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par
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Abstract

Understanding supersymmetric flux vacua is essential in order to connect string the-
ory to observable physics. In this thesis, flux vacua are studied by making use of
two mathematical frameworks: SU(n)-structures and generalised complex geometry.
Manifolds with SU(n)-structure are generalisations of Calabi-Yau manifolds. Gener-
alised complex geometry is a geometrical framework that simultaneously generalises
complex and symplectic geometry. Classes of flux vacua of type II supergravity and
M-theory are given on manifolds with SU(4)–structure. The N = (1, 1) type IIA
vacua uplift to N = 1 M-theory vacua, with four-flux that need not be (2,2) and
primitive. Explicit vacua are given on Stenzel space, a non-compact Calabi-Yau.
These are then generalised by constructing families of non-CY SU(4)-structures to
find vacua on non-symplectic SU(4)-deformed Stenzel spaces. It is shown that the
supersymmetry conditions for N = (2, 0) type IIB can be rephrased in the lan-
guage of generalised complex geometry, partially in terms of integrability conditions
of generalised almost complex structures. This rephrasing for d = 2 goes beyond
the calibration equations, in contrast to d = 4, 6 where the calibration equations
are equivalent to supersymmetry. Finally, Euclidean type II theory is examined on
SU(5)-structure manifolds, where generalised equations are found which are neces-
sary but not sufficient to satisfy the supersymmetry equations. Explicit classes of
solutions are provided here as well. Contact with Lorentzian physics can be made
by uplifting such solutions to d = 1, N = 1 M-theory.
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Introduction

Flux vacua are solutions to the equations of motion of certain supergravity theories
which describe low energy string theory. String theory is an attempt to unify the
Standard Model, which describes elementary particle physics, and general relativity,
which describes classical gravity. Together, these two describe all known fundamental
physics.

The Standard Model describes elementary particles, and hence is necessary at
small scales. It works extremely well in cases where gravity can be disregarded, which
is the case whenever one is not working with enormous amounts of mass, as gravity is
far weaker than the electroweak and strong force described by the Standard Model.
The Standard Model is a quantum field theory, which is itself a unification of the
ideas of quantum mechanics and special relativity. The Standard Model formulates
physical processes in terms of fields, with energetic states of these fields interpreted
as particles. Although the formal mathematical framework of quantum field theory
is incomplete, nevertheless the precision tests of the Standard Model (for example,
the fine-structure constant of QED) are some of the most accurate empirical tests in
all of physics. Furthermore, an array of predicted particles (the W and Z bosons,
the top and charm quarks, and perhaps most well-known, the Higgs boson) have all
been empirically confirmed to exist.

On the other hand, general relativity is based on differential geometry, and de-
scribes gravitational force not in terms of particles, but in terms of the curvature of
spacetime due to the presence of energy. It is applicable in cases where one is dealing
with large scales, where quantum effects do not play a role, such as cosmology and
astronomy. General relativity has also undergone a vast number of experimental
tests, some of the more well-known of which include the precession of Mercury and
the gravitational lensing of galaxies.

General relativity is a classical theory, meaning that dynamics are derived by making
use of the least action principle; minimising the action functional that defines the
theory gives a set of equations of motions which describe the dynamics of the system.
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On the other hand, the Standard Model is a quantum theory, meaning that it is the
partition function which describes the dynamics in terms of a path integral. This
path integral yields probabilities for the system to end up in a certain state, given
an initial state and an action. The vacuum is defined as the state of the theory with
the lowest energy. In the classical limit � → 0, this is determined by the classical
equations of motion δS = 0, by means of saddle point approximation. In this sense,
the solution to the equations of motions yields the ground state or vacuum of the
theory, with perturbations away from the vacuum considered quantum corrections.
Of course, such local minima need not represent the global minimum, and hence,
considering the enormous amount of vacua in string theory, are more likely to be
false vacua. Another difference between the Standard Model and general relativ-
ity can be found in terms of the symmetries. General relativity is a theory that is
diffeomorphism invariant, and is defined for arbitrary (four-dimensional) manifolds.
In fact, the geometry of the manifold is exactly the dynamical variable that one is
interested in solving. On the other hand, the Standard Model is defined specifically
on flat space, with a fixed Minkowski metric. As a consequence, its symmetries are
global Poincaré invariance, which reflects the symmetries of the metric, and local
gauge symmetries.

In order to unify the two, it is necessary to write down a quantum theory of gravity.
Unfortunately, the straightforward way of quantising a classical theory fails to yield
a consistent theory, in the sense that general relativity is non-renormalisable. Very
roughly speaking, string theory ameliorates this situation by ‘smoothing out’ the
divergences by replacing pointlike particles with one-dimensional strings, spanning a
two-dimensional worldsheet rather than a worldline in the embedding target space
(i.e., spacetime). However, this has some rather drastic consequences in addition.
Firstly, in order to remove tachyonic states, it is natural to consider string theory
which is supersymmetric, which leads to the existence of supersymmetric partner
particles for all known elementary particles. Secondly, for superstring theory the
target space is required to have ten dimensions, rather than four.

This thesis concerns itself not so much with the intricacies of string theory, but
more so with supergravity. There are supergravities of various dimensions, with var-
ious supersymmetries and with various particle content. Some of them are related to
others by means of dualities or Kaluza-Klein (KK) reduction, but there appear to be
inequivalent kinds even taking such equivalences into account. From the bottom-up
point of view, a supergravity can be viewed as a supersymmetric extension of gen-
eral relativity. Since the supersymmetry algebras are superalgebra extensions of the
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Poincaré algebra, any locally (i.e., gauged) supersymmetric field theory will also be
invariant under local translation symmetry, or in other words, will be diffeomorphism
invariant; this by definition describes classical gravity. From the top-down point of
view, in the low energy limit α′ → 0, gs → 0 where strings becomes particle-like,
the worldsheet reduces to an ordinary worldline, and one is left with a description
of the ten-dimensional target space. Although not obvious, supersymmetry of the
worldsheet action implies supersymmetry of the target space action, hence the low
energy theory will be a ten-dimensional supergravity theory.

In this thesis, we take the latter approach, and consider those supergravities related
to type II (closed) string theory, respectively type IIA and type IIB supergravity.
Furthermore, we also consider D = 11 supergravity, which is the supergravity of
maximal dimension that does not include massless particles of spin greather than
two. In the same manner that type II string theory is the UV (i.e., high energy)
completion to type II supergravity, it is believed that a UV completion to D = 11
supergravity exists, which has been named M-theory. The field content of these
supergravity theories consists of (at least) the graviton, its fermionic superpartner
the gravitino, and certain other bosonic fields referred to as the flux. These fluxes
are higher dimensional analogues of the electromagnetic field. They are sourced
by branes, higher-dimensional supersymmetric objects which can be considered as
stringy analogues of particles.

Although these supergravities, like any supergravity and general relativity itself,
are non-renormalizable, if one views them as classical theories, the solutions to their
equations of motions, that is, their vacua, can tell us how to connect string theory
to low energy processes - and from the point of view of string theory, that includes
pretty much everything and anything that is empirically accessible to us right now.
In particular, if string theory describes nature, then it should be possible to obtain a
description of four-dimensional physics from the higher-dimensional supergravities.
This is accomplished by means of Kaluza-Klein reduction; by considering a target
space of the form Md ×MD−d, under certain circumstances it is possible to find a
way to write down a d-dimensional theory on Md with vacua that can be uplifted to
vacua of the D-dimensional theory. The obvious cases of d = 4, N = 2 type II vacua
and d = 4, N = 1 type I or heterotic vacua with fluxes set to zero require the in-
ternal space M10−4 to be a Calabi-Yau manifold (CY). However, the KK reductions
of these theories depend on the moduli space of the Calabi-Yau. More specifically,
fluctuations of the Calabi-Yau metric are determined by fluctuations of the com-
plex structure and Kähler form, which leads to additional scalar fields, called moduli
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fields, in the theory after KK reduction. Generically, these are massless, which is a
problem since such massless particles are unobserved1. However, a closer investiga-
tion leads to the conclusion that the mass of the moduli fields is proportional to the
value of the flux for the vacuum. This has historically been the primary motivation
to consider flux vacua2: vacua with non-trivial fluxes lead to masses for the moduli
fields, which can be heavy enough that such theories are in agreement with the em-
pirical non-observation of moduli fields. Of course, another motivation might be the
fact that, since fluxes are part of the theory, there is no a priori reason to discard
them, other than simplification of the problem of solving the equations of motion.

The geometry that is associated to flux vacua tends to go beyond the Calabi-Yau
(or more generally, special holonomy) scenario. A particularly useful geometrical
framework that generalises the notion of special holonomy is that of G-structures. A
G-structure can be viewed as some not necessarily integrable geometrical data that
is associated to a manifold. Many familiar structures can be captured in this frame-
work, such as product topologies, orientations, metrics, complex structures, Kähler
forms and Calabi-Yau forms. Most conveniently, G-structures also give an algebraic
description of such structures and obstructions to their existence, making explicit
computations possible.

Although flux vacua, by definition, are solutions to the equations of motion, it turns
out that it is not the equations of motions that play a central role. Instead, the
central equations are the supersymmetry equations. These Killing spinor equations
determine vacua which are supersymmetric. From a technical point of view, the
integrability theorem shows that under mild conditions, solutions to the supersym-
metry equations solve the equations of motion. Since solving first order Killing spinor
equations is easier by far than solving the second order non-linear partial differential
equations that furnish the equations of motion, this simplies life greatly. From a the-
oretical point of view, supersymmetric vacua are desirable since there are stability
theorems for such vacua, and in addition to which, a number of cosmological and
particle physics issues could be alleviated by the existence of (weak-scale) supersym-
metry, for example the hierarchy problem and the problem of finding suitable dark

1Although the breaking of supersymmetry would give the moduli fields a mass at the scale of
the breaking, it appears that this is phenomenologically not satisfactory.

2The study of flux vacua is oftentimes also referred to as string compactifications. Since the
internal space need not be compact, nothing is being made compact, and there are generally no
strings to be found anywhere, we will forgo this terminology.
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matter candidates3.

Remarkably, there appears to be a relation between the supersymmetry equations
and another geometrical framework, that of generalised complex geometry (G�G).
Generalised complex geometry is the study of the vector bundle T ⊕ T ∗ and endo-
morphisms of this bundle known as generalised almost complex structures. In some
sense, generalised complex geometry simultaneously generalises symplectic and com-
plex geometry. Under certain circumstances, the supersymmetry equations can be
recast as integrability equations of generalised almost complex structures, and the
relation between type IIA and type IIB on the supergravity side equates to the rela-
tion between symplectic and complex geometry in this framework. The appearance
of generalised complex geometry is even more remarkable in that it also appears in
similar but unrelated contexts in string theory, such as the reformulation of sym-
metries of certain NLσM, or the reformulation of type II supergravity as a wholly
geometric theory in light of the relation between T-duality and G�G.

This thesis centers on the study of aspects of the relation between geometry and
flux vacua. The vacua under consideration will be of dimension other than the
more well-studied four, in order to be able to compare aspects of vacua and find
out whether or not certain features are generic or dimension-specific. In particular,
classes of vacua on SU(n)-structure manifolds for n ∈ {4, 5} are constructed and an
attempt is made to reformulate such vacua in terms of G�G.

In chapter 1, G-structures will be introduced. This includes a brief reminder on
the necessary concepts related to fibre bundles, a discussion on the geometrical in-
terpretation of SU(n)-structures, and practical details for SU(4) and SU(5). In
chapter 2 the physics preliminaries are given. The relevant supergravities are dis-
cussed, their relations to one another, and what type of vacua are of interest and why.
Furthermore, the integrability theorem that implies that solutions to the supersym-
metry equations are solutions to the equations of motion will be reviewed. Following
this, chapter 3 contains original work [1] [2] detailing the construction of flux vacua
on SU(4)-structure manifolds. Specifically, these are d = 2, N = (1, 1) IIA, d = 2,
N = (2, 0) IIB and d = 3, N = 1 M-theory Minkowski vacua. The chapter ends
with explicit examples on the SU(4)-structure manifold K3 ×K3. What might be
referred to as a more extensive example is worked out in chapter 4, where flux vacua
on the non-compact CY Stenzel space are discussed [3]. By making use of the coset
structure that forms the base of the deformed cone that is Stenzel space, it is possible

3At the time of this thesis, no weak-scale supersymmetry has been found at the LHC, however.
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to construct families of SU(4)-structures on this space, leading to non-CY manifolds
which are dubbed ‘SU(4)-deformed Stenzel spaces’, on which more (classes of) vacua
are given. Next, generalised complex geometry is reviewed in chapter 5. The rela-
tion between G�G, the IIB SU(4)-structure supersymmetric solutions of chapter 3,
and calibrated D-branes are discussed in chapter 6 [2]. Pushing this idea further, in
chapter 7 the case of type II supersymmetric solutions on SU(5)-structure manifolds
is examined and reformulated to some extent in terms of G�G [4]. The price to
pay for the generality of an SU(5)-structure manifold is that it is necessary to con-
sider complexified supergravity. Physical results (and examples) are then obtained
by lifting the type IIA solutions to d = 1, N = 1 M-theory. Finally, the appendices
contain conventions, a discussion on the intrinsic torsion that plays a key role in the
G-structure story, and a slew of miscellaneous results.

About & Acknowledgements

The original contents of this thesis are (mostly) bijective to the papers [1–4]. They
are not diffeomorphic: everything has been rewritten from scratch to present a more
unified picture, with the exception of [3] which has been trivially embedded in chapter
4. In addition, the preliminaries are more strongly emphasised (or in some cases,
present) and I have attempted to give definitions for most of the terminology used
throughout, in the hope of making this work understandable to a broad audience. In
particular, it should be readable for beginning PhD students, stray geometers, and
most anyone with a background in classical field theory, general relativity, a healthy
dose of complex and differential geometry, some knowledge of supersymmetry and
supergravity, quantum field theory and string theory (although I suspect the latter
two are not even strictly necessary, merely recommended). In addition, the following
table might be of use.
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Chapter 1

G-structures

In order to find solutions to the supersymmetry equations with non-vanishing fluxes,
we will require some mathematical machinery. An extremely useful tool and one
of the centerpieces of this thesis is the geometrical concept of a G-structure. G-
structures are a way to encode the topology of vector bundles in group theoretic
fashion, and allow us to encode connections on vector bundles algebraically through
the notion of torsion classes. G-structures are closely related to holonomy, which have
been exploited in the physics literature more frequently, as in many cases, the ma-
chinery of holonomy suffices to describe fluxless vacua. The notion of G-structures
goes back to at least [22, 23], but did not feature prominently in supergravity lit-
erature until [24–28]. Standard references are [14], [15], both of which are highly
recommended. An excellent overview from a physics point of view is given in [13].

In section 1.1, a short overview of fibre bundles is given, as these are essential to
understanding G-structures and additionally, this will allow us to establish conven-
tions. This is followed by 1.2 where G-structures are defined, their use and examples
are given, and torsion classes are discussed. We proceed to the G-structures of inter-
est, G = SU(n), in section 1.3. After this formal introduction to SU(n)-structures,
sections 1.4 and 1.5 offer a more utilitarian approach, in which necessary formulae
for later use will be derived, both for SU(4) and SU(5). The latter two will hopefully
clarify some of the more abstract statements made in the former sections.

1.1 Fibre bundles

G-structures are intricately related with vector bundles and principal bundles. Al-
though we assume the reader is familiar with these, let us briefly review and establish
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1. G-structures

conventions.

Definition 1.1.1. A fibre bundle is a tuple (E,F,M, π) with the following properties:

1) E,F,M are smooth manifolds. E is known as the total space, F the fibre, M
the base space, and π : E → M is a smooth projection. Often, the total space
E will be referred to as the fibre bundle itself.

2) ∀p ∈ M , π−1({p}) ≡ Ep � F . p is called the base point of the fibre Ep. If F
has dimension k, the fibre bundle is said to be of rank k.

3) ∀p ∈ M , there is an open neighbourhood U ⊂ M containing p such that the
diagram

π−1(U)

π

��

�
τU

�� U × F

Π
��

U

commutes, with Π the natural projection. The diffeomorphism τU is called a
local trivialisation.

Depending on the point of view we wish to stress, we will occasionally use the
notation E → M or F ↪→ E for fibre bundles.

Definition 1.1.2. A vector bundle is a fibre bundle (E, V,M, π) such that the fibre
V is a vector space, and the local trivialisations are linear maps. Generically we
consider V to be a vector space over �. A complex vector bundle is a vecor bundle
where V is a vector space over �. A line bundle is a vector bundle of rank k = 1.

Definition 1.1.3. A principal bundle is a fibre bundle (P,G,M, π) such that G is
a Lie group, and the local trivialisations are Lie group isomorphisms. The principal
bundle comes equipped with an action P × G → P that is smooth and free1. The
local trivialisations are also required to be intertwiners2 of the action.

The fibres of a principal bundle are the orbits of the action on the base point, so
the action is fibre-preserving. The base space M is diffeomorphic to P/G.

1That is, all stabilizers are trivial: p · g = p =⇒ g = e.
2That is, ∀p ∈ π−1(U), g ∈ G, the local trivialisation τU satisfies τU (pg) = τU (p)g
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Definition 1.1.4. A subbundle of (E,F,M, π) is a fibre bundle (E ′, F ′,M, π′) such
that E ′ ⊂ E, F ′ ⊂ F , π′ = π|E′ . A vector subbundle is itself a vector bundle,
hence F ′ is a vector subspace of F , whereas a principal subbundle is itself a principal
bundle, hence F ′ is a subgroup of F .

An essential notion in the discussion of fibre bundles is that of sections.

Definition 1.1.5. Let E be a fibre bundle. A global section s is a smooth map
s : M → E such that s preserves fibres, i.e., s(p) ∈ Ep ∀p ∈ M , or equivalently,
π◦s = �M . Let U ⊂ M . A local section is a fibre-preserving smooth map s : U → E.
The set of global sections will be denoted either by Γ(M,E) or by Γ(E) if the base
space is clear.

Fibre bundles can be wholly specified in terms of the fibre, bases space, and the
transition data. Consider a set of coordinate patches {Uα} such that3 M =

⋃
α Uα

with trivializations {τα}. Then one can define the atlas on E by

ταβ ≡ τα ◦ τ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F , (1.1)

which is base point preserving. In case of vector bundles, one has that for p ∈ M, v ∈
Vp,

ταβ ((p, v)) ≡ (p, tαβ(p)v) , tαβ(p) ∈ GL(k,�) . (1.2)

The maps tαβ : Uα ∩ Uβ → GL(k,�) are referred to as transition functions. Hence
transition functions describe the change of coordinates of the vector bundle consid-
ered as a manifold itself. In order for the transition functions to be sensible, they
must satisfy tαα = �, tαβtβα = � and tαβtβγtγα = �.

Every manifold naturally comes equipped with a vector bundle and a principal bun-
dle. These are the tangent bundle and the (tangent) frame bundle. Let M be a
manifold. Then the tangent bundle TM is the vector bundle whose fibres at each
point p ∈ M are given by the tangent plane to the manifold, TpM . If {xj} are local
coordinates, then the tangent space is given by

TpM = span
�

{
∂

∂xj

}
. (1.3)

The (tangent) frame bundle is the principal fibre bundle whose fibre at p consists
of all ordered bases of TpM . Given an ordered basis, another ordered basis is found

3The fact that we are taking the disjoint union is to be understood.
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1. G-structures

by acting on it with an element of GL(n,�). Hence the fibers of the frame bundle,
which are called the structure group, are isomorphic to GL(n,�). In fact, the transi-
tion functions tab of the tangent bundle are local sections of the tangent frame bundle.

Understanding transition functions, a third kind of vector bundle can be defined.

Definition 1.1.6. A holomorphic vector bundle is a complex vector bundle over a
complex base space such that the transition functions are biholomorphic.

Coming back to the discussion on vector bundles and principal bundles, we note
that associating the tangent frame bundle to the tangent bundle is a general feature
of vector bundles: to every vector bundle E a principal bundle can be associated,
namely its frame bundle FE. Conversely, we can associate to each principal bundle
a vector bundle. Let (P,G,M) be a principal bundle. Let ρ be a representation of G
on a vector space V , then there is an action of G on P × V via the principal action
on P and ρ on V . Then we define E ≡ P × V/ ∼, with the equivalence relation
defined as follows: for p, q ∈ P , p ∼ q ⇐⇒ ∃g ∈ G, s.t. pg = q; that is to say, p, q
are both elements of the same fibre. In this way we get a vector bundle (E, V,M)
(with the projection induced from the principal bundle projection). These maps are
inverse in the sense that E � FE × V/ ∼ in terms of vector bundles. For principal
bundles P with fibres G �= GL(k,�), P �= F (P × V/ ∼), hence principal bundles
are more general than vector bundles.

1.2 G-structures & Torsion Classes

We are now in a position to discuss the concepts that are of primary interest to
us, namely G-structures and their intrinsic torsion, which is expressible in terms of
torsion classes.

Definition 1.2.1. Let E be a vector bundle with associated frame bundle FE. A
G-structure is a principal subbundle Q of a frame bundle FE with fibres isomorphic
to G.

A G-structure Q exists if and only if all transition functions of E take value in G.
Existence of a G-structure also goes by the name of reduction of the structure group.
Generically, we will consider E = TM , and note that this induces G-structures on
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T ∗M and on the tensor bundle T (k,l)4. Although straightforward, this definition is
not the most convenient way to work with G-structures. The point of a G-structure
is as follows:

Proposition 1.2.1. Let M be such that it admits a tensor φ that is nowhere van-
ishing and G-invariant. Then M admits a G-structure.

This is easy to see: since G is the stabiliser of φ, if the transition functions would
take value outside of G, φ would not be invariant. In all cases relevant for us, the
converse is true as well; having a G-structure means only a certain set of frames on
the tensor bundle is admitted, such that a certain tensor is stabilised.

Thus, we see that we can alternatively describe a G-structure algebraically in terms
of tensors. Many geometrical structures, such as for example complex structures,
symplectic structures, orientability, can be defined in terms of tensors, together with
an integrability condition. In this sense, a G-structure can be thought of as a not
necessarily integrable geometrical structure. Suppose M admits two tensors φ1, φ2

associated to G-structures with structure groups H1, H2. Then M will also admit
a G-structure with structure group H1 ∩H2. Some of the more useful examples are
listed in the table below:

Geometrical Structure G-structure
Orientability GL+(n,�)
Volume form SL(n,�)

Riemannian metric O(n)
Almost complex structure GL+(n/2,�)
Almost symplectic structure Sp(n,�)

Let us give a proof for one of these as an example.

Proposition 1.2.2. Let M be a manifold of dimension 2n. M admits an almost
complex structure J if and only if it admits a GL(n,�) structure.

Proof. Suppose M2n admits an almost complex structure; a globally non-vanishing
fibre-preserving map I : TM → TM such that I2 = −�. Then TM ⊗� = T (1,0)M ⊕
T (0,1)M , with T (1,0)M the +i-eigenbundle of I. Consider a local frame {ζj} of the
complex vector bundle T (1,0)M. This local frame induces a basis for T (1,0)M viewed
as a real vector bundle, namely {Re ζj, iIm ζj}. But then, this yields a local frame
of TM , hence TM and T (1,0)M are diffeomorphic as real vector bundles. As a

4See section 5 for applications of G-structures to the generalised tangent bundle T ⊕ T ∗.
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1. G-structures

consequence, they have the same structure group. Since the structure group of
T (1,0)M is GL(n,�), it follows that TM must also admit a reduction of its structure
group to GL(n,�).

Conversely, supposeM2n has aGL(n,�)-structure. Given a local frame {e1, ..., e2n}
of TM , GL(n,�) acts on the local frame of 2n-dimensional vectors as GL(n,�2).
Thus, one can define a local frame {ζj, ζ̄ j̄ | ζj = e2j−1 + ie2j , ζ̄

j̄ = e2j−1 − ie2j} such
that GL(n,�) acts canonically on {ζj} and via the complex conjugate representa-
tion on {ζ̄ j̄}. Thus, given a covering set of local coordinate patches M =

⋃
α Uα

one can find local frames of the form {ζjα, ζ̄ j̄α} which are related to one another by
ζjα = (tαβ)

j
k ζ

k
β . Define T (1,0)M to be spanned by local frames ζj and I(ζ) = iζ

∀ζ ∈ T (1,0)M , and analogously T (0,1)M . Then I is a globally well-defined invariant
tensor satistying I2 = −�, hence an almost complex structure.

On the more practical side of things, part of G-structures’ functionality is that
they allow us to turn partial differential equations into algebraic ones. This comes
about through torsion classes. Given a G-structure Q, torsion classes parametrise
its intrinsic torsion. For Riemannian manifolds, intrinsic torsion can be viewed as
the failure of the Levi-Civita connection to be compatible with the G-structure.
Equivalently, it can be seen as a measure of the failure of the manifold to be spe-
cial holonomy. See appendix B for more details. Here, we shall restrict ourselves
to the following more practical explanation in terms of the tensors that define the
G-structure. Given a G-structure Q, globally well-defined tensors on M can be de-
composed into irreducible representations of G. If Q is defined by a set of differential
forms {φj}, then the exterior derivatives of {φj} form a particular set of tensors,
whose decomposition holds special meaning. The irreducible representations in their
decomposition are expressible in terms of the {φj} and in terms of a number of
other differential forms {Wl}; these are the torsion classes. The number of torsion
classes, as well as their type of representation, is determined by the decomposition of
T ∗M ⊗ g⊥, where g⊕ g⊥ = so(n). The torsion classes can also be viewed as charac-
terising obstructions to integrability of the geometrical objects {φj}. A G-structure
with vanishing torsion classes is called integrable or torsion-free. This will be made
more explicit in the explicit discussion in sections 1.4, 1.5.

1.3 SU(n)-structures

The G-structures we will be concerned with are SU(n)-structure, as manifolds with
SU(n)-structures are closely related to Calabi-Yau manifolds. As fluxless N = 2
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vacua of type II supergravity on �1,3 × M6 require M6 to be Calabi-Yau, SU(n)-
structure manifolds are obvious candidates to examine for more general vacua, since
a Calabi-Yau structure can be considered to be a torsion-free or integrable SU(n)-
structure. Before discussing the relation with physics, let us first describe the math-
ematics of such manifolds, and explain the relation to Calabi-Yau manifolds in more
detail. In this section, we will remain quite formal, and hope that the abstractions
will be clarified by the explicit calculations given in the following sections where n
will be specified.

Let M be a manifold of dimension 2n. U(n) is the intersection of O(2n), GL+(n,�)
and Sp(2n,�). Hence, a manifold with a U(n)-structure will come equipped with
an orientation, an almost symplectic structure J , an almost complex structure I,
and a Riemannian metric g. A further reduction of the structure group down to
SU(n) is then associated with a volume form Ω of T ∗(1,0) (i.e., a nowhere vanish-
ing global section of the complex vector bundle known as the canonical bundle or
determinant line bundle, T ∗(n,0) ≡ ∧n T ∗(1,0) ) and thus, the vanishing of the first
Chern class c1(T

(1,0)) = 0. Let us stress that a priori, T ∗(n,0) is not a holomorphic
vector bundle, for the sole reason that the base space is equipped with an almost
complex structure which need not be integrable. If the base space is complex, then
T ∗(n,0) is holomorphic. Let us also stress that the volume form is a smooth global
section of T ∗(n,0) rather than a holomorphic global section, even in the case where
T ∗(n,0) is a holomorphic vector bundle. This will become more clear when discussing
SU(n)-structures in terms of the associated forms.

We can be more concrete and reformulate this in terms of spinors and tensors. Let
us start with the former5. M has an SU(n)-structure if and only if there exists a
globally well-defined nowhere vanishing pure spinor.

Definition 1.3.1. A pure spinor is a Weyl spinor that is annihilated by exactly half
the Clifford algebra.

For n ≤ 3, every Weyl spinor is pure. On the other hand, for n > 3, this is not
guaranteed. In case n = 4, there is a single scalar constraint placed on the spinor
bilinears. For n = 5, the constraint is vectorial. This will become clearer when
considering the SU(n)-structure in terms of forms. Alternatively, see [29] for a far
more comprehensive description.

In terms of tensors, an SU(n)-structure can be described as follows. Let g be a

5See appendix A.1 for spinor conventions.
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1. G-structures

Riemannian metric on M , and let (J,Ω) be respectively a real two-form and a com-
plex n-form, satisfying the following:

J ∧ Ω = 0

1

n!
Jn =

1

2n
ixΩ ∧ Ω∗ = vol2n ,

(1.4)

for some x ∈ N depending on convention and dimension. The fact that Jn ∼ vol2n
means that it is non-degenerate. A real non-degenerate two-form is known as an
almost symplectic form or equivalently, almost symplectic structure. Using J , one
can construct an almost complex structure I by setting6

I n
m ≡ Jmpg

pn , (1.5)

where the normalisation works out due to the prefactors chosen in (1.4). Unless it
is necessary to refer explicitly to the fact that we are discussing the almost complex
structure, we will abuse notation and simply denote the almost complex structure
by J as well. The almost complex structure induces a grading on k-forms, and with
respect to this grading Ω is an (n, 0)-form and is thus a volume form of T ∗(1,0).

The relation between the two descriptions is that the tensors can be constructed
out of the spinors in terms of spinor bilinears, as will be made evident in the next
section.

Any differential form α ∈ Ω•(M) on an oriented Riemannian manifold furnishes
an irreducible SO(2n) representation. The presence of an SU(n)-structure means
that this representation can be decomposed further in terms of irreducible SU(n)
representations. Alternatively, there is a more geometrical way to view this. The
SU(n)-structure defines an almost complex structure and an almost symplectic struc-
ture. An almost complex structure induces a grading on the exterior algebra via∧k

T ∗ =
⊕

p+q=k

(∧p
T ∗(1,0)

)
∧
(∧q

T ∗(0,1)
)

≡
⊕

p+q=k

T ∗(p,q)
(1.6)

and consequentially, a grading on sections of the exterior algebra,

Ωk(M) =
⊕

p+q=k

Ω(p,q)(M) . (1.7)

6See for example [30] for a proof.
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Similarly, the almost symplectic structure induces a decomposition of forms. Given
an almost symplectic structure J , one has the following canonical maps on forms:

L(k) : Ω
k(M) → Ωk+2 , α �→ J ∧ α

Λ(k) : Ω
k(M) → Ωk−2 , α �→ J�α .

(1.8)

The first map is sensible ∀k ∈ {0, ..., 2n}. In order to extend the second map to
include k < 2, Λ(0) ≡ Λ(1) ≡ 0. Note that Λ(k) ∼ �L(2n−k)� by virtue of the fact that
the volume form is expressible in terms of J . The pedantic subscript will always be
dropped, but is convenient for the following definition.

Definition 1.3.2. A k-form α is defined to be primitive7 if α ∈ Ωk
p(M), with

Ωk
p(M) ≡ Ker(Λ(k)) . (1.9)

By non-degeneracy of the almost symplectic form and Hodge duality,

Ker(Λ(k)) = Ker(Ln+1−k
(k) ) , (1.10)

hence this is another way to define primitive forms. Note in particular that Ωk(M) =
Ωk

p(M) for k ∈ {0, 1, 2n− 1, 2n}.

Proposition (Lefschetz decomposition) 1.3.1. Existence of an almost symplec-
tic structure induces a grading on k-forms

Ω2k(M) =
k⊕

l=0

LlΩ2(k−l)
p (M)

Ω2k+1(M) =
k⊕

l=0

LlΩ2(k−l)+1
p (M)

(1.11)

and thus on sections of the exterior algebra as

Ω•(M) =
2n⊕
k=0

2n−k⊕
l=0

LlΩk
p(M) . (1.12)

7 The fact that a primitive two-form α satsifies amnJ
mn = 0 has led some authors to refer to

the condition as ‘tracelesness’. We will not do so.
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1. G-structures

In the simple cases that will be relevant for us, the proof consists of simply count-
ing degrees of freedom. For a more general proof, one uses the fact that the operators
L,Λ, [L,Λ] form a representation of sl(2,�) with finite spectum, and that this is in-
dependent of closure of J . See [7,17,31] for details, although closure of J is assumed
in all of these.

Note that in both the complex and symplectic case, decomposition of the forms
does not require integrability of the almost complex structure or almost symplectic
structure; on the other hand, demanding that this property descends to the level
of cohomology is a far stronger constraint, requiring that M is in fact compact and
Kähler. This is because in both cases, the proof for the cohomology decomposition
makes extensive use of Poincaré duality and the Hodge theorem, which states that
on compact Kähler manifolds cohomology classes and harmonic forms are bijective.
See for example [5] for more details.

The bottom line is that decomposing k-forms into irreducible SU(n)-representations
is equivalent to applying both Hodge and Lefschetz (i.e., complex and symplectic)
decompostion to the forms. Examples below will probably greatly clarify this proce-
dure.

Let us also elaborate on the relation between Calabi-Yau manifolds and SU(n)-
structure manifolds. There are various definitions for Calabi-Yau manifolds, most of
which are inequivalent in one way or another. The one used here is as follows:

Definition 1.3.3. A Calabi-Yau manifold is a manifold M together with a Calabi-
Yau structure (g, J,Ω) such that M is a connected complex manifold of complex
dimension n, g is a Kähler metric associated to the Kähler form J , and Ω is a holo-
morphic volume form, that is Ω ∈ Ωn

h(M) ⊂ Ω(n,0)(M) and Ω is nowhere vanishing.

Using this definition, a Calabi-Yau manifold has the following properties:

• M is not necessarily compact.

• The first Chern class satisfies c1(T
(1,0)) = 0.

• Jn ∼ Ω ∧ Ω∗ ∼ vol2n.

• The Ricci curvature of g is trivial.

• The holonomy (see appendix B.3) satisfies Hol(M) ⊆ SU(n). In case Hol(M) =
SU(n), we refer to the Calabi-Yau as a proper Calabi-Yau manifold. Proper
Calabi-Yau satisfy hp,0 = δp,0 + δp,n, with hp,q ≡ dimHp,q the dimension of the
Dolbeault cohomology.
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Comparing this to an SU(n)-structure manifold, the following equivalence is found:

Proposition 1.3.2. A Calabi-Yau manifold is a manifold with an integrable SU(n)-
structure.

The proof is to rather trivially check the relevant definitions. The reason we stress
this point so heavily here is because understanding that SU(n)-structure manifolds
are generalisations of Calabi-Yau manifolds is essential to understanding why they
are relevant for finding supersymmetric flux vacua of supergravity. In this spirit, the
complex (n, 0)-form Ω defining the SU(n)-structure will occasionaly be referred to
as the almost Calabi-Yau form, as it is the Calabi-Yau form Ω if the SU(n)-structure
is integrable.

1.4 SU(4)-structure

An eight-dimensional manifold admits an SU(4)-structure if and only it admits a
globally defined nowhere vanishing pure spinor. In eight dimensions, a Weyl spinor
η is pure if and only if it satisfies

η̃η = 0 . (1.13)

As η is non-trivial, it follows that

η =
1√
2
(ηR + iηI)

η̃RηR = η̃IηI ≡ 1

(1.14)

with ηI,R real-valued and the normalisation chosen for convenience, as it implies
η̃cη = 1. Existence of ηI,R reduces the structure group of the spin structure from
Spin(8) to Spin(6), which is isomorphic to SU(4) due to a so-called ‘accidental
isomorphisms’. Let us define

Jmn ≡ −iη̃cγmnη

Ωmnpq ≡ η̃γmnpqη .
(1.15)

Because of the demand that η is nowhere vanishing, both of these forms are non-
degenerate. Thus, J is an almost symplectic structure. Using the Fierz identity
(A.9), one can then explicitly confirm that

Jm
pJp

n = −δnm , (1.16)

26



1. G-structures

demonstrating that this is indeed an induced almost complex structure. In terms of
J , one can define the projection operators

(
Π±) n

m
≡ 1

2
(δnm ∓ iJ n

m ) . (1.17)

By virtue of the fact that δnm = (Π−) n
m + (Π+)

n
m , k-forms can be decomposed into

(p, q)-forms as

α(k) =
∑

p+q=k

α(p,q) (1.18)

α(p,q)
m1...mp+q

≡ (p+ q)!

p!q!

(
Π+
) r1

[m1
...
(
Π+
) rp

mp]

(
Π−) s1

[mp+1
...
(
Π+
) sq

mp+q ]
αr1...rps1...sq .

By again making use of Fierz identities, it can be shown that

(Π+)m
rΩrnpq = Ωmnpq , (Π−)mrΩrnpq = 0 (1.19)

and that

1

4!
J4 =

1

24
Ω ∧ Ω∗ = vol8 . (1.20)

Thus Ω = Ω(4,0) is a volume form on T ∗(1,0). Using the definition of the projection
operators, it immediately follows that J = J (1,1), hence

J ∧ Ω = 0 , (1.21)

leading to the conclusion that (J,Ω) indeed define an SU(4)-structure; by a very
slight abuse of terminology, we will also refer to (J,Ω) as the SU(4)-structure. The
exterior derivative acting on the the SU(4)-structure can be decomposed in terms of
torsion classes as follows:

dJ = W ∗
1 �Ω +W3 +W4 ∧ J + c.c.

dΩ =
8i

3
W1 ∧ J ∧ J +W2 ∧ J +W ∗

5 ∧ Ω ,
(1.22)

with

W1,4,5 ∼ 4

W2,3 ∼ 20 ,
(1.23)
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or equivalently,

W1,4,5 ∈ Ω(1,0)(M)

W2,3 ∈ Ω(2,1)
p (M) =⇒ W2,3 ∧ J ∧ J = 0 .

(1.24)

The prefactor 8i/3 is fixed by the constraint d(J ∧Ω) = 0. The precise way in which
the torsion classes are obstructions to integrability of the various structures are given
in the following table, where the first column indicates whether M equipped with
(J,Ω) defines a certain structure, and the second column indicates the necessary and
sufficient condition on the torsion classes.

Geometrical structure Torsion classes
Complex W1 = W2 = 0
Symplectic W1 = W3 = W4 = 0
Kähler W1 = W2 = W3 = W4 = 0
Nearly Calabi-Yau W1 = W3 = W4 = W5 = 0
Conformal Calabi-Yau W1 = W2 = W3 = 0, 2W4 = W5 exact
Calabi-Yau Wj = 0 ∀j

These conditions are all straightforward to deduce. The almost symplectic form
is an integrable almost symplectic form (which tends to be refered to by the less
silly name ‘symplectic form’) if dJ = 0 ⇐⇒ W1,3,4 = 0. For integrability of the
almost complex structure, necessity of the vanishing of the torsion classes W1,2 is
clear, while the sufficiency follows from calculating the Nijenhuis tensor. A Kähler
structure is nothing more than a compatible complex and symplectic structure, and
a Calabi-Yau structure is a Kähler structure with the additional requirement that
Ω is a holomorphic section and hence dΩ = 0. Under conformal transformations
g → e2χg, it follows from (1.20) that J → e2χJ , Ω → e4χΩ, hence

W1 → W1

W2 → e2χW2

W3 → e2χW3

W4 → W4 + 2∂+χ

W5 → W5 + 4∂+χ ,

(1.25)

with8 ∂+χ ≡ Π+(dχ). Using these, the constraint for a conformal Calabi-Yau struc-
ture follows.

8It is necessary to introduce the operator ∂+ as the almost complex structure need not be
integrable, hence the Dolbeault operator is ill-defined.
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1. G-structures

Tensor decomposition

The precise decomposition of forms, either seen in terms of representation theory
or as Lefshetz and Hodge decomposition, is as follows. Under the SO(8) → SU(4)
decomposition the two-form, the three-form, the selfdual and the anti-selfdual four-
form of SO(8) decompose respectively as:

28 → (6⊕ 6)⊕ (1⊕ 15)

56 → (4⊕ 4̄)⊕ (4⊕ 20)⊕ (4̄⊕ 2̄0)

35+ → (1⊕ 1)⊕ (6⊕ 6)⊕ 20′ ⊕ 1

35− → (10⊕ 1̄0)⊕ 15 .

Here, 35± correspond to selfdual and anti-selfdual four-forms respectively. Explicitly,
k-forms are decomposed as follows:

Fm = f (1,0)
m + c.c

Fmn = f
(1,1)
2|mn + f2Jmn +

(
f
(2,0)
2|mn + c.c.

)
Fmnp = f

(2,1)
3|mnp + 3f

(1,0)
3|[m Jnp] + f̃

(1,0)
3|s Ωs∗

mnp + c.c.

F+
mnpq = f

(2,2)
4|mnpq + 6f4J[mnJpq] +

(
6f

(2,0)
4|[mnJpq] + f̃4Ωmnps + c.c.

)
F−
mnpq = 6f

(1,1)
4|[mnJpq] +

(
f
(3,1)
4|mnpq + c.c.

)
,

(1.26)

with f (p,q) ∈ Ω
(p,q)
p (M) ∀p, q. In terms of irreducible SU(4) representations, we have

that

f ∼ 1 ;

f (2,0)
mn ∼ 6⊕ 6 ;

f (2,1)
mnp ∼ 20 ;

f (3,1)
mnpq ∼ 10 ;

f (1,0)
m ∼ 4

f (1,1)
mn ∼ 15

f (2,2)
mnpq ∼ 20′

(1.27)

Reality of a k-form is equivalent to demanding
(
f (p,q)

)∗
= f (q,p).

Note that complex (2,0)-forms ϕ(2,0) take value in the reducible module 6 ⊕ 6, and
irreducible representations can be formed by imposing a pseudoreality condition:

ϕ(2,0)
mn =

1

8
eiθΩmn

pqϕ(0,2)
mn , (1.28)

where θ ∈ [0, 2π) is an arbitrary phase. Similarly for complex (0, 2)-forms.
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1.5 SU(5)-structure

The construction of an SU(5)-structure is almost entirely analogous to that of an
SU(4)-structure, hence everything should be self-explanatory after the previous sec-
tion. The main purpose here is to give all formulae necessary for doing computations.

An SU(5)-structure on a ten-dimensional manifold exists if and only if it admits
a globally nowhere vanishing pure spinor. The accidental isomorphism Spin(6) =
SU(4) was convenient to see this for SU(4)-structures, here this reasoning cannot
be used. Instead, the relation between almost complex structures and pure spinors
will be exploited to make this evident. As a pure spinor is annihilated by half the
gamma matrices, it is possible to define the annihilator space to consist of antiholo-
morphic gamma matrices, and the remainder of holomorphic gamma matrices (or
vice versa). This identification is independent of the normalisation of the spinor.
Thus, a line bundle of pure spinors is equivalent to a choice of almost complex struc-
ture, reducing the structure group from SO(10) to U(5). Demanding that there is a
globally nowhere vanishing section of the line bundle is then equivalent to demanding
a smooth section of the canonical bundle, reducing the structure group further to
SU(5). This trick will be worked out in greater detail in section 5, where a similar
procedure will be used for generalised almost complex structures of T ⊕ T ∗. For all
practical purposes, our starting point will simply be to demand existence of the pure
spinor, by means of which the almost complex structure and volume form will be
constructed.

Given a (normalised) Weyl spinor η of Spin(10), η is pure if and only if

Km ≡ η̃γmη = 0 . (1.29)

Given that η is pure, the almost symplectic structure and almost Calabi-Yau form
are defined as

Jmn ≡ −iη̃cγmnη

Ωmnpqr ≡ η̃γmnpqrη .
(1.30)

Fierzing shows that

Jm
pJp

n = −δnm , (1.31)

and hence projection operators can again be defined as(
Π±) n

m
≡ 1

2
(δnm ∓ iJ n

m ) . (1.32)
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1. G-structures

with respect to which Ω = Ω(5,0) and J = J (1,1). Still using no more than definitions
and Fierz identities, it follows that

J ∧ Ω = 0

1

5!
J5 =

1

25
iΩ ∧ Ω∗ = vol10 ,

(1.33)

hence (J,Ω) defines an SU(5)-structure. Decomposing the exterior derivatives of the
SU(5)-structure itself leads to

dJ = W ∗
1 �Ω +W3 +W4 ∧ J + c.c.

dΩ = −16i

3
W1 ∧ J ∧ J +W2 ∧ J +W ∗

5 ∧ Ω ,
(1.34)

with W1 ∼ 10 a complex (2,0)-form, W2 ∼ 40 a complex primitive (3,1)-form,
W3 ∼ 45 a complex primitive (2,1)-form and W4,5 ∼ 5 complex (1,0)-forms9. The
torsion class conditions on geometrical structures are given by

Geometrical structure Torsion classes
Complex W1 = W2 = 0
Symplectic W1 = W3 = W4 = 0
Kähler W1 = W2 = W3 = W4 = 0
Conformal Kähler W1 = W2 = W3 = 0, W4 exact
Nearly Calabi-Yau W1 = W3 = W4 = W5 = 0
Conformal Calabi-Yau W1 = W2 = W3 = 0, 3W4 = 2W5 exact
Calabi-Yau Wj = 0 ∀j

As is evident, the only difference compared to the SU(4)-structure case is the nu-
merical factor for conformal Calabi-Yau structures, as W5 scales slightly differently
under conformal transformations.

Tensor decomposition

Under an SO(10) → SU(5) decomposition the one-form, the two-form, the three-
form, the four-form, and the self-dual five-form of SO(10) decompose respectively

9Of course, (2, 0)- and (1, 0)-forms are trivially primitive as well, hence all torsion classes are
primitive, as they should be.
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as:

10 → 5⊕ 5̄

45 → 1⊕ 10⊕ 1̄0⊕ 24

120 → 5⊕ 5̄⊕ 10⊕ 1̄0⊕ 45⊕ 4̄5

210 → 1⊕ 5⊕ 5̄⊕ 10⊕ 1̄0⊕ 24⊕ 40⊕ 4̄0⊕ 75

126+ → 1⊕ 5⊕ 1̄0⊕ 1̄5⊕ 4̄5⊕ 50 .

(1.35)

Note that by ‘selfdual’, it is understood to mean that the 126+ satisfies �F5 = iF5.
Explicitly, k-forms can be decomposed as follows:

Fm = f
(1,0)
1|m + f

(0,1)
1|m

Fmn = f2Jmn + f (1,1) + f
(2,0)
2|mn + f

(0,2)
2|mn

Fmnp = 3f
(1,0)
3|[m Jnp] + f

(2,1)
3|mnp +

1

2
f
(0,2)
3|qr Ω qr

mnp + 3f
(0,1)
3|[m Jnp] + f

(1,2)
3|mnp +

1

2
f
(2,0)
3|qr Ω∗ qr

mnp

Fmnpq = 6f4J[mnJpq] + 6f
(1,1)
4|[mnJpq] + f

(2,2)
4|mnpq

+ 6(f
(2,0)
4|[mn + f

(0,2)
4|[mn)Jpq] + f

(3,1)
4|mnpq + f

(1,3)
4|mnpq + f

(0,1)
4|r Ω r

mnpq + f
(1,0)
4|r Ω∗ r

mnpq

F+
mnpqr = 30f

(1,0)
5|[m JnpJqr] + 5f

(0,2)
5|xy Ω

xy
[mnp Jqr] + 10f

(1,2)
5|[mnpJqr]

+ f5Ωmnpqr + f
(1,4)
5|mnpqr + f

(3,2)
5|mnpqr ,

(1.36)

where in terms of irreducible SU(5) representations we have:

f ∼ 1 ;

f (2,0)
mn ∼ 10 ;

f (2,1)
mnp ∼ 45 ;

f (3,1)
mnpq ∼ 40 ;

f (4,1)
mnpqr ∼ 15 ;

f (1,0)
m ∼ 5

f (1,1)
mn ∼ 24

f (2,2)
mnpq ∼ 75

f (3,2)
mnpqr ∼ 50 .

(1.37)

An SO(10) representation is real if and only if the SU(4) representations in the
decomposition satisfy (f (p,q))∗ = f (q,p).

Using Hodge duality all k-forms with k > 5 can be similarly expressed in terms
of the expansions above; however, let us mention the following expressions which will
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1. G-structures

be needed in section 7.3

F6 = −1

3
if4J ∧ J ∧ J +

1

2
i(f

(1,1)
4 − f

(2,0)
4 − f

(0,2)
4 ) ∧ J ∧ J

+ i(f
(3,1)
4 + f

(1,3)
4 − f

(2,2)
4 ) ∧ J − f̃

(0,1)
4 ∧ Ω + f̃

(1,0)
4 ∧ Ω∗

F8 = i
1

4!
f2J

4 + i
1

3!
(f

(2,0)
2 + f

(0,2)
2 − f

(1,1)
2 )J3

F10 = −i
1

5!
f0J

5 .

(1.38)
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Chapter 2

Supergravities

This section is about the physical theories that are the subject of this thesis, which
are all various guises of low-energy string theories. These are described in terms of
supergravities. There is a plethora of different supergravities, in various dimensions,
with various supersymmetries and with various field content. These are not all in-
dependent, as some of them can be obtained from others by means of Kaluza-Klein
reduction or dualities. We will discuss type II supergravity, which describes low-
energy type II (i.e., closed) string theory and D = 11 supergravity, which describes
low-energy M-theory (by definition). As there is an abundance of differing conven-
tions in the literature, this will also give us the opportunity to fix ours, which are
mostly equivalent to those of [32].

We start by discussing type II supergravity in section 2.1, which will be the primary
physical focus of this thesis. Secondly, D = 11 supergravity is discussed in section
2.2, after which we consider the relation between type IIA and D = 11 supergrav-
ity in section 2.3. Next, the method of obtaining lower-dimensional supergravity
theories from solutions to the equations of motion which do not break supersymme-
try is considered in section 2.4. Finding such supersymmetric vacua entails solving
Killing spinor equations, which are easier to solve than the equations of motions
themselves. In section 2.5, we discuss the conditions for supersymmetry solutions to
furnish supersymmetric vacua, a process which goes by the name of integrability.

2.1 Type II supergravity

Type II supergravity is the low-energy limit of type II string theory. Just as there are
two variants of type II string theory, so there are two variants of type II supergravity,
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2. Supergravities

namely type IIA [33] and type IIB [34]. Both of these can be described simultane-
ously by the democratic formalism [35] as we will use here. Type II supergravity is
a theory in D = 10 with maximal1 N = 2 supersymmetry.

Our starting point is the bosonic pseudo-action of type II supergravity on a ten-
dimensional manifold M10. The bosonic2 pseudo-action of type II supergravity is
given by3

2κ2
10SII =

∫
d10x

√
ge−2φ

(
R + 4(∂φ)2 − 1

2
H2

)
− 1

4
F2

=

∫
M10

e−2φ

(
�1 ∧R + 4 � dφ ∧ dφ− 1

2
� H ∧H

)
− 1

4
� F ∧ F ,

(2.2)

supplemented by the additional relation

F = �σ(F) , (2.3)

which needs to be be enforced on the (classical) equations of motions rather than
on the action itself: it is this necessity which makes it a pseudo-action rather than
a regular action. In the first line of (2.2) we use the following convention for index
contraction of tensors:

T 2 ≡ 1

p!
TM1...MpT

M1...Mp . (2.4)

Here and from now on, σ is defined as the map acting on a k-form α as

σαM1...Mk
dxM1 ∧ ... ∧ dxMk = αMk...M1dx

M1 ∧ ... ∧ dxMk

= (−1)
1
2
k(k−1)α .

(2.5)

1It is maximal in the sense that representation theory tells us that more supersymmetry would
lead to massless spin > 2 partcles.

2The reason why we are only interested in the bosonic terms will be made clear in section 2.4.
See e.g. [35] for the fermionic terms up to fourth order if one is interested.

3 Our conventions for Hodge duality (see (A.1)) are such that the pseudo-inner product of
(suitable, as M10 is not compact) differential forms is given by

〈α, β〉 ≡
∫
M10

�α ∧ β =

∫
d10x

√
g

1

k!
αM1...Mk

βM1...Mk , α, β ∈ Ωk(M10) (2.1)

rather than by having the star act on the second form, thus staying true to the time-honoured
tradition that physicists’ conventions for (pseudo-)inner products are exactly the opposite of what
mathematicians would expect.
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It goes without saying that we will extend this definition to polyforms by linearity
and by abuse of notation to act on coefficients αM1...Mk

.
The symmetries of the theory are given by N = 2 local supersymmetry, which

includes diffeomorphism invariance. The fermionic supersymmetry transformations
are given by

δλ1 =

(
∂φ+

1

2
H

)
ε1 +

(
1

16
eφΓMFΓMΓ11

)
ε2

δλ2 =

(
∂φ− 1

2
H

)
ε2 −

(
1

16
eφΓMσ(F)ΓMΓ11

)
ε1

δψ1
M =

(
∇M +

1

4
HM

)
ε1 +

(
1

16
eφFΓMΓ11

)
ε2

δψ2
M =

(
∇M − 1

4
HM

)
ε2 −

(
1

16
eφσ(F)ΓMΓ11

)
ε1 ,

(2.6)

while the bosonic transformations will turn out to be of less interest. The variational
parameters ε1,2 are Majorana-Weyl spinors of Spin(1, 9). For type IIA ε1,2 are of
opposite chirality, whereas for type IIB, they have the same chirality, taken to be
positive without loss of generalisation. The use of a non-canonical curvature term
e−2φR compared to the usual R as occurs in d = 4 general relativity is referred to as
the ‘string frame’. The canonical form, known as the ‘Einstein frame’, is recovered
by making the field redefinition

gE ≡ e−
1
2
φgstr . (2.7)

Generally, the string frame will be more convenient for our purposes. Including
fermions, the action contains the following fields:

• A vector-spinor ψM , the gravitino.

• A spinor λ, the dilatino.

• A Lorentzian metric g.

• A scalar field φ, the dilaton.

• A closed three-form field, locally H = dB, the Neveu-Schwarz Neveu-schwarz
(NSNS) flux.

• For type IIA, twisted closed 2k-forms, locally F = dHC, the Ramond Ramond
(RR) fluxes.
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2. Supergravities

• For type IIB, twisted closed (2k + 1)-forms, locally F = dHC, the Ramond
Ramond RR fluxes.

More specifically, the RR charge C is either an even or odd polyform depending on
the type of supergravity; ‘C−1’ should be considered formally as a convenient way
to unify F0 ∈ �, known as the Roman’s mass, with the other fluxes. The other RR
charges C can always be defined locally by Poincaré’s lemma, but are globally ill-
defined, undergoing gauge transformations C → C + dHX; this is similar to garden
variety (abelian) gauge theory, except that here, X is a differential form rather than a
scalar. A similar story holds for the NSNS charge B. The twisted exterior derivative
dH : Ω•(M10) → Ω•(M10) is defined as

dH ≡ d +H ∧ . (2.8)

Due to closure of H, it satisfies d2
H = 0, however, it does not satisfy the product rule.

The bosonic equations of motion that follow from this action are given by

EMN = RMN + 2∇M∇Nφ− 1
2
HM ·HN − 1

4
e2φFM · FN

!
= 0

δHMN = e2φ �10
(
d
(
e−2φ �10 H

)
− 1

2
[(�10F) ∧ F ]8

)
MN

!
= 0

D = 2R−H2 + 8 (∇2φ− (∂φ)2)
!
= 0

(2.9)

with the quantities D, δHMN , EMN defined as

EMN ≡ 2κ2
10

e2φ√
g10

(
δS

δgMN

− 1

4
gMN

δS

δφ

)
δHMN ≡ −2κ2

10e
2φ �10

δS

δBMN

D ≡ −2κ2
10

e2φ√
g10

δS

δφ
.

(2.10)

The Bianchi identities

dH = 0

dHF = 0
(2.11)

are required by definition of the fluxes as field strengths. The equations of motion
for the RR charges C are incorporated in the Bianchi identity by virtue of (2.3).
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2.2 M-theory

The field content of any supergravity theory is determined by representation the-
ory of the Poincaré superalgebra, which is an extension of the Poincaré algebra by
odd generators, known as supercharges. In fact, there is a wide variety of Poincaré
superalgebras, determined by the dimension of the fundamental representation of
its Poincaré algebra, and the number of supercharges. The former corresponds to
the dimension D of spacetime for the supergravity theory, the latter is in some
dimension-dependent way enumerated as N . By making use of the Poincaré algebra,
it is possible to decompose irreduble reprentations of the superalgebra into a num-
ber of irreducible representations of the algebra, and thus assign spin values to the
latter. If the superalgebra contains more than 32 supercharges, a supercharge acting
on a representation of spin two (i.e., a graviton) will yield a higher spin field, i.e., a
representation of spin greater than two. If we assume that such are unphysical, and
note that the minimal number of supercharges is related to the dimension, it follows
that there must be a supergravity theory of maximal dimension without higher spin
fields. This theory is D = 11, N = 1 supergravity [36]. Similar to how type II
supergravity is the low-energy limit of type II string theory, it is expected that there
is a UV (i.e., high energy) completion to D = 11 supergravity. This hypothesis is
supported by the relation between (massless) type IIA supergravity and D = 11 su-
pergravity that will be discussed in the next section; since D = 11 supergravity and
IIA supergravity are, in some sense that will be made precise, equivalent, and since
IIA has a UV completion, it is expected that the same holds for D = 11 supergravity.
This notion is consistent with the existence of M2- and M5-branes, which translate
to D2- and NS5-branes in type IIA supergravity, for which a string interpretation
is clear. In particular, the M5-brane plays a crucial role in the anomaly cancellation
of D = 11 supergravity. This completion of D = 11 supergravity is defined to be
M-theory. We will abuse this notion and not make a clear distinction between the
two; for example, solutions to the equations of motion of D = 11 supergravity will
be referred to as M-theory vacua.

Similar to type II supergravity, the starting point for M-theory is given by the bosonic
action. It is given by4

2κ2
11S11 =

∫
M11

�1 ∧R− 1

2
� G4 ∧G4 +

1

6
A3 ∧G ∧G . (2.12)

4The conventions here differ from those in [1] by A3 → −A3, C3 → −C3, B → +B. The con-
ventions here make identification of the democratic type IIA formalism to the result of dimensional
reduction of M-theory more convenient. See section 2.3 for more details.
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2. Supergravities

Including fermions, the action depends on the following fields:

• A vector-spinor ΨM , the gravitino.

• A Lorentzian metric g.

• A closed four-form, locally G = dA3, the flux.

The first term is the curvature, the second one the kinetic term for the flux, the last
one the Chern-Simons term5. The Bianchi identity is given by

dG = 0 . (2.13)

The action is invariant under N = 1 local supersymmetry, which includes diffeo-
morphism invariance. The supersymmetry transformations of the gravitino is given
by

δεΨM = ∇Mε+
1

288

(
GNPQRΓ

NPQR
M − 8GMNPQΓ

NPQ
)

, (2.14)

with ε a Majorana spinor of Spin(1, 10). The (bosonic) equations of motion are

2κ2
11

δS11

δgMN
= RMN − 1

12
GMQRSG

QRS
N − 1

2
gMNGPQRSG

PQRS = 0

2κ2
11δA3S11 = −d � G+

1

2
G ∧G = 0

(2.15)

See [36] for the full fermionic action.

2.3 Dualities

There are a number of dualities which connect various string theories with one an-
other. Such dualities descend to the level of supergravities. In particular, type IIA
and IIB supergravity are related by means of T-duality, whereas D = 11 supergravity
is related to type IIA by means of dimensional reduction.

A rough sketch of the former is as as follows: dimensional reduction of type II su-
pergravity on an S1 yields N = 2, D = 9 supergravity. The theory one obtains from
reducing IIA is the same as the one obtained from IIB, up to field redefinition. Thus,
given a IIA vacuum on M9 ×S1

A, one can reduce it to a D = 9 supergravity vacuum

5Note that the Chern-Simons term is only sensible in the case where M11 is the boundary of
some twelvefold on which we extend G. See [37] for details.
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on M9, then lift it to a IIB vacuum on M9 × S1
B and vice versa. The radii ρA,B of

S1
A,B are related by the usual ρAρB = 1. This duality will be of no concern to us. On

the other hand, the duality between M-theory and type IIA will play a part in what
follows. It is also less convoluted, as it purely a dimensional reduction of D = 11
supergravity which leads to type IIA supergravity. Let us examine this in more detail.

Let M11 be an S1-bundle over a base space M10, such that the transition func-
tions are independent of the local coordinate describing the S1 fibre. Locally, the
metric can then be written as

g11 = e−
1
6
φg10 + e

4
3
φ (dz + C1)

2 (2.16)

with φ ∈ C∞(M10,�) the dilaton and C1 the RR one-form charge; C1 is the connec-
tion one-form of the fibration and is thus a locally defined one-form of M10 which
is not invariant with respect to diffeomorphisms of the fibres. Furthermore, the
M-theory flux charge A3 can be decomposed as

A3 = C3 − B ∧ dz , (2.17)

with the gauge fields C3, B local sections taking value in
∧• T ∗M10; in other words,

in terms of coordinates we have B = Bmn(x, z)dx
m∧dxn and similarly for the three-

form C3
6. Plugging these into the D = 11 supergravity action (2.12), it is found that

the three terms correspond respectively to∫
d10x dz

√
g11R11 =

∫
d10x dz

√
g10e

− 1
6
φ

(
R10 −

1

2
(∂φ)2 − 1

2
e

3
2
φF 2

2

)
∫

d10x dz
√
g11

(
−1

2
G2

4

)
=

∫
d10x dz

√
g10e

− 1
6
φ

(
−1

2
e−φH2 − 1

2
e

1
2
φF̃ 2

4

)
1

6

∫
M11

A3 ∧G4 ∧G4 = −1

2

∫
M11

dz ∧B ∧ F4 ∧ F4 , (2.18)

where an exact term has been discarded in the last line7, and

F̃4 ≡ F4 +H ∧ C1 , F4 = dC3 . (2.19)

Let us now make the ansatz that the fields are independent of the fibre coordinate z,
such that all fields are (local) sections of the base space M10: this is the dimensional

6The fact that dz does not appear in the expression is occasionally referred to as not having a
‘leg along the fibre’. We shall not use this terminology.

7Note also that the last line is somewhat of an abuse of notation, since of course the fibre
coordinate dz is not globally defined.
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2. Supergravities

reduction ansatz. As a result, the integral over z can be performed explicitly. After
changing to the string frame by using (2.7), the following action is found

2κ2
10S

ND
10 =

∫
d10x

√
g10

(
e−2φ

[
R + 4(dφ)2 − 1

2
H2

]
− 1

2
F 2
2 − 1

2
F̃ 2
4

)
− 1

2

∫
M10

B ∧ F4 ∧ F4

(2.20)

with

2κ2
10 ≡

2κ2
11∫
dz

. (2.21)

As can be deduced from the equations of motion, this non-democratic action is
equivalent to the democractic action (2.2) up to the obvious field redefinition, except
for the Roman’s mass term F0, which is not present here. As a final remark, let
us note that this describes only the bosonic reduction. There is a more involved
procedure that confirms that the D = 11 fermionic action also reduces to the type
IIA fermionic action on a circle fibration. See [33] for more details.

2.4 Supersymmetric Vacua & Effective Theories

The theories described so far have been in dimensions greater than four. However,
as the correspondence between type IIA and D = 11 supergravity demonstrated,
the manifest dimension of the theory (that is, as appears in the action) is not quite
as definitive as it appears at first. In this section, we discuss the relation between
higher dimensional theories and lower dimensional ones, a relation that is necessary
to understand if one is interested in describing four-dimensional physics by means of
string theory.

Dimensional reduction lies at the heart of the correspondence between type IIA
and D = 11 supergravity. Similarly, dimensional reduction can be used to obtain
lower dimensional supergravities; for example, N = 8, d = 4 supergravity can be
obtained by dimensional reduction of D = 11 supergravity on M4×T 7. This proce-
dure requires as input a theory to reduce (which we will refer to as a ‘higher theory’)
and a manifold Md × TD−d on which to reduce; the result is a supergravity on Md

after integrating out the torus TD−d. One might expect this procedure to generalise
by taking TD−d → MD−d by simply restricting the fields to be sections of Md and
integrating over MD−d. However, this is not the case, as it is not a priori clear
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that vacua of the lower dimensional theory can be uplifted to vacua of the higher
theory; by definition, this is the case only for consistent truncations. The reason that
toroidal dimensional reduction is a consistent truncation is because there is a deeper
mathematical motivation behind it than just the simple ansatz of disregarding the
fibre dependence of the fields, namely Kaluza-Klein reduction.

Kaluza-Klein theory was originally developped for the reduction of (non-supersymmetric)
gravity on M5 → M4 × S1, but the generalisation from five to D dimensions is
straightforward. Consider a vacuum with everything but the metric trivial. Then
the gDD component of the metric corresponds to a scalar, the dilaton φ, which results
in a massless particle. That is to say, the equation of motion for the dilaton is given
by

∇2
(D)φ = 0 . (2.22)

We now consider the expansion φ(x, z) =
∑

φn(x)ωn(z), with ωn eigenfunctions of

the operator ∂2
z ; clearly, these eigenfunctions are given by exp

(
(in z

ρ

)
, with ρ the

circle radius, as dictated by standard Fourier theory. Expanding the Laplacian of
the (trivial) fibration MD = MD−1 × S1 into the Laplacians of the base and the
fibre, it follows that

(
∇2

(D−1) + ∂2
z

)∑
φn(x)e

in z
ρ = 0 =⇒

(
∇2

(D−1) −
(
n

ρ

)2
)
φn(x) = 0 . (2.23)

Therefore, the Kaluza-Klein expansion results in a massless particle φ0 and an infinite
number of massive particles with mass m2 = n2/ρ2, the so-called tower of massive
KK modes. All equations depend on just one field, and all fields are irreducible rep-
resentations of the U(1) isometry group of the S1 fibres. Therefore, one can consider
vacua with all massive fields set to zero; physically, this is interpreted as the massive
fields being heavy and therefore not relevant to the low-energy field theory. This is
exactly dimensional reduction. The generalisation to vacua on higher dimensional
tori is straightforward.

Let us now consider how to generalise this idea to non-toroidal vacua onMd×MD−d.
The manifold Md will be considered as a model for spacetime and is referred to as
the external space, whereas MD−d will be considered as a microscopical object and
will be referred to as the internal manifold8. For simplicity, our higher theory will

8This terminology is based on the fact that after KK reduction, diffeomorphism invariance of the
internal manifold becomes gauge invariance (or internal symmetries) whereas the diffeomorphism
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2. Supergravities

be D = 11 supergravity, and the internal manifold will be taken to be Calabi-Yau.
For Calabi-Yau metrics, it is known that [38] fluctuations of the Calabi-Yau metric
are given by the Kähler and complex structure moduli.

Consider the case where one has a fluxless vacuum and is searching for another
vacuum by taking small fluctuations around it. That is, one has

A3 = 〈A3〉+ δA3

G = 〈G〉+ dδA3 .
(2.24)

with 〈G〉 = 0. Neglecting terms of order O((δA3)
2), the equation of motion for G

yields d � dδA3 = 0. Gauge fixing d†δA3 = 0, with d† ∼ �d�, it follows that(
dd† + d†d

)
A3 = ∇2A3 = 0 (2.25)

and hence A3 is harmonic. Let us assume that the metric splits similarly to the
topology, g11 = gd + g11−d, such that the Laplacian splits accordingly. Let us take
the expansion

A3(x, y) =
∑
n

Cn(x)ωn(y) , (2.26)

with Cn forms on the external space, and ωn the eigenforms (or eigenmodes) on
the internal space. Clearly, for internal eigenmode k-forms, the external forms are
(3− k)-forms. By assumption, ∇2

(11) = ∇2
(d) +∇2

(11−d), and as a consequence, (2.25)
reduces to ∑

n

ωn

(
∇2

(d) −m2
n

)
Cn(x) = 0 . (2.27)

Thus, this procedure yields the equations of motions for a number of massless fields,
which can be zero-, one-, two-, or three-forms, the number of each determined by
the space of harmonics (or zero-modes) for the internal Laplacian.

Next, let us consider the case where 〈G〉 �= 0. Generically, it is always possible to
expand δA3 in terms of eigenforms of the Laplacian (of course, these are not known).
Although the equation of motion now reduces to

d � dδA3 =
1

2
〈G〉 ∧ dδA3 , (2.28)

invariance of spacetime is known as external symmetry. This should remind one strongly of the
phrasing of the Coleman-Mandula theorem. See the duality between D = 11 and IIA supergravity
for an explicit example.
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nevertheless we will discard all terms in the expansion of δA3 which are not harmonic.
This is justified provided the scale of the internal space is smaller than the order of
the vacuum flux, such that the non-harmonic modes can be considered far heavier
than the harmonic modes and can thus be discarded to obtain a low-energy effective
action. This procedure yields a consistent truncation, despite the fact that δA3 is
such that 〈A3〉+ δA3 no longer satisfies the equation of motion.

There are a number of complications to the procedure. Firstly, the set of harmon-
ics for an arbitrary geometry is not known. In case Hodge’s theorem is applicable,
there is an isomorphism between cohomology and harmonic forms, hence the Betti
numbers will at least tell us how many harmonic forms there are. The second com-
plication is that due to fluctuations of the metric, M11−d is not fixed. The third one
is that in the higher theory, the equations of motions are not always so clean, lead-
ing to more complicated mass-operators. Finally, let us also note that in all cases
discussed, we have disregarded fermions. The procedure for fermions is, to some
extent, analogous to the procedure for fluxes, albeit with a different mass operator
than the Laplacian, provided one considers a bosonic vacuum, i.e., a vacuum with all
fermionic profiles9 trivial. Physically, this is the sensible thing to do, as a non-trivial
profile for a fermionic field breaks Lorentz invariance of the vacuum.

In general, the procedure is well-understood for compact (bosonic) Calabi-Yau
vacua, whereas beyond that, it is an active field of research. For more details, see
for example [39, 40]. We will not go through with any reduction, but will keep this
in mind as a guideline to what sort of vacua are of interest.

Consider a higher supergravity theory with fields collectively denoted by {φi, ψj},
with {φi} the bosonic and {ψj} the fermionic fields.

Definition 2.4.1. Let VS ≡ {φ̂i, ψ̂j} be a set of profiles for the fields {φi, ψj}. If there
are non-trivial supersymmetry transformations under which all elements of VS are
invariant, VS is defined to be a supersymmetric solution. If VS is a supersymmetric
solution that satisfies the equations of motion, VS is defined to be a supersymmetric
vacuum.

The first constraint can be considered to be the fermionic equivalent of demanding
that non-trivial isometries of the metric exist and leave all fields invariants; in fact, a
supersymmetric solution implies the existence of and invariance under isometries10.

9By profile, we mean a specification of the field in question. For example, given a scalar field φ,
an example of a profile of the scalar field would be φ(x) = x, or φ(x) = x2.

10Note that since supersymmetry invariance is a local constraint, the resulting isometries will
also be local.
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2. Supergravities

A spinor ε that generates such a supersymmetry transformations is known as a Killing
spinor. The reason they are known as such is because a Killing spinor bilinear yields
a Killing vector. For flat space, this can be shown as follows; since

[ε̄Q̄, εQ] ∼ ε̄ΓMεPM ≡ KM∂M , (2.29)

invariance of ĝ ∈ VS under such supersymmetry transformations implies

LK ĝ = 0 , (2.30)

hence K is a Killing vector generating an isometry. A similar though more involved
argument can be invoked for vacua on more general spaces. Thus, ε could be thought
of as a fermionic generator of a superisometry in the framework of superspace, or as
a ‘square root’ of a Killing vector.

At first glance, it appears that finding supersymmetric vacua is more cumbersome
than finding arbitrary vacua, as supersymmetric vacua are vacua with an additional
constraint. However, it turns out that this is not the case; if one can find a set of
fields satisfying some mild assumptions (the integrability conditions11) which are in-
variant under a supersymmetry transformation, these will automatically satisfy the
equations of motion and thus furnish a supersymmetric vacuum. This is known as
the integrability theorem. The integrability theorem for type II supergravity will be
demonstrated in section 2.5.

The vacua we are interested in are those that (vaguely) resemble physical vacua,
and therefore ought to satisfy the following constraints:

• The total space is a direct product space: MD = Md ×MD−d.

• The metric splits accordingly as

ĝD = e2Aĝd + ĝD−d (2.31)

with gd a Lorentzian metric on Md, gD−d a Riemannian metric on MD−d,
A ∈ C∞(MD−d,�). The function A is known as the warp factor12.

11Not to be confused with integrability of G-structures, which is unrelated.
12Note that it is vital that the prefactor e2A does not change sign or vanish. For an example why,

consider the ‘warped metric’ g2 = dθ2 + sin2(θ)dφ2: clearly the underlying space of this metric is
S2 rather than S1 × S1.
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• Since the external manifold Md is to be interpreted as spacetime, it is required
to be maximally symmetric. Maximally symmetric Lorentzian manifolds are
conformal to either Minkowski, AdS, or dS space. The fact that in our case the
conformal warp factor is a function on the internal manifold does not change
this.

• All fields of the vacuum are invariant under global isometries of the spacetime
metric. In particular, this means that all fermions must vanish as �1,d−1, AdSd

and dSd are invariant under SO(1, d− 1).

As a consequence of the last point, all bosonic fields are automatically invariant
under any supersymmetry transformation, as the result will be proportional to the
vanishing fermions. Every k-form can be split into a term proportional to the volume
and a term which will be a section of the internal space only; we will come back to
this in more detail in section 3.2, where we explicitly solve supersymmetric vacua for
type II supergravity on �1,1 ×M8.

2.5 Integrability

As stated, one of the reasons among many that supersymmetric vacua are popular
is because they are easier to construct. In this section, we will consider the integra-
bility theorem for type II supergravity, which shows, given a set of fields invariant
under certain supersymmetry transformations, which additional constraints these
fields need to satisfy in order to form a supersymmetric vacuum. The (sourceless)
integrability theorem was first discussed in [41] for type IIA, [42] for type IIB. An
equivalent theorem for D = 11 supergravity will be briefly touched on, which was
first discussed in [43].

We look for a set of fields invariant under certain supersymmetry transformations.
Because a vacuum ought to respect the external isometries, we set all fermions to
zero and thus, supersymmetry transformations of bosonic fields automatically van-
ish. Therefore, what needs to be imposed is that the supersymmetry transformations
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2. Supergravities

of the fermions (2.6) vanish:

δλ1 =

(
∂φ+

1

2
H

)
ε1 +

(
1

16
eφΓMFΓMΓ11

)
ε2 = 0

δλ2 =

(
∂φ− 1

2
H

)
ε2 −

(
1

16
eφΓMσ(F)ΓMΓ11

)
ε1 = 0

δψ1
M =

(
∇M +

1

4
HM

)
ε1 +

(
1

16
eφFΓMΓ11

)
ε2 = 0

δψ2
M =

(
∇M − 1

4
HM

)
ε2 −

(
1

16
eφσ(F)ΓMΓ11

)
ε1 = 0 .

(2.32)

These Killing spinor equations are known as the supersymmetry equations13; finding
solutions will be one of the main points of this thesis. These equations can be
manipulated to imply the following, as detailed in [32]:

0 =

(
−EMNΓ

N +
1

2

(
δHMNΓ

N +
1

3!
(dH)MNPQΓ

NPQ

))
ε1 −

1

4
eφdHFΓMΓ11ε2

0 =

(
−EMNΓ

N − 1

2

(
δHMNΓ

N +
1

3!
(dH)MNPQΓ

NPQ

))
ε2 −

1

4
eφσdHFΓMΓ11ε1

0 =

(
−1

2
D + dH

)
ε1 +

1

2
dHFε2

0 =

(
−1

2
D − dH

)
ε2 +

1

2
σdHFε1 (2.33)

with D, δHMN , EMN defined in (2.9). After enforcing the Bianchi identities (2.11)
the above reduces to

E+
MNΓ

Nε1 = 0

E−
MNΓ

Nε2 = 0

D = 0 ,

(2.34)

with E±
MN ≡ −2EMN ± δHMN . Consider a fixed index M = M̃ ; the first equation

then yields

0 = E+

M̃P
E+

M̃N
ΓPΓNε1 = E+

M̃P
E+

M̃N
gNP ε1 . (2.35)

13They also go by the name of ‘BPS equations’ or ‘the Killing spinor equations’; for consistency’s
sake, neither of these will be used throughout this thesis.
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Thus, together with a similar procedure for the second equation, it follows that

9∑
N,P=0

E±
M̃N

E±
M̃P

gNP = 0 . (2.36)

The summation has been spelled out explicitly for clarity. Let us explicitly seperate
space and time indices by setting N ∈ {0, n}, n ∈ {1, ..., 9}. Consider now the fields
to be constrained to satisfy

E0n = δH0n = 0 ⇐⇒ E±
0n = 0 . (2.37)

Note that this requires setting g0n = 0 and hence, gnp is a Riemannian metric whereas
g00 is Lorentzian. After splitting indices, (2.36) reduces to

E+

M̃n
E+

M̃p
gnp + E+

M̃0
E+

M̃0
g00 = 0 . (2.38)

Setting M̃ = m̃ and imposing (2.37), one finds that the vector E±
m̃n has trivial norm

and thus vanishes, whereas setting M̃ = 0 leads to E±
00 = 0, thus leading to

EMN = δHMN = 0 . (2.39)

As it was already deduced that D = 0 and the equations of motion for the RR fields
dH �σF = 0 are encapsulated in the Bianchi identity, it thus follows that all bosonic
equations of motion are satisfied. Of course, the fermionic equations of motion have
been trivialised by setting all fermions to zero, so a supersymmetrc vacuum has been
found. Thus, the following has been shown:

Theorem 2.5.1. Let V ≡ {g, φ,F , H, ψ1,2
M , λ1,2} be such that

1. The supersymmetry equations (2.32) are satisfied

2. ψ1,2
M = λ1,2 = 0

3. dHF = dH = 0,

4. E0n = δH0n = 0 for n ∈ {1, ..., 9}.

Then the bosonic equations of motion

D = EMN = δHMN = dH � σF = 0 (2.40)

as well as the fermionic equations of motion are satisfied, there are supersymmetry
transformations leaving V invariant and thus, V is a supersymmetric vacuum. �
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2. Supergravities

This theorem therefore gives a description of how to ensure that a supersymmetric
solution of type II supergravity is a supersymmetric vacuum. The next question
to consider is how to construct supersymmetric vacua for M-theory. For M-theory,
there are two options. Given an M-theory supersymmetric solution, there is a similar
integrability theory as the one for type II discussed. On the other hand, given a type
IIA vacuum, it uplifts to an M-theory vacuum. In case the starting point is a type
IIA supersymmetric solution, it is possible to either first apply integrability and then
uplift or vice versa; the resulting M-theory vacua are the same. In other words, the
diagram below is commutative:

IIA susy solution

integrability

��

uplift �� M-theory susy solution

integrability
��

IIA susy vacuum
uplift �� M-theory susy vacuum

The integrability theorem for D = 11 supergravity is as follows, as given in e.g. [43]:

Theorem 2.5.2. Let V ≡ {g,G,ΨM} be such that

1. The D = 11 supergravity supersymmetry equation (2.14) is satisfied

2. ΨM = 0

3. The Bianchi identity dG = 0 is satsifed

4. E0n = 0 for n ∈ {1, ..., 10}.

5. The equation of motion for the flux −d � G+ 1
2
G ∧G = 0 is satisfied

Then the remaining equation of motion for the metric g is automatically satisfied,
hence V is a supersymmetric vacuum.

In addition to the integrability, it can be shown [37] that the quantum theory for
M-theory requires a quantisation condition on the flux G as follows from the duality
between M-theory and heterotic E8 × E8 string theory. This condition is given by

[G]

2π
− p1

4
∈ H4(M11,�) , (2.41)

where [G] denotes the cohomology class of G. Furthermore, anomaly cancelation
requires a higher order correction to the equation of motion of the flux given in
(2.15), namely

−d �11 G+G ∧G = (2π)2X8 . (2.42)

See [44]. This will be discussed in more detail in section 3.5.
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2.6 Branes

Type II supergravity describes low-energy type II string theory, whereas D = 11
supergravity describes low-energy M-theory. Both type II string theory as well as
M-theory describe branes. Branes can be viewed as higher-dimensional analogues
of point-particles (i.e., as ‘extended objects’), and hence are located at (or, they
‘wrap’) a submanifold S ⊂ MD, rather than having a wordline description in space-
time. On the one hand, branes are solutions to the supergravity equations of motion
supplemented by a source-term. Thus, by expanding around these solutions, effective
actions can be found describing dynamics of the branes themselves. On the other
hand, as branes have energy, their presence affects the gravitational field, resulting
in a backreaction. This effect is analogous to what is encountered in classical elec-
trodynamics: on the one hand, electrons are pointlike and can be found as solutions
to sourced Maxwell’s equations, on the other hand, placing an electron in an electric
field backreacts to modify the electric field.

There are various kinds of branes. The ones that will be of relevance to us are M2-
and M5-branes in M-theory, Dp-branes and NS5-branes in type II supergravity. M2-
branes are 2+1 dimensional and can act as sources of the charge A3 with fieldstrength
G. Dp-branes are p + 1 dimensional and source the RR charges C(p+1) of the RR
fluxes F(p+2). Hence p is even/odd for IIA/IIB. NS5-branes are 5+1 dimensional,
and correspond to M5-branes of M-theory by duality. These source the NSNS charge
B, albeit in a far more convoluted way than the M2- and D-branes source their
respective charges.

There are a number of situations where these branes will play a part in the
following, and more details will be provided as required when they show up. For
a far more in-depth description than what is needed, we refer the reader to [45] or
especially [46], or alternatively to the more general texts [8] [9].
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Chapter 3

Supersymmetric vacua on
manifolds with SU(4)-structure

This section will give explicit constraints for supersymmetric flux vacua. In partic-
ular, we will give families of N = (1, 1) type IIA vacua on �1,1 × M8, N = (2, 0)
type IIB vacua on �1,1 ×M8 and N = 1 M-theory vacua on �1,2 ×M8; these are
results of [1], [2]. In order to do so, it will be assumed that M8 is such that it admits
an SU(4)-structure, which will aid in the process tremendously. A number of other
ansätze will also be made, which will be spelled out explicitly, as well as the rationale
behind the specific supersymmetry and the external spacetime. The procedure to
obtain the type II vacua is to find solutions to the supersymmetry equations of type
II supergravity, and then apply the integrability theorem of section 2.5. In order
to find M-theory vacua, the type IIA vacua is uplifted. The result is then double
checked by doing the computation directly in D = 11. Explicit examples showcasing
existence are presented on K3 surfaces.

In section 3.1, all of the technical details of how to obtain our solutions to the
supersymmetry are discussed, folllowed by the implementation and the results in
section 3.2. The integrability theorem is applied in 3.3, which leads to constraints
on specific type II supersymmetric flux vacua. The D = 11 supergravity analogue
is given in section 3.4. There are some issues with flux vacua on compact internal
manifolds as described by the Maldacena-Nuñez no-go theorem, which is adapted to
our circumstances in section 3.5. In 3.6, explicit examples of M-theory vacua are
given on the product of two K3 surfaces; the details of K3 surfaces are discussed,
as well as supersymmetry enhancement and an escape from the no-go theorem by
means of higher order corrections.
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3.1 Setting up for solving the type II supersym-

metry equations

Due to the integrability theorem 2.5.1, the main task to be done to find supersym-
metric vacua of type II supergravity is to solve the susy equations (2.32). A generic
solution to the susy equations is still too much to ask for, however. We will simplify
the problem by making a number of ansätze. Firstly, the only vacua of concern will
be those satisfying the constraints mentioned in section 2.4. We consider d = 2,
hence

M10 = M2 ×M8 (3.1)

with M2 ∈ {AdS2, dS2,�
1,1} identified as spacetime. Secondly, we restrict ourselves

to the case where M8 admits an SU(4)-structure. Thirdly, we consider only solu-
tions with a ‘strict SU(4)’-ansatz, which is an ansatz about the relation between the
SU(4)-structure and the supersymmetry that leaves the solution invariant; at this
point, this ansatz will be considered purely as a technical ansatz, but a deeper inter-
pretation will be given in section 7. Fourth and finally, we consider vacua that are
invariant under the minimal supersymmetry that still admits κ-symmetric D-branes1;
this means N = (1, 1) for type IIA and N = (2, 0) for type IIB. As invariance under
less supersymmetry implies less restrictions on the solution, the IIA solutions will
thus generalise the known case of strict SU(4) IIA, d = 2, N = (2, 2) [47].

Let us discuss these simplifications in more detail. The metric is given by

g10 = e2Ag2 + g8 , (3.2)

with g2 Lorentzian, g8 Riemannian, and the warp factor A ∈ C∞(M8,�). To this
metric one can thus associate an SO(1, 1)×SO(8)-structure2 and hence, all fields can
be decomposed into representations of this subgroup of SO(1, 9). The G-structure
on M2 is a subgroup of the group of global isometries and hence, invariance with
respect to the spacetime metric of M2 requires that the fields are SO(1, 1) invariant.

1 The action of a Dp-brane is invariant under worldvolume supersymmetry in p+1 dimensions,
which differs from theD = 10 target space supersymmetry ofM10. In order to write down an action
where the target space supersymmetry is manifest (the Green-Schwarz formalism), it is necessary to
make use of gauge degrees of freedom, which are described by κ-symmetry. See [13] and references
therein or [46] for more details.

2After choosing an orientation; existence of both orientation and a spin-structure on M8 are
assumed.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

Thus, the fluxes ought to be decomposable as

F = vol2 ∧ F el + F , F el = e2A �8 σF

H = vol2 ∧H1 +H3

(3.3)

with vol2 unwarped, and as mentioned before, all fermions ought to vanish. F el

is known as the ‘electric’ flux, F as the ‘magnetic’ flux. The expression for F el is
equivalent to the selfduality constraint F = �10σF .

The second ansatz is the existence of an SU(4)-structure on M8. As explained
in section 1.4, existence of an SU(4)-structure is equivalent to existence of a globally
well-defined nowhere vanishing pure spinor. Existence of an SU(4)-structure has
multiple benefits. First of all, it allows all fluxes to be decomposed according to
(1.26). This allows the supersymmetry equations to be decomposed into equations
for each seperate irreducible representation. Secondly, existence of the volume form
Ω(4,0) allows for further decomposition by means of something akin to holomorphic
Hodge duality (despite the fact that the almost complex structure need not be inte-
grable). This is made manifest in identities such as (A.43). Thirdly, by on the one
hand relating ε1,2 to the pure spinor η, and on the other hand relating ∇η to dJ and
dΩ through the fact that (J,Ω) are spinor bilinears, ∇mε is expressible in terms of
torsion classes and the SU(4)-structure. More specifically, the relation (A.36) holds.
As a result, the supersymmetry equations become purely algebraic, and thus solv-
able. See appendix A.2 for more details on this procedure.

As the spin-structure of the spinor bundle splis accordingly into a Spin(1, 1) ×
Spin(8)-structure, it will also be possible to decompose the Killing spinors of the
supersymmetry transformations, ε1,2. The specifics of this decomposition are rather
intricate and have substantial consequences. Firstly, the number of external degrees
of freedom is equivalent to the number of supercharges of the vacuum. In the case of
type IIA, the vacua of interest will have N = (1, 1). Thus, for type IIA, the spinors
decompose3 as

εA1 = ζ+ ⊗ η1+ + ζ− ⊗ η1−
εA2 = ζ− ⊗ η2+ + ζ+ ⊗ η2− ,

(3.4)

with the free parameters ζ± Majorana-Weyl spinors of Spin(1, 1) of ± chirality, and
η1,2± fixed real Weyl spinors of Spin(8) of ± chirality. As a Majorana-Weyl spinor of

3See appendix A.1 for details on spinor conventions.

53



Spin(1, 1) has one real degree of freedom, the vacuum thus indeed has N = (1, 1)
supersymmetry. On the other hand, for type IIB, the spinors decompose as

εB1 = ζ+ ⊗ η1+ + ζc+ ⊗ (η1+)
c

εB2 = ζ+ ⊗ η2+ + ζc+ ⊗ (η2+)
c ,

(3.5)

where now, the free parameter ζ+ is a Weyl spinor of Spin(1, 1) and η1,2± are fixed
Weyl spinors of Spin(8). Let us stress that this formulation using a complex-valued
Weyl spinor of Spin(1, 1) is equivalent to using two independent Majorana-Weyl
spinors, but more convenient in practice. This is thus the most general N = (2, 0)
spinor decomposition.

The pure spinor η that determines the SU(4)-structure can assist in decomposing
ε1,2 further. The Clifford algebra Cl(8) acts transitively on the fibers of the spin
bundle, and hence locally any spinor ξ± of ± chirality can be expressed as4

ξ+ = aη + bηc + cmnγ
mnη

ξ− = dmγ
mη + emγ

mηc
(3.6)

hence η1,2± can be expressed in terms of η. The strict SU(4)-ansatz now entails that
the internal spinors are directly proportional to η, i.e., b = cmn = dm = em = 0. Let
us also note the following. The requirement that the vacuum admits κ-symmetric
branes comes down to demanding that (see [13] and references therein for details)

ε1 = Γε2 , (3.7)

with Γ known as the worldvolume chiral operator. Using the fact that Γ†Γ = �

and our spinor ansätze (3.4), (3.5), it follows that the norms of η1,2 must be the
equivalent. This also immediately implies that N = (1, 0) vacua for both IIA and
IIB are incompatible with κ-symmetric branes.

Enforcing this equivalence and making use of the strict SU(4)-ansatz, the param-
eters determining the supersymmetry transformations are given by

εA1 =
α√
2
ζ+ ⊗ (η + ηc)

εA2 =
α√
2
ζ− ⊗

(
eiθη + e−iθηc

) (3.8)

4A quick degree of freedom counting shows that both LHS and RHS have eight complex dofs.
Hodge duality and equations (A.43) have been used to rewrite higher order gamma matrices.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

for type IIA and

εB1 = α ζ+ ⊗ η + α ζc+ ⊗ ηc

εB2 = α ζ+ ⊗ eiθη + α ζc+ ⊗ e−iθηc ,
(3.9)

for type IIB, with α, θ ∈ C∞(M8,�). Finally, let us remark on the relation between
the Killing spinors and the external space. Consider the Majorana spinor ζ = ζ++ζ−.
As it is a Killing spinor, it satisfies

∇(2)
μ ζ = ργμζ =⇒ ∇(2)

μ ζ+ = ργμζ− , (3.10)

with the curvature given by

R(2) = −8ρ2 . (3.11)

As RAdS < 0 = RMink < RdS, the connection acting on the external part of the
spinor tells us something about the external spacetime. It follows immediately that,
since our IIB Killing spinors satisfy ζ− = 0 due to the strict SU(4)-ansatz, our IIB
solutions will all have �1,1 as external spacetime.

3.2 Solving the type II supersymmetry equations

The previous section consisted of explanations and justifications for the following:

• We use explicit expressions (3.8), (3.9) for the parameters ε1,2 in the supersym-
metry equations.

• We decompose gamma matrices into external and external parts according to
(A.23).

• We decompose the fluxes into external and internal parts according to (3.3).

• We decompose the internal fluxes in SU(4) representations using (1.26).

In addition, we do the following:

• Any term with > 4 (internal) indices will be Hodge dualised to a term with <
4 indices.

• As we have seen, any gamma matrix with > 2 internal indices can be expressed
in terms of the SU(4)-structure and gamma matrices with < 2 indices. These
identities, given by (A.43), are inserted wherever possible.
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• The connection acting on the internal Killing spinors can be expressed in terms
of torsion classes via (A.36) due to the Killing spinors being expresseable in
terms of the SU(4)-structure. The connection acting on the external Killing
spinors can be expressed in terms of the external scalar curvature via (3.10).

Putting all this together leads to the following main results of [1], [2]:

The type IIB N = (2, 0) solutions on M2×M8 with an SU(4)-structure on M8 and
a strict SU(4)-ansatz for the Killing spinors are given by

ρ = 0

W1 = W2 = 0

W3 = ieφ(cos θf
(2,1)
3 − i sin θf

(2,1)
5 )

W4 =
2

3
∂(φ− A)

W5 = ∂(φ− 2A+ iθ)

α = e
1
2
A

f̃
(1,0)
3 = f̃

(1,0)
5 = h̃

(1,0)
3 = 0

h
(1,0)
1 = 0

h
(1,0)
3 =

2

3
∂θ

f
(1,0)
1 = −i∂(e−φ sin θ)

f
(1,0)
3 = − i

3
e2A∂(e−2A−φ cos θ)

f
(1,0)
5 =

1

3
e−4A∂(e4A−φ sin θ)

f
(1,0)
7 = e−2A∂(e2A−φ cos θ)

h(2,1) = eφ(− cos θf
(2,1)
5 + i sin θf

(2,1)
3 ) .

(3.12)

The free parameters of the solution are the warp factor, dilaton and an internal
Killing spinor parameter, A, φ, θ ∈ C∞(M8,�), as well as parts of the RR flux

f
(2,1)
3,5 ∈ Ω

(2,1)
p (M8). Although a priori the fluxes are sections of M10, vanishing of

ρ means the only allowed external spacetime is �1,1. As a consequence, invariance
under isometries of the external metric requires external translational invariance of
the fields, thus F is a section of the internal manifold instead, i.e., F (x, y) = F (y).
The internal manifold is necessarily complex due to W1 = W2 = 0, and thus, the
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3. Supersymmetric vacua on manifolds with SU(4)-structure

Dolbeault operator ∂ is well-defined. The NSNS three-form H is purely internal.

The type IIA N = (1, 1) solutions on M2×M8 with an SU(4)-structure on M8 and
a strict SU(4)-ansatz for the Killing spinors are given by three branches, depending
on θ. Generically,

ρ = 0

α = e
1
2
A

H1 = −2dA ,

(3.13)

with the warp factor A ∈ C∞(M8,�) a free parameter. Note that again, due to
the strict SU(4)-ansatz, the only allowed external spacetime is �1,1 and thus again,
the internal fluxes F satisfy F ∈ Ω•(M8). Furthermore, the internal fluxes obey a
(twisted) self-duality condition:

F = �8σ(F ) . (3.14)

In addition, the RR-fluxes generically obey the following relations:

f4 =
1

6
f0 +

4

3
e−iθ cos θf̃4

f2 = 2e−iθ sin θf̃4

sin θf
(2,0)
2|mn = − cos θf

(2,0)
4|mn −

1

8
eiθΩ pq

mn f
(0,2)
4|pq

sin θf
(2,0)
4|mn = cos θf

(2,0)
2|mn −

1

8
eiθΩ pq

mn f
(0,2)
2|pq ,

(3.15)

where f0,2,4 ∈ C∞(M8,�), while f̃4 ∈ C∞(M8,�). Note that the last two equations
are equivalent for e2iθ �= 1, whereas for e2iθ = 1 they become independent pseudo-
reality conditions. The remaining NSNS fields satisfy the constraints of one of the fol-
lowing branches, depending on the internal Killing spinor parameter θ ∈ C∞(M8,�).
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• e2iθ = 1:

eφ = gse
A

h
(1,0)
3 = h̃

(1,0)
3 = 0

h
(2,1)
3 = 0

W1 = −3i

4
W4

W3 =
1

2
W2

W5 =
3

2
W4 ,

(3.16)

with gs a non-zero integration constant, W
(1,0)
4 , W

(2,1)
2 unconstrained.

• e2iθ = −1:

h
(1,0)
3 = 0

h̃
(1,0)
3 =

1

4
∂+(A− φ)

W1 = 0

W2 = −2ih
(2,1)
3

W3 = 0

W4 = ∂+(φ− A)

W5 =
3

2
∂+(φ− A) ,

(3.17)

with φ, h
(2,1)
3 unconstrained; for any scalar S, ∂±S denotes the projection of the

exterior derivative dS onto its (1,0), (0,1) parts.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

• e2iθ �= ±1:

eφ = gse
A cos θ

h
(1,0)
3 =

2

3
∂+θ

h̃
(1,0)
3 =

1

4
(i+ tan θ)∂+θ

W
(1,0)
1 =

1

4
(1 + i cot θ)∂+θ

W
(2,1)
2 = 2(−i+ cot θ)h

(2,1)
3

W
(2,1)
3 = cot θ h

(2,1)
3

W
(1,0)
4 = −(tan θ +

1

3
cot θ)∂+θ

W
(1,0)
5 = (i− 1

2
cot θ − 3

2
tan θ)∂+θ ,

(3.18)

with gs a non-zero integration constant, h
(2,1)
3 unconstrained.

3.3 Integrability of the supersymmetry solutions

To recap: section 3.2 contains solutions to the supersymmetry equations, which, ac-
cording to section 2.5, will furnish vacua of type II supergravity provided all fermions
are set to zero, E0n = δH0n = 0, and the Bianchi identities are satisfied. The latter
two conditions bear closer examination. A generic feature of our supersymmetry
solutions is that the metric is given by

g10 = e2Aη2 + g8 . (3.19)

Poincaré invariance of the vacuum is then enough to ensure that, if δH01 = 0,
then E0n = δH0n = 0. The Bianchi identities will also reduce further upon closer
inspection, depending on the kind of internal space under consideration.

3.3.1 IIA N = (1, 1) Calabi-Yau vacua

Consider type IIA with Wj = 0 ∀j. As a consequence, the supersymmetry solution
reduces as follows. The metric is given by

g10 = e2Aη2 + g8 . (3.20)
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The NSNS flux, dilaton and warp factor are constrained to be

eφ = gse
A

H = −vol2 ∧ de2A .
(3.21)

The RR fluxes are given by

F0 = f0

F2 = f2J + f
(1,1)
2 +

(
f
(2,0)
2 + c.c.

)
F4 = �8F4 = f

(2,2)
4 + f4J ∧ J +

(
f̃4Ω + f

(2,0)
4 ∧ J + c.c

)
F6 = − �8 F2

F8 = �8F0 ,

(3.22)

where J and Ω are the Kähler form and holomorphic four-form of the Calabi-Yau
fourfold respectively. In addition, the RR fluxes obey the constraint (3.15) with θ
now constant.

The Bianchi identities reduce as follows. Given the constraint on H (3.21), the
supersymmetry solution automatically satisfies the NSNS Bianchi identity dH = 0.
The RR Bianchi identity reduces to closure and co-closure of the magnetic RR flux:

dF = d �8 F = 0 . (3.23)

As a result, f0,2,4 ∈ �, f̃4 ∈ �, and f
(1,1)
2 , f

(2,0)
2 , f

(2,0)
4 , f

(2,2)
4 are closed and co-closed.

Finally, consider the constraint δH01 = 0. Inserting the fields above, this integrability
constraint reduces to

−d �8 de
−2A +

g2s
2
F ∧ σ(F )|8 = 0 . (3.24)

3.3.2 IIA N = (1, 1) complex non-Calabi-Yau vacua

Consider type IIA with W1 = W2 = 0 with some other torsion not vanishing (ob-
viously, the Calabi-Yau vacua described above are all subcases otherwise). From
(3.16), (3.17), (3.18) it follows that this requires e2iθ = −1. As follows from the dis-
cussion on M-theory uplifts in section 3.4, it follows that these vacua will not uplift
to M-theory vacua on �1,2 × M8, a fact that will become important for section 4,
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3. Supersymmetric vacua on manifolds with SU(4)-structure

but can be ignored for now.

Taking the e2iθ = −1 branch of the supersymmetric solution and enforcing W1 =
W2 = 0, the NSNS terms (3.17) reduces as follows

W1 = W2 = W3 = h(2,1) = 0

W4 =
2

3
W5 = −4h̃(1,0) = ∂(φ− A)

(3.25)

and hence the NSNS flux is given by

H = −vol2 ∧ de2A −
(
1

4
W ∗

4 �Ω + c.c.

)
. (3.26)

In particular, the internal flux H3 does not vanish, which severely complicates solving
the Bianchi identities. The RR Bianchi identity reduces to

dH3F = 0 . (3.27)

Generically, this will not be satisfied. Depending on the particulars of M8 and its
forms, certain specific solutions may be found. A solution that does generically
satisfy this constraint, independent of the particularities of forms on M8, is given by

F = f (2,2) , df (2,2) = 0 , (3.28)

since H3 = H
(3,0)
3 +H

(0,3)
3 . The NSNS Bianchi identity is given by

d (W ∗
4 �Ω) = 0 . (3.29)

Whether or not this is satisfied depends on the particularities of the SU(4)-structure
on M8.

3.3.3 IIB N = (2, 0) conformal Calabi-Yau vacua

Consider the type IIB supersymmetry solution and set

θ =π

eφ =gse
−2A

f
(2,1)
3 =0 .

(3.30)
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As a consequence, the torsion classes are given by

W1 = W2 = W3 = 0

W4 =
1

2
W5 = −2∂A ,

(3.31)

which indeed gives us a conformal Calabi-Yau structure, with the conformal metric
g8 related to a Calabi-Yau metric gCY by

g8 = e−2AgCY ; . (3.32)

The NSNS three-form is given by

H = h(2,1) + h(1,2) , (3.33)

in particular, H is internal and primitive. The non-vanishing RR fluxes are given by

gsF3 = vol2 ∧ de4A

gsF5 = e4Avol2 ∧H − e2A �8 H

gsF7 = �10σF3 .

(3.34)

The integrability condition δH01 = 0 and the Bianchi identities need to be imposed
on this supersymmetric solution to obtain a vacuum. Unlike in the case of IIA in the
previous section, δH01 is trivial in this case and leads to no additional constraints.
Instead, in IIB, the constraint on the warp factor follows from the Bianchi identities.
The non-trivial Bianchi identies are given by

dH = 0

dF5 +H ∧ F3 = 0

dF7 +H ∧ F5 = 0 .

(3.35)

The second line implies

dH = de2A �8 H = 0 (3.36)

while the third implies

d �8 de
2A +

1

2
H ∧ e2A �8 H = 0 . (3.37)

In terms of the Calabi-Yau metric, these can be rewritten as respectively

dH = d �CY H = 0 (3.38)

and

−d �CY de−4A +H ∧ �CYH = 0 . (3.39)
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3. Supersymmetric vacua on manifolds with SU(4)-structure

3.4 M-theory supersymmetry solutions

The M-theory vacua of interest are supersymmetric N = 1 vacua on �1,2 × M8,
where M8 is equipped with an SU(4)-structure, with corresponding warped metric

g11 = e
4
3
Ãη3 + e−

2
3
Ãg8 (3.40)

with some5 warp factor Ã. Such vacua can be constructed in two ways, as discussed
in section 2.5. The straightforward option is to repeat the entire procedure for type
II vacua: deduce a suitable Killing spinor ansatz, plug this into the M-theory super-
symmetry equation, and then check integrability of the supersymmetric solution to
a vacuum. Alternatively, the fact that type IIA theory follows from dimensionally
reducing M-theory on S1 as discussed in section 2.3 can be exploited to uplift the
IIA supersymmetric solution and the integrability conditions. The second option is
more convenient, although slightly less transparent. Both methods will be shown
below to obtain supersymmetric solutions, after which it will be demonstrated that
the integrability theorems for IIA and M-theory are equivalent.

The first approach will be to exploit the duality between type II and M-theory.
In order to make use of this, the following points need to be taken into consider-
ation. Firstly, the duality does not take into account the Romans’ mass F0 = F0,
hence we should set

F0 = 0 . (3.41)

Secondly, the external spacetime in M-theory �1,2 is identified with the external
spacetime �1,1 in type II, together with the S1-fibres of the internal space. Although,
of course, �1,1 × S1 �� �1,2, one can take the radius of the S1 to be large and note
that the dependence of the derivation of the duality depended on the compactness
of the fibre lies purely in (2.21): by absorbing the divergence of the integral into
the coupling constant, one can consider S1 with a large radius to be equivalent to
�. This procedure goes by the name of ‘decompactification’, and although this is
mathematically sketchy, the direct computation will demonstrate that the result is
valid. C1 is the connection describing the curvature of the S1-fibration. For the
procedure to combine S1 with �1,1 into �1,2 to work, it must be globally doable and
thus, the fibration needs to be trivial. Thus, to uplift our vacuum we should set

C1 = 0 =⇒ F2 = F2 = 0 . (3.42)

5The exact conformal factors can of course be set however one desires through redefinitions of
Ã, g8; the convention used here is most suited for our purpose of uplifting the IIA metric, as it will
correspond to Ã = A.
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Thirdly, in order for the metric (3.40) to be of the form (2.16),

A = φ+ φ0 , φ0 ∈ � (3.43)

must be imposed on the type IIA metric. This results in the promised identification of
warp factors in type IIA and M-theory. The constant φ0 is absorbed in a redefinition
of the coordinates on �1,2. Finally, the four-form flux G of M-theory is related to
the fluxes of type IIA via (see (2.17))

G = F4 −H ∧ dz . (3.44)

Imposing these four conditions on the supersymmetric solutions of section 3.2, one
finds that all branches are subcases of the case e2iθ = 1. The supersymmetric solution
is given by

g11 = e
4
3
Aη3 + e−

2
3
Ag8

G = −vol3 ∧ de2A + F

F ≡ f4

(
J ∧ J +

3

2
ReΩ

)
+

(
f
(2,0)
4 − 1

4
f
(2,0)
4 �Ω∗

)
∧ J + f

(2,2)
4 ,

(3.45)

with torsion classes

W5 =
3

2
W4 = 2iW1

W3 =
1

2
W2 .

(3.46)

The free parameters of the supersymmetric solution are A, f4 ∈ C∞(M8,�), f
(2,0)
4 ∈

Ω
(2,0)
p (M8), f

(2,2)
4 ∈ Ω

(2,2)
p (M8), W1 ∈ Ω(1,0)(M8) and W2 ∈ Ω

(2,1)
p (M8).

The second approach is to do the computation directly. In order to conveniently
compare these to the literature [48–50] slightly different conventions will be used.
The starting point is the following ansatz for the metric,

g11 = e
4
3
A (η3 + g̃8) (3.47)

which leads to

G = F + e2Avol3 ∧ f (3.48)
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3. Supersymmetric vacua on manifolds with SU(4)-structure

in order to satisfy isometry invariance. The strict SU(4) ansatz for an N = 1 vacuum
on �1,2 ×M8 is given by

ε = ζ ⊗ e
1
3
A(η + ηc) , (3.49)

with the free parameter ζ ∈ Spin(1, 2) a Majorana spinor, and the normalisation
chosen for convenience. Plugging these into (2.14) and setting this to zero leads to

∇m (η + ηc) = 0

∂mA+
1

2
fm = 0

Fmnpqγ
npq (η + ηc) = 0 .

(3.50)

Using the identities (A.43), the result is equivalent to (3.45), (3.46).

This result can be compared to the well-known solution of [48], where N = 2 super-
symmetry solutions of M-theory on �1,2 ×M8 are discussed. In this paper, a strict
SU(4)-Killing spinor ansatz6 is taken of the form

ε = ζ ⊗ η + ζc ⊗ ηc , (3.51)

with ζ ∈ Spin(1, 2) a Dirac spinor: as a result, it has four rather than two real
degrees of freedom, and thus corresponds to N = 2 rather than N = 1. As a result
of the additional symmetry requirement, the internal flux is primitive (2,2) and all
torsion classes vanish. On the other hand, N = 1 also permits a non-primitive (2,2)-
and a (4,0)-term, as well as a non-primitive (3,1)-term. Furthermore, the internal
manifold of N = 1 vacua need not be Calabi-Yau.

3.4.1 Integrability: M-theory N = 1 vacua

It has been shown that the N = 1 M-theory supersymmetric solutions on �1,2×M8

can be obtained by uplifting the N = (1, 1) type IIA supersymmetric solutions on
�

1,1 ×M8. As discussed in section 2.5, to find vacua we can thus either uplift type
IIA vacua or directly apply the integrability theorem on the M-theory side. Given
the uplift of the IIA fluxes (F , H) to the M-theory flux G, the integrability conditions
are equivalent, as we will now show.

6The term ‘strict SU(4)’ is not used by the authors of [48]; it is by definition equivalent to their
(2.34) however.
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To uplift IIA on �1,1 × M8 to M-theory on �1,2 × M8, it is necessary to take
C1 = F0 = 0. On the IIA side, integrability requires firstly the Bianchi identities to
be satisfied, which reduce to

dH = dF4 = 0

d � σF4 +H ∧ F4 = 0 ,
(3.52)

and secondly, the equation of motion δH01 = 0 to be satisfied, which reduces to

−d �8 de
2A +

1

2
F4 ∧ F4 = 0 . (3.53)

Considering the expression for G given in (3.45) and the expression for H that follows
from (3.13-3.18) after setting θ = 0, namely

G = F4 − vol3 ∧ de2A

H = −vol2 ∧ de2A ,
(3.54)

it follows that the first line of (3.52) is equivalent to

dG = 0 (3.55)

and the second line, in combination with (3.53), reduces to

−d �11 G+
1

2
G ∧G = 0 . (3.56)

This shows that indeed, both integrability theorems are equivalent in this case.

To summarise, the following M-theory vacuum is found. The fields are given by
(3.45), the torsion is given by (3.46), and the integrability conditions are closure and
co-closure of F4, together with the Poisson equation for the warp factor as given
in (3.53). Generically, such vacua are not Calabi-Yau; the non-integrability of the
SU(4)-structure is independent of the flux however. Finally, there is the quantisation
condition (2.41).

3.5 The Maldacena-Nuñez no-go theorem

The internal manifold M8 can be either compact or non-compact. There are advan-
tages and disadvantages to both. One of the disadvantages to taking the internal
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3. Supersymmetric vacua on manifolds with SU(4)-structure

space compact is the no-go theorem of [51]. Applied to our IIA vacua, the argument
goes as follows. Consider the Poisson equation for the warp factor,

−d �8 de
2A +

g2s
2
(�8F ∧ F )8 = 0 . (3.57)

Integrating over M8 then yields

g2s
2

∫
M8

�8F ∧ F =

∫
M8

d
(
�8de

2A
)
= 0 , (3.58)

so Stokes’ theorem leads to F = 0, and as a consequence A ∈ �. The D = 11 su-
pergravity case is completely analogous. In order to circumvent this no-go theorem,
there are two main options. Firstly, note that if M8 is non-compact, Stokes does not
apply and hence F need not be trivial. Secondly, type II supergravity and D = 11
supergravity are merely lowest order approximations to type II string theory and
M-theory respectively. By including higher order corrections, this argument need no
longer hold. Let us sketch this for M-theory vacua on compact Calabi-Yau manifolds.

Some corrections to the D = 11 supergravity action are known, but not all of them.
However, it can be argued [53] that for internal manifolds with large volume, all but
the following can be neglected. The relevant correction is given by

SX = −T2

∫
M11

A3 ∧X8 , (3.59)

with, for Calabi-Yau manifolds, X8 satisfying∫
M8

X8 =
1

4!
χ(M8) . (3.60)

In addition, taking into account the presence of localized M2-branes yields an addi-
tional contribution to the action. The M2-branes couple to both the charge and the
metric. Ignoring the latter for now, the contribution of M2-branes related to the flux
is given by

SM2 = T2

∫
M3

A3 , (3.61)

where M3 is the cycle on which the brane is located. Specifying this to a number
NM2 ofM2 branes wrapping the cycles �

1,2×{yj} (i.e., spacetime filling and localized
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to yj ∈ M8) , this can be rewritten as

SM2 =
(2π)2

2κ11

NM2∑
j=1

∫
M11

A3 ∧ δ8(y − yj)vol8 , (3.62)

where we set T2 = 17. Together, these two modify the warp factor equation to

−d �8 de
2A +

1

2
F ∧ F + (2π)2

NM2∑
j=1

δ8(y − yj)vol8 = (2π)2X8 . (3.63)

Integrating then yields the constraint

1

8π2

∫
F ∧ F +NM2 =

χ(M8)

24
(3.64)

that needs to be satisfied.

As stated, other corrections can be neglected only in the large volume limit. That is
to say, take an expansion of the form

g8 = l2g
(0)
8 + g

(2)
8 + ... (3.65)

with Vol8 ∼ l8, and consider only the leading order term. Directly solving the
equations of motion for NM2 = 0 in this case leads to the conclusion that [54]: the
internal manifold is Ricci-flat, the warp factor is constant, and the flux is internal,
closed, selfdual and satisfies (3.64). Note that this is for any vacuum, supersymmetric
or not. This result is consistent with the vacuum that we have found.

Of course, in the presence of such corrections, the integrability theorem of section
2.5 needs to be modified. In [52], it was shown that sources for D-branes in type
IIA, which similarly modify the action and violate the Bianchi identity of the RR
fluxes which couple to the D-branes, are exactly such that the integrability theorem
still holds. At the level of supergravity, the two integrability theorems are equiva-
lent. Therefore, we shall operate under the assumption that the results of [52] can
be extrapolated to M-theory and that the presence of M2-branes do not alter the
integrability theorem in a meaningful way.

7Note that the parameters of the theory l3P , κ
2
11, T2 are related to one another as

T2 =
2π

l3P

2κ2
11 =

l9P
2π

,

in our conventions. Here, lP is the Planck length.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

3.6 M-theory vacua on K3×K3

At this point, it is clear what the conditions are for an M-theory N = 1 vacuum on
�

1,2×M8. The next question then, is whether or not any manifolds M8 exist which
satisfy the necessary conditions for such vacua. Furthermore, it needs to be checked
that if an example is found, it is not an N = 2 or N = 4 vacuum in disguise, as
obviously, these vacua are subsets of N = 1 vacua. This phenomenon goes by the
name of supersymmetry enhancement. We will demonstrate that explicit vacua exist
on M8 = S×S̃, with S, S̃ K3 surfaces. Because K3 surfaces are well-understood, the
fluxes and SU(4)-structure can be made very precise, and it can be shown explicitly
when supersymmetry enhancement does or does not occur. As S × S̃ is compact,
we run into the no-go theorem of section 3.5, which will be circumnavigated by the
addition of higher order corrections as described.

3.6.1 K3 Surfaces

K3 surfaces are objects that appear in a wide variety of contexts. We will briefly
point out the properties of relevance to us, skipping over most of the proofs, as these
require a vast array sophisticated algebraic-geometric machinery, all of which is be-
yond the scope of this thesis and a subset of which is beyond the author besides.
Mostly, we follow along the lines of [55]. See [56] or [57] for a more thorough expo-
sition.

A K3 surface is a two-dimensional compact complex two-dimensional manifolds with
trivial canonical bundle and vanishing first Betti number. Thus, it is simply con-
nected and (proper) Calabi-Yau. In fact, the only other compact two-dimensional
Calabi-Yau manifolds are topologically T 4, for which b1 �= 0. All K3 surfaces are
diffeomorphic and differ only in choice of SU(2)-structure. Let us deduce the Hodge
diamond of K3 surfaces. There are nine Hodge numbers, but Hodge duality together
with complex conjugation reduces the number of independent Hodge numbers down
to four. h0,0 = 1 due to simple connectedness, h1,0 = 0 by definition, and h2,0 = 1
because of the Calabi-Yau form, leaving only h1,1 undetermined. In order to derive
h1,1, we make use of the Hirzebruch-Riemann-Roch theorem, relating the Euler char-
acteristic of sheaves to characteristic classes, and the Dolbeault theorem, relating
the cohomology of sheaves to the cohomology of the Dolbeault operator8.Let S be

8Unfortunately, a thorough exposition of all concepts required here requires a good deal more
mathematics than is worthwhile for the results, thus the reader is expected to either already be
well-versed in these concepts or to just nod with a deep thoughtful look of understanding on her or
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a K3 surface, E → S a holomorphic vector bundle and F ≡ Γh(S,E) the sheaf of
holomorphic sections of E. The Euler characteristic of F is defined as

χ(S,F) ≡
∑
k

(−1)kdimHk(S,F) , (3.66)

where Hk(S,F) is the k-th Čech (or sheaf) cohomology group. Let Ωp
h(M) ⊂

Ω(p,0)(M) be defined as the sheaf of holomorphic sections of the holomorphic vector
bundle T ∗(p,0), with OM ≡ Ω0

h(M) the sheaf of holomorphic sections of the trivial
bundle (i.e., the structure sheaf of holomorphic functions). The Dolbeault theorem
states that sheaf cohomology relates to ∂-cohomology as

Hq(M,Ωp
h(M)) = Hp,q(M) . (3.67)

The Hirzebruch-Riemann-Roch theorem states that

χ(S,F) =

∫
ch(E)Td(S) , (3.68)

with the usual convention for characteristic classes that Td(S) ≡ Td(T (1,0)S). Both
the Chern character and the Todd class can be expanded in terms of Chern classes
as

Ch(E) = rank(E) + c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
+ ...

Td(E) = 1 +
1

2
c1(E) +

1

12

(
c1(E)2 + c2(E)

)
+ ... ,

(3.69)

where ... are k-forms with k > 2. Taking F = OS, the Hirzebruch-Riemann-Roch
theorem yields

24 =

∫
c2(S) (3.70)

after making use of the fact that cj(OS) = 0, the Dolbeault theorem, and the fact
that h0,0 = h2,0 = 1, h1,0 = 0. Taking F = Ω1

h, it is then found that

−h1,1 = −5

6

∫
c2(S) = −20 . (3.71)

his face.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

Therefore, the Hodge diamond of a K3 surface is given by

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

A lattice (L, (., .)) is defined to be a finitely generated free � module9 L with a
symmetric bilinear form (., .) : L×L → �. A lattice is unimodular if det [(., .)] ∈ {±1}
and is even if (x, x) ∈ 2� ∀x ∈ L. The bilinear forms (., .) of indefinitie signature of
unimodular even lattices can be classified: they are all of the form

(., .) = Un ⊕ (±E8)
m (3.72)

for some m,n ∈ �0, with

U =

(
0 1
1 0

)
(3.73)

and E8 the unique positive definite even lattice of rank 8, which is given by the root
lattice of the Lie algebra.

There exists a natural symmetric bilinear form on the second integral cohomology
group

(., .) : H2(S,�)×H2(S,�) → � (3.74)

called the intersection form. By Poincaré duality, this is equivalent to an inner
product on the second integral homology group. We claim that this group is given
by

H2(S,�) = �
22 , (3.75)

i.e., no torsion terms �p exist. Thus, the pair (H2(S,�), (., .)) forms a lattice.
Wu’s formula states that for any complex surface Σ and α ∈ H2(Σ,�), the

intersection pairing satisfies (α, α)+ (c1(T
(1,0)Σ), α) ∈ 2�. Taking Σ = S and noting

that c1(T
(1,0)S) = 0 by definition of a K3 surface, (H2(S,�), (., .)) is an even lattice.

By Poincaré duality, the intersection form has determinant ±1, thus the lattice is

9 That is to say, given a vector space V with basis {ej | j ∈ {1, n}}, L = {∑j ajej | aj ∈ �} ∼=
�

n. n is called the rank of L. Technically, lattices can be defined as free modules of more generic
rings than �, but this will not be necessary for our purposes.
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unimodular. By Hodge’s index theorem, the signature of the intersection form is
given by (2h2,0 + 1, h1,1 − 1) and thus, the lattice has signature (3, 19). Thus, the
cohomology lattice is unimodular indefinite and even, and has to be of the form
Un ⊕ (±E8)

m. Noting that U has signature (1, 1), there is only one possibility for
n,m. Thus, the final result of all this is the following:

Proposition 3.6.1. (H2(S,�), (., .)) is an even unimodular lattice of signature (3, 19)
with intersection form given by

(., .) = U3 ⊕ (−E8)
2 . (3.76)

A priori, by our definition a K3 surface need not be algebraic, i.e., there need not
exist any n such that S can be embedded in �P n. However, all examples that will
be given will in fact be algebraic. In order to demonstrate this, some more formalism
is necessary.

The second real coholomogy group can be split into selfdual and anti-selfdual
forms as

H2(S,�) = H+(S,�)⊕H−(S,�) . (3.77)

As the signature of the intersection form is (3, 19) and can be expressed in terms of
Hodge duals, it follows that dimH+(S,�) = 3, dimH−(S,�) = 19. Let (j, ω) define
the SU(2)-structure on S, with j the Kähler form and ω the Calabi-Yau form. Then
(j,Reω, Imω) span dimH+(S,�), as they are all selfdual and the SU(2)-structure
relations j ∧ ω = ω ∧ ω = 0 guarantee linear independence.

The Picard lattice is defined as

Pic(S) ≡ H2(S,�) ∩H1,1(S) , (3.78)

with ρ ≡ dim Pic(S) ≤ 20 the Picard number. The intersection form on H2(S,�)
induces a bilinear symmetric form on Pic(S), thus (Pic(S), (., .)) is a sublattice of
(H2(S,�), (., .)) with signature (1, ρ − 1). Its complement is given by the transcen-
dental lattice and is of signature10 (2, 20− ρ). A sublattice Λ ⊂ L is called primitive
if L/Λ is free11.

At this point, we can refer to [58] for the following

10There is a typo in [1], p. 24. This is the correct formula.
11Note that for any primitive sublattice Λ ⊂ L, L unimodular, Λ ⊕ Λ⊥ = L if and only if Λ is

unimodular.
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3. Supersymmetric vacua on manifolds with SU(4)-structure

Theorem 3.6.2. Let L be the lattice �22 with signature (3, 19). Let Λ ⊂ L be
a primitive sublattice with signature (1, ρ − 1). Then there exists an algebraic K3
surface S with Pic(S) = Λ.

Thus, it will be possible to give explicit expressions for the (cohomology classes
of) the SU(2)-structure in terms of a basis for the lattice of an algebraic K3 surface
Before we do so, let us return to physics and consider the constraints on a vacuum
with the product of K3 surfaces as internal space.

3.6.2 M-theory vacua constraints on S × S̃

Let S, S̃ be K3 surfaces and let M8 = S× S̃. The SU(4)-structure on M8 can then
be further reduced to an SU(2)×SU(2)-structure. This can be made manifest either
at the level of the pure spinor or at the level of the forms (J,Ω). The pure spinor of
M8 η can be split as

η = ηS ⊗ ηS̃ , (3.79)

with ηS,S̃ Weyl spinors of S, S̃ (which are automatically pure for dimensional reasons).
It is then possible to construct spinor bilinears and use Fierz-identities to confirm
that these lead to (j, ω) on S and (j̃, ω̃) on S̃, with j, j̃ the Kähler forms and ω, ω̃ the
Calabi-Yau forms. More straightforwardly, though perhaps slightly less insightful, is
to do the following for S, and completely analogous for S̃. Let

H+(S,�) = span
�
{ja | a ∈ {1, 2, 3}}

H−(S,�) = span
�
{lα | α ∈ {1, ..., 19}} ,

(3.80)

with the bases normalized such that

1

2
�4 j

a ∧ jb = δabvol4

1

2
�4 l

α ∧ lβ = δαβvol4

(3.81)

Let ρa ∈ �, ca ∈ � be such that

ρaρa =
1

2
cac∗a = 1

ρaca = caca = 0
(3.82)

and define

j ≡ ρaja , ω ≡ caja . (3.83)
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Then

1

2!
j ∧ j =

1

22
ω ∧ ω∗ = vol4

j ∧ ω = 0
(3.84)

and thus (j, ω) forms a (torsion-free) SU(2)-structure. Setting

J ≡ j + j̃ , Ω ≡ ω ∧ ω̃ (3.85)

it follows that

1

4!
J4 =

1

24
Ω ∧ Ω∗ = vol8

J ∧ Ω = 0
(3.86)

and in such a way the SU(4)-structure can be constructed in terms of the SU(2)-
structures which have been expressed explicitly in terms of a basis of the second real
cohomology groups of the K3 surfaces.

At this point, we can deliver on the promise of physics that this subsection started
with. The N = 1 supersymmetric solution was given in (3.45), (3.46). Imposing the
integrability conditions of section 3.4.1 then comes down to three things:

• All (internal) flux forms ought to be harmonic and thus expressible in terms of
cohomology

• The quantization condition 1
2π

∫
C4

F ∈ � needs to be satisfied for any cycle

C4 ∈ H4((S × S̃,�)

• The integral of the warp factor constraint demands
1

8π2

∫
F ∧ F +NM2 =

χ(S×S̃)
24

As a basis for the cohomology, the intersection form, and the Euler character are all
explicitly known, we are now in a position to find explicit vacua.

Consider the four-form flux. The internal part, given by the last line of(3.45) can
be expressed in terms of the cohomology basis and the SU(2)× SU(2)-structure as

F =A Re(ω ∧ ω̃) + Re(Bω ∧ ω̃∗) + Cj ∧ j̃+ (4A− 2C)
(
vol4 + ṽol4

)
+ fαβlα ∧ lβ + (Dω ∧ j̃+D∗ω̃ ∧ j + c.c.)

(3.87)

74



3. Supersymmetric vacua on manifolds with SU(4)-structure

with A,C, fαβ ∈ �, B,D ∈ �. The terms proportional to D, D∗ are (3,1) non-
primitive, the terms proportional to A are (2,2) non-primitive and (4, 0) + (0, 4),
everything else corresponds to the primitive (2,2) term. Therefore, it also follows
that setting A = D = 0, the solution actually has N = 2 supersymmetry. This
process goes by the name of supersymmetry enhancement. Let us investigate this in
more detail.

3.6.3 Supersymmetry enhancement

Since N = 2 and N = 4 vacua are a subset of the less constrained N = 1 vacua, it
is relevant to know under which conditions N = 1 vacua are actually masqueraded
higher supersymmetric vacua. The supersymmetry solution determines an SU(4)-
structure. Conversely, if multiple SU(4)-structures exist for a single vacuum, this
corresponds to the presence of more free parameters in the Killing spinors and thus
to supersymmetry enhancement. Let us be more precise.

Consider a single K3 surface S. The metric determines an SO(4)-structure on S.
As usual, there are two equivalent ways to proceed: tensorial or spinorial. From a
tensor point of view, SO(3) ⊂ SO(4) leaves the metric invariant, yet acts funda-
mentally on the vector J ≡ (Im ω,Re ω, j); this comes down to stating that it is
possible to deform the complex structure without altering the metric. Generically,
there are no non-trivial SO(3)S × SO(3)S̃ rotations of (J , J̃ ) that leave F invari-
ant. However, consider the case A = D = 0. In this case, there is a subgroup of
SO(3)S × SO(3)S̃ which does leave F invariant, namely the SO(2)S × SO(2)S̃ sub-
group which acts on (J , J̃ ) by leaving j, j̃ invariant and rotating Re ω, Im ω into
one another. Although not immediately obvious, this is made manifest by noting
that SO(2) � U(1) and F is indeed manifestly invariant under (ω, ω̃) → eiϑ(ω, ω̃).
Clearly the SU(2)S × SU(2)S̃-structure of S × S̃ is not invariant under this action,
yet all fields of the vacuum (g,G,ΨM) are12. Therefore, we have found a vacuum
associated to multiple SU(4)-structures and supersymmetry enhancement occurs, as
is evident from the fact that we know that when setting A = D = 0, the flux reduces
to F = f (2,2), which is exactly the N = 2 supersymmetry solution.

The correspondence between supersymmetry enhancement and multiple SU(4)-structures
related to the same vacuum is made manifest from the spinorial point of view.
Existence of spinors and a metric on S defines a Spin(4)-structure. There is a
so-called ‘accidental isomorphism’, stating that Spin(4) � Spin(3) × Spin(3) �

12Clearly, the SO(2)S × SO(2)S̃ group acts trivially on ΨM = 0 and the external part of G.
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SU(2)× SU(2). In order to avoid confusion, let us stress that this SU(2)× SU(2)-
structure is a G-structure on S, not on S×S̃. Existence of a globally defined nowhere-
vanishing pure spinor ηS reduces the Spin(4)-structure to a Spin(3) � SU(2)-
structure. Thus, to be pedantic to stress the point, SU(2) × {�} leaves ηS, and
thus (j, ω) invariant, whereas {�} × SU(2) acts via the fundamental representation
on ηS, inducing the SO(3) action on J by noting that

Jmn = −1

2
i�σij η̃

c
iγmnηj (3.88)

with η1 ≡ ηS, η2 ≡ ηcS. This also explains the relation between the SO(2) and
U(1) actions on ω explained before, as the SO(2) action can be seen as a subgroup
of the metric-induced SO(4)-structure, whereas the U(1)-action can be seen as the
non-trivial U(1)-action on ηS. The advantage of the latter viewpoint is that the su-
persymmetry enhancement becomes manifest when investigating the resulting action
on the Killing spinor (3.49). Explicitly, for A = D = 0, the invariance of the vacuum

under ηS → e
1
2
iϑηS corresponds to

ε → e−
1
3
A
(
e

1
2
iϑζ
)
⊗ η + e−

1
3
A
(
e−

1
2
iϑζ
)
⊗ ηc , (3.89)

which is exactly the N = 2 ansatz (3.51). This demonstrates explicitly how invari-
ance of the vacuum results in a more generic Killing spinor and thus supersymmetry
enhancement to N = 2.

The N = 2 enhancement obtained by setting A = D = 0 can be further enhanced
to N = 4 by taking B = C, resulting in

F = C Re(ω ∧ ω̃∗) + Cj ∧ j̃− 2C
(
vol4 + ṽol4

)
+ fαβlα ∧ lβ

= CJmδ
mnJ̃n − 2C

(
vol4 + ṽol4

)
+ fαβlα ∧ lβ .

(3.90)

This flux is invariant under an SO(3) symmetry acting as

J → RJ , J̃ → RJ̃ , (3.91)

for R ∈ SO(3). Corresponding SU(2) actions on the spinors can be deduced, showing
that this indeed leads to N = 4 as claimed. However, the way to achieve supersym-
metry enhancement is not unique. Another example leading to N = 4 would be to
take A = C, B = D = 0 such that the flux reduces to

F = A Re(ω ∧ ω̃) + Aj ∧ j̃+ 2A
(
vol4 + ṽol4

)
+ fαβlα ∧ lβ

= AJmη
mnJ̃n + 2A

(
vol4 + ṽol4

)
+ fαβlα ∧ lβ .

(3.92)
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3. Supersymmetric vacua on manifolds with SU(4)-structure

In this case, the flux is invariant under a different SO(3) symmetry, which acts as

J → RJ , J̃ → η3Rη3J̃ , (3.93)

with η3 the matrix diag(−1, 1, 1). At the level of the spinors, the corresponding
SU(2) action is given by(

ηS
ηcS

)
→ exp

(
−1

2
iϑn̂ · �σ

)(
ηS
ηcS

)
(

ηS̃
ηc
S̃

)
→ exp

(
1

2
iϑ(η3n̂) · �σ

)(
ηS̃
ηc
S̃

)
,

(3.94)

for n̂ a unit vector determining the axis of rotation. As a result, the Killing spinor
gets mapped to

ε → e−
1
3
A
(
ζ1 ⊗ ηS ⊗ ηS̃ + ζ2 ⊗ ηS ⊗ ηc

S̃
+ c.c.

)
, (3.95)

with ζ1,2 complex spinors of Spin(1, 2), determined in terms of ζ and n̂. This is
indeed an N = 4 ansatz.

Finally, let us also note that there are non-trivial symmetries of the vacuum which
affect the SU(2)S- and SU(2)S̃-structures, but which leave the SU(4)-structure in-
variant: these do not lead to supersymmetry enhancement. As an example, consider
B = 0. Then the flux is invariant under the U(1) action (ω, ω̃) → (eiϑω, e−iϑω̃).
However, although both SU(2)S,S̃ are not invariant, the SU(4)-structure is, as fol-
lows from either (3.79) or (3.85). As a consequence, the Killing spinor ε is invariant,
and no supersymmetry enhancement occurs.

3.6.4 Examples

We now have the expression (3.87) for the flux in terms of the cohomology basis
and an understanding of when N = 1 vacua undergo supersymmetry enhancement.
All that remains is to fix the parameters A,B,C,D, fαβ to satisfy the quantization
condtion and see what the number of branes NM2 ought to be to satisfy the topolog-
ical constraint.

In order to solve the quantization condition, we fix an explicit expression for the
SU(2)-structures in terms of H2(S,�), H2(S̃,�). Let a basis of H2(S,�) be given
by {e1,I , e2,I , ej}, I ∈ {1, 2, 3}, j ∈ {7, ..., 22} such that∫

S

ea,I ∧ eb,J = UabδIJ . (3.96)
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Furthermore, we define e±I ≡ e1,I±e2,I with norm ±2 with respect to the intersection
form, and a dual basis in H2(S,�) given by {C1,I , C2,I , Cj}. Since

H4(S × S̃,�) = span
�
{S, S̃, C × C̃ | C ∈ H2(S,�), C̃ ∈ H2(S̃,�)} (3.97)

by the Künneth formula for cohomology on product spaces, this immediately yields
a basis for H4(S × S̃,�). The SU(2)-structure can then be taken to satisfy

j =
√
2πve+1

ω =
√
2πv (e+2 + ie+3)

(3.98)

and analogous for S̃: as a consequence,∫
S

vol4 = 2πv . (3.99)

We then have the following explicit examples of vacua:

• Example 1: N = 1, NM2 = 12:

Set B = D = fαβ = 0,

C = 2A = ± 2√
vṽ

. (3.100)

It can then be seen that the quantization condition (2.41) is satisfied, with the only
non-zero charges given by

1

2π

∫
Ca,1×Cb,1

G = ±2 ;
1

2π

∫
Ca,2×Cb,2

G = ±1 ;
1

2π

∫
Ca,3×Cb,3

G = ∓1 , (3.101)

for a, b ∈ {1, 2}.

• Example 2: N = 2, NM2 = 0:

Set A = B = D = fαβ = 0,

C = ± 2√
vṽ

. (3.102)
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3. Supersymmetric vacua on manifolds with SU(4)-structure

In this case, the non-trivial integrals are given by

1

2π

∫
Ca,1×Cb,1

G = ±2 ;
1

2π

∫
S

G = ∓4

√
v

ṽ
;

1

2π

∫
S̃

G = ∓4

√
ṽ

v
, (3.103)

for a, b = 1, 2. A solution to the charge quantization constraints is thus obtained by
setting

v = 4nṽ , (3.104)

for n ∈ {0,±1,±2}.

• Example 3: N = 4, NM2 = 14:

Set A = B = D = fαβ = 0,

C = A = ± 1√
vṽ

. (3.105)

The quantization condition (2.41) is then satisfied, with non-trivial charges

1

2π

∫
Ca,1×Cb,1

G = ±1 ;
1

2π

∫
Ca,2×Cb,2

G = ±1 ;
1

2π

∫
Ca,3×Cb,3

G = ∓1

1

2π

∫
S

G =
1

2π

∫
S̃

G = ±2 .

(3.106)
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Chapter 4

Flux vacua on SU(4)-deformed
Stenzel space

In section 3.6.1, examples were given of N = 1, d = 3 supersymmetric flux vacua for
M-theory with K3 × K3 as internal space, a compact Calabi-Yau. In this section,
other examples of flux vacua will be given, with as internal manifold either the
Stenzel space fourfold, or something that shall be referred to as ‘SU(4)-deformed
Stenzel space’. Stenzel spaces [59] are a class of non-compact Calabi-Yau manifolds;
our interest will be solely the fourfold which we will simply refer to as ‘Stenzel
space’. Other members of this class are Eguchi-Hanson space [60] for d = 4 and the
deformed conifold [61] for d = 6. The deformed conifold C(T 1,1) has been of particular
interest, as the (warped) metric of a compactification on �1,3 × C(T 1,1) asymptotes
to AdS5 ×T 1,1, thus lending itself to describe dual conformal field theories [62], [63].
Although the conifold has a singularity at the tip of the cone, this may be smoothed
out by either deformation (blow-up) or resolution. Smoothness at the tip of the
‘throat’ of the deformed conifold is then associated to color confinement in the dual
CFT [64].

In [65], an N = 2 M-theory flux vacuum was constructed on �1,2×S, where S is
the Stenzel fourfold (hereafter simply referred to as ‘Stenzel space’). This M-theory
vacuum was reduced to an N = (2, 2) vacuum of type IIA theory in [66]. Similarly
to the deformed conifold, Stenzel space is a deformed cone, in this case over the
Stiefel manifold V5,2 � SO(5)/SO(3), with an S4 bolt at the origin to smooth out
the singularity of C(V5,2). Hence this vacuum is a higher dimensional (or lower,
depending on perspective) analogue of the one found in [64]. Recently, this vacuum
has attracted interest mostly in the context of metastable vacua in M-theory when
supplemented with (anti-) M2 branes [66–68]. See also [69, 70].
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4. Flux vacua on SU(4)-deformed Stenzel space

The purpose of this section is three-fold. First of all, we are interested in extending
the results of [65] to construct IIA, IIB and M-theory vacua with less supersymmetry,
by applying the results of [1, 2] in case of vanishing torsion. These vacua allow for
more RR fluxes, which can be described in terms of certain closed and co-closed
(p, q)-forms. Thus, this process involves constructing closed and co-closed forms on
Stenzel space and considering their effects on the warp factor. For the case of IIA,
we find three new possible contributions: scalar terms, a primitive (1, 1)-form, and
a new primitive (2, 2)-form. Although massive IIA contributes such scalar terms,
non-massive IIA may also do so. All of these terms cause divergences in the warp
factor, the scalars in the UV, the (1,1) and (2,2)-form in the IR. Thus, in this sense,
these vacua are more along the lines of [62] than that of [64]. We explain how such
fluxes affect the uplift of the IIA vacua to M-theory vacua on �1,2 × S.

Secondly, we are interested in constructing explicit examples of non-Calabi-Yau
spaces. Stenzel space comes equipped with a natural SU(4)-structure with vanish-
ing intrinsic torsion defined by its Calabi-Yau structure (i.e., its symplectic form,
holomorphic four-form, and metric). We use the coset structure of V5,2 to con-
struct a family of SU(4)-structures which we call ‘left-invariant’, as these are induced
from the left-invariant forms on SO(5)/SO(3). We consider a sub-family of these,
which we refer to as ‘abc SU(4)-structures’, and give explicit formulae for the torsion
classes. This reduces the problem of finding moduli spaces, e.g. of integrable almost
complex structures, to ODE which we solve. Such spaces which are diffeomorphic
to Stenzel space but equipped with a different SU(4)-structure we will refer to as
‘SU(4)-deformed Stenzel spaces’.

Our third point of interest is to construct vacua on such SU(4)-deformed Sten-
zel space. Due to the specifics of forms on Stenzel space, non-Calabi-Yau defor-
mations automatically violate the NSNS Bianchi identity. We construct type IIA
N = (1, 1) vacua on complex non-symplectic (hence, in particular, non-Calabi-Yau)
SU(4)-deformed Stenzel space, up to subtleties in the integrability theorem. The
geometry is smooth and complete, with an S4 bolt at the orgin and conical asymp-
totics, thus conformal to AdS3 in the UV; this is similar to IIA on Stenzel space. The
RR flux is primitive, (2,2) and satisfies the RR Bianchi identity. The violation of
the NSNS Bianchi is sourced by a distribution of NS5-branes, for which we give the
contribution to the action. These vacua do not uplift to M-theory vacua on R1,2×S,
as such M-theory vacua require certain constraints on the dilaton in terms of the
warp factor which are explicitly not satisfied.

The rest of this section is organized as follows. In section 4.1, we discuss some
known results on Stenzel space, SU(4)-structures, and vacua on manifolds with
SU(4)-structures. In section 4.2, we describe the combination of the ingredients
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of the previous section, applying the SU(4)-solutions to Stenzel space. In section
4.3 we describe how to construct SU(4)-structures on manifolds diffeomorphic to
Stenzel space. We then examine the moduli spaces and geodesical completeness of
such spaces. Finally, in section 4.4 we discuss how to construct IIA vacua on these
SU(4)-deformed Stenzel spaces. This involves taking the susy solutions of section
3.2, applying them with torsion classes described in section 4.3, and then checking
the integrability conditions and Bianchi identities, as described in section 2.5.

For convenience, we will slightly alter our notation. Metrics onM will be denoted
by ds2(M), and the warp factor will be denoted by e2A ≡ H−1. In particular, the
integrability condition δH01 = 0 for type II vacua (see section 2.5 can be rewritten
as the scalar equation

∇2H = −g2s �8

(
F0 ∧ �8F0 + F2 ∧ �8F2 +

1

2
F4 ∧ �8F4

)
, (4.1)

with ∇2 the Laplacian.

4.1 Stenzel Space

The vacua of interest will either have a Stenzel space or something closely related to a
Stenzel space as internal manifold. A Stenzel space can be viewed as a smoothing of
a (singular) cone in such a way that it is still a Calabi-Yau (CY) manifold. Stenzel
spaces exist for arbitrary even dimensions; the most well-known is the deformed
conifold in d = 6 [61]. We will focus purely on the case where d = 8 and will simply
refer to the CY fourfold Stenzel space as ‘Stenzel space’. We will review its properties
below; see [59], [65], [66] for more details.

Stenzel space is defined as the CY manifold (S, J,Ω), where S is a smooth man-
ifold, J its Kähler form, and Ω the Calabi-Yau form. There are numerous ways to
describe Stenzel space. As an algebraic variety, it is defined by the set

S = {z ∈ �5 | z2 = ε2} (4.2)

with ε ∈ �. Topologically speaking, it is homeomorphic to T ∗S4. Alternatively, and
for our purposes more conveniently, Stenzel space can be considered as a deformed
cone over the Stiefel manifold V5,2 � SO(5)/SO(3), with the singularity at the tip
of the undeformed cone blown up to S4 � SO(5)/SO(4). It is thus a smooth non-
compact manifold. SO(5) comes equipped with a set of left-invariant forms LAB,
A,B ∈ {1, ..., 5} satisfying the relation

dLAB = LAB ∧ LBC . (4.3)
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4. Flux vacua on SU(4)-deformed Stenzel space

Relabeling A = (1, 2, j), j ∈ {1, 2, 3} and defining L1j = σj, L2j = σ̃j, L12 = ν, one
has that ν, σj, σ̃j span a basis for T ∗V5,2 and satisfy the following relations (summation
implied):

dσj = ν ∧ σ̃j + Ljk ∧ σk

dσ̃j = −ν ∧ σj + Ljk ∧ σ̃k

dν = −σj ∧ σ̃j .

(4.4)

Stenzel space comes equipped with a metric

ds2(S) = c(τ)2
(
1

4
dτ 2 + ν2

)
+ b(τ)2σ̃2

j + a(τ)2σ2
j (4.5)

with a, b, c defined as

a2 = 3−
1
4λ2ε

3
2x cosh

(τ
2

)
b2 = 3−

1
4λ2ε

3
2x cosh

(τ
2

)
tanh2

(τ
2

)
c2 = 3

3
4λ2ε

3
2x−3 cosh3

(τ
2

)
,

(4.6)

with

x ≡ (2 + cosh τ)1/4 (4.7)

defined for convenience. τ ∈ [0,∞) is the radial coordinate of the deformed cone.
Such a, b, c satisfy the differential constraints

a′ =
1

4b

(
b2 + c2 − a2

)
b′ =

1

4a

(
a2 + c2 − b2

)
c′ =

3c

4ab

(
a2 + b2 − c2

) (4.8)

which were determined to be the constraints for Ricci-flatness in [65]. Note that
λ ∈ � is an arbitrary scaling parameter, as Ricci-flatness is invariant under conformal
transformations. We define orthonormal one-forms

e0 =
c(τ)

2
dτ , ej = a(τ)σj

ẽ0 =c(τ)ν , ẽj = b(τ)σ̃j

(4.9)
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and holomorphic one-forms

ζ0 = − c

2
dτ + icν

ζj = aσj + ibσ̃j .
(4.10)

Using these, the Kähler form and Calabi-Yau form are given by

J =
i

2
ζα ∧ ζ̄α

Ω = ζ0 ∧ ζ1 ∧ ζ2 ∧ ζ3
(4.11)

such that (J,Ω) forms a Calabi-Yau structure on S. For small τ , one sees that
a ∼ c ∼ λε3/4, b ∼ 1

2
λε3/4τ . Hence at τ = 0, the CY-structure degenerates to

ds2(S)
∣∣
τ=0

= λ2ε3/2
(
ν2 + σ2

j

)
J |τ=0 = 0

Ω|τ=0 = λ4ε3iν ∧ σ1 ∧ σ2 ∧ σ3 .

(4.12)

In particular, the metric becomes the standard metric on S4, J vanishes as the S4

bolt is a special Lagrangian submaniold, and Ω becomes proportional to the volume
form of the bolt.

4.2 Type IIA & M-theory on Stenzel Space

We will now consider the case of IIA theory on Stenzel space. Stenzel space possesses
an SU(4)-structure as it is CY, hence applying the constraint given in subsection
3.3.1 yields a solution to the susy equations on Stenzel space. The only obstructions
to finding a supersymmetric vacuum come from the fact that the (magnetic) RR
fluxes have to be closed and co-closed on the S and that the warp factor has to
satisfy an inhomogeneous Laplace equation whose source is given by the RR flux.
So the strategy in the following will be to a) construct new closed and co-closed RR
fluxes on Stenzel space and b) solve the resulting differential equation for the warp
factor.

In [65], an N = 2 M-theory vacuum was given on Stenzel space. The vacuum
was defined by a primitive selfdual closed (2,2)-form

f (2,2) = 3fL[ẽ0 ∧ e1 ∧ e2 ∧ e3 + e0 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3]

+
1

2
fLεijk[e0 ∧ ei ∧ ej ∧ ẽk + ẽ0 ∧ ek ∧ ẽi ∧ ẽj] , (4.13)
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4. Flux vacua on SU(4)-deformed Stenzel space

with

fL ≡
(
ε3 cosh4 τ

2

)−1

(4.14)

and the associated warp factor

H = 23/2311/4ε−9/2

∫ ∞

x

dt

(t4 − 1)5/2
(4.15)

which satisfies (3.53). Clearly, such an N = 2 M-theory vacuum is also an N = 1
M-theory vacuum as described in section 3.4, and can be dimensionally reduced to
an N = (1, 1) IIA vacuum, as it satisfies (4.1) with F0 = F2 = 0, F4 = f (2,2).

More generally, for N = (1, 1) IIA vacuum there are four different irreps to
consider: scalars, primitive (1, 1)-forms, (2, 0)-forms and primitive (2, 2)-forms. An
observation that simplifies the analysis is that the contribution of each irrep to the
warp factor equation (4.1) can be considered separately. For example, switching on
a scalar flux fs leads to the following modification of the warp factor equation

∇2H = −1

2
�8
(
f (2,2) ∧ f (2,2)

)
− f 2

s .

So without loss of generality we can simply set H = H(2,2) +Hs, provided that

∇2Hs = −f 2
s ; ∇2H(2,2) = −1

2
�8
(
f (2,2) ∧ f (2,2)

)
.

The upshot is that each irreducible component of the flux f can be considered as a
separate source to the warp factor equation, leading to a corresponding solution Hf

for the warp factor; the complete expresion for the warp factor is then given by

H =
∑
f

Hf .

Summary of the results: We have been able to construct a non-normalizable
closed and co-closed primitive (1, 1)-form and a non-normalizable closed and co-
closed primitive (2, 2)-form on Stenzel space, and for each of them we have calculated
the contribution to the warp factor. We find divergences in the IR1 which cannot be
canceled against each other; in the UV the warp factor goes to zero in exactly the
same way as for (4.15).

1A note on terminology: ‘IR’ for us means τ → 0, whereas ‘UV’ is synonymous with τ → ∞.
For a function X, we will also occasionally use ‘XIR’, which is defined by X → XIR when τ → 0,
and similarly for XUV and τ → ∞.
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In addition we have considered closed and co-closed scalar fluxes f0, f2, f4, f̃4,
which appear through the Romans mass (f0), but also through the two form (F2 ∼
f2J + . . . ) and the four-form (F4 ∼ f4J

2 + (f̃4Ω + c.c.) + . . . ). These scalars are
constant as follows from closure and co-closure, and hence the corresponding fluxes
are non-normalizable. We have calculated the induced contribution to the warp
factor: in the IR the warp factor stays finite; in the UV the geometry becomes
singular at a finite value of the radial coordinate.

Finally we also consider adding a homogeneous solution H0 to the warp factor:
∇2H0 = 0. This is finite in the UV but diverges in the IR and for that reason it was
discarded in [65]. Here we are including divergent modifications to the warp factor,
so it is consistent to take H0 into account.

4.2.1 Scalars

All scalars will contribute in the same manner but with different prefactors. Specif-
ically, we have

f 2 ≡ �8

(
F0 ∧ �8F0 + F2 ∧ �8F2 +

1

2
F4 ∧ �8F4

)
=
(
f 2
0 + 4f 2

2 + 12f 2
4 + 16|f̃4|2

)
, (4.16)

which gives the source entering the warp factor equation (4.1). Using the definitions
of the metric (4.5) and a, b, c (4.6), it can be seen that the warp equation reduces to

H′ = −ϕ
(
x sinh

(τ
2

))−3
∫ τ

dt sinh3t

= −ϕ
(
x sinh

(τ
2

))−3
(
2

3
− cosh τ +

1

3
cosh3τ

)
= −ϕ

(
x sinh

(τ
2

))−3
(
4

3
− 4 cosh4

(τ
2

)
+

8

3
cosh6

(τ
2

))
,

where we fixed the integration constant in the second line by demanding that there
should not be any IR divergence and in the third line we used the identity cosh τ =
2 cosh2

(
τ
2

)
− 1; we have also defined

H′ = ∂τH

ϕ ≡ g2sf
2(
33/4

2
λ2ε3/2) > 0 .
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4. Flux vacua on SU(4)-deformed Stenzel space

By noting that(
4

3
− 4 cosh4

(τ
2

)
+

8

3
cosh6

(τ
2

))
=

4

3
x4 sinh4

(τ
2

)
,

we find the explicit expression for the warp factor:

H = −8
√
2

15
ϕ

∫ x5

35/4

dt

(t4/5 − 1)1/2
+ k , (4.17)

with k an integration constant. There are no singularities in the IR since τ → 0
corresponds to x5 → 35/4. In the UV, on the other hand, H vanishes at a finite value
of the radial coordinate and the metric develops a singularity. More specifically the
asymptotics are:

H −→
{

k ; τ → 0
3
4
k(τUV − τ) ; τ → τUV

, (4.18)

where

τUV ≡ 4

3
log
(2 1

49k

8ϕ

)
, (4.19)

and we have assumed τUV >> 1.

The ten- and eleven-dimensional metrics2 are given in (3.20) and (3.40) respec-
tively. In the IR the metric is regular and asymptotes to the standard metric on
R1,1×S, or R1,2×S after uplift to eleven dimensions. In the UV the metric becomes
singular at τ = τUV; the singularity remains even after the uplift.

The dilaton and NSNS flux are given in (3.21). The RR flux is given in (3.22);
in the present case of scalar fluxes this gives:

F0 = f0

F2 = H−1f0vol2 + f2J

F4 = H−1f2J ∧ vol2 + f4J ∧ J + (f̃4Ω + c.c.) ,

(4.20)

where f0, f2, f4 are constants.

2The solution can be uplifted to eleven dimensions provided the Romans mass vanishes.
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4.2.2 Two-forms

We now consider the possibility of allowing two-forms. There are two cases: f
(2,0)
2 or

f
(1,1)
2 , since f

(1,1)
4 vanishes and f

(2,0)
4 is determined by f

(2,0)
2 . For simplicity we will

henceforth set f (2,0) = 0. The Bianchi identities require that F2 should be closed and
co-closed. Since �F2 ∼ f

(1,1)
2 ∧ J ∧ J and since J is closed, closure of F2 also implies

co-closure.
In terms of the holomorphic one-forms (4.10), a closed and co-closed primitive

(1, 1)-form is given by

f (1,1) = if(τ)(ζ0 ∧ ζ̄ 0̄ − 1

3
ζj ∧ ζ̄ j̄) , (4.21)

provided that

2abf ′ + (3c2 + 2(ab)′)f = 0 . (4.22)

Using the explicit expressions for a, b, c (4.6), we find that

f(τ) =
m

(x sinh (τ/2))4
, (4.23)

with m an integration constant. The norm of f
(1,1)
2 can be calculated explicitly:

F2 ∧ �F2 = −1

2
f
(1,1)
2 ∧ f

(1,1)
2 ∧ J ∧ J

=
1

3
f 2Ω ∧ Ω∗ =

16

3
f 2vol8 ,

with f given in (4.23). Note that this flux is non-normalizable: one has that∫
M8

F2 ∧ �F2 =

∫
d8x

√
g
16

3
f 2

∼ lim
ε→0

∫ ∞

ε

dτ
sinh3 τ

x8 sinh8 (τ/2)
,

(4.24)

hence the integral diverges in the IR as τ−4.
The warp factor is given by

∇2H = −g2s
16

3
f 2 ,
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4. Flux vacua on SU(4)-deformed Stenzel space

which leads to

H =
2

35/4
g2sλ

2ε3/2
∫ ∞

τ

dt
k
(
x sinh

(
t
2

))4 −m2(
x sinh

(
t
2

))7 , (4.25)

where k is an integration constant, m was introduced in (4.23), and the limits of the
integration have been chosen so that H vanishes in the UV, but diverges in the IR.

Explicitly, in the UV one has:

H(τ) −→ 128

61/427
g2sλ

2ε3/2ke−
9
4
τ ; τ → ∞ . (4.26)

In the IR, one finds that

H(τ) −→ 4

1215
g2sλ

2ε3/2
(
−480m2τ−6 + 420m2τ−4 +

1

2
(497m2 − 540k)τ−2

)
(4.27)

for τ → τIR. τIR is determined by the approximate vanishing of H, which happens
for

τIR = 2

√
−105m2 ±m

√
32400k − 18795m2

540k − 497m2
.

In order for this approximation to be sensible, this places bounds on k as a function

of m. Specifically, let us take
√

m2

k
<< 1. Then, one has that

τIR =
2√
3

(
m2

k

)1/4
(
1− 7

24

√
m2

k

)
+O((

m2

k
)5/4) , (4.28)

which goes to 0 as it should to justify the approximation used for H. In the IR the
ten-dimensional string-frame metric becomes singular. In the UV the string metric
asymptotes to conformal3 AdS.

ds2 = Λ2e2ρ
[
ds2(AdS3) + ds2(V5,2)

]
, (4.29)

3 Alternatively, the metric can be rewritten as

ds2 = Λ2
(
dR2 +R6ds2(R1,1) +R2ds2(V5,2)

)
.

For this reason, conformal AdS is equivalent to a domain wall.
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with

ds2(AdS3) = dρ2 + e4ρds2(R1,1)

ds2(V5,2) =
9

16
ν2 +

3

8

(
σ2
j + σ̃2

j

)
.

(4.30)

Here, we introduced

ρ ≡ 3

8
τ , Λ2 ≡ 8

65/4
λ2ε3/2 (4.31)

and rescaled

ds2(R1,1) → 32

9
Λ4g2sk ds2(R1,1) .

The Einstein metric ds2E = e−
φ
2 ds2 is also conformal to AdS3 × V5,2 but with a

different conformal factor:

ds2E =

(
32k

9

)1/4

Λ5/2e
1
2
ρ
[
ds2(AdS3) + ds2(V5,2)

]
. (4.32)

After uplift to eleven dimensions the metric asymptotes AdS4 × V5,2, exactly as was
the case in [65].

The dilaton and NSNS flux are given in (3.21). The RR flux is given in (3.22);
in the present case of (1,1) fluxes this gives:

F0 = 0

F2 = f (1,1)

F4 = H−1f (1,1) ∧ vol2 ,

(4.33)

where f (1,1) was given in (4.21), (4.23).

4.2.3 Four-forms

Let us now examine possible four-forms on Stenzel space. The (3, 1), (4, 0) and non-
primitive (2, 2) forms have been discussed, so let us examine possible (2, 2) forms
which are primitive, closed (and hence, co-closed due to selfduality). We have found
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4. Flux vacua on SU(4)-deformed Stenzel space

two such forms; they are given by

f
(2,2)
NL = 3fNL[e0 ∧ e1 ∧ e2 ∧ e3 + ẽ1 ∧ ẽ2 ∧ ẽ3 ∧ ẽ0]

+
1

2
fNLεijk[e0 ∧ ei ∧ ẽj ∧ ẽk + ej ∧ ek ∧ ẽi ∧ ẽ0] (4.34)

f
(2,2)
L = 3fL[ẽ0 ∧ e1 ∧ e2 ∧ e3 + e0 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3]

+
1

2
fLεijk[e0 ∧ ei ∧ ej ∧ ẽk + ẽ0 ∧ ek ∧ ẽi ∧ ẽj] , (4.35)

with fNL determined by

2bcf ′
NL + (ac+ 6cb′ + 2bc′)fL =0

2cfNL

(
a2 − b2 + 2ba′ − 2ab′

)
=0

(4.36)

and fL determined by

2acf ′
L + (bc+ 6ca′ + 2ac′)fL =0

2cfL
(
a2 − b2 + 2ba′ − 2ab′

)
=0

(4.37)

Notice that (4.37) is nothing more than (4.36) under the transformation a ↔ b. The
second equation is a consistency condition which is satisfied for the a, b, c of Stenzel
space4. Plugging in a, b, c in the first equation, we find that f

(2,2)
L is nothing more

than the L2 harmonic form found before (4.13). Inserting the expressions for a, b, c
(4.6), the solution to (4.36) is given by

fNL =
m

ε3 sinh4(τ/2)
, (4.38)

where we have chosen a normalization to match the conventions of [66]. This flux is
non-normalizable as can be seen from∫

M8

f (2,2) ∧ f (2,2) ∼ lim
ε→0

∫ ∞

ε

dτ
sinh3 τ

sinh8(τ/2)
,

which diverges as τ → 0 in the same way as f (1,1) of section 4.2.2. Thus we get the
same IR divergence for the warp factor to leading order, although the subleading
term will have a different coefficient. More explicitly the warp factor satisfies

∇2H = −g2s
2
24f 2

NL

= −12g2s
m2

ε6 sinh8(τ/2)
,

(4.39)

4In fact, it is equivalent to integrability of the almost complex structure. See section 4.3.3 for
more details.
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with solution

H =
37/4

2
g2sλ

2ε−9/2

∫ ∞

τ

dt
(k − 2m2 sinh−2

(
t
2

)
−m2 sinh−4

(
t
2

)
)

(x sinh
(
t
2

)
)3

, (4.40)

with k an integration constant, and we have chosen the limits of the integration so
that H vanishes in the UV but diverges in the IR. Explicitly the UV asymptotics
are given by

H(τ) −→ 32

61/4
g2sλ

2ε−9/2ke−
9
4
τ ; τ → ∞ (4.41)

and the IR asymptotics by

H(τ) −→ g2sλ
2ε−6

(
−32m2τ−6 − 4m2τ−4 + (6k +

223

30
m2)τ−2

)
(4.42)

for τ → τIR. Setting this expression to zero we find

τIR = 2

√
15m2 +

√
15m2

√
720k + 907m2

180k + 223m2
.

Again, we take k such that
√

m2

k
<< 1 leading to

τIR =
2

31/4

(
m2

k

)1/4
(
1 +

1

8
√
3

√
m2

k

)
+O((

m2

k
)5/4) . (4.43)

Similarly to the case where the flux was given by a (1,1)-form, the string metric
asymptotes to conformal AdS in the UV

ds2 = Λ2e2ρ
[
ds2(AdS3) + ds2(V5,2)

]
, (4.44)

with Λ, ρ defined in (4.31), the metrics defined in (4.30), and the metric rescaled

ds2(R1,1) → 24Λ4g2sε
−6k ds2(R1,1) .

Thus, we again find that the Einstein metric is conformal AdS3 × V5,2 but with a
different conformal factor

ds2E = (24k)1/4ε−3/2Λ5/2e
1
2
ρ
[
ds2(AdS3) + ds2(V5,2)

]
, (4.45)
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4. Flux vacua on SU(4)-deformed Stenzel space

and again, the uplift to eleven dimensions of the metric asymptotes to AdS4 × V5,2.
The dilaton and NSNS flux are given in (3.21). The RR flux is given in (3.22);

in the present case of (2,2)-fluxes this gives:

F0 = 0

F2 = 0

F4 = f (2,2) ,

(4.46)

where f (2,2) is given by (4.34), (4.38).

4.2.4 Homogeneous solution

As already mentioned, the homogeneous solution was discarded in [65] due to the
IR divergences but for us it is consistent to include it. The warp factor equation
becomes

∂τ [
(
x sinh

(τ
2

))3
∂τH] = 0 ,

which gives

H = k1 − k2

∫ τ dt(
x(t) sinh

(
t
2

))3 , (4.47)

with k1, k2 integration constants. This is finite in the UV but diverges in the IR.
Explicitly the asymptotics are given by

H −→

⎧⎪⎨⎪⎩ k1 +
4

33/4
k2τ

−2 τ → 0

k1 +
64

21/49
k2e

− 9
4
τ τ → ∞

. (4.48)

4.3 SU(4)-structure deformations of Stenzel space

So far, we have discussed supersymmetric vacua of type II and M-theory on Sten-
zel space, by applying the known results for eight-manifolds with SU(4)-structure:
Stenzel space is a Calabi-Yau fourfold, hence it has such an SU(4)-structure, as de-
termined by (4.11). In order to go beyond Stenzel space, we will alter the geometry
by considering deformations of the SU(4)-structure.
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Our starting point will be to consider the topological space S ≡ T ∗S4, which is
homeomorphic to Stenzel space. We will first investigate all SU(4)-structures on
this space which are ‘left-invariant’; we will explain what we mean by this. We will
then consider a subset of these, which we dub ‘abc SU(4)-structures’. The canoni-
cal metric of such abc SU(4)-structures is identical to the Stenzel metric (4.5), but
with a, b, c generic functions of the radial direction τ rather than fixed to satisfy (4.6).

By taking generic a, b, c, we find that J,Ω are no longer closed and thus torsion
classes have been turned on, going beyond the Calabi-Yau scenario. As the torsion
classes determine integrability of geometrical structures associated to the SU(4)-
structure (such as the almost complex and almost symplectic structure), we can
examine moduli spaces of such geometrical structures. These moduli spaces are de-
termined by differential equations which we can solve for a number of cases.

Finally, we should take care that by altering the metric, we do not make the space
geodesically incomplete. We analyze various possibilities, and conclude that to avoid
this, the straightforward thing to do is to ensure that at τ = 0, the space maintains
its S4 bolt, albeit possibly squashed.

4.3.1 Left-invariant SU(4)-structures

As mentioned, our starting point is S = T ∗S4 equipped with a Riemannian metric g.
In order to construct SU(4)-structures on this space, we will require some knowledge
of the cotangent bundle of S. Due to its conical structure, we will first focus on
the forms on V5,2, and for that, it is convenient to first discuss left-invariant forms
on cosets. We consider the left-invariant forms of SO(5), descended on the coset
V5,2 � SO(5)/SO(3). Concretely, this means the following: the left-invariant one-
forms of SO(5) are given by ν, σj, σ̃j, Ljk, j, k ∈ {1, 2, 3}, with Ljk the left-invariant
one-forms of the SO(3) subgroup, while σj, σ̃j, ν lie in the complement. In terms of
these, a p-form on V5,2 is left-invariant if and only if its exterior derivative lies in
the complement, i.e., is expressible solely in terms of σj, σ̃j, ν. Given a left-invariant
form, any scalar multiple is also a left-invariant form. The exterior derivative maps
left-invariant p-forms to left-invariant p+1-forms. For more general details, see [71].

A basis of left-invariant forms up to fourth degree for V5,2 and their derivatives
is given in the following table (see also [72]):
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4. Flux vacua on SU(4)-deformed Stenzel space

1-forms ν
2-forms dν = σ̃j ∧ σj

3-forms

α0 = ν ∧ dν dα0 = β0

α1 = σ1 ∧ σ2 ∧ σ3 dα1 = −β4

α2 = σ̃1 ∧ σ̃2 ∧ σ̃3 dα2 = −β3

α3 =
1
2
εijkσ̃

i ∧ σj ∧ σk dα3 = 2β3 − 3β2

α4 =
1
2
εijkσ

i ∧ σ̃j ∧ σ̃k dα4 = 2β4 − 3β1

4-forms

β0 = dν ∧ dν
β1 = −ν ∧ α2

β2 = ν ∧ α1

β3 = ν ∧ α4

β4 = −ν ∧ α3

Although left-invariant forms only make sense given a specific group action on the
space of forms, we will abuse terminology and make the following definition: Let τ
be the radial coordinate on S viewed as a (deformed) cone over V5,2. Then we define
a left-invariant form on S to be a form that restricts to a left-invariant (‘LI’) form
on V5,2 at any fixed τ . This is equivalent to demanding that the exterior derivative
acting on such forms can be expressed purely in terms of the radial one-form dτ
and the left-invariant one-forms of SO(5) that lie in the coset SO(5)/SO(3), i.e.,
ν, σj, σ̃j. All such LI p-forms on S can be gotten by taking linear combinations of
LI p-forms on V5,2, and LI p− 1-forms on V5,2 wedged with dτ , with coefficients that
are functions only of τ .

We define a left-invariant SU(4)-structure to be an SU(4)-structure defined by
forms (J,Ω) such that J and Ω are left-invariant forms on S5. The most general LI
two-form and LI four-form are given by

J =n(τ)ν ∧ dτ −m(τ)dν

Ω =kj(τ)dτ ∧ αj + lj(τ)β
j ,

with j ∈ {0, ..., 4} summed over. In order for (J,Ω) to form an SU(4)-structure, it
needs to satisfy the following constraints:

J ∧ Ω =0

1

4!
J4 =vol8

1

24
Ω ∧ Ω∗ =vol8

�Ω =Ω .

(4.49)

5In [72], the LI forms on V5,2 are used to construct LI SU(3)-structures on V5.2.
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In addition, Ω needs to be decomposable6 and holomorphic. Note that the final
constraint is not independent, yet explicitly working with this redundancy is conve-
nient. Let us see how these constrain the free parameters kj, lj, n, m. We start by
introducing normalised one-forms

e0 =
1√

g∗(dτ, dτ)
dτ , ej =

1√
g∗(σj, σj)

σj

ẽ0 =
1√

g∗(ν, ν)
ν , ẽj =

1√
g∗(σ̃j, σ̃j)

σ̃j ,
(4.50)

with g∗ the induced metric on the cotangent bundle. We shift the coefficients of J,Ω
to encompass these normalizations so that we can consider the one-forms normalised
without loss of generality. The first constraint of (4.49) sets k0 = l0 = 0. Let us now
choose an orientation by taking

vol8 =
√
gdτ ∧ ν ∧ σ1 ∧ σ2 ∧ σ3 ∧ σ̃1 ∧ σ̃3 ∧ σ̃3

= e0 ∧ ẽ0 ∧ e1 ∧ e2 ∧ e3 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3 .
(4.51)

Then the selfduality constraint leads to kj = lj. Next, we consider decomposability
of Ω. As detailed in [74] appendix C, a p-form ω is decomposable iff ∀X ∈ Xp−1(M),
ιXω∧ω = 0. This gives us 56 equations, a number of which are trivial while the rest
are linearly dependent. They boil down to

k2
1 + k2

2 =0

k2
3 + k2

4 =0

k2
1 + k2

3 =0

k2
2 + k2

4 =0

k3(k1 + k4) =0

k4(k2 + k3) =0 ,

6 In d = 6, this can be checked by means of the Hitchin functional [73]: The three-form Ω
determines the complex structure through

I k
j = −εjm1...m5

(ReΩ)
km1m2 (ReΩ)

m3m4m5 .

In d = 8, this fails, as one can see from a selfconsistency check: one finds instead that

−εjm1...m7
(ReΩ)

km1m2m3 (ReΩ)
m4m5m6m7 = δkj .

This is a consequence of the fact that �8Ω = Ω compared with �6Ω = iΩ.
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4. Flux vacua on SU(4)-deformed Stenzel space

with solution

�k = (k1,±ik1,∓ik1,−k1) . (4.52)

As we will see, the choice of ± determines which one-forms are holomorphic and
which are anti-holomorphic. Using this solution, the volume constraints reduce to

1 =nm3 = |k1|2 ,
hence k1 is just a phase. Holomorphic one-forms are then given by

ζ0 =eiϕ0 (−e0 + iẽ0)

ζj =eiϕj (ej + iẽj) ,
(4.53)

with ei(ϕ0+ϕ1+ϕ2+ϕ3) = k1 such that

Ω = ζ0 ∧ ζ1 ∧ ζ2 ∧ ζ3 . (4.54)

In terms of these holomorphic one-forms, we have

J =
i

2

(
nζ0 ∧ ζ̄0 +mζj ∧ ζ̄j

)
. (4.55)

Since the complex structure is given by I b
a = Jacg

cb, Ω is holomorphic, and g∗(ζα, ζ̄α) =
2, the constraint I2 = −� enforces n = m = 1, leading to

J =
i

2
ζα ∧ ζ̄α (4.56)

and the metric must be given by

ds2(S) =1

2

(
ζα ⊗ ζ̄α + ζ̄α ⊗ ζα

)
=eα ⊗ eα + ẽα ⊗ ẽα

≡c2

4
dτ 2 + c2ν2 + ajσ

2
j + bjσ̃

2
j ,

(4.57)

with the additional restriction

a1b1 = a2b2 = a3b3 . (4.58)

Here, we have rescaled τ such that its coefficient is once more c2

4
and renamed the

normalization to match the notation in the Stenzel space scenario. The rotations
generated by the four angles ϕ0, ϕj leave the SU(4)-structure invariant and hence
can be set to zero without loss of generality. Thus, LI SU(4)-structures are defined
by the five free parameters a1(τ), b1(τ), b2(τ), b3(τ), c(τ).
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4.3.2 abc SU(4)-structures

We will restrict ourselves to the case aj = a, bj = b ∀j, as the generalization does
not lead to any novel features outside of more cluttered equations. For lack of
imagination, we shall refer to such as abc SU(4)-structures to distinguish them from
the more general LI SU(4)-structures. Let us explicitly spell out such structures.
We have orthonormal one-forms

e0 =
c(τ)

2
dτ , ej = a(τ)σj

ẽ0 =c(τ)ν , ẽj = b(τ)σ̃j

(4.59)

and holomorphic one-forms

ζ0 = − c

2
dτ + icν

ζj = aσj + ibσ̃j .
(4.60)

The metric and volume form are given by

ds2(S) =(eα)2 + (ẽα)2

vol8 =e0 ∧ ẽ0 ∧ e1 ∧ e2 ∧ e3 ∧ ẽ1 ∧ ẽ2 ∧ ẽ3 , (4.61)

with α ∈ {0, 1, 2, 3}, and the SU(4)-structure is given by

J =
i

2
ζα ∧ ζ̄ ᾱ

Ω = ζ0 ∧ ζ1 ∧ ζ2 ∧ ζ3 .
(4.62)

For a, b, c as in (4.6), this SU(4)-structure is the one on Stenzel space. As explained
in section 1.4, the SU(4)-structure determines the existence of geometrical structures
in terms of torsion classes, defined by

dJ =W1�Ω∗ +W3 +W4 ∧ J + c.c.

dΩ =
8i

3
W1 ∧ J ∧ J +W2 ∧ J +W ∗

5 ∧ Ω .
(4.63)
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4. Flux vacua on SU(4)-deformed Stenzel space

Using the explicit expressions for J and Ω, one finds that

W1 = 0

W2 =
1

4iabc
(a2 − b2 + 2ba′ − 2ab′)εījkζ̄i ∧ ζj ∧ ζk

W3 = 0 (4.64)

W4 = − 1

abc

(
(ab)′ − 1

2
c2
)
ζ0

W5 = − 1

4abc2
(
−3(a2 + b2)c+ 6(ab)′c+ 4abc′

)
ζ0 .

Note that these equations are only sensible as long as a, b, c �= 0. At any point where
this does not hold, the SU(4)-structure degenerates: as an example, let p ∈ S be
described in local coordinates as p = (τ0, ...) and let b satisfy b(τ0) = 0. Then the
metric reduces to

g|TpS = c(τ0)
2

(
1

4
dτ 2 + ν2

)
+ a(τ0)

2σ2
j .

Let the vectors ṽj ∈ TpS be dual to σ̃j|p. Then

g|TpS (ṽj, v) = 0 ∀v ∈ TpS

and thus the metric is degenerate. On Stenzel space, such a situation occurs at the
tip, where b(0) = 0 leads to an S4 bolt. In particular, this S4 bolt is a special
Lagrangian submanifold with J = 0.

4.3.3 Moduli spaces of abc SU(4)-structures

Let us examine the geometry determined by the torsion classes more carefully. As
a consequence of (4.64), we see that whatever functions we choose for a, b, c, W1 =
W3 = 0. This leaves us with W2,W4,W5 which can all either be zero or non-zero.
Let us first consider W2. The almost complex structure determined by the SU(4)-
structure is integrable if and only if W2 = 0, which is equivalent to

a2 − b2 + 2ba′ − 2ab′ = 0 . (4.65)

By substituting r = b/a one can find the solution to this equation to be given by

r ∈
{
±1,

e(τ+τ0)/2 ∓ e−(τ+τ0)/2

e(τ+τ0)/2 ± e−(τ+τ0)/2
| τ0 ∈ �

}
(4.66)
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where one should consider r = ±1 to be the limiting cases for the integration constant
τ0 → ±∞. The moduli space of complex structures for SU(4)-structures satisfying
our ansatz is then given by these solutions, modulo diffeomorphisms (in particular,
τ → τ − τ0 and τ → −τ − τ0):

M� =
{
(a, ra, c) | r ∈ {±1, tanh±1

(τ
2

)
}
}

. (4.67)

Note that r → r−1 leaves the moduli space invariant, which is a consequence of (4.65)
being invariant under a ↔ b. In essence, we thus see that there are but two possible
complex structures: we will refer to r = tanh

(
τ
2

)
as the Stenzel complex structure,

and to r = 1 as the conical complex structure (we will describe this in more detail
in the next subsection).

Next, let us examine when the SU(4)-structure determines an integrable almost
symplectic structure. The non-degenerate two-form J is closed (and hence, a sym-
plectic form) if and only if W4 = 0, which is equivalent to

(ab)′ − 1

2
c2 = 0 , (4.68)

hence the moduli space of symplectic structures is given by

MS =
{
(a, b,

√
2(ab)′)

}
(4.69)

Compatibility of the complex and symplectic structure determines a Kähler struc-
ture, hence the Kähler moduli space is given by

MK = M� ∩MS

=
{
(a, ra,

√
2(ra2)′) | r ∈ {±1, tanh±1

(τ
2

)
}
}

(4.70)

Conformal Calabi-Yau structures are found by demanding W2 = 0, 2W4 = W5.
Setting b = ra and using the expressions for W4,W5, this reduces to the equation

r̃′ +
(
r + 2r−1

)
r̃ − 2r−1 = 0 , (4.71)

where we have set r̃ ≡ a2/c2. This is solved by

r̃ =

⎧⎪⎪⎨⎪⎪⎩
2+cosh(τ)+k(sinh( τ

2 ))
−4

3 cosh2( τ
2 )

r = tanh
(
τ
2

)
2
3
+ ke∓3τ r = ±1

(4.72)
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4. Flux vacua on SU(4)-deformed Stenzel space

for k ∈ �. As (r, r̃) determine the ratios between a and c and between a and b,
and one can by conformal transformation set a = 1, this determines every possible
CCY-structure. Some remarks are in order here. Firstly, note that if we consider r̃
as a function of r,

lim
τ→±∞

r̃
(
tanh

(τ
2

))
= r̃(±1)

after rescaling k, thus confirming our earlier argument that such points in the moduli
space of complex structures should be considered as limiting cases. Secondly, note
that for r = tanh

(
τ
2

)
, r̃ is singular at τ = 0 indicating that the SU(4)-structure

degenerates as either c approaches 0 or a blows up. This happens unless one sets the
integration constant k = 0, which gives the unique regular solution

r̃ =
2 + cosh (τ)

3 cosh2
(
τ
2

) . (4.73)

This is exactly the proportionality between a2 and c2 for Stenzel space (4.6), so we
have found that the only smooth CCY manifolds with the Stenzel space complex
structure are in fact conformal to Stenzel space. On the other hand, the conical
complex structures lead to a regular r̃ regardless of choice of k. Thirdly, note that
r = 1/ tanh

(
τ
2

)
is uninteresting as the constraint 2W4 = W5 is invariant under a ↔ b.

Thus the solution is as above but with a ↔ b.
Finally, a Calabi-Yau structure is found by demanding W2 = W4 = W5 = 0. Note

that this is equivalent to (4.8) as given in [65]. In case we take r = tanh
(
τ
2

)
, we can

solve W5 = 0 to find

ra2 =
1

2
λ8/3c−2/3 sinh τ , λ ∈ �

and use this to solve W4 = 0, leading to

c2 = 3
3
4λ2 cosh3

(
τ
2

)(
k

sinh4( τ
2 )

+ (2 + cosh τ)

)3/4

a2 = 3−
1
4λ2 cosh

(τ
2

)( k

sinh4
(
τ
2

) + (2 + cosh τ)

)1/4

b2 = 3−
1
4λ2 cosh

(τ
2

)
tanh2

(τ
2

)( k

sinh4
(
τ
2

) + (2 + cosh τ)

)1/4
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Compare with (4.6). This derivation is completely equivalent to the derivation of
the Stenzel metric in [65], except we have explicitly kept an integration constant k:
however, any non-zero k will lead to a singularity at τ = 0. For our intents and
purposes, we are thus only interested in Stenzel space.

In case we take r = 1, the solution to W5 = 0 is given by

a2 =
2

3
λ8/3c−2/3eτ

and solving W4 then leads to

c2 = λ2 e3τ

(e3τ + k)3/4

a2 = b2 =
2

3
λ2(e3τ + k)1/4

(4.74)

If instead we take r = −1, the same solution is found but with τ → −τ as expected.

4.3.4 Geodesical Completeness & Cones

Before we start constructing vacua using these abc SU(4)-structures, let us first
consider the construction of CY-structures with r = 1, i.e., (4.74). In order to
illustrate what is happening here we consider the specific case k = 0, such that this
configuration reduces to

a = b =

√
2

3
c

c = λe
3
8
τ .

(4.75)

In the UV, this solution is identical to Stenzel space. In the IR it behaves quite
differently; at τ = 0, b �= 0 hence there is no S4 bolt. Indeed, as a, c also do not
vanish, τ = 0 is no special point and we see that this slice is just a copy of V5,2, just
like slices for any other τ . In fact, we can make a coordinate transformation to find
that the metric is globally given by

ds2(S) = λ2e
3
4
τ

(
1

4
dτ 2 + ν2 +

2

3
(σ2

j + σ̃2
j )

)
=

16

9
λ2
[
dR2 +R2ds2(V5,2)

]
(4.76)
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4. Flux vacua on SU(4)-deformed Stenzel space

with ds2(V5,2) defined in (4.31) and R ∈ [1,∞) for τ ∈ [0,∞). We recognize that
this is just the undeformed cone with the tip ‘cut off’, as it were. More precisely, the
space is geodesically incomplete: one can solve the geodesic equation to find

τ(t) = k2 −
8

3
log(3t+ k1)

which is not a solution ∀t ∈ �, regardless of k1,2. Obviously, the tip of the cone is
a singularity; smoothing out this singularity was the reason Stenzel space garnered
interest in the first place.

We illustrate this because it points us to a potential pitfall: one can consider ar-
bitrary abc SU(4)-structures, but without the S4 bolt at the tip it is not guaranteed
that the space is geodesically complete. We have the following possibilities at τ = 0:

• a = b = c = 0 leads to a singularity. a, b, c �= 0 leads to potentially incomplete
spaces as above; all spaces of such type that we have examined are incomplete
and have a conical singularity in their completion.

• a = 0, b = c �= 0 leads to an S4 bolt, similar to b = 0, a = c �= 0, on which
Ω is proportional to the volume form and J vanishes. This can be deduced by
noting that the defining equation for the LI forms of V5,2 (4.4) are invariant
under ν → −ν, σj ↔ σ̃j. This transformation interchanges the four-forms
(4.34) and (4.35), which also explains why a ↔ b leads to fL ↔ fNL as follows
from (4.36), (4.37). Thus, which (2,2)-form diverges and which does not is
interchanged. This conclusion essentially remains the same for vacua on SU(4)-
deformed spaces. In case one has b = 0, a, c �= 0, a �= c (or similarly for a ↔ b),
the bolt will be a squashed S4, with squashing parameter c(0)/a(0) ≡ α(0), as
follows from the metric at τ = 0.

• The remaining possibilities are

- c = 0, a, b �= 0

- a = c = 0, b �= 0 or b = c = 0, a �= 0

- a = b = 0, c �= 0.

For these cases, it is unclear whether or not the space is singular at τ = 0 (i.e.,
whether or not the curvature blows up); this is purely due to computational
difficulties, as one should be able to calculate the Riemann tensor to see whether
or not this is the case.
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Due to these considerations, we will limit ourselves to cases where the metric comes
with a (possibly squashed) S4 bolt to ensure that we do not encounter potential
incompleteness issues. As both types of S4 bolts are similar up to transformations
a ↔ b, we will only consider the case where

a(0), c(0) �= 0 , b(0) = 0 . (4.77)

One can consider this a boundary condition on the differential equations determining
our vacua.

4.4 IIA on SU(4)-structure deformed Stenzel Space

We have discussed supersymmetric vacua of type IIA supergravity and M-theory on
Stenzel space, and SU(4)-structure deformations of Stenzel space. In this section,
we will discuss N = (1, 1) vacua of type IIA supergravity on on SU(4)-structure de-
formed Stenzel space. Our parameters consist of a, b, c, which determine the SU(4)-
structure, and the RR fluxes. We would like to choose these in such a way that the
following hold:

1) a, b, c are such that that S equipped with such an abc SU(4)-structure is
geodesically complete and free of singularities.

2) The torsion classes and fluxes satisfy one of the branches of the IIA susy solu-
tions, as given in 2.1.

3) The Bianchi identities are satisfied.

4) The integrability conditions, which turn a solution to the susy equations into
a solution of the equations of motion, are satisfied.

5) The warp factor is regular and positive.

6) All the fluxes are L2.

Unfortunately, due to the particularities of left-invariant forms on S, one cannot go
beyond the Stenzel space scenario satisfying the first three constraints. A way out is
by discarding the constraint that the Bianchi identities are satisfied. Such violations
can come about in the presence of sources, which modify the action. The precise
source terms needed can be deduced from the integrability equations. More precisely,
we will see that the NSNS Bianchi identity will always be violated, thus indicating
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4. Flux vacua on SU(4)-deformed Stenzel space

the presence of NS5-branes. On the other hand, the RR Bianchi identities need not
be violated.

In the rest of this section, we will demonstrate the claims in the above paragraph.
We then discuss vacua7 on S which are complex but not symplectic (and hence, not
CY), with primitive (2, 2)-flux, with N = (1, 1) supersymmetry, with external met-
rics that are asymptotically conformal AdS3. We also give the appropriate source
term. These vacua will not uplift to M-theory vacua on �1,2 × S, as can readily be
deduced from the torsion classes. In particular, these vacua will have the following
properties:

1) The metric will have an S4 bolt at the origin and conical asymptotics, similar
to Stenzel space, thus ensuring geodesical completeness.

2) The torsion class constraint imposed by supersymmetry can be explicitly solved,
fixing c.

3) We consider the Bianchi identities on non-CY manifolds and deduce that taking
solely a primitive (2,2)-form does not violate the RR Bianchi identities, whereas
a number of other possibilities do. In all cases, dH �= 0.

4) We will explicitly check the integrability conditions in the presence of source
terms. These yield the constraint which determines the source term needed.

5) The warp factor will be regular and positive, the flux L2.

4.4.1 A no-go for sourceless IIA N = (1, 1) on S with non-CY
abc SU(4)-structure

We start by examining the constraints on the torsion classes imposed by N = (1, 1)
supersymmetry. As given by (3.16), (3.17), (3.18), W1 = W3 = 0 implies W2 = W4 =
W5 = 0 for e2iθ �= −1. On the other hand, e2iθ = −1 allows for non-CY vacua. The

7There are, however, some subtleties to the integration theorem which we ignore. This will be
explained in section 4.4.4.
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remaining torsion classes are then related to H as

h̃
(1,0)
3 =

1

4
∂+(A− φ)

W2 =− 2ih(2,1)

W4 =∂+(φ− A)

W5 =
3

2
∂+(φ− A) .

(4.78)

Specifically, this implies that there are obstructions to the existence of a complex
or symplectic structure if and only if the NS three-form has an internal component.
That is to say, we must have that

H3 =− 1

4
W ∗

4 �Ω +
1

2
iW2 + c.c.

≡f(τ)ζ1 ∧ ζ2 ∧ ζ3 + g(τ)εı̄jkζ̄
ı̄ ∧ ζj ∧ ζk + c.c. ,

(4.79)

for some f, g determined by a, b, c. Recall that H is defined by (3.3) and that (3.13)
ensures that dH = 0 if and only dH3 = 0. It is easy to show that no functions f, g
exist that are non-trivial and are such that the Bianchi identity

dH = 0

is satisfied. In fact, H3 is a primitive left-invariant three-form, and there are no closed
primitive left-invariant three forms as can be checked explicitly by using the basis
for left-invariant forms on V5,2 given in 4.3.1. Thus, these classes of SU(4)-structures
admit no non-CY vacua satisfying both susy and the Bianchi identities.

Now let us consider possible Calabi-Yau structures. We impose (4.77) to get a bolt
at the origin, which means that we can pick only one possible complex structure,
namely

r ≡ b

a
= tanh

(τ
2

)
. (4.80)

As discussed in section 4.3.3, this complex structure allows only for Stenzel space as
regular CY-structure.

Let us make some more remarks. First of all, for generic LI SU(4)-structures one
still has W1 = W3 = 0. Thus, the entire argument above goes through, and it can
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4. Flux vacua on SU(4)-deformed Stenzel space

be concluded that there are also no non-CY vacua with LI SU(4)-structure satisfy-
ing susy and the Bianchi identities simultaneously. This is the primary reason we
consider the more generic LI SU(4)-structures to be of little more interest than abc
SU(4)-structures. Secondly, let us note that for any supersymmetric solution satis-
fying (4.78) with non-vanishing torsion classes, one cannot set eφ = gse

A. As this is
necessary to lift d = 2 IIA vacua to M-theory vacua on �1,2 × S, we immediately
find that such IIA solutions do not uplift to M-theory vacua with external spacetime
�

1,2. This is also evident from the fact that our N = 1 M-theory vacua on �1,2×M8

given in section 3.4 require (3.46), which immediately rules out non-CY vacua in the
current case where W1 = W3 = 0.

4.4.2 Torsion class constraint

To summarize the previous section, there are no interesting non-Stenzel CY solu-
tions, and non-CY solutions require violating the NSNS Bianchi identity. Accepting
this violation for the moment, we consider the susy branch e2iθ = −1, which, as
noted, is the only branch that allows for non-CY with W1 = W3 = 0. In fact, the
vacua that we find are those which are complex, non-symplectic. These are exactly
those described in section 3.3.2. Let us examine how the supersymmetry torsion
class constraint translates to the space at hand.

Susy implies (4.78), which we take as defining equations for H, φ. This constrains
a, b, c to satisfy

W5 =
3

2
W4 . (4.81)

Plugging in (4.64) leads to the constraint

−3(a2 + b2 − c2)c+ 4abc′ = 0 . (4.82)

As an aside, notice that this constraint is actually equivalent to the third equation
of (4.8). One can solve this equation by parametrizing

a ≡α−1(τ)c

b ≡β(τ)a ,
(4.83)

leading to the solution

c(τ) =λ exp

(
3

4

∫ τ

dt
1 + β2(t)− α2(t)

β(t)

)
. (4.84)
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Generically, the space satisfies susy and is complex iff

β = r . (4.85)

It satisfies susy and is symplectic (and is in fact ‘nearly CY’, i.e., only W2 �= 0) iff

3βα′ − β′α + 2α5 − 3

2
β2α3 − 3

2
α3 = 0 .

4.4.3 Vacua on complex manifolds with f (2,2)

The vacua are considered are those described in section 3.3.2. To summarise, we
consider vacua where the flux is given by a four-form RR flux, combined with the
NSNS flux. The four-form is primitive, (2,2), and selfdual. The RR Bianchi identities
are satisfied if and only if the form is closed (which implies both W2 = 0 and co-
closure, two necessary conditions). There are two such possible four-forms, as given
by (4.34) and (4.35). The closure constraint is given by (4.36), (4.37) respectively
for each form. Considering that W4 ∼ W5, W1 = W3 = 0, we find that we can only
find non-CY solutions by ensuring W4 �= 0. Thus, our vacua will be complex but not
symplectic.

We set β = r to satisfy W2 = 0 and r = tanh
(
τ
2

)
to satisfy (4.77). Using this,

the closure condition can be solved. Let us first examine the form which was non-L2

on Stenzel space, whose closure condition is given by (4.36). Using our parametriza-
tion (4.83) and the complex structure, we can solve this equation to find

fNL =m exp(−
∫

a

2b
) exp(−

∫
2b′

b
) exp(−

∫
(bc)′

bc
)

=m
α3

c4 tanh3
(
τ
2

)
sinh

(
τ
2

) , (4.86)

with c determined by (4.84). At this point α is still a free function, but we insist that
a �= 0,∞ anywhere. Hence we see that regardless of choice of α, supersymmetry, the
Bianchi identities and the bolt at the origin do not allow for regular solutions of this
flux, and the IR problems that arose for this form in Stenzel space are still there.

Let us now examine the other four-form, which behaved well on Stenzel space.
The closure condition is given by (4.37), which is the same as (4.36) but with a ↔ b.
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4. Flux vacua on SU(4)-deformed Stenzel space

Thus, the solution is given by

fL =m exp(−
∫ τ

dt
b

2a
) exp(−

∫ τ

dt
2a′

a
) exp(−

∫ τ

dt
(ac)′

ac
)

=m
α3

c4 cosh
(
τ
2

) . (4.87)

Using this expression, the warp factor can be calculated, which satisfies

∇2H = −12g2sf
2
L . (4.88)

The solution is found to be

H =
3

2
g2sm

2

∫ ∞

τ

dt

(
α(t)

c(t)

)6

tanh

(
t

2

)
, (4.89)

where an integration constant has been fixed to ensure regularity of H at τ = 0. Our
sole free function α now needs to be chosen such that the following are satisfied:

1. α is nowhere vanishing nor blows up anywhere to avoid singularities. As a
consequence, we immediately find that fL is regular.

2. H > 0 holds everywhere in order to avoid the metric changing sign.

This is a rather small list of demands, and is easily satisfied, and we will give ex-
amples below. Before doing so, however, we would like to make some remarks. The
asymptotics of α govern the squashing of the metric: the S4 bolt is unsquashed for
αIR = 1 and the asymptotics are precisely conical for αUV =

√
3/2. One might think

that it is possible to use this method to also construct asymptotically AdS3 rather
than asymptotically conformal AdS3 metrics. This is not the case. The reason is
that this requires cUV ∼ 1 rather than cUV ∼ exp(kτ). Examining (4.84) then leads
to the conclusion that αUV ∼

√
2, and hence the warp factor blows up (or becomes

negative, depending on the choice of integration boundaries).
Finally, before moving on to the examples, let us also comment on the possibility

of a homogeneous solution. The homogeneous solutions obeys

H ∼
∫ τ dt

a3b3
. (4.90)

Imposing (4.77) without any further restrictions due to susy or fluxes, we immediately
find that HIR =

∫
dt
t3

and hence the non-constant homogeneous warp factor retains
its IR divergence regardless of choice of abc SU(4)-structure.
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Example 1:
Set

α =

√
1 +

1

2
tanh2

(τ
2

)
(4.91)

such that

a =λ
cosh3/4

(
τ
2

)√
1 + 1

2
tanh2

(
τ
2

)
b =λ tanh

(τ
2

) cosh3/4
(
τ
2

)√
1 + 1

2
tanh2

(
τ
2

)
c =λ cosh3/4

(τ
2

)
(4.92)

and

fL =
m
(
1 + 1

2
tanh2

(
τ
2

))3/2
λ4 cosh4

(
τ
2

) . (4.93)

Thus, the warp factor is given by

H =
g2sm

2 (55802 + 93933 cosh τ + 44982 cosh 2τ + 13923 cosh 3τ)

198016λ6 cosh21/2
(
τ
2

) . (4.94)

The asymptotics are given by

H →

⎧⎪⎨⎪⎩
1630
1547

g2sm
2

λ6 − 3g2sm
2

8λ6 τ 2 τ → 0

36
√
2g2sm

2

λ6 e−
9
4
τ τ → ∞ .

(4.95)

We thus find an asymptotically conformal AdS metric, as the scaling is analogous
to all UV-finite cases discussed in section 4.2. Specifically, we find that the (string
frame) metric asymptotes to

ds2UV = Λ2e2ρ[ds2(AdS3) + ds2(V5,2)]

ds2(AdS3) = dρ2 + e4ρds2(�1,1) ,
(4.96)

where we introduced a constant Λ, rescaled ds2(�1,1), and ρ ≡ 3
8
τ .
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4. Flux vacua on SU(4)-deformed Stenzel space

Example 2:
By changing the asymptotics of α, we find solutions which asymptote to conformal
AdS with a squashed V5,2 as internal space. We now give such an example. Set

α =

√
1 +

1

3
tanh2

(τ
2

)
(4.97)

such that

a = λ
cosh

(
τ
2

)√
1 + 1

3
tanh( τ

2
)2

b = λ tanh
(τ
2

) cosh
(
τ
2

)√
1 + 1

3
tanh( τ

2
)2

c = λ cosh
(τ
2

)
.

(4.98)

This leads to a flux defined by

fL =
m
(
1 + 1

3
tanh2

(
τ
2

))3/2
λ4 cosh5

(
τ
2

) . (4.99)

The warp factor is given by

H =
g2sm

2 (96 + 156 cosh τ + 75 cosh 2τ + 20 cosh 3τ)

540λ6 cosh12
(
τ
2

) (4.100)

with asymptotics

H →

⎧⎪⎨⎪⎩
347g2sm

2

540λ6 − 3g2sm
2

8λ6 τ 2 τ → 0

2048
27

m2g2s
λ6 e−3τ τ → ∞

(4.101)

The metric then asymptotes to the following:

ds2UV = Λ2e
3
2

√
2ρ[ds2(AdS3) + ˜ds2(V5,2)] (4.102)

where we introduced a (different) constant Λ, the radial direction is now related to
τ as ρ = 1√

8
τ , we again rescaled ds2(�1,1), but the internal and external metrics are

now given by

ds2(AdS3) = dρ2 + e3
√
2ρds2(�1,1)

˜ds2(V5,2) =
1

2
ν2 +

3

8

(
σ2
j + σ̃2

j

)
.

(4.103)
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Note that the squashed V5,2 metric cannot simply be rescaled to the regular V5,2

metric, due to the finite range of the (angular) coordinates. Thus, this solution is
inequivalent to the first example.

To summarize, these solutions satisfy the following properties:

• The vacua are N = (1, 1) type IIA solutions. Due to the torsion classes, no
supersymmetry enhancement occurs, and the vacua do not uplift to N = 1 on
�

1,2×S M-theory vacua, as is evident from the fact that (3.46) is not satisfied.

• The RR flux is given by a closed primitive (2,2)-form.

• W1 = W2 = 0 hence the almost complex structure defined by the SU(4)-
structure is integrable.

• W4 �= 0 hence the almost symplectic structure is not integrable. In particular,
the solution is not CY.

• S has an S4 bolt at the origin.

• The external metric is conformally AdS for τ → ∞.

• The RR Bianchi identity is satisfied. The NSNS Bianchi identity is not, indi-
cating the presence of NS5-branes which act as sources.

Thus, we have shown how to break the CY structure of Stenzel space to find a vacuum
that consists of a complex space and a (2, 2)-form, at the price of introducing sources
that violate the Bianchi identity for the NSNS flux.

4.4.4 Source-action for vacua on complex manifolds with
f (2,2)

As mentioned, the supersymmetric vacua of the previous section violate the Bianchi
identity for H. The source of this violation can be interpreted as a distribution of
NS5-branes, as dH is not localised on S. In [75], it was shown that for any violation of
the RR Bianchi, an appropriate source-action can be found such that supersymmetry
combined with the specific violation of RR Bianchi identity gives the source-modified
equations of motions. When the NSNS Bianchi is violated instead, the situation is
more complicated. This is due to the fact that the democratic supergravity action
is not used to compute equations of motions for the RR charges; they are already
incorporated in the Bianchi identities. Thus, the contribution to the equations of
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4. Flux vacua on SU(4)-deformed Stenzel space

motion from the bulk supergravity action does not change, and one can look purely
for a source-action to compensate the violated Bianchi identiy. This is no longer the
case when dH �= 0, as will be explained below. We construct a source-action that
ensures integrability is satisfied, but disregard the fact that the contribution from
the bulk action should be modified.

Let the action be given by S = Sbulk + SNS5. The equations of motion in our
conventions are then given by8

EMN = −2κ10
e2φ√
g10

(
δSNS5

δgMN
−−1

4

δSNS5

δφ
gMN

)
δHMN = 2κ10

δSNS5

δBMN

D = 2κ10
e2φ√
g10

δSNS5

δφ
,

(4.104)

with (see (2.9), repeated here for convenience)

EMN ≡ RMN + 2∇M∇Nφ− 1

2
HM ·HN − 1

4
e2φFM · FN

δHMN ≡ �10e
2φ

(
d
(
e−2φ �10 H

)
− 1

2
(�10F ∧ F)8

)
D ≡ 2R− 1

3!
HMNPH

MNP + 8
(
∇2φ− (∂φ)2

)
,

(4.105)

The two subtleties that are not taken into account here are as follows. Firstly, the
equation of motion for B has been obtained by setting H = dB in Sbulk. When
dH ≡ j �= 0, this cannot be the case. Secondly, without sources, the RR equations
of motion dH �σF = 0 follow from the Bianchi identity dHF = 0 and selfduality (see
(2.3)). In case dH �= 0, d2

H �= 0 and hence one cannot use dHF = 0 =⇒ F = dHC.

Manipulating the supersymmetry equations, one can obtain the following integra-

8See [32], appendix A.
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bility equations [32]:

0 =

(
−EMNΓ

N +
1

2

(
δHMNΓ

N +
1

3!
(dH)MNPQΓ

NPQ

))
ε1 −

1

4
eφdHFΓMΓ11ε2

0 =

(
−EMNΓ

N − 1

2

(
δHMNΓ

N +
1

3!
(dH)MNPQΓ

NPQ

))
ε2 −

1

4
eφσdHFΓMΓ11ε1

0 =

(
−1

2
D + dH

)
ε1 +

1

2
dHFε2

0 =

(
−1

2
D − dH

)
ε2 +

1

2
σdHFε1 (4.106)

In our case, we have dHF = 0. The spinor ansatz for ε1,2 for our solution is given in
(3.8). The violation of the NS Bianchi identity is purely internal, i.e., the only non-
vanishing components of dHMNPQ are given by dHmnpq. A priori, one can decompose
dHmnpq like any other four-form (see (1.26)) as

dHmnpq =6j0J[mnJpq] + 6
(
j
(1,1)
[mn + j

(2,0)
[mn + j

(0,2)
[mn

)
Jpq]

+ j̃ Ωmnpq + j̃∗Ω∗
mnpq + j(3,1)mnpq + j(1,3)mnpq .

Finally, we know that the metric satisfies gmν = 0, and we use the gamma matrix
decomposition of [1]. Plugging all of the above into the integrability equations, we
find

D = 32j̃ = 32j̃∗

δHMN = 0

Eμν = 0

Emn = 2(j̃+ j̃∗)− 1

4!

(
j(3,1)qrsmΩ

∗qrs
n + j(1,3)qrsmΩ

qrs
n

)
j0 = j(1,1) = j(2,0) = 0 .

(4.107)

Our task is to figure out a suitable submanifold M6 for the NS5-brane to wrap such
that the contribution of the action of the NS5-brane evaluated on M6 as described
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4. Flux vacua on SU(4)-deformed Stenzel space

in (4.104) is equivalent to what the integrability equations tell us in (4.107), i.e.,

2κ2 e2φ√
g10

δSNS5

δφ
= 16(j̃+ j̃∗)

κ2 e2φ√
g10

(
1

2

δSNS5

δφ
gmn − 2

δSNS5

δgmn

)
= 2(j̃+ j̃∗)− 1

4!

(
j(3,1)qrsmΩ

∗qrs
n + j(1,3)qrsmΩ

qrs
n

)
κ2 e2φ√

g10

(
1

2

δSNS5

δφ
gμν − 2

δSNS5

δgμν

)
= 0

2κ2 δSNS5

δBMN
= 0 .

(4.108)

The action of the NS5-brane is known [76], but is rather intimidating. Instead, we
will simply try to construct a suitable action from scratch satisfying the above. We
find that such a suitable action is given by9

SNS5 =
−1

4!4κ2

∫
d10x

√−g10 e
−2φdHmnpq (Ω

mnpq + Ω∗mnpq) . (4.109)

This action has no clear DBI or WZ terms. Instead, it can be written as

S ∼
∫
M10

j ∧Ψ ,

with source j = dH and we have defined a form Ψ satisfying

Ψ = ṽol2 ∧ [Re(Ω) + ...] . (4.110)

The dots represent terms that drop out of the action and the volume form ṽol2
is warped. This seems analogous to the description as given in section D, where
calibrated D-branes were discussed. Hence we would conjecture that this action
describes a calibrated distribution of NS5-branes. As far as the author is aware,
no analysis is known for calibrated NS5-branes. Such an analysis for NS5-branes is
more complicated than for D-branes due to a more complicated action and due to
the breaking of the generalised complex geometrical framework, for which dH = 0 is
essential.

9Taking the derivative of Ωmnpq with respect to gmn may seem somewhat ambiguous, since
indices could be raised with either −iJmn or gmn. One should either consider all indices raised
with (Π+)mn, which treats J and g on equal footing, or as raised with vielbeins acting on the spinor
bilinear η̃γabcdη with flat indices. Both give the same correct factor.
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Let us examine the source term in more detail. Generically, it is given by the
first line of (4.79): the solutions we consider in section 4.4.3 have W2 = 0 and thus

dH = j̃ ζ0 ∧ ζ1 ∧ ζ2 ∧ ζ3 + j31ζ̄
0̄ ∧ ζ1 ∧ ζ2 ∧ ζ3 + c.c. , (4.111)

with

j̃ = − 1

4abc

(
3(a2 + b2)w + 6(ab)′w + 4abw′)

j31 = − 1

4abc

(
−3(a2 + b2)w + 6(ab)′w + 4abw′)

w ≡ 1

2

1

abc

(
(ab)′ − 1

2
c2
)

.

(4.112)

Thus indeed, dH is primitive with only (4, 0), (3, 1), (1, 3), (0, 4) parts and j̃ is real,
as required by (4.107). The norm of the source is given by

j ∧ �8j = 32
(
j̃2 + j231

)
vol8 . (4.113)

As W4 = 0 if and only if w = 0, it can be concluded that generically, j will vanish
for large τ due to the conical (and thus, CY) asymptotics. To be more specific, we
examine the examples given in the previous section.

Example 1:
Imposing (4.92) leads to

�8 (j ∧ �8j) =
8863 + 6816 cosh τ + 1308 cosh 2τ + 288 cosh 3τ + 333 cosh 4τ

8λ4 cosh7
(
τ
2

)
(1 + 3 cosh τ)4

.

(4.114)

Thus the distribution is smooth, does not blow up, is maximal at τ = 0 with norm
17/2λ4, and falls off rapidly. The norm of the source is plotted in figure 4.1 for λ = 1.
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4. Flux vacua on SU(4)-deformed Stenzel space

Figure 4.1: The norm j2 ≡ �(dH ∧ �dH) as function of τ with λ = 1 for the first
example.

Example 2:
Imposing (4.98) leads to

� (j ∧ �j) =
8

9

tanh4
(
τ
2

)
(553 + 714 cosh τ + 278 cosh 2τ + 62 cosh 3τ + 13 cosh 4τ)

λ4 cosh4
(
τ
2

)
(1 + 2 cosh τ)4

.

(4.115)

Again, the distribution is smooth, does not blow up, and falls off rapidly. It peaks
at τ � 1.549 with norm � 0.5090/λ4. One can thus consider it to be ‘smeared’. The
norm of the source is plotted in figure 4.2 for λ = 1.

Figure 4.2: The norm j2 as function of τ with λ = 1 for the second example.

117



Chapter 5

Generalised complex geometry

Up to this point, the major mathematical framework that we have used to con-
struct and understand flux vacua is the geometrical language of G-structures (with
G = SU(4) in particular). The second major geometrical tool we will make use
of is generalised complex geometry. Despite the name, generalised complex geome-
try simultaneously generalises complex geometry and symplectic geometry. Gener-
alised complex manifolds M2n can be locally trivialised to �k × (�2(n−k), J), with k
coordinate-patch dependent and J a symplectic structure. The focal points of gener-
alised complex geometry are the vector bundle T⊕T ∗, the generalised tangent bundle,
and certain endomorphisms of this bundle, generalised (almost) complex structures,
which generalise complex and symplectic structures. Generalised complex geome-
try came about first in [79], as a generalisation of Calabi-Yau manifolds, and was
expanded upon in [16] [17]. It was quickly recognised as a natural framework for T-
duality. Soon it also found other uses in physics due to the natural appearance in the
theory of a two-form B, which can be interpreted as the NSNS gauge field of the field
strength H, and of spinors, which can be interpreted as polyforms or as bispinors
as is convenient. Some very few examples of where generalised complex geometry
shows up in string theory are in the description of supersymmetry and calibrations
of branes [80] [81] [82] [83], reformulation of T-duality to construct geometric [84]
and non-geometric [85] vacua, the reformulation of type II and M-theory in terms of
generalised objects [86] [87], the study of mirror symmetry [88], and, of most concern
to us, reformulation of the supersymmetry equations [89] [90] [91] [92]. This list is
hopelessly incomplete however.

There is wonderfully well-written literature on generalised complex geometry,
both from mathematicians [16] [17] as well as physicists [13] [93]. Nevertheless,
let us summarise some of the essential parts of this construction, with either self-
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5. Generalised complex geometry

containment or fixing of conventions as justification. Mostly, we will follow along [17].

5.1 Generalised almost complex structures

Let M be a manifold of dimension 2n.

Definition 5.1.1. The generalised tangent bundle is the vector bundle TM ⊕ T ∗M ,
which we will generally abbreviate to just T ⊕ T ∗.

The generalised tangent bundle comes equipped with a natural metric,

G(X + α, Y + β) ≡ 1

2
(α(Y ) + β(X)) , (5.1)

with X, Y ∈ T , α, β ∈ T ∗. This metric is of signature (n, n). We will denote this in
matrix notation as

G =
1

2

(
0 �

� 0

)
, (5.2)

acting on the (composite) vectors of T ⊕ T ∗ ordered as (X,α).

The central object in generalised complex geometry is the generalised almost complex
structure.

Definition 5.1.2. A generalised almost complex structure I is an almost complex
structure on T ⊕ T ∗ that is orthogonal with respect to the natural metric. That is
to say, I ∈ End(T ⊕ T ∗) is fibre-preserving1 and satisfies

• I2 = −�
• G(X + α, Y + β) = G (I(X + α), I(Y + β)) ∀(X + α), (Y + β) ∈ T ⊕ T ∗ .

There are two equivalent definitions for almost complex structures. The first
makes use of the fact that for ordinary complex geometry, an almost complex struc-
ture is equivalent to specifying T (1,0) in the decomposition
T ⊗� = T (1,0) ⊕ T (0,1).

Definition 5.1.3. An almost Dirac structure is a subbundle L ⊂ (T ⊕T ∗)⊗� such
that L is isotropic2 with respect to G and such that, for L the complex conjugate of
L, L ∩ L = {0}.

1Technically, this meas that I ∈ Γ (M,End(T ⊕ T ∗)), but this makes notation incredibly incon-
venient, as it is usually the image of this section one refers to.

2That is to say, G(X + α, Y + β) = 0 ∀(X + α), (Y + β) ∈ L .
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Specifying an almost Dirac structure is equivalent to specifying a generalized
almost complex structure. This comes about as follows. From now on, let

V ≡ TpM ⊗� , (5.3)

which will be made use of for every pointwise investigation. Let I be a generalised
almost complex structure. Analogously to regular almost complex structures, I
has eigenvalues ±i and thus splits V ⊕ V ∗ into eigenspaces: V ⊕ V ∗ = L+ ⊕ L−,
dim�L

± = 2n,

L± ≡ {(X + α) ∈ V ⊕ V ∗ | I(X + α) = ±i(X + α)} . (5.4)

Note that due to orthogonality of the generalised almost complex structure

G(X + α, Y + β) = −G(X + α, Y + β) , ∀(X + α), (Y + β) ∈ L+ (5.5)

hence L+ is isotropic; the same argument holds for L−. Non-degeneracy of I implies
that L+∩L− = {0}. Smoothness of I then ensures that defining the vector bundle L
with fibres Lp = L+ will be a smooth subbundle of (T ⊕ T ∗)⊗� satisfying (T ⊕ T ∗)⊗
� = L⊕ L.

Conversely, given an almost Dirac structure, I is uniquely defined by demanding
I · L = iL.

The third equivalent way to describe generalised almost complex structures is in
terms of pure spinors, which will be very convenient in the supergravity context as
will be seen later on. V ⊕ V ∗ has a natural action on the exterior algebra

∧• V ∗,
defined by

(X + α) · Φ = X�Φ + α ∧ Φ , Φ ∈
∧•

V ∗ . (5.6)

A quick calculation shows that under this action,

{X + α, Y + β} · Φ = 2G(X + α, Y + β)Φ , (5.7)

hence this action is a representation of the Clifford algebra Cl(V ⊕ V ∗). Thus, we
see that in this sense, we can interpret polyforms as spinors of Cl(2n, 2n). We will
be somewhat lax in making the distinction between Ω•(M) and

∧• T ∗ and refer to
either as ‘polyforms’, similar to how we do not really distinguish clearly between
sections or elements of the spin bundle and refer to either as ‘spinors’.
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5. Generalised complex geometry

Let us consider pure spinors3 in this context. A pure spinor Ψ ∈ ∧• V ∗ is anni-
hilated by exactly half the gamma matrices, hence we can define the annihilator
space

LΨ = {X + α ∈ V ⊕ V ∗ | (X + α) ·Ψ = 0} . (5.8)

By definition, LΨ is a subspace of V ⊕ V ∗ of complex dimension 2n, and since
∀(X + α), (Y + β) ∈ LΨ

0 = (X + α) · (Y + β) ·Ψ+ (Y + β) · (X + α) ·Ψ = 2G(X + α, Y + β)Ψ ,

LΨ is also isotropic. Thus, if the annihilator space additionally satisfies LΨ ∩ LΨ =
{0}, it follows that at the point p, the pure spinor defines a generalised almost com-
plex structure. Note that due to linearity of the action, at a point p, the annihilator
space defined by Ψ is the same as that of λΨ for any λ ∈ �\{0}. Both purity of Ψ
and the orthogonality of LΨ to LΨ can be translated into conditions on the polyform.

Proposition 5.1.1. Let Ψ ∈ ∧• V ∗ be a pure spinor. Then

Ψ = eB−iJθ1 ∧ ... ∧ θk , (5.9)

for real two-forms B, J and complex linearly independent one-forms θj. k is defined
to be type of the pure spinor.

The Mukai pairing 〈., .〉 is a bilinear map of polyforms, defined as

〈., .〉 :
∧•

T ∗ ×
∧•

T ∗ →
∧2n

T ∗ ,

〈Φ1,Φ2〉 ≡ (Φ1 ∧ σ(Φ2))(2n) .
(5.10)

Using the Mukai pairing, we have the following:

Proposition 5.1.2. Let Ψ1,2 ∈
∧• V ∗ be pure. Then

LΨ1 ∩ LΨ2 = {0} ⇐⇒ 〈Ψ1,Ψ2〉 �= 0 . (5.11)

Combining these two, it immediately follows that pointwise, an almost Dirac struc-
ture is equivalent to a polyform Ψ = eB−iJθ1 ∧ ... ∧ θk satisfying

Jn−k ∧
(
θ1 ∧ ... ∧ θk

)
∧
(
θ̄1 ∧ ... ∧ θ̄k

)
�= 0 . (5.12)

3See section 1.3 for a definition.
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Extending these results globally goes as follows. The fact that pointwise, a gener-
alised almost complex structure is equivalent to a form Ψ up to scalar norm means
that locally, a generalised almost complex structure is equivalent to Ψ up to mul-
tiplication with a smooth nowhere vanishing locally defined function. The global
extension is thus that

Proposition 5.1.3. The following are equivalent:

• A generalised almost complex structure on M .

• A subbundle L ⊂ (T ⊕ T ∗) ⊗ � with fibres that are maximal isotropic sub-
spaces, i.e., an almost Dirac structure.

• A line bundle Un ⊂ ∧• T ∗⊗� with local frames on open sets Wj given by pure
spinor Ψj = eB−iJθ1 ∧ ... ∧ θk(j) such that (5.12) is satisfied.

There are two prime examples of generalised almost complex structures4. Firstly,
suppose M is almost complex, with almost complex structure I. Then for I∗ :
T ∗M → T ∗M the induced almost complex structure on the cotangent bundle,

II =

(
−I 0
0 I∗

)
(5.13)

is a generalised almost complex structure.
Secondly, suppose M is equipped with an almost symplectic structure J (i.e., a

non-degenerate but not necessarily closed two-form). Consider J as a map J : T →
T ∗. Then

IJ =

(
0 −J−1

J 0

)
(5.14)

is also a generalised almost complex structure.
Given a generalized almost complex structure I and a two-form B, it is possible to

construct a new generalized almost complex structure by a process called B-twisting.
Considering B as a map B : T → T ∗, B acts on T⊕T ∗ as B ·(X+α) = X+α−X�B.
Let

IB ≡
(

� 0
B �

)
I
(

� 0
−B �

)
. (5.15)

4Note that due to orthogonality, the perhaps even more trivial case, where one considers L =
T ⊗�, is excluded.
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5. Generalised complex geometry

Then IB is a generalized almost complex structure.

Existence of a generalised almost complex structure is equivalent to a reduction of
the structure group of T ⊕ T ∗ to GL(2n,�), which in combination with the natural
metric leads to a U(n, n)-structure. Similarly, a U(n)×U(n)-structure is equivalent
to existence of two generalised almost complex structures I1, I2, which are commu-
tative and are such that G̃ ≡ −I1I2 is positive-definite metric on T ⊕ T ∗; specifying
such a metric is equivalent to specifying (g, B), a Riemannian metric on T and a
two-form. Two such generalised almost complex structures are called compatible. A
manifold equipped with a torsion-free U(n)×U(n) structure on the generalised tan-
gent bundle, i.e., equipped with compatible pair of generalised compelx structures,
is called generalised Kähler. The nomenclature stems from the fact that any Kähler
structure (g, I, J) induces a generalised Kähler structure (II , IJ).

Given a pair of compatible almost complex structures, the U(n)×U(n)-structure
group can be reduced further in the following case. An SU(n)× SU(n)-structure is
given by a pair of trivialisations of the almost Dirac structures LI1 , LI2 . In other
words, this requires that there exists globally defined nowhere vanishing pure spinors
Ψ1,2 of the form (5.9) satisfying (5.12).

The reason we spell this out explicitly is that, given an G-structure on T , the
fact that T � T ∗ implies that T ⊕ T ∗ is equipped with a G × G-structure. Thus,
the manifolds that will be relevant for our supergravity vacua will be equipped with
SU(n)× SU(n)-structures on the generalised tangent bundle.

5.2 Induced grading on the exterior algebra & the

decomposition of forms

Similar to how Lefschetz and Hodge decomposition follow from the existence of al-
most complex and almost symplectic structures, so too does a generalised almost
complex structure induce a grading on the exterior algebra and hence, a decomposi-
tion of forms. Perhaps somewhat surprising, in the cases I = II , I = II , these are
not Hodge, Lefschetz decomposition. In order to give a general decomposition, it is
first necessary to understand the generic form of I and the action on polyforms.

The action of T ⊕ T ∗ on polyforms and the fact that I ∈ End(T ⊕ T ∗) allows
us to derive an action of the generalised almost complex structure on polyforms.
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Using both properties of the generalised almost complex structures, we have that

ITGI = G
I−1 = −I

}
=⇒ ITG + GI = 0 (5.16)

and hence, I ∈ so(2n, 2n) ⊂ Cl(2n, 2n). Working out the definition of so(2n, 2n), it
follows that pointwise

Ip =

(
A β
B −A∗

)
(5.17)

with A ∈ End(V ), β ∈ ∧2 V , B ∈ ∧2 V ∗. We define the actions of these on V ⊕ V ∗

as5

A · (X + α) = AX − A∗α

B · (X + α) = −X�B
β · (X + α) = β(·, α) ,

(5.18)

where the last line should be understood as −αmβ
mn. As a consequence, in terms of

a basis {ej} for Cl(2n, 2n) one can write

A =
1

2
Ai

j(eie
j − ejei)

B =
1

2
Bije

iej

β =
1

2
βijeiej

(5.19)

and hence the action on polyforms can be deduced. Let Φ ∈ ∧• V ∗. It then follows
that

A · Φ =
1

2
Tr(A)Φ + A∗Φ

B · Φ = B ∧ Φ

β · Φ = −β�Φ ,

(5.20)

with

A∗Φ(k)(v
1, ..., vk) ≡

∑
j

Φ(k)(v
1, ..., Avj, ..., vk) . (5.21)

5Note that our conventions differ by a sign compared to [16], [17].
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5. Generalised complex geometry

Thus, this shows how to calculate I ·Φ. As a consequence, a grading on the exterior
algebra can now be deduced. Suppose I = II . As alluded to earlier, the grading
of the exterior algebra induced by I is inequivalent to the one induced by II , i.e.,
the result is not Hodge decomposition into (p, q)-forms. Similarly, the grading with
respect to IJ is not Lefschetz decomposition.

Let Un ⊂ ∧• T ∗ ⊗� be the the pure spinor line bundle defining I such that

L · Un = {0} . (5.22)

Then we define

Uk ≡
∧n−k

L · Un , k ∈ {−n, ..., n} . (5.23)

These are the eigenbundles of I as a map on polyforms with eigenvalue ik, and a
grading on the exterior algebra is given by

∧•
T ∗ ⊗� =

n⊕
k=−n

Uk . (5.24)

In turn, this leads to a decomposition of forms. This will be worked out more
thoroughly in the examples given in the next section.

5.3 A more thorough look at the canonical exam-

ples

There are three equivalent ways to describe generalised almost complex structure. In
this section, we work out all of these, as well as the grading of the exterior algebra,
for a number of examples.

The complex case

Consider

II =

(
−I 0
0 I∗

)
. (5.25)

Making use of the Hodge decomposition with respect to I, It follows that

L = T (0,1) ⊕ T ∗(1,0) . (5.26)
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Hence, an associated pure spinor Ψ is given by a trivialisation of the canonical bundle,

ΨI = Ω ∈ Ω(n,0)(M) , (5.27)

since

X(0,1)�Ω(n,0) = α(1,0) ∧ Ω(n,0) = 0 . (5.28)

The corresponding decomposition of forms is given by acting with L = T (1,0)⊕T ∗(0,1)

on Ω, and thus it follows that

Uk =
⊕

p−q=k

T ∗(p,q) . (5.29)

Alternatively, this can be deduced by acting with II on T ∗(p,q). The fact that this
does not correspond to Hodge decomposition follows from (5.21); for α ∈ T ∗(p,q),
IIα = i(p− q)α due to (5.20), (5.21). On the other hand, Iα = α(Iv1, ..., Ivp+q) and
hence, Iα = ip−qα: the difference is that between the algebra and the group action.

The symplectic case

Consider

IJ =

(
0 −J−1

J 0

)
. (5.30)

Making use of (5.20) and noting that in indices, −J−1 = Jmn, it follows that

L = {X + iX�J | X ∈ T} , (5.31)

and thus, it can be shown that

ΨJ = e−iJ (5.32)

satisfies L ·ΨJ = {0}. The grading of the exterior algebra is given by

Uk = {ε−iJe
1
2
iΛΦ(n−k) | Φ(n−k) ∈

∧n−k
T ∗} , (5.33)

with Λ defined in (1.8) and we abuse notation by writing J instead of the operator
L. The proof here is a slightly more involved calculation, for which we refer to [17].
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5. Generalised complex geometry

The B-twisted case

Consider

IB ≡
(

� 0
B �

)
I
(

� 0
−B �

)
= eBIe−B , (5.34)

where the second equality comes from making use of (5.20); one should think of eB

as being an element of a Lie group, as compared to B which belongs to the associated
Lie algebra. Let L be the almost Dirac structure associated to I. Then

LB = eB · L = {X + α−X�B | (X + α) ∈ L} . (5.35)

Using the explicit expressions and (5.21), it follows that if L·Ψ = 0, then LB ·eBΨ = 0,
hence

ΨB = eBΨ (5.36)

is a pure spinor associated to IB. By similar arguments, the exterior algebra decom-
poses as

Uk
B = eBUk . (5.37)

5.4 Generalised complex structures

There is a notion of integrability for generalised almost complex structures, analo-
gous to almost complex and almost symplectic structures. An integrable generalised
almost complex structure is called a generalised complex structure, and a manifold
equipped with a generalised complex structure a generalised complex manifold. In
terms of the almost Dirac structure L, integrability is defined as closure of sections
of L under the Courant bracket, mimicking the Newlander-Nirenberg theorem for
integrability of almost complex structures, but with the Lie bracket replaced by the
Courant bracket6. The details are not particularly relevant for us. What is relevant
is the following:

Proposition 5.4.1. Let Ψ be a local frame of the pure spinor line bundle Un associ-
ated to I. Then the B-twisted generalised almost complex structure IB is integrable
if and only if Ψ there exists (X + α) ∈ T ⊕ T ∗ such that

dHΨ = (X + α) ·Ψ . (5.38)

6Alternatively, it is possible to work with the Dorfman bracket instead.
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The irrelevance of which local frame one chooses is clear, as the above is satisfied for
Ψ if and only if it is satisfisfied for f ·Ψ for any nowhere vanishing local function f .

Given the grading (5.24) of the exterior algebra induced by a generalised almost
complex structure, we can define the operators ∂, ∂̄. Let α ∈ Γ(M,Uk). Then

∂Iα ≡ dα|Uk−1

∂̄Iα ≡ dα|Uk+1 .
(5.39)

In other words, ∂I , ∂̄I project onto a certain subspace, similar to the Dolbeault
operators for an almost complex structure. In fact, we have the following:

Proposition 5.4.2. I is integrable if and only if d = ∂I + ∂̄I .

For I = II , we have that ∂II = ∂, the Dolbeault operator. Given integrability
of I, it is also possible to define the operator

dI ≡ [d, I] = −i(∂I − ∂̄I) . (5.40)

This operator is better known as dc for complex manifolds. See [17] for the symplectic
analogues.

5.5 Generalised complex submanifolds

Given a generalised complex manifold, it is natural to consider the notion of gen-
eralised complex submanifolds. Preferably, the definition of such a submanifold re-
spects the generalised complex structure. In particular, if the generalised complex
structure is induced by a complex structure, the generalised complex submanifold
ought to be a complex submanifold, whereas if the generalised complex structure is
induced by a symplectic structure, the generalised complex submanifold ought to be
a Lagrangian submanifold.

Definition 5.5.1. Let M be a generalized complex manifold with B-twisted gen-
eralized complex structure IB. Let S be a submanifold of M , and let Fwv be a
two-form7 on S satisfying dFwv = H|S. Then the pair (S,Fwv) forms a generalised
complex submanifold with generalised tangent bundle

{X + α | X ∈ TS, α ∈ T ∗M |S , α|TS = −X�Fwv} . (5.41)

7The slightly awkward subscript here will become obvious when discussing D-branes.
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5. Generalised complex geometry

The reason it is is necessary to include the two-form Fwv is as follows. Given a
generalised complex structure I onM , the generalised tangent bundle of a generalised
complex submanifold is preserved under I. However, I can be B-twisted. Thus, it is
necessary that the generalised tangent bundle also twists under B-field transforms in
such a way that the twisted generalised tangent bundle is invariant under the twisted
generalised complex structure. This definition accomplishes that, as eB · (S,Fwv) =
(S,Fwv +B) and d(Fwv +B) = H|S .
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Chapter 6

IIB supersymmetry,
SU(4)-structures
& generalised complex geometry

A number of examples of supersymmetric flux vacua have been discussed. However,
these were all ad hoc constructions. In order to find a more systematic way to study
supersymmetric flux vacua, existence of an overarching mathematical structure would
be most convenient. Generalised complex geometry may offer such a structure. For
M10 = �

1,3 ×M6 with warped product metric, it was shown in [89] that the super-
symmetry equations can be geometrically interpreted in the framework of generalised
complex geometry both for N = 1 and N = 2. Following this milestone, by making
use of the generalised interpretation, it was shown in [81] that in fact, another inter-
pretation is possible: the supersymmetry equations are equivalent to the existence of
generalised calibrations forms as constructed in [80], differential forms that were fine-
tuned to determine energy-minimising static magnetic D-branes1. After proving that
a similar situation held true for vacua on �1,5 ×M4, it was conjectured in [90] that
the interplay between calibration forms and generalised complex geometry should
suffice to also determine supersymmetric flux vacua on �7,1 ×M2 and �1,1 ×M8.
In particular, the supersymmetry equations for �1,1 × M8 should be equivalent to
the calibration equations, which are given by

dH

(
e2A−φRe Ψ1

)
= e2A �8 σ(F ) (6.1a)

dH

(
e2A−φΨ2

)
= 0 , (6.1b)

1A definition will be given in section 6.1.
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6. IIB supersymmetry, SU(4)-structures
& generalised complex geometry

as will be re-derived later on in this section.

It turns out that this is not the case, as was shown in [2]. In this section, we
will consider N = (2, 0) supersymmetric solutions of type IIB on �1,1 ×M8, assum-
ing existence of an SU(4)-structure on M8 and using a strict Killing spinor ansatz.
These supersymmetric solutions are given by (3.12) in section 3.2. The calibration
conditions (6.1) will be shown to be insufficient to fully capture the supersymmetry
equations. Specifically, the supersymmetry equations impose more constraints than
the calibration conditions. As a consequence, the calibration conditions certainly
cannot equate to the supersymmetry equations in the far more general case, namely
for both type IIA and type IIB on �1,1×M8 simultaneously, without strict ansatz for
the Killing spinor and without SU(4)-structure. However, the additional constraints
that the supersymmetry equations pose can be captured by one additional equation
phrased in the framework of generalised complex geometry. It is given by

dI2
H

(
e−φIm Ψ1

)
= F . (6.2)

Currently, we do not have a fully satisfactory (generalised) geometrical interpretation
for this equation. From the point of view of calibrations, we would conjecture that
this might be the calibration constraint describing branes which are localised in time,
i.e., which are instantonic. This interpretation is motivated by the absence of the
warp factor and the similarity to codimension 2 calibration equations in spacetimes
of dimension greater than two, as described in [90].

Unfortunately, it is not possible to repeat the process of comparing the super-
symmetry equations to equations of the form (6.1), (6.2) for type IIA, as the strict
SU(4)-ansatz for the Killing spinors is too constrictive.

It was conjectured in [2] that the calibration conditions (6.1) together with the ad-
ditional constraint (6.2) should capture the supersymmetry equations fully for both
type IIA and type IIB on �1,1×M8 with SU(4)-structure but wihtout strict ansatz,
for a minimal amount of supersymmetry admitting κ-symmetric branes (specifically,
N = (2, 0)), and that the techniques of [91] should be useable to prove this state-
ment. In [92], exactly this was done and the conjecture was proved, thus giving
a satisfactory formulation, albeit not a full understanding, of the supersymmetry
equations on �1,1 ×M8 with SU(4)-structure.

In section 6.1, generalised calibration forms will be discussed. Using the construc-
tion showcase in appendix C, the calibration will be derived. In section 6.2, the
calibration equations will be computed, making use of the SU(4)-structure and the
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strict SU(4)-Killing spinor ansatz. It will also be shown why this procedure fails
for type IIA. The additional constraint will be shown to complement the calibra-
tion conditions in such a way as to equate to the supersymmetry equations. Some
interpretations will also be discussed.

6.1 D-Branes and calibration forms

In this section, Dp-branes are discussed. D-branes are p + 1 dimensional and arise
in type II supergravity, with p even for IIA, odd for IIB. Consider a D-brane located
at a submanifold S. The effective action describing a D-brane is given by

SDp = −μp

∫
S
e−φ
√

− det(g|S + Fwv) d
p+1σ + μp

∫
S
C ∧ eFwv , (6.3)

where the first term is known as the Dirac-Born-Infeld (DBI) and the second as the
Wess-Zumino (WZ) action2. The two-form Fwv ∈ Ω2(S) is known as the worldvolume
flux and satisfies dFwv = H|S . The metric restricted to S is Lorentzian; the coordi-
nates used to parametrise S will be denoted by {σj | j ∈ {0, ..., p}} with σ0 ≡ τ the
temporal direction.

D-branes are closely related to generalised submanifolds. A D-brane is located on
some submanifold of the total space M10. Let M10 = �

1,d−1 ×M10−d, with warped
metric ansatz

g10 = e2Aηd + g10−d , A ∈ C∞(M10−d,�) . (6.4)

and RR-fluxes respecting the isometries of spacetime, i.e., being Poincaré invariant
and thus being of the form

F ≡ vold ∧ F el + F , F, F el ∈ Ω•(M10−d) . (6.5)

We will only consider D-branes that are static and magnetic; the former implies that
the brane is constant along the temporal direction, i.e., the submanifold wrapped
is of the form S = �

1,q−1 × Σ, with Σ ⊂ M10−d an r-dimensional (boundaryless)
submanifold such that r + q = p + 1. The latter implies that Fwv|�1,d−1 = 0, i.e.,
only the magnetic part of the worldvolume two-form flux is non-trivial on the brane.
Then the worldvolume action (6.3) reduces to

SDBI−WZ = −μpVolq

(∫
Σ

drσeqA−φ
√
det(g|Σ + Fwv)−

∫
Σ

δq,dC
el|Σ ∧ eFwv

)
≡ −μpVolqE , (6.6)

2The Wess-Zumino action is also referred to as the Chern-Simons action.
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with Cel the local gauge field for the electric RR flux satisfying F el = dHC
el and E

the energy density of the D-brane.

Calibration forms [94] are differential forms that were introduced as a tool to de-
termine cycles that minimise the volume with respect to a homology class. It turns
out that these can be generalised to minimize other functionals as well; in particular,
they can be tailored such that they indicate when the energy density of a D-brane
is minimised.

Definition 6.1.1. Let (M, g) be a Riemannian manifold, q, d ∈ �, q ≤ d. A gener-
alised calibration form is a polyform ω on M satisfying he following two conditions:

1. Firstly,

(
ω ∧ eFwv

)
Σ̃
≤ drσeqA−φ

√
g|Σ̃ + F̃wv (6.7)

for any generalised submanifold (Σ̃, F̃wv) with coordinates {σj} on the r-dimensional
cycle Σ̃, and there exists a generalised submanifold (Σ,Fwv) that saturates the
bound. Such a generalised submanifold is called a (generalised) calibrated sub-
manifold.

2. Secondly,

dHω = δq,dF
el . (6.8)

for a polyform F el.

It will be shown that with this definition, D-branes on calibrated generalised sub-
manifolds minimise the energy density with respect to their generalised homology
class. For brevity, we will refer to generalised calibration forms simply as calibration
forms.

Given a calibration form, let (Σ,Fwv) saturate the bound, and let (Σ̃, F̃wv) be an
arbitrary generalised submanifold in the same generalised homology class. That is
to say, we require existence of a generalised submanifold (T,G) satisfying

∂T = Σ̃− Σ , dG = H|T , G|Σ = Fwv , G|Σ̃ = F̃wv . (6.9)
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For more on generalised homology, see [95]. Using the fact that3

0 =

∫
T

(
dHω − δq,dF

el
)
T
∧ eG =

∫
T

d
((
ω − δq,dC

el
)
T
∧ eG

)
=

∫
Σ

(
ω − δq,dC

el
)
Σ
∧ eFwv −

∫
Σ̃

(
ω − δq,dC

el
)
Σ̃
∧ eF̃wv ,

(6.11)

one finds

E(Σ,Fwv) =

∫
Σ

(
ω − δq,dC

el
)
Σ
∧ eFwv =

∫
Σ̃

(
ω − δp,qC

el
)
|Σ̃ ∧ eF̃wv

≤ E(Σ̃, F̃wv) .

(6.12)

Therefore, (Σ,Fwv) minimises the energy-density with respect to its generalised ho-
mology class. A D-brane wrapping such a generalised complex submanifold is called
a calibrated D-brane.

The construction of generalised calibration forms for static magnetic branes in our
IIB, d = 2 setup, was done in [90] following the procedure of [82]. Let us define a
pair of spinor bilinears,

Ψ1 = − 24

α2
η1 ⊗ η̃c2

Ψ2 = − 24

α2
η1 ⊗ η̃2 .

(6.13)

Since 1 ≤ q ≤ 2, there are but two possibilities. For q = 1, the construction as
discussed in appendix C does not yield a calibration form. For q = 2, the calibration
form is given by

ω = e2A−φRe
(
Ψ1 + eiϑΨ2

)
(6.14)

with ϑ ∈ � arbitrary. As a consequence, the differential condition on the calibration
form is given by

dH

(
e2A−φRe Ψ1

)
= e2A �8 σ(F )

dH

(
e2A−φΨ2

)
= 0 ,

(6.15)

3The same caveat holds in this case as for the Chern-Simons term of D = 11 supergravity,
namely that ∫

Σ

Cel ∧ eFwv ≡
∫
T

F el ∧ eG (6.10)

in order to ensure that integration of the non-globally well-defined form Cel can be defined properly.
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which is exactly (6.1) as alluded to in the introduction.

6.2 Supersymmetry in terms of calibration forms

& generalised complex geometry

Although rather short, this section, combined with with (3.12), contains the main
result of [2]. Expressions have been found for the calibration form in terms of two
polyforms, expressed as bilinears in the pure spinor η. This pure spinor is associated
to the SU(4)-structure on M8 and hence, the polyforms Ψ1,2 can be expressed in
terms of (J,Ω). Consider (6.13) and apply the Fierz identity (A.9) followed by the
Clifford map (A.10). Then, applying (A.40), it follows that

Ψ1 = −e−iθe−iJ

Ψ2 = −eiθΩ .
(6.16)

As discussed in section 5.3, these are generalised almost complex structures induced
by respectively the almost symplectic and almost complex structures defined by
the SU(4)-structure. Thus, this leads to the conclusion that the strict SU(4)-ansatz,
which was taken for technical reasons, can alternatively be interpreted as considering
the two most obvious generalised almost complex structures, rather than anything
more intricate. Taking this point of view, (6.1b) is nothing more than (B-twisted)
integrability of II .

Explicitly calculating (6.1) using (6.16) leads to the following result:

W1 = W2 = 0

W3 = ieφ
(
cos θf

(2,1)
3 − i sin θf

(2,1)
5

)
W5 = ∂+(φ− 2A+ iθ)

f̃
(1,0)
3 = f̃

(1,0)
5 = h

(1,0)
1 = h̃

(1,0)
3 = 0

f
(1,0)
1 = ie−φ

(
cos θ(∂+θ − 3h

(1,0)
3 ) + sin θ(2∂+A− ∂+φ+ 3W4)

)
f
(1,0)
3 = −ie−φ

(
cos θ(∂+φ− 2∂+A− 2W4) + sin θ(∂+θ − 2h

(1,0)
3 )

)
f
(1,0)
5 = e−φ

(
cos θ(∂+θ − h

(1,0)
3 )− sin θ(∂+φ− 2∂+A−W4)

)
f
(1,0)
7 = e−φ

(
cos θ(2∂+A− ∂+φ)− sin θ(∂+θ)

)
h(2,1) = eφ

(
− cos θf

(2,1)
5 + i sin θf

(2,1)
3

)
.

(6.17)
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The vanishing of W1,2 and thus the conclusion that I is integrable is no surprise. As
a consequence, we can identify ∂+ = ∂. Note also that the external NSNS three-form
vanishes, e2Avol2 ∧H1 = 0. The fact that the NSNS flux is internal, i.e. H = H3, is
important, as H is the form associated to supergravity, whereas H3 is the form that
plays a role in the description of the generalised almost complex structures on M8,
and thus the interpretation of (6.1) as twisted integrability is justified.

Comparing (6.17) with the supersymmetric solution (3.12), it follows that a number
of the constraints are missing, in the sense that the supersymmetric solution is a
subset of the solution to the equations above. Consider

dI2
H ≡ [dH , I2] = i

(
∂̄I2
H − ∂I2

H

)
, (6.18)

as a twisting of (5.40) as defined in section 5.4. Due to the fact that I2 = II , it
follows that ∂I2 = ∂, i.e., the differential operator induced by the generalised complex
structure is just the Dolbeault operator. Then the equation

dI2
H

(
e−φImΨ1

)
= F , (6.19)

that was refered to in (6.2) yields the following:

f
(1,0)
1 = ie−φ

(
sin θ∂+φ− cos θ(∂+θ)

)
f
(1,0)
3 = ie−φ

(
cos θ(∂+φ−W4) + sin θ(∂+θ − h

(1,0)
3 )

)
f
(1,0)
5 = e−φ

(
sin θ(∂+φ− 2W4)− cos θ(∂+θ − 2h

(1,0)
3 )

)
f
(1,0)
7 = e−φ

(
cos θ(∂+φ− 3W4) + sin θ(∂+θ − 3h

(1,0)
3 )

)
.

(6.20)

These are exactly the missing constraints. That is to say, (6.17) combined with
(6.20) is equivalent to (3.12). This proves the claim made in the introduction that
on �1,1×M8 with an SU(4)-structure on M8 and an N = (2, 0) strict SU(4) Killing
spinor ansatz, the supersymmetry equations of type IIB are equivalent to (6.1), (6.2).
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Chapter 7

SU(5)-structures and generalised
complex geometry

In the previous section, it has been shown that there is more to the supersymme-
try equations than just the calibration conditions. This did not manifest itself until
investigating M10 = �

1,1 ×M8, which is a more general manifold than �1,3 ×M6

or �1,5 ×M4. The investigation of �1,1 ×M8 relied heavily on the existence of an
SU(4)-structure. In all three cases, a Killing spinor ansatz of the form ε ∼ ζ⊗η1+c.c.
was made. Such an ansatz requires the existence of a nowhere vanishing spinor η1
on the internal manifold, and as any Weyl spinor is pure in dimension 2n ≤ 6, the
ansatz basically already entailed requiring an SU(n)-structure for d = 4 and d = 6.
In the case d = 2, however, it was necessary to require its existence as an additional
constraint on the internal manifold.

In [91], the supersymmetry equations were recast into G�G-inspired equations in
terms of a polyform on arbitrary M10, with no structure group restrictions other
than what is required for the supersymmetry equations to be sensible (global exis-
tence of a metric, Killing spinors, etc.). Unfortunately, these equations are not as
simple as one might like, and a geometrical interpretation for them has proven to be
elusive.

In order to shed light on the situation, a middle ground is sought, on the one
hand by imposing some additional ansätze on the case of [91], on the other hand
by extending the succesful SU(n)-structure group results. Thus, we consider type
II supergravity on M10 with an SU(5)-structure. Such a setup has two immediate
implications. Firstly, an SU(5)-structure comes with a ten-dimensional Riemannian
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metric; as we wish to associate the tensors defined through the SU(5)-structure to
the physics described by the supersymmetry equations, this necessitates considering
Euclidean supergravity in order to account for this non-Lorentzian metric. This is
more convoluted than the single Wick rotation that one might a priori expect, as
supersymmetry relates the fermionic spinors to the bosonic fields, and requires re-
sorting to a complex action and taking a ‘real slice’ at the end. Unfortunately, no
such real slice exists for type IIB. It does for Euclidean type IIA supergravity, which
can also be uplifted to Lorentzian M-theory.

Secondly, the machinery of generalised calibrations for static magnetic branes
becomes unavailable, as there is no longer a distinguished temporal direction.

The result found is as follows: in case one takes a strict ansatz for the Killing
spinors, the supersymmetry equations imply

dH

(
α2e−φΨ2

)
= 0 (7.1a)

i∂̄I2
H

(
e−φIm Ψ1

)
= F− , (7.1b)

with definitions given in section 7.3. Unfortunately, the converse does not hold.
(7.1a) is also implied by the supersymmetry equations in the absence of the strict
ansatz. We will refer to (7.1) as the G�G equations or generalised equations.

First, complex supergravity will be discussed in order to see how to construct super-
gravity on manifolds with SU(5)-structure. In section 7.2, supersymmetric solutions
for complex supergravity on such manifolds will be given for both type IIA and type
IIB, using a strict SU(5) Killing spinor ansatz. Next, we will discuss the definitions
of and solutions to the the G�G equations (7.1). We compare these to the solu-
tions to the supersymmetry equations and note the differences. Then the general
proof that the supersymmetry equations imply (7.1a) is given. Finally, the uplift of
Euclidean IIA to Lorentzian M-theory is discussed in section 7.5.

7.1 Complex Supergravity

All the necessary details for SU(5)-structures have been discussed in section 1.5.
In order to apply this to type II supergravity, the Riemannian metric needs to be
accommodated. To do so, we make use of complex supergravity, via a construction
outlined in [96]. The process to obtain complex supergravity goes by the name of
‘holomorphic complexification’: the complex supergravity will be invariant under a
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7. SU(5)-structures and generalised complex geometry

complex superalgebra, and by taking various reality conditions (or ‘real slices’), var-
ious real supergravities with various metric signatures can be acquired. In fact, it is
possible to construct multiple supergravity actions with the same metric signature.
Of course, it is not guaranteed that these are physical, and indeed, cases are known
where, for example, some kinetic terms have the wrong sign.

Consider the action for type II supergravity as given in (2.2), but let all the bosonic
fields be complex-valued rather than real. The selfduality constraint on the RR fluxes
cannot be sensible generically, as it depends on the signature of the metric. For a
Riemannian metric, the sensible selfduality constraint is given by

F = −i �10 σ(F) . (7.2)

The sign is convention dependent. For the fermionic action1, first it is necessary
to rewrite the action such that no complex conjugates appear anywhere. In other
words, the actions needs to be rewritten in terms of Majorana fermions. Having
done so, holomorphic complexification consists of ignoring all reality conditions on
the Majorana fermions, i.e., replacing them with Dirac fermions. The gamma matri-
ces are taken as a basis of (flat Euclidean) Cl(10), and as per usual, the ‘indices are
curved’ by means of vielbeine γm = ema γ

a; holomorphic complexification then comes
down to taking ema to be complex. The result is a complex action that is invariant
under complex supersymmetry transformations; that is to say, the Killing spinors
ε1,2 are complex Weyl spinors of Cl(10). Thus, the supersymmetry equations for the
complex action are still given by (2.32).

The possible reality conditions one could impose are given in table 1 of [96]. In
particular, there is no set of signature (10,0) reality conditions for type IIB, which
is unfortunate; that is to say, unfortunate from the perspective of the theory being
physically sensible. From a technical perspective on the other hand, it is rather irrel-
evant as there is no problem solving complex supersymmetry equations for complex
supergravity. Thus, we will forge on, imposing merely the minimal requirement of a
positive definite metric so that it may be identified with the Riemannian metric of
the SU(5)-sructure.

Unlike type IIB, type IIA does play nice, as there is a set of reality conditions

1We have not given the fermionic action because it is irrelevant for our purposes. The only point
in this story where fermions show up is when we consider the Killing spinors in the supersymmetry
equations.
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with a (10,0) signature metric. These reality conditions are given by2

H = −H∗

F ∗ = σ(F )
(7.3)

with every other bosonic field real, and the Killing spinors satisfy

ε2 = −iεc1 , (7.4)

which is just the Majorana condition.

Imposing reality conditions is only necessary from a physical point of view and will
not be necessary to solve the supersymmetry equations, with the exception being
that we impose positive-definiteness of the metric from the start. In addition, we
take a strict Killing spinor ansatz, which in this case means setting

ε1 = αη , ε2 =

{
αeiθηc Type IIA
αeiθη Type IIB

(7.5)

where without loss of generality, α, θ ∈ C∞(M10,�). Note that the norm of ε2 has
been fixed such that |ε2|2 = |ε1|2; this was necessary to admit κ-symmetric branes in
the Lorentzian case. Here, it is possible that this constraint could have been relaxed.

7.2 Supersymmetric solutions on SU(5)-structure

manifolds

Solving the complex supersymmetry equations on M10 equipped with an SU(5)-
structure and using a strict SU(5) Killing spinor ansatz is entirely analogous to the
�

1,1 × M8 case as described in section 3.2. More specifically, the procedure is as
follows:

• We use the explicit expressions (7.5) for the Killing spinors ε1,2 in the super-
symmetry equations.

• We decompose the fluxes into SU(5)-representations using (1.36). Note that
reality of a k-form α would imply that, after decomposition, α(p,q) =

(
α(q,p)

)∗
.

Taking the forms complex means that this no longer holds.

2We have ‘decomposed’ the flux into electric and magnetic components; obviously the electric
component is trivial in the absence of spacetime and thus the magnetic component satisfies F = F .
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7. SU(5)-structures and generalised complex geometry

• Any term with > 5 indices will be Hodge dualised to a term with < 5 indices.

• Any gamma matrix with > 2 indices can be expressed in terms of the SU(5)-
structure and gamma matrices with ≤ 2 indices by making use of the identities
(A.57). This leads to the identities (A.58), (A.59).

• The connection acting on the Killing spinors can be expressed in terms of
torsion classes as (A.49) due to (7.5), (1.30), (1.34).

Following these steps and a non-neglible amount of time calculating, these are the
resulting solutions.

The solution to the complexified supersymmetry equations of type IIA, using a Rie-
mannian metric defined by an SU(5)-structure on M10, and using the strict SU(5)
Killing spinor ansatz (7.6), is given by

θ ∈ �
α = ke

1
2
φ

W1 = −ih(2,0)

W2 = 4ieiθeφf
(3,1)
4

W3 = −ih(2,1)

W4 = −ih(1,0)

W5 = ∂+φ

h(2,0) =
3

16
eφeiθ

(
f
(2,0)
2 − if

(2,0)
4

)
f0 = 3if2 + 4f4

f
(1,1)
2 = 3if

(1,1)
4

f
(1,0)
4 = −1

2
e−φeiθ

(
∂+ logα + ih(1,0)

)
,

(7.6)

in addition to the reality conditions(
f
(1,0)
4

)∗
= f

(0,1)
4 ,

(
f
(3,1)
4

)∗
= f

(1,3)
4 ,

(
f
(2,0)
2 − if

(2,0)
4

)∗
= −

(
f
(0,2)
2 − if

(0,2)
2

)(
h(1,0)

)∗
= −h(0,1) ,

(
h(2,0)

)∗
= −h(0,2) ,

(
h(2,1)

)∗
= −h(1,2) . (7.7)

The solution is thus parametrised by k, θ ∈ �, φ, f2, f4 ∈ C∞(M10,�) and differen-

tial forms h(1,0), f
(2,0)
2 , f

(2,0)
4 , h(2,1), f

(3,1)
4 . As usual, for a function f , ∂±f project onto
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the (1, 0) and (0, 1) components of df with respect to the almost complex structure.
Note that the reality conditions enforced by supersymmetry are a proper subset of
the necessary reality constraints to fix the action as real, as follows from comparison
with (7.3), (7.4). In particular, what is missing is

θ = −1

2
π , f ∗

2 = −f2 ,
(
f
(1,1)
4

)∗
= f

(1,1)
4

φ∗ = φ , f ∗
4 = f4 ,

(
f
(2,0)
4

)∗
= f

(0,2)
4 .

(7.8)

In order to ensure that the solution can be identified with the supersymmetry con-
straints of real Euclidean type IIA supergravity, these need to be enforced by hand.

The solution to the complexified supersymmetry equations of type IIB, using a Rie-
mannian metric defined by an SU(5)-structure on M10, and using the strict SU(5)
Killing spinor ansatz (7.5), is given by

W1 = 0

W2 = 0

W ∗
3 = −ieφ

(
cos θf

(1,2)
3 − sin θf

(1,2)
5

)
W ∗

4 =
1

2
∂−φ

W ∗
5 = ∂−(φ− 2 logα− iθ

)
h(0,1) =

1

2
∂−θ

h(2,0) = 0

h(1,2) = −ieφ(sin θf
(1,2)
3 + cos θf

(1,2)
5 )

f
(0,1)
1 = i∂−(e−φ sin θ

)
f
(0,1)
3 =

i

2
∂−(e−φ cos θ

)
f
(2,0)
3 = 0

f
(1,4)
5 = 0

eφeiθ
(1
4
f
(1,0)
1 + if

(1,0)
3 − 3

2
f
(1,0)
5

)
= −∂+

(
2 logα− i

2
θ
)
− ih(1,0)

eφe−iθ
(
− 1

4
f
(1,0)
1 + if

(1,0)
3 +

3

2
f
(1,0)
5

)
= −∂+

(
2 logα +

i

2
θ
)
+ ih(1,0) ,

(7.9)
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7. SU(5)-structures and generalised complex geometry

The solution is parametrised by α, θ ∈ C∞(M10,�), φ ∈ C∞(M10,�), and f
(1,2)
3 , f

(1,2)
5 ∈

Ω
(1,2)
p (M10). Vanishing of W1,2 ensures that M10 is complex and hence, ∂± can be

identified with the Dolbeault operator and its complex conjugate.

As mentioned before, unlike type IIA, no consistent set of reality conditions exists
for Euclidean type IIB supergravity.

7.3 Solutions to the generalised complex geomet-

rical equations

In order to reformulate the supersymmetry equations in terms of generalised complex
geometry, we require a pair of polyforms which correspond to generalised almost
complex structures. We define these entirely analogous to the M10 = �

1,1 × M8

case as given in (6.13), by setting

Ψ1 ≡ − 25

|ε|2 ε1 ⊗ ε̃c2

Ψ2 ≡ − 25

|ε|2 ε1 ⊗ ε̃2 .

(7.10)

Technically, it needs to be checked that these polyforms correspond to pure spinors
before they can be identified as generalised almost complex structures. However, as
it turns out, it is more convenient to calculate them first, as the result will make
it obvious that they are indeed pure. By making use of the Fierz identity (A.9)
followed by the Clifford map (A.10), these are converted into polyform. Plugging in
the strict Killing spinor ansatz (7.5), the following is found.

For type IIA, the generalised complex structures are given by

Ψ1 = e−iθΩ

Ψ2 = −eiθe−iJ .
(7.11)

Comparing with (5.27), (5.32) we see that Ψ1 is associated to II , a generalised com-
plex structure induced by an almost complex structure, whereas Ψ2 is associated to
IJ , a generalised complex structure induced by an almost symplectic structure.

For type IIB, the generalised complex structures are given by

Ψ1 = −e−iθe−iJ

Ψ2 = −eiθΩ .
(7.12)
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Hence, for IIB, it is found that instead Ψ1 = ΨJ and Ψ2 = ΨI , which is similar to
the SU(4)-structure manifold case.

From this, two things can be concluded. Firstly, from the point of view of gener-
alised complex geometry, the difference between type IIA and type IIB is equivalent
to interchanging almost complex and almost symplectic structure. Secondly, we note
again that the strict Killing spinor ansatz ensures that the generalised almost com-
plex structures Ψ1,2 correspond to the obvious ones, namely ΨI , ΨJ .

Let us investigate the generalised equations (7.1). The first equation (7.1a) is the
integrability condition on I2. The second equation (7.1b) we have no satisfactory
geometrical interpretation for. The projection operator projects onto the eigenbun-
dle ⊕k<0U

k with respect to the grading induced on the exterior algebra by I2, as
discussed in section 5.2. Comparing the solution of the G�G equations to super-
symmetry, as we will do in the next section, it follows that this projection is a direct
consequence of working with complex supergravity. If we were to ignore this, it fol-
lows that the G�G equations would be exactly (6.1b) and (6.2). However, as there
is no notion of time, there is also no notion of static magnetic branes, hence no in-
terpretation in terms of calibration forms is possible in this case. Also note that the
missing supersymmetry constraints are not given by (6.1a), which would have been
the obvious thing one might have expected.

7.3.1 Type IIB

Although perhaps less interesting due to the fact that the supersymmetry equations
do not correspond to a real supergravity theory, the IIB solutions are far less com-
plicated. This is due to the fact that the integrable generalised almost complex
structure is induced by the almost complex structure rather than by the almost sym-
plectic structure. As a consequence, dI2 corresponds to dc, and ∂I2 reduces to the
Dolbeault operator. Furthermore, the eigenbundles of I2 are given by

Uk = ⊕p−q=kT
∗(p,q) , (7.13)

as explained in section 5.3. Inserting (7.12) into (7.1), the result is (7.9), with the
exception that the equations

eφeiθ
(1
4
f
(1,0)
1 + if

(1,0)
3 − 3

2
f
(1,0)
5

)
= −∂+

(
2 logα− i

2
θ
)
− ih(1,0)

eφe−iθ
(
− 1

4
f
(1,0)
1 + if

(1,0)
3 +

3

2
f
(1,0)
5

)
= −∂+

(
2 logα +

i

2
θ
)
+ ih(1,0) ,

(7.14)
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7. SU(5)-structures and generalised complex geometry

are missing. As with the SU(4)-structure case, the solution saves us from an inter-
pretational dilemma: with respect to I2 = II , one may consider

H(0,3)∧ : Uk → Uk−3 (7.15)

and hence, it is not clear how to treat this term when making the decomposition
dH = ∂H + ∂̄H . However, it is found that h(2,0) = 0 and thus3, H(0,3) vanishes. As a
result, it follows that ∂̄H = ∂̄ +H(1,2)∧.

7.3.2 Type IIA

We repeat the process above for type IIA. The integrable generalised almost complex
structure is I2 = IJ . Therefore, its eigenbundle is given by (again, see section 5.3)

Uk = {ε−iJe
1
2
iΛΦ(n−k) | Φ(n−k) ∈

∧n−k
T ∗} . (7.16)

Thus, for a polyform Φ it follows that

Π−
I2(Φ) =

−1∑
k=−5

e−iJe
1
2
iΛ
(
e−

1
2
iΛeiJΦ

)
(5−k)

, (7.17)

where the subscript 5− k refers to the ordinary grading of the exterior algebra into
differential forms of definitive degree. Fortunately, we are spared the labour of doing
this explicitly, as

Π−
I2(Φ) = 0 =⇒

(
eiJΦ

)
5−k

= 0 , (7.18)

which greatly simplifies things. Making use of this understanding of the projec-
tion operator, plugging (7.11) into (7.1) leads to (7.6), with the exception that the
constraint

f
(1,0)
4 = −1

2
e−φeiθ

(
∂+ logα + ih(1,0)

)
(7.19)

as well as the reality conditions (7.8) are not imposed. The latter one may consider
as not so important, as these can be enforced by demanding that the Euclidean IIA
has a Lorentzian M-theoretical origin. The former is more problematic, as it ensures
that the supersymmetry equations are not equivalent to the generalised equations.

3For the convenience of the reader, let us remind that in the decomposition of H, H(0,3) ∼
h(2,0)�Ω∗.
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7.4 General Proof

So far, it has been shown that the supersymmetry equations imply the generalized
equations for the strict ansatz, by brute force calculating both and comparing the
solutions. In this section, some more refined techniques will be used to show that
(7.1a) is implied also without strict ansatz. The proof is similar to the one used
in [89] to demonstrate equivalence between supersymmetry and generalised equa-
tions for d = 4. The key point is that the Clifford map can be used to relate on the
one hand acting with gamma matrices of CL(10) on Ψ1,2 as defined in (7.10) to, on
the other hand, the action of T ⊕ T ∗ on Ψ1,2. We will give the proof for type IIA
and note that the proof for type IIB is analogous in method.

Let C denote the Clifford map converting polyforms into gamma contractions, i.e,

C :
∧•

T ∗ → Cl(10)

C(Φ) ≡ Φ
(7.20)

and let us stress again that it is bijective. Then in terms of local coordinates

C (dxm ∧ Φ + ∂m�Φ) = γmC(Φ)
C (dxm ∧ Φ− ∂m�Φ) = (−1)|Φ|C(Φ)γm ,

(7.21)

where |Φ(k)| = k; in case Φ consists of only even- or odd-form terms, the sign is
consistent. Let α(k) be a k-form, and let [., .] be a graded bracket on Cl(10) satisfying

[α(1),Φ] ≡α(1)Φ + (−1)|Φ|Φα(1)

[α(3),Φ] ≡α(3)Φ + (−1)|Φ|Φα(3) + γmΦα(1)
m + (−1)|Φ|α(1)

m Φγm .
(7.22)

Then it can be shown that

C
(
2α(1) ∧ Φ

)
= [α(1),Φ]

C
(
8α(3) ∧ Φ

)
= [α(3),Φ] .

(7.23)

Let us now apply the above to the generalised almost complex structure Ψ2. First,
(7.21) implies that

C (dΨ) = 16
(
γm∇mη1 ⊗ η̃c2 + γmη1 ⊗∇mη̃c2 +∇mη1 ⊗ η̃c2γ

m + η1 ⊗∇mη̃c2γ
m
)
(7.24)
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The supersymmetry equations can be rewritten as

1

2
Hη1 = −∂φ η1 +

1

16
eφγmFγmη

c
2

1

2
η̃c2H = −η̃c2∂φ− 1

16
eφη̃1γ

mFγm

∇mη1 = −η1∂m logα− 1

4
Hmη1 +

1

16
eφFγmη

c
2

∇mη̃c2 = −η̃c2∂m logα− 1

4
η̃c2Hm − 1

16
eφη̃1γmF .

(7.25)

Thus, using (7.25) and (7.23),

C (dΨ) =
1

2
[dφ− 2d logα,Ψ2]−

1

8
[H,Ψ2] (7.26)

Using C−1 to rewrite the right-hand side in terms of polyforms, we can conclude that

C
(
dH

(
α2e−φΨ2

))
= 0 (7.27)

and thus (7.1a) follows due to injectivity of C.

7.5 Lorentzian M-theory from Euclidean IIA

Real type IIA supergravity with a Riemannian metric is a consistent truncation of
Lorentzian M-theory. Hence, the supersymmetric solution described in (7.6) can be
uplifted to a supersymmetric solution of M-theory on S1-fibrations over M10. We
shall describe the reduction of M-theory to Riemannian type IIA, the integrability
of the supersymmetric solution to a supersymmetric vacuum, and give an example
of such a vacuum on �×M10.

The dimensional reduction of M-theory to Riemannian type IIA supergravity goes
as follows. Let M11 be a circle fibration, with metric and four-flux reductions

g11 = −e
4
3
φ (dt+ C1) + e−

2
3
φg10

G = F4 − iH ∧ (dt+ C1) .
(7.28)

As H is imaginary, G is real. It is clear that this reduction leads exactly to the
bosonic massless Euclidean type IIA supergravity action, as this can be considered
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a double Wick rotation compared to the usual reduction as described in section 2.3.
We fix

F2 = idC1 , (7.29)

thus ensuring that the connection one-form C1 is real and F2 is imaginary. The
Spin(10) Killing spinors ε1.2 of IIA uplift to the Spin(1, 10) Killing spinor ε of M-
theory as

ε = ε1 + ε2 . (7.30)

The result of these definitions is that the (Euclidean) IIA equations of motion are
equivalent to those of M-theory. Specifically, the eleven dimensional Bianchi identity

dG = 0 (7.31)

is equivalent to

dF4 +H ∧ F2 = 0

dH = 0
(7.32)

whereas the flux equation of motion

−d �11 G+
1

2
G ∧G = 0 (7.33)

is equivalent to

dF6 +H ∧ F4 = 0

d
(
e−2φ �10 H

)
+

1

2
�10F ∧ F |8 = 0 ,

(7.34)

hence indeed4 , the equations of motion and Bianchi identities of G for M-theory and
of F for Euclidean IIA are equivalent5. Hence the integrability theorem of section
2.5 can be applied to find Lorentzian M-theory vacua on S1 fibrations over a base
space M10 with SU(5)-structure. By the usual decompactification procedure, this
also yields vacua on M11 = �×M10.

4 When comparing the sign of the H equation of motion in (2.9) to (7.34), there is a sign
discrepancy. This comes about as follows: the action is a pseudo-action and is supplemented with
the additional RR self-duality constraint, (2.3) for Lorentzian, (7.2) for Riemannian signature.
The sign in (7.2) is convention-dependent. When we fixed J5 ∼ +Vol10, this determined (A.28),

and thus the selfduality sign as F0 + F2 + F4
!
= +

(
F6 + F8 + F10

)
(otherwise F drops out of the

supersymmetry equations). Taking F = +i �10 σF instead, the result is �10F → − �10 F in (7.34)
which matches (2.9).

5The Bianchi identity for F2 follows from the equation of motion for g instead.
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7. SU(5)-structures and generalised complex geometry

Example: Conformal Kähler on �×M10

Let us construct an M-theory vacuum on M11 = � × M10. As per usual, this
involves setting F0 = C1 = 0. Taking

g11 = −e
4
3
φdt+ e−

2
3
φg10

G = −1

2
dt ∧ dφ ∧ J ,

(7.35)

and making use of (7.28), it follows that the supersymmetry equations (7.6) are
satisfied with

W1,2,3 = 0

W4 =
1

2
W5 =

1

2
∂φ .

(7.36)

Comparison with table 1.5 leads to the conclusion that M10 is therefore a conformal
Kähler manifold for this supersymmetric solution. In order to apply the integrability
theorem to ensure that the supersymmetric solution is a supersymmetric vacuum,
the equation of motion and Bianchi identity for G need to be satisfied. Due to (7.36),
G = −dt∧ dJ and hence is closed. The equation of motion reduces to the co-closure
condition d �11 G = 0. Making use of the fact that �10G ∼ J3 ∧ dcφ, it follows that
the equation of motion is satisfied if and only if

∂∂̄e−
1
2
φ = 0 =⇒ e−

1
2
φ = f(z) + f(z) (7.37)

for an arbitrary holomorphic function f . As usual, we run into the Maldacena-
Nunez no-go theorem: on compact manifolds, all globally well-defined holomorphic
functions are constant, so if we take M10 compact and we do not take higher-order
corrections into account, dφ = 0, leading to a fluxless Calabi-Yau vacuum.

149



Conclusion

A number of classes of supersymmetric flux vacua have been discussed. Consider-
ing an internal eight-dimensional manifold with SU(4)-structure, we have examined
d = 2, N = (1, 1) IIA, d = 2, N = (2, 0) IIB, and d = 3, N = 1 M-theory. In all
cases, we have considered a strict SU(4) ansatz for the Killing spinors. As a conse-
quence, the external space is constricted to be Minkowski, excluding AdS (and dS).
On ten-dimensional manifolds with SU(5)-structure, we have examined complex and
Euclidean IIA and IIB theory; IIA uplifts to real Lorentzian d = 1, N = 1 M-theory.
Again, this was done by making use of a strict Killing spinor ansatz. For the SU(4)-
structure vacua, explicit examples were discussed on the non-compact CY Stenzel
space. Furthermore, by making use of the coset structure of the base space, we have
been able to construct families of SU(4)-structures on the underlying space. Using
these, IIA non-symplectic, and hence non-CY, vacua were constructed. These vacua
violate the NSNS Bianchi identity and are thus sourced by NS5-branes. We have
been able to construct a source-action which we conjectured to represent calibrated
NS5-branes, although we did not take into account some subtleties in this procedure.
For the IIB supersymmetry solutions, we have examined the conjecture of [90] that
the D-brane calibration conditions are equivalent to the supersymmetry conditions
and concluded that an additional equation, formulated in the language of generalised
complex geometry, is needed for the equivalence in the strict case, whereas for IIA
the strict ansatz precludes the habitual method of constructing calibration forms and
thus cannot be used to check the equivalence. However, our conjecture that in the
non-strict case, our equations are equivalent to supersymmetry and that this can be
checked by making use of the equations of [91] was proven to be true, exactly by
making use of the suggested procedure, in [92]. We have then checked whether or
not something similar holds for the supersymmetric solutions on Euclidean SU(5)-
structure manifolds. We have found two generalised equations that reproduce part of
the supersymmetric solution for the strict ansatz, but do not give all constraints, i.e.,
the set of solutions to supersymmetry equations is a subset of the set of soltutions to
the generalised equations. We have shown that supersymmetry implies one of these
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Conclusion

two generalised equations generically, strict ansatz or no. Some questions that arise
from this work are as follows.

The N = 1 M-theory solution on �1,2 × M8 is a generalisation of the well-known
N = 2 M-theory solution on �1,2 ×M8 of [54]. For M8 a compact CY, it is known
that the latter reduces to d = 3, N = 2 gauged supergravity by KK reduction, which
can be lifted to d = 4, N = 1 F-theory. It would be interesting to see what our vacua
reduce to on compact CY, which is currently work in progress; the answer seems to
be d = 3, N = 1 ungauged supergravity, with the additional fluxes breaking the
Poincaré invariance of �1,3 when lifted to F-theory.

The question of reformulating supersymmetry in terms of G�G has not been an-
swered satisfactorily. Firstly, it seems clear now that calibrations cannot be the whole
of the story, but this then leaves us to wonder how to explain why the generalised
equations are what they are for each dimension. Furthermore, whereas equations
of the form dHΨ ∼ F can be interpreted as the RR flux being the obstruction to
integrability of an almost complex structure, the newly introduced equation of the
form dI

HΨ ∼ F does not seem to have such a geometric interpretation. It would be
interesting to know what the correct geometric interpretation is, if it exists.

The source-action found for the SU(4)-deformed Stenzel space seems to hint at the
correct form for calibrated NS5-branes. It would be interesting to see if an analogous
construction to that of [83] could be used to construct calibration (poly)forms for
NS5-branes. This is made difficult due to the the fact that dH �= 0 messes with
the generalised geometry framework. In addition, it would be interesting to see if
the action here, which holds for d = 2, N = (1, 1) IIA vacua given a strict SU(4)
Killing spinor ansatz, can be generalised to more general cases, akin to what was
done in [75].
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Appendix A

Conventions, notation, identities

Lorentzian metrics are taken to be mostly plus.
Hodge duality of a k-form on Mn is defined by

(�nα)m1...mn−k
≡ 1

k!(n− k)!
εm1...mnα

mn−k+1...mn (A.1)

Generically, a subscript is used to denote the (dimension of the) space with respect
to which the Hodge dual is taken.

The Levi-Civita symbol on a Lorentzian manifold Mn+1 is taken to satisfy

ε0...n = −ε0...n = +1 . (A.2)

We define the contraction between a p-form ϕ and a q-form χ, p ≤ q, by

ϕ�χ =
1

p!(q − p)!
ϕm1...mpχm1...mpn1...nq−pdx

n1 ∧ · · · ∧ dxnq−p . (A.3)

The volume form is given by

voln ≡ dnx
√
gn = �n1 =

1

n!
εm1...mndx

m1 ∧ ...dxmn . (A.4)

Any conventions not mentioned are most likely to be similar to those of [32].
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A. Conventions, notation, identities

Notation

� Either 1) “Is diffeomorphic to” or 2) “ Is isomor-
phic to”, depending on context.

≡ Is defined as
Mn A manifold of dimension n.
T = TM The tangent bundle of M .
T ∗ = T ∗M The cotangent bundle of M .
T (1,0) ≡ T+ The +i-eigenbundle of an almost complex struc-

ture. The holomorphic tangent bundle in case the
almost complex structure is integrable.∧k T ∗ The bundle of k-forms∧• T ∗ ≡ ⊕n

k=0

∧k T ∗ The exterior algebra on Mn

T ∗(p,q) ≡
(∧p T ∗(1,0)) ∧ (∧q T ∗(0,1)) The bundle of (p, q)-forms

T (k,l) = T⊗k ⊗ (T ∗)⊗l The tensor bundle of type (k, l)
Γ(M,E) ≡ Γ(E) Sections of the vector bundle E → M
X(M) The sheaf of smooth sections of T , i.e., vector fields
Ω(p,q))(M) The sheaf of smooth sections of T ∗(p,q)

Ω•(M) The sheaf of smooth sections of
∧• T ∗

Ω
(p,q)
p (M) The sheaf of primitive smooth sections of T ∗(p,q)

Ωp
h(M) The sheaf of holomorphic smooth sections of T ∗(p,0)

O ≡ Ω0
h(M) The sheaf of holomorphic smooth sections of the

trivial bundle, i.e., locally-defined holomorphic
functions, i.e. the structure sheaf.

↪→ Embedding
{·, ·} Anticommutator
X� ≡ ιX Interior product with a vector(field) X
gn ≡ ds2(Mn) Metric of the n-dimensional manifold Mn

ηn The Minkowski metric diag(−1, .., 1) on �n

�
1,d−1 Minkowski space (�d, ηd)

A∗ Given a map A acting on a vector space V , A∗ is
either 1) the complex conjugate, or 2) the induced
operator on the dual space V ∗. Given a morphism
A between manifolds, A∗ denotes the pushforward.

Adg and adX Repsectively, the standard representations of G
and g on g.

g The Lie algebra associated to a Lie group G.
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A.1 Spinor and gamma matrix conventions

For a spinor ψ in any dimension we define:

ψ̃ ≡ ψTC−1 , (A.5)

where C is the charge conjugation matrix. In Lorentzian signatures, we also define

ψ ≡ ψ†Γ0 . (A.6)

In all dimensions the gamma matrices are taken to obey

(ΓM)† = Γ0ΓMΓ0 . (A.7)

Antisymmetric products of gamma matrices are defined by

Γ
(n)
M1...Mn

≡ Γ[M1 . . .ΓMn] . (A.8)

Of crucial importance to any computation involving spinors are the Fierz identity
and the Clifford map. The Fierz identity expresses the tensor product of two n-
dimensional Weyl spinors, viewed as a map acting on spinors, in terms of the Clifford
algebra:

χα ⊗ ψβ =
1

2n

2n∑
k=0

1

k!
ψ̃γm1...mk

χγmk...m1

αβ . (A.9)

The Clifford map is an isomorphism relating the Clifford algebra to polyforms via

1

2n

2n∑
k=0

1

k!
ψ̃γm1...mk

χγmk...m1

αβ �→ 1

2n

2n∑
k=0

1

k!
ψ̃γm1...mk

χemk ∧ ... ∧ em1 . (A.10)

Two Lorentzian dimensions

The charge conjugation matrix in 1 + 1 dimensions satisfies

CT = −C; (Cγμ)T = Cγμ; C∗ = −C−1 . (A.11)

The spinors we consider are in the fundamental representation; complex-valued chiral
(or Weyl). They posses one (complex) degree of freedom. We define:

ζc ≡ γ0Cζ∗ . (A.12)
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A. Conventions, notation, identities

The representation is ‘real’ in the sense that:

(ζc)c = ζ (A.13)

The chirality matrix is defined by

γ3 ≡ −γ0γ1 . (A.14)

The Hodge-dual of an antisymmetric product of gamma matrices is given by

�γ(n)γ3 = −(−1)
1
2
n(n+1)γ(2−n) . (A.15)

Eight Euclidean dimensions

The charge conjugation matrix in 8 dimensions satisfies

CT = C; (Cγμ)T = Cγμ; C∗ = C−1 . (A.16)

The fundamental (eight-dimensional, chiral) spinor representation is real. We work
with a complexified chiral spinor η (i.e. eight complex degrees of freedom). We
define:

ηc ≡ Cη∗ . (A.17)

The chirality matrix is defined by

γ9 ≡ γ1 . . . γ8 . (A.18)

The Hodge-dual of an antisymmetric product of gamma matrices is given by

�γ(n)γ9 = (−)
1
2
n(n+1)γ(8−n) . (A.19)

Ten Lorentzian dimensions

The charge conjugation matrix in 1 + 9 dimensions satisfies

CT = −C; (CΓM)T = CΓM ; C∗ = −C−1 . (A.20)

The fundamental (16-dimensional, chiral) spinor representation ε is real, where we
define the reality condition by

ε = ε̃ . (A.21)
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The chirality matrix is defined by

Γ11 ≡ −Γ0 . . .Γ9 . (A.22)

When considering a 2+8 split of the ten-dimensional Lorentzian space, we decompose
the ten-dimensional Gamma matrices as{

Γμ = γμ ⊗ � , μ = 0, 1
Γm = γ3 ⊗ γm−1 , m = 2 . . . 9

.

It follows that

C10 = C2 ⊗ C8; Γ11 = γ3 ⊗ γ9 . (A.23)

The Hodge-dual of an antisymmetric product of gamma matrices is given by

�Γ(n)Γ11 = −(−1)
1
2
n(n+1)Γ(10−n) . (A.24)

Ten Euclidean dimensions

The charge conjugation matrix obeys:

CT = −C; C† = C−1; C∗ = −C−1 (A.25)

The complex conjugate ηc of a spinor η is given by

ηc = Cη∗ . (A.26)

The chirality operator is defined by:

γ11 = iγ1...γ10 . (A.27)

The irreducible spinor representations of Spin(10) are given by sixteen-dimensional
Weyl spinors which are complex, in the sense that ηc and η have opposite chiralities.
The Hodge dual of an antisymmetric product of k gamma matrices is given by:

�γk = −i(−1)
1
2
k(k+1)γ10−kγ11 . (A.28)
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A. Conventions, notation, identities

Eleven Lorentzian dimensions

Given a set gamma-matrices {γa}, a = 1, . . . 10, generating the Clifford algebra in ten
Euclidean dimensions the eleven-dimensional Lorentzian gamma matrices are given
by:

Γa =

{
iγ11 ; a = 0
γa ; a = 1, . . . 10

. (A.29)

In our conventions the charge conjugation matrix C in eleven Lorentzian dimensions
is the same as the one in ten Euclidean dimensions.

Consider a Dirac spinor ε of Spin(1, 10) (with 32 complex components). Under

Spin(1, 10) → Spin(10) ,

the spinor ε decomposes as

32 → 16+ ⊕ 16− ,

where 16± are the positive-, negative-chirality Weyl spinors of Spin(10) (with 16
complex components each). Explicitly we have:

ε = ε1 + ε2 , (A.30)

where ε ∼ 32 of Spin(1, 10), ε1 ∼ 16+ of Spin(10) and ε2 ∼ 16− of Spin(10).
Imposing the Majorana condition on ε,

ε̄ = ε̃ , (A.31)

is equivalent to

ε2 = −iεc1 , (A.32)

where we have taken (A.29) into account.

Similarly, the decompostion Spin(1, 10) → Spin(1, 9) also leads to

32 → 16+ ⊕ 16−
ε = ε1 + ε2 ,

(A.33)

with ε1,2 ±-chirality Majorana-Weyl spinors of Spin(1, 9) in this case.
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A.2 SU(4)-structure identities

Torsion classes and the covariance of the pure spinor

As will be explained in appendix B, the intrinsic torsion Tint for an SU(4)-structure
takes value in T ∗M ⊗ adQSU(4). This module of SU(4) can be decomposed into
irreducibles as

Wint ∈ (4⊕ 4̄)⊗ (1⊕ 6⊕ 6)

� (4⊕ 4̄)⊕ (20⊕ 2̄0)⊕ (20⊕ 2̄0)⊕ (4⊕ 4̄)⊕ (4⊕ 4̄) .
(A.34)

In other words, the torsion classes are three (complex) (1,0)-forms and two (complex)
primitive (2,1)-forms. This is exactly what has been described in section 1.4, where
the defining equations for the torsion classes as obstructions to closure of (J,Ω) were
given as

dJ = W1�Ω∗ +W3 +W4 ∧ J + c.c.

dΩ =
8i

3
W1 ∧ J ∧ J +W2 ∧ J +W ∗

5 ∧ Ω .
(A.35)

Since the SU(4)-structure can be defined just as well in terms of the pure spinor η, the
obstruction to covariant constancy of η with respect to the Levi-Civita tensor (i.e.,
the failure of the Levi-Civita connection to be compatible with the SU(4)-structure)
should equally well be expressible in terms of W1,..,5.

Explicitly we have:

∇mη =

(
3

4
W4m − 1

2
W5m − c.c.

)
η +

i

24
Ω∗

mnklW
n
1 γ

klη

+

(
− i

16
W2mkl −

1

32
ΩmnklW

n∗
4 +

i

64
W ∗

3mnpΩ
np

kl

)
γklηc .

(A.36)

This can be seen as follows. As follows from the discussion around (3.6) and the fact
that ∇mη is an 8⊗ 8+ module of so(8), it can be expand as

∇mη = φmη + ϑmη
c + ϕm,pqΩ

pqrsγrsη
c , (A.37)

for some complex coefficients φm, ϑm ∼ 4⊕ 4̄, ϕm,pq ∼ (4⊕ 4̄)⊗ 6. Furthermore we
decompose:

ϕm,pq = Ω∗
mpqrA

r + (Π+)m[pB
∗
q] + (Π+) n

m C∗
npq + Ω∗ rs

pq Drsm (A.38)

where A,B ∼ 4 are complex (1,0)-forms and C,D ∼ 20 are complex traceless (2,1)-
forms. Multiplying (A.37) on the left with η̃cγij and η̃γijk, antisymmetrising in all
indices in order to form dJ and dΩ respectively as spinor bilinears and comparing
with (A.35) then leads to (A.36).
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A. Conventions, notation, identities

A.2.1 Identities

The following useful identities can be proved by Fierzing [97]:

1

4!× 24
ΩrstuΩ

∗rstu = 1

1

6× 24
ΩirstΩ

∗mrst = (Π+)i
m

1

4× 24
ΩijrsΩ

∗mnrs = (Π+)[i
m(Π+)j]

n

1

6× 24
ΩijkrΩ

∗mnpr = (Π+)[i
m(Π+)j

n(Π+)k]
p

1

4!× 24
ΩijklΩ

∗mnpq = (Π+)[i
m(Π+)j

n(Π+)k
p(Π+)l]

q ,

(A.39)

Moreover, we have

η̃cη = 1; η̃η = 0

η̃cγmnη = iJmn; η̃γmnη = 0

η̃cγmnpqη = −3J[mnJpq]; η̃γmnpqη = Ωmnpq

η̃cγmnpqrsη = −15iJ[mnJpqJrs]; η̃γmnpqrsη = 0

η̃cγmnpqrstuη = 105J[mnJpqJrsJtu]; η̃γmnpqrstuη = 0 ,

(A.40)

where we have made use of the identities

√
g εmnpqrstuJ

rsJ tu = 24J[mnJpq]√
g εmnpqrstuJ

tu = 30J[mnJpqJrs]√
g εmnpqrstu = 105J[mnJpqJrsJtu] .

(A.41)

Note that the bilinears η̃γ(p)η, η̃cγ(p)η, vanish for p odd. The last line of equation
(A.39) together with the last line of the equation above imply

Ω[ijklΩ
∗
mnpq] =

8

35

√
g εijklmnpq . (A.42)
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Finally, the following relations are useful in the analysis of the Killing spinor equa-
tions:

γmη = (Π+)m
nγnη

γmnη = iJmnη −
1

8
Ωmnpqγ

pqηc

γmnpη = 3iJ[mnγp]η −
1

2
Ωmnpqγ

qηc

γmnpqη = −3J[mnJpq]η −
3i

4
J[mnΩpq]ijγ

ijηc + Ωmnpqη
c .

(A.43)

The action of γm1...mp , p ≥ 5, on η can be related to the above formulæ, using the
Hodge property of gamma matrices (A.19).

A.2.2 Useful formulæ

In order to solve the dilatino equations, the following are used:

F0η = f0η

F1η = h
(0,1)
1|m γmη

F2η = 4if2η −
1

16
f
(0,2)
2|mnΩ

mnpqγpqη
c

F3η = 3ih
(0,1)
3|m γmη + 8h̃

(1,0)
3|m γmη

c

F4η = −12f4η + 16f̃ ∗
4 η

c − i

8
f
(0,2)
4|mnΩ

mnpqγpqη
c ,

(A.44)

and similarly for the Hodge duals of k-forms Fk with k > 4. Obviously, the decom-
posed NSNS flux H1,3 satisfies similar relations as F1,3.

For the gravitino equations with M = m, we require

H3|mη = 3i(h
(1,0)
3|m + h

(0,1)
3|m )η −

(
i

8
h
(0,1)
3|n Ω nrs

m +
1

16
h
(1,2)
3|mpqΩ

pqrs

)
γrsη

c

− 1

2
h̃
(1,0)
3|n Ω∗ npq

m γpqη

(A.45)
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A. Conventions, notation, identities

and

F0γmη = f0γmη

F1γmη = 2f
(1,0)
1|m η +

1

8
f
(0,1)
1|n Ω npq

m γpqη
c

F2γmη =
(
2if2γm − 2f

(1,1)
2|mnγ

n
)
η − 1

4
f
(0,2)
2|np γqΩ

npq
m ηc

F3γmη = 6if
(1,0)
3|m η − 16f̃

(1,0)
3|m ηc +

(
1

8
if

(0,1)
3|n Ω nrs

m − 1

8
f
(1,2)
3|mpqΩ

pqrs

)
γrsη

c

F4γmη = −4if
(1,1)
4|mnγ

nη +
1

6
f
(1,3)
4|mnpqγrΩ

npqrηc ,

(A.46)

and similarly for the Hodge duals of k-forms Fk with k > 4.

A.3 SU(5)-structure identities

Torsion classes and the covariance of the pure spinor

Similar to the SU(4)-structure case, the obstruction to covariant constancy of η with
respect to the Levi-Civita connection is expressible in terms of the torsion classes.
Let us first note that the intrinsic torsion decomposes as

Wint ∈ (5⊕ 5̄)⊗ (1⊕ 10⊕ 1̄0)

� (10⊕ 1̄0)⊕ (40⊕ 4̄0)⊕ (45⊕ 4̄5)⊕ (5⊕ 5̄)⊕ (5⊕ 5̄) ,
(A.47)

and hence all torsion classes are present in the decomposition of (dJ, dΩ) as given in
section 1.5, namely

dJ = W ∗
1 �Ω +W3 +W4 ∧ J + c.c.

dΩ = −16i

3
W1 ∧ J ∧ J +W2 ∧ J +W ∗

5 ∧ Ω .
(A.48)

Using this, it is found that

∇mη =

(
W4 −

1

2
W5 − c.c.

)
η (A.49)

+

(
− i

48
Ω∗

mnpqrW
qr
1 +

1

4
Π+

m[nW
∗
4p] −

i

8
W ∗

3mnp +
i

4!25
W2mxyzΩ

∗ xyz
np

)
γnpη .

The covariant derivative of η can be parametrised as

∇mη = φmη + ϑm,nγ
nηc + ϕm,npγ

npη , (A.50)

161



for some complex coefficients φm ∼ (5⊕ 5̄), ϑm,n ∼ (5⊕ 5̄)⊗5, ϕm,np ∼ (5⊕ 5̄)⊗ 1̄0.
Moreover, the purity of η implies η̃γm∇nη = 0 and thus ϑm,n = 0. Similarly the

constancy of the norm of η implies that φm is imaginary: φ
(1,0)∗
m = −φ

(1,0)
m . We can

further decompose

(5⊕ 5̄)⊗ 1̄0 = 5̄⊕ 10⊕ 40⊕ 45 , (A.51)

which explicitly amounts to parameterising

ϕm,pq = Ω∗ ab
mpq E

(2,0)
ab +Π+

m[pF
(0,1)
q] +G(1,2)

mpq +H
(3,1)
mabcΩ

∗abc
pq , (A.52)

where now all coefficients on the right-hand side above are in irreducible SU(5)
modules. Taking the above into account we can now multiply (A.50) on the left with
η̃cγij and η̃γijklr, and antisymmetrise in all free indices in order to form dJ and dΩ
respectively as spinor bilinears. Comparing with (A.48) then leads to (A.49).

A.3.1 Identities

The spinor bilinears are given by:

η̃cη = 1; η̃γmη = 0

η̃cγmnη = iJmn; η̃γmnpη = 0

η̃cγmnpqη = −3J[mnJpq]; η̃γmnpqrη = Ωmnpqr

η̃cγmnpqrsη = −15iJ[mnJpqJrs]; η̃γmnpqrstη = 0

η̃cγmnpqrstuη = 105J[mnJpqJrsJtu]; η̃γmnpqrstuvη = 0

η̃cγmnpqrstuvwη = 945iJ[mnJpqJrsJtuJvw] ,

(A.53)
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A. Conventions, notation, identities

whereas the bilinears η̃γ(2p)η, η̃cγ(2p−1)η, vanish. The following useful identities can
be proved by Fierzing

1

5!× 25
ΩvwxyzΩ

∗vwxyz = 1

1

4!× 25
ΩawxyzΩ

∗mwxyz = (Π+)a
m

1

12× 25
ΩabxyzΩ

∗mnxyz = (Π+)[a
m(Π+)b]

n

1

12× 25
ΩabcyzΩ

∗mnpyz = (Π+)[a
m(Π+)b

n(Π+)c]
p

1

4!× 25
ΩabcdzΩ

∗mnpqz = (Π+)[a
m(Π+)b

n(Π+)c
p(Π+)d]

q

1

5!× 25
ΩabcdeΩ

∗mnpqr = (Π+)[a
m(Π+)b

n(Π+)c
p(Π+)d

q(Π+)e]
r

(A.54)

Moreover:

εmnpqrstuvwJ
mnJpqJrsJ tuJvw = 3840

εmnpqrstuvwJ
pqJrsJ tuJvw = 384Jmn

εmnpqrstuvwJ
rsJ tuJvw = 144J[mnJpq]

εmnpqrstuvwJ
tuJvw = 120J[mnJpqJrs]

εmnpqrstuvwJ
vw = 210J[mnJpqJrsJtu]

εmnpqrstuvw = 945J[mnJpqJrsJtuJvw] .

(A.55)

The last line of the above equation together with the last line of (A.54) imply

Ω[a1...a5Ω
∗
a6...a10]

= − 8i

63
εa1...a10 ; Ωa1...a5 = − i

5!
εa1...a10Ω

a6...a10 . (A.56)

Finally, the following relations are useful in the analysis of the Killing spinor equa-
tions.

γmη = (Π+)m
nγnη

γmnη = iJmnη + (Π+)
p

[m (Π+)
q

n] γpqη

γmnpη = 3iJ[mnγp]η +
1

8
Ωmnpqrγ

qrηc

γmnpqη = −3J[mnJpq]η + 6iJ[mn(Π
+) r

p (Π+)
s

q] γrsη −
1

2
Ωmnpqrγ

rηc

γmnpqrη = −Ωmnpqrη
c +

5i

4
J[mnΩpqrstγ

stηc − 15J[mnJpqγr]η .

(A.57)
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A.3.2 Useful formulæ

Formulæ needed for the dilatino equations

In order to solve the dilatino equations, the following are used:

F1η = f
(0,1)
1|m γmη

F2η = 5if2η +
1

2
f
(0,2)
2|mnγ

mnη

F3η = 4if
(0,1)
3|m γmη + 4f

(2,0)
3|mnγ

mnηc

F4η = −20f4η +
3i

2
f
(0,2)
4|mnγ

mnη − 16f̃
(1,0)
4|m γmηc

F5η = 0 .

(A.58)

The necessary expression for Hη is analogous to the decomposition of F3.

Intermediary results used to solve the gravitino equations are given by

F1γmη = 2f
(1,0)
1|m η − Π+

mnf
(0,1)
1|p γnpη

F2γmη = 3if2γmη − 2f
(1,1)
2|mnγ

nη +
1

16
f
(0,2)
2|qr Ω qr

mnp γnpηc

F3γmη = 8if
(1,0)
3|m η − 2iΠ+

mnf
(0,1)
3|p γnpη − 16f

(2,0)
3|mnγ

nηc + f
(1,2)
3|mnpγ

npη

F4γmη = −4f4γmη − 6if
(1,1)
4|mnγ

nη − 32f
(1,0)
4|m ηc − 1

24
f
(1,3)
4|mqrsΩ

qrs
np γnpηc +

i

16
f
(0,2)
4|qr Ω qr

mnp γnpηc

F5γmη = −24f
(1,0)
5|m η + 2if

(1,2)
5|mnpγ

npη − 1

4!
f
(1,4)
5|mnpqrΩ

npqrsγsη
c . (A.59)

Furthermore, the NSNS flux satisfies

Hmη = 4i
(
h(0,1)
m + h(1,0)

m

)
η + i(Π+)mnh

(0,1)
p γnpη +

1

2
h(1,2)
mnpγ

npη +
1

4
h(2,0)
qr Ω∗ qr

mnp γnpη; .

(A.60)

In addition, when doing the generalised geometric IIA computation, the identities

(h(0,2)�Ω) ∧ Ω∗ = −16i

3
h(0,2) ∧ J3

(f̃
(1,0)
4 �Ω∗) ∧ J = if̃

(0,1)
4 ∧ Ω∗ .

(A.61)

are convenient.
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Appendix B

Intrinsic torsion

As seen in section 3, a major reason why existence of a G-structure is beneficial to
solve the supersymmetry equations is due to the presence of torsion classes. From
a practical point of view, torsion classes allow for an algebraic description of the
Killing spinor equations. Furthermore, they characterise the geometry of the internal
manifold. In this appendix, intrinsic torsion and torsion classes will be investigated
in some more depth. As is often the case in physics, a thorough understanding
of the underlying geometrical concepts is not really necessary to be able to do the
computations, yet it certainly might assist in figuring out how to move forward from
this point on. At the very least, such an understanding is gratifying. As usual, proofs
will be sketched at best; see for example [19] or [15] for a more thorough approach.
Mostly, we follow the approach of [98], [14].

In section B.1, connections on vector bundles as well as principal bundles are
discussed. In section B.2, we apply this to give a definition for intrinsic torsion and
characterisation in terms of connections. In section B.3, the holonomy of a connection
is defined, and the relation of intrinisic torsion to holonomy is described.

B.1 Connections

Differentiation of sections of fibre bundles is characterised in terms of connections.
It will be necessary to understand in some detail both connections on vector bundles
as well as on principal bundles, both in terms of differentiation as well as in terms
of subbundles, in order to understand intrinsic torsion.

Definition B.1.1. Let E be a vector bundle. A connection on E is a map ∇ :
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Γ(M,E) → Γ(M,E ⊗ T ∗M) such that ∇ is a linear differential operator:

∇(fσ) = f∇σ + df ⊗ σ , σ ∈ Γ(M,E), f ∈ C∞(M)

∇(σ1 + σ2) = ∇σ1 +∇σ2 .
(B.1)

We will use the standard notation ∇Xσ ≡ X�∇σ such that one could also think of
∇ as a map ∇ : Γ(M,E)⊗ X(M) → Γ(M,E), (X, σ) �→ ∇Xσ.

Given a connection on T ∗M , a unique connection on the tensor bundle T (k,l)M
can be induced, which will also be denoted ∇.

A completely equivalent way of thinking about connections is in terms of hor-
izontal and vertical subbundles. The advantage is that these concepts generalise
straightforwardly to principal bundles as well. Let us first consider such subbundle
connections in the context of vector bundles. Given a vector bundle E, one can con-
sider the map dπ : TE → TM . Since for any point x ∈ E with π(x) = p, Ker(dπx)
is a vector subspace of TE, and since dπ is surjective, one can define the vector
subbundle V → E with fibres Vx ≡ Ker(dπx). This subbundle is called the vertical
subbundle. Staring at definitions for a while one can convince oneself that Vx � TxEp

with isomorphism dxιp, with ιp : Ep ↪→ E the inclusion map.

Definition B.1.2. Let E be a vector bundle. A horizontal subbundle H is a sub-
bundle of TE that is complementary to the vertical subbundle, in the sense that
∀x ∈ E, Vx ⊕Hx = TxE and Vx ∩Hx = {0}.

Note that since Vx = Ker(dπx) and dπx : Vx⊕Hx → TpM is surjective and linear,
Hx � TpM .

Let us now consider connections on principal bundles; they are identical to the
horizontal subbundles defined for vector bundles, with the additional demand that
the horizontal subbundle is invariant under the group action.

Definition B.1.3. Let (P,G,M, π) be a principal bundle. Then dπ : TP → TM
defines the vertical subbundle V with Vx ≡ Ker(dπx) ∀x ∈ P . A connection on a
principal bundle P is a horizontal subbundle H that is complementary to the vertical
subbundle and additionally, is invariant under the action of G on P .

Given a Lie algebra element X ∈ g, it can be associated to a vertical vector field
X̂V ∈ X(V ) satisfying

X̂V
x =

d

dt
x exp(tX)|t=0 . (B.2)
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B. Intrinsic torsion

In fact, this defines a isomorphism between Vx and g (with the Lie bracket given by
the vector field bracket restricted to the fibre) and thus, Hx � TpM .

Another way to define the connection is to view the horizontal subbundle as the
kernel of a connection one-form. Given a horizontal bundle, the connection one-form
is constructed as follows. Let X̂ ≡ X̂V +X̂H be the decomposition of a vector field on
P in terms of its horizontal and vertical component. Then the connection one-form
ω : X(P ) → g can be defined as

ωx(X̂x) = X . (B.3)

In other words, ω ∈ Ω1(P ; g) is a Lie algebra-valued one-form on P . Note that ω can
be seen as composition between projection onto the vertical vector fields, followed
by the isomorphism identifying the vertical fibres with the Lie algebra. This shows
that existence of a horizontal subbundle implies existence of a connection one-form.
Conversely, given a connection one-form, its kernel can be defined to be the horizon-
tal subbundle. Hence connection one-forms and horizontal subbundles are equivalent.

The connection one-form is a globally well-defined form on the principal bundle
P . However, generally, it is more convenient not to deal with forms on P but with
forms on the base space M instead. It is possible to relate the connection one-form ω
to a one-form on M , but the price to pay is that this form is not globally well-defined.

Let Uα ⊂ M , and let τα : π−1(Uα) → Uα × G be a local trivialisation of the
principal bundle. To this local trivialisation, it is possible to uniquely associate a
canonical local section sα ∈ Γ(Uα, π

−1(Ua)) defined by

τα ◦ sα(p) = (p, e) . (B.4)

In other words, such a (local) section is the principal bundle equivalent of the (global)
zero section of a vector bundle. Given a local section as such, the connection one-form
on M can be defined as the pullback of ω by means of sα:

Aα ≡ (sα)
∗ ω ∈ Γ (Uα, T

∗M ⊗ g) , (B.5)

and is perhaps better known under the name gauge field. The transformation rules
can be deduced by noting that ω is G-equivariant, in the sense that

R∗
gω = adg−1ω , (B.6)

with R∗
g the pullback of right multiplication with g on P . Let

ταβ(p, h) = (p, gαβ(p)h) (B.7)
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such that gαβ are the transition functions of the principal bundle. Then the gauge
field transforms1 as

Aα = adgαβ
Aβ + (dgαβ)g

−1
αβ (B.8)

on overlaps. Although this is not the proper transformation rule for a globally defined
section, the difference between two gauge fields is in fact globally defined.

Definition B.1.4. Let P be a principal bundle with structure group G, with k-
dimensional Lie algebra g. Then the adjoint bundle is the associated vector bundle
P × g/ ∼, with the representation of G on g given by the adjoint representation.

Consider two gauge fields Aα, A
′
α associated to two connections ω, ω′. Then

Aα ≡ Aα − A′
α = adgαβ

Aβ (B.9)

and hence indeed, A ∈ Γ(M,T ∗M ⊗ adP ) is globally well-defined.

Finally, let us describe the relation between connections on vector bundles and con-
nections on the corresponding frame bundles.

Proposition B.1.1. Connections ∇ on E can be mapped bijectively onto connec-
tions on the corresponding frame bundle FE.

See the discussion around Definition 2.18 in [14] for a precise construction of
the map. The story is more complicated for generic principal bundles, but these
are not relevant for our purposes. Let us end the discussion on connections with
two key notions with respect to intrinsic torsion, the first related to connections on
subbundles, the second the torsion of a connection.

Definition B.1.5. Let Q ⊂ FTM be a G-structure on M and let H ⊂ TFTM be
a horizontal subbundle on the frame bundle of M . Then H reduces to Q if H ⊂ TQ.
Let ∇ be the differential operator acting on tensors of M induced by H2. Then ∇
is said to be compatible with Q if H reduces to Q.

Definition B.1.6. Let∇ be a connection on TM . Then the torsion of the connection
T (∇) ∈ Γ(M,TM ⊗∧2 T ∗M) is defined by

T (∇)(X, Y ) ≡ ∇XY −∇YX − [X, Y ] (B.10)

for X, Y ∈ X(M).

1We only consider principal bundles satisfying G ⊂ GL(n,�).
2To be precise, H induces a connection one-form ω on FTM , which induces a local connection

one-form A on M , which induces a differential operator ∇ acting on sections of TM , which induces
a differential operator ∇ acting on sections of the tensor bundle.
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B. Intrinsic torsion

B.2 Intrinsic torsion

Given the knowledge of connections, we are now in a position to define the intrinsic
torsion of a G-structure.

First, there is the following relation between G-structures and connections.

Proposition B.2.1. Let Q be a G-structure defined by a tensor φ, i.e., G is the
stabiliser of φ. Let ∇ be the connection acting on tensors of M associated with a
horizontal subbundle H ⊂ TFTM . Then

∇φ = 0 (B.11)

if and only if ∇ is compatible with Q. There is no topological obstruction to the
existence of such a connection.

Consider now two connections ∇̃1,2 which are compatible with Q, such that

A(∇̃1, ∇̃2) ≡ ∇̃1 − ∇̃2 ∈ Γ(adQ⊗ T ∗M) . (B.12)

Let τ be defined by

ι : adQ⊗ T ∗M ↪→ adFTM ⊗ T ∗M � TM ⊗ T ∗M ⊗ T ∗M

ASym : TM ⊗ T ∗M ⊗ T ∗M → TM ⊗
∧2

T ∗M

τ ≡ ASym ◦ ι ,
(B.13)

that is, τ the composition of inclusion and antisymmetrising, with the diffeomor-
phism on the first line following from the fact that for M n-dimensional, gl(n) =
End(TpM) � (TM ⊗ T ∗M)p. Then

τ(A) = T (∇̃1)− T (∇̃2) , (B.14)

with T the torsion. Define the space

Wint ≡
(
TM ⊗

∧2
T ∗M

)
/Im (τ) , (B.15)

which depends purely on the topology of Q. Thus, we find the following:

Definition B.2.1. Let Π : TM⊗∧2 T ∗M → Wint be the projection operator. Then
the intrinsic torsion of a G-structure is given by

Tint(Q) = Π ◦ T (∇) , (B.16)

for any connection ∇ on Q: the intrinsic torsion is independent of this choice of
connection.
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The intrinsic torsion is therefore an obstruction to finding connections which
are 1) torsion-free and 2) compatible with the G-structure Q. Let us consider the
application of this concept to O(n)-structures, which are associated to Riemannian
metrics. Since by using the metric so(n) � ∧2 T ∗

pM , the map τ defined in (B.13)
is a diffeomorphism and hence Wint is trivial. Therefore, a connection exists that is
compatible with the Riemannian metric and is torsion-free, namely the Levi-Civita
connection ∇. On the other hand, consider a G-structure QG with G ⊂ O(n) and
a connection ∇̃1 that is compatible with QG, but not necessarily torsion-free. Since
∇̃1 is compatible with QG, clearly it will also be compatible with the O(n)-structure
QO(n) and hence

A(∇, ∇̃1) = ∇− ∇̃1 ∈ Γ
(
M, adQO(n) ⊗ T ∗M

)
. (B.17)

Setting so(n) = g⊕ g⊥ and denoting adQ⊥
G ≡ adQO(n)/adQG, it follows that

A = Ag +Ag⊥ . (B.18)

Since the connection one-forms compatible with QG are g-valued, the best one can do
to ‘gauge away’ the torsion is to define the QG-compatible connection ∇̃2 ≡ ∇̃1−Ag.
This leads to the conclusion that

Wint = adQ⊥
G ⊗ T ∗M . (B.19)

Thus, the intrinsic torsion is given precisely by ∇φ, i.e., by the failure of the torsion-
free Levi-Civita connection to be compatible with QG.

A perhaps more practical way of viewing intrinsic torsion is to note the following.
Assume that φ ∈ Ωk(M). Then dφ and d � φ are expressible in terms of ∇φ, and
hence in terms of the intrinsic torsion. By the existence of the G-structure, the tran-
sition functions take value in G and hence, dφ, d�φ can be globally decomposed into
irreducible representations of G. These are the torsion classes, which take value in
the (decomposition of) Wint. The fact that the torsion classes fully encode the intrin-
sic torsion can be checked by verifying that all components of Wint = adQ⊥

G ⊗ T ∗M ,
decomposed in irreducible representations of G, are present in the decompositions of
dφ, d � φ. This has been done explicitly for SU(4) and SU(5)3 in (A.34), (A.47); a
more detailed proof, albeit for G2 instead, is given in [99].

3Note that due to the fact that for SU(n)-structures one has Jn ∼ Ω∧Ω∗ ∼ voln, it follows that
�J ∼ Jn−1, �Ω ∼ Ω∗ and hence the derivative of the Hodge dual contains no new information.
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B. Intrinsic torsion

B.3 Holonomy

A concept that sheds a different light on intrinsic torsion is holonomy. To properly
define holonomy, let us first consider the following reminder:

Definition B.3.1. Let γ : [0, 1] → M be a piecewise smooth curve, and let σ ∈
Γ(M,E) be a section of a vector bundle E of rank k. Then σ is parallel if ∇γ̇(t)σ = 0
∀t ∈ [0, 1]. Let v ∈ Ep be a vector at p ≡ γ(0). Then there exists a unique parallel
section s ∈ Γ(M,E) such that s(p) = v. The parallel transport of v along γ is defined
as Pγ(v) = σ (γ(1)).

Given the fact that parallel transport is a map Pγ : Eγ(0) → Eγ(1) for a given
curve, one might wonder what sort of transformations of vectors one can attain in
the same fibre.

Definition B.3.2. Let C(p) be the set of piecewise smooth curves γ : [0, 1] → M
with γ(0) = γ(1) = p. The holonomy of M with connection ∇ at p is given by

Holp(∇) = {Pγ | γ ∈ C(p)} . (B.20)

Some relevant properties of the holonomy are as follows:

• The holonomy is a subgroup of GL(k,�).

• Up to conjugation with elements in GL(k,�), the holonomy is independent of
the base point and can be denoted Hol(∇).

• If M is simply connected, Hol(∇) is connected. In case M is not, one can
restrict the holonomy group to only parallel transports along null-homotopic
loops such that that this restricted holonomy group Hol0(∇) ⊂ Hol(∇) is the
connected component of the holonomy containing �.

One of the most important results with respect to holonomy is that there is a clas-
sification theorem with regards to the possible holonomy groups of the Levi-Civita
connection.

Definition B.3.3. A Riemannian manifold (M, g) is locally reducible if ∀p ∈ M ,
there is an open neighborhood Up � p such that there exists opens with metrics
(U1, g1), (U2, g2) with Up isometric to U1×U2 and the metric satisfying g|Up = g1+g2.

Definition B.3.4. A Riemannian manifold is locally symmetric if and only if ∇R =
0, where R is the Riemann curvature tensor and ∇ is the Levi-Civita connection.
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Theorem (Berger) B.3.1. Let (Mn, g) be a Riemannian manifold that is simply
connected, irreducible, and nonsymmetric. Then Hol(∇) is one of the following:

1. SO(n)

2. U(n) for 2n ≥ 2

3. SU(n) for 2n ≥ 2

4. Sp(n) for 4n ≥ 2

5. Sp(n)Sp(1) for 4n ≥ 2

6. G2 for n = 7

7. Spin(7) for n = 8

The relation between holonomy and intrinsic torsion is then as follows.

Proposition B.3.2. Let Q be a G-structure on (M, g). Then Hol(∇) ⊂ G, and
Hol(∇) = G if and only if all torsion classes vanish.

Thus, the intrinsic torsion can also be considered as the obstruction for the man-
ifold to have special holonomy. This interpretation is especially convenient when
considering SU(n)-structure manifolds to be generalisations of proper Calabi-Yau
manifolds, which by definition have holonomy group SU(n).
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Appendix C

Construction of calibration forms

In this appendix, it will be demonstrated explicitly how to construct generalised cali-
bration forms for static magnetic branes in type IIB supergravity vacua on �1,1×M8

with Killing spinor decomposition as given by (3.9), following the procedure of [83].
In order to ensure that a polyform is a generalised calibration form, an algebraic
and a differential condition need to be satisfied. The algebraic inequality follows
from the characterisation of κ-symmetric branes, the differential condition from the
supersymmetry equations. We will describe the general case, plug in our specific
setup, and deduce the calibration form for branes on S = �1,1 × Σ.

Let us define the so-called ‘background structures’, which are given in terms of the
Killing spinors as

Ψ ≡ −
10∑
k=0

1

k!
ε̃1ΓM1...Mk

ε2dX
M1 ∧ ... ∧ dXMk

K ≡ −1

2

(
ε̃1Γ

Mε1 + ε̃2Γ
Mε2
)
∂M

K̃ ≡ −1

2
(ε̃1ΓMε1 − ε̃2ΓMε2) dX

M .

(C.1)

Let us also define the generalised vector fields P ,K ∈ Γ(T ⊕ T ∗) satisfying

P ≡ −μpe
−φ
√
− det(g|S + Fwv)∂

τXM∂M

K ≡ K + K̃ ,
(C.2)

where for P , use has been made of the magneticity of the worldvolume flux, i.e.,
∂τ�Fwv = 0. Finally, let us define a generalised metric G̃ ≡ diag(g, g−1).
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In [91], it was shown that the supersymmetry equations imply

dH(e
−φΨ) = −K · F , (C.3)

with F the total RR flux. In [83], it was shown that

−G̃(P ,K) ≥
(
e−φΨ ∧ eFwv

)
Σ′ , (C.4)

for a D-brane on S = � × Σ′ ⊂ M10 and with equivalence if and only the D-brane
on the generalised submanifold (Σ′,Fwv) is κ-symmetric.

Using our Killing spinor ansatz (3.5), the background structures reduce to

Ψ = α2(dt+ dx) ∧ Re
(
Ψ1 + eiϑΨ2

)
K = α2 (∂t − ∂x)

K̃ = 0 ,

(C.5)

with εiϑ ≡ ζ̃γ0ζ and Ψ1,2 defined by acting with the Clifford map on (6.13). Plugging
these into (C.3) together with the RR flux decomposition (3.3) and noting that
α2 = eA leads to

dH

(
e2A−φRe

(
Ψ1 + eiϑΨ2

))
= F el . (C.6)

Using a parametrisation t = τ , x = σ1 on our spacetime-filling D-brane on S =
�

1,1 × Σ, (C.4) reduces to(
e2A−φRe

(
Ψ1 + eiϑΨ2

)
∧ eFwv

)
Σ
≤ dp−1σ e2A−φ

√
det(g|Σ + Fwv) . (C.7)

Note that this inequality would have been trivialised for branes of spacetime codi-
mension one, i.e., wrapping � × Σ, Σ ⊂ M8. Comparing with the definition, it
follows that

ω ≡ e2A−φRe
(
Ψ1 + eiϑΨ2

)
(C.8)

is a calibration form for spacetime filling D-branes.
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Appendix D

Calibrated probe branes on
Stenzel Space

The purpose of this section is to determine which are the admissible calibrated probe
branes on the N = (1, 1) IIA vacuum geometry discussed in section 4.2.

Our setup will be as follows. Consider the background structures as given by
(C.1), and a probe Dp-brane with (p+ 1)-dimensional worldvolume Σ1

and worldvolume electromagnetic fieldstrength Fwv whose Bianchi identity reads:

dFwv = H|Σ . (D.1)

The necessary and sufficient conditions for the Dp-brane to be calibrated can then
be formulated as follows [83]:

(
dxM ∧Ψ ∧ eFwv

)
|Σ = KM

√
− det(g|Σ + Fwv) d

p+1σ(
∂M�Ψ ∧ eFwv

)
|Σ = K̃M

√
− det(g|Σ + Fwv) d

p+1σ ,
(D.2)

where g|Σ is the induced metric on the worldvolume and σa, a = 1, . . . , p + 1, are
coordinates of Σ; in both left-hand sides above it is understood that we only keep
the top (p+ 1)-form.

Let us note two important corollaries that follow from (D.2). Firstly it can be
shown that the electric worldvolume field defined by E ≡ ιKFwv is constrained to

1Unfortunately, we have been using S for both brane worldvolumes and Stenzel space throughout.
In this section, Σ will refer to the the total worldvolume of the D-brane rather than just the internal
cycle.
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satisfy:

E = K̃ |Σ . (D.3)

Secondly it can be shown that the vector K belongs to the tangent space of Σ:

K ∈ TΣ . (D.4)

Worldvolume equations of motion

Let the worldvolume be parameterized by σα, α = 1, . . . , p+1. The dynamical fields
on the worldvolume of the branes are the embedding coordinates XM(σ) and the
gauge field Aα. Varying the Dp-brane action,

SDp = −μp

∫
Σ

e−φ
√
− det(g|Σ + Fwv) d

p+1σ + μp

∫
Σ

C ∧ eFwv , (D.5)

with respect to XM(σ) we obtain

∂βP
β
M = 0 , (D.6)

where we have defined

P β
M ≡ e−φ

√
−G
(
G(αβ)gMα +G[αβ]BMα

)
− 1

p!
εβα1...αp

[
ιM(C ∧ eB) ∧ eFwv−B

]
α1...αp

Gαβ ≡ (g |Σ)αβ + (Fwv)αβ ; gMα ≡ gMN∂αX
N ; BMα ≡ BMN∂αX

N .

(D.7)

Varying (D.5) with respect to Aα we obtain

∂βΠ
αβ = 0 , (D.8)

where we have defined

Παβ ≡ e−φ
√
−GG[αβ] − 1

p!
εαβγ1...γp

(
C ∧ eFwv

)
γ1...γp

. (D.9)
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D. Calibrated probe branes on Stenzel Space

N = (1, 1) IIA CY vacua

For the N = (1, 1) IIA CY vacua of section 3.3.1 the two ten-dimensional Majorana-
Weyl Killing spinors are given by (3.8), where η is a unimodular covariantly-constant
spinor of M8 and α2 = eA = H−1/2. It is then straightforward to compute:

Ψ = H−1/2
(
1 +H−1dt ∧ dx

)
∧ ϕ ; K =

∂

∂t
; K̃ = −H−1dx , (D.10)

where we have defined

ϕ ≡ Re
[
eiθ(Ω + eiJ)

]
. (D.11)

Provided a Dp-brane is calibrated, i.e. (D.2) is satisfied, its action takes the form:

SDp = −μp

∫
Σ

( 1

gs
dt ∧ ϕ− C

)
∧ eFwv , (D.12)

where μp = (2π)2p(α′)−
p+1
2 and we have used the fact that the DBI part of the action

saturates the BPS bound

SDBI
Dp = −μp

∫
Σ

e−φ
√
− det(g|Σ + Fwv) d

p+1σ = −μp

∫
Σ

1

gs
dt ∧ ϕ ∧ eFwv , (D.13)

with eφ = gsH−1/2.
From (D.4) and (D.10) it follows that a calibrated D-brane must extend along

the time direction t. We will further distinguish two different subcases according to
whether the Dp-brane extends along the spatial non-compact direction x (in which
case it is spacetime-filling) or not (in which case it is a domain wall).

D.1 Spacetime-filling Dp-branes

Let us assume that Σ wraps t, x and an odd (p− 1)-cycle inside M8. Explicitly let
Σ be parameterized by coordinates (t, x, σa), a = 1, . . . , p− 1, so that

xm = xm(σ) , (D.14)

where xm are coordinates of M8. The condition (D.3) implies that the worldvolume
fieldstrength is of the form:

Fwv = −H−1dt ∧ dx+ dx ∧ f + F̂wv , (D.15)
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where we have defined

f = fa dσ
a ; F̂wv =

1

2

(
F̂wv

)
ab

dσa ∧ dσb . (D.16)

Moreover it follows from the form of the NSNS three-form in (3.21) that for the
worldvolume Bianchi identity (D.1) to be satisfied,the last two terms on the right-
hand side of (D.15) must be closed. Note that the electric worldvolume field is
necessarily non-vanishing.

Taking (D.10) into account, equations (D.2) can be seen to reduce to the following
condition [

H−1/2f ∧ ϕ |Σ ∧ eF̂wv

]
p−1

=
√
− det(g|Σ + Fwv) d

p−1σ , (D.17)

where on the left-hand side above it is understood that we keep only the (p−1)-form.
Let us now describe explicitly some calibrated spacetime-filling branes.

D2

Consider the case of a D2 brane Σ extending along (t, x) and wrapping an internal
direction parametrized by ψ. We take ψ such that

ν|Σ = −dψ , σj|Σ = σ̃j|Σ = 0 (D.18)

for the left-invariant forms2 ν, σj, σ̃j on V5,2.
Specializing (D.15) to the case at hand, the worldvolume fieldstrength reads:

Fwv = −H−1dt ∧ dx+ dx ∧ f ; f = fψdψ ; F̂wv = 0 , (D.19)

and automatically satisfies (D.1) for fψ an arbitrary function of x, ψ. Moreover:[
f ∧ ϕ |Σ ∧ eF̂wv

]
1
= fψdψ , (D.20)

and

g|Σ + Fwv =

⎛⎝ −H−1 −H−1 0
H−1 H−1 fψ
0 −fψ c2

⎞⎠ =⇒ − det(g|Σ + Fwv) = H−1f 2
ψ , (D.21)

2See [66] for an explicit parametrization of the left-invariant forms in terms of coordinates on
V5,2. The left-invariant forms σj are not to be confused with the coordinates σa on Σ. We do not
refer to σj elsewhere in this section.
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D. Calibrated probe branes on Stenzel Space

so that the calibration condition (D.17) is satisfied provided fψ is everywhere positive.
Note that the DBI part of the action evaluates to:

SDBI
D2 = −μ2

∫
Σ

e−φ
√
− det(g|Σ + Fwv) d

3σ = −μ2

∫
Σ

1

gs
H1/2H−1/2fψdtdxdψ .

(D.22)

The above is in agreement with the BPS bound (D.13), as it should.
Note that the fieldstrength Fwv is not closed, in accordance with (D.1). To

identify the wotldvolume electromagnetic field F in Fwv we should split:

Fwv = B |Σ + 2πα′F , (D.23)

with F closed. The form of B will impose constraints on the quantization of Page
charges in the RR sector.

We should finally check the worldvolume equations of motion. Consider (D.7),
(D.9). In order to calculate these explicitly, the RR flux needs to be specified ex-
plicitly. For convenience, we consider only massless IIA, i.e., we set the RR flux
F0 = F0 = 0. Then regardless of which other RR fluxes we turn on (other scalar
terms, (1,1)-forms, (2,2)-forms as discussed in section 4.2), the Wess-Zumino term
reduces to

C ∧ eFwv
∣∣
Σ
= 0 . (D.24)

This results in:

P β
M =

1

gs

⎛⎝ fψ 0 0
0 0 0
c2 0 0

⎞⎠ ; Παβ =
1

gs

⎛⎜⎝ 0 − c2

fψ
0

c2

fψ
0 −1

0 1 0

⎞⎟⎠ , (D.25)

where the indices M , α should be understood as enumerating the rows, while the
index β enumerates the columns. It can then be checked that the XM -eoms (D.6) are
automatically satisfied. The Aα-eoms (D.8) are also automatically satisfied except
for the Gauss law constraint ∂αΠ

tα = 0, which imposes that fψ should only depend
on the coordinate ψ.

D.2 Domain wall Dp-branes

Let us now assume that Σ wraps t and an even p-cycle inside M8. Explicitly let Σ
be parameterized by coordinates (t, σa), a = 1, . . . , p, so that

xm = xm(σ) , (D.26)
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where xm are coordinates of M8. The condition (D.3) implies that the worldvolume
fieldstrength is of the form:

Fwv =
1

2
(Fwv)ab dσ

a ∧ dσb , (D.27)

i.e. contrary to the spacetime-filling case here there can be no electric worldvolume
field. Moreover it follows from the form of the NSNS three-form in (3.21) that for
the worldvolume Bianchi identity (D.1) to be satisfied Fwv must be closed.

Taking (D.10) into account, equations (D.2) can be seen to reduce to the following
condition [

H−1/2ϕ |Σ ∧ eFwv
]
p
=
√
− det(g|Σ + Fwv) d

pσ , (D.28)

where on the left-hand side above it is understood that we keep only the p-form.
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Appendix E

More on SU(4)-deformed Stenzel
space vacua

E.1 N = (2, 0) IIB on Stenzel Space and SU(4)-

structure deformed Stenzel Space

In section 4.2 an analysis is given ofN = (1, 1) IIA supergravity on Stenzel space. We
wish to give a similar analysis of N = (2, 0) IIB supergravity on Stenzel space. The
supersymmetric solutions are given by (3.12). Classes of IIB conformal Calabi-Yau
vacua satisfying the integrability conditions are given in section 3.3.3.

E.1.1 Vacua on Stenzel Space

Let us specialize the solution of section 3.3.3 to the case where M8 is the Stenzel
space S with the appropriate CY metric and trivial conformal factor. We have been
unable to construct closed and co-closed primitive three-forms on Stenzel space so
we will set H = 0 and thus F5 = 0 as follows from the second line of (3.34). The
torsion classes all vanish for Stenzel space, hence (3.31) implies

dA = 0 , (E.1)

leading to a constant warp factor. As a result, all RR fluxes vanish as well, leading
to a fluxless vacuum. In the UV, the metric asymptotes to

ds2UV = Λ2e2ρ
[(
e−2ρds2(�1,1) + dρ2

)
+ ds2(V5,2)

]
, (E.2)

with ρ,Λ defined in (4.31).

181



E.1.2 Vacua on SU(4)-structure deformed of Stenzel space

We now consider S with a different SU(4)-structure. The IIB solution that we have
discussed is CCY, which, together with the requirement that we have an S4 bolt at
the origin, leads to the conclusion that we can only consider S as a CCY conformal
to Stenzel space, as discussed in section 4.3.3 around (4.73). Specifically, we have
b, c fixed in terms of a as

b = tanh
(τ
2

)
a

c =

√
2 + cosh τ

3 cosh2
(
τ
2

)a .
(E.3)

As W4,5 �= 0, the warp factor is no longer constant. Thus, from (3.34), we find that
F3,7 �= 0. Therefore, the torsion constraint (3.31) and the last line of the Bianchi
identities (3.36) impose

−dA = ReW4

∇2e−4A = 0 .
(E.4)

Spelled out in terms of a and A, these constraints are given by

A′ = − 1

2 tanh
(
τ
2

)
a2

(
(tanh

(τ
2

)
a2)′ − 1

2

2 + cosh (τ)

3 cosh2
(
τ
2

) a2)
∂τ

(
tanh3

(τ
2

)
a6e−4AA′

)
= 0 .

(E.5)

The first equation can be solved explicitly to find that

a2 = e−2Aλ2 (2 + cosh τ)1/4 cosh
(τ
2

)
,

which is a consistency check of the fact that the metric under consideration is indeed
CCY, i.e., it confirms (3.32) combined with (4.6). Inserting this into the second
equation yields an equation for the warp factor, solved by

e−10A = k1 − k2

∫ τ dt(
x sinh

(
t
2

))3 , (E.6)

with k1,2 integration constants. Comparison with (4.47) leads to the conclusion that
H5 for the IIB CCY vacuum is equivalent to the homogeneous warp factor for the
IIA Stenzel space vacuum and is thus singular in the IR unless trivialized.
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E. More on SU(4)-deformed Stenzel space vacua

E.2 RR-sourced IIA solutions on SU(4)-deformed

Stenzel space

We have been unable to find flux configurations with non-zero scalars or two-form
on an SU(4)-deformed Stenzel space that satisfy the RR Bianchi identities. We can
violate the RR Bianchis at the cost of introducing more sources. These sources can
be determined analogous to section 4.4.4, but now with both RR and NSNS sources.
The benefit is that, in this case, there is no other constraint than susy on the RR
fluxes at all. A choice of RR fluxes then determines the warp factor. As the RR
fluxes are then independent of a, b, c, one also has the freedom to tailor the geometry
to one’s wishes. We will consider this scenario here briefly to illuminate some more
possibilities for the geometry.

The IIA susy constraint is the torsion constraint (4.82), solved by (4.84). This
leaves two free functions a, b. In particular, these determine two interesting features
to consider: the torsion and the boundary.

Let us first consider the boundary conditions we wish to impose. As before, we
wish to have a (squashed) S4 bolt at the origin, which means that either (α(0), β(0)) =
(a0, 0) or (a(0), b(0)) = (0, b0), a0, b0 �= 0 and the squashing determined by the pro-
portionality of c(0) with respect to a0 or b0. Before, we have considered boundary
conditions such that the space is asymptotically conical. Another geodesically com-
plete option is to put another bolt at τ → ∞. We can have either similar bolts at
the origin and at infinity, or different bolts, and with possibly different squashing.
Our first example will interpolate between these two options, with trivial squashing
on both. Our second example will have similar bolts, with one bolt with a fixed
squashing and the other squashing determined by a free parameter.

The second point to consider is the torsion of the SU(4)-structure. There are
four possibilities for the torsion classes: W2 and W4 ∼ W5 can both be either zero
or non-zero. W2 = 0 has been considered when discussing the four-form solution in
section 4.4.3, while W2 = W4 = W5 = 0 is the CY case, which is necessarily Stenzel
space after imposing (4.77). Our first example below has W2,4,5 �= 0 whereas our
second example has W4 = W5 = 0, W2 �= 0: manifolds with W1 = W3 = W4 = W5 =
0,W2 �= 0 are also referred to as ‘nearly Calabi-Yau’. We reiterate that W2 = 0 with

a bolt at the origin if and only if
(
a
b

)±1
= tanh

(
τ
2

)
. On the other hand, the moduli

space of nearly CY spaces is more difficult to deduce. We will only consider the case
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where c is fixed by the susy constraint (4.82). W4 = 0 is equivalent to

(ab)′ − 1

2
c2 = 0 , (E.7)

which, after imposing (4.84), is equivalent to

ř′ +
3

2
(β +

1

β
)ř − 2 = 0 , ř ≡ α

β2
(E.8)

where we made use of the parametrization (4.83). Solving this equation leads to the
conclusion that, for this specific c, the space is nearly CY if and only if

α2 =
β exp

(∫ τ
dtβ + 1

β

)
k + 2

∫ τ
dt exp

(∫ τ
dtβ + 1

β

) , (E.9)

with k an integration constant.
Example 1: Let us consider the case where we want W2,4,5 �= 0 with bolts at

τ = 0,∞. In this case, it will be easiest to forego the parametrization (4.83). Set

c = λ

a = λ cos(h(τ))

b = λ sin(h(τ)) .

(E.10)

It can easily be verified that this satisfies (4.82) and that W2,4,5 �= 0, for any function
h(τ). Furthermore, if h(0) = 0, (4.77) is satisfied, thus leading to the usual S4 bolt
at the origin. Let us set

h(τ) = k arctan(τ) + (1− k)Nτe−τ . (E.11)

k ∈ [0, 1] interpolates between the solution where cUV = aUV = λ, bUV = 0 for k = 0
and aUV = 0, cUV = bUV = λ for k = 1. Hence we can choose which of the two
possible (non-squashed) S4 bolts we have at τ → ∞. Of course, to swap bolt type at
τ = 0, we need simply swap a ↔ b. We choose the constant N to be suitably small
such that h(τ) ∈ (0, π

2
) ∀τ ∈ (0,∞), hence ensuring that a, b do not vanish or blow

up at any other point. By choosing a suitable warp factor, the external metric can
be taken to be AdS3, globally rather than just asymptotically.

Example 2:
Let us now construct a nearly CY with two similar squashed S4 bolts, i.e.,

a(0) = a0 , b(0) = 0

lim
τ→∞

a(τ) ≡ aUV , lim
τ−>∞

b(τ) = 0 .
(E.12)
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E. More on SU(4)-deformed Stenzel space vacua

Such a solution is given by

β =
k1τ

k2τ 1+k3 + 1
, k1,2,3 ∈ (0,∞) . (E.13)

Clearly this satisfies b(0) = lim
τ−>∞

b(τ) = 0. Defining α as in (E.9) with k = 0, we

find that

α(0) =

√
3

4
+

k1
2

lim
τ→∞

α =
√
3/4 ,

(E.14)

thus satisfying all boundary conditions. As the squashing of the S4 is non-trivial for
α �= 1, the bolt at τ = ∞ has fixed non-trivial squashing whereas the squashing of
the S4 at the origin is determined by k1.
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