (OCR) and (B) 

extracellular acidification rate (ECAR) of wtTau and P301L cells were simultaneously measured using a XF24 

Analyser (Seahorse Bioscience). The sequential injection of mitochondrial inhibitors is indicated by arrows (see 

details in the Materials and Methods section). (C) Values corresponding to the different bioenergetic parameters 

are represented as mean ± SEM (n= 8-10 replicates). (A-C) Values were normalized to the basal OCR and ECAR 

of wtTau cells (=100%). (D) ATP levels and (E) mitochondrial membrane potential (MMP) in Mock and APP cells. 

Values represent the mean ± SEM (n=12-18 replicates of three independent experiments) and were normalized to 

100% of wtTau cells. Student unpaired t-test, *P<0.05; ***P<0.001. O; oligomycin, F; FCCP, R/A; 

rotenone/antimycin A. 
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Fig. 3: Neurosteroids increase ATP level and MMP in APP and P301L cells. ATP levels and MMP were 

measured after neurosteroid treatment for 24 hrs at a concentration of 100 nM in APP cells (A-B) and P301L cells 

(C-D) respectively. Values represent the mean ± SEM (n=12-18 replicates of three independent experiments) and 

were normalized to 100% of untreated Mock cells (A-B) or untreated wtTau cells (C-D). One-way ANOVA and 

post hoc Dunnett�s multiple comparison test versus untreated Mock or wtTau, _P`0.05; __P`0.01; ___P`0.001. P; 

progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"; 3"-androstanediol. 
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Fig. 4: Effects of neurosteroids on bioenergetic parameters in APP cells. (A) Basal respiration, (B) ATP turnover, 

(C) maximal respiration, (D) spare respiratory capacity and (E) glycolytic reserve were measured after 

neurosteroid treatment for 24 hrs at a concentration of 100 nM in APP cells, using a XF24 Analyzer (Seahorse 

Bioscience). Values represent the mean ± SEM (n=8-10 replicates) and were normalized to 100% of the control 

group (untreated APP cells). One-way ANOVA and post hoc Dunnett�s multiple comparison test versus control, 

*P`0.05; ___P`0.001. P; progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"; 3"-androstanediol. 
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Fig. 5: Effects of neurosteroids on bioenergetic parameters in P301L cells. (A) Basal respiration, (B) ATP 

turnover, (C) maximal respiration, (D) spare respiratory capacity and (E) glycolytic reserve were measured after 

neurosteroid treatment for 24 hrs at a concentration of 100 nM in P301L cells, using a XF24 Analyzer (Seahorse 

Bioscience). Values represent the mean ± SEM (n=8-10 replicates) and were normalized to 100% of the control 

group (untreated P301L cells). One-way ANOVA and post hoc Dunnett�s multiple comparison test versus control, 

_P`0.05; ___P`0.001. P; progesterone, E2; estradiol, E1; estrone, T; testosterone, 3"; 3"-androstanediol. 
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Fig. 6: Neurosteroids differentially regulate bioenergetic profile in APP/A! and abnormal tau-overexpressing cells. 

(A-B) Characterization of bioenergetic profiles of APP cells after neurosteroid treatment along two axes. Degree 

of (A) ATP turnover or (B) spare respiratory capacity is shown (in ordinate) in function of glycolytic reserve (in 

abscissa). The same parameters are displayed for P301L (C-D) respectively. Values represent the mean of each 

group normalized to the control group (untreated APP or P301L cells =100%). Significant changes upon 

respiratory parameters are highlighted by dashed circles. P; progesterone, E2; estradiol, E1; estrone, T; 

testosterone, 3"; 3"-androstanediol. 
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Abstract 

 

 Circadian clocks are self-sustained cellular oscillators that are tightly connected to 

metabolic processes through reciprocal regulation from metabolites to transcription factors. 

Within the cell, metabolism is a highly dynamic process where mitochondria network is a 

prominent actor in regulation of both energy metabolism and apoptotic pathways. We found 

that mitochondrial bioenergetic homeostasis, including mitochondrial respiration and 

consequently generation of its own byproducts as adenosine triphosphate (ATP) and reactive 

oxygen species (ROS), is directly coupled to mitochondrial network which is, at least in part, 

regulated by clock-controlled phosphorylation of Drp1, the main factor involved in 

mitochondrial fission. The time-dependent reorganization of mitochondrial architecture in turn 

regulates the clock through circadian oscillation of mitochondrial ATP which can act as input 

signal through activation of AMP-activated protein kinase (AMPK). Our findings highlight new 

insights in the understanding of the reciprocal temporal crosstalk that governs the molecular 

interplay between the coupling of mitochondrial dynamics and metabolism and circadian 

rhythms. 

 

Keywords: mitochondria, bioenergetics, dynamics, Drp1, circadian clock 

 

Abbreviations: 

2DG, 2 deoxy-D-glucose; AMPK, AMP-activated protein kinase; AraC, Cytosine !-D-

arabinofuranoside; ATP, adenosine tri-phosphate; cROS, cytosolic reactive oxygen species; 

DRP1, dynamin-related protein 1; ECAR, extracellular acidification rate; hFIS1, human 

fission protein 1; MEF, mouse embryonic fibroblast; MFN1/2, mitofusin 1/ 2; mROS, 

mitochondrial reactive oxygen species; NAD+(H), nicotinamide adenine dinucleotide 

(oxidized/reduced form); OCR, oxygen consumption rate; OXPHOS, Oxidative 

phosphorylation; OPA 1, optic atrophy 1; Per, clock gene Period; ROS, reactive oxygen 

species; SCN, suprachiasmatic nuclei; Ser637, residue serine 637; VDAC, voltage-

dependent anionic channels. 
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Introduction 

 

 The circadian clock is a hierarchical network of oscillators which coordinate a wide 

variety of endocrine, physiological and metabolic functions to the optimal time of day 

anticipating the periodical changes of the external environment for all living organisms, from 

cyanobacteria and fungi (1) to insects (2) and mammals (3). 

 Over the years, a growing body of evidences suggested particularly that energy 

metabolism (i.e. ATP release, reactive oxygen species (ROS)) and cellular defense 

mechanisms are coordinated by circadian clock (4; 5). The disruption of the clock impairs 

metabolic homeostasis among the living organisms (6; 7). This close relationship between 

circadian and metabolic cycles has been described in studies showing that the circadian 

clock exerts its control over metabolism by (i) controlling the expression of ascertained genes 

and enzymes involved in metabolic processes, (ii) intertwining nuclear receptors and nutrient 

sensors (e.g. SIRT1 and CLOCK, AMPK and CRY1) with the clock machinery, and/ or (iii) 

regulating metabolite levels (e.g. NAD+, cAMP) (8-12). While the regulation of metabolic 

pathways is well known to be achieved by the circadian clock, it has also been suggested 

that various hormones, nutrient sensors, redox sensors and metabolites are not only clock 

output but can also regulate in turn the biological clock by acting as an input signal (13; 14). 

While several studies showed diurnal oscillations in key bioenergetic parameters including 

expression of genes involved in mitochondrial respiration, mitochondrial membrane potential, 

cytochrome c oxidase activity in the SCN (15; 16), the whole mechanisms behind the 

relationship between the clock and the mitochondrial network remains mostly elusive. 

 Mitochondria are highly dynamic cellular organelles known to play a major role in 

cellular energy metabolism and maintenance of cell steadiness. These organelles are, 

among others, the place of synthesis of the main source of energy from nutritional sources in 

cells via ATP generation which is mainly accomplished through oxidative phosphorylation 

(17). To achieve the integrity of a healthy mitochondrial population within the cells but also 

the integrity of the cell itself, mitochondrial shape has to be modified to meet changing 

requirements in energy production and other mitochondrial functions. This requires a tightly 

regulated equilibrium between opposing mitochondrial fusion and fission activities (18; 19).  

 

 Thus, we have addressed the question of whether mitochondrial dynamics and 

metabolism are coupled events that may exhibit circadian oscillations and whether the 

mitochondrial network and the mitochondrial metabolism themelves may be able to influence 

the circadian clock by acting as retrograde signaling. For this purpose, the latest state-of-art 

approaches have been engaged in order to dissect the multilevel relationship between the 
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clock and mitochondrial function. Our findings are consistent with the hypothesis of the 

existence of crosstalk between the clock and mitochondrial network in order to maintain the 

bioenergetic homeostasis through the day in response to metabolic changes. 

 

Materials and Methods 

 

Mice 

 

 Drp1flx/flx mice (20) were crossed with mice expressing an inducible Cre recombinase 

transgene under the control of the CamKII" promoter (Cre+) which is active in the 

hippocampus and the cortex of adult mice (from the European Mouse Mutant Archive EMMA 

strain 02125) (21). At 8 weeks of age the resulting Drp1flx/flx Cre+ mice were injected i.p. with 

1 mg tamoxifen (Sigma; 10 mg/ml tamoxifen dissolved in a 9:1 ratio of sunflower seed oil to 

ethanol) twice daily on five consecutive days to induce recombination of the Drp1 locus 

(Oettinghaus et al, submitted). 

 For the constant darkness (DD) experiments, all the mice were maintained for one 

week on a 12:12 light dark cycle prior to placement in DD 5 days before the beginning of the 

experiment with free access to food and water. 

 

Brain Homogenate Preparation  

 

 Brain homogenate preparations were obtained to determine nucleotides levels and 

AMPK activation. For that, brains were quickly dissected on ice and washed in an ice-cold 

buffer (210 mM mannitol, 70 mM sucrose, 10 mM Hepes, 1 mM EDTA, 0.45% BSA, 0.5 mM 

DTT, and Complete Protease Inhibitor mixture tablets (RocheDiagnostics). After removing 

the cerebellum, the tissue sample was homogenized in 2 ml of buffer with a glass 

homogenizer (10�15 strokes, 400 rpm). We used 10#l of the suspension for protein 

determination. All brain homogenate samples were normalized on 5 mg/ml of protein before 

ATP content, on 1 mg/ml for NAD+ and NADH level and for activated AMPK determination. 

 

Human Skin Fibroblast  

 

 Fibroblasts were isolated from biopsies, infected with the lentiviral circadian reporter 

mice Bmal1::luciferase and cultured in DMEM/1% penicillin streptomycin (Sigma)/1% 

Glutamax (Sigma) (DMEMc)/20% FBS (Sigma) as described previously (Brown, Fleury-Olela 

et al. 2005, Pagani PNAS 2009). For nucleotides level, ROS content, activated AMPK 

determination, oxygen consumption rate and mitochondrial morphology in human skin 
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fibroblasts, circadian rhythms were synchronized by serum shock treatment (50% horse 

serum supplemented DMEMc) for 2 hours at 37 °C.For the period length determination, 

circadian rhythms were synchronized by 100 nM dexamethasone (Sigma) in DMEMc + 20% 

FBS. DMEMc without phenol red was supplemented with 0.1 mM luciferin (Molecular 

Probes) and 10% FBS to obtain the counting medium (CM). 

 

Mouse Embryonic Fibroblast (MEF) 

 

 Drp1 lox/lox were prepared from E13.5 Drp1 lox/lox embryos as previously described 

(20). Drp1 -/- MEFs were subsequently generated by the expression of Cre recombinase in 

Drp1 lox/lox MEFs. The MEFs were cultured in DMEM/1% penicillin streptomycin 

(Sigma)/1% Glutamine (Sigma) (DMEMc)/10% FBS (Sigma)/1% non-essential amino acids. 

MEFs lacking mPer1&/&; mPer2&/& isolated from double knockout mice were generously 

provided by U. Albrecht (University of Fribourg) (22). MEF cultures were established from 

day 12 embryos as previously described (23) and the dissociated cells were plated in DMEM 

containing 10% FCS. 

 

Mitochondrial Morphology 

 

 For determination of mitochondrial dynamics in synchronized fibroblasts, cells were 

seeded on collagen - coated coverslip (0.05 mg/ml) at cell density sufficient to reach 50% of 

confluence the next day. After serum shock treatment, the medium was exchanged to 

DMEMc without phenol red + 2% FBS containing 75 nM Mitotracker® Red CMX ROS 

(579/599, Life technologies) which is a red-fluorescent dye that stains mitochondria in live 

cells and its accumulation is dependent upon membrane potential. From 8 hours post-

synchronization time point and at 8 hours intervals over the course of 24 hours, the stained 

cells were fixed with 4% paraformaldehyde/PBS for 30 minutes at room temperature. After 

extensive wash, the fixed cells were permeabilized with 0.15% Triton 100x prior staining 

nuclei with Sytox Green (Invitrogen) according to the manufacturer�s recommendation. After 

mounting the coverslips, images were processed by using a confocal microscope (60x oil 

objective, Leica). 

 To assess structure of the mitochondrial network in brain and liver slices from wild-

type mice at CT0 (onset of subjective day or rest period) and CT12 (onset of subjective night 

or activity period), samples were subjected to immunohistochemistry against Voltage-

Dependent Anionic Channels (VDAC, Cell Signaling), an outer mitochondrial membrane 

porin, followed by addition of anti-rabbit IgG, FITC (Sigma, 490/525). Prior to mounting the 

coverslips, brain and liver slices were nuclei-stained using TO-PRO-3iode (1uM, Invitrogen 
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642/661) according to the manufacturer�s recommendation. Images were obtained with 

confocal microscope (60x oil objective, Leica). 

 

Protein Gel Electrophoresis and Immunoblotting 

 

 After DC protein Assay (Biorad) quantification, equal amounts (50 #g from human 

skin fibroblasts protein lysates and 20 #g from mice brain lysates) were loaded on a 4-12% 

acrylamide gel (Invitrogen) to perform SDS-PAGE at 100V for 90 min and then transferred to 

PVDF membrane (Amersham Biosciences). We used primary antibodies to DRP1 (Cell 

Signaling), ser637-phosphorylated DRP1 (Cell Signaling) and VDAC (Cell Signaling). PVDF 

membranes were then treated with anti-IgG, horseradish-coupled secondary antibody. The 

bands were specifically detected by enhanced chemiluminescence reaction using 

SuperSignal� West Dura Chemiluminescent Substrate (Thermo Scientific). Experiments 

were performed starting from 12 hours post-synchronization time point and measured at 4 

hours intervals for 6 time points. 

 

Nucleotides Measurements 

 

 Total ATP content from synchronized human skin fibroblasts, Drp1 lox/lox and Drp1 -

/- MEFs, Per1/2+/+ and Per1/2-/- MEFs and mice brain homogenates was determined using 

bioluminescence assay (ViaLighTM HT; Cambrex Bio Science) according to the instruction of 

the manufacturer. The enzyme luciferase, which catalyzes the formation of light from ATP 

and luciferin was used. The emitted light is linearly related to the ATP concentration and is 

measured using a luminometer (VictorX5, Perkin Elmer). To define the origin of ATP 

oscillation, DMEMc without phenol red + 2% FBS supplemented with 2-Deoxy-D-glucose (4.5 

g/l) a glycolysis inhibitor or oligomycin (2 #M), an ATP synthase inhibitor was added on 

synchronized human skin fibroblasts. To test the possibility that rhythmic ATP is a byproduct 

of rhythmic cell division, pharmacological disruption of the cell cycle was accomplished with 

the inhibitor AraC, an anticancer drug that prevents cell division (100 #m; Sigma). AraC was 

added to human skin fibroblasts cultures 3 hours after the seeding, directly after the medium 

exchange following the synchronization and then every 24 hours to assure continued block of 

cell division. To investigate the role of clock- regulated Drp1 in mitochondrial 

bioenergenetics, mitochondrial fission was abolished by selectively inhibition of mitochondrial 

division dynamin, Drp1, in presence of mdivi-1 (50 #M, Sigma). 

 For measurement of NAD+ and NADH from synchronized fibroblasts and mice brain 

homogenates, NAD+ and NADH were separately extracted using an acid-base extraction 

(HCL 0.1 mol/l � NAOH 0.1 mol/l). The determination of both NAD+ and NADH was 
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performed using an enzyme cycling assay based on passing the electron from ethanol trough 

reduced pyridine nucleotides to MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) in a PES (phenazine ethosulfate) coupled reaction resulting in a purple formazan 

product that can be quantitatively measured at a wavelength of 595 nm (VictorX5, Perkin 

Elmer). Experiments were performed starting from 12 hours post-synchronization time point 

and measured at 4 hours intervals for 6 time points. 

 

Oxygen Consumption Rate (OCR) Measurements 

 

 OCR was measured in synchronized fibroblasts as recommended as previously 

described (24). Briefly, human skin fibroblasts were seeded at the density of 3x104 cells/100 

#l per well on Seahorse Biosciences 24-well culture plates one day prior to the beginning of 

assay. After serum shock synchronization, medium was exchanged to 500 #l of assay 

medium (glucose-free RPMI-1640 medium containing 2% FBS, 2 mM sodium pyruvate, pH ~ 

7.4). Prior to measurements the microplates were equilibrated in a CO2 free incubator at 37 

°C for 60 minutes. The drug injections ports of the XF Assay Cartridge were loaded with the 

assay reagents at 10X in assay medium. 55 #l of oligomycin (10 #M), 62 #l of FCCP (7 #M), 

68#l of a mix of antimycin A (40 #M) and rotenone (20 #M) were added to ports A, B and C 

respectively. Experiments were performed at 16 hours post-shock and 28 hours post-shock. 

 

U2OS Cells Metabolome 

 

 Metabolic profiles also were obtained from dexamethasone-synchronized U2OS cells 

beginning at the 12 hour post synchronization time point and sampled at 4 hour intervals for 

6 time points. For metabolic profiles dexamethasone-synchronized U2OS cells beginning at 

the 12hr post synchronization time point and sampled at 4 hour intervals for 6 time points. 

Small-Molecule Determination. Metabolon analyzed metabolites in dexamethasone-

synchronized U2OS cells, as described previously (25; 26). 

 

Circadian period length determination 

 

 In transfected fibroblast, light output was measured in homemade light-tight 

atmosphere-controlled boxes for at least 5 days. To measure the fibroblast basal circadian 

rhythms, CM was supplemented with 10% FBS; to determine the influence of ATP on 

circadian period length, CM was supplemented with mitochondrial respiration inhibitors: 

rotenone, an complex I inhibitor (1 #M), oligomycin, ATP synthase inhibitor (2 #M) or 

carbonyl-cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler of proton 
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gradient (4 #M). To determine the role of Drp1-regulated mitochondrial bioenergenetics, CM 

was supplemented with mdivi-1 (50 #M, Sigma), a mitochondrial division inhibitor. 

 

Activated AMPK Quantification 

 

 The quantification of endogenous activated-AMPK was determined in lysates from 

synchronized fibroblasts and from brain homogenates by using PathScan® phospho-AMPK" 

(Thr172) sandwich ELISA (Cell Signaling) according to the instruction of the manufacturer. 

Briefly, AMPK" (phospho and nonphospho) is captured by the coated AMPK" rabbit antibody 

in the microplate. Then, a phospho-AMPK" (Thr172) mouse detection antibody is added to 

detect phosphorylation of Thr172 on the captured AMPK" protein. Anti-mouse IgG, HRP-

linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, 

is added to develop color. The absorbance is measured at 450 nm within 30 minutes using a 

luminometer (VictorX5, Perkin Elmer) and is proportional to the quantity of AMPK" 

phosphorylated at Thr172. Experiments were performed starting from 12 hours post-

synchronization time point and measured at 4 hours intervals for 6 time points in fibroblasts 

and every 4 hours over the course of 24 hours in wild-type mice brain. 

 

ROS level 

 

 The formation of cytosolic (cROS) and mitochondrial (mROS) reactive oxygen 

species in synchronized fibroblasts were measured using, respectively, the fluorescent probe 

H2DCF-DA (DCF) and the non-fluorescent dihydrorhodamine-123 (DHR). Synchronized 

fibroblasts were loaded for 15 min with 10 #M DCF or 15 min with 10 #M DHR at 37 °C. After 

washing twice with HBSS, the formation of the reduced fluorescent product 

dichlorofluorescein was detected using the VictorX5 multilabel reader (PerkinElmer Life 

Sciences) at 485 nm (excitation)/535 nm (emission). DHR, which is oxidized to cationic 

rhodamine 123 which localizes in the mitochondria and exhibits green fluorescence, was 

detected using the VictorX5 multilabel reader at 490 nm (excitation)/590 nm (emission). The 

levels of superoxide anion radical were also assessed using the Red Mitochondrial 

Superoxide Indicator (MitoSOX, 5 #M, 30 min). MitoSOX, which is specifically oxidized by 

mitochondrial superoxide, exhibits a red fluorescence detected at 535 nm (excitation)/595 nm 

(emission). The intensity of fluorescence was proportional to mROS levels or superoxide 

anion radicals in mitochondria. Experiments were performed starting from 12 hours post-

synchronization time point and measured at 4 hours intervals for 6 time points. 

 

Quantitative Real-Time PCR 
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 Total RNA was extracted from lysates of synchronized fibroblasts using RNeasy Mini 

KIT (Qiagen). cDNA was generated using Ready-to-Go You-Prime First-Strand Beads (GE 

Healthcare). For data analysis, human Cdk4 was used as an endogenous control. Data are 

expressed as relative expression for each individual gene normalized to their corresponding 

controls using the comparative CT method. The primers used were purchased from Applied 

Biosystems (Probe ID: see Primers section for details). Data are expressed as relative 

expression for each individual gene normalized to their corresponding controls. 

 

Primer sequences 

 

 Primer Probe ID (Applied Biosystems) 

Fusion MFN1 Hs00250475_m1 

 MFN2 Hs00208382_m1 

 OPA1 Hs00323399_m1 

Fission DRP1 Hs00247147_m1 

 FIS1 Hs00211420_m1 

OXPHOS NDUFA2 (complex I) Hs00159575_m1 

 NDUFB5 (complex I) Hs00159582_m1 

 NDUFC1 (complex I) Hs00159587_m1 

 NDUFV2 (complex I) Hs00221478_m1 

 COX4I1 (complex IV) Hs00971639_m1 

 COX6A1 (complex IV) Hs01924685_g1 

 COX7A2 (complex IV) Hs01652418_m1 

 COX7B (complex IV) Hs00371307_m1 

 ATP5G2 (ATP synthase) Hs01096582_m1 

 ATP5C1 (ATP synthase) Hs01101219_g1 

 ATP5L (ATP synthase) Hs00758883_s1 

 

 

Statistical Analysis 

 

 Data were presented as mean ± S.E.M. For statistical comparisons, unpaired and 

paired Student's t-test, respectively, or Two-way ANOVA was used. Rhythmicity of 

metabolites was assessed using an algorithm previously described for rhythmic transcripts. 
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The JTK-cycle algorithm was used as implemented in R by Kronauer as previously described 

(26). P values less than 0.05 were considered statistically significant. 

 

Results 

 

Mitochondrial oxidative metabolism is driven by circadian clock. 

 

 To investigate whether the clock influences the cellular bioenergetic activity, we first 

monitored whole cell ATP content in synchronized human skin fibroblasts (Fig. 1A). Total 

ATP content exhibited a circadian rhythmicity with a peak occurring at 16 hours post-shock 

and a trough at 28 hours post- shock in synchronized fibroblasts (Fig. 1A). Similar 

observations were made in brain homogenates from wild-type mice kept in constant 

darkness where total ATP displayed ~24hours oscillations with a peak occurring at CT4, near 

the beginning of the rest period and a trough occurring at CT16, the beginning of the activity 

period (Fig. 1B). 

 

 As ATP molecules are produced by two main pathways, the cellular glycolysis and 

mitochondrial oxidative phosphorylation (OXPHOS), we monitored ATP content in 

synchronized fibroblasts in the presence of an ATP synthase inhibitor (oligomycin) or 

glycolysis inhibitor (2-deoxy-glucose) in order to determine which pathway is causative of 

ATP oscillation (Fig. 1A). We observed that the circadian oscillations in ATP were 

significantly dampened in the presence of oligomycin. In contrast, only the amplitude was 

decreased in the presence of 2-deoxy-glucose, suggesting that the circadian rhythm of ATP 

is primarily generated from mitochondrial oxidative phosphorylation. 

 

 In order to confirm that the observed ATP oscillations are not associated with 

synchronous cell cycle (27), we evaluated ATP content in Cytosine !-D-arabinofuranoside 

(AraC)-treated fibroblasts to induce disruption of cell cycle (Fig 1C). While AraC treatment 

decreased significantly cell proliferation (data not shown), pharmacological disruption of cell 

division with AraC led to a decreased level in rhythmic ATP content compared to untreated 

cells but no alteration in the period was observed in parallel as the ATP peak was occurring 

at 16 hours post-shock in AraC-treated cultures (Fig. 1C) which is consistent with 

observations made in astrocytes (28; 29). Together, these results demonstrate that circadian 

fluctuations in ATP levels mainly originated from mitochondrial oxidative metabolism (Fig. 

1A), independently of the cell cycle (Fig.1C). 
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 To further investigate whether expression of the core molecular clock transcription 

factors impact mitochondrial ATP generation, we evaluated ATP content in mouse embryonic 

fibroblasts (MEFs) isolated from mice deficient in the clock transcriptional repressors (PER1 

and PER2) (Fig. 1D). MEFs lacking the clock repressor genes Per1 and Per2 showed 

complete abolished ATP rhythm compared to control MEFs suggesting that circadian clock 

transcription repressors appear to influence, at least in part, oxidative metabolism. 

 

 To further investigate the clock-related regulation of mitochondrial oxidative 

metabolism, we monitored in real�time oxygen consumption rate (OCR) in synchronized 

fibroblast at 16 hours post-shock corresponding to total ATP peak and at 28 hours post-

shock related to total ATP trough (Fig. 2). For this purpose, OCR was assessed by using a 

Seahorse Bioscience XF24 Flux Analyzer by sequential injection of (i) the ATP synthase 

inhibitor oligomycin (1#M) to determine the OCR devoted to ATP synthesis counterbalancing 

against ATP consumption (also called ATP turnover), (ii) an uncoupling agent, FCCP 

{carbonyl cyanide p (trifluoromethoxy) phenylhydrazone| (0.7#M) to measure the maximal 

respiration in the absence of a proton gradient and (iii) inhibitors of activities of complexes I-

III, respectively rotenone (2#M) and antimycin A (4#M) to evaluate the OCR of non-

mitochondrial respiration (Fig. 2A). Consistent with the aforementioned ATP rhythms, we 

observed lower OCR in the basal respiration (~19%) as well as in ATP turnover (~24%) and 

maximal respiration (~14%) at 28 hours post-shock compared to OCR measured at 16 hours 

post- shock supporting the hypothesis of the clock-driven mitochondrial oxidative metabolism 

(Fig. 2B). The spare respiratory capacity corresponding to the ability of the cell to respond to 

an energetic demand as well as how closely the cell is to respiring to its theoretical maximum 

was higher (~48%) at 28 hours post-shock compared to OCR measured at 16 hours post- 

shock (Fig.2C). The rate of oxygen consumption due to non-mitochondrial sources (Fig. 2B), 

not coupled to ATP production but required to overcome the natural proton leak across the 

inner mitochondrial membrane (Fig. 2D) and related to glycolysis indicated by the 

extracellular acidification rate (ECAR) (Fig. 2E) was unchanged confirming the role of the 

oxidative phosphorylation in the generation and maintenance of ATP rhythm. Finally, we 

characterized the bioenergetic profile of synchronized human skin fibroblasts, representing 

OCR (basal respiration) versus ECAR (glycolysis) at 16 hours and 28 hours post-shock (Fig. 

2F). Remarkably, cells were switched between a metabolically active state corresponding to 

16 hours post-shock and a metabolically resting state corresponding to 28 hours post-shock, 

with only a variation of basal respiration (OCR). 

 

 To better understand the impact of the clock on mitochondrial respiration, we then 

investigated mitochondrial biogenesis around the clock by determining the gene expression 
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of subunits involved in oxidative phosphorylation, particularly in the electron transport chain 

(complex I and complex IV) and in ATP generation (ATP synthase or complex V) (Fig. S1) 

(15). RNA samples were isolated from synchronized human skin fibroblasts and relative 

quantification was performed by quantitative PCR (Fig. S1). Relative mRNA expression of 

complex I subunits exhibited a circadian rhythmicity with a peak occurring at 16 hours post-

shock and a trough at 28 hours post-shock (Fig. S1), while relative mRNA expression of 

complex IV subunits exhibited a circadian rhythmicity with a trough occurring at 16 hours 

post-shock and a peak at 28 hours post-shock (Fig. S1). Relative gene expression of ATP 

synthase (complex V) subunits displayed a circadian rhythmicity with a peak occurring at 20 

hours post-shock and a trough at 32 hours post-shock (Fig. S1). 

 

 Although oxidative phosphorylation (OXPHOS) is a vital part of metabolism, it 

produces in parallel reactive oxygen species (ROS). Since circadian ATP oscillation was 

correlated to mitochondrial respiration, we examined whether ROS levels within the cell 

followed a circadian pattern by measuring the fluoresecent probe H2DCF-DA and 

dihydrorhodamine 123 used respectively, for cytosolic (cROS) and mitochondrial (mROS) 

ROS in synchronized human skin fibroblasts (Fig. SI2). Remarkably, mROS levels displayed 

a circadian oscillation with a peak at 16 hours post-shock and a trough at 28 hours post-

shock while cROS level remained unchanged over the time. Moreover, the specific 

measurement of mitochondrial superoxide anion radicals revealed that a part of rhythmic 

ROS were indeed superoxide anions. 

 

 As important substrate in mitochondrial bioenergetics, we monitored NAD+ content in 

synchronized fibroblast (FIG S3) and in brain homogenate from wild-type non-fasted mice 

kept in constant darkness (FIG S3). We observed ~24hours oscillations of NAD+ with peak 

occurring at 16 hours post-shock in fibroblast culture (FIG S3) and near the beginning of the 

rest period (CT4) in mice brain homogenate (FIG S3). Both observations coincided with the 

rhythm of total ATP and thereby can be correlated to clock-driven mitochondrial metabolism. 

 

 To gain further insights into the signaling pathway between the clock and the 

mitochondrial network, we examined the metabolome in vitro to determine the key players of 

the metabolome in mitochondrial functions (FIG S4). Wide metabolic profiles were obtained 

from dexamethasone-synchronized U2OS cells over the course of 24 hours. All time points 

were subsequently analyzed by GC/LC-MS (26) (FIG S4). Overall, 228 metabolites were 

identified and ~29% of the identified metabolites (67 of 228) related amino acids, 

carbohydrates, cofactors, vitamins, energy, lipids, nucleotides and peptides metabolism 

displayed a circadian profile (FIG S4). Among the metabolites identified as rhythmic, the 
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largest group of compounds was represented by amino acids (33 of 67 rhythmic 

metabolites), which exhibited a restricted phase distribution around the clock (Fig S4). 

Remarkably, all others groups identified as rhythmic displayed an identical phase distribution 

(FIG S4). Interestingly, the majority of the rhythmic metabolites are likely related to numerous 

metabolomic pathways closely or remotely implicated in mitochondrial functions including 

energy metabolism and redox state (FIG S4). 

 

 Overall, these findings indicate a central role of the clock in the regulation of 

mitochondrial bioenergetic homeostasis, in part through mitochondrial biogenesis and in 

other part through the circadian modulation of metabolites connected to mitochondrial 

metabolism. 

 

Clock control of Drp1- dependent mitochondrial metabolism 

 

 Because mitochondria are known to be highly dynamic organelles, we investigated 

whether the circadian clock intervenes in the control and the maintenance of the 

mitochondrial network architecture (Fig. 3). Hence, we examined mitochondrial morphology 

using the red-fluorescent dye Mitotracker CMXROS in synchronized human primary skin 

fibroblasts and images were processed by confocal microscopy (Fig. 3A + SI5). We 

observed that mitochondrial network morphology displayed a circadian rhythmicity with three 

distinct states (tubular at 8 hours post-shock, intermediate at 16 hours post-shock and 

fragmented at 24 hours post-shock) in synchronized fibroblast culture. In parallel, we 

investigated the relationship between the clock and the mitochondrial architecture in brain 

and liver sections from wild-type mice at CT0 (onset of subjective day or rest period) and 

CT12 (onset of subjective night or activity period) by immunohistochemistry labeling VDAC 

(Voltage-Dependent Anionic Channels), an outer mitochondrial membrane porin (Fig 3B). 

Consistent with our in vitro observations, the mitochondrial network in both central and 

peripheral tissues exhibited a tubular morphology at CT0 corresponding to the beginning at 

the rest period while the shape network revealed a fragmented state at CT12 matching with 

the beginning of the activity period. 

 

 To further assess the relationship between the clock and mitochondrial shaping 

events, we analyzed the gene expression of the fusion proteins (mitofusins 1 and 2, MFN1 

and 2; optic atrophy 1, OPA1) and fission proteins (dynamin-related protein1, DRP1; human 

fission protein 1, hFIS1) required in the maintenance and regulation of mitochondrial system 

(30; 31) (Fig. 3C+ SI5). For this purpose, mRNA samples were isolated in synchronized 

human skin fibroblasts and relative quantification was performed by quantitative PCR (Fig. 
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3C+ SI5). Interestingly, none of the genes displayed a circadian pattern in their expression 

(Fig. 3C+ SI5), suggesting that 24-hour oscillations observed in the mitochondrial network 

architecture in vitro and in vivo may be controlled by post-transcriptional modifications of the 

mitochondrial shaping proteins. 

 

 To investigate whether regulation of the mitochondrial shaping trough activation/ 

inactivation of DRP1 protein, the main factor involved in mitochondrial fission, is under the 

control of the clock (Fig. 3D), we considered the potential contribution of the biological clock 

in the posttranslational modification of DRP1 by phosphorylation at a serine residue (Ser637) 

using immunoblotting against successively DRP1 and phosphorylated DRP1 at serine 637 in 

lysates (i) from synchronized human primary skin fibroblasts and (ii) from mouse brain of 

non-fasted wild-type mice maintained in constant darkness (Fig. 3D). While total DRP1 

protein did not display circadian oscillation in both (i) cell lysates and (ii) brain lysates, 

phosphorylated DRP1 at serine 637 exhibited ~24 hours rhythms with a peak occurring 

respectively, at (i) 16 hours post-shock and at (ii) CT12 (onset of the subjective night) (Fig. 

3D). Taken together, these results highlight that the remodeling events of the mitochondrial 

network in vitro and in vivo can be integrated into the biological clock network, partly through 

posttranslational modulation of DRP1 protein, suggesting a key role for the clock in 

mitochondrial network tasks to anticipate energetic requirements depending on the time of 

the day. 

 

 Because a growing body of evidence suggests a tight connection between 

mitochondrial shape changes and mitochondrial bioenergetic homeostasis, we investigated 

whether the circadian control of DRP1 is directly involved in the circadian ATP oscillation 

(Fig. 4). A treatment with a mitochondrial division inhibitor, mdivi-1, completely abolished 

ATP oscillation compared to untreated human skin fibroblasts (Fig. 4A). To further confirm 

whether inhibition or absence of DRP1 is able to impact ATP oscillation, we evaluated ATP 

content in mouse embryonic fibroblasts (MEFs) isolated from mice deficient in Drp1 as well 

as in Drp1-ablated hippocampus of adult mice kept in constant darkness (Fig.4B-C). MEFs 

lacking of Drp1 did not display ATP oscillation compared to control MEFs (Fig 4B). In 

addition, ATP content was evaluated at CT4, near the beginning of the rest period and at 

CT16, the beginning of the activity period accordingly to the aforementioned observation 

(Fig.1C). Consistent with our in vitro observations, ATP measured in Drp1 -/- hippocampi 

mice did not display a significant change between CT4 and CT16 compared to control 

hippocampi while the cerebrum from Drp1 -/- mice exhibited a circadian ATP changes 

equivalent to control cerebrum (Fig. 4C). Together, these findings provide new insights into 
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the control and maintenance of the mitochondrial metabolism connected to mitochondrial 

network changes through the clock modulation of DRP1. 

 

Crosstalk between Drp1- dependent mitochondrial metabolism and clock 

 

 To highlight the status of mitochondrial network and its signaling molecules in the 

regulation of the clock, we characterized the circadian period length of dexamethasone-

synchronized fibroblasts infected with a lentivirus that harbored a circadian reporter construct 

(the Bmal1 promoter driving expression of the firefly luciferase gene) by disturbing either 

mitochondrial respiration or mitochondrial network (Fig.5A-B). Rotenone, oligomycin or 

FCCP were used to inhibit mitochondrial respiration leading to a depletion in ATP content 

(FIG 5A). Notably, cells had a significantly longer period length in the presence of 

mitochondrial respiration inhibitors compared to the control cells. Moreover, disruption of 

mitochondrial division by mdivi-1 treatment significantly increased period length (Fig.5B). 

These findings suggest that Drp1-mediated mitochondrial ATP oscillations may play a key 

role in the retrograde signaling to the clock. 

 

 To better understand the underlying mechanisms in this retrograde signaling, we 

evaluated the activation of AMP-activated protein kinase (AMPK) via threonine 

phosphorylation, which is reported to transmit energy-dependent signals to the mammalian 

clock (FIG 5C-D) (32; 11). Activation of AMPK by phosphorylation was measured in 

synchronized human skin fibroblasts (FIG 5C) and in brain of non-fasted wild-type mice kept 

in constant darkness (FIG 5D). Relative phosphorylation on threonine 172 of AMPK 

displayed ~24 hours oscillations in both fibroblast culture and brain homogenate with a 

trough occurring respectively at 20 hours post- shock (FIG 5C) and a trough at CT 12 (FIG 

5D).  

 

 Together with the observations of the circadian ATP fluctuations, these data establish 

new insights in the multilevel regulation of the mitochondrial structure�function relationship 

by the biological clock, indicating a timekeeping system not only cyclic, but also outlining 

prior and upcoming events, in order to maintain energetic homeostasis in response to cellular 

metabolic change over the time. 

 

DISCUSSION 

 

 In our study, we aimed to investigate the clock-control on the coupling between 

mitochondrial network and bioenergetics to anticipate energetic requirements of diverse 
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cellular functions in response to cellular and environmental constraints. The major 

breakthroughs were that, (i) along rhythmic mitochondrial respiration, ATP, ROS and NAD+ 

as readouts of normal mitochondrial metabolism displayed circadian oscillation; (ii) these 

rhythmic byproducts were directly coupled with mitochondrial dynamics through the clock-

controlled Drp1 activity and (iii) both mitochondrial dynamics and bioenergetics might feed 

input signals back to the circadian clock. 

 

 Examination of the ATP content revealed that human skin fibroblasts and MEFs 

displayed circadian oscillations in ATP levels entirely coupled with rhythmic mitochondrial 

oxygen consumption in vitro. Remarkably, the bioenergetic profile showed that only 

mitochondrial respiration varied in a circadian manner over the time whereas the glycolysis 

remained unchanged. It indicated that this event is significantly dependent on mitochondrial 

respiration, consistent with the notion of mitochondria as major producers of ATP within the 

cell. Furthermore, when in resting state (low ATP), the cells exhibited a higher spare 

respiratory capacity indicating that the cells are more flexible to response to fluctuations in 

cellular energy demands than those cells which are already in high energy production state. 

The importance of a functional molecular clock in rhythmic ATP generation was confirmed in 

MEfs deficient in core clock repressors Per1 and Per2 consistent with the findings on 

depletion of ATP in astrocytes from both Per1 and Per2 -/-, as well as Cry1 and Cry2 -/- 

knock-out mice (28). Nevertheless, the opposite effect was observed in MEFs lacking of 

clock repressors in galactose-containing medium, where increased mitochondrial ATP 

production was consistent with increased mitochondrial oxidative metabolism (33). Similarly, 

mouse brain exhibited circadian oscillations in ATP levels in vivo according to the period of 

activity and rest. These findings can be explained, at least, with results from transcriptional 

profiling studies. Consistent with previous data in SCN2.2 cells and the SCN in vivo (15; 34; 

35), the expression of several subunits involved in the electron transport chain as well as in 

the ATP synthase appeared to be clock-controlled in human skin fibroblasts. In addition, 

numerous key bioenergetic parameters, including mitochondrial membrane potential and 

cytochrome c oxidase activity (16) as well as extracellular ATP accumulation (29), seem to 

follow circadian oscillations in SCN as well as in astrocytes. Moreover, the ATP breakdown 

product adenosine is known as crucial for the transition from wakefulness to sleep (36). 

Accumulation of adenosine in the basal forebrain induces the release of GABA, one of the 

inhibitory neurotransmitters involved in this transition, which eventually initiates the sleep 

phase. Overall, these findings support the concept of temporal organization of mitochondrial 

bioenergetic metabolism generating rhythmic mitochondrial ATP which in turn, along its 

metabolites, represents a physiological output of the mammalian cellular clock, especially in 

the brain, one of the highest energy demanding tissues of the human body. 
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 Along the rhythmic ATP coupled with rhythmic mitochondrial respiration, we also 

observed that several metabolites, including ROS and NAD+, remotely or closely connected 

to mitochondrial functions exhibited circadian oscillation in vitro and in vivo, suggesting a 

direct effect of the endogenous circadian clock on multiple metabolic pathways. In addition, 

our global circadian metabolomic analysis demonstrated that half of all rhythmic compounds 

were amino acids and associated metabolites known to be engaged in mitochondrial 

energetic homeostasis through branched-chain amino acids metabolism, glycolysis and TCA 

cycle to provide the energetic substrates such as pyruvate for the generation of ATP through 

oxidative phosphorylation, exhibited circadian profile in vitro. Furthermore, numerous 

rhythmic metabolites are also engaged in redox homeostasis through glutathione 

metabolism, which is one major endogenous defense system to combat cellular oxidative 

stress. Overall, the major circadian pathway signatures of the cellular metabolome that we 

have identified are consistent with those previously described in rodents (37) and humans 

(26). Moreover, it was recently suggested that clock control over mitochondrial activity is 

mediated, in part, by cycling metabolites (e.g: NAD+) and protein acetylation (33; 38). Taken 

together, these findings support the hypothesis that the circadian clock synchronizes 

mitochondrial ATP production in a time-of-day-dependent manner in response to daily 

fluctuations in cellular energy demands. The regulation of mitochondrial function appears to 

be achieved by the clock, among others potential pathways, through several rhythmic 

metabolites acting as upstream signals from the clock to mitochondria. 

 

 Once perceived as solitary structures, mitochondria are now recognized as highly 

mobile along cytoskeletal tracks and dynamic organelles that continually fuse and divide in 

response of cellular energy requirements (39). Our findings highlight, on the one hand, that 

mitochondrial bioenergetics are coupled to mitochondrial network changes in physiological 

conditions in vivo and in vitro, and, on the other hand, this coupling is under the control of the 

circadian clock. Interestingly, expression of genes involved in fusion and fission did not 

exhibit any oscillations whereas, in accordance with the circadian variations of ATP, the 

mitochondrial network showed significant circadian changes in its architecture in vitro and in 

vivo, suggesting that clock-controlled post-transcriptional modifications might be involved in 

the regulation of the mitochondrial network. Drp1, the only known mammalian mediator of 

mitochondrial fission, is one of the proteins that ensures the integrity of a healthy 

mitochondrial population within the cell but also the integrity of the cell itself. Analysis of 

regulation of Drp1 by the couple PKA/ Calcineurin at the phosphorylation site serine 637 

revealed that this process followed a circadian pattern. Moreover, it has been described that 

the activity of calcineurin, but not its protein expression, is under circadian regulation (40) 
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suggesting that the oscillation of Drp1 phosphorylation may be dependent of the 

dephosphorylation activity of calcineurin. Likewise, when Drp1 activity is pharmacologically 

or genetically impaired, we revealed that the circadian fluctuations in ATP content were 

abolished in vitro and in vivo confirming the clock control of Drp1-dependent mitochondrial 

metabolism. Altogether, the data showed for the first time that the regulation of mitochondrial 

function is achieved by the clock-controlled mitochondrial network, in part, through the post-

transcriptional regulation of Drp1. 

 

 While the extensive roles of mitochondria in maintaining cellular homeostasis and 

activity have created the need for diverse means of communication to and from the 

mitochondrial network, the underlying signaling mechanisms between the biological clock 

and mitochondrial network remain mostly unclear. When both mitochondrial respiration and 

fission are pharmacologically inhibited, we observed the dampening of mitochondrial ATP 

rhythm as well as the increase of circadian period in human skin fibroblasts. Interestingly, 

these findings can be explained by the well-established nutrient sensors such as AMPK 

involved in the crosstalk between metabolism and the biological clock (11). According to this 

study, the activation of AMPK followed a circadian pattern in vitro and in vivo, partially in 

antiphase to cycling ATP confirming that rhythmic mitochondrial ATP has a key role in 

retrograde signaling to the clock via the activation of AMPK, which in turn mediates the 

phosphorylation of CRY leading to proteolytic degradation of the negative arm of the central 

oscillator (32). 

 

 Overall, along the growing body of evidence stating the importance to integrate the 

cellular metabolism to circadian clocks (41), our findings establish a detailed molecular link 

among circadian control of the mitochondrial architecture and mitochondrial oxidative 

metabolism suggesting the key role of the clock-controlled mitochondrial network to 

anticipate energetic requirements of diverse cellular functions in response to cellular and 

environmental constraints (FIG S6). The events of mitochondrial morphological transitions as 

central actor in coupling circadian and mitochondrial metabolic cycles through metabolic 

retrograde signaling strengthen the still elusive understanding of the crosstalk between 

cellular systems and the biological clock. Thus, our findings could have multiple implications 

in the context of metabolic homeostasis in human health and diseases linked to impairment 

in circadian clock and/ or mitochondrial function. Perturbations in the clock may be a key 

initiating factor in diseases linked to mitochondrial weakening including neurodegenerative 

diseases as Alzheimer�s disease. 
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Fig. 1. Circadian clock control of mitochondrial ATP. (A) Relative total ATP level measured from 12 hours 

post-synchronization time point every 4 hours for 6 time points in human skin fibroblasts treated with 2 - deoxy-D-

glucose (2DG, 4.5g/L) or oligomycin (OLIGO, 2 #M) compared to non-treated cells (CTRL) (n=4). Left panel 

displays relative total ATP level at 16 hours post-shock (peak of ATP content) and at 28 hours (trough of ATP 

content) in control and treated conditions. (B) Relative total ATP level measured in brain of non-fasted wild-type 

mice kept in constant darkness every 4 hours for 24 hours (n= 4). Left panel displays relative total ATP level at 

CT4 (peak of ATP content) and at CT16 (trough of ATP content) in control and treated conditions. (C) Relative 

total ATP content measured from 12 hours post-synchronization time point with 4 hours intervals for 6 time points 

in AraC- treated fibroblasts (100 #M) compared to non-treated cells (CTRL) (n= 8). Left panel displays relative 

total ATP level at 16 hours post-shock (peak of ATP content) and at 28 hours (trough of ATP content) in control 

and treated conditions. (D) Relative total ATP level measured from 12 hours post-synchronization time point every 

4 hours for 6 time points in Per1/2!"/"!MEFs compared to controls. Left panel displays relative total ATP level at 

16 hours post-shock (peak of ATP content) and at 28 hours (trough of ATP content) in control and Per1"/"!and!

Per2"/"!MEFs. **/## P < 0.01, ***/### P ` 0.001 for Student�s two-tailed t test comparing single time points of 16 

hours versus 28 hours. Data are represented as average ± SEM. 
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Fig. 2. Circadian modulation of mitochondrial respiration. (A) Oxygen Consumption Rate (OCR) evaluated in 

synchronized fibroblasts treated sequentially with oligomycin (Oligo, 2 #M), FCCP (0.7 #M), rotenone (ROT, 2 

#M) and antimycin A (AA, 4 #M) at 16 hours post-shock and at 28 hours post-shock (n= 2). (B) Bioenergetic 

profile of synchronized fibroblasts at 16 hours post-shock and at 28 hours post-shock (n= 2). Basal respiration, 

ATP turnover and maximal respiration are determined after normalization to non-mitochondrial respiration. (C) 

Percentage of Oxygen Consumption Rate (OCR) linked to spare respiratory capacity (SRC) at 16 hours post-

shock and 28 hours post-shock in human skin fibroblast (n= 2). (D) OCR related to the proton leak (independent 

to ATP production) at 16 hours post-shock and 28 hours post-shock in human skin fibroblast (n= 2). (E) 

Extracellular Acidification Rate (ECAR) corresponding to glycolytic rate at 16 hours post-shock and 28 hours post-

shock in human skin fibroblast (n= 2). (F) Cellular bioenergetic profile of human skin fibroblast at 16 hours post-

shock and 28 hours post-shock (n@ 2). _P ` 0.05, __P ` 0.01, ___P ` 0.001 for Student�s two-tailed t test 

comparing single time points. Data are represented as average ± SEM. 
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Fig. 3. Circadian clock regulation of mitochondrial dynamics. (A and B) Mitochondrial network morphology 

assessed in (A) synchronized human skin fibroblasts at 8 hours intervals for 3 time points and in (B) (i) brain and 

(ii) liver from non-fasted wild-type mice kept in darkness condition at CT0 and CT12. White arrows indicate the 

tubular network and yellow arrows designate the fragmented network. Scale bars, (A) fibroblast, 7.5 #m, (B) 

brain, 50 #m; liver, 25 #m. (C) Relative mRNA expression of nuclearly-encoded genes related to mitochondrial 

fusion (MFN1, MFN2 and OPA1) and fission (DRP1 and hFIS1) measured at 16 hours and 28 hours post-

synchronization in human skin fibroblasts (n = 5 per time points). (D) Right: Phosphorylation of DRP1 (P-DRP1) 

on serine 637 and total DRP1 evaluated  in (i) human skin fibroblasts 12 hours post-synchronization time point at 

4 hours intervals for 6 time points and in (ii) brain homogenate of non-fasted wild-type mice kept in constant 

darkness every 4 hours over the course of 24 hours. Left: Relative DRP1 phosphorylation (ser637) measured in 

(i) human skin fibroblasts and in (ii) brain homogenate of non-fasted wild-type mice kept in constant darkness (n = 

3). Data are represented as average ± SEM. 
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Fig. 4. Clock control of Drp1-dependent mitochondrial metabolism. (A and B) Relative total ATP level 

measured from 12 hours post-synchronization time point every 4 hours for 6 time points in (A) human skin 

fibroblasts treated with Mdivi-1 (50 #M) compared to non-treated cells (CTRL) and (B) in Drp1 -/- MEFs (n=4). Left 

panel displays relative total ATP level at 16 hours post-shock (peak of ATP content) and at 28 hours (trough of 

ATP content) in control and treated conditions. (C) Total ATP level measured in cortex and hippocampi of non-

fasted Drp1 -/- mice kept in constant darkness at CT4 (peak of ATP content) and at CT16 (trough of ATP content) 

(n@ 4). _P ` 0.05, __P ` 0.01, ___P ` 0.001 for Student�s two-tailed t test comparing single time points. Data are 

represented as average ± SEM. 
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Figure 5. Retrograde signaling from mitochondrial network to the clock. (A and B) Circadian period length 

was determined in dexamethasone - synchronized human skin fibroblasts transfected with Bmal1::luciferase 

reporter in presence of (A) rotenone (ROT, 1 #M), oligomycin (OLIGO, 2 #M) or FCCP (4 #M) and (B) Mdiv-1 (50 

#M ) compared to control (CRTL). Bars represent the mean of three independent measurements ± SEM. (C-D) 

Activation of AMPK by phosphorylation was assessed from 12 hours post-synchronization time point at 4 hours 

intervals for 6 time points in (C) human skin fibroblasts (n = 4) and from (D) brain of non-fasted wild-type mice 

kept in constant darkness every 4 hours for 24 hours (n = 4). Quantification of activated AMPK is normalized on 

(C) values at 12 hours post-shock and on (D) value at CT 0. Insets in (C-D) represent the amount of 

phosphorylated AMPK at (C) 20 hours post-shock (trough) and at 32 hours (peak) and at (D) CT 0, 12 and 24. *P 

< 0.05, __P ` 0.01, ___P ` 0.001 for Student�s two-tailed t test comparing single time points. Data are represented 

as average ± SEM. 
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Figure S1. Circadian control of gene expression related to mitochondrial oxidative metabolism. (A-C) 

Circadian profiles of relative mRNA expression of (A) complex I, (B) complex IV and (C) complex V subunits 

involved in the electron transport chain and oxidative phosphorylation from 12 hours post-synchronization time 

point every 4 hours for 6 time points in human skin fibroblasts. (D-F) Relative mRNA expression of (D) complex I 

subunits, (E) complex IV subunits at 16 hours post-shock (corresponding respectively to the peak and trough) and 

28 hours post-shock (corresponding respectively to the trough and peak) and (F) complex V subunits at 20 hours 

post-shock and 32 hours post-shock (corresponding respectively to the peak and trough) in synchronized 

fibroblast. _P ` 0.05, __P ` 0.01, ___P ` 0.001 for Student�s two-tailed t test comparing single time points. Data are 

represented as average ± SEM. 
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Figure S2. Mitochondrial ROS are driven by the clock. (A) Cytosolic (cROS) and mitochondrial (mROS) 

reactive oxygen species levels were evaluated from 12 hours post-synchronization time point with 4 hours 

intervals for 6 time points in human skin fibroblasts (n= 4). Left panel displays cROS and mROS levels at 16 

hours post-shock (peak) and at 28 hours (trough). (B) Superoxide anions level was evaluated from 12 hours post-

synchronization time point with 4 hours intervals for 6 time points in human skin fibroblasts (n= 4). Left panel 

displays superoxide anions level at 16 hours post-shock (peak) and at 28 hours (trough). *P < 0.05, **P < 0.01, 

___P ` 0.001 for Student�s two-tailed t test comparing single time points. Data are represented as average ± SEM. 
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Figure S3. NAD+ content is clock-driven in vitro and vivo. (A) Total NAD+ measured 12 hours 

post-synchronization time point with 4 hours intervals for 6 time points in human skin fibroblasts (n=4 

per time points). Inset in (D): Relative total NAD+ level at 16 hours post-shock (peak) and at 28 hours 

(trough). (B) Total NAD+ content measured every 4 hours for 24 hours from brain of non-fasted wild-

type mice kept in constant darkness (n= 4). Inset in (E): Relative total NAD+ level at CT4 (peak) and at 

CT16 (trough). _P ` 0.05, __P ` 0.01, ___P ` 0.001 for Student�s two-tailed t test comparing single time 

points. Data are represented as average ± SEM. 
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Figure S3. Rhythmic metabolites involved in mitochondrial metabolism. (A) Heat plots for all 

identified metabolites in synchronized human U2OS cells. High levels of metabolites are shown in red 

and low levels are shown in blue. (B) Percentage of non-circadian and circadian metabolites in 

synchronized U2OS cells. (C-D) Pathway analyses (C) and time-of-day distribution (D) of peak phases 

of rhythmic metabolites in synchronized human U2OS cells. Pathways are color-coded as follows: 

amino acids, blue; carbohydrates, red; cofactors & vitamins, violet; energy, brown; lipids, orange; 

nucleotides, pink; peptides, green. (E-H) Rhythmic profiles of ascertained metabolites previously 

described as engaged in (E) branched-chain amino acids metabolism, in (F) GSH/GSSG metabolism, 

in (G) glycolysis  and (H) TCA cycle (n= 2). 

 



RESULTS                                     Schmitt K., Grimm A. et al. (in preparation) 

 

160 

 

 

 

 

 

Figure S5. Clock- controlled mitochondrial structural network organization. (A) Number of cells 

displaying one of the mitochondrial network states (tubular, intermediate and fragmented) determined 

from 8 hours post-shock every 8 hours over the course of 48 hours (mean of 3 independent 

experiments, 100 cells counted per conditions). (B, C) Profile of relative mRNA expression of 

nuclearly-encoded genes related to (B) mitochondrial fusion (MFN1, MFN2 and OPA1) and (C) fission 

(DRP1 and hFIS1) was evaluated from 12 hours post-shock every 4 hours for 6 time points in human 

skin fibroblasts without displaying circadian oscillations. Data are represented as average ± SEM. 
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Figure S6. Schematic representation of the relationship between the core molecular clock and 

mitochondrial dynamics. 
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 The fine understanding of how mitochondria function is a major field of research since 

it is becoming increasingly apparent that mitochondrial dysfunction is involved in a broad 

range of metabolic and degenerative diseases, and aging (1). Mitochondria are particularly 

important in the brain which has high energy requirements since neurons need a lot of 

energy in form of ATP molecules to fulfill their roles (2). Increasing evidences showed that 

reduced energy metabolism together with mitochondrial dysfunction, oxidative stress, and 

impaired mitochondrial fusion/fission activity, constitutes a prominent and early event in 

neurodegenerative diseases, including AD (3; 1). Thus, current pharmacological concepts 

aim to boost mitochondrial bioenergetics, especially by improving cellular respiration and by 

increasing ATP production.  

 In the last decade, neurosteroids have emerged as new potential therapeutic tools in 

degenerative diseases as peripheral neuropathies and AD (4; 5). For instance, 

neurosteroids, such as estradiol and allopregnanolone, were able to alleviate deficits 

manifested in AD by inducing neurogenesis, reducing A! generation and neuroinflammation, 

and decreasing cognitive impairments in AD transgenic mice (6-9). However, except for 

estradiol, the effects of neurosteroids on mitochondrial function remained unresolved. 

 

 In the present PhD work, we demonstrated that not only estradiol but also other 

neurosteroids were able to boost mitochondrial function in neuronal cells. In physiological 

(healthy) conditions, most of the neurosteroids were able to improve mitochondrial 

bioenergetics by increasing ATP levels, MMP and basal respiration (see section II.A). Each 

of them appeared to have a specific action profile upon bioenergetic outcomes, possibly 

because they are acting via different steroid receptors. These observations are in line with 

other studies showing that some neurosteroids regulated the expression of different genes 

coding for proteins involved in the bioenergetic metabolism, such as enzymes involved in 

glycolysis, the Krebs cycle, and mitochondrial complexes (reviewed in (10), see APPENDIX 

4). 

 In pathological conditions, more specifically in cellular models mimicking certain 

histopathological aspects of AD - namely the presence of A! peptide and abnormally 

hyperphosphorylated tau � we showed that neurosteroids belonging also to the family of sex 

hormones were able to alleviate bioenergetic deficits occurring in these cellular models (see 

section II.B). Interestingly, female hormones (estradiol and progesterone) were more 

efficient to alleviate mitochondrial deficits induced by abnormal tau, whereas testosterone, 

the male hormone, increased bioenergetic output in cell overexpressing APP/A!. In 

agreement with these findings, previous studies showed that neurosteroids may exert their 

neuroprotective action, at least in part by modulating A! clearance/accumulation and tau 

hyperphosphorylation, but also by protecting neurons against oxidative stress and apoptosis 
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(11). Here, we showed that their protective action may be mediated by an improvement of 

mitochondrial function that is impacted by A! and abnormal tau, possibly via the regulation of 

genes involved in the bioenergetic metabolism, as hypothesized in section II.A.  

 

 The decrease of blood steroid levels (e.g. the drop of estradiol in women after the 

menopause) and brain neurosteroid levels with increasing age � a phenomenon even more 

pronounced in AD � are believed to impact neuronal and cognitive functions (12-14). Indeed, 

studies showed that the decrease in brain steroid levels was paralleled by A! accumulation 

and tau hyperphosphorylation in some brain regions, as well as cognitive deficits (12; 14), 

suggesting that neurosteroid protective effects play a role in maintaining proper brain 

function during aging. In line with these observations, numerous studies attest the protective 

effects of neurosteroids in vitro and in vivo, with a major focus on sex steroid hormones, 

especially estradiol, the main female hormone, due to the fact that one-third of AD patients 

are woman (see APPENDICES 4 and 5). However, clinical trials showed contradictory 

results: on the one hand, hormonal replacement therapy (HRT) was shown to have beneficial 

effects in postmenopausal women by decreasing the risk to develop AD (15; 16). On the 

other hand, results from the �Woman>s health initiative memory study� (WHIMS) showed that 

long term HRT aggravate cognitive symptoms with, in addition, diverse side effects, including 

increased risks for breast cancer, pulmonary embolism and stroke (17; 18). The synthetic 

nature of the tested hormones has been implicated in the failure of the WHIMS trial but also 

the �critical time windows� in which steroid hormones, like estrogens, might exert a 

neuroprotective effect. Indeed, a recent study performed on ovariectomized rats shows that 

only early onset estrogen replacement therapy was able to prevent oxidative stress and 

metabolic alteration induced by the loss of sex steroid hormones after ovariectomy (19). In 

our study (section II.A), we showed that the improvement of mitochondrial respiration 

induced by neurosteroids in neuronal cells was coupled with an increase of ROS levels, 

probably resulting from a greater electron leakage by the electron transport chain. 

Nevertheless, neurosteroids were able to regulated redox homeostasis by increasing the 

antioxidant activity to compensate this rise of ROS. Based on these observations, we can 

hypothesize that, to be protective, a neurosteroid-based therapy has to be administrated at 

an age when the redox system is still balanced, because one can assume that if the 

treatment starts too late, the presence of neurosteroids might be potentially deleterious due 

to increased ROS production when antioxidant defense mechanisms function insufficiently.  

 

 Taken together, our results provide a potential molecular basis for the beneficial and 

neuroprotective effects of neurosteroids, which may open new avenues for drug 

development with regard to targeting mitochondria in prevention of neurodegeneration. 
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Because each neurosteroid appeared to have a specific action profile on bioenergetic 

outcomes in healthy condition or in the presence of A! or tau, the underlying molecular 

mechanisms still need to be elucidated in more detail, such as their ability to regulate the 

expression and activity of mitochondrial complexes involved in oxidative phosphorylation. 

 

 To improve our understanding of the mechanisms regulating mitochondrial function, 

we additionally focused our research on the relationship between mitochondrial bioenergetics 

and dynamics, and their potential regulation by the circadian system. A growing body of 

evidences shows that the metabolic homeostasis and the circadian clock are connected in 

numerous ways through reciprocal regulation (20-22). In addition, circadian disruptions, 

which can occur during shift work, disturbed sleep/wake cycle, and dietary alterations were 

shown to impair metabolic homeostasis, leading to adverse health effects (reviewed in (23)). 

Although mitochondria play a central role in cellular metabolic processes, the relationship 

between the circadian clock and mitochondrial function (dynamics and bioenergetics) 

remains mostly elusive.  

 

 In our work, we showed that mitochondrial bioenergetics, namely mitochondrial 

respiration and its byproducts (ATP, NAD+ and ROS), oscillate with a period length of about 

24 hours in fibroblasts, an in vitro model of peripheral clock (see section II.C). These 

rhythmic oscillations in bioenergetics were consistent with the rhythms of mitochondrial 

changes in fusion/fission that are under the clock-controlled activity of the fission protein 

Drp1. The latter results could be confirmed also in vivo in mouse brains. A recent study is in 

line with our findings showing that the circadian clock controls mitochondrial oxidative 

function through rhythmic regulation of NAD+ biosynthesis in mice (24). Other studies 

addressed the question of circadian regulation of ATP production (25; 26) but no underlying 

mechanisms were described. Here, we established a detailed molecular link among the 

circadian control of mitochondrial bioenergetics and dynamics. More precisely, our findings 

suggest that the circadian clock is able to regulate mitochondrial ATP production in a time-

dependent manner in order to anticipate the energy demand in response to cellular and 

environmental constraints. In addition, we showed that mitochondria may, directly or 

indirectly, send signals back to the circadian clock (e.g. NAD+ or activation of AMPK), which 

might, in turn, regulate the expression/activity of molecular clock components (e.g. PER, 

CRY).  

 

 Together, these findings shed new light on the circadian regulation of mitochondrial 

function, and vice versa, and could have multiple implications in the context of metabolic 
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homeostasis in human health and disease states linked to impairment in biological rhythm 

and/or mitochondrial function. 

 

 Altogether, our findings improved the knowledge about the modulation of 

mitochondrial bioenergetics in heath and disease states by: i) neurosteroids which constitute 

new therapeutic options to overcome bioenergetic deficits in neurodegenerative diseases, 

and ii) the biological clock which anticipates daily fluctuations in cellular energy demands 

(Fig. 31). Further investigations need to be performed to enlighten the underlying 

mechanisms in more details. 

 

 

Fig. 31: Hypothetical links between mitochondrial function and the circadian clock and their regulation by 

neurosteroids. On the one hand, we showed that neurosteroids can increase mitochondrial bioenergetics which 

can alleviate mitochondrial dysfunction manifested in Alzheimer�s disease (AD). On the other hand we showed 

that the circadian clock controls mitochondrial dynamics, which in turn modulate bioenergetic activity. In addition, 

mitochondria can send signals back to the clock that regulates mitochondrial dynamics and bioenergetics. 
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Les mitochondries sont de minuscules organelles qui génèrent néanmoins la quasi-

totalité de l�énergie cellulaire sous la forme de molécules d�adénosine triphosphate (ATP). 

Elles exercent un rôle fondamental au sein des cellules eucaryotes car elles orchestrent à la 

fois le métabolisme énergétique et les voies apoptotiques qui contrôlent la survie et la mort 

cellulaire. Il est maintenant largement admis que les mitochondries sont le produit de 

l�endosymbiose d�une "-proteobactérie avec l�ancêtre des cellules eucaryotes (1). De ce fait, 

elles possèdent encore un génome résiduel ainsi qu�une double membrane (Fig. 1). 

 

 

Fig. 1: Représentation classique de l�ultrastructure mitochondrial (courtoisie de M. Wanner Fabio). 

 

 Les mitochondries sont des organelles extrêmement dynamiques dont la taille et 

l�aspect varient selon les espèces et organes, mais aussi en fonction de l�environnement 

cellulaire. Afin de maintenir une population mitochondriale homogène, les mitochondries se 

divisent et fusionnent de manière cyclique pour mélanger leur contenu en métabolites et 

protéines, mais aussi pour éviter l�apparition de mutation dans l�ADN mitochondrial (mtDNA). 

Ce phénomène est appelé « fusion / fission » mitochondriale et permet la redistribution des 

organelles au sein des cellules en fonction des besoins énergétiques (2; 3). 

 Les mitochondries remplissent plusieurs rôles qui incluent notamment la régulation du 

calcium intracellulaire et l�homéostasie de l�état réduit/oxydé (redox) des cellules, la plasticité 

synaptique et la neurotransmission (1). Elles sont surtout considérées comme les �usines 

énergétiques� des cellules et une de leur fonction essentielle est la production de molécules 

d�ATP, qui est la source universelle d�énergie cellulaire, synthétisées pendant la 

phosphorylation oxydative (OXPHOS) à partir des sources nutritionnelles. En effet, l�ATP est 
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principalement produite via deux voies métaboliques : la glycolyse et l�OXPHOS (ou 

respiration cellulaire). La première voie fournie un gain net de deux molécules d�ATP, ainsi 

que deux molécules de nicotinamide adénine dinucleotides (NADH) et deux molécules de 

pyruvate. Ce dernier est ensuite transféré dans la matrice mitochondriale et rejoint le cycle 

de Krebs qui permet de produire les principaux donneurs d�électrons (NADH et flavine 

adénine dinucléotides (FADH2)) utilisés pendant l�OXPHOS. 

 La deuxième voie de synthèse d�ATP, l�OXPHOS, utilise les donneurs d�électrons 

synthétisés par le cycle de Krebs pour générer une différence de potentiel au niveau de la 

membrane mitochondriale interne (Fig. 2). En effet, les électrons apportés par NADH et 

FADH2 sont transportés au sein de la chaîne de transport d�électrons (electron transport 

chain : ETC) composés de quatre complexes protéiques (complexe I à IV) responsables du 

transfert de protons (H+) de la matrice vers l�espace intermembranaire. La différence de 

potentiel ainsi générée servira de moteur à l�ATP synthase (ou complexe V), l�enzyme 

responsable de la synthèse d�ATP. Comparé à la glycolyse qui ne produit que deux 

molécules d�ATP, l�OXPHOS génère entre 30 et 32 ATP par molécules de glucose (4).  

 

Fig. 2: Bioénergétique de la chaîne de transport d'électrons. Après le cycle de Krebs, le NADH généré est 

transféré au complexe I et  converti en NAD+. Le transfert d'électrons à travers la chaîne maintient le potentiel de 

membrane mitochondriale en pompant des protons de la matrice vers l>espace intermembranaire. Au final, l�ADP 

est phosphorylée pour former l'ATP par le complexe V (ATP synthase). UQ; coenzyme Q, Cyt c; cytochrome c 

(adapté de (5) et (6)). 

 Paradoxalement, alors qu�elles produisent la principale énergie vitale des cellules 

(ATP), les mitochondries produisent aussi des molécules toxiques dérivées de l�oxygène 
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(reactive oxygen species : ROS). Ces ROS sont en partie produites au cours de l�OXPHOS 

et, en temps normal, sont détoxifiées par le système de défenses antioxydant présent dans 

les cellules, comme par exemple les superoxydes dismutases (SOD) (7). Il arrive cependant 

que ce système de défense antioxydants soit dépassé, et l�accumulation des ROS peut 

engendrer un stress oxydant qui va perturber le bon fonctionnement des cellules et, au final, 

conduit à la mort cellulaire. Les neurones sont particulièrement sensibles face au stress 

oxydant et, étant des cellules postmitotiques et différenciées, leur mort engendrera des 

dysfonctionnements cérébraux et des troubles cognitifs, tels que ceux observé dans les 

maladies neurodégénératives.  

 En effet, le cerveau est un organe particulièrement énergivore qui, malgré sa petite 

taille, a besoin d�environ 20% de l�oxygène présent dans l�organisme pour fonctionner 

normalement (8). Ceci s�explique par le fait que les neurones sont des cellules excitables qui 

requièrent beaucoup d�ATP pour permettre la fusion et le recyclage des vésicules 

nécessaires à la sécrétion de neurotransmetteurs, mais aussi pour maintenir le potentiel de 

membrane des cellules (9). Ainsi, une perturbation de la fonction mitochondriale mènera 

inévitablement à un état pathologique pouvant aller d'une subtile altération des activités 

neuronales jusqu�à la mort cellulaire et à la neurodégénérescence, comme c�est le cas par 

exemple dans la maladie d�Alzheimer (MA). 

 Dans ce contexte, la compréhension des mécanismes intrinsèques qui contrôlent la 

dynamique et le métabolisme énergétique mitochondrial (ou bioénergétique) représente un 

enjeu majeur pour lutter efficacement contre les déficits métaboliques et les maladies 

neurodégénératives, telles que la MA. 

 

 Dans le cadre de ce travail de thèse, notre principal objectif a été d'approfondir nos 

connaissances sur la régulation de la fonction mitochondriale et d'identifier des facteurs clés 

(endogènes et/ou exogènes) qui sont déterminants dans le contrôle de l'activité 

mitochondriale. Ces facteurs pourraient alors servir d'outils pour élaborer des stratégies 

contre les pathologies impliquant des dysfonctionnements mitochondriaux. Pour atteindre cet 

objectif, nous avons organisé notre travail en deux parties:  

1) En tenant compte des données bibliographiques qui suggèrent que les neurostéroïdes 

possèdent un fort potentiel neuroprotecteur, nous avons décidé d'évaluer leur capacité à 

améliorer la fonction mitochondriale en situation normale (physiologique) et dans des 

modèles cellulaires mimant les caractéristiques de la MA, telles que l'accumulation du 

peptide amyloïde-! (A!) et l'hyperphosphorylation de la protéine tau.  

2) Dans la deuxième partie, nous avons cherché à déterminer si l�horloge biologique, qui 

coordonne tout un panel de comportements journaliers et de processus physiologiques, est 

impliquée dans la régulation de la fonction mitochondriale.  



Descriptif synthétique en français des travaux de la thèse 

174 

 

 

 

 Ainsi, dans la première partie de cette thèse, nous avons étudié in vitro la capacité de 

différents neurostéroïdes à réguler la bioénergétique mitochondriale. Plus particulièrement, 

nous avons voulu savoir s�ils étaient capables de compenser ou d�alléger les déficits 

bioénergétiques observés dans des modèles cellulaires présentant l�une ou l�autre des 

protéines impliquées dans la physiopathologie de la MA, à savoir le peptide amyloïde-! (A!) 

et la protéine tau hyperphosphorylée. 

 

 La MA est une maladie neurodégénérative liée à l�âge qui affecte près de 2% de la 

population dans les pays industrialisés et représente environ 60% des cas de démence à 

travers le monde (10). En 2006, près de 26.6 millions de cas ont été diagnostiqués, et les 

études prédisent que le nombre de patients devrait quadrupler d�ici 2050, ce qui en fait une 

des maladies les plus coûteuses pour la société dans les pays développés (11). La maladie 

touche en général les individus de plus de 65 ans, excepté dans les rares cas familiaux 

(<1%) (12), et se traduit par un progressif déclin physique et cognitif, en particulier pour les 

tâches sollicitant la mémoire, le langage ou l�orientation spatiale (13; 14). À ce jour, aucun 

traitement n�est en mesure de prévenir, guérir ou même de ralentir la progression de la 

maladie (14).  

 D�un point de vue histopathologique, le MA est caractérisée par la présence de 

plaques extracellulaires et d�une dégénérescence neurofibrillaire intracellulaire (DNF) qui 

apparaissent dans certaines zones du cerveau, notamment dans l�hippocampe, une 

structure qui joue un rôle central dans la mémoire et l�apprentissage (15; 16; 14). Ces 

plaques extracellulaires (aussi appelées plaques séniles) sont formées par l�accumulation du 

peptide A! issue de la protéolyse de la protéine précurseur de l�amyloïde ! (APP), par la ! et 

la ' sécrétase (17). La DNF est quant à elle générée par l�hyperphosphorylation anormale de 

tau, une protéine associée aux microtubules, qui se détache et forme des agrégats 

intracellulaires (18). Bien que ces deux phénomènes soient au c�ur des recherches contre 

la MA depuis de nombreuses années, les causes de la formation des plaques séniles et de 

la DNF n�ont pas encore été élucidés. 

 Des études plus récentes ont montré que les stades précoces de la MA sont associés 

à un déclin de l�activité bioénergétique cérébrale et une augmentation du stress oxydant (en 

particulier dans les mitochondries) (16; 19). Plus précisément, il a été montré que des 

patients atteints de la MA présentaient un hypométabolisme cérébral (baisse de 

consommation de glucose) et ceci avant même l�apparition des symptômes cliniques (19). 

Cette caractéristique est retrouvée chez l�animal, dans des modèles de souris transgéniques 
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de la MA, où un dysfonctionnement mitochondrial a pu être détecté avant les plaques 

séniles, la DNF et les troubles cognitifs ((20) voir ANNEXE 1).  

 

 Les recherches ciblant les dysfonctionnements mitochondriaux dans la MA ont révélé 

que le peptide A! et la protéine tau hyperphosphorylée avaient tous deux un impact négatif 

sur la fonction mitochondriale (métabolisme bioénergétique et dynamique mitochondrial) et 

pouvait agir soit de manière séparé soit de manière synergétique pour induire leurs effets 

toxiques ( (21; 20) voir ANNEXE 1 et 2). Pris séparément, A! et tau hyperphosphorylée 

engendrent tous deux une baisse de la production d�ATP, de la respiration cellulaire, 

augmentent la production de ROS et perturbent le potentiel de  membrane mitochondriale 

(21; 22; 20) (voir Fig. 3). Notamment, il a été montré que l�A! pouvait réduire l�activité du 

complexe IV mitochondrial (23; 24), alors que la présence de tau hyperphosphorylée 

diminuait l�activité du complexe I (25).  

 Les deux protéines ont également un impact négatif sur la dynamique mitochondriale 

(activité de fusion/fission). En effet, les cellules surexprimant l�APP présentent un réseau 

mitochondrial fragmenté (27; 28), alors que la surexpression de tau engendre une élongation 

anormale des mitochondries dans des neurones de drosophiles et de souris (29).  

 

 Des études effectuées sur les souris triples transgéniques (tripleAD : APPxPS2xpR5) 

ont permis de montrer que A! et tau hyperphosphorylée peuvent agir de manière 

synergétique sur la mitochondrie ((30) voir aussi ANNEXE 3). En effet, les 

dysfonctionnements mitochondriaux étaient déjà apparents à 8 mois chez les souris tripleAD 

alors qu�ils n�apparaissaient qu�à 12 mois chez les souris doubles transgéniques (APPxPS2). 

De plus, ces souris présentaient des déficits exacerbés au niveau de l�OXPHOS et la 

synthèse d�ATP, ainsi qu�une augmentation de la production de ROS. 

 En résumé, ces données indiquent fortement que les dysfonctionnements 

mitochondriaux jouent un rôle clef dans la pathogenèse de la MA. La mitochondrie 

représente donc une cible intéressante pour élaborer des stratégies thérapeutiques dans les 

stades encore précoces de la maladie. C�est pourquoi, les concepts pharmacologiques 

actuels visent à : stimuler la respiration mitochondriale, augmenter la production d�ATP et 

réduire le stress oxydant (niveaux de ROS). 
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Fig. 3 : Convergence pathogène de la protéine tau hyperphosphorylée et le peptide Aß sur les mitochondries. Aß 

et la protéine tau sont capables d'altérer la respiration mitochondriale en inhibant le complexe IV et complexe I 

respectivement. Ceci induit une diminution de la consommation d'oxygène, de la production d'ATP et une 

augmentation des niveaux de ROS. Le stress oxydant induit par le dysfonctionnement de la chaîne de transport 

des électrons peut surpasser les défenses antioxydantes des cellules (MnSOD, Cu/ZnSOD) et impacter le 

potentiel de membrane (*+) ainsi que l>ADN mitochondrial (mtDNA). Dans les mitochondries, le peptide Aß peut 

se lier à des protéines comme l�ABAD et CypD, ce qui génère plus de ROS et mène à l'ouverture des pores de 

transition de perméabilité mitochondriale (mPTP), déclenchant les voies apoptotiques par la libération de Cyt C 

dans le cytosol. En parallèle, le peptide Aß peut également être responsable des altérations métaboliques en 

inhibant les enzymes impliquées dans la glycolyse et du cycle de Krebs, de même que l'excitotoxicité induite par 

le calcium dans les neurones. Enfin, l�Aß et la protéine tau peuvent perturber l>activité de fusion / fission 

mitochondriale, conduisant à une mauvaise répartition des mitochondries dans les neurones. CI complexe I, CII 

complexe II , CIII complexe III, CIV complexe IV, CV complexe V, cyt c cytochrome c, Cu/Zn SOD cuivre/zinc 

superoxyde dismutase, MnSOD manganèse superoxyde dismutase, ROS espèces réactives de l'oxygène, 

mtDNA ADN mitochondrial, TOM / TIM translocases des membranes mitochondriales interne / externe, ABAD Aß 

binding alcohol dehydrogenase, FIS, protéine fission 1, CypD cyclophiline D (adapté de (26) et (22)). 
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Dans les travaux de thèse présentés ici, nous avons fait l�hypothèse que les 

neurostéroïdes pourraient être de nouveaux candidats capables de stimuler la respiration 

mitochondriale. 

 Les neurostéroïdes sont des stéroïdes synthétisés par les neurones et/ou les cellules 

gliales du système nerveux central ou périphérique. Pour être considéré comme un 

neurostéroïde, une concentration substantielle du stéroïde doit persister dans le système 

nerveux après ablation des glandes endocrines périphériques qui sécrètent les hormones 

stéroïdiennes (31; 32). Il est possible de distinguer 3 catégories de neurostéroïdes: (i) les 

neurostéroïdes non-exclusifs tels que l'estradiol, la testostérone et la progestérone, qui sont 

des hormones stéroïdiennes synthétisées par les glandes endocrines mais également par 

les neurones et les cellules gliales; ii) les neurostéroïdes semi-exclusifs comme 

l'alloprégnanolone qui est principalement synthétisée dans le système nerveux mais aussi en 

faible quantité par les glandes endocrines; iii) les neurostéroïdes exclusifs comme 

l'épialloprégnanolone qui ne sont produits que dans le système nerveux (35). 

 La mitochondrie est un organite qui joue un rôle crucial dans la biosynthèse des 

stéroïdes périphériques ou hormones stéroïdiennes (stéroïdogenèse) et des neurostéroïdes 

(neurostéroïdogenèse). En effet, la mitochondrie est le siège de la première étape des voies 

enzymatiques de la stéroïdogenèse et de la neurostéroïdogenèse (31; 33; 34) (Fig. 4).  

 

Fig. 4: Représentation schématique des principales voies de biosynthèse des neurostéroïdes dans le cerveau 

des vertébrés. TSPO ; translocator protein, 17OH-PREG; 17-hydroxypregnenolone, 17OH-PROG; 17-

hydroxyprogesterone, DHEA; dehydroepiandrosterone, DHP; dihydroprogesterone, ALLOPREG; 

allopregnenolone, DHT; dihydrotestosterone, P450scc; cytochrome P450 cholesterol side chain cleavage, 

P450c17;cytochrome P450c17, 3!-HSD; 3!-hydroxysteroid dehydrogenase, 5"-R; 5"-reductase, Arom.; 

aromatase, 21-OHase; 21-hydroxylase, 3"-HSOR; 3"-hydroxysteroid oxydoreductase,17!-HSD; 17!-

hydroxysteroid dehydrogenase. 
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 Contrairement aux hormones stéroïdiennes qui agissent par un mode d'action 

endocrine (effet sur des cibles lointaines par rapport aux glandes endocrines sécrétrices), les 

neurostéroïdes ont une action autocrine et paracrine. Ils modulent plusieurs processus 

physiologiques tels que: la neurotransmission, la viabilité neuronale, la myélinisation, 

l'apprentissage, la cognition et la mémorisation (36; 37; 32). 

 

 Divers travaux réalisés dans des modèles expérimentaux de maladies 

neurodégénératives et de neuropathies périphériques suggèrent que les neurostéroïdes ont 

un fort potentiel neuroprotecteur (38-45). Par ailleurs, des études post-mortem ont révélé 

une baisse des concentrations endogènes de neurostéroïdes dans le cerveau des patients 

Alzheimer comparés aux sujets contrôles (46). Cette baisse est négativement corrélée à 

l�accumulation du peptide A! et à l�hyperphosphorylation de la protéine tau dans les 

structures cérébrales limbiques. Des données similaires ont été mises en évidence dans le 

cerveau de souris transgéniques modélisant la MA (47). Collectivement, ces résultats 

suggèrent que la neurodégénérescence et/ou les dysfonctionnements neuronaux évoqués 

par la toxicité A! et l'hyperphosphorylation de tau pourraient résulter, au moins en partie, de 

la diminution des concentrations cérébrales de neurostéroïdes neuroprotecteurs. 

 En ce qui concerne les déficits mitochondriaux observés dans la MA, de nombreuses 

études sont axées sur l'estradiol (voir ANNEXE 4) qui est également connu pour stimuler le 

métabolisme bioénergétique dans les cellules. Cependant, aucune étude n�a testé les effets 

d'autres neurostéroïdes sur la bioénergétique mitochondriale et l'homéostasie redox dans les 

cellules neuronales. 

 

 Par conséquent, dans le but d�élargir nos connaissances sur les effets 

neuroprotecteurs des neurostéroïdes et leurs mécanismes sous-jacents, nous avons 

sélectionné un panel de neurostéroïdes (progestérone, estradiol, l'estrone, testostérone, 3"-

androstanediol, DHEA et alloprégnanolone) comme candidats potentiels capables de 

moduler la fonction mitochondriale. 

 Pour choisir le panel à tester, nous nous sommes appuyés sur des travaux antérieurs 

qui ont révélé, d>une part, que l�A! et tau hyperphosphorylée modulent la production 

endogène de neurostéroïdes (48; 49), et d>autre part, que l�homéostasie de l�estradiol dans 

les mitochondries est perturbée par les peptides A! qui inhibent l�amyloid-  binding alcohol 

dehydrogenase (ABAD) connue également sous l'appellation de 17!-hydroxystéroïde 

déshydrogénase (Fig. 3-4) ( (50) voir aussi ANNEXE 5 et 6). Avant de caractériser le mode 

d'action des neurostéroïdes sur la bioénergétique mitochondriale dans des conditions 

pathologiques (MA), nous avons d'abord cherché à comprendre leurs effets per se en 

utilisant des cellules de neuroblastome humains, SH-SY5Y, traitées pendant 24 heures. Les 
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effets des 7 neurostéroïdes sélectionnés ont été testés sur la production d�ATP, le potentiel 

de membrane mitochondriale (MMP), la respiration mitochondriale, la glycolyse et 

l�environnement redox des cellules. 

 Nos résultats montrent que la progestérone, l�estradiol, l�estrone, la testostérone, la 

3"-androstanediol et la DHEA stimulent l�activité bioénergétique cellulaire après 24 heures 

de traitement (10 nM et 100 nM), en augmentant les niveaux d�ATP, le MMP et la respiration 

basale, sans effets significatifs sur la glycolyse. La testostérone et la DHEA améliorent en 

plus le respiratory control ratio (RCR), un indicateur de la capacité respiratoire des 

mitochondries. Il apparaît donc que les neurostéroïdes agissent principalement sur la 

respiration basale en augmentant les niveaux énergétiques des cellules déjà à l�état de 

repos, et lorsque les cellules ont une forte demande énergétique, la testostérone et la DHEA 

sont capables d�améliorer le RCR pour répondre à cette demande.  

 Les neurostéroïdes sont des molécules lipophiles et peuvent donc traverser les 

membranes plasmiques des cellules pour activer des récepteurs nucléaires, régulant ainsi la 

transcription de gènes. Afin de voir si les récepteurs nucléaires des stéroïdes étaient 

impliqués dans la modulation de la bioénergétique mitochondriale, nous avons utilisé des 

antagonistes spécifiques (RU 486 : antagoniste des récepteurs à la progestérone, ICI 

182.780 : antagoniste des récepteurs aux estrogènes, dihydroxy-flutamide : antagoniste des 

récepteurs aux androgènes) et évalués leurs effets sur la production d�ATP en présence de 

l�agoniste stéroïdien correspondant. Les résultats montrent qu�en présence de la molécule 

antagoniste, l�effet des neurostéroïdes sur la production d�ATP est complètement aboli, 

suggérant que la modulation de la bioénergétique se fait, au moins en partie, par l�activation 

de la transcription de gènes codant pour des protéines impliquées dans la glycolyse ou 

l'OXPHOS.  

 D�autre part, nous avons observé que l�augmentation de l�activité mitochondriale 

induite par les neurostéroïdes était parallèle à une élévation des niveaux de ROS dans les 

mitochondries, sans pour autant affecter la survie des cellules. Cette élévation résulte 

probablement d'une fuite d'électrons par la chaîne de transport d'électrons car, comme 

expliqué précédemment, si les mitochondries produisent de l�ATP, elles produisent 

également des ROS. Les neurostéroïdes sont cependant capables de compenser cette 

augmentation des ROS mitochondriaux par une hausse de l�activité antioxydante (ici, 

l�activité de la manganèse superoxydes dismutase), ce qui fait que l�état redox 

intramitochondrial n�en ressort que légèrement oxydé. 

 

 Ainsi, ces premières données indiquent que les neurostéroïdes sont en effet en 

mesure de stimuler la fonction mitochondriale en condition physiologique. Nos principales 

conclusions sont que: i) la majorité de ces stéroïdes induisent une augmentation du 
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métabolisme énergétique, principalement par l'intermédiaire d'une hausse de l'activité 

mitochondriale; ii) les neurostéroïdes testés sont capables de réguler l�homéostasie redox en 

augmentant l>activité antioxydante pour compenser l�élévation des niveaux de ROS produit 

lors de l�OXPHOS. De plus, chaque neurostéroïde semble avoir un profil bioénergétique 

spécifique. Les résultats obtenus après l�utilisation d�antagonistes des récepteurs nucléaires 

aux stéroïdes suggèrent qu�ils agissent, au moins en partie, par l>intermédiaire de leur 

récepteur correspondant pour réguler l'expression de gènes impliqués dans la glycolyse et 

l�OXPHOS, mais peut-être aussi sur l'activité des complexes respiratoires mitochondriaux. 

D'autres études sont maintenant nécessaires pour déterminer plus en détail les mécanismes 

moléculaires qui sont impliqués dans ces processus.(mettreplus haut) 

 

 En nous appuyant sur ces premiers résultats, nous avons cherché à savoir si les 

neurostéroïdes avaient un effet bénéfique pour contrecarrer les déficits mitochondriaux 

observés dans la MA.  

 Nous avons donc traité des cellules de neuroblastome humain (SH-SY5Y) 

transfectées de manière stable, soit avec la protéine précurseur de l'amyloïde humaine 

(APP) qui surexpriment l>APP et l�Aß (23; 24), soit avec la protéine tau « normale » (wild-type 

tau : wtTau), ou la protéine tau mutante (P301L), qui induit une hyperphosphorylation 

anormale de tau (25), pendant 24 heures avec différents neurostéroïdes appartenant à la 

famille des hormones sexuelles (progestérones, estradiol, estrone, testostérone, 3"-

androstanediol). Plusieurs paramètres bioénergétiques ont ensuite été mesurés, à savoir : 

les niveaux d�ATP, le MMP, la respiration basale, le renouvellement de l�ATP (ATP turnover), 

la respiration mitochondriale maximale, la capacité respiratoire de réserve ainsi que la 

réserve glycolytique. 

 En accord avec les données bibliographiques mentionnées précédemment, nous 

avons d�abord démontré que la présence de l'APP/Aß ou la protéine tau mutante avait une 

incidence différente sur la bioénergétique mitochondriale dans ces modèles cellulaires (23; 

25). La surexpression de l�une ou l�autre de ces protéines induisait une diminution similaire 

des niveaux d�ATP. Cependant, alors que la protéine tau mutante n�affectait que la 

respiration mitochondriale maximale et la capacité respiratoire de réserve, la surexpression 

de l'APP/Aß induisait en plus une diminution de la respiration basale, du renouvellement de 

l'ATP (ATP turnover) et de la réserve glycolytique. Tous les neurostéroïdes que nous avons 

testés étaient en mesure d�augmenter les niveaux d'ATP et le MMP dans les cellules 

surexprimant l�APP/Aß. En revanche, seules la progestérone et l'estradiol induisaient une 

augmentation de l�ATP dans les cellules exprimant la protéine tau mutante.  

 De plus, nous avons pu montrer que l'hormone stéroïdienne mâle, la testostérone, 

était plus efficace pour réduire les déficits mitochondriaux induits l�APP/Aß. En effet, elle était 
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la seule molécule capable d�augmenter la respiration basale, le renouvellement d�ATP, la 

respiration mitochondriale maximale et la capacité respiratoire de réserve dans les cellules 

surexprimant l�APP/Aß. Les hormones stéroïdiennes femelles, la progestérone et les 

estrogènes (l�estradiol et l�estrone), étaient quant à elles plus efficaces pour augmenter ces 

différents paramètres bioénergétiques dans le modèle cellulaire de tauopathies liés à la MA. 

 En résumé, nos résultats apportent de nouvelles évidences attestant des effets 

neuroprotecteurs des neurostéroïdes dans la MA. Ces molécules représentent donc des 

candidats prometteurs capables d'augmenter la bioénergétique cellulaire en conditions 

pathologiques. 

 

 L'ensemble des résultats de la première partie de cette thèse fournit une base 

moléculaire potentielle pour les effets bénéfiques et neuroprotecteurs des neurostéroïdes, et 

ouvrent de nouvelles voies pour le développement de médicaments ciblant les mitochondries 

dans la neurodégénérescence. Nos résultats indiquent fortement que les neurostéroïdes 

représentent des molécules prometteuses capables d>augmenter l�activité bioénergétique via 

l'amélioration de la respiration mitochondriale, dans des conditions saines et pathologiques. 

Comme chaque neurostéroïde semble avoir un profil d'action spécifique sur la 

bioénergétique cellulaire, que ce soit  en conditions normales ou en présence de Aß ou tau, 

il est maintenant nécessaire d�élucider plus en détail quels sont les mécanismes 

moléculaires sous-jacents, comme par exemple leurs capacités individuelles à réguler 

l>expression et l>activité des complexes mitochondriaux impliquée dans l�OXPHOS. 

 

 Dans la deuxième partie de cette thèse, nous avons cherché à comprendre comment 

la fonction mitochondriale est régulée de manière endogène au sein des cellules. Plus 

précisément, nous avons cherché à déterminer si, et surtout comment, la dynamique 

mitochondriale (activité de fusion/fission) ainsi que la bioénergétique était modulées par 

l'horloge biologique de manière circadienne. 

 

 L�horloge circadienne (du latin « circa diem» : environ un jour) représente un réseau 

hiérarchique d�oscillateurs qui coordonnent toute une variété de comportements journaliers 

et de processus physiologiques à un moment optimal de la journée, dans le but d�anticiper 

les changements de l�environnement extérieur chez tous les êtres vivants (51).  

 Pour être considéré comme circadien, un rythme (ou oscillation) doit remplir trois 

critères essentiels (52). Tout d�abord, il doit être endogène, avec une période d�environ 24 

heures, et persister en condition constante, par exemple quand l�individu ou l�animal sont 

placés dans l�obscurité, sans stimuli lumineux. Deuxièmement, le rythme doit être 

entrainable (ou synchronisable) par des stimuli externes appelés « Zeitgebers » comme par 



Descriptif synthétique en français des travaux de la thèse 

182 

 

exemple les cycles jour/nuit ou les prises alimentaires. Enfin, la période du rythme (le temps 

que met une oscillation pour se répéter) ne doit pas être affectée par les changements de 

température dans des limites physiologiquement acceptables. 

 Dans l'ensemble, les rythmes circadiens permettent à l'organisme de coordonner 

divers processus physiologiques et comportementaux au cours de la journée. Le rythme 

circadien le plus évident observé chez les humains, et d'autres animaux, est le cycle veille-

sommeil. 

 

 L�une des principales propriétés du système circadien est sa capacité à synchroniser 

l�horloge circadienne à tous les niveaux (de l�horloge moléculaire à l�organisme entier). 

Virtuellement, toutes les cellules de l�organisme sont dotées d�horloges endogènes qui 

fonctionnent en phase les unes avec les autres afin de maintenir un fonctionnement cohérent 

entre les différents organes du corps (53). Pour orchestrer tous ces oscillateurs individuels, 

le système circadien possède une horloge centrale, située dans les noyaux 

suprachiasmatiques (SCN) du cerveau (54; 55), qui remplit un rôle clef et permet de: i) 

percevoir les signaux environnementaux (ex : la lumière) ; ii) intégrer les informations 

temporelles (ex : le moment de la journée (jour/nuit)) ; iii) transmettre des signaux pour 

synchroniser les horloges périphériques situées dans différents tissus ou organes (foie, 

estomac, muscles, pancréas�) qui à leur tour transmettant des signaux rétroactifs au SCN 

(Fig. 5). 

 

Fig. 5: Subdivisions du système circadien: entrée, effecteurs d'horloge et sortie d'horloge. Cette division peut être 

faite au niveau cellulaire ainsi qu'au niveau systémique. SCN noyaux suprachiasmatiques, CNS système nerveux 

central (adapté de (53)). 
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Au niveau moléculaire, le maintien d�un rythme avec une période de 24 heures est 

rendu possible grâce à des boucles rétroactives de transcription/traduction composées 

d�éléments trans-activateurs (positifs) ou trans-inhibiteurs (négatifs) (Fig.6). BMAL1 et 

CLOCK font partie des éléments activateurs de transcription qui régulent les gènes sous le 

contrôle de l�horloge (CCG : Clock-controlled genes) ainsi que la transcription des éléments 

inhibiteurs : Cryptochrome (CRY) et Period (PER) (56). Ces derniers inhibent la transcription 

de BMAL1, et donc leur propre transcription, et la boucle peut recommencer. D�autres 

éléments peuvent venir réguler l�expression ou la stabilité des composants de cette l�horloge 

moléculaire, comme par exemple REV-ERB" (reverse orientation c-erb!#) ou ROR (orphan 

nuclear receptor genes).  

 

Fig. 6: Liens entre l�horloge moléculaire et le métabolisme. L>horloge moléculaire peut directement ou 

indirectement synchroniser divers processus métaboliques en activant la transcription de gènes qui sont sous le 

contrôle de l�horloge (CCG : clock-controlled genes). Vice versa, les flux métaboliques ainsi générés peuvent 

renvoyer des signaux à l�horloge moléculaire (via SIRT1 ou l�AMPK) à la manière d�un rhéostat afin de 

coordonner les processus métaboliques avec les cycles jour/nuit ou les périodes de jeûne et de prise alimentaire. 

NAMPT; nicotinamide phosphoribosyltransferase, SIRT1; sirtuines 1, AMPK; protéine kinase dépendante de 

l�adénosine monophosphate (adapté de (57)). 
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 Les rythmes circadiens apparaissent de plus en plus comme une adaptation 

évolutive, notamment au niveau métabolique, qui permet la séparation temporelle des 

réactions cataboliques et anaboliques pour les aligner avec les rythmes jour/nuit ou les 

périodes de jeûne ou de prise alimentaire (58). Bien qu�il soit de plus en plus admis que 

l�horloge moléculaire est étroitement liée au métabolisme (59; 53), les mécanismes sous-

jacents n�ont pas encore été clairement élucidés. Certaines pistes sont actuellement à 

l�étude et impliquent des molécules telles que le NAD+, NAMPT (nicotinamide 

phosphoribosyltransferase), SIRT1 (sirtuines 1) ou encore l�AMPK (protéine kinase 

dépendante de l�adénosine monophosphate) (60-64) (Fig. 6). 

 

 De nouvelles évidences suggèrent que le métabolisme énergétique (libération d'ATP, 

ROS et mécanismes de défense cellulaire) serait lui aussi coordonné par l'horloge 

circadienne (65; 66). Bien qu��il semble probable que la mitochondrie, véritable machinerie 

métabolique des cellules, soit étroitement liée de plusieurs façons à travers une régulation 

réciproque avec l�horloge circadienne, la relation entre le système circadien et la fonction 

mitochondriale reste encore très floue. 

 Ainsi, nous avons voulu savoir, d>une part, si l�horloge circadienne exerçait un 

contrôle sur la fonction mitochondriale, notamment sur la dynamique et la bioénergétique, et 

d�autre part, si la mitochondrie pouvait elle-même influencer des paramètres de l�horloge.  

 Pour ce faire, nous avons utilisé des cultures primaires de fibroblastes humains 

comme modèles d'horloge périphérique (67; 68). Après synchronisation des cellules, nous 

avons étudié la dynamique (morphologie mitochondriale, activité de fusion/fission) ainsi que 

la bioénergétique mitochondriale (production d�ATP et respiration). 

 

 Nos données ont révélé que la forme des mitochondries et le métabolisme 

bioénergétique (OXPHOS) sont sous le contrôle de l'horloge et oscillent avec une période de 

24 heures environ. Plus précisément, nous avons constaté que les niveaux d'ATP présentent 

une rythmicité circadienne avec un pic et un creux survenant respectivement 16 heures et 28 

heures après synchronisation. Ces données ont pu être confirmées in vivo, dans des 

cerveaux de souris maintenues en obscurité constante, où les taux d�ATP présentaient 

également une oscillation de 24 heures, avec un pic survenant au début de la période de 

repos. De plus, l'étude de la respiration mitochondriale in vitro a également fourni des 

résultats en corrélation avec les oscillations d�ATP. Nous avons observé que les taux de 

consommation d�oxygène (OCR) sont plus bas 28 heures postsynchronisation comparés à 

16 heures, supportant l�hypothèse que le métabolisme oxydatif de la mitochondrie est 

contrôlé par l�horloge biologique. 
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 L�étude de la dynamique mitochondriale a quant à elle révélé que l�activité de 

fusion/fission des mitochondries présente aussi un rythme d�environ 24 heures en corrélation 

avec la synthèse d�ATP. En effet, le réseau mitochondrial était dans un état : i) tubulaire (ou 

fusionné) 8 heures après synchronisation, quand les taux d�ATP augmentent; ii) 

intermédiaire 16 heures après synchronisation, au pic d�ATP ; iii) fragmenté 24 heures après 

synchronisation, au début du creux d�ATP. Cette rythmicité semble être dépendante de 

l'activité de DRP1, une protéine impliquée dans la fission mitochondriale. En effet, l�utilisation 

de fibroblastes DRP1 K.O ou le traitement des cellules avec un inhibiteur de fission a 

complètement aboli l>oscillation de l�ATP in vitro. De plus, la forme phosphorylée de DRP1 

(correspondant ici à la forme inactive de cette protéine) présente une oscillation circadienne 

au niveau protéique, suggérant que la fission mitochondrial, dépendant de DRP1, est sous le 

contrôle de l�horloge biologique. À nouveau, ces derniers résultats ont pu être confirmés in 

vivo dans les cerveaux de souris.  

 Nous avons également montré que des sous-produits dérivés de l'activité 

mitochondriale, comme les ROS et les niveaux NAD+, tous deux indicateurs de 

l'environnement redox, présentent aussi une oscillation circadienne en phase avec les 

niveaux d�ATP et la respiration mitochondriale.  

 Pour finir, nous avons également constaté que les mitochondries peuvent eux-

mêmes agir sur le rythme circadien via plusieurs signaux rétrogrades, dont l'activation de 

l�AMPK par phosphorylation (dépendant du ratio AMP/ATP) qui peuvent réguler l�activité des 

composants de l�horloge moléculaire tels que PER et CRY. 

 

 L'ensemble des résultats de la seconde partie de cette thèse nous ont permis 

d�établir un lien moléculaire entre le contrôle circadien de la dynamique mitochondriale et la 

bioénergétique, et vice versa. Ces données suggèrent que l�horloge circadienne joue un rôle 

clé dans le contrôle du métabolisme mitochondrial pour anticiper les besoins énergétiques 

nécessaires à la réalisation de diverses fonctions cellulaires en réponse aux exigences 

environnementales et/ou intracellulaires.  

 

 En conclusion, les résultats de ces travaux de thèse contribuent fortement à accroître 

nos connaissances sur la modulation de la fonction mitochondriale en conditions 

physiologiques et pathologiques (Fig. 7). Notre travail permet d'identifier les neurostéroïdes 

comme étant des molécules très prometteuses à exploiter pour contrecarrer les déficits 

bioénergétiques dans les maladies neurodégénératives, en particulier dans la MA. De plus, 

nous démontrons que la dynamique et la bioénergétique mitochondriales sont contrôlées par 

l'horloge biologique, ce qui pourrait avoir de multiples implications dans la régulation de 
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l'homéostasie métabolique chez le sujet sain ou chez les patients atteints de pathologies 

liées à une altération des rythmes biologiques et/ou des fonctions mitochondriales. 

 Des recherches complémentaires doivent maintenant être effectuées pour élucider 

plus en détail quels sont les mécanismes sous-jacents. 

 

 

Fig. 7 : Liens hypothétiques entre la fonction mitochondriale et l�horloge circadienne, et leur régulation par les 

neurostéroïdes. D'une part, nous avons montré que les neurostéroïdes peuvent augmenter la bioénergétique 

mitochondriale, ce qui peut partiellement pallier la dysfonction mitochondriale observée dans la maladie 

d'Alzheimer (MA). D'autre part nous avons montré que l'horloge circadienne contrôle la dynamique 

mitochondriale, qui à son tour module l'activité bioénergétique. De plus, la mitochondrie peut envoyer des signaux 

rétrogrades à l'horloge, ce qui influence à nouveau la dynamique et la bioénergétique mitochondriale. 

 



Descriptif synthétique en français des travaux de la thèse 

187 

 

References 
 
(1) Scheffler I.E. (2008) Mitochondria. 2nd edn. Wiley-Liss, Hoboken, N.J. 
(2) Benard G., Rossignol R. (2008) Ultrastructure of the mitochondrion and its bearing on function and 

bioenergetics. Antioxid Redox Signal 10:1313-1342 
(3) Westermann B. (2010) Mitochondrial fusion and fission in cell life and death. Nature reviews Molecular cell 

biology 11:872-884 
(4) Alberts B. (2008) Molecular biology of the cell. 5th edn. Garland Science, New York 
(5) Osellame L.D., Blacker T.S., Duchen M.R. (2012) Cellular and molecular mechanisms of mitochondrial 

function. Best practice & research Clinical endocrinology & metabolism 26:711-723 
(6) Lu B. (2011) Mitochondrial dynamics and neurodegeneration. Springer, New York 
(7) Jezek P., Hlavata L. (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and 

organism. The international journal of biochemistry & cell biology 37:2478-2503 
(8) Shulman R.G., Rothman D.L., Behar K.L. et al. (2004) Energetic basis of brain activity: implications for 

neuroimaging. Trends in neurosciences 27:489-495 
(9) Raichle M.E., Gusnard D.A. (2002) Appraising the brain's energy budget. Proc Natl Acad Sci U S A 99:10237-

10239 
(10) Prince M., Bryce R., Albanese E. et al. (2013) The global prevalence of dementia: a systematic review and 

metaanalysis. Alzheimer's & dementia : the journal of the Alzheimer's Association 9:63-75 e62 
(11) Brookmeyer R., Johnson E., Ziegler-Graham K. et al. (2007) Forecasting the global burden of Alzheimer's 

disease. Alzheimer's & dementia : the journal of the Alzheimer's Association 3:186-191 
(12) Reitz C., Mayeux R. (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. 

Biochemical pharmacology 88:640-651 
(13) Karantzoulis S., Galvin J.E. (2011) Distinguishing Alzheimer's disease from other major forms of dementia. 

Expert review of neurotherapeutics 11:1579-1591 
(14) Perrin R.J., Fagan A.M., Holtzman D.M. (2009) Multimodal techniques for diagnosis and prognosis of 

Alzheimer's disease. Nature 461:916-922 
(15) Gotz J., Ittner L.M. (2008) Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev 

Neurosci 9:532-544 
(16) Mattson M.P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430:631-639 
(17) LaFerla F.M., Green K.N., Oddo S. (2007) Intracellular amyloid-beta in Alzheimer's disease. Nat Rev 

Neurosci 8:499-509 
(18) Brunden K.R., Trojanowski J.Q., Lee V.M. (2009) Advances in tau-focused drug discovery for Alzheimer's 

disease and related tauopathies. Nature reviews Drug discovery 8:783-793 
(19) Mosconi L., Pupi A., De Leon M.J. (2008) Brain glucose hypometabolism and oxidative stress in preclinical 

Alzheimer's disease. Ann N Y Acad Sci 1147:180-195 
(20) Schmitt K., Grimm A., Kazmierczak A. et al. (2012) Insights into mitochondrial dysfunction: aging, amyloid-

beta, and tau-A deleterious trio. Antioxid Redox Signal 16:1456-1466 
(21) Eckert A., Nisbet R., Grimm A. et al. (2014) March separate, strike together--role of phosphorylated TAU in 

mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 1842:1258-1266 
(22) Grimm A., Lim Y.A., Mensah-Nyagan A.G. et al. (2012) Alzheimer's disease, oestrogen and mitochondria: an 

ambiguous relationship. Mol Neurobiol 46:151-160 
(23) Rhein V., Baysang G., Rao S. et al. (2009) Amyloid-beta leads to impaired cellular respiration, energy 

production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol 
Neurobiol 29:1063-1071 

(24) Rhein V., Giese M., Baysang G. et al. (2010) Ginkgo biloba extract ameliorates oxidative phosphorylation 
performance and rescues abeta-induced failure. PLoS One 5:e12359 

(25) Schulz K.L., Eckert A., Rhein V. et al. (2012) A new link to mitochondrial impairment in tauopathies. Mol 
Neurobiol 46:205-216 

(26) Pagani L., Eckert A. (2011) Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011:925050 
(27) Wang X., Su B., Lee H.G. et al. (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer's 

disease. J Neurosci 29:9090-9103 
(28) Wang X., Su B., Siedlak S.L. et al. (2008) Amyloid-beta overproduction causes abnormal mitochondrial 

dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 
105:19318-19323 

(29) DuBoff B., Gotz J., Feany M.B. (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. 
Neuron 75:618-632 



Descriptif synthétique en français des travaux de la thèse 

188 

 

(30) Rhein V., Song X., Wiesner A. et al. (2009) Amyloid-beta and tau synergistically impair the oxidative 
phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A 
106:20057-20062 

(31) Mensah-Nyagan A.G., Do-Rego J.L., Beaujean D. et al. (1999) Neurosteroids: expression of steroidogenic 
enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacological reviews 
51:63-81 

(32) Plassart-Schiess E., Baulieu E.E. (2001) Neurosteroids: recent findings. Brain Research Review 37:133-140 
(33) Patte-Mensah C., Kibaly C., Boudard D. et al. (2006) Neurogenic pain and steroid synthesis in the spinal 

cord. Journal of Molecular Neuroscience 28:17-31 
(34) Schaeffer V., Meyer L., Patte-Mensah C. et al. (2010) Progress in dorsal root ganglion neurosteroidogenic 

activity: basic evidence and pathophysiological correlation. Progress in Neurobiology 92:33-41 
(35) Patte-Mensah C., Mensah-Nyagan A.G. (2008) Peripheral neuropathy and neurosteroid formation in the 

central nervous system. Brain Res Rev 57:454-459 
(36) Melcangi R.C., Garcia-Segura L.M., Mensah-Nyagan A.G. (2008) Neuroactive steroids: state of the art and 

new perspectives. Cell Mol Life Sci 65:777-797 
(37) Panzica G.C., Balthazart J., Frye C.A. et al. (2012) Milestones on Steroids and the Nervous System: 10 

years of basic and translational research. Journal of neuroendocrinology 24:1-15 
(38) Brinton R.D. (2013) Neurosteroids as regenerative agents in the brain: therapeutic implications. Nature 

reviews Endocrinology 9:241-250 
(39) Meyer L., Patte-Mensah C., Taleb O. et al. (2013) Neurosteroid 3alpha-androstanediol efficiently counteracts 

paclitaxel-induced peripheral neuropathy and painful symptoms. PLoS One 8:e80915 
(40) Patte-Mensah C., Meyer L., Taleb O. et al. (2014) Potential role of allopregnanolone for a safe and effective 

therapy of neuropathic pain. Prog Neurobiol 113:70-78 
(41) Simpkins J.W., Yi K.D., Yang S.H. et al. (2010) Mitochondrial mechanisms of estrogen neuroprotection. 

Biochimica et Biophysica Acta 1800:1113-1120 
(42) Chen S., Wang J.M., Irwin R.W. et al. (2011) Allopregnanolone promotes regeneration and reduces beta-

amyloid burden in a preclinical model of Alzheimer's disease. PLoS One 6:e24293 
(43) Singh C., Liu L., Wang J.M. et al. (2012) Allopregnanolone restores hippocampal-dependent learning and 

memory and neural progenitor survival in aging 3xTgAD and nonTg mice. Neurobiol Aging 33:1493-1506 
(44) Yao J., Brinton R.D. (2012) Estrogen regulation of mitochondrial bioenergetics: implications for prevention of 

Alzheimer's disease. Advances in pharmacology 64:327-371 
(45) Yao J., Irwin R., Chen S. et al. (2012) Ovarian hormone loss induces bioenergetic deficits and mitochondrial 

beta-amyloid. Neurobiol Aging 33:1507-1521 
(46) Schumacher M., Weill-Engerer S., Liere P. et al. (2003) Steroid hormones and neurosteroids in normal and 

pathological aging of the nervous system. Prog Neurobiol 71:3-29 
(47) Caruso D., Barron A.M., Brown M.A. et al. (2013) Age-related changes in neuroactive steroid levels in 3xTg-

AD mice. Neurobiol Aging 34:1080-1089 
(48) Schaeffer V., Meyer L., Patte-Mensah C. et al. (2008) Dose-dependent and sequence-sensitive effects of 

amyloid-beta peptide on neurosteroidogenesis in human neuroblastoma cells. Neurochem Int 52:948-
955 

(49) Schaeffer V., Patte-Mensah C., Eckert A. et al. (2006) Modulation of neurosteroid production in human 
neuroblastoma cells by Alzheimer's disease key proteins. Journal of neurobiology 66:868-881 

(50) Lim Y.A., Grimm A., Giese M. et al. (2011) Inhibition of the Mitochondrial Enzyme ABAD Restores the 
Amyloid-beta-Mediated Deregulation of Estradiol. PLoS One 6:e28887 

(51) Hastings M.H., Reddy A.B., Maywood E.S. (2003) A clockwork web: circadian timing in brain and periphery, 
in health and disease. Nat Rev Neurosci 4:649-661 

(52) Circadian clocks (2013). Springer, New York 
(53) Albrecht U. (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 

74:246-260 
(54) Mohawk J.A., Takahashi J.S. (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian 

oscillators. Trends in neurosciences 34:349-358 
(55) Welsh D.K., Takahashi J.S., Kay S.A. (2010) Suprachiasmatic nucleus: cell autonomy and network 

properties. Annual review of physiology 72:551-577 
(56) Lowrey P.L., Takahashi J.S. (2011) Genetics of circadian rhythms in Mammalian model organisms. 

Advances in genetics 74:175-230 
(57) Marcheva B., Ramsey K.M., Peek C.B. et al. (2013) Circadian clocks and metabolism. Handbook of 

experimental pharmacology:127-155 
(58) Dibner C., Schibler U., Albrecht U. (2010) The mammalian circadian timing system: organization and 

coordination of central and peripheral clocks. Annual review of physiology 72:517-549 



Descriptif synthétique en français des travaux de la thèse 

189 

 

(59) Bass J., Takahashi J.S. (2010) Circadian integration of metabolism and energetics. Science 330:1349-1354 
(60) Eckel-Mahan K., Sassone-Corsi P. (2009) Metabolism control by the circadian clock and vice versa. Nature 

structural & molecular biology 16:462-467 
(61) Lamia K.A., Sachdeva U.M., DiTacchio L. et al. (2009) AMPK regulates the circadian clock by cryptochrome 

phosphorylation and degradation. Science 326:437-440 
(62) Nakahata Y., Kaluzova M., Grimaldi B. et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates 

CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329-340 
(63) Nakahata Y., Sahar S., Astarita G. et al. (2009) Circadian control of the NAD+ salvage pathway by CLOCK-

SIRT1. Science 324:654-657 
(64) Um J.H., Yang S., Yamazaki S. et al. (2007) Activation of 5'-AMP-activated kinase with diabetes drug 

metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J 
Biol Chem 282:20794-20798 

(65) Marpegan L., Swanstrom A.E., Chung K. et al. (2011) Circadian regulation of ATP release in astrocytes. J 
Neurosci 31:8342-8350 

(66) Womac A.D., Burkeen J.F., Neuendorff N. et al. (2009) Circadian rhythms of extracellular ATP accumulation 
in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30:869-876 

(67) Pagani L., Schmitt K., Meier F. et al. (2011) Serum factors in older individuals change cellular clock 
properties. Proc Natl Acad Sci U S A 108:7218-7223 

(68) Pagani L., Semenova E.A., Moriggi E. et al. (2010) The physiological period length of the human circadian 
clock in vivo is directly proportional to period in human fibroblasts. PLoS One 5:e13376



 

190 

 

 

ABBREVIATIONS 

 

3"-HSOR 3"-hydroxysteroid oxydoreductase 

3!-HSD 3!-hydroxysteroid dehydrogenase 

5"-R 5"-reductase 

17!-HSD 17!-hydroxysteroid dehydrogenase 

17OH-PREG 17-hydroxypregnenolone 

17OH-PROG 17-hydroxyprogesterone 

21-OHase 21-hydroxylase  

"-KGDH "-ketoglutarate dehydrogenase 

A! Amyloid-beta peptide 

ABAD A! binding protein alcohol dehydrogenase 

ACBD3 Acyl-CoA binding domain-containing 3  

AD Alzheimer�s disease 

ADAM A disintegrin and metalloproteinase 

AICD A! intracellular cytoplasmic domain 

AIF Apoptosis-inducing factor 

ALLOPREG Allopregnenolone 

AMPK AMP-activated protein kinases 

ANT Adenine nucleotide transporter  

APOE Apolipoprotein E 

APP Amyloid precursor protein 

AR Androgen receptor 

Arom. Aromatase 

ATP Adenosine triphosphate 

BACE !-site of APP cleaving enzyme 

C83 83-amino-acid Ct APP fragment 

C99 99-amino-acid Ct APP fragment 

CaMKII Calcium-calmodulin dependent protein kinase II 

CCG Clock-controlled gene 

cdk5 Cyclin-dependent kinase 5 

CK1$ casein kinase 1^  

COX Cytochrome c oxidase 

Cry 1-2 Cryptochrome 1-2 

CT Circadian time 

Cu/Zn SOD Copper/zinc superoxide dismutase 

Cyp D cyclophilin D 

DD Dark/dark 

DHEA(S) Dehydroepiandrosterone (sulphate) 

DHP Dihydroprogesterone 
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DHT Dihydrotestosterone 

Drp1 Dynamin-related protein 1 

ER Endoplasmic reticulum  

ER"/! Estrogen receptors " and !  

ERK2 Extracellular signal-regulated kinase 2 

ETC Electron transport chain 

FAD Familial Alzheimer�s disease form 

FAD+ Flavin adenine dinucleotide 

FIS1 Fission protein 1  

FTDP-17 Fronto-temporal dementia with Parkinsonism linked to chromosome 17 

GDP Guanosine diphosphate 

GPX Glutathione peroxidase 

GR Glutathione reductase 

GSH Glutathione 

GSK-3! Glycogen synthase kinase-3!  

GTP Guanosine triphosphate 

H2O2 Hydrogen peroxide 

HST Hydroxysteroid sulfotransferase 

IMM Inner mitochondrial membrane 

IMS Intermembrane space 

iTRAQ Isobaric tags for relative and absolute quantitation 

LD Light/dark 

MAO Monoamine oxidase A 

MAP Microtubule-associated protein  

MFN1/2 Mitofusin 1 and 2 

MnSOD Manganese superoxide dismutase 

MMP Mitochondrial membrane potential 

mPTP mitochondrial permeability transition pore  

mtDNA Mitochondrial DNA 

NADH Nicotine adenine dinucleotide 

nDNA Nuclear DNA 

NFT Neurofibrillay tangles 

NMDA N-methyl-D-aspartate 

NO. Nitric oxide 

NOS Nitric oxide synthase 

eNOS/iNOS/nNOS  endothelial/inducible/neuronal nitric oxide synthase 

O2-. Superoxide anion 

OH. Hydroxyl radical 

OMM Outer mitochondrial membrane 

ONOO- Peroxynitrite 

OPA1 Optic atrophy 1 
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OXPHOS Oxidative phosphorylation system 

P301L mice/cells mutant tau mice/cells 

P450scc Cytochrome P450 cholesterol side chain cleavage 

P450c17 Cytochrome P450c17 

PDH Pyruvate dehydrogenase 

PER 1-3 Period 1-3 

PET Positron emission tomography 

PINK1 PTEN-induced putative kinase 1 

PKA-RI" protein kinase A regulatory subunit I alpha  

PKC Protein kinase C 

PR progestins receptors 

PROG Progesterone 

PS1/2 Presenelin 1 and 2 

REV-ERB" Reverse orientation c-erb "  

RNS Reactive nitrogen species 

ROR Orphan nuclear-receptor  

ROS Reactive oxygen species 

SAD Sporadic Alzheimer�s disease form 

SCN Suprachiasmatic nucleus 

SIRT1 Sirtuin 1 

SRE Steroid responsive elements  

STAR Steroidogenesis acute regulatory protein  

STS Steroid sulfatase 

TIM Translocator inner membrane 

TOM Translocator outer membrane 
tripleAD mutated Tau (P301L), PS2 (N141l) and APPSwe (KM670/671NL) triple transgenic mouse 

model 

TSPO Translocator protein 

UQ%- Ubisemiquinone anion radicals  

UQ Coenzyme Q 

VDAC Voltage-dependant anion channels 

wtTau Wild type tau  

ZT Zeitgeber time 
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Insights into mitochondrial dysfunction:  

Aging, amyloid-beta, and tau-A deleterious trio. 
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FORUM REVIEW ARTICLE

Insights into Mitochondrial Dysfunction:
Aging, Amyloid-b, and Tau–A Deleterious Trio

Karen Schmitt,1 Amandine Grimm,1 Anna Kazmierczak,1,2 Joanna B. Strosznajder,2

Jürgen Götz,3 and Anne Eckert1

Abstract

Significance: Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disorder mainly af-
fecting elderly individuals. The pathology of AD is characterized by amyloid plaques (aggregates of amyloid-b
[Ab]) and neurofibrillary tangles (aggregates of tau), but the mechanisms underlying this dysfunction are still
partially unclear. Recent Advances: A growing body of evidence supports mitochondrial dysfunction as a
prominent and early, chronic oxidative stress-associated event that contributes to synaptic abnormalities and,
ultimately, selective neuronal degeneration in AD. Critical Issues: In this review, we discuss on the one hand
whether mitochondrial decline observed in brain aging is a determinant event in the onset of AD and on the
other hand the close interrelationship of this organelle with Ab and tau in the pathogenic process underlying
AD. Moreover, we summarize evidence from aging and Alzheimer models showing that the harmful trio ‘‘aging,
Ab, and tau protein’’ triggers mitochondrial dysfunction through a number of pathways, such as impairment of
oxidative phosphorylation (OXPHOS), elevation of reactive oxygen species production, and interaction with
mitochondrial proteins, contributing to the development and progression of the disease. Future Directions: The
aging process may weaken the mitochondrial OXPHOS system in a more general way over many years pro-
viding a basis for the specific and destructive effects of Ab and tau. Establishing strategies involving efforts to
protect cells at the mitochondrial level by stabilizing or restoring mitochondrial function and energy homeostasis
appears to be challenging, but very promising route on the horizon. Antioxid. Redox Signal. 16, 1456–1466.

Introduction

Aging is an inevitable biological process that results in a
progressive structural and functional decline, as well as

biochemical alterations that altogether lead to reduced ability
to adapt to environmental changes. Although aging is almost
universally conserved among all organisms, the molecular
mechanisms underlying this phenomenon still remain un-
clear. There are several theories of aging, in which free radical
(oxidative stress), DNA, or protein modifications are sug-
gested to play the major causative role (54, 72). A growing
body of evidence supports mitochondrial dysfunction as a
prominent and early, chronic oxidative stress-associated
event that contributes to synaptic abnormalities in aging and,
ultimately, increased susceptibility to age-related disorders
including Alzheimer’s disease (AD) (58). AD is the most
common neurodegenerative disorder among elderly indi-
viduals. It accounts for up to 80% of all dementia cases and

ranks as the fourth leading cause of death among those above
65 years of age. With the increasing average life span of hu-
mans, it is highly probable that the number of AD cases will
dangerously raise. The pathology of AD characterized by
abnormal formation of amyloid plaques (aggregates of amy-
loid-b [Ab]) and neurofibrillary tangles (NFT; aggregates
of tau) was shown to be accompanied by mitochondrial
dysfunction. However, the mechanisms underlying this dys-
function are poorly understood. There remain several open
questions: Is age-related oxidative stress accelerating the NFT
andAb pathologies? Are these lesions causing oxidative stress
themselves? Or are there other mechanisms involved? Within
the past years, several mouse models have been developed
that reproduce the aging process and diverse aspects of AD.
These models help in understanding the age-related patho-
genic mechanisms that lead to mitochondrial failure in AD,
and in particular the interplay of AD-related cellular modifi-
cations within this process (17, 18).
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Mitochondrial Aging—the Beginning of the End in AD?

Mitochondria play a pivotal role in cell survival and death
by regulating both energy metabolism and apoptotic path-
ways; they contribute to many cellular functions, including
intracellular calcium homeostasis, the alteration of the cellular
reduction-oxidation (redox) potential, cell cycle regulation,
and synaptic plasticity (47). They are the ‘‘powerhouses of
cells,’’ providing energy from nutritional sources via ATP
generation, which is accomplished through oxidative phos-
phorylation (OXPHOS) (65). However, when mitochondria
fulfill their physiological function, it is as if Pandora’s box has
been opened, as this vital organelle contains potentially
harmful proteins and biochemical reaction centers; mito-
chondria are the major producers of reactive oxygen species
(ROS) at the same time being susceptible targets of ROS tox-
icity. Unstable ROS are capable of damaging many types of
mitochondrial components; this includes oxidative deterio-
ration of mitochondrial DNA (mtDNA), lipids of the mito-
chondrial membrane, and mitochondrial proteins, and it is
thought that this damage thatmay accumulate over time from
ROS generated from aerobic respiration may play a signifi-
cant role in aging (Fig. 1). Moreover, it was previously dem-
onstrated that nitrosative stress evoked by increased nitric
oxide synthesis also leads to protein oxidation as well as mi-
tochondrial and DNA damage, which are common mecha-
nisms occurred in elderly (13, 34, 70).

Although most mitochondrial proteins are encoded by the
nuclear genome, the mitochondrial genome encodes proteins
required for 13 polypeptide complexes of the respiratory
chain involved in ATP synthesis. Given that mtDNA exists in
the inner matrix and this is in close proximity to the inner
membrane where electrons can form unstable compounds,
mtDNA, unlike nuclear DNA (nDNA), is not protected by
histones (4) making it more vulnerable to oxidative stress and
its mutation rate is about 10-fold higher than that of nDNA,
especially in tissues with a high ATP demand like the brain
(54). These mtDNA mutations occur in genes encoding elec-
tron transport chain (ETC) subunits including NADH dehy-
drogenase, cytochrome c oxidase (COX), and ATP synthase
(83). Eventually, ROS-related mtDNAmutations can result in
the synthesis of mutant ETC proteins that, in turn, can lead to
the leakage of more electrons and increased ROS production.
This so-called ‘‘vicious cycle’’ is hypothesized to play a critical
role in the aging process according to the mitochondrial the-
ory of aging. In addition to age-associated increase in mtDNA
mutations, the amount of mtDNA also declines with age in
various human and rodent tissues (2, 68). Furthermore,
abundance of mtDNA correlates with the rate of mitochon-
drial ATP production (68), suggesting that age-related mito-
chondrial dysfunction inmuscle is related to reducedmtDNA
abundance. However, age-associated change in mtDNA
abundance seems to be tissue specific, as several studies have
reported no change in mtDNA abundance with age in other
than muscular tissues in both man and mouse (20, 46).

How does the somatic mtDNA involved in aging pheno-
types contribute to AD development? As only a small fraction
of AD is caused by autosomal dominant mutations, this
comes down to the question of what is causing the prevalent
sporadic cases in the first place. Somatic mutations in mtDNA
could cause energy deficiency, increased oxidative stress, and
accumulation of Ab, which act in a vicious cycle reinforcing

mtDNA damage and oxidative stress (45). Indeed, defects in
mtDNA associated with decreased cytochrome oxidase
activity have been found in AD patients (9). Although a
similarly impaired mitochondrial function and subsequent
compensatory response have been observed in both non-
demented aged andAD subjects, no clear causativemutations
in the mtDNA have been correlated to AD; although some
variations have functional consequences, including changes
in enzymatic activity (40). Perhaps the main differences are
that, in AD brains, defects are more profound due to Ab and
tau accumulation, because of decreased compensatory re-
sponse machinery (Fig. 1).

Many investigators have developed models for studying
mitochondrial-related aging (36). Among them senescence-
acceleratedmice (SAM) strains are especially useful models to
understand the mechanisms of the age-related mitochondrial
decline. Behavioral studies showed that learning andmemory
deficits already started as early as 6 months and worsened
with aging in SAMP8 mice (accelerated senescence-prone 8)
(53, 77). Moreover, Omata and collaborators showed age-
related changes in cerebral energy production in the 2-month-
old SAMP8 followed by a decrease in mitochondrial function
compared with SAMR1 mice (accelerated senescence-resis-
tant 1) (51). Aging is not only connected with increased mi-
tochondrial ROS production due to ETC impairment but also
with a dysbalance of the protective antioxidant machinery
inside mitochondria. For instance, age-related changes in
levels of antioxidant enzymes, such as copper/zinc superox-
ide dismutase (Cu/Zn-SOD) andmanganese SOD (Mn-SOD),
have been found in liver and cortex of SAMP8 mice when
compared with age-matched SAMR1 mice, supporting in-
creased oxidative stress as a key mechanism involved in the
aging process (37). More recently, Yew and collaborators have
shown an impairment of mitochondrial functions including a
decrease of COX activity, mitochondrial ATP content, and
mitochondrial glutathione (GSH) level at a relatively early age
in SAMP8 mice compared with SAMR1 mice (67, 78). Fur-
thermore, the biochemical consequences of aging have been
investigated using proteomic analysis in the brain of SAMP8
and SAMR1 mice at presymptomatic (5-month old) and
symptomatic (15-month old) stages (84), revealing differen-
tially expressed proteins with age in both mouse strains,
such as Cu/Zn-SOD. Besides the progressive mitochondrial
decline and increased oxidative stress, tau hyperpho-
sphorylation was also observed at an early age in the brain of
SAMP8mice (1, 71). In addition, SAMP8mice showed an age-
related increase in mRNA and protein levels of amyloid-b
precursor protein (APP). The cleavage product Ab was sig-
nificantly increased at 9 months in SAMP8 and amyloid pla-
ques started to form at around 16 months of age (48, 73).
Altogether, these data indicate that mitochondrial dysfunc-
tion is a highly relevant event in the aging process, which is
also known as the primary risk factor for AD and other
prevalent neurodegenerative disorders.

Age-Related Ab and Tau Effects on Mitochondria in AD

AD is a progressive, neurodegenerative disorder, charac-
terized by an age-dependent loss of memory and an impair-
ment of multiple cognitive functions. From a genetic point of
view, AD can be classified into two different forms: rare fa-
milial forms (FAD) where the disease onset is at an age below
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60 years (< 1% of the total number of AD case) and the vast
majority of sporadic AD cases where onset occurs at an age
over 60 years. Genetic studies in FAD patients have identified
autosomal dominant mutations in three different genes, en-
coding theAPP (over 20 pathogenic mutations identified) and
the presenilins PS1 and PS2 (more than 130 mutations iden-
tified) (26). These mutations are directly linked to the in-
creased production of Ab from its precursor protein APP,
suggesting a direct and pathological role for Ab accumulation
in the development of AD.

Mitochondrial dysfunction has been proposed as an un-
derlying mechanism in the early stages of AD, since energy
deficiency is a fundamental characteristic feature of AD brains
(44) as well as of peripheral cells derived from AD patients
(22). Understanding the molecular pathways by which the
various pathological alterations including Ab and tau com-
promise neuronal integrity, leading to clinical symptoms, has
been a long-standing goal of AD research. The successful
development of mouse models that mimic diverse aspects of
the AD process has facilitated this effort and assisted in

FIG. 1. Aging, Ab, and tau: toxic consequence on mitochondria. The aging process may weaken the mitochondrial
OXPHOS (oxidative phosphorylation) system in a more general way by the accumulation of ROS-induced damage over
many years thereby sowing the seeds for specific and destructive effects of Ab and tau. ROS induce peroxidation of several
mitochondrial macromolecules, such as mtDNA and mitochondrial lipids, contributing to mitochondrial impairment in the
mitochondrial matrix. In AD, mitochondria were found to be a target of Ab toxicity, which may act directly or indirectly on
several proteins, leading to mitochondrial dysfunction. Indeed, Ab was found in the OMM and IMM as well as in the matrix.
The interaction of Ab with the OMM might affect the transport of nuclear-encoded mitochondrial proteins, such as subunits
of the ETC CIV, into the organelle via the TOM import machinery. Ab seems to be able to enter into the mitochondrial matrix
through TOM and TIM or could be derived from mitochondria-associated APP metabolism. The interaction of Ab with the
IMM would bring it into contact with respiratory chain complexes with the potential for myriad effects on cellular metab-
olism. It may be that Ab by these interactions affects the activity of several enzymes decreasing the ETC enzyme CIV,
reducing the amount of hydrogen that is translocated from the matrix to the intermembrane space, thus impairing the MMP.
The dysfunction of the ETC leads to a decreased CV activity and so to a lower ATP synthesis, in addition to an increased ROS
production. Interestingly, deregulation of CI is mainly tau dependent, while deregulation of CIV is Ab dependent, at both the
protein and activity level. Ab, amyloid-b; AD, Alzheimer’s disease; APP, amyloid precursor protein; CI, complex I; CII,
complex II; CIII, complex III; CIV, complex IV; CV, complex V, Cu/Zn-SOD, copper/zinc superoxide dismutase; cyt c,
cytochrome c; ETC, electron transport chain; IMM, inner mitochondrial membrane; MMP, mitochondrial membrane po-
tential; MnSOD, manganese superoxide dismutase; mtDNA, mitochondrial DNA; OMM, outer mitochondrial membrane;
ROS, reactive oxygen species; TIM, translocase of the inner membrane; TOM, translocase of the outer membrane. (To see this
illustration in color the reader is referred to the Web version of this article at www.liebertonline.com/ars).
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understanding of the age-dependent interplay of Ab and tau
on bioenergetics processes in vivo (Figs. 2 and 3).

Separate modes of Ab and tau toxicity on mitochondria

Mitochondria were found to be a target for APP toxicity as
both the full-length protein and Ab accumulate in the mito-
chondrial import channels, and both lead to mitochondrial
dysfunction (7, 42, 55, 56). Several evidences from cellular and
animal AD models indicate that Ab triggers mitochondrial
dysfunction through a number of pathways such as impair-
ment of OXPHOS, elevation of ROS production, interaction
with mitochondrial proteins, and alteration of mitochondrial
dynamics (52). Indeed, abnormal mitochondrial dynamics
have been identified in sporadic and familial AD cases (43, 76)
as well as in AD mouse model (6); a distortion probably me-
diated by altered expression of dynamin-like protein 1
(DLP1), a regulator of mitochondrial fission and distribution,
due to elevated oxidative and/or Ab-induced stress. This
modification can disturb the balance between fission and fu-
sion of mitochondria in favor of mitochondrial fission fol-
lowed by mitochondrial depletion from axons and dendrites
and, subsequently, synaptic loss.

Success in developing mouse models that mimic diverse
facets of the disease process has greatly facilitated the un-
derstanding of physiopathological mechanisms underlying
AD. Thus, in 1995, Games and collaborators established the
first APP mice model (called PDAPP) bearing the human
‘‘Indiana’’ mutation of the APP gene (V171F). They observed
the accumulation of Ab in the brain and subsequent amyloid
plaque formation as well as astrocytosis and neuritic dystro-
phy (21). Interestingly, in this model cognitive deficits, such as
spatial learning impairment, occur before the formation of Ab

plaques and increase with age (8). This phenomenon was also
observed in Tg2576 transgenic mice bearing the human
Swedishmutation of theAPP gene (K670N,M671L). In fact, in
most of the APP mouse models, the cognitive impairment
begins concomitantlywithAb oligomer formation in the brain
(around 6 months of age), while neuritic amyloid deposits
become visible only between 12 and 23 months and then the
amount of deposits increases (23, 31, 35). Thus, memory def-
icits seem to directly correlate with the accumulation of in-
tracellular Ab oligomers and not with amyloid plaque
formation. Crossing APP transgenicmice with those bearing a
mutation in presenilin 1 gene enabled an earlier onset of
amyloid plaques compared with APPmice. In one of the most

FIG. 2. Age-dependent appearance of histopathological hallmarks in transgenic AD mouse model.
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aggressive models, double-transgenic APPS/L/PS1
(APPSwedish/London/PS1M141L) mice, Ab accumulation begins
very soon at 1–2 months of age while cognitive deficits and
amyloid plaque formation are already observed at 3 months
(3, 16). A stronger decrease of mitochondrial membrane po-
tential as well as ATP level was also found in these mice.

Mitochondrial dysfunctions also appear to a very early
stage in these transgenic mouse models. For example, in the
APPSw transgenic strain Tg2576, an upregulation of genes
related to mitochondrial energy metabolism and apoptosis
was observed already at 2 months of age. Alterations in
composition of the mitochondrial respiratory chain com-
plexes I and III protein subunit as well as impairment of mi-
tochondrial respirationwere detected around 6months, when
soluble Ab accumulated in the brain without plaque forma-
tion (10, 23, 59). To test the hypothesis that oxidative stress can
underlie the deleterious effects of PS mutations, Schuessel
and collaborators analyzed lipid peroxidation products (4-
hydroxynonenal [HNE] and malondialdehyde) and antioxi-
dant defense mechanisms in brain tissue and ROS levels in
splenic lymphocytes from transgenic mice bearing the human
PS1 M146L mutation (PS1M146L) compared with those from
mice transgenic for wild-type human PS1 (PS1wt) and non-

transgenic littermate control mice (66). In brain tissue,
HNE levels were increased only in aged (19–22 months)
PS1M146L transgenic animals compared with PS1wt mice
and not in young (3–4 months) or middle-aged mice (13–15
months). Similarly, in splenic lymphocytes expressing the
transgenic PS1 proteins, mitochondrial and cytosolic ROS
levels were significantly elevated compared with controls
only in cells from aged PS1M146L animals. Antioxidant
defense mechanisms (activities of antioxidant enzymes in-
cluding Cu/Zn-SOD, GSH peroxidase, and GSH reductase)
as well as susceptibility to oxidative stress in vitro were
unaltered. In summary, these results demonstrate that the
PS1M146L mutation increases mitochondrial ROS formation
and oxidative damage selectively in aged mice. Consistent
with this observation, in Swedish amyloid precursor protein
(APPSw)/PS2 double-transgenic mice, mitochondrial im-
pairment was first detected at 8 months of age, before am-
yloid plaque deposition, but after soluble Ab accumulation
(60, 61). Taken together, these findings are consistent with
the recently proposed hypothesis of the age-related Ab

toxicity cascade that suggests that the most toxic Ab species
that cause majority of molecular and biochemical abnor-
malities are in fact intracellular soluble oligomeric

FIG. 3. Age-dependent mitochondrial dysfunction in senescence-accelerated and transgenic AD mouse models. (Star:
start of the experiments).
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aggregates rather than the extracellular, insoluble plaques
that may comprise the form of cellular defense against tox-
icity of oligomers (19). Interestingly, human amylin that
aggregates in type 2 diabetic pancreas and shares with Ab

its amyloidogenic properties also causes an impaired com-
plex IV activity, whereas nonamyloidogenic rat amylin did
not (39).

How does tau interfere with mitochondrial function? In its
hyperphosphorylated form, tau, which forms the NFTs, the
second hallmark lesion in AD, has been shown to block mi-
tochondrial transport, which results in energy deprivation
and oxidative stress at the synapse and, hence, neurodegen-
eration (27, 33, 57). Till now, no mutations in microtubule-
associated protein tau (MAPT) coding genes have been
detected in relation to familial forms of AD. However, in
familial frontotemporal dementia (FTD) with parkinsonism,
mutations in the MAPT gene were identified on chromosome
17. This was the basis for creating a robust mouse model for
tau pathology in 2001. These P301L tau–expressing pR5 mice
(longest four-repeat 4R2N) show an accumulation of tau as
soon as 3 months of age and develop NFTs around 6 months
of age (24). A mass spectrometric analysis of the brain
proteins from these mice revealed mainly a deregulation of
mitochondrial respiratory chain complex components (in-
cluding complex V), antioxidant enzymes, and synaptic
protein space (11). The reduction in mitochondrial complex V
levels in the P301L tau mice that was revealed using pro-
teomics was also confirmed as decreased in human P301L
FTDP-17 (FTD with parkinsonism linked to chromosome 17)
brains. The functional analysis demonstrated age-related
mitochondrial dysfunction, together with reduced NADH-
ubiquinone oxidoreductase (complex I) activity as well as
age-related impaired mitochondrial respiration and ATP
synthesis in pR5 mice model. Mitochondrial dysfunction was
also associated with higher levels of ROS in aged transgenic
mice. Increased tau pathology resulted in modification of
lipid peroxidation levels and the upregulation of antioxidant
enzymes in response to oxidative stress (11). Thus, this
evidence demonstrated for the first time that not only Ab but
also tau pathology leads to metabolic impairment and
oxidative stress by distinct mechanisms from that caused by
Ab in AD.

Synergistic modes of Ab and tau toxicity

on mitochondria

Although Ab and tau pathologies are both known hall-
marks of AD, the mechanisms underlying the interplay be-
tween plaques and NFTs (or Ab and tau, respectively) have
remained unresolved. However, a close relationship between
mitochondrial impairment and Ab on the one hand and tau
on the other hand has been already established. How do both
AD features relate to each other? Is it possible that these two
molecules synergistically affect mitochondrial integrity?
Several studies suggest that Ab aggregates and hyperpho-
sphorylated tau may block the mitochondrial carriage to the
synapse leading to energy deficiency and neurodegeneration
(28). Moreover, the enhanced tau levels may inhibit the
transport of APP into axons and dendrites, which suggests a
direct link between tau and APP in axonal failure (14, 69).
Remarkably, intracerebral Ab injections amplify a preexisting
tau pathology in several transgenic mouse models (5, 25, 29),

whereas lack of tau abrogates Ab toxicity (32, 33). Our find-
ings indicate that in tau transgenic pR5 mice, mitochondria
display an enhanced vulnerability toward an Ab insult in vitro
(12, 15, 16), suggesting a synergistic action of tau and Ab

pathology on this organelle (Figs. 2 and 3). The Ab caused a
significant reduction of mitochondrial membrane potential in
cerebral cells from pR5 mice (11). Furthermore, incubation of
isolated mitochondria from pR5 mice with either oligomeric
or fibrillar Ab species resulted in an impairment of the mito-
chondrial membrane potential and respiration. Interestingly,
aging particularly increased the sensitivity of mitochondria to
oligomeric Ab insult compared with that of fibrillar Ab (15).
This suggests that while both oligomeric and fibrillar Ab

species are toxic, they exert different degrees of toxicity.
Crossing P301L mutant tau transgenic JNPL3 mice (shortest
four-repeat [4R0N] tau together with the P301L mutation)
with APPSw transgenic Tg2576 mice revealed the presence of
NFT pathology in spinal cord and pons already at 3months of
age (38). Ab plaques were detected at the age of 6 months and
had the samemorphology and distribution than in the 1-year-
old Tg2576 mice. Taken together, these studies illustrate the
existence of a complex interplay between the two key proteins
in AD.

Additionally, in recent years triple-transgenic mouse models
have been established that combineAb and taupathologies (Figs.
2 and 3). In these models the contribution of both AD-related
proteins on the mitochondrial respiratory machinery and energy
homeostasis has been investigated in vivo. Indeed, our group
demonstrated a mitochondrial dysfunction in a novel triple-
transgenic mouse model (pR5/APPSw/PS2 N141I)—tripleAD
mice—using proteomics followed by functional validation
(60). Particularly, deregulation of activity of complex I was
found to be tau dependent, whereas deregulation of complex
IV was Ab dependent, in 10-month-old tripleAD mice. The
convergent effects of Ab and tau led already at the age of
8 months to a depolarization of mitochondrial membrane
potential in tripleAD mice. Additionally, we found that age-
related oxidative stress also plays a significant part in the
deleterious vicious cycle by exaggerating Ab- and tau-
induced disturbances in the respiratory system and ATP
synthesis, finally leading to synaptic failure.

Our data complement those obtained in another triple-
transgenic mouse model 3xTg-AD (P301Ltau/APPSw/PS1
M146L) (50). In these studies, mitochondrial dysfunction was
evidenced by an age-related decrease in the activity of regu-
latory enzymes ofOXPHOS such as COX, or of the Krebs cycle
such as pyruvate dehydrogenase, analyzing 3xTg-AD mice
aged from 3 to 12 months (82). Besides, these mice also ex-
hibited increased oxidative stress and lipid peroxidation.
Most of the effects on mitochondria were seen at the age of 9
months, whereas mitochondrial respiration was significantly
decreased at 12 months of age. Importantly, mitochondrial
bioenergetics deficits were found to precede the development
of AD pathology in the 3xTg-AD mice. Figure 4 nicely shows
that AD-specific changes including cognitive impairments,
Ab accumulation, Ab plaques, andmitochondrial dysfunction
seem to occur at an earlier onset from single, double up to
triple AD transgenic mice models. Together, our studies
highlight the key role of mitochondria in AD pathogenesis
and consolidate the notion that a synergistic effect of tau and
Ab enhances the pathological weakening of mitochondria at
an early stage of AD.
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Ab-Binding Alcohol Dehydrogenase: A New Lead

to Decode the Mechanisms of Ab-Induced

Mitochondrial Dysfunction

A few years ago, Yan and collaborators showed that the Ab

peptide can directly bind a mitochondrial enzyme called Ab-
binding alcohol dehydrogenase (ABAD) that is overexpressed
in the brains of Alzheimer’s patients and AD mouse models
(79). The interaction of Ab with this enzyme exacerbates mi-
tochondrial dysfunction induced by Ab (decrease of mito-
chondrial complex IV activity, diminution ofO2 consumption,
and increase of ROS), as shown in double-transgenic mice
overexpressing mutant APP and ABAD (81). Furthermore,
these mice presented an earlier onset of cognitive impairment
and histopathological changes when compared with APP
mice, suggesting that the Ab–ABAD interaction is an impor-
tant mechanism underlying Ab toxicity. The Ab–ABAD
complex could have a direct effect on the ETC because ABAD
was found to be one of three proteins that comprise the fully
functional mammalian mitochondrial RNAse P (63), a func-
tion that may not require dehydrogenase activity and that
links ABAD directly to the production of mitochondrial ETC
proteins and ROS generation.

Recently, it has been shown that inhibition of Ab–ABAD
interaction by a decoy peptide can restore mitochondrial
deficits and improve neuronal and cognitive function (81).
Our findings, using SH-SY5Y neuroblastoma cells treated
with Ab1-42, a cellular model of AD, seem to confirm these
observations (Lim et al., unpublished observations). We em-
ployed a novel small ABAD-specific inhibitor to investigate

the role of this enzyme in Ab toxicity. The inhibitor signifi-
cantly improved metabolic functions impaired by Ab, and
specifically reduced Ab-induced oxidative stress and cell
death. Furthermore, we have shown previously that the
production of estradiol, a well-known neuroprotective neu-
rosteroid and ABAD substrate, is increased after 24 h in the
presence of a ‘‘nontoxic’’ concentration of Ab and is de-
creased when using a toxic concentration of this peptide (64),
suggesting that Ab is able to modulate (directly or indirectly)
neurosteroid levels. Accordingly, new findings from our
group demonstrate that the levels of estradiol in the cytosol
and in mitochondria can differently be influenced by Ab

peptide (500 nM, 5 days of treatment) (Fig. 5A, B). We ob-
served that cytosolic estradiol is reduced in the presence of
Ab, but at the same time mitochondrial estradiol load was
significantly increased. We suggest that this increase is due
to an Ab-induced decrease of ABAD activity, thus limiting
the conversion of estradiol in estrone within mitochondria
(Fig. 5C). Inhibition of ABAD activity by Ab peptide was
already demonstrated by Yan and collaborators (80) using
17b-estradiol as substrate of the enzyme. One mechanism
that could explain this inhibition is the fact that Ab–ABAD
interaction changes the conformation of the enzyme, avoid-
ing the binding of the cofactor NAD + , and this reduces the
metabolic activity of ABAD (41). However, the total amount
of estradiol is about 500-fold higher than in the mitochon-
drial fraction. Even if Ab induced an increase in estradiol
within mitochondria, the reduction of total estradiol level by
other enzymes of the complex steroidogenic pathway may
therefore be more relevant for cellular dysfunction. Besides,

FIG. 4. Age-dependent onset of AD-associated pathological changes in different AD mouse models (age in months). In
both triple Tg mouse models [TripleAD, (60); 3xTgAD, (50–82)] an earlier onset in the appearance of AD-related changes in the
brain can be detected when compared with double transgenic [APPSw/PS2 (60, 61)] and to mice bearing only APP mutations
[APPSw, (24)], suggesting again a synergistic effect of Ab and tau in the pathogenesis of AD. Age of the mice is given in
months. APPSw, APP Swedish transgenic mice; APPSw/PS2, APP Swedish/presenilin 2 transgenic mice; tripleAD, APP
Swedish/presenilin 2/P301L tau transgenic mice; 3xTgAD, APP Swedish/presenilin 1/P301L tau transgenic mice. (To see
this illustration in color the reader is referred to the Web version of this article at www.liebertonline.com/ars).
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it was also speculated that estradiol exhibits a ‘‘prooxidant
effect’’ in the presence of ongoing oxidative stress (49).
Thereby, estradiol is hydroxylated to catecholestrogens that
can enter a redox cycle generating superoxide radicals,
leading to a continuous formation of ROS that amplifies
oxidative stress.

Thus, inhibition of the Ab–ABAD interaction seems to be
an interesting therapeutic target to block or prevent Ab-
inducedmitochondrial toxicity because it could normalize the
imbalance between ROS and estradiol levels in mitochondria
and thereby help in improving mitochondrial and neuronal
function.

Conclusion

We discuss here the recent findings regarding the possible
shared mechanisms involving mitochondrial decline driven
by brain aging and the close interrelationship of this organelle
with the two main pathological features in the pathogenic
process underlying AD.

According to themitochondrial aging theory, ROS-induced
damage and mtDNA mutations accumulate over time in-
ducing ETC impairment and weaken mitochondria function
in a rather unspecific way; thus, laying the ground for the two
common hallmarks of AD, plaques and NFTs, or Ab and tau,
respectively, which destruct independently as well as syner-
gistically this vital organelle via specific mode of actions on
complexes I and IV.

Given the complexities of AD, the key role of mitochondrial
dysfunction in the early pathogenic pathways by which Ab

leads to neuronal dysfunction in AD is particularly chal-
lenging with respect to establishing therapeutic treatments.
Besides the modulation and/or removal of both Ab and tau
pathology, strategies involving efforts to protect cells at the
mitochondrial level by stabilizing or restoring mitochondrial
function or by interfering with energy metabolism appear to
be promising. Transgenic AD mice, and particularly triple-
transgenic models that combine both pathologies in an age-
dependent manner (Fig. 4), are valuable tools in monitoring
therapeutic interventions at the mitochondrial level. Even-
tually, this may lead to therapies that prevent the progression
of the age-related mitochondrial decline thereby reducing the
vulnerability to Ab and/or tau at an early stage of the disease.
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The energydemand and calciumbuffering requirements of the brain aremet by thehighnumberofmitochondria

in neurons and in these, especially at the synapses. Mitochondria are themajor producer of reactive oxygen spe-

cies (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that

characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochon-

dria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we

review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function

by following the principle: ‘March separate, strike together!’ In the presence of amyloid-β, TAU's toxicity

is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in

neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects

of dysfunction and get a handle on targeting distinct cell types and subcellular compartments. This article is

part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.

© 2013 Published by Elsevier B.V.

1. Introduction

The family of microtubule-associated proteins (MAPs) comprises

three major classes of polypeptides: MAP1 (N250 kDa), MAP2

(~200 kDa), and TAU (50–70 kDa) [1,2]. MAP2 and TAU are expressed

in most neurons, where they localize to separate subcellular compart-

ments. While MAP2 is largely found in dendrites, TAU is concentrated

in axons [3]. In the roundworm Caenorhabditis elegans, protein with

TAU-like repeats (PTL-1) is the sole MAP homolog [4,5], allowing for

studies into shared functions of TAU and MAP2 [6]. In the human

brain, TAU exists as six isoforms that have either three or four

microtubule-binding domains. In the adult mouse brain, there are only

isoforms with four microtubule-binding domains expressed. TAU has

been localized to cell-types other than neurons such as astrocytes and

oligodendrocytes although under physiological conditions expression

levels are relatively low [7]. When TAU was discovered in 1975 [8],

the subsequent years focused mainly on its tissue distribution and the

role TAU has in microtubule assembly and stabilization. With the iden-

tification of aggregates of TAU in the Alzheimer's disease (AD) brain, the

focus shifted to addressing pathological functions. Histopathologically,

AD is characterized by reduced synaptic density, neuronal loss in select-

ed brain areas, as well as amyloid-β (Aβ)-containing plaques and neu-

rofibrillary tangles (NFTs). It is the filamentous core of NFTs that is

composed of highly phosphorylated forms of TAU [9,10].

1.1. TAU phosphorylation

What is the role of TAUphosphorylation in disease? TAU is a remark-

able protein inasmuch as it contains 80 serine and threonine residues

and 5 tyrosine residues that can be potentially phosphorylated [11]. In

the normal brain there are 2–3 mol of phosphate per mole of TAU. In

the AD brain, TAU is hyperphosphorylated to a stoichiometry of at

least three-fold greater than normal supporting the notion that phos-

phorylation is a critical step in the aggregation process [12]. Whether

phosphorylation at distinct sites is required or whether a generally ele-

vated level of phosphorylation is sufficient is not known although the

latter possibility is suggested bywork inDrosophila [13].With the enter-

ing of a formulation of the TAU dye methylene blue (Rember) into clin-

ical trials a discussion has been initiated whether this putative drug is

truly an aggregation inhibitor [14] and more specifically whether TAU

in NFTs is massively phosphorylated (http://www.alzforum.org/new/

detail.asp?id=3410).

While one study claims that the filaments in the NFTs are entirely

composed of hyperphosphorylated TAU [15], another claims that

hyperphosphorylated TAU accounts for less than 10% of total TAU that

is moreover localized to the proteolytically susceptible fuzzy outer

coat of the filaments, and not to their structural core [16,17].

Biochimica et Biophysica Acta 1842 (2014) 1258–1266

☆ This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial

Dysfunction, and Neurodegenerative Diseases.

⁎ Corresponding author at: Centre for Ageing Dementia Research (CADR), Queensland

Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD

4072, Australia. Tel.: +61 7 3346 6329.

E-mail address: j.goetz@uq.edu.au (J. Götz).

0925-4439/$ – see front matter © 2013 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.bbadis.2013.08.013

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is



1.2. MAPT mutations and TAU transgenic mice

The TAU field has received a major boost with the identification of

pathogenic mutations in the MAPT gene that encodes TAU in familial

cases (FTDP-17, frontotemporal dementia with Parkinsonism linked to

chromosome 17) of frontotemporal lobar degeneration (FTLD-TAU), a

disease that shares with AD the aggregation of TAU and NFT formation,

but lacks an overt Aβ pathology [18–20]. This enabled us and others to

express FTLD mutant forms of TAU in mice and thereby reproduce

TAU aggregation and NFT formation, and also to achieve a concomitant

behavioural impairment in transgenic mouse models [21]. One such

mouse strain generated in our laboratory is pR5 that expresses P301L

mutant TAU and because of the pattern of TAU aggregation in the

brain, displays amygdala- and hippocampus-dependent memory im-

pairments [22,23]. This and other mouse models were instrumental in

determining that manipulating phosphorylation by either inhibiting ki-

nases or activating phosphatases causes an amelioration of the TAU pa-

thology, including a restoration of behavioural impairments and

prevention of neuronal cell loss [24–26]. When TAU mutant pR5 mice

that progressively develop NFTs were crossed with phosphatase

(PP2A)-impaired mice, this caused 7-fold increased numbers of hippo-

campal neurons that specifically phosphorylated the pathological

Ser422 epitope of TAU, and 8-fold increased numbers of NFTs [27]. An-

other mouse strain generated by us expresses K369I mutant TAU and

because of a unique expression pattern that includes the substantia

nigra it is characterized by Parkinsonism [28]. Again, in these mice,

TAU is highly phosphorylated; however, different from the pR5 strain,

the 12E8 phospho-epitope Ser262/Ser356 is spared. Together this un-

derscores the importance of phosphorylation in disease. Importantly

and relevant to the topic of this article, TAU transgenic mouse models

have proven instrumental in highlighting mitochondrial dysfunction

as a central mechanism in neurodegeneration.

2. Mitochondrial dysfunction — cause or consequence

Mitochondria play a pivotal role in cell survival and death by regulat-

ing both energy metabolism and apoptotic pathways. They contribute

to many cellular processes including intracellular calcium homeostasis

and synaptic plasticity [29]. Maternally inherited, mitochondria are

compartmentalized organelles consisting of a matrix and two mem-

branes, an outer and an inner membrane with folded cristae, separated

by an intermembrane space. These organelles are the powerhouses of

all nucleated cells. They produce adenosine triphosphate (ATP) via the

combined efforts of the tricarboxylic cycle (TCA) and the oxidative

phosphorylation (OxPhos) system of the electron transport chain

(ETC). The respiratory chain comprises four biochemically linked

multi-subunit complexes I, II, III and IV, as well as two electron carriers,

ubiquinone/coenzyme Q and cytochrome C, that are localized at the

inner mitochondrial membrane (Fig. 1). By using the energy that is

stored in nutritional sources the respiratory chain generates a proton

gradient across the inner membrane to drive ATP synthesis via ATP

synthase (complex V), while at the same time transferring electrons

to oxygen and producing water [30]. Mitochondria are the major pro-

ducer of reactive oxygen species (ROS) and at the same time a target

of ROS toxicity [31]. The organelle has at its disposal a powerful quality

control system to dealwith these challenges:firstly intra-mitochondrial

proteases and molecular chaperones that maintain mitochondrial

proteostasis; secondly a dynamic network maintained by membrane

fission and fusion, a process termed mitochondrial dynamics, by

which damaged or defective mitochondrial components are isolated

and targeted for autophagy (mitophagy) [32]. Mitochondrial dynamics

cannot be discussed in isolation, as mitochondrial fission (i.e. biogene-

sis), fusion, motility/transport and turnover (by mitophagy) are highly

inter-dependent processes [33]. This is especially critical for highly

polarized cells such as neurons. The role of mitochondria in ageing

and in pathophysiological processes such as AD is constantly being

unravelled. Concomitant to ROSproduction an inefficientmitochondrial

base excision repair (BER) machinery has been postulated, with oxida-

tive damage to mitochondrial DNA (mtDNA) being a determining

event that occurs during ageing [34].

2.1. Manipulating fission and fusion genes

The question arises whether any form of chronic oxidative stress-

associated event would at an early stage contribute to the synaptic ab-

normalities and, ultimately, selective neuronal degeneration that char-

acterizes AD, as a growing body of evidence would suggest [35]. The

bulk of AD cases are sporadic, and only a small fraction is caused by au-

tosomal dominant mutations. Regarding the role of mitochondrial dys-

function in AD one can envisage several scenarios. Firstly, oxidative

stress could be a down-stream consequence of another pathogenic

event; secondly, it could be the cause of neurodegeneration; thirdly, it

might accelerate and/or augment the damage elicited by TAU and/or

Aβ [31]. By manipulating mitochondrial in vivo genes with a role in fu-

sion and fission, a process discussed in more detail below, neither an

AD-like TAU nor an Aβ pathology has been encountered [36–41],

which would place mitochondrial dysfunction down-stream of TAU

and Aβ toxicity. However, as most mouse strains that lack fission or fu-

sion genes show early lethality it has not been possible to study conse-

quences for TAU and Aβ and in particular the role ageing has in such an

impairment.

2.2. Senescence-accelerated mice

In studying mitochondrial functions and age-related mitochondrial

decline, senescence-accelerated mouse strains such as SAMP8 (senes-

cence accelerated prone 8) are useful, as themice displaymany features

known to occur early in the pathogenesis of AD, such as increased oxi-

dative stress andmemory impairment [42]. Together with a series of re-

lated senescence-acceleratedmice, the SAMP8 strain was established in

the mid 1970s by conventional inbreeding of AKR/J-derived mice that

displayed features of accelerated ageing such as hair loss, reduced activ-

ity, shortened life expectancy, lordokyphosis (increased curvature of the

spine), and periophthalmic (around the eye) problems [43]. Littermates

that did not show a senescence-associated phenotype were also inbred

and senescence-resistant, longer-lived SAMR strains were obtained

such as SAMR1 (senescence accelerated mouse resistant 1). To better

delineate the role of specific single nucleotide variants (SNVs) of these

multigenic strains with distinct phenotypes, two recent independent

studies used whole exome sequencing to make the strains more useful

for studies into ageing and neurodegeneration [44,45].

In SAMP8 mice learning and memory deficits were already evident

at 6 months of age and became more pronounced with advanced age

[46]. TAU was found to be hyperphosphorylated using a small set of

phosphorylation site-specific antibodies, but filament and NFT forma-

tion has not been reported indicating that the SAMP8 mice present

with an early rather than amore advanced TAU pathology [47]. Staining

with Aβ-specific antibodies suggested Aβ deposition [48,49], although,

because the murine protein differs from the human Aβ-precursor

protein (APP) and lacks the amino acids that are required to generate

Aβ, these deposits have been termed ‘Aβ-like’ [48]. Compared with

SAMR1 mice, age-related changes in cerebral energy production were

found in SAMP8 at 2 months followed by a decrease in mitochondrial

function [50,51]. More recent studies extended this finding by revealing

decreases in cytochrome C oxidase (COX) activity, mitochondrial ATP

content, and mitochondrial glutathione (GSH) levels in young SAMP8

compared with SAMR1 mice [52,53]. Ageing is accompanied not only

by increased mitochondrial ROS production due to ETC impairment

but also by an imbalance of the protective mitochondrial antioxidant

machinery. For instance, age-related changes in levels of antioxidant

enzymes, such as copper/zinc superoxide dismutase (Cu/Zn-SOD) and

manganese SOD (Mn-SOD) were found in the liver and cortex of

1259A. Eckert et al. / Biochimica et Biophysica Acta 1842 (2014) 1258–1266



SAMP8 mice compared with age-matched SAMR1 mice [54–56]. In-

creased lipid peroxidation and carbonyl damage is present as early

as two months of age [57]. Furthermore, SAMP8 mice reveal age-

dependent reductions of various receptors including the NMDA receptor

that has a role in excitotoxicity as discussed below [58]. Whereas SAMP

mice are certainly a better model for accelerated ageing rather than

neurodegeneration, they nonetheless support increased oxidative stress

as a keymechanism in the ageing process. Crossing TAU transgenicmice
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termedmitophagy. Both antero- and retrograde axonal transports are unimpaired providing the synapses with sufficient numbers of functional mitochondria to meet the special energy

requirement and calcium buffering of this cellular compartment. Under conditions of elevated TAU, the delicate balance of fission and fusion is deregulated. Fission is impaired and an
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cated, with kinesin being the actual motor andMiro and Milton being adaptor proteins. Inset: Elevated levels of phosphorylated TAU selectively impair complex I of the electron transfer

chain, ultimately resulting in reduced levels of ATP and hence, energy deprivation of affected neurons. Hyperphosphorylated forms of TAU also cause an increased production of reactive

oxygen species (ROS) and reduced activities of detoxifying enzymes (detox. enz.) including superoxide dismutase (SOD).
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with mitochondrial impairment onto a SAMP8 genetic background

might establish a more advanced model of neurodegeneration com-

pared to one where the TAU transgene is expressed on a conventional

inbred background such as C57Bl/6.

2.3. The Harlequin model

Another, although less frequently, employed strain with mitochon-

drial dysfunction and oxidative stress is the Harlequin (Hq) mutant

mouse strain. Hq mice show an 80–90% depletion of the mitochondrial

apoptosis-inducing factor (AIF) resulting in reduced levels of complex I

of the ETC and increased oxidative stress [59]. Interestingly, although

AIF is reduced throughout the brain, neuronal loss is largely restricted

to distinct brain regions (cerebellum and retina), indicating selective

vulnerability. Because a mitochondrial dysfunction specifically of com-

plex I characterizes the P301L TAU transgenic pR5mice, the two strains

were crossed. This caused an increased TAU pathology (higher degree

of phosphorylation and more NFTs) and age-dependent cerebellar

neurodegeneration that was preceded by decreased activities of the

ETC and depletion of ATP levels [60]. Interestingly, low levels of TAU

in the cerebellar granule cell layer significantly increased cerebellar ap-

optosis and led to an aggravation of motor deficits even though only a

very small number of cerebellar granule neurons were positive for

TAU phospho-epitopes. This implies that in particularly vulnerable neu-

ronal populations such as the Hq cerebellar granule cells, even low

levels of non-hyperphosphorylated TAUmay be sufficient to induce ap-

optosis and cause functional neurological impairment [60]. Analysis of

the activities of complexes I–V revealed a complex picture: In the

TAU/Hq mice an additive effect of the two mutations was observed,

i.e. both a reduced complex I protein content caused by the Hq mouse

mutation and a functional reduction of the remaining complex I activity

caused by additional TAU expression. For complex III, for example, early

decreases in activity were observed in 1-month-old TAU transgenic and

TAU/Hq mice. However, while TAU single mutant mice were able to

compensate for this deficiency, complex III activity remained reduced

in the TAU/Hq double mutant mice at 7 months. Together this study

demonstrates a mutual reinforcement of the TAU pathology and mito-

chondrial dysfunction in vivo, proposing TAU/Hq double mutant mice

as a valuable model to study TAU-related neurodegenerative changes

in a setting of impaired mitochondrial function.

3. TAU specifically impairs complex I and Aβ complex IV

3.1. Proteomic and functional studies in P301L TAU transgenic mice

An unbiased approach to address TAU-mediated impairment in

model systems is by functional genomics that generally generates long

lists of deregulated transcripts and proteins, which can then be grouped

by category analysis [61]. P301L TAU expressing pR5 mice reveal a sig-

nificant aggregation of TAU at an early age, with NFTs developing

around the age of 6 months, and hence they represent a model suited

for the proteomic investigation of TAU-related changes in AD [62,63].

A mass spectrometric analysis of fractionated brain proteins derived

from these mice revealed mainly a deregulation of mitochondrial respi-

ratory chain complex components (including complex V), antioxidant

enzymes, and synaptic proteins [64]. The reduction in mitochondrial

complex V levels in the pR5 mice that was revealed using proteomics

was also confirmed as decreased in brains from human carriers of the

P301L FTDP-17 mutation. The functional analysis demonstrated age-

related mitochondrial dysfunction, together with reduced NADH ubi-

quinone oxidoreductase (complex I) activity as well as age-related im-

paired mitochondrial respiration and ATP synthesis in the pR5 mouse

model. Mitochondrial dysfunction was further associated with higher

ROS levels in aged transgenic mice, concomitant with the upregulation

of antioxidant enzymes in response to oxidative stress (Fig. 1). In-

creased TAU pathology resulted also in lipid peroxidation [64]. Because

prior studies had shown that Aβmainly impairs complex IV [65,66], the

finding that TAUmainly impairs complex I of the ETC demonstrated for

the first time that TAU pathology also leads to metabolic impairment

and oxidative stress, by mechanisms that are distinct from those

exerted by Aβ. How TAU affects complex activities is not understood

and TAUmaywell do so indirectly. For Aβ, interactionwith and binding

to mitochondrial proteins (such as Aβ-binding alcohol dehydrogenase,

ABAD; or the voltage-dependent anion channel 1 protein, VDAC) has

been postulated [67,68]. Intracellular localization of Aβ has been

questioned by a recent study, however, which highlights the use of

antibodies in these studies that bind not only to Aβ but also to its

precursor protein, APP [69]. Because VDAC was found to interact with

phosphorylated TAU it has been proposed that phosphorylated TAU

may block mitochondrial pores and that one of TAU's functions is to

maintain normal mitochondrial pore opening and closure [68].

3.2. P301L TAU transgenic mice crossed with Aβ-forming mice

While the focus of this review article is on TAU and not on Aβ, it is

still worthwhile looking into models that combine both pathologies.

When the triple transgenic tripleAD mouse model (pR5/APPsw/PS2

N141I) was subjected to quantitative proteomics, this revealed that

one-third of the proteins had functions in mitochondria, specifically

complexes I and IV. Therefore, mitochondrial functions were assessed

[70]. Again, deregulation of the activity of complex I was found to be

TAU-dependent, and deregulation of complex IV Aβ-dependent, when

analyzing 10-month-old tripleAD mice. The convergent effects of Aβ

and TAU led to a depolarization of themitochondrial membrane poten-

tial in tripleAD mice already at the age of 8 months. Additionally, we

found that age-related oxidative stress played a significant part in the

deleterious vicious cycle by exaggerating Aβ- and TAU-induced distur-

bances in the respiratory system and ATP synthesis, finally leading to

synaptic failure. Furthermore, synergistic effects of TAU andAβ onmito-

chondrial impairment were revealed.

These data complement those obtained in another triple transgenic

mouse model, 3xTg-AD (P301Ltau/APPSw/PS1 M146L) [71]. Mitochon-

drial dysfunctionwas evidenced by an age-related decrease in the activ-

ity of regulatory enzymes of the oxidative phosphorylation system such

as COX, or of the TCA cycle such as pyruvate dehydrogenase, analyzing

3xTg-AD mice between 3 and 12 months of age [72]. In addition,

these mice also exhibited increased oxidative stress and lipid pero-

xidation. Most of the effects on mitochondria were seen at the age of

9 months, whereas mitochondrial respiration was significantly de-

creased at 12 months of age. Importantly, mitochondrial bioenergetic

deficits were found to precede the development of AD pathology in

these mice. In a follow-up study, the 3xTg-AD mice were analyzed by

2D-DIGE, a quantitative proteomic profiling method [73]. Proteins that

were dysregulated in 3xTg-AD cortices functioned in a wide variety

of metabolic pathways, including the TCA cycle, oxidative phospho-

rylation, pyruvate metabolism, glycolysis, oxidative stress, fatty acid

oxidation, ketone body metabolism, ion transport, apoptosis, and mito-

chondrial protein synthesis. These alterations in themitochondrial pro-

teome of the cerebral cortices of 3xTg-ADmice occurredwell before the

development of significant Aβ plaques and NFTs, supporting the notion

that mitochondrial dysregulation is an early event in AD pathogenesis.

4. TAU impairs mitochondrial transport

Mitochondria can move in both anterograde and retrograde direc-

tions in one axon [74]. Early studies in wild-type TAU overexpressing

mice using pulse-chase experiments had already revealed that TAUme-

diates impaired anterograde transport [75]. In K369I mutant TAU trans-

genic K3 mice, it was then demonstrated that elevated TAU impairs

transport of distinct cargoes including mitochondria, both in the

nigrostriatal pathway and in the sciatic nerve [28]. More specifically,

by ligating the sciatic nerve proteins whose transport was impaired
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could be discriminated from those, whosewas not, indicating selectively

impaired axonal transport. It was found that complex V accumulated

proximally and distally of the ligation in wild-type nerves, representing

bidirectional transport of mitochondria. In ligated transgenic nerves,

however, complex V accumulated only in the distal part, suggesting im-

paired anterograde and unaffected retrograde transports of mitochon-

dria in K3 mice (Fig. 1). As an underlying pathomechanism, trapping of

the kinesin adaptor molecule JIP1 by phosphorylated forms of TAU in

the soma was identified. This trapping prevented JIP1 from loading dis-

tinct cargoes (including mitochondria) onto the kinesin machinery for

transport down the axon. Relocalization of JIP1 from the axon to the

soma was also found in the AD brain underscoring the validity of the

finding in the transgenic model [76]. Another pathomechanism was

identified in the squid axon, where filamentous, but not soluble, forms

ofwild-type TAUwere found to inhibit anterograde transport by activat-

ing axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3

(GSK3), independent of microtubule binding [77]. In a related study, in-

creased expression of GSK3β and the p25 activator of cyclin dependent

kinase 5 (cdk5) in neurons was shown to cause an increased pausing

ofmitochondria rather than changes to their velocities [78]. Competition

for binding to kinesin has been suggested by co-immunoprecipitation

experiments: The data indicate that TAU being a cargo of kinesin itself

may displace other kinesin-based cargo, including cytoskeletal proteins

and organelles such as mitochondria [79]. Also in C. elegans, perturbed

axonal transport of mitochondria was reported when so-called pro-

aggregant tau was expressed which causes TAU aggregation [80].

While TAU is often treated as if it were one protein, it is in fact sev-

eral proteins. Differential effects of three-repeat (3R) and four-repeat

(4R) TAU on mitochondrial axonal transport have been reported [81].

As 3R TAU is believed to be less tightly associated with microtubules

than 4R TAU [82,83], it was postulated that 4R TAUmay lead to greater

alterations of organelle transport than 3R TAU. Indeed, while both 3R

and 4R TAU changed the normal mitochondrial distribution within the

cell body and reduced mitochondrial localization to axons, the effects

of 4R TAU were more pronounced. Furthermore, 3R and 4R TAU caused

different alterations in retrograde and anterograde transport dynamics;

however, 3R TAU had a slightly stronger effect on axon transport dy-

namics. TAU over-expression in general increased the net movement

of axonal mitochondria towards the neuronal cell body [81]. Multiple

studies have shown that Aβ, the second key player in AD, impairs mito-

chondrial transport [84], while a recent study using oligomeric Aβ did

not find changes to mitochondrial motility [85]. However, reducing

TAU levels prevents Aβ toxicity as discussed below, andmore specifically

the defects in axonal transport induced by Aβ in APP mutant mice [86].

More recently, RNAi-mediated knockdown of Milton or Miro, which

encodes adaptor proteins essential for axonal transport of mitochon-

dria, in human TAU transgenic flies was found to enhance the TAU-

induced neurodegeneration [87] (Fig. 1). Phosphorylation of TAU at

the 12E8 phospho-epitope Ser262 was increased when Milton or Miro

was reduced. Partitioning defective-1 (PAR-1), the Drosophila homolog

of mammalian microtubule affinity-regulating kinase (MARK) mediat-

ed this increase. Mutagenesis studies suggested that increased phos-

phorylation of the 12E8 epitope through PAR-1 contributes to TAU-

mediated neurodegeneration in a pathological context when axonal

mitochondria are depleted. Mitochondrial movement in the neuritic

processes of PC12 cells was inhibited when another phospho-epitope

of TAU, AT8 (comprised of three sites, Ser199, Ser202, and Thr205)

was changed to phosphomimetic aspartates [88]. These mutations also

caused an expansion of the space between microtubules in cultured

cells when membrane tension was reduced by disrupting actin fila-

ments. Thus, the authors concluded that TAU phosphorylation at the

AT8 sites may affect mitochondrial movement by controlling microtu-

bule spacing [88]. In human embryonic stem cell-derived neural stem

cells the consequences of an overexpression of the longest human tau

isoform, 2N4R tau versus pseudohyperphosphorylated tau (p-tau) was

studied. Interestingly, p-tau, but not 2N4R tau, readily leads to TAU

aggregation and impaired mitochondrial transport in human neurons.

Although these alterations did not induce cell death, p-tau-expressing

neurons cultured under non-redox-protected conditions underwent a

pronounced degeneration with the formation of axonal varicosities se-

questering transported proteins and progressive neuronal cell death

[89]. That tau can impair axonal transport of mitochondria in the ab-

sence of hyperphosphorylation has been shown in P301L tau knock-in

mice that did not develop a TAU pathology. In fact, the overall phos-

phorylation of tau in these mice was reduced (e.g., at epitopes PHF-1

or AT270), perhaps due to a reduced microtubule binding [90]. The im-

pact of impaired transport on TAU pathology has also been studied. In

mice lacking the kinesin light chain 1 (KLC1) subunit of the anterograde

motor kinesin-1, this caused an axonopathy, with dystrophic axons

exhibiting abnormal tau hyperphosphorylation and accumulation [91].

Together these studies illustrate that phosphorylated forms of TAU

alter mitochondrial transport.

5. TAU impairs mitochondrial dynamics

Mitochondria differ remarkably from each other in size depending

on cell-type and subcellular compartment [92,93]. Because axons and

dendrites have differential energy demands, themitochondrial network

is generally more elongated in the cell body and dendrites of a neuron,

and more fragmented in the axon [94,95] (Fig. 1). Moreover, a distinc-

tion is made between nonsynaptic and synaptic mitochondria [96–98].

To meet the specific subcellular demands, the mitochondrial network

is shaped by a set of proteins that regulates fusion and fission [99]. In

mammalian cells three large GTPases govern fusion: Mitofusins 1 and

2 (MFN1 and MFN2) dimerize on the outer membranes of adjacent mi-

tochondria to induce outer membrane fusion. This is followed by fusion

of the inner membranes, a process mediated by OPA1 (optic atrophy 1)

that resides in the intermembrane space [100,101]. Fission is under

control of yet another GTPase, DRP1 (dynamin-related protein 1, also

known as DLP1 andDNM1) [102]. A set of additional proteins, including

FIS1, mitochondrial fission factor (MFF), and mitochondrial dynamics

proteins of 49 and 51 kDa (MiD49 andMiD51), have a role in recruiting

and assembling DRP1 at the outer membrane [103]. Fission and fusion

need to be balanced. For example, knockdown of Drp1 leads to mito-

chondrial elongation, respiratory dysfunction and, ultimately, apoptosis

[104], whereas elevatedmitochondrial fusion is also a stress response in

certain situations, enhancing ATP production and resistance to apopto-

sis [105], as reviewed recently [99].

Not surprisingly, an impaired balance of fission and fusion has been

reported in AD, both at the transcript and protein levels [106,107]. Re-

duced levels of DRP1 and increased mitochondrial length were found

in one study [108], whereas another revealed reduced cytoplasmic

levels but (although not statistically significant) increasedmitochondri-

al levels of DRP1, indicative of increased fission [106,109]. This and

other recent studies suggest some degree of variability in the regulation

of mitochondrial dynamics. For a conclusive picture it will be crucial to

analyze the subcellular localization and post-translationalmodifications

of DRP1, rather than global changes.

Mitochondrial dynamics has also been studied in mouse models of

AD. Here, a significant body of data is available for the role of Aβ,

which overall suggests that its net effect is towards increased fragmen-

tation [106,108,110,111]. However, as discussed above, in addition to

Aβ, TAU also forms aggregates in the AD brain and it would not be sur-

prising if the observed differences in the impairment of complex activ-

ities would also extend to differences in the rates of fission and fusion.

While hyperphosphorylation of TAU is believed to be a precipitating

event in disease, recent data suggest that carboxy-terminal cleavage of

TAU, which impairs mitochondrial function may also be critical

[112,113]. Full-length TAU induced an increase in mitochondrial size,

whereas truncated TAU induced mitochondrial fragmentation [114]. In

neuroblastoma cells, P301L TAU impaired mitochondrial motility, to-

gether with a down-regulation of both fission and fusion [115]. When
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combined with Aβ, truncated TAU impaired mitochondrial transport,

enhanced oxidative stress, and caused a depletion of the mitochondrial

membrane potential in cortical neurons. These effects were eithermod-

est or absentwhen Aβwas combinedwith full-length TAU, suggesting a

specific synergistic cooperation of cleaved TAU with Aβ in disrupting

mitochondria [112,113]. An altered distribution of mitochondria, with-

out a change in size, was found in transgenic mice with high levels of

P301L mutant TAU expression [116]. In these mice, mitochondrial dis-

tribution was progressively disrupted with age, particularly in somata

and neurites that contained TAU aggregates. Apparently, the effects of

TAU on mitochondria, both independently and in cooperation with

Aβ, varywidely between TAU species, although the reasons for these di-

vergent effects remain to be determined.

New light on TAU's role in mitochondrial dynamics was shed by a

complementary study in TAU transgenic worms and flies. It has previ-

ously been found that TAU induces the stabilization and bundling of fil-

amentous (F)-actin [117]. Because localization of the fission protein

DRP1 to mitochondria is an actin-dependent process, whereby DRP1

and mitochondria (via myosin II) must interact with filamentous (F)-

actin prior to their colocalization, increased F-actin in humanTAU trans-

genic mice and flies disrupts the physical association of mitochondria

and DRP1, leading to mitochondrial elongation [118,119] (Fig. 1). This

causes neurotoxicity that can be rescued by reducing mitochondrial fu-

sion, enhancing fission, or reversing actin stabilization. The study fur-

ther found that elongation is not a secondary effect of impaired axonal

transport [118]. Despite those new highlights on the role of TAU in the

impairment of mitochondrial dynamics, there is no clear evidence of

its role in mitochondrial turnover. In fact, as mentioned above, fusion/

fission activity plays an important role in mitochondrial quality control.

It allows the exchange of materials such as lipids, proteins, metabolites

and mtDNA throughout the mitochondrial network, avoiding energetic

deficiencies. However, when mitochondria are extensively damaged,

they exit the fusion/fission cycle and are selectively eliminated by

mitophagy (Fig. 1). This process occurs when mitochondria are in a

fragmented state andwhen themitochondrial membrane is depolarized

after stress [120]. Mitochondria are degraded by engulfment into

autophagosomes, which fuse with lysosomes and break down the or-

ganelles. In the case where the process of mitophagy is disturbed, a

decreased cellular respiration has been observed, parallel to an accumu-

lation of oxidized proteins [33]. Nothing seems to be known about the

effect of TAU on mitochondrial turn-over but since new evidence

shows that TAU may lead to mitochondrial elongation (fused state),

we can speculate that it might decrease the elimination of damagedmi-

tochondria via the process of mitophagy (which requires mitochondrial

fragmentation). However, because AD is characterized by both TAU and

Aβ pathology, future studies into mitochondrial dynamics/mitophagy

need to take both molecules into consideration. More specifically, it

will be necessary to firstly analyze synaptosomal as well as total mito-

chondria, and secondly, human tissue that represents the full spectrum

of TAU and/or Aβ pathology, to dissect effects of Aβ onmitochondria dy-

namics from those of TAU.

6. TAU mediates excitotoxicity

TAU affectsmitochondrial dysfunction also because of its crucial role

inmediating excitotoxicity, a pathomechanism that has been implicated

in AD [121]. Under basal conditions, mild activation of theNMDA recep-

tor (NMDAR) results in physiological ROS production, while under neu-

rodegenerative conditions triggered by Aβ, over-activation of NMDARs

causes excessive calcium influx, nitric oxide (NO) activation, mitochon-

drial depolarization and superoxide formation that result in neuronal

damage and death [122–124]. Aβ is believed to exert excitotoxicity ei-

ther directly or indirectly, by over-activating the NMDAR [125]. NO ex-

erts themajority of its effects by reacting with a cysteine thiol on target

proteins, a process termed S-nitrosylation. This modifies enzymes with

a role in glycolysis, gluconeogenesis and oxidative phosphorylation,

indicating that this type of posttranslational modification may regulate

metabolism and mitochondrial bioenergetics [126]. In a recent study,

inhibition of Drp1 was found to prevent excitotoxic cell death in a hip-

pocampal cell culture system [127]. Calcium influx also stimulates ki-

nases, causing TAU to detach from microtubules and relocalize to the

somatodendritic domain, where it aberrantly interacts with proteins in-

cluding JIP1, thereby impairing mitochondrial transport [28].

Is there a more direct role for TAU in excitotoxicity? In a patho-

cascade, Aβ has been placed upstream of TAU [128]. This concept has

been proven in P301L mutant TAU transgenic mice that develop an in-

creased number of NFTs, either by crossing them with Aβ plaque-

forming transgenic mice [129], or by intracerebral injections of Aβ

[130]. While Aβ causes TAU aggregation, its toxicity is also dependent

on TAU as has been first shown in vitro [131] and subsequently

in vivo [132]. Removing TAU largely abrogates the pathological features

that characterize Aβ plaque-formingmice, namely prematuremortality,

high susceptibility to experimentally induced excitotoxic seizures and

memory deficits [132]. Mechanistically, this protection appeared to be

conferred by a reduced susceptibility to excitotoxicity either when

TAU was absent or when its levels were reduced [132,133]. Even

under physiological conditions, TAUwas found to be present in the den-

drite (although at low quantities compared with the axon), where it is

critically involved in postsynaptic NMDAR downstream signalling by lo-

calizing the SRC kinase FYN to the dendrite. FYN phosphorylates the

NMDAR that then recruits the postsynaptic scaffolding protein PSD-95

to form a complex [133]. The TAU axis hypothesis claims that as TAU ac-

cumulates in a phosphorylated form in the dendrite, it mediates the

toxic effects of Aβ by causing increased concentrations of FYN which is

then available to phosphorylate the excitotoxic NMDAR signalling com-

plex [134]. Aβ, Fyn and TAU therefore seem to orchestrate neuronal

damage [133,135,136]. It has been shown that synaptic NMDAR signal-

ling and extrasynaptic NMDAR signalling have opposite effects on cell

survival and that differentially located NMDARs are coupled to different

intracellular cascades. A recent study found that Aβ induces dendritic

spine loss via a pathway involving synaptic NR2A-containing NMDARs

whereas activation of extrasynaptic NR2B-containing NMDARs is re-

quired for neurodegeneration that is TAU-dependent [137]. Together

this suggests thatmanipulating components of theNMDAR or the inter-

action of TAU and FYN may be therapeutically beneficial. In fact,

disrupting the complex between NMDAR and PSD-95 pharmacological-

ly was found to protect Aβ plaque-formingmice from premature death,

memory impairment and the susceptibility to excitotoxic seizures [133].

In conclusion, TAU affects mitochondrial dysfunction also because of its

crucial role in mediating excitotoxicity, a pathomechanism that has

been implicated in AD.

7. Integration—mitochondria are key targets of Aβ and TAU toxicity

in AD

Mitochondria are key targets of Aβ and TAU toxicity in AD (Fig. 1). A

picture is emerging whereby these two molecules damage mitochon-

dria in multiple ways, by marching separately and striking together.

While the causes of sporadic AD are not known it is evident that Aβ

and TAU levels are elevated at an early stage. An impaired homeostasis

because of increased Aβ production and decreased clearance causes in-

creased levels, which acts on mitochondria by impairing complex IV

function, and by facilitating the fragmentation of mitochondria. Both in-

sults cause increases in ROS levels, decreased activities of detoxifying

enzymes such as superoxide dismutase (SOD), and an impaired mito-

chondrial membrane potential that results in reduced ATP levels. Ele-

vated Aβ levels also result in the overexcitation of neurons, which

leads to an influx of calcium ions, with the consequence of increased

COX levels, which then damages mitochondria. When Aβ levels are

increased this also activates distinct TAU kinases and/or inactivates

TAU phosphatases resulting in a massive hyperphosphorylation of

TAU. Hyperphosphorylated TAU specifically impairs complex I of the
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mitochondrial respiratory chain, again leading to increased ROS levels,

lipid peroxidation, decreased activities of detoxifying enzymes such as

superoxide dismutase (SOD), and an impaired mitochondrial mem-

brane potential. It also impairs anterograde transport of mitochondria

and other cargoes by trapping the kinesin adaptor molecule JIP1 in the

neuronal cell body, preventing it from executing its normal function.

In AD, hyperphosphorylated TAU not only accumulates in the axon,

but also relocalizes and accumulates in the cell body and dendrites of af-

fected neurons. In the dendritic compartment, it facilitates the toxic ef-

fects of Aβ that are mediated by the NMDAR. Elevated levels of TAU

have also functional consequences on mitochondrial dynamics. TAU

causes actin stress fibres to form. This blocks the proper execution of

DRP1-mediated fission with a net result of mitochondrial elongation.

This, similar to an augmented fragmentation caused by Aβ, causes in-

creased ROS levels, decreased activities of detoxifying enzymes and an

impaired mitochondrial membrane potential. In light of the apparently

opposing effects Aβ has on mitochondrial size it seems that either too

little or too much fission/fusion is detrimental for neurons. Obviously,

with TAU impairing axonal transport of mitochondria, the calcium buff-

ering requirements at the synapse are undermined. Together, TAU and

Aβ establish a vicious cycle of misregulated dynamics and transport of

the mitochondria, which together with alterations in mitochondrial

components such as complex proteins or mtDNA, causes mitochondrial

impairment in AD.
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Abstract: 

 

Alzheimer�s disease (AD) is characterized by the presence of amyloid plaques (aggregates 

of amyloid-! [A!]) and neurofibrillary tangles (aggregates of tau) in the brain, but the 

underlying mechanisms of the disease are still partially unclear. A growing body of evidence 

supports mitochondrial dysfunction as a prominent and early, chronic oxidative stress-

associated event that contributes to synaptic abnormalities, and, ultimately, selective 

neuronal degeneration in AD. Using a high-resolution respirometry system, we shed new 

light on the close interrelationship of this organelle with A! and tau in the pathogenic process 

underlying AD by showing a synergistic effect of these two hallmark proteins on the oxidative 

phosphorylation capacity of mitochondria isolated from the brain of transgenic AD mice. 

In the present chapter, we first introduce the principle of the A! and tau interaction on 

mitochondrial respiration, and secondly, we describe in detail the used respiratory protocol.  

 

Key words: mitochondria, Alzheimer�s disease, amyloid-!, tau, Oxygraph, oxidative 

phosphorylation. 
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1. Introduction 

 

With the increasing average life span of humans, Alzheimer�s disease (AD) is the most 

common neurodegenerative disorder among elderly individuals. It accounts for up to 80% of 

all dementia cases and ranks as the fourth leading cause of death amongst those above 65 

years of age (1). Although the hallmark lesions of the disease were already described by 

Alois Alzheimer in 1906 - amyloid-! (A!) containing plaques and microtubule-associated 

protein tau-containing neurofibrillary tangles (NFTs) �, the underlying molecular mechanisms 

that cause the formation of these end-stage lesions are still poorly understood. However, a 

growing body of evidence supports mitochondrial dysfunction as a prominent and early 

chronic oxidative stress-associated event that contributes to synaptic abnormalities and, 

ultimately, selective neuronal degeneration in AD (2; 3). Within the last few years, several 

cell culture models as well as single, double, and more recently, triple transgenic mouse 

models have been developed to reproduce diverse aspects of AD. These models help in 

understanding the pathogenic mechanisms that lead to mitochondrial failure in AD, and in 

particular the interplay of AD-related cellular modifications within this process (4). 

In this chapter, we will highlight the critical key role of mitochondria and the close inter-

relationship of this organelle with the two main pathological features in the pathogenic 

process underlying AD. Particularly, we will emphasise on the recent insights showing 

independent as well as synergistic effects of A! peptide and hyperphosphorylated tau on 

mitochondrial function by using a high-resolution respirometry system (Oxygraph-2k). 

 

1.1 A! and tau induce mitochondrial toxicity 

 

Mitochondria play a pivotal role in cell survival and death by regulating both energy 

metabolism and apoptotic pathways. They are the �powerhouses of cells� providing energy 

via ATP generation which is accomplished through oxidative phosphorylation (OXPHOS) 

from nutritional sources (5) [Fig 1]. Neurons have particularly high numbers of mitochondria 

which are especially enriched in synapses. Due to the limited glycolytic capacity of neurons, 

those cells are highly dependent on mitochondrial function for energy production (6). Thus, 

deregulation of mitochondrial function leads to synaptic stress, disruption of synaptic 

transmission, apoptosis and ultimately, neurodegeneration (7; 8).  

Evidences from cellular and animal AD models indicate that A! triggers mitochondrial 

dysfunction through a number of pathways such as impairment of OXPHOS, elevation of 

ROS production, interaction with mitochondrial proteins, and alteration of mitochondrial 

dynamics (9; 10). Success in developing mouse models that mimic diverse facets of the 

disease process has greatly facilitated the understanding of pathophysiological mechanisms 
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underlying AD. In 1995, Games and collaborators established the first amyloid precursor 

protein (APP) mouse model (called PDAPP) bearing the human ��Indiana�� mutation of the 

APP gene (V171F). They observed the accumulation of A! in the brain and subsequent 

amyloid plaque formation, as well as astrocytosis and neuritic dystrophy (4). Interestingly, in 

most of the APP mouse models, the cognitive impairment begins concomitantly with A! 

oligomer formation in the brain (around 6 months of age), while neuritic amyloid deposits 

become visible only between 12 and 23 months and the amount of deposits increases in 

parallel (11). Thus, memory deficits seem to correlate directly with the accumulation of 

intracellular A! oligomers and not with amyloid plaque formation. When those mice were 

crossed with those bearing a mutation in presenilin 1 gene (PS1), coding for a gene involved 

in APP processing, an earlier onset of amyloid plaques was observed, alongside a stronger 

decrease of mitochondrial membrane potential as well as ATP level (12).  

Mitochondrial dysfunctions occur at a very early disease stage in AD transgenic 

mouse models. For example, in the APPsw transgenic strain Tg2576 (Swedish mutation), an 

upregulation of genes related to mitochondrial energy metabolism and apoptosis was 

observed already at 2 months of age. Alterations in composition of the mitochondrial 

respiratory chain complexes I and III protein subunit as well as impairment of mitochondrial 

respiration were detected around 6 months, when soluble A! accumulated in the brain 

without plaque formation (13; 14).  

Consistent with this observation, in APPsw / presenilin 2 (PS2) double-transgenic 

mice, mitochondrial impairment was first detected at 8 months of age, before amyloid plaque 

deposition, but after soluble A! accumulation (15). Taken together, these findings are 

consistent with the recently proposed hypothesis of an age-related A! toxicity cascade that 

suggests that the most toxic A! species that cause majority of molecular and biochemical 

abnormalities are in fact intracellular soluble oligomeric aggregates rather than the 

extracellular, insoluble plaques (16).  

How does tau, the second hallmark lesion in AD, interfere with mitochondrial 

function? In its abnormally hyperphosphorylated form, which forms the NFTs, tau has been 

shown to block mitochondrial transport. This results in energy deprivation and oxidative 

stress at the synapse, and, consequently, neurodegeneration (17; 18). Untill now, no 

mutations in microtubule-associated protein tau (MAPT) coding genes have been detected in 

relation to familial forms of AD. However, in familial frontotemporal dementia (FTD) with 

parkinsonism, mutations in the microtubule-associated protein tau gene (MAPT) were 

identified on chromosome 17. This was the basis for creating a robust mouse model for tau 

pathology in 2001. These P301L tau�expressing pR5 mice show an accumulation of tau as 

soon as 3 months of age and develop NFTs around 6 months of age (19). A mass 

spectrometric analysis of the brain proteins from these mice (aged from 8.5-10 months) 
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revealed mainly a deregulation of mitochondrial respiratory chain complex components 

(including complex V), antioxidant enzymes, and synaptic protein space (20). The reduction 

in mitochondrial complex V levels in the P301L tau mice was also confirmed in human P301L 

FTDP-17 (FTD with parkinsonism linked to chromosome 17) brains. The functional analysis 

demonstrated age-related mitochondrial dysfunction, together with reduced NADH 

ubiquinone oxidoreductase (complex I) activity as well as age-related impaired mitochondrial 

respiration and ATP synthesis in a pR5 mouse model. Mitochondrial dysfunction was also 

associated with higher levels of ROS in aged transgenic mice. Increased tau pathology 

resulted in modification of lipid peroxidation levels and the upregulation of antioxidant 

enzymes in response to oxidative stress (20). Thus, this evidence demonstrated for the first 

time that not only A! but also tau pathology weakens gradually mitochondrial function in a 

rather specific way leading to metabolic impairment and oxidative stress in AD. 

 

1.2 Synergistic mode of action of A! and Tau 

 

Although A! and tau pathologies are both known hallmarks of AD, the mechanisms 

underlying the interplay between plaques and NFTs (or A! and tau, respectively) have 

remained unclear. However, a close relationship between mitochondrial impairment and A! 

on the one hand and tau on the other hand has been already established. How do both AD 

features relate to each other? Several studies suggest that A! aggregates and 

hyperphosphorylated tau may block the mitochondrial transport to the synapse leading to 

energy deficiency and neurodegeneration (21).  

Remarkably, intracerebral A! injections amplify a pre-existing tau pathology in several 

transgenic mouse models (22; 23), whereas lack of tau abrogates A! toxicity (24; 18). Our 

findings indicate that in tau transgenic pR5 mice, mitochondria display an enhanced 

vulnerability toward A! insult in vitro (25; 2), suggesting a synergistic action of tau and A! 

pathology on this organelle. Thus, these studies provide the first evidence for the existence 

of a complex interplay between A! and Tau in AD whereby these two molecules damage 

mitochondria in multiple ways, but what about their specific effects on mitochondrial 

respiration? 

 

1.3 Using high-resolution respirometry system in isolated mitochondria to 

evaluate OXPHOS capacity. 

 

To address this question, we used a high-resolution respiratory system to evaluate the 

capacity of the entire oxidative phosphorylation system (OXPHOS) of cerebral mitochondria 

from mice bearing either an APP/PS2 mutation, P301L mutation (pR5 mice), or the triple 
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mutation APP/PS2/P301L (tripleAD mice) compared to wild-type mice (26). Measurement of 

oxygen (O2) flux and consumption was performed at 37 °C using an Oroboros Oxygraph-2k 

system on freshly isolated mitochondria from cortical brains of age-matched wild-type, 

APP/PS2, pR5 and tripleAD mice as follows. After detection of endogenous respiration, 

glutamate and malate were added to induce state 4 respiration [Fig 1 and 2A], then ADP was 

added to stimulate state 3 respiration. After determining coupled respiration, FCCP was 

added and the maximal respiratory capacity measured in the absence of a proton gradient. 

Cytochrome c (cyt c) injection was used to demonstrate mitochondrial membrane integrity. 

To inhibit activities of complexes I�III, rotenone (rot) and antimycine A (AA) were added. 

Complex IV activity was stimulated by ascorbate/TMPD (A/T) before terminating 

mitochondrial respiration by adding sodium azide (azide).O2 consumption was normalised to 

the corresponding citrate synthase activity.  

We determined flux control ratios to obtain information on metabolic states of respiration. 

The respiratory control ratio (RCR3/4) is an indicator of the state of coupling of mitochondria. 

State 3 is the rate of phosphorylating respiration in the presence of exogenous ADP, and 

state 4 is associated with proton leakage across the inner mitochondrial membrane in the 

absence of ADP. Our findings suggest a pronounced decrease of RCR3/4 in mitochondria 

from APP/PS2 and tripleAD compared with age-matched wild-type mice already at 8 months of 

age. This decrease was also found in the oldest mice (12 months of age). When we 

examined the ETS/ROX (electron transport system/residual oxygen consumption) ratio, 

which yields an index of the maximum oxygen consumption capacity relative to the 

magnitude of residual oxygen consumption, we found that it was also decreased in APP/PS2 

and tripleAD compared with age-matched wild-type mice at 8 and 12 months of age. 

Interestingly, in a previous study, the decreased respiration of mitochondria from pR5 mice 

compared with wild-type controls was not visible before the age of 24 months (20). In 

contrast, APP/PS2 mitochondria showed a decrease in OXPHOS compared with wild-type 

already at the age of 8 months. At this age, OXPHOS of brain mitochondria from tripleAD mice 

did not differ compared with that of age-matched APP/PS2 mitochondria , but it was 

significantly decreased in tripleAD mice at the age of 12 months [Fig 2B]. Taken together, with 

increasing age, the global failure of the mitochondrial respiratory capacity deteriorated the 

strongest in mitochondria from tripleAD mice, suggesting a synergistic destructive effect of tau 

and A! on mitochondria.   

In conclusion, our studies highlight the key role of mitochondria in AD pathogenesis and 

the close interrelationship of this organelle and the two main pathological features of the 

disease. We showed that disturbances in the respiratory and energy system of tripleAD mice 

seem to be due to a convergence of A! and tau on mitochondria, accelerating defects in 
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respiratory capacity, which consolidates the idea that a synergistic effect of tau and A! 

increase the pathological deterioration of mitochondria. 

 

 Now we will describe in detail the protocol which we followed previously (26). After 

listing the material needed, we will describe the isolation of mitochondria from mouse brains 

and the steps required to measure the mitochondrial respiration. It is important to note that 

this protocol assumes that the Oroboros Oxygraph-2k system is routinely used in the 

laboratory and does not include technical details about oxygraph maintenance or calibration, 

but only experimental procedure regarding the assessment of mitochondrial respiration. 

 

2. Materials 

 

Prepare all solutions using ultrapure water (prepared by purifying deionized water to attain a 

sensitivity of 18 M" cm at 25°C). 

 

2.1 Solutions for the Isolated Mitochondria Preparation 

 

1. Medium 1: NaCl 138 mM, KCl 5.4 mM, Na2HPO4 0.17 mM, KH2PO4 0.22 mM, 

glucose·H2O 5.5 mM, saccharose 58.4 mM, pH 7.35. To prepare 1 litre of medium 

1, weigh 8 g NaCl, 0.4 g KCl, 0.024 g Na2HPO4, 0.03 g KH2PO4, 1.1 g 

glucose·H2O, 20 g saccharose. Add water to a volume of 900 ml (using a 

graduated cylinder) and mix with magnetic stir bar at room temperature until all 

powders are dissolved. Adjust pH and make up to 1 l with water. Store at 4 #C. 

 

2. Isolated Mitochondria Buffer : mannitol 210 mM, saccharose (70 mM), HEPES  10 

mM, EDTA (tritriplex III) 1 mM, BSA 0.45 %, pH 7.4. To prepare 200 ml buffer, 

weigh 7.65 g mannitol, 4.79 g saccharose, 477 mg HEPES, 74.4 mg EDTA 

(tritriplex III) and 0.9 g BSA. Add water to a volume of 190 ml (using a graduated 

cylinder) and mix with magnetic stir bar at room temperature until all powders are 

dissolved. Adjust pH and make up to 200 ml with water. Prepare aliquots of 10 ml 

and keep at -20#C (see Note 1).  

 

2.2 Solutions for the Mitochondrial Respiration 

 

1. Mitochondrial Respiration Buffer: saccharose 65mM, potassium dihydrogen 

phosphate  10mM, Tris HCl 10mM, MgSO4 . 7 H2O  10mM, EDTA (tritriplex III). 2 

H2O 2 mM, pH 7. To prepare 200 ml, weigh 4.45 g saccharose, 0.272 g 
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potassium dihydrogen phosphate, 0.315 g Tris HCl, 0.493 g MgSO4 . 7 H2O, 

0.149 g EDTA (tritriplex III). 2 H2O. Add water to a volume of about 190 ml (using 

a graduated cylinder) and mix with magnetic stir bar at room temperature until all 

powders are dissolved. Adjust pH and make up to 200 ml with water. Prepare 

aliquots of 20 ml and keep at -20#C. 

 

2. Mitochondrial Respiration Medium (MiR05): EGTA  0.5 mM, MgCl2.6H2O  3 mM, 

K-lactobionate 60 mM, taurine 20 mM, KH2P04 10 mM, HEPES 20 mM, 

saccharose 110 mM, BSA 1 g/l,  pH = 7.1. Start to prepare the K-lactobionate 

stock solution (0.5 M) by dissolving 35.83 g lactobionic acid in 100 ml H2O and 

adjust the pH to 7.0 with KOH and bring the volume to 200 ml. To prepare 1 litre 

of MiR05, weigh 0.190 g EGTA, 0.610 g MgCl2.6H2O, 2.502 g taurine, 1.361 g 

KH2P04, 4.77 g HEPES, 37.65 g saccharose, 1 g BSA. Add about 750 ml water 

and 120 ml K-lactobionate stock solution (0.5 M). Mix with magnetic stir bar at 

room temperature, adjust the pH to 7.1 with KOH (5 N), and make up to 1 litre 

with water. Divide into 20 ml aliquots and store frozen at -20°C (see Note 2). 

 

3. Substrates: The substrates employed and details of preparation are summarised 

in Table 1. (see Notes 3-13) 

 

2.3 Oxygraph 

 

Mitochondrial oxygen consumption was measured at 37 °C using an Oroboros 

Oxygraph-2k system following the Gnaiger method (27). 

 

3. Method 

 

3.1 Isolated mitochondria preparation 

 

Before experiment: perform an instrumental and chemical background with the oxygraph. 

Prepare isolated mitochondria buffer (see Note 1) and keep on ice. Turn on the centrifuge 

(4°C). 

 

1. Kill the mice by decapitation and dissect one brain hemisphere on ice. Wash in 10 ml 

of ice-cold medium 1. 

2. Put the preparation in the Potter-tube to homogenise in 1 ml isolated mitochondria 

buffer. Pipette 10 to 15 times to homogenise the preparation (see Note 14).  
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3. Wash the Potter�s plug 3 times with 150 ul isolated mitochondria buffer and put the 

preparation in a 2 ml tube. Wash the Potter�s tube 3 times with 150 ul isolated 

mitochondria buffer and put the preparation in the same 2 ml tube. Vortex (see Note 

15).  

4. Centrifuge 7 min, 1450 rcf, at 4°C and recover the supernatant in a new 2 ml tube. 

This step removes nuclei and tissue particles. 

5. Centrifuge 3 min, 1450 rcf, at 4°C and recover the supernatant again in a new 2 ml 

tube. 

6. Centrifuge 5 min, 10 000 rcf, at 4°C, throw away the supernatant and recover the 

pellet. 

7. Put the pellet (mitochondria) in 1ml isolated mitotochondria buffer and mix 15 times 

using the pipette. 

8. Repeat step 7 and 8 to obtain the mitochondrial fraction and put the pellet in 100 ul 

isolated mitotochondria buffer. Keep on ice until the measurement (see Note 16).  

 

3.2 Mitochondrial respiration measurement 

 

Before experiment prepare the substrates (Table 1) and the oxygraph (see Note 17)  

 

1. Add 50 ul isolated mitochondria preparation to each chamber and close the chamber 

(see Note 18). Mark it as (01-state 1). 

2. Add 10 ul glutamate / 5 ul malate (stock concentration = 2 M / 0.8 M respectively, 

assay concentration = 10 mM / 2 mM). Mark it as (02-GM2). 

3. Add 8 ul ADP / chamber (stock concentration = 0.5M, assay concentration = 2 mM). 

Mark it as (03-GM3). 

4. Add 2.5 ul FCCP / chamber (stock concentration = 0.32 mM, assay concentration = 

0.4 uM). Mark it as (04-GP3u). 

5. Add 5 ul Cytochrome c / chamber (stock concentration = 4 mM, assay concentration 

= 10 uM). Mark it as (05-GM3c). 

6. Add 5 ul rotenone / chamber (stock concentration = 0.2 mM, assay concentration = 

0.5 uM). Mark it as (06-rot). 

7. Add 5 ul antimycine A / chamber (stock concentration = 1 mM, assay concentration = 

2.5 uM). Mark it as (07-AA). 

8. Add 5 ul ascorbate / chamber (stock concentration = 0.8 M, assay concentration = 2 

mM) and 5 ul TMPD / chamber (stock concentration = 0.2 M, assay concentration = 

0.5 mM). Mark it as (08-AT). 
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9. Add 20 ul sodium azide / chamber (stock concentration = 1 M, assay concentration = 

10 mM). Mark it as (09-azide). 

 

4. Analysis 

 

After the measurement, extract the raw data from the oxygraph software (DatLab) to an 

Excel file. Normalise the data on citrate synthase activity, which correlates with mitochondrial 

content (see Note 19). Perform the statistical analysis using GraphPad Prim software and a 

two-way ANOVA followed by Bonferroni post hoc tests to compare the different groups. 

Consider statistically significant only P values < 0.05. Represent data as means ± SEM. 

 

5. Notes 

 

1. Just before starting the experiment, warm up the isolated mitochondria buffer. For 2 

brain hemispheres, add 1 tablet of CompleteR Mini (protease inhibitor cocktail tablet) 

and 5 ul dithiothréitol (DTT: Stock solution = 1M in water, Final concentration in the 

buffer = 0.5mM) to 10 ml buffer. Prepare maximum 3h before use. 

2. The MiR05 is stable for about 2-3 months. The K-lactobionate must be prepared 

fresh. 

3. Solution stored at low temperature: mix carefully after rewarming, since phase 

separation may occur and compounds may precipitate in cold solutions. During the 

course of the experiment keep stock solutions on ice. Solutions which contain ethanol 

may have a problem of evaporation and subsequent increase of concentration of 

stock solutions. 

4. Adjust pH to 7.0 with 37% HCl and divide into 0.5 ml aliquots.Store frozen at -20#C. 

5. Neutralize with 10N KOH and divide into 0.5 ml aliquots. Store frozen at -20#C. 

6. Neutralize (pH 7.0) with 5 N KOH and divide into 100 ul aliquots. Store at -80#C. 

7. Divide into 0.2 ml aliquots. Store frozen at -20#C. 

8. To prevent autooxidation, prepare a solution of ascorbic acid (137.6 mg/ml, pH ca 2). 

Adjust the pH to ca 6 of the solution containing the ascorbate sodium salt with 

ascorbic acid. Divide into 0.2 ml aliquots. Store frozen at -20#C. Light sensitive$ 

9. To prevent autooxidation, neutralize with the solution containing 0.8 M of ascorbic salt 

(dilution 1:80, final concentration ascorbate: 10mM). Divide into 0.2 ml aliquots. Store 

frozen at -20#C.  

10. Difficult to dissolve, divide into 0.2 ml aliquots, store at -20#C. Light sensitive$ Very 

toxic! 

11. Divide into 0.2 ml aliquots, store at -20#C. Very toxic$ 
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12. Divide into 0.2 ml aliquots, store frozen at -20#C. Very toxic$ 

13. Divide into 0.5 ml aliquots, store frozen at -20#C. 

14.  Pipette gently up and down to avoid bubble formation and strong oxygenation of the 

sample. 

15. If you have several mice, stop the process at this step, put the preparation on ice and 

use the next mouse to perform the centrifugation steps with all the samples at the 

same time. Since the Oxygraph contains 2 chambers, it is possible to investigate the 

mitochondrial respiration for only a few animals per day (6-8 mice / day). 

16. 50 ul of the preparation will be used for the Oxygraph measurement. For protein 

determination, dilute 3ul of isolated mitochondria in PBS (dilution 1:5) and perform the 

protein assay (here, we use the Biorad DCTM Protein Assay and the bovine serum 

albumin (BSA) for the standard curve). 

17. The experiment requires an instrumental and chemical background following the 

protocol of the company. Calibration will determined the �air saturation� (R1) and the 

�zero saturation� (R0). 

18. When the oxygraph chambers are closed, check that there are no air bubbles left 

inside. 

19. Citrate synthase is an enzyme of the tricarboxylic acid cycle. Its activity is frequently 

used to normalise other mitochondrial enzymatic activities and mitochondrial 

respiration because it correlates to mitochondrial content. To measure citrate 

synthase activity, follow the reduction of 5, 5�-dithiobis (2-nitrobenzoic acid) (DTNB) 

by citrate synthase at 412 nm (extinction coefficient of 13.6 mM-1·cm-1) in a coupled 

reaction with coenzyme A (CoA) and oxaloacetate. Briefly, incubate a reaction 

mixture of 0.2 M Tris-HCl (pH 8.0), 0.1 mM acetyl-CoA, 0.1 mM DTNB, n-dodecyl-!-

D-maltoside (20%), and 10 ug of mitochondrial protein at 30 °C for 5 min. Initiate the 

reaction by the addition of 0.5 mM oxaloacetate and monitor the absorbance change 

for 5 min with a Shimadzu MultiSpec-1501 diode array spectrophotometer. Calculate 

the enzymatic activity of citrate synthase using the slope of absorption by minute. 
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Table 1: Preparation and function of the substrates used to investigate mitochondrial respiration using the Oroboros Oxygraph-2k system.

  
Name / Formula MW (g/mol) Stock solution Function 

Mitochondrial 

substrates 

glutamate L-glutanic acide C5H8NO4Na 187.1 2 M 3.742 g/10 ml H2O Induce state 4 respiration 4

malate L-malic acid C4H6O5 134.1 0.8 M 1.073 g/10 ml H2O Induce state 4 respiration 

ADP 
adenosine 5'-diphosphate 

C10H15N5O10P2K 
491.2 0.5 M 0.491 g/2 ml H2O Induce state 3 respiration 6

cytC cytochrome C 12500 4 mM 50 mg/1 ml H2O 
Demonstrate mitochondrial membrane 

ascorbate 
ascorbate sodium salt 

C6H7O6Na 
198.1 0.8 M 1.584 g/10 ml H2O Stimulates complex IV activity 8

TMPD 

N,N,N',N'-tetramethyl-p-

phenylenediaminedichloride 

C10H16N2·HCl 

237.2 0.2 M 47.4 mg/1 ml H2O Stimulates complex IV activity 9

Mitochondrial 

inhibitors 

rotenone C23H22O6 394.4 1 mM 3.94 mg/10 ml Ethanol Inhibits complex I activity 

AA antimycin A 540 5 mM 11 mg/4 ml Ethanol Inhibits complex III activity 

azide sodium azide NaN3 65.01 1 M 65 mg/1 ml H2O Inhibits oxygen consumption 

Mitochondrial 

uncouplers 
FCCP 

carbonyl cyanide p-

(trifluoromethoxy) 

phenylhydrazone C10H5F3N4O 

254.2 0.32 mM 

2.54 mg/10 ml Ethanol to 

have 1mM. Dilute 1: 3.125 

in Ethanol 

Determine uncoupled respiration in 

absence of a proton gradient. 
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Fig. 1: The mitochondrial electron transport chain: impact of A! peptide, tau protein, and effects of mitochondrial 

substrates used during the measurement protocol with Oxygraph. Complexes I (NADH: ubiquinone 

oxidoreductase) and II (succinate dehydrogenase, belongs to the tricarboxylic acid (TCA) cycle) receive electrons 

from NADH and FADH2, respectively. Electrons are then driven from complexes by the mobile carrier molecules 

coenzyme Q/ubiquinone (UQ) and cytochrome c (Cyt c) to the final acceptor, molecular oxygen (O2). Electron 

flow is coupled to proton movement across the inner mitochondrial membrane (IMM) in complexes I, III and IV. 

The resulting proton gradient is harvested by complex V to generate ATP. In Alzheimer�s disease, abnormal 

mitochondrial electron activities have been observed, predominantly in complexes I and IV, leading to impaired 

mitochondrial membrane potential, decreased production of ATP (complex V), and enhanced reactive oxygen 

species (ROS) levels. Interestingly, deregulation of complex I is mainly tau-dependent, while deregulation of 

complex IV is amyloid-! (A!)-dependent, at both the protein and activity level. The targets of the different 

substrates used during the Oxygraph measurement are marked with * on the figure and their specific actions are 

summarized in Table 1. AA, antimycin A; AT, ascorbate/ TMPD; IMS, intermembrane space. 
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Fig. 2: Synergistic effects of A! and Tau on mitochondrial respiration. (A) Representative diagrams of O2 flux and 

consumption in mitochondria from 12-month-old wild-type, APP/PS2, and 
triple

AD mice in response to titrated 

substrates and inhibitors of mitochondrial complexes. (B) Two-way ANOVA revealed a significant effect of the 

transgene on the respiratory rates of mitochondria between 12-month-old wild-type and APP/PS2 mice and this 

impaired respiration was even more pronounced in 
triple

AD mice. Two-way ANOVA post-hoc Bonferroni. *, P<0.05; 

**, P<0.01; ***, P<0.001 vs. wild-type; 
+
, P<0.05; 

++
; P<0.01; 

+++
; P<0.001 vs. APP/PS2 (n=7�12 animals/group). 

Modified from Rhein et al., PNAS 2009 (26) with permission. 
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Abstract Hormonal deficit in post-menopausal women has

been proposed to be one risk factor in Alzheimer's disease

(AD) since two thirds of AD patients are women. However,

large treatment trials showed negative effects of long-term

treatment with oestrogens in older women. Thus, oestrogen

treatment after menopause is still under debate, and several

hypotheses trying to explain the failure in outcome are under

discussion. Concurrently, it was shown that amyloid-beta

(Aβ) peptide, the main constituent of senile plaques, as well

as abnormally hyperphosphorylated tau protein, the main

component of neurofibrillary tangles, can modulate the level

of neurosteroids which notably represent neuroactive steroids

synthetized within the nervous system, independently of pe-

ripheral endocrine glands. In this review, we summarize the

role of neurosteroids especially that of oestrogen in AD and

discuss their potentially neuroprotective effects with specific

regard to the role of oestrogens on the maintenance and

function of mitochondria, important organelles which are

highly vulnerable to Aβ- and tau-induced toxicity. We also

discuss the role of Aβ-binding alcohol dehydrogenase

(ABAD), a mitochondrial enzyme able to bind Aβ peptide

thereby modifying mitochondrial function as well as oestra-

diol levels suggesting possible modes of interaction between

the three, and the potential therapeutic implication of inhibit-

ing Aβ–ABAD interaction.

Keywords Alzheimer's disease . Neurosteroids .

Oestrogen . Mitochondria . ABAD

Introduction

Steroid hormones are molecules, mainly produced by endo-

crine glands such as the adrenal gland, gonads and placenta,

involved in the control of many physiological processes

mainly in the periphery, from reproductive behaviour to

stress response. In 1981, Baulieu and co-workers were the

first to demonstrate steroid production within the nervous

system itself [1]. They showed that the level of some ste-

roids, such as dehydroepiandrosterone (DHEA), was even

four times higher in the anterior brain of rats than in plasma

and nearly 18 times higher than in the posterior brain with

regard to its sulphated form (DHEAS). Of note, the level of

this steroid remained elevated in the brain even after adre-

nalectomy and castration. In the following decades, other

steroids were identified to be synthetized in situ in the brain,

and enzymatic activities of proteins involved in steroido-

genesis have been shown in many regions of the central and

peripheral nervous system, in neurons as well as in glial

cells [2–5]. Thus, this category of molecules is now called

“neurosteroids” and defines neuroactive steroids that are

synthetized within the nervous system, independently of

peripheral endocrine glands. While steroid hormones act at

a distance from their glands of origin in an endocrine way,

neurosteroids are synthetized by the nervous system and act

on the nervous system in an auto/paracrine configuration.
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Because of their lipophilic nature, peripheral steroid hor-

mones can freely cross cell membranes, including the

blood–brain barrier, and play an important role in the devel-

opment, maturation and differentiation of the central and

peripheral nervous system. However, since some steroids

are also synthetized within the nervous system, their blood

levels do not necessarily correspond to their brain concen-

trations [6]. Intra-cerebral steroid synthesis seems to play a

role in cognition, anxiety, depression, neuroprotection and

even nociception [7].

The ability to cross cellular membranes allows them to

act on nuclear receptors exhibiting genomic action by reg-

ulating gene transcription. This action seems to be important

during neonatal life where it has been shown that neuro-

steroids, such as progesterone (PROG) or oestradiol, are

able to promote dendritic growth, spinogenesis, synapto-

genesis and cell survival, particularly in the cerebellum

[5]. Some studies already demonstrated the role of neuro-

steroids, particularly oestrogens, in the regulation of glucose

homeostasis and lipid metabolism [8] as well as in neuro-

protection [9]. Risk for Alzheimer's disease (AD) is associ-

ated with age-related loss of sex steroid hormones in both

women and men [10, 11]. On the one hand, in post-

menopausal women, the precipitous depletion of oestrogens

and progestogens is hypothesized to increase susceptibility

to AD pathogenesis, a concept largely supported by epide-

miological evidence but refuted by some clinical findings,

above all, by results from the “Woman's health initiative

memory study” (WHIMS) (please see detailed discussion in

the “Conclusion” section). On the other hand, a growing

body of evidence indicates a more gradual age-related de-

cline in testosterone in men similarly associated with in-

creased risk to several diseases including AD. Since

testosterone is at least in part aromatized in the brain to

17β-oestradiol, a loss of it may also affect oestrogen-

mediated neuroprotective pathways. But also, the difference

between how rapidly and significantly the female versus

male primary sex hormones decline might partially contrib-

ute to higher AD incidences in women than in men [10].

Alzheimer's Disease, Oxidative Stress, Effect of Gender

and Neogenesis of Neurosteroids

AD is a neurodegenerative brain disorder and the most

common form of dementia among the elderly as shown by

the worldwide prevalence of the disease which was 26.6

million people in 2006 [12]. Clinical symptoms are charac-

terized by severe and progressive loss of memory, language

skills as well as spatial and temporal orientation. From a

cellular point of view, the pathological hallmark of AD is

the presence of extracellular senile plaques—composed of

aggregated amyloid-β peptide (Aβ)—and intracellular

neurofibrillary tangles (NFT)—consisting of aggregates of

abnormally hyperphosphorylated tau protein. A lot of efforts

have been made during the last years to understand the

pathogenesis of the disease, particularly the role of AD

key proteins, Aβ and tau, in oxidative stress and mitochon-

drial dysfunction [13].

Epidemiological and observational studies demonstrated

a higher prevalence and incidence of AD in women even

after adjusting for age—about two thirds of AD patients are

female—as well as a greater vulnerability to the disease

[14]. Thus, at early stages of neurofibrillary tangle develop-

ment, women exhibit greater senile plaque deposition than

men [15], and AD pathology is more strongly associated

with clinical dementia in female patients than in male [16].

The drop of oestrogen levels after menopause was proposed

to be one explanation to this phenomenon. However, there is

little information concerning changes of steroid levels in the

human brain during ageing and under dementia conditions.

As steroids present in nervous tissues originate from the

endocrine glands (steroid hormones) and from local synthe-

sis (neurosteroids), changes in blood levels of steroids with

age do not necessarily reflect changes in their brain levels.

The concentrations of a range of neurosteroids have recently

been measured in various brain regions of aged AD patients

and aged non-demented controls including both genders by

the very sensitive GC/MS methods [6]. Schumacher and

colleagues showed a general trend towards lower level of

steroids including oestrogen in AD patients compared to

controls. Notably, neurosteroid levels were negatively cor-

related with Aβ and phospho-tau in some brain regions [6].

Another study using radioimmunoassay for steroid quanti-

fication demonstrated a decrease in oestrogen level in post-

mortem brain from female AD patients aged 80 years and

older but no significant difference in the 60–79-year age

range compared to non-demented women [17]. However in

men, an age-dependent decrease of androgen level was

observed in the brain of non-demented subjects, which

was even more pronounced in the brain of male AD patients

[17]. Whereas large studies investigating systematically

gender differences with respect to Aβ and or tau pathology

in post-mortem brain tissue from AD patients are missing,

broad evidence emerged from transgenic mice models of

AD indicating an increased Aβ load burden and plaque

number in the female brain compared to age-matched male

mouse brain [11, 18]. Of note, consistent findings on greater

Aβ burden in females were found in different animal AD

models: Tg2576 (APPSWE) mice [19], APP/PS1 [20],

APP23 [21], as well as in triple transgenic mice, like

3xTg-AD mice [18, 22] and tripleAD mice ([23], with respect

to gender differences: unpublished observations). On the

basis that the estrous cycle in female mice is constantly

repeated until approximately 11 months of age and becomes

irregular between 12 and 14 months, the data demonstrating
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a significant enhancement of Aβ load in important brain

regions like the hippocampus from the female after the age

of 11 months are striking. Regarding tau pathology, no

gender differences have been observed in the latter triple

AD models. In agreement, NFT formation in Aβ-injected

tau transgenic mice (P301L) did not vary with gender [24].

Even though one single publication reported an enhanced

neurofibrillary pathology in female TAPP mice [25], all

together, these results point to the involvement of the Aβ

pathway, rather than the tau pathway, in the higher risk of

AD in women.

Interestingly, further supporting evidence comes from ox-

idative stress studies. Previous research of our group [26]

demonstrated a gender-specific partial up-regulation of anti-

oxidant defence in post-mortem brain regions from female

compared to male AD patients further indicating that oxida-

tive damage is caused rather by overproduction from reactive

oxygen species (ROS) than by insufficient detoxification of

ROS. Since mitochondria represent the major source of ROS,

the findings from Lloret and co-workers are of specific interest

showing that brain mitochondria from old female rats produce

higher levels of ROS after exposure to Aβ than age-matched

brain mitochondria from male rats [27].

A selection of studies attested neuroprotective effects of

neurosteroids against AD-related cellular and mitochondrial

injury, but the underlying mechanisms are still poorly

understood.

Findings of our group corroborated that AD key proteins

and oxidative stress are themselves able to modify neogenesis

of neurosteroids in a cellular AD model [28, 29] (Fig. 1). In

fact, treatment of human SH-SY5Y neuroblastoma cells with

H2O2 for 24 or 48 h led to a decrease of oestradiol synthesis.

This was paralleled by an increased cell death compared to

untreated controls and a down-regulation of the expression of

aromatase, an enzyme responsible for oestradiol formation

from testosterone. Interestingly, cell death was also observed

after inhibition of aromatase by treatment with letrozole,

suggesting that endogenous oestradiol formation plays a crit-

ical role in cell survival. Furthermore, if cells were pre-treated

with oestradiol, it was possible to protect them against H2O2

and letrozole-induced cell death. In agreement, a similar pro-

tective effect of oestradiol was observed in stress condition

experiments treating the same cell line with heavy metals,

such as cobalt and mercury [30].

In addition, modulation of neurosteroid production was

observed in SH-SY5Y cells overexpressing the human am-

yloid processor protein (APP) or human tau protein [28].

Indeed, overexpression of human wild-type Tau (hTau 40)

protein induced an increase in the production of PROG, 3α-

androstanediol and 17-hydroxyprogesterone, in contrast to

overexpression of the abnormally hyperphosphorylated tau

bearing the P301L mutation which led to a decrease in the

production of these neurosteroids. In parallel, a decrease of

PROG and 17-hydroxyprogesterone production was ob-

served in cells expressing human wild-type APP (wtAPP),

whereas 3α-androstanediol and oestradiol levels were in-

creased. These results provided first evidence that AD key

proteins are able to modulate, directly or indirectly, the

biological activity of the enzymatic machinery producing

neurosteroids. These findings were further confirmed by in

vitro experiments using native SH-SY5Y cells treated with

aggregated Aβ1-42 peptide for 24 h [31]. Since APPwt SH-

Fig. 1 Main biochemical pathways for neurosteroidogenesis in the ver-

tebrate brain. Boxes represent neurosteroids which are sensitive to modu-

lation by AD key proteins, Aβ and/or tau. Mitochondrial 17β-HSD

(marked by *) is equivalent to the ABAD in mitochondria. PREG preg-

nenolone, PROG progesterone, 17OH-PREG 17-hydroxypregnenolone,

17OH-PROG 17-hydroxyprogesterone, DHEA dehydroepiandrosterone,

DHP dihydroprogesterone, ALLOPREG allopregnanolone,DHT dihydro-

testosterone, P450scc cytochrome P450 cholesterol side chain cleavage,

P450c17 cytochrome P450c17, 3β-HSD 3β-hydroxysteroid dehydroge-

nase, 5α-R 5α-reductase, Arom. aromatase, 21-OHase 21-hydroxylase,

3α-HSOR 3α-hydroxysteroid oxydoreductase, 17β-HSD 17β-

hydroxysteroid dehydrogenase
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SY5Y cells secrete Aβ levels within nanomolar concentra-

tion range, treatment of native SH-SY5Y cells using a “non-

toxic” concentration range (100–1,000 nM, non-cell death-

inducing Aβ1-42 concentrations) revealed an increase in

oestradiol production, whereas toxic Aβ1–42 concentrations

within the micromolar range, leading to cell death, strongly

reduced oestradiol levels.

Modulation of steroid production was also shown in

other cell lines, for example in oligodendrocytes, where

DHEA production is up-regulated under oxidative stress

condition induced by treatment with Aβ peptide or Fe2+

[32]. Interestingly, similar results were found in Alzheimer

patients where DHEA was significantly elevated in brain

and cerebrospinal fluid when compared to control subjects

[33]. Finally, several reports propose the role of allopregna-

nolone (3α, 5α-THP) as a plasmatic biomarker for AD,

since it was shown that the level of this neurosteroid is

decreased by 25 % in the plasma of demented patients

compared with control subjects [34, 35].

The fact that the ability to produce neurosteroids is con-

served in the vertebrates' evolution suggests that this cate-

gory of molecules is important for living beings. Thus, we

could speculate that the modulation of their biosynthesis

plays an important role in the pathophysiology of neurode-

generative disorders, such as AD.

Neurosteroids, Especially Oestrogens,

and Neuroprotection in AD

Evidence of Neuroprotective Action of Steroids in Cellular

and Animal Studies

Neuroprotective effects of neurosteroids against a variety of

brain injuries have already been described for many years.

Numerous studies with the focus on oestrogens showed that

these molecules are able to enhance cerebral blood flow,

prevent atrophy of cholinergic neurons, and modulate the

effects of trophic factors in the brain [36]. Oestrogens are a

group of compounds known for their importance in the

estrous cycle including oestrone (E1), oestradiol (E2), and

oestriol (E3). Oestradiol is about ten times as potent as

oestrone and about 80 times as potent as oestriol in its

oestrogenic effect. Oestradiol is also present in males, being

produced as an active metabolic product of testosterone. The

serum levels of oestradiol in males (14–55 pg/mL) are

roughly comparable to those of post-menopausal women

(<35 pg/mL). Oestradiol in vivo is interconvertible with

oestrone, oestradiol to oestrone conversion being favoured;

however, evidence of metabolism is mainly derived from the

periphery.

Animal studies, especially in rodents and transgenic mice

models for AD, seem to confirm positive effects of oestrogen

treatment. It has been shown that a treatment with oestrogen in

mice expressing mutations in human APP (Swedish and Indi-

ana mutation) had an impact on APP processing decreasing

Aβ levels and so its aggregation into plaques [37]. Mecha-

nisms underlying this action of oestrogen are still poorly

understood, but as discussed by Pike et al. [11], it seems that

oestrogen amongst others is able to promote the α-secretase

pathway (non-amyloidogenic, meaning non-Aβ producing)

via activation of extracellular-regulated kinase 1 and 2 (ERK

1 and 2) and through the protein kinase C (PKC) signalling

pathway.

In triple transgenic AD mice, depletion in sex steroid

hormones induced by ovariectomy in adult females in-

creased significantly Aβ accumulation and had a negative

impact on cognitive performance [18, 38]. Treatment of

these ovariectomized mice with oestrogens was able to

prevent these effects vice versa. Of note, when PROG was

administrated in combination with oestrogens, the beneficial

effects on Aβ accumulation were blocked but not on cog-

nitive performance. However, oestrogen and PROG both

can modulate kinase and phosphatase activity involved in

tau phosphorylation, especially the glycogen synthase

kinase-3β (GSK-3β). Thus, oestrogen can induce the phos-

phorylation of GSK-3β which inactivates the enzyme and

reduces tau phosphorylation, whereas PROG can decrease

the expression of tau and GSK-3β [11, 39]. This suggests

that oestrogen and PROG not only can interact to regulate

APP processing and tau phosphorylation but can also act

independently on different AD pathways.

Cognitive effects of PROG were confirmed in mice bear-

ing the Swedish double mutation of APP and mutant pre-

seniline 1 (APPswe+PSEN1Δ9 mutant mice) which showed

decreased hippocampally mediated cognitive performances

compared to non-transgenic littermates [38]. In this AD

mouse model, PROG was able to improve the cognitive

performance in tasks involving the cortex but not in those

involving the hippocampus. Besides, APPswe+PSEN1Δ9

mice presented decreased 3α, 5α-THP levels (metabolite of

PROG) in the hippocampus, compared to wild-type mice,

suggesting that deficits in hippocampal function may be

due, at least in part, to reduced capacity to form 3α, 5α-

THP in the hippocampus. Furthermore, a more recent study

supported the role of 3α, 5α-THP in triple transgenic mice

model of AD (3xTgAD) by showing reduced Aβ generation

in the hippocampus, cortex and amygdala, coupled with an

increased cellular regeneration after treatment with 3α, 5α-

THP [40].

At the cellular level, oestrogen binds to nuclear receptors,

such as oestrogen receptor α and β (ER α/β), and acts as

transcription factor. It enhanced the expression of anti-

apoptotic proteins, such as Bcl-2 and Bcl-xL, and down-

regulated the expression of Bim, a pro-apoptotic factor,

preventing the initialisation of cell death programme by
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mitochondria [11, 41]. Another way that oestrogen can

protect cells from apoptosis is the activation of antioxidant

defence systems by up-regulating the expression of manga-

nese superoxide dismutase (MnSOD) and glutathione perox-

idase [42]. Thus, oestrogen can have direct antioxidant effects

by increasing reduced glutathione levels and decreasing oxi-

dative DNA damage in mitochondria, as observed in a study

using ovariectomized female rats [43]. Of note, oestrogen can

also modulate the redox state of cells by intervening with

several signalling pathways, such as mitogen-activated

protein kinase (MAPK), G protein-regulated signalling,

NFκB, c-fos, CREB, phosphatidylinositol-3-kinase, PKC

and Ca2+ influx [41, 44]. On the basis of this complex

mode of action, oestrogens not only seem to be able to

decrease oxidative stress markers, including lipid peroxi-

dation, protein oxidation and DNA damage, but can also

directly act on the regulation of mitochondrial function

[42].

Neurosteroids and Mitochondria: Focus on Potential

Protective Effects of Oestrogen Against Aβ-Induced

Toxicity

Mitochondria are the “powerhouses of the cell”, providing

the main part of cellular energy via ATP generation, which

is accomplished through oxidative phosphorylation from

nutritional sources [45]. They control cell survival and death

by regulating both energy metabolism and apoptotic path-

ways and contribute to many cellular functions, including

intracellular calcium homeostasis, alteration of the cellular

reduction–oxidation potential, cell cycle regulation and syn-

aptic plasticity [46]. Mitochondrial dysfunction has been

proposed as an underlying mechanism in the early stages

of AD [47, 48]. We recently summarized evidence from

ageing and Alzheimer models showing that the harmful trio

“ageing, Aβ and tau protein” triggers mitochondrial dys-

function through a number of pathways, such as impairment

of oxidative phosphorylation, elevation of reactive oxygen

species production and interaction with mitochondrial pro-

teins, contributing to the development and progression of

the disease [13, 49].

Mitochondria and neurosteroidogenesis are also closely

linked since mitochondria contain the first enzyme involved

in steroidogenesis, the cytochrome P450 cholesterol side

chain cleavage enzyme (P450scc) located at the inner side

of the mitochondrial membrane which is responsible for the

conversion of cholesterol to pregnenolone (PREG). The first

step of neurosteroidogenesis is the transfer of cholesterol

from the outer to the inner mitochondrial membrane. It is

also the rate-limiting step in the production of neurosteroids

because the ability of cholesterol to enter into mitochondria

to be available to the P450scc will determine the efficiency

of steroidogenesis [50]. Free cholesterol accumulates

outside of mitochondria and binds to the steroidogenic acute

regulatory protein, a hormone-induced mitochondria-

targeted protein that initiates cholesterol transfer into mito-

chondria. Then, molecules are transported inside mitochon-

dria by a protein complex including translocator proteins

(TSPO), a cholesterol-binding mitochondrial protein also

known under the name of peripheral-type benzodiazepine

receptor, which permits cholesterol transfer into mitochon-

dria and subsequent steroid formation.

It has been shown that TSPO is up-regulated in the post-

mortem brain of AD patients, resulting in an increased level

of PREG in the hippocampal region of those brains [50].

Interestingly, the level of 22R-hydroxycholesterol, a steroid

intermediate in the conversion of cholesterol to PREG, was

found at lower levels in the AD brain compared to the

control, which suggests that TSPO does not function nor-

mally in Alzheimer patients [33, 51].

From an energetic point of view, it is known that steroids

such as oestrogen can regulate mitochondrial metabolism by

increasing the expression of glucose transporter subunits

and by regulating some enzymes involved in the tricarbox-

ylic acid cycle (TCA cycle) as well as glycolysis, such as the

hexokinase, phosphofructokinase, pyruvate and malate de-

hydrogenase [41, 52], which leads to improved glucose

utilization by cells [11, 44] (Fig. 2).

Oestrogens seem to be able to up-regulate genes coding

for some electron transport chain components present in

nuclear and in mitochondrial DNA [53, 54]. In fact, an

oestrogen-induced increased expression of some subunits

of mitochondrial complex I (CI), cytochrome c oxidase

(complex IV or CIV) and F1 subunit of ATP synthase was

observed [41, 42, 52]. Furthermore, treatment of ovariecto-

mized female rats with oestradiol induced an increase of

mitochondrial respiratory function in the brain with regard

to an enhancement of O2 consumption coupled to an in-

creased activity of cytochrome c oxidase [53]. Thus, oes-

trogen seems to enhance the general metabolism in cells, but

besides, it seems also able to directly protect mitochondria

against oxidative stress-induced injury [52]. Thus, incuba-

tion of isolated mitochondria from the rat brain with oestra-

diol leads to a decrease of H2O2 production by this organelle

coupled with an increase of the mitochondrial membrane

potential (MMP). Furthermore, it has been proposed that its

phenolic A ring could allow oestradiol to intercalate into the

mitochondrial membrane and to avoid lipid peroxidation

occurring in stress condition [54], which could be responsi-

ble for the stabilization of the MMP. Moreover, oestradiol

seems to prevent the release of cytochrome c by mitochon-

dria (a mechanism known to induce apoptosis of cells by

activating the caspase cascade in the cytoplasm), a mecha-

nism increasing the efficiency of the respiratory chain [52].

Finally, another oestrogen signalling pathway avoiding

the negative effects of oxidative stress is the one regulating
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calcium homeostasis by inducing mitochondrial sequestra-

tion of cytosolic calcium [42, 54]. In fact, an imbalance of

calcium regulation can lead to an increase of ROS produc-

tion by activating the enzyme nitric oxide synthase, which

can in turn sensitize neural cells to oxidative damage. It has

been shown that an oestradiol treatment of primary hippo-

campal neurons was able to potentiate glutamatergic re-

sponse via NMDA receptor which resulted in an increased

influx of calcium in cells. This effect was coupled to an

induction of mitochondrial sequestration of cytosolic calci-

um and an increase of the mitochondrial calcium load tol-

erability thereby avoiding calcium-induced excitotoxicity as

well as promoting cell survival.

Taken together, all those different findings indicate that

oestrogen might be able to compensate deficits and injuries

that occur in AD, namely mitochondrial respiration impair-

ments, enhanced ROS production, excitotoxicity and, more

generally, metabolic deficits (Fig. 2). More recently, new light

has been shed on a mitochondrial enzyme that is able to

directly bind Aβ peptide and in which one of the main

substrate is 17β-oestradiol [55]. This enzyme is known under

the name of 17β-hydroxysteroid dehydrogenase type 10

(17β-HSD) or Aβ-binding alcohol dehydrogenase (ABAD).

ABAD, Oestradiol and Aβ-Induced Mitochondrial

Impairment

ABAD belongs to the alcohol dehydrogenase family, and it is

responsible for the reversible oxido/reduction of several sub-

strates including linear alcohols and steroids, such as 17β-

oestradiol, using NAD+ as cofactor [56]. Under normal con-

ditions (without Aβ), this enzyme plays a role in the regulation

of metabolic homeostasis, and its overexpression improved

cell viability and ATP content [57]. It has been shown that

ABAD is up-regulated in brains of AD mice as well as AD

patients [57, 58], and it has been suggested that the binding of

Aβ changes the conformation of the enzyme, which seems to

exacerbate mitochondrial dysfunction induced by Aβ.

Fig. 2 Modulation of mitochondrial function by Aβ, hyperphosphory-

lated tau and oestradiol. In AD, mitochondrial dysfunction was found

to be a central pathological mechanism which occurs already at early

stages of the disease. On one hand, studies showed that amyloid-β

peptide (Aβ) can be responsible of metabolic impairments, such as the

decrease of glucose consumption observed in the AD brain as well as

the calcium-induced excitotoxicity in neurons. It has been found that

hyperphosphorylated tau and Aβ are able to impair mitochondrial

respiration by inhibiting the ETC CI and CIV, respectively, inducing

decreased oxygen consumption, decreased ATP production and in-

creased ROS level. This oxidative stress induced by ETC dysfunction

can surpass cellular and mitochondrial scavenger (MnSOD, Cu/

ZnSOD) and impacts on MMP as well as mitochondrial DNA

(mtDNA). On the other hand, it has been shown that oestradiol can

increase glucose utilization by cells as well as ETC activity, stabilize

the MMP and prevent ROS production and calcium-induced excitotox-

icity. In the graph, E2 designates where oestradiol potentially acts on

mitochondria to compensate Aβ-induced toxicity. In turn, Aβ seems to

be able to impact oestradiol metabolism in mitochondria, since it can

be directly linked to the mitochondrial enzyme ABAD and possibly

modulates its enzymatic activity (such as the reversible conversion of

oestradiol to oestrone) and non-enzymatic activity (mitochondrial RN-

Ase P). ABAD Aβ-binding alcohol dehydrogenase, CI complex I, CII

complex II, CIII complex III, CIV complex IV, CV complex V, cyt c

cytochrome c, Cu/Zn SOD copper/zinc superoxide dismutase, MnSOD

manganese superoxide dismutase, TCA tricyclic acid, E2 oestradiol,

ROS reactive oxygen species, mtDNA mitochondrial DNA, ER oestro-

gen receptor
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More recently, studies performed in transgenic micemodels

of AD showed that behavioural stress or depletion of ovarian

hormones by ovariectomy exacerbated mitochondrial dys-

function, aggravated plaque pathology and increased ABAD

expression in the brain [59, 60]. Furthermore, double trans-

genic mice overexpressing mutant APP and ABAD present an

earlier onset of cognitive impairment and histopathological

changes when compared to APP mice [49], suggesting that

Aβ–ABAD interaction is an important mechanism underlying

Aβ toxicity. This hypothesis is supported by a study from Yao

and collaborators who recently showed that inhibition of Aβ–

ABAD interaction by a decoy peptide can restore mitochon-

drial deficits (activity of mitochondrial respiratory complexes,

ROS level) and improve neuronal and cognitive function [60].

New interesting findings of our group seem to go in the

same way with regard to the use of a novel small ABAD-

specific compound inhibitor (AG18051) by investigating

the role of this enzyme in Aβ toxicity in human SH-SY5Y

cells treated for 5 days with Aβ1–42 0.5 uM [61]. The crystal

structure of human ABAD in presence of AG18051 showed

that the inhibitor formed a covalent link with the NAD+

cofactor and occupied the substrate-binding site of the en-

zyme [62]. Thus, the inhibitor was able to prevent Aβ-

induced cell death and significantly normalized metabolic

functions impaired by Aβ, such as cytosolic and mitochon-

drial ROS as well as mitochondrial respiration. Furthermore,

it was able to restore oestradiol levels which were reduced

after treatment with Aβ [31, 61]. What is interesting to note

is that the apparent protective effects of the ABAD inhibitor

seem to be independent on its interaction with Aβ. In fact, a

24-h pre-treatment with AG18051, before the incubation of

cells with Aβ1-42, was sufficient to prevent cell death, nor-

malize ROS production and restore mitochondrial respira-

tion. Regarding oestradiol level, we previously showed that

it decreased in the cytosol and increased in isolated mito-

chondria of SH-SY5Y cells after 5 days of treatment with

Aβ [49]. The ABAD inhibitor normalized the oestradiol

level in the cytosol [61], and preliminary data of our group

suggest a similar effect in isolated mitochondria (unpub-

lished data). Thus, we propose the following model of mode

of action: ABAD inhibitor is able to block Aβ toxicity by

changing ABAD configuration, which disables the binding

of Aβ thus preventing its toxic effects (Fig. 3). The action of

ABAD on the electron transport chain (ETC) is still unclear,

but the potential role of ABAD as mitochondrial RNAse P

directly links ABAD to the production of mitochondrial

ETC proteins and ROS generation [63]. Notably, AG18051

was able to normalize also this function of ABAD since

mitochondrial respiration was restored, but the underlying

mechanisms still remain unclear [61].

Thus, the interplay between ABAD, oestradiol and mito-

chondria may be a very interesting lead to follow in the

future to decode Aβ-induced mitochondrial toxicity and

explore therapeutic strategies of ABAD inhibition.

Conclusion

It is still debated whether oestrogen treatment after meno-

pause could result in improved cognitive function in wom-

en. This debate is based on many animal and cell culture

data showing that oestrogens can positively affect the ageing

and AD brain. It was recognized from former studies that

oestrogen depletion in post-menopausal women represents a

significant risk factor for the development of AD and that an

oestrogen replacement therapy may decrease this risk and

even delay disease progression [64, 65]. However, large

treatment trials showed negative effects of long-term

Fig. 3 Aβ, ABAD and mitochondria: modes of interactions. a Under

normal conditions, ABAD is responsible of the reversible oxido/reduc-

tion of linear alcohols and steroids, such as the reversible conversion

from oestradiol to oestrone. Its potential function as an RNAse P could

also be important for the good functioning of the mitochondrial ETC. b

Under AD-relevant pathological conditions, Aβ can directly bind the

mitochondrial enzyme ABAD, changing the configuration of the en-

zyme which seems to inhibit its activity and creates an imbalance

between oestradiol and oestrone. Aβ-induced ABAD misfolding can

impact ETC functioning and increase, directly or indirectly, ROS

production, which lead to cell death. c In the presence of AG18051

(AG), the binding of Aβ to ABAD is inhibited, normalizing oestradiol

level, ROS production, ETC activity, and improves cell survival.

ABAD Aβ-binding alcohol dehydrogenase, IMM inner mitochondrial

membrane, OMM outer mitochondrial membrane
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treatment with oestrogens in older women. Above all, results

from the WHIMS including 4,532 post-menopausal woman

aged over 68 years indicated a twofold increase in dementia

after 4.2 years of hormonal treatment (p.o. treatment with

premaxin plus medroxyprogesterone). In addition, the study

indicated potential risks for breast cancer, pulmonary embo-

lism and stroke [66, 67]. Some attribute this failure to the

synthetic nature of the hormones used in the WHIMS trial,

since in vitro studies support a beneficial role of oestradiol and

progesterone, but not of medroxyprogesterone used in the

WHIMS [68, 69]. Of note, medroxyprogesterone is not me-

tabolized to 3α, 5α-THP and can inhibit conversion of PROG

to 3α, 5α-THP [70]. Similarly, oestradiol, PROG or 3α, 5α-

THP, but not medroxyprogesterone, showed beneficial effects

in ageing, seizure, cortical contusion, ischaemia and diabetic

neuropathymodels [38]. Another theorywhich tries to explain

trial failure is the “critical window hypothesis”, asking for the

critical period where oestrogen might exert a neuroprotective

effect [71]. This hypothesis is substantiated by animal re-

search, e.g. mice which have undergone ovariectomy, but in

which oestrogen treatment was delayed substantially by

months (the equivalent of years in human terms), did not

benefit by this, as the animals did which received treatment

immediately after ovariectomy [72]. However, a recent meta-

analysis [73] indicated, contrary to expectations, that age of

women and duration of time relapsed when treatment was

initiated since menopause did not significantly affect treat-

ment outcome. Thus, natural oestradiol (E2) without a pro-

gestagen should represent the preferred treatment [73].

Furthermore, the oral route of drug delivery, being non-

invasive in nature, is by far the most convenient and preferred

route of administration in any acute or chronic treatment.

Though oestradiol itself from conventional oral oestradiol

formulations has the ability to cross the blood–brain barrier

(BBB) and reach the brain, but a large oral dose is required to

achieve therapeutic levels of oestradiol due to its non-

specificity for the brain. This non-specificity increases the

peripheral drug burden and subsequently potentiates the risk

of peripheral adverse effects. Furthermore, with specific re-

gard to the brain-specific action of oestradiol as a neuroste-

roid, independently of its action in the periphery, other modes

of administration (cyclical, nasal, polymer nanoparticles for

oral delivery) need to be sought and investigated [74]. Alter-

natively, the true potential of phyto-oestrogens, like the soy

isoflavones genistein, daidzein and glycitein, which activate

the same neuroprotective pathways than oestrogens but with

weak oestrogenic cellular effects that might be responsible for

the lower prevalence of AD in Japanese living in their ethnic

homeland compared to Japanese living in the USA [75], to

beneficially modify disease processes should be studied in

clinical trials [27]. In addition, the field could strongly benefit

from the successful development of oestrogen derivates that

have no unfavourable oestrogenic side effects. The successful

use of oestrogen or oestrogen-analogue therapies to delay,

prevent and/or treat AD will require additional research to

optimize key parameters of therapy.

In this context, the interplay between ABAD, oestradiol

and mitochondria and accordingly ABAD inhibition might

represent a further interesting lead to follow in the future.

Knowledge acquired from these studies will eventually be

applied to unravel the pathophysiology and to inform pre-

vention and intervention strategies of AD.
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8.1 INTRODUCTION

The brain is considered to be especially vulnerable to

oxidative stress due to high levels of prooxidant factors

and relatively low antioxidant defence. Putative proox-

idant factors consist of a high metabolic rate, high levels

of unsaturated fatty acids that readily undergo lipid

peroxidation reactions, and relatively high levels of iron

in some brain regions that facilitate hydroxyl radical

formation from Fenton reactions [1]. Furthermore,

neuronal activity results in high levels of intracellular

calcium ions after depolarization that are linked to

activation of phospholipase A2, release of arachidonic

acid, and subsequent formation of reactive oxygen

species (ROS) from cyclooxygenase and lipoxygenase

reactions (Fig. 8.1). Calcium ions also facilitate mito-

chondrial depolarization with release of mitochondrial

factors that promote ROS formation. Furthermore,

calcium ions are required for nitric oxide synthesis via

endothelial and neuronal nitric oxide synthases (eNOS

and nNOS). The brain contains relatively high levels of

nitric oxide that can give rise to formation of highly

reactive peroxynitrite. Also, catecholamine metabolism

involves increased ROS formation: Superoxide can be

generated from semiquinone formation, and hydrogen

peroxide is released as a by-product of catecholamine

synthesis by tyrosine hydroxylase and degradation by

monoamine oxidases.

Despite these prooxidant factors, the brain possesses

only relatively low levels of antioxidant defenses. Cata-

lase activity is extremely low in brain tissue, and gluta-

thione peroxidase as well as superoxide dismutase show

low activity compared with other organs such as liver,

heart, and kidney [2]. As a consequence, increased levels

of ROS can be especially detrimental to brain tissue.

Oxidative stress has accordingly been suggested to be a

primary factor in the pathogenesis of several chronic

neurodegenerative disorders, most prominently Alzhei-

mer disease (AD), Parkinson disease (PD), and Hun-

tington disease (HD).

Several studies, mainly in animals, suggest neuroster-

oid involvement in neuroprotection [3]. However in

humans, the role of neurosteroidogenesis in the regula-

tion of degenerative mechanisms is unknown. Since the

process of neurosteroid biosynthesis is a pivotal mecha-

nism intervening in the protection or viability of nerve

cells, it might be regulated or significantly affected under

oxidative stress conditions. However, the key factors

interacting with neurosteroid biosynthesis under patho-

physiological conditions are poorly understood. New

findings demonstrate an amino acid sequence-dependent

action of amyloid-β (Aβ) on neurosteroidogenic path-

ways [4]. The data also indicate that, unlike progesterone

neosynthesis, regulation of endogenous estradiol forma-

tion by pathogenic factors may be a deciding process

controlling cell death mechanisms. Targeting estradiol
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biosynthetic pathways in nerve cells may therefore be

interesting in development of neuroprotective strategies.

8.2 EVIDENCE FOR A PATHOLOGICAL ROLE

FOR OXIDATIVE STRESS IN AD

AD is a neurodegenerative brain disease and the most

common form of dementia among the elderly. It is

characterized by clinical symptoms of severe and pro-

gressive loss of memory, language skills, as well as

spatial and temporal orientation. The pathology of

AD is characterized by extracellular senile plaques,

composed of aggregated amyloid-β peptide, and intra-

cellular neurofibrillary tangles, consisting of aggregates

of abnormally hyperphosphorylated Tau protein, and is

accompanied by mitochondrial dysfunction, but the

mechanisms underlying AD-related dysfunction and

neurodegeneration are poorly understood.

Identification of factors that contribute to the pathol-

ogy of AD comes from epidemiological as well as genetic

studies: AD can be classified into two different forms,

rare familial forms (FAD), in which the disease onset is

at an age younger than 60 years, and the vast majority of

sporadic AD cases, in which onset occurs at an age over

60. Both forms of AD show the same clinical symptoms

and neuropathology. Genetic studies in FAD patients

have identified mutations in the genes encoding for the

amyloid precursor protein (APP) and for the presenilins

PS1 and PS2 that cause an autosomal inherited form of

AD with 100% penetrance. These FAD mutations

consistently lead to increased production of Aβ from

its precursor protein APP, which prompted Hardy and

Higgins [5] to suggest a direct and pathological role for

Aβ accumulation in the development of AD. In the

sporadic form of the disease, several risk factors have

been found that increase the risk to develop the disease

but—unlike FAD mutations—do not necessarily lead to

development of AD. Aging is by far the most important

risk factor for AD, but the apolipoprotein E4 allele and

female sex also predispose to the development of AD.

Immunohistochemical studies of postmortem AD

brains have established that neurons undergo apoptotic

cell death. Since ROS can elicit apoptotic signaling, the

hypothesis that oxidative stress is involved in the patho-

genic steps that lead to the development of AD was

proposed in the 1990s by several groups [6—9]. There is

a large body of evidence in support of this hypothesis:

Oxidative stress has been repeatedly shown to be associ-

ated with Aβ toxicity and with risk factors for sporadic

AD—mostly aging and the apolipoprotein E4 genotype.

8.2.1 Evidence for a Role for Oxidative Stress

in Sporadic AD

Oxidative stress has been associated with the risk factors

for sporadic AD, most prominently with aging [10],

suggesting that an age-associated rise in accumulation

of ROS can render the brain more vulnerable to the

development of AD. Consequently, increased markers of

oxidative stress have been found in AD patients: Several

studies have reported elevated levels of lipid peroxida-

tion products, oxidatively modified proteins, and oxi-

dized DNA and RNA bases in brains and cerebrospinal
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Fig. 8.1 Factors contributing to the accumulation of reactive oxygen species (ROS) in brain tissue and their implications in
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eNOS/nNOS, endothelial/neuronal nitric oxide synthase; Aβ, amyloid-β peptide
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fluid from AD patients compared to age-matched non-

demented control subjects [11–13]. Furthermore, tissue

samples from AD brains display a higher susceptibility

to in vitro oxidation [14], suggesting an impairment of

antioxidant defense in AD patients. Reports on antioxi-

dant parameters in AD brains have, however, been

contradictory so far. Several antioxidant enzymes have

been studied in AD brains with inconsistent results, but

the majority of reports found elevations in antioxidant

enzymes, suggesting an upregulation of antioxidant

defense in response to increased ROS levels [15]. Inter-

estingly, upregulation of antioxidant defence was more

pronounced in female patients, and levels of 4-hydro-

xynonenal (HNE), a neurotoxic aldehyde derived from

lipid peroxidation reactions, were elevated in female

compared to male patients. These findings suggest that

brains from female AD patients are under higher oxida-

tive pressure [15], consistent with epidemiological find-

ings that AD is more frequent in postmenopausal

women compared to age-matched men. This observation

can possibly be linked to the lack of sexual hormones,

especially estrogens, that can modulate cognitive func-

tion and nonreproductive behaviours in humans and

other mammalian species [16]. Potential sources of ROS

in AD brains include ROS derived from impaired

mitochondrial function [17, 18] and secondary ROS

formation due to inflammatory reactions. Furthermore,

increased monoamine oxidase B activity and increased

levels of potentially pro-oxidative heavy metals like iron

have been identified in AD brains [19, 20] and in patients

with mild cognitive impairment (MCI), the “clinical

precursor of AD,” suggesting that oxidative stress is an

early event of the disease [21].

Apart from aging, the apolipoprotein E4 allele is the

second most important risk factor for the development

of AD. Apolipoprotein E seems to play a role in brain

lipid metabolism and neuronal and glial development.

It can exist in three different alleles, E2, E3, and E4,

which differ in only two amino acids: The E2 isoform

contains two and the E3 isoform one cysteine residue,

while the E4 isoform contains none. Carriers of the

apolipoprotein E4 are at increased risk to develop

sporadic AD, especially when they are homozygous

carriers. The apolipoprotein E4 allele has been associ-

ated with increased oxidative damage in AD brains,

with the greatest impact in homozygotic carriers [22]

and an increased susceptibility to cell death in lympho-

cytes from carriers bearing at least one E4 allele [23]. In

vitro studies have evidenced that apolipoprotein E4

is less efficient in binding HNE, a cytotoxic lipid

peroxidation product. These findings suggest that the

Apo E4 isoform increases susceptibility to oxidative

damage, thereby possibly predisposing to the develop-

ment of AD.

8.2.2 Oxidative Stress and Toxicity of Mutant APP,

Presenilins, and Tau

Since the proposal of the amyloid hypothesis of AD,

toxic mechanisms caused by mutant APP and presenilins

related to an increased production of Aβ have been

extensively studied. Cells exposed to Aβ undergo apopto-

tic cell death, and the toxicity of Aβ has been shown to be

related to the production of ROS [24, 25]. Furthermore,

toxicity of Aβ depends on its aggregation state, which can

be influenced by oxidation. Thus oxidative stress

can cause formation of toxic Aβ species, which in turn

can further exacerbate accumulation of ROS in a vicious

cycle (Fig. 8.1). This could also explain why the preva-

lence of AD increases with advancing age—due to rising

oxidative stress levels with aging favoring Aβ toxicity.

Toxicity of Aβ is also evident in cell cultures over-

expressing APP/Aβ. PC12 cells transfected with mutant

APP Swedish showed higher sensitivity to ROS-induced

cell death and increased mitochondrial impairment after

challenge with hydrogen peroxide [26]. Similar observa-

tions were obtained in human neuroblastoma cells (SH-

SY5Y) overexpressing human wild-type APP (wtAPP)

[27]. The study demonstrated that chronic exposure to

Aβprotein resulted inactivity changesof complexes III and

IV of the oxidative phosphorylation system (OXPHOS) in

mitochondria coupled with a drop of ATP levels and an

increase of ROS production, which may finally instigate

loss of synapses and neuronal cell death in AD. Further-

more, treatments of untransfected SH-SY5H cells with Aβ

or human amylin aggregates induced an increase of ROS

production and had a negative impact on mitochondrial

respiration by their action on OXPHOS system [25].

Toxicity of Aβ has also been evidenced in animal

models of the disease. Mice transgenic for mutant APP

have high levels of Aβ in their brains and show an age-

dependent formation of Aβ plaques similar to the plaques

found in AD patients. Increased markers of oxidative

stress have been detected in brains of transgenic mice

bearing mutant APP, accompanied by markers for mito-

chondrial damage [28]. Furthermore, mutant APP trans-

genic mice show reduced levels of the antioxidant enzyme

copper/zinc superoxide dismutase [29]. In agreement,

increased markers of oxidative stress and reduced antiox-

idant defense by catalase as well as a trend toward

reduced activity of SOD were found in brains from

FAD patients [30]. The results provide an important

link of studies on toxicity of mutant APP in cell culture

and animal models mimicking the pathogenesis of the

disease in FAD patients, all of them bearing mutations

finally causing an increased generation of Aβ.

Mutations in the presenilins PS1 and PS2 account for

the majority of FAD cases and have similarly been

linked with oxidative stress. Oxidative toxicity of mutant
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presenilins can be either (i) due to increased formation

of toxic Aβ, especially the Aβ 1-42 isoform, or (ii) due to

direct toxic effects of mutant presenilins. Several muta-

tions in the presenilins have been found that consistently

lead to increased production of the long Aβ 1-42 from its

precursor protein APP [31], resulting in increased Aβ

levels and toxicity via the above-mentioned mechanisms.

Expression of mutant presenilins in cell culture and

transgenic mice sensitizes cells to apoptotic stimuli by

increasing ROS production and mitochondrial damage

[32, 33]. Furthermore, brains from PS1 mutant transgenic

mice display reduced activities of antioxidant enzymes

[34], and lymphocytes from these mice display increased

sensitivity to apoptosis accompanied by high intracellular

ROS and calcium levels [35]. Interestingly, increased ROS

accumulation, disturbed calcium homeostasis, and dimin-

ished levels of antioxidants have also been identified in

peripheral cells from FAD patients bearing APP or PS

mutations as well as in cells from sporadic AD patients

[36]. These results suggest that the oxidative toxicity

observed in transgenic animal models of the disease can

indeed play an important role to the pathogenesis of

sporadic as well as familial AD in humans.

The secondmain hallmark lesion ofAD is intracellular

neurofibrillary tangles (NFTs) built up of hyperpho-

sphorylated Tau. This protein may block the transport

of mitochondria, leading to energy deprivation and

oxidative stress at the synapse as well as to neurodegen-

eration [37]. Functional analysis showed mitochondrial

dysfunction in transgenic mice (pR5 mice) expressing

P301Lmutation of Tau, with a reduced complex I activity

and, with age, impaired mitochondrial respiration and

ATP synthesis. Mitochondrial dysfunction was associat-

ed with higher levels of ROS in aged pR5 mice. Increased

Tau pathology as in aged homozygous pR5mice revealed

modified lipid peroxidation levels and upregulation of

antioxidant enzymes in response to oxidative stress.

These findings demonstrated for the first time that not

only the Aβ but also the Tau pathology acts on the

enzyme metabolism of the brain and the oxidative con-

ditions in AD. However, more recently, the successful

development of double, and even triple, transgenicmouse

models has facilitated the investigation of pathogenic

mechanisms in AD and assisted in an understanding of

the interplay of Aβ and Tau on bioenergetics processes in

vivo [37]. These findings support the idea that Aβ andTau

act synergistically in amplifying mitochondrial respirato-

ry deficits, mainly of complex I and IV activities [18].

8.2.3 Is Oxidative Stress an Early Event

in the Pathogenesis of AD?

From the above evidence it can be concluded that oxida-

tive stress is a feature of sporadic as well as familial forms

of AD. However, it remains to be elucidated whether

oxidative stress is a primary factor in the pathogenesis of

the disease or only a secondary contributing mechanism.

The fact that oxidative damage and mitochondrial dys-

function can be detected at early stages in animal models

[28]—even before the presence of Aβ plaques [38]—and

that oxidative stress parameters have been detected at

highest levels in early stages of the disease in AD patients

[39] suggest that oxidative stress is a primary event in the

course of the disease. This is supported by studies that

reported a reduced risk of AD in users of antioxidant

vitamin supplements [40]. Although further clinical trials

are needed, antioxidant therapeutic approaches seem to

be most effective at very early stages of AD and are even

better utilized to modulate disease risk.

8.3 NEUROSTEROIDS

Steroid hormones are now well-defined molecules that

aremainly produced by endocrine glands, such as adrenal

gland, gonads, and placenta. They are involved in the

control of a lot of physiological processes, from repro-

ductive behavior to stress responsiveness. With their

ability to cross cellular membranes, and thus the blood-

brain barrier, steroid hormones have also an important

role in the development, maturation, and differentiation

of the central and peripheral nervous systems.

Three decades ago, Baulieu and co-workers were the

first to show a steroid production within the nervous

system itself. They discovered that some steroids, such as

pregnenolone (PREG) and dehydroepiandrosterone

(DHEA), were more concentrated in the brain than in

the plasma [41]. In addition, they could show that the level

of these steroids remained elevated in the brain even after

adrenalectomy and castration. These molecules are now

called “neurosteroids” and are defined as neuroactive

steroids that are synthesized within the nervous system,

independently of peripheral endocrine glands. Enzymatic

activities of proteins involved in steroidogenesis have been

shown in many regions of the central and peripheral

nervous systems, in neurons as well as in glial cells [42].

Pharmacological and behavioral studies showed that

neurosteroids were implicated in several physiological

mechanisms, for example, cognition, anxiety, depression,

neuroprotection, and even nociception [43]. Thus the

conservation of the ability to produce neurosteroids

during vertebrates’ evolution suggests that this category

of molecules is important for living beings.

8.3.1 Biosynthesis of Neurosteroids

Neurosteroids derive from cholesterol and other blood-

borne steroidal precursors. The first step of neurosteroi-

dogenesis is the transfer of molecules of cholesterol from
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the outer to the inner mitochondrial membrane. Free

cholesterol accumulates outside ofmitochondria andbinds

to the steroidogenic acute regulatory protein (StAR), a

hormone-induced mitochondria-targeted protein that

initiates cholesterol transfer into mitochondria. Then,

molecules are transported insidemitochondria byaprotein

complex including translocator protein (TSPO), a choles-

terol-binding mitochondrial protein also known under the

name of peripheral-type benzodiazepine receptor (PTBR),

which permits cholesterol transfer into mitochondria and

subsequent steroid formation [44]. This translocation from

the outer membrane to the inner membrane of mitochon-

dria is the rate-limiting step in the production of neuro-

steroids. In fact, the ability of cholesterol to enter into

mitochondria to be available to cytochrome P450 choles-

terol side chain cleavage enzyme (P450scc), located in the

inner side of the mitochondrial membrane and responsible

for the conversion of cholesterol to PREG, will determine

the efficiency of steroidogenesis.

PREG, precursor of all steroid hormones, is then

transported to the endoplasmic reticulum, where it is

metabolized to form neuroactive steroids (Fig. 8.2). The

next enzymatic step in neurosteroidogenesis is the conver-

sion of PREG into DHEA by the cytochrome P450c17

enzyme (P450c17), alsocalled17α-hydroxylase/17,20 lyase.

This enzyme catalyzes the 17α-hydroxylation of PREG in

a two-step reaction that gives first 17-hydroxyPREG

(17OH-PREG) and then the final product, DHEA. Each

step requires the molecules NADPH and O2.

PREG can also be catalyzed by another enzyme

called 3β-hydroxysteroid dehydrogenase (3β-HSD) into

progesterone (PROG). In general, 3β-HSD uses NADþ

as a cofactor to oxidize hydroxysteroids, such as PREG,

17OH-PREG, and DHEA, into their respective ketos-

teroids, PROG, 17OH-PROG, and androstenedione.

Then, neurosteroidogenesis follows two main pathways

with PROG as precursor: the androgen/estrogen path-

way and the corticoid pathway.
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Fig. 8.2 Main biochemical pathways for neurosteroid biosynthesis and metabolism in the vertebrate brain. 17OH-PREG,

17-hydroxypregnenolone; 17OH-PROG, 17-hydroxyprogesterone; DHEA, dehydroepiandrosterone; DOC, deoxycorticosterone;
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In the first pathway, PROG is metabolized by the

same enzyme as PREG, the cytochrome P450c17, which

converts PROG into androstenedione with the 17-

hydroxyPROG as an intermediate product of reaction.

Androstenedione is then converted in a reversible man-

ner into testosterone by another hydroxysteroid dehy-

drogenase called 17β-HSD. Of note, this enzyme

possesses several isoforms, and one of them, 17β-HSD-

10, also called ABAD (Aβ binding alcohol dehydroge-

nase) or ERAB (endoplasmic reticulum-associated

amyloid β-peptide binding protein), is in mitochondrial

matrix. This isoform was recently linked to AD because

of its ability to bind Aβ peptide, thus inducing mito-

chondrial dysfunction [45]. 17β-HSD is also responsible

for the reversible conversion of estrone, an estrogen

stemming from aromatization of androstenedione by

the enzyme aromatase into estradiol. The second way

to synthesize estrogens is via testosterone molecules,

which can, in turn, be metabolized into estradiol by

aromatase or continued metabolism via the androgen

pathway. The 5α-reductase enzyme (5α-R), a microsom-

al NADPH-dependent protein, intervenes at this level

and catalyzes the transfer of two atoms of hydrogen from

NADH to form the 5α-reduced metabolite of testoster-

one, dihydrotestosterone (DHT) [42]. Finally, the enzyme

3α-hydroxysteroid oxido-reductase (3α-HSOR), also

called 3α-hydroxysteroid dehydrogenase, catalyzes the

reversible conversion of DHT into the neuroactive steroid

3α-androstanediol.

The latter enzymes also intervene at another level, in

the second main steroidogenic pathway which starts with

PROG. In fact, PROG is successively metabolized by the

5α-R and the 3α-HSOR to form dihydroprogesterone

(DHP) and 3α/5α-tetrahydroprogesterone (3α/5α-THP),

also known under the name allopregnenolone, another

neuroactive steroid.

To finish by the corticoid pathway, molecules of

deoxycorticosterone (DOC), stemming from the trans-

formation of PROG by the enzyme 21-hydroxylase

(21-OHase), are in turn successively converted into

dihydroxydeoxycorticosterone (DHDOC) and tetrahy-

droxydeoxycorticosterone (THDOC) by the 5α-R and

the 3α-HSOR, respectively.

8.3.2 Mechanisms of Action of Neurosteroids

The main role of steroid hormones produced by gonads

or adrenal glands is now well defined and consists of a

feedback loop on the hypothalamus-pituitary axis, to

inhibit or activate their own synthesis. Thus they act at a

distance from their glands of origin in an endocrine way.

In contrast, neurosteroids are synthesized by the nervous

system and act on the nervous system in an autocrine/

paracrine configuration [46]. The ability of neurosteroids

to cross cellular membranes allows them to act on

nuclear receptors and to have a genomic action by

regulating gene transcription. This action seems to be

important during neonatal life, when it has been shown

that neurosteroids, such as PROG or estradiol, are able

to promote dendritic growth, spinogenesis, synaptogen-

esis, and cell survival, particularly in the cerebellum [47].

The most studied steroid nuclear receptors are the

estrogen receptors α and β, which are expressed in

metabolic tissue such as adipose tissue, skeletal muscle,

liver, and pancreas, as well as in the central nervous

system. Some studies have demonstrated that these

receptors play a role in the regulation of glucose homeo-

stasis and lipid metabolism [48], whereas other studies

showed that they were also implicated in neuroprotec-

tion [49].

Neurosteroids can also act via membrane receptors

and play a role in general as allosteric modulators of

neurotransmitter receptors. For example, sulfate esters

of DHEA and PREG are known to be excitatory

neurosteroids and can inhibit the effect of GABA, an

inhibitor neurotransmitter, at physiological concentra-

tion by acting via the GABAA receptor [46]. On the

contrary, allopregnenolone is a positive allosteric mod-

ulator of GABAA receptors, strengthening the effects of

GABA. PREG sulfate can also potentiate the effect of the

main excitatory neurotransmitter glutamate by binding

to N-methyl-D-aspartate (NMDA) receptors. On the

other hand, it is well known that neurosteroids modulate

neurotransmitter binding sites or receptors including

calcium channels and P2X receptors in the brain, spinal

cord, as well as dorsal root ganglia (DRG) [50].

Furthermore, recent clinical and pharmaceutical

studies showed that estrogens can interact with several

neurotransmitter systems, such as the cholinergic and

serotoninergic systems, to influence cognitive perfor-

mance in animals and humans [51]. Thus neurosteroids

seem to play an important role in the nervous system

during development as well as in adult brain, by regu-

lating gene transcription and different neurotransmitter

systems. Their implication was already demonstrated in

several pathologies, such as AD or neuropathic pain [42,

52]. Thus it can be speculated that they might be an

important therapeutic target to develop in the next

years.

8.4 NEUROSTEROIDS AND OXIDATIVE

STRESS

During recent years, a growing body of evidence has

shown that neurosteroids, in particular estrogens, are

implicated in the regulation of oxidative stress by acting

on mitochondria [53]. However, on one hand, depending
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on the level of oxidative stress within cells estrogens can

have a protective effect or, on the contrary, show a

negative action on cell survival. On the other hand,

oxidative stress itself can have an effect on neurosteroid

production within nerve cells.

8.4.1 Regulation of Neurosteroidogenesis by Oxidative

Stress and Aβ Peptide

It is established that steroids can be synthesized by

nonglandular tissue within the nervous system. But the

regulation of their biosynthesis is still poorly understood.

Recent findings showed that several glial cells, in particu-

lar oligodendrocytes, upregulated their production of

DHEA under oxidative stress conditions induced by

treatment with Aβ peptide or Fe2þ [54]. Modulation

of neurosteroid production was also observed in neuro-

blastoma (SH-SY5Y) cells overexpressing the key AD

proteins, APP/Aβ or Tau (Fig. 8.3) [52]. Indeed, over-

expression of human wild-type Tau (hTau 40) protein

induced an increase in production of progesterone,

3α-androstanediol, and 17-hydroxyprogesterone, in con-

trast to overexpression of the abnormally hyperpho-

sphorylated Tau bearing the P301L mutation and

leading to a decrease in the production of these neuro-

steroids. In parallel, a decrease of progesterone and

17-hydroxyprogesterone production was observed in cells

expressing human wild-type APP (wtAPP), whereas
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Fig. 8.3 Effect of toxic concentrations of Aβ peptides and abnormally hyperphosphorylated Tau protein on neurosteroid

biosynthesis. Aβ induced a drop of the level of progesterone (PROG), estradiol, and 3α-androstanediol by acting on reactive

oxygen species (ROS) formation and mitochondrial function and/or directly on steroidogenesis. The presence of abnormally

hyperphosphorylated Tau protein had the same effect by inducing a decrease of progesterone, 17-hydroxyprogesterone (17OH-
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3α-androstanediol and estradiol level were increased. The

latter finding was additionally confirmed with in vitro

treatment experiments [4]. APPwt SH-SY5Y cells secrete

Aβ levels within the nanomolar concentration range.

Consistently, treatment of native SH-SY5Y cells with

“nontoxic,” that is, non-cell death-inducing, Aβ1-42 con-

centrations in vitro revealed an increase in estradiol

production, whereas toxic Aβ1-42 concentrations within

the micromolar range strongly reduced estradiol levels

revealing the exact opposite effect. Of note, oxidative

stress was able to modify neogenesis of neurosteroids in

a similar pattern [55]. In fact, treatment withH2O2 for 24 h

or 48 h induced a decrease of estradiol synthesis that was

correlated to a downregulation of the aromatase, the

enzyme responsible for estradiol formation from testos-

terone. Furthermore, an increase of cell death was

observed in the presence of letrozole, an inhibitor of

aromatase. This suggests that endogenous estradiol for-

mation is very important for human neuroblastoma cells

and plays a critical role in cell survival. Interestingly, when

cells were pretreated with estradiol, it was possible to

rescue neuroblastoma cells from H2O2 as well as from

letrozole-evoked death. In agreement, similar results were

also found in stress condition experiments using heavy

metals, such as cobalt and mercury, and once again

estradiol was able to reverse their deleterious effect by

reducing oxidative stress and β-amyloid secretion [56].

8.4.2 Estrogens and Neuroprotection

Neuroprotective effects of estrogens against a variety of

brain injuries have been described for many years.

Treatment with 17β-estradiol was able to protect the

brain against excitotoxicity, Aβ peptide-induced toxici-

ty, free radical generators, and ischemia in animal

studies [53], but the basis of these effects is still poorly

understood. It was recognized from former studies that

estrogen depletion in postmenopausal women represents

a significant risk factor for the development of AD and

that an estrogen replacement therapy may decrease this

risk and even delay disease progression [57, 58].

However, results from the “Woman’s Health Initia-

tive Memory Study” (WHIMS) including 4532 postmen-

opausal woman aged over 68 years indicated a twofold

increase in dementia after 4.2 years of treatment (p.o.

treatment with premaxin plus medroxyprogesterone). In

addition, it indicated potential risks for breast cancer,

pulmonary embolism, and stroke [59, 60]. Besides war-

rantable criticism with regard to the synthetic hormones

used in the WHIMS trial, the outcome results were

unexpected and disappointing. One can ask the ques-

tion, “How could it be that so many scientific studies

before the WHIMS trial were wrong?” Thus the current-

ly prevailing view points about the “critical window

hypothesis” [16] are asking about the critical period in

which one might expect a neuroprotective effect to

occur. The results of the WHIMS study also initiated a

discussion about a two-edged effect of estradiol. Thus

estradiol can possibly also exhibit a “prooxidant effect”

in the presence of ongoing oxidative stress [53]. Thereby,

estradiol can be hydroxylated to give catecholestrogens

that can enter a redox cycle generating superoxide

radical. In an oxidative environment, this redox cycling

can lead to a continuous formation of ROS that ampli-

fies even more oxidative stress and increases neuronal

loss.

On the contrary, animal studies, especially in rodents

and transgenic mice models for AD, seem to confirm

positive effects of estrogen treatment on the pathophysi-

ology of the disease. It has been shown that treatment

with estrogen in mice expressing mutations in human

APP (Swedish and Indiana) had an impact on APP

processing, decreasing levels of Aβ and so its aggregation

into plaques [61]. In triple transgenic AD mice, depletion

of sex steroid hormones induced by ovariectomy in adult

females significantly increased Aβ accumulation and had

a negative impact on cognitive performance [62]. Treat-

ment of these ovariectomized mice with estrogens was

able to prevent these effects. Of note, when PROG was

administered in combination with estrogens, the benefi-

cial effects on Aβ accumulation were blocked but not

effects on cognitive performance. Furthermore, PROG

reduced Tau hyperphosphorylation when administered

alone. This suggests that estrogen and PROGcan interact

to regulate APP processing but can also act independent-

ly on different AD pathways.

At the cellular level, estrogen was able to activate

antioxidant defense systems by reducing ROS produc-

tion, limiting mitochondrial protein and DNA damage,

and improving the activity of the electron chain trans-

port during oxidative phosphorylation [53]. Thus estro-

gen can have direct antioxidant effects by increasing

reduced glutathione (GSH) levels and decreasing oxida-

tive DNA damage in mitochondria of ovariectomized

female rats [63]. This is correlated with an upregulation

of the expression of two enzymes: manganese superoxide

dismutase (Mn-SOD) and glutathione peroxidase, both

of them implicated in the antioxidant defense system. Of

note, estrogen can modulate the redox state of cells by

intervening in several signaling pathways, such as

MAPK, G protein-regulated signaling, NF-κB, c-fos,

CREB, phosphatidylinositol-3-kinase, PKC, and Ca2þ

influx [3, 64]. On the basis of this complex mode of

action, estrogen seems to be able to decrease oxidative

stress markers, including lipid peroxidation, protein

oxidation, and DNA damage.

Recently, it has been proposed that estrogens exert

their beneficial effects by acting directly on mitochondria
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via estrogen receptor β (ERβ) [65]. In fact, incubation of

isolated mitochondria from rat brain with estradiol leads

to a decrease of H2O2 production by this organelle

coupled with an increase of the mitochondrial mem-

brane potential. Moreover, estradiol seems to prevent

the release of cytochrome c by mitochondria (a mecha-

nism known to induce apoptosis of cells by activating

the caspase cascade in the cytoplasm), which increases

the efficiency of the respiratory chain. In addition,

estrogens are able to bind to nuclear receptors, such as

estrogen receptor α and β (ER α/β), and to act

as transcription factors. Thus estrogens enhanced the

expression of the antiapoptotic proteins, Bcl-2 and Bcl-

xL, preventing the initialization of the cell death pro-

gram by mitochondria [3]. They were also able to

increase the expression of F1 subunits of ATP synthase

and glucose transporter subunits and regulate enzymes

involved in the tricarboxylic acid (TCA) cycle, which has

the effect of improving glucose utilization by cells.

As described recently, estrogens can have an effect on

the transcription of mitochondrial genes, especially

on the electron transport chain components [66]. Treat-

ment of ovariectomized female rats with estradiol

induced an increase of mitochondrial respiratory function

translated into an enhancement of O2 consumption and

coupled to an increased expression and activity of cyto-

chrome c oxidase (electron transport chain complex IV).

Finally, another means for estrogens to avoid nega-

tive effects of oxidative stress is to regulate calcium

homeostasis by inducing mitochondrial sequestration

of cytosolic calcium [53]. In fact, an imbalance of

calcium handling can lead to an increase of ROS

production by activating the enzyme nitric oxide

synthase, which can sensitize neural cells to oxidative

damage. It has been shown that estradiol treatment of

primary hippocampal neurons was able to potentiate

glutamatergic response via NMDA receptor, which

resulted in an increased influx of calcium in cells. This

effect was coupled with an induction of mitochondrial

sequestration of cytosolic calcium and an increase of the

mitochondrial calcium load tolerability, to avoid calci-

um-induced excitotoxicity and to promote cell survival.

8.5 CONCLUSION

In summary, it is now clear that oxidative stress is an

important actor involved in AD pathophysiology and

intervenes already at an early disease stage. Further-

more, good evidence is provided that neurosteroids, such

as estrogens, are able to limit oxidative damage by

reducing lipid peroxidation, protein oxidation, Ca2þ

overload in cytosol, and DNA damage in mitochondria

as well as in the nucleus. These effects are mediated by

several mechanisms, from transcription of genes coding

for antioxidant enzymes to the regulation of antiapop-

totic pathways, by way of improvement of mitochondri-

al respiratory chain efficiency and glucose metabolism.

Thus, with their abilities to counter excess oxidative

stress, estrogens seem to be able to prevent AD-related

toxic mechanisms, such as Aβ peptide aggregation, Tau

hyperphosphorylation, and neuronal loss. Better human

studies taking into account the critical window hypothe-

sis are essential before drawing a final conclusion on

efficacy of neurosteroids in prevention of AD.
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Abstract

Alzheimer’s disease (AD) is a conformational disease that is characterized by amyloid-b (Ab) deposition in the brain. Ab
exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as
well as mitochondrial dysfunction. Recent reports indicate that Ab may also interact directly with intracellular proteins such
as the mitochondrial enzyme ABAD (Ab binding alcohol dehydrogenase) in executing its toxic effects. Mitochondrial
dysfunction occurs early in AD, and Ab’s toxicity is in part mediated by inhibition of ABAD as shown previously with an
ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role
of ABAD in Ab toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Ab-ABAD
interaction in a pull-down assay while it also prevented the Ab42-induced down-regulation of ABAD activity, as measured
by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Ab42
toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Ab42-induced impairment of
mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species) levels. Guided by our
previous finding of shared aspects of the toxicity of Ab and human amylin (HA), with the latter forming aggregates in Type 2
diabetes mellitus (T2DM) pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We
found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two
amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a
promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-
out.

Citation: Lim Y-A, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, et al. (2011) Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-b-
Mediated Deregulation of Estradiol. PLoS ONE 6(12): e28887. doi:10.1371/journal.pone.0028887

Editor: Joseph El Khoury, Massachusetts General Hospital and Harvard Medical School, United States of America

Received July 28, 2011; Accepted November 16, 2011; Published December 12, 2011

Copyright: ß 2011 Lim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants to JG from the Australian Research Council (ARC), the NHMRC (National Health and Medical Research Council),
and the Judith Jane Mason & Harold Stannett Williams Memorial Foundation, to LMI from the NHMRC and ARC, and to AE from the Swiss National Science
Foundation (SNF #310000-108223). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: juergen.goetz@sydney.edu.au (JG); Anne.Eckert@upkbs.ch (AE)

Introduction

In the Alzheimer’s disease (AD) brain, amyloid-b (Ab) has a

central yet only partly understood role in the neurodegenerative

process [1]. Apart from constituting the amyloid plaque as a

classical hallmark lesion of AD, Ab acts via a plethora of pathways

to induce synaptic and neuronal degeneration [2–4]. Many studies

reveal that in exerting its toxicity, Ab binds to specific receptors

and/or lipids at the neuronal cell membrane, and some studies

even suggest a disruption of ion homeostasis by forming channels

or pores [5,6]. To better understand what the prerequisites are for

Ab toxicity, we and others used transgenic mouse models and

found that Ab mediates its toxicity in part through the NMDA

receptor, with an essential role for the microtubule-associated

protein tau [7–9], that similar to Ab, also forms insoluble

aggregates in the AD brain. Over-activation of the NMDA

receptor complex results in excessive nitric oxide (NO) levels,

causing down-stream protein misfolding and aggregation, as well

as mitochondrial dysfunction. The toxic signaling pathway further

involves the release of mitochondrial cytochrome c and the

activation of down-stream caspases as well as the formation of

ROS (reactive oxygen species) [10–12], highlighting mitochondria

as a prime down-stream target of Ab [13–15].

Interestingly, mitochondria represent not only an indirect

target; instead, in several studies Ab has been localized to [16]

and shown to act directly on mitochondria [17,18] whose function

it impairs [19–22]. Among the mitochondrial proteins to which Ab

has been shown to bind is the enzyme amyloid-binding alcohol

dehydrogenase (ABAD) [23,24]. ABAD interacts with Ab and is a

major determinant of Ab toxicity [17,25,26]. Specifically, in mice

doubly transgenic for ABAD and the Ab-precursor APP, the toxic

effects of Ab are aggravated compared to what is found in APP

single transgenic mice [17].

ABAD is the Type 10 member of a protein family, known as

17b-hydroxysteroid dehydrogenases (HSD17B) [27]. The enzyme

is found in mitochondria, while the other known fourteen family

members are confined to the endoplasmic reticulum (ER) sug-

gesting that ABAD has a specialized function within mitochondria

[28]. ABAD converts estradiol to estrone [29], and its levels are

critical as optimal estradiol levels are an important determinant of
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neuronal survival [29]. In post-menopausal women, the estrogen

replacement therapy has been shown to delay the onset of AD

[30]. In the placenta and in ovaries, ABAD inactivates estradiol by

oxidizing it to estrone [31,32], and this may also occurs in testis

[33]. Interestingly, ABAD levels themselves are sensitive to

estradiol levels suggesting a feedback loop in the regulation of its

activity [34].

The many reports of ABAD’s enzymatic action on various

substrates in vivo have been challenged, however, by strong evidence

that a catalytically inactive mutant of ABAD as identified in a young

boy had no ill effects on his health [35]. In addition, ABAD was

found to be one of only three proteins that comprise the fully

functional mammalianmitochondrial RNAse P [36], a function that

may not require enzymatic activity and that links ABAD directly to

the production of mitochondrial electron transport chain proteins

and reactive oxygen species (ROS) generation [37].

Binding of Ab to ABAD induces a conformational change that

is inhibited by NAD+ (nicotinamide adenine dinucleotide), with

binding of Ab and NAD+ being mutually exclusive [38]. Ab

binding results in the loss of ABAD function and ultimately,

neuronal apoptosis [39,40]. To directly determine whether Ab-

induced toxicity is mediated by ABAD inhibition and to establish

estradiol levels as a suitable readout, we here employed the use of

AG18051, a novel ABAD inhibitor [41].

Materials and Methods

Cell culture and incubation with amyloid peptides
SH-SY5Y neuroblastoma cells (DSMZ, Braunschweig, Ger-

many; DSMZ No. ACC 209) were grown in Dulbecco’s Modified

Eagle Medium: F-12 (DMEM: F-12) supplemented with 2 mM

L-glutamine, 1% penicillin/streptomycin and 10% fetal bovine

serum (FBS) (GIBCO, Basel, Switzerland) [42,43]. Ab42, human

amylin (HA), biotinylated Ab42 and biotinylated HA were

purchased from Bachem (Germany) (H-1368, H-7905, H-5642

and 3004028, respectively). The negative control, biotin, was

purchased from Sigma (B4639). Biotinylated and unmodified

Ab42 were dissolved in DMSO to make stocks of 5 mM and

stored at 280uC until use. Biotinylated and unmodified HA were

dissolved in 0.01 M acetic acid (AA) to make stocks of 5 mM and

also stored at 280uC until use. Biotin was dissolved in DMSO to

make stocks of 5 mM and kept at 280uC until use. Aging of the

peptides was induced by shaking at 1000 rpm for 4 days at 37uC.

0.5 mM Ab42 or human amylin (HA) was used for all experiments

in this study, while the treatment duration was always 5 days.

Pre-treatment experiments were performed by incubating

SH-SY5Y cells with 0.05 mM AG18051 for 24 hours, washing 3

times with warm PBS, and then treating the cells with 0.5 mM

Ab42 or HA for 5 days. Co-treatment experiments were done by

incubating SH-SY5Y cells for 5 days with 0.05 mM AG18051 and

0.5 mM Ab42 or HA, respectively.

LDH and MTT assays
LDH and MTT assays were chosen to provide indications for

cell viability after treatments. Assays were obtained from Roche

and were performed according to the manufacturer’s protocols.

Briefly, cells were exposed to the various treatments, after which

the medium was retrieved for LDH analysis, while the remaining

cells were washed 3 times with sterile PBS and the MTT assay

performed with the cells.

Pull-down assay
SH-SY5Y cells were grown to 70% confluency and treated

with vehicle, biotinylated Ab42, biotinylated HA, or biotin,

respectively, at a final concentration of 0.5 mM for 5 days. In

addition, 0.5 mM biotin and 0.5 mM biotinylated Ab42, respec-

tively, was co-incubated with 0.05 mM AG18051 for 5 days. After

5 days, cells were once washed with pre-warmed PBS and

immediately scraped with 500 mL ice-cold IP buffer (10 mM Tris,

0.1 M NaCl, 1 mM EDTA), supplemented with the Complete

EDTA-free protease inhibitor cocktail (1:25) (Roche, Basel,

Switzerland), and spun at 14 0006 g for 10 minutes at 4uC.

20 ml of magnetic Dynabeads MyOneTM Streptavidin T1

(Invitrogen) were added to each tube and tubes were rotated for

30 minutes at room temperature. Beads were subsequently washed

3 times with 16 PBS, followed by boiling in loading buffer

containing b-mercaptoethanol at 95uC for 5 minutes at 1000 rpm

to release bound peptides. Samples were then briefly spun down at

room temperature and supernatants loaded onto 12% glycine gels

for electrophoresis and Western blotting.

Quantification of estradiol as a functional read-out of
ABAD activity
After treatment with amyloid peptides and controls, the cell

culture medium was collected and cells were resuspended in cell

lysis buffer consisting of 150 mM Tris HCl, 150 mM NaCl, 1%

NP-40, 0.1% SDS, 2 mM EDTA and Complete protease inhibitor

(1:50) (Roche Diagnostics). The estradiol assay was performed

according to the manufacturer’s guidelines (Estradiol EIA Kit,

Cayman). In brief, the plate was loaded with samples, along with

the estradiol tracer and the specific antiserum to estradiol and

incubated for one hour at room temperature. After five washing

steps, Ellman’s Reagent was added and the plate developed for

60 minutes with gentle shaking at room temperature. The

calculated estradiol concentration was normalized to the total

protein content of the samples.

Figure 1. Ab42 binds to and impairs ABAD activity, while HA
(human amylin) does not. (A) Treatment of SH-SY5Y human
neuroblastoma cells with Ab42 causes decreased levels of estradiol,
indicative of an impairment of ABAD activity, while HA does not. Results
are means 6 SE, (n = 5 to 6 per group), **, P,0.01 (B) Pull-down of
ABAD from SH-SY5Y cells shows that different from HA, Ab42 can bind
to ABAD in vitro. (C) Structure of the ABAD inhibitor, AG18051 (adapted
from Kissinger et al., JMB 2004).
doi:10.1371/journal.pone.0028887.g001
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Mitochondrial respiration in vital cells
After treatment with amyloid peptides and controls, mito-

chondrial oxygen consumption was measured at 37uC using an

Oroboros Oxygraph-2k system. Five million cells were added to

2 ml of a mitochondrial respiration medium containing

0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate,

20 mM taurine, 10 mM KH2P04, 20 mM HEPES, 110 mM

sucrose and 1 g/l BSA (pH 7.1). To measure the state 4

respiration of complex I, 5 mM pyruvate and 2 mM malate

were added and cells permeabilised with 15 mg/ml digitonin.

Afterwards, 2 mM ADP was added to measure state 3

respiration. The integrity of the mitochondrial membrane was

checked by the addition of 10 mM cytochrome c. After

determining coupled respiration, 0.4 mM FCCP (Carbonyl

cyanide p-(trifluoro-methoxy) phenyl-hydrazone) was added

and respiration was measured in the absence of a proton

gradient. To inhibit complex I activity, 0.5 mM rotenone was

added.

Determining ROS levels
Levels of ROS were measured using different fluorescent probes

that allow detection at different cellular sites. The non-fluorescent

probe 29,79-dichlorodihydrofluorescein diacetate (H2DCF-DA)

was used to measure cytosolic ROS, most notably hydrogen

peroxide [44]. To determine levels of superoxide anion radicals,

DHE was used, which is oxidized to the fluorescent ethidium

cation by O2.2 [22]. For detection of mitochondria-associated

ROS we used the probe dihydrorhodamine (DHR), which

localizes to mitochondria and when oxidized by ROS, particularly

peroxinitrite, fluoresces to the positively charged rhodamine 123

derivate. Treated cells (Ab42, HA, and vehicle) were loaded with

10 mM H2DCF-DA, 10 mM DHR or 10 mM DHE, respectively,

for 15 min. After washing twice with Hank’s balanced salt (HBS)

solution, the formation of fluorescent products was measured by

detecting the emitted fluorescent units per 56105 cells using the

Fluoraskan Ascent FL multiplate reader (Labsystems, Helsinki,

Finland) (i) at 485 nm (excitation)/538 nm (emission) for both

Figure 2. Effects of the ABAD inhibitor AG18051 on cell viability and estradiol levels. (A) LDH assay of SH-SY5Y human neuroblastoma
cells incubated with increasing concentrations of AG18051 (normalized to 1 for control) shows that the ABAD inhibitor is not toxic at concentrations
of 0.1 mM and below. (B) Treatment of SH-SY5Y cells with increasing concentrations of AG18051 causes reduced levels of estradiol. *, P,0.05.
doi:10.1371/journal.pone.0028887.g002
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dichlorofluorescein (DCF) generated from H2DCF-DA via

oxidation, and DHR, and (ii) at 530 nm (excitation)/590 nm

(emission) for DHE, as previously described [45].

Results

Ab42 binds to and down-regulates ABAD activity,
different from human amylin
Ab exerts its toxicity in part by impairing ABAD [17], an

enzyme known to convert estrone to estradiol. To determine the

toxicity of the major fibrillogenic form of Ab and the role ABAD

has in this process, we incubated human SH-SY5Y neuroblastoma

cells for 5 days with Ab42, followed by measuring estradiol levels

in the cell lysate. We found that its levels were significantly

decreased after Ab42 exposure (p,0.0001) (Fig. 1A). To

determine if the deregulation of ABAD activity is a common

phenomenon shared by Ab with other amyloidogenic proteins, we

treated the cells also with human amylin (HA), a protein twice the

size of Ab and known to form aggregates in another disease with

protein aggregation, Type 2 diabetes mellitus (T2DM). However,

Figure 3. The Ab-mediated decrease in estradiol levels is prevented by AG18051. (A) Scheme of pre- and co-incubation treatment. (B) Pre-
treatment of cells with AG18051 for 24 hours prior to adding Ab42 maintains estradiol levels compared to the vehicle control, (C) as does co-
treatment. **, P,0.01.
doi:10.1371/journal.pone.0028887.g003
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different from Ab42, HA did not cause reductions in estradiol

levels (p,0.0001) (Fig. 1A).

Data obtained by x-ray crystallography of Ab42-ABAD

complexes indicate that it may be the direct association of Ab42

and ABAD that inhibits ABAD activity, as an association of Ab

with ABAD prevents it from binding to its physiological sub-

strate, NAD+ [17]. Since HA, different from Ab42, did not

down-regulate ABAD activity as measured by estradiol levels, and

as it is known that Ab42 is capable of inhibiting ABAD activity by

direct interaction [38], we sought to determine whether HA,

similar to Ab, would interact with ABAD. Therefore, SH-SY5Y

cells were incubated with 0.5 mM biotinylated Ab42 (BAb),

biotinylated HA (BHA), biotin or vehicle for 5 days. We found

by pull-down that while biotinylated Ab42 was bound to ABAD,

biotinylated HA, along with the negative control, was not (Fig. 1B).

Together with the estradiol activity assay, this suggests that the

reductions in estradiol levels caused by Ab42 may be mediated by

a direct interaction of Ab with ABAD.

The ABAD inhibitor AG18051 causes reduced estradiol
levels
To better understand the effect of Ab on estradiol levels we used

AG18051, a small molecule inhibitor of ABAD with high affinity

[41,46] (Fig. 1C). AG18051 exerts its inhibitory effect by

occupying the substrate-binding site of ABAD, which results in

the formation of a covalent adduct with the NAD+ cofactor. As the

interaction of ABAD with NAD+ is necessary for its activity,

disrupting ABAD/NAD+ complex formation obliterates ABAD

activity, resulting in decreased estradiol levels. We first determined

the toxicity profile of AG18051 in our SH-SY5Y cell culture

system. Concentrations of AG18051 up to 0.1 mM were not

overtly toxic and therefore, concentrations within the 0.05–

0.1 mM range were chosen for subsequent studies (Fig. 2A). The

toxicity at higher concentrations argues for a proper dosing. The

concentration range applied by us is consistent with the IC50

determined for AG18051 in a previous study [47,48]. With

increasing concentrations of the inhibitor, as expected, estradiol

levels were reduced (Fig. 2B). At 0.05 mM however, there was a

slight, but non-significant increase in estradiol levels suggesting

compensatory mechanisms.

AG18051 prevents Ab42-induced reductions in estradiol
levels
To determine whether AG18051 has an effect on the Ab42-

induced reduction of estradiol levels (Fig. 1A) and whether the

putative neuroprotective effect is via a ‘priming effect’ of the cells,

we both pre- and co-incubated SH-SY5Y cells with Ab42 and

0.05–0.1 mM AG18051 as outlined in the scheme (Fig. 3A). For

both treatment conditions, we found that this maintained estradiol

levels in the lysate, compared to a significant reduction in the

Ab42-only treatment (Fig. 3B,C). This suggests that AG18051 is

neuroprotective, and that it may exert its neuroprotective effect

either by priming cells to become resistant to the effects of Ab42,

or via a direct inhibition of the Ab42-ABAD interaction as

previously suggested [41].

AG18051 partially prevents ABAD-Ab42 interaction
To determine whether AG18051 treatment reverses the Ab42-

induced toxicity because AG18051 directly blocks the physical

interaction between Ab42 and ABAD, SH-SY5Y cells were

treated with 0.5 mM of biotinylated Ab42 (BAb) in the presence of

0.05 mM AG18051. We found that co-incubation of AG18051

significantly decreased the amount of ABAD pulled down by

biotinylated Ab42 (BAb) (Fig. 4). This suggests that AG18051

may prevent Ab42 toxicity by directly inhibiting the associ-

ation of Ab42 with ABAD. In addition, this also suggests that

AG18051 may exert its neuroprotective effects via additional

pathways other than a direct inhibition of the Ab42-ABAD

interaction.

Ab42-mediated reduction in cell viability prevented by
ABAD inhibitor AG18051
Having determined 0.05–0.1 mM as a suitable concentration

range for AG18051, we tested its putative neuroprotective effect in

Ab42 toxicity. SH-SY5Y cells were incubated with 0.5 mM Ab42

with or without AG18051, and toxicity was determined as

increased levels of LDH compared to vehicle control. Co-

incubation of Ab42 with either 0.05 or 0.1 mM AG18051,

respectively, resulted in a significant decrease in LDH levels back

to control levels (Fig. 5A). This indicates that inhibiting ABAD

activity protects from Ab toxicity.

We next investigated the effect of Ab on metabolic functions

and found that besides significantly increasing LDH levels, 0.5 mM

Ab42 also caused a significant decrease in MTT absorbance,

suggesting impaired metabolic functions caused by this amyloido-

genic peptide (Fig. 5B). Co-incubation of Ab42 with either 0.05 or

0.1 mM AG18051, respectively, resulted in a smaller decrease of

MTT absorbance (Fig. 5B,C). Since MTT measurements are an

indicator of mitochondrial health, the results suggest that Ab42

induces cell toxicity, as reflected by LDH levels, at least in parts via

impaired mitochondrial functions, with inhibition of the mito-

chondrial enzyme ABAD providing partial protection.

Figure 4. Pull-down of ABAD from SH-SY5Y cells shows that
different from HA, Ab42 can bind to ABAD in vitro. The presence
of AG18051 significantly decreases the amount of ABAD pulled down
by biotinylated Ab42 (BAb). *, p,0.05.
doi:10.1371/journal.pone.0028887.g004
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AG18051 restored Ab42-induced deficits on oxidative
phosphorylation (OXPHOS) capacity
To investigate the protective effect of AG18051 against Ab42

toxicity at the mitochondrial level, we used a high-resolution

respiratory protocol that we have established previously [49].

Specifically, physiological substrate combinations were used to

investigate mitochondrial function in SH-SY5Y cells (Fig. 6). We

compared OXPHOS, i.e. the entire electron transport system

(ETS) that is composed of the four mitochondrial enzymes

(complex I–IV) and the F1F0ATP synthase, in cells treated with

either vehicle, Ab42, AG18051, as well as in cells that were pre-

treated with AG18051 followed by exposure to Ab42 (see scheme,

Fig. 3A). We used the NADH generating substrates pyruvate and

malate to determine state 4 respiration (Fig. 6). State 3 respiration

measures the capacity of mitochondria to metabolize oxygen and

the selected substrate in the presence of a defined amount of ADP,

which is a substrate for the ATP synthase (complex V). State 4

respiration represents a ‘‘basal-coupled’’ rate of respiratory chain

activity and reflects activities of respiratory chain complexes and

proton leakage across the inner mitochondrial membrane. We

observed significantly reduced state 3 and state 4 respirations in

Ab42-treated cells (Fig. 6). After uncoupling with FCCP, the

respiratory rate increased in the absence of a proton gradient,

which indicates the maximum capacity of electron transport chain.

This maximum OXPHOS capacity was again significantly

impaired in Ab42-treated (Fig. 6).

Of note, AG18051 was able to significantly ameliorate the

Ab42-induced global failure of mitochondrial respiration, but by

Figure 5. The ABAD inhibitor AG18051 prevents the toxicity and metabolic impairment caused by Ab. (A) Co-incubation of AG18051
and Ab42 maintains the Ab42-induced change in LDH levels at baseline levels. (B) The metabolic impairment as determined with the MTT assay is also
prevented by co-incubation of Ab42 with AG18051. (C) Pre-incubation of the cells with AG18051 for 24 hours prior to adding Ab42 is similarly
protective to Ab’s toxicity as measured with the MTT assay. *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0028887.g005

ABAD Inhibition Restores Amyloid-b’s Toxic Effects

PLoS ONE | www.plosone.org 6 December 2011 | Volume 6 | Issue 12 | e28887



itself had no effect per se on oxygen consumption attaining levels

comparable to vehicle treatment (Fig. 6).

AG18051 prevents the increase in ROS levels caused by
Ab42
Increased ROS levels have been implicated in AD [50,51]. We

had previously found that treatment of SH-SY5Y cells with Ab42

caused significantly increased ROS (reactive oxygen species) levels,

reflecting mitochondrial dysfunction and cell toxicity [52]. As pre-

incubation with AG18051 was capable of preventing the toxicity

induced by Ab42, we pre-treated SH-SY5Y cells with AG18051

and exposed them then to Ab42. Interestingly, cells pre-treated

with 0.05–0.1 mM AG18051 were effectively protected from any

Ab42-induced ROS production, attaining levels comparable to

vehicle treatment (Fig. 7). This suggests that AG18051 may

prevent cell toxicity induced by Ab42 in part by preventing the

generation of ROS. In addition, the results also suggest that

ABAD dysfunction may be upstream of ROS production since

AG18051 can prevent ROS generation. Alternatively, AG18051

may trigger high estradiol levels, thereby counteracting ROS.

AG18051 only partially protects against reductions in cell
viability and estradiol levels in SH-SY5Y cells when
deregulated by human amylin (HA)
Previously, we had found that Ab42 and HA share toxicity

pathways via deregulation of mitochondrial proteins [52].

However, as shown above, Ab42 binds to and down-regulates

ABAD activity, while HA fails to do so (Fig. 1). We nonetheless

sought to determine whether AG18051 would have an effect in the

toxicity assays used above to measure Ab toxicity. We found that

HA induced an increase in LDH levels revealing its toxicity

(Fig. 8A), and a corresponding decrease in MTT absorbance

revealing its effect on metabolic functions (Fig. 8B). Co-incubation

of AG18051 with HA significantly prevented the increase in LDH

levels when compared with HA alone, but did not fully maintain

LDH to the levels of vehicle treatment indicating only a partial

protection from HA-induced toxicity (Fig. 8A). Co-incubation of

AG18051 with HA did not have any significant impact on MTT

levels (Fig. 8B).

AG18051 prevents the increase in ROS levels caused by
Ab42 and HA
Increased ROS levels have not only been implicated in AD but

also T2DM [50,51]. We had previously found that ROS levels in

SH-SY5Y cells are significantly increased upon exposure to either

Ab42 or HA [52]. To determine if the limited protective effect

seen by AG18051 on HA-induced toxicity may be due to an

inhibition of ROS generation, we pre-incubated SH-SY5Y cells

with AG18051 and then exposed them to HA. Similar to Ab42

(Fig. 7), pre-treatment with 0.05 mM AG18051 completely

prevented ROS generation by 0.5 mM HA (Fig. 9). Taken

together with the ROS data obtained for Ab42 (Fig. 7), this

suggests that AG18051 may be neuroprotective by preventing

ROS generation induced by either Ab42 or HA.

Discussion

Mitochondrial dysfunction has been recognized as a prominent,

early event in AD, but the underlying mechanisms are only partly

understood [53]. As a mediator of Ab toxicity in AD, a role has

been proposed for the mitochondrial protein ABAD, with

evidence for a direct interaction of Ab and ABAD [17]. Whether

in the AD brain, intracellular Ab - either in mitochondria or in the

cytoplasm - is present at sufficiently high quantities to have a

decisive role in disease is a matter to debate that has been revived

by the recent analysis of Ab plaque-forming 3xTg-AD using a

panel of Ab- and APP-specific antibodies [54]. Our current study

however adds to the body of data revealing a role for ABAD in

mediating Ab, irrespective of its mode of interaction.

By using the novel compound inhibitor of ABAD, AG18051 [41],

we revealed that Ab-mediated toxicity, metabolic impairment and

Figure 6. High-resolution respirometry revealed a reduction of oxygen consumption in Ab42-treated cells that was restored after
pre-treatment with AG18051. O2 flux and consumption by vital cells was measured after addition of different agents: pyruvate/glutamate, ADP,
FCCP, rotenone. Two-way ANOVA revealed a significant difference between the cellular respiration of the cells treated either with vehicle, Ab42 or
AG18051 alone, or AG18051 plus Ab42 (p,0.0001) (see scheme Fig. 3A). The respiratory rates of mitochondria were significantly reduced in Ab42-
treated cells compared to control (vehicle treated) cells and cells pre-treated with AG18051 (24 h) before exposure to Ab42. Values represent the
means 6 S.E. from n= 3–5 independent measurements. Post-hoc Bonferroni’s Multiple Comparison Test analysis for single experimental respiratory
conditions: *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0028887.g006
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reductions in estradiol levels could be abrogated. However different

from Ab, the inhibitor only partially restored the toxicity of HA, that

shares with Ab its amyloidogenic properties, and it had no effect at

all on the impaired metabolic activities or the reduced estradiol

levels caused by HA. The compound though abolished both the

Ab42- and HA-induced increases in ROS levels. These effects may

or may not require a direct interaction of Ab and ABAD. Provided

that Ab enters mitochondria and binds ABAD, it is believed to gain

access to the mitochondrial matrix via intracellular trafficking. Our

pull-down experiments using a biotinylated preparation of Ab

reveal that this peptide binds to ABAD in a lysate, while in contrast,

HA does not.

One of the established functions of ABAD is to convert in an

equilibrium reaction estrone to estradiol, a known anti-oxidant in

neuronal survival [31–33,55]. Additional substrates are known for

ABAD, such as the mitochondrial 2-methyl-3-hydroxybutyryl-

CoA [40,56].

ABAD is up-regulated in AD brain areas affected by Ab

pathology such as the cortex and hippocampus, as well as in Ab-

producing mouse models [17,23,26,57]. In neuroblastoma cells,

the cytotoxic effects of Ab are enhanced by ABAD over-

expression, and blocked with anti-ABAD antibodies [58].

Moreover, synthetic Ab fragments have been shown to bind and

inhibit ABAD in vitro [39]. As cells expressing catalytically inactive

mutants of ABAD failed to show an enhanced sensitivity to Ab, it

has been suggested that it is the enzymatic activity that is required

for mediating Ab toxicity [38]. In vivo, ABAD over-expression

potentiates the toxic effects of Ab, and obliteration of Ab-ABAD

complexes restores cell viability and memory deficits in transgenic

mice [17,26]. This inhibition was achieved using a truncated

version of ABAD as a decoy peptide (ABADDP) [17,26]. The

authors of the study concluded that segregating ABAD from Ab

protects both mitochondria and neurons from Ab toxicity by

restoring ABAD’s physiological functions.

Rather than employing a decoy peptide, we decided to use the

small compound, AG18051, a novel ABAD inhibitor to investigate

its putative protective effects. We performed co- and pre-

incubation experiments to determine whether the restoration of

estradiol levels by AG18051 is due to a direct inhibition of the

Ab42-ABAD interaction, or an indirect mechanism. By determin-

ing estradiol levels as a functional read-out of ABAD activity, we

found that exposure to Ab42 significantly decreased estradiol

levels (Fig. 3B, C). We have been using SH-SY5Y cells, a well-

established neuroblastoma cell line [43], to determine the effects of

AG18051 on ABAD. We found that pre-treatment of SH-SY5Y

cells with AG18051 before Ab42 exposure (Fig. 5C) was sufficient

to prevent the decrease in cell viability. This suggests that

AG18051 is capable of blocking Ab42 toxicity, possibly in part

by directly binding to ABAD and preventing the Ab42 toxicity

mediated by ABAD.

To determine whether these changes are due to ABAD

specifically, we performed co-incubation treatments of a novel

ABAD inhibitor, AG18051, with Ab42. We found that AG18051

effectively obliterated the toxic effects of Ab42 as demonstrated by

the restoration of LDH release and MTT absorbance to levels

indistinguishable from the vehicle control. Furthermore, AG18051

restored estradiol levels upon down-regulation by Ab42. This

effect is seen both in the cell lysate and the medium (data not

shown), suggesting that Ab42 exerts its toxicity by interfering with

intracellular levels of estradiol while also decreasing its secretion

Figure 7. AG18051 pre-treatment prevents ROS generation
induced by Ab. Ab causes reduced cellular (DCF) as well as
mitochondrial ROS (DHR), e.g. reduced mitochondrial superoxide anion
radicals (DHE). Levels are restored to vehicle upon pre-treatment with

AG18051, irrespective of whether the SH-SY5Y cells have been
incubated with Ab or HA. *, P,0.05; ***, P,0.001.
doi:10.1371/journal.pone.0028887.g007
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into the extracellular environment. Our data indicate that Ab42-

induced toxicity is mediated by ABAD in part via the deregulation

of estradiol, which may contribute to cell toxicity.

To determine whether the change in estradiol levels is due to a

direct blockage of Ab42 by ABAD, we performed a pull-down

using biotinylated Ab42 in the presence of AG18051 (Fig. 4). We

found that AG18051 significantly decreased ABAD binding to

biotinylated Ab42, suggesting that AG18051 may be neuropro-

tective, in part by disrupting the physical interaction of ABAD

with Ab42. However, as binding was not completely abolished,

our results suggest that AG18051 may also act indirectly to

prevent cell toxicity. This is supported by the fact that AG18051 is

capable of preventing ROS production by HA (Fig. 9) even though

HA does not seem to bind to ABAD (Fig. 1B).

To unravel the effects of Ab42 and the involvement of ABAD

on the mitochondrial respiratory capacity, we performed whole

cell recording of total cellular respiration in SH-SY5Y cells

(Fig. 6). Consistent with previous findings investigating the effect

of a stable APP over-expression in SH-SY5Y cells gaining a

chronic overproduction of Ab within the low nanomolar range

[49], we observed a comparable impairment of oxygen con-

sumption rates in cells treated with Ab42 species for 5 days. Of

note, we present for the first time clear evidence that pre-

treatment with AG18051 prevented SH-SY5Y cells from a

decline in metabolic energy pathways induced by Ab42. The

capacity of mitochondria to re-phosphorylate ADP in state 3 is

dependent on the degree of coupling. Thus, pre-treatment with

AG18051 prevented the ETC (electronic transport chain) from

Ab42 toxicity and rescued the coupling state of mitochondria.

Importantly, the comparison of the mitochondrial energetic

capacity in cells treated with vehicle or AG18051 revealed a

similar bioenergetic homeostasis indicating that the inhibitor,

by itself, had no significant effect on respiration. These results

corroborate our findings demonstrating an AG18051-induced

Figure 8. The ABAD inhibitor AG18051 partially prevents the toxicity of HA, but not its metabolic impairment. (A) Co-incubation of HA
with AG18051 partially maintains levels of LDH release in SH-SY5Y cells suggesting that the toxicity of HA is partially mediated by ABAD. (B)
Treatment with 0.5 mM HA significantly decreases metabolic activity as shown with the MTT assay, which is not prevented with co-incubation with
AG18051. *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0028887.g008
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prevention of ROS formation caused by Ab42, which in turn

impairs mitochondrial function.

That a defective or insufficient mitochondrial function might

play a potentially pathogenic role in another epidemic disease,

Type 2 diabetes mellitus (T2DM), has emerged in recent years

[59,60]. The association of diabetes with obesity and inactivity

indicates an important, and potentially pathogenic, link between

fuel and energy homeostasis and the emergence of metabolic

disease. Given the central role for mitochondria in fuel utilization

and energy production, mitochondrial dysfunction at the cellular

level can impact whole-body metabolic homeostasis [61]. T2DM

is characterized by HA deposition in the pancreas, and AD by Ab

deposition in the brain [59]. Ab and HA share a common b-sheet

secondary structure, a strong determinant in toxicity [62,63].

Supporting this notion we have shown previously that Ab and HA

share a mitochondrial toxicity profile [52]. In the present study we

found that HA caused toxicity and impaired metabolic functions.

When we co-incubated HA with AG18051 using the same

conditions as for Ab42, AG18051 significantly decreased levels of

LDH compared to just HA alone, suggesting that HA toxicity is in

part mediated by ABAD (Fig. 8A). Interestingly, co-incubation of

AG18051 with HA did not significantly change levels of MTT

absorbance, an established assay of mitochondrial function

(Fig. 8B) [64]. We have previously shown that to mitochondria,

at equimolar concentration, HA is more toxic than Ab42 [52].

This suggests that a higher concentration of AG18051 may be

required to restore the HA-induced mitochondrial toxicity.

Interestingly, while the MTT assay is a reliable test for metabolic

impairment, it does not always precisely reflect neuroprotective

effects, suggesting that the LDH assay is more accurate in

determining neurotoxicity [65]. It is therefore possible that the

neuroprotective effects of AG18051 against HA treatment differs

from that of Ab42. By extrapolation, this also means that HA and

Ab42 may exert a differential toxicity on ABAD. This is a

possibility, as exposure to HA did not alter estradiol levels, differ-

ent from Ab42 (Fig. 1A).

Pre-treatment of SH-SY5Y cells with AG18051 prevented both

the cellular and mitochondrial ROS formation induced by Ab42

and HA suggesting that ABAD is involved in their mechanism of

toxicity. We have shown previously that increased ROS

generation and reduced mitochondrial complex IV activity was

the common mechanism of toxicity of HA and Ab42 [52]. This is

in agreement, in the case of Ab, with other reports showing that

Ab results in ROS generation and reduction of complex IV in AD

mouse models and that there is a direct involvement of ABAD in

these processes [17,66,67]. Now it appears that HA ROS gener-

ation is also mediated by ABAD. However, while AG18051 may

be protecting against most of the toxic effects of Ab42, it does so

only partially for HA. This indicates that HA may have additional

toxicity pathways unrelated to ROS generation or ABAD.

The mechanism of protection by AG18051 is probably through

its inactivation of ABAD’s catalytic activity. Inactive mutants of

ABAD do not enhance the toxicity of Ab that is observed when

wildtype ABAD is over-expressed, despite the fact that Ab still

binds to the mutant ABAD with the same affinity as wild-type

[68]. It has also been reported that siRNA-ABAD and the

subsequent reduction of ABAD expression prevents the toxic

effects of Ab in SH-SY5Y cells induced to over-express ABAD by

corticosterone and Ab [67]. But why would the catalytic activity of

ABAD be harmful when Ab is bound to it? In view of the

participation of ABAD in mitochondrial RNAse P, which is

responsible for the centrally important processing of the

mitochondrial ETC mRNA [37], one possibility is that ABAD’s

primary function is as an RNAse P and that Ab and HA induce a

toxic gain of function related to its catalytic activity compromising

its RNAse P function. This would result in aberrant processing of

the ETC mRNA, a dysfunctional ETC and ROS generation. Ab

may do this directly by binding to ABAD and, while there is no

Figure 9. AG18051 pre-treatment prevents ROS generation
also induced by HA. As for Ab, HA causes reduced cellular (A) as well
as mitochondrial ROS (B), e.g. reduced mitochondrial superoxide anion
radicals (C). Levels are restored to vehicle upon pre-treatment with
AG18051. *, P,0.05; ***, P,0.001.
doi:10.1371/journal.pone.0028887.g009
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evidence that HA directly interacts with ABAD, our study shows

that ABAD is nevertheless key to the toxicity of HA.

In conclusion, we extend previous findings on the role of

mitochondria, and in particular the mitochondrial enzyme ABAD,

in mediating Ab42 toxicity. We established a neuroprotective

effect of AG18051, a novel ABAD-specific inhibitor, and showed

that it promotes cell survival in part by preventing the generation

of ROS and stabilizing estradiol levels. Our findings extend

previous studies suggesting ABAD activity as a suitable biomarker

for impaired brain functions. We further present AG18051 and

related compounds for consideration in therapeutic strategies

targeting AD.

Author Contributions

Conceived and designed the experiments: Y-AL AE JG. Performed the

experiments: Y-AL AG MG. Analyzed the data: Y-AL AE AGM-N JEV

LMI JG. Contributed reagents/materials/analysis tools: JEV. Wrote the

paper: Y-AL JG.

References

1. Gotz J, Ittner LM, Schonrock N, Cappai R (2008) An update on the toxicity of
Abeta in Alzheimer’s disease. Neuropsychiatr Dis Treat 4: 1033–1042.

2. Small DH, Mok SS, Bornstein JC (2001) OPINION Alzheimer’s disease and
Abeta toxicity: from top to bottom. Nat Rev Neurosci 2: 595–598.

3. David DC, Ittner LM, Gehrig P, Nergenau D, Shepherd C, et al. (2006)
b-Amyloid treatment of two complementary P301L tau-expressing Alzheimer’s
disease models reveals similar deregulated cellular processes. Proteomics 6:
6566–6577.

4. Hoerndli F, David D, Gotz J (2005) Functional genomics meets neurodegen-
erative disorders. Part II: Application and data integration. Prog Neurobiol 76:
169–188.

5. Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels:
implications for Alzheimer’s disease pathophysiology. Faseb J 15: 2433–2444.

6. Cappai R, Barnham KJ (2008) Delineating the mechanism of Alzheimer’s
disease A beta peptide neurotoxicity. Neurochem Res 33: 526–532.

7. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, et al. (2007)
Reducing endogenous tau ameliorates amyloid beta-induced deficits in an
Alzheimer’s disease mouse model. Science 316: 750–754.

8. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, et al. (2010) Dendritic
function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse
models. Cell 142: 387–397.

9. Ittner LM, Gotz J (2011) Amyloid-beta and tau - a toxic pas de deux in
Alzheimer’s disease. Nat Rev Neurosci 12: 65–72.

10. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds
DR6 to trigger axon pruning and neuron death via distinct caspases. Nature
457: 981–989.

11. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, et al. (2011)
Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s
disease. Nat Neurosci 14: 69–76.

12. Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human
disease and environmental stress. Environ Health Perspect 102 Suppl 10: 5–12.

13. Eckert A, Schmitt K, Gotz J (2011) Mitochondrial dysfunction - the beginning of
the end in Alzheimer’s disease? Separate and synergistic modes of tau and
amyloid-beta toxicity. Alzheimers Res Ther 3: 15.

14. Tillement L, Lecanu L, Papadopoulos V (2011) Further Evidence on
Mitochondrial Targeting of beta-Amyloid and Specificity of beta-Amyloid-
Induced Mitotoxicity in Neurons. Neurodegener Dis.

15. Eckert A, Hauptmann S, Scherping I, Rhein V, Muller-Spahn F, et al. (2008)
Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor
protein and tau transgenic mice. Neurodegener Dis 5: 157–159.

16. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, et al. (2005) Mitochondrial
Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s
disease. Faseb J 19: 2040–2041.

17. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, et al. (2004) ABAD
directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science
304: 448–452.

18. Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, et al. (2005) Copper-
dependent inhibition of human cytochrome c oxidase by a dimeric conformer of
amyloid-beta1-42. J Neurosci 25: 672–679.

19. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, et al. (2004)
Amyloid beta-induced changes in nitric oxide production and mitochondrial
activity lead to apoptosis. J Biol Chem 279: 50310–50320.

20. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, et al. (2005)
Proteomic and functional analysis reveal a mitochondrial dysfunction in P301L
tau transgenic mice. J Biol Chem 280: 23802–23814.

21. Eckert A, Hauptmann S, Scherping I, Meinhardt J, Rhein V, et al. (2008)
Oligomeric and fibrillar species of b-amyloid (Ab42) both impair mitochondrial
function in P301L tau transgenic mice. J Mol Med 86: 1255–1267.

22. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, et al. (2009) Amyloid-beta
and tau synergistically impair the oxidative phosphorylation system in triple
transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106:
20057–20062.

23. Yan SD, Fu J, Soto C, Chen X, Zhu H, et al. (1997) An intracellular protein that
binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease.
Nature 389: 689–695.

24. Takuma K, Yao J, Huang J, Xu H, Chen X, et al. (2005) ABAD enhances
Abeta-induced cell stress via mitochondrial dysfunction. Faseb J 19: 597–598.

25. Yao J, Taylor M, Davey F, Ren Y, Aiton J, et al. (2007) Interaction of amyloid

binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin

II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s

disease mouse model. Mol Cell Neurosci 35: 377–382.

26. Yao J, Du H, Yan S, Fang F, Wang C, et al. (2011) Inhibition of amyloid-beta

(Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta

accumulation and improves mitochondrial function in a mouse model of

Alzheimer’s disease. J Neurosci 31: 2313–2320.

27. Moeller G, Adamski J (2006) Multifunctionality of human 17beta-hydroxyste-

roid dehydrogenases. Mol Cell Endocrinol 248: 47–55.

28. He XY, Merz G, Yang YZ, Mehta P, Schulz H, et al. (2001) Characterization

and localization of human type10 17beta-hydroxysteroid dehydrogenase.

Eur J Biochem 268: 4899–4907.

29. Yang SY, He XY, Miller D (2007) HSD17B10: a gene involved in cognitive

function through metabolism of isoleucine and neuroactive steroids. Mol Genet

Metab 92: 36–42.

30. Henderson VW, Brinton RD (2010) Menopause and mitochondria: windows

into estrogen effects on Alzheimer’s disease risk and therapy. Prog Brain Res

182: 77–96.

31. He XY, Merz G, Mehta P, Schulz H, Yang SY (1999) Human brain short chain

L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional

enzyme. Characterization of a novel 17beta-hydroxysteroid dehydrogenase.

J Biol Chem 274: 15014–15019.

32. He XY, Merz G, Yang YZ, Pullakart R, Mehta P, et al. (2000) Function of

human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in

androgen metabolism. Biochim Biophys Acta 1484: 267–277.

33. Ivell R, Balvers M, Anand RJ, Paust HJ, McKinnell C, et al. (2003)

Differentiation-dependent expression of 17beta-hydroxysteroid dehydrogenase,

type 10, in the rodent testis: effect of aging in Leydig cells. Endocrinology 144:

3130–3137.

34. Yao J, Irwin R, Chen S, Hamilton R, Cadenas E, et al. (2011) Ovarian hormone

loss induces bioenergetic deficits and mitochondrial beta-amyloid. Neurobiol

Aging.

35. Rauschenberger K, Scholer K, Sass JO, Sauer S, Djuric Z, et al. (2010) A non-

enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required

for mitochondrial integrity and cell survival. EMBO Mol Med 2: 51–62.

36. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, et al. (2008) RNase P

without RNA: identification and functional reconstitution of the human

mitochondrial tRNA processing enzyme. Cell 135: 462–474.

37. Holzmann J, Rossmanith W (2009) tRNA recognition, processing, and disease:

hypotheses around an unorthodox type of RNase P in human mitochondria.

Mitochondrion 9: 284–288.

38. Yan Y, Liu Y, Sorci M, Belfort G, Lustbader JW, et al. (2007) Surface plasmon

resonance and nuclear magnetic resonance studies of ABAD-Abeta interaction.

Biochemistry 46: 1724–1731.

39. Oppermann UC, Salim S, Tjernberg LO, Terenius L, Jornvall H (1999) Binding

of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase

(ERAB): regulation of an SDR enzyme activity with implications for apoptosis in

Alzheimer’s disease. FEBS Lett 451: 238–242.

40. Chen X, Yan SD (2006) Mitochondrial Abeta: a potential cause of metabolic

dysfunction in Alzheimer’s disease. IUBMB Life 58: 686–694.

41. Kissinger CR, Rejto PA, Pelletier LA, Thomson JA, Showalter RE, et al. (2004)

Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications

for design of Alzheimer’s disease therapeutics. J Mol Biol 342: 943–952.

42. Ferrari A, Hoerndli F, Baechi T, Nitsch RM, Gotz J (2003) Beta-amyloid

induces PHF-like tau filaments in tissue culture. J Biol Chem 278: 40162–40168.

43. Hoerndli FJ, Toigo M, Schild A, Gotz J, Day PJ (2004) Reference genes

identified in SH-SY5Y cells using custom-made gene arrays with validation by

quantitative polymerase chain reaction. Anal Biochem 335: 30–41.

44. Kenney AM, Kocsis JD (1998) Peripheral axotomy induces long-term

c-Jun amino-terminal kinase-1 activation and activator protein-1 binding

activity by c-Jun and junD in adult rat dorsal root ganglia In vivo. J Neurosci

18: 1318–1328.

45. Budd SL, Castilho RF, Nicholls DG (1997) Mitochondrial membrane potential

and hydroethidine-monitored superoxide generation in cultured cerebellar

granule cells. FEBS Lett 415: 21–24.

ABAD Inhibition Restores Amyloid-b’s Toxic Effects

PLoS ONE | www.plosone.org 11 December 2011 | Volume 6 | Issue 12 | e28887



46. Marques AT, Fernandes PA, Ramos MJ (2008) Molecular dynamics simulations

of the amyloid-beta binding alcohol dehydrogenase (ABAD) enzyme. Bioorg

Med Chem 16: 9511–9518.

47. Muirhead KE, Froemming M, Li X, Musilek K, Conway SJ, et al. (2010) (-)-

CHANA, a fluorogenic probe for detecting amyloid binding alcohol dehydro-

genase HSD10 activity in living cells. ACS Chem Biol 5: 1105–1114.

48. Borger E, Aitken L, Muirhead KE, Allen ZE, Ainge JA, et al. (2011)

Mitochondrial beta-amyloid in Alzheimer’s disease. Biochem Soc Trans 39:

868–873.

49. Rhein V, Baysang G, Rao S, Meier F, Bonert A, et al. (2009) Amyloid-beta

Leads to Impaired Cellular Respiration, Energy Production and Mitochondrial

Electron Chain Complex Activities in Human Neuroblastoma Cells. Cell Mol

Neurobiol.

50. Afanas’ev I (2010) Signaling of reactive oxygen and nitrogen species in Diabetes

mellitus. Oxid Med Cell Longev 3: 361–373.

51. Dumont M, Beal MF (2010) Neuroprotective strategies involving ROS in

Alzheimer disease. Free Radic Biol Med.

52. Lim Y-A, Rhein V, Baysang G, Meier F, Poljak A, et al. (2010) Abeta and

human amylin share a common toxicity pathway via mitochondrial dysfunction.

Proteomics 10: 1621–1633.

53. Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR (2009) An integrative

view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s

disease. J Alzheimers Dis 16: 741–761.

54. Winton MJ, Lee EB, Sun E, Wong MM, Leight S, et al. (2011) Intraneuronal

APP, Not Free A{beta} Peptides in 3xTg-AD Mice: Implications for Tau versus

A{beta}-Mediated Alzheimer Neurodegeneration. J Neurosci 31: 7691–7699.

55. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by

estradiol. Prog Neurobiol 63: 29–60.

56. Powell AJ, Read JA, Banfield MJ, Gunn-Moore F, Yan SD, et al. (2000)

Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA

dehydrogenase (HADH II)/amyloid-beta binding alcohol dehydrogenase

(ABAD). J Mol Biol 303: 311–327.

57. He XY, Wen GY, Merz G, Lin D, Yang YZ, et al. (2002) Abundant type 10 17
beta-hydroxysteroid dehydrogenase in the hippocampus of mouse Alzheimer’s
disease model. Brain Res Mol Brain Res 99: 46–53.

58. Marques AT, Antunes A, Fernandes PA, Ramos MJ (2006) Comparative
evolutionary genomics of the HADH2 gene encoding Abeta-binding alcohol
dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (ABAD/
HSD10). BMC Genomics 7: 202.

59. Gotz J, Ittner LM, Lim YA (2009) Common features between diabetes mellitus
and Alzheimer’s disease. Cell Mol Life Sci 66: 1321–1325.

60. Gotz J, Eckert A, Matamales M, Ittner LM, Liu X (2011) Modes of Abeta
toxicity in Alzheimer’s disease. Cell Mol Life Sci 68: 3359–3375.

61. Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type
2 diabetes. Endocr Rev 31: 364–395.

62. Lim YA, Ittner LM, Lim YL, Gotz J (2008) Human but not rat amylin shares
neurotoxic properties with Abeta42 in long-term hippocampal and cortical
cultures. FEBS Lett 582: 2188–2194.

63. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, et al. (2002) Inherent
toxicity of aggregates implies a common mechanism for protein misfolding
diseases. Nature 416: 507–511.

64. Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of
MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial
fluorescent probes. Cytometry 47: 236–242.

65. Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell
death: validity for neuronal apoptosis? J Neurosci Methods 96: 147–152.

66. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, et al. (2009) Mitochondrial
bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of
Alzheimer’s disease. Proc Natl Acad Sci U S A 106: 14670–14675.

67. Seo JS, Lee KW, Kim TK, Baek IS, Im JY, et al. (2011) Behavioral stress causes
mitochondrial dysfunction via ABAD up-regulation and aggravates plaque
pathology in the brain of a mouse model of Alzheimer disease. Free Radic Biol
Med 50: 1526–1535.

68. Yan SD, Shi Y, Zhu A, Fu J, Zhu H, et al. (1999) Role of ERAB/L-3-
hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced
cytotoxicity. J Biol Chem 274: 2145–2156.

ABAD Inhibition Restores Amyloid-b’s Toxic Effects

PLoS ONE | www.plosone.org 12 December 2011 | Volume 6 | Issue 12 | e28887



 

Amandine GRIMM 

Mitochondries, neurostéroïdes et rythmes 

biologiques: Implications physiopathologiques. 

 

 

Résumé 

Les mitochondries jouent un rôle primordial dans la survie et la mort cellulaire car elles gouvernent à 

la fois le métabolisme énergétique et les voies apoptotiques. Un dysfonctionnement mitochondrial 

dans les neurones peut donc conduire à la neurodégénérescence ou à une neuropathologie. Notre 

objectif a été d'étudier la régulation de la fonction mitochondriale, en particulier la bioénergétique, 

pour contribuer à l'amélioration des connaissances actuelles sur les mitochondries. Nos résultats 

montrent que: i) les neurostéroïdes améliorent la bioénergétique mitochondriale en stimulant la 

respiration cellulaire en condition normale; ii) les neurostéroïdes réduisent les déficits 

bioénergétiques observés dans la maladie d'Alzheimer; iii) l'horloge circadienne développe une 

régulation réciproque avec la bioénergétique et la dynamique mitochondriales. Les résultats de cette 

thèse ouvrent des perspectives intéressantes pour l'élaboration de stratégies régulatrices de 

l'homéostasie métabolique chez le sujet sain et chez le patient atteint d'une pathologie due à un 

dysfonctionnement mitochondrial et/ou une altération des rythmes biologiques. 

Mots clefs : mitochondrie, neurostéroïdes, bioénergétique, maladie d’Alzheimer, rythmes circadiens. 

 

Résumé en anglais 

Mitochondria play a paramount role in cell survival and death because they are orchestrating both 

energy metabolism and apoptotic pathways, while impaired mitochondrial function leads inevitably to 

disease, especially neurodegeneration. The purpose of the present thesis was therefore to deepen 

our understanding of the regulation of mitochondrial function, with a focus on mitochondrial 

bioenergetics and dynamics. Our key findings were that: i) neurosteroids represent promising 

molecules which are able to increase mitochondrial bioenergetics via enhancement of mitochondrial 

respiration in healthy condition; ii) neurosteroids are able to alleviate Alzheimer’s disease-related 

bioenergetic deficits; iii) the circadian clock is able to regulate mitochondrial bioenergetics and 

dynamics, and vice versa. Collectively, our results contribute to a better understanding of how 

mitochondria function, and could have multiple implications with regard to the regulation of metabolic 

homeostasis in health and disease states associated with mitochondrial impairments and/or 

circadian disruption. 

Keywords: mitochondria, neurosteroids, bioenergetics, Alzheimer’s disease, circadian rhythms. 


