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An expert is a man who has made all the mistakes
which can be made in a very narrow field.

Niels Bohr
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di partenza per una nuova sfida. Grazie anche a Marina per avermi dato l’opportunità di
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Abstract

Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion
require a detailed description of energy fluxes. The leading mechanism is the electron
transport, which can be a nonlocal phenomenon that needs to be described with quasi-
stationary and simplified Fokker-Planck models in large scale hydrodynamic codes.

My thesis is dedicated to the development of a new nonlocal transport model based on
a fast-moving-particles collision operator and on a first moment Fokker-Planck equation,
simplified with an entropic closure relation. Such a closure enables a better description
of the electron distribution function in the limit of high anisotropies, where small scale
electrostatic instabilities could be excited.

This new model, so called M1, is successfully compared with the well known nonlocal
electron transport model proposed by Schurtz, Nicoläı and Busquet, using different colli-
sion operators, and with the reduced Fokker-Planck model, based on a small-anisotropies
polynomial closure relation (P1). Several typical configurations of heat transport are
considered.

We show that the M1 entropic model may operate in two and three dimensions and is
able to account for electron transport modifications in external magnetic fields. Moreover,
our model enables to compute realistic electron distribution functions, which can be used
for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated
that the electron energy transport may strongly modify damping of Langmuir and ion
acoustic waves, while the simplified nonlocal transport models are not able to describe
accurately the modifications of the distribution function and plasma wave damping.

The structure of the M1 model allows to naturally take into account self-generated
magnetic fields, which play a crucial role in multidimensional simulations. Moreover,
magnetic fields could also be used for the focusing of energetic particles in alternative
ignition schemes. The M1 model reproduces the results of the local transport theory
in plasma, developed by Braginskii, in a broad range of degrees of magnetization and
predicts new results in the nonlocal regime.

This work constitutes a first validation of the entropic closure assumption in the
weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic
regimes.

KEYWORDS: Inertial confinement fusion, High-energy-density physics, Laser-produced
plasmas, Hydrodynamic simulation, Nonlocal heat transport, Plasma microscopic stabil-
ity.
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12.3 Prise en compte des champs électrique et magnétique . . . . . . . . . . . . 164
12.4 Résolution numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.5 Validation du model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.6 Application à la stabilité des ondes du plasma . . . . . . . . . . . . . . . . 166
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Chapter 1

Introduction

Matter in a thermodynamic equilibrium can be classified by its density and temperature.
In this way, Fig. 1.1 shows the classification of most of the known matter. In the x-axis
is plotted the mass density and, in the y-axis, the temperature. Both are given in a
logarithmic scale, in order to represent different regimes which can be found in nature.

In the left-bottom of Fig. 1.1, we find unionized matter. Increasing the temperature
(moving from the bottom to the top), it becomes partially ionized. Increasing more the
temperature, we reach a state where the total pressure (internal and radiation) attains
the value of 1 Mbar and the matter becomes radiation-dominated and strongly ionized.

Proceeding from the left-bottom to the right (increasing density), we meet two curves:
strongly coupled and Fermi degenerate boundaries. Under the strongly coupled curve,
collective fields and binary particle interactions define the matter structure. The Fermi

Figure 1.1: Regimes of HED physics, classified by their mass density (x-axis) and tem-
perature (y-axis). The figure is taken from the book by R. P. Drake [1].
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degeneration curve separates the classical matter (up) from the matter in which electron
quantum effects are dominant (down). We see that both strongly coupled and Fermi
degenerate curves span ionized (plasma) states as well as solid and liquid states. In this
boundary region stands the warm and dense matter, a particular state mixing multiparti-
cle, quantum and plasma effects. Increasing the density, we meet the 1 Mbar curve, that
represents the region where the internal pressure is comparable to the energy density of
an hydrogen atom. Matter under such a pressure behaves more as composed by electrons
and ions than as neutral particles. Therefore, under such a pressure, matter becomes
ionized. Ionized matter is classified as plasma, but classical plasma theories can be ap-
plied only to rarefied ionized gasses. The proprieties of dense matter at such a pressure
are not well known. Systems subjected to a pressure higher than 1 Mbar are defined as
high-energy-density (HED) plasmas [1] and are denoted by grey, in Fig. 1.1.

Many astrophysical phenomena belong to the HED states.

Stars and planets are represented in figure, from their core (top of the curve) to their
external surface. Brown dwarfs as well as giant planets are composed by regimes of matter,
which span from HED to strongly coupled and Fermi degenerate states. Our Sun, as well
as more massive stars, span between HED and classical ionized and unionized matter.

Gamma ray bursts are the most energetic process ever observed in the universe. They
are in the radiation-dominated regime of HED physics (the right side of Fig. 1.1). Even
last stages of the big bang evolution span this regime.

Supernova progenitors are the astrophysical states of matter, which completely belong
to the matter-dominated regime of HED physics (the left side of Fig. 1.1). They are
created in collisions of two white dwarfs, which lead to a collapse of stars at the early
stage of the universe evolution.

In the description of this figure we meet many natural phenomena, which are situated
in the HED domain. All of them are related to astrophysics. However, on the Earth, in our
laboratories, we are able to produce such conditions, thanks to Z-pinch and lasers. Future
generations of lasers will be able to create short living plasmas, which correspond to the
conditions present at the earlier stages of the big bang. Among the recent generation
of high energy lasers, we can find the Omega laser, in the laboratory of laser energetics
of the University of Rochester, and the most powerful laser constructed nowadays: the
National Ignition Facility (NIF), in the Laurence Livermore National Laboratory. The
regimes of matter induced by these lasers are what we are interested to describe in this
manuscript.

Research in HED regimes is performed for two main reasons: in order to study astro-
physics in experiments (laboratory astrophysics) and to achieve a controlled production of
nuclear energy from inertial confinement fusion (ICF). We describe what this research is
about, respectively, in sections 1.1 and 1.2. In section 1.3 we present the way in which the
HED matter can be created in laboratory, thanks to laser-matter interactions. In section
1.4, we overview the key process in laser-matter interaction, in the regimes of interest:
the electron transport. Finally in section 1.5, we present the objective of this work and
the way in which it is presented in this manuscript.

1.1 Laboratory astrophysics

The HED physics concerns astrophysical objects as well as laser created plasmas. The
hig-energy lasers open new possibilities for studying many astrophysical phenomena in
experiments. We consider two examples.
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Figure 1.2: Hydrodyamic instabilities in a core-collapse supernova.

1.1.1 Dynamo in giant planets

By creating HED matter in laboratory one can perform an experimental study of realistic
equations of state in extreme regimes, which have an astrophysical interest. An example is
given by the study of the processes inside the core of giant planets, which are responsible
for the generation of planetary magnetic fields [2, 3].

In particular, in the rocky core of Jupiter, the nature of the transition to metallic state
constraints the way how the magnetic fields can be produced. The connection between
equations of state and magnetic fields has been known for long time, but only in the 1980s
the experimental study became possible, due to the emergence of pulsed power devices.
They opened a possibility to accelerate material samples to high velocities and to create
HED matter by the collision of a couple of them [1, 2].

1.1.2 Interface instabilities in core-collapse supernovae

The hydrodynamic theory describes many astrophysical processes. Hydrodynamic equa-
tions are scale invariant: what happens in a small laboratory experiment, in a short time,
can be translated to the huge space and to long times. Thus HED physical experiments
can reproduce astrophysical phenomena, as they happen. An example of well-scaled ex-
periment is the study of interface instabilities in the core-collapse supernovae [1, 4].

Pre-supernova stars are composed of shells of different materials. The lighter are
located on the surface while the core is composed by iron. The gravitational pressure
compresses the matter and ignites the fusion reactions in each shell of the star, till to
iron, which is the most stable nucleus. Once the star accumulates a Chandrasekhar mass
(1.4 solar mass) of iron, the core collapses, generating a neutron star. At the same time,
a blast wave emerges from the star, giving rise to the observed tremendous increase of
luminosity. However, only a few percent of the hydrodynamic energy is emitted as visible
light. This is due to some nonsymmetric motion related to hydrodynamic instabilities [5],
shown in Fig. 1.2.

Experiments, dedicated to study the development of hydrodynamic instabilities in an
appropriately scaled configuration, have been performed around the turn of the twenty-
first century, with the purpose of code validation, direct observation and three dimensional
analysis [4]. Using the Nova laser, the authors of [4] examined a single mode initial
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perturbation of a planar target, reproducing the interface trajectory, predicted by theory.
We have seen two examples in which HED physics can be exploited in order to propose

laboratory interpretation for astrophysical phenomena. However, the domain of labora-
tory astrophysics is very large and in expansion. In the next section we present the second
main domain of research in HED physics: the ICF.

1.2 Inertial confinement fusion

HED physics experiments can be performed in order to reproduce astrophysical phenom-
ena. However, a phenomenon as the gravitational collapse of a star cannot be reproduced
as the gravitation force is too weak. The main purpose of ICF is to collapse matter by
replacing the gravitational pressure with a pressure induced by high-power lasers. ICF
schemes try to compress a deuterium-tritium target, till the state permitting to ignite nu-
clear fusion reactions and to confine thanks to the target mass. This behavior is described
in detail in what follows.

1.2.1 Nuclear reactions

Figure 1.3: Nuclear binding energy per nucleon as a function of the nucleon number.

Figure 1.3 shows the binding energy per nucleon as a function of the nucleon number.
We can make a distinction between nuclei lighter and heavier than iron. For nuclei heavier
than iron, energy can be gained by splitting them. This process is called fission and it is
performed since 1940s, in order to create large amounts of energy.

For nuclei lighter than iron, energy can be created by a fusion of two nuclei. In
particular, one of the most energetic reactions is the fusion of hydrogen isotopes:

D + T → 4He(3.5 MeV) + n(14.1 MeV), (1.1)

where D and T are the deuterium and the tritium nuclei, 4He is the nucleus of helium
and n stands for neutron. Figure 1.4 summarizes the reaction schematically.

In stars, atoms are confined together by gravitation, for a long time, till the moment
when a sufficiently large number of reactions occurs. The process of rapid increases of
the reaction rate is called ignition and can be achieved when the time of confinement is
longer than the characteristic time of nuclear interactions. The latter is defined as

τfus =
1

〈σv〉ni
,
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Figure 1.4: Scheme of the D-T reaction.

where ni is the ion density, σ is the cross section for nuclear interactions and v the ion
velocity. The reactivity 〈σv〉 for the D-T reaction and other reactions is shown in Fig. 1.5,
in function of the temperature. The ignition conditon can be expressed as

τfus 〈σv〉ni > 1

and it is known as the Lawson criterion [6].

Figure 1.5: Reactivity, in function of the temperature, for nuclear reactions of hydrogen
isotopes.

The gravitational confinement in stars happens in times long enough to satisfy the
Lawson criterion.

In magnetic confinement fusion, the goal is to achieve plasma confinement by exploiting
strong magnetic fields. These fields confine the plasma by forcing the particles to move
along closed helical trajectories. The most efficient confinement is realized in a machine
called Tokamak, which section is shown in Fig. 1.6. The Tokamak can achieve a particle
density of about 1014 cm−3, at a temperature attaining a few keV [7]. The time required
to satisfy the Lawson criterion is ∼ 1 s. It is supposed that Tokamak may operate in a
steady state regime.

It is also possible to confine the fuel exploiting the inertia of the target driven by laser
compression. This approach is called ICF. In this type of confinement the density can be
increased to ∼ 1025 cm−3 while the temperature to ∼ 10 keV [7]. For this regime, the
confinement time required by the D-T reaction is ∼ 100 ps. Therefore, this is a pulsed
process.

In the next sections we detail the different schemes of ICF.
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Figure 1.6: Tokamak for the magnetic confinement fusion.

1.2.2 Direct drive

Figure 1.7: Direct drive scheme.

Historically, the first scheme proposed in order to obtain ICF, was a direct drive
scheme [8]. It is resumed in Fig. 1.7: a spherical target composed by an equimolar mix
of deuterium and tritium is spherically irradiated by high-power lasers (1). The target is
compressed by the ablation pressure (2), till to reach a central ignition (3) which should
be maintained, thanks to the inertia of the imploded mass, till a significant part of the
fuel is burned (4) [7]. However, until nowadays, this has never happened, evidencing a
lack of knowledge.

Open issues concerning the direct drive scheme are related to three main factors [7].
First of all, the compression uniformity is insufficient, due to the development of hydro-
dynamic instabilities, from small imperfections of target manufacturing or laser intensity.
Secondly, theoretical predictions neglect, or strongly approximate, kinetic effects, which
can play a dominant role in the regimes of interest. These are related to a nonlocal
transport of energy by energetic electrons. At last, theoretical predictions hardly account
for nonlinear laser-plasma interactions and parametric instabilities, such as two plasmon
decay, stimulated Raman and Brillouin scattering.

The first point is beyond the scope of this manuscript, however in the next section we
present different schemes whose aim is to improve the compression stability. In the next
parts, we propose to improve the modeling in what concerns the second issue. A dominant
role is played by the kinetic effects in the energy transport. We develop a model for their
description, in such a way that it could be generalized to the hydrodynamic description
of other kinetic effects. The analysis is performed in one and two dimensions, and a
generalization to three dimensions can be easily achieved.

1.2.3 Stabilizing schemes

One of the main issues for ignition success is to control the stability of implosion. In
the literature, many other schemes have been proposed in order to stabilize compression
[9, 10, 11, 12].

In the indirect drive approach [9] the purpose is to compress the target using a black
body radiation, obtained by the illumination of a closed gold cavity [13], as shown in
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Fig. 1.8. In this way, the target is subjected to an irradiation governed by the Planck

Figure 1.8: Two ignition schemes: the direct (a) and the indirect drive (b).

black body law, which is known to be uniform. The main advantage of the indirect drive
is that the irradiation is more homogeneous than in a direct drive approach. It has been
considered as the most promising approach to achieve the nuclear fusion. However, the
NIF ignition failure has highlighted a gap between theoretical predictions and experimen-
tal results, which still needs to be filled. Even once the ignition will be achieved, this
scheme is much more energy consuming, compared to the direct drive approach.

The recent advances in the development of petawatt laser pulses have opened new
possibilities. The main purpose of the fast ignition scheme [10, 7] is to ignite the precom-
pressed fuel by a separate external driver. This driver consists in a beam of relativistic
electrons, accelerated by an ultra-intense laser pulse (∼ 1019 W/cm2). These electrons
should be collimated by self-generated magnetic fields. A first approach consists in the
addition of a cone, as shown in Fig. 1.9, in order to improve the collimation. The separa-
tion of the target compression from the hot spot formation opens a way to easier target
designs. It still requires a high fuel compression, in order to keep ignition energy low,
but it relaxes significantly the symmetry requirements: it allows non-spherical fuel con-
figurations and a decrease in the amount of tritium in the target. However, in [14] it has
been shown that the electron beam collimation cannot be easily achieved. Recent im-
provements propose a use of external magnetic fields in order to increase the collimation
strength [15].

The shock ignition [11, 12] scheme consists in sending a second stronger shock at the
end of the compression phase, shown in panel (3), in Fig. 1.7. This shock is induced by
a laser pulse with a power of about 200 − 300 TW. The spike power is compared in
Fig. 1.10 with the compression pulse power. If it is synchronized, the converging shock
should meet the principal shock when it is diverging. The shock transmitted to the center
after collision should heat the core of the target, inducing ignition. This approach reduces
significantly the energy required and could be realized with the existing lasers. However, at
these regimes, laser-plasma interactions are strongly nonlinear and the effects of nonlocal
energy transport should be important. This method has not been studied deeply yet but
first results are encouraging [16].

Figure 1.9: Fast ignition scheme.
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Figure 1.10: Laser pulses in shock ignition: (1) the compression pulse and (2) the shock
pulse.

1.3 Laser-matter interaction at HED physics regimes

The laboratory HED physics finds a wide domain of applications. The aim of this section
is to show how to create HED matter in laboratory.

There are two main ways to produce HED conditions at our regimes of interest: Z-
pinch and laser compression.

The Z-pinch compression scheme consists in exploiting an axial electric current, which
produces an azimuthal magnetic field cylindrically compressing the plasma [17]. Since
in this manuscript we are mainly interested in a laser-produced HED matter, we do not
detail this process and directly proceed to the discussion on the laser production.

The direct laser compression is driven by intense lasers, with intensities ranging be-
tween 1014 and 1015 W/cm2. A detailed description of laser-matter interaction at these
regimes can be found in [7]. We summarize the main processes in what follows.

Mainly, lasers deposit their energy at a critical density. The latter depends only on
the laser wavelength. It reads

nc = 1.1× 1021λ−2
L cm−3, (1.2)

where λL must be expressed in µm. This density is typically 1-2 orders of magnitude
smaller than the solid density, however, a part of the energy deposited penetrates deeper
in plasma. The laser energy absorption decreases as the temperature increases.

Let us consider a solid target irradiated by an external laser source, with an energy
flux qex. At first moments of interaction, the laser directly heats the solid target, as shown
in panel (a) in Fig. 1.11. Since the absorption decreases with the temperature, as the solid
is heated, the radiation can penetrate deeper.

After few tenths of picoseconds, the increase of temperature induces a hydrodynamic
motion, called ablation flow, which generates a shock wave due to the momentum recoil.
A shock wave is a discontinuity in the density profile, as shown in Fig. 1.12. It propagates
supersonically and its dynamics is given by Rankine-Hugoniot equations. For perfect
gases, the original density behind the shock increases by four times.

While the shock wave propagates inside the target, a rarefaction wave propagates
in the opposite direction, inducing ablation. The recoil momentum maintains the shock
pressure. If the target is optically thin, as in panel (b) in Fig. 1.11, the ablation is directly
supported by the external laser source. On the contrary, if it is thick, the laser energy
is deposited at the critical density. From there, it is transported to the ablation front
with the heat flux qdif , see panel (c) in Fig. 1.11. For low and intermediate ion charge
materials, this heat flux is due to electron transport. For high ion charge materials, the
radiative transport is equally important. Panels (b) and (c) in Fig. 1.11 correspond to
quasi-stationary regime. The case (c) is of particular interest of HED physics. Along



1.3. LASER-MATTER INTERACTION AT HED PHYSICS REGIMES 23

Figure 1.11: Types of heating, induced by laser-matter interaction: (a) supersonic heating,
(b) ablative heating and (c) optically thick ablative heating. The figure is taken from [7].

Figure 1.12: Scheme of a shock wave.
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Figure 1.13: Spherical compression of a target.

the manuscript, we consider low and intermediate ion charge materials and focus on the
electron transport.

In summary, in the quasi-stationary interaction regime, in plasmas made of low or in-
termediate ion charge materials, the laser penetrates the corona of the target and deposits
its energy at a critical density. From the critical zone, the energy is transported by the
electron heat conduction through the conduction zone, shown in Fig. 1.11 (c) in grey. The
energy deposited in a dense plasma induces the ablation. Its recoil compresses the target.
The shocked region, behind the ablation front, is in a state of a warm and dense matter.
Proceeding inside the matter we reach the shock front and, after, the unperturbed solid.

The stationary regime ends when the shock reaches the rear side of the target. Then
if the laser continues to irradiate, an acceleration phase begins. In a spherically or cylin-
drically shaped target, as shown in Fig 1.13, the acceleration phase leads to a target
compression, creating HED plasmas.

For the plasmas of interest of this manuscript, a key role is played by the electron
transport. This process is introduced in the next section.

1.4 Entropy and electron transport

Particles in a plasma (electrons and ions) follow laws of classical mechanics [18]. They
collide and drift under the action of electromagnetic fields. Their macroscopic (averaged)
quantities, are characterized by the temperature, density and pressure.

A spatial inhomogeneity of these parameters gives rise for the transport phenomena.
Boltzmann and Maxwell have developed a statistical approach [19], a kinetic theory,

describing the many-particle systems out-of-equilibrium. The major property of the ki-
netic process in a closed system is the loss of information or, in other words, an increase
of disorder, which macroscopically corresponds to the increase of entropy (H-theorem).
The thermodynamic equilibrium corresponds to a state where the entropy is maximized.

The temporal direction towards more probable states, described by the H-theorem,
breaks the temporal symmetry, leading to the macroscopic world of quantity transport,
as we see it.

In this manuscript, we focus on the electron transport, which is the motion electrons,
induced by the spatial inhomogeneity of the plasma density and temperature. In the
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hydrodynamic theory, where the characteristic inhomogeneity scale length is much longer
than the electron mean free parth (MFP), it is described by a diffusion equation. This
corresponds to regimes close to the local thermodynamic equilibrium, which are not always
corresponding to the HED conditions. Below, we summarize cases where the assumption
of a local diffusion is not respected.

In the fast ignition scheme, the energy is transported into the plasma by a relativistic
electron beam, which is very anisotropic. This process cannot be described with hydro-
dynamic theories. Touati et al. [20] used a kinetic model based on one main direction of
transport and on a local angular entropy maximization assumption, in order to account
for a high degree of anisotropy of the electron distribution function (EDF).

Nonlinear laser-matter interactions become important for intensities above ∼ 1015

W/cm2. They can generate very energetic and anisotropic electron beams [7]. The
transport of these anisotropic electrons plays a key role in the laser-driven implosions,
particularly in the shock ignition scheme [16].

HED physics considers regimes where temperature gradients are very sharp compared
to the electron MFP. Then the hot electrons can penetrate and deposit their energy
deeply in cold regions, leaving no time for thermalization. This kind of transport is called
nonlocal since electrons move on hydrodynamic scales.

One of the most affected quantity by nonlocal effects is the heat flux, which is driven
by suprathermal electrons. It can be significantly modified, compared to the classical
diffusion limit, thus affecting overall plasma simulations and its stability on a microscopic
level.

The nonlocal models proposed in [21, 22, 23] are based on phenomenological assump-
tions and are limited to the description of heat fluxes in the condition of small deviation
from the diffusion approximation. In particular, the monodimensional model by Liciani
Mora and Virmont [21] (LMV) describes the nonlocal heat flux as a linear combination
of local fluxes, with a phenomenological weight coefficient, dependent on the MFP. This
model has not been generalized to multidimensional configurations and strong tempera-
ture gradients. The model by Schutz Nicoläı and Busquet [22] (SNB) generalizes the heat
flux expression to three dimensions and accounts for the dependence of the electron MFP
on its energy. It was reinterpreted as a kinetic approach for suprathermal electrons, with
a strongly simplified phenomenological collision model. The electric field is induced by
the return current of cold electrons. Its effect on suprathermal electrons is accounted as
an empirical reduction of the MFP. The model is limited to the case of small anisotropies.
Its generalization in order to account for magnetic fields effects [24] is mathematically
complicated. In the model developed by Colombant, Manheimer and Goncharov [23],
the split in thermal and suprathermal contributions is directly performed on the heat
flux propagators, which weight are given from phenomenological kinetic arguments. This
model has not been generalized to three dimensions neither to magnetized plasmas and
is more time consuming than the SNB model [25].

Our purpose is to generalize the entropic approach of the M1 model, used for rela-
tivistic electron beams [20, 26], to nonlocal transport of suprathermal electrons, in order
to improve the electron transport description in the case of strong temperature gradients
and external magnetic fields.

1.5 Thesis objectives and structure

The objectives of this thesis work are the followings.

• To derive an electron transport model, which accounts for strong devi-
ations from equilibrium, in angles and energies. Such a property is charac-
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teristic of a kinetic description, which, however, is time expensive. Our purpose is
to reduce this description to two steps. As first, we simplify the collision model,
assuming that the electron transport is mainly due to suprathermal electrons, which
collides with thermal electrons and ions. Then, we decrease the number of dimen-
sions through an angular interpolation of the reduced equation, closed by an angular
entropy maximization principle. This closure defines our M1 model as an exponen-
tial angular function, which allows to preserve the description of strong angular
anisotropies.

• Consider the effect of electron transport on a microscopic plasma sta-
bility. The kinetic description performed by our model correctly accounts for all
energy contributions and it provides a better description of the EDF, compared
to models based on the linear anisotropy assumption. It enables studies of small
scale kinetic effects, such as the development of microscopic instabilities, induced by
the electron transport, within the hydrodynamic framework. Examples of electron
plasma and ion-acoustic wave instabilities, driven by the heat flux, are presented
and compared with the linear description in angles.

• Adapt the electron transport model for external and self-generated mag-
netic fields. Local and nonlocal models which describe magnetized electron heat
transport are mathematically very complicated since they are functions of tensor
transport coefficients. Our model approaches this problem in a different way, since
the reduced kinetic equation naturally accounts for magnetic fields, being mathe-
matically simple and based on strong assumptions. The adaptation to magnetized
regimes is obtained defining the magnetized nonlocal electric field, thanks to some
phenomenological assumptions.

The manuscript is organized in three parts. In part I, the state of the art of plasma
physics and nonlocal transport theories is summarized. Part II deals with the theoretical
development of our nonlocal model, so called M1. In part III, the M1 model is applied to
the description of the nonlocal regime of HED plasmas.

More in detail, in chapter 2, the main theories for the description of plasma physics
(kinetic theory, classical electrodynamics and hydrodynamics) are discussed. In chapter
3 the state of the art of nonlocal transport theories is discussed, presenting a historical
perspective of the models developed and highlighting that ones which play a key role in
the manuscript, in order to develop the new model or to test it. In chapter 4 an analysis of
reduced collision operator is performed, in order to chose the most suitable. In chapter 5
the M1 model is developed, while its numerical implementation is discussed in chapter 6.
Stationary applications of the M1 model to unmagnetized plasmas are studied in chapter
7 and to magnetized plasmas in chapter 8. Finally, conclusions are drawn in chapter 12.
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Chapter 2

Plasma physics

The HED physics includes a wide range of states of ionized matter. These phenomena are
described by classical plasma theories. So it is essential to display what are these theories
and what are the states of matter that they describe.

Solid, liquid and gas are the three states of mat-
ter, well known from the remote past. However, the
modern physics has brought to overcome the limits
of this reduced categorization of matter next to the
discovery of new states, such as Bose-Einstein con-
densates, liquid crystals, superfluids, supersolids, su-
permagnets, warm and dense matter and many oth-
ers. Among these new states, one of the most im-
portant is definitely the state of plasma. Plasmas are
classified as the fourth state of fundamental matter.

They are ionized matter, strongly influenced by electromagnetic fields. Most of the visible
matter of the universe is in this state (almost 99%). Stars and nebulae are the most
common plasmas, visible from the space. Plasmas were present also in the very early
stages of the cosmological history of the universe, such as the gluon-quark plasma and the
quantum-electrodynamic plasma. On Earth, plasmas can be seen as fire, thunders and
aurora borealis. Moreover, they can be created in laboratory.

In particular, in this chapter we limit our discussion to
non-relativistic plasmas. They can be considered as gasses in
which coexist several populations of charged particles with
different masses and charges: the ions and the electrons.
Plasmas are globally neutral.

From a theoretical point of view, the physics of plasmas is
given by a combination of three of the fundamental existing
physical theories: the out-of-equilibrium statistical mechan-
ics (kinetic theory), the hydrodynamics and the electrody-
namics. In particular, the kinetic theory describes how plas-
mas approach the local thermal equilibrium, from a chaotic
state; the hydrodynamics describes the averaged behavior of
plasmas near local thermal equilibrium; the electrodynam-
ics describes as well the propagation of small electromag-
netic perturbations, as of the global plasma neutrality as the
strong fields, as the damping and the growth of plasma waves.

In this chapter, the three descriptions of plasma are presented from a theoretical and
phenomenological point of view. Section 2.1, treats the kinetic description of plasmas,
section 2.2 the electrodynamics of plasmas, in their classical (non-quantum) limit and
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section 2.3 the hydrodynamic theory and simulation codes.

2.1 Kinetics of plasmas

Plasma is a classical many-body system of particles, which move following the rules of
classical mechanics, colliding and drifting under microscopic and macroscopic electromag-
netic fields. Of course, this system is deterministic. However, it is unreasonable to suppose
to be able to solve such a complex system exactly. In the nineteenth century, Boltzmann
proposed to solve complex systems in a stochastic way, coupling for the first time physics
and statistics and overcoming the determinism. The kinetics of plasmas is studied with
this statistic theory, which in the manuscript is referred as the kinetic theory [19].

The kinetic theory is the most fundamental and microscopic way to describe a plasma.
In the manuscript, we exploit this description in order to predict nonlocal effects, in the
condition where the fluid description breaks down.

In this section we summarize the kinetic theory, emphasizing the approximations which
are exploited later.

2.1.1 Binary collisions

Let us define the distribution function of N particles f (N)(t, ~x1, ~v1, ..., ~xN , ~vN) as the den-
sity of particles in 6N -dimensional phase space of the whole gas, normalized to unity.
The Liouville’s theorem asserts that the volume in the phase space of an isolated system
is invariant with respect to canonical transformations [27]. In classical mechanics, this
reads

d

dt
f (N) =

∂

∂t
f (N) +

N∑

j=1

[
~∇
(
f (N) · ~vj

)
+ ~∇v

(
f (N) · ~aj

)]
= 0, (2.1)

with ~xj and ~aj the velocity and the acceleration of a generic particle j.
In practice, it is difficult to solve a 6N dimensional system for a plasma with a very

large number of particles. Let us define a reduced n-particles distribution function (n <
N) as

f (n)(t, ~x,~v) =

∫

R6N

d3xnd
3vn...d

3xNd
3vNf

(N)(t, ~x1, ~v1, ..., ~xn, ~vn, ..., ~xN , ~vN).

Its time evolution is given by integrating Eq. (2.1) on d3xnd
3vn...d

3xNd
3vN . For the one

particle distribution function, we have

d

dt
f (1) =

∂

∂t
f (1) + ~∇

(
f (1)~v1

)
+ ~∇v

(
f (1)~a1

)
= −N

∫

R6

d3x2d
3v2~a1,2

∂

∂v1

f (2), (2.2)

where ~a1,2 is the acceleration of particle 1, induced by particle 2, while ~a1 is the acceleration
induced by external fields to particle 1. Equation (2.2) needs to be closed. Iterating the
process, we set a hierarchy in which each equation depends on the higher order distribution
function, till the closure at the N -particles distribution function. It is desirable to close
the system before. For this reason we apply the hypothesis of weak correlations or binary
collisions, assuming f (3) = 0. This leads to

(2.3)

d

dt
f (2) =

∂

∂t
f (2) + ~∇1

(
f (2)~v1

)
+ ~∇v1

(
f (2)~a1

)
+ ~∇v1

(
f (2)~a1,2

)

+ ~∇2

(
f (2)~v2

)
+ ~∇v2

(
f (2)~a2

)
+ ~∇v2

(
f (2)~a2,1

)

= 0.
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Since we only consider binary collisions, particles are uncorrelated before and after each
collision. In these cases the two particles distribution function can be written as

f (2)(t, ~x1, ~v1, ~x2, ~v2) = f (1)(~x1, ~v1)f (1)(~x2, ~v2) + g12(~x1, ~v1, ~x2, ~v2). (2.4)

Collision effects depend only on the irreducible part of the pair distribution function g12.
If we apply the hypothesis of spatial homogeneity, Eq. (2.4) loses its time dependence.

The phase space volume and the relative velocity of particles do not change in an
elastic collision. Injecting Eqs. (2.3) and (2.4) in Eq. (2.2) and solving the equation for
g12 in the limit of weak (binary) correlation, we find the Boltzmann equation

∂

∂t
f + ~v · ~∇f + ~a · ~∇vf =

(
∂f

∂t

)

coll
, (2.5)

where we defined f = Nf (1) as the total distribution function of a weakly collisional
gas, in the 6-dimensional phase space. In cylindrical coordinates (r, θ, z), the Boltzmann
collision integral for a population of particles 1, colliding with a population of particles 2,
reads (

∂f

∂t

)

coll
=

∫

R3

d3v2

∫

R2

d2σ1,2||~vrel||2[f(~v′1)f(~v′2)− f(~v1)f(~v2)] , (2.6)

where ~vrel = ~v2 − ~v1 is the relative velocity. The prime superscript denotes the velocities
prior the collision, and σ1,2 is the cross-section. To consider collisions between different
species of particles, we need to add several corresponding collision operators of the form
(2.6).

The Boltzmann equation cannot be applied to strongly coupled plasmas, where many
particle correlations are important. However it is able to describe chaotic states of a
classical (binary collisions, without quantum effects) plasma.

2.1.2 Diffusion approximation

In fully-ionized plasmas, collision effects are predominantly due to the accumulation of
many small angular deviations (diffusion approximation) [18]. In this case the equation
of transport can be derived from simple assumptions.

Let w(~v,∆~v)d3∆v be the probability that a particle with a velocity ~v at a time t
acquires a velocity ~v + ∆~v in a time t+ ∆t. The distribution function at a time t can be
expressed as

f(t, ~v) =

∫

R3

d3∆vf(t−∆t, ~v −∆~v)w(~v,∆~v) (2.7)

Small angle deflections mean small velocity increments. We expand the term fw of
equation (2.7) in powers of ∆~v, retaining only terms up to the second order. This allows
us to write the equation as the temporal derivative of the distribution function, due to
collisions:

(
∂f

∂t

)

coll
= −~∇v

(
d〈∆~v〉
dt

f

)
+

1

2
~∇v ⊗ ~∇v :

(
d〈∆~v ⊗∆~v〉

dt
f

)
, (2.8)

where {
d〈∆~v〉
dt

= 1
∆t

∫
R3 d

3∆v∆~v
d〈∆~v⊗∆~v〉

dt
= 1

∆t

∫
R3 d

3∆v∆~v ⊗∆~v
.

Symbols ⊗ and : respectively denote the tensor product and the tensor scalar product.
Equation (2.5), with the collision term in the form of Eq. (2.8), is the Fokker-Planck

(FP) equation [18]. Thanks to the diffusion approximation, it is no more an integral-
differential equation, but only a differential one.
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The Boltzmann equation (2.6), can be reduced to the limit where it assumes the same
form of Eq. (2.8). In order to study heat transport, in this manuscript, we consider the
electron collisions, with electrons and ions. Hence, the acceleration in Eq. (2.5) is induced
by the Lorentz force:

~a = − e

me

(
~E +

~ve
c
× ~B

)
.

From now on, the subscript e indicates electrons, i ions and j ranges between both par-
ticles. We develop Eq. (2.6) as before:

fe(~v
′
e)fj(~v

′
j)− fe(~ve)fj(~vj) ≈

(
∆~p · ~∇∆~p +

1

2
∆~p⊗∆~p

: ~∇∆~p ⊗ ~∇∆~p

)
fe(~ve)fj(~vj).

The collisions between particles are supposed to be Coulombian, so we can use the Ruther-
ford cross section [18]

d2σe,j = (2qeqjµej)
2 d

2Ω

∆~p4
,

where µej = memj/(me +mj) is the reduced mass, ~Ω the solid angle of velocity directions
and ∆~p the momentum increment. We now integrate the simplified collision operator.
Because of particle shielding, the maximum length at which two particles can interact is
the Debye length

λDe =

√
Te

4πnee2
.

This imposes a minimum on the angular integration, which finally leads to the Landau
collision term (

∂fe
∂t

)

coll
=
∑

j=e,i

∂

∂~pe

∫

R3

d3vj
¯̄U

(
∂fe
∂~pe

fj −
∂fj
∂~pj

fe

)
, (2.9)

with

¯̄U =
U0

2

~v2

rel
¯̄I − ~vrel ⊗∆~v

~v2

rel
,

with the scattering potential

U0 =
4πe2q2

jΛej

||~vrel||

and with the Coulomb logarithm Λej, which accounts for the angular integration and the
charge shielding.

The FP equation is limited to the description of weakly correlated classical plasmas.
However, it is often used for the kinetic description of HED plasmas.

2.1.3 Local thermodynamic equilibrium

In the limit of frequent collisions, whatever are initial conditions, plasmas tend toward the
same state: the local thermal equilibrium. This behavior is forced by the maximization
of entropy principle, which is intrinsic in the Boltzmann equation.
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H -Theorem

The kinetic entropy of an electron gas is defined as [19]

H[fe] = −
∫

R6

d3xd3v (fe log fe − fe) . (2.10)

The H-theorem states that the entropy of a closed system can only increase in time, that
is

d

dt
H ≥ 0.

Solving the time derivative of the entropy, we have

d

dt
H = −

∫

R6

d3xd3v log(fe)
∂

∂t
fe.

The time derivative of the EDF is given by the Boltzmann equation in (2.5), which leads
to

d

dt
H = −

∫

R6

d3xd3v log fe

(
∂fe
∂t

)

coll
. (2.11)

This means that only collisions change the entropy. It can be demonstrated that the
Boltzmann collision operator (2.6) and the FP operator (2.8) verify the theorem [19].

Relaxation to equilibrium

Let us consider a gas composed of species at the same local temperature. The function
which sets to zero the Landau collision operator is the Maxwellian distribution function.
For electrons, it reads

fme =
ne

(2π)3/2v3
th

e−v
2/(2v2

th),

where vth =
√
Te/me. This means that the Maxwellian EDF maximizes the entropy, since

d

dt
H[fme ] = 0.

Such a state is defined as the local thermal equilibrium and this is the limit to which
tends EDFs, after many collisions. Thus, collisions will always lead to a local thermal
equilibrium.

As the Boltzmann and the FP collision operators are complicated, Bhatnagar, Gross
and Krook (BGK) have proposed a simplified one [28]. It is a phenomenological opera-
tor, which captures the main physics of collisions, at a qualitative level. It imposes the
relaxation to equilibrium, verifying the H-theorem and the conservation of the number
of particles, their momentum and total energy. In general, collisions impose equilibrium
after a characteristic collision time τ , which is independent on the particle velocity and
which choice depends on the assumptions done. The collision operator reads

(
∂fe
∂t

)

coll
= −fe − f

m
e

τ
.

We stress that in this model the energy diffusion is neglected. However, as we will see,
a modified version of the BGK collision operator is frequently used in many nonlocal
models, in order to describe the local thermalization.
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2.2 Electromagnetic waves in a plasma

Plasmas are dielectric media: they are characterized by the response to external fields,
leading to electromagnetic waves. Such a phenomenon is studied by coupling the laws of
the plasma kinetics with the laws of classical electrodynamics. We summarize such laws
in this section.

2.2.1 Maxwell’s equations

The four Maxwell’s equations describe the dynamics of electromagnetic fields.
Equation

~∇ · ~B = 0 (2.12)

asserts the absence of magnetic monopoles. The Faraday’s law

~∇× ~E = −1

c

∂

∂t
~B (2.13)

describes the electromagnetic induction. In such a phenomenon, closed circuitations of
electric fields become sources of magnetic fields. The Poisson’s equation

~∇ · ~E = 4πρE (2.14)

sets the laws of the electrostatics. A density of charges ρE acts as source of the electric
field. The Ampere’s law

~∇× ~B = −1

c

∂

∂t
~E +

4π

c
~j (2.15)

shows that an electric current ~j acts as a source of magnetic and electric fields.
The system composed by Eq. (2.12), (2.13), (2.14) and (2.15) forms the Maxwell’s

equations. This system implies the continuity equation

∂

∂t
ρE + ~∇ ·~j = 0,

which correspond to the charge conservation.
Dealing with materials, it is convenient to introduce the displacement field ~D, by

including the internal charge and current of the material in Maxwell’s equations: ρE =
ρintE + ρextE and ~j = ~jint +~jext. Then

~∇ · ~D = ~∇ · ~E − 4πρintE (2.16)

and
∂

∂t
~D =

∂

∂t
~E − 4π~jint, (2.17)

where the internal charge and the current density in a fully-ionized plasma read:

ρintE = Zeni − ene,
~jint = Zeni~ue − ene~ui,

with ~ue and ~ui as the electron and ion macroscopic velocities. The current conservation
now reads reads

∂

∂t
ρintE + ~∇ ·~jint = 0.

In the linear electrodynamics, there is a linear relation that accounts for the material
response to external fields. According to Eqs. 2.16 and 2.17, it reads

~D = ¯̄ε · ~E.
This is a convolution integral, in space and time. The second-order tensor ¯̄ε is the dielectric
permittivity. In unmagnetized plasmas, ¯̄ε is a symmetric tensor of the second order. It
can be found by solving the Eqs. 2.16 and 2.17.
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2.2.2 Dielectric permittivity

In this section, the analysis is performed in the Fourier space. In this space, variables

are of the form e−iωt+i
~k·~x. Hence the derivative on time becomes ∂/∂t → −iω and the

derivative on space ~∇ → i~k.
An analytical definition for the dielectric permittivity of a plasma follows from the

kinetic theory. In general, ¯̄ε is a symmetric second-order tensor, depending only from the
wavevector ~k. Thus it can be split in longitudinal and transverse parts

¯̄ε = εl
~k ⊗ ~k
k2

+ εtr

(
¯̄I −

~k ⊗ ~k
k2

)
.

The polarization ~P , for a fully-ionized plasma is defined by the following equation [29]

~j =
∂

∂t
~P .

In the Fourier’s space, the Ohm’s law reads

~j = ¯̄σ · ~E

which leads to

~P =
i¯̄σ

ω
· ~E.

The displacement field can be defined as a function of the polarization, as ~D = ~E + ~P .
This leads to

¯̄ε = ¯̄I +
4πi¯̄σ

ω
,

which is split in the longitudinal and transverse parts

{
εl = 1 + 4πiσl

ω

εtr = 1 + 4πiσtr

ω

. (2.18)

We present a simplified kinetic approach, in order to evaluate of the electric conduc-
tivity σ. We assume the distribution function as a sum of a stationary term fstat and a
periodic perturbation δf : f = fstat + δf . In the framework of a BGK equation, we find:

− iωδf + i~k · ~vδf − e

me

(
~E +

~v

c
× ~B

)
· ~∇vfstat = −νeffδf, (2.19)

where

νeff =
4
√

2π

3

Z2e4niΛei

m2
ev

3
th

is an effective collision frequency for electron-ion collisions in a plasma and Z is the ion
charge. Since fstat is stationary, it depends only on the module of velocity. The term
~∇vfstat is parallel to the velocity ~v and its scalar product with the magnetic force is zero.
Equation (2.19) gives a definition for the current ~j, which is proportional to the applied
electric field. It reads

~j = −e
∫

R3

d3vδf~v =

(
−i
∫

R3

d3v
e2

me
~v ⊗ ~∇vfstat

ω − ~k · ~v + iνeff

)
· ~E = ¯̄σ · ~E.
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Then an analytic expression for the electrical conductivity allows to define the dielectric
permittivity according to (2.18):

¯̄ε = ¯̄I +
∑

j

δ¯̄εj.

where sums are over the plasma species and

δ¯̄εj =
4πe2

meω

∫

R3

d3v
~v ⊗ ~∇vfj

ω − ~k · ~v + iνeff
. (2.20)

We project it in the longitudinal direction (~k ⊗ ~k/k2) and we find

δεlj =
4πe2

meωk2

∫

R3

d3v
~k · ~v

ω − ~k · ~v + iνeff

~k · ~∇vfj.

Exploiting the relation ~k · ~v/(ω − ~k · ~v + iνeff) = −1 + (ω + iνeff)/(ω − ~k · ~v + iνeff), the
longitudinal conductivity reads

δεlj =
4πe2

mek2

(
1 + i

νeff
ω

)∫

R3

d3v
~k · ~∇vfj

ω − ~k · ~v + iνeff
. (2.21)

The transverse conductivity appears multiplying Eq. (2.20) by ¯̄I − ~k ⊗ ~k/k2. After an
integration by parts, it reads

δεtrj =
4πe2

meω

∫

R3

d3v
fj

ω − ~k · ~v + iνeff
. (2.22)

We have presented an analytical form for the dielectric permittivity, based on the
kinetic approach. It can be calculated for any given EDF. In the next section we show that
the knowledge of the permittivity allows to calculate the electromagnetic wave dispersion.

2.2.3 Electromagnetic wave dispersion

The aim of this section is to derive an analytical equation for the electromagnetic wave
dispersion in a plasma. The analysis is performed in the Fourier space, as in the previous
section.

For fully-ionized plasmas, magnetic dipoles only come from nuclei and are very small
(¯̄µ ≈ ¯̄I). So magnetic plasma responses can be neglected.

Here, we consider the electrostatic waves. Such waves are longitudinal [18], the

wavevector is parallel to the direction of the electric field ~E, thus the dielectric per-
mittivity is a scalar.

The Poisson’s equation is the only equation required in order to describe electrostatic
waves. In the Fourier space, in the absence of external sources and assuming the plasma
quasineutral (ρE ≈ 0), it reads

i~k · ~D = 0.

Thus, an electric field can exist in a plasma, without external sources, if and only if

εl(ω,~k) = 0. (2.23)

This equation is called dispersion equation of a longitudinal plasma wave.
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Now, we consider the transverse part of the dielectric permittivity. The transverse
term εtr enters in the Ampere’s law (2.15). The Fourier transformation, in the absence of
external sources, reads

i~k × ~B = −iωε
c
~E.

Considering it with the Fourier transformation of the Faraday’s law (2.13)

i~k × ~E =
iω

c
~B

we obtain the wave equation for an electric field

¯̄ε · ~E −N2 ~E +
c2

ω2

(
~k · ~E

)
~k = 0, (2.24)

where N = ck/ω is the refraction index. From Eq. (2.24), a dispersion relation can be

derived. Projecting Eq. (2.24) in the transverse direction ×~k, we find the transverse
dispersion relation

ε(ω,~k) = N2. (2.25)

The solution of the dispersion equations (2.23) and (2.25) allows to determine the

frequency ω of each wave as a function of the wavenumber ~k. These relations describe
the spatial and time evolution of the wave (specified by the wave number). In the next
section we analyze in detail longitudinal waves, which play an important role in plasma
physics.

2.2.4 Longitudinal waves in a plasma

Collective effects in a plasma are due to the interaction of plasma particles with elec-
tromagnetic fields. Thus, in plasma, electromagnetic waves transport a signal from one
point to another. These waves are periodic sinusoidal perturbations in space and time of
plasma quantities. Their properties are described by the dielectric permittivity tensor,
through the diffusion equation. Here we consider the longitudinal waves.

Langmuir waves

The Langmuir waves are high-frequency electron oscillations corresponding to the electric
field perturbations on a microscopic scale. For the high-frequency assumption, the phase
velocity ω/k of waves is much higher than the thermal velocity ω/k � vth and the collision
frequency is small νeff � ω.

A dispersion equation for the longitudinal waves corresponds to zeros of the longitu-
dinal dielectric permittivity εl(ω, k) = 0, as predicted by the dispersion equation (2.23).
Because of their inertia, ions do not play a role in Langmuir waves. From Eq. (2.21),
through an integration by parts, the dielectric permittivity reduces to [19, 18]

(2.26)
εl(ω, k) = 1 +

4πe2

mek2

(
1 + i

νeff
ω

)∫

R3

d3v
~k · ~∇vfe

ω − ~k · ~v + iνeff

= 1 +
4πe2

mek2

(
1 + i

νeff
ω

)∫

R3

d3v
fe

(ω − ~k · ~v + iνeff)2
.

The Taylor’s development of Eq. (2.26), for ω/k � vth, νeff/ω � 1 and for a Maxwellian
distribution (hydrodynamic hypothesis) leads to

εl(ω, k) ≈ 1− ω2
pe

ω2

(
1 + 3

k2v2
th

ω2
− iνeff

ω

)
, (2.27)
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with the electron plasma frequency defined as ωpe =
√

4πe2ne/me.
In the cold collisionless plasma limit (vth ≈ 0 and νeff ≈ 0) the solution to the

dispersion equation is ω = ±ωpe. Injecting this solution in Eq. (2.27) we have

1− ω2
pe

ω2

(
1 + 3

k2v2
th

ω2
pe

− iνeff
ωpe

)
= 0⇒ ω ≈ ±

[
ωpe

(
1 +

3

2
k2λ2

De

)
− iνeff

2

]
,

where λDe = vth/ωpe is the Debye length, which defines the distance at which the plasma
screens electric fields.

Two solutions are represented in Fig. 2.1. They weakly displace from the plasma
frequency for high values of kλDe. Positive solutions correspond to waves propagating
forward and negative solutions to waves propagating backward.
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Figure 2.1: Two solutions of the Langmuir wave dispersion equation.

As we show in the third part of the manuscript, Langmuir waves may be affected by
the nonlocal transport.

Ion-acoustic waves

The ion-acoustic waves are also longitudinal waves, but of a low-frequency (ω � ωpe),
corresponding to correlated quasineutral electron and ion oscillations. The phase velocity
is in the range vth � ω/k � vthi.

The dielectric permittivity reads [19, 18]

εl(ω, k) = 1 + δεle + δεli = 1 +
4πe2

meωk2

∫

R3

d3v
~k · ~v

ω − ~k · ~v
~k · ~∇vfe +

ω2
pi

ω2

(
1 + 3

k2v2
thi

ω2

)
,

where we have assumed Maxwellian and collisionless ions, with the thermal velocity vthi =√
Ti/mi and the ion plasma frequency ωpi =

√
4πZ2e2ni/mi. For a Maxwellian EDF, the

dispersion equation is

1 +
1

k2λ2
De

+
ω2
pi

ω2

(
1 + 3

k2v2
thi

ω2

)
= 0.

Neglecting vthi we recover the approximate solution ω ≈ ±kcs/
√

1 + k2λ2
De, with cs =√

ZTe/mi as the sound speed. Injecting this solution in the dispersion equation we have

ω ≈ ±
√

k2c2
s

1 + k2λ2
De

+ 3k2v2
thi.
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Reminding that λDe = cs/ωpi = vth/ωpe, the solution of the dispersion equation can be
rewritten as

ω

ωpi
≈ ±

√
k2λ2

De

1 + k2λ2
De

+ 3k2λ2
De

Ti
ZTe

.

We plot it in Fig. 2.2, for ZTe/Ti = 10.
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Figure 2.2: Two solutions of the ion-acoustic wave dispersion equation, for ZTe/Ti = 10.

Ion-acoustic waves are coupled to low energy electrons, which can be influenced by
electric fields. These electric fields are strongly modified by the nonlocal transport. Thus,
indirectly, also ion-acoustic waves are influenced by the nonlocal transport.

2.2.5 Landau damping, and linear theory of instabilities

Integrals (2.21) and (2.22) present a pole for ω − ~k · ~v + iνeff = 0. The way to solve such
integrals is to apply the residue theorem, by deviating the integral path around the pole, in
the complex plane C, over a small radius semi-circle. According to the casuality principle,
the perturbation should disappear in the past. Since the wave temporal evolution is
exponential ∝ e−iωt, the complex deviation of the path has necessarily to pass below
the pole, in order to assure that ω is defined in the upper part of the complex plane
(=(ω) ≥ 0). Such a path is shown in Fig. 2.3, for 1D plasmas. Applying the residue

Figure 2.3: Monodimensional scheme of the integral path, around the pole, for the com-
putation of the dielectric permittivity.

theorem along the complex path, the pole reduces to

1

ω − ~k · ~v + iνeff
=

P

ω − ~k · ~v + iνeff
− iπδ(ω − ~k · ~v + iνeff),
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where P stands for the principal value.
The complex path highlights a complex nature of the dielectric permittivity. The

imaginary part is responsible for the wave damping. Indeed Eqs. (2.23) and (2.25) set
the dispersion relations, respectively for longitudinal and transverse waves. Making the
distinction between the real and the imaginary part, we have

{
<{εl[<(ω) + i=(ω)]}+ i={εl[<(ω) + i=(ω)]} = 0

<{εtr[<(ω) + i=(ω)]}+ i={εtr[<(ω) + i=(ω)]} = N2
.

We assume that imaginary components of both dielectric permittivity and frequency are
small compared to the real components. Under this assumption we make the linear Taylor
development of the dielectric permittivity. The first order correction leads to



γ = ={εl[<(ω)}

∂
∂ω
<{εl[<(ω)]}

γ = ={εtr[<(ω)}
∂
∂ω
<{εtr[<(ω)]}+N2

, (2.28)

Where we have defined γ = −=(ω). For simplicity, along the manuscript we refer to ω as
its real part. Using this formalism the time evolution of plasma waves reads ∝ e−iωt−γt.
Thus, if γ > 0, the wave is damped in time. This phenomenon of collisionless damping
is called Landau damping [18] and γ is called damping factor. On the contrary, if γ < 0,
plasma wave amplitude increases exponentially in time. This waves can be excited in
stream instabilities. Despite the linear theory is not valid for large amplitudes, it is useful
to define conditions where they develop and turbulent states may be created.

As an example we consider a collisionless plasma with the wavevector ~k parallel to the
z axis. {

δεlj = 4πe2

mek

∫∞
0
dvz

∂
∂vz

Fz

ω−kvz
δεtrj = 4πe2

meω

∫∞
0
dvz

Fz
ω−kvz

,

where we have assumed that the one direction EDF reads

Fz =

∫

R2

dvxdvyfj.

The imaginary part of the electrical permittivity is
{
=(δεlj) = 4πe2

mek2
∂
∂vz
Fz|vz=ω/k

=(δεtrj ) = 4πe2

mekω
Fz|vz=ω/k

,

We conclude that longitudinal wave instabilities are induced by sign variations of the
one-direction EDF velocity derivative. The transverse wave instabilities come from the
sign of the denominator in Eq. (2.28).

In the third part of the manuscript we study damping and stability of the longitudinal
plasma waves, in the nonlocal electron transport regime.

2.3 Hydrodynamics of plasmas and HED codes

Another description of plasmas is based on hydrodynamics. Such a description takes
into account the time and spatial evolution of macroscopic variables, which figure out
as averaged quantities of the kinetic theory. This approach is justified near the local
thermodynamic equilibrium.

Most of codes used to describe ICF plasmas and many laboratory astrophysical codes
are based on this description, since it is fast and deals with macroscopic quantities. In
this section the hydrodynamics is described as it is implemented in the CHIC code (Code
d’Hydrodynamique et d’Implosion du CeLIA) [30], one of the main 2D ICF codes, used
to describe the academic experiments in ICF and HED physics in France.
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2.3.1 Hydrodynamic equations: the monofluid two tempera-
tures model

The hydrodynamic theory is based on three equations which can be obtained from the
average in the velocity space of the FP equations, assuming near-Maxwellian particle
distribution functions. In this manuscript we deal with a monofluid description, with two
temperatures, as it is done in the CHIC code.

Continuity equation

The continuity equation describes the conservation of mass for each species in a fluid and
can be derived integrating Eq. (2.5) in d3v. For electrons, it reads

∂

∂t
ρe + ~∇ · ρe~ue = 0,

where ~ue is the macroscopic electron velocity and ρe = mene is the mass density. This
equation corresponds to a constant total number of particles. Similar equation can be
obtained for ions, assuming the plasma to be quasineutral (ne = Zni):

∂

∂t
ρi + ~∇ · ρi~ui = 0.

Adding the two continuity equations we have the monofluid continuity equation

∂

∂t
ρ+ ~∇ · ρ~u = 0, (2.29)

where u = (ρeue + ρiui)/(ρe + ρi) and where we have supposed ρ = ρe + ρi ≈ ρi, with an
error up to me/mi ≈ 2 · 10−3.

Momentum equation

The momentum transport equation is obtained by multiplying Eq. (2.5) by ~pe and inte-
grating in d3v:

∂

∂t
ρe~ue + ~∇ · ¯̄Pe = −ene

(
~E +

~ue
c
× ~B

)
+Rei, (2.30)

where ¯̄Pe = ρe~ue⊗~ue is the electron pressure tensor and Rei a friction term due to electron-
ion collisions. The total momentum conservation implies Rei = −Rie. The plasma is
supposed to be isotropic, thus ¯̄Pe = Pe

¯̄I. Similarly, we deduce the same equation for ions:

∂

∂t
ρi~ui + ~∇ · ¯̄Pi = Zeni

(
~E +

~ui
c
× ~B

)
−Rei.

Adding the two equations we have the Euler equation:

∂

∂t
ρ~u+ ~∇ · ¯̄P =

1

c
~j × ~B. (2.31)

Here P = Pe + Pi is the total pressure and ~j = ~ji + ~je = ene(~ui/Z − ~ue) is the electric
current.
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Energy equations

The third equation describes the energy transport. For electrons, it can be obtained by
multiplying Eq. (2.5) by the microscopic kinetic energy ε = 1

2
mev

2
e . By using Eq. (2.30),

it can be presented as

∂

∂t

(
1

2
ρeu

2
e +

3

2
neTe

)
+ ~∇ ·

(
1

2
ρeu

2
e~ue +

5

2
neTe~ue + ~qe

)
= ~je · ~E +Wei, (2.32)

with

~qe =< ε~vne >=

∫

R3

d3vε~vfe, (2.33)

as the heat flux and

Wei =

∫

R3

d3v
1

2
mev

2Cei,

as the energy exchange. We neglect the energy dissipation due to the friction force. Thus

Wei = −2
me

mi

νei(vth)ne(Te − Ti)

is the rate of energy exchange between the electron and ion species, with νei(vth) =
4πZe2neΛei/(mev

2
th) being the electron-ion average collision frequency. In the same way,

assuming that collisions between ions are weak, Eq. (2.32) for ions reads

∂

∂t

(
1

2
ρiu

2
i +

3

2
niTi

)
+ ~∇ ·

(
1

2
ρiu

2
i~ui +

5

2
niTi~ui + ~qi

)
= ~ji · ~E +Wie. (2.34)

Equations (2.29), (2.31), (2.32) and (2.34) constitute the monofluid bitemperature
hydrodynamic model. The system is closed by Eq. (2.33). In the derivation we have
assumed ¯̄P = P ¯̄I and a perfect gas equation of state, which reads Pj = njTj, with j
ranging between e and i.

2.3.2 The CHIC code

Figure 2.4: Structure of the CHIC code.
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The CHIC code [30] is a hydrodynamic code, created for modeling laser-plasma inter-
actions at HED regimes. Its structure is resumed in Fig. 2.4.

At each temporal step, a bidimensional monofluid two temperatures hydrodynamic
model is solved, using a Lagrangian approach. This numerical tool can operate in planar
or axisymmetric geometry. It is based on the following system of hydrodynamic equations:





∂
∂t
ρ+ ~∇ · ρ~u = 0

∂
∂t
ρ~u+ ~∇(Pe + Pi) = 0

∂
∂t

(
3
2
Pe
)

+ ~∇ · ~qe = −2me
mi
νei(vth)ne(Te − Ti) +Wfus +Wr +Wl

∂
∂t

(
3
2
Pi
)
− ~∇ · ki~∇Ti = 2mi

me
νie(vth)ni(Te − Ti)

, (2.35)

which corresponds to a monofluid, characterized by two temperatures (electrons and ions).
The hydrodynamic system can be closed with a perfect gas or realistic equation of state

(such as QEOS model [31] or SESAME tables [32]). It can include thermonuclear reactions
Wfus, and a detailed radiation transport Wr, based on tabulated opacity data. This
transport is computed assuming the radiation field quasistationary and weakly anisotropic
(multigroup diffusion). The code uses a 3D ray tracing technique for describing the inverse
Bremsstrahlung laser absorption Wl.

Thermonuclear reactions, radiation transport and laser absorption are modeled as
sources of the electron energy equation.

The CHIC code is used for the interpretation of ICF and astrophysical experiments.
The modeling of the two-dimensional heat flux ~qe plays a key role in this description. In
the CHIC code, it accounts for the effects of magnetization and is extended to regimes
of nonlocal transport, by using a practical model [22, 24], based on a phenomenological
treatment of electric and magnetic fields. The latter is limited to weak anisotropies and,
in case of magnetization, present a complex mathematical structure. Our purpose is to
improve this description, developing a new model for the electron heat flux ~qe, based on
kinetic assumptions, an entropic argument and on a correct treatment of fields. This
allows to account for strong anisotropies in energy and angles, to extend the analysis
to a kinetic scale and leads to a mathematically simpler structure for the magnetized
transport.

In particular, every temporal steps of a CHIC simulation, our M1 model is able to
solve a simplified and stationary FP equation, for each energy group. From this equation
it deduces the EDF, which energy integration leads to the heat flux. This flux can be
injected in the system 2.35, as ~qe.

In section 6.2.2, we present the numerical scheme in which the M1 model has been
implemented. This scheme limits the M1 domain of validity to the case where electrons
are decelerated, which is typical of nonlocal transport. Nevertheless, this condition is not
always respected, especially when plasmas are irradiated by lasers and are involved in a
hydrodynamic movement. For this reason we have succeed to couple the M1 model to the
CHIC code only for the resolution of the heat equation (last equation of (2.35)).

Before to detail the M1 model, some discussions on the state of the art of heat transport
theories are presented.
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Chapter 3

Heat transport theories

There are two theories describing macroscopic quantities in a plasma: the kinetic theory
and the hydrodynamics. The hydrodynamic description is less accurate than the kinetic
theory, however it is more suitable in order to perform large scale HED simulations, since
it is much less time consuming.

The hydrodynamic equations have to be closed by defining the electron heat flux. Most
of the hydrodynamic codes compute it under the assumption of being close to the local
thermodynamic equilibrium. In that case, expressions for the heat flux was obtained
by Spitzer and Härm (SH) [33]. Nevertheless, in the SH theory, the electrons which
transport the heat are suprathermal: they are characterized by a velocity ∼ 3.7 times the
local thermal velocity. Since the electron mean free path (MFP) depends on the fourth
power of velocity, these suprathermal electrons have a free path ∼ 187 times longer than
the thermal MFP. Thus, they can transport heat along large distances. If temperature
profiles are sharp enough, the hot electrons can perturb the cold region, distancing it
from the local thermodynamic equilibrium. In the same way, the cold EDF is deviated
from the Maxwellian EDF. In these configurations, the local transport theory becomes
insufficient.

Many theories have been proposed in order to describe nonlocal transport in hydrody-
namic simulations. Most of them are time consuming and limited to one-dimensional
geometry. The only exception is the one proposed by Schurtz, Nicoläı and Busquet
[22, 34, 35] (SNB), based on the multi-group transport scheme. In the SNB model,
nonlocal effects are computed by finding at each temporal step the energy distribution of
fast electrons, from a stationary and simplified Fokker-Planck (FP) equation, assuming a
weak anisotropy and a small deviation from equilibrium of the suprathermal part of the
electron distribution function (EDF). In this model, the electric and magnetic field effects
on suprathermal electrons are taken into account through phenomenological corrections
[24]. These corrections can be very complex and numerically unstable.

Moreover, magnetic fields modify the heat transport. Their effects have been described
by Braginskii [36], in the hydrodynamic regime, close to the local thermodynamic equilib-
rium. Nicoläı, Feugeas and Schurtz tired to extend their model to magnetized plasmas [24]
but it is subject to many approximations, which limit its validity and affect the stability
of calculations.

In this chapter we describe the classical framework of reduced models in section 3.1
and the local theory of heat transport in section 3.2. Then we discuss the main nonlocal
models for unmagnetized plasmas in section 3.3 and finally the magnetized theory in
section 3.4.

45
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3.1 Reduced models

The heat flux is defined as the energy transported from a hot region to a cold one over
a time unit and through surface unit. The nature of heat transport is intrinsically ki-
netic. Thus, we need to solve the FP equation in order to properly account for such a
phenomenon. In this section we present a method of solving the FP equation, by using
different assumptions on the velocity directions, in order to correctly calculate the heat
exchange.

3.1.1 Velocity direction moment hierarchy

The FP equation is defined in the six dimensional phase-space (~x,~v). It is incompatible
with the hydrodynamic equations defined in three dimensional space. The number of
dimensions in the kinetic equation can be decreased by performing a hierarchy of moment
integrations, in the same way as in section 2.3.1. This integration is performed over the
velocity direction vector ~Ω. This allows to reduce the system: from six (~x, v, ~Ω) to four
(~x, v) dimensions. We proceed as follows.

We define the EDF moments as

¯̄fl(~x, v, t) =

∫

S2

d2Ωfe(~x,~v, t) ⊗~Ω︸︷︷︸
l−times

,

where ¯̄fl is a l-order tensor representing the l-th moment of the EDF. In particular, the
first three moments read 




f0 =
∫
S2
d2Ωfe

~f1 =
∫
S2
d2Ωfe~Ω

¯̄f2 =
∫
S2
d2Ωfe~Ω⊗ ~Ω

. (3.1)

As previously, we define the zero-moment of the Boltzmann equation (2.5), by inte-
grating the latter in

∫
S2 d

2Ω:
∫

S2

d2Ω

[
∂f

∂t
+ v~Ω · ~∇f − e

me

(
~E +

v

c
~Ω× ~B

)
·
(
~Ω

1

v2

∂

∂v
v2 +

1

v

∂

∂~Ω

)
f =

(
∂f

∂t

)

coll

]

⇒ ∂f0

∂t
+ v~∇ · ~f1 −

e ~E

mev2
· ∂
∂v

(
v2 ~f1

)
=

(
∂f0

∂t

)

coll
,

where S2 is the unit sphere and

∂

∂~Ω
= êθ

1

sin θ

∂

∂θ
sin θ + êφ

1

sin θ

∂

∂φ

is the angular derivative in spherical coordinates, The zero moment equation gives f0 as
a function of ~f1, which is given by the first moment equation. The latter is obtained by
integrating Eq. (2.5) over

∫
S2 d

2Ω~Ω:
∫

S2

d2Ω~Ω⊗
[
∂f

∂t
+ v~Ω · ~∇f − e

me

(
~E +

v

c
~Ω× ~B

)
· ~∇vf =

(
∂f

∂t

)

coll

]
⇒

∂ ~f1

∂t
+ v~∇ · ¯̄f2 −

e

me

∫

S2

d2Ω
(
~E +

v

c
~Ω× ~B

)
·
[
~∇v

(
f ⊗ ~Ω

)
− f ~∇v

(
⊗~Ω
)]

=

(
∂ ~f1

∂t

)

coll
⇒

∂ ~f1

∂t
+ v~∇ · ¯̄f2 −

e

mev2

∂

∂v

(
v2 ¯̄f2 · ~E

)
+

e

mev

(
f0

¯̄I − ¯̄f2

)
· ~E +

e

mec
~f1 × ~B =

(
∂ ~f1

∂t

)

coll

.
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This equation depends on the second moment ¯̄f2. The following equation for the mo-
ment ¯̄f2 depends on a higher moment ¯̄f3. The system needs to be closed making some
assumption on the last moment.

Matte and Virmont [37] described the nonlocal heat transport, by solving a FP equa-
tion, based on the Landau operator and performing angular moment integrations. They
showed that it is sufficient to stop the moment hierarchy at the first moment equation, in
order to describe the heat transport.

In summary, the angular moment hierarchy, limited to the first moment equation reads




∂f0

∂t
+ v~∇ · ~f1 − e ~E

mev2 · ∂∂v
(
v2 ~f1

)
=
(
∂f0

∂t

)
coll

∂ ~f1

∂t
+ v~∇ · ¯̄f2 − e

mev2
∂
∂v

(
v2 ¯̄f2 · ~E

)
+ e

mev

(
f0

¯̄I − ¯̄f2

)
· ~E + e

mec
~f1 × ~B =

(
∂ ~f1

∂t

)
coll

.

(3.2)
Stopping the system to the first moment we limit the description to only one direction

of anisotropy. However, except the case of many beam superpositions, this description is
sufficient. The system (3.2) still needs to be closed and a relation for ¯̄f2 needs to be given.
In what follows we will present a way to close the system. A second closure relation will
be derived in the next part of the manuscript.

Another important point is the description of the collision operator in the hand right
side of Eq. (3.2). The complete form is too complex to be used in a fast and practical
model. As we show below, various approximations can be done.

3.1.2 Velocity-dependent BGK collision operator

The main effect of collisions is to induce the thermalization, which corresponds to the
reduction of the EDF to a Maxwellian function. The simplest collision operator has been
derived by Bhatnagar, Gross and Krook (BGK) [28]. It describes the thermalization
process, in a characteristic time τe. In its original formulation, given in [28], it can be
expressed as −(fe−fme )/τe, where the collision time τe = 3

√
meT 3

e /(4
√

2πneZe
4Λei) does

not depend on velocity but only on the hydrodynamic variables. However, this formulation
does not lead to the description of a nonlocal transport, which is induced by the different
velocity contributions. A first improvement is to use a modified version of the BGK
collision operator accounting for different velocity contributions: −νee(v)(fe − fme ), with
νee(v) = 4πnee

4Λee/(m
2
ev

3).
In the Lorentz gas approximation (Z � 1), the first two moments of the BGK collision

operator read {(
∂f0

∂t

)
coll = −νee(f0 − fm0 )(

∂ ~f1

∂t

)
coll

= −νei ~f1

,

where νei = νeiΛee/(ZΛei) and νei = 4πZnee
4Λei/(m

2
ev

3) are the electron-electron and the
electron-ion collision frequencies. Modified expressions for the collision frequency can be
used, in order to take into account low-Z effects:

{(
∂f0

∂t

)
coll = −νee(f0 − fm0 )(

∂ ~f1

∂t

)
coll

= −ν∗ei ~f1

,

with ν∗ei given by tabulated or analytical expressions [38, 39]. It reads

ν∗ei =
Z + 4.2

Z + 0.24
νei. (3.3)

This BGK collision operator accounts for the velocity dependence but does not con-
serve the energy moments (number of particles, momentum and energy).
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For simplicity, in this manuscript we refer to the velocity-dependent BGK collision
operator simply as BGK.

3.1.3 Small anisotropies

The classical approach for closing the system (3.2) is to develop the EDF as a spherical
harmonic series, stopped at the first order.

As a special case of Fourier series, the spherical harmonics are a way to represent a
function as the sum of simple sine waves. In particular, they are suitable to represent
functions on the surface of a sphere, in terms of spherical coordinates. On the unit sphere
S2, the development reads

fe(~x, v, ~Ω) =
∞∑

l=0

l∑

m=−l

fml (~x, v)Y m
l (~Ω), (3.4)

where

fml =

∫

S2

d2feΩ(Y m
l )∗(~Ω),

Y m
l (~Ω) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm

l (cos θ)

and

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm

{
1

2ll!

dl

dxl

[(
x2 − 1

)l]
}

is the associated Legendre polynomial, for positive m. The sumbol ∗ means complex
conjugate. For negative m,

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x).

It is more convenient to work in the real space. Then the first four coefficients of spherical
harmonics read

Yl=0 =
1

4π
,

Y m=−1
l=0 =

3

8π
Ωx,

Y m=0
l=0 =

3

4π
Ωz,

Y m=1
l=0 =

3

8π
Ωy,

where

~Ω =




Ωx

Ωy

Ωz


 =




cosφ sin θ
sinφ sin θ

cos θ


 .

In the same way, the first four fml read

fl=0 =
1

4π
f0,

fm=−1
l=0 =

3

8π
f1x,

fm=0
l=0 =

3

4π
f1z,

fm=1
l=0 =

3

8π
f1y,
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where

~f1 =



f1x

f1y

f1z


 .

According to Eq. (3.4), the EDF can be written as [40]

fe(~x, v, ~Ω, t) =
1

4π
f0(~x, v, t) +

3

4π
~Ω · ~f1(~x, v, t), (3.5)

In what follows we refer to Eq. (3.5) as the P1 approximation. In this approximation, the
EDF is composed by an isotropic and a linearly anisotropic terms, respect to the velocity
direction vector ~Ω.

The P1 approximation imposes another physical constraint to the first-moment stopped
hierarchy: it is limited to nearly isotropic systems (||~f1||/f0 < 1). If ||~f1||/f0 > 1, the
EDF becomes negative for some directions. Since the EDF is a probability density, it
must necessarily be positive. The nearly isotropic limit can be reasonably assumed only
for low velocity electrons and, small gradients.

According to Eq. (3.1), the P1 approximation leads to the closure of ¯̄f2

¯̄f2 =
f0

3
.

For the plasmas of interest of this work, the heat transport phenomena develop on a
fast time scale, compared to the characteristic time of the hydrodynamic evolution. Thus,
frequently transport models are assumed to be stationary. We always use this assumption
in our work. Correspondingly, a simplified and closed moment hierarchy reads

{
v~∇ · ~f1 − e ~E

mev2 · ∂∂v (v2 ~f1) = −νee(f0 − fm0 )
v
3
~∇f0 − e ~E

3me
∂
∂v
f0 + e

mec
~f1 × ~B = −ν∗ei ~f1

. (3.6)

In the system (3.6), the collision operators are phenomenological. However, they are
convenient and used in many heat transport models. Some of them are presented in next
sections.

3.2 Heat fluxes in the local thermal equilibrium

The heat transport is calculated under the assumption of a small departure from the local
thermodynamic equilibrium. So Eq. (3.5) reads

fe(~x, v, ~Ω, t) =
1

4π
fm0 (~x, v, t) +

3

4π
~Ω · ~f1(~x, v, t),

where fm0 = 4πfme = 4πne/(2πv
2
th)

3/2e−
mv2

2Te is the Maxwellian zero moment. Only the
second equation in (3.6) has to be solved and reads

v

3
~∇fm0 −

e ~E

3me

· ∂
∂v
fm0 +

e

mec
~fm1 × ~B = −ν∗ei ~fm1 . (3.7)

In such conditions the plasma is collisional and the MFP is small compared to the
gradient lengths.
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3.2.1 Spitzer-Härm theory

The classical model of heat transport was proposed by Spitzer and Härm [33]. This model
is implemented in all hydrodynamic codes. We present it in this section.

In the stationary limit of unmagnetized plasmas, the Ampere’s equation leads to a
zero electric current

~je = −e
∫

R3

d3v~vfe = −e
∫ ∞

0

dvv3 ~f1 = 0.

By making explicit ~f1 in the second equation of the system (3.6), in the unmagnetized
regime, the zero current condition reads

~je =
e

3

∫ ∞

0

dv
v4

ν∗ei
~∇f0 −

e2 ~E

3me

∫ ∞

0

dv
v3

ν∗ei

∂

∂v
f0 = 0, (3.8)

which leads to an analytic form for the electric field:

~E = −me

6e

∫∞
0
~∇f0v

7dv∫∞
0
f0v5dv

. (3.9)

This relation is only valid under the Lorentz gas approximation, when the electron-electron
collisions can be neglected in Eq. (3.7). For f0 = 4πfme we have

~ESH = −Te
e

(
~∇ne
ne

+ ξ
~∇Te
Te

)
. (3.10)

The coefficient ξ equals 2.5 is in the Lorentz gas limit. Electron-electron collisions modify
the electric field and that effect can be taken into account in the same way as the electron-
ion collision frequency in Eq. (3.7), using the following expression:

ξ(Z) = 1 +
3

2

Z + 0.477

Z + 2.15
, (3.11)

which is a function of Z, ranging from 1.7 (Z = 1) to 2.5 (Z = ∞) and accounting for

electron-electron collisions in the equation for ~f1 [33].
Knowing the electric field, one can find the first moment of the EDF, which reads

~fm1 = −λ
∗
ei

3

(
mev

2

2Te
− 4

)
fm0

~∇Te
Te

, (3.12)

where λ∗ei = v/ν∗ei.
From Eq. (2.33), using Eq. (3.12), the local SH flux reads

~qSH =
1

2
me

∫

R3

d3vv2~vfe

=
1

2
me

∫

R

dvv5 ~f1

= −kSH(Te)~∇Te,

with the thermal conductivity

kSH(Te) = 0.4
Z

Z + 0.2 log(Z) + 3.44

20(2/π)3/2T
5/2
e

m
1/2
e e4ZΛei

. (3.13)
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Figure 3.1: Integrand function of the local heat flux, as a function of the velocity, nor-
malized to the thermal velocity.

This expression is valid for plasmas with an arbitrary ion charge.
We have seen that, in the local limit, the heat flux depends only on hydrodynamic

variables. In particular, it is proportional to the temperature gradient, and the thermal
conductivity depends strongly on the temperature (∝ T

5/2
e ). In its original derivation

[33], the computation of kSH for Z = 1 has been done numerically. However, it is also
possible to derive it from the complete Landau collision operator, by accounting for the
electron-electron collisions.

3.2.2 Limits of the local theory and the flux limitation model

The integrand function of the heat flux in Eq. (2.33), with the local flux of Eq. (3.12), is

∝ ṽ9(ṽ2/2− 4)eṽ
2/2, (3.14)

where ṽ = v/vth is the velocity normalized to the local thermal velocity vth =
√
Te/me.

This function is plotted in Fig. 3.1. We see that heat is mostly transported by suprather-
mal electrons, with velocities 3.7 times the thermal velocity [22]. This means that heat is
transported by electrons with the collisional path 187 times the thermal MFP, since the
electron collision length depends on the fourth power of velocity. Thus, if temperature
gradients are sharp, electrons can deeply penetrate in plasma and can deposit their energy
far from where they are originated.

The limit of the SH theory is given by the condition

||~f (1)
e (v = 3.7vth)||≤ f (0)

e (v = 3.7vth)

which corresponds to the condition [21]

λei/LT < 2 · 10−3, (3.15)

where LT = Te/||~∇Te|| is the temperature gradient length. This relation assures a positive
EDF. When the MFP overpasses the limit of 2 × 10−3 times the temperature gradient
length, the local theory is no more valid and nonlocal corrections are needed.
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In order to describe the heat flux outside the limit imposed by the condition (3.15),
most of hydrodynamic codes limit the flux to a certain fraction of the free streaming (FS)
flux. The latter is a limit value for heat fluxes. It describes a flux carried by thermal
electrons toward a void. It reads

qFS = nemev
3
th.

In its simplest form, the flux limitation (FL) theory reads

qlim = min(qSH , φqFS),

where φ is the flux limiter. Often in ICF simulations it is fixed to be 3 − 7%. Also a
harmonic limitations can be implemented:

1

qlim
=

1

qSH
+

1

φqFS
.

The flux limitation model is a phenomenological one: the value of φ is chosen in order
to reproduce experimental results. Moreover, it is not able to reproduce all the features
of nonlocal fluxes.

3.3 Nonlocal models

When λei/LT > 2 · 10−3, the energetic electrons, which transport heat, can penetrate in
the plasma and deposit their energy nonlocally. In other words, the electron transport
may modify the original Maxwellian distribution. Such a behavior has a kinetic origin.
However it is unreasonable to think to solve a FP code on hydrodynamic temporal and
spatial scales. Thus, many intermediate models have been proposed. We analyze them
here, presenting their advantages and deficiencies.

3.3.1 Monodimensional convolution models

First of all, Matte and Virmont [37] have described nonlocal transport by solving a FP
equation, based on the Landau operator, and on different orders of the spherical harmonic
development of the EDF. The have shown that the linear development (3.5) is sufficient
for modeling the heat transport. Even if accurate, this theory is too much time consuming
to be coupled with a hydrodynamic code, even in one dimension.

Subsequently more simplifications have been proposed. They are based on the con-
volution of temperature gradient over the electron MFP. In this section we overview the
main ones.

LMV model

One of the first nonlocal models has been proposed by Luciani, Mora and Virmont (LMV)
[21]. They evaluated the local heat flux in plasma, by using a propagator, which depends
on an effective hydrodynamic MFP. The propagator accounts for electron-electron and
electron-ion collisions and depends on hydrodynamic variables. The effective MFP reads

λe =
√
λeeλei =

T 2
e

4πne
√
Z + 1e4

.

Mathematically, the LMV heat flux is structured as a convolution of a local SH heat
flux

qLMV =

∫
dx′

λe(x′)
w(x, x′)qSH(x′), (3.16)
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where

qSH = −kSH
∂

∂x
Te

is the monodimensional local SH flux, with the conductivity given by Eq. (3.13). The
kernel w is

w(x, x′) =
1

2a
e
−
|
∫ x
x′ dx

′′ne(x′′)|
aλe(x′)ne(x′) . (3.17)

The constant a is adjusted to ≈ 32, by comparison with FP simulations.
In the local limit λe −→ 0, the kernel w/λe(x

′) behaves as a Dirac δ-function and the
heat flux relaxes to qSH . In the nonlocal limit, with a constant density, it can be approx-
imated to 1 in the point of the temperature gradient maximum. Integrating Eq. (3.16),
around this maximum, we find that the maximum heat flux is the 12% of the FS flux.

The heat flux (3.16) is simple enough to be implemented in a fluid code. However,
this model is in practice limited to monodimensional simulations, and it is also too much
time consuming.

Improvements of the convolution theory

Bendib, Luciani and Matte [41] proposed a correction in order to account for electric field
effects. This correction is given by a comparison with kinetic equations. It consists in the
replacement of the original kernel w (3.17) in Eq. (3.16), with a new kernel w′, which is
defined as

w′(x, x′) = w(x, x′)e
eE(x′)−eE(x)

Te(x′) ,

where E is the local electric field, given by Eq. (3.10).
Albritton et al. (AWBS) [42] based their kernel on a simplified FP equation [43]. They

proposed a collision operator for fast electrons, which is analyzed in detail in the second
part of the manuscript. Based on kinetic assumptions, the AWBS operator improves
the LMV model. However, it is based on the convolution of a kernel and so limited to
monodimensional analysis and it has a complicated form. The AWBS model leads to
more realistic results [44]. It has been improved in order to take into account electric field
effects [45], following the scheme in the previous section.

Epperlein and Short developed a new kernel based on a fitted Fourier space solution
of the flux limitation, obtained with a FP code [44]. This fit has been obtained while
studying the flux limitation of a periodic sinusoidal perturbation of the temperature,
for different wavelengths, which are related with the degree of nonlocality. The inverse
Fourier transformation of the FP solution leads to a kernel for the description of the heat
transport.

The models resumed in this section are more or less accurate. However they are all
based on a convolution of the temperature. This time consuming form is not suitable for a
multidimensional analysis and applies only to small amplitude temperature perturbations.

3.3.2 Multidimensional generalization

The multidimensional generalization of the LMV model has been performed by Schurtz
Nicoläı and Busquet (SH) [22]. It is based on arguments similar to the LMV model, but
it was reinterpreted with a kinetic formalism.

Convolution formalism

The nonlocal theory accounts for the contributions of all spatial points ~x′ = s~Ωx around
the reference point ~x.
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The natural way to generalize Eq. (3.16), is to write it as

~qSNB =

∫
d3x′

λe(~x′)
¯̄w(~x, ~x′) · ~qSH(~x′). (3.18)

The integral is represented in spherical coordinates d3x′ = d2Ωxs
2ds and the second order

tensorial kernel is assumed to be isotropic ¯̄w = w0
~Ωx ⊗ ~Ωx.

This integral expression can be considered as a solution of a linear transport equation
of the form of Eq. (3.18)

~Ωx · ~∇qSNB =
1

λSNB

(
3

4π
~Ωx · ~qSH − qSNB

)
, (3.19)

where qSNB is the modulus of ~qSNB and λSNB an effective MFP. In order to be a solution
of Eq. (3.19), the kernel of Eq. (3.18) should have the following form

w0 =
3

4π
e
−
∫ ~x′
~x

d3~x′′
λSNB(~x′′) .

However the kernel describing the heat transport cannot be symmetric: if a temperature
gradient exists between ~x and ~x′, the weight w0 of the first point should be different
from the weight of the latter. In the LMV model it happens, since the kernel involves a
spatially dependent MFP λe(x

′). Unfortunately, a nonsymmetric kernel would lead to a
non-self-adjoint transport equation, which has no physical sense. The only way to recover
the symmetry breaking, is to separately transport the contribution of each velocity, using
velocity dependent kernels. So Eq. (3.19) has to be solved separately for each velocity.
This proposal has an evident physical sense as the electron collision length in plasmas
depends on its energy.

The energy domain is divided in Ng energy groups, characterized by an upper bound
Eg. As shown in Eq. (3.14), the contribution of each energy group g to the SH flux is
proportional to ∫ Eg/Te

Eg−1/Te

dββ4(β − 4)e−β,

where the term β − 4 is due to the return current of cold electrons, which do not play a
key role in the nonlocal transport. For low energies, it is partially compensated by the
Joule heating. For this reason, this factor is dropped off. The new term β4e−β has an
analytical primitive. Moreover, in the whole energy domain, β4(β−4)e−β and β4e−β have
the same integral, 24. Now the energy dependent transport equation reads

~Ωx · ~∇qg =
1

λg

(
3

4π
~Ωx · ~Ug − qg

)
, (3.20)

where

~Ug =
1

24

∫ Eg/Te

Eg−1/Te

dββ4e−β~qSH ,

and

λg = 2

(
Eg−1/2

Te

)2

λe

is an effective MFP. The SNB flux now reads

~qSNB =
∑

g

∫

s2
d2Ωx

~Ωxqg.
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In the context of multidimensional hydrodynamic simulation codes, a diffusion approx-
imation of Eq. (3.20), is easy to handle and it has the desirable properties of damping.
The zero order angular momentum reads

Hg =

∫

S2

d2Ωxqg.

The P1 expansion reads

qg =
1

4π
Hg +

3

4π
~Ωx · ~qg,

where ~qg is also interpreted as the first moment. From the zero and the first angular
moments of Eq. (3.20), we find

{
Hg = −λg ~∇ · ~qg
λg
3
~∇Hg = ~Ug − ~qg

which leads to the equation

{(
1
λg
− ~∇λg

3
· ~∇
)
Hg = −~∇ · ~Ug

~qSNB = ~qSH −
∑

g
λg
3
~∇Hg

.

The model is further improved by the addition of electric field corrections. A definition
for the electric field is given in Eq. (3.10), by the SH theory. The electric field accelerates
low energy electrons and slows down fast electrons, which are responsible for the nonlocal
transport. Though they are energetic, high velocity electrons weakly modify the electric
field, since they are few in number. This justifies the use of the local electric field from
the SH theory. Its effect on nonlocal electrons is treated in a semiqualitative way: an
electron with energy ε cannot travel longer distance than ε/eE, under a constant electric
field of magnitude E. Thus the MFP is harmonically reduced by this factor to

1

λEg
=

1

λg
+
|e ~ESH |
εg

. (3.21)

The model finally reads




(
1
λg
− ~∇λEg

3
· ~∇
)
Hg = −~∇ · ~Ug

~qSNB = ~qSH −
∑

g

λEg
3
~∇Hg

.

Kinetic reinterpretation

Historically, the SNB model has been proposed in the formalism presented above. However
it can be reinterpreted, starting from kinetic assumptions, as it is shown here.

The SNB model is based on the system (3.6), with the Z-fitted BGK collisional op-
erator, which neglects the energy diffusion. The main assumption of this model is the
splitting of the EDF in a local part, which leads to the SH flux, and a nonlocal part of
suprathermal electrons, which leads to nonlocal effects:

{
f0 = fm0 + ∆f0

~f1 = ~fm1 + ∆~f1

.

As described in section 3.2, the local terms (denoted with the subscript m) are given
by well-known analytic relations: the isotropic term is a Maxwellian function and the
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anisotropic term is given by Eq. (3.12). Solving Eq. (3.6), neglecting electric field effects
as well as second order terms in ∆fe, we find the diffusion equation for the suprathermal
electrons. It reads {(

1
λee
− ~∇λEei

3
~∇
)

∆f0 = −~∇ · ~gm1
∆~f1 = −λ∗ei

3
~∇∆f0

,

where the source term

~gm1 = −λ
∗
ei

3
fm0

~∇Te
Te

is a simplified form of Eq. (3.12), neglecting the return current, and

λej = v/2νej (3.22)

is the effective collisional electron free path (see formula 23 of [22]), with j = e, i. The
electric field effect on the electron transport is empirically taken into account for each
energy group through a harmonic reduction of the electron-ion MFP to a physical stopping
length

1

λEei
=

1

λei
+
|e ~ESH |
ε

.

The nonlocal correction of the heat flux is given by ∆~f1:

~qSNB = 2πme

∫ ∞

0

(~fm1 + ∆~f1)v5dv = ~qSH + ∆~q.

Finally the model can be resumed as

{(
1
λee
− ~∇λEei

3
~∇
)

∆f0 = −~∇ · ~gm1
~qSNB = ~qSH − 2πme

∫∞
0

λ∗ei
3
~∇∆f0v

5dv
.

If the velocity space is discretized in groups g, the model can be reinterpreted as

{
Hg = −2πme∆f0(vg)v

5
gdvg

~Ug = ~gm1 (vg)

The equivalence between this kinetic formalism and the convolution formalism is thus
demonstrated.

In the third part of this manuscript we show that the main effects of nonlocal transport
are flux limitation and preheating. Although the SNB model is computationally efficient
and operates in three spatial directions, it cannot describe fast electrons at the kinetic
scale.

In contrast to the other models, the SNB model overcomes the monodimensional limit.
However, as it has been described in this section, it is not able to account for magnetic
fields and assumes a weak anisotropy of the EDF. We discuss these issues in the next
section.

3.3.3 Hybrid split-convolution model

In the 2008, a new nonlocal model has been developed by Colombant, Manheimer and
Goncharov (CMG) [23]. This model is based on an approach similar to SNB, which
consists in splitting the heat flux in two terms. The first one is given by local electrons,
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Figure 3.2: Effect of magnetic fields on electrons: their trajectory are turned and, if
magnetic fields are strong enough, they can be forced to turn around.

characterized by a short MFP, and the second one is due to the nonlocal correction. In
this way, the heat flux is written as

qCMG(x) = −
∫ εcr

0

dεk(x, ε)
∂

∂x
Te(x)−

∫
dx′
∫ ∞

εcr

dεk(x, x′, ε)
∂

∂x
Te(x)

= −W1(x, εcr)kSH(x)
∂

∂x
Te(x)−W2(x, εcr)

∫
dx′
∫ ∞

εcr

dεΠ(x, x′, ε),

where kSH is given by Eq. (3.13). The first term on the right side represents the local
contribution, equal to the local heat flux, weighted with a factor W1. The second term
represents the contribution of nonlocal electrons.

The derivation of the CMG model is similar to the kinetic derivation of the SNB
model. The linearized FP equation in (3.6) is solved for f1. The so-obtained solution can
be analytically integrated under certain hypotheses: the electron-electron and electron-
ion collision frequencies have the same velocity dependence (high velocity limit), and a
single Coulomb logarithm describes both collision processes. Electric fields, as in SNB,
are assumed to be local and stationary. The solution for f1 reads

f1(x) = −ς(Z)

2

∫ ∞

−∞
dx′f1Lk̂(x′, v)e−|

∫ x
x′ dx

′′k̂(x′′,v)|.

The expressions for ς and k̂ are given in the original paper [23], and f1L is defined as a
local perturbation to the Maxwellian equilibrium distribution (in the SNB approach it is
∆f0). By computing the fifth velocity moment of f1, one obtains the final expression for
both the convolution operator and the associated weighting functions. The convolution
kernel can be derived both in the limit of zero-current [23], and in the limit of pressure
balance [46].

A crucial issue is the choice of the critical energy that discriminates the local and
nonlocal contributions. It is proposed to use εcr ≈ 5Te.

The main problem of this nonlocal model is its multidimensional generalization, which
has not been developed yet. Another limit is accounting for magnetic fields. Moreover,
Marocchino et al. [25] demonstrated that the CMG model is computationally slower than
the SNB model, by a factor 2− 3.

3.4 Magnetized heat fluxes

When an intense laser pulse interacts with a plasma, it induces noncollinear temperature
and density gradients, which, are responsible for the creation of strong magnetic fields
[47] (of the order of mega-Gauss).

The magnetic fields modify the movement of electrons, as shown in Fig. 3.2. They
force electrons to rotate, inducing the energy transport perpendicular to the temperature
gradients, even in the local case. Moreover, if magnetic fields are strong enough, they can
force electrons to turn around, reducing their effective MFP.

We present here the state of the art of models, which describes the effects of magnetic
fields on the electron heat flux.
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3.4.1 Local regime

The theory of electron transport in magnetized plasmas has been derived by Braginskii in
1950s [36]. He found expressions for the electron heat flux vector in an external magnetic
field by performing an expansion of the FP equation in Laguerre polynomials stopped at
the third order. We follow his notation in this paragraph.

The mean time between two collisions of an electron in a plasma, close to the local
thermodynamic equilibrium is

τe = ν−1
e =

3

4

√
meT 3

e√
2πniZ2e4Λei

.

The averaged electron MFP is λe = vthτe. If the plasma is magnetized, electrons rotate in
the external magnetic field ~B0. The frequency of this rotation (electron girofrequency) is

ωB =
eB0

mec
.

Comparing these two quantities, we estimate the magnetic field influence on the electron
energy transport. The Hall parameter ωBτe is the measure of this influence.

Under the assumption of a stationary process, the electric current follows from the
Ampere’s law (2.15):

~j =
c

4π
~∇× ~B, (3.23)

where ~B is the induced (self-consistent) magnetic field. Assuming a perfect gas equation
of state, the electron pressure reads pe = neTe.

The electric field, for a magnetized plasma reads [36, 38, 24]

~E = −
~∇pe
ene

+
~j × ~B

cene
+ ¯̄α ·

~j

e2n2
e

− ¯̄β ·
~∇Te
e
. (3.24)

In Eq. (3.24), ¯̄α and ¯̄β are second-order tensors, which respectively account for the elec-

trical resistivity and the thermoelectric conductivity. Applied to a generic vector ~V , the
components of the electrical resistivity tensor can be expressed as

¯̄α · ~V = α‖b̂ · (b̂ · ~V )− α⊥b̂× (b̂× ~V )− α∧b̂× ~V ,

where the versor b̂ denotes the direction of the magnetic field ~B0 = B0b̂. In an analogous
way, the thermoelectric conductivity tensor can be expressed as

¯̄β · ~V = β‖b̂ · (b̂ · ~V )− β⊥b̂× (b̂× ~V ) + β∧b̂× ~V .

The symbols ‖, ⊥ mean parallel and perpendicular to the magnetic field, while ∧ means
crossed between the magnetic field and the generic vector.

The Braginskii’s heat flux reads

~qB = −¯̄k · ~∇Te − ¯̄β ·~j Te
e
. (3.25)

The thermoelectric tensor accounts for the friction force. The second-order tensor ¯̄k is
the thermal conductivity and accounts for the thermal force. Its components read

¯̄k · ~V = k‖b̂ · (b̂ · ~V )− k⊥b̂× (b̂× ~V ) + k∧b̂× ~V .
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As we will see in chapter 8, for the regimes analyzed in this study, the dominant term
in Eq. (3.25) is the thermal conductivity term. Assuming the second term negligible, we
can limit magnetic effects to the local flux limitation and rotation.

Let us consider a two-dimensional flow and a magnetic field perpendicular to the
plane. Consequently, the plasma is homogeneous along the magnetic field and we are not
interested on the parallel tensor component. The electrical resistivity, the thermoelectric
and the thermal conductivity are defined by

α⊥ =
mene
τe

1− α′0 − (ωBτe)
2α′1

∆
,

α∧ =
mene
τe

α′′0 + (ωBτe)
2α′′1

∆
ωBτe,

β⊥ =
β′0 + (ωBτe)

2β′1
∆

,

β∧ =
β′′0 + (ωBτe)

2β′′1
∆

ωBτe,

k⊥ =
peτe
me

γ′0 + (ωBτe)
2γ′1

∆
,

k∧ =
peτe
me

γ′′0 + (ωBτe)
2γ′′1

∆
ωBτe,

where ∆ = δ0 + δ1(ωBτe)
2 + (ωBτe)

4 and the values of the Braginskii’s coefficients are
given as interpolations of the values computed by Braginskii [36], in function of the ion
charge Z. For the electrical resistivity they are

α′0 =

[(
0.3008

Z
+ 0.976

)
1

Z
+ 0.4924

]
1

Z
+ 0.0678,

α′1 =
1.786

Z
+ 4.630,

α′′0 =

(
0.3714

Z
+ 0.3142

)
1

Z
+ 0.094,

α′′1 = 1.704,

for the thermoelectric conductivity

β′0 =

[(
0.3768

Z
+ 1.2998

)
1

Z
+ 0.8583

]
1

Z
+ 0.146,

β′1 =
1.303

Z
+ 3.798,

β′′0 =

(
0.7215

Z
+ 1.4545

)
1

Z
+ 0.877,

β′′1 = 1.50

and for the thermal conductivity

γ′0 =

[(
0.909

Z
+ 4.405

)
1

Z
+ 5.406

]
1

Z
+ 1.20,

γ′1 =
1.414

Z
+ 3.250,

γ′′0 =

(
2.31

Z
+ 9.31

)
1

Z
+ 10.23,

γ′′1 = 2.50.
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The ∆ coefficients are

δ0 =

[(
1.3008

Z
+ 1.5956

)
1

Z
+ 0.7778

]
1

Z
+ 0.0961,

δ1 =

(
1.35

Z
+ 5.958

)
1

Z
+ 7.482.

In this section we have presented the magnetic field transport equations from the
magnetohydrodynamics, according to the original theory by Braginskii [36]. The magnetic
field changes the direction and the modulus of energy fluxes and it is essential for the
description of a magnetized heat transport. A more precise calculation of Braginskii’s
coefficients has been performed in [38] by Epperlein and Haines, numerically solving the
local FP equation, using a finite difference representation of the equation. They improved
the coefficient precision up to 15%.

3.4.2 Approach for a nonlocal generalization

Braginskii’s theory is limited to local regimes. Magnetic fields add a degree of complexity
to plasmas, making difficult the elaboration of a nonlocal theory of magnetized transport.
Nicoläı, Feugeas and Schurtz proposed an approach for this analysis in [24], based on the
original SNB model. We resume here the main ideas.

The solution of the first moment of system (3.6), acconting for magnetic fields, is

~f1 =
λ∗ei

1 +
(
ωBλ

∗
ei

v

)2

(
−~∇f0 −

ωBλ
∗
ei

v
b̂× ~∇f0 +

e ~E

mev

∂

∂v
f0 +

ωBλ
∗
ei

v
b̂× e ~E

mev

∂

∂v
f0

)
.

(3.26)

Assuming f0 = fm0 , the anisotropic part ~fm1 can be expressed as a function of the tem-
perature and current gradients [24]. It reads

(3.27)~fm1 = −C⊥
~j

3vthene
− C∧b̂×

~j

3vthene
−D⊥

vth
3νe

~∇Te
Te
−D∧b̂×

vth
3νe

~∇Te
Te

,

with νe =
√

2πneZe
4λei/

√
meT 3

e ,

C⊥ =
u4φ7 + u7φ10(ωBτe)

2

φ2
7 + (φ10ωBτe)2

fB0 ,

C∧ =
u7φ7 + u4φ10(ωBτe)

2

φ2
7 + (φ10ωBτe)2

ωBτef
B
0 ,

D⊥ =

[
u6 − u4[φ7φ9 + φ10φ12(ωBτe)

2]− u7[φ7φ12 + φ10φ9(ωBτe)
2]

φ2
7 + (φ10ωBτe)2

]
fB0 ,

D∧ =

[
u9 − u4[φ7φ12 + φ10φ9(ωBτe)

2] + u7[φ7φ9 + φ10φ12(ωBτe)
2]

φ2
7 + (φ10ωBτe)2

]
ωBτef

B
0 ,

u = v/vth and

fB0 =
fm0

1 + u6(ωBτe)2
.

The coefficients φn are velocity integrals, which read

φn =
4

3
√
π

∫ ∞

0

du
une−u

2

1 + (ωBτeu3)2
.
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From the integration of Eq. (3.27) over the energy, Braginskii’s electric field and heat
flux can be deduced. This expression is used as a source for finding nonlocal fluxes.
As it is done in section 3.3.2, the EDF moments are split in local (Maxwellian) and
nonlocal contributions. Equation (3.6) is solved for the nonlocal contribution, after some
reductions. Due to the low energy nature of electrons, which modify electric and magnetic
fields, magnetic fields are assumed to be local and the electric field effect on nonlocal
electrons is neglected. Since magnetic fields reduce the nonlocality of the system, we can
again apply the assumption of a linear deviation from the local transport. Then, Eq. (3.6)
reduces to

{
−∆f0

λee
+

~∇
3
·
[

λ∗ei
1+(u3ωBτe)2 (~∇+ u3ωBτeb̂×)∆f0

]
= ~∇ · gm1

∆~f1 =
λ∗ei

1+(u3ωBτe)2 (~∇+ u3ωBτeb̂×)∆f0

. (3.28)

The solution of system (3.28) leads to the following expression for the total heat flux

~qSNB−B = ~qB + 2πme

∫ ∞

0

∆~f1v
5dv.

In this case corrections are added to the Braginskii’s local flux.
The simplified FP system (3.28) emphasizes the magnetized effects on the nonlocal

transport. The reduction of the effective MFP from λ∗ei to
λ∗ei

1+(u3ωBτe)2 leads to a reduc-

tion of nonlocal effects. The cross b̂ term induces a flux rotation, also for the nonlocal
corrections.

The generalization to magnetized plasmas of the SNB model is complex, due to a
large number of integral coefficients, which characterize this theory. Moreover, this theory
implies many approximations, which limit its domain of validity. For all these reasons,
the theory has never achieved a big success in the laser-plasma community. That is the
reason which motivates us to look for a different approach to the magnetized electron
transport.
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Chapter 4

Reduced collision models

In order to be able to make realistic predictions, the HED physical simulations require to
account for kinetic effects, such as relativistic electron transport, hot electron generation,
nonlocal transport and stream instability development. Even if this manuscript is only
devoted to nonlocal transport regimes, for the reasons explained above, it is suitable to
model kinetic effects in a way which could be easily generalized or extended to the regimes
where these phenomena take place. Thus, it is suitable to use a collision operator able to
describe strongly anisotropic as well as isotropic regimes.

In section 2.1 we have presented a statistical description of the electron motion in
a plasma. After the definition of an EDF, we have derived its temporal evolution from
classical mechanics, under the assumption of binary and small angle collisions. This
equation, so called FP equation, is resumed here:

∂

∂t
fe+~v · ~∇fe+~a· ~∇vfe =

∑

j=e,i

∂

∂~pe

∫

R3

d3vj
4πe2q2

jΛej

2||~vrel||
~v2

rel
¯̄I − ~vrel ⊗ ~vrel

~v2

rel

(
∂fe
∂~pe

fj−
∂fj
∂~pj

fe

)
.

The right hand side term is the Landau collision operator, derived in section 2.1.2. This
operator is rather complex and difficult to be solved numerically.

The aim of this work is to derive a simple transport model, which can be used at every
temporal step of a hydrodynamic simulation, in order to account for kinetic corrections.
The Landau collision operator is not suitable, even for a fully-kinetic simulation. It is not
reasonable to use it coupled with hydrodynamic codes. Classical transport models, de-
scribed in chapter 3, are based on empirical collision operators, such as the BGK operator
[28]. However, the BGK collision operator is not able to describe the energy diffusion.
The goal of this chapter is to improve previous models, accounting for more accurate
description of collisions.

In this chapter, reduced collision operators are derived, computed and analyzed. Un-
der the assumption of inertial ions and fast electrons, in section 4.1, a reduced collision
operator is derived. In section 4.2, a further simplification is performed, in order to de-
rive the most suitable operator to deal with the physics of nonlocal energy transport. In
section 4.3, an analysis of the entropy of the reduced collision operators is performed.
Conclusions on the choice of the most suitable collision operator are drawn in section 4.4.

4.1 Reduced collision operators

The Landau collision operator can be split in two terms, accounting respectively for
electron collisions with ions and with electrons:

(
∂fe
∂t

)

coll
= Cei + Cee,
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where

(4.1)Cei =
∂

∂~pe

∫

R3

d3vi
4πZ2e4Λei

2||~vrel||
~v2

rel
¯̄I − ~vrel ⊗ ~vrel

~v2

rel

(
∂fe
∂~pe

fi −
∂fi
∂~pi

fe

)

accounts for electron-ion collisions and

Cee =
∂

∂~pe

∫

R3

d3ve
4πe4Λee

2||~vrel||
~v2

rel
¯̄I − ~vrel ⊗ ~vrel

~v2

rel

(
∂fe
∂~pe

fe −
∂fe
∂~pe

fe

)

for electron-electron collisions. We stress that ~vrel is the relative velocity between the two
colliding particles.

In this section we perform reductions of these operators in order to find the most
suitable form, compatible with the physical processes we aim to describe.

4.1.1 Inertial ions

As specified in the first part of the manuscript, we consider fully-ionized plasmas composed
of one species of ions and one of electrons. While ions and electrons are accelerated by
the same force, the fraction between their velocities is ve/vi = Ami/me ≈ 1.8 × 103A.
Thus, describing electron collisions, it is reasonable to assume the ions to be immobile
vi ≈ 0, making an error of 0.0005%.

Assuming vi = 0 means to assume ~vrel ≈ ~ve. For this reason the second term of the
right hand of Eq. (4.1) reduces to zero. Moreover, the distribution function of fixed ions
is a Dirac’s delta function: fi(~v) = niδ(~vi). Then, Eq. (4.1) becomes

Cei =
∂

∂~ve

νei
2

(
~v2
e

¯̄I − ~ve ⊗ ~ve
) ∂fe
∂~ve

In spherical coordinates it becomes [48, 49]

Cei =
νei
2

∂2

∂~Ω2
fe, (4.2)

where
∂2

∂~Ω2
=

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

is the Laplace-Beltrami operator.
Equation (4.2) limits the role of electron-ion collisions to the angular diffusion. Such

an interaction can be seen as an elastic ball (electron) bunching against a heavy sphere
(ion): the first does not lose energy but its trajectory can be deviated.

4.1.2 Suprathermal electron collisions

In section 3.2.2 and in Fig. 3.1 we have shown that the electrons which transport the heat
are suprathermal. We simplify the collision operator, exploiting this property.

We split electrons in a thermal (th) and suprathermal (s) population. Since the
suprathermal population transports the heat, these electrons are considered as projectiles.
In the same way, the thermal electron population is treated as a background. By definition,
thermal electrons are described bt a Maxwellian distribution function (fme ). Assuming
that supratermal electrons come from a hot region at temperature Th and deposit their
energy to the thermal population in a cold region at temperature Tc ≤ Th, the ratio
between thermal and suprathermal electron velocities is vth/vs ∼ 0.27

√
Tc/Th. We assume

that this ratio is small � 1.
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We proceed splitting the Landau collision operator (2.9) in the radial and the angular
velocity directions:

Cee = Cr
ee + CΩ

ee.

They respectively read

Cr
ee =

1

p2
s

∂

∂ps
p2
s

~vs
vs

∫
d3vthf

m
e

(
· ¯̄U · ∂fs

∂~ps
+⊗ ∂

∂~pth
: ¯̄Ufs

)
(4.3)

and

CΩ
ee =

1

ps

∂

∂~Ω

∫
d3vthf

m
e

(
· ¯̄U · ∂fs

∂~ps
+⊗ ∂

∂~pth
: ¯̄Ufs

)
, (4.4)

where
∂

∂~Ω
=

1

sin θ

(
∂

∂θ
sin θêθ +

∂

∂φ
êφ

)
.

Angular contribution

The angular contribution to the electron-electron Landau collision operator is given by
Eq. (4.4). It is composed of two terms. The second term depends on

∂ ¯̄U

∂~pth
= 4πe4Λee

~vrel
me||~vrel||3

≈ 4πe4Λee

~vrel
mev3

s

, (4.5)

where the approximated value is due to the assumption vth/vs � 1 ⇒ ||~vrel||≈ vs. This
term reduces to a boundary term, since

∂

∂~Ω
· ~vrel =

∂

∂~Ω
· ~vs.

The first term reads

∫
d3vthf

m
e

∂

∂~Ω
· ¯̄U

∂

∂~ps
=

4πe4Λee

2

∫
d3vth

fme
||~vrel||3

(
||~vrel||2

∂

∂~Ω
· ∂
∂~ps

+
∂

∂~Ω
⊗ ~vrel

: ~vth ⊗
∂

∂~ps

)

=
4πe4Λee

2

∫
d3vth

fme
||~vrel||3

(
||~vrel||2

∂

∂~Ω
· ∂
∂~ps

+
∂

∂~Ω
v2
th ·

∂

∂~ps

)

≈ 4πe4Λee

2

ne
mev2

s

∂2

∂Ω2
.

As above, the approximated value is due to the assumption ||~vrel||≈ vs.

Finally the angular contribution reads

CΩ
ee =

νee
2

∂2

∂Ω2
fs.

Similarly to electron-ion collisions, the angular contribution describes elastic collisions of
suprathermal electrons with slow thermal electrons, with a frequency equal to νee.
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Energy diffusion

The electron-electron Landau collision operator, describing the energy diffusion, is given
by Eq. (4.3). It is also composed of two terms. With Eq. (4.5), and for the Maxwellian
distribution of thermal electrons, the second term reduces to an odd function of each
thermal velocity component, integrated over an even domain (−∞,+∞). Thus, it is zero.
The remaining term can be written as

Cr
ee =

1

p2
s

∂

∂ps
p2
s

∫
d3vthf

m
e

(
~vs
vs
· ¯̄U · ~vs

vs

∂fs
∂ps

+
~vs
vs
· ¯̄U · ∂fs

∂~Ω
+
~vs
vs
⊗ ∂

∂~pth
: ¯̄Ufs

)
,

where the gradient is projected on the radial and the angular directions. Since even
powers of the velocity lead to a zero integral, for reasons of symmetry, the first term of
this equation is proportional to

∫
d3vthf

m
e

~vs
vs
· ¯̄U · ~vs

vs
= 2πe4Λee

∫
d3vthf

m
e

v2
sv

2
th + 2v2

svs · vth − (~vs · ~vth)2

v2
s ||~vrel||3

≈ 2πe4Λee

∫
d3vthf

m
e

v2
sv

2
th − (~vs · ~vth)2

v5
s

= 4πe4Λee
v2
thne
v3
s

.

The second term is zero because it is a product of two perpendicular vectors. It can be
seen while projecting ¯̄U on ~vs on the left and on its perpendicular direction, on the right.
The third term is proportional to

∫
d3vthf

m
e fs

~vs
vs
⊗ ∂

∂~pth
: ¯̄U = 4πe4Λee

∫
d3vthf

m
e fs

~vs
vs
· ~vs
mβ||~vrel||3

≈ 4πe4Λeene
mev2

s

fs.

This value is obtained exploiting the symmetry of the integral on vth.
The energy contribution can be now evaluated as:

Cr
ee = νeevs

∂

∂vs

(
v2
th

vs

∂

∂vs
+ 1

)
fs.

This operator is composed of a diffusion and a friction term, which depend on the second
and first order velocity derivative, respectively.

4.2 AWBS collision operator

In the previous section we have derived a simplified collision operator for suprather-
mal electrons, colliding with background thermal electrons and ions. Starting from that
derivation, we present here a higher degree of simplification, emphasizing the analytical
derivation and the good properties of the resulting collisional operator.

4.2.1 Analytical derivation

Since the collisions which we are interested in involves only suprathermal electrons, we
interpret fs as the whole EDF fe. Then, the total collision operator reads

(
∂fe
∂t

)

coll
= νeev

∂

∂v

(
v2
th

v

∂

∂v
+ 1

)
fe +

νee + νei
2

∂2

∂~Ω2
fe. (4.6)
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It can be easily proved that a Maxwellian distribution function satifies the following
relation: (

v2
th

v

∂

∂v
+ 1

)
fme = 0.

Then, the thermalization term in Eq. (4.6) can be represented as:

(
∂fe
∂t

)

coll
= νeev

∂

∂v

(
v2
th

v

∂

∂v
+ 1

)
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe. (4.7)

The effect of electron-electron collisions is now written explicitly. They assure a relaxation
to the equilibrium (thermailization), the energy losses and the angular diffusion. The
collisions with ions contribute to the angular diffusion:

(
∂fe
∂t

)

coll
= νeev

∂

∂v

(
v2
th

v

∂

∂v
+ 1

) thermalization︷ ︸︸ ︷
(fe − fme )

︸ ︷︷ ︸
energy diffusion and friction

+
νee + νei

2

∂2

∂~Ω2
fe

︸ ︷︷ ︸
angular diffusion

.

The collision operator (4.7) remains complex and computationally expensive. We
make another simplification, assuming that the differences between the EDF and the
Maxwellian distribution are relatively small. So, the second-order derivative is small
compared to the first-order derivative. By neglecting the second order derivative, we
obtain the new collision operator

(
∂fe
∂t

)

coll
= νeev

∂

∂v
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe. (4.8)

This approach has been proposed by Albritton et al. [42], and we call it AWBS operator.
The AWBS operator describes the angular diffusion as well as the thermalization but

it does not account for the energy diffusion. It presents useful properties for the electron
transport, which are analyzed below.

4.2.2 Proprieties of the AWBS operator

The AWBS collision operator presents many suitable properties for the description of
nonlocal transport. First of all it is simple but in the same time it is able to describe
three physical processes. Let us compare the properties of the AWBS collision operator
with the fast particles collision operator (4.6) and with the operator used in the SNB
model, which is composed of inertial ions and relaxing electrons (BGK term):

(
∂fe
∂t

)

coll
= νee

thermalization︷ ︸︸ ︷
(fe − fme )︸ ︷︷ ︸

relaxation

+
νei
2

∂2

∂~Ω2
fe

︸ ︷︷ ︸
ion angular diffusion

. (4.9)

First, it can be demonstrated that the AWBS collision operator conserves the number
of particles. The local particle density reads

ne =

∫

R3

d3vfe.

From the FP equation, the time variation of the particle density reads

dne
dt

+ ~∇ · (ne~ue) =

∫

R3

d3v

(
∂fe
∂t

)

coll
. (4.10)
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Figure 4.1: Comparison of the collision terms given by Eqs. (4.6) (fast particles), (4.8)
(AWBS) and (4.9) (BGK), for a typical nonlocal EDF. The analysis is done in function
of the velocity, normalized on the thermal velocity. Vertical dashed lines denote the point
of maximum contribution of the local heat flux.

For both collision operators (4.6) and (4.8), the right hand side of Eq. (4.10) is zero. On
the contrary, the BGK collision operator described in section 3.1.2, does not conserve the
number of particles.

These results can be extended to the conservation of the electric charge. Not conserving
the number of particles and the charge can lead to errors in calculations of plasma density
and electric fields. However, in contrast to the fast particles collision operator (4.7), both
AWBS (4.8) and BGK (4.9) do not conserve the momentum and the energy of electrons.

Let us consider the effect of different treatments of the energy relation, for the three
collision operators (fast particles, AWBS and BGK), on the evolution of a typical nonlocal
EDF. We present the collision operators (4.6), (4.8) and (4.9) in a normalized form:

(
∂f̃

∂t̃

)

coll

=
v3
th

n0νth

(
∂fe
∂t

)

coll
= ṽ−2 ∂

∂ṽ

(
ṽ−1 ∂

∂ṽ
+ 1

)
(f̃ − f̃m),

(
∂f̃

∂t̃

)

coll

=
v3
th

n0νth

(
∂fe
∂t

)

coll
= ṽ−2 ∂

∂ṽ
(f̃ − f̃m)

and (
∂f̃

∂t̃

)

coll

=
v3
th

n0νth

(
∂fe
∂t

)

coll
= −ṽ−3(f̃ − f̃m),

where

f̃m =
v3
th

n0

fme =
1

(2π)3/2
e−ṽ

2/2

is the Maxwellian EDF. We consider here an isotropic EDF since the angular diffusion
terms are the same for all three collision operators. We analyze the typical nonlocal case
of a local (Maxwellian) EDF, perturbed by a suprathermal (∼ 3vth) EDF:

f̃ = f̃m +
10−1

(2π)3/2
e−(ṽ−3)2/2.

This nonlocal EDF is compared with the unperturbed (Maxwellian) EDF in Fig. 4.1a.
The corresponding collision terms are shown in Fig. 4.1b. The AWBS term agrees with the
fast electron term for velocities higher then 2vth and differences are reduced as the velocity
increases. Since the heat transport contribution is maximum at 3.7vth, the description is
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sufficient. On the contrary, the BGK operator underestimates the modulus of the stopping
power for 3.7vth, and in general gives different results for lower velocities.

These examples show that the AWBS collision operator is more accurate, than the
BGK operator. This conclusion can be qualitatively generalized for other cases of a
Maxwellian function perturbed by suprathermal electrons. Note that, for velocities . vth,
operators (4.6) and (4.8) are no more able to perform realistic predictions. However, these
regimes are out of the domain of interest for the nonlocal transport.

The first two moments of the AWBS collision operator read

{(
∂f0

∂t

)
coll = νeev

∂
∂v

(f0 − fm0 )(
∂ ~f1

∂t

)
coll

= νeev
∂
∂v
~f1 + νee+νei

2
∂2

∂~Ω2
~f1

.

In the Lorentz gas limit νei � νee, the first moment collision operator equals to the one
used in SNB.

4.3 H -theorem with reduced collision operators

In section 2.1.3, we have shown that the kinetic entropy of a closed system

H[fe] = −
∫

R6

d3xd3v (fe log fe − fe)

does not decrease with time (H-theorem). This condition can be written as

d

dt
H = −

∫

R6

d3xd3v log fe

(
∂fe
∂t

)

coll
≥ 0,

that is, only collisions may change the entropy.
In this section, we consider a compatibility of the reduced collision operators with the

H-theorem.

4.3.1 Electron-ion collisions

The electron-ion collision operator is given by Eq. (4.2). This collision operator verify the
H -theorem

d

dt
H = −

∫

R6

d3xd3v log fe
νei
2

∂2

∂~Ω2
fe

=

∫

R3

d3x

∫ ∞

0

dv
νeiv

2

2

[∫ 2π

0

dφ

∫ π

0

dθ
sin θ

fe

(
∂fe
∂θ

)2

+

∫ π

0

dθ

sin θ

∫ 2π

0

dφ
1

fe

(
∂fe
∂φ

)2
]

≥ 0,
(4.11)

because sin θ ≥ 0 and fe ≥ 0. By performing the integration by parts, we find the border
terms [log fe sin θ ∂fe

∂θ
]θ=πθ=0 and [log fe

∂fe
∂φ

]φ=2π
φ=0 are zero.

Thus the electron-ion collision operator respects the entropy principle.

4.3.2 Fast colliding electrons

For the collision operator Eq. (4.6), the entropy equation reads

d

dt
H = −

∫

R6

d3xd3v log fe

[
νeev

∂

∂v

(
v2
th

v

∂

∂v
+ 1

)
fe +

νee + νei
2

∂2

∂~Ω2
fe

]
.
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The last term on the right hand side is equal to Eq. (4.11), with a factor Z + 1. Thus, it
verifies the entropy principle. After an integration by parts, the first term becomes

−
∫

R6

d3xd3v log feνeev
∂

∂v

(
v2
th

v

∂

∂v
+ 1

)
fe

= νeev
3

∫

R3

d3x

∫

S2

d2Ω

{[
log fe

(
v2
th

v

∂fe
∂v

+ fe

)]v=∞

v=0

+

∫ ∞

0

dv
1

fe

∂fe
∂v

(
v2
th

v

∂

∂v
+ 1

)
fe

}

= νeev
3

∫

R3

d3x

∫

S2

d2Ω

∫ ∞

0

dv
v2
th

vfe

(
∂fe
∂v

)2

≥ 0.

Thus, the collision operator of fast electrons respects the entropy principle.

4.3.3 AWBS collision operator

The entropy time evolution for the AWBS collision operator (4.8), reads

(4.12)
d

dt
H = −

∫

R6

d3xd3v log fe

[
νeev

∂

∂v
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe

]
.

The second term on the right hand side respects the entropy principle. The first term,
after an integration by parts, reads

−
∫

R6

d3xd3v log feνeev
∂

∂v
(fe − fme ) = −νeev3

∫

R3

d3x

∫

S2

d2Ω

{[
νeev

3 log fe (fe − fme )
]v=∞
v=0

−
∫ ∞

0

dvνeev
3fe − fme

fe

}

= νeev
3

∫

R3

d3x

∫

S2

d2Ω

∫ ∞

0

dv
fe − fme
fe

∂

∂v
fe,

which is not always positively defined.
The reason why the H-theorem is not always respected is due to omission of the

diffusion term, passing from Eq. (4.6) to Eq. (4.8). During this passage we lose a physical
process: the energy conservation. Otherwise, we could multiply Eq. (4.12) by a constant
of motion

∝
∫

R6

d3xd3v log fme

(
∂fe
∂t

)

coll
= 0, (4.13)

which would bring to the demonstration of the H -theorem. Nevertheless, the condition
fe ≥ fme ∧ ∂

∂v
fe ≥ 0 is verified in the case of nonlocal transport: when a hot EDF is

deposited in a cold region.

4.3.4 BGK collision operator

The BGK collision operator, with a velocity-dependent frequency, as it is presented in
section 3.1.2, is given by Eq. (4.9). The entropy equation with this operator reads

d

dt
H = −

∫

R6

d3xd3v log fe [−νee (fe − fme )]

=

∫

R3

d3x

∫

S2

d2Ω

∫ ∞

0

νeev
2 log fe (fe − fme ) .

It is evident that the H -theorem is not respected. Moreover, this collision operator
does not conserve the energy and the number of particles. Otherwise, we could multiply
Eq. (4.12) by the constant of motion (4.13), which would bring to the thesis.

Thus, the AWBS operator presents certain advantages, compared to the BGK collision
operator, but the energy conservation and the entropy growth are not respected.
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4.4 Perspectives of reduced operators

The existent nonlocal transport models are based on the BGK collision operator [28],
as described in section 3.1.2. In this chapter we have presented an improved AWBS
reduced collision operator, which presents some advantages. First of all, it accounts for
more physical processes than the BGK operator. In particular, it describes the electron
energy dissipation, which is of a major importance for the description of the nonlocal
transport. Moreover, the AWBS operator is able to describe the transport of energetic
electrons, strongly deviated from a Maxwellian distribution and highly anisotropic beams.
Nowadays, a challenge for the plasma physics and in particular for ICF, is to account for
such kinetic phenomena at a hydrodynamic time scale.

The FP equation, with the AWBS operator presented in this chapter is the framework
for the reduced model developed in this manuscript.



74 CHAPTER 4. REDUCED COLLISION MODELS



Chapter 5

First moment models

In chapter 4 we have presented a simplified FP equation, by performing a reduction of
the Landau collision operator. Accounting the collisions of suprathermal electrons with
ions and thermal electrons and neglecting second order velocity-derivative of the EDF we
have introduced the AWBS collision operator [42]. The AWBS-FP equation reads

∂

∂t
fe + ~v · ~∇fe + ~a · ~∇vfe = νeeve

∂

∂v
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe.

In order to propose a fast kinetic model for hydrodynamic codes, we proceed further in
the simplification of the AWBS operator, since it is defined in the six-dimensional phase
space (~x,~v) and remains too much time consuming.

The SNB model, described in section 3.3.2, has been reinterpreted as a reduced and
strongly simplified FP equation. However, as shown in 3.4.2, the splitting of the EDF in a
local and nonlocal parts makes it difficult to generalize this model to magnetized plasmas.
Moreover, a generalization to strong anisotropic processes is also impossible, due to the
P1 closure (described in section 3.1.3).

For these reasons, we choose to develop a new model, based on a more fundamental
assumption: the entropy maximization. In this model magnetic fields could be easily
treatable, as they do not affect the structure of the collisional operator.

In section 5.1, the first moment hierarchy of the AWBS-FP equation is derived, without
fixing the closure relation. In section 5.2, the P1 closure relation is presented: the AWBS-
P1 first moment model is an improvement of the SNB model. A second improvement
is presented in section 5.3. It is based on the entropic closure relation, which allows to
extend the domain of validity of the model to high anisotropies. It opens an opportunity to
describe both kinetic corrections in energy and in angle with the same model. Advantages
and disadvantages of the models are discussed.

5.1 AWBS-FP first moment model

The FP equation can be resolved by developing it in a series of moments in the velocity
direction ~Ω. The main issues related to this approach are the following.

When do we stop the hierarchy? Is a first angular moment development sufficient for
describing nonlocal transport or do we need a second or higher angular moment develop-
ment? How do we close the system, keeping the main physical properties? How do we
account for nonlocal electric fields? And for magnetic fields? Is the model sufficiently fast
to be coupled with a multidimensional hydrodynamic code?

In this section, we try to answer to all these questions.
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5.1.1 AWBS-FP hierarchy arrest

We want to reduce the number of dimensions, in order to simplify the AWBS-FP equation.
This is done through the construction of the angular moment hierarchy, described in
section 3.1.1. It has been shown in [37] that in order to describe the nonlocal transport
it is sufficient to stop the hierarchy at the first moment. Such an hierarchy is shown in
Eq. (3.2) and has been derived from an integration over the velocity direction vector ~Ω of
the FP equation.

The characteristic time evolution of kinetic systems is given by the effective collision
time ∼ √τeeτei. Since this time is very short compared to the characteristic hydrodynamic
time ∼ L∇/cs (with cs as the sound speed and L∇ as the gradient lenght), electrons have
the time to adjust themselves to the equilibrium. Thus, the first two moment hierarchy
of the AWBS-FP equation simplifies to:





v~∇ · ~f1 − e ~E
mev2 · ∂∂v

(
v2 ~f1

)
= νeev

∂
∂v

(f0 − fm0 )

v~∇ · ¯̄f2 −
e

mev2

∂

∂v

(
v2 ¯̄f2 · ~E

)
+

e

mev

(
f0

¯̄I − ¯̄f2

)
· ~E +

e

mec
~f1 × ~B = νeev

∂

∂v
~f1 − νtot ~f1

(5.1)
where total collision frequency is νtot = νee + νei. Three quantities in this system are
determined in what follows: ¯̄f2, ~E and ~B.

5.1.2 Equations for the electric and magnetic fields

The time evolution of the electric field is given by the Ampere’s law. Under the as-
sumption of stationary solutions, it is given by Eq. (3.23). Two cases can be considered:
unmagnetized and magnetized plasmas.

Unmagnetized plasmas

In case of unmagnetized plasmas, without external sources, Eq. (3.23) reduces to

~j = 0,

that is, the electric field is adjusted in a way to respect the zero-current condition.
In the unmagnetized local limit, Eq. 3.24 reduces to

~E = −
~∇p
ene
− β⊥(ωBτe = 0)

~∇Te
e
. (5.2)

In Fig. 3.1, we have shown the integrand of the local heat flux, as a function of
the velocity. That there are two electron fluxes, propagating in opposite directions. A
suprathermal flux, which transports the heat and a slower return current, induced by the
zero-current electric field. Since the return current electrons are slower, this flux is less
susceptible to nonlocal effects. This has been shown in [24]. Thus, for weakly nonlocal
conditions, the electric fields could be determined from the local equation (5.2).

When electrons are strongly nonlocal, the model needs to account for nonlocal correc-
tions to the electric field [50]. In section 3.2.1, we have derived a kinetic relation given by
Eq. (3.9), for electric fields, accounting for nonlocal effects. It has been derived under the
assumption of a Lorentz gas. We can extend its validity to low-Z plasmas, multiplying by
the factor ξ/2.5, as it is done for the local field in Eq. (3.10):

~ENL = − ξ

2.5

me

6e

∫∞
0
~∇f0v

7dv∫∞
0
f0v5dv

. (5.3)
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This nonlocal expression is valid in the limit ~∇Te/Te � ~∇ne/ne, which is frequently

respected in practice. In the extreme case of Z = 1 and ~∇Te/Te � ~∇ne/ne, the error is
∼ 30%, which is smaller than in the models assuming local electric fields.

Magnetized plasmas

In magnetized plasmas, the zero-current condition is replaced by the stationary Ampere’s
law (3.23):

~j =
c

4π
~∇× ~B.

Unfortunately, it is not anymore possible to invert the kinetic equation to express the
electric field, explicitly.

As it has been proposed in the previous section, a solution could be to calculate electric
fields in a local approximation. Magnetic field localizes the transport, as shown in section
3.4.2. This fact justifies the local approximation.

Electric fields in the local approximation are given by Eq. (3.24). We apply this
equation introducing the kinetic-hydrodynamic quantities: the electron density and the
electron pressure

nK =

∫

R
dvf0,

pK =
2

3

∫

R
dvεf0.

According to the perfect gas equation of state, the kinetic electron temperature reads
TK = pK/nK . By using these definitions in Eq. (3.24), the expression for the local-kinetic
electric field reads

~ELk = −
~∇pK
enK

+
~J × ~B

cenK
+ ¯̄αK ·

~J

e2n2
K

− ¯̄βK ·
~∇TK
e

. (5.4)

The kinetic electrical resistivity and thermoelectric conductivity, detailed in section 3.4.1,
are defined as functions of the transport coefficients: ¯̄αK = ¯̄α(nK , TK), ¯̄βK = ¯̄β(nK , TK).

The model proposed in this section is able to treat also density gradients. However,
it is phenomenological. In the limit of a zero magnetic field ωBτe ≈ 0 it applies also
to unmagnetized plasmas. It reduces to Eq. (5.2). However, this model presents some
differences with the respect to the rigorous kinetic model. In particular, the local-kinetic
electric field result closer to the local formulation, than the nonlocal electric field (5.3).
Such small differences in the electric field increase with the nonlocality. They do not affect
significantly the heat transport, as long as it remains weakly nonlocal (λ0/LT ≤ 0.3).
Magnetic fields are defined by external sources, computed with the local approximation,
by magnetohydodynamic codes.

5.1.3 Open issues

In this section we have reduced the AWBS-FP equation to the system (5.1). The latter
is stopped at the first moment and is characterized by three free functions: the second
moment ¯̄f2, the electric and magnetic fields. The equations for electric and magnetic fields
are summarized in section 5.1.2. The closure relations are discussed in next section. Two
distinct models are presented, differing by the description of kinetic-scale effects and the
validity domain.
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5.2 Polynomial closure for the AWBS-FP moment

hierarchy

A polynomial closure for the system (5.1) is presented here. It was derived in section
3.1.3, from a spherical harmonics development, stopped at the first order. It reads

fe =
f0

4π
+

3

4π
~Ω · ~f1.

The limits of this approach are the following:

• it depends linearly on velocity directions ~Ω, thus it cannot deal with more than one
direction of anisotropy;

• its domain of validity is limited to small anisotropies |~f1|� f0, since in the opposite
case the EDF becomes negative, which does not make physical sense.

Starting from the P1 approximation, in this section we develop two new transport
models, which are used along the manuscript for a comparison with the entropic model.

5.2.1 P1 model

As shown in section 3.1.3, the P1 approximation leads to the closure relation ¯̄f2 = f0
¯̄I/3.

This closure, with the definition of electromagnetic fields, given in section 3.1, sets a new
model for Eq. (5.1):

{
v~∇ · ~f1 − e ~E

mev2 · ∂∂v
(
v2 ~f1

)
= νeev

∂
∂v

(f0 − fm0 )

v
3
~∇f0 − e ~E

3me
∂
∂v
f0 + e

mec
~f1 × ~B = νeev

∂
∂v
~f1 − (νee + νei) ~f1

. (5.5)

In the manuscript this system of equations is called P1 model.

The P1 model is much more simple than the system (5.1) and explicitly accounts for
electric and magnetic fields. This is different from nonlocal models, as shown in section
3.4.2.

Despite its good properties, the P1 closure has a limited domain of validity, as we
have shown in section 3.1.3. Concerning the nonlocal regime, the nonlocal transport is
limited to relatively small temperature gradients. Moreover, the P1 approximation cannot
be generalized to strongly anisotropic EDFs, such as transport induced by parametric
instabilities as well as relativistic electron transport.

The P1 model is analogous to system (3.6), for the AWBS collision operator. The
latter has been used for development of the SNB model. In order to understand the
limitations of the AWBS operator, it is interesting to extend the SNB model by using the
system (5.5).

5.2.2 Improvement of the SNB model

The SNB model has been described in section 3.3.2. The kinetic interpretation of this
model agrees with the FP results, if the effective electron MFP is reduced by a factor
of 2 compared to the kinetic theory. An improved model, using a more precise collision
operator, allows to recover a correct expression for the MFP.

We start from the system (5.5). Similarly to section 3.3.2, we use the Lorentz gas
approximation Z � 1. The low-Z limit is obtained by using a numerical fit.
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In the Lorentz gas approximation, the electron-electron collisions, in the equation for
~f1, are accounted for by modifying the electron-ion collision frequency. So the system
(5.5) reduces to

{
v~∇ · ~f1 − e ~E

mev2 · ∂∂v
(
v2 ~f1

)
= νeev

∂
∂v

(f0 − fm0 )

v
3
~∇ · f0 − e ~E

3me
· ∂
∂v
f0 + e

mec
~f1 × ~B = −ν∗ei ~f1

, (5.6)

where ν∗ei is defined in Eq. (3.3) in order to account for the electron-electron collisions.
Thus, the difference of the AWBS operator from the SNB model concerns the equation
for f0. The new effect added to the SNB model is the energy dissipation.

Following section 3.3.2, we split the EDF to the thermal and suprathermal parts,
similarly to the SNB model: {

f0 = fm0 + ∆f0

~f1 = ~fm1 + ∆~f1

.

Neglecting the electric field, we reduce the model to the following diffusion equation for
suprathermal electrons:

{(
v
λee

∂
∂v

+ ~∇λEei
3
~∇
)

∆f0 = ~∇~gm1 .
∆~f1 = −λ∗ei

3
~∇∆f0

, (5.7)

with ~gm1 defined as the simplified Maxwellian flux

~gm1 = −λ
∗
ei

3
fm0

~∇Te
Te

,

as in section 3.3.2. The local electric field effects on suprathermal electrons are taken
into account through the reduction of the collision MFP to the maximum value ε

|e ~ESH |
,

dependent on the local electric field:

1

λEei
=

1

λei
+
|e ~ESH |
ε

,

where the electric field is given by Eq. (3.10).
Finally the heat flux reads

~qAWBS−SNB = 2πme

∫ ∞

0

(~fm1 + ∆~f1)v5dv = ~qSH + ∆~q.

An important difference between the SNB model described in section 3.3.2 and the
improved model concerns the electron MFP. The authors of [22] have been forced to use
an effective MFP, given by Eq. (3.22), in order to reproduce the results of test cases.
In contrast, in the improved SNB model, the MFP has the standard definition: λej =
m2
ev

4/(4πneZje
4Λej), where Zj = 1, for j = e, and it is the ionization number, for j = i.

In this manuscript we refer to the original SNB model as BGK-SNB, since it is based
on the BGK operator. We refer to AWBS-SNB as the improved SNB model, based on
the AWBS collision operator, described in this section.

5.2.3 Conclusions on P1 models

In this section we have developed two new first moment models, both based on the AWBS
collision operator and on the P1 approximation.
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The P1 model has shown to be a good candidate for the description of magnetized
nonlocal transport, since in its formulation magnetic fields are explicit. However, its
domain of validity is strongly limited by the P1 approximation. As we show in the next
part, it is limited to weakly kinetic effects and weakly anisotropic processes.

In this section we have applied the AWBS collision operator to the SNB nonlocal
transport model. Contrary to BGK-SNB, the AWBS-SNB model allows to use the MFP
standard definition without multiplicative factors. Results of the improvement are pre-
sented in the next part. The improved model has the same limitations of the original
SNB model, related to the difficulties in accounting for magnetic fields.

A new closure model allows to overcome the previous limitations. It is presented in
the next section.

5.3 Entropic closure

A closed and isolated system evolves to equilibrium, moving to more probables states, due
to the collisions between particles. The second law of thermodynamics asserts that the
entropy increases, reaching the state of equilibrium. This law finds its statistical inter-
pretation in the H-theorem, described in section 2.1.3. In this chapter we are developing
a new first moment model, based on an entropic closure. This model is called M1, for its
first moment closure.

5.3.1 Angular entropy maximization principle

All closed statistical systems respect the H-theorem. We apply this theorem, in order to
find a closure relation for the system (3.2) [51].

In difference from the macroscopic entropy quantity, integrated over the phase-space,
we define the angular mesoscopic entropy, integrated only over the velocity directions:

Hv[fe] = −
∫

S2

d2Ω (fe log fe − fe) . (5.8)

The integration of this entropy over the space and the velocity modulus, leads to the
macroscopic entropy definition (2.10).

The angular entropy maximization principle asserts that for each point of the space
and for each value of the velocity magnitude, the angular entropy (5.8) is maximized:

d

dt
Hv ≥ 0.

The physical meaning of the angular entropy maximization is that information is lost
over angular scattering. This also means that the angular scattering is a local process,
leading to the isotropization of the EDF. This assumption is reasonable asserting that the
energy and the angular scattering are uncorrelated. Following the calculation presented
in section 4.3, it is easy to demonstrate that the ion collision term respects the angular
entropy principle, since it concerns only the angular scattering.

Moreover, imposing the angular entropy principle, the macroscopic system is forced
to respect the H-theorem:

d

dt
Hv ≥ 0⇒ d

dt
H =

∫

R3

d3x

∫ ∞

0

dv
d

dt
Hv ≥ 0.
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5.3.2 First moment angular entropic closure

We apply the angular entropic principle for closing the system (5.1) [52, 20].
We are looking for the underlying EDF, which respects the angular entropy maxi-

mization principle, depending on the first two angular moments, defined in (3.1). This
maximization problem, with two constraints, corresponds to the following Lagrangian
operator

L[fe] = Hv[fe]− α0

(
f0 −

∫

S2

d2Ωfe

)
− ~α1 ·

(
~f1 −

∫

S2

d2Ω~Ωfe

)
,

where α0 and ~α1 are two Lagrangian multipliers. The EDF which maximizes the La-
grangian functional follows from the equation

d

dfe
L[fe] = 0.

Its solution reads
fe = Neα0+ ~α1·~Ω, (5.9)

where N is a normalization constant. The advantage of using this closure relation is that
the underlying EDF is an exponential function. Thus, it is positively defined.

The first two moments of Eq. (5.9) read

{
f0 = 4πN sinh|~α1|

|~α1| e
α0

~f1 = 4πN sinh|~α1|
|~α1| e

α0

(
coth|~α1|− 1

|~α1|

)
~α1

|~α1|
.

or {
f0 = 4πN sinh|~α1|

|~α1| e
α0

~Ωv =
~f1

f0
=
(

coth|~α1|− 1
|~α1|

)
~α1

|~α1|
, (5.10)

where ~Ωv is the anisotropy vector, such that 0 ≤ ||~Ωv||≤ 1. The inversion of the second
equation in (5.10) provides the expression of the coefficient ~α1 and hence a relation of
the underlying EDF to the first two angular moments. This inversion was numerically
performed and tabulated in [52]. This expression can be interpolated analytically with a
precision better than 5% as

~α1 ≈
3~Ωv

1− ~Ω2
v

2

(
1 + ~Ω2

v

) .

Then the underlying EDF takes the following form

fe = f0
|~α1|

4π sinh|~α1|
e ~α1·~Ω. (5.11)

Using the moment definitions, we can write

¯̄f2 = ¯̄χ(f0, ~f1)f0, (5.12)

with

¯̄χ(f0, ~f1) =
1

3
¯̄I +

~Ω2
v

2

(
1 + ~Ω2

v

)( ~f1 ⊗ ~f1

~f 2
1

− 1

3
¯̄I

)
.

This new closure relation is nonlinear, it accounts for an anisotropy of the second order
moment of the EDF.
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5.3.3 M1 model

The angular moment hierarchy (3.2), stopped at the first moment equation and closed
with Eq. (5.12), is called M1 model. It provides access to strongly anisotropic EDFs
[52, 20, 26]. The M1 model used in this manuscript is based on the AWBS collision
operator:
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The relations for electromagnetic fields are defined in section 5.1.2. This system takes
into account major physical processes characterizing the nonlocal transport in a simple
and computationally efficient manner.

The advantage of the M1 model is in its capacity to strongly describe anisotropic
distributions. However, its implementation depends on the considered physical processes.
Specifically, in this manuscript, a simplified form of the collisional operator is chosen,
which is sufficient for the description of the heat transfer and hot electron thermalization.
This form is different from the previous scheme [20] dedicated to the transport of rela-
tivistic electrons, which does not conserve the number of electrons and does not account
for their thermalization. In the nonlocal transport context, these issues are of primary
importance.

The important feature of the M1 model is the exponential form of the EDF, which
assures the flux limitation, one of the main effects of nonlocal transport, together with
preheating. Mathematically, this follows from the Cauchy-Schwarz inequality:

‖~f1‖≤
∫

S2

d2Ω‖~fe‖‖~Ω‖= f0.

This feature is always respected, even in the case of strongly anisotropic EDFs.
The limiting approximation of this model, as well as of P1, is the description of

electromagnetic fields. The equation for electric fields is too complex and time consuming
for a numerical solution. The simplification used to find an analytic expression impose
reductions of the domain of the model validity. This restriction can be improved in future
developments.

In the next part, we compare the M1 model with two other new models described in
this section and with the existing models, for the description of nonlocal transport.



Chapter 6

Numerical schemes

Models which describe the transport can be classified by their mathematical structure.
Mainly, plasma physics deals with two categories: the diffusive and the advective models.
Diffusive equations are partial differential equations of the second order in space and the
first order in time, while advective equations are of the same order in space and time, in
our case, the first order.

In chapter 5, we developed three new nonlocal transport models. These models de-
scribe the electron transport in one, two or three spatial dimensions. Two of them describe
plasmas at a kinetic scale and in external magnetic fields. The aim of this chapter, is to
present numerical schemes allowing to find solutions of the differential equations, which
characterize these models.

The three developed models are AWBS-SNB, P1 and M1. The AWBS-SNB model is
based on the diffusion equation

(
v

λee

∂

∂v
+ ~∇λ

E
ei

3
~∇
)

∆f0 = ~∇~gm1 ,

for the nonlocal part of the EDF. On the contrary, the P1 and the M1 models are based
on the electron transport equations, forming an advective system
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with different closure relations.

In this chapter we present the numerical schemes for solving these two mathematical
structures. We analyze advantages and drawbacks of each of two forms. In particular,
in section 6.1 we present a numerical solution for the AWBS-SNB model, in one and two
dimensions. In section 6.2, we describe a numerical solution for the moment models P1
and M1. Finally, in section 6.3, a comparison between diffusive and advective solutions
is given, for a simplified equation.

6.1 AWBS-SNB model

For simplicity we first present the monodimensional numerical scheme. Then it is gener-
alized to two and three dimensions.

Since the AWBS-SNB model is based on a diffusion equation, the general theory can
be found in [53].
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6.1.1 Monodimensional scheme

At each hydrodynamic step the SNB model is used, providing the heat flux. The latter
is computed as follows. Assuming one spatial dimension, we define i and g as discrete
indexes for the continuous variables x and v. The first equation of the system (5.7) is a

diffusion equation. The diffusion coefficient is Dg
i =

λEei(xi,vg)

3
. Its value at mesh nodes can

be computed by a harmonic average:

1

Dg
i+1/2

=
1

Dg
i

+
1

Dg
i+1

,

which ensures a continuity of the discrete flux between two cells. We define Agi =
−1/λee(xi, vg) Then the discretized AWBS-SNB diffusion equation reads

∑

i

T gji∆
g
i = Sgj −

Agj
vg+1 − vg

∆g+1
j , (6.1)

where

∆̄g =




...
∆f0(xi−1, vg)
∆f0(xi, vg)

∆f0(xi+1, vg)
...



,

S̄g =




...
∂
∂x
g1(xi−1, vg)
∂
∂x
g1(xi, vg)

∂
∂x
g1(xi+1, vg)

...



,

and

¯̄T g =




. . . . . . . . . . . . . . . . . . . . .

· · · 0 agi−1 bgi−1 cgi−1 0 0 0 · · ·
· · · 0 0 agi bgi cgi 0 0 · · ·
· · · 0 0 0 agi+1 bgi+1 cgi+1 0 · · ·

. . . . . . . . . . . . . . . . . . . . .



,

is a tridiagonal matrix. The components are




agi =
Dg
i−1/2

(xi−xi−1)(xi+1/2−xi−1/2)

bgi =
Agi

vg+1−vg −
Dg
i+1/2

(xi+1−xi)(xi+1/2−xi−1/2)
− Dg

i−1/2

(xi−xi−1)(xi+1/2−xi−1/2)

cgi =
Dg
i+1/2

(xi+1−xi)(xi+1/2−xi−1/2)

.

The numerical diffusion equation (6.1) is solved implicitly, by inverting ¯̄T g, for each g,
using the Jacoby method. At the space boundaries, ∆f is imposed to be zero and the
system is solved from the highest velocity, to the lower one, assuming ∆f equal to zero
for the highest velocity. In this way we find ∆f0(xi, vg) and deduce the numerical flux, as

qAWBS−SNB i = qSH i −
G∑

g=0

2πmeD
g
i

∆f0(xi+1/2vg)−∆f0(xi−1/2vg)

xi+1/2 − xi−1/2

v5
g(vg+1/2 − vg+1/2),

where G is the index of the highest value of the velocity.
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6.1.2 Bidimensional scheme

This scheme can be generalized to two spatial dimensions.The system reads

¯̄M gŪ g = S̄g2D.

We define i and j, respectively as the indexes for discrete variables x and y. The matrix
¯̄M g is a block matrix, which diagonal block corresponds to ¯̄T g, in the monodimensional

scheme. The latter is reinterpreted as the matrix block for a fixed j :

¯̄M g =




. . . . . . . . . . . . . . . . . . . . .

· · · 0 ¯̄Lgi,j−1
¯̄T gi,j−1

¯̄Rg
i,j−1 0 0 0 · · ·

· · · 0 0 ¯̄Lgi,j
¯̄T gi,j

¯̄Rg
i,j 0 0 · · ·

· · · 0 0 0 ¯̄Lgi,j+1
¯̄T gi,j+1

¯̄Rg
i,j+1 0 · · ·

. . . . . . . . . . . . . . . . . . . . .



.

The new off-diagonal blocks are the following diagonal matrices:

¯̄Lgi =




. . . . . . . . . . . . . . .

· · · 0 lgi,j−1 0 0 0 · · ·
· · · 0 0 lgi,j 0 0 · · ·
· · · 0 0 0 lgi,j+1 0 · · ·

. . . . . . . . . . . . . . .




and

¯̄Rg
i =




. . . . . . . . . . . . . . .

· · · 0 rgi,j−1 0 0 0 · · ·
· · · 0 0 rgi,j 0 0 · · ·
· · · 0 0 0 rgi,j+1 0 · · ·

. . . . . . . . . . . . . . .



,

with 


lgi,j =

Dg
i,j−1/2

(yj−yj−1)(yj+1/2−xj−1/2)

rgi,j =
Dg
i,j+1/2

(yj+1−yj)(yj+1/2−xj−1/2)

.

The two-dimensional unknown array reads

Ū g =




...
∆̄g
j−1

∆̄g
j

∆̄g
j+1
...




and the source

S̄g2D =




...

S̄gj−1 −
Āgj−1

vg+1−vg∆g+1
j

S̄gj −
Āgj

vg+1−vg∆g+1
j

S̄gj+1 −
Āgj+1

vg+1−vg∆g+1
j

...




.

The unknown Ū g is calculated explicitly through the inversion of the Jacobi’s matrix ¯̄M g.
Three-dimensional generalization can be obtained by constructing a block-matrix

equation, with the blocks being the matrices for the two-dimensional resolution. We
limit our work to one and two-dimensional simulations.
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6.2 P1 and M1 numerical scheme

The aim of this section is to show how the P1 (subsection 5.2.1) and the M1 model (sub-
section 5.3.3) have been numerically encoded and what are the limits of these numerical
schemes.

The numerical scheme is the same for both models only differing by a source term,
which represents the closure relation.

Since the mathematical derivation of the scheme is complicated and this manuscript
concerns the physical aspects, we present a simplified derivation, which captures the
essential points. Its generalization can be found in [54].

6.2.1 Moment equations in the energy space

The EDF is defined in the phase space (~x,~v) or in the reduced phase space (~x, v). However,
calculations in the velocity space can be numerically difficult, since the EDF is not zero
at the boundary v = 0. On the contrary, in the energy space, the EDF is zero at both
extremes of the domain (0,+∞), which simplifies the calculations.

We define the energy EDF ψ(~x, ε, ~Ω), such that it presents the same number of particles

in the infinitesimal square d3xdεd2Ω, as fe(~x, v, ~Ω), in the infinitesimal square d3xdvv2d2Ω:

dN = d3xdvv2d2Ωfe(~x, v, ~Ω) = d3xdεd2Ωψ(~x, ε, ~Ω).

This leads to
fe(~x, v, ~Ω) =

me

v
ψ(~x, ε, ~Ω).

In the same way the moments read




f0(~x, v, ~Ω) = me
v
ψ0(~x, ε, ~Ω)

~f1(~x, v, ~Ω) = me
v
~ψ1(~x, ε, ~Ω)

¯̄f2(~x, v, ~Ω) = me
v

¯̄ψ2(~x, ε, ~Ω)

.

In order to simplify the moment hierarchy, we redefine the moments as




Ψ0 = mev
2ψ0 = v3f0

~Ψ1 = mev
2 ~ψ1 = v3 ~f1

¯̄Ψ2 = mev
2 ¯̄ψ2 = v3 ¯̄f2

.

With these relations, the system (5.1) reads




~∇ · ~Ψ1 = ∂
∂ε

(StotΨ0)− ∂
∂ε

(SεΨ
m
0 )− Sε

2ε
(Ψ0 −Ψm

0 ) + e
2ε
~E · ~Ψ1

~∇ · ¯̄Ψ2 = ∂
∂ε

(
Stot~Ψ1

)
+ ∂

∂ε

[
e
(

¯̄Ψ2 − ~Ψ1⊗~Ψ1

Ψ0

)
· ~E
]
−
(
Sε
2ε

+ νtot
)
~Ψ1 −

e(Ψ0
~E+v~Ψ1× ~B)

2ε

¯̄Ψ2 = ¯̄ΥΨ0

(6.2)
with

Sε = mevνee

being the stopping power and

Stot = e ~E ·
~Ψ1

Ψ0

+ Sε.

being an effective stopping power. The thermalization is given by the Maxwellian EDF
Ψm

0 = v3fm0 . The closure equation reads

¯̄Υ =

{
1
3

for P1

χ(Ψ0, ~Ψ1) for M1
.
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The first two moment equations of (6.2) can be written with a single matrix equation:

~∇ · ~̄F =
∂

∂ε

[(
Stot

¯̄I + ¯̄M
)
· Φ̄
]

+ ¯̄A · Φ̄ + Γ̄, (6.3)

where ¯̄I is the 3 × 3 identity matrix. In two spatial dimensions, the components of the
compact moment hierarchy read

Φ̄ =




Ψ0

Ψ1x

Ψ1y


 ,

~̄F =



~Ψ1

~Ψ2x

~Ψ2y


 ,

¯̄M =




0 0 0
e
(

Ψ2xx−Ψ1xΨ1x
Ψ0

)
Ex

Ψ0
+

e
(

Ψ2xy−
Ψ1xΨ1y

Ψ0

)
Ey

Ψ0
0 0

e
(

Ψ2yx−
Ψ1yΨ1x

Ψ0

)
Ex

Ψ0
+

e
(

Ψ2yy−
Ψ1yΨ1y

Ψ0

)
Ey

Ψ0
0 0


 ,

¯̄A =



−Sε

2ε
e
2ε
Ex

e
2ε
Ey

e
2ε
Ex −Sε

2ε
− νtot − ev

2ε
Bz

e
2ε
Ey

ev
2ε
Bz −Sε

2ε
− νtot




and

Γ̄ =



− ∂
∂ε

(SεΨ
m
0 ) + Sε

2ε
Ψm

0

0
0


 .

In Eq. (6.3), it is supposed that the magnetic field is perpendicular to the plane of
simulation.

In the energy space, the moment hierarchy well behaves on the energy boundaries and
so it is more suitable for a numerical solution.

6.2.2 Numerical solution of the transport equation

Solution of a transport equation is mathematically complicated. We start here from a
simplified form and then generalize it to Eq. (6.3).

Simple transport equation

Let us define f(x, t), as a distribution function depending only on time and space. Ne-
glecting also the collision integral, the transport equation reads

∂

∂t
f + v

∂

∂x
f = 0, (6.4)

where v is a constant. It can also be written as

d

dt
f [x(t = 0) + vt] = 0.

Since there are no collisions, f is conserved in the phase space. Thus

if f(x, t = 0) ≥ 0⇒ f(x, t) ≥ 0 ∀t. (6.5)

This is also in agreement with the probabilistic nature of EDF.
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The general theory of transport equations can be found in [55].
We develop f(x, t = 0) to the second order in the Taylor series in space

f(x+ dx, t) = f(x, t) + dx
∂

∂x
f(x, t) +

dx2

2

∂2

∂x2
f(x, t) + o

(
dx3
)

and to the first order in time

f(x, t+ dt) = f(x, t) + dt
∂

∂t
f(x, t) + o

(
dx2
)
.

We define n and i as the discrete indexes, respectively running over t and x, such that
f(x, t) corresponds to fn,i. Assuming a linear discretization, the transport equation reads

fn+1,i − fn,i
∆t

+ v
fn,i+1 − fn,i−1

2∆x
= 0,

where ∆ denotes a positive increment. The solution is

fn+1,i = fn,i − vf
n,i+1 − fn,i−1

2∆x
∆t. (6.6)

However, this scheme is unstable. It can be proven with a counter example. Let us assume
f 0,i, as follows:

f 0,i =

{
1 if i > 1

0 if i ≤ 1
.

In this case Eq. (6.6) becomes

f 1,1 = −v
2

dt

dx
.

Since dt ≥ 0 and dx ≥ 0, the result disagrees with (6.5). Thus the solution is unstable.
One may solve Eq. (6.4), by decentralizing the space derivative

fn+1,i − fn,i
∆t

+ v
fn,i − fn,i−1

∆x
= 0. (6.7)

Then the solution is

fn+1,i =

(
1− v ∆t

∆x

)
fn,i + v

∆t

∆x
fn,i−1.

It is positively defined if and only if
{
v ≥ 0

1− v ∆t
∆x
≥ 0

.

The second condition gives us a constraint on the discretization of time:

∆t ≤ ∆x

v
,

which is known as the Courant, Friedrichs and Lewy (CFL) condition [53].
We may remove the condition v ≥ 0, by rewriting Eq. (6.7) as

fn+1,i − fn,i
∆t

+ v+
fn,i − fn,i−1

∆x
− v−

fn,i+1 − fn,i
∆x

= 0, (6.8)

where {
v+ = max(v, 0)

v− = min(v, 0)
.
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The latter expression can be written as

{
v = v+ + v−

|v|= v+ − v−
,

leading to {
v+ = 1

2
(v + |v|)

v− = 1
2

(v − |v|) .

The solution of Eq. (6.8) reads

fn+1,i =

(
1− |v|∆t

∆x

)
fn,i + v+

∆t

∆x
fn,i−1 − v−

∆t

∆x
fn,i+1,

from which the CFL condition reads

∆t ≤ ∆x

|v| .

The solution can be rewritten as a function of v and |v|:

fn+1,i − fn,i
∆t

+
F
n,i+1/2
HLL − F n,i−1/2

HLL

∆x
= 0, (6.9)

where

F
n,i+1/2
HLL = v+f

n,i + v−f
n,i+1 =

v

2

(
fn,i + fn,i+1

)
+
|v|
2

(
fn,i − fn,i+1

)
.

In two dimensions, the same scheme can be used. We show in what follows, that the
scheme, so called HLL, can be generalized to the M1 and P1 systems. In the next section
we use a generalized form of Eq. (6.9).

Resolution of the moment hierarchy

Equation (6.3) is stationary but the energy variable can be interpreted as time in Eq. (6.9),
since the electron energy may only decrease but not increase. The energy losses described
by the AWBS collision operator impose to solve this equation from the highest energy to
the lowest, in accordance with the transition of particles from more energetic states to
the lower ones. This is similar to the principle of causality, for time.

As a first step, we discretize the phase-space, similarly as in Eq. (6.9). We define i as
an index running over the x direction, j over the y direction and g over the kinetic energy
ε. Therefore, all functions of the continuous variables (x, y, ε) are expressed as functions
of the discrete variables (i, j, g). For example, for a generic function X, the variables are
expressed as follows:

X i,j,g
0 = X0(xi, yj, εg).

The discretized Eq. (6.3) reads

(6.10)

F̄
i+1/2,j,g+1
HLL − F̄ i−1/2,j,g+1

HLL
1
2

(xi+1 − xi−1)
+
F̄
i,j+1/2,g+1
HLL − F̄ i,j−1/2,g+1

HLL
1
2

(yi+1 − yi−1)
=

(
Si,j,g+1
tot

¯̄I + ¯̄M i,j,g+1
)
· Φ̄i,j,g+1 −

(
Si,j,gtot

¯̄I + ¯̄M i,j,g+1
)
· Φ̄i,j,g

εg+1 − εg
+ ¯̄Ai,j,g · Φ̄i,j,g + Γ̄i,j,g.
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As in Eq. (6.9), the HLL flux is defined as

F̄
i+1/2,j,g
HLL =

F̄ i+1,j,g + F̄ i,j,g

2
+

Φ̄i+1,j,g − Φ̄i,j,g

2
.

The discretized matrices are

Φ̄i,j,g =




Ψi,j,g
0

Ψi,j,g
1x

Ψi,j,g
1y


 ,

~̄F i,j,g =



~Ψi,j,g

1
~Ψi,j,g

2x
~Ψi,j,g

2y


 ,

¯̄M i,j,g =




0 0 0

∑
p=x,y

e

(
Ψi,j,g2xp −

Ψ
i,j,g
1x Ψ

i,j,g
1p

Ψ
i,j,g
0

)
Ei,j,gp

Ψi,j,g0

0 0

∑
p=x,y

e

(
Ψi,j,g2yp −

Ψ
i,j,g
1y Ψ

i,j,g
1p

Ψ
i,j,g
0

)
Ei,j,gp

Ψi,j,g0

0 0



,

¯̄Ai,j,g =



−Si,j,gε

2εg
e

2εg
Ei,j,g
x

e
2εig

Ei,j,g
y

e
2εg
Ei,j,g
x −Si,j,gε

2εg
− νi,j,gtot − evg

2εg
Bi,j,g
z

e
2εg
Ei,j,g
y

evg

2εg
Bi,j,g
z −Si,j,gε

2εg
− νi,j,gtot




and

Γ̄i,j,g =



−Si,j,g+1

ε Ψm i,j,g+1
0 −Si,j,gε Ψm i,j,g

0

εg+1−εg + Si,j,gε

2εg
Ψm i,j,g

0

0
0


 .

In the same way, the closure relation is discretized as ¯̄Ψi,j,g
2 = ¯̄Υi,j,gΨi,j,g

0 .
Finally the solution is

(6.11)

Φ̄i,j,g =

(
Si,j,gtot

¯̄I + ¯̄M i,j,g

εg+1 − εg − ¯̄Ai,j,g

)−1

·
(
− F̄

i+1/2,j,g+1
HLL − F̄ i−1/2,j,g+1

HLL

xi+1/2 − xi−1/2

− F̄
i,j+1/2,g+1
HLL − F̄ i,j−1/2,g+1

HLL

yi+1/2 − yi−1/2
+
Si,j,g+1
tot

¯̄I + ¯̄M i,j,g+1

εg+1 − εg · Φ̄i,j,g+1 + Γ̄i,j,g

)
,

where ¯̄I is the 3× 3 identity matrix.
The CFL condition for the stability is

∆ε ≤ Sp
1

∆x
+ 1

∆y

, (6.12)

assuming the EDF not too anisotropic.
In this section, we have treated the energy as an efficient time variable, solving from

higher energies to lower ones. The causality principle imposes

Stot = e ~E ·
~Ψ1

Ψ0

+ Sε.geq0,

which means that electrons only lose energy, as it happens in nonlocal transport. This
condition is not always respected by plasmas irradiated by lasers, which induces hydrody-
namic movement. This has practically limited our model to be applied for heat transport,
but not for hydrodynamics. A split to energy gain and energy losses, computed by iter-
ation, could be a way to overcome this limit and enlarge the domain of validity of the
model.
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6.2.3 Boundary conditions and the implemented algorithm

Here we explain the algorithm for coupling the kintic equation to a hydrodynamic code.
At each time step, a hydrodynamic code computes macroscopic plasma quantities as

density, velocity and temperature. These data are transmitted to the M1 and P1 models
for computing the heat transport. Equation (6.2) is solved by iterations, starting from
the local electric field assumption (or the zero field assumption). Once the electric field
converges, the EDF allows to compute all kinetic effects. In particular, the heat flux is
derived as

~q i,j,gP1,M1 =

εmax(t)∑

g=εmin(t)

(
εg+1 − εg

)
~Ψi,j,g

1 ,

where εmax(t) and εmin(t) are the highest and lowest energy values accounted. Their choice
is crucial for the performances of the scheme. We choose to use an energy mesh, varying
in time and for which, εmax(t) = 18 max[Te(t, ~x)] and εmin(t) = min[Te(t, ~x)]/10. Here,
max/min[Te] are the maximum and minimum values of the electron temperature, in the
computing box.

Equation (6.2) requires boundary conditions. If εmax is high enough, we can assume
that {

Ψ0(~x, ε = εmax) = 0
~Ψ1(~x, ε = εmax) = 0

.

The choice of spatial boundary conditions is more complicated. It is related to the
choice of heat flux at the boundaries. If the system is isolated, since our transport model
is stationary, we have to impose a zero flux at boundaries, otherwise all particles would
escape. This condition implies also to impose a zero temperature derivative. There are
only two boundary conditions which respect the required assumptions:

{
Ψ0(~x = ∂~x+, ε) = Ψ0(~x = ∂~x−, ε)
~Ψ1(~x = ∂~x+, ε) = 0

and {
Ψ0(~x = ∂~x+, ε) = Ψ0(~x = ∂~x−, ε)
~Ψ1(~x = ∂~x+, ε) = −~Ψ1(~x = ∂~x−, ε)

,

where, in our formalism, ∂~x denotes the spatial boundary and signs + and − mean outer
and inner limits, respectively. Both assumptions give similar results. In case of symmetric
systems, in which all hydrodynamic variables experience an even symmetry around the
boundary axes, the boundary conditions read

{
Ψ0(~x = ∂~x+, ε) = Ψ0(~x = ∂~x−, ε)
~Ψ1(~x = ∂~x+, ε) = ~Ψ1(~x = ∂~x−, ε)

,

since ~q(~x = ∂~x+) = ~q(~x = ∂~x−).

6.3 Diffusive and advective schemes at comparison

In this chapter we have presented numerical schemes for the solution of three models of
a nonlocal transport. The first of them (AWBS-SNB) is of a diffusive form and so it is
solved using classical numerical methods for diffusion equations. The other models (M1
and P1) are of an advective form, typical for the transport equations. The corresponding
scheme is described above. In this section we compare the diffusive and the advective
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equations for a simplified form of the system (6.2), their mathematical structure and the
numerical schemes.

In order to develop an analytic approach, we simplify the system (6.2). The assump-
tions are the following:

• one spatial dimension;

• Lorentz gas approximation (Z � 1);

• nearly isotropic system (Υ = 1/3);

• no electromagnetic fields.

Under these assumptions, the system reads
{

∂
∂x

Ψ1 = ∂
∂ε

(Sε∆Ψ0)− Sε
2ε

∆Ψ0

1
3
∂
∂x

Ψ0 = −νeiΨ1

, (6.13)

where ∆Ψ0 = Ψ0−Ψm
0 . We want to compare the diffusive and the advective forms of this

system and their numerical solutions.

6.3.1 Diffusive form

From the system (6.13), we can easily deduce the diffusive form, by injecting Ψ1 from the
second into the first equation:

− 1

3

∂

∂x

1

νei

∂

∂x
Ψ0 =

∂

∂ε
(Sε∆Ψ0)− Sε

2ε
∆Ψ0. (6.14)

Similarly to section 6.1, we discretize Eq. (6.14):

− 1

3

1

νi+1,g+1
ei

Ψi+2,g+1
0 −Ψi,g+1

0

xi+2−xi − 1

νi−1,g+1
ei

Ψi,g+1
0 −Ψi−2,g+1

0

xi−xi−2

xi+1 − xi−1
=
Si,g+1
ε Ψi,g+1

0 − Si,gε Ψi,g
0

εg+1 − εg − Si,gε
2εg

Ψi,g
0 .

(6.15)
This discrete equation is simple and can be easily solved. However its generalization

for accounting electromagnetic field is complicated.

6.3.2 Advective form

Following section 6.2.2, we write a compact form of Eq. (6.13) as:

(6.16)
F̄
i+1/2,g+1
HLL − F̄ i−1/2,g+1

HLL
1
2

(xi+1 − xi−1)
=
Si,g+1
ε

¯̄KΦ̄i,g+1 − Si,gε ¯̄KΦ̄i,g

εg+1 − εg + ¯̄Ai,g · Φ̄i,g + Γ̄i,g,

were the matrices read
¯̄K =

(
0 0
0 1

)
,

Φ̄i,g =

(
Ψi,g

0

Ψi,g
1

)
,

~̄F i,g =

(
Ψi,g

1

Ψi,g
2

)
,

¯̄Ai,g =

(
−Si,gε

2εg
0

0 −νi,gei

)
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and

Γ̄i,g =

(
−Si,g+1

ε Ψm i,g+1
0 −Si,gε Ψm i,g

0

εg+1−εg + Si,gε
2εg

Ψm i,g
0

0

)
.

The HLL flux is defined as

F̄
i+1/2,g
HLL =

F̄ i+1,g + F̄ i,g

2
+

Φ̄i+1,g − Φ̄i,g

2
.

Writing explicitly the two equations, from (6.16), we have

{
Ψi+1,g+1

1 −Ψi−1,g+1
1

xi+1−xi−1 +
Ψi+1,g+1

0 −2Ψi,g+1
0 −Ψi−1,g+1

0

xi+1−xi−1 =
Si,g+1
ε ∆Ψi,g+1

0 −Si,gε ∆Ψi,g0

εg+1−εg − Si,gε
2εg

∆Ψi,g
0

1
3

Ψi+1,g+1
0 −Ψi−1,g+1

0

xi+1−xi−1 +
Ψi+1,g+1

1 −2Ψi,g+1
1 −Ψi−1,g+1

1

xi+1−xi−1 = −νi,gei Ψi,g
1

.

We now impose a diffusive form, as in Eq. (6.15): we inject

Ψi,g
1 = − 1

νei

(
1

3

Ψi+1,g+1
0 −Ψi−1,g+1

0

xi+1 − xi−1
+

Ψi+1,g+1
1 − 2Ψi,g+1

1 −Ψi−1,g+1
1

xi+1 − xi−1

)

in the first equation of the system and we find

(6.17)

−1

3

1

νi+1,g+1
ei

Ψi+2,g+1
0 −Ψi,g+1

0

xi+2−xi − 1

νi−1,g+1
ei

Ψi,g+1
0 −Ψi−2,g+1

0

xi−xi−2

xi+1 − xi−1

+

1

νi+1,g+1
ei

Ψi+2,g+1
1 −2Ψi+1,g+1

1 +Ψi,g+1
1

xi+2−xi − 1

νi−1,g+1
ei

Ψi,g+1
1 −2Ψi−1,g+1

1 +Ψi−2,g+1
1

xi−xi−2

xi+1 − xi−1

+
Ψi+1,g+1

0 − 2Ψi,g+1
0 −Ψi−1,g+1

0

xi+1 − xi−1
=
Si,g+1
ε Ψi,g+1

0 − Si,gε Ψi,g
0

εg+1 − εg − Si,gε
2εg

Ψi,g
0 .

Equation (6.17) differs from Eq. (6.15) by the second and the third term in the left
hand side. Those additional terms may induce a numerical diffusion, which can become
a source of error in the diffusive limit, which is typical for local and isotropic systems. In
order to avoid this, in the case of a weak anisotropy, the system requires to be refined
with a high number of spatial meshes, which may affect the performance of the code.

6.3.3 Code performance

In this chapter we have shown that numerically there are two different ways to deal with
the description of nonlocal transport: a diffusive and an advective approach.

The diffusive approach is numerically simple and efficient to be solved. Issues related
to this approach come only from the model nature: equations are too complex to account
for electromagnetic fields and realistic collision operators.

The advective approach allows to deal with analytically more simple equations, which
can account additional physical effects. However, as it is explained in this chapter, there
are several numerical issues. The algorithm used is not efficient since it has to describe
both nonlocal and local transport limits but, in the latter case, the description requires
a mesh refinement, in order to avoid errors due to the numerical diffusion. Moreover,
the model requires rather high values of the stopping power, in order to be stable. This
condition is not respected in low-temperature plasmas.

In order to give some estimates of the code performance, we compare the computation
time of the M1 model with the one of the SNB model, for the simulation performed in
order to obtain Fig. 7.1. The results are shown in table below. The M1 computation time
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is obtained with the meshing required for numerical convergence. The SNB computation
time is evaluated once with the same meshing as of M1 and once with the meshing
required for convergence. Using the same meshing, the SNB model is slower than M1.
Nevertheless, it converges with fewer meshes (10 times less). The addition of magnetic
fields does not modify the time of computation.

εNL M1 SNB same meshing SNB converged meshing

≈ 2× 10−3 23 s 37.5 s 0.58 s
≈ 2× 10−2 20 s 40 s 0.7 s
≈ 2× 10−1 53 s 124 s 0.6 s

Work is in progress for the implementation of more efficient numerical schemes for
the description of advective equations in the local regime. The most promising choice is
the use of asymptotic-preserving schemes [56]. Nevertheless, issues related to numerical
resolution of the advective equation do not minimize the importance of the physical models
developed in this manuscript.
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Chapter 7

Transport in unmagnetized plasmas

In the previous part we have presented a nonlocal kinetic model based on an angular
development of the FP equation, closed by the angular entropy maximization principle
[51]. This model, called M1 [52] for the first angular moment, has already been tested for
a relativistic electron beam transport through matter [20], for applications of fast ignition
[26] and radiotherapy.

In this chapter we apply the M1 model in the description of a nonlocal transport,
comparing it with the P1, as well as the SNB model, in the stationary limit, and with a
Landau-FP code, in the description of flux limitation. We show that the entropic closure
allows an extension of the domain of application to stronger anisotropic cases, while the
advective form of equations allows to account for more realistic electric fields. We present
several examples in 1D and 2D geometry and we analyze the small scale kinetic effects in
the transport affected zone.

In particular, in section 7.1, we compare the transport models in ICF conditions.
In section 7.2, we discuss modifications of damping of electrostatic plasma waves and
excitation of stream instabilities in the transport zone. Conclusions on the nonlocal
transport in unmagnetized plasmas are drawn in section 7.3.

In this chapter, when not specified, we use the nonlocal definition (5.3), for the electric
field, in order to compute the M1 and P1 transport.

7.1 Heat transport

In this section, the M1 model is applied for the description of a nonlocal heat transport.
The M1 model is compared with the modified SNB nonlocal model (AWBS-SNB) and with
the limited and unlimited SH model, in several representative cases. We also compare all
the previous models with the solutions of the FP equation, in a particular test.

7.1.1 Transport along a temperature gradient

The transport along a temperature gradient has already been considered for testing non-
local models [22]. This simple case captures the most important nonlocal features of the
heat tansport.

Heat fluxes

The M1, P1 and AWBS-SNB models are able to recover local results, for a nonlocal
parameter smaller than 2 × 10−3. We show in what follows their predictions of nonlocal
heat fluxes.
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Let us consider a fully-ionized beryllium plasma (Z = 4) at a constant density of
4.5× 1022 cm−3, having a steep temperature gradient given by

Te(x) =
|T0 − T1|

2

[
2

π
arctan

(
x

δNL

)
+ 1

]
+ T1, (7.1)

with T0 = 5 keV, T1 = 1 keV and δNL = 5µm.

Such a configuration is characterized by a maximum MFP λ0 = 3
√

π
2

T 2
0

4πneZe4Λei
≈

3.15µm (corresponding to the collision time τ0 = λ0

√
me/T0 ≈ 0.12 ps), located in the

hot region. The minimum gradient length LT = Te/||~∇Te||≈ 12 µm is located in the
central region. Thus, the nonlocal parameter is λ0/LT ≈ 0.3 � 2 × 10−2 and we have a
representative test for nonlocal regimes.
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Figure 7.1: Comparison between the different heat flux models. In black the temperature,
in celestial the SH flux, in yellow the 20% FL, in green and violet the SNB models using
respectively the BGK and the AWBS collision operators and in blue the M1 model. The
two vertical dashed lines indicate the regions where the kinetic analysis is performed.

Heat fluxes computed with the previously described models are compared in Fig. 7.1.
The fluxes are normalized to the maximum value of the local flux (SH theory) q0 ≈
40 PW/cm2 and the space coordinate is measured with the standard thermal MFP λ0 ≈
3.15µm. The figure is zoomed in on nonlocal fluxes, in order to highlight the different
descriptions.

Since λ0/LT � 2 × 10−2, suprathermal electrons penetrate deep inside the plasma,
depositing their energy nonlocally. This implies a delocalization of the energy transported:
it reduces the heat flux in proximity of the temperature gradient (flux limitation) and
increases in the front of it (preheating). The M1, BGK-SNB and AWBS-SNB models
qualitatively describe such a delocalization, but present some differences. The M1 and
AWBS-SNB models predict a lower flux limitation, than the BGK-SNB model. They
are based on the AWBS collisional operator, which is characterized by stronger physical
assumptions than the BGK operator, used in the BGK-SNB model (see chapter 4). All
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Figure 7.2: Heat fluxes for different models. The dashed line represents the place where
the EDF is shown in panel 7.8.

the models mainly agree in the prediction of preheating in the front of the temperature
gradient. In the hot region, nonlocal effects are not previewed. In fact, in this region, the
M1 model predictions agree better with the local predictions, provided by the SH theory.
Nevertheless, the BGK-SNB and the AWBS-SNB models predict an increase of the heat
flux because they treat suprathermal electrons as a diffusion.

The flux limitation could be roughly described by the FL model. In order to recover
results, we fixed the flux limiter to the 20% of the FS flux. However, this model does not
describe the preheat and the heat flux maximum is shifted to the high temperature zone.
Moreover, the appropriate choice of the value of flux limiter depends on the temperature
profile.

All considered nonlocal models agree in the description of the kinetic heat flux. After
the EDF integration over velocity, no differences can be seen between P1 and M1 models,
so we show only the latter.

The differences between the M1 and the P1 models increase as the degree of anisotropy
increases. In Fig. 7.2 we plot a case similar to the previous one but with a stronger
temperature gradient. The temperature is described by Eq. (7.1), and differs from the
above for one parameter only: δNL = 0.5µm. This corresponds to a nonlocal parameter
λ0/LT ≈ 3. Nevertheless, even in this extreme case the models M1 and P1 are close.
On the contrary, they differ a lot from the BGK-SNB model. We stress that the latter
is based on the assumption of a small departure from locality, while this case is strongly
nonlocal. Moreover, the BGK-SNB model predicts a small unphysical modulation of the
flux near x = 0. It is due to the modeling of the electric field, which is discussed below.

Electric field

Local and nonlocal electric fields related to the plasma parameters discussed above (for
δNL = 5µm) are compared in Fig. 7.3.

All the models analyzed are based on the zero-current assumption. Thus, a flux of
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Figure 7.3: Local electric field spatial distribution compared with the nonlocal one. The
first is computed using the SH theory and is used in the SH model and in the diffusive
ones (BGK-SNB, AWBS-SNB). The latter is computed using the P1 and the M1 models.

electrons which carry the heat is coupled to an opposite flux of return current electrons.
The latter is characterized by a larger number of electrons, with lower velocities. The
electric field is related to these electrons.

As in the SH theory, the AWBS-SNB and the BGK-SNB models are based on the SH
(local) electric field. This corresponds to the assumption that the electric field remains
local, even if the heat flux is nonlocal. In weakly nonlocal regimes this is true because
the return current electrons are less subjected to nonlocal effects, being slower than the
electrons which transport the heat.

The curves M1 and P1 in Fig. 7.3 correspond to the nonlocal electric field (5.3),
computed by iterating the system (5.1) till the field convergence. We stress that these
models differ by the choice of the closure relation: Eq. (5.12), for M1, and Eq. (3.5), for
P1. The results are obtained assuming the SH electric field, as a first guess.

Figure 7.3 shows that the difference between local and nonlocal electric fields is smaller
than the difference between local and nonlocal heat fluxes. This difference weakly affects
the heat flux.

The system is sufficiently close to the isotropic state that the differences between P1
and M1 models are negligible for electric fields, as for all macroscopic quantities.

In section 5.1.2 we have shown that there is another way of modeling the nonlocal
electric field, more phenomenological but functional in case of strong density gradients
or magnetic fields. Electron heat fluxes, computed with the local-kinetic electric field
(5.4) are also obtained by iterating the M1 system (5.1), as explained above. They are
compared in Fig. 7.4a with the M1 fluxes computed with the nonlocal electric field (5.3),
previously used. The respective fields are shown in Fig. 7.4b.

The local-kinetic electric field is based on the assumption of being near-local. Thus, it
presents a hybrid behavior, between the SH and nonlocal predictions: the field is stronger
in modulus. The stronger is the electric field, the weaker is the heat flux, as shown in
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(a) Electric field modeling effect on the electron heat flux. The model M1 computes
the electric field with Eqs. (5.3) (in red) and (5.4) (in blue). The SH model is shown
in celestial, for comparison.
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(b) Comparison of the electric fields (5.3) (in red) and (5.4) (in blue) with the SH
(local) theory (in celestial)

Figure 7.4: Comparison of M1 predictions, using a different modeling for the electric field:
the nonlocal formulation ENL, given by Eq. (5.3), and the local-kinetic formulation the
kinetic formulation ELk, given by Eq. (5.4).

Fig. 7.4a. Nevertheless, this figure shows also that the difference between these fluxes is
of the same order of the differences between the other nonlocal models.
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(a) P1 total EDF in the hot (right) region
of plasma.

(b) M1 total EDF in the hot region of
plasma.

(c) P1 total EDF in the cold (left) region
of plasma.

(d) M1 total EDF in the cold region of
plasma.

Figure 7.5: Analysis of the EDF and its moments in the velocity space. Velocities are
shown in the radial direction in polar plots. They are normalized on the thermal velocity
in the hot region vth. The out-of-bord values are uniformly painted with the bord colors.

Kinetic analysis

We proceed to a kinetic analysis of the system. We extract the EDF in the cold and hot
regions of plasma, specified by black dashed vertical lines in Figs. 7.1 and 7.3.

Figure 7.5 shows the logarithm of the normalized total EDF for M1 and P1 in the
cold and in the hot plasma regions. EDFs are shown as a polar color plot, in function
of both the velocity modulus and direction. The first varies in the radial direction and
is normalized on the hot region thermal velocity vth =

√
T0/me. The velocity direction

varies in the polar direction (angles).

Suprathermal electrons (∼ 3.7vth), from the hot region, travel toward the cold region
of the plasma, for a distance ∼ 187λ0. There, they deposit their energy.

In the hot region, the EDFs are expected to be almost isotropic because only a small
fraction of electrons is moved away. The isotropy, in polar plots, is represented by concen-
tric circles. This is what is predicted by both P1 and M1 models, respectively in Figs. 7.5a
and 7.5b. Since these two models agrees in the isotropic description, no differences can
be seen.

The suprathermal electrons coming from the hot region are more energetic than the
thermal electrons in the cold region. They strongly affect the cold EDF, inducing its
anisotropy. The latter is differently treated by P1 and M1 models, shown respectively in
Figs. 7.5c and 7.5d. The P1 model assumes it as a linear correction. Nevertheless, for
some velocities, it can be dominant, leading to negative EDFs (shown with a white zone
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in the color plot). In particular we see that suprathermal electrons (& 2vth), moving from
the right to the left (θ = 180◦), force the EDF to become negative for electrons moving in
the opposite direction (θ = 0◦). On the contrary, the M1 model describes the anisotropy
with an exponential dependence, which leads to a positively defined EDF, for all angles
and velocities.

In order to better analyze the different EDF descriptions, in Fig. 7.6 we present the
anisotropic part of EDF normalized to f0: (fe−f0)/f0 = ∆fe/f0. In order to describe the
heat flux, the P1 model adds a symmetric unphysical anisotropy in the opposite direction
(70◦ < θ < 250◦). On the contrary, the M1 model is able to break this symmetry.

(a) P1 description. (b) M1 description.

Figure 7.6: Anisotropic part of the EDF (defined as ∆fe/f0 = fe/f0−1) in the cold region
of plasma (shown in Fig. 7.1), as a function of the velocity, normalized by the thermal
velocity in the hot region.

Even if big differences appears at the kinetic scale, they become negligible after mo-
ment integration, as shown above, in the analysis of macroscopic quantities.

Another important information follows from the analysis of the heat flux integrand
function ∼ f1v

5. It is shown in Fig. 7.7a, for the hot region, and in Fig. 7.7b, for the cold
region, previously analyzed. It is normalized to v2

thne.

The figures show the contribution to the heat flux carried by the suprathermal electrons
with velocities ∼ 3vth. In contrast, the return current flux induced by the zero-current
condition is carried by the electrons with smaller velocities. Figure 7.7a confirms that P1
and M1 models agree in the hot region, since the heat flux induced anisotropy is small.
On the contrary, in the cold region, shown in Fig. 7.7b, some differences appear. Only
the main heat flux is affected by these differences, while they are negligible for the return
current. Note also that the heat flux maximum contribution in the cold region is displaced
because of nonlocal effects: gradients are sharper, so a smaller MFPs (slower electrons)
contribute to the energy transport in the cold region.

The same analysis is performed for the more anisotropic system, shown in Fig. 7.2.
Figure 7.8 represents the heat flux integral function computed in the cold region denoted
by a dashed vertical line in Fig. 7.2. Differences between M1 and P1 become stronger at
high velocities, but, even for such an anisotropy, the return current is unaffected.

In summary, the M1 model succeeds in reproducing the nonlocal features: the natural
flux limitation, the preheat in front of the temperature gradient and it shows a good
agreement with the SNB model. Besides that, the M1 closure relation, compared to the
P1 one, does not modify the flux calculation, but at a kinetic level it affects some parts
of the EDF.
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Figure 7.7: Comparison of the M1 and P1 models for the heat flux integrand function in
the hot and cold regions of plasma.

7.1.2 Temperature modulation

In this section we compare models in a wider range of nonlocal regimes, testing the heat
flux limitation, in comparison with the results obtained with a FP code.

We consider the Epperlein-Short (ES) test [44]. It consists in the study of the flux
limitation effect in the electron heat transport, for a plasma with a static temperature



7.1. HEAT TRANSPORT 105

0 1 2 3 4 5 6
v/vth

−0.0014

−0.0012

−0.0010

−0.0008

−0.0006

−0.0004

−0.0002

0.0000

0.0002

0.0004

f 1
v

5
/(

v
2 th
n

e
)

P1

M1

Figure 7.8: Integrand function of the heat flux, as a function of velocity for the two
advective models.
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Figure 7.9: Study of the heat flux for a modulated temperature, with kλ0 = 0.17, using
the SH (local) model, the SNB models and the M1 one. P1 results are not shown because
very similar to M1, black line shows the temperature modulation. Periodic boundary
conditions are applied.

modulation
Te(x) = T0 + T1 sin(kx) (7.2)
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Figure 7.10: Heat flux limitation in the ES test. Solid line presents the Vlasov-FP fit,
for a sinusoidal modulation of temperature. The results are given in function of the
wavenumber normalized by the MFP.

where k is the wavenumber, T0 = 1 keV and T1 = 0.1 keV. The plasma is a fully ionized
beryllium of a constant density 4.5 × 1022 cm−3. As in the previous section, the heat
flux is normalized on the SH maximum flux q0 = 1 PW/cm2 and the space on the MFP

λ0 = 3
√

π
2

T 2
0

4πneZe4Λei
≈ 0.17µm. This is different from the original paper normalization

λES = T 2
0 /(4πnee

4
√
Z + 1Λei) ≈ 0.08 µm [44]. Figure 7.9 shows the heat flux in such a

plasma in the case kλ0 ≈ 0.17. In this test P1 and M1 models give the same results, also
for EDFs.

Figure 7.10 shows the complete results of the ES test. The analytical fit obtained
from FP simulations is plotted as a function of the nonlocal parameter kλ0, in different
regimes: qFP/q0 = 1/(1+50kλES). To this fit, we added recent discrete results performed
by Marocchino et al. [25] using the FP code OSHUN [57]: the difference is non negligible.

It should be noted that the parameter kλ0 is related to the nonlocal parameter λ0/LT
by a factor T1/T0 = 0.1. Thus the case shown in Fig. 7.9 corresponds to the nonlinear
parameter 0.017 quite similar to the case shown in Fig. 7.1. One can see that the flux
limitation by a factor of ∼ 2 is similar in Figs. 7.1 and 7.9, confirming the compatibility
of both tests.

In general, the M1 model, as well as the AWBS-SNB and BGK-SNB models, agrees
with the FP results. Nevertheless, models based on the AWBS collision operator slightly
overestimate the nonlocal heat flux, compared to FP results, till kλ0 ≈ 1.7. For this value,
the M1 model disagrees with the FP results. The reason is explained in what follows.

A monodimensional periodically modulated plasma temperature corresponds to two
opposite directions of anisotropy and, thus, by heat fluxes which propagate in opposite
directions. Let us assume that these fluxes are carried by the electrons with the charac-
teristic velocity vmax. Their MFP is m2

ev
4
max/(4π

√
Z + 1neE

4Λei) = λESv
4
max/v

4
th, while
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the distance between two opposite gradients of the temperature is π/k. If the MFP of
these electrons exceeds the distance between two peaks of the flux, they superpose. This
condition reads

kλES > π
v4
th

v4
max

or, using our normalization,

kλ0 & 6.5
v4
th

v4
max

. (7.3)

As shown in Fig. 3.1, vmax ≈ 3.7vth in the local limit. Nevertheless, in the nonlocal
case, vmax decreases. In fact, the heat flux ~q =

∫
R
d3vfeε~v is given by the balance between

the density of electrons d3vfe in the differential volume d3v and their energy transported
ε~v. If the gradients becomes sharper, more electrons with a lower MFP (lower velocities)
are present in the front of the gradient. Their contribution displaces vmax.

In [58], a systematic study of vmax has been performed, as function of kλES (kλ0): for
kλES ≈ 0.01 (kλ0 ≈ 0.02), vmax ≈ 3.5vth, for kλES ≈ 0.05 (kλ0 ≈ 0.11), vmax ≈ 3.2vth,
and for kλES ≈ 0.2 (kλ0 ≈ 0.42), vmax ≈ 2.6vth. According to Eq. (7.3), the fluxes start
to superpose for kλ0 ≈ 0.11.

M1 and P1 models calculate fluxes assuming the dependence on the first two angular
moments only. Let us consider the case of two equal fluxes which propagate in the opposite
directions. The M1 EDF describing these fluxes is the sum of the two M1 EDFs

fe(~v) ∝ eα0+~Ω·~α1 + eα0−~Ω·~α1 ∝ eα0 sinh
(
~Ω · ~α1

)
,

which gives the first angular moment equal to zero for reasons of parity. So, in this case,
the heat flux carried by such electrons is set to zero. This result is also valid for the P1
model, since it is a linear development of the exponential, around ~α1. Hence M1 and
P1 models are able to describe only one main direction of anisotropy. The case of two
superposed opposite fluxes is out of the domain of validity of the first moment models,
giving a zero flux. This phenomenon is observed for kλ0 > 0.7. However, when this
happens, the heat flux is already reduced by a factor greater than 50. Moreover, this
limit, related to first moment models can be overcame by second moment models, such
as M2 or P2.

The ES test is also shown in Fig. 7.11, which compares the different descriptions of
electric fields in the M1 model, in a wide range of the domains of nonlocal transport.
These fields are described in section 5.1.2. A particular case, for kλ0 = 0.17, is shown
in Fig. 7.11a, while the ES test is shown in Fig. 7.11. In general, the test shows no
quantitative difference between the two electric field formulations, till kλ0 ≈ 0.63, where
the field modeling effects become important. The flux limitation, using the local-kinetic
electric field (5.4), is plotted in blue and shows to underestimate the flux, compared to
the flux limitation using the nonlocal formulation (5.3), in red. This is expected, since
the local-kinetic electric field overestimates nonlocal electric field predictions, being closer
to local assumptions.

7.1.3 Flux rotation and counterstreaming

The M1 model provides also a good estimate for nonlocal fluxes in the two-dimensional
geometry. Figure 7.12 shows with a color bar the temperature profile of a fully-ionized
Beryllium plasma at a constant density of 4.5 × 1022 cm−3. The analytic form of the
temperature is

Te(x, y) = Te(x)e−(y/ymax)4

[
θ(x)

(xmax

2x

)1/p(y)

+ θ(−x)

]
, (7.4)
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(a) Comparison of the two M1 and the SH heat fluxes, for kλ0 = 0.17.
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Figure 7.11: Comparison of M1 predictions for the ES test, using a different modeling
for the electric field: the nonlocal formulation ENL (blue), given by Eq. (5.3), and the
local-kinetic formulation the kinetic formulation ELk (red), given by Eq. (5.4).
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Figure 7.12: Two dimensional analysis of the heat transport. The color background traces
the temperature. Arrows describe the magnitude and direction of heat fluxes. The SH
model, in black, is compared with M1, in white. Dashed black lines denote the sections
shown in Fig. 7.13.

where Te(x) is given by Eq. (7.1), p(y) = 3 exp[y2/(Lxmax)], L = 200 µm, xmax = ymax =
50 µm are the length of the target along the x and y axes and θ(x) is the Heaviside
function.

We present here the results obtained with the M1 model. The P1 and SNB models
provide very similar results.

In Fig. 7.12, white arrows indicate the SH (local) heat fluxes, while the black arrows
indicate the M1 fluxes. In the local case, fluxes are always in the direction of the tempera-
ture gradient and their modulus increase as the gradient becomes sharper. In the nonlocal
case, the fluxes are delocalized in the space. So we see the typical mono-dimensional non-
local effects: the flux limitation close to the main temperature gradients and preheating
in the front of them. Moreover, a two-dimensional nonlocal effect appears: the horizontal
fluxes (due to sharper gradients) influences the vertical ones, inducing their rotation with
respect to the temperature gradient.

Cuts along the horizontal and vertical axes, denoted by dashed lines in Fig. 7.4, are
drawn in order to detail nonlocal effects. Fluxes are normalized on the SH maximum flux
q0 ≈ 40 PW/cm2.

In Fig. 7.13a, the horizontal cut shows that the temperature is characterized by two
opposite gradients. In accordance with these gradients, the SH theory predicts a main flux
in the direction of the main gradient and a secondary flux in the direction of the opposite
and smoother gradient. On the contrary, M1 model predicts a counterstreaming flux:
nonlocal effects at the main gradient influence the opposite one, leading to a unidirectional
flux, in the direction opposite to the main gradient. Thus, in correspondence of the smooth
gradient, the M1 model (as the other nonlocal models) predicts an anti-natural flux in
the direction of the temperature gradient.

Figure 7.13b presents the vertical cut. Two M1 fluxes are plotted: one representing
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Figure 7.13: Cuts of the fluxes of Fig. 7.12.

the vertical cut of Fig. 7.4 (M1 2D) and the second computed by mono-dimensional
simulation, with the same gradient (M1 1D). The SH flux follows the temperature gradient
line, while the nonlocal effect (M1 2D) corresponds to the flux limitation. Nevertheless,
nonlocal fluxes are also subjected to a rotation, due to the opposite gradient. The latter
leads to the differences between M1 2D and M1 1D.

In summary, the M1 model is also able to reproduce the main multidimensional non-
local feature: the flux rotation due to a competition between the different temperature
gradients.
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7.2 Stream instabilities

In the previous chapter we have shown that the M1 model is able to describe complete
EDFs, contrarily to the P1 model, which may lead to negative (unphysical) values. Besides
heat transport, this property allows the kinetic description of a wide range of collective
phenomena. Here, we focus on the study of the Landau damping [18] of longitudinal
plasma waves: the Langmuir and the ion-acoustic waves [59, 60], in the nonlocal case of
a steep temperature gradient considered in section 7.1.1.

7.2.1 Langmuir wave Landau damping

Langmuir waves have already been introduced in section 2.2.4. They are high-frequency
electron oscillations corresponding to electric field and electron density perturbations on
a microscopic scale. A modification of the EDF in the heat transport zone may strongly
affect the stability of Langmuir waves, especially downstream the temperature jump.
Since this phenomenon is not related to collisions, in a first step we neglect them, for the
sake of simplicity.

A dispersion equation for the longitudinal waves corresponds to zeros of the longitu-
dinal dielectric permittivity εl(ω, k) = 0. Because of their inertia, ions do not play a role
in Langmuir waves and, as shown in Eq. (2.26), the dielectric permittivity reads [19, 18]

εl(ω, k) = 1 + δεle = 1 +
4πe2

k2me

∫

R3

d3v

ω − ~k · ~v
~k · ∂

∂~v
fe(~v). (7.5)

The temporal evolution of the wave amplitude depends on the imaginary part of the
dielectric permittivity. Depending on its sign, it leads to a wave damping or growth.
In the linear damping theory, the imaginary term is assumed to be small, compared to
the real one. Defining the damping rate as γ = −=(ω), we have ω = <(ω) − iγ where,
according to Eq. (2.28), the damping rate reads

γ =
=(εl)
∂
∂ω
<(εl)

. (7.6)

According to the general approach [19, 18], the dielectric permittivity is calculated by
separating the denominator in Eq. (7.5) in the principal value and the pole:

1

ω − ~k · ~v
=

P

ω − ~k · ~v
− iπδ(ω − ~k · ~v)

where P stands for principal value.
In the Cartesian coordinate system, the damping rate goes like

γ ∝ −
[
v‖
∂F‖(v‖)

∂v‖

]

v‖=ω/k

, (7.7)

where F‖(v‖) =
∫
d2v⊥fe and the symbols ‖ and ⊥ corresponding to the parallel and

the perpendicular directions with respect to the wavevector ~k. Figure 7.14 shows the
typical case where Langmuir wave instabilities develop. A positive gradient is induced by
a population of hot electrons, which are transported to the cold region of plasma from
the hot one. As our models are based on a spherical coordinate description of EDF,
expressions for the damping rate are more complicated. The integrals in Eq. (7.5) are

calculated in the spherical coordinate system with the vector ~k parallel to the temperature
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Figure 7.14: EDFs integrated over perpendicular velocity, as functions of the parallel
velocity, in typical cases of instability development for Langmuir waves (LW) and for
ion-acoustic waves (IAW).

gradient: ~k · ~v = kvµ. The M1 EDF is given by Eq. (5.11). Developing the denominator
to the third order for the parameter kvµ/ω � 1, the real part of dielectric permittivity is

<(δεle) = −
(ωpe
ω

)2 1

ne

{∫

R+

dvv2f0 + 2
k

ω

∫

R+

dvv3f0I1 + 3

(
k

ω

)2 ∫

R+

dvv4f0I2

}
, (7.8)

where ωpe =
√

4πe2ne/me is the electron plasma frequency and
{
I1 = coth(α1)− α−1

1

I2 = 1− 2α−1
1 coth(α1) + 2α−2

1

.

The imaginary part reads

=(δεle) =
ω2
peπ

2nek2

{
ω

k

f0

(
ω
k

)
α1

(
ω
k

)

sinh[α1

(
ω
k

)
]
eα1(ωk ) −

∫ ∞
ω
k

dv
f0α

2
1

sinh(α1)
e
α1ω
kv

}
,

so the damping rate is

γ

ω
=
(ω
k

)2 π

4

ω
k

f0(ωk )α1(ωk )
sinh[α1(ωk )]

eα1(ωk ) −
∫∞
ω
k
dv

f0α2
1

sinh(α1)
e
α1ω
kv

∫
R+ dvv2f0 + 3 k

ω

∫
R+ dvv3f0I1 + 6

(
k
ω

)2 ∫
R+ dvv4f0I2

. (7.9)

The P1 damping rate is obtained from Eq. (7.9), in the linear limit for α1 ≈ 3f1/f0 �
1:

γ

ω
=
(ω
k

)2 π

4

ω
k
f0

(
ω
k

)
+ 3ω

k
f1

(
ω
k

)
− 3

∫∞
ω
k
dvf1

∫
R+ dvv2f0 + 3 k

ω

∫
R+ dvv3f1 + 2

(
k
ω

)2 ∫
R+ dvv4f0

. (7.10)
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This relation can also be obtained by considering the EDF in Eq. (3.5).
The real part of the Langmuir wave frequency is not affected by the transport effects

and it is given by the standard Bohm-Gross relation, <(ω) ≈ ±ωpe[1+(3/2)k2λ2
De]. Here,

λDe = vth/ωpe is the local Debye length.
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(b) Backward wave propagation.

Figure 7.15: Damping rate of Langmuir waves, normalized to the electron plasma fre-
quency, as a function of the wavenumber normalized to the local Debye length, for the
hydrodynamic theory (HD), and for M1 and P1.

We consider the heat transport along the temperature gradient for the cold EDFs
shown in Fig. 7.5. The Langmuir wave damping rate is shown in Fig. 7.15 as a function
of the wavenumber, for waves propagating forward and backward with respect to the



114 CHAPTER 7. TRANSPORT IN UNMAGNETIZED PLASMAS

temperature gradient. The models shown are the hydrodynamic one (HD), P1 and M1.

The damping rate for the HD model is given by Eq. (7.10), with f0 = fm0 and ~f1 = 0,
which corresponds to the well-known Landau damping relation [18]

γ

ωpe
=

√
π

8

1

k3λ3
De

e−3/2−1/(kλDe)
2

.

Figure 7.15 shows that hot electrons disturb Langmuir waves, inducing instability in
the direction of hot electron propagation (backward waves), for wavenumbers kλDe ≈
0.15− 0.25. The differences between the two nonlocal models are both quantitative and
qualitative: damping rates are different but also may have different signs, depending
on the wavenumber. Moreover, the P1 model produces a spurious instability in the
forward direction because it transforms an unphysical behavior (negative total EDF) into
an instability, as shown in Fig. 7.15a.

Collisions can be accounted for in the damping of Langmuir waves by adding an
additional term in the imaginary part of the electron dielectric permittivity, =(δεle) =
ω2
peνeff/ω

3, where

νeff =
4
√

2π

3

Z2e4niΛei

m2
ev

3
th

is the effective collision frequency [19]. This term is the same for all models and corre-
sponds to the collision term −νeffδf in the FP equation (2.19).

The results for the collisional Landau damping of Langmuir waves, for the downstream
temperature zone in Fig. 7.5, are shown in Fig. 7.16. We see that the instability rate is
reduced and the unphysical unstability for the forward propagating wave disappears.
However, the difference between the models is evident: while the instability disappears
for P1, it is still present for the M1 model. The expected growth rate γ ∼ 5 × 1013 s−1

corresponds to a time much shorter than the typical hydrodynamic time. Therefore one
may expect that the Langmuir turbulence can be developed downstream the temperature
gradient, possibly affecting the electron heat flux.

7.2.2 Ion-acoustic waves

Ion-acoustic waves have also been introduced in section 2.2.4. They are low-frequency
waves (ω/k � vth) which involve electrons and ions. Similarly to the Langmuir waves, the
spectrum of ion-acoustic waves is defined by zeros of the dispersion equation εl(ω, k) = 0,
where εl = 1 + δεle + δεli includes the electron and the ion contribution. In calculation
of the ion dielectric permittivity, we assume the ions to be cold, δεli ≈ −ω2

pi/ω
2, where

ωpi =
√

4πZe2ni/mi is the ion plasma frequency.
Calculating the electron dielectric permittivity, defined by (7.5), in the low frequency

limit ω � kvth, we obtain the following expression in the spherical coordinates:

<(δεle) =
ω2
pe

k2

1

ne

{∫

R+

dvf0 −
∫

R+

dvf0

[
α2

1Ξ(α1)

sinh(α1)
− α1 coth(α1) + 1

]}
,

where

Ξ(x) =

∫ x

0

dy
sinh(y)

y
.

In the limit α1 � 1, the electron contribution reduces to <(δεle) = 1/(k2λ2
De). Corre-

spondingly, the expression for the ion-acoustic wave frequency reads

ω2 =
ω2
pik

2λ2
De

1 + k2λ2
De

,
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Figure 7.16: Damping rate of Langmuir waves, accounting for the collision term.

where ωpiλDe = cs is the local sound speed.
The general expression (7.6) also applies to the ion-acoustic wave damping. Following

the procedure described for Langmuir waves (see also [59]), the damping rate of the ion-
acoustic waves reads:

γ

ω
=
π

4

ω
k

f0(ωk )α1(ωk )
sinh[α1(ωk )]

eα1(ωk ) −
∫∞
ω
k
dv

f0α2
1

sinh(α1)
e
α1ω
kv

∫
R+ dvf0 −

∫
R+ dvf0

[
α2

1Ξ(α1)

sinh(α1)
− α1 coth(α1) + 1

] .

This expression simplifies in the linear limit in α1, which corresponds to the P1 model
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[59]:

γ

ω
=
π

4

ω
k
f0

(
ω
k

)
+ 3ω

k
f1

(
ω
k

)
− 3

∫∞
ω
k
dvf1∫

R+ dvf0

.

For f0 = fm0 and ~f1 = 0, we recover the classical Landau damping formula, under the
assumption of cold ions [18]:

γ

ω
=

√
π

8

ω

kvth
.

An example of the ion-acoustic wave damping is shown in Fig. 7.17 (forward and back-
ward propagating waves), for the position x = 0 in Fig. 7.3. The damping is strongly
modified near the maximum of the temperature gradient. The ion-acoustic waves prop-
agating in the forward direction become unstable, while the waves propagating in the
backward direction are stronger damped.

This ion-acoustic instability is induced by the return current, as it has been explained
in [59]. In Fig. 7.14 it is schematically illustrated that the positive derivative of F (v‖) is
induced by the shift of the maximum of the EDF due to the electric field, which induces
the return current.

The instability is obtained for both models, however the location of the instability can
be different because the difference of location of the electric field maximum, as shown in
Fig. 7.3. The small differences between M1 and P1 models are explained by the fact that
the ion-acoustic waves have very low phase velocities and the details of the EDF at high
velocities do not have large importance.

For the plasma parameters presented in Fig. 7.1, the ion plasma frequency is of the
order of 1014 s−1 and the ion-acoustic instability can be excited in a few picosecond time
scale. It could introduce an effective (turbulent) resistivity and suppress the heat trans-
port [61].

7.3 On the unmagnetized transport

In this chapter we have applied the M1 model to unmagnetized HED plasmas, in the
nonlocal regime.

The M1 model has been compared with two SNB models, using different collision
operators and with the P1 model, in different conditions of heat transport. It reproduces
all nonlocal features in one and two spatial dimensions and gives a better description of
the EDF.

The model has been tested for two formulations of the nonlocal electric field. One de-
rived from the kinetic theory but not generalizable to magnetized plasma, the second de-
rived from phenomenological assumptions but generalizible to magnetized plasmas. Both
have led to correct results.

The M1 approach provides access to small scale collective phenomena such as Landau
damping of Langmuir and ion-acoustic waves. It is shown that in front of the temperature
gradient and around the maximum of the temperature gradient, the Langmuir and the
ion-acoustic instabilities may be developed, thus reducing the MFP of the electrons and
consequently affecting the nonlocality of the flux.

The structure of the M1 model allows to naturally take into account electromagnetic
fields, which is also a crucial issue for the HED physics applications.
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Figure 7.17: Damping rate of ion-acoustic waves, normalized to the ion acoustic frequency
ωac = kcs, as a function of the wavenumber normalized with the local Debye length.
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Chapter 8

Transport in magnetized plasmas

Magnetic fields play an important role in many laboratory astrophysical processes as well
as in ICF. In laser-produced plasmas related to astrophysics and ICF, an asymmetric
irradiation may create magnetic fields. Indeed, noncollinear density and temperature
gradients may induce self-generated magnetic fields strong enough to modify the energy
distribution of the target [47].

In the direct drive scheme, assuming a spherical implosion, a target surface roughness
or a laser speckle pattern may produce huge fields and change the target functioning.
Moreover, recent ICF schemes consider external magnetic fields, in order to limit energy
losses from the central hot spot [15]. These external fields could also modify the target
symmetry during implosion, leading to the necessity of full simulations with magnetic
fields.

In general, the laser-plasma simulations need a self-consistent description of magnetic
fields. Models, which describe the effects of magnetization on the electron heat transport,
are very complex [36, 38]; they involve tensor transport coefficients, which account for
flux limitation effects as well as rotations. In particular, the model which is able to
describe the magnetized nonlocal regime is characterized by an approximated description
of electromagnetic effects on suprathermal electrons [24].

We propose here to use the M1 approach to analyze and calculate nonlocal effects
as well as the magnetic field influence on the energy transfer. In this chapter, the M1
predictions for the magnetized heat transport are analyzed and tested. We consider
variations of the magnetization, given by the Hall parameter ωBτe, as well as variations
of the nonlocal parameter.

In this chapter, electromagnetic fields are calculated according to the formalism pre-
sented in section 5.1.2. In section 8.1, the local regime is analyzed. In section 8.2, the
magnetized nonlocal regime is studied. In section 8.3 the plasma relaxation to a thermal
equilibrium is analyzed for both the magnetized and unmagnetized plasmas. Finally, in
section 8.4, conclusions related to the magnetized nonlocal transport are drawn.

8.1 Braginskii limit

The first test that the magnetized M1 model has succeed to reproduce is the local limit,
predicted by the Braginskii’s theory [36].

Epperlein and Haines [38] (EH) proposed improved expressions for the Braginskii’s
coefficients. We use the EH coefficients, in order to validate the local limit of the M1
model.

We study a fully-ionized plasma, with a constant density, characterized by the steep
temperature gradient (7.1), with T0 = 5 keV, T1 = 0.5 keV and δNL = 500µm. The
system is simulated in one dimension (x-direction) with a perpendicular magnetic field
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(z-direction). The Hall parameter ωBτe is constant along the plasma, thus the magnetic
field reads

Bz =
mec

eτe
ωBτe. (8.1)

This geometry is schematically shown in Fig. 8.1.

T

Magnetic field

x

z

Figure 8.1: Geometry of the magnetized plasmas analyzed.

We test two perfect gas plasmas, one with Z = 1 and ne = 1023 cm−3 and the second
with Z � 1 (Z = 79) and ne = 4× 1022 cm−3.

For the plasmas described above, the initial temperature and magnetic field are plotted
in Figs. 8.2a and 8.2b, respectively for Z = 1 and Z = 79. The magnetic field has been
normalized on B0 = (mecvth)/(eλ0)ωBτe, where vth ≈ 30 µm/ps and λ0 (≈ 6 µm for
Z = 1 and ≈ 0.21 µm for Z � 1) are computed for Te = T0. The field decreases as
the temperature increases. Its spatial variation induces a current, given by the Ampere’s
law. This current is plotted in Figs. 8.3a, for Z = 1, and 8.3a, for Z � 1, normalized on
j0 = c/(4π)L−1

T B0, with LT = 890 µm.

The nonlocal parameter is λ0/LT ≈ 6.7×10−3 and ≈ 2.4×10−4, respectively for Z = 1
and Z � 1. For these values, the system is in the local regime, and we can compare the
local conductivities given by Braginskii, with M1 results.

8.1.1 Transport across the temperature gradient

In section 3.4.1 we have seen that magnetic fields add a new direction of anisotropy to
the thermal transport, due to a coupling between the current and the electric field: the
thermoelectric transport. In section 7.1.2, we have shown that the M1 model is limited
to the description of one direction of anisotropy, hence it is valid if thermoelectric effects
are negligible. Fortunately, this happens frequently in laser-matter interactions.
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Figure 8.2: Initial electron temperature (in black) and magnetic field (in blue), plotted
as functions of space.

The local heat flux is described by Eq. (3.25), which is composed by the thermal
and the thermoelectric components. The thermoelectric heat flux is proportional to the
current which has a nonzero value in the y-direction (crossed between the temperature

gradient and the magnetic field). Since ωBτe is constant, Bz ∝ τ−1
e ∝ T

−3/2
e and

∂Bz

∂x
= −3

2

Bz

Te

∂Te
∂x

.
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Figure 8.3: Initial electron temperature (in black) and electron current density (in blue),
plotted as functions of space coordinate.

So, the current can be written as

jy =
3cBz

8πTe

∂

∂x
Te

and, the y component of the heat flux, as

qBy = −k∧
∂Te
∂x

(
1 +

β⊥
k∧

3cBz

8πe

)
.
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It is much more useful to express the term in parenthesis as a function of the Hall pa-
rameter and of the dimensionless thermal conductivity ¯̄kc = ¯̄kme/(neTeτe). Normalizing
by the SH flux qSH(x) = −kc⊥(ωBτe = 0)neTeτe/me∂Te/∂x, we have

qBy/qSH = − kc∧
kc⊥(ωBτe = 0)

(
1 +

β⊥
kc∧
ωBτe

3

2

mec
2

Te

ν2
e

ω2
pe

)
. (8.2)

At the position x = 0, Te = 2.75 keV, ωpe = 1.8 × 1016 s−1 and τe = 1.1 × 1013 s−1, for
Z = 1, and ωpe = 1.1 × 1016 s−1 and τe = 2.9 × 1014 s−1, for Z = 79. Neglecting the
thermoelectric contribution (second term in parenthesis), the error committed increases
as ωBτe increases. In particular for the plasma with Z = 1 and for ωBτe = 30, the error
equals 0.06%. For the case Z = 79 and for ωBτe = 3, the error is around 5.4% but for
ωBτe > 3, the analysis is stopped because the thermoelectric term needs to be accounted
for. Thus, in the limit of our analysis (ωBτe ≤ 30 for Z = 1 and ωBτe ≤ 3 for Z � 1),
thermoelectric effects can be neglected and we only consider the thermal conductivity.
Then, the heat flux has the following form

{
qBx ≈ −k⊥ ∂

∂x
Te

qBy ≈ −k∧ ∂
∂x
Te

. (8.3)

Epperlein and Haines calculated the electron transport coefficients [38] for a large
range of the magnetization parameter and the ion charge. We want to reproduce this
results, for thermal conductivities, by comparing the predictions by Braginskii [36] and
EH [38] with the M1 calculations, in the central region of the plasmas described above,
exploiting Eq. (8.3).

Figure 8.4a presents the dependence of kc⊥ versus the Hall parameter, for different
models and different values of Z. As ωBτe increases, kc⊥ decreases. In accordance to
Eq. (8.3), this corresponds to a decrease of the heat flux in the x-direction. In the crossed
direction (y-axis), shown in Fig. 8.4b, the flux, as the conductivity, increases with
the magnetization, till a maximum at ωBτe ≈ 0.1− 1 (depending on the ion charge) and
decreases for larger values of the Hall parameter. This departure can be roughly explained
considering the magnetic acceleration experienced by an electron = (e/me)(~v/c)× ~B. It

deviates electrons to the direction perpendicular to both ~v and ~B (y-direction). This
induces a decrease of the heat transport in the x-direction and an increase in the y-
direction (flux rotation). Moreover, if magnetization is sufficiently strong (ωBτe > 1),
electrons are forced to rotate collisionless around magnetic field lines, which reduces the
MFP between two subsequent collisions to the Larmor radius.

A statistical and more precise description of the flux rotation and limitation, induced
by magnetic fields, can be provided by Eq. (3.26). We interpret ωBλ

∗
ei/v as the kinetic

version of the Hall parameter and assume ωBλ
∗
ei/v ∼ ωBτe, as a leading term in the

local limit. So, Eq. (3.26) asserts that the flux is reduced by a factor 1 + (ωBτe)
2, in the

direction of the temperature gradient, while, by a factor ωBτe/[1+(ωBτe)
2], in the crossed

direction, between the temperature gradient and the magnetic field. Thus, the flux is
always reduced by the magnetization, in the direction of the temperature gradient, and
it is increased for ωBτe ≤ 1 and reduced for ωBτe ≥ 1, in the crossed direction.

Figure 8.4a shows that the model M1 agrees with the theory [38], in the prediction
of a flux limitation along the x-direction, due to a magnetic field. In the high-Z limit,
the electron-electron collisions become negligible and the M1 model well agrees with the
Braginskii’s and EH theory.

In the low-Z limit, the M1 model weakly departs from the Braginskii’s theory for
ωBτe & 10. However, for such a strong Hall parameter, the magnetic field already strongly
reduces the heat flux.
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Figure 8.4: Dependence of dimensionless local thermal conductivities, on the Hall param-
eter. The M1 model (points) is compared to the Braginskii’s theory (continuous line)
and the EH theory (dashed line). Comparison is presented for Z = 1 (blue) and Z � 1

(red). We stress that ¯̄kc = ¯̄kme/(neTeτe) is normalized on local variables, because we are
performing a local analysis.

Also in the y-direction, shown in Fig. 8.4b, the M1 model agrees with the Braginskii’s
theory in the high-Z limit. In the low-Z limit it presents some differences when the effect
of magnetic fields is weak. They are due to the inaccuracies of our collision operator,
which are more visible for low-Z values. However, in this limit, the effect of the crossed
heat transport is small.

8.1.2 Flux limitation and rotation

Figure 8.4 demonstrates that magnetic fields are responsible for two effects: flux limitation
and flux rotation. By presenting the heat flux in the form of Eq. (8.3), we define a heat
flux modulus as

| ~qB|=
√
k2
⊥ + k2

∧

∣∣∣∣
∂

∂x
Te

∣∣∣∣ = |k|
∣∣∣∣
∂

∂x
Te

∣∣∣∣ .

and its dimensionless form as |kc|. The rotation angle is defined as

θ = arctan

(
qBy
qBx

)
= arctan

(
kc∧
kc⊥

)
.
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The magnetic field reduces the absolute value of the heat flux, as it is shown in
Fig. 8.4c. Our model agrees in the description of the flux limitation, also in the low-Z
limit. The main differences between the model and the theory [38] are in the flux rotation
angle, shown in Fig. 8.4d. The figure shows that despite of some differences, the M1 model
agrees with the theoretical predictions: the magnetic field tends to rotate the flux and
the rotation angle increases with the Hall parameter. For Hall parameters higher than 1,
the rotation angle approaches 90◦.

In summary, we have tested our M1 model in the local regime, for a large range of Hall
parameter values. The model shows some differences in the description of the flux rotation,
especially for low Z-plasmas. They are due to the use of the simplified AWBS collision
operator. However, differences remain small, demonstrating an acceptable accuracy of
the M1 model in the local limit.

8.2 Magnetized nonlocal heat transport

The magnetized nonlocal transport regime is computed by iterating the M1 model, with
Eq. (5.4), till the electric field convergence. This field modeling recovers the local limit
(3.24), in the local regime.

8.2.1 Magnetized transport along and across the temperature
gradient

In this section we analyze a particular case, where both phenomena are important: the
heat flux magnetization and the nonlocal effects. We assume a perpendicular magnetic
field, positive in the z-direction (given by Eq. 8.1), with a constant Hall parameter ωBτe =
0.5. Periodic boundary conditions are assumed in the y-direction. This geometry is
summarized in Fig. 8.1.

We consider a fully-ionized hydrogen plasma of a constant density ne = 1023 cm−3. The
temperature profile is given by Eq. (7.1) where T0 = 5 keV, T1 = 0.5 keV and δNL = 5 µm.
The fluxes are normalized on the modulus of the maximum SH flux q0 = 86 PW/cm2

and the length to the maximum MFP λ0 = 3
√

π
2

T 2
0

4πneZe4Λei
≈ 5.98µm. The degree of

nonlocality of the system is λ0/LT = 0.67.

Since hydrodynamic variables are the same as the ones for the hydrogen plasma de-
scribed in section 8.1.1 (except for δNL), according to Eq. (8.2), thermoelectric effects
are negligible. As we will see, the nonlocal transport reduces even more thermoelectric
effects, since they are related to the magnetization, and the magnetization effectively felt
by nonlocal particles is smaller than the one felt by local electrons.

In order to demonstrate the magnetic field effect on the nonlocal transport, we compare
the local and nonlocal models, with and without magnetic fields.

Figure 8.5a shows the heat flux along the temperature gradient. The difference between
the local and nonlocal models is larger for unmagnetized models: the SH result is farther
from the unmagnetized M1 result than the Braginskii’s flux from the magnetized M1,
which almost coincide. Thus, the effect of magnetic fields in the direction of temperature
gradient is to reduce the nonlocal effect. On the contrary, the nonlocal effects are stronger
in the perpendicular direction, as shown in Fig. 8.5b. In this case they suppress the heat
flux and displace it toward a colder region. Thus, the nonlocal effect reduces the flux
rotation due to the magnetic field.

We have seen that the effect of the magnetized nonlocal heat transport is to reduce
both nonlocal and magnetic effects. This can be easily described by the simplified FP
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Figure 8.5: Nonocal magnetized heat transport for a plasma with a temperature gradient
in x-direction and periodic boundary conditions in the y-direction. In black it is shown
the temperature profile, in celestial the local unmagnetized theory (SH model), in green
the local magnetized one (Braginskii), in blue the nonlocal unmagnetized M1 model and
in red the nonlocal magnetized M1 model. Vertical lines denote regions where the kinetic
analysis is performed.

Eq. (3.26). The magnetization effectively experienced by an electron with a velocity v is

ωBλ
∗
ei

v
=

√
2

9π
ωBτe

(
v

vth

)3
Z + 0.24

Z + 4.2
, (8.4)

and ≈ 0.063ωBτe(v/vth)
3, for the hydrogen, while its effective MFP is λ∗ei/[1+(ωBλ

∗
ei/v)2].
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It is reduced by magnetic fields for all velocities. A reduction of MFP implies a reduction
of the nonlocal parameter λe/LT to ∼ λe/{LT [1 + (ωBτe)

2]}, which necessarily leads to
the reduction of nonlocal effects.
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(a) Magnetized and unmagnetized heat flux integrand functions, in the cold region.
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(b) Magnetized and unmagnetized heat flux integrand functions, in the central region.

Figure 8.6: Magnetized and unmagnetized integrand functions of the heat flux ∝ v5 ~f1,
in the cold and central region, denoted by dashed lines in Fig. 8.7d. They are plotted as
functions of the velocity modulus. The magnetized flux is split in f1x, in the x-direction
(continuous line) and f1y, in the y-direction (dotted line).

In Figs. 8.6a and 8.6b we plot the heat flux integrand functions ∝ v5 ~f1, respectively
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computed in the cold and central regions, denoted by dashed vertical lines in Fig. 8.5a.
The local theory predicts the presence of two peaks along the direction of the temperature
gradient f1x. A positive peak at low velocities corresponds to the return current and a
negative peak at higher velocities corresponds to the main heat flux. In the central region,
variations of f1x are small corrections. In the cold region of the unmagnetized plasma a
hot nonlocal flux is deposited (higher peak of Fig. 8.6a), inducing a strong modification
of the heat flux integrand function, compared to the magnetized case, more close to local
predictions. This is due to the reduction of the effective MFP. Also the crossed direction
(y-direction) f1y is plotted in Figs. 8.6a and 8.6b, for the magnetized plasma, in order
to show the flux rotation. We see that it becomes dominant for suprathermal velocities,
especially close to the central region. Note that the maximum flux contribution is always
displaced to the left, in comparison with the local value at 3.7vth.

In the local regime, electrons which transport the heat (v ≈ 3.7vth) experience a
magnetization of ≈ 3.2ωBτe. In the nonlocal case, the characteristic velocity of these
electrons decreases [58]: since gradients are sharper, slower electrons can also deposit
the energy in the cold region. This implies a decrease of the effective Hall parameter
experienced and so a decrease of the heat flux magnetization. In Figs. 8.6a and 8.6b
we plot the heat flux integrand functions, respectively computed in the cold and central
regions, denoted by dashed vertical lines in Fig. 8.7d. We assume that the flux is carried
by electrons with a velocity given by the maximum contribution. According to Fig. 8.6b,
in the central region, the heat flux characteristic velocity along the temperature gradient
is ||(2vth, 2.5vth)||≈ 3.2vth, which implies a reduction of the experienced magnetization to
≈ 2.1ωBτe.

We have performed also an analysis of the electron energy distribution. The EDFs
in the unmagnetized and magnetized regimes are computed with the M1 model. In
the cold region, shown in Figs. 8.5a and 8.5b by the left vertical line, the EDFs are
shown in Fig. 8.7a (unmagnetized plasma) and in Fig. 8.7b (magnetized plasma). In the
unmagnetized case the EDF presents a direction of anisotropy towards the colder region
of the plasma (180◦), due to electrons which transport the heat. Magnetic effects reduce
and turn this anisotropy, affecting the macroscopic transport. Same effects are visible in
the central region, but in this case the rotation is the dominant. The total EDFs are the
ones shown in Figs. 8.7c (unmagnetized plasma) and 8.7d (magnetized plasma). Note that
the Hall parameter experienced by a particle with a velocity ||(2.5vth, 2.5vth)||≈ 3.5vth is
1.4, for which corresponds to the rotation angle = arctan(f1y(2.5vth)/f1x(2.5vth)) ≈ 70◦

(see Fig. 8.4d).

8.2.2 Temperature modulation in a magnetized plasma

The ES test has been presented in section 7.1.2, for the study of nonlocal transport. We
extend this test to the case of a nonlocal transport in a magnetized plasma.

As in section 7.1.2, we consider a fully-ionized beryllium plasma, with a constant den-
sity 4.5× 1022 cm−3 and the periodic temperature modulation (7.2), with T0 = 1 keV and
T1 = 0.1 keV. The magnetic field is applied in the perpendicular direction (z-direction),
with a constant Hall parameter, as shown in Fig. 8.1. Periodic boundary conditions
are applied to the x and y-directions. The length is normalized in space to the MFP
λ0 ≈ 0.17 µm.

According to Eq. (8.2), thermoelectric effects can be neglected, because the error
induced in the local regime, in x = 0, for ωBτe = 1, is only 0.04% (νe = 2.2 × 1013 s−1)
and even lower in the nonlocal transport regime, which experiences a lower magnetization.

Figure 8.8 shows a specific case of heat flux, normalized to q0 = 1 PW/cm2, for
kλ0 = 0.17. The Hall parameter is varied from the near-unmagnetized case (ωBτe = 0.1),
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Figure 8.7: Magnetized and unmagnetized dimensionless logarithm of the EDF. The
analysis is performed in function of the velocity magnitude (radial direction) and of the
velocity angle with respect to the temperature gradient (x-axis), in the cold region and
in the central region, as indicated by vertical lines, in Fig. 8.5a and 8.5b.

to ωBτe = 1. For ωBτe = 0.1, according to Fig. 8.4d, the magnetic effect on local transport
is the flux reduction, in both directions. The nonlocal effect further reduces heat fluxes,
in both directions. In particular, qy is almost reduced to zero. This is because nonlocal
effects are dominant, since the effective MFP is weakly reduced. On the contrary, for
ωBτe = 1, the effective MFP is strongly reduced and the differences between local and
nonlocal fluxes are small. For this regime of magnetization, the flux in the y direction
becomes dominant, while in the x-direction it is reduced by a factor & 10.

The same study is performed in the ES test, for different values of kλ0, focusing on
the flux limitation, where the modulus of fluxes is maximum. The heat flux limitation is
obtained normalizing the heat flux on the maximum value of the Braginskii’s flux. This
study is repeated for the flux module, in Fig. 8.9a and for their components, in Figs. 8.9b
(x-direction) and 8.9c (y-direction).

The analysis of the flux module shows that the nonlocal flux limitation is reduced,
increasing the Hall parameter. This confirms the reduction of nonlocal effects, induced
by the reduction of the effective MFP, as described in the previous section. In particular,
the flux magnitude is nearly-unmagnetized for ωBτe = 0.1 and nearly-local for ωBτe = 1.
In the first case, nonlocal effects become important for kλ0 & 10−2, in the second, for
kλ0 & 10−1. The heat flux components show that the flux is subjected to nonlocal effects
in both directions, especially for kλ0 = 0.1, till kλ0 = 0.17. For kλ0 > 0.17, the error
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Figure 8.9: ES test, in a magnetized plasma. The magnitude of the fluxes is normalized
on the modulus of Braginskii’s predictions. Different colors represent different values of
the Hall parameter, form 0.1 to 1.

committed computing the electric fields Ey with Eq. (5.4) becomes significant for the
crossed flux qy. However, for these cases, the absolute value of qy is rather small.
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Figure 8.10: Parameters of the plasma analyzed in section 8.3.

8.3 Thermal wave propagation in magnetized plas-

mas

The purpose of this section is to describe the propagation of a thermal wave in a magne-
tized plasma, in the conditions of the nonlocal transport, using the M1 model coupled to
the hydrodynamic code CHIC.

8.3.1 Plasma parameters

We consider a fully-ionized beryllium plasma of constant density 4.5×1022 cm−3. Initially,
this plasma is characterized by the electron temperature (7.4), with T0 = 5 keV, T1 =
1 keV, δNL = 5µm and xmax = ymax = 100 µm are the lengths of the target along x and
y axes. The temperature profile is shown in Fig. 8.10a. The plasma is simulated with
symmetric conditions at boundaries:

Te(~x = ∂~x+, t) = Te(~x = ∂~x−, t),

at each time t, where, in our formalism, ∂~x denotes the spatial boundary and signs +
and − mean outer and inner limits, respectively. So, for example, in the right border
Te(x = 16λ0 + dx, t) = Te(x = 16λ0, t), where dx is the cell length and λ0 =≈ 3.15µm
the maximum MFP.

This plasma is subjected to a constant magnetization ωBτe, in space and time, induced
by a perpendicular magnetic field, which varies according to

Bz(~x, t) =
mec

eτe(~x, t)
ωBτe.

The geometry of the system is resumed in Fig. 8.10b.
In such a plasma electrons transport heat, generating a thermal wave, which smooths

the temperature gradient, till to reach a constant temperature at the thermal equilibrium.
We assume that the temporal evolution of the temperature is given by the heat equation
for electrons, which reads

3

2
ne
∂

∂t
Te + ~∇ · ~qe = 0, (8.5)

in the perfect gas approximation. The assumption of a constant density can be justified as
follows. In the point (x = 0, y = −15λ0) the gradient attains its maximum. The gradient
length is LT ≈ 11 µm. So the characteristic hydrodynamic time is τhydro ∼ LT/cs ≈ 24 ns,
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where the acoustic velocity is cs =
√
ZT0/mi = 0.46 µm/ps. The characteristic time of

thermal diffusion is τdiff ∼ neL
2
T/χ ≈ 1.3 ps, where χ ∼ nev

2
thτe is an effective thermal

conductivity, with τe = 3
√

π
2

m
1/2
e T

3/2
0

4πneZe4Λei
≈ 0.11 ps and vth =

√
Te/me ≈ 30 µm/ps. Since

τhydro > τdiff , the hydrodynamic motion can be neglected. The characteristic time of ion
diffusion is ∼ 1.5× 103τdiff , thus it can be neglected too.

According to Eq. (8.2), thermoelectric effects can be neglected, making an error of
∼ 0.3%, for ωBτe = 10.

In what follows we compare the time evolution of the system, using three models
for the heat flux ~qe: the Braginskii’s theory, the M1 and the SNB model, in different
regimes of magnetization. The analysis is performed for dimensionless quantities. The
temperature is normalized by the initial maximum of the temperature profile T0 = 5 keV,
the space by the maximum MFP λ0 ≈ 3.15µm and the heat fluxes over the maximum of
the magnitude of the initial SH heat flux q0 = 40 PW/cm2. We expect to see a thermal
wave which smooths temperature gradients in time, till to reach a constant temperature
at the equilibrium. We are interested in studying how the magnetization and nonlocal
transport influence this process.

8.3.2 Analysis of initial conditions

Figures 8.11 show electron heat fluxes induced by the initial electron temperature profile,
shown in background, as a color plot. Fluxes are computed for increasing values of the Hall
parameter (constant in space) and are represented as arrows. For each figure, three models
are compared: the Braginskii’s model (local theory), the M1 model and the magnetized
generalization of the SNB model. They are respectively represented in black, white and
green.

Figure 8.11a, corresponding to the case ωBτe = 0, shows that the local heat flux is
always perpendicular to the temperature gradient. The case of a weak magnetization
(ωBτe = 0.1), reported in Fig. 8.11b, shows a local flux rotation, respect to the unmag-
netized case. Increasing the magnetization (ωBτe = 0.2), in Fig. 8.11c we see another
effect: the reduction of the local flux. These two effects become dominant in Fig. 8.11d,
for ωBτe = 0.5 and in Fig. 8.11e, for ωBτe = 1. Finally, for a high degree of magnetization
(ωBτe = 10), in Fig. 8.11f we see the flux suppression.

Figure 8.12 shows the degree of nonlocality of the system studied, in the first instant.
It represents the logarithm of the ratio between the electron MFP and the temperature
gradient length (nonlocal parameter). A nonlocal regime corresponds to the values higher
than −2. The chosen parameters correspond to highly nonlocal conditions.

Figure 8.11a shows the main effects of unmagnetized nonlocal transport, described
in the previous chapter. A flux limitation can be seen near x ≈ 0, the preheating near
x ≈ −5 and the rotation is negligible. The M1 and the SNB models quite well agree in
the description of nonlocal fluxes.

When a small magnetization is imposed (ωBτe = 0.1, 0.2), the direction of heat flux
deviates from the direction of the temperature gradient, due to magnetic fields. The flux
rotation, in nonlocal models, appears weaker compared to the local case. This qualitative
effect can be seen in both M1 and SNB models; however, they slightly differ in the value
of this rotation. The M1 model corresponds to smaller deviations, compared to the SNB
model. For both models, the flux reduction, due to magnetic fields, becomes important
for ωBτe = 0.5 (a higher degree of magnetization than in the local model). Thus, we
confirm that nonlocal fluxes are less affected by magnetic fields, compared to their local
counterparts. This conclusion is in accordance with Brantov’s studies, presented in Fig. 6
of [62].

As the magnetization becomes strong (ωBτe = 0.5, 1), nonlocal models approach the
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(a) ωBτe = 0.
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(b) ωBτe = 0.1.
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(c) ωBτe = 0.2.
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(d) ωBτe = 0.5.
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(e) ωBτe = 1.
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(f) ωBτe = 10.

Figure 8.11: Initial distribution of the electron temperature and the heat flux of the
plasma. The initial electron temperature profile is shown by the background colors and
arrows indicate heat fluxes predicted by different models: the Braginskii’s theory (in
black), the M1 (in white) and the SNB model (in green). The panels correspond to
different values of the Hall parameter.

local predictions. These models superpose in the case of flux suppression (ωBτe = 10).
This is due to a reduction of the MFP, induced by magnetic fields [24].

Thus the nonlocal heat fluxes qNL−B in presence of magnetic fields provide intermediate
values between the magnetized local values qB and the unmagnetized nonlocal values qNL.
For the flux along the gradient direction we find the following relations qB ≤ qNL−B ≤ qNL.
The M1 and SNB models give the same values for the fluxes.

8.3.3 Temporal evolution

Equation (8.5) conserves the total energy in the simulation box, regardless of the model
used.
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Figure 8.12: Logarithm of the nonlocal factor, as a function of the space, in the initial
instant of the plasma analyzed in section 8.3.

Electrons, in the hot region, have a velocity ∼ vth =
√
T0/me ≈ 3 × 109 cm/s. The

maximum distance of the simulation box is 45λ0 (diagonal direction). In the unmagnetized
regime, electrons take 45τe ≈ 5 ps to travel along the simulation box. At this time, the
differences between models are maximum. In subsequent times, they are smoothed, since
electron gradients are enough smooth.

Figures 8.13a, 8.13b and 8.13c show respectively the Braginskii’s, the SNB and the M1
predictions, after 45τe, in the unmagnetized regime. The local heating is more efficient,
because of the flux limitation which characterizes nonlocal models. The local flux smooths
the temperature gradients more than in nonlocal case.

Dashed lines in Fig. 8.13 indicate the regions where monodimensional cuts have been
performed, in order to simplify the analysis. A cut along the x-direction is shown in
Fig. 8.14a, while along the y-direction in Fig. 8.14b. Both cases show the gradient smooth-
ing, while a weak preheating is visible in front of the temperature gradient, along the
x-direction, induced by nonlocal transport. SNB and M1 predictions agree.

Adding a weak degree of magnetization (ωBτe = 0.1) to the system, we add the effect
of flux rotation (∼ 5 − 10◦, in the local case), related to magnetic fields. Temperature
predictions are shown in Figs. 8.13d (Braginskii’s predictions), 8.13e (SNB predictions)
and 8.13f (M1 predictions). Figures 8.15a and 8.15b show the horizontal and vertical
cuts. The Braginskii’s theory predicts that the gradients are less smoothed than in the
magnetized case. On the contrary, nonlocal models (M1, SNB) are mainly not affected
by such a weak magnetization. In summary, with a weak degree of magnetization, local
and nonlocal predictions are closer but nonlocal electrons mainly behave as if they do not
experience any magnetization. The SNB and M1 models give very similar results.

With ωBτe = 0.5, the effective MFP is reduced by a factor ∼ 1/(1 + Cω2
Bτ

2
e ), with

C ∼ 1, thus fluxes are reduced: the temperature gradients are less smoothed by the heat
transport, as shown in Fig. 8.13g. Despite a high degree of nonlocality, no differences can
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(a) Braginskii’s theory, for
ωBτe = 0.
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(b) SNB model, for ωBτe = 0.
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(c) M1 model, for ωBτe = 0.
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(d) Braginskii’s theory, for
ωBτe = 0.1.
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(e) SNB model, for ωBτe = 0.1.
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(f) M1 model, for ωBτe = 0.1.
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(g) Braginskii’s theory, for
ωBτe = 0.5.

−15 −10 −5 0 5 10 15
x/λ0

−15

−10

−5

0

5

10

15

y
/λ

0

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

T
e
/T

0

(h) SNB model, for ωBτe = 0.5.
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(i) M1 model, for ωBτe = 0.5.

Figure 8.13: Plasma electron temperature distribution, after 5 ps of relaxation to the
thermal equilibrium. Dashed lines indicate the regions where monodimensional cuts have
been performed. Upper line corresponds to the case without magnetic field, middle line
to ωBτe = 0.1 and bottom line to ωBτe = 0.5. Three columns correspond to the Braginskii
model (left), SNB model (center) and M1 model (right). Note that the temperature scale
is changed from above, in order to higlight the shapes of gradients.

be find between Braginskii’s, SNB and M1 predictions, shown in Fig. 8.13h and Fig. 8.13i,
respectively. Horizontal and vertical cuts in Figs. 8.16a and 8.16b confirm that. Because
of the flux reduction, heating effects require a longer time to appear. We need to perform
a temporal analysis.

Figures 8.17a, 8.17b and 8.17c show a temporal evolution of the temperature profile,
in the x-direction (y ≈ 14λ0), from 0 to 50 ps (450τe), in steps of 10 ps (90τe). As
expected, temperature gradients decrease with time leading to a homogeneous temper-
ature at the equilibrium. Considering the temperature difference evolution with time,
∆Te(t) = max[Te(t)] − min[Te(t)], for ωBτe = 0, the local theory predicts a faster ther-
malization then in nonlocal model, since the heating is not delocalized. The SNB and
M1 models agree in this prediction. When we add a weak magnetization ωBτe = 0.1, the
thermalization time predicted by the Braginskii’s theory is weakly reduced, while the Hall
parameter is not sufficiently high to affect the nonlocal transport. So nonlocal models
behave as in the case ωBτe = 0.

A different result is obtained with a magnetization of ωBτe = 0.5. In this case,
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(a) Cut along the x-direction.
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Figure 8.14: Cuts along the x and y-directions of the temperature profiles shown in
Fig. 8.13, with ωBτe = 0.

the magnetization is enough strong to affect both local and nonlocal models. In the
local simulations the thermalization time is strongly increased because the heat flux is
reduced. The SNB model gives a local heat flux. On the contrary, the M1 model predicts
a thermalization time longer than the local model. This result is surprising, since it is
opposite to usual expectations from the nonlocal effects. Its explication is related to the



8.3. THERMAL WAVE PROPAGATION IN MAGNETIZED PLASMAS 137

−20 −15 −10 −5 0 5 10 15 20
x/λ0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e
/T

0

(a) Cut along the x-direction.
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Figure 8.15: Cuts along the x and y-directions of the temperature profiles shown in
Fig. 8.13, with ωBτe = 0.1.

heat flux rotation, shown in Fig. 8.11d. This rotation is weaker in the M1 simulation
because of nonlocal effects, leading to a configuration in which the horizontal component
of the flux in x ≈ 0 (main flux) is the same for the M1 model and for the Braginskii’s
theory. Nevertheless, in the nonlocal case, another flux is present: the preheating at
x ≈ 3λ0, which is absent in the local case. The preheating flux is what increases the
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(a) Cut along the x-direction.

−20 −15 −10 −5 0 5 10 15 20
y/λ0

0.4

0.5

0.6

0.7

0.8

0.9

T
e
/T

0

(b) Cut along the y-direction.

Figure 8.16: Cuts along the x and y-directions of the temperature profiles shown in
Fig. 8.13, with ωBτe = 0.5.

heating efficiency, in the horizontal direction.

Compared to the M1 model, the SNB model seems to overestimate the effects of
magnetization. This difference is due to the different treating of magnetic fields, which,
for the SNB model is phenomenological, while for the M1 model is more correct. For this
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reason we suggest that the M1 prediction is more realistic, being based on more physical
approximations. Nevertheless, a comparison with a Vlasov-FP simulation is required in
order to validate this supposition.

8.4 On the magnetized transport

In this chapter we have applied the M1 model to study the magnetized plasmas.
We have demonstrated that the model is able to reproduce the Braginskii’s theory, in

the local regime. We have also studied the nonlocal limit. The magnetic field reduces
nonlocal effects but also nonlocal transport reduces magnetic field effects.

We have also performed a temporal analysis of a thermal wave propagation through
a magnetized plasma. The study has revealed that, for weakly magnetized plasmas, the
thermalization takes more time with the nonlocal model than with the local one because
of the flux-limitation. On the contrary, in strongly magnetized plasmas, nonlocal effects
are reduced.

Magnetic fields can induce the heat flux rotation in the plane perpendicular to the
direction of the magnetic field and the suppression of the nonlocal transport: the under-
standing of the magnetized nonlocal transport is important for the control of the ablation
in the laser target interactions.

The temporal analysis has also revealed a weak disagreement between the M1 and the
SNB model, since the latter seems to overestimate the effects of magnetization, compared
to M1, which is based on more solid physical assumptions. Such a simulation, performed
with the M1 model, has been run in the two-dimensional geometry for 50 ps, with 100×100
cells, a temporal step ∆t = 0.2 ps and an energy step 0.05 times the CFL condition (6.12).
The M1 model, in order to compute the nonlocal electric field, has been forced to iterate
5 times. In such a condition, the code takes 10 hours to compute 3 ps, indicating that
the numerical scheme has to be improved to reach a reasonable computational time.

In conclusion the M1 model is able to deal with magnetized plasmas. Compared to the
SNB model, due to its structure, it is based on more physical hypothesis, which increases
the domain of validity of this description to more anisotropic regimes and to the kinetic
scale.
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(a) ωBτe = 0.
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(b) ωBτe = 0.1.
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(c) ωBτe = 0.5.

Figure 8.17: Temporal evolution of the temperature profiles along the x-direction. The
black curve represents the initial condition, the subsequent curves represent, by steps of
10 ps, the temperature predicted by the local (dashed celestial lines), the SNB (dashed-
dotted green lines) and the M1 (continuous blue lines) models, for different degrees of
magnetization.



Chapter 9

Conclusions

This work is dedicated to the studies of the plasma electron transport, in the nonlocal
regime. In this regime, kinetic effects become important and affect macroscopic quantities,
such as heat fluxes and plasma waves.

Starting from first principles, we have developed a new approach to the description of
the nonlocal electron transport, with the purpose of being simple and accounting for strong
deviations from equilibrium, in angles and energies, considering the effect of electron
transport on microscopic plasma stability and dealing with magnetized regimes. This
model has to be fast enough to be implemented into a multidimensional hydrodynamic
code.

9.1 Simplification of the kinetic equation

The model M1 is derived from the Landau-FP equation, which describes the time evolution
of electrons in a plasma. However, this equation is too time consuming and, for our
purpose, requires some simplifications.

Since the heat is transported by suprathermal electrons, the Landau collision operator
has been reduced through the assumption of fast electrons colliding with a background of
thermal electrons and inertial ions. This reduced collision operator conserves the number
of particles, momentum and energy and respects the second law of thermodynamics. It
has been simplified again, making explicit the thermalization and neglecting the energy
diffusion term, compared to the friction term. This has led to the AWBS collision operator.

The AWBS collision operator conserves the number of particles but nor energy nor
momentum, neither entropy. Nevertheless, it has shown good properties in the description
of the energy losses of suprathermal electrons which thermalize. Moreover, it is also able
to account for the different velocity-contributions. It has been compared with the simpler
collision operator used in the nonlocal SNB model: the BGK operator. The latter does
not conserve the number of particles. Comparisons between both models have shown a
better treatment of heat-carrying electrons by the AWBS operator.

For both its simplicity and its precision, the AWBS collision operator has been chosen
for the construction of our model. So the Landau-FP equation has been reduced to the
AWBS-FP equation

∂

∂t
fe + ~v · ~∇fe + ~a · ~∇vfe = νeeve

∂

∂v
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe.

Continuing the simplification of the kinetic equation, we have analyzed the charac-
teristic times. We have seen that the characteristic time evolution of kinetic systems,
described by FP equations, is given by the effective collision time ∼ √τeeτei. Since this
time is very short compared to the characteristic hydrodynamic time ∼ L∇/cs (with cs

141
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as the sound speed and L∇ as the gradient length), electrons have the time to adjust
themselves to the hydrodynamic conditions. It is reasonable to assume that the time
derivative can be neglected, and to deal with a stationary equation.

Despite previous simplifications, the equation remains dependent from too many di-
mensions to be solved at any time step of a hydrodynamic code. To reduce once again
the system, a moment integration of the AWBS-FP equation, over the velocity directions
~Ω = ~v/v has been performed.

The moment integration has led to the transformation of the AWBS-FP equation to a
hierarchy of moment equations, each one dependent from the higher moment. The choice
of the closure relation plays a key role in the physics we want to describe. The well-known
classical P1 approach assumes linear anisotropies. This model has been developed and
improved in this manuscript, for comparison with the M1 model.

The M1 model is based on an entropic argument: the underlying EDF maximizes the
angular entropy

Hv[fe] = −
∫

S2

d2Ω (fe log fe − fe) .

This entropic closure leads to a positively defined EDF and to a natural limitation of the
flux. Moreover, we have seen that the M1 closure tends toward the P1 closure, in the
limit of small anisotropies.

9.2 Calculation of electric and magnetic fields

In order to be closed, the M1 model requires a definition for electric and magnetic fields.
In the unmagnetized regime, the charge conservation implies a zero current condition.

Associated with a simplified FP equation, this condition leads to an analytic form for
the nonlocal electric field, which is function of the EDF moments. Numerically, it can be
computed by iterating the M1 model, starting from a zero or a local electric field, till its
convergence.

An analytic form for the electric field cannot be found in a magnetized plasma. We
suggest to use the local equation as a starting iteration guess. This equation depends on
the hydrodynamic quantities. In order to account for nonlocal effects, these quantities
have been replaced by the moments of the EDF, calculated with the M1 model. The
resulting electric field is obtained by iterations.

Magnetic field is assumed not to be modified by the kinetic effects and calculated with
the magnetohydrodynamic code.

9.3 Numerical resolution

The AWBS collision operator, the quasi-stationary assumption, the assumptions on the
electromagnetic fields and the moment hierarchy stopped at the first moment with an
entropic closure constitute our M1 model. The kinetic equation is numerically solved in
energy, proceeding from the highest to the lowest energy group. This preferred direction
can be interpreted as an analogous of the causality principle: an electron can lose energy
but not gain it. This algorithm works well for energy losses, which are accounted for with
the AWBS collisional operator, but it is limited by the condition of a collisional stopping
power higher than the electric field one.

Moreover, the algorithm is characterized by the appearance of a numerical diffusion, by
solving an advective system in the diffusive limit. This can be overcame by increasing the
spatial resolution but this procedure affects the computational time and the performance
of the code.
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For the reasons above, the algorithm presented is useful to validate the model but
should be improved in order to become more practical in all regimes.

9.4 Validation of the model

The M1 model has been tested for unmagnetized plasmas [63], revealing agreement with
Landau-FP code, and with the previous nonlocal models. The two main nonlocal effects
(flux limitation and the preheating) are correctly computed.

It has been shown that EDF moments, computed with a P1 and a M1 closure, weakly
disagree and that differences become negligible if integrated over velocities. The moments
have been used in order to reconstruct the total EDFs, which has highlighted the main
properties of the M1 model: the EDF is always well defined, unlike in the P1 model.

We have also tested the M1 model in a multidimensional configuration, reproducing
the monodimensional nonlocal effects, plus the flux rotation, induced by the contribution
of different gradients. We stress that before our model, only one model has shown to be
able to work in two-dimensions: the SNB model.

The M1 model has also been tested for magnetized plasmas.
The first test of the M1 model in magnetized plasmas has been performed in the local

regime, that is described with the Braginskii’s theory. For all degrees of magnetization,
the M1 model is able to reproduce the heat flux limitation and rotation, induced by
magnetic fields.

We have studied the competition between nonlocal and magnetic effects and shown
the predominance of each of them, in function of plasma conditions.

9.5 Application to the plasma wave stability

A kinetic analysis of the unmagnetized heat transport has been performed [63]: the study
of the stream stability in a nonlocal plasma, induced by the transport along a temperature
gradient.

An example is given by the Langmuir waves: high-frequency electron oscillations corre-
sponding to the electric field perturbations on a microscopic scale. The nonlocal transport
can perturb these waves, inducing the wave instability in the cold region of a plasma. Such
a phenomenon has been studied with our M1 and P1 models. The M1 model has shown
to be able to predict instabilities where expected. On the contrary, the P1 model has
shown to predict also nonphysical instabilities where its total EDF becomes negative.

Also ion-acoustic waves can become unstable in the regimes of interest for the nonlocal
transport. Their instability can be induced by an electron drift created by electric fields.
In this case the M1 model has shown to work as well as the P1 model, since electrons
involved are weakly anisotropic and in these conditions the M1 model tends to the P1
model.

9.6 Application to the thermal wave propagation

A propagation of a thermal wave through a magnetized plasma has been studied, in order
to shed light on non-stationary effects of the magnetized nonlocal transport. This process
has been analyzed considering different degrees of magnetization.

The stationary analysis has revealed that nonlocal fluxes require a higher degrees of
magnetization, compared to their local counterpart, in order to be affected by magnetic
fields.
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The temporal analysis has also revealed a weak disagreement between the M1 and the
SNB model, since the latter seems to overestimate the effects of magnetization, compared
to the M1 model, which is based on better justified physical approximations.

The study has shown that in both nonlocal and magnetized regimes more time is
required in order to smooth temperature gradients.

9.7 Perspectives

In summary, we have developed and successfully tested a new model for nonlocal transport
[63]. This model, based on first principles, is able to

• account for strong deviations from equilibrium, in angles and energies;

• consider the effect of electron transport on microscopic plasma stability;

• account for external and self-generated magnetic fields.

Moreover, it works in multidimensional configurations.
Some issues are still open. Improvement on the numerical scheme should be considered,

in order to account for the energy gain processes, which play a role in the heating of laser-
cold matter interactions. A direct comparison with a Landau-FP simulation should be
performed in order to definitively validate the M1 model at the kinetic scale and in the
nonlocal magnetized regime. However, the already obtained results are promising.

The M1 model is based on the assumption of the angular entropy maximization princi-
ple, which assures the entropy maximization. This assumption has been already tested in
highly anisotropic regimes, leading to correct results. This work constitutes a first test of
the validity of the angular entropy maximization principle, in weakly anisotropic regimes,
which adds reliability to this assumption.

The ability to account for strong deviations from equilibrium motivates the use of
the M1 model for the description of the nonlocal transport. The modern theory of HED
physics, especially the ICF, has shown the need of accounting for strongly anisotropic
kinetic phenomena, such as relativistic electron beams or beams induced by parametric
instabilities, in order to predict and control the energy transport. The M1 model, as it
has been developed in this manuscript, can describe weakly as well as strongly anisotropic
kinetic phenomena. Thus, the work provides a way to describe all kinetic phenomena in
HED physics, with a single model.

Considering the effect of electron transport on the microscopic plasma stability, at
hydrodynamic times, opens to future studies in order to account for them in transport
predictions.

We have seen that magnetic fields can induce the flux rotation in a preferred direction
and the suppression of the nonlocal transport. The comprehension of the magnetized
nonlocal transport is related to the control of the ablation, which defines the compression
performances of laser irradiated plasmas, with applications to astrophysical experiments
and ICF.
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Phénomènes Cinétiques dans les
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Chapter 10

Résumé court

Les simulations hydrodynamiques pour la physique de haute densité d’énergie ainsi que
pour la fusion par confinement inertiel exigent une description détaillée de flux d’énergie.
Le mécanisme principal est le transport électronique, qui peut être un phénomène non
local qui doit être décrit avec des modèles de Fokker-Planck, stationnaires et simplifiés
dans les codes hydrodynamiques à grande échelle.

Mon travail thèse est consacré au développement d’un nouveau modèle de transport
non local basé sur l’utilisation d’une méthode de fermeture entropique pour la résolution
des premiers moments de l’équation de Fokker-Planck agrémentée d’un opérateur de col-
lision dédié.

Une telle fermeture permet une bonne résolution des fortes anisotropies de la fonc-
tion de distribution électronique dans les régimes où le développement d’instabilités
électrostatiques à petite échelle le requiert. Ce modèle aux moments (M1) est comparé
avec succès au modèle de Schurtz, Nicoläı et Busquet (SNB), référent dans le domaine du
transport électronique non local. Ce modèle, basé sur l’hypothèse d’une faible anisotropie
de la fonction de distribution sous-jascente induisant une relation de fermeture poly-
nomiale (P1), utilise un opérateur de collision simplifié dont nous avons proposé une
amélioration.

Après avoir considéré plusieurs configurations typiques de transport de chaleur, nous
avons montré que le modèle M1 multidimensionnel peut prendre naturellement en compte
des effets d’un plasmas magnétisés sur le transport électronique. De plus, ce modèle
permet de calculer des fonctions de distribution utiles aux études cinétiques comme la
stabilité du plasma dans la zone de transport.

Nous confirmons avec notre modèle que le transport d’énergie électronique peut forte-
ment modifier l’amortissement des ondes de Langmuir et des ondes acoustiques ; con-
trairement aux modèles non locaux simplifiés, M1 décrit les modifications de la fonction
de distribution et l’amortissement des ondes du plasma. La structure du modèle permet
également de prendre en compte naturellement des champs magnétiques autogénérés, qui
jouent un rôle crucial dans des simulations multidimensionnelles. Ces champs magnétiques
pourraient également être étudiés pour concentrer l’énergie dans les schémas d’ignition.
Enfin, nous montrons que le modèle M1 reproduit les résultats de la théorie locale élaborée
par Braginskii pour tous les niveau de magnétisation et propose de nouveaux résultats
pour le régime non local. Ce travail constitue une première validation de l’utilisation des
fermetures entropiques, dans les régimes de faibles anisotropies, qui va s’ajouter aux tests
dans les régimes fortement anisotropes.

MOTS-CLEFS: Fusion par confinement inertiel, Physique de haute densité d’énergie,
Plasmas produits par lasers, Simulations hydrodynamiques, Transport de la chaleur non
local, Stabilité microscopique du plasma.
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Chapter 11

Introduction

La matière à l’équilibre thermodynamique peut être classée selon sa densité et sa tempé-
rature. La figure 11.1 montre, en fonction de ces paramètres, la plupart des états connus
de la matière. Les axes suivent une échelle logarithmique, ce qui permet de représenter
les différents régimes qui peuvent être trouvés dans l’univers.

En bas à gauche de la figure 11.1, on trouve la matière neutre. En augmentant
la température (en ce déplaçant du bas vers le haut), la matière devient partiellement
ionisée. En augmentant encore la température, on obtient un état où la pression totale
(interne et de radiation) atteint la valeur de 1 Mbar, la matière devient entièrement ionisée
et se trouve dominée par les effets radiatifs.

En partant du bas à gauche vers la droite (densité croissante), on rencontre deux

Figure 11.1: Les régimes de la physique à hautes densités d’énergie, classifiés par leur
densité de masse (axe x) et leur température (axe y). La figure est issue du livre de
R. P. Drake [1].
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courbes : les frontières des plasmas fortement corrélés et dégénérés. Sous la courbe
fortement couplée, les interactions multiples des particules définissent la structure de la
matière. La courbe de dégénérescence sépare la matière classique (en haut) de la matière
dans laquelle les effets quantiques électroniques sont dominants (en bas). On voit que
les états fortement couplés et dégénerés s’étendent des états ionisés (plasma) aux états
solides et liquides. Dans cette région de frontière on trouve la matière tiède et dense, un
état particulier mélangeant les effets d’interactions multiples, quantiques et des plasmas.
En augmentant la densité, on rencontre la courbe 1 Mbar, qui représente la région où
la pression interne est comparable avec la densité d’énergie d’un atome d’hydrogène. La
matière sous une telle pression se compose d’électrons et d’ions et non plus de particules
neutres. Cette matière ionisée est considérée comme plasma, mais les théories des plasmas
classiques ne peuvent être appliquées qu’aux gaz ionisés raréfiés. Les propriétés de la
matière dense à une telle pression ne sont pas encore bien connues. Les systèmes soumis à
une pression supérieure à 1 Mbar sont définis comme plasmas à hautes densités d’énergie
[1] et sont représentés en gris, dans la figure 11.1.

De nombreux phénomènes astrophysiques appartiennent au domaine de la haute den-
sité d’énergie.

Les étoiles et les planètes sont également représentées dans la figure, de leur cœur (au
sommet de la courbe) à leur surface externe. Les naines brunes, autant que les planètes
géantes, sont composées par différents états de la matière, s’étendant des hautes densités
d’énergie aux états fortement corrélés et dégénérés. Notre Soleil, aussi bien que des étoiles
plus massives, s’étend entre la haute densité d’énergie et la matière classique, ionisée et
neutre.

Les explosions de rayons gamma sont les processus les plus énergetiques observés dans
l’univers. Ils sont dans le régime dominé par les radiations, de la physique des hautes
densités d’énergie (en haut à droite de la figure 11.1). Les dernières étapes de l’évolution
du big bang font également partie de ce régime.

Dans cette figure on rencontre beaucoup de phénomènes naturels, situés dans le
domaine des hautes densités d’énergie. Tous sont liés à l’astrophysique. Cependant,
sur Terre, dans nos laboratoires, nous pouvons nous approcher de telles conditions,
grâce, par exemple, au Z-pinch et aux lasers. Des lasers de générations futures pourront
créer, pour des temps très courts, des plasmas correspondant aux conditions présentes
dans les premiers stades du big bang. Au sein de la nouvelle génération de lasers très
énergétiques, nous pouvons trouver le laser Omega, situé au Laboratory for Laser Energet-
ics de l’Université de Rochester et le laser le plus puissant construit à ce jour : le National
Ignition Facility (NIF), situé au Laurence Livermore National Laboratory. Les régimes
de matière induits par ces lasers sont dans le domaine de la haute densité d’energie.

La recherche dans le régimes de la haute densité d’energie intéresse aussi bien l’astro-
physique de laboratoire que la production contrôlée d’énergie nucléaire par confinement
inertiel. On décrira plus en détail ces 2 points dans les sections 11.1 et 11.2. Dans la
section 11.3 on présente la manière d’obtenir en laboratoire une matière à haute densité
d’énergie, au moyen de lasers de puissance. Dans la section 11.4, on étudie un processus
clé des interactions laser-matière, dans les régimes d’intérêt : le transport électronique.
Finalement dans la section 11.5, nous présentons l’objectif de cette thèse et comment nous
l’aborderons dans ce manuscrit.

11.1 Astrophysique de laboratoire

La physique des hautes densités d’énergie concerne les objets astrophysiques aussi bien que
les plasmas créés par laser. Les lasers de haute énergie ouvrent de nouvelles perspectives
pour étudier de nombreux phénomènes astrophysiques. Nous considérons deux exemples.
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11.1.1 Dynamo dans les planètes géantes

En portant la matière à haute densité d’énergie en laboratoire on peut réaliser des études
expérimentales sur les équations d’état dans des régimes extrêmes, qui ont un intérêt
astrophysique. On peux aussi aborder l’étude des processus à l’œuvre à l’intérieur du cœur
des planètes géantes, responsables de la génération de champs magnétiques planétaires
[2, 3].

Particulièrement dans le cœur de Jupiter, la nature de la transition à l’état métallique
contraint la manière dont les champs magnétiques peuvent être produits. Depuis long-
temps la connexion entre les équations d’état et les champs magnétiques est connue, mais
son étude expérimentale n’est devenue réalisable qu’à partir des années 1980, en raison de
l’apparition de dispositifs d’énergie pulsée. Ils ont ouvert une possibilité d’accélérer des
échantillons de matériaux à haute vitesse et de créer la matière à haute densité d’énergie
par la collision de deux d’entre eux [1, 2].

11.1.2 Instabilités d’interface dans les supernovas avec un cœur
collapsé

De nombreux processus astrophysiques sont regis par l’hydrodynamique. Les équations
hydrodynamiques sont invariantes d’échelle : ce qui se passe dans un laboratoire, dans
des petits intervalles de temps (∼ ns), peut être généralisé à l’espace interstellaire et aux
longues périodes de temps associées. De fait, les expériences de physique des hautes den-
sités d’énergie peuvent reproduire des phénomènes astrophysiques, tels qu’ils se passent.
Un exemple d’expérience bien rééchelonné est l’étude d’instabilités d’interface dans les
supernovas avec un cœur collapsé [1, 4].

Les étoiles assez grandes, sont composées par des couches de matériaux différents. Les
plus légers sont situés sur la surface tandis que le cœur est composé par le fer. La pres-
sion de gravitation comprime la matière et allume les réactions de fusion dans chaques
couches de l’étoile, jusqu’au fer, qui est le noyau le plus stable. Une fois que l’étoile
accumule une masse de Chandrasekhar (1.4 masse solaire) de fer, le cœur collapse, pro-
duisant une étoile à neutrons. En même temps, une onde d’explosion apparâıt, provoquant
une énorme augmentation de la luminosité observée. Cependant, seul un percentage de
l’énergie hydrodynamique est émis comme lumière visible. Ceci est dû à un mouvement
non symétrique, lié aux instabilités hydrodynamiques [5], montré dans la figure 11.2.

Les expériences, pour étudier le développement des instabilités hydrodynamiques dans
une configuration convenablement adimensionnée ont été exécutées au début du vingt-
et-unième siècle, dans le but de valider les codes par l’observation directe, grâce à une
analyse tridimensionnelle [4]. En utilisant le laser de Nova, les auteurs de [4] ont examiné
la perturbation initiale d’un unique mode sur une cible plate, reproduisant et validant la
théorie.

On a vu deux exemples dans lesquels les prédictions de l’astrophysique de laboratoire
peuvent être utiles à la physique des hautes densités d’énergie. Dans la section suivante
on présente le second domaine principal de recherche dans la physique des hautes densités
d’énergie : la fusion par confinement inertiel.

11.2 Fusion par confinement inertiel

Dans la section précédente nous avons dit que des expériences de physique des hautes
densités d’énergie peuvent être réalisées pour reproduire des phénomènes astrophysiques.
Cependant, certains processus comme le confinement gravitationel ne peuvent être repro-
duits en labo. Le but principal de la fusion par confinement inertiel est d’imploser la
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Figure 11.2: Instabilités hydrodyamiques dans une supernova avec un cœur collapsé.

matière en remplaçant la pression de gravitation avec une pression inertielle induite par
les lasers très puissants. Les schémas de fusion par confinement inertiel essayent de com-
primer une cible de deutérium-tritium, jusqu’à l’état permettant l’allumage des réactions
de fusion nucléaires et de le confiner grâce à l’inertie de la cible. Ce comportement est
décrit en détail dans ce qui suit.

11.2.1 Réactions nucléaires

Figure 11.3: Énergie de liaison nucléaire par nucleon en fonction du nombre de nucleon.

La figure 11.3 montre l’énergie de liaison par nucleon en fonction du nombre de nu-
cleons. On peut faire une distinction entre les noyaux plus légers et ceux plus lourds que
le fer. Pour des noyaux plus lourds que le fer, l’énergie peut être gagnée en les divisant.
Ce processus est appelé la fission et il est utilisé depuis les années 1940, pour créer de
grandes quantités d’énergie.

Pour des noyaux plus légers que le fer, l’énergie peut être créée par la fusion de deux
noyaux. Particulièrement, une des réactions les plus faibles à obtenir d’un point de vue
énergique, est la fusion des isotopes d’hydrogène :

D + T → 4He(3.5 MeV) + n(14.1 MeV), (11.1)
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où D et T sont les noyaux de deutérium et tritium, 4He est le noyau d’hélium et n signifie
neutron. La figure 11.4 récapitule la réaction schématiquement.

Figure 11.4: Schéma de la réaction D-T.

La figure 11.5 montre les conditions de témperatures nécessaires pour fusionner deux
noyeaux. On voit qu’en dessous de quelques keV, la section efficace devient négligeable.
De plus, les noyeaux doivent être en nombre suffisant et confinés suffisamment longetemps
pour atteindre le critère d’allumage. Ce dernier est de la forme :

τfus =
1

〈σv〉ni
,

Où ni est la densité d’ions, σ est la section efficace de collision pour des interactions
nucléaires et v la vitesse des ions. La condition d’allumage peut être exprimée comme

τfus 〈σv〉ni > 1

et on la connâıt comme le critère Lawson [6].

Figure 11.5: Réactivité, en fonction de la température, pour des noyeaux legers.

Dans des étoiles, les atomes sont confinés ensemble grâce à la gravitation.
Dans la fusion par confinement magnétique, le but est de réaliser le confinement du

plasma en exploitant des champs magnétiques forts. En effet aucun materieaux ne peux
supporter de telles températures. Ces champs confinent le plasma en forçant les particules
à suivre des trajectoires hélicöıdales fermées. Le confinement le plus efficace est réalisé
dans une machine appelée Tokamak, dont on peut voir la coupe dans la figure 11.6. Dans
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Figure 11.6: Interieur d’un réacteur Tokamak pour la fusion par confinement magnétique.

un Tokamak les densités de particules sont typiquement de l’ordre de 1014 cm−3, pour une
température de quelques keV [7]. Le temps nécessaire pour satisfaire le critère Lawson
est ∼ 1 s. Les Tokamak ont pour but d’opérer en régime stationnaire.

Il est également possible de confiner les noyeaux fusibles en exploitant l’inertie d’une
cible induite par la compression des lasers. Cette approche est appelée fusion par confine-
ment inertiel. Dans ce type de confinement la densité doit être augmentée à ∼ 1025 cm−3

et la température à ∼ 10 keV [7]. En effet, dans ce régime, le temps de confinement,
n’excede pas ∼ 100 ps, du fait de la dislocation de la cible.

Dans la prochaine section on présente les différents schémas de fusion par confinement
inertiel.

11.2.2 Schéma direct

Figure 11.7: Schéma direct.

Historiquement, le premier schéma proposé pour obtenir la fusion par confinement
inertiel, était un schéma direct [8]. Il est résumé sur la figure 11.7 : une cible sphérique,
composée par un mélange équimolaire de deutérium et tritium est sphériquement illuminée
par des lasers à très puissants (1). On utilise le dêpot de l’énergie du laser pour imploser la
cible et transformer l’énergie cinétique en energie interne (2), jusqu’à atteindre une ignition
centrale (3). Les conditions de densité et de température ne peuvent être maintenues que
grâce à l’inertie de la masse (4) [7]. Cependant, jusqu’à présent, ceci n’est jamais arrivé,
mettant en evidence un mauvaise compréhension des processus mis en jeu.

Ces processus sont liées à trois facteurs principaux [7]. Tout d’abord, l’uniformité de
la compression semble insuffisante, en raison du développement d’instabilités hydrody-
namiques, dûes aux imperfections de fabrication de la cible ou aux défauts d’éclairement
laser. Deuxièmement, les prévisions théoriques négligent, ou approximent fortement, les
effets cinétiques, qui peuvent jouer un rôle non négligeables dans les régimes d’intérêt.
Ceux-ci sont liés, par exemple, au transport non local d’énergie par des électrons très
énergiques. Enfin, les interactions laser-plasma non-linéaires et les instabilités paramé-
triques, comme la décomposition deux plasmons, ainsi que la retrodiffusion Brillouin et
Raman, semblent mal décrites.
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Bien que le premier point soit en dehors du champ d’investigation de cette thèse, nous
presentons dans la section suivante differents schémas améliorant la stabilité de compres-
sion. Dans les parties I, II et III, nous présentons la partie principale de ce manuscrit,
c’est à dire la modélisation du second point. En effet, un rôle dominant est joué par les
effets cinétiques dans le transport d’énergie. On développe un modèle pour leur descrip-
tion, de telle façon qu’il puisse être généralisé à la description hydrodynamique d’autres
effets cinétiques. L’analyse est réalisée en une et deux dimensions et une généralisation à
trois dimensions peut être facilement effectuée.

11.2.3 Schémas stabilisants

Dans la section précédente nous avons vu qu’un des points importants pour le succès de
l’ignition est le contrôle de la stabilité d’implosion. Dans la littérature, d’autres schémas
ont été proposés, pour stabiliser la compression[9, 10, 11, 12].

Dans le schéma indirect [9] le but est de comprimer la cible, en utilisant un rayon-
nement de type corps noir, obtenue par l’éclairement de l’intereur d’une cavité d’or [13],
comme montré dans la figure 11.8. De cette façon, la cible est soumise à un bain de ray-

Figure 11.8: Deux schémas d’allumage : le direct (a) et l’indirect (b).

onnement bien plus homogène qu’en attaque directe. Ce schéma a été considéré comme
l’approche la plus prometteuse pour réaliser la fusion nucléaire. Cependant, l’échec récent
de la campagne d’ignition sur le NIF a mis en évidence un écart entre les prévisions
théoriques, numériques et les résultats expérimentaux. Même une fois que l’ignition
sera réalisée, ce schéma possède un rendement en énergie plus faible, comparé à celui
de l’approche directe.

Ces dernières années, les développements des lasers d’impulsions pétawatt ont ou-
vert de nouvelles possibilités. L’idée principale du schéma d’allumage rapide [10, 7] est
d’allumer le combustible précomprimé par un vecteur externe, séparé. Ce vecteur con-
siste en un faisceaux d’électrons relativistes, accélérés par une impulsion laser ultra-intense
(∼ 1019 W/cm2). Ces électrons doivent se propager sur une grande distance entre la zone
du dépôt laser et la partie compressée de la cible. Cette distance peut être réduite à une
centaine de microns grâce à l’introduction d’un cône dans la cible, comme le montre la
figure 11.9. La séparation de la phase de compression de la cible, de la phase de formation
du point chaud simplifie le design des cibles. Il exige toujours une forte compression du
combustible, pour garder l’énergie d’allumage, mais il permet de relâcher significative-
ment les exigences de symétrie. Cependant, dans [14], il a été montré que la collimation
du faisceau électronique ne peut pas être facilement réalisée. Des améliorations récentes
proposent une utilisation de champs magnétiques externes pour augmenter le guidage et
la collimation du faisceau [15].

Le schéma d’allumage par choc [11, 12] consiste en l’envoi d’un choc fort, à la fin de la
phase de compression, montrée sur le panneau (3), de la figure 11.7. Ce choc est induit par
une impulsion laser de forte puissance, environ 200− 300 TW. Une implosion typique est
présentée sur la figure 11.10 [16]. S’il est synchronisé, le choc convergent rencontre le choc
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Figure 11.9: Schéma d’allumage rapide.

Figure 11.10: Impulsion lasers dans le schéma d’allumage par choc : (1) l’impulse de
compression et (2) l’impulsion de choc.

principal au moment de sa divergence. Le choc transmis au centre, après la collision, sur-
chauffe le cœur de la cible, induisant l’allumage. Cette approche réduit significativement
l’énergie exigée, qui pourrait être obtenue avec les lasers existants. Cependant, à ces
régimes, les interactions laser-plasma sont fortement non-linéaires et les effets de transport
d’énergie non local deviennent importants. Cette méthode fait actuellement l’object de
recherches actives et les premiers résultats sont encourageant [16].

11.3 Interactions laser-matière aux régimes de la phy-

sique des hautes densités d’énergie

Dans les sections précédentes nous avons vu que la physique expérimentale des hautes
densités d’énergie ouvre un large domaine d’application. Le but de cette section est de
montrer comment porter la matière à des hautes densités d’énergie en laboratoire.

Il y a deux façons principales de produire les conditions d’hautes densités d’énergie
pour nos régimes d’intérêt : les Z-pinch et les lasers.

La compression dans un Z-pinch consiste dans l’exploitation d’un courant électrique
axial, qui produit un champ magnétique azimutal compressant cylindriquement le plasma
[17]. Dans ce manuscrit on s’intéresse principalement à la matière des hautes densités
d’énergie, produite par laser. On ne détaillera donc pas ce processus et on se concentrera
sur l’utilisation des lasers.

La compression laser directe est conduite par des lasers intenses, ayant des inten-
sités s’étendant entre 1014 et 1015 W/cm2. Une description détaillée de l’interaction
laser-matière à ces régimes peut être trouvée dans [7]. Nous récapitulons les processus
principaux dans ce qui suit.

Les faisceaux lasers ne peuvent se propager au sein du plasma, au delà d’une certaine
densité, appelée densité critique, qui dépend seulement de la longueur d’onde laser. Dans
les unités cgs, elle est

nc = 1.1× 1021λ−2
L cm−3, (11.2)
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Figure 11.11: Les types de chauffage induits par interaction laser-matière : (a) le chauffage
supersonique, (b) le chauffage ablatif et (c) le chauffage ablatif optiquement épais. La
figure est prise de [7].

où λL doit être exprimé en µm. Cette densité est typiquement 1-2 ordres de grandeur plus
petite que la densité du solide, cependant, une partie de l’énergie déposée pénètre plus
profondément dans le plasma. L’absorption d’énergie laser diminue quand la température
augmente.

On considére une cible solide illuminée par une source laser externe, de flux d’énergie
qex. Aux premiers instants d’interaction, le laser chauffe directement la cible solide, comme
indiqué dans le panneau (a) dans la figure 11.11. Puisque l’absorbtion diminue avec la
température, comme le solide est chauffé, la radiation peut pénétrer plus en profondeur.

Après quelques dizaines de picosecondes, l’augmentation de température induit une
augmentation de pression et un mouvement hydrodynamique, appelé flux d’ablation, qui
peut produire une onde de choc dûe à la conservation du moment. Une onde de choc
est une discontinuité dans le profil de densité, comme indiquée dans la figure 11.12. Les
équations Rankine-Hugoniot réagissent à sa dynamique. Pour les gaz parfaits, la densité
originale, derrière le choc, peut être augmentée de quatre fois.

Pendant que l’onde de choc se propage à l’intérieur de la cible, une onde de raréfaction
se propage dans la direction opposée, incitant l’ablation. Le recul du moment comprime
la matière encore plus. Si la cible est optiquement mince, comme dans le panneau (b) de
la figure 11.11, l’ablation est directement induite par la source laser externe. Au contraire,
si elle est optiquement épaisse, l’énergie laser est déposée à la densité critique. De là, elle
est transportée au front d’ablation avec le flux de chaleur qdif , voir le panneau (c) dans
l’image 11.11. Pour des matériaux avec une numéro atomique petit ou intermédiaire, ce
flux de chaleur est dû au transport électronique. Pour des matériaux avec une haute
charge ionique, le transport radiatif est également important. Les panneaux (b) et (c)
dans l’image 11.11 correspondent au régime quasi-stationnaire. Le cas (c) est partic-
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Figure 11.12: Schéma d’ondes de choc.

ulièrement intéressant pour la physique des hautes densités d’énergie. Dans ce manuscrit,
on considére des matériaux numéro atomique faible et intermédiaire et on se concentre
sur le transport électronique.

En résumé, dans le régime quasi-stationnaire des plasmas faits de matériaux avec un
numéro atomique faible et intermédiaire, le laser pénètre dans la couronne (zone sous
dense) de la cible et dépose son énergie jusqu’à la densité critique. De la zone cri-
tique, l’énergie est transportée par la conduction de chaleur électronique, jusqu’au front
d’ablation. Cette région est appelée la zone de conduction et apparait en gris dans la
figure 11.11 (c). L’énergie déposée dans la partie dense de la cible induit le processus
d’ablation. Au dela, par réaction apparait la région choquée, qui est dans un état de
matière tiède et dense. Enfin plus en amont, on rencontre le front de choc et, après, le
solide non perturbé.

Le régime stationnaire se termine quand le choc atteint le côté arrière de la cible. Si
le laser continue d’illuminer la cible, une phase d’accélération commence. Si la cible est
sphériquement ou cylindriquement irradiée, comme indiqué sur la figue 11.13, la phase
d’accélération mène à la compression de la cible. Les deux types de compression mènent
aux régimes de hautes densités d’énergie.

Dans cette section, on a vu comment on peut créér la matière de hautes densités
d’énergie. Particulièrement, pour les plasmas auxquels nous nous intéressons dans ce
manuscrit, nous avons vu que le rôle-clé est joué par le transport électronique. Ce pro-
cessus est présenté en détail dans la section suivante.

11.4 Entropie et transport électronique

Les particules dans un plasma (électrons et ions) suivent les lois de la mécanique classique
[18]. Elles entrent en collision et dérivent sous l’action des champs électromagnétiques.
Leurs quantités macroscopiques (moyennées) sont caractérisées par la température, la
densité et la pression.

Une inhomogénéité spatiale de ces paramètres donne naissance au phénomène de trans-
port.

Boltzmann et Maxwell ont développé une approche statistique [19], une théorie cinéti-
que, décrivant les systèmes hors équilibre composés de nombreuses particules. La princi-
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Figure 11.13: Compression sphérique d’une cible.

pale propriété de ce processus cinétique dans un système fermé est la perte d’information
ou, en d’autres mots, l’augmentation du désordre, ce qui macroscopiquement correspond à
une augmentation de l’entropie (H théorème). L’équilibre thermodynamique correspond
à un état ou l’entropie est maximum.

La direction temporelle vers les états plus probables, décrite par le H théorème , brise
la symétrie temporelle, menant au monde macroscopique du transport quantitatif comme
nous le voyons.

Dans ce manuscrit nous étudierons principalement le transport électronique qui est
lié aux mouvements des électrons induits par les inomogénéités spatiales de densité et de
température. Dans la théorie hydrodynamique, dans laquelle l’échelle des inhomogénéités
caractéristiques est bien plus grande que le libre parcours moyen des électrons, elle est
décrit par une équation de diffusion. Cette équation correspond aux régimes proches de
l’équilibre thermodynamique local, ce qui n’est pas toujours le cas dans les conditions
de la physiques des hautes densités d’énergie. Ci dessous nous résumons les cas où cette
hypothèse de diffusion locale n’est pas valable.

Dans le schéma d’allumage rapide l’énergie est transmise au plasma par un faisseau
d’électrons relativistes qui est fortement anisotrope. Ce processus cinétique ne peut être
décrit par les théories hydrodynamiques. Touati et al. [20] ont utilisé un modèle cinétique
basé sur une direction principale du transport et sur une hypothèse de maximisation de
l’antropie angulaire locale pour de tenir compte du fort degré d’anisotropie de la fonction
de distribution électronique (EDF).

Les interactions laser-matière non linéaires deviennent importantes pour des inten-
sités supérieures à ∼ 1015 W/cm2. Elles peuvent générer des faisseaux électroniques très
énergétiques et très anisotropes [7]. Le transport de ces électrons joue un rôle clé dans les
processus d’implosion menée par laser, en particulier dans le schéma d’allumage par choc
[16].

La physique des hautes densités d’énergie s’intéresse à des régimes où l’échelle des
inhomogénéités de température se rapproche du libre parcours moyen des électrons. Ainsi
les électrons chauds peuvent pénétrer et déposer leur énergie profondemment dans les
régions froides, ne laissant pas de temps pour la thermalisation. Ce genre de transport
est apellé non local car les électrons se déplacent à l’échelle hydrodynamique.

L’une des quantité les plus modifiées par les effets non locaux est le flux de chaleur, ce
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dernier est régit par les électrons suprathermiques. Il peut être significativement modifié,
comparé à la limite de diffusion classique, modifiant ainsi les simulations plasma et leur
stabilité à une échelle microscopique.

Les modèles non locaux proposés dans [21, 22, 23] sont basés sur des hypothèses
phénomènologiques et sont limités à la description des flux de chaleur dans des conditions
de faible écart à l’approximation de diffusion. En particulier le modèle monodimen-
sionnel de Liciani Mora et Virmont [21] décrit le flux de chaleur non local comme une
combinaison de flux locaux, avec un coefficient phénomènologique dépendant du libre
parcours moyen. Ce modèle n’a pas été généralisé aux configurations multidimension-
nelles et aux forts gradients de température. Le modèle de Schutz Nicoläı et Busquet
[22] (SNB) généralise l’expression du flux de chaleur à trois dimensions et tient compte
de la dépendance du libre parcours moyen de l’électron avec son énergie. Cela a été
réinterprété comme une approche cinétique pour les électrons suprathermiques avec un
modèle collisionnel phénomènologique fortement simplifié. Le champ électrique est induit
par le courant de retour des électrons froids. Son effet sur les électrons suprathermiques
est considéré comme une réduction empirique du libre parcours moyen. Ce modèle est
limité aux petites anisotropies. Sa généralisation afin de tenir compte des effets du champ
magnétique [24] est mathématiquement compliqué.

Enfin par les modèles utilisé, celui développé par Colombant, Manheimer et Goncharov
[23] la séparation des contributions thermiques et suprathermiques est directement ef-
fectuée par les propagateurs de flux de chaleur, dont les coefficients sont donnés par des
arguments cinétiques phénomènologiques. Ce modèle n’a pas été généralisé ni à trois
dimensions ni aux plasmas magnétisés, et est plus cher en temps de calcul que le modèle
SNB [25].

Notre but est de généraliser l’approche entropique du modèle M1, utilisé pour des fais-
seaux d’électrons relativistes [20, 26], au transport non local d’électrons suprathermiques
afin d’améliorer la description du transport électronique dans les cas de forts gradients de
température et de champs magnétiques externes.

11.5 Objectifs et structure de la thèse

Les objectifs de ce travail de thèse sont les suivants.

• Deriver un modèl du transport électronique, capable de décrire les fortes
déviations à l’équilibre, en angles et en énergies Cette propriété est car-
actéristique de la description cinétique qui est chère en temps de calcul. Notre but
est de réduire cette description à deux étapes. Dans un premier temps nous sim-
plifierons le modèle collisionnel, avec l’hypothèse que le transport électronique est
principalement dû aux électrons suprathermiques qui entrent en collision avec les
électrons thermiques et les ions. Dans un second temps nous diminuerons le nombre
de dimensions au travers des moyennes angulaires de l’équation réduite, fermée grâce
au principe de maximisation de l’entropie angulaire. Cette fermeture définira notre
modèle M1 comme une fonction exponentielle de l’angle qui permettra de préserver
cette description même par des fortes anisotropies angulaires.

• Considérer l’effet du transport électronique sur la stabilité microscopique
des plasmas. La description cinétique effectuée par notre modèle tiendra compte
de toutes les contributions énergétiques et proposera une meilleure description de
la fonction de distribution des électrons comparée aux modèles basés sur une hy-
pothèse d’anisotropie linéaire. Il permettra l’étude des effets cinétiques à petite
échelle, comme le développement d’instabilités microscopiques induites par le trans-
port électronique dans le cadre de la description hydrodynamique. Des exemples
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d’instabilités de plasmas électroniques et d’ondes acoustiques-ioniques, modifiées
par le flux de chaleur, seront présentées et comparées à la description linéaire en
angle.

• Adapter le modèle du transport électronique aux champs magnétiques ex-
ternes et auto-génerés. Les modèles locaux et non locaux qui décrivent le trans-
port d’électrons thermiques magnétisés sont mathématiquement très compliqués car
ils sont fonction de coefficients de transport tensoriels. Notre modèle s’attaquera à
ce problème d’une façon différente. Comme l’équation cinétique réduite tient compte
du champ magnétique, il sera mathématiquement simple et basé sur des hypothèses
plus physiques. Cette adaptation aux régimes magnétisé est obtenue en définissant
le champ électrique non local magnétisé grâce à des hypothèses phénoménologiques.

Le manuscrit est organisé en trois parties. Dans la partie I, l’état de l’art de la
physique des plasmas et des théories non locales du transport sont résumés. La partie II
traite du développement théorique de notre modèle non local, appelé M1. Dans la partie
III, le modèle M1 est appliqué à la description du régime non local des plasmas de hautes
densités d’énergie.

Plus en détail, dans le chapitre 2, les théories principales pour la description de la
physique des plasmas (la théorie cinétique, l’électrodynamique classique et l’hydrody-
namique) sont discutées. Dans le chapitre 3 l’état de l’art des théories non locales du
transport est détaillé, présentant une perspective historique des modèles développés et
mettant en évidence ceux qui jouent un rôle-clé dans le manuscrit. Dans le chapitre 4 une
analyse d’opérateurs de collision réduit est realisée, pour choisir le plus approprié. Dans
le chapitre 5, le modèle M1 est développé, tandis que sa mise en œuvre numérique est
discutée dans le chapitre 6. Les applications stationnaires du modèle M1 aux plasmas non
magnétisés sont étudiées dans le chapitre 7 et aux plasmas magnétisés, dans le chapitre
8. Finalement, les conclusions sont tirées dans le chapitre 12.
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Chapter 12

Résumé long et conclusions

Ce travail est dédié à l’étude du transport électronique au sein du plasma dans le régime
non local. Dans ce régime les effets cinétiques deviennent importants et modifient les
quantités macroscopiques telles les flux de chaleur et les ondes plasma.

Nous avons développé une nouvelle approche pour la description du transport non local
des électrons, basée sur des principes fondamentaux, avec pour objectif d’être simple et de
tenir compte de fortes déviations hors équilibre en angle et en énergie tout en considérant
l’effet du transport électronique sur la stabilité du plasma à l’échelle microscopique ainsi
que par des régimes magnétisés. Le modèle ainsi développé doit être suffisamment rapide
pour être inclu au sein d’un code hydrodynamique multidimensionnel.

12.1 État de l’art

Il existe plusieurs façons de décrire un plasma. La plus détaillée est la description
cinétique. Cette description est basée sur des suppositions probabilistes. Néanmoins
cette théorie est chère en temps et il est pas raisonnable de l’utiliser pour décrire les pro-
cessus qui ont lieu sur plus de quelque temps de collision. Pour décrire ces processus, une
théorie moyennée doit être utilisée. Ainsi, les équations hydrodynamiques sont basées sur
des moyennes sur les moments en vitesse, ce qui réduit le nombre de variables à traiter.
Mais cet ensemble d’équations doit être fermé avec, entre autres choses, une relation pour
le flux de chaleur électronique.

D’autre part, les codes hydrodynamiques assument d’être près de l’équilibre thermody-
namique local. Cette supposition impose des gradients de température suffisamment long,
comparé au libre parcours moyen électronique, de telle façon que la chaleur est déposée
localement. Physiquement, le transfert d’énergie sur de longues distances peut provoquer
un déséquilibre de la fonction de distribution électronique, car la chaleur est transportée
par des électrons suprathermiques (∼ 3.7vth). Quand des gradients de température devi-
ennent raides, c’est-à-dire quand le libre parcours moyen électronique surpasse 2×10−3 la
longueur de gradient de température, la théorie locale n’est plus valables et des modèles
non locales sont nécessaires.

12.2 Simplification de l’équation cinétique

Le modèle non local M1 à été dérivé de l’équation Landau-FP, qui décrit l’évolution
temporelle des électrons dans un plasma. Cependant, cette équation, complexe et chère
en temps de calcul pour notre étude, requière quelques simplifications.

Comme la chaleur est transportée par les électrons suprathermiques, l’opérateur de
collisions Landau a été réduit grâce à l’approximation selon laquelle les électrons rapides
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n’entrent en collision qu’avec les électrons thermiques et les ions inertiels. Cet opérateur
de collision réduit conserve le nombre de particules, le moment et l’énergie du système,
il respecte également la seconde loi de la thermodynamique. Il a été à nouveau simplifié,
pour rendre explicite la thermalisation en négligeant le terme de diffusion énergétique
comparé au terme de frottements. Ceci a mené à l’opérateur de collisions dit AWBS [42].

L’opérateur de collision AWBS ne conserve que le nombre de particules. Néanmoins il a
montré de bonnes propriétés dans la description des pertes d’énergie d’électrons suprather-
miques qui se thermalisant. De plus il est capable de considérer les différentes contribu-
tions en vitesses. Il a été comparé à l’opérateur de collision, plus simple, utilisé dans le
modèle non local SNB : l’opérateur BGK. Ce dernier ne conserve pas le nombre de par-
ticules. La comparaison des deux modèles a montré un meilleur traitement des électrons
porteur de chaleur par l’opérateur AWBS.

À la fois pour sa simplicité et sa précision, l’opérateur de collision AWBS a été choisi
pour la construction de notre modèle. Ainsi l’équation Landau-FP a été réduit à l’équation
AWBS-FP suivante

∂

∂t
fe + ~v · ~∇fe + ~a · ~∇vfe = νeeve

∂

∂v
(fe − fme ) +

νee + νei
2

∂2

∂~Ω2
fe.

En poursuvant la simplification de l’équation cinétique, nous avons analysé les temps
caractéristiques. Nous avons vu que le temps caractéristique d’évolution des systèmes
cinétiques, décrit par les équations FP, est donné par le temps de collision effectif ∼√
τeeτei. Comme ce temps est très court comparé au temps caractéristique hydrody-

namique ∼ L∇/cs (avec cs la vitesse du son et L∇ la longueur du gradient), les électrons
ont le temps de s’ajuster aux conditions hydrodynamiques. Il est raisonnable d’assumer
que le terme de dérivée temporelle peut être négligé, et ainsi d’utiliser une équation sta-
tionnaire.

En dépit des précédentes simplifications l’équation reste dépendante de trop de dimen-
sions pour être résolue à chaque itération temporelle d’un code hydrodynamique. Pour
réduire à nouveau le système nous avons effectué une série intégrations aux moments de
l’équation AWBS-FP selon les directions des vitesses ~Ω = ~v/v .

Cette intégration a mené à la transformation de l’équation AWBS-FP en une hiérarchie
d’équations aux moments, chacune dépendante du moment supérieur. Le choix de la rela-
tion de fermeture joue un rôle clé dans la physique que nous voulons décrire. L’approche
classique, bien connue, basé sur l’utilisation de polynôme de Legendre, le modèle P1, sup-
pose des anisotropies linéaires. Ce modèle a été développé et amélioré dans ce manuscrit
afin de le comparer au modèle M1.

Le modèle M1 est basé sur un argument entropique : la fonction de distribution
électronique maximise l’entropie angulaire

Hv[fe] = −
∫

S2

d2Ω (fe log fe − fe) .

Cette fermeture entropique mène à une fonction de distribution électronique définie pos-
itive ainsi qu’à une limitation naturelle du flux. De plus nous avons vu que la fermeture
du modèle M1 tend vers celle du modèle P1 dans la limite des faibles anisotropies.

12.3 Prise en compte des champs électrique et ma-

gnétique

Afin d’être fermé, le modèle M1 demande une définition pour les champs électriques et
magnétiques.
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Dans le régime non magnétisé, la conservation des charges implique une condition de
courant nul. Associée à une équation FP simplifiée cette condition mène à une forme
semi-analytique du champ électrique non local qui dépend des moments de la fonction de
distribution électronique. Numériquement on le calcule par itération du modèle M1 en
partant d’un champs électrique local ou nul jusqu’à convergence.

Il est impossible d’obtenir une forme simple du champ électrique pour un plasma
magnétisé. Nous proposons d’utiliser l’équation locale comme point de départ des ité-
rations. Cette équation dépend de quantités hydrodynamiques. Afin de tenir compte
des effets non locaux ces quantités ont été remplacées par les moments de la fonction de
distribution des électrons, calculée avec le modèle M1. Le champ électrique est obtenu de
manière iterative.

Nous considérons que le champ magnétique n’est pas modifié par les effets cinétiques,
et est calculé grâce à un code magnéto-hydrodynamique.

12.4 Résolution numérique

L’opérateur de collision AWBS, l’hypothèse de quasi stationnarité, les hypothèses sur le
champ électromagnétique et la hiérarchie des moments limitée au premier moment avec
la fermeture entropique constituent notre modèle M1. L’équation cinétique est résolue
numériquement en énergie, du groupe en energie le plus haut vers le plus bas. Cette
direction préférentielle peut être interprétée comme un analogue du principe de causalité :
un électron peut perdre de l’énergie mais pas en gagner. Cet algorithme fonctionne bien
pour les pertes d’énergie, calculée avec l’opérateur collisionnel AWBS, mais il est limité par
le fait que le pouvoir d’arrêt collisionnel doit être supérieur à celui du champs électrique.

De plus cet algorithme est caractérisé par l’apparition d’une diffusion numérique, en
résolvant un système advectif dans la limite diffusive. On peut s’affranchir de cet effet en
augmentant la résolution spatiale mais cette procédure affecte le temps de calcul et les
performances du code.

Pour les raisons ci-dessus cet algorithme est utile pour valider le modèle M1 mais doit
être amélioré pour un cadre plus géneral.

12.5 Validation du model

Le modèle M1 a été mis à l’épreuve pour les plasmas non magnétisés [63], révélant un
bon accord avec le code Landau-FP et avec les précédents modèles non locaux. Les deux
principaux effets non locaux (la limitation du flux et le préchauffage) sont correctement
calculés.

Les moments de la fonction de distribution électronique, calculées avec P1 et M1,
montrent un faible désaccord, qui devient négligeable si l’on intégre sur les vitesses. Les
moments ont été utilisés pour reconstruire les fonctions de distribution électroniques to-
tales, ce qui a mis en évidence la principale propriété du modèle M1 : la fonction de
distribution électronique est toujours bien définie, contrairement au modèle P1.

Nous avons également testé le modèle M1 dans une configuration multidimentionnelle,
reproduisant les effets non locaux monodimensionnels et la rotation du flux induite par
la contribution de différents gradients en espace. Précisons qu’avant notre modèle, seul le
modèle SNB a montré la capacité à fonctionner en deux dimensions.

Le modèle M1 a également été testé avec des plasmas magnétisés.

Le premier essai du modèle M1 pour les plasmas magnétisé a été effectué dans le régime
local, qui est décrit par la théorie de Braginskii. Pour tous les degrés de magnétisation le
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modèle M1 est capable de reproduire la limitation du flux de chaleur et la rotation induite
par les champs magnétiques.

Nous avons enfin étudié la compétition entre les effets non locaux et les effets magné-
tiques, et montré la domination de chacun d’entre eux en fonction des conditions plasma.

12.6 Application à la stabilité des ondes du plasma

Une analyse cinétique du transport de chaleur sur ondes plasma a été effectuée [63] :
L’étude de la stabilité des faisseaux dans un plasma induite par le transport non local le
long du gradient de température.

Un exemple est donné avec les ondes de Langmuir : des oscillations électroniques
haute fréquence correspondant aux perturbations du champ électrique sur une échelle
microscopique. Le transport non local peut perturber ces ondes, induisant une instabilité
dans la région froide du plasma. Ce phénomène a été étudié avec nos modèles M1 et
P1. Le modèle M1 a montré sa capacité à prédire les instabilités, au contraire du modèle
P1 qui prédit des instabilités non physiques où la fonction de distribution électronique
devient négative.

Les ondes acoustiques-ioniques peuvent aussi devenir instables dans les régimes d’inte-
rêt du transport non local. Leur instabilité peut être induite par une dérive des électrons
créée par le champ électrique. Dans ce cas le modèle M1 comme le modèle P1 fonction-
nent correctement car les électrons mis en jeu sont faiblement anisotropiques et dans ces
conditions le modèle M1 tend vers le modèle P1.

12.7 Application à la propagation des ondes ther-

miques

Afin de comprendre les effets non stationnaires du transport non local magnétisé nous
avons étudié la propagation d’ondes thermiques à travers un plasma magétisé. Ce pro-
cessus a été analysé en ajoutant divers degrés de magnétisation.

Une étude stationnaire a montré qu’afin d’être modifiés par le champ magnétique, les
flux non locaux demandent de plus hauts degrés de magnétisation que leur contrepartie
locale.

L’analyse temporelle a également montré un désaccord léger entre M1 et le modèle
SNB. Ce dernier semble surestimant les effets de la magnétisation du plasma.

Cette étude a montré que le chauffage est moins performant à la fois dans les régimes
non locaux et les régimes magnétisés, du fait d’un temps requis pour aplanir les gradients
de température plus grand.

12.8 Perspectives

Nous avons développé et testé avec succés un nouveau modèle pour le transport non local
[63]. Ce modèle, basé sur des principes fondamentaux, est capable de :

• tenir compte de fortes variations hors équilibre, en angle et en énergie;

• tenir compte de l’effet du transport d’électrons sur la stabilité microscopique du
plasma;

• tenir compte d’un champ magnétique externe, ainsi que de champs magnétiques
auto-induits.
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De plus il fonctionne dans des configurations multidimensionnelles.
Il reste quelques problèmes ouverts. On peut améliorer le schéma numérique afin de

tenir compte des processus de gain d’énergie qui jouent un rôle dans le chauffage lors de
l’interaction laser-matière froide. Une comparaison directe avec des simulations Landau-
FP doit être effectuée afin de valider définitivement le modèle M1 à l’échelle cinétique et
dans le régime magnétisé non local. Cependant les premiers résultats sont prometteurs.

Le modèle M1 est basé sur l’hypothèse que le principe de maximisation de l’entropie
angulaire assure la maximisation de l’entropie. Cette hypothèse a déjà été testé dans des
régimes fortement anisotropiques, menant à des résultats corrects. Ce travail constitue
donc une première étape dans la validation du principe de maximisation de l’entropie
angulaire dans les régimes faiblements anisotropes, ce qui ajoute une certaine fiabilité à
cette hypothèse.

La capacité à tenir compte de fortes déviations hors équilibre motive l’utilisation du
modèle M1 pour la description du transport non local. La théorie moderne de la physique
des hautes densité d’énergie, particulièrement la fusion par confinement inertiel, a montré
le besoin de tenir compte de phénomènes cinétiques fortement anisotropes, tels un faisseau
d’électrons relativites, ou des faisseaux induits par des instabilités paramétriques, afin de
prédire et contrôler le transport d’énergie. Le modèle M1, tel qu’il a été développé dans ce
manuscrit, peut décrire tant les phénomènes cinétiques faiblements anisotropes que ceux
fortements anisotropes. De plus ce travail fournit un moyen de décrire tous les phénomènes
cinétiques de la physique des hautes densités d’énergie à l’aide d’un seul modèle.

Être capable de considérer l’effet du transport électronique sur la stabilité du plasma
ouvre la voie au processus inverse : tenir compte des modifications du transport non local,
dû aux instabilités d’ondes plasma.

Nous avons vu que le champ magnétique peut induire une rotation du flux dans une
direction préférentielle ainsi que la suppression du transport non local. Une bonne de-
scription du transport non local magnétisé est d’une grande importance pour le contrôle
de l’ablation par laser. Ce dernier permet d’ajuster les conditions de température et de
densité du plasma en fonction des paramètres laser, avec des applications aussi bien en
astrophysique qu’en fusion par confinement inertiel.
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List of acronims

AWBS Albritton, Williams, Bernstein and Swartz [42]
CMG Colombant, Manheimer and Goncharov [23]
EDF electron distribution function
EH Epperlein and Haines [38]
ES Epperlein and Short [44]
FL flux limitation
FP Fokker-Planck
FS free streaming
HED high-energy-density
ICF inertial confinement fusion
LMV Luciani, Mora and Virmont [21]
M1 see section 5.3.3
MFP mean free path
P1 see section 5.2.1
SH Spitzer and Härm [33]
SNB Shurtz, Nicoläı and Busquet [22]
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