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Chapter 1

MOSFET transistors: technological
challenges

“We’re so accustomed to the marvels of everyday thought that we never wonder about it.”

Marvin Minsky, scientist

1.1 Microelectronic and improvements

Over the past few decades, semiconductor industry has witnessed dramatic rise in the per-

formance of integrated circuits and in the subsequent financial market growth. Performance

improvement at lower cost in microelectronic integrated circuits (ICs) has been achieved

by increasing transistor speed, reducing transistor size and packing more transistors onto a

single chip.

This trend was first foreseen by Intel co-founder Gordon Moore, who, in his article in the

year 1965 observed that the number of components in integrated circuits has doubled every

year from the invention of the integrated circuit in 1958, by Jack Kilby (Nobel prize in 2000)

[1], until 1965. G. Moore predicted that this trend would continue ”for at least ten years”

[2]. From the beginning of mass production, the number of transistors that the industry was

able to place on a computer chip did double every two years (figure 1.1) [3]. This prediction,

now known as the Moore’s law, is responsible for the evolution of today’s complementary

metal-oxide-semiconductor (CMOS) technology. Recognition of this observation has proven

to be accurate, in part because the law is now used in the semiconductor industry to guide

long-term planning and to set targets for research and development, resulting in the auto-

fulfilling of the hypothesis made by G. Moore. Thus, the transistor has shrunk from the size

of a pencil eraser to smaller than a bacterium for the latest generation.

Transistor has become the workhorse component of almost every electronic device after it

was invented by John Bardeen, Walter Brattain and independently by William Schokley at

the Bell Laboratories in 1947. They shared a Nobel Prize in 1956 for their classic discovery

of point-contact transistors and bipolar transistors [4].

The salient feature of transistors which fuels the rapid growth of the information technology

industry is the incredible increase in their speed and drop in cost per component as their

1



Chapter 1.

Figure 1.1: Evolution of the number of transistors placed on a chip

size is reduced.

In simple terms, a transistor can be described as a three terminal semiconductor device

in which the input signal controls the output current and which performs the functions of

switching and amplifying. Use of transistor is extended in areas like amplifying low frequency

radio signals, analog to digital signal transformation and vice versa, high speed computers,

etc. Increase in the processor performance results not only from increase in the transistor

density but also from the improvement in the transistor functionality. Transistor can be

improved both through materials and architecture changes. Based on design and operating

behaviour, transistors are classified into two major types: bipolar junction transistor and

Field-Effect Transistor (FET) [5], presented in figure 1.2 left and right respectively.

In the 1960s, the IC market was broadly based on bipolar transistors due to their high

switching speed and low power consumption at smaller sizes. But since 1975, integration

of FETs prevailed even though they were found to be slower switching devices than the

bipolar transistors [6]. This was caused by the failure of bipolar transistors to demonstrate

rapid decrease in the power per circuit compared to FETs. As linear dimensions reached

the half-micron level in the early 1990s, the performance advantage of bipolar transistor was

outweighed by FET (more specifically MOSFET, a modern and more practical variant of

FET), then used in the CMOS circuit production till today.
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Figure 1.2: Bipolar (left) and MOSFET (right) transistors schemas

The choice of FET over bipolar was also comforted by:

a. the ease of scaling. Whereas the drain current of bipolar devices has an exponential

dependence on base-emitter voltage, the MOSFET drain current depends on the ratio

of its geometry (width/length). Thus, the MOSFET characteristics remain the same

as far as the W/L is kept same; necessarily leading to easier scaling down of the device.

b. the lower power. CMOS logic consumes less power compared to bipolar. This is due to

the fact that complementary logic in MOS gives zero static power dissipation, which

is not the case for bipolar junction.

c. the ease of production. MOSFET fabrication is easier because bipolar junction requires

complex processes which includes buried layer.

Improvements can be applied to different aspects of the devices for ever competitive devices.

First one coming into mind is the scaling, i.e. the size reduction of the structures. Then

architecture is adapted to the new thickness before the development of new materials. These

three points are investigated in next sections of this chapter.

1.1.1 MOSFET: fundamental device in the CMOS technology

Metal-oxide-semiconductor FET (MOSFET) is essentially a metal-insulator-semiconductor

junction provided with a source and a drain, as shown in figure 1.2. In a MOSFET structure,

a dielectric material (mainly silicon dioxide, SiO2) is used as the insulation layer, called a

gate oxide, which is placed between the gate electrode and the semiconductor, called chan-

nel, made of silicon in the crystalline state. The diagram, in figure 1.3, makes easier the

understanding of MOSFET operating, assuming that the substrate is a p-type semiconduc-

tor which has positively charged mobile holes as carriers, and that the source and drain

are made of doped n-type (denoted by n+) material, as presented in figure 1.3a. When a

positive voltage is applied on the gate (Vg), figure 1.3b, an electric field causes the holes to

be repelled from the interface, creating a depletion region containing immobile negatively

charged acceptor ions. A further increase in the gate voltage above the threshold voltage

(Vth), figure 1.3c, eventually causes electrons to appear at the interface, in what is called

an inversion layer, or channel. Electrons can now move from the source to the drain in the
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inversion layer (n-MOS).

Figure 1.3: CMOS working conditions schema, a: off conditions, b: depletion
condition, c: inversion canal creation condition

FETs evolved from p-type MOSFETs (p-MOS) in the 1960s to n-type MOSFETs (n-MOS)

in the 1970s and then to CMOS in the 1980s and 1990s. CMOS circuits combine both n-MOS

and p-MOS in a way which greatly reduces consumption of power. Other architectures were

proposed to replace CMOS but never made it to the production maturity.

1.1.2 Improved performance via scaling

’Scaling’ is a practice term invented to describe reduction in the size of the device dimensions

in order to fit more components on a single microchip. Calculated reduction of transistor

geometries as well as the capacitor cell area in the IC has demonstrated spectacular expansion

in the technology and communication markets [7]. The prime elements which enable the

scaling of the Si-based MOSFET are the materials properties associated with the dielectric

employed to isolate the transistor gate from silicon channel.

Early CMOS devices mainly consisted of thermally grown amorphous silicon dioxide as the

gate dielectric which is the smallest feature of the device. SiO2 layer has a major influence on

the device electrical behaviour, it acts as a perfect insulator between the gate and the channel,

thus preventing short circuits. As the transistor feature size is shrinking, the corresponding

gate dielectric thickness is also decreasing rapidly. The problem associated with thinning

of the oxide layer is its inability to store or to flow large amount of current in it, thus

greater leakage current occurs through the dielectric layer. In an ideal situation, the gate

dielectric acts as a perfect insulator, but as it is made ever thinner in order to improve

the device performance, huge amounts of current leaks through it thereby resulting in higher

power consumption, and turning the device cost ineffective. This problem became even more

determining with the apparition of mobile devices which have limited power but need more

and more calculation power.

At normal device operating condition, the typical leakage current of SiO2 at a gate bias of 1

Volt, changes from 10−12 A.cm−2 at 35 Å to 1 A.cm−2 at gate oxide thickness of 15 Å. To

avoid high leakage currents and still achieve the required gate capacitance, a material with

higher permittivity is needed.

The formula equation 1.1 shows the device parameters that determine the resulting gate
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capacitance (C):

C =
εε0A

t
(1.1)

where ε is the dielectric constant (also referred to as the relative permittivity) of the mate-

rial, ε0 is the permittivity of free space (8.85x10−12 F.m−1), A is the area of the capacitor

and t is the thickness of the dielectric. To keep similar behaviour of the devices, C has to

be kept constant, so as mentioned earlier, parameter A will be growing only smaller in the

future semiconductor technologies if no change is made to the architecture of the transistor.

Thus to keep C constant with a decreasing A, t can be decreased or ε be increased. However,

if t is reduced the leakage current will grow, and from equation 1.1 it is apparent that the

dielectric layer thickness t can be increased in order to avoid high leakage currents, only

when a material with higher relative permittivity ε is used. These materials with higher

relative permittivity are called high-κ materials and represent one of the main parameters

investigated for new technology nodes.

In order to compare the dielectric layer of different materials, the use of the equivalent oxide

thickness (EOT or teq) parameter was introduced. The term teq characterises the theoretical

thickness of SiO2 that would provide a particular capacitance density assuming standard

dielectric constant of 3.9 (disregarding issues like leakage current and reliability). Therefore,

equation 1.1 for capacitance can be rewritten in terms of teq and εox (3.9, the dielectric

constant of SiO2) of the capacitor as follows:

teq
εox

=
thigh−κ

εhigh−κ
(1.2)

or simply:

teq =
εSiO2

εhigh−κ
thigh−κ =

3.9

εhigh−κ
thigh−κ (1.3)

From equation 1.3, it appears that a gate oxide material having a dielectric constant of ∼ 25

affords to have a physical thickness of ∼ 64 Å to obtain teq of 10 Å.

In the real world some interactions happen between the dielectric and the substrate or metal.

Thus the equation becomes:

EOT = teq = tSiO2
+
∑

i

3.9

εi
tdielectrici (1.4)

where tSiO2
is the physical thickness of the SiO2 interface layer, also referred to as IL,

tdielectrici is the physical thickness of the dielectric i, εi the dielectric constant of the film

and the summation over ”i” is for stacks that do not have an uniform profile or are made of

several dielectrics.

To further reduce the EOT one could think that tSiO2 could be reduced or even removed

from the device. However, nucleation of the dielectric is favoured by the presence of SiO2

at the surface [8–10] and due to the deposition of a dielectric, which is an oxide, there is
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generally creation of silicon oxide at the silicon/dielectric interface. The removal of SiO2

also results in the degradation of mobility and reliability of the devices due to the direct

contact of the high-κ with silicon. Still, if a Si wafer is cleaned before dielectric deposition, a

natural oxidation of the wafer’s extreme surface happens when in contact with the air. This

oxidation, about 5-6 Å may continue to grow during device manufacturing. Thus, in order

to control this SiO2 IL and obtain a good quality oxide, with 3.9 dielectric constant and

avoid any regrowth, a chemical oxide is formed at the surface of the sample, with a thickness

stabilised around 7-8 Å.

It appears that today, the continuous scaling of microelectronic devices has reached more or

less its limits with the known materials. New materials are needed to meet the requirements

of the coming technologies. As introduced, high-dielectric constant materials have already

partially replaced silicon dioxide together with metal-gates replacing polycrystalline silicon.

1.1.3 Improved performance via electrode tuning

If EOT and current leakage are mainly controlled by the dielectric properties, threshold volt-

age, work function and interfacial defects can be tuned by carefully choosing the material

used for the electrode. For a long time, polycrystalline silicon was used for the creation of

electrode due to the easiness of doping Si to obtain n-type or p-type material. In ultra-thin

oxide systems, when EOT reaches less than 2 nm in thickness, the parasitic capacitance

induced by poly gate depletion becomes a first order phenomenon. It leads to a capacitance

in series with the gate oxide, which results in the increase of the EOT. One solution is to

highly dope the polysilicon, but the ionised dopants and the parasitic charge density increase

with increased doping. These parasitic gate charges act as charge centres in the gate and

scatter the carriers in the channel thus degrading the device performance, an effect called

Remote Coulomb Scattering (RCS). Since parasitic gate charge density should be decreased,

a reduction of gate doping concentration is necessary. Thus, it is clear that the effects of

polygate depletion and/or RCS are unavoidable in conventionally doped gate CMOS devices.

To improve device performance, it appeared that the gate depletion must be completely elim-

inated. Hence metal gate provides a solution to eliminate poly gate depletion effect. Also,

to ease integration and avoid interactions from superior metal layers deposition or reaction,

metals with good chemical barrier properties have to be chosen. The gate in CMOS devices

is generally of the same type as that of the source/drain, i.e. the NMOSFET has a n-gate

and PMOSFET has a p-gate.

Some of the most extensively studied and most promising materials are titanium and tan-

talum alloys [11–13], in particular nitrides, thanks to their high thermal stability [14], low

reactivity [15, 16], low electrical resistivity [11, 17, 18] and their wide range of work function

[12, 14, 17, 19–21]. Moreover, creation of new alloys, based on these metals, can lead to the

fine tuning of the work function. In particular, carbides or aluminium alloying can signifi-

cantly shift the effective work function of the metal [22, 23].
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Although much work has been done so far on the understanding of metals, more studies

need to be conducted on the interactions taking place at the metal / dielectric interface.

Moreover, materials deposited later on during the integration flow are equivalent to a low

temperature annealing, and so can enhance the interactions and the damages created at the

interface.

To ease the integration of new materials in the production chain, different architectures can

be chosen to lower the process constraints.

1.1.4 Improved performance via architecture

If material tuning is one solution to allow a reduction of the devices size, changes in the

architecture and flow is another. MOS transistors have been built, for many generations,

using a gate-first approach. In this approach the metal forming the gate is deposited before

the formation of the drain and source by implantation, and subsequent the high temperature

anneal performed to activate the dopants in the Si substrate. This high temperature activa-

tion anneal can strongly impact the integrity of the dielectric/metal stack. Even if data on

the effect of process temperature on work function are clear [24, 25], the advantage of the

already existing work flow has kept focus on gate first approaches. However, given the need

to reduce gate dielectric current leakage, to reduce the metal gate depletion and considering

the interactions taking place at the metal/dielectric interface, the benefits of a lower thermal

budget are immediate and integration of the high-κ/metal gate stack into the transistor flow

is mandatory for new technology nodes. Such approach is referred to as the replacement

gate process or gate-last flow (in opposition to gate-first), which enables decoupling of the

junction formation from the dielectric/metal gate formation step. In this flow, a sacrificial

poly gate is used and then removed after the junctions formation. Consequently, the gate

dielectric and the metal gate are deposited after the high temperature anneal. A comparison

of unique steps in metal gate-first and gate-last process flows is given table 1.1, with the key

differences highlighted in bold. Because of its low thermal budget, the gate-last integration

flow opens new possibility to carefully tune the work function and to provide devices with

the desired threshold voltages.

The gate-last architecture was first introduced in mass production by Intel in 2007 for the

45 nm technology node [26].

A more complete description and comparison of Gate-First and Gate-Last approaches is pre-

sented Appendix A, page 171.

On top of these two approaches, a plethora of modifications to the gate first or gate last

methodologies have been and continue to be discussed in the scientific literature.

Another way to improve the performance by architecture modification is the introduction of

Silicon On Insulator (SOI) substrate. SOI substrates are layered silicon-insulator-silicon and
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Table 1.1: Comparison of Gate-First and Gate-Last flows

Gate-First Gate-last

Isolation Isolation
High-κ gate deposition High-κ gate deposition

Dual Metal-Gate deposition
Sacrificial Poly-Silicon gate

deposition/patterning
Poly-Silicon gate deposition
Poly-Silicon/metal etch

Source/Drain formation

Source/Drain formation Salicide/Contact etch stop

Salicide/Contact etch stop
Sacrificial Poly-Silicon gate

removal
1st Inter-Layer Dielectric

deposition/polish
Dual Metal-Gate deposition

Contact formation Contact formation

replace the conventional silicon substrate: schematic description is given in figure 1.4. The

benefits of SOI relative to conventional silicon includes: low parasitic capacitance due to the

isolation from the bulk silicon, which improves power consumption at matched performance;

and resistance to short-circuit due to complete isolation of the n- and p-well structures. SOI

substrates can easily be integrated in the current technology without modifications of the

process flow.

Figure 1.4: SOI schema

Introduction of 3D architecture, also called Tri-gate, in the last half-decade was investigated

as a possible solution [27]. 3D transistors employ a single gate stacked on top of multiple

vertical gates, as visible in figure 1.5, allowing to duplicate the surface area at which the

electrons can travel. And as introduced in equation 1.1, increase of the transistor surface

area allows to increase the gate capacitance. Reports showing that 3D transistors reduce

leakage and consume far less power than current transistors have been made. This allows up

to 37% higher speed, or a power consumption at under 50% of the previous type of planar

transistor [28, 29]. Additional control over the gate enable as much transistor current flowing

as possible when the transistor is in the ’on’ state (for performance), and as close to zero as

possible when it is in the ’off’ state (to minimise power loss), and enable the transistor to

switch very quickly between the two states (again, for performance).
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Figure 1.5: Planar and 3D transistors schema

This architecture has opened new opportunities but new difficulties also rose with it. One

of the most challenging difficulty is the need of conformal and uniform deposition on all the

surfaces of the structures with a layer as thin as one nanometre [30]. Conformal deposition

leads to the need of a non-directive, non-preferential method, thus to surface reactant depo-

sitions. Depositions based on chemical principle are hence preferred to the physical one, with

a particular interest for metal-organic chemical vapour deposition to keep the cost down and

to be easily industrialised.

Once the material matching the aimed physical characteristics is obtained and the archi-

tecture of the device is known, some work has to be done on the integration. Interactions

between the various materials of the device can lead to unwanted and negative effects, result-

ing in the degradation of the electrical properties. To limit these interactions, lowly reacting

materials but also soft processes have to be chosen for device fabrication.

1.2 Material integration for device fabrication

As explained in the previous paragraphs, a transistor, which is the basic component of any

device, can be described as a precise superposition of materials, which are controlled at the

atomic level, which are deposited as thin films on a semiconductor substrate and which are

interacting between each other. Due to the ever-decreasing size of ICs, interactions between

the materials are becoming more and more important and they now define the general be-

haviour of the devices. Therefore, thin film deposition has evolved to become a stringent,

meticulous field within surface science: deposited films in ICs require sub-nanometre di-

mensions and extremely low levels of contamination (to avoid altering the properties of the

deposited materials) [31–37].

Paradoxically, the solution for the first problem, the use of chemical deposition methods, has

worsened the second.

Initially, deposition was mainly performed through evaporation or sputtering methods (known

as physical vapour deposition PVD), where a source of pure material was vaporised, using

electron beam, ion beam or plasma, and deposited on a substrate [38–40]. However, the

direction-dependency of these methods led to some unsolvable problems with smaller size
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devices. The use of volatile molecular compounds instead of solid sources allowed an ho-

mogeneous growth of the layers, even on demanding aspect ratios. Originally, inorganic

compounds were chosen (metal halides were the most used), but they required rather high

temperatures and the byproducts were corrosive [40, 41]. Although these drawbacks were

overcome with the use of metalorganic precursors, [41, 42] an inherent problem was the in-

troduction of undesired elements (in particular carbon) into the growing film [40, 43].

Moreover, due to this choice toward Chemical Vapour Deposition (CVD), pure materials

cannot be obtained anymore. Only alloys, such as oxides, nitrides or carbides, are deposited

and require new developments for integration.

CVD is a surface reactant deposition, which implies that the deposited material is interacting

with the under-layer. And because of thickness reduction of the layers the surface-volume

ratio is reducing, leading to more and more significant surface interactions for the definition

of the devices behaviour, compared to the previous generations of CMOS. These surface

interactions compel the choice of lowly reactive materials and deposition methods, especially

when plasma is introduced in the process. Concessions have to be done when choosing the

best material with the lowest interactions.

This thesis took place in the described context and some of the previously mentioned chal-

lenges and opportunities were investigated. Part of the results, from a three years long work,

are presented in this thesis.

1.3 Outline

As introduced in the previous sections, alternative candidates for metal gate with suitable

properties and limited interactions with dielectric, are needed for future generations of CMOS

technology. To achieve this, new materials, or new processes to tune the characteristics of

these metals, have to be investigated. Then, it is necessary to have a better understanding of

the physico-chemical phenomenons taking place at interfaces during deposition. Moreover,

a correlation has to be done between material changes and possible changes of the electrical

behaviour of the complete devices.

MOCVD-deposited titanium and tantalum alloys are widely investigated as potential re-

placement of the actual titanium nitride PVD metal gate, in order to fulfil the conformity

demand. MOCVD allows conformal deposition, important for gate-last and FinFET inte-

gration, but also results in nitride and/or carbide alloys and contamination, whose levels are

important to control.

MOCVD is a general naming which includes several deposition methods, all based on the

chemical reaction of metal-organic precursor with the substrate and a reactant gas. Thus,

Atomic Layer Deposition (ALD), Liquid Injected MOCVD (LIMOCVD) and Plasma En-

hanced LIMOCVD (PELIMOCVD) are part of the MOCVD group. A description of these
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techniques is given in the Chapter 2, with an emphasis on the differences of reaction mech-

anism paths.

To study the deposited metals in terms of physical and chemical properties several charac-

terisations techniques are used. Hence, the physical characteristics of the layers, i.e. den-

sity, thickness, roughness are obtained by X-Ray Reflection, resistivity and crystallography,

by four points probes and X-Ray Diffraction measurements respectively. Composition and

chemical interactions are investigated by means of X-ray Photoelectron Spectroscopy. These

characterization techniques and the corresponding methodologies are described in Chapter 2.

In Chapter 3, influences of the deposition process on the deposited metal properties, during

MOCVD and ALD are studied. Effects of the variation of substrate and injectors tempera-

ture, reactant gas, pressure and other process parameters are discussed. These parameters

are carefully tuned to achieve a full understanding of the changes in the properties of the

deposited material. The characteristics closely looked at are the deposition rate, density,

roughness, resistivity, composition and bonding environment of the species. Depending on

the variation of the previously mentioned characteristics deposition reaction mechanisms are

discussed and linked to the deposition parameters.

Similar methodology is used in the Chapter 4, for an investigation of the plasma in PE-

MOCVD or PEALD modes. The influence of each of the plasma parameters on the de-

position reaction path is studied. Then, the addition of low frequency plasma for better

decomposition of the precursor in PEMOCVD is reviewed in details. Using optical emission

spectroscopy the modifications of the plasma are correlated to the modifications of the de-

posited material. In the last part of this chapter plasma is introduced for densification of

Ta(C)N, in a PEALD mode. Evolution of the physical properties are linked to the chemical

evolution of Ta(C)N when the plasma power is increased.

Then, because there is a thickness reduction of the deposited materials, the volume/surface

ratio is also reducing and it gives an ever rising importance to surface reactions. Indeed, at

thicknesses of two nanometres and below, more than half of the atoms composing a layer are

in contact with bottom or top materials. An investigation of these interactions happening

at the metal-dielectric interface is presented in Chapter 5.

By carefully choosing the deposition process it is also possible to promote some interactions,

such as oxide removal or nitrogen addition, resulting in the improvement of the stack proper-

ties. MOCVD deposition reaction mechanisms are based on chemical affinity of the precursor

with the reactant gas and with the substrate, thereby reactions with the underlayer cannot

be avoided. Illustration of the point will be done by a study of the Ta(C)N interaction with

TiN in Chapter 5.

Reciprocity is valid, the substrate have an influence on the nucleation of a new material.

Finally, in Chapter 6 the first results concerning Al doping of TaN deposited by PVD and

MOCVD are compared. Complete investigation of PVD-TaAl and PVD-TaAlN highlighted

the important role of Al for passivation of the film, thus limiting the oxygen diffusion in
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the volume of the layer. Successful deposition of MOCVD-AlN and PEMOCVD-AlC is used

to acquire some knowledge about MOCVD doping, and used as reference for comparison

with MOCVD-TaAlN deposition. ARXPS analysis of MOCVD-TaAlN layer confirmed the

Al2O3 passivation layer formation, supposed from the study of PVD-TaAl and PVD-TaAlN.

Then, to limit the creation of AlN, observed at the deposition of MOCVD-TaAlN, multistack

materials containing Al-Al and AlC are developped and compared to MOCVD-TaN. The

electrical results are discussed in relation to the physico-chemical characterisations and to

Al doping behaviour in PVD-Ta.
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Chapter 2

Deposition and characterisation
tools

“Do not wait; the time will never be just right. Start where you stand, and work with

whatever tools you may have at your command, and better tools will be found as you go

along.”

Napoleon Hill, author

2.1 Introduction

Since the introduction of IC to mass production, in the late 1960s, new deposition methods

have been developed to answer the specific needs of this demanding industry. At the same

time, to understand the phenomenons taking place during the deposition, improvement of

the characterisation tools was achieved.

Today this pair, deposition/characterization, allows to create, control and characterise layers

at the atomic level. A new world of possibilities and understanding is now at reach. This

change was confirmed by the evolution of the number of publications concerning surface and

interface studies. Indeed, in the last forty years it rocketed up from less than 100 up to

almost 3000 (figure 2.1).

In this chapter are presented the tools used for deposition and characterization of the in-

vestigated metals and of the interactions with the substrate taking place during deposition.

For each tool the physico-chemical principle is described and a discussion is given on the

advantages, limitations and constraints consecutive to the metal-gate thematic. Emphasis is

laid on Metal Organic Chemical Vapour Deposition and X-Ray Photoelectron Spectroscopy,

the most used deposition and characterization methods of this work.

2.2 Deposition tools

The tools used for deposition during this thesis were industrial or pre-industrial modules, it

implies that the recipes are already provided by the manufacturer in the industrial module,
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Figure 2.1: Evolution of the number of publications in surface and interface science
referenced in ScienceDirect database

whereas no process is included with pre-industrial module. A direct consequence is that

modifications of the process, to extreme conditions, are much easier with the pre-industrial

module. However, reaction mechanism used in industrial modules have to noticeable advan-

tage of being stable, reproducible and already investigated in details.

2.2.1 Precursors for CVD and ALD

CVD and ALD are based on chemical reactions; every reaction needs reactants to obtain

the products. In the case of metal deposition the reactants consist of the metallic atoms in

solution, called a precursor, and a reactive gas. As introduced Chapter 1 section 1.2, the

best metal compounds for metal gate application are the metalorganic precursors.

Metalorganic precursor is defined as a chemical compound that contain metal and organic

ligands. Metalorganic compounds exclude species with direct metal-carbon bonds, which are

classified as organometalic compounds.

Metalorganic precursors have several advantages for film growth compared to the elemen-

tal sources that are used in physical vapour deposition processes and to the metal halides

that are often used in CVD processes. Most importantly, metalorganic precursors tend to

be much more volatile than many metal halides and most metals in their elemental form,

which allows easy precursor delivery systems. Since film growth occurs by a succession of

chemical reactions, the precursor chemistry can be designed to favour the desired inorganic

phase, minimise undesirable element incorporation into the final material, control the depo-

sition temperature and avoid corrosive by-products that might damage the reactor or the

substrate on which the film is grown. Metalorganic precursors can also be obtained in high

chemical purity, which is important for microelectronic application. Indeed ultra pure met-

alorganics are required, with purity of the order of 99.9999% or greater.
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Many different types of ligands have been employed to create volatile metalorganic precur-

sors for film growth. In general, the ligands are anionic, with carbon, oxygen or nitrogen

donor atoms. In some cases, neutral donor ligands are present. Many CVD processes entail

the reaction between a metalorganic precursor with basic ligands and a co-reactant that

contains acidic element-hydrogen bonds. Mixing of these reactants in the gas phase results

in protonation1 reactions that eliminate the basic ligand in its protonated form and in the

formation of a new metal-element bond (equation 2.1) [35, 42, 44].

M −R+ EHn
CV D reactor
−−−−−−−−→

−RH
M − EHn−1 (2.1)

with M the metal atom or heteroatom, E the reactant atom such as O, N, S.

The co-reactant with acidic element-hydrogen bonds is generally chosen so that the element

corresponds to one of the atoms required for the final film material. Examples of this type of

reactant include ammonia and water for the deposition of nitrides and oxides, respectively.

A second type of strategy that is used to eliminate excess hydrocarbon groups from the

metalorganic precursor is β-hydrogen elimination [45, 46]. Hydrocarbon groups such as Et,
nPr, iPr, nBu and iBu, when bonded to a metal atom or a heteroatom, can eliminate an

alkene through a low-energy decomposition pathway [46, 47]. This β-hydrogen elimination

often provides an efficient pathway through which carbon groups are removed from precur-

sors. If a precursor is properly designed, the carbon incorporation in the film material can

be minimised.

Deposition by MOCVD and ALD was reported for many elements of the periodic table, a

list of these elements and the deposited materials is presented Appendix B, page B.

MOCVD and ALD appear as a viable solution for microelectronic but critically rely upon

the availability of suitable high-purity precursors with sufficient volatility and stability. Ar-

ticles, books and reviews addressing this subject have been widely published in the past few

years. The role of molecular chemistry in influencing the physical properties of the precursor

leading to robust thin films has been widely discussed [35, 36, 44–48]. To be compatible with

microelectronic applications the precursor must possess the following properties:

• Appreciable volatility and molecular stability of the vapours to avoid pre-gas phase

reactions or decomposition of the vapours, and to achieve film growth at moderate

deposition temperatures.

• Adequate temperature window between precursor evaporation and decomposition to

get high quality deposits preferably at lower substrate temperatures.

• Clean fragmentation of the organic matter at the surface of the substrate during film

growth, to limit the by-products contamination.

• Easily synthesised and purified in high yields at reduced cost, convenient during han-

dling and transportation, preferably a low degree of toxicity to easier the maintenance

1Protonation is the addition of a proton (H+) to an atom, molecule or ion, forming the conjugate acid.
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of the deposition tool.

Of course, such a precursor do not exist and compromises have to be done. Vapour pres-

sure of a metalorganic precursor is the crucial parameter that governs the concentrations of

metalorganic precursors entering the reactor, and subsequently the growth rate of deposition

process. Also low vapour pressure allows to limit the necessary temperature of the system,

including the capillary tubes from the canister to the deposition chamber.

Thus choosing a precursor is not an easy task and should not be underestimated.

One precursor of both tantalum and titanium were chosen to match the deposition constraints

of the metal for high-κ/metal gate deposition application, the properties of the metal and

the aimed process window.

Tantalum precursor:

Several precursors are commercially available for Tantalum nitride deposition. Most used for

CVD and ALD processes are the TertiaryButylimido,Tris(DiEthylamino)Tantalum (TBT-

DET), t-Amylimidotris(dimethylamido)tantalum andPentakis(DiMethylAmido)Tantalum

(PDMAT) [18, 49–52].

Table 2.1: Comparison of TBTDET and PDMAT precursors

TBTDET PDMAT

Formula Ta(NtBu)(NEt2)3 Ta(NMe2)5
Molecular Weight 468.46 g.mol−1 401.33 g.mol−1

Boiling point 120◦C @ 1 Torr 100◦C @ 0.1 Torr
Vapour pressure ∼ 1 Torr @ 120 ◦C ∼ 1 Torr @ 90 ◦C

Flash point 46 ◦C NA

Due to the different intrinsic properties, it was already proven that TBTDET is more suited

for tantalum nitride metal deposition. When using PDMAT and NH3 it was reported that

films with some Ta and N could be grown, but that they contained a great deal of carbon

and were non-conducting due to the formation of Ta3N5 phase (a nitrogen rich dielectric)

[53]. In contrast, when TBTDET was used with NH3 electrically conducting films of TaN

were created with low carbon content and low resistivity [18, 54, 55].

Thus, for MOCVD and ALD the TBTDET molecule was chosen. TBTDET molecule is

presented in the diagram figure 2.2.

Two noticeable features of this molecule are: one the lack of tantalum-carbon bonds and

second the presence of a double tantalum-nitride bond. These features dictate the stoichiom-

etry of the deposited material.

Titanium precursor:

As for tantalum, few titanium metalorganic precursors are commercially available. Most used

precursors for titanium nitride deposition are Tetrakis(DiEthylAmido)Titanium (TDEAT)
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Figure 2.2: Skeletal formula of tantalum TBTDET precursor molecule

and Tetrakis(DiMethylAmido)Titanium (TDMAT) [17, 56–61].

Table 2.2: Comparison of TDEAT and TDMAT precursors

TDEAT TDMAT

Formula Ti(NEt2)4 Ti(NMe2)4
Molecular Weight 336.4 g.mol−1 224.19 g.mol−1

Boiling point 60◦C @ 1 Torr 65◦C @ 1 Torr
Vapour pressure 1 Torr @ 100 ◦C 0.0067 Torr @ 25 ◦C

Flash point 10 ◦C NA

Previous investigations showed that, even if TDEAT has a higher temperature process win-

dow it is more suited for TiN MOCVD and ALD deposition [59]. Advantages over TDMAT

include: better decomposition of the precursor molecule and lower resistivity obtained at the

same substrate temperature.

Hence, if the process temperature can be above 250◦C then TDEAT precursor is a better

choice. Because metal for the gate can be deposited at temperatures up to 400◦C without

any damageable consequences on the substrate, TDEAT was chosen.

TDEAT molecule is presented in the diagram figure 2.3.

As for tantalum molecule, titanium precursor do not present any carbide bonds, the metal

atoms are only bonded with nitrogen atoms.

Finally, to do the doping of tantalum and titanium nitride layers, aluminium was chosen.

Aluminium doping was already widely studied in the case of PVD deposition and proved to

be efficient for work function shift of the TiN from p-mos to n-mos [62, 63]. However, it was

not reported any CVD doping or bi-metal deposition investigation.

Aluminium precursor:

Doping of tantalum and titanium by aluminium arose new problematics and constraints. Yet,
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Figure 2.3: Skeletal formula of titanium TDEAT precursor molecule

only one precursor fitting the deposition module’s constraint was commercially available.

TriMethylAluminium (TMA) was used to dope the TaN and TiN metals [23].

Table 2.3: TMA characteristics

TMA

Formula Al(Me)3
Molecular Weight 72.1 g.mol−1

Boiling point 126◦C @ 1 Torr
Vapour pressure 9 Torr @ 20 ◦C

Flash point -17 ◦C

TMA molecule is presented in the diagram figure 2.4.

Figure 2.4: Aluminium TMA precursor molecule

TMA molecules do not contains Al-N bonds to avoid the formation of AlNx alloys which are

insulating, thus highly undesirable as metal gate material.

Many articles in the literature report about the use of TMA molecule. Although, it has been

used only for deposition of aluminium oxide [64–68]. Thus all of the work on Al doping will

be innovating and new problematics might arise.
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2.2.2 (Plasma Enhanced) Metal-Organic Chemical Vapour Deposition

2.2.2.1 MOCVD principle

With the constraints of high conformity and low roughness presented in the Chapter 1 one

of the most investigated deposition method for metal gate is the Metal-Organic Chemical

Vapour Deposition (MOCVD).

MOCVD is a versatile and flexible method for deposition of thin films [46, 69, 70], with a

wide variety of materials available, see Appendix B. It involves a few number of sequential

steps, starting from vapour phase delivery to the reactor, progressing through a series of

quasi steady-state sub-processes happening at the substrate surface, and concluding with

the formation of solid thin film in its final micro-structure.

Sequence of MOCVD deposition is schematically illustrated in figure 2.5 and the individual

sub-processes are described below.

Figure 2.5: MOCVD reaction mechanisms

a Precursor introduction: Precursor is delivered to the reactor in vapour phase. The

precursor vapours are transported to the reaction zone by inert gases such as helium

or argon.

b Reactions occurring in the gas-phase: The precursor molecules present in the reactor

may interact with each other or with reactant gas prior to deposition, thereby resulting

in heterogeneous nucleation and sometimes even in powder formation. Formation of

particles in the gas phase endangers the repeatability, the ”cleanness” and the quality

of the deposited films and hence gas phase reactions should be avoided.
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c Diffusion of the precursor molecules to the surface: Transport near to the solid sur-

face is always dominated by diffusion mechanism. When uniformly distributed diluted

precursor vapours are forced over the flat substrate, the velocity profile develops aver-

ages with no net motion, that is, the velocity is zero when adjacent to the substrate

or the reactor walls. The gaseous layer between the substrate and the position where

the velocity is maximum, is called the boundary layer (see figure 2.5). Through the

boundary layer precursor vapours are not carried by the vector gas but via diffusion

through the layer to the substrate surface. The rate of diffusion depends on the total

reactor pressure, temperature and the concentration of precursor molecules in the gas

phase present above the boundary layer.

d Adsorption of the precursor molecules at the surface: the precursor molecules after

diffusing through the boundary layer are absorbed on the substrate surface. Usually,

the adsorbed reactants are assumed to be in equilibrium with the reactants in the gas

phase.

e Migration (surface diffusion) of the adsorbed species: the adsorbed species undergo sur-

face diffusion phenomenon and migrate prior to reaction. This migration phenomenon

was not proven until today but it is the main hypothesis for island growth explanation

[71].

f Precursor decomposition at the surface and film growth: the molecules of precursor

adsorbed, either react with their neighbouring molecules, with the substrate, or with

the molecules present in the gas phase to form a film.

g Desorption and diffusion of the reaction by-products: the reaction by-products which

are formed as a result of surface reactions, and which do not contribute in film forma-

tion, desorb from the surface and diffuse out through the boundary layer. This step is

defining the choice of the precursor, so as only volatile by-products are formed during

the reaction path. Similarly the unreacted precursor molecules also desorb and diffuse

through the stagnant boundary layer.

h Removal of by-products: volatile by-products and the unreacted precursor molecules

are pushed out from the reactor by bulk gas flowing in the reactor.

Since MOCVD process occurs through a sequence of sub-process, the slowest sub-process is

the overall deposition rate determining step.

Generally for a CVD process three different film growth regimes are apparent, they are

introduced figure 2.6. From Arrhenius plot (figure 2.6), which is the plot of growth rate versus

the inverse of temperature, the three rate determining cases depending on the substrate

temperature can be clearly understood.

In other words, growth rate is determined by:

• supply of the precursor to the reactor growth zone. When step a or h, previously

introduced, is the slowest step then the MOCVD process is said to be in the depletion

region. Mass transport is responsible for precursor supply to the reactor zone and

removal of the reaction by-products as well as the unreacted reactants from the reactor.
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Figure 2.6: Film growth regimes for a CVD process

• diffusion of the precursor molecules through the boundary layer. When step c or g is the

slowest process, the MOCVD reaction is said to be in the diffusion control region.

Diffusion rate determining region is generally observed at relatively higher substrate

temperatures. This is because at low substrate temperatures, precursor molecules with

high rate of diffusion will not decompose quantitatively. Since growth controlled by

diffusion begins at high temperatures, where almost all the precursor molecules that

touch the substrate surface react to form the film, further increase in the deposition

temperature does not show significant effect on the growth rate. Thus diffusion con-

trolled region can be said to be independent of the substrate temperature, however

generally non-uniform and rough film surfaces are obtained, due to gas flow dynamics.

• surface phenomenon occurring. When either step d, e or f is the slowest process, the

film growth is said to be in a kinetic control region. Process such as precursor

adsorption, surface reactions and desorption of the by-products are kinetic processes.

Growth rate limited by chemical kinetics occurs at low temperatures and the growth

increases exponentially with increase in temperature following the Arrhenius equation

[72]. Because the reactions are slow compared to the diffusion through the boundary

layer, the diffusion length of the precursor molecule is long. This results in a smooth

uniform film growth and enables conformal growth over large substrate area.

2.2.2.2 Plasma for MOCVD enhancement or densification

Introduction to plasma

Taking into consideration the energy of the particles, plasma is often defined as the fourth

state of matter, apart from solids, liquids and gases [73]. In a more rigorous way, plasma

can be defined as a quasi-neutral gas of charged and neutral particles characterised by a

collective behaviour (plasma waves and oscillations).

Chemically reactive plasma discharges are often used to modify the surface properties of

materials, but plasma can also be used to activate some reaction mechanism, for example by

breaking down the precursors molecules, thanks to the extra energy brought [74].
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A plasma is defined by a large number of parameters, such as power, frequency, pressure,

flow rates, temperatures, type of electrodes and reactor type/geometry. These parameters

are often interdependent but interact mutually in determining the material properties.

Once a plasma is stabilised and controlled, it can be characterised by the following basic

parameters:

• the density of neutral particles, nneutrals.

• the densities of electrons and ions, ne and ni. If the quasi-neutral state model of plasma

is taken into consideration, then the following relation is true:

∑

α

qαnα = 0 (2.2)

with qα the charge and nα the density of the specie α.

• energy distributions for neutral particles, ions and electrons

• temperatures of the different species in the plasma

• degree of ionisation of the plasma

The plasma density, which controls the electron density, is an important parameter in plasma

processing because the efficiency of the processes occurring in the plasma depends on the for-

mation of radicals. Indeed chemical bonds of the precursor molecules are broken by electron

or energetic ions. A parameter that defines the density of charged particles in the plasma

is the degree of ionisation. It specifies the fraction of particles in the plasma phase that are

ionised.

For plasma used in this work and sustained at high pressure (more than 1 Torr) the degree

of ionisation was calculated to be typically between 10−4 and 10−1.

Plasma Enhanced MOCVD

Plasma Enhanced MOCVD (PEMOCVD) is a plasma activated deposition. Deposition of

layers by PEMOCVD is the most complex of all plasma surface treatment techniques. In-

depth understanding is still limited, and the development of new deposition processes is

mostly empirical.

In thermal CVD processes, the surface reactions are usually determined by thermodynamic

considerations and controlled by the temperature of the reactor and substrates, as presented

earlier. Whereas in PEMOCVD, plasma can induce several chemical reactions, each inter-

acting with the others and can result in unexpected characteristics of the deposited material.

Because most radicals react with the surface, the composition of the films deposited by PE-

MOCVD is determined to a large extent by the relative fluxes of all the species forming

the film. New reactions activated by plasma may be considered as an advantage because it

allows the formation of new materials, not conceivable thermodynamically, although it may

also be a disadvantage as it complicates the study of the parameters of reaction control and

reproducibility of the composition.

Plasma densified MOCVD

Plasma densified MOCVD is a thermally activated deposition, including a plasma step for
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densification of the deposited layer. In this case the plasma is used to expel the reaction

by-products and brings some energy to allow ordering of the atoms which can, for exam-

ple, facilitate the creation of crystals. Material properties depend on the thickness of the

deposited layer at the densification step and on the length of the densification step [16],

however densification on thicker layers leads to the creation of a gradient in the material

(either of composition, or of density).

This method is quite similar to the Atomic Layer Deposition, which will be presented in

details section 2.2.3, especially if only a really thin layer or a monolayer is deposited before

densification.

2.2.2.3 MOCVDs tool description

Part of the materials presented in this work were deposited using an AltaCVD Advanced

MaterialsTM reactor produced by AltaTech, France, allowing (PE)MOCVD deposition on 300

mm substrates. The deposition chamber was specifically designed for Liquid Metal-Organic

deposition (LIMOCVD) with and without plasma assistance. It also includes the in-situ

characterization tools for Optical Emission Spectroscopy (OES) and X-Ray Photoelectron

Spectroscopy (XPS). A schematic representation of the deposition chamber and the gases

inputted is given figure 2.7.

Figure 2.7: Schematic representation of the AltaCVD Advanced MaterialsTM de-
position chamber

Liquid precursor is pushed by He vector gas and brought to the heated injectors, where the

frequency, opened-time of the injector and pressure allow a control over the quantity of liquid
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injected.

Injectors are made of three important parts, the liquid injection needle, the gas injection

needle and a mixture chamber. After each liquid injection to the mixture chamber He gas

is introduced to the mixture chamber so all the liquid can be pushed to the evaporating

furnace. The evaporating furnace is at the same pressure as the deposition chamber, a few

Torr, which is 106 times lower than the injection pressure. As a consequence the liquid/gas

mixture is sprayed into the evaporating furnace in droplets of a few nano to micro litres.

Heating of the evaporating furnace avoids condensation of these droplets on the walls and

allows the transfer of the precursor to the deposition chamber.

To enter the deposition chamber, the precursor mixture is going through a double threaded

shower. Half of the openings are dedicated to the precursor while the second half is for the

reactant and/or process gas. This separation delays the activation of the reaction between

precursor and reactant gas, avoiding the step b presented section 2.2.2.1.

Figure 2.8: Picture of the actual AltaCVD Advanced MaterialsTM tool

This tool is a pre-industrial model, with an uniformity comprised between 5 and 10% on

300 mm wafer and less than 50 particles added with a size comprised between 90 nm and

250 nm. These specifications make it suitable for microelectronic industry.

2.2.2.4 Advantages, limitations and constraints

MOCVD has the advantage of being a surface reactant deposition, i.e. deposition is confor-

mal whatever the pattern of the device. Moreover the growth rate of MOCVD can vary from

few nanometres up to several microns per minutes depending on the deposited material and

the reaction mechanism. In this study due to the thin layers aimed at the lowest deposition

rate was preferred in order to have a better control over the deposited thickness.

One of the main advantage of the AltaCVD Advanced MaterialsTM tool, is the possibility

to inject four precursors through the four separated liquid lines. It allows the development
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of metallic alloys, but also the stacking of metals without vacuum-break, avoiding oxidation

of the metals.

MOCVD has the disadvantage of bringing carbon contamination in the deposited layer, to

limit this contamination, importance has to be granted to the efficiency of the deposition

reaction and on the exhaust of by-products. The other limitation of MOCVD is that the

deposition is dependent on a thermodynamic reaction mechanism, it is a chemistry driven

process and thus not every compounds or alloys can be deposited. The use of plasma in

PEMOCVD can be a solution to rectify this shortcoming. Another way to successfully do

the deposition is to develop new precursors with different reaction mechanism or lower acti-

vation temperatures [75].

2.2.3 (Plasma Enhanced) Atomic Layer Deposition

2.2.3.1 Principle

Atomic Layer Deposition (ALD), also called Atomic Layer Chemical Vapour Deposition

(ALCVD) is a particular method of the MOCVD group.

The main difference of ALD is that the complete deposition reaction is made by steps. First

the precursor, in the gaseous phase, is introduced in the chamber and thermodynamically

reacts with the heated substrate to form a monolayer. This reaction of the precursor with

the substrate is a limited and self-saturated reaction. In a second step excess of precursor is

pumped out of the chamber before the third step: introduction of reactive gas. Reactive gas

is used to activate the deposited monolayer, before another introduction of the precursor, by

creation of nucleation sites thanks to new surfacing ending. Activation of the layer means

to liberate all the possible growth sites on the substrate. In figure 2.9 are presented the

succession of steps forming a cycle.

During a cycle, precursor and reactive gas are not present in the deposition chamber at the

same time, thus limiting unwanted reactions in the gas phase as introduced section 2.2.2.1.

Thanks to the self-saturated reaction the thickness is proportional to the number of cycles,

which makes it easy to obtain the aimed thickness by adapting the number of cycles.

Like for CVD, each ALD process has an ideal process ”window” in which growth is saturated

at a monolayer of film. As presented figure 2.10, this ALD window is temperature and growth

rate dependant. If the temperature is too low, the precursor can condensate on the walls of

the reactor or the reaction mechanism may not be activated. On the other hand, with a too

high temperature, desorption of the precursor from the substrate may happen or it might

decompose before the activation step and unwanted reaction may occur.

Several activation step mechanisms are available, i.e. the reactive gas introduction can be

replaced by a plasma, for further densification of the film and surface sites activation. This

variation of the ALD process is called Plasma Enhanced ALD (PEALD). Plasma has the

same advantage as in the PEMOCVD, it allows some non-favourable reaction mechanism
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Figure 2.9: Succession of ALD steps to form a layer

Figure 2.10: ALD process window

[16]. Moreover, excited radicals created in the plasma can easily form volatile species with the

carbonate by-products of deposition reaction, leading to better removal of the by-products

and thus lowering contamination levels.

2.2.3.2 Tool description

To have a good control over the entering flow of precursor and reactant gases pulsed valves

with high speed actuation have to be chosen for the ALD reactor. Their role is similar to the

injectors in the LIMOCVD reactor AltaCVD Advanced MaterialsTM. Unlike LIMOCVD,

precursor is brought from the canister to the substrate in the gas phase. Instead of using a

vector gas to push the precursor out of the canister, the vector gas is entered in the liquid

precursor to create bubbles and then carry to the deposition chamber the molecules in the

vapour phase. In this case the canister is called a bubbler.

Description of the (PE)ALD deposition chamber is given figure 2.11. As seen on this figure,

precursor and reactant gas are entering the chamber through the same one-stage shower. This

can be done thanks to the alternation of precursor and reactant gas during ALD process. To

limit the creation of particles due to some precursor or gas residues in the shower, the purge

step has to be carefully tuned to remove any exceeding reactant.
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A ring for outgoing gases is used in order to distribute the precursor and reactant gas equally

on all the wafer and thus to improve the uniformity of the layer.

Figure 2.11: Deposition chamber scheme of ALD tool

This tool is an industrial model, with an uniformity below 5% on 300 mm wafer and less

than 50 particles added with a size comprised between 90 nm and 250 nm.

2.2.3.3 Advantages, limitations and constraints

ALD has the advantage of even better conformity than MOCVD, thanks to the self-saturated

monolayer deposition, with ultra high aspect ratio > 100:1 proven [48].

As MOCVD, ALD has the advantage of being a gentle deposition process, which can be of

use for sensitive dielectrics/substrates. It is due to the fact that the molecules of precursor

reach the substrate with no energy and no parasitic reaction is supposed to happen if the

precursor is chosen well accordingly to the qualities and weaknesses of the substrate.

However, in some cases the deposition temperature can be an inconvenient. As the deposition

reaction is only thermodynamically activated it is not possible to reduce it, thus impacting

substrates for example in the case of metal deposition on polymers.

Main limitation of the ALD is the relatively low deposition rate, between 0.5 and 1.5 Å per

cycle, with a cycle being about 10 seconds up to one minute long. This low through-put

is highly investigated by manufacturers to increase the number of ALD chambers used in

industry [35, 44, 48], some of the solutions include batch processing [76].
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2.2.4 Physical Vapour Deposition

2.2.4.1 Principle

During Physical Vapour Deposition (PVD) a material is converted to the gas phase in a vac-

uum system by evaporation or sputtering on an atomic scale. The gas hits the samples to be

coated and is deposited there as a nanometre-to-micrometre-thick layer, deposited thickness

being directly related to the sputtering time. During the entire deposition process, which is

divided in three stages: conversion to the gas phase, movement to the samples and conden-

sation on the surface of the sample; only the aggregate state of the material changes from

”solid” to ”gaseous” and back to ”solid”. However, it basically remains the same material

in terms of chemistry, on the contrary to CVD.

A key component of the PVD is the vacuum system. It is necessary during the evaporation

step to remove the particles present between the source and the substrate. By doing so,

evaporated particles have a straight path to the substrate, i.e. the mean-free-path is made

long enough for the matter to reach the substrate. The pressure range depends on the de-

posited material and on the evaporation means but is typically included in a 10−2 to 10−7

Torr range [77]. Deposition is usually done at 20◦C.

Vaporisation of the material can be achieved by several means, including electron bombard-

ment, plasma discharge, electrical heating, laser decomposition and electric arc discharge.

In this study a plasma of argon (Ar) was used to create the necessary ion bombardment for

sputtering.

Additionally, reactive gas such as nitrogen may be introduced into the vacuum chamber

during metal deposition to create metallic compounds. Variation of the reactant gases flows

results in a variation of the stoichiometry of the deposited material [20, 77].

2.2.4.2 Advantages, limitations and constraints

PVD has the possibility to create pure metals, which is complicated using MOCVD and

ALD, except if chloride or fluoride based precursors are used. Contamination in the de-

posited layer is dictated by the purity of the vaporised material, which is at least 99.99%

and usually 99.999% for microelectronic grade.

As the deposition is controlled by the sputtering, many materials can be used in PVD process,

i.e. whatever specie that can be purified and that can form a target. Moreover, deposition

by PVD is done at room temperature, no heating of the substrate is needed. This and the

low energy of the atoms reaching the substrate allow deposition of many materials on every

possible substrate with limited damages.

Moreover compared to MOCVD and ALD, PVD has the advantage of not using liquid pre-

cursors which are highly toxic and reactive at the air. That advantage is overcame when the

source material is used and a new one has to be installed. For MOCVD and ALD a canister

is easily changed when empty, but to replace the PVD target the deposition chamber has to
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be opened, a quite long and fastidious maintenance.

Biggest inconvenient of PVD is the non-conformity of the deposited layer. Indeed, due to

the low energy of the atoms and the geometry of the deposition chamber, atoms are landing

with a perpendicular path to the substrate, which makes it impossible to deposit on the

vertical walls of any pattern present.

Finally, due to the inertness of the sputtered atoms, it is not possible with PVD to deposit

alloys. Only bi-metals are deposited, meaning that no bonds are created between the two

deposited species. Stoichiometry of the layer is then easily controlled by the distance to the

substrate or the power used when sputtering of two targets used for the bi-metal or by the

stoichiometry of the target when only one target of a bi-material is in use.

2.3 Characterization tools

2.3.1 Four points probe

2.3.1.1 Technique description

A basic property of a conductive material is its electrical conductivity, or opposite the re-

sistivity. The electrical resistivity is determined by the availability of ”free electrons” in the

material. In turn, the availability of free electrons is determined by the physical binding

properties of the material on a molecular level. It implies that the impurities or dopants

added to a material will either increase or decrease its resistivity.

Thus measurement of the resistivity is used to both characterise the material and as a process

control parameter.

To obtain the resistivity of a material, one must measure the sheet resistance. To do so a

current has to pass through the end of a thin conducting sheet, which has to be deposited on

an insulating material. The sheet has a length, a width and a thickness. The length/width

ratio is determined by the probe used, thus knowing the thickness of the layer it is possible

to determine, by Ohms Law equation 2.3a, the resistance of one square, named Rs (see

equation 2.3c), by sending a current through probes 1 and 4, figure 2.12, and measuring the

voltage at the probes 2 and 3 figure 2.12.

Rs = V ÷ I (2.3a)

Rs = resistivity ×
length

(thickness× width)
(2.3b)

resistivity = Rs× thickness (2.3c)

with R the resistance, V the voltage, I the current, thickness, width and length the dimen-

sions of the conductive sheet.

That way the measured voltage corresponds to the circulating voltage into the sample with
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Figure 2.12: Four-points measurement of resistance

no current.

2.3.1.2 Advantages, limitations and constraints

Resistivity measurement is the easiest way to control a process and survey any deviation of

the process. By a fast measurement it is possible to know if there is change in the compo-

sition or grain size of the material, when the thickness is known, or to know if there is a

change in the thickness when the composition and grain size are known.

Thus, the main disadvantage of resistivity measurement is the need of knowledge of another

characteristic of the material to conclude on any variation.

Uniformity of the layer is the only characteristic at reach by a resistivity measurement alone.

As the resistivity is given directly from the measure, meaning that there is no need of

mathematical calculation, four point probe is widely used for process control and process

development. Although, due to the size of the probe about 1 cm of the edge of the wafers

can not be measured and as to be taken into consideration as it represents 1/16 of the wafer

total area.

To be able to measure the resistivity of a layer few conditions have to be respected. First,

as explained previously, deposition has to be done on an insulator material, usually a thick

layer (about 100 nm) of SiO2 is used. Then, the resistivity of the layer has to be in the

measurable range of the tool, typically obtained for a layer at least 10 nm thick and with a

controlled level of oxidation. For example Al layer can not be measured as a thin (about 3

nm [78]) but highly insulating alumina layer is formed at vacuum break.

The biggest con against resistivity measurement is the fact that it is a destructive measure-

ment. Indeed, when the probes are in contact with the sample, the pressure applied can

locally damage the deposited layer. As usually 49 points are measured on a 300 mm wafer

the impact is too significant to consider any other measurement on the same sample.
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2.3.2 X-Ray Reflectivity

2.3.2.1 Technique description

X-Ray Reflectivity (XRR) is a non-contact, non-destructive, surface-sensitive analytical tech-

nique. Analysis of X-Ray reflection intensity curves from grazing incident X-Ray beam2 is

used for determination of thin-film parameters including thickness, density, and surface or

interface roughness of a layer or a stack of layers.

When X-Rays are irradiated onto the sample at very low angles there is total reflection of

X-rays from the sample surface. As the angle of irradiation is gradually increased beyond a

certain angle called critical angle, which is dependent on the material, X-rays are reflected

from the interfaces of the sample and give rise to interference fringes. As shown figure 2.13

left, the periodicity of the fringes is proportional to the thickness of the film, the fall of inten-

sity is proportional to the roughness of the film and amplitude of the fringes is proportional

to the density of the top and bottom layers, figure 2.13 right.

Figure 2.13: Evolution of XRR spectra with thickness and density variation

2.3.2.2 Advantages, limitations and constraints

Advantage of XRR over different thickness measurements techniques (like ellipsometry), on

top of the possibility to measure non transparent samples, is that no properties of the film

are required to understand the spectra obtained. On the other hand it is limited to samples

with a thickness of maximum 300 nm, due to the absorption of the X-Ray by the material,

which is not a constraint in this study.

Reducing the noise/signal ratio for multilayered samples is essential to obtain a spectra which

allows interpretation of the interfacial roughness and interactions (such as the creation of an

oxide) and can be obtained only by longer signal acquisition.

Compared to other thickness measurement methods, like ellipsometry, XRR is an absolute

measure which does not need calibration to access the layers information. This advantage is

significant for the new materials development.

2See Appendix C for description of X-Ray generation
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XRR has one limit, in metal gate application, that cannot be overcome. In fact, this limit

is due to the principle of XRR and corresponds to the correlation between the arches size

and the thickness of the sample. When measuring samples of 2 nm or less, the arches are so

large that they are not visible with the available angle range. To face this problem thicker

layers are used for process development and the thickness is adapted only for integration.

2.3.3 X-Ray Diffraction

2.3.3.1 Technique description

XRD is a bulk characterisation technique which is highly sensitive to crystal structure. XRD

allows for rapid, non-destructive qualitative and quantitative analysis of ordered materials.

An X-rays wavelength, of a few Å, is comparable to interatomic distances and so, an incident

X-ray beam is scattered by individual atoms in all directions. In randomly distributed

atoms, such as those in an amorphous material, scattered rays will have a random phase

relationship relative to one another and neither full constructive, nor destructive, interference

will occur. In a crystal where atoms are arranged periodically on a lattice, scattered beams

will have definite phase relationships. These phase relations are such that, in most directions,

destructive interference occurs giving almost zero intensity. In a few directions the scattered

beams will be completely in phase and so, constructively interfere to form diffracted beams,

as represented figure 2.14.

Figure 2.14: Schematic representation of interactions that result as an X-Ray beam
hits a sample

These diffracted beam directions are those that satisfy Bragg’s law, equation 2.4. It can

be understood by considering entire crystal planes as the scattering entity, rather than the

individual scattering centres within the plane. Strong diffraction occurs when:

nλ = 2dsinθ (2.4)

where n is an integer representing the order of diffraction, λ is the X-Ray wavelength, d is

the spacing between atomic planes and 2θ is the scattering angle in the plane of the source
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and detector.

The Bragg law is simply a consequence of the periodicity of the lattice and makes no refer-

ence to the arrangement of atoms in the basis associated with each lattice point. This way,

the Bragg law merely represents the minimum condition for diffraction of X-rays by a set

of parallel planes. The amount of radiation reflected, if any, when the Bragg condition is

met depends on the structure factor; a mathematical description of how the crystal scatters

incident radiation. This essentially determines the scattering at a given angle by multiplying

the scattering strength of (i) an electron or nucleus, (ii) an atom, (iii) an unit cell and (iv) the

total number of unit cells, all with regard to the direction of scattering and the relative phase

of the scattered waves. The phases may add up or cancel, hence some reflections are not seen.

In this study XRD is used to:

• examine the crystallinity of the samples

• find the crystal structure of a material

• determine the preferred orientation of the grains

Finally giving access to the crystal structure of the material, with the preferred crystalline

orientation and the lattice length using reference database for comparison [79].

2.3.3.2 Advantages, limitations and constraints

Main limitation of XRD is the obligation to use thick layers to have a visible diffracted

signal. Besides, crystallography is influenced by the thickness of the layer, a thin layer can

be amorphous and at some thickness there may be enough energy in the system to change

towards a crystalline structure. As a consequence, for thin layers if no signal is acquired

it does not mean that the layer is amorphous, it may be a limitation from the sensor or

acquisition time resulting in a low signal/noise ratio.

With thick layers, XRD is a powerful and rapid (<30 min) tool for identification of the crys-

tal phases in a material. Moreover, identification of the phases is clear with the important

database available. Determination of the peaks present in the spectra is relatively straight

forward, there is no necessary deconvolution or mathematical fitting.

However, homogeneous and single phase material are best for identification of a material

crystallinity. Superposition of peaks can lead to some misinterpretation of the phases really

in the layer.

Last but not least, to reduce the signal/noise ratio and acquire a better signal the needed

time of measurement is exponential.
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2.3.4 Secondary and Transmission Electron Microscopy

2.3.4.1 Technique description

In electron microscopes, samples are imaged by electron beams that are used as ”illumination

sources”.

An electron beam has a wavelength many orders of magnitude shorter than that of light (for

example, 100keV electrons have a λ = 3.7 pm), which gives much higher spatial resolution

than what is achieved by optical microscopes. Instead of optical lenses, electron microscopes

rely on magnetic and electrostatic fields which act as electron lenses to focus the electron

beam and form images.

When a high energy electron beam hits a sample, various interactions between the electrons

and the atoms take place, as can be appreciated from the figure 2.15. These interactions

give important information about the structure of the matter.

Figure 2.15: Schematic representation of interactions that result from an electron
beam hitting a sample

For surface imaging the secondary electrons are used in a Scanning Electron Microscope

(SEM). Indeed, the number of secondary electrons is a function of the angle between the

surface and the beam. On a flat surface, the plume of secondary electrons is mostly contained

by the sample, but on a tilted surface, the plume is partially exposed and more electrons are

emitted. By scanning the sample and detecting the secondary electrons, an image displaying

the tilt of the surface is created. The image is obtained by raster scan pattern of the sample,

to achieve a maximum resolution of a few nanometre.

For better resolution Transmission Electron Microscopy (TEM) can be used. Figure 2.15

shows that some incident electrons are transmitted for samples thin enough. In a TEM the

transmitted electrons are focused into an enlarged image on a sensitive screen. Depending
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on the interactions that occur within the specimen the transmitted electrons can be identi-

fied in three groups: unscattered, inelastically scattered and elastically scattered electrons.

Unscattered electrons go through the sample without any interaction occurring. They do

not change either their trajectory or their energy. Inelastically scattered electrons interact

with the sample atoms, losing some energy due to the collisions, but the process occurs with

very little deviation. Finally elastically scattered electrons interact with the heavy atoms

and their trajectory is affected without loosing any, or very little, energy.

The essential specimen requirement for TEM analysis is that the sample must have low elec-

tron energy loss, so that a sufficient amount of electrons are transmitted and form an image.

Therefore, TEM samples must be thin enough in the travelling direction of the electrons to

avoid strong inelastic collisions and electron energy loss. Thin films of the order of 100 nm

are usually required for good images acquisition.

2.3.4.2 Advantages, limitations and constraints

Depending on the wanted magnification, SEM is an easy to operate tool with rapid acquisi-

tion (less than 5 min).

On the other hand, TEM sample preparation, which includes griding and ion beam polish-

ing, is time-consuming. Once the sample is ready, TEM observation requests an important

stabilisation time of the chamber vacuum and sample vibration, which makes it not easy to

control and requires long analysis time.

SEM and TEM analysis are done in Ultra-High Vacuum (UHV) to limit the interactions

between the electrons and the atmosphere of the chamber. And to pump to UHV faster

small acquisition chambers are in use, which makes it necessary to cut the wafers before

observation. These two techniques are thus considered as destructive observations.

Thin layers can be difficult to observe by SEM because of a charging effect appearing when

the sample is not conductive, or for layer of less than 2 nm due to the small volume of con-

ductive material, especially when deposited on an insulating layer (i.e. metal gate on high-κ

dielectric).

Finally whereas SEM can give only some approximation of the dimensions as it is not cal-

ibrated, TEM can use the visible crystalline Si lattice for size comparison and precise esti-

mation of layers thicknesses.
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2.3.5 Electrical measurements

2.3.5.1 Technique description

To obtain the electrical characteristics of a metal the Capacitance-Voltage (C-V) and Current-

Voltage (I-V) measurements are used3. These measurements are made on a MOS capacitor,

which is basically a MOSFET without source and drain. Electrical measurements offer a lot

of information on the metal, the dielectric, the SiO2 interfacial layer and the interfaces, with

an extraction of the equivalent oxide thickness (EOT), flatband voltage (VFB), threshold

voltage (VT ) and leakage current (Jg).

Measurements are done using probes to connect the electrical bench with the sample made

of a plug, a conductive metal, an insulating dielectric and the semiconductor substrate, as

presented in figure 2.16.

Figure 2.16: Schematic representation of the capacitor used for electrical measure-
ments

From the hysteresis curve are extracted the EOT, the work function, the amount of default

at interface and the current leak. The targeted work function and current leak gain are given

in the figure 2.17, left and right respectively.

The current leakage gain compared to SiO2 at the same thickness is given by the lines with

the number of decades gained. HfO2 which was chosen as dielectric for the metal-gate ap-

plication is expected to have a current leak gain of 104 compared to SiO2.

2.3.5.2 Advantages, limitations and constraints

Main advantage of the electrical measurement, which can also be considered as a constraint,

is the necessity to have a plug for connection between the metal gate and the measurement

probe. It is an advantage thanks to the thermal budget used for deposition of the plug,

budget also present when the metal is integrated in a device. However, this thermal budget

may be a constraint as it can impact the properties of the studied stack.

3Capacitance is defined by the amount of charge stored between the electrodes when applying a unit
voltage.
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Figure 2.17: Targeted work function for p-mos and n-mos transistors (left) and
expected current leakage gain compared to SiO2 (right) for 14 nm technology node

Physico-chemical measurements are always done before plug deposition, due to the important

thickness of the plug compared to the depth of measurement of XPS for example. Hence,

thermal budget of plug deposition has to be taken into account when comparing the physico-

chemical measurements and the electrical characteristics of a metal/dielectric stack.

Like every other measurement, electrical characterisation becomes more and more compli-

cated as the thickness of the layers studied shrink. Because of the high leakage current and

low EOT the ratio signal/noise is decreasing and extraction of electrical characteristics calls

for huge knowledge background of both the electrical properties of materials and the changes

that might be brought by process deposition.

2.3.6 X-Ray Photoelectron Spectroscopy

X-Ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis

(ESCA) is an electron spectroscopy method which uses X-Ray to eject electrons from their

core level. It is a surface analysis technique (maximum analysed depth is about 10nm) which

can be used for every solids, is non-destructive for conductive materials and allows the detec-

tion of every elements except hydrogen and helium [80–83]. This technique is quantitative

and permits the determination of composition from the analysed sample, bonding environ-

ments (also called chemical environments) of each element is also at reach.

2.3.6.1 Principle

The principle of photoelectron spectroscopy is based on the interaction between an electro-

magnetic wave (X-Rays) and a material (atoms). Since the XPS spectrum directly reflects

the electronic structure of a material, it provides information on electron configuration and

energy levels within atoms. The process of photoelectron emission from a solid is divided

into 3 stages:

37



Chapter 2.

a. First, X-Rays are absorbed by atoms, and photoelectrons are emitted (photoelectron

emission process);

b. Next, part of the photoelectrons generated within the solid move towards the surface

(electron attenuation length (escape depth));

c. Then, the photoelectrons which have reached the surface are emitted into the vacuum

(work function).

To limit any interaction between the emitted photoelectrons and the atmosphere of the anal-

ysis chamber, an Ultra-High Vacuum (UHV) of minimum 10−8 Torr is necessary. Thus, the

depth of analysis is defined by the second stage of electron attenuation, as the deeper the

photoelectron is emitted in the material the more collisions and energy loss are likely to

happen.

Photoelectron emission process and work function

Surface of the sample is irradiated by a beam of X-ray photons. Core levels with lower

energy than X-rays energy can be excited and emit an electron by photoelectric effect, at a

given energy. Measurement of this kinetic energy informs on the binding energy of the main

electronic levels from each elements after the following equation:

Ek = hv − El − Φdet (2.5)

where Ek is the kinetic energy of the electron entering the sensor (measured), hv the X-ray

photons energy (known), El the binding energy of the core level electron (referenced in rela-

tion with Fermi level of the sample) and Φdet the work function of the spectrometer (constant

and known).

XPS analysis gives access, with high precision, to every energy levels for each element present

at the surface of the analysed sample. Binding energies are specific to each element and are

influenced by the chemical environment, i.e. by chemical bonds of the element with its

neighbours.

Thus, XPS gives access to information on:

• qualitative and quantitative identification of all elements presents at the surface of the

sample;

• identification of chemical environment for each element by analysis of electronic levels

shifts compared to referenced levels.

But before getting to these two information, three principles have to be introduced.

Electron attenuation length (escape depth)

Photoelectrons generated within a solid interact with other electrons, plasmons, phonons

and will gradually lose their energy. Thus, only those photoelectrons that are generated near

the top surface of the solid can escape from the sample into the vacuum.

The attenuation length of photoelectrons is defined as the average distance at which the

number of electrons escaping without energy loss due to inelastic scattering decreases to 1/e
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(36.8%) [84] of the original value. Attenuation length physically determines the analytical

region in depth and ranges from 4 to 10nm in XPS, depending on the material density, con-

ductivity and mass attenuation coefficient.

In practice, attenuation length is the inelastic mean free path empirically obtained by over-

layer film method, but the measurement results fluctuate considerably due to the influence

of elastic scattering and the difficulty in the experiment. The inelastic mean free path, the-

oretically calculated from the energy loss function, can also be used instead of attenuation

length [84].

XPS spectra composition

Spectra obtained by XPS are composed by:

• Photoelectrons peaks: they correspond to the photoelectrons emitted by core level.

With high intensity, narrow and generally symmetrical, these peaks are the one used

for XPS analysis. They are referenced in literature with energies given depending on

their neighbours [81].

• Auger peaks: they are a product of Auger electron emission when an electron from

upper material takes the place of a core electron ejected by photoemission. Thanks

to reference tables they are easily identifiable and can be used for Auger spectroscopy.

Their kinetic energy is independent from the source energy.

• Shake-up and shake-off satellite peaks: shake-up features occur when additional elec-

tron energy level transitions take place during the photoelectron emission process.

Shake-off is a sudden change in Coulombic potential as the photo-ejected electron

passes through the valence band.

• Plasmon peaks: they originate from collective excitations of the valence band. Extrinsic

plasmon are excited as the energetic photoelectrons propagates through the solid after

the photoelectric process. But intrinsic plasmon correspond to the screening response

of the solid to the sudden creation of the core hole in one of its atom.

• Background : Electrons emitted within the sample may undergo inelastic collisions thus

altering the energy of the electron recorded by the detection system. These energy loss

processes result in a background of counts that derives from electronic states other

than the characteristic energies for the photoelectric lines, but moreover the shape of

the background takes on a character determined by the probability distribution for

electrons with a given kinetic energy undergoing some modification to their initial

value. Only empirical models can be used to subtract the background in a spectrum

[85].

All these features are visible on the Ti2p spectra displayed in figure 2.18.

Charging effect

It is noteworthy that XPS analysis of an insulating sample leads to charging effects at the

surface. This charging is caused by positives residual charges, originating from photoelec-

trons emission, which cannot discharge due to the insulating properties of the material. The

charges create a surface potential which can slow down the photoelectron and thus move the
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Figure 2.18: XPS spectra composition, example of Ti2p core level

measured binding energies toward higher energies. It is possible to reduce this effect using a

flood gun which neutralises the surface of the sample or by subtracting a charge correction

factor from all binding energy using reference peaks [80].

2.3.6.2 Quantitative analysis

Peak intensity in a photoelectron spectrum due to an element is generally determined by three

major factors: photoionisation cross section (σ), electron mean free path (λ) and analyser

transmission (T). The peak intensity (Ii) of element i in an uniform sample is expressed in

the following equation:

Ii = Ciσ(σ0, α, β)λ(s, Ei)T (Ei) (2.6)

where Ci is the concentration of element i, σ0 the total photoionisation cross section, α the

angle between the directions of photon (X-Ray) incidence and photoelectron emission, β the

asymmetry parameter indicating the angle dependence of emitted photoelectron, and Ei the

kinetic energy of electrons from element i. The electron mean free path mentioned here

is the inelastic mean free path determined by the kinetic energy of the electrons and the

nature of the surface. The analyser transmission varies depending on the kinetic energy of

the electrons analysed.

There are two major methods for quantitative analysis by XPS; one uses standard samples

and the other relative sensitivity factors. Due to the impossibility to use standard sample

for new material analysis, relative sensitivity factors were used in this study.

If Ri is the relative sensitivity factor of element i, the concentration Ci is expressed in the

following equation:

Ci = (Ii/Ri)/
∑

j

(Ij/Rj) (2.7)

where j runs over all elements present. Ri is given by Ri = σλ(s, Ei)T(Ei).
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The equation indicates that the relative sensitivity factor method requires the photoionisa-

tion cross section and the analyser transmission, in addition to the electron mean free path.

Detection sensitivity of XPS, while it varies with the type of elements and sample, is lower

than 1 at.%.

Example of evolution of the peak intensity with the concentration increase is presented in

figure 2.19. On this figure are presented the Si2p peaks for four samples with respectively 7,

13, 18 and 21 Å of SiO2 on a Si substrate.

Figure 2.19: Quantitative and qualitative analysis of XPS spectra for samples with
variation of SiO2 thickness

It appears that the peak area of the Si3+ and Si4+ environments, corresponding to SiOx and

SiO2 respectively, is proportional to the thickness of the layer.

2.3.6.3 Qualitative analysis

A more detailed examination of the peak shapes can provide information regarding the chem-

ical environments of the atoms.

Atoms in different chemical environments experience different screening and relaxation ef-

fects, and as such present slightly different binding energies. An XPS peak may therefore be

viewed as a number of superimposed peaks. An example is shown figure 2.19 with the pres-

ence of Si, SiOx,x<2 and SiO2 bonding environments. On this figure, for the thinnest layer,

7 Å the SiOx binding environment is observed and disappears with the thickness increase to

the profit of SiO2 binding environment.

Each environment creates a peak shape simulating experimental and instrumental broaden-

ing of the energy levels. Peak fitting involves attempting to fit the experimentally obtained

spectra with a number of these peaks, under suitable constraints. Typically the Full Width
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at Half Maximum (FWHM) and the line shapes made of Lorentzian and Gaussian are con-

stant for all peaks, binding energy shifts between peaks are informed by the literature [81]

and database [86].

The suitability of a simulated fit may be judged either manually by ensuring the main feature

of the spectrum are present or by minimisation of a calculated Ρ2 figure of merit provided

by fitting programs. In practise a mixture of the two is typically used.

2.3.6.4 Angle Resolved XPS (AR-XPS)

The sampling depth of XPS depends upon a number of factors including sample matrix,

composition and photoelectron kinetic energy, and is typically in the 4-10 nm range. If the

sample is not homogeneous, then XPS analysis will sample a range of compositions and

return a weighted average. Ideally, therefore, every XPS analysis should consist in the deter-

mination of the complete concentration depth profile within the analysed volume. In many

samples, this can be accomplished by means of ion etching. But there are occasions, how-

ever, when ion etching is inappropriate, for example in the case of sample, which are thin or

contain easily migrating compounds (O or N), and so the sample would undergo chemical

degradation. In such cases it is possible to employ angle-resolved XPS (AR-XPS), in which

the sample or sensor is tilted so as to vary the angle between the axis of the photoelectron

analyser and the normal to the sample surface.

The basis of the angle dependent profiling method can be seen in the cos φ dependence of the

electron signal. For a given electron energy, varying the take-off angle changes the effective

mean escape depth between its full value at φ = 0◦ and a minimum at glancing take-off

angles. The total probing depth is limited to about three times the inelastic mean free path

(typically <10 nm) while the depth resolution is generally limited by the experimental error

in the intensity measurement. For the example of a smooth homogeneous layer of element

A of thickness d on a substrate B, the normalised intensities are given by:

IA/I
0
A = 1-exp(−d/λ0

A,Acosφ) (2.8)

IB/I
0
B = exp(−d/λ0

B,Acosφ) (2.9)

where λ0
A,A is the inelastic mean free path of A electrons in A and λ0

B,A is that of B electrons

in A.

2.3.6.5 Advantages, limitations and constraints

Because in the experiments presented further eight angles are acquired during AR-XPRS,

the signal on each angle corresponds to less than the eighth of the total emitted signal by
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the sample. As a consequence, the acquisition time needed to obtain high signal/noise ratio

is increased by a factor ten approximately.

Penetration of the X-rays in the material follow a Monte Carlo law, resulting in a non-linear

response of the material depending on the depth. Information from the middle of the pene-

tration depth is the most intense. Moreover, the signal from volume material is reduced by

absorption of the top layers (cf attenuation length paragraph).

All of this leads to difficult extraction of depth information and make it possible only with

the dedicated software.
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Process influence

“Ideas are like rabbits. You get a couple and learn how to handle them, and pretty soon you

have a dozen.”

John Steinbeck, author

3.1 Introduction

As presented in the Chapter 1, microelectronic requires more and more advanced deposition

techniques. The latest challenge is to successfully deposit thin conformal layers of 2 nm or

less, on all sides of a 3D pattern, including perpendicular surfaces.

MOCVD and ALD are the most promising techniques for conformal deposition [35, 44], how-

ever it is necessary to qualify the process windows and understand the phenomena taking

place during deposition to find the best material with a repeatable process.

In order to assess the reaction mechanisms taking place during (PE)MOCVD/ALD depo-

sition, an investigation of the deposition parameters influence on the deposited metals was

carried out. Every investigation presented in the following discussion were carried out for

both titanium and tantalum materials. To limit repetitions only the results for one of the

metals are introduced and discussed in this work. If a different behaviour was found for both

metals then the two results are included.

In a MOCVD and ALD process the parameters can be divided into two categories: the

parameters influencing the reaction mechanism and influencing the uniformity. The param-

eters governing the reaction mechanism include substrate temperature, saturation levels of

precursors and reactant gas, vapour pressure of the precursor and the bubbler (in the case of

ALD) or liquid injectors (in the case of LIMOCVD) temperature [35, 44]. The sticking coef-

ficient of the precursor on the substrate, flow rates, deposition rate, pressure of the chamber,

substrate-shower distance and residence time1 are part of the uniformity parameters.

1Residence time (also known as removal time) is the average amount of time that a particle spends in a
particular system. Therefore, in the PEMOCVD case it is the time necessary for a precursor to go from the
injector to the substrate.
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Even though both types of parameters were investigated, only the reaction mechanism pa-

rameters influences are introduced thoroughly in this work. Parameters affecting the unifor-

mity of the deposited layer are introduced to only demonstrate their influence and are not

discussed in details.

3.2 TaN MOCVD process parameters evaluation

3.2.1 Context

TaN deposition was investigated in depth due to the wide range of properties reachable

depending on the deposition method and process parameters. For example the crystalline

structure of sputtered TaNx changes from NaCl-structure to hexagonal when sample temper-

ature goes above 650◦C [87]. Besides, change from Ta3N5 to TaN composition was observed

for ALD deposition with TaCl5 precursor under NH3 reactant gas when additional zinc reac-

tant gas was introduced [88]. Resistivity of the layer is also reduced by H2 plasma treatment

of the layer [89–91]. Finally, work function of ALD Ta(C)N can be tuned up to 4.9 eV by

increasing the amount of (or introducing) carbon present in the layer [50, 92].

Influences of the most significant parameters leading to MOCVD deposition of TaN using

TBTDET precursor with NH3 reactant gas are reported in this part.

3.2.2 Methodology

Liquid Injected MOCVD (LIMOCVD) of TaN was performed on the AltaCVD Advanced

MaterialsTM reaction chamber presented Chapter 2. The precursor used is the TBTDET,

stored in a canister kept at ambient temperature. Ar was chosen as inert gas for precursor

transportation from the canister to the evaporation furnace (see Chapter 2 for complete de-

scription of the tool). Depositions were done on Si (1 0 0) surface without pre-treatment,

thus with a native oxide layer, or on wafers with 100 nm SiO2 thick layer for resistivity

measurement.

Thickness and density were extracted after careful fitting of XRR spectra. In the theoretical

models a surface oxide layer was added for better matching to experimental spectra, this

oxidation of the metal surface was confirmed by XPS analysis of the samples. XPS analysis

was performed with a Kα source and a beam spot of 400 μm at 100 eV with a step resolution

of 0.1 eV. Bonding environment of Ta, C, N and O are obtained from Ta4f, C1s, N1s and

O1s core level energies respectively. No cleaning was done before XPS analysis, leading to

the presence of atmospheric contamination oxygen and carbon [93]. Finally, resistivity was

calculated from four point probe resistance measurement and thickness extracted from XRR.
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3.2.3 Substrate temperature

Substrate temperature is an important parameter in MOCVD and ALD deposition tech-

niques, as it is the only parameter which brings the energy requested to activate the decom-

position of the precursor and to activate the nucleation sites.

Deposition temperature windows are ruled by the precursor properties and the reactant gas

in use. To deposit the material with the best characteristics the temperature has to be

carefully chosen to be high enough to activate the deposition mechanism but not too high

to avoid the depletion region, as detailed Chapter 2 section 2.2.2.1. Each precursor is de-

velopped to favour one reaction mechanism with one particular reactant gas, and thus each

precursor has a specific deposition temperature window.

First, an attempt of deposition without a reactant gas was done. Only a monolayer was

formed at the surface of the substrate whatever the used temperature, indicating a decom-

position of the precursor but no activation of the nucleation sites for further growth. Then,

using the same deposition parameters a reactant gas was introduced in the chamber leading

to the activation of the nucleation and to the growth of materials. A variation of reactant

gas is presented here, before the introduction of plasma for deposition activation, in Chapter

4.

3.2.3.1 Deposition with NH3 reactant gas

Evolution of TaN deposition rate and density were studied for TBTDET precursor under

a NH3 reductive ambiance, with substrate temperature increase. Results are presented in

figure 3.1, with a logarithmic scale of the growth rate depending on the reverse of the temper-

ature expressed in kelvin. This disposition allows to highlight the Arrhenius law (equation

3.1) behaviour of the growth rate [72].

k = Ae−Ea/kBT (3.1)

with k the rate constant of the chemical reaction, A a pre-exponential factor, Ea the activation

energy, T the temperature in kelvin and kB the Boltzmann constant.

This evolution of the deposition rate with substrate temperature was explained Chapter 2,

in the introduction to MOCVD deposition.

As expected growth rate increases with the temperature and follows the Arrhenius law, in-

dicating a chemically driven deposition. The activation energy2 of the reaction is given by

the slope of the line fitting the evolution between 250◦C and 400◦C (see figure 3.1). In the

case of TaN MOCVD deposition with NH3 reactant gas, the energy of activation is Ea =

0.46 eV. Values of activation energy from MOCVD reaction, reported in the literature, are

included in the 0.9 - 1.1 eV range, corresponding to thermal decomposition of the transition

2The activation energy corresponds to ”the minimum amount of energy required to initiate the reaction”
[72], and consequently a low activation energy connotes a reaction activated at a low temperature, and
reciprocally.
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Figure 3.1: TaN growth rate and density plotted as a function of the substrate
temperature

metal metalorganic precursors [58, 94–96]. The lower activation energy calculated here may

be associated to the different method of injection used (LIMOCVD) which can facilitate the

decomposition of the precursor and thus reduces the activation energy. For instance a re-

duction by a factor 2.6 of the energy of activation was reported in the case of LICVD copper

deposition [97] compared to CVD copper [98].

Growth rate reaches a maximum at 350◦C, from where there is no more evolution with

further increase of the temperature: a plateau is reached. If the deposition temperature is

chosen above or equal to 350◦C, then the reaction mechanism is the most efficient. Indeed,

for the same quantity of precursor entering the deposition chamber, the thickness of the pro-

cessed layer is the highest. The two regimes observed here correspond to the kinetic control

region (the slope) and the diffusion control region (the plateau). Further increase of the

temperature of deposition to reach the depletion regime was not possible due to hardware

limitations of the deposition chamber.

An XPS investigation of 4 nm thick TaN layers deposited between 250◦C and 400◦C revealed

that the lowest is the deposition temperature, the highest gets the oxidation of the layer. To

avoid any influence of the oxidation rate, time between deposition and XPS analysis was kept

constant for all the samples. An ARXPS analysis of both 250◦C and 400◦C deposited TaN

highlighted that the oxidation levels are homogeneous in the volume of both TaN. However,

a minimum of oxidation is reached from approximately 300◦C. Figure 3.2 presents the Ta-

relative atomic percent of N, O and C elements in the layer deposited at temperatures from

250◦C to 400◦C. In average layers were made of 20 % at of Ta.

An hypothesis explaining the lower oxidation level observed in the figure 3.2, is a higher

resistance to oxidation taking place at vacuum break obtained at higher deposition tem-

perature due to the consolidated Ta-N bonds. Indeed, when the temperature is increased,

the energy brought for the creation of Ta-N bonds is higher, resulting in more stable bonds

48



Process influence

Figure 3.2: TaN layer compositions for different substrate temperature

which limits the oxidation of the layer at vacuum break, similar oxidation mechanism was

already proposed elsewhere [99]. This hypothesis is supported by the evolution of N content

evolution, presented in figure 3.2. It is noteworthy that the N1s spectra (not shown here)

reveal that not all the N observed in TaN layer is bonded to Ta, part of it creates bonds with

O or keeps its initial bonds with C.

It also appears, in figure 3.2, that the carbon content of the layer decreases as the deposition

temperature increases. The minimum carbon content is obtained at 400◦C and corresponds

to the atomic percent of carbon added in average from atmospheric contamination at vacuum

break [93]. Thus, the higher carbon content observed at lower temperatures is probably due

to non-complete decomposition of TBTDET molecule, resulting in the presence of carbon-

ated reaction by-products.

The observed amounts variation of oxygen and nitrogen in the layers, is in good agreement

with the increase of the density presented in figure 3.1, left axis. In fact, it is well known

that the density of Ta2O5 is lower than the density of TaN, at 8.2 g.cm-3 and 12.5 g.cm-3,

respectively [100]. As for N content in TaN layer, presented in figure 3.2, the density is slowly

increasing till 350◦C, from where a fast rise is observed, figure 3.1.

Similar densities of TaN were obtained with other deposition methods, such as PVD (10.2

g.cm-3) [101], CVD (9.7 g.cm-3) [101], ALD (7-9.2 g.cm-3) [102] and PEALD (10.5-11.5

g.cm-3) [16]. The relatively high density of the layer obtained here suggests a low carbon

contamination and an efficient deposition process.

It was further reported that, in the case of TaN deposition by sputtering, an increase of

the deposition temperature favours the crystallisation of the layer [103], leading to a gain in

density. Crystallisation increase of materials with temperature and deposition time increase

is generally true, example on HfO2 crystallisation behaviour with both deposition tempera-

ture and deposition time was reported in details [104]. Furthermore, higher crystallinity of

TaN layer can decrease the oxidation of the metal (i.e. limit the creation of Ta-O bonds) [105].
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In summary, 350◦C was found to be the minimum substrate temperature required to obtain

the most stable TaN layers, with the highest Ta/N ratio, highest density and most efficient

deposition reaction mechanism (highest growth rate).

3.2.3.2 Deposition with H2 and NH3/H2 mixed reactant gas

A study of the growth rate evolution was performed regarding the introduction in the cham-

ber of reactant gas H2 and NH3/H2 mixture. Reactant gas flows were calculated to have

excess of reactant gas for both NH3 and H2 when using single reactant gas and no excess for

the mixture of NH3 and H2. This methodology allows to separate the effects of each reactant

gas and determine the possible reaction path.

Figure 3.3: Evolution of the growth rate for different reactant gas with variation
of the substrate temperature

Figure 3.3 reveals that the three gases used for deposition have in common an increase of

the growth rate with increasing temperature until a plateau is reached at high temperature.

The 250 - 500◦C temperature window allows to observe both the kinetic control region and

the diffusion control region. The energy required to activate the deposition reaction at the

substrate surface is not the same for the three environments. If the chamber is saturated

by NH3, as presented earlier the activation energy is about Ea = 0.46 eV. Then, if only H2

is introduced in the chamber during the deposition, the activation energy is going up to Ea

= 1.16 eV. Finally, in between, when the mixture of NH3/H2 is used the activation energy

increases from Ea = 0.48 eV to Ea = 0.52 eV.

This behaviour suggests that NH3 gas is more reactive than H2 gas and a shortage of NH3

reactant gas leads to the increase of the deposition activation energy.

Density of the TaN layers deposited with NH3, H2 and the mixture of NH3/H2 are displayed

figure 3.4.
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Figure 3.4: Evolution of the film density as a function of the substrate temperature
for different reactant gas

A similar behaviour as for the growth rate is observed for the density evolution of TaN. The

maximum being obtained for NH3 reactant gas at high deposition temperature. H2 reactant

gas leads to the formation of low density layers, with a fast density increase from 450◦C.

The mixture of NH3/H2 results in the formation of a layer with densities comprised between

pure NH3 and pure H2 deposition.

One notices that depositions done at the lowest temperature (i.e. ≤ 300◦C with H2 and ≤

200◦C with NH3) present a monolayer of TaN on the substrate. This monolayer suggests

that there was saturation of the substrate surface, where TBTDET molecule stick on initial

nucleation sites. But no further nucleation sites, on top of TBTDET saturated surface, are

available due to the low activation temperature; therefore, there is no further growth of the

layer.

Change of the reactant gas influences the activation energy of the deposition and the max-

imum growth rate. Indeed, when NH3 is saturating the chamber atmosphere a growth rate

of 1.11 Å.s−1 is reached at 400◦C. Whereas with H2 and NH3 + H2, maxima of 0.37 and

0.55 Å.s−1 are reached at 450◦C, respectively, so NH3 gas reactant results not only in lower

activation energy of the deposition reaction but also in a more efficient deposition. This

point will be discussed further and a possible reaction mechanism will be proposed later in

this chapter, section 3.2.7.

Binding energy, extracted from XPS analysis, of the Ta metal atoms is presented in figure

3.5 (left), with the Ta and N atomic percent, versus the used reactant gas. Comparison of Ta

binding energy for TaN deposited with NH3, NH3 + H2 and H2 at 350◦C is given in figure

3.5 (right).
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Figure 3.5: Evolution of composition and TaN-Ta4f binding energy as a function
of the reactant gas (at 350◦C)

It appears that the N/Ta ratio is 30% higher for NH3 reactant gas, with a lower oxidation

level; both resulting in the decrease of Ta atoms binding energy.

The change of composition depending on the reactant gas, suggests that the deposition re-

action by-products include diethylamine groups. Indeed, in the precursor molecule the Ta:N

ratio is 1:4, but the deposited layers with H2 reactant gas have a Ta:N ratio of 1:1 and

3:4 when deposited with NH3 reactant gas. The double TaN bond present in the molecule

is probably the only one kept during the deposition reaction. The lower content of N in

the layer deposited with H2 suggests that during the deposition mechanism not only ethane

groups but also diethylamine groups are taken away from the TBTDET molecule and sub-

stituted by H endings. A diagram presenting the path introduced here is given later in this

chapter, section 3.2.7.

The carbon content of the layer is not presented here due to the absence of change whatever

the reactant gas used. Meanwhile, this absence of change, highlights the fact that elimina-

tion of carbon from the precursor has the same efficiency no matter the reactant gas used.

Consequently, decomposition of the precursor in carbonate by-products and exhaust of these

reaction by-products do not seem to be linked to the reactant gas but are mainly linked to

the temperature of the substrate, as revealed in figure 3.2.

3.2.4 Liquid injector temperature

In the LIMOCVD (Alta Advanced Materialsr) reactor, the evaporating furnace can be

heated to ease the vaporisation of the precursor when going through the injectors, see Chap-

ter 2, in figure 2.7 page 23. Once vaporised the precursor enters the deposition chamber to

react at the surface of the substrate. However, depending on the temperature of the injec-

tors the precursor can be degraded, which may result into different reaction mechanisms and

change the characteristics of the deposited material.
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3.2.4.1 Methodology

The best set of parameters leading to deposition of optimal films are chosen from the previ-

ous study and kept constant in this section. Hence, TBTDET is introduced in the deposition

chamber and reacts with NH3 gas at 350◦C.

Variation of injectors temperature was carried out from 40◦C, the lowest possible tempera-

ture above which the susceptor heat is not affecting the injectors temperature regulation, to

90◦C, the maximum temperature limited by the capabilities of the evaporating furnace.

XRR, four points probe and XPS analyses are carried out with the same parameters as pre-

sented earlier in Chapter 3, section 3.2.2.

3.2.4.2 Deposited thickness and resistivity modification

Evolution of TaN deposited thickness and resistivity with liquid injector temperature is

given in figure 3.6, all other process parameters were kept constant. As presented in Chapter

2, the thickness variation informs on the efficiency of the reaction mechanism, whereas the

resistivity gives an insight on the decomposition of the precursor molecule and on the exhaust

of the reaction by-products, due to the influence of C contamination in the film.

Figure 3.6: Evolution of the MOCVD TaN deposited thickness and resistivity as a
function of the injector temperature

A decrease of the evaporation furnace temperature from 90◦C down to 40◦C multiplies the

deposition rate by a factor 2. Such increase highlights that more material is deposited at

lower furnace temperature, thus it is possible to suppose that the precursor is degraded and

undergo a pre-decomposition in the furnace at higher temperatures. The vapour pressure of

TBTDET is 140◦C at 2 Torr, however acceleration of the molecules when getting out of the

injector is significant (pressure changes from 2.103 to 2 Torr), which can already alter the

structure of the precursor, through the supply of kinetic energy.

The density of the layer (not shown here) displays a similar behaviour as the thickness, it

increases from 11.06 g.cm−3 at 90◦C to 12.35 g.cm−3 at 40◦C. The efficiency of the deposition
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reaction is thus much higher for liquid injectors at 40◦C, than at 90◦C.

Resistivity measurements, presented figure 3.6, reveal two significant properties of the layers.

First effect is the decrease of the resistivity by a factor 2.2 as the temperature of the liquid

injector is reduced, below the TaN bulk resistivity of 100 μΩ.cm [100]. This reduction can be

correlated to the better decomposition of the precursor on the sample and lower by-products

in the layer, probably enhanced by the absence of pre-decomposition of the precursor in the

evaporation furnace. Second effect is the attenuation of the measured variability on the sam-

ples for liquid injector temperature below 70◦C. Better uniformity of the resistivity within

the wafer may be linked to a more homogeneous reaction, which can also be associated to

the absence of precursor pre-decomposition in the furnace.

3.2.4.3 Chemical bonding evolution

These modifications in resistivity with injection temperature go along with some bonding

environments changes. Hence, in figure 3.7 are presented the XPS spectra of 4 nm MOCVD

TaN deposited with injector temperatures from 50 to 90◦C.

Figure 3.7: Evolution of Ta4f spectra in MOCVD TaN samples for different injec-
tor temperatures from 50 to 90◦C

It appears that increase of furnace temperature results in modification of the deposited ma-

terial. Two important changes of Ta4f binding energy are observed: first there is an increase

of the oxidation level (Ta-O bonds doublet located at 26.6 eV) with temperature increase.

Second, the binding energy of Ta bonded to N (Ta-N bonds doublet located at 25 eV) is

shifted to lower energy with furnace temperature decrease. The energy shift of Ta-N peak,

at higher deposition temperature, can be explained by a lower oxidation of the layer, thus

by more nitrogen bonded to tantalum.
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The changes observed in Ta4f spectra cannot be seen in N1s spectra due to the presence of

the Ta3d peak at 404 eV, which covers some of the bonding environments of nitrogen [86].

However, the influence of injector temperature is visible on O1s and C1s spectra, displayed

in figure 3.8.

Figure 3.8: Evolution of O1s (left) and C1s (right) spectra in MOCVD TaN for
different injector temperatures

On O1s spectra (figure 3.8 left) increase of O bonded with both Ta and C can be observed

as the furnace temperature is increased. However, there is no shift in energy of the peaks

meaning that whatever the injector temperature, chemical bonds between Ta and O is same.

O is bonded to Ta as a first neighbour and not as a second neighbour, indeed if O would

bond to TaN (O-N-Ta) and not to Ta (O-Ta) a shift of O1s O-Ta peak toward lower energies

would be observed.

Contrary to O1s spectra, C1s spectra presents a new bonding environment when injector

temperature is decreased to 50◦C. In figure 3.8 right, on C1s spectrum of TaN deposited

with a furnace temperature of 50◦C, a peak corresponding to C-N bond located at 287.6

eV is revealed. This new C-N environment can be assimilated to the diethylamide groups

present in the TBTDET molecule. The presence of this environment only in the 50◦C injector

deposited TaN layer confirms the non-activation of the precursor molecule in the evapora-

tion furnace at 50◦C, the precursor reaches the surface of the sample in a non-degraded form.

Evaporation furnace temperature influence on the composition of the layers is reported in

atomic percent table 3.1.

Table 3.1: Composition of MOCVD TaN for different injector temperatures

50◦C 70◦C 90◦C

Ta (at%) 28.3 27.1 25.1
N (at%) 29.5 29.3 28.5
C (at%) 8.2 8.5 9.3
O (at%) 34.0 35.2 37.1
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As suggested earlier by deconvolution of Ta4f spectra, Ta content is higher for the lowest

furnace temperature. Nitrogen content has a similar behaviour but with a lower variation.

The carbon content of the layer deposited with a furnace temperature of 50◦C is low, con-

sidering that roughly 8 at% of carbon is brought by atmospheric contamination at vacuum

break [93]. Some increase of C content with furnace temperature increase is observed. It is

possible that part of the by-products, formed during the pre-decomposition of the precursors

in the furnace, are deposited in the TaN layer. Carbon content rise in the layer was supposed

earlier to explain the resistivity and measurements variation increase of the layer reported

in figure 3.6, this supposition is therefore confirmed here.

Lastly, the oxygen content of the layer significantly increases with injector temperature in-

crease. As introduced earlier the increase of furnace temperature modifies the chemical bonds

brought into play during the deposition reaction mechanism. Thus, the Ta present in the

layer forms different bonds which appear to be weaker. Weaker bonds resulting in lower

stability, in turn resulting in higher oxidation of the layer.

Overall it appears that a decrease of the liquid injector temperature leads to a decrease of the

oxygen content and increase of nitrogen content. It confirms that higher temperature result

in the degradation of the precursor and creation of N-CxHy by-products in the evaporation

furnace.

Thanks to the double stage shower, no reactant gas is present in the evaporation furnace,

limiting, if not avoiding, deposition of TaN on the walls of the furnace which would happen

after the precursor degradation. However, it appeared through different experiments not

presented here, that part of the activated precursor is staying in the evaporation furnace and

is released during the next deposition process, the evaporation furnace is acting as a buffer.

This buffer effect has to be carefully taken into account to avoid cross-contamination of the

deposited species when the deposited material campaign is changed (from TaN to TiN and

reciprocally).

In conclusion, even if the decomposition of the precursor on the surface of the substrate

may not be complete with a furnace temperature of 50◦C, it appears that the increase of

the furnace temperature results in a pre-decomposition of the precursor which degrades the

properties of the deposited layer (higher resistivity, lower uniformity and lower resistance to

oxidation). Also, the deposition is twice more efficient at lower furnace temperature, proba-

bly thanks to a lower buffer effect of the evaporation furnace.

Following these results, in the rest of this work the furnace temperature will be kept at 40◦C

to avoid activation of the precursor in the evaporation furnace.

3.2.5 Deposition kinetics

MOCVD deposition is based on a chemical reaction which, as investigated earlier, requires

a minimum energy to be activated. Furthermore, a chemical reaction is also defined by a
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kinetic parameter; parameter corresponding to the time needed for the reaction to be com-

pleted.

Survey of the variation fo the layer thickness with the deposition time is given in the figure

3.9 for TaN deposited at 350◦C with NH3 reactant gas and an injection frequency of 0.1

Hz. The injection frequency was chosen as low as possible in order to have more reactant

gas than precursor, i.e. to have a precursor limited reaction, thus revealing the kinetics of

the precursor decomposition. Impact of the injection frequency on the growth rate will be

introduced later in this chapter, section 3.2.6.

Figure 3.9: Evolution of the TaN deposited thickness as a function of the deposition
time

No deposition was observed for deposition times of less than 10 s; no Ta atoms were detected

using XPS. It is possible that the precursor needs up to 10 s to go through the evaporation

furnace, and through the shower to reach the substrate. A two regime LIMOCVD growth

was reported elsewhere and was assimilated to an irreducible time during which precursor

has to be in contact with the injectors. If another deposition is done without cleaning of

the chamber and within 10 min, this 10 s delay disappears. It confirms the supposition of

injector surface wetting, indeed the injectors are already saturated by the precursor from the

previous deposition.

For a deposition time of 10 s the thickness of the layer was too small to be measured by

XRR, but an XPS analysis revealed the presence of a thin layer of metal on the substrate.

By extrapolation of the Si2p peak intensity the thickness was estimated to be about 2 Å of

TaN 3, which corresponds to a monolayer of TaN.

3The thickness of an homogeneous layer can be calculated using XPS and reference samples by extraction
of the substrate main peak intensity. Indeed, if the substrate is covered by a layer the depth of analysis stays
the same and the intensity of the substrate main peak is reduced. Reduction of the intensity depends on the
thickness of the layer and on the attenuation coefficient of the layer. Due to the size of the XPS beam, this
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From figure 3.9 it appears that a linear growth of the layer with time is observed after 25 s

of deposition.

For deposition included between 10 s and 25 s, the deposition rate appears to increase, until

the final growth rate is reached. This increase can be assimilated to a change of the surface,

from substrate native oxide until the creation of the first monolayer of TaN, and thus to the

change of nucleation sites.

To conclude, the linear evolution of the deposited thickness proves that the decomposition of

the precursor and thus the deposition reaction is not limited by the kinetics of the reaction.

In other terms, the deposition rate is not limited by the TBTDET decomposition speed in

NH3 ambiance.

A further investigation of the deposition mechanisms is introduced in the next paragraph,

with the study of the injection frequency effect on the deposition.

3.2.6 Effect of the injection frequency

The evolutions of thickness, density and resistivity of the TaN layer were investigated as a

function of the injection frequency. The amount of precursor entering the chamber was kept

constant by a variation of the deposition time; i.e. from 100 s at 1 Hz to 1000 s at 0.1 Hz.

Here again the chamber atmosphere is saturated in NH3.

Resulting thickness and deposition rate are presented in figure 3.10.

Figure 3.10: Variation of the thickness deposited and deposition rate with injection
frequency

Evolution of the deposition rate with injection frequency increase, presented in figure 3.10,

and clearly indicates that there is no dependency between the deposited thickness and the

frequency of liquid injectors. It suggests that, no matter what the quantity of precursor

estimation of the layer thickness supposes that the roughness of the layer is low, and that the growth is 2D
type.
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injected in the chamber, all or a constant part of the precursor is reacting on the substrate.

In conclusion, the kinetic coefficient of the reaction is infinite, the reaction is spontaneous at

350◦C.

No variation of the density or resistivity was observed neither (not presented here), which

confirms that the reaction mechanism is not impacted by the injection frequencies. If the

decomposition of the precursor would not have been complete, it would have been pointed

out by the deposited thickness decrease and/or density decrease and/or resistivity increase

with the injection frequency increase.

In summary, the injection frequency does not impact the deposition mechanism and the

deposited material. Hence, in order to have a better control of the deposited thickness at

the Ångström level the injection frequency will be kept at 0.1 Hz for both TiN and TaN

deposition. Using lower deposition rate also minimises the variability of the deposition by

facilitating the exhaust of by-products.

3.2.7 Discussion about TaN deposition reaction path

3.2.7.1 TBTDET with NH3 reactant gas

The previous parts reveal the importance of temperature as a first order parameter for

MOCVD TaN deposition: a higher temperature allowing better exhaust of the carbonates

by-products and enhancing the creation of Ta-N bonds.

Taking into consideration these evidences, the reaction path of TBTDET decomposition with

NH3 is proposed in figure 3.11.

The first TaN monolayer is always deposited on some oxide nucleation sites, either on a

dielectric layer either on a native silicon oxide. The case of native SiO2 is depicted here.

Ta-O bonds creation is energetically favourable, due to the lower Ta-O Gibbs Free energy of

formation [∆Gformation(Ta2O5) = -1079 kJ/mol (at 325◦C and for 1 mole of Ta)] compared

to Ta-N formation [∆Gformation(TaN) = -222 kJ/mol (at 325◦C and for 1 mole of Ta)]. SiO2

substrate was proven to be natively OH terminated [106], so thanks to the thermal budget,

TBTDET grafts to the oxygen by Ta-O bonds formation and parts with some diethylamine

and ethane groups4. The NH3 reactant gas present in excess in the chamber would complete

the hydrogen bonds, resulting in the release of H2 by-product. Next TBTDET molecule

in contact with the metal surface could then substitute H in the Ta-H or Ta-N-H surface

endings of the material and growth will continue.

One notices that if part of the Ta atoms are only bonded to H after the deposition, noticeable

oxidation would occur at vacuum break, due to the weakness of these hydrogen bonds.

This reaction path is also supported by the evolution of Ta-N binding energy with the reactant

gas used. Hence, if more NH3 is introduced in the deposition chamber then Ta-N Ta4f XPS

peak binding energy is lowered: evolution of the binding energy being directly related to the

4Methane (CH4) and diethylamide (NH(C2H5)) groups are part of the precursor molecule
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Figure 3.11: Possible reaction mechanism for deposition of TaN with TBTDET
and NH3 reactant gas.

composition of the layer. Similar evolution of the binding energy of metal peak toward lower

binding energy with an increase of the nitrogen content was already presented elsewhere [15].

3.2.7.2 TBTDET with H2 reactant gas

Substitution of NH3 reactant gas by H2 reactant gas led to the increase of the TaN deposition

activation energy. In order to understand the different path involved in H2 ambiance, the

decomposition of the reactant gas in the chamber atmosphere has to be taken into considera-

tion. Gibbs free energy calculation of equation 3.2 is used for calculation of the temperature

of NH3 decomposition and is presented in figure 3.12.
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NH3(g) → N2(g) +H2(g) (3.2)

Figure 3.12: Decomposition of NH3 at a pressure of 2 Torr depending on the
temperature

Decomposition of 1 mole of NH3 at 350◦C leads to the formation of N2 and H2 from 100◦C.

Table 3.2 summarises the amounts of each phases at 350◦C.

Table 3.2: Products from decomposition of 1 mole of NH3 at 325◦C

Phase H2 N2 NH3 H NH2

Equilibrium
at 350◦C (in

mole)
1.4999 0.4999 4.8x10−5 8.0x10−15 7.3x10−20

Other phases, like NH, N2H2 or N are also present but in very low amount, therefore are not

taken into consideration.

By comparison of NH3 and H2 reactant gas decomposition, the influence of each gas on the

activation energy can be deduced.

Decomposition of one mole of H2 reactant gas at 350◦C leads to the creation of 4.6x10−15

mole of H, as for the decomposition of NH3. So H might not account for the decrease of

activation energy.

Then, NH3 gas flow introduced in the chamber is 200 sccm, which equals to 1.43x10−4

mol.s−1, it is then decomposed at 350◦C and only 3x10−9 mol.s−1 of NH3 are left in the

chamber. Considering the growth rate of the TaN layer, 0.5 Å.s−1, at a density of 11 g.cm−3

and with the hypothesis that 100% of the precursor entering the chamber is deposited on the

substrate, calculation of the Ta flow finds 8.5x10−7 mol.s−1. Therefore, there is at least two

decades between the amount of NH3 and of the amount of Ta in the chamber, suggesting

that the amount of NH3 after decomposition (table 3.2) is not significant compared to H2
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and N2. It is confirmed in the figure 3.12.

To conclude the higher energy activation measured in H2 ambiance may be correlated to the

lack of nitrogen in the deposition chamber. Indeed, from 200◦C NH3 reactant gas decom-

poses to form N2.

Following this discussion, a possible reaction path for deposition with H2 reactant gas is

depicted in figures 3.11 and 3.13.

Figure 3.13: Possible reaction mechanism for deposition of TaN with TBTDET
and H2 reactant gas.

Deposition mechanisms with both NH3 and H2 are activated the same way: temperature

brings the necessary energy to decompose the precursor and allows deposition on the sub-

strate. Thanks to their high volatility, the elimination of ethane and diethylamine groups is

rapid and carbon contamination low.

Then, Ta is forming bonds with H for H2 reactant gas. As Ta-Ta metal bonds (located

below 22 eV) were never observed by XPS, even with transfer under vacuum from deposition

chamber to XPS chamber, it is reasonable to suppose that the energy brought to the system

is not sufficient to create these bonds.

Hypothesis to explain the change in oxidation level was first mentioned in section 3.2.3 page

47. Basically, depending on the bonds formed during deposition, the oxidation resistance

of the layer is changed, weaker bonds allowing higher oxidation of tantalum at vacuum

break, thanks to the low Gibbs energy of formation of tantalum oxide (∆formation(Ta2O5) =

−1079kJ.mol−1 at 325◦C). So it can be assumed that deposition with H2 reactant gas results

in creation of Ta-H bonds, weaker than the Ta-N created with NH3. Moreover, O2 affinity

with H is high and leads to the formation of OH. Thus, upon vacuum break the weak bonds

in TaN are replaced by Ta-O bonds resulting in the higher oxidation level of the layer.
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3.2.8 Conclusion

Estimation of the carbon content present in the layers highlighted that the reactant gases do

not take part in the evacuation of the reaction by-products. However, that is not the only

role of the reactant gas, and H2 reactant gas appears to not bring the nitrogen necessary to

avoid the oxidation of the tantalum, as does NH3 reactant gas. As already implied by figure

3.3 the highest Ta/N ratio, corresponding to the highest density (see figure 3.4), is obtained

with NH3 reactant gas for deposition temperature of 350◦C or more.

3.3 TiN MOCVD process parameters evaluation

3.3.1 Substrate temperature

Investigation of the process window for MOCVD deposition of titanium nitride with TDEAT

precursor and NH3 reactant gas is presented in this paragraph.

Experimental calculation of activation energy of TiN MOCVD reaction mechanism, using

Arrhenius law (equation 3.1, page 47), is reported in the figure 3.14.

Figure 3.14: Evolution of TiN growth rate and density with variation of the sub-
strate temperature

The growth rate evolution of TiN deposition is similar to the one of TaN deposition, with a

clear increase from 200◦C up to 350◦C, from where a plateau is reached. Although, density

has a different behaviour: contrary to TaN density, figure 3.1, no stabilisation of TiN density

can be reached when the substrate temperature increases.

The theoretical density of stoichiometric and crystalline TiN is 5.22 g.cm−3 [100]. The

maximum density obtained by MOCVD deposition is 4.39 g.cm−3 at 425◦C. As for TaCN

deposition, the lower density can be partly explained by the presence of titanium oxide (TiO2

= 4.23 g.cm−3 [100]). Moreover, TiN theoretical density is given for crystalline structure

which is not the case here as the layer is amorphous (confirmed by XRD measurements and
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TEM observation, not presented here).

The N:Ti ratio of the material deposited at 425◦C is 0.93:1, meaning that the TiN is slightly

sub-stoichiometric.

Literature reports similar densities for stoichiometric TiN deposited by sputtering (4.3-5.2

g.cm−3) [107] and ALD (3.2-3.4 g.cm−3) [108]. Again, the lower density of chemically based

deposition is linked to the amorphous phase of the layers.

Experimental determination of TiN MOCVD activation energy in NH3 ambiance gives an

energy of Ea = 0.48 eV, 5% higher than TBTDET in NH3.

Similar activation energy for TaN and TiN MOCVD suggests that, if TaN and TiN would be

injected together in the chamber then the same amount of TaN and TiN would be deposited.

Following these investigations and the results obtained, hereafter the temperature of the

substrate was kept at 350◦C (except if specified).

3.3.2 Deposition kinetic

Survey of the layer thickness depending on the deposition time is given figure 3.15 for TiN

deposited at 350◦C in NH3 ambiance and an injection frequency of 0.1 Hz. The injection

frequency was chosen as low as possible in order to have more reactant gas than precursor,

i.e. to have a precursor limited reaction, thus revealing the kinetics of the deposition.

Figure 3.15: Evolution of the TiN deposited thickness with increase of the deposi-
tion time, with TDEAT and NH3 reactants

No deposition was observed for deposition times of less than 10 s; no Ti atoms were detected

using XPS. At 10 s of deposition the thickness of the layer could not be measured by XRR,

however an XPS analysis revealed the presence of a thin layer of metal on the substrate.

There is an increase of the growth rate from 10 s of deposition until the final deposition

regime is reached after 25 s. This growth rate increase may be related to the presence of an
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incubation time 5 associated to a change of substrate, from oxide to metal.

Overall the same three steps with deposition rate changes, as for TBTDET deposition with

NH3 are observed. First, no deposition until the precursor reaches the substrate, second the

covering of oxide nucleation sites and finally the cruising deposition rate reached after 25 s

for TBTDET and 38 s for TDEAT.

3.3.3 Discussion about TiN deposition reaction path

A possible reaction path of TiN deposited on SiO2 using TDEAT and NH3 reactants is

proposed figure 3.16.

The TDEAT introduced in the deposition chamber will react with -OH terminated substrate

and creates Ti-O bonds. The substrate temperature allows a decomposition of the precursor

molecule, creating diethylamine, ethane and hydrogen by-products. Ti grafted at the surface

of the substrate would then bond with N from NH3 reactant gas. And new precursor reach-

ing on the substrate surface can then react with the new -NH terminated surface, resulting

in the growth of the layer.

3.4 Parameters influencing the uniformity

The parameters which were found to impact the thickness but not the physico-chemical

properties of the deposited layer are introduced and briefly discussed in this part, for the

case of titanium deposition with TDEAT and NH3 at 350 ◦C.

3.4.1 Injection frequency

If the material characteristics are not impacted by the variation of injection frequency, as

already reported in the case of TBTDET precursor in section 3.2.6, the thickness uniformity

is impacted. A lower frequency allows a better uniformity over the surface of the wafer. At

1 Hz, the centre of the substrate has a higher thickness than the edge of the substrate. It

tends to indicate that the flow in the chamber is not high enough, leading to the decomposi-

tion of the precursor mainly at the centre of the substrate, before it reaches the edge of the

substrate.

An increase of the vector gas flow in the injector results in the improvement of the thickness

uniformity, which confirms the hypothesis that at higher injection frequencies there is not

enough flow to carry all the precursor to the edges of the substrate. However, due to limi-

tations of the deposition tool, the uniformity obtained at 1 Hz with the highest vector gas

flow is not as good as the uniformity of the layer deposited at 0.1 Hz.

5The incubation time is defined as the time from the beginning of TiN deposition to the appearance of Ti
layer.
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Figure 3.16: Possible reaction mechanism for deposition of TiN with TDEAT and
NH3 reactant gas.

3.4.2 Distance shower to substrate

Thickness uniformity of the deposited layer can be improved by an increase of the distance

between the substrate and the shower, as presented in figure 3.17. For this study only the

distance from the substrate to the shower was changed, all other experimental conditions

were kept constant. The deposited thickness was measured by XRR on 49 points with a 10

mm edge exclusion. The thickness given in figure 3.17 corresponds to the average calculated

from these 49 points. Variance is also included in figure 3.17 and is defined by :

V ar(X) =
1

n

n∑

i=1

(xi − µ)2 (3.3)
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with μ the average thickness, xi the thickness on the point i and n the number of points

measured. The variance is expressed in Å2 .

Figure 3.17: Variation of layer uniformity on 300 mm with distance substrate-
shower increase

The first unexpected effect of distance increase from substrate to shower is the reduction

of the deposited thickness. It seems that only the thickness is affected, not the deposition

reaction as the resistivity, density or composition of the layer remain unchanged (not shown

here). One possible explanation, is that part of the precursor is pumped to the exhaust

before reaching the substrate (i.e. the wafer is out of the flow isolines). In other words,

flow isolines seem concentrated a the shower centre and increase of shower to substrate gap

induces a better distribution of the flow lines over the wafer surface.

Uniformity is greatly improved when the distance increases, this improvement can be ex-

plained if first it is supposed that the shower does not properly distribute properly the

precursor and gas reactant. In particular, if more precursor is going through the centre of

the shower, increasing the distance from substrate to shower permits to spread the precursor

at the wafer surface thanks to the pumping effect.

As a result increasing the distance from the substrate to the shower allows to improve the

uniformity of the deposited layer, but it also results in lower deposited thickness, since part

of the precursor molecules are directly pumped out without touching the surface of the wafer.

3.4.3 Vector gas flow

Argon vector gas can be introduced in the chamber from two different locations, first for

transport of precursor molecules from the injectors and through the furnace, second for re-

actant gas transport from the dual channel shower.
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To increase the flow of precursor vector gas entering the deposition chamber the vector gas

injector opening time has to be raised, see Chapter 2 for detailed presentation of the Al-

taCVD tool. No influence on the deposition or uniformity was observed when longer opening

time of the gas injector was used. It is presumably due to the buffer action of the evaporation

furnace which regulates the flow entering the deposition chamber.

On the other hand, change in the flow of reactant vector gas resulted in different deposition

rate and subtle uniformity improvement, as introduced in figure 3.18.

Figure 3.18: Variation of layer uniformity with reactant gas flow increase

Modification of the vector gas flow going through the dual channel shower has a direct in-

fluence on the residence time of the deposition reactants (precursor molecules and reactant

gas). Indeed, by increasing the vector gas flow, the reactants are remaining during a shorter

time in the chamber, thus they have less time to react and to deposit on the surface of the

substrate. It is clearly visible on the figure 3.18, where the addition of the vector gas flow

results in a decrease of the deposited thickness.

Nevertheless, increase of reactant vector gas allows a better dispersion of the reactant gas in

the chamber and thus, similarly to the increase of the substrate to shower gap, an improve-

ment of the thickness uniformity with vector gas flow increase, vector gas introduced with

the reactant gas, is observed.

Thickness profiles through the wafer diameter, of the layers deposited with 0, 1500 and 3000

sccm of Ar gas flow are plotted on the figure 3.19.

The deposition has a shape referred to as ”doughnut” shape, the highest thickness being

located close to the half radius. When the vector gas flow is increased a clear reduction of

this profile is observed. There is a better dispersion of the precursor on the substrate with

high gas flow.
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Figure 3.19: Variation of layer thickness on the diameter of 300 mm wafer with
reactant gas flow increase

Another significant information visible in figure 3.19, is the perfectly symmetric profile ob-

tained. The symmetry is kept whatever the chosen diameter. This information points out

that the atmosphere in the deposition chamber is homogeneous, i.e. there are no perturba-

tions of the flows in the chamber or in the pumping area. The speed of the matter in the

atmosphere of the chamber in flow isolines is constant with a centred axe of symmetry.

By adjusting the vector gas flow the behaviour of the uniformity is changed. So with a

3000 sccm vector gas flow, the new best distance was found to be 700 a.u., resulting in an

uniformity as low as 7%.

3.4.4 Deposition chamber pressure

As introduced earlier, the residence time of the precursor molecules in the chamber is de-

creased by the increase of the vector gas flow. A decrease of the chamber pressure also results

in a reduction of the residence time due to a more important pumping flow in order to obtain

the requested pressure in the chamber.

A direct consequence is that the uniformity of the layer is also impacted by the pressure

of the deposition chamber. Pressure variation from 0.5 to 8 Torr was investigated and as

expected, a higher pressure allowing longer residence time and results in a better uniformity

of the deposited layer.

With the best parameters possible, the thickness uniformity was lowered to 5%, similar to

the specifications of an industrial tools.
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3.5 MOCVD conformity control

3.5.1 Methodology

To validate the hypothesis of conformal deposition using the MOCVD method a 4 nm TaN

MOCVD layer was deposited on a 15 nm wide and 15 nm high Si Fin line patterned on SiO2

substrate. The process parameters were chosen as follow:

• substrate temperature: 350◦C

• chamber pressure: 2 Torr

• liquid injector temperature: 40◦C

• reactant gas/precursor ratio: >1000

• deposition rate: 0.2 Å.s−1

• spacing substrate-shower: 0.7 cm

3.5.2 SEM conformity observation

Pictures from the SEM observation are presented figure 3.20, (left secondary electrons and

right back-scattered electrons).

Figure 3.20: SEM secondary electron (left) and back-scattered (right) observation
of MOCVD deposited TaN on 15 nm Si Fin

The secondary electron picture has a better resolution because of the high number of emitted

electrons, however since only a small quantity of conductive material was deposited on SiO2

insulator a charging effect of the sample is observed. This charging led to the destruction

of the layer and the degradation of image resolution, which induces difficulties to observe

interfaces.

Hence, to have a better separation of the TaN and SiO2 layers a picture was taken in

back-scattered mode, which is more sensitive to materials densities and conductivities. This

picture reveals a net and clear interface with no voids between TaN and the substrate. Also,

the thickness of the layer on the vertical surfaces is the same as on the horizontal surfaces.

A software estimation of the deposited thickness on both vertical and horizontal surfaces re-

vealed a ratio of 1:1. Therefore, the conformity of MOCVD deposition on small 3D patterns
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is validated.

3.5.3 Roughness observation

Using SEM it is also possible to observe the surface roughness. Picture of TaN surface

deposited by MOCVD on Fin structures is shown in figure 3.21.

Figure 3.21: Surface roughness of MOCVD deposited TaN on 15 nm Fin

The roughness/granularity observed is linked to the well known TaN island growth regime

where important crystallinity of TaN is usually expected. In this case, the 4 nm thick TaN

deposited leads to the formation of a close film (i.e. no voids are observed between the

grains), and the presence of local bumps may be source of electrical variability (such as

transistor Vt shift) as already reported for advanced technology nodes [109].

3.5.4 Conclusion

This first observation of MOCVD TaN layer confirms that MOCVD technique is conformal

on patterns of a few nanometres. With the ratio 1:1 estimated on vertical:horizontal surfaces,

MOCVD is suitable for advanced CMOS technologies. In Chapter 5, electrical measurements

of the MOCVD layers will give an insight into the influence of the grains on the threshold

voltage variability.

3.6 Conclusion to the Chapter 3

Deposition of TaN and TiN by MOCVD appears to follow a complex chemical reaction path

influenced by different parameters.
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The first and most important parameter is the substrate temperature. As shown in figure 3.1

and 3.14, complete reaction is obtained from 350◦C for TaN and TiN. Further increase of the

temperature does not enhance the deposition rate but favours densification of the material

and so limits the oxidation observed at vacuum break.

Then it appeared that in a LIMOCVD tool, the temperature of the liquid injector has a

strong influence on the deposited material. Indeed, an increase of the evaporator and furnace

evaporation temperature results in a degradation of the properties of the layer, correlated to

an activation and pre-decomposition of the precursor molecule in the evaporating furnace.

Also, even if the material growth is only activated thermally, physical properties modifi-

cations of the metals (thickness, density, resistivity to oxidation...) were observed with a

variation of the reactant gas. These modifications confirmed the diethylamine by-products

creation due to the clear evolution of nitrogen content in the TaN layer. Using NH3 reactant

gas allowed to increase the N/Ta ratio, contrary to H2 reactant gas. Furthermore, oxidation

of the metallic layer is directly correlated to the stoichiometry of the layer. Main hypothesis

is that Ta vacant bonds and hydrogen bonds are replaced by oxygen bonds at vacuum break.

Besides, it was shown that other parameters have no influence on the physico-chemical prop-

erties of the film but impact the deposition efficiency and thickness uniformity.

Finally, the conformity of MOCVD deposition technique was proven on small patterns of 15

nm, with great success.

In summary, the investigations presented in this chapter reveal the process parameter win-

dows in which the best material can be obtained, together with the highest reaction efficiency.

Yet, some parameters, inherent to the deposition chamber characteristics (buffer effect of the

evaporation furnace for example) could not be tuned.

Possible deposition reaction path were proposed in accordance to the evolution of stoichiom-

etry and bonding environments of the species present in the deposited layer.
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Plasma influence

“The science of today is the technology of tomorrow”

Edward Teller, physicist

4.1 Introduction

Plasma deposited metalorganic films have been used for applications from diffusion barri-

ers [110], superconductors [111], to catalytic support materials [112]. Recently, thanks to a

better control over the growth rate, PEMOCVD started to be considered for applications

requiring thin layers, including metal gate [19, 22, 90].

Main advantage of the plasma addition to MOCVD is to reduce the substrate temperature

necessary to obtain the same reactions. Thus, PEMOCVD is a promising method for deposi-

tion of metals on High-κ dielectrics for non-planar devices such as FinFet or Trigate. Lower

temperature of deposition garantees the quality of the High-κ dielectric, as HfO2 for example.

Plasma energy can also be used as treatment of the deposited layer for densification and/or

activation of the nucleation sites [16, 53, 90, 113]. Plasma Densified MOCVD (PDMOCVD)

and by extension Plasma Enhanced ALD (PEALD) are both using plasma steps during the

deposition process.

Previous works [61, 114] reported that nitrogen, hydrogen or N2/H2 plasma treatment of a

TiN material leads to the densification of the layer and highly reduces the amount of contam-

inants (C, H, O,...) inserted in the layer during the pyrolysis of the metalorganic precursor.

The plasma also modifies the initial preferred growth orientation of the crystals from (100)

to (110). Knowing that the atomic density evolves with the preferred orientation of the layer

and that the work function increases with the density of the referential planes [115], plasma

may be used for the fine tuning of the metal work function.

Due to the complexity of the plasma reactions, there is no clear understanding of the deposi-

tion mechanisms taking place during metalorganic deposition. So in this chapter, emphasis

will be put on the understanding of the phenomena taking place during plasma activation of

the precursor (for PEMOCVD) or plasma treatment of the surface (for PEALD).

First, the influence of each parameter for PEMOCVD deposition of Ta(C)N and Ti(C)N is

introduced and compared with MOCVD results from Chapter 3. A decorrelation between

73



Chapter 4.

plasma and thermal activation of the reaction mechanisms is investigated. The advantages

of higher plasma power for decomposition of the precursor are discussed and linked with the

physical properties of the deposited material. An innovative work investigating the effects

of plasma frequency modification on the decomposition of the precursor and the resulting

transformation of the deposited metal is presented. Then, the effects of plasma used for sur-

face treatment are studied by a comparison of PEALD and ALD deposited metals. Finally,

the conformity of the PEMOCVD deposition is characterised on small dimension patterns.

4.2 Influence of plasma in PEMOCVD

During PEMOCVD, part of the deposition reaction path is activated by the plasma. The

decomposition of the precursor molecule is partly achieved in the volume of the plasma by

bond breaking from the excited species.

In this first section, variation of the process parameters and the corresponding influences on

the properties of the deposited material are reported.

4.2.1 PEMOCVD standard parameters

First, a short and rapid overview of the common parameters (such as temperature, reactant

gas, ...) is given, in regards to the MOCVD process introduced in Chapter 3.

Substrate temperature

Deposition was done at temperatures ranging from 150◦C to 400◦C and only a decrease of the

carbon contamination was observed. Therefore, the substrate temperature does not impact

the growth rate of the layers.

It is important to notice that the carbon present in the layer was not bonded with the metal,

only C-H and C-N bonds were found by XPS analysis. The fact that no Ti-C nor Ta-C

bonds were observed confirms that the carbon is brought from reaction by-products only.

This carbon content increase at low temperature deposition can be associated to a difficult

elimination of the reaction by-products, mainly methane and diethylamine groups or similar.

Liquid injector temperature

Because the precursors are going in the plasma after passing through the evaporation furnace,

the precursor pre-decomposition with high furnace temperature revealed in the MOCVD de-

position, in Chapter 3 section 3.2.4, has no impact on the deposited material. Actually, the

buffer effect encountered with the furnace temperature increase is kept and the deposited

thickness with high temperature furnace is lower than the thickness obtained with low tem-

perature furnace.

Effect of injection frequency

Increasing the injection frequency of precursor during PEMOCVD did not change the de-

posited thickness for the same quantity of precursor injected or the physical characteristics
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of the deposited material. But to reduce the plasma damages on sub-layer higher injection

frequency have to be preferred, since the damages are proportional to the plasma budget

(plasma power x plasma duration). Therefore, to limit as much as possible the deposition

time and thus the damages brought by the plasma, the injection frequency is kept at 1 Hz,

higher limit until which the uniformity of the layer is acceptable.

Reactant gas

In the investigated process window, a change of the reactant gas was not possible due to the

non-stability of the plasma when NH3 or N2 reactants were used instead of H2. The non-

stability of the plasma was visible by OES as an important variation of the plasma intensity

and resulted in a non-repeatable deposition process.

Deposition chamber pressure

As for MOCVD process, the pressure of the chamber during deposition has an impact on

the residence time of the precursor. The higher the pressure, the longer the residence time.

Uniformity of the deposition is affected, like in MOCVD mode, but no change of material

characteristics was seen, in the pressure range of 0.5 to 8 Torr.

Moreover, increasing the pressure during precursor plasma activation leads to a reduction of

the plasma sheath1 thickness. Indeed, it was shown that a power law relationship, equation

4.1, exists between the pressure of the reactive gas and the sheath thickness [113, 116].

pnS = constant or S = S0p
−n (4.1)

with p the plasma pressure (in mTorr), S the plasma sheath (in cm) and S0 a constant de-

fined by the initial state of the sheath. n exponent is included between 0 and 1 and depends

on the reactive gas in the plasma.

In general, in Capacitively Coupled Plasma (CCP) chambers, an increase of the plasma den-

sity is going along with the pressure increase [117].

So overall, smaller plasma sheath increases the gap between the plasma and the substrate,

resulting in lower damages but limiting the interest of a higher plasma density as the active

species are further from the substrate. However in the chosen process conditions, if the

pressure is too high the plasma cannot stabilise.

Finally, the absence of change in the characteristics of the deposited material can be ex-

plained by the fact that higher plasma density is going along with a shorter residence time of

the precursor molecule. Thus, the plasma might be more efficient but the precursor is going

through the plasma during a shorter time.

1The plasma sheath is a layer in the plasma which has a greater density of positive ions, and hence an
overall excess positive charge, that balances an opposite negative charge on the surface of a material with
which it is in contact.
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4.2.2 PEMOCVD plasma power variation

The most important parameter in a PEMOCVD process is the plasma power, as the energy

brought for decomposition of the precursor depends strongly on this first order parameter.

By increasing the plasma power more energy is brought for the decomposition of the precur-

sor and for the activation of nucleation sites.

In the following paragraph, PEMOCVD deposition of TiN with TDEAT and H2 reactants is

discussed. The lowest temperature to thermally decompose TDEAT, with an NH3 ambiance,

on Si-substrate was reported previously to be about 200◦C, Chapter 3 section 3.2.3 figure

3.1. Moreover, H2 reactant gas appeared to increase the lowest temperature required for

deposition. Therefore, in the current work, the substrate temperature was kept constant at

150◦C to avoid any competition between plasma deposition and thermal deposition.

First, it appeared that the effect of plasma power increase, from 80 to 300 W, is negligible on

XRR extracted thickness and density during PEMOCVD deposition. A slight densification

was observed with plasma power increase, but the variation was within the measurement

error and so will not be discussed here.

Bonding environments of Ti and N evolve with plasma power, as presented figure 4.1.

Figure 4.1: Evolution of Ti2p (left) and N1s (right) TiN PEMOCVD XPS spectra
with plasma power increase

Hence, in figure 4.1 left a clear variation of TiN oxidation state with a plasma power increase

is revealed. Indeed, both Ti-N bond (456 eV) and Ti-O bond (458.6 eV) are affected by the

plasma power used for deposition. One must recall that the oxygen element is not present

in the chamber or in the TDEAT molecule, and that there should not be any remaining

oxygen contamination in the reactor chamber during the process. The absence of oxygen

was further supported by OES investigation of the plasma. From 80 W to 300 W, Ti-O

component decreases, revealing a higher oxidation resistance of the layer at vacuum break.

At the same time Ti-N environment intensity increases with a shift towards lower energies,

confirming the lower oxidation state of Ti.

Ti-N modifications can also be observed on N1s spectra presented in figure 4.1 (right). On

this spectra three main environments are observed: N-Ti (396.9 eV [81]), N-Ti-O (398.1 eV
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[81]) and N-C (400.1 eV [81]). First observation is the increase of Ti-N bonds with plasma

power increase, in good correlation with Ti2p spectra figure 4.1 (left). Second fact is the

decrease of N-Ti-O environment, matching with the oxidation decrease seen on Ti2p spec-

tra figure 4.1 (left). Finally, N-C environment coincides with the diethylamine groups from

the precursor. Their presence can be explained by the low temperature of the PEMOCVD

deposition (150◦C) and the absence of change with plasma power variation implies that the

exhaust of diethylamine group is not affected by the plasma.

In summary, plasma power increase appears to improve the N stability in TiN layer, in turns

limiting the oxidation of the layer at vacuum break. Because no nitrogen other than the one

already present in the precursor is introduced in the chamber during PEMOCVD deposition

(H2 plasma is used in this study), it is possible to suppose that higher plasma power allows

to break more diethylamine groups creating N* and CH4. Free nitrogen are then reacting

with Ti and results in the higher TiN bonds created at higher plasma power.

However, as highlighted by the composition of the layers in table 4.1, the exhaust of deposi-

tion reaction by-products is not complete and high level of carbon is found in the layer.

Table 4.1: Ti relative composition of PEMOCVD TiN depending on plasma power

80 W 150 W 300 W

Ti 1 1 1
N (N at.% \ Ti at.%) 1.27 1.29 1.34
O (O at.% \ Ti at.%) 1.53 1.44 1.35
C (C at.% \ Ti at.%) 2.37 2.75 3.35

The composition of the layer is consistent with the observations and suppositions done from

figure 4.1.

Plasma power increase permits a slight increase of N ratio together with a higher resistance

against oxidation but increases the C content. Most of the carbon found in the material

has a binding energy of 285 eV, characteristic of hydrocarbons bonds, such as CHx. And

as supposed earlier, the important carbon content in the layers can be associated to the

low substrate temperature which does not enhance the volatility of the carbonates reaction

by-products. The C content increase with the plasma power increase highlights that the

dissociation of the precursor molecule is done in the plasma atmosphere. Increase of plasma

energy allows different dissociation and results in higher C-H groups formation.

If temperature of substrate is rose to 350◦C, whatever the plasma power used, the carbon

content decreases from 38 at.% down to 8.2 at.%, characteristic of the carbon brought by

atmosphere contamination also found on MOCVD and ALD layers.

Also it appears that oxydation of the layer decreases with the plasma power increase. This

evolution can be linked to the densification of the layer, reducing the solubility of O in TiN.

The resistivity evolution of 10 nm TiN layer deposited with several plasma powers was

investigated at a substrate temperature of 350◦C, to limit the influence of carbon on the
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resistivity, and is presented in figure 4.2.

Figure 4.2: Evolution of the resistivity with plasma power increase

By increasing the plasma power from 80 W up to 300 W the resistivity decreases from 4

000 μΩ.cm down to 60 μΩ.cm. Resistivity is first rocketing down, from 80 W to 200 W, and

stabilises above 200 W at values lower than 100 μΩ.cm. TiN resistivities reported in the

literature are included in the 50 - 200 μΩ.cm range for PVD [11, 17] and 100 - 500 μΩ.cm

range for (PE)CVD [60, 118].

Uniformity of resistivity measurements is also given in figure 4.2, with higher reproducibility

for higher plasma power, going along with a resistivity decrease. Lower oxidation of the

layer may explain the lower variation; higher oxidation may create some localised insulator

influencing the resistivity measurement.

4.2.3 Conclusion on PEMOCVD

The differences of deposition reaction mechanism between MOCVD and PEMOCVD were

highlighted in this chapter. Whereas MOCVD is a deposition based on a chemical surface

reactions, PEMOCVD is a reaction activated within the volume of the plasma and resulting

in the deposition of a layer.

Two fundamental points must be reminded from these investigations: first, even if precursor

dissociation and deposition activation are provided by the plasma, the substrate needs to be

heated to allow a better exhaust of the reaction by-products. Low temperature substrate

(lower than 300◦C) will result in highly carbonated layers. Such carbon embedded in the

layer does not create bonds with the metal and thus induces an increase of the film resis-

tivity. The second point concerns the plasma power used during deposition. Even when the

reactants amount which enters the deposition chamber is kept constant, by increasing the

plasma power the stoichiometry of the layer is changed. More precisely, higher plasma power

78



Plasma influence

results in higher resistance against oxidation and leads to better quality film.

Finally, the plasma frequency, can be tuned in the way to improve precursor decomposition

in the plasma. It can be achieved by adding LF waves simultaneously with well known RF

waves. Hence, a complete investigation of the plasma modifications after addition of low

frequency plasma to radio frequency plasma and the resulting changes of the deposited ma-

terial is now presented.

4.3 Influence of LF plasma power addition for PEMOCVD

4.3.1 Introduction

As introduced earlier, in PEMOCVD deposition mode, dissociation of the precursor affects

the chemical, physical and electrical properties of the deposited film as well as the growth

rate of the resulting film. In a CCP reactor, with a fixed RF frequency, the electron density

is known to increase with the plasma power and the electron temperature is known to vary

with the pressure. Thus, if one wants to modify the dissociation rate of a given precursor,

pressure and power have to be carefully tuned. Another parameter often not taken into

account, but that should be considered is the plasma frequency. Flam, in 1986, studied the

plasma frequency effect in low pressure plasma etching [119]. He showed that frequency

alters many plasma parameters such as the spatial distribution of species, the energies and

concentrations as a function of time, and energies of ions impinging the substrate. In their

simulation paper, Surenda and Graves predicted that higher RF frequencies would produce

higher plasma densities for the same voltage [120]. Also, faster plasma etching can be ob-

tained by increasing the traditional 13.56 MHz RF frequency. Goto et al proposed a mix of

low and high frequency to have both high density and highly energetic ions [121]. Following

this work, dual-frequency (DF) reactors have been developed as fine etching tool for micro-

electronic manufacturing. In that case, the CCP is driven by a HF and a LF source attached

to either one electrode or two electrodes. One frequency is chosen to be much higher than the

other in order to achieve an independent control of ion bombardment and electron density

(i.e. ion flux). More details can be found in the review of Bi et al concerning DF capacitive

discharges [122].

Many groups have created models and simulated the effect of LF addition on plasma density.

Depending on the model assumptions and on the pressure, it was reported that the plasma

density may be reduced due to sheath width variation, and that it may also be increased due

to highly energetic secondary electrons [123–132]. Both et al showed that if plasma negative

ion density is included in the simulation then it can strongly modify the effect of adding

LF to HF. They found that a mixture of the 27 and 2 MHz RF powers have significant

effects on plasma density in Ar/O2 mixture, whereas the 2 MHz power weakly increases the

electron density when the 27 MHz power is low in a Ar/C4F8/O2 plasma [130]. Donko et

al also showed how the γ-coefficient of the secondary electrons may be used to interpret

papers published with contradictory results [131], and they concluded that there is only a
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small pressure process window for which the effect of secondary electrons on the ionisation

compensates the frequency coupling effect.

Compared to etching tools, only few papers report the effect LF addition to an HF source for

high-pressure plasma used in deposition processes. The effect of frequency has mainly been

studied for the deposition of silicon-based materials such as SiO2, SiOxNy, Si3N4 and SiC,

with the idea of controlling the stress by modifying the ion bombardment of chemical bonds

in the film [132–134]. Most of the reported experiments are not really DF processes since

they are using a very high frequency source for the plasma generation with additional RF

bias at the substrate holder [135]. As an example, in case of silicon oxynitride deposition,

it was reported that thin films deposited with a RF/microwave DF source have a higher

surface potential and improved charge retention in comparison to films obtained in an RF

mode [136]. Bieder et al also studied the MW/RF dual excitation for SiO2 deposition [110]

while L. Yang et al used this dual mode for diamond-like Deposition [137]. In their case,

this mode was mainly used to control the energies of hydrogen ions and the induced stress

in the film, not to improve the dissociation rate of the precursor. Recently, Jin et al have

studied the effect of DF plasma on SiOx deposition by adding an ultra-high frequency (320

MHz) source to a 13.56 MHz source [138].

The impact of RF frequency on precursor deposition and PECVD process optimisation was

discussed in depth by Moisan et al, who compared the MW PECVD to the RF PECVD and

the parameters determining the optimum frequency of operation [139]. Bieder et al have also

compared two RF frequencies for SiO2 deposition [110]. In both case no LF frequency was

used and the RF frequency (ω) was always higher than the ion plasma frequency (ωpi) of

the precursor and/or ions from the precursor decomposition. Since the excitation frequency

has profound effects on the spatial distribution of species and their concentrations, the dis-

sociation of the precursor can strongly be increased by crossing the discharge excitation

frequency to the basic ion plasma frequency, ωpi, as suggested by Flamm [119]. Manolache

et al investigated the chlorine contents of 40 KHz and 13.56 MHz silicon tetrachloride and

dichlorosilane plasmas in the 100-500 mTorr range by OES [140]. They found the concen-

tration of free chlorine in the dichlorosilane plasma to be much higher at the low RF range

and drew conclusions about potential routes that can be developed for frequency-controlled

molecular fragmentation. This route is considered here, with comparison and discussion over

the improvements brought by DF LF/RF plasma in TiN deposition thanks to the modifica-

tion of the precursor’s decomposition reaction. For this study, a 300 mm industrial PECVD

tool from Altatech Semiconductor was used. It is a capacitive plasma chamber with a DF

source: 13.56 MHz and 350 kHz. The LF was chosen in order to be lower than the ion

plasma frequency of the precursor. The impact of LF addition on plasma density and pre-

cursor dissociation are discussed thanks to OES monitoring of the plasma during the process.
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4.3.2 Experiments

Samples depositions were made with the AltaCVD Advanced MaterialsTM, 300mm pulsed

PEMOCVD chamber presented earlier in figure 2.7. The pressure in the chamber is kept

constant at 2 Torr, resulting in a narrow sheath, far from the substrate. Two independently

controlled generators are used with frequencies of 13.56 MHz and 350 kHz, for RF and LF

plasma, respectively. Both generators deliver the power at the shower head, substrate heater

being grounded. For discussion of the experimental results, the plasma power given here

corresponds to the input plasma power minus the reflected power.

PEMOCVD allows deposition of carbo-nitride alloys of metals [141], with a variation of the

composition depending on the plasma power. In PEMOCVD process, first the chamber is

filled with Ar and He inert carrier and H2 reactant gases, before plasma activation. Then

precursors in a vapour phase are introduced in the chamber and have to go through the

plasma to reach the substrate. Plasma energy allows an activation of the first reactions

leading to the decomposition of the molecules; second reactions are taking place at the sub-

strate surface, i.e. at 350◦C. All depositions were done on 300mm silicon (1 0 0) prime wafers.

Plasma emission was monitored by OES, with a signal acquisition from 200 nm to 800 nm

at a frequency of one spectrum per second, and gives an insight into the plasma chemistry.

The thickness, density and roughness of the deposited films were obtained by careful fitting

of XRR experimental spectra; resistivity is measured with a four point probe; chemical com-

position and chemical bonding were analysed by XPS.

XPS acquisition was done with a quasi-in situ tool, which limits TiN oxidation and carbon

contamination introduced at vacuum break [93], thus no oxygen nor carbon removal was

performed before analysis. Carbon C1s, situated at 285 eV, was used to remove any possible

binding energy shift from the charging sample. Bonding environments of Ti, C, N and O

were analysed using the Ti2p, C1s, N1s and O1s core level energy regions respectively. XPS

deconvolution was done using the following constraints for Ti2p: Ti2p5/2 and Ti2p3/2 are

separated by a shift in bonding energy of ∆E = 5.54 eV and an area ratio of 0.5.

4.3.3 Plasma modification

In order to discuss the plasma modification induced by LF power and added to RF power,

three plasmas were analysed: pure argon plasma, Ar + H2 plasma and Ar + H2 + precursor

plasma. Hydrogen in the plasma deposition was used for the removal and control of the

carbon content in the TiN films. All the plasmas’ emission intensities were recorded by OES

as a function of RF power (from 0 to 500 W) and as a function of LF power (from 0 to 100

W) added to 200 W RF power.
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4.3.3.1 Impact of LF addition on pure Ar plasma

As introduced before, LF addition to RF can enhance the precursor decomposition in the

plasma thanks to the modification of the electronic density or electronic temperature. The

LF field can also penetrate into the plasma volume resulting in an increased heating of heavy

ions (from precursor dissociation). Therefore, the influence of LF addition on pure Ar plasma

was monitored in order to discuss the role of LF addition on electron density or temperature

modification. The 200-800 nm optical emission spectra were recorded as a function of RF

and RF + LF powers. The evolutions of two emitted peaks are mainly discussed here: the

Ar* emission line at 419.8 nm, which corresponds to the transition from Ar(3p5) to Ar(1s4),

and Ar+* emission line at 432.8 nm. The Ar* line has already been found to be a good probe

to determine the plasma density in CCP sources as a function of driving frequency [142].

For pure Argon plasma, the optical emission of Ar originates from the direct electron impact

excitation of the Ar atom, and the emission process of Ar* [3p55p(3p5) → 3p54s(1s4)] by the

electron impact is:

e + Ar [3p6(1S0)]
E>14.57eV
−−−−−−−→ Ar [3p55p(3p5)] + e → Ar [3p54s(1s4)]+ hv (419.8 nm) (4.2)

Therefore, the light emission intensity is proportional to the density of Ar species in the

electronically excited state: IAr∗(419 nm) = k [Ar*] and the density of excited states [Ar*]

is proportional to the density of Ar ground state species times the efficiency of the plasma

ηF : [Ar*] = ηF [Ar]. Finally, IAr∗(419 nm) = kηF [Ar]. The efficiency of the plasma to

excite species depends on the electron density and energy distribution (temperature, T e).

In these experimental conditions, for pure Ar plasma as a function of plasma RF power, if

electron temperature variation is neglected, then the Ar* intensity can be directly correlated

to the electron density. When LF is added to RF, the electron temperature can be modified

due to different mechanisms for sustaining the discharge (secondary electrons versus an

electron reflected by an oscillating sheath, see the discussion hereafter). Unfortunately, at

the moment it is not possible to measure the effect of LF addition on T e, so that the Ar*

intensity variations will be correlated here to electronic density variations.

The impact of RF and LF power on Ar spectra is illustrated in figure 4.3, from 410 to 440

nm. In this figure, one can compare the evolution of the intensity of the OES bands when

going from 200 W RF to 300 W RF and from 200 W RF to 200 W RF + 60 W LF. In

both cases, an increase of the intensity was observed when increasing the power injected in

the plasma. But it appears that higher intensities were obtained with LF added to RF. A

simple explanation is that higher plasma densities are obtained with LF addition instead of

RF addition to the 200 RF power. In this case, the assumption that electron temperature is

not modified when adding LF was made. This should be verified in a complementary study.

Figure 4.4a shows the evolution of the Ar* (419.8 nm) emission line as a function of RF power

and RF (200 W) + LF power. Figure 4.4b shows the evolution of Ar+* (434.8 nm). In figure

4.4a, with RF power only, the relation between plasma power and plasma intensity is of a

square root type. Before 30 W, there is not enough energy to switch on the plasma; above 50

W one can see a quite linear relation. Such a relation between plasma power and intensity
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Figure 4.3: OES of the ALTACVD Ar plasma in the 410-440 spectral range

is characteristic of CCP reactors. Godyak and Piejak have shown that a CCP discharge is

dominated by Ohmic heating at high pressure (versus stochastic at low pressure) [143]. In

this case, the plasma density, n0, can be correlated to the RF frequency, ω, and the applied

RF voltage, V0, by the following equation (see reference [144] for more details on RF plasma):

n0 ∝ ω2V
1/2
0 (4.3)

The same evolution is observed for the Ar+* emission line as a function of RF power in figure

4.4b. When LF power was added to 200 W RF power, strong modifications were observed.

As an example, the ratio I (419.8 nm - 300 W RF) / I (419.8 nm - 200 W RF) is equal to

1.37, while the ratio I (419.8 nm - 200 W RF + 100 W LF) / I (419.8 nm - 200 W RF) is

equal to 2.17. The same evolution is obtained with the Ar+* emission, going from a value

of 1.48 to 2.27.

As mentioned in the introduction, some authors have reported that the addition of LF to RF

power may increase the plasma density due to highly energetic secondary electrons. Thus

the discharge is not dominated by Ohmic heating. The transition in CCP RF source towards

a regime dominated by secondary electrons (also called “γ-regime”) has been studied in the

past [120, 145–148]. As an example, Belenguer and Boeuf have studied the case of Helium

(3 Torr) plasma, and they clearly showed that two different regimes may exist [149]. The

transition from one regime to the other depends on the energy obtained by the electrons

in the sheath and their ability to ionise. It means that large sheath (thus high power) and

high pressure help to shift the plasma in the direction of γ-regime. Godyak et al were able

in their plasma to have a γ-regime transition when increasing the voltage to values higher

than 400 V in pure Helium plasma at 3 Torr [150]. Belenger and Boeuf were able to fit the

experimental curves when the effects of secondary electrons were taken into consideration,

with an emission coefficient, γ, of 0.08 [149].

83



Chapter 4.

Figure 4.4: Evolution of the Ar* (a) and Ar+* (b) emission lines as a function of
RF power and 200 W RF + LF power

In this experiments, the high-pressure regime may help to obtain the γ-regime. Moreover,

LF addition may have increased the sheath width, which is also in favour of the γ-regime.

In order to confirm that Ar* intensity enhancement can be linked to the transition to a γ-

regime when LF is added; OES measurements were performed at higher RF power. As seen

figure 4.5, for RF power higher than 400 W, a modification of the Ar* intensity variation

was observed, with again a fast increase of the Ar* intensity. This can be interpreted as

a transition to γ-regime in single RF plasma when power is higher than 400 W. A power

of 400W seems to be the threshold above which the discharge is sustained by secondary

electrons. At these higher RF power, the Ar* intensity now follows the same law as the one

obtained with LF addition. Therefore, in these experimental conditions, the plasma density

increases by LF addition thanks to secondary electrons. This behaviour is contrary to what

was obtained by numerical models at low pressure (see reference [125] for example). However,

this result is in good agreement with recent papers from Ahn et al [151], Xiang-Mei et al

[152], and Schulze et al [146].

4.3.3.2 Impact of LF addition on Ar+H2 plasma

Contrary to pure Ar plasma, when adding LF to RF in an Ar + H2 plasma, the intensity

of the Ar* emission lines decreased with LF addition (easily observed for the 750 nm Ar*

emission line; see figure 4.7d for example). This may indicate a decrease of electron density

or electron temperature with LF addition, which is contradictory with what was observed in

pure Ar plasma; this point will be discussed later. The H2 continuum from the primary sys-

tem in the 300 - 500 nm range (see figure 4.6) also decreased with LF power. New emission

peaks were also observed with LF power addition, some are highlighted by an arrow in figures

4.7a and 4.7b. In the 400-500 nm range, the new peaks observed can be attributed to the H2

secondary system (G1Σ+
g −B1Σ+

u ) [153]. The Hα emission peak from Balmer lines at 656.3

nm also increased with LF power indicating an increase of H atomic species in the plasma.

This increase can be correlated to the intensity decrease of the Ar* emission line and may
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Figure 4.5: Evidence of a γ-mode transition at 400 W for pure Ar plasma with
singe RF power

finally be the consequence of the high level of excited argon activating the dissociation of H2

in these experimental conditions. Therefore the opposite behaviour of Ar* at 750 nm and

H* by the H2 dissociation can be explained from collisions with Ar* following the reaction

proposed by [154]:

Ar(2P1) +H2 → Ar(1S0) + 2H (4.4)

And in a more general way, the reaction rate that may occur in the Ar/H2 plasma can be

written as follows for Ar* excited species and Arm metastable species [155–157]:

Ar∗ +H2 → Ar + 2H (4.5)

Arm +H2 → Ar + 2H (4.6)

This increase of H density in the plasma may be of importance for the PECVD process since

H atoms might break different bonds in the precursor molecule than in pure RF plasma

conditions.
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Figure 4.6: Impact of LF addition in Ar+H2 OES in the 300 - 500 nm range

Figure 4.7: Impact of LF addition in Ar+H2 OES in 4 spectral ranges: a: 400-450
nm; b: 450-500 nm; c: 650 -700 nm; d: 720-780 nm. Arrows in the figures indicate

new emission peaks

4.3.3.3 Modification of OES for Ar+H2+Ti precursor

Figure 4.8 shows the modification in the OES when adding Ti precursor in the gas phase.

Figure 4.8a is a comparison between 200 W RF plasmas with and without a precursor. The

OES spectrum in the 300 - 500 nm range shows that a new emission peak could now be

observed at 386 nm (indicated by an arrow in figure 4.8a). This peak corresponds to the
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CN* emission band from the violet band system [153]. This is not surprising since CN bonds

are present in the Ti precursor. No Ti* emission line is observed at 363.5 nm, indicating that

the precursor is probably not completely dissociated in the plasma phase, this result being in

contradiction with what was reported by Rie et al [158]. The intensity of H* atomic species

was observed to decrease when adding Ti in the gas phase. This can be seen in figure 4.8a

with the decrease of Hβ emission line from the Balmer lines at 486.1 nm and the Hα line at

656.3 nm (figure 4.9d). It is not surprising since the H atoms were expected to react with

carbon-based radicals from the precursor in order to limit the C, H and reaction by-product

content in the growing film.

The same spectral range for a 200 W RF + 60 W LF plasma, with and without Ti precursor

added to Ar +H2 plasma, is presented figure 4.8b. A new CN* emission band clearly appears

at 386 nm. Another new weak emission peak is observed at 336 nm and can be attributed to

a weak emission from NH* band [153], indicating that the precursor dissociation is modified

when adding LF to RF. The comparison in all the spectral ranges shows new weak peaks

at 402 nm, 446 nm (see figure 4.9a, arrows), 491 nm, and 586 nm. These peaks are due to

He* emission such as He (3d3D/2p3P0) at 587.6 nm. Helium was used in the process as a

gas carrier for the liquid injection of the Ti precursor. As of today, no explanation for the

presence of emitted He* in the DF mode and not the RF mode has been found. However,

as for pure argon plasma, it shows that the plasma is strongly modified by LF addition.

Figure 4.8: a: is a comparison for a 200 W RF plasma with and without Ti
precursor; b: shows the impact of Ti precursor for 200 W RF + 60 W LF plasma

Figure 4.10 shows the evolution of the OES spectra in the 300-400 nm range as a function of

LF power added to RF power. Some of the new peaks are correlated to new emission from

the H2 plasma as previously observed, and the only two new peaks which come into view

with the introduction of the precursor are NH* at 336 nm and CN* at 386 nm.

In summary, it was showed that LF addition to RF increases the Ar plasma density. This can

be interpreted by a transition to the γ-mode due to secondary electrons’ heating. In Ar/H2

plasma, the LF addition helped to increase the H density in the plasma by H2 dissociative

collision with excited Ar or metastable Ar. Finally, the TiN precursor was not completely

dissociated in this discharge and in the dual mode, but new excited species were observed,
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Figure 4.9: Effect of Ti precursor addition in the OES of the 200 W RF + 60 W
LF plasma : a: 400 - 450 nm range; b: 450 - 500 nm range; c: 550 - 600 nm range

; d: 650 - 700 nm range

Figure 4.10: Evolution of the OES of Ar+H2+Ti precursor plasma with LF power
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indicating a different fragmentation of the precursor. The effect of the LF addition on the

TiN film properties will now be examined.

4.3.4 Thin TiN film analysis

As for OES analyses, the properties of thin TiN films deposited in the pure RF mode are

first discussed. Then, properties of TiN films obtained in the Dual Mode will be analysed

and compared to the RF ones.

4.3.4.1 Impact of RF power on thin film properties

In table 4.2 are given the deposition rate, density, roughness and resistivity of TiN layers

obtained for RF plasma power between 200 and 300 W.

Table 4.2: Evolution of thickness, density and resistivity with increase of RF
plasma power

RF Power Deposition rate Density Roughness Resistivity
(W) (Å.s−1) (g.cm−3) (Å) (mΩ.cm)

200 1.03 3.38 26.2 110
250 1.25 3.34 27.1 93
300 1.60 3.35 27.4 64

As usually observed in PECVD, increasing the RF power improves the dissociation of the

precursor and increases the deposition rate [158]. The growth rate increased by a factor

1.55 from 200 to 300 W, quite similar to the plasma density evolution (Ar* line) of 1.37.

In parallel to the growth rate evolution, the resistivity decreased when the RF power in-

creased: its value was reduced from 110 mΩ.cm to 64 mΩ.cm. Roughness of the thin TiN

films is only slightly modified by RF power, with a little variation (from 26.2 to 27.4 Å).

Finally, increasing the plasma power does not affect density, which is low compared to the

theoretical density of TiN: 5.40g.cm−3 [100]. A high level of oxidation has to be taken into

account for density calculation, as it reduces the density (TiO2: 4.23g.cm−3 [100]) and can

partly explain the low density measured. Moreover, theoretical densities are calculated for a

perfectly crystalline material, whereas the obtained TiN is amorphous (confirmed by XRD

analysis and TEM observation, not shown here) with a lower density.

Hence, a possible hypothesis to explain the improvements observed is that the increase in

plasma power may improve the by-products’ removal during deposition leading to the easier

nucleation of the layer and to a reduction of resistivity. Indeed, the presence of carbon from

reaction by-products in the layer decreases the conductivity of the layer.

The XPS analysis of TiN RF 200 W, 250 W and 300 W layers is discussed later in comparison

with LF deposition results.
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4.3.4.2 Impact of LF addition to RF plasma on thin film properties

To evaluate the impact of LF addition to RF plasma on TiN material deposition and to be

able to compare it with the increase of RF plasma power, all deposition parameters were

unchanged, and only LF power was added to 200 W of RF power. Figure 4.11 shows the

deposition rate obtained with and without LF addition. Figure 4.12 shows the impact of the

DF mode on resistivity while figure 4.13 illustrates the beneficial role of LF addition on thin

films’ density. The fitting error from XRR spectra is at maximum 10%, thus is not significant

and is not reported in figures 4.11 and 4.13. The error bars in figure 4.12 correspond to the

resistivity uniformity measured with 1 cm edge exclusion.

Figure 4.11: TiN deposition rate in RF mode and Dual Frequency mode with LF
addition

Figure 4.12: TiN resistivity in RF mode and Dual Frequency mode with LF addi-
tion
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Figure 4.13: TiN density in RF mode and Dual Frequency mode with LF addition

It is clear from figures 4.11-4.13 that strong modifications are obtained with LF addition.

Again the higher deposition rate in the DF mode can be correlated to the higher electron

density of the plasma. In the single RF mode with addition of 100 W RF (from 200 to 300

W), the deposition rate increases by 60%, but with only 60 W LF added, deposition rate is

increased by 126%. And whereas an increase of RF power from 200 W to 300 W leads to

an increase of deposition rate only, adding LF power in plasma allows to increase both the

deposition rate and the density of the layer, as shown in figure 4.13. An increase of both

deposition rate and density indicates that the reaction mechanism is more efficient, i.e. more

material is deposited on the substrate. However, above 35 W of added LF plasma power,

the deposition rate and density do not have a linear growth with the plasma power increase.

There is a change in the slope for all the characteristics of the material after 35 W of added

LF, towards lower augmentation of the deposition rate and resistivity but higher density.

The addition of LF plasma also has an important effect on sheet resistivity. Indeed, increase

of RF plasma power from 200 W to 300 W reduces the resistivity by a factor two. Such a

reduction is obtained with only 35 W of LF plasma power, and adding 60 W of LF plasma

power reduces the resistivity by a factor five. This decrease of resistivity is partly linked to

the density of the layer; a material has its optimum conductivity when it is the closest to

the theoretical density.

4.3.4.3 Impact of LF addition to RF plasma reaction mechanism

The impact of LF on chemical composition was studied by XPS on TiN materials. Figure

4.14 presents the Ti2p spectra of samples deposited with 200 W RF, 300 W RF, and 200 W

RF + 35 W LF.

Bonding environments corresponding to each peak are noted on figure 4.14. TiO2, TiON,

TiN and TiC are located at 458.6 eV, 458 eV, 456 eV and 454.9 eV respectively [81].
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Figure 4.14: XPS Ti2p spectra of TiN samples

In figure 4.14, it appears that an RF power increase from 200 to 300 W favours the creation

of TiN, resulting in lower TiON formation. Then, LF plasma power addition also reveals

important changes. First the Ti-N bonds increase and the TiON bonds are reduced. If the

LF sample is compared to the sample with 300 W RF power it appears that the TiN creation

is similar; however, an additional 100 W of RF are used, compared with the 35W of LF.

The second important change is the shift of the TiN peak maximum towards lower energies,

when RF is increased or LF plasma is added. This shift may correspond to the creation of

the TiC bonding environment. However, due to the low number of bonds created, the new

environment TiC is not observed as a new peak.

XPS measurements were also performed a second time, after a several hours’ vacuum break,

to compare the oxidation uptake of each sample. The spectra are not presented here, as no

significant difference between the samples was observed. Thus, oxygen uptake is similar no

matter what plasma was used for deposition.

The Ti2p modifications previously observed are compared with the evolution of the C1s XPS

spectrum with LF power increase, presented figure 4.15a. Evolution of the C-Ti peak area,

which corresponds to the amount of carbon atoms bonded with titanium, is given figure

4.15b.

The C1s spectra in figure 4.15a clearly highlight the formation of TiC bonds when using LF

plasma, with a C-Ti environment at 282 eV [81]. The intensity of the Ti-C peak confirms

the supposition of low TiC content in the layer and the impossibility of observing the TiC

peak in the Ti2p spectrum. Moreover, an increase of the LF plasma power leads to a higher

TiC peak, as seen on the evolution of the peak area of C bonded with Ti, shown figure 4.15b.

Changes on N1s spectra, not shown here, are not as visible; only a shift towards lower energy

of N-Ti bonds is apparent. This shift corresponds to the increase of TiN bonds and to the

decrease of TiO environments, as seen on Ti2p spectra figure 4.14.

Two explanations can support the presence of new TiC bonds in the materials. First, this
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Figure 4.15: C1s XPS spectra a: and evolution of the area of the Ti-C bonding
environment b:

can be due to the modification of the Ti precursor dissociation in the plasma phase (as

observed by OES with new emission peaks) and so modifications of elastic and inelastic

collisions in the plasma phase thanks to electronic density and temperature modifications

with LF addition. Moreover, the ion plasma frequency (f pi) of the precursor, and heavy

ions coming from the precursor dissociation, is a few MHz. Thus the LF field can penetrate

into the plasma volume causing increased heating of heavy ions and increased dissociation.

This is in agreement with papers from Flamm [119] and Manolach et al [140]. The second

mechanism can entail heterogeneous reactions, i.e. reactions at the surface of the growing

film. Hence, the TiC formation can be due to the activation of a transposition mechanism,

from the metalorganic titanium precursor, following the equation [17]:

T iN + CH4(g) → T iC + 1/2N2(g) + 2H2(g) (4.7)

Since the deposition is done at 350◦C and at 2 Torr, it is possible to determine the Gibbs

energy of the reaction 4.7 to be +75 kJ.mol−1. This reaction is not spontaneous, but TiC

formation is favoured at higher temperatures, as shown in figure 4.16. The calculations

indicate that transposition reaction 4.7 threshold is 970◦C. Such a high temperature is not

supposed to be reached at the surface of the sample, even when the energy brought by the

hydrogen plasma is taken into consideration.

Consequently, the hypothesis of surface heating by plasma leading to a transposition reaction

is not realistic. The creation of TiC bonds in the plasma phase has to be preferred.

Also, an increase of RF plasma power from 200 W to 300 W does show the creation of TiC

bonds, whereas an addition of 17 W of LF plasma power to 200 W RF is sufficient to create

TiC bonds, as shown figure 4.15a. As a consequence, the hypothesis of higher efficiency of

the decomposition of the precursor’s molecules in a DF mode, with a LF source lower than

the f pi of the precursor, can be made.

This reduction of the plasma power needed to create material with lower resistivity is wel-

come for some of the applications, i.e. plasma was proven to be the source of damage on the

dielectric, resulting in poor electrical characteristics when used for CMOS technologies [19].
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Figure 4.16: Evolution of the Gibbs energy of the products from the equation 4.7

4.3.5 Conclusion

In the PEMOCVD mode, it has been shown that using a dual-frequency instead of a single

RF is a very good method to enhance the deposition rate and film properties, such as density

and resistivity. It has been shown that modification of the properties of a TiN metal are

obvious with the DF mode: the film is deposited faster and it has a higher density and

lower resistivity. In the case of pure argon plasma, the optical emission spectroscopy of the

plasmas has shown that the DF mode increases the plasma density. This is explained by a

transition to a γ-mode in the CCP discharge thanks to secondary electrons. The H atoms’

density is also higher in the DF mode. Finally, new emitted peaks are observed. These

can be correlated to a modification of the Ti precursor dissociation in the DF mode. As a

consequence, new bonds are also observed in the growing film.

As introduced Chapter 2, activation of nucleation sites in ALD process can be achieved by

plasma treatment of the substrate. In that case plasma does not have an action in the volume

but only on the surface. Study of the plasma power modification during PEALD deposition

is then reported in the next section.

4.4 Influence of plasma power in PEALD

4.4.1 Introduction

ALD, as MOCVD, is a thermally ruled deposition. However, the activation of nucleation

sites in ALD process is done by the reactant after the surface saturation of the substrate

with the precursor (report to Chapter 2, section 2.2.3 for a complete description of ALD).

Main ALD parameters and their influences are:
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• Substrate temperature: monolayer deposition of the precursor is happening in a

precise temperature range. The surface saturation allows a linear growth rate, whatever

the substrate used.

• Precursor injection quantity: the quantity of precursor injected to the chamber

has to be carefully chosen to allow surface saturation of the substrate and to avoid

important wasting of the excess precursor.

• Purging time: the purging step of ALD allows for precursor excess removal. After this

step precursor is only found on the substrate, not in the atmosphere of the deposition

chamber.

• Reactant gas flow: as for precursor injection, reactant gas flow has to be adapted to

have complete reaction of the precursor, any excess will be pumped to exhaust.

• Other parameters: the rest of the parameters are reactor dependant and can affect

the uniformity of the deposition or the amount of particles formed on the substrate

during the process.

The activation step of ALD, step based on reactant gas activating nucleation sites at the

surface of the substrate, can be replaced by a plasma activation step. In this case, the de-

position method is called Plasma Enhanced ALD (PEALD).

If many articles report the influence of ALD parameters (such as temperature [51, 54, 159,

160], precursor chemistry [54, 161], reactant gas [51], or other parameters [52, 160]), the

influence of the plasma step used in PEALD process for densification of the layer is not

complete [89, 90].

So in this part of the work, a focus is done on the importance of the plasma step during

PEALD deposition, highlighting the material modifications obtained. Modifications which

would not be possible without the energy brought by the plasma activation step.

4.4.2 Experimental methods

The following experiment is presented for the case of tantalum deposition by PEALD, but

similar behaviour and reaction mechanism has been observed for tantalum deposition by

plasma densified MOCVD and with lower extent for titanium plasma densified MOCVD

deposition.

4.4.2.1 Samples preparation

All depositions were done in the ASM EmerALD R© 3000 chamber, on 300 mm silicon (1 0

0) substrate with a silicon thermal oxide of 100 nm for resistivity 4-points probe measure-

ments. TBTDET precursor was used for deposition. It is of importance to remember that

as presented in Chapter 2 figure 2.2, in TBTDET molecule the tantalum atom is bonded

directly only with nitrogen, and that one of the bounds is double; there is no direct bond

between tantalum and carbon.

Process steps of PEALD deposition are presented figure 4.17. The process can be decomposed

95



Chapter 4.

as follow: introduction of precursor in the deposition chamber until the surface saturation

is reached, purging excess of precursor, activating H2/Ar plasma and purging before new

surface saturation with precursor. Number of cycles is chosen depending on the targeted

thickness, as the deposition rate is linear from the first cycles. In the current study, the

number of cycles was fixed to 320, which leads to a film thickness ranging from 9 to 12 nm.

Constant plasma time and constant plasma budget are compared here. A first set of three

Figure 4.17: PEALD purges and pulses steps

films, S1, S2 and S3, was deposited at constant plasma time t1 and variable plasma power:

low power (LP), middle power (MP) and high power (HP). Three additional films, S4, S5 and

S6, were processed at LP, MP and HP plasma power condition but with adapted plasma time

t3, t2 and t1 respectively, (t3 > t2 > t1), in order to obtain a fixed product of plasma power

by time, called plasma budget. Identical plasma budget results in the following relation:

PLP × t3 = PMP × t2 = PHP × t1 (4.8)

with PLP , PMP and PHP the plasma power of samples S4, S5 and S6 respectively.

These two sets of experiments allow a comparison of the influence of instant plasma power

vs. total plasma budget on the TaCN film. The sample with the higher plasma power

condition and a chosen plasma time t1 was done twice (S3 and S6) in order to confirm

process repeatability. Used plasma powers and times are summarised in the table 4.3, with

in line the constant plasma time and in diagonal the constant plasma budget.

Table 4.3: Samples time and power of plasma step

Low Power Middle Power High Power

t1 Sample 1 Sample 2 Sample 3 and 6
t2 Sample 5
t3 Sample 4
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4.4.2.2 Characterisations

Transfer from the deposition chamber to other characterisation equipments required vacuum

break, leading to surface oxidation of the films. To limit the variation of the oxide growth, a

minimum of one hour vacuum break was observed between deposition and characterisation,

in order to insure stabilisation of the oxide before analysis [162]. Thickness, density and

roughness were measured by X-Ray Reflection (XRR), in 43 points with 2θ = [0; 3.5◦], and

4 points probe technique was used to measure the films resistivity in 49 points. Average

from all the points measured is presented here, the error bars on the figures correspond to

the measured variability. Crystallography of the samples was obtained by X-Ray Diffraction

(XRD) on a 2θ = [30; 80◦] range, compositions and chemical bonding were measured by

X-Ray Photoelectron Spectroscopy (XPS) using a Al - Kα (1486.6 eV) source and a spot size

of 400 μm with a passing energy of 100 eV.

4.4.3 Results

4.4.3.1 Thickness and density

In figure 4.18 are given the XRR average thicknesses and densities versus plasma power, over

the 43 measured points extracted by careful spectra fitting. To obtain satisfying fit between

the spectra and the model, 15 Å tantalum oxide layer was added on top of the TaCN layer,

indicating a clear surface oxidation of the film. Besides, layer roughness did not change with

plasma modification.

Figure 4.18: TaCN evolution with plasma power increase

It appears that the two samples S3 and S6 generated at HP present a similar variation of

thickness and density included in the measurement error margin. This similarity was con-

firmed with resistivity measurements. Thus process is considered to be stable.

First, for constant plasma time experiments, thickness decrease (left axis) and density in-

crease (right axis) are observed at higher plasma power, which indicates a densification of the

material (see (2) on figure 4.18). Measured density, 10.5 g.cm−3 for LP and 11.5 g.cm−3 for
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HP, has to be compared with theoretical density of TaN: 13.7 g.cm−3 and TaC: 14.5 g.cm−3

[100]. Difference between theoretical and experimental density values could be related to

TaCN surface oxidation.

Second, for the constant plasma budget experiments, a decrease of thickness and increase of

density with longer plasma time at both LP and HP conditions are observed. At constant

plasma budget a significant variation of density and thickness can be observed between S4 LP

and S6 HP (see (1) on figure 4.18). Therefore by comparison of the two sets of experiments

it appears that plasma time increase is leading to lower changes in the material than plasma

power increase. Higher plasma power seems to be more efficient to break down the precursor

molecule and enable formation of new bonds.

Resistivity of the layers, in figure 4.19, exhibits similar behaviour as the thickness presented

previously.

Figure 4.19: Evolution of TaCN resistivity with plasma power

Constant plasma time experiment shows a decrease of resistivity by a factor 3 from LP to

HP samples. From literature, it is known that cubic-TaN (150 μΩ.cm) is more resistive than

cubic-TaC (30 μΩ.cm) [100] for highly crystalline samples. Therefore, it suggests that plasma

power increase changes the materials properties from TaN-like to TaC-like film. Obtained

resistivity is comparable with resistivity of films deposited by MOCVD [18, 163, 164] and

reactive sputtering [165, 166] techniques, as it is ranging from 200 to 1000 μΩ.cm depending

on process conditions.

In line with the previous XRR study, it appears that LP and HP samples in the constant

plasma budget experiment show a decrease of resistivity. Effect of plasma time increase on

resistivity is obvious (see figure 4.19 S1, S4 at LP and S2, S5 at MP) but not as efficient as a

plasma power increase (HP values). Here again, one can conclude that higher plasma power

is more efficient to decompose the precursor than longer plasma time.

In the rest of the discussions, focus will be done on constant plasma time experiments, S1,
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S2 and S3 samples, which represent extreme cases (i.e. the other samples are expected to

present intermediate properties).

4.4.3.2 Crystallography

Crystallographic spectra, obtained by 1◦ incident angle XRD, of LP and HP samples are

presented in figure 4.20, along with the theoretic peaks of cubic-TaN and cubic-TaC [79].

Spectrum from MP sample is not displayed to allow a better view of LP and HP differences.

Figure 4.20: Evolution of TaCN crystallography with plasma power

Five Miller indexes are visible in the analysed window. These indexes confirm that both LP

and HP samples have a cubic structure. Moreover, matching between experimental spectra

and theoretical peaks shows that the increase of plasma power is changing the crystallog-

raphy of the films from cubic-TaN to cubic-TaC, this evolution is clearly visible for all the

indexes.

The shift of the crystallographic peaks is related to a modification of the lattice parameter

of the layer, from 4.32 Å at LP to 4.42 Å at HP. These two values perfectly match with

reported cubic-TaN and cubic-TaC lattice parameter [79].

In addition, the artefact from substrate silicon (1 0 0) at 2θ =57◦, visible for both LP and

HP samples, shows that the shift in peaks location is not due to measurement error but

corresponds to a change in the deposited material.

Although, spectrum of the intermediate power sample (MP) is not presented here, it appears

that the five indexes peaks of MP sample are all located in between LP and HP peaks. Full

width at half maximum (FWHM) and intensity of the peaks are similar for the three samples,

which shows that it exists only one kind of lattice within the layer. If MP layer would be

made from a mixture of TaN and TaC poly-crystals an enlargement of the peaks together

with a decrease of intensity would have been observed. Thus modification of lattice size is

gradual with plasma power increase.

The high intensity and low FWHM of the peaks in the spectra confirms the high crystallinity

of the material. So the lower density observed in the figure 4.18 cannot be explained by a
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low crystallinity of the layer.

4.4.3.3 Chemical environments

The chemical environment of the species in LP and HP layers was deduced from XPS analysis.

Ta4f, C1s and N1s spectra acquired on LP samples are presented in figure 4.21 and 4.22,

HP sample Ta4f, C1s and N1s are presented in figure 4.23 and 4.24.

Figure 4.21: Ta4f chemical environments of TaCN-LP sample

Figure 4.22: N1s and C1s chemical environments of TaCN-LP sample

Ta4f spectra from LP sample, in figure 4.21, and HP sample, in figure 4.23, exhibit three

environments; Ta-O (i.e. Ta bonded with oxygen), Ta-N and Ta-C located at 26 eV, 24.5 eV

and 23.5 eV respectively [81]. Because of the three overlaid bonding environments, analysis

of the spectra is quite difficult. In order to have more information on the material bonds,

environments of carbon and nitrogen were studied, with C1s and N1s respectively. Spectra

are presented figure 4.22 for LP sample and figure 4.24 for HP sample. Environment changes

of C1s and N1s are clearly highlighted from these spectra. In figures 4.22 and 4.24, the C1s

peak present at 283 eV (on the right of the spectra) correspond to C-Ta bonds. Figures 4.22
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Figure 4.23: Chemical environments of TaCN-HP sample

Figure 4.24: N1s and C1s chemical environments of TaCN-HP sample

and 4.24, the N1s peaks present at 397 eV (on the right of the spectra) correspond to N-Ta

bonds. Evolution of carbon and nitrogen bonds is consistent with the hypothesis expressed

above: plasma power increase allows a better precursor’s molecule bonds separation which

changes the material from TaN-like to TaC-like.

Quantification of the species present in the films can be extracted from the current XPS

spectra, leading to the composition of the layers. Indeed, area under the curve is proportional

to the number of bonds present in the analysed volume. Films compositions are given in

figure 4.25. This estimation only includes C-Ta (obtained in C1s), N-Ta (obtained in N1s)

and Ta-C, Ta-N bonds (obtained in Ta4f ).

Layers compositions reveal that the number of carbons in C-Ta bonds is increasing with

higher plasma power, whereas nitrogen in N-Ta bonds is decreasing. This observation fur-

ther confirms modification of the material from TaN-like to TaC-like, keeping a TaCxN1−x

composition.

Representation of Ta atoms and their bonds for LP and HP are given figure 4.25a and

4.25b, it reflects the composition changes of the deposited layers from TaC0.19N0.86 at LP to

TaC0.56N0.49 at HP.
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Figure 4.25: Chemical composition of TaCN-LP, TaCN and TaCN-HP samples

4.4.4 Discussion

4.4.4.1 Composition

Overall, characterisations done in this study proved the evolution of TaCN metal properties

from a TaN-like to a TaC-like material. This evolution was linked to the increase of plasma

power which allows to break chemical bond between Ta and N in the TBTDET molecule,

resulting in an increase of tantalum bonded with carbon in the deposited material. Also due

to the original chemical structure of TBTDET molecule, nitrogen concentration in the layers

is greater than carbon concentration. Complete replacement of nitrogen by carbon has not

been seen, even with higher plasma power than presented here. This observation can be

associated to the presence of a double bond between Ta and N, the plasma energy required

to break this bond is more important.

On the XPS spectra presented figures 4.21, 4.22, 4.23 and 4.24 no C-N, N-N nor Ta-Ta

bonds were observed, whatever the plasma parameters. Therefore it appears that all C and

N coming from the precursor molecule either react with Ta to form Ta-C or Ta-N bonds

or is pumped away from the sample surface as a deposition by-product. No residues, such

as N(CH3)x or CHx are detected in the film. The absence of carbon impurities in the film

and the presence of Ta-C explain the low resistivity of the layers, indeed carbon impurities

increase the resistivity of the films [167], whereas carbides decrease it.

4.4.4.2 Film density

Crystallographic analysis of the samples, in figure 4.20, showed a high crystallinity of the

films, suggesting that experimental density should be similar to theoretical one. Using Angle

Resolved XPS, the surface oxidation was determined to be thinner than 2 nm. Knowing that

Ta2O5 density is 8.2 g.cm-3 [100], a stack of 2nm of Ta2O5 and 10nm of TaN or TaC has an

total density of 12.5 or 13.3 g.cm-3 respectively. Thus, not only surface oxides account for
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the low density measured. Another hypothesis to explain the density shift is the oxidation

of the first deposited nanometres by interaction with the substrate. It has been shown that

ALD deposited TaN is creating only Ta-O bonds in the early steps of the process [168]. Thus

it can be supposed that there is oxidation of TaCN, located at the TaCN/SiO2 interface, but

because of TaCN surface oxidation it is not possible to locate the Ta-O bond at the interface

by XPS. A 1 nm tantalum oxide at the substrate interface would decrease the density from

12.5 to 11.9 g.cm-3 and 13.3 g.cm-3 to 12.7 g.cm-3 for TaN and TaC respectively. On top

of that the XRR fitting error has to be taken into consideration. This error which can be

evaluated to 10%, leading to a measured density of TaN or TaC matching to the theoretical

densities of crystalline material.

4.4.4.3 Film formation

TBTDET metalorganic precursor has similar behaviour to other metalorganic precursors,

such as TDEAT, as metal is only bonded to nitrogen. Thus deposition of TBTDET can

be resolved by three different reactions [17]: transamination exchange with the formation of

diethylamine and methane (4.9), amine elimination (4.10, 4.11) and possible transposition

reaction resulting in the formation of ammonia and hydrogen (4.12) or nitrogen and hydro-

gen (4.13).

Ta[N(C2H5)2]3[= NC(CH3)3] + 8H2(g)

→ [NH2]2Ta[N(C2H5)2][= NC(CH3)3] + 8CH4(g) (4.9)

N2Ta[N(CH2CH3)2][= NC(CH3)3] +Hplasma → N2TaH2 + 2N(CH3)3(g) + 5CH4(g)

(4.10)

N2Ta[N(CH2CH3)2][= NC(CH3)3] +Hplasma → N2Ta(NH2)2 + 8CH4(g) (4.11)

TaN + CH4(g) → TaC +NH3(g) + 1/2H2(g) (4.12)

TaN + CH4(g) → TaC + 1/2N2(g) + 2H2(g) (4.13)

To explain the formation of TaC with plasma power increase the Gibbs energy of the trans-

position reaction was calculated. Considering that in this experiment deposition is done at

325◦C and under 1 Torr the Gibbs energy of reaction (4.13) can be determined to be +77
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kJ/mol, thus the reaction is not spontaneous. But a temperature increase will lead to the

enhancement of TaC formation, as shown in figure 4.26.

Figure 4.26: Gibbs energy calculation of TaC formation

Calculation reports that transposition reactions (4.12) and (4.13) appear from 550◦C, such

temperature can be reached locally at the sample surface thanks to hydrogen plasma. As

a result increase of H2 plasma power is leading to an increase of the local temperature and

will promote the transposition reaction, leading to creation of TaC.

XRD measurements, figure 4.20, showed a gradual change of the lattice parameter from

cubic-TaN to cubic-TaC but composition analysis, figure 4.25, confirmed that the material

always contains nitrogen and carbon. Thus, it appears that increase of plasma power is

leading to introduction of carbon atoms in TaN lattice, progressively affecting the lattice

parameter of the material towards a TaC lattice. One can suppose that this carbon nitro-

gen exchange and evolution of the lattice parameter may lead to high internal stress of the

material.

4.4.5 Conclusion

In this part, the influence of plasma power on TaCN films deposited by PEALD was eval-

uated. XRR and four points probe measurements showed that using higher plasma power

lower resistivity and higher density films are obtained. These changes were compared with

theoretical data of TaN and TaC material to highlight the similarities and it appears that

increase of plasma power is shifting the material from a TaN-like to a TaC-like material.

Increasing plasma time to have same plasma budget at all plasma power (the product of

plasma power and plasma time being constant) leads to a decrease of the observed varia-

tions between low and high plasma power, but differences are still significant. XRD analyses

support the TaN-like and TaC-like hypothesis with really good fitting of the experimental

and theoretical Miller indexes. Then, a correlation was done with XPS measurement, prov-

ing the hypotheses of TaN-like and TaC-like materials thanks to chemical bonding and film
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composition. XPS analysis also showed a significant O contamination due to post-deposition

oxidation of TaCN films in ambient atmosphere. Finally, a reaction mechanism was pro-

posed to explain the formation of TaC from the TaN bond initially present in the TBTDET

molecule.

4.5 PEMOCVD conformity control

To validate the hypothesis of conformal deposition using the PEMOCVD method, a 4 nm

TaN PEMOCVD layer was deposited on a 15 nm wide and 15 nm Si high Fin-like structure,

patterned on SiO2 substrate. To compare the conformity of PEMOCVD deposition vs.

MOCVD, introduced Chapter 3 section 3.5.1, the patterns from the same wafer were used

for deposition with the following parameters:

• substrate temperature: 350◦C

• chamber pressure: 2 Torr

• liquid injector temperature: 40◦C

• plasma power: 100 W

• deposition rate: 0.2 Å.s−1 (similar to MOCVD deposition for better comparison)

As for MOCVD deposition the substrate is made of SiO2 and the quantity of metal deposited

is not sufficient to avoid any charging effect. Meanwhile, secondary and back scattered

electron images were acquired and are presented in figure 4.27. To ease the comparison the

same magnification was used in figure 4.28 as in figure 3.21 of MOCVD layer presented in

Chapter 3, section 3.5.1.

Figure 4.27: SEM observation of PEMOCVD deposited TaN on 15 nm Fin

Conformity appears to be lower than what was obtained with MOCVD deposition. In fact,

the thickness deposited on horizontal surfaces appears to be higher than the thickness on

the side walls of the Fin structure. A rough estimation of the thickness gives a ratio 1.2:1

for surface:wall deposited thicknesses. This observation is in good correlation with the fact

that PEMOCVD is not a process induced by surface reaction, contrary to MOCVD, but is
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affected by the directionality of the active species.

It also appears, figure 4.28, that the roughness is lower than when MOCVD is used.

Figure 4.28: SEM observation of PEMOCVD deposited TaN on 15 nm Fin

Hence, at x180k magnification no grains are visible on the PEMOCVD layer (left), and only

some small grains are observed with higher magnification (x500k figure 4.28 right). This

difference highlights the variation of reaction mechanism between MOCVD and PEMOCVD

depositions. Whereas MOCVD has an island based growth, resulting in large grains, PE-

MOCVD deposition reaction activation is done in the volume of the plasma, resulting in the

formation of small grains or even amorphous layers.

4.6 Conclusion to the Chapter 4

In this chapter, the importance of plasma either for decomposition of the precursor (PE-

MOCVD) or activation of nucleation sites (PEALD) was highlighted.

First, it was shown that parameters which proved to impact the deposited material during

MOCVD have a limited effects on the PEMOCVD deposition. Indeed, the reaction mecha-

nism and decomposition of the precursor are mainly activated by the plasma, in its volume

away from the substrate surface. Only the substrate temperature influences the deposition,

higher temperature allowing lower carbon contamination due to better exhaust of the reac-

tion by-products.

It also appears that plasma has a strong influence on the deposited material. Lower resis-

tivity, higher growth rate and density can be achieved by increasing the plasma power. This

evolution confirms the activation of the deposition reaction mechanism in the volume of the

plasma.

On top of plasma power, another parameter is influencing the decomposition of the precursor:

the plasma frequency. Addition of a low frequency source to a radio frequency source mod-

ifies the characteristics of the plasma applied to TiN-PEMOCVD, such as plasma density

and excited species, resulting in a better decomposition of the precursor. New metal-carbon

(Ti-C) bonds are created and it is demonstrated that these bonds would be produced by
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MOCVD exclusively by an increase of the temperature up to 970◦C.

Later on, in an ALD deposition chamber, investigation of plasma surface treatment for

nucleation sites activation and densification of the layer was completed. Increase of the

plasma power applied to TaN-PEALD resulted in an increase of the density, crystallinity

and decrease of the resistivity and thickness. A careful XPS investigation revealed that new

metal-carbon (Ta-C) bonds are formed and it is also demonstrated that these bonds would

be produced by MOCVD only if an increase of the temperature to 550◦C would be used.

To conclude, in this chapter the importance of plasma power and plasma frequency were

demonstrated. It was shown that plasma helps to trigger reaction paths that would be pos-

sible only with considerable temperature increase when using thermally activated reaction.

In the next chapter these different metals and processes are integrated in a metal gate stack

and interactions with substrate material (dielectric or other metal) are discussed.
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Chapter 5

Interactions with sub-layer during
metal integration

“The most exciting phrase to hear in science, the one that heralds the most discoveries, is

not ’Eureka!’ (I found it!) but ’That’s funny...’ !”

Isaac Asimov, biochemist

5.1 Introduction

In the previous chapter the importance of process tuning was demonstrated and a range of

materials with different properties were produced. The materials created were characterised

as bulk materials, without paying attention to the surface or interface reactions/interactions.

However, from volume study of bulk materials, there is a necessary evolution towards sur-

face/interface investigations, linked to the thickness reduction of the layers as mentioned in

the Chapter 1, figure 2.1.

Also, as already mentioned in the Chapter 1, for advanced technology nodes the surface/in-

terface has grown in importance on the definition of the general device behaviour. It is now

well known that continuous reduction of layers thickness arises new challenges although the

same thickness reduction offers new possibilities. Thus, it is necessary to fully understand

and control the modifications taking place during the integration of the material. For ex-

ample, the affinity of TiN with oxygen is now used for SiO2 interfacial layer reduction by

scavenging of the oxygen [169, 170]. This is made possible by the easy migration of species

through the thin HfO2 layer. In fine, the layers are so thin that some of the interactions

might be related to layers which are not in contact.

Chemical modifications of the metal or dielectric have direct influence on the determina-

tion of the device physical and electrical properties [19, 22, 90, 171–174]. Thus by carefully

adapting the deposition process to limit or to enhance some of the interactions it is possible

to aim different characteristics suitable for the p-MOS or n-MOS devices.

Therefore, this chapter will focus on the interactions of materials or processes with the

substrate. The first part will investigate the tuning of PEALD Ta(C)N deposition process

parameters and link it to the modifications brought to the substrate, in particular when
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plasma is involved. Plasma provides more energy to the system through the formation of

radicals [73, 113, 175], which can penetrate deep in the matter and interact with the sub-

strate, thus modifying it. In a second part, the interactions observed during the deposition

of Ta(C)N on HfO2 will be used to improve another metal, here a PVD deposited TiN.

Oxidation decrease and nitridation increase are the result of Ta(C)N interactions. TiN may

also be used in that configuration as a protective film to reduce the impact of plasma and

limit the damages on the dielectric.

5.2 Impact of plasma on dielectric under-layer

5.2.1 Context

Advanced 22 nm node devices, based on 3D architecture, such as FinFET, induce new chal-

lenges for gate metal deposition. Such technologies require very thin dielectric/metal gate

films with good conformity and low leakage current. ALD-deposited hafnium oxide is cur-

rently used in the advanced CMOS transistors fabrication [176, 177] and allows to lower the

Equivalent Oxide Thickness (EOT) below a nanometre while maintaining acceptable current

gate leakages. Tantalum-based metal gates have been widely studied as an alternative to

the well-known standard Titanium nitride [30]. In particular, Tantalum carbo-nitride alloys

(TaCN) can range from TaN to TaC, including TaCN. Tantalum alloys, not only have good

thermal stability, chemical inertness and compatibility with current technologies [14], but

also have a wide range of possible characteristics; i.e. Work Function (WF) changes from

near mid-gap TaN, 4.55 eV [92], to n-type TaC metal 4.2 eV [178, 179]. Moreover, tantalum

alloys are known to be good chemical etch barriers, which can be convenient for integration

to current process flows. It also acts as chemical barrier against oxygen diffusion which can

limit the regrowth of SiO2 interfacial layer between dielectric and Si substrate [180, 181].

Thanks to its low roughness and good conformity (Plasma Enhanced) Atomic Layer Deposi-

tion ((PE)ALD), is a good candidate for metal deposition in advanced nodes [44, 182]. In a

previous study, this deposition technique has been used for TaCN deposition and it has been

shown that power of hydrogen plasma has a direct influence on TaCN properties, by modu-

lating the formation of Ta-C bonds as presented in the Chapter 4. However, the dielectric

underneath can be severely affected during the plasma steps of PEALD metal deposition

by electrons, excited and hot ionised species from the plasma, such as H+, NH+ and other

radicals formed by precursor’s decomposition [19]. In plasma ambient, ions and electrons

are collected by the metal electrode which serves as an antenna [175], a steady-state voltage

may appear in the metal due to charge collection and resulting on electrical stress which

can affect underlying gate oxide [175, 183–187]. The two main phenomena inducing dioxide

degradation are: first, the oxide breakdown due to a conduction path formed from the anode

to the cathode [184, 185], second the weakening of the oxide by charge trapping correlated

to the formation of defects in the oxide [186, 187].

Thus, the aim of this investigation is to first understand the reactions taking place at the

metal/high-κ interface and then evaluate the plasma damages on high-κ layer, in order to
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obtain the best TaCN properties with the lowest impact on the HfO2. First, X-ray pho-

toelectron spectroscopy (XPS) is used to highlight the interactions of TaCN with HfO2.

Then depth composition by Angle-resolved XPS (AR-XPS) is used to evaluate reactions

at the interface and species (O, N) exchanges between TaCN and HfO2. Finally electrical

characteristics of TaCN/HfO2/SiO2/Si are discussed with regards to the metal deposition

parameters and chemical environments obtained by XPS analysis.

5.2.2 Experimental methods

Material characterisations were carried out on Si (1 0 0) blanket wafers. To measure the vari-

ation of EOT simple MOS stacks with TaCN/HfO2/SiO2/Si were realised in oxide cavities on

p-type silicon substrate (5-10 Ω.cm). Both blanket and CMOS wafers were cleaned by an ini-

tial HF bath to remove native oxide, followed by a 8 Å chemical oxide formation. This oxide

was formed by a wet oxidation and acts as an interfacial oxide layer and nucleation surface

for 2 nm thick HfO2. HfO2 was deposited at 350◦C by atomic layer deposition using alter-

nation of H2 and HfCl4 precursors at 133 Pa. HfO2 was then annealed under N2 atmosphere

at 650◦C during 2 min for by-products exhaust. To avoid regrowth of SiO2, HfO2 deposi-

tion was performed within 2 hours after chemical SiO2 formation. Before metal deposition,

a 3 min degassing at 325◦C was performed to allow surface moisture removal from HfO2

surface. 4 nm TaCN metal was then deposited by PEALD with Tris(diethylamino)(tert-

butylimido)tantalum (TBTDET) precursor and H2 plasma. PEALD deposition principle

was already detailed in the Chapter 2. Finally, to allow electrical measurements on MOS

stacks, contact plug based on 5 nm TiN / 150 nm W was CVD-deposited at back-end tem-

peratures on top of TaCN.

Plasma power influence was studied at different conditions: 175 W, 250 W and 325 W plasma

power, respectively named PEALD-LP, PEALD and PEALD-HP, all other deposition param-

eters are kept constant. To allow complete understanding of chemical interactions, samples

with SiO2/Si only, HfO2/SiO2/Si and TaCN/SiO2/Si were also prepared on blanket wafers.

Physical Vapor Deposition (PVD) TiN and Ion Beam Deposition (IBD) TaN metals were

also deposited on HfO2 as references for electrical measurements.

XPS measurements were performed with a Theta 300 XPS tool from Thermo Scientific. A

high resolution monochromatic Al Kα X-Ray source (1486.6 eV photons) with a pass energy

of 100 eV and a resolution of 0.1 eV. No carbon nor oxide removal was performed on the

samples before XPS characterization, thus due to oxidation and atmospheric contamina-

tion high levels of C and O were observed at the extreme surface of the samples. Carbon

C1s, located at 285 eV [81] was used to remove any possible shift in the binding energy

due to sample charging. Observation of Ta, Hf, Si, C, N, and O chemical environments

were extracted from the Ta4f, Hf4f, Si2p, C1s, N1s and O1s core level energy regions, re-

spectively. Using a numerical procedure, spectral fitting was performed to extract the peak

contributions in the acquired energy regions. Individual line shapes were simulated with a
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combination of Lorentzian and Gaussian functions using the commercial software Advan-

tage. The background subtraction was performed using a Shirley function calculated from

a numerical iterative method. AR-XPS measurements used the same parameters as XPS,

with the simultaneous acquisition of eight angles, in the range 23◦ to 76◦, without physical

tilt of the sample, which allows the formation of an accurate depth resolved profile. Based

on intensity evolution of the Ta4f, Hf4f and Si2p line shapes, it is possible to build a depth

composition profile of the sample. As a result of this analysis the variation of intensity (in

arbitrary unit) is plotted through the depth of the sample. It is noteworthy that only the

variation of composition should be taken into account: the higher intensity of an element

cannot be interpreted as a higher concentration of this element in the sample.

XPS spectra fitting was done using the following constraints: Hf4f 5/2 was defined with a

shift in energy of ΔE = 1.71 eV and an area ratio of 0.75 compared to Hf4f 7/2 [81]. A shift

in energy of ΔE = 1.91 eV was taken for Ta4f 7/2 and Ta4f 5/2 doublets separation, with also

an area ratio of 0.75.

Thanks to the identical Si2p line shapes obtained with SiO2/Si, HfO2/SiO2/Si and TaCN/SiO2/Si

(not shown here), Si can be considered as not interacting with the HfO2 and TaCN materi-

als. Thus Hf4f and Ta4f peaks from HfO2/SiO2/Si and TaCN/SiO2/Si samples are used as

individual references for TaCN/HfO2/SiO2/Si stack peaks fitting and interpretation.

5.2.3 Results

5.2.3.1 Chemical interactions

XPS Hf4f spectra of HfO2 before and after TaCN low plasma power deposition are presented

figure 5.1.

Figure 5.1: Comparison Hf4f XPS environment from HfO2/SiO2/Si and PEALD-
LP-TaCN/HfO2/SiO2/Si

Fitting of HfO2/SiO2 reference can be achieved using only one doublet, standing for Hf-O

environment and located at 16.8 eV. Deposition of PEALD-LP-TaCN on top of HfO2 is
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leading to the formation of new chemical environments in Hf4f region. Hence, PEALD-

LP-TaCN/HfO2/SiO2/Si spectrum is noticeably broadened, thus indicating at least two

additional bonding environments. The first one, adjusted at 15.3 eV is attributed to the

formation of Hf-N bonds [81] in HfO2 layer. The second environment doublet at 16.2 eV

corresponds to the presence of O-Hf-N-like bonds. From O-Hf-N peak it is not possible to

discern if N is placed as a first of second neighbour of the Hf.

Because of the important amount of oxygen in HfO2 layer and oxidation of TaCN layer, no

significant evolution of O bonds was observed in O1s spectra, therefore O1s region is not

presented here.

To complete the understanding of TaCN interactions with HfO2, Ta4f spectra from TaCN

low power deposited on HfO2/SiO2/Si and on SiO2/Si are now compared in figure 5.2.

Figure 5.2: Comparison Ta4f XPS environment from PEALD-LP-TaCN/SiO2/Si
and PEALD-LP-TaCN/HfO2/SiO2/Si

Although the same TaCN deposition is achieved, Ta4f spectra are different when deposited

on both dielectrics and three modifications are noticed: i: the first one concerns Ta-O bond-

ing environment, located at 26.2 eV. While no shift in binding energy is observed, Ta-O

peak relative intensity increases when TaCN is deposited on HfO2; ii: the second effect is

the significant decrease of Ta-N peak intensity, meaning lower Ta-N bonds when deposited

on HfO2, and biding energy shift from 25.2 eV to 25 eV; iii: the third change deals with

Ta-C environment, at 24.2 eV, which is shifted to lower energy. Creation of Ta-C bonds

can only be the result of the deposition process through a well-known transposition reaction

[17], as in the TBTDET molecule tantalum atoms are bonded only to nitrogen, i.e. there

are no direct bonds between tantalum and carbon. The evolution of TaCN from TaN-like

toward TaC-like deposition by plasma power increase was demonstrated in the Chapter 4,

the presence of carbides validated by the C1s spectra are presented there.
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N1s spectra from TaCN deposited on HfO2/SiO2 and on SiO2 are compared figure 5.3.

Figure 5.3: Comparison N1s XPS environment from PEALD-LP-TaCN/SiO2/Si
and PEALD-LP-TaCN/HfO2/SiO2/Si

Unfortunately, it is not possible to separate the environments composing the spectra. Mean-

while a shift is observed of the maximum intensity of 0.2 eV towards lower binding energy

(from 396.8 eV to 396.6 eV) when deposited on HfO2/SiO2/Si. This shift can be related to

the formation of Hf-N bonds.

At last, SiO2 and Si environments were observed on Si2p peak (not presented here) and no

Si-N bonds appeared after deposition of TaCN either at low or high power on HfO2/SiO2

neither on SiO2. It also appears that the area ratio of SiO2 and Si features does not evolve,

suggesting that SiO2 interface layer (IL) was not impacted by TaCN deposition and did not

regrow.

5.2.3.2 Composition profile

Using AR-XPS it is possible to build a depth composition profile of the sample, based on

intensity evolution of the peaks. Results from this analysis are displayed in a graph with

the variation of intensity (in arbitrary unit) across the depth of the sample. It is noteworthy

that only the variation of composition should be taken into account, the higher intensity of

one element cannot be interpreted as a higher concentration of this element in the sample.

Figures 5.4a and b bring into comparison the depth profiles from sample TaCN low and high

power deposited on HfO2/SiO2/Si.

Both figures reveal that the TaCN surface is highly oxidised, due to the vacuum break before

XPS analyses; oxidation of TaCN at TaCN/HfO2 interface is also unveiled. This oxidation, at

TaCN/HfO2 interface, highlights the chemical interactions between the metal and the dielec-

tric. The oxygen profile is similar on both low and high power materials, with a clear increase
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Figure 5.4: Depth profile reconstruction from ARXPS of a: PEALD-LP-
TaCN/HfO2/SiO2/Si and b: PEALD-HP-TaCN/HfO2/SiO2/Si

of O content at top and bottom interfaces of TaCN layer. Low and high power TaCN samples

also exhibit a carbon content confined to the TaCN layer, with a maximum localised at the

centre of the layer in concordance with the evolution of Ta-O bonds contribution both at the

surface and HfO2 interface. Nitrogen content follows the same profile within TaCN layer for

low and high plasma power samples, but N is not only limited to TaCN layer: as seen on

Hf4f XPS spectra, N is also located in HfO2 layer. Nitrogen content in HfO2 layer presents

a Gaussian shape, which can be explained by N migration into HfO2 activated by H2 plasma

used during TaCN deposition. High plasma power (figure 5.4b) presents a more important

gap between extrema compared to low power plasma. This difference implies that plasma

power increase promotes N exchange from TaCN to HfO2. Finally, as mentioned earlier,

no SiO2 thickness change is observed if low and high power plasmas are compared, and the

0.7 nm thickness of SiO2 IL is confirmed, indicating that H2 plasma does not impact SiO2 IL.

5.2.3.3 Electrical results

Φm(eff) extracted from MOS capacitors are presented figure 5.5.

Starting from the PVD TiN reference, with a p-type Φm(eff) = 4.9 eV and an EOT of 0.92

nm, it appears that IBD TaN as a similar EOT but a lower work function localised at mid-

gap as the Si, Φm(eff) = 4.6 eV. PEALD-TaCN clearly shows that this reduction of the work

function from PVD TiN to IBD TaN is not linked only to the metal but also to the process.

Indeed, PEALD-LP-TaCN has a work function of 4.8 eV with an EOT reduced down to

0.89 nm. Increase of plasma power, with PEALD-TaCN leads to a gain in Φm(eff) up to 5.1

eV. But higher plasma power, PEALD-HP-TaCN sample, does not increase to the Φm(eff)

further, a Φm(eff) plateau seems to be reached.

In figure 5.6 are presented the variation of log(Jg) with regards to EOT.

PVD TiN has a current leakage gain of 104 A.cm−2, while IBD TaN has the same EOT but
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Figure 5.5: Φm(eff) variation with TaCN plasma power increase

Figure 5.6: Variation of log(Jg) with TaCN plasma power increase

with an improved current leakage gain up to 2 x 105 A.cm−2. Deposition of low power TaCN

results in a current leakage gain of 8 x 105 A.cm−2 combined with a lower EOT. Increasing

plasma power during TaCN deposition induces a noticeable dispersion of current leakage (see

PEALD-HP case for example), as well as a significant degradation of the EOT, from 0.89

nm to 1.05 nm in the case of PEALD-LP-TaCN and PEALD-HP-TaCN respectively.

5.2.4 Discussion

5.2.4.1 Chemical interactions and formation free enthalpy

Plasma step in PEALD is used to activate the nucleation sites and as reported in Chapter 4,

plasma brings enough energy during the densification step to break some Ta-N bonds orig-

inally present in the precursor and allow the formation of Ta-C bonds. Although, plasma

also promotes the formation of Hf-N and O-Hf-N bonds when TaCN is deposited on HfO2,

as highlighted in figure 5.1. Intensity of these new bonding environments (position shift

and intensities changes) are strongly linked to the plasma power used during deposition, as
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recorded in figure 5.4a and b. Figure 5.2 reveals that formation of TaO and TaN bonding en-

vironments depends on the dielectric used as substrate (HfO2 or SiO2). In fact, no exchange

between TaCN and SiO2 was observed, contrary to deposition on HfO2. Consequently, an

exchange of N and O elements between TaCN and HfO2 layers is implied by this comparison.

In order to explain HfN formation and subsequent extension of nitrogen into HfO2 with

plasma power increase, equation 5.1 gives the simplest possible reaction path which does not

include H2 plasma contribution.

TaN +HfO2 + 1/4O2 → 1/2Ta2O5 +HfN ∆G(formation) = +1106kJ.mol−1 (5.1)

Calculation of the Gibbs free energy was done for one mole of Ta and since it is highly

positive, the reaction is unlikely to happen. Then, if one considers H2 plasma interactions,

by the mean of H atoms and H excited species (H*), formation of the HfON and/or HfN can

be partly explained using the following intermediate reaction mechanisms (equations 5.2, 5.3

and 5.4):

HfO2 + 4Hplasma → Hf + 2H2O ∆G(formation) = −143kJ.mol−1 (5.2)

TaN + 3/2H2O + 1/2O2 → 1/2Ta2O5 +NH3 ∆G(formation) = −392kJ.mol−1 (5.3)

Hf +NH3 → HfN + 3/2H2 ∆G(formation) = −671kJ.mol−1 (5.4)

This reaction path is possibly activated by the energy of the plasma used during deposition.

H and H* are known to easily diffuse in materials, such as in forming gas, one of the most

known example. Thus, if H penetrates in the HfO2 layer, it can lead to reduction of the

dielectric (for instance through O vacancies formation) with the creation of volatile OH− or

H2O. H2O is then absorbed by the TaCN deposited on HfO2 (equation 5.3), resulting in N

release which in turn reacts with O vacancies inducing Hf-N and/or O-Hf-N bonds (equation

5.4).

5.2.4.2 EOT variation

Evolution of EOT will now be discussed in correlation with the phenomena introduced earlier.

First, EOT is defined by the following equation 5.5:

EOT = tSiO2
+Σi

εSiO2

εHigh−κi
× tεHigh−κ

(5.5)
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With tSiO2
and tHigh−κ the physical thicknesses of SiO2 interfacial layer (IL) and of High-

κ, εSiO2
and εHigh−κ the dielectric constant of SiO2 IL and High-K materials respectively.

An increase of εHigh−κ reduces εSiO2
/εHigh−κ ratio, which results in the decrease of the

measured EOT. In addition, increase of εHigh−κ due to HfON formation has already been

reported [172–174].

The high-k dielectric constant increase gives a first insight on the observed reduction of EOT

for PEALD-LP compared to TiN or TaN references. Meanwhile, it does not give an expla-

nation to the increasing EOT with plasma power. As already noticed from figure 5.4a and b,

TaOx formation is enhanced at TaCN/HfO2 interface when plasma power is increased. This

observation is in good agreement with the proposed reaction mechanisms equations 5.2, 5.3

and 5.4. Furthermore, equation 5.5 also indicates that the addition of a new dielectric in the

existing dielectric stack results in the increase of the total EOT.

Hypothesis of TaOx formation at the interface is also supported by the significant difference

in the Gibbs free energy of formation between Ta2O5 [∆Gformation(Ta2O5) = -1079 kJ/mol

(at 325◦C)] and TaN [∆Gformation(TaN) = -222 kJ/mol (at 325◦C)]. Furthermore, tantalum

oxide formation in the first cycles of ALD TaCN deposition on oxides was already reported

elsewhere [168].

Amorphous Ta2O5 has a dielectric constant which is in the 22-25 range, thus taking for

hypothesis that a 1 nm Ta2O5 oxide is formed on top of HfO2 with an εHigh−κ of 22, it

represents an EOT increase of 0.15 Å. This estimation is in line with the measured EOT

regrowth from 0.89, sample PEALD-LP-TaCN, to 1.04 nm, in the case PEALD-HP-TaCN.

Nevertheless, the dielectric constants of TaOx oxides are lower than the one of amorphous

Ta2O5, the difference is counterbalanced by further N migrating to HfO2 resulting in εHigh−κ

rise when plasma power is increased.

5.2.4.3 Leakage current evolution

Formation of HfON was already linked with the reduction of current leakage [188], and con-

sequently can account for the improvement, by a factor 3, of the current leakage observed

between IBD-TaN and PEALD-LP-TaCN in figure 5.5. Thanks to AR-XPS depth profile

reconstruction (figure 5.4), it comes into view that N is present in HfO2 layer with a gradient

which can be assimilated to a diffusion phenomenon. N migration into HfO2 is expected to

be initiated by reactive H or H* species during plasma steps (see equations 5.2, 5.3 and 5.4),

with the migration depth of nitrogen limited by the energy level supplied from plasma. And

since the energy distribution of reactive species in plasma corresponds to a Gaussian law

[189], the N concentration also presents a Gaussian profile (figure 5.4a and b). Increasing

plasma power affects the N gradient found in HfO2 layer, as seen on depth profile of PEALD-

HP-TaCN figure 5.4b, nitrogen is going deeper in the layer and the maximum concentration

is pushed further. Nitrogen presence at the HfO2/SiO2 interface is creating defects which

can explain part of the current leakage scattering measured (figure 5.6). Leakage current

and dispersion increase, observed for PEALD-HP-TaCN, also indicates that plasma affects
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the dielectric and/or the interlayer. These plasma damages include the effect of electrons,

ions, neutral species and UV radiation; yet separate impact of each component of the plasma

would require further investigation and thus will not be discussed here.

Another phenomenon enhancing the degradation of current leakage is the important O re-

moval from the HfO2 dielectric and the creation of vacancies [190]. Consequently, TaOx,

HfON and HfN creation are in accordance with both leakage current degradation and EOT

regrowth.

5.2.4.4 Φm(eff) modification

PVD TiN is currently a standard in advanced microelectronic recommendations by ITRS

[30], and as such it is a reference for electrical specifications of metal layer. IBD TaN is used

to give some information on TaN material and influence of deposition technique on electrical

characteristics of the device.

In Chapter 4, it was reported that plasma power has a direct influence on the composition

of the deposited TaCN, a higher plasma power leading to a clear increase of Ta-C bonds;

i.e. high plasma power induces non-spontaneous Ta-N to Ta-C transposition, thanks to local

increase of the temperature. Elsewhere, it was reported [92] that TaC is a p-type mate-

rial, with Φm(eff) at 4.9-5.0 eV on HfO2. In this experiment, the PEALD-LP-TaCN has a

Φm(eff) = 4.8 eV, close to TiN-PVD. With higher plasma power, PEALD-TaCN sample,

the Φm(eff) gains 0.2 eV to Φm(eff) = 5 eV, thus getting at the same values of TaC metal.

Hence, TaC formation can be correlated to Φm(eff) increase.

Further increase of the plasma power, for PEALD-HP-TaCN sample, does not influence the

Φm(eff), a plateau is reached with PEALD-TaCN, even that the composition changes toward

a more TaC-like material, c.f. Chapter 3.

Incorporation of N in HfO2 film was proven to be responsible for a shift of the Φm(eff) to

lower values [184], indicating that N may introduce positive fixed charges. In this study such

a phenomenon has not been encountered, possibly due to the chemical bonding of N in HfO2

which is not seen with nitridation, indeed N is only in interstitial sites.

In summary, the plasma used for densification of the TaCN layer was found to enhance the

interactions taking place at the TaCN/HfO2 interface. A possible mechanism is first, due

to the ease of penetration of H2 species in material inducing some oxide removal from the

HfO2 layer, then H2 species also interact with TaCN layer by N removal. Oxygen is brought

to the surface where it reacts with the TaCN deposited, oxidising the tantalum layer, while

N is migrating in HfO2 layer and form Hf-N bonds. This mechanism is represented in figure

5.7, HfO2 layer is amorphous but for clarity a crystalline structure was used.

5.2.5 Conclusion

In this study, XPS analysis was used to highlight interactions between PEALD TaCN and

HfO2, formation of TaOx, HfN and HfON was demonstrated. Possible reaction mechanism,
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Figure 5.7: Possible reaction mechanism of Hf-N and Ta-O creation

with their Gibbs free energy, are proposed and linked to the dielectric constant increase,

which results in the reduction of the measured EOT, down to 0.89 nm. Current leakage

improvement, up to 8 x 105 times better than SiO2, was also attributed to HfN creation.

Furthermore, an increase of plasma power, used for TaCN densification and TaC formation

in PEALD process, leads to degradation of the stack by an increase of the EOT due to

TaOx formation at TaCN/HfO2 interface, degradation of the gain in leakage current because

of HfO2 oxygen removal and finally a scattering of the electrical values assimilated to the

creation of defects at HfO2/SiO2 interface. Overall, TaCN was successfully used for high-

κ/metal gate application with low EOT and low leakage current and importance of plasma

tuning to limit its impact on electrical characteristics was demonstrated. Thus, in the cur-

rent deposition conditions and in the used deposition chamber, it appears that low plasma

power has to be preferred to limit the damages brought to the dielectric.

5.3 Using TaCN reactivity for PVD-TiN electrical properties
improvement

5.3.1 Context

New technology nodes in CMOS industry require improvement of the materials used to ob-

tain the similar or better properties with thinner layers, compared to the previous generation.

However, reduction of the dimensions has significant drawbacks connected to the rising sur-

face/volume ratio, e.g. in a 2 nm layer about 30% of the atoms are at the surface/interface.

With such ratios, interfacial reactions have a higher impact on the overall behaviour of the

layer and the metals are relatively highly oxidised. Titanium nitride deposited by Physical

Vapour Deposition (PVD-TiN) is now widely employed as a metal-gate material on the HfO2

high-κ dielectrics for CMOS transistors. Extended investigation was carried on the influence

of the deposition process on the properties of the metal, in order to reduce the resistivity to

the 50-200 μΩ.cm range [11, 17], increase the work function up to 4.9 eV [20, 191] and limit

the oxidation of the metal [192]. PVD-TiN is also proposed as a sacrificial scavenging ma-

terial, for oxide reduction of the Interfacial Layer (IL), thanks to its high affinity for oxygen

[169, 170]. But until now no solution with a low thermal budget has been found to avoid or

remove oxidation of TiN after vacuum break.
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Besides, new metals are investigated for replacement of TiN metal gate. Tantalum alloys

are some of the most researched in current literature, thanks to their barrier properties and

p-type work function [14, 50, 89]. However, when plasma is used for densification of tan-

talum nitride during plasma enhanced atomic layer deposition (PEALD) interactions with

the dielectric are activated leading to deterioration of the film’s electrical characteristics if

plasma is not well tuned, as presented previously.

Hence, in this work an alternative solution is presented for the improvement of PVD-TiN

electrical characteristics, with the aim to increase scavenging of oxygen from the SiO2 In-

terface Layer (IL), together with a reduction of the plasma damages linked to plasma den-

sification. ALD tantalum carbo-nitride (TaCN) was deposited on top of PVD-TiN/HfO2

stack, with or without plasma densification ((PE)ALD). Interactions at the metal-metal and

metal-dielectric interfaces were surveyed by X-Ray Reflectivity (XRR) and X-ray Photoelec-

tron Spectroscopy (XPS).

Using quasi in-situ XPS to avoid vacuum break between tantalum deposition and analysis,

it appeared that tantalum draws out oxygen from PVD-TiN. Separation of (PE)ALD steps

allowed to assess the reaction mechanisms taking place at the metal/metal interface.

Finally, equivalent oxide thickness and leakage current of TaCN/TiN/HfO2/SiO2/Si stacks

are introduced, discussed and correlated with the corresponding physical and chemical prop-

erties observed by XRR and XPS.

5.3.2 Experimental methods

All material characterisations were carried on prime Si (1 0 0) 300 mm wafers. Simple MOS,

as presented in section 5.2.2, are used with the same fabrication process as previously. Also,

a CVD-TiN / CVD-W plug was deposited on top of the stack for electrical characterisation,

process conditions were introduced section 5.2.2.

TiN metal was deposited by Physical Vapour Deposition (PVD) by sputtering of a pure Ti

target with N2 flow, N2 flow was tuned to obtain a stoichiometric TiN. TaCN metal was de-

posited by (PE)ALD with TBTDET precursor and NH3 flow (ALD) or H2 plasma (PEALD),

for activation steps. Two PEALD-TaCN samples were made, one with low plasma power, the

other with high plasma power and are referred to as PEALD-TaCN and PEALD-HP-TaCN

(High-Power) respectively, in the rest of the section. (PE)ALD-TaCN deposition technique,

plasma power modifications consequences and electrical results were already presented in

Chapter 2, Chapter 3 and in the previous section.

XRR and XPS are used for full-sheet characterisation, parameters are not changed compared

to what was used in the section 5.2.2. In addition, electronic density of the samples was cal-

culated from the XRR spectra.

Considering XPS analysis, no carbon or oxide removal was performed before characteriza-

tion, hence due to oxidation and atmospheric contamination high levels of C and O were

observed at the extreme surface of the samples. Carbon C1s, situated at 285 eV [81] was

used to remove any possible shift in the binding energy due to sample charging.
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XPS deconvolution was done using the following constraints: Hf4f 5/2 was defined with a shift

in energy of ΔE=1.71 eV and an area ratio of 0.75 compared to Hf4f 7/2 [81]. Parameters

for Ta4f peaks are: Ta4f 7/2 and Ta4f 5/2 are separated by ΔE=1.91 eV [81], also with an

area ratio of 0.75. Finally, Ti2p5/2 and Ti2p3/2 are constraint by a shift in binding energy of

ΔE=5.54eV [81] and an area ratio of 0.5. However, as reported by Strydom [193] and Jea-

ger [85] Ti2p core-level photoelectrons can undergo shake-up events which creates discrete

energy loss resulting in a difficult interpretation of the spectra and the impossibility to con-

straint the Ti2p 3/2 and 1/2 binding environments components. Thus, these environments

are integrated in the TiON environment and evolution/modifications of this environment

will not be discussed later on.

5.3.3 TiN and TaCN interactions analysis

XRR spectra of ALD-TaCN/TiN/HfO2/SiO2/Si, PEALD-TaCN/TiN/HfO2/SiO2/Si and

PEALD-HP-TaCN/TiN/HfO2/SiO2/Si are presented figure 5.8a. The corresponding elec-

tronic density extraction is also given figure 5.8b, together with the electronic density ex-

traction of TiN/HfO2/SiO2/Si.

All three TaCN processes were tuned on SiO2 to obtain 2 nm thick layers.

Figure 5.8: a: XRR spectra and b: electronic density extraction of ALD-
TaCN/TiN/HfO2/SiO2/Si, PEALD TaCN/TiN/HfO2/SiO2/Si and PEALD HP

TaCN/TiN/HfO2/SiO2/Si

On figure 5.8a, a clear distinction can be made between ALD and PEALD processes. Sample

with ALD-TaCN presents a different length of the arches, meaning that the deposited layer

is thinner than for PEALD-TaCN and PEALD-HP-TaCN samples. It also appears that in-

terfaces are impacted by the plasma step with a reduction of minimum intensity reached at

the angle of 1◦. Electronic density extraction, figure 5.8b, amplifies the differences between

the samples and eases the interpretation of the XRR spectra. From left to right it comes

into view that HfO2/SiO2 interface is sharper for ALD process, together with a decrease of

HfO2 electronic density while the plasma power increases. Then, one can observe that in

the metal films/layers, TiN electronic density increases with the plasma power increase, and

that TaN has a higher density when plasma densification is used. Finally, the thickness of
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TaCN increases from ALD to PEALD-HP-TaCN.

If TaCN deposition modifies the TiN properties the opposite is also true: TaCN is influenced

by the TiN. Whereas the three processes, ALD, PEALD and PEALD-HP, were finely tuned

on SiO2 substrate to obtain the 2 nm thickness layers, it appears in figure 5.8b, that the

thickness of TaCN layers varies when deposited on TiN. Measured thickness of ALD-TaCN

is 1.8 nm, PEALD-TaCN is 2.1 nm and it goes up to 2.2 nm PEALD-HP-TaCN. Therefore,

plasma step in PEALD eases the nucleation of TaCN on TiN substrate compared to SiO2

substrate, contrary to ALD which has lower growth rate on TiN substrate compared to SiO2

substrate.

Thickness of the layers was confirmed by TEM observations. A picture of the PEALD-

TaCN/HfO2/SiO2/Si stack is presented figure 5.9.

Figure 5.9: TEM observation of PEALD-TaCN/TiN/HfO2/SiO2/Si stack

Software measurement of the thicknesses was performed on twelve locations and average val-

ues were extracted. The PEALD-TaCN layer thickness is 2.15 nm (± 0.12 nm), PVD-TiN

1.85 nm (± 0.14 nm) and HfO2 1.9 nm (± 0.08 nm). These values are in good agreement

with the XRR measurement, they confirm both the higher thickness of TaCN than the one

measured on SiO2 (2 nm) and the TiN and HfO2 thickness reduction after PEALD-TaCN

deposition.

This TEM observation also reveals an important information about the crystallography of

the layers. Whereas PVD-TiN layers of less than 10 nm are amorphous as deposited, crys-

tals are seen here and circled figure 5.9. It seems that the crystals start in the TaCN layer,

which is highly crystalline c.f. Chapter 4, and propagate through TiN. These crystals are

not visible at the TaCN surface, where the most tantalum oxide is supposed to be present,

and they do not show a preferential direction.

In conclusion, TaCN deposition leads to the formation of crystals in the PVD-TiN layer,

which is initially amorphous. To explain the presence of these grains, it is also possible to

suppose that the oxygen removed by TaCN deposition reduces the necessary energy for the
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crystallisation of PVD-TiN to occur.

The thickness and density variations, observed by XRR, will be discussed later, in section

5.3.5, in regard to the chemical interactions that will be presented in the next section.

In the figure 5.10 are presented the Ta4f XPS spectra of TaCN ALD, PEALD and PEALD-

HP deposited on SiO2/Si (left) and TiN/HfO2/SiO2/Si (right).

Peak fitting of the Ta4f spectra was achieved using three environments: Ta2O5, TaN and

Figure 5.10: Ta4f XPS spectra of ALD-TaCN, PEALD-TaCN and PEALD-HP-
TaCN deposited on a: SiO2/Si and on b: TiN/HfO2/SiO2/Si

TaC, located at 26 eV, 25 eV and 23.5 eV, respectively (but not included in the figure to

ease its readability) [81]. Strong evolution of the TaN and TaC peaks is observed in figure

5.10a, as the process changes from ALD to PEALD and PEALD-HP.

By comparison of the bonding peaks between TaCN deposited on SiO2/Si (figure 5.10a) and

on TiN/HfO2/SiO2/Si (figure 5.10b) three changes come into view. First, Ta2O5/TaN ratio

is inverted when TaCN is deposited on TiN/HfO2/SiO2/Si. In particular, the separation of

Ta2O5 and TaN environments with ALD-TaCN is more difficult due to the presence of TaON

environment, situated in between. Secondly, it appears that the Ta2O5 intensity variation

between PEALD and PEALD-HP on SiO2 substrate is reduced when TaCN is deposited on

TiN/HfO2/SiO2/Si. Finally, TaN and TaC bonding environments located at 25 eV and 23.5

eV, are strongly reduced on TiN/HfO2/SiO2/Si from high plasma case in PEALD-HP to no

plasma in ALD.

Comparison of Ti2p XPS spectra from TiN as-deposited, with ALD-TaCN, PEALD-TaCN

and PEALD-HP-TaCN is given figure 5.11 (left). Doublets from TiO2 (459.5 eV), TiON

(457.2 eV) and TiN (455.5 eV) chemical environments are inserted to ease the graphic in-

terpretation in the two extremes conditions, i.e. TiN as deposited and under 2 nm PEALD-

HP-TaCN, in figure 5.11 (right).

It appears, in figure 5.11 (left), that whatever the TaCN deposition conditions used a clear

decrease of TiO2 environment is observed. Oxygen removal from TiN is more efficient when

a H2 plasma activation step is used during PEALD-TaCN deposition instead of the NH3 only

in ALD case. Meanwhile, NH3 appears to be enough reactive with oxygen to remove some of
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Figure 5.11: XPS Ti2p spectra of TiN/HfO2/SiO2/Si (black), ALD-
TaCN/TiN/HfO2/SiO2/Si (dark grey), PEALD-TaCN/TiN/HfO2/SiO2/Si (grey)

and PEALD-HP-TaCN/TiN/HfO2/SiO2/Si (light grey)

the oxygen [194]. In the case of H2 plasma, it is well known that such reducing ambiance is

efficient for surface oxidation removal [195, 196], thanks to the creation of volatile OH− and

H2O molecules. This is even more pronounced when plasma power increases with noticeable

decrease of TiO contribution between PEALD and PEALD-HP TaCN.

Increase of TiN environment after TaCN deposition is also observed, through the slight shift

towards lower energies of TiN bonding environment which is associated to the higher N/Ti

ratio, as reported elsewhere [15, 81].

Also, an indirect result concerning Ta alloys oxygen barrier property is confirmed in this

experiment. Indeed, after TaCN deposition and before XPS analysis there was a vacuum

break and the observed oxygen removal from TiN layer is conserved. If TaCN would not be

a barrier to oxygen diffusion there would be an oxygen uptake of the TiN layer, back to the

oxidation levels seen before TaCN deposition. Therefore, a 2 nm layer of (PE)ALD-TaCN

appears to be sufficient to protect TiN from re-oxidation; i.e. TaCN acts as a barrier to

diffusion of oxygen.

Hf4f core level energies are shown in figure 5.12, for PVD-TiN, and after (PE)ALD-TaCN

deposition on TiN. HfO2 control sample, without a metal layer on top of it, is also added for

comparison.

HfO2 spectrum of the control sample was fitted with one doublet. After TiN deposition a new

environment on the Hf4f peak appears at low energy. This new bonding environment can be

associated to the formation of Hf-N [81, 86]. The reaction path leading to the formation of

HfN bonds was first introduced in section 5.2.3.1. After ALD-TaCN deposition an increase

of HfN feature is observed. When plasma is used for PEALD-TaCN and PEALD-HP-TaCN

deposition a further increase of Hf-N bonds is observed, influence of plasma on TaCN/HfO2

interactions was also introduced in the section 5.2.3.1.
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Figure 5.12: Hf4f spectra evolution with PVD-TiN, ALD-TaCN, PEALD-TaCN
and PEALD-HP-TaCN deposition

5.3.4 (PE)ALD-TaCN steps influence on PVD-TiN oxidation

To simulate (PE)ALD-TaCN deposition, activation steps were performed on PVD-TiN-

/HfO2/SiO2/Si samples in the deposition reactor and transferred to the XPS module with-

out vacuum break, this methodology is also called quasi-in situ XPS. Transfer from reaction

chamber to analysis chamber was done under a 102 mTorr vacuum and it was already proven

that such a transfer avoids carbon contamination and limits the oxidation of the layers [93].

ALD deposition comprises three steps, they are: 325◦C substrate heating, NH3 flow and

TBTDET precursor introduction. In the PEALD process the NH3 flow is replaced by a H2

plasma after TBTDET precursor introduction.

A comparison of Ti2p core levels of as-deposited TiN and 325◦C annealed case, together with

the impact of reactive steps with NH3 flow at 325◦C and H2 plasma at 325◦C is given figure

5.13. The reactants gas flows, chamber pressure, plasma power and process time copied from

the (PE)ALD-TaCN deposition recipes.

Figure 5.13 shows that annealing under vacuum of TiN has little impact on Ti2p environ-

ments, only a slight increase of TiO2 and TiN contributions together with TiON feature

decrease is observed. The absence of oxygen release or up-take is also confirmed in O1s peak

intensity (not presented here), were no evolution was recorded. Addition of NH3 flow during

annealing leads to a limited increase of the TiN peak. However, H2 plasma clearly shows

a decrease of TiO2 and TiON environments in Ti2p spectrum, with no change observed on

Ti-N feature.

Evolution of equivalent oxide thickness (EOT) with leakage current gain for the three TaCN

processes is presented figure 5.14, together with the previous results obtained with (PE)ALD-

TaCN/HfO2 and PVD-TiN/HfO2 as control stacks.
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Figure 5.13: Ti2p XPS spectra of TiN as-deposited, after 325◦C anneal, 325◦C
anneal with NH3 flow, 325◦C anneal with H2 plasma

Figure 5.14: Evolution of Jg versus EOT of (PE)ALD-TaCN/TiN/HfO2/SiO2/Si,
(PE)ALD-TaCN/HfO2/SiO2/Si and PVD-TiN/HfO2/SiO2/Si stacks

Compared to PVD-TiN control sample, a reduction of the EOT is observed with the addition

of (PE)ALD-TaCN on top of PVD-TiN with a factor 5 gain in the current leak. The power

increase, used for the creation of TaC bonds in PEALD-TaCN, results in the increase of

the measured EOT, with no change on the current leak. Similar behaviour is observed for

(PE)ALD-TaCN/HfO2/SiO2/Si.

Φm of PVD-TiN, (PE)ALD-TaCN, PVD-TaN and (PE)ALD-TaCN/PVD-TiN metals on

HfO2 are presented figure 5.15.

PVD-TiN is adapted to p-MOS specifications with a p-type Φm of 4.9 eV. Located at the

bottom of the figure, with a Φm of 4.6 eV, there is the PVD-TaN which is mid-gap. Evolution

of the Φm of PEALD-LP-TaCN, PEALD-TaCN and PEALD-HP-TaCN was presented in the

first part of this chapter. If PVD-TiN is inserted between (PE)ALD-TaCN and HfO2 the

devices keep the Φm of the TiN at 4.85 eV. TiN prevents the Φm increase measured when
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Figure 5.15: Evolution of work function versus EOT of (PE)ALD-
TaCN/TiN/HfO2/SiO2/Si, (PE)ALD-TaCN/HfO2/SiO2/Si and PVD-

TiN/HfO2/SiO2/Si stacks

plasma power is increased, in PEALD-TaCN/HfO2/SiO2/Si stack.

5.3.5 TiN layer modifications and oxide removal reaction mechanism

XRR measurement of ALD-TaCN/TiN/HfO2/SiO2/Si, figure 5.8, suggest a strong interac-

tion between the TaCN and TiN metals. It is visible on the increase of TiN density and on

the reduction of TiN thickness. These interactions are enhanced when using H2 plasma step

in PEALD mode, further supported by the plasma power increase. Data presented in figure

5.11 demonstrate that the density increase of PVD-TiN corresponds to the replacement of

some of the oxygen trapped/located in the TiN film by nitrogen. The oxide removal is im-

proved when H2 plasma is used during PEALD-TaCN deposition compared to ALD-TaCN

deposition, but nitrogen content in Ti2p reaches the same level.

Based on these results reaction mechanism path with the corresponding Gibbs energies cal-

culated at 325◦C and 2 Torr pressure is now discussed.

First, one has to take into consideration that affinity of TBTDET molecule with oxygen is

used for the deposition of ALD Ta2O5 [197], indeed Ta2O5 formation has a low Gibbs free

energy of formation (ΔGformation(Ta2O5) = -1079 kJ/mol at 325◦C).

Three reactions leading to the oxide removal from TiN layer have to be considered, one has

for reactant TaN (equation 5.6), second NH3 gas (equation 5.7) and third the H2 radicals

from the plasma (equation 5.8). All three reactions result in the formation of H2O by-product

then interacting with TaN to form Ta2O5 (equation 5.9). Once nitrogen is released by TaCN

it can form new TiN bonds (equation 5.10).

T iO2 + TaN + 1/4O2 → T iN + 1/2Ta2O5 ∆G = −137kJ (5.6)
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T iO2 +NH3 → T iN +H2O +OH− ∆G = +325kJ (5.7)

T iO2 + 4Hplasma → T i+ 2H2O ∆G = −286kJ (5.8)

TaN + 5/2H2O → 1/2Ta2O5 +NH3 +H2 ∆G = −126kJ (5.9)

T i+NH3 → T iN + 3/2H2 ∆G = −311kJ (5.10)

The oxygen brought as reactant in the equation 5.6 is coming from interstitial sites in the

TiN layer [198, 199]. The negative Gibbs free energy indicates that this reaction is possible.

Yet, other sub-mechanisms of reaction are possible. For example as supposed from ALD

steps separation, figure 5.11, NH3 gas does not influence TiO2 layer, supported by the pos-

itive Gibbs energy of the reaction 5.7. On the other hand, as it was shown figure 5.11 the

H2 plasma is reducing the oxygen content of TiN layer, confirmed by the negative Gibbs

energy of the reaction equation 5.8. Once H2O by-product is created it can react with the

TaN deposited on top, forming Ta2O5 and nitride by-products. Finally, the nitrides are

going in the titanium layer now un-oxidised and form TiN. When plasma power is increased

the reaction equation 5.8 is favoured, thus more oxygen is taken from TiN layer and more

nitrogen is released from TaCN layer. This effect can be correlated to the nitrogen increase

in HfO2 observed figure 5.12.

Furthermore, the oxygen removed from PVD-TiN appears to be present in the TaCN layer,

as suggested in figure 5.10. The change of substrate, from SiO2 in figure 5.10a, to TiN

in figure 5.10b, implies that the deposition reaction mechanism is greatly impacted by the

substrate. Less TaC bonds, located at 23.5 eV, are formed when TaCN is deposited on

PVD-TiN. Creation of TaC bonds by transamination reaction thanks to plasma activation

was introduced in Chapter 4 and was linked to the energy brought by the plasma, higher

energy leading to higher TaC content in TaCN. However, when deposited on TiN, plasma

power increase does not enhance the transamination reaction but appears to favour the oxide

removal from TiN. Thus resulting in a reduction of TaC peak intensity, figure 5.10b, and

increase of Ta2O5 peak intensity.

5.3.6 Particular impact of ALD and PEALD activation steps

TiON mixture evolution and possible separation of TiN and TiO2 under annealing was al-

ready described elsewhere [200]. Decrease of TiON Ti2p XPS peak was highlighted and

regrowth of TiO2 surface layer was supported by the increase of TiO2 Ti2p XPS peak. Sim-

ilar behaviour is observed in figure 5.13 after annealing at 325◦C under vacuum: TiN and

TiON peaks intensity decrease. When NH3 gas flow is added a small but significant increase

of TiN peak is observed, however this increase is far smaller than what is observed after

TaCN deposition. As introduced earlier, the reactivity of NH3 with TiO2 is not sufficient
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to allow the oxygen removal. Finally, the plasma H2 results in the important decrease of

TiO2 and TiON and increase of TiN peaks. Oxygen removal by H2 plasma is confirmed here

again, also plasma power increase (not shown here) leads to further reduction of TiO2 peak

as seen figure 5.11. However, the TiN peak intensity does not reach the levels obtained with

TaCN ALD or PEALD deposition. Therefore, the last step of TaCN deposition, which was

not reproduced due to a hardware limitation, is responsible for both some removal of oxygen

from TiN and addition of nitrogen to TiN.

To conclude, improvement of TiN after ALD-TaCN results from the chemical affinity of

TaCN with oxygen, whereas improvement of TiN after PEALD-TaCN results from both the

chemical affinity of TaCN with oxygen and from the action of H2 plasma.

5.3.7 Correlation with electrical results

TiN oxygen scavenging properties were already reported [170] and are used for SiO2 IL

reduction [169]. Similar phenomenon can be observed here, with the increase of the scav-

enging effect by TaCN capping of TiN. By comparison of TiN/HfO2/SiO2/Si and ALD-

TaCN/TiN/HfO2/SiO2/Si electrical results, figure 5.14, a decrease of the EOT is revealed

when ALD-TaCN capping is added. This EOT reduction is going along an improvement of

the leakage current gain. These two modifications, as reported elsewhere [171, 173, 188], are

to be linked with the creation of hafnium-nitrogen bonds and εHigh−κ increase, confirmed

figure 5.12.

By addition of plasma densification step to TaCN deposition an increase of the EOT is seen.

It was demonstrated, with AR-XPS analysis, that this increase corresponds to the creation of

Ta2O5 dielectric after oxygen release. In this case the increase is lower than what is observed

if no TiN layer is placed between TaCN and HfO2, plasma impact figure 5.14. Even if the

EOT increases the leakage current gain is stable, H2 plasma does not degrade the HfO2 as

observed without TiN and presented earlier in this chapter. Plasma power rise confirms the

supposition by an enhancement of the EOT growth previously introduced.

5.3.7.1 Role of TiN layer in the stack

When TaCN is deposited directly on HfO2, plasma impact leads to a degradation of the

measured EOT and a scattering of the leakage current values due to oxide removal from the

HfO2 dielectric. Mechanism of oxide removal was proposed and linked to the energy brought

by H radicals from plasma. Including a 2 nm PVD-TiN layer between PEALD-TaCN and

HfO2 permits to avoid most of the degradation previously linked to the plasma step. Yet,

the EOT increase observed figure 5.14 suggests that the TiN layer reduces the amount of

radicals reaching the dielectric but does not block all the radicals.

The protection brought by TiN also has some drawbacks, indeed the gain in VFB observed

when plasma power is increased for TaCN deposition, and associated to TaC creation, is not

perceived. Hence it is possible to suppose that only the first two nanometres of metal, or
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less, dictate the work function of the stack.

5.3.8 Conclusion

Using XPS analysis it was possible to demonstrate the metal-metal interactions first seen

using XRR, when (PE)ALD-TaCN is deposited on PVD-TiN. Different composition of TaCN

layer is observed when deposited on TiN, compared to deposited on SiO2, with lower car-

bon content and higher oxidation. At the same time, oxygen removal from TiN layer and

nitrogen addition is revealed. Penetration of nitrogen is observed down to HfO2 layer, with

the creation of HfN bonds. These chemical modifications of the layers induce changes on

the electrical characteristics of the metal/metal/dielectric stack. Reduction of the EOT is

correlated to the εHigh−κ increase, while the addition of plasma for TaCN deposition results

in the increase of the EOT which may be due to Ta2O5, formation. Finally, by comparison

of PEALD-TaCN/TiN/HfO2 and PEALD-TaCN/HfO2 the importance of TiN as protection

layer against plasma damages is proven.

5.4 Conclusion to the Chapter 5

In this chapter the advantages and difficulties connected with the integration of the processes

studied in Chapter 4 were developped.

At first a metal-dielectric interaction between TaCN and HfO2 was revealed. TaCN is scav-

enging some of the oxygen present in HfO2 layer, creating a new dielectric, Ta2O5, at the

TaCN/HfO2 interface. In the meanwhile nitrogen from TaCN is migrating in HfO2 layer

and creates HfN bonds, which result in an increase of the εHigh−κ, as confirmed by electrical

measurements. Using ALD deposition the leakage current gain is even improved, highlighting

the fact that the amount of oxygen removed from HfO2 does not significantly degrade the

properties of the dielectric. However, for densification of TaCN layer during PEALD deposi-

tion is activated by a plasma and opposite phenomena are observed, both EOT and leakage

current are degraded possibly due to penetration of H radical in the HfO2. By increasing

the plasma power, thus increasing the radicals and hot species density, a scattering of the

electrical properties appears which confirms that electrical degradations are linked with the

plasma activity.

Next several effects induced by TaCN deposition were investigated when deposited on TiN;

oxygen removal by TaCN scavenging, TaCN barrier property to oxygen and nitrogen migra-

tion to TaCN underlayer. It appears that all the phenomenons of oxygen scavenging and

nitrogen migration observed after TaCN deposition on HfO2 were also monitored on TiN.

Moreover, the oxygen concentration in TiN kept lower levels thus corroborating the barrier

property of TaCN. Lastly, the plasma impact with degradation of the electrical properties

detected on HfO2 is minimised with the addition of TiN. So TiN acts as a protection layer

against plasma radicals, however it also prevents the ΔVFB increase when TaC is created.
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The pro and cons of ALD, PEALD-LP, PEALD and PEALD-HP are presented in the table

5.1.

Table 5.1: Advantages and limitations of the PEALD TaCN with different plasma
power (NA means not-available)

Property ALD PEALD-LP PEALD PEALD-HP

Density low medium high high
Resistivity medium medium low very low
Oxgyen
removal

moderate NA significant important

Nitrogen
migration

moderate NA significant important

Equivalent
Oxyde

Thickness

lower than
PVD-TiN

NA
higher than
PVD-TiN

important
regrowth

Work function p-type NA strong p-type strong p-type
Leakage
current

low NA controlled unacceptable

So overall, it appears that depending on the application plasma densification of the TaCN

layer might not be an advantage. Thus for advanced CMOS, the lower EOT obtained with

ALD-TaCN can be preferred to the higher work function of the PEALD-TaCN. On the other

hand, for relaxed devices the strong p-type characteristic of PEALD-TaCN is an advantage

over the low EOT of ALD-TaCN. Anyhow, the damages brought by PEALD-HP-TaCN on

the dielectric appear to be too high to consider its integration in an high-κ/metal gate stack.

To conclude, TaCN integration on HfO2 dielectric and on TiN metal appeared to have some

benefits and hindrances. By a careful separation of thermal and plasma effects the reaction

mechanisms happening at TaCN deposition could be deduced in order to limit the interac-

tions and obtain the best properties on the metal without damaging the dielectric.

Now that understanding of (PE)MOCVD and (PE)ALD reaction mechanism and the pos-

sible interactions with the substrates was achieved, doping by Al of these materials will be

examined in the next chapter and the effect of Al addition will be decorrelated from the rest.
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Aluminium doping

“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein, theoretical physicist

6.1 Introduction

As introduced in the Chapter 1, scaling of CMOS devices requires to lower the gate resis-

tance for good device performance. To reduce the resistivity of the metals development of

new metals for TiN replacement is one way, and was presented in the previous chapters.

Another one is to use dopant inserted in a metal matrix. Addition of Al dopant has been

investigated and reported in the literature. Al alloys show a high oxidation resistance and a

good thermal stability [62].

TiAlN is a good candidate for advanced CMOS nodes [201–203]. TiAlN deposited by ALD

was found to have a resistivity lower than 400 μΩ.cm [23], which is similar to the resistivity

of thin TiN layers (report to Section 4.2.2). Main advantage of TiAlN is to show the ap-

propriate work function values for dual metal gate application, as by controlling the amount

of N and Al. For example, very low Φm = 4.36 eV was demonstrated by alloying TiN and

Al [62]. Al dopant allows a work function variation due to its low intrinsic work function of

4.08 eV [204].

Another phenomenon brought by the addition of Al in the metal is the formation of a surface

oxide barrier which limits the diffusion of O. This oxygen barrier consists of an Al2O3 layer

formed at the extreme surface of the deposited material.

Besides, use of Al in the Ti metals induces O scavenging from SiO2 interfacial layer, leading

to the reduction of the EOT of the stack [205, 206]. Scavenging of O from the SiO2 is an

important phenomenon which allows to reduce the EOT, and is made possible by the high

affinity and reactivity of Al with O.

PVD-TaN doping with Al has also been reviewed in the literature, but with much lower

extent than the TiAlN compounds. In this chapter, the focus will be done on the Al doping

of TaN, and modifications of the electrical properties will be discussed in relation with the
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modifications of physico-chemical properties.

First, in order to comprehend the phenomena and behaviour of aluminium when used as

doping element, an investigation of PVD-Ta and PVD-TaN doping is presented. Influence of

the aluminium content in the layer is linked to the evolution of physico-chemical properties

of the material and correlated to the electrical properties evolution.

Then, aluminium and aluminium nitride deposition were investigated in order to understand

the reaction mechanism taking place during the formation of the Al or AlN materials. The

key phenomena observed are used for an investigation of MOCVD-TaN Al doping and under-

stand the interactions between the metal and the dopant. Then, in order to limit the amount

of AlN created in the layer, a process of MOCVD-TaN and PEMOCVD-Al monolayers stack-

ing is introduced and the obtained characteristics compared to the MOCVD-TaAlN. Finally,

electrical results from MOCVD-TaN doped with Al and TaN/Al stacking are discussed and

the evolutions linked to the results of the physico-chemical characterisations. Moreover, part

of the doping behaviour is correlated to the evolutions observed with PVD-TaAl materials.

6.2 Aluminium doping in Physical Vapour Deposition

6.2.1 Context

PVD technique was chosen for reference, because until the 40 nm node it was the most used

deposition technique for the gate metal. Besides, PVD-deposited materials are well known

and often used as reference for development of solutions addressing new technology nodes.

Doping of the PVD-deposited metals is possible using two targets and by adapting the sput-

tering power of each target depending on the targeted composition [77]. However, due to

the principle of PVD technique, i.e. the species reach the substrate with low energy, no

metal-dopant bonding can be expected. Thus, deposition of TaAl or TaAlN using two tar-

gets results more in a bi-metal material than in an metal-metal alloy.

Moreover, PVD is a directional deposition and thus is not suitable for advanced nodes in-

cluding small size 3D patterns.

6.2.2 Physico-chemical characteristics of Al-doped PVD-Ta and PVD-
TaN

6.2.2.1 Deposition conditions

Deposition was achieved by PVD co-sputtering of Ta and Al-Ti (Ti 1 at.%) targets. Ti in

the Al target is used to decrease the roughness of the deposited layer and is supposed to have

little or no effect on the bulk properties of the deposited film. Deposition is performed on

a substrate cooled down to ambient temperature. For bulk characterisation of the different

alloys, 10 nm thick layers were deposited.

In order to obtain a good composition uniformity the substrate is shifting at high speed from
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one target to the other, while rotating. Indeed, the two targets are not placed right above

the substrate. The term of nano-laminates can thus describe the obtained materials.

Four TaAl samples were deposited with Al doping concentrations of 0%, 30%, 50% and 70%.

Then, by addition of N2 reactant gas three TaAlN samples were produced with 0%, 30% and

50% of Al. No TaAlN samples were processed with an higher Al content due to the expected

formation of insulating AlN.

Material characterisations were carried out on Si (1 0 0) blanket wafers. Deposition was

performed on a 100 nm thick layer of insulating SiO2 layer for resistivity measurement.

XRR spectra extractions confirmed the thickness of the layers and gave access to the density.

Four points probe measurement on 49 points was used to extract the resistivity. Crystallog-

raphy was characterised by XRD, with 2θ ∈ [25; 80◦]. Finally chemical environment and

binding energy were analysed using XPS, Al-Kα beam with an energy of 100 eV, a spot size

of 400 μm and a resolution of 0.1 eV.

6.2.2.2 Characterisation of PVD-TaAl layers

Samples composition was extracted from XPS analysis and composition of each sample is

given table 6.1, in atomic percent.

Table 6.1: XPS extraction of TaAl samples composition

Aimed Al
content

Ta
(at.%)

Al
(at.%)

O (at.%) C (at.%) Al
Al+Ta (%)

0% 22.1 10.8 48.9 18.2 33
30% 18.7 15.2 52.0 14.1 45
50% 15.1 18.2 51.9 14.8 55
70% 4.4 31.5 51.3 12.9 88

This analysis reveals that in the case of 0% Al, the sample contains a significant amount of

Al (about 10 at.%). This level of aluminium cannot be explained at the moment 1, and one

should be aware of this amount for the rest of the analyses.

Anyway, the amount of Ta and Al are respectively increasing and decreasing, with a Ta+Al

sum included in the 35 - 38% range. Samples are highly oxidised, with a low variation of

oxygen levels. A noticeable amount of carbon is detected at the samples surface, with about

8 to 10% brought by the vacuum break before XPS analysis [93]. No reason was found to

explain the surplus, or the concentration decrease with Al content increase.

In the rest of this section the XPS estimation of Al content will be used instead of the tar-

geted Al concentrations.

1Possible cross-contamination of the Ta and Al targets can be considered, it might also be linked to the
presence of Al on the walls of the chamber
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Density measurement, from XRR spectra fitting, are displayed figure 6.1, with the Ta and

Al atomic percent.

Figure 6.1: Density of TaAl layer depending on the Al content

Evolution of the density clearly follows the composition of the sample: more Al leads to

lower density. Rapid decrease of the density can be explained by the considerable difference

between Ta and Al densities (Ta = 16.69 g.cm−3 and Al = 2.70 g.cm−3 [100]).

The resistivity evolution with Al concentration is presented in figure 6.2. Al ratios (Al)/(Al

+ Ta), introduced in table 6.1, are also given above each points on the figure.

Figure 6.2: Resistivity of TaAl layer depending on the Al content

The moderate change in resistivity between samples with Al 0% and 30% confirms the sim-

ilar Al content measured, which is far from the 0% expected.

The bell-shaped curve observed here was already reported for resistivity evolution of TaAl

bi-metals deposited by PVD. It starts from the Ta resistivity around 50 μΩ.cm [100] going
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up to 280 μΩ.cm for a 50% Al mixture and finally down to pure Al resistivity, at 10 μΩ.cm

or less [100].

XRD analysis was completed for every sample and is presented figure 6.3. The theoretical

peaks of cubic centred face Ta crystals are also included [79].

Figure 6.3: Crystallography of TaAl layer depending on the Al content

The peak positioned at 2θ = 56◦ originates from the Si substrate.

Three peaks of the Ta cubic crystalline structure are included in the analysed window: Ta

(1 1 1), Ta (2 1 1) and Ta (2 0 0), in order of intensity. A parasitic peak from Si (1 0

0) structure is located at the place angle as the Ta (2,0,0) peak, making the interpretation

difficult. Another peak is seen at 33◦ but does not correspond to any Ta cubic centred face

peak, neither to another crystalline structure of Ta.

Considering the 10 nm thickness of the samples and the well defined peaks collected, it ap-

pears that the layers are highly crystalline. A clear trend of peaks maximum reduction is

observed when the amount of Al increases in the layers. It indicates that the addition of

Al in the layers restrain the crystallisation of the material. No shift of the peaks position

is detected together with the intensity reduction, so Al may not create a crystalline phase

with Ta, and Ta keeps the same crystalline structure, i.e. there is no change of the lattice

parameters and no constraints added to the crystal.

Phase diagram of Al-Ta is presented in figure 6.4.

From this diagram, it appears that a 30% Al doping in Ta leads to the formation of a TaAl

phase. The presence of TaAl crystals in the PVD-TaAl layer could explain the formation of

the crystalline peak observed on XRD spectrum at 33◦. Yet, it is important to remind of

that the diagram presented here is obtained from cooling down TaAl mixtures which were
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Figure 6.4: Phase diagramm of Ta and Al mixture

heated up to 3000◦C, far from the PVD deposition conditions.

XPS spectra of Ta4f, Al2p and O1s from TaAl samples are shown in figure 6.5 a, b and c,

respectively.

Two different Ta4f bonding environments appear, figure 6.5a, whatever the Al content. Ta-

Ta peak is located at low binding energy, 21 eV [81], while Ta2O5 is located at 26 eV [81].

An increase of Al ratio leads to the decrease of Ta2O5 environment, until it completely dis-

appears on TaAl sample with 88 % Al ratio.

Al2p shows three peaks, the two main peaks are Al2O3 located at 74.5 eV [81] and Al-Al

at 71.2 eV [81]. A third peak is present between the two first, at 72.4 eV and is attributed

to the Ta5s feature [81, 86]. At low Al content (33%) mainly the Ta5s and Al feature is

observed, while increasing Al from 33% to 43% in the layer the Al2O3 environment appears

and becomes the most prominent contribution. From 43 to 55 % Al-Al peak grows, suggest-

ing that the oxygen cannot migrate in the volume of the layer. Finally, from 55 to 87 % the

total acquired signal increases and there is a separation of Al-Al and Al2O3 environments.

The presence of the Ta5s peak at the same energy as the Al2p peak highly increases the

error margin of Al content quantification. Moreover, due to the presence of Ta5s it is not

possible to discuss on the presence, or not, of AlOx environment.

Oxygen O1s XPS spectrum, figure 6.5, consists of two peaks. One for Ta2O5 at 530.6 eV

[81] and the second for Al2O3 at 532.3 eV [81]. Here again a clear trend is distinguished with

the addition of Al in the layer, more Al in the layer results in the increase of Al2O3 peak

until the disappearance of Ta2O5 for Al 70% sample.

Finally, overall these three spectra show that, contrary to the resistivity evolution which was

suggesting a similarity between the Al 33% and 45% doping, the chemistry is highly different

between the Al 33% and 45% doping, Al 45% being closer to Al 55% doping.
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Figure 6.5: Chemical environment of TaAl depending on Al content with XPS
spectra a: Ta4f; b: Al2p and c: O1s

6.2.2.3 Characterisation of PVD-TaAlN layers

Co-sputtering in N2 reactive ambiance leads to the formation of TaAlN. Samples composi-

tions were extracted from XPS analysis is given table 6.2, in atomic percent.

Table 6.2: XPS extraction of TaAlN samples composition

Aimed Al
content

Ta
(at.%)

Al
(at.%)

N
(at.%)

O
(at.%)

C
(at.%)

Al
Al+Ta (%)

0% 20.5 12.9 18.2 33.8 14.5 39
30% 17.9 15.5 18.7 32.3 15.5 46
50% 14.4 18.7 18.2 30.4 18.3 57

Here again, the composition analysis reveals that the samples targeted at 0% (i.e. Al free

TaN) contains a significant amount of bulk Al (about 12.9 at.%).

Meanwhile, the amount of Ta and Al are respectively increasing and decreasing, with a

Ta+Al sum included in the 33 - 33.5 at.% range. No matter the Al content of the layers

N at.% is roughly constant, about 18.5 at.%. Samples are also highly oxidised, with a low

variation of oxygen levels. A noticeable amount of carbon is detected at the samples surface.

139



Chapter 6.

As for PVD-TaAl samples, about 8 to 10% of it is brought by the vacuum break before XPS

analysis [93] and no reason was found to explain the surplus.

Density measurement, from XRR spectra fitting, are displayed in figure 6.6, with the targeted

Ta and Al atomic percent.

Figure 6.6: Density of TaAlN layer depending on the Al content

Evolution of the density clearly follows the composition of the sample: more Al leads to

lower density. Here again, rapid decrease of the density can be explained by the considerable

difference between Ta and Al densities (TaN = 14.3 g.cm−3 and AlN = 3.26 g.cm−3 [100]).

The resistivity evolution with Al concentration is presented in figure 6.7. Al ratio Al/(Al +

Ta) measured by XPS are also given for comparison on the figure.

Figure 6.7: Resistivity of TaAlN layer depending on the Al content

Resistivity of TaAlN samples is higher than expected. The sample with 0% of Al is far above
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the nominal TaN resistivity, at 100 μΩ.cm (see Chapter 4, section 4.4.3.1) [18, 100, 163–166].

This observation confirms the presence of Al in the layer with the formation of AlN resulting

in a highly resistive film. Finally, AlN formation is confirmed by the increase of the resis-

tivity, up 10 Ω.cm measured at 57% Al content, this value can be compared to the reported

resistivity of AlN: about 1014 Ω.cm [100].

In the rest of this section, the measured Al content will be used instead of the targeted one.

XRD analysis was performed and is presented figure 6.8. The theoretical peaks of cubic

centred face TaN and AlN crystals are also included as reference [79].

Figure 6.8: Crystallography of TaAlN layer depending on the Al content

TaAlN show one peak at 2θ = 34.9◦, corresponding approximately to TaN (1 1 1) orientation.

The (2 0 0) and (2 2 0) peaks which should be observed at 41.60 and 60.41◦, respectively,

in the case of pure TaN, are not observed here. The peak observed at 34.9◦ is also close to

the position of (1 0 0) AlN peak, however if the film would be containing both TaN and AlN

crystals a widening of the crystalline peaks would be observed, not a shift.

As for TaAl, an increase of the Al content in the layer decreases the crystallinity of the layer.

Hence, with 58% of Al added in TaN induces a reduction of (1 1 1) peak, which becomes

almost not visible in the background noise.

Although a clear FCC based structure was observed in TaAl alloy, in the core of TaAlN it

seems that the alloy does not share the TaN-based FCC structure.

XPS spectra of Ta4f, Al2p, O1s and N1s from TaAlN samples are shown figure 6.9 a, b, c

and d respectively.

Ta4f XPS spectra, in figure 6.9a, are characteristic of oxidised TaN material, report to the

similar spectra which were obtained in the previous chapters, in figure 3.7 chapter 3, for
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Figure 6.9: Chemical environment of TaAlN depending on Al content with XPS
spectra a: Ta4f; b: Al2p; c: O1s and d: N1s

example. The addition of Al in the layer results in the decrease of the amount of oxygen

bonded to Ta, i.e. Ta2O5 peak located at 26 eV [81], with a decrease and shift towards lower

energy. Consequently the TaN contribution, located at 24 eV, grows when Al is added to

the layer.

Al2p spectrum, in figure 6.9b, is constituted by at least three peaks and by the Ta5s feature.

Ranked from high to low binding energy, the extracted peaks are: Al2O3 at 74.5 eV, AlN at

73 eV and Al-Al at 71 eV. Increase of Al content favours both Al2O3 and AlN environments,

while Al-Al appears to be stable.

Oxygen O1s XPS spectrum, in figure 6.9 c, consists of two peaks. One is attributed to Ta2O5

contribution, at 530.4 eV [81], and a second for Al2O3 at 532.3 eV [81]. A clear trend is

observed with the addition of Al in the layer, more Al in the layer resulting in the increase

of Al2O3 peak, while reduction of Ta-O contribution is observed.

Finally, N1s spectrum, figure 6.9d, presents four peaks corresponding to TaN or AlN at 396.2

eV, TaNx<1 at 397.5 eV (only visible at the lowest Al content), N-O at 399.7eV and NHx at

401.3 eV.

6.2.2.4 Discussion on Ta and TaN materials doping with Al

In TaAl samples, the oxygen content reported in table 6.1, appears to be roughly stable

whatever the Al/(Ta + Al) ratio. Whereas, in TaAlN samples, table 6.2, the oxygen content

142



Aluminium doping

appears to decrease, with the increase of Al content in TaAlN (also visible in figure 6.9c).

For both TaAl and TaAlN samples, O1s spectra figures 6.5c and 6.9c confirm that addition

of Al decreases Ta-O environment, located at 530.5 eV, in favour of Al-O environment, at

532 eV. With 70% of Al in TaAl, the TaOx feature of Ta4f XPS spectrum even disappears,

in figure 6.5a.

Therefore, formation of an Al2O3 passivation layer at sample surface can be assumed. This

layer limits the oxygen migration deeper in the volume of the film. This Al oxidation layer

is confirmed by Ta oxidation decrease with Al content increase in the films, in figures 6.5a

and 6.9a. Moreover, Al2O3 formation (ΔGformation(Al2O3) = -1488 kJ/mol−1 at 25◦C) is

thermodynamically more favourable than Ta2O5 formation (ΔGformation(Ta2O5) = -1079

kJ/mol−1 at 25◦C).

Hence, this behaviour suggests that addition of Al in PVD-Ta leads to the formation of a

passivation layer at the surface of the film. Whereas in the case of PVD-TaN the oxygen can

diffuse in the volume of the film thanks to the presence of nitrogen.

XPS estimation of the layers composition reveals a higher content of Al than targeted, in

both TaAl and TaAlN samples. However, an ARXPS analysis (not shown here) suggests that

mainly Al2O3 is found at the surface of the samples. A separation of the Ta and Al-based

phases seems to occur at vacuum break with the formation of Al oxide. The Al quantifica-

tion by XPS does not follow the density measurement. Indeed, the TaAlN layer with 0%

Al appears to have a density of 12 g.cm−3 which is close to TaN theoretical density (14.3

g.cm−3) and is not in line with 38% Al estimated by XPS, which would lead to a theoretical

density of 9 g.cm−3. The same is observed in the TaAl case.

The difference between XPS quantification and possible Al content need to be confirmed by

another characterisation technique. Yet, it can be explained by an important amount of Al

at the surface which reduces the signal from species staying under this oxide and resulting

in an overvaluation of the composition by XPS.

Addition of Al in Ta and TaN layers also leads to the decrease of crystallography, as visible

in figure 6.3 and 6.8. On the four TaAl samples and three TaAlN samples an increase of

Al content results in the decrease of the crystalline peaks intensity. No other change, like

widening or shift of the peaks, is observed when Al is added. Thus, Al present in the layer

may not participate in the crystal structure of Ta or TaN and tends to limit Ta and TaN

crystallisation.

Even if the crystallisation of the layers is affected by Al addition, no Ta-Al appear to be

formed, as suggested by both Ta4f and Al2p XPS spectra, figures 6.5 and 6.9. This obser-

vation further support the hypothesis of Al separation from Ta to form a surface oxide layer

at vacuum break.

The absence of Ta-Al metal-dopant bonding is not unexpected due to the relatively low

energy provided during the TaAlN deposition. After sputtering of the species off the target,

the atoms are reaching the substrate with very low kinetic energy (typically lower than 10

eV). Moreover the deposition is done at room temperature, no energy is provided for the

formation of metal-dopant bonds.
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Addition of Al in Ta material has a limited impact on the resistivity of the layer. However,

by adding Al to the TaN material, AlN is formed and as it is an insulating material the

resistivity increases. If Al would not be bonded to N then the resistivity of TaAlN would

decrease due to the low resistivity of pure Al = 10 μΩ.cm [100], as confirmed in figure 6.2.

AlN formation is further confirmed by Al2p XPS spectra in figure 6.9b. However, increasing

the amount of Al in the layer also increases the oxidised state of aluminium. The amount

of N present in the layer is stable whatever the Al content (see table 6.2), as the amount

of N in the deposition chamber is constant for all three depositions it seems that all N2 is

reacting during the deposition process, and is present in Al-N, Ta-N and N-O bonds.

Addition of Al in PVD-Ta and PVD-TaN leads to a passivation of the layer, through the

formation of Al2O3. This passivation can limit the oxygen migration in the layer and thus

stop the EOT regrowth when additional thermal budget is brought during the plug deposi-

tion or at annealing.

6.2.3 Electrical results from Al doping of PVD Ta and TaN

Modifications of the electrical results depending on the amount of Al added to the PVD-Ta

layers are given figure 6.10.

Figure 6.10: Evolution of PVD-Ta work function vs EOT depending on the doping
amount

Whereas ALD-Ta(C)N had a p-type work function, 4.8 eV to 5.0 eV reported in Chapter 5

section 5.3.4, PVD-Ta appears to be n-type with a work function of 4.33 eV.
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Addition of 30% Al dopant in PVD-Ta does not change the work function of the transistors.

Above 50% of Al added to the PVD-Ta metal, the work function is shifted to lower value,

at 4.17 eV, toward the work function of Al. Adding 70% of Al results in the same shift of

the work function as when adding 50%, no further decrease is observed.

6.2.4 Conclusion to PVD-Ta and PVD-TaN doping

Al doping of Ta and TaN films results in a decrease of the density and crystallinity but does

not result in the formation of Ta-Al bonds. A separation of Al from Ta or TaN is supposed,

with an important oxidation of Al leading to the formation of an oxygen barrier.

Addition of Al in TaN layer results in the formation of AlN material, which has insulating

properties and is thus not advantageous for metal gate application. Exponential increase

of resistivity with Al content increase and Al XPS spectra confirmed the formation of AlN

during the deposition process.

Modification of the Φm, towards n-type work function when more than 50% of Al are added

to PVD-TaAl confirmed the interest of Al doping.

To ease the interpretation of XPS peaks in the doping of metals by MOCVD, the table 6.3

presents the binding energy found on PVD-Ta and PVD-TaN doped with Al.

Table 6.3: Binding energy, in eV, of the different bonds possible in TaAlN layer

Ta Al N O

Ta 21 - 24.2 26
Al - 71 73 74.5

6.3 Aluminium deposition by (PE)MOCVD

6.3.1 Context

As a reminder the TMA molecule, introduced in the Chapter 2, is displayed in the figure 6.11

below. It is formed of three methyl groups sharing covalent electron with 2p3 aluminium

orbitals.

Figure 6.11: Aluminium TMA precursor molecule
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In the literature TMA precursor is mainly used for Al2O3 deposition by CVD or ALD with

O2 or H2O reactant gas [207–209]. TMA precursor reacts with the oxides reactant gases

with an activation energy reported to be about 0.2 eV [210], indicating an highly favourable

deposition reaction. Few studies report on the AlN deposition by MOCVD or ALD [211–213]

but none about metallic Al deposition from metalorganic precursors.

Thus, before using Al or AlN as a dopant in Ti(C)N and Ta(C)N (PE)MOCVD metals few

questions needed to be answered. For example Al and AlN deposition activation energy,

growth rate and quantity of precursor injected in the deposition chamber have to be known.

6.3.2 Experimental methods

Al and AlN deposition parameters were chosen as close as possible as the best parameters

found for TaN and TiN (PE)MOCVD processes. Indeed, the objective here is to use Al as

dopant, so deposition parameters have to be compatible with the already existing TaN and

TiN processes.

Process parameters of MOCVD-Al are:

• substrate temperature: from 200 to 400◦C

• chamber pressure: 2 Torr

• liquid injector temperature: 40◦C

• injector frequency: 0.1 Hz

• liquid injector opening time: 1 ms

• nitrogen or hydrogen flow: 200 sccm

Liquid injector frequency and opening time correspond to the lower limit of the tool, the

lowest possible deposition rate is required, due to the doping purpose.

Nitrogen flow was chosen sufficiently high to ensure saturation of the chamber, thus the

equation 6.1 is not limited by the NH3 content.

Al +NH3 → AlN +
3

2
H2 ∆G = −271kJ (6.1)

To ease the comparison between AlN and Al deposition with NH3 and H2, respectively, H2

chamber saturation at 200 sccm was also chosen.

Using TMA with H2 to deposit Al layer, by thermal decomposition, leads to the formation

of a monolayer, without bulk growth. Surface saturation of the sample is obtained but H2

is not reactive enough to create new nucleation sites so the growth cannot carry on.

Successful deposition of Al was achieved using plasma decomposition of H2. The following

parameters were chosen:

• substrate temperature: 350◦C
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• chamber pressure: 2 Torr

• liquid injector temperature: 40◦C

• plasma power: 100 W

• injectors frequency: 0.1 Hz

As for MOCVD, process parameters are chosen to ease integration of Al doping in the al-

ready existing TaN or TiN processes.

Furthermore, as reported in Chapter 4, temperature does not influence the deposition mech-

anism in PEMOCVD but helps the exhaust of reaction by-products. Thus, the chosen

substrate temperature is 350◦C.

Finally, NH3 plasma assisted deposition of Al with TMA could not be achieved due to the

instability of the plasma in the available process window.

Characterisation of the layers was completed using XRR, four points probe, XPS to access

density and thickness, resistivity and chemical environments respectively. Description of the

tools is given Chapter 2 and the characterisation parameters Chapters 4 and 5.

6.3.3 Thermal decomposition of TMA with NH3

Because NH3 plasma assisted deposition is not possible, thermal MOCVD-AlN films were

deposited at temperatures ranging from 200 to 400◦C and measured by XRR, extracted

deposition rates and densities are presented in figure 6.12.

Figure 6.12: Evolution of AlN thickness deposition and density with temperature
increase

Deposition at 200◦C leads to the formation of a monolayer, without further growth.

Deposition of AlN with TMA precursor and NH3 reactant gas from 250 to 350◦C follows an

Arrhenius law. Fit of the linear increase gives an activation energy of Ea = 1.08 eV. Growth
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rate appears to stabilise at 350◦C, with 0.6 Å.s1.

Density of the layer has a similar behaviour as deposition rate: a significant increase from

250 to 350◦C where it stabilises at 2.37 g.cm−3 is observed. The measured density is lower

than theoretic density, AlN = 3.26 g.cm−3 [100], and closer to Al density, Al = 2.70 g.cm−3

[100].

XPS analysis of a 4 nm AlN layer deposited at 350◦C with TMA and NH3 is presented in

figure 6.13.

Figure 6.13: a: Al2p, b: N1s, c: O1s and d: C1s XPS spectra of MOCVD-AlN

In figure 6.13a, two environments are discerned in Al2p spectrum, at 74.4 and 73.2 eV,

corresponding to Al2O3 and AlN bonding environments respectively. No Al-Al bonding en-

vironment is recorded.

N1s XPS spectrum, in figure 6.13b, is made of three environments: AlN at 397.1 eV, NxCyHz

at 398.3 eV and NHx at 399.3 eV.

On O1s XPS spectrum, in figure 6.13c, three bonding environments can be distinguished,

from 530.4 to 533.9 eV and are attributed to AlOx, Al2O3 and OH bonding.

Finally, C1s spectrum, in figure 6.13d, presents only one environment correlated to carbon

contamination at 285 eV.

XPS estimation of the MOCVD-AlN sample composition is given in table 6.4.
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Table 6.4: XPS extraction of MOCVD-AlN sample composition

Al (at.%) C (at.%) N (at.%) O (at.%)

27.4 5.9 12.5 54.5

A ratio of 1:3 for N:Al and 2:1 for O:Al are observed.

Carbon from contamination is below 6 at.%, whereas TMA precursor mainly contains carbon

(see figure 6.11). Thus the deposition reaction appears to be complete, the precursor is fully

decomposed and reaction by-products well eliminated from the deposited material.

Resistivity measurement was not possible due to the upper limit of the measurement tool.

AlN resistivity was out of the measurement range.

6.3.4 H2 plasma decomposition of TMA

Decomposition of TMA with H2 plasma was achieved with the aim at depositing pure Al,

without nitrogen and limited amount of carbon.

Four points probes measurements were carried out on several samples of Al with thicknesses

ranging from 2 nm up to 15 nm without success. Resistivity of the layers was always too

high for the tool to measure it. It is supposed that at vacuum break a few nanometres thick

Al2O3 resistive layer is formed on the deposited Al and prevents resistivity measures.

XPS spectra of Al, N, O and C elements in a 4 nm Al layer deposited by PEMOCVD at

350◦C with TMA and H2 plasma are presented figure 6.14a, b, c and d, respectively.

Al2p XPS spectrum, in figure 6.14a, is constituted by three environments. They correspond

to Al2O3 at 74.5 eV, AlOx and/or AlC at 73.6 eV and AlC bonding at 72.4 eV.

N1s spectrum, figure 6.14b is made of two peaks at 397.1 eV for AlN bonds and 398.3 eV for

NxCyHz. The presence of AlN is explained by the absence of cleaning before the PEMOCVD-

Al deposition, resulting in cross-contamination by species from previous depositions.

Oxygen XPS peaks, in figure 6.14c, located at 532.1 and 530.4 eV, correspond to Al2O3 and

AlOx bonding environments respectively.

Finally, two environments corresponding to carbon-metal bonding, AlC and AlC in Al2O3,

are present at 281.5 and 282.8 eV in figure 6.14d.

In summary, the deposited film is not pure Al as expected, but is formed of AlC. Thus, in

the rest of this chapter it will be referred to as PEMOCVD-AlC.

XPS estimation of the PEMOCVD-AlC sample composition is given in table 6.5.

It appears that the nitrogen content in the layer is low, whereas carbon content is much

higher than what was obtained with MOCVD-AlN deposition. Also, the Al:O ratio is quite
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Figure 6.14: a: Al2p, b: N1s, c: O1s and d: C1s XPS spectra of PEMOCVD-AlC

Table 6.5: XPS extraction of PEMOCVD-AlC sample composition

Al (at.%) C (at.%) N (at.%) O (at.%)

32.7 17.4 5.5 44.4

low compared to MOCVD-AlN, at 3:4.

Due to the use of H2 plasma for Al deposition by PEMOCVD, an impact was observed on

the Si substrate. The Si2p XPS spectrum after PEMOCVD-AlC deposition is presented

figure 6.15.

This spectrum reveals the removal of oxygen from SiO2 when PEMOCVD-AlC is deposited

on native SiO2/Si substrate. Two environments appear at 100 and 101.5 eV and correspond

to Si3+ and Si2+.

The oxygen removal of a material by H2 plasma was already shown and discussed in the

Chapter 5.

6.3.5 Interpretation of MOCVD-AlN and PEMOCVD-AlC deposition

Using MOCVD and PEMOCVD techniques, deposition of AlN and AlC materials was suc-

cessfully achieved.
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Figure 6.15: Si Si2p spectrum after PEMOCVD-AlC deposition

TMA reaction with NH3 reactant gas appears to be complete from 350◦C, with low carbon

contamination, which also confirms the high efficiency of reaction by-products exhaust. The

activation energy of the deposition reaction was calculated to be 1.08 eV, in line with the

0.78 to 0.95 eV reported in the literature [211, 214].

This activation energy is also twice higher than the activation energy of TaN or TiN depo-

sition calculated in Chapter 3, respectively 0.46 and 0.48 eV. This higher activation energy

suggests that depositions of TaN or TiN require less energy than AlN deposition.

AlN material is oxidised at vacuum break, the Gibbs free energy of AlN oxidation was

calculated at 25◦C and for one mole of AlN, from equation 6.2.

2AlN +
3

2
O2 → Al2O3 +N2 ∆G = −1008kJ.mol−1 (6.2)

As the Gibbs free energy of AlN oxidation is highly negative, the reaction is spontaneous,

which confirms the formation of aluminium oxide at the sample surface.

TMA deposition is not activated by H2 reactant gas. Only a monolayer of Al is obtained

and suggests that surface saturation of the substrate is reached but the nucleation sites are

not activated for further growth of the layer. A different approach is required to activate

the nucleation sites using H2 reactant gas with plasma enhancement, it is the PEMOCVD

technique.

TMA activation using H2 plasma led to the deposition of AlC material. Decomposition of

the precursors molecule with a 100 W plasma power is not complete and some carbon, in

carbon-metal bond, is found in the deposited layer.

AlC deposition in PEMOCVD mode affects the substrate and leads to the reduction of oxy-

gen from SiO2 native oxide initially present on the substrate. This oxide removal by H2

plasma was already observed and discussed in the Chapter 5. One expects that such plasma
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conditions on HfO2 would damage the dielectric and consequently would degrade the elec-

trical properties of the stack.

As for AlN deposition, Al is highly reactive with oxygen, resulting in the formation of Al2O3

at the sample surface after vacuum break. Gibbs formation free energy of Al2O3 is given

equation 6.3.

∆Gformation(Al2O3) = −1488kJ.mol−1 at 25◦C (6.3)

The low Gibbs energy of Al2O3 formation confirms the high affinity of Al with oxygen.

Al2O3 oxide level appears to be higher in the case of MOCVD-AlN where it represents two

thirds of the layer compared to half of the layer for PEMOCVD-Al. As suggests earlier and

in PVD-TaAlN case, nitrogen allowed the oxygen to diffuse in the layer even if an Al2O3

passivation is formed at the surface of the film. In the case of PEMOCVD-AlC, diffusion of

oxygen appears to be limited, as for PVD-TaAl, which hints on the presence of Al-Al bonds

in the volume of the film. An estimated 2 to 3 nm layer of Al2O3 is formed at the surface of

the samples, in agreement with the thickness reported in the literature [215].

6.3.6 Conclusion

Feasibility of MOCVD-AlN and PEMOCVD-AlC depositions was proven by this experiment

and the chemical environments of both AlN and AlC materials are reported.

An important point revealed is that even if the chosen precursor does not contains nitrogen

bond it is difficult to avoid AlN creation. Nitrogen present in the deposition chamber from

previous deposition process is reacting with the introduced TMA and forms AlN within the

Al layer. In fact, N is known to be difficult to pump-out under vacuum. It tends to remain

in the chamber and advanced pumping steps are required to insure a satisfying removal of

nitrogen.

Processes of PEMOCVD-AlC is applied now for doping of MOCVD deposited TaN metal.

6.4 Al doping of MOCVD-TaN

Complete description of MOCVD-TaN process was given in the Chapter 3 with a detailed

explanation of the possible Ta precursors molecule decomposition paths. Influence of the

deposition parameters was investigated and discussed in regards to the obtained results.

In this part, attempts to insert Al in MOCVD-TaN using TMA precursor are presented.

Doping of the PEMOCVD-TaN process, presented Chapter 4, was also studied, however as

it is the last experiment done in this thesis the results are not presented due to the lack of

perspective.
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6.4.1 MOCVD-TaN doping characterisation

6.4.1.1 Doping of TaN metal

In order to evaluate the possible doping of MOCVD-TaN, TMA precursor was injected to-

gether with TBTDET precursor.

Despite the several experiments carried out with variations of the substrate temperature,

reactant gas or injected Ta:Al ratio, via injector frequency and injector opening time mod-

ulations, no trend allowing an adequate control of doping levels was found. Al content of

the layers, quantified by XPS, was greatly higher than the Ta content no matter the chosen

process parameters. Therefore, instead of Al doping of TaN, it is more correct to name the

films obtained as Al(Ta)N alloying.

Moreover, the buffer/memory effect of the evaporation furnace, already mentioned in the

Chapter 3, appeared to be stronger in the case of Al precursor compared to Ti or Ta pre-

cursors. It led to the deposition of layer containing significant levels of Al without injection

of TMA in the deposition chamber. This cross-contamination made the development of Al

doping processes even more difficult.

So far, the recipe with lowest Al content obtained is:

• 350◦C substrate

• 2 Torr deposition pressure

• NH3 saturated ambiance

• injectors temperature of 40◦C

• 0.1 Hz injection frequency

• Ta:al injection ratio of 10:1

This recipe is later referred to as MOCVD-TaAlN process.

XPS characterisation of the obtained TaAlN layer is presented in the following section.

6.4.1.2 Chemical environments of MOCVD-TaAlN

XPS spectra from MOCVD-TaAlN, deposited with the previously introduced recipe are pre-

sented figure 6.16.

Compared to the Ta4f environments presented in the previous chapters (see figure 6.9,

page 142 for reference), the Ta4f spectrum of MOCVD-TaAlN figure 6.16a has a low oxide

feature characterised by a non symmetric trident. Ta is mainly bonded to nitrogen. This

observation is similar to the auto-passivation discussed in the case of addition of Al in PVD-

Ta and PVD-TaN.

Al2p XPS spectrum of MOCVD-TaAlN is shown in figure 6.16b. Al presents three different

bonding environments standing for Al2O3 at 74.5 eV, AlN at 72 eV and Al-Al at 70.5 eV.

On the N1s spectra, figure 6.9d, it is not possible to distinguish AlN from TaN. A Ta3d peak

is observed and makes the deconvolution of the N1s peaks even more difficult.
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Figure 6.16: a: Ta4f, b: Al2p, c: N1s, d: O1s XPS spectra of MOCVD-TaAlN
Ta:Al 10:1 injection ratio

Finally, O1s spectra, figure 6.16d, feature two environments, at 530.6 eV and 532 eV re-

spectively standing for Al2O3 and Ta2O5. Compared to Ta2O5, Al2O3 peak has an higher

intensity and confirms the low level of tantalum oxide in the layer, i.e. aluminium oxide is

preferably formed.

Composition of the MOCVD-TaAlN film was extracted from XPS analysis and is presented

in table 6.6.

It results that the Al/(Al + Ta) ratio is 75.9%. The carbon content of the layer is higher

Table 6.6: XPS extraction of MOCVD-TaAlN sample composition

Injected
Ta:Al
ratio

Ta (at.%) Al (at.%) C (at.%) N (at.%) O (at.%)

10:1 4.9 15.4 15.4 10.1 54.2

than what was obtained for MOCVD-TaN or MOCVD-AlN, which tends to suggest that the

decomposition path is affected by the presence of both precursors in the deposition chamber.

Else an important oxidation of the layer is also observed.
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6.4.1.3 Localisation of Al in the layer

Angle Resolved XPS, presented Chapter 2.3.6.4, was used for a localisation of Al in the

MOCVD-TaAlN layer. Resulting Al2p and Ta4f spectra are given in the figures 6.17 and

6.18 below, depending on the analysis angle, from volume to extreme surface.

Figure 6.17: Evolution of Al chemical bonding from volume to extreme surface

Peak intensity evolution suggests that Al-Al is localised in the bulk of the layer, i.e. not

only at the surface. However, the bonding environments change from surface to volume. At

the extreme surface, more Al2O3 is seen while in the volume AlN and Al environments are

increasing.

The Ta4f spectra evolution from surface to volume of MOCVD-TaAlN sample is presented in

figure 6.18a. Same analysis was achieved for MOCVD-TaN, deposited at equivalent process

parameters, and is presented figure 6.18b.

Figure 6.18: Evolution of Ta chemical bonding from volume to extreme surface in
MOCVD-TaAlN and MOCVD-TaN
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In the Ta4f spectra acquired with TaAlN, in figure 6.18a, the evolution of Ta-O binding from

surface to volume is not growing as much as Ta-N feature, indicating an higher oxidation

level at the surface of the sample than in the volume.

In comparison, MOCVD-TaN spectra, in figure 6.18, presents the same two features of Ta-O

and Ta-N, however the evolution of both is similar from volume to surface, suggesting an

homogeneous oxidation of the material in the volume of the layer.

This analysis suggests a separation of Al from the TaAlN material in order to create an oxide

layer at the extreme surface of the layer. Moreover, the Al2O3 layer protects the volume of

the layer from further oxidation, it acts as a barrier to oxygen diffusion. There is a passiva-

tion of the layer at the surface of the film. Furthermore, addition of Al in the TaN film leads

to the decrease of O solubility.

The separation of Al and Ta might occur through two distinct phenomena. First, Al ox-

ide formation is favoured at the surface of the sample, which tends to “pull” the Al atoms

towards the surface of the sample. Second, due to the limited solubility of O in the TaAl

mixture, TaN is pushed back from the surface at the oxygen uptake. Altogether, an alu-

minium oxide film is formed at the surface of the sample and in the volume of the film TaN

is found with a limited amount of O.

In summary, the Al oxidation behaviour hinted from PVD-Ta and PVD-TaN doping is con-

firmed in MOCVD-TaAlN.

6.4.2 Conclusion

The first investigation of the process parameters influence on the deposition of MOCVD-

TaAlN did not allow to define a reaction path or understand the phenomena observed. No

significant difference, between the process-wise differently doped materials, could be deter-

mined and linked to the process conditions.

Thus, only one recipe was qualified for TaAlN deposition by MOCVD. And the repeatability

of this process was confirmed, despite the buffer effect of the evaporation furnace.

However, to estimate the influence of Al doping on the MOCVD-deposited TaN metals,

several materials are necessary for a comparison. So, new processes were developped and

include stacking of MOCVD-TaN with MOCVD-AlN and PEMOCVD-Al. Development of

both Al and AlN materials is presented in the following section.

Finally, an ARXPS study of the MOCVD-TaAlN shown that a separation of Al from Ta

occurs in the volume of the layer. This phenomenon was already highlighted by the modifi-

cation of the XPS spectra with Al content increase in PVD-Ta and PVD-TaN. The important

oxidation of Al at the surface of the material generate an oxygen barrier, protecting the Ta

in volume from oxidation.
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6.5 TaN and AlC multistacks formation by cycled (PE)MOCVD

6.5.1 Context

To bypass the limitations previously described and the difficulty to control the Al dopant

concentration in TaN layers, multistacks or stacked layers were developped. These stacks

range from the superposition of monolayers to the stacking of thick layers, each resulting in

different physico-chemical characteristics.

To ease the discussion only two of the developped materials/stacks are presented here:

• 4 nm MOCVD-TaAlN deposited with a Ta:Al injection ratio of 10:1. Already reported

in section 6.4.1.

• 4 nm cycled MOCVD-TaN / PEMOCVD-AlC mono-layers repeated five times and

covered by a mono-layer of MOCVD-TaN. The last MOCVD-TaN layer is used to

limit the oxidation of the aluminium present in the volume of the film. This stack is

later referred to as (TaN / Al)x5 and can be associated to the “supercycle” approach

used for doping of ALD deposited oxides [207].

6.5.2 Tools and methods

The deposition parameters of the layers used here were already introduced earlier, MOCVD-

TaAlN in Chapter 6 section 6.4.1 page 153, MOCVD-TaN in Chapter 3 section 3.5.1 page

70 and PEMOCVD-AlC in Chapter 6 section 6.3.2 page 146.

The same tools are used for resistivity measurement, thickness confirmation and chemical

bonding analysis. On the first place XPS was used for the quantification of each species

concentration in the layers. However, as stated earlier, XPS is a surface analysis technique,

the signal from the species present at the bottom of the stack is lowered by the species from

the top of the stack. Thus, the stack composition obtained by XPS does not correspond to

the material, when inhomogeneous stacks are investigated an overvaluation of the surface

species content is observed.

Therefore, to asses the composition of the multistack, Wavelength Dispersive X-Ray Fluores-

cence (WDXRF) was used to count the number of aluminium atoms present in the volume

of the material. WDRXF is a volume analysis (several microns in depth) and therefore is

not affected by the localisation of each specie, a complete description of this technique can

be found in [216].

6.5.3 Characterisation of TaAlN multistacks

In table 6.7 are presented the estimated Al% obtained by WDXRF and XPS. The error

margin was evaluated to be 20% on the WDXRF quantification and 10% by XPS.

The comparison of XPS and WDXRF confirms the hypotheses about Al separation and for-

mation of an oxide layer at the surface of the sample, resulting in a overvaluation of the Al

content in the layers by XPS. XPS which is a surface analysis, is highly impacted by this
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Table 6.7: XPS and WDXRF extraction of TaAlN samples Al content

Al ratio in Ta:Al (in %) TaAlN (TaN / Al) x5

XPS estimation 75.9 92.7
WDXRF estimation 19.0 25.2

localisation of Al, whereas WDXRF, which is a volume analysis, returns a more satisfying

estimation of the Al content.

This difference between XPS and WDXRF does not change the trends observed and dis-

cussed in the previous sections, i.e. for PVD-TaAl and PVD-TaAlN doping.

Considering that Al and Ta have a density of 3.3 g.cm−3 and 12 g.cm−3, that Al and Ta

have an atomic weight of 181 g.mol−1 and 27 g.mol−1, and that mono-layers of TaN and

Al are 0.4 nm thick, the calculated Al of (TaN / Al)x5 film content is close to 50%. The

lower Al content obtained with WDXRF measurement may underline a different growth rate

of PEMOCVD-AlC when deposited on Si substrate than when deposited on MOCVD-TaN.

Some of the interactions between the two metals are not yet fully understood and further

investigation are still on-going.

6.5.3.1 Evolution of chemical bonding depending on the process

XPS measurements of the Ta4f, Al2p, O1s and N1s core level of MOCVD-TaAlN and (TaN

/ Al)x5 are presented in figure 6.19.

Spectra of Ta4f are presented in figure 6.19a, the spectrum of MOCVD-TaAlN control sam-

ple was already introduced and discussed in section 6.4.1.2. The essential information was

that Al does not interact with Ta to create metal-dopant bonds, however a layer of Al2O3

is formed at the sample surface and protects Ta from oxidation thanks to the important

affinity of Al with O. In the case of (TaN / Al)x5 superposition, the spectrum shows two

new environments at 23.6 and 22.3 eV corresponding respectively to TaNx<1 and TaAl or

Ta-Ta. The environment located at 23.6 eV can also be associated to a N-Ta-Al bonding.

Al2p spectra of the two layers, in figure 6.19b, present some important variations and do

not feature the same bonding environments. (TaN / Al)x5 layer is constituted of two envi-

ronments, Al2O3 and AlON, located at 74.5 eV and 73.5 eV, respectively. The absence of

TaAl environment, in (TaN / Al)x5, goes against the TaAl peaks viewed on Ta4f spectrum.

One possible explanation supposes that the high level of Al2O3 results in a peak with a

higher intensity than the other environments, resulting in a difficult observation of the peaks

with lower intensity. Another explanation is that the feature observed on Ta4f peak do not

correspond to Ta-Al but to Ta-Ta.

On figure 6.19c are displayed the N1s spectra of the layers. TaAlN and (TaN / Al)x5 present

the two same main features of N bonded to a metal and in an NxCyHz environment. NxCyHz

originates from the precursor molecule, as highlighted Chapter 3.
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Figure 6.19: Chemical environment of TaN layer doped with Al a: Ta4f; b: Al2p;
c: O1s and d: N1s

O1s peaks, in figure 6.19d, display two environments at 532.3 eV and 530.5 eV, which cor-

respond to Al2O3 and Ta2O5 oxides. On MOCVD-TaAlN the higher intensity of the Al2O3

feature compared to the Ta2O5 feature supports the hypothesis of Al2O3 formation at the

surface of the layer, oxide which protects the oxygen from migrating/diffusing in the volume.

In opposition to this observation, (TaN / Al)x5 does not show any preferential oxidation of

the metals.

Si2p environments, figure 6.19e, suggest that (TaN / Al)x5 removes some of the oxygen from

the SiO2 interfacial layer, leading to the formation of SiOx. This oxide removal was already

observed for PEMOCVD-AlC deposition in the section 6.3.4.
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Hf4f spectra, figure 6.19f, presents a variation for the (TaN / Al)x5 layer compared to the

control sample, indeed an HfN bonding environment is observed at 16.1 eV.

In summary, the two processes developped for doping of MOCVD-TaN show important vari-

ations in their chemical bonding, and can be easily differentiated from MOCVD-TaN without

Al doping.

6.5.3.2 Crystallography

XRD measurements of the MOCVD-TaAlN and (TaN / Al)x5 samples are presented figure

6.20. In addition, the XRD spectra of MOCVD-TaN is displayed for reference.

Where the MOCVD-TaN appeared to be highly crystalline, no peaks are detected by XRD

Figure 6.20: Crystallography of the Ta(Al)N materials deposited by (PE)MOCVD

measurement for MOCVD-TaAlN or (TaN / Al)x5. Only the Si (1 0 0) peak from the sub-

strate appears at θ 55◦, and confirms that the same acquisition parameters were used.

The non-crystallinity of the layers may be due to the Al dopant. Indeed, a reduction of the

crystallinity was already observed for PVD-Ta and PVD-TaN doping, section 6.2.

Electrical characterisation of these layers are presented in the coming section and compared

with the doping of PVD layers.

6.5.4 Electrical characteristics of Al doped metals

6.5.4.1 Transistors fabrication and electrical measurements

In this part of the study electrical characteristics of PVD-Ta(Al), described in the section

6.2, and (PE)MOCVD-Ta(Al)N, introduced in the section 6.5 are compared and discussed.

In order to limit the damages of plasma on the dielectric, effects discussed in the Chapter

5, a third sample was added to the two MOCVD samples presented section 6.5. It consists
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in the same (TaN / Al)x5 but with an additional MOCVD-TaN “protection” layer inserted

between the metal and the dielectric.

Relaxed CMOS capacitors with high-κ/metal stack are used for measurement of the elec-

trical properties of the layers. Description of the devices preparation was introduced in the

Chapter 5, section 5.2.2.

It is important to notice that, due to the reduced time available for the integration of the Al

doping in capacitors, deposition was done on 200 mm wafers. The only change between 200

and 300 mm wafers concerns the interfacial chemical oxide, which is known to be of better

quality and better controlled over the thickness at 0.8 nm for 300 mm wafers, compared to

1 nm for 200 mm wafers.

Moreover, a weaker oxide removal than required was used for native SiO2 removal and chem-

ical SiO2 formation, thus the EOT of the capacitors is higher than expected and a variation

is observed from wafer to wafer.

So, in this chapter the EOT of the capacitors will not be discussed. Only the work function

variations will be taken into account.

6.5.4.2 Evolution of the work function of MOCVD deposited TaAlN

Variation of the work function depending on the EOT and the deposited material is given

figure 6.21.

Figure 6.21: Evolution of the work function vs EOT depending on the doping and
the deposition technique
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As mentioned earlier, EOT variation cannot be correlated to the metal deposition between

different processes, due to the incomplete removal of the oxide. Thus, the evolution of the

EOT depending on the processes will be commented only for the (TaN + Al)x5 without and

with a 1 nm TaN-MOCVD protection layer.

Comparing (TaN / Al)x5 and TaN + (TaN / Al)x5 clearly shows that protecting the di-

electric from the plasma allows to reduce the degradation of the EOT. This degradation is

characterised by the EOT regrowth and a dispersion of the measured values. In this case, a

1 nm layer of MOCVD-TaN appears to be enough to protect the dielectric from the plasma

active species. However, the introduction of this layer between the dielectric and the (TaN /

Al)x5 also reduces the n-type behaviour of the metal stack, from an average work function

of 4.1 eV to 4.3 eV. This modification is in agreement with the p-type behaviour of the

MOCVD-TaN used for protection of the dielectric, located at 5.0 eV.

Presence of Al not bonded to nitrogen, both in PVD and supposedly in MOCVD metals,

allows to reach a n-type work function, i.e. PVD-TaAl and (TaN / Al)x5 materials are

located below Si mid-gap line. The low work function of (TaN / Al)x5 tends to confirm the

presence of Al metal-metal bonded in the layer.

Finally, the presence of Al in MOCVD-TaAlN appears to have a limited impact on the work

function of the transistor, indeed only a -0.1 eV shift of the work function is observed from

MOCVD-TaN to MOCVD-TaAlN. Similar behaviour was previously observed for low level

of Al doping in PVD-Ta and PVD-TaN, which had the same work function as non doped

PVD-Ta and PVD-TaN.

6.5.5 Conclusion and perspectives

Using the AltaCVD deposition chamber, successful doping of MOCVD-TaN was achieved

by mean of layers superposition. Some interactions are observed between TaN and Al layers

and suggest that the doping is efficient; more than a bi-metal layer is obtained. However,

the experiments and results presented in this chapter do not allow to fully comprehend the

deposition or interaction mechanisms taking place when doping (PE)MOCVD-TaN metals

with aluminium.

Some of the difficulties encountered during the development of the layers are not reported

here, for example when a thick (about 2 nm) layer of PEMOCVD-AlC is deposited on the

substrate, the growth of MOCVD-TaN on it is not possible. It is possible that the nucle-

ation sites present at the surface of PEMOCVD-AlC are not compatible with the growth of

a MOCVD-TaN layer. More time and experiments would be necessary to fully understand

and master the doping of Ta with Al in the MOCVD technique.

MOCVD is a chemically driven deposition, thus limited by the chemistry of the reactants.

If one of the precursor has a higher affinity than the other with the reactant gas, then the
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deposited material will be mainly made of this compound (i.e. precursor + reactant).

One notices that one property of the precursors can favour the deposition of Al in MOCVD-

TaAlN, it is the vapour pressure. Vapour pressure of TMA is 9 Torr at 20◦C and about 2

Torr at 0◦C, whereas for TBTDET it is 1 Torr at 120◦C and about 2 Torr at 140◦C. In the

process conditions used for the MOCVD deposition of TaAlN, 40◦C and 2 Torr, the TMA

is easily vaporised contrary to TBTDET. This difference might lead to earlier decomposi-

tion/activation of TMA than TBTDET precursor, resulting in more Al deposited than Ta.

Other aluminium precursors might be more suitable for LIMOCVD technique in the process

conditions used on the AltaCVD tool, Tris(diethylamino)Aluminium (TDEAA) for example

as a vapour pressure of 0.2 Torr at 100◦C, which is similar to TBTDET precursor. How-

ever, the choice of TMA precursor was determined by: first the absence of Al-N bonds in

the molecule to avoid the deposition of an AlN insulating material, which is not the case of

TDEAA, second point was the availability of the precursor.

To adapt the AltaCVD system to the chosen precursors, a separation of the precursor injec-

tion lines and the absence of the evaporation furnace would be necessary and would allow a

better control of the injected quantities. Also, heating of each line could be adapted to the

characteristics of the precursors.

Nonetheless, the doping of MOCVD-TaN by layers superposition, presented in this section

appears to be repeatable and uniform on 300 mm wafers. The repeatability of the process

and the chemical modifications described, make the development of these layers promising.

Interest of MOCVD technique is also supported by the fact that, using the same deposi-

tion chamber, it is possible from MOCVD-TaN p-type metal with a work function of 4.75

eV to obtain n-type layers with a work function lower than 4.4 eV with the addition of

PEMOCVD-AlC. The gap between these p-type and n-type work function match with the

requirements made in the ITRS road map to address the sub-20 nm technology nodes [30].

6.6 Conclusion to the Chapter 6

An in depth investigation of PVD-Ta and PVD-TaN doping allowed to comprehend some

of the phenomena taking place when increasing amount of Al is added to the Ta and TaN

metals. The different oxidation of Ta and TaN highlighted the influence of the aluminium

on oxygen diffusion in the layer and on its solubility in the volume of the material. Addition

of aluminium clearly resulted in the formation of a passivation layer at the surface of the

layer in PVD-Ta case, whereas, in PVD-TaN case aluminium addition led to the passivation

in the volume with a reduction of the oxygen content but did not create an efficient barrier

against oxygen diffusion.

Electrical characterisation of PVD-Ta, with varying level of Al doping, revealed that a sig-

nificant level of Al (≥ 50%) is required to obtain a shift, towards the n-type, of the work

function. This shift is correlated to the intrinsic work function of Al (4.08 eV).
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Before a doping of the MOCVD-TaN layer, deposition of MOCVD-AlN and PEMOCVD-AlC

was investigated. Deposition of AlN from TMA precursor and NH3 reactant gas appears to

have a twice higher activation energy than what was calculated for MOCVD-TaN. This result

suggests that TaN formation is more favourable than AlN, in the chosen process conditions.

Then, to reduce the amount of N in the layer and limit the formation of insulating AlN,

PEMOCVD with H2 plasma is used. The deposited material appears to be an AlC, with

low content of nitrogen and low level of oxidation, compared to MOCVD-AlN.

Using the previously developped layers two doping of TaN metals are compared. First,

MOCVD-TaAlN is deposited by introduction of both TBTDET and TMA precursors in the

chamber, leading to the deposition of a material similar to PVD-TaAlN. Secondly, Al-type

doping in achieved by the multistacking of MOCVD-TaN and PEMOCVD-AlC monolayers.

The characteristics of this multistacking are close to PVD-TaAl material. XPS analysis of

these two doping was facilitate by the knowledge acquired with PVD layers and some of the

interactions between Ta and Al were explained.

Finally, the electrical characteristics of MOCVD-TaAlN and MOCVD-TaN/PEMOCVD-AlC

multistack are in-line with the observations made for PVD-TaAl. Indeed, MOCVD-TaAlN,

with 20% Al presents a work function which is only slightly shifted towards p-mos, due to the

significant presence of AlN in the layer. Whereas MOCVD-TaN/PEMOCVD-AlC multistack

is shifted towards a n-type work function, thanks to the “free” aluminium present in the layer.
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Conclusions

“Any sufficiently advanced technology is indistinguishable from magic.”

Arthur C. Clarke, author and inventor

7.1 Summary of the context

After more than 40 years of aggressive downsizing of MOSFETs, geometric scaling is reach-

ing fundamental limits. New materials and novel processes are necessary in order to extend

device scaling to the last CMOS technology node of the International Technology Roadmap

for Semiconductors (ITRS). Traditional gate stacks based on SiOxNy/poly-Si were replaced

by high-κ/metal gate at the 45 nm logic technology (as gate leakage became too high to

manage). For sub-20 nm CMOS generations, one of the most pressing challenge is to obtain

good conformity of the deposited layers on the features of the devices. For example trenches

deep by 10 nm and wide by 20 nm have to be filled by the high-κ/metal stack in the Gate-

Last approach. Chemically deposited materials are necessary to achieve the requirements of

the advanced nodes.

Historically, thinning down the gate dielectric and increasing channel doping have been

widely implemented to support the gate length shrink. However, the gate dielectric scaling

has slowed down, and even with the adoption of high-κ/metal-gate it will be difficult to

scale the EOT far below 1 nm. Moreover, integration of the materials has gained in inter-

est since the amount of material at interface/surface became significant compared to the

volume of the layers. Thanks to the characterisation tools available a fine analysis of the

physico-chemical phenomena down to the atomic level is now at reach. Understanding of the

correlations between the deposition process parameters and properties modifications of the

stacks or devices are a necessity to successfully develop new materials.

So the replacement of PVD TiN gate metal for new technology nodes became a necessity with

the ever more demanding conformity constraint. Furthermore, PVD impact on the substrate,

resulting in a degradation of the leakage current, confirms the advantages of chemical-based

deposition methods and their “softness” toward the underlayer. Titanium and tantalum

nitrides metals high affinity with oxygen allows to reach the low EOT (below 1 nm) required

in the 22 nm and lower nodes, when paired with HfO2 high-κ dielectric.
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7.2 Contributions

This work provides an outlook of the aforementioned issues. After the confirmation of

MOCVD conformity on small size feature a detailed review of the MOCVD influential pa-

rameters is given in Chapter 3. Calculation of the deposition reaction energy activation

depending on the reactant gas clearly highlights the importance of the NH3 in the deposition

mechanism. The lower activation energy obtained with Liquid Injected MOCVD, compared

to the classic vapour injection, is part of the benefits of the liquid injection system. However,

liquid injection also has some drawbacks, first one is the buffer effect observed after each

deposition, and the second one is the precursor degradation with evaporation furnace high

temperature, which can be avoided by a fine tuning of the liquid injectors temperature.

Following these findings a reaction mechanism path is proposed for both TaN and TiN

MOCVD deposition. Finally, the parameters not influencing the properties of the material

but having an effect upon the thickness uniformity of the layers are presented.

Similar route is followed for the PEMOCVD deposition in the Chapter 4. Succeeding the

confirmation of good conformity when using PEMOCVD method, the influential parameters

of the plasma enhanced deposition are discussed. Unlike MOCVD process, it is shown that

decomposition of the precursor and activation of the deposition reaction is not happening at

the sample surface but in the volume of the plasma. Consequently, the role of the substrate

heating is only to ease the exhaust of reaction by-products, no effect is observed on the

efficiency of the deposition.

A complete investigation on the plasma frequency revealed that the precursor decomposi-

tion is affected by the addition of low frequency power to a radio frequency plasma. Low

frequency plasma power increase achieves an higher increase of density, growth rate and

decrease of resistivity compared to a radio frequency plasma power increase.

Then, impact of H2 plasma used for densification of the Ta(C)N layer is investigated. Den-

sity, resistivity, crystallography and chemical environments modifications of Ta(C)N indicate

a change from TaN-like material with low plasma power toward TaC-like with high plasma

power. Ta-C bonds formation in the layer is associated to a transposition reaction enhanced

with the additional energy brought by the plasma reactive species.

Integration of Ta(C)N in an high-κ/metal gate scheme is developped in the Chapter 5. Inter-

actions analysis between the metal and dielectric reveal a replacement of oxygen by nitrogen

in the dielectric and opposite in the Ta(C)N layer. This exchange is enhanced when the

power of the plasma, used for metal densification, is increased. Plasma power increase is also

used for Ta-C bonds formation, as presented in Chapter 3, which was reported in literature

to increase the work function. Addition of nitrogen in the HfO2 layer and creation of HfON

appear to be an advantage with EOT and leakage current decrease. Yet, oxygen removal

from HfO2 results in the creation of a TaOx layer at the interface, which is a dielectric and

thus increases the EOT. Another effect of the oxygen removal is the leakage current degra-

dation and scattering of the measured values.

In a second part the affinity of Ta(C)N with oxygen is used for oxygen removal from TiN
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layer and improvement of the electrical characteristics of the HfO2/TiN stack. TiN is also

inserted between TaCN and HfO2 to limit the plasma damages observed earlier. With the

help of quasi in-situ XPS analysis a separation of (PE)ALD steps is achieved to understand

the influence of each feature from the deposition process. Surprisingly neither heating nor

NH3 reactant gas modified the chemical state of the TiN layer. Only H2 plasma led to

some oxygen removal from TiN, but not as much as what is observed after TaCN deposition.

Thus, TBTDET precursor and/or TaN material interact with the TiN material to reduce the

oxygen and increase the nitrogen levels. Addition of TaCN on the HfO2/TiN high-κ/metal

stack allows to reduce the EOT and TiN addition between HfO2 and TaCN limits the plasma

impact observed at plasma power increase.

Finally, benefits of new tantalum alloys are investigated in Chapter 6. A presentation of

the Ta(Al)N PVD metals is given and the behaviour of the metal is discussed in link with

the progressive addition of aluminium in the alloy. A clear oxidation of the Al present in

the layer is shown and acts as a barrier to limit Ta oxidation. Meanwhile, AlN formation,

an insulator not desired for metal-gate application, is revealed by the fast increase of the

resistivity and by XPS spectra of the samples.

Then, TaN MOCVD doping with Al is investigated. However, due to the chemically driven

reaction it is not possible to finely control the amount of Al in the layer. The limits of the

LIMOCVD system used are given and possible improvements proposed to achieve doping of

the TaN metal.

Therefore, based on the developments of TaN materials from Chapters 3 and 6 two ways to

include Al to TaN material are proposed, including MOCVD-TaAlN and multistacking of

MOCVD-TaN and PEMOCVD-AlC. Advantages and drawbacks of each way are developped

with the support of the results from physico-chemical characterisations.

Comparison of electrical results from PVD-Ta and MOCVD-TaN metals doped with Al are

examined in parallel and the differences interpreted with the support of the previously pre-

sented physico-chemical characterisations. As expected Al doping, with low levels of AlN,

allows a shift of the work function towards n-mos properties.

To summarise, figure 7.1 illustrates the excellent conformity of both MOCVD and PE-

MOCVD deposition techniques. The stack deposited on the Si box is made of PEMOCVD-

AlC/MOCVD-TaN/ALD-HfO2/SiO2.

7.3 Recommendations for future research

As for every scientific study at the term of this work few answers and solutions were given,

but even more questions and problems arose.

Some of the gaps found in the literature are now partially filled, i.e. few answers are given

concerning the role of plasma on deposition and densification of the metalorganic materials,

but the late arrival of aluminium for doping of MOCVD materials did not allow a thorough

comprehension of the doping reaction mechanism and interactions.
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Figure 7.1: Tri-gate architecture with an Al/TaN/HfO2/SiO2/Si stack for n-type
transistor

Some hints, concerning the behaviour of Al dopant in the TaN layer, are given by a compar-

ison of PVD and CVD chemical bonding. A further investigation of the CVD doping would

allow to complete the actual hypotheses and confirm the supposed mechanism of Ta and Al

separation with the formation of Al2O3 at the layer extreme surface. Moreover, it was sup-

posed that a competition exists between Al and Ta giving advantage to Al and resulting in

the formation of layers mainly composed of Al. Yet, due to the Ta-Al separation and Al2O3

formation this competition was revealed only late in the study and the reaction mechanism

was not understood.

Another important concern that was not wholly addressed was the impossibility to do the

deposition of MOCVD-TaN on PEMOCVD-AlC, as revealed Chapter 6. Whereas deposition

of MOCVD-TaN is possible on MOCVD-AlN and superposition of thin MOCVD-TaN and

PEMOCVD-AlC layers, almost monolayers, was also possible, MOCVD-TaN did not grow on

a few nanometres thick PEMOCVD-AlC. One hypothesis would need further investigation

to be confirmed or refuted: it concerns the nucleation of TaN on PEMOCVD-AlC surface, if

no nucleation sites are available for TaN to attach on the surface no growth of MOCVD-TaN

can be achieved. It is also possible that the nucleation sites are neutralised by NH3 reactant

gas with the thermodynamically favourable formation of AlN.
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Finally, the surface oxidation of the metals is another topic which has to be taken into account

and needs further investigation. Indeed, surface oxidation of the metals has a growing influ-

ence on the behaviour of the devices, as a full fabrication line cannot be under vacuum, it is

important to understand the vacuum break oxidation process. In this work more data would

be necessary to propose a complete path for the oxidation of metals at vacuum break. For

instance, to fully understand the phenomena taking place after deposition, an investigation

on the effect of the sample vacuum break temperature on oxidation levels would be necessary.
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Appendix A

Comparison of Gate-First and
Gate-Last flows

Gate oxide thickness scaling was reaching its limits at the 40 nm node, with leakage issues

and no design to work it around and bring the leakages down to acceptable levels. Already

for the 28 nm node there was the need for good control over the short channel, which re-

quires a thinner electrical gate dielectric, thus increasing the leakages. Only solution was the

introduction of High-κ dielectrics/metal gate (or HKMG).

HKMG can be achieved with two main approaches: Gate-First or Gate-Last implementation.

While it is well known that Intel employed the Gate Last HKMG approached for their 45 nm

CPU technology, Globalfoundries concluded that this was not the most optimum approach

until the 28 nm node.

Gate-Last, or Replacement Metal Gate (RMG), flow is a key factor in scaling circuit integra-

tion to sub-20nm manufacturing process technology nodes. A comparison of the Gate-First

and Gate-Last integration flows for metal/high-κ deposition is presented with the next two

figures.
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In the gate-first flow, figure A.1, the dual-metal processing is completed prior to the polysili-

con gate deposition. The metal-gates are then subtractively etched along with the poly gates

prior to source/drain formation.

Figure A.1: Metal/dielectric flow for Gate-First production
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In contrast, for the gate-last flow, a standard polysilicon gate is deposited after the high-k

gate dielectric deposition, which is followed by standard polysilicon processing through the

salicide and the 1st ILD deposition. The wafer is then planarized and the dummy poly

gate removed. The dual-metal gates are then deposited along with a low-resistance gate fill

material. The excess metal is then polished off and followed by contact processing, figure A.2.

Figure A.2: Metal/dielectric flow for Gate-Last production
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List of metals successfully
deposited by CVD and ALD

Elements thermally deposited by CVD or ALD and resulting in conductive material are

presented figure B.1, only reports in peer-reviewed literature are included. Metals that

have been deposited by CVD or ALD are enclosed by solid black boxes. Metals (or alloys)

that have been deposited only by pulsed-CVD are enclosed by dashed black boxes. Atomic

numbers are shown above the atom symbols and Pauling electronegativities are shown below.

Non-metals (including semi-metals) and elements without significant natural abundance are

shown in white. The remaining elements are shaded.
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Figure B.1: Thermally CVD or ALD deposited elements. Metals that have been
deposited by CVD or ALD are enclosed by solid black boxes, metals (or alloys) that

have been deposited only by pulsed-CVD are enclosed by dashed black boxes
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Principle of X-Ray generation

X-ray photons are produced by an electron beam that is accelerated to a very high speed and

strikes a target. The electrons that make up the beam are emitted from a heated cathode

filament. The electrons are then focused and accelerated by an electrical field towards an

angled anode target. The point where the electron beam strikes the target is called the focal

spot. Most of the kinetic energy contained in the electron beam is converted to heat, but

around 1% of the energy is converted into X-ray photons, the excess heat is dissipated via a

heat sink.

At the focal spot, X-ray photons are emitted in all directions from the target surface, the

highest intensity being around 60◦ to 90◦ from the beam due to the angle of the anode

target to the approaching electron beam. There is a small round window in the X-ray tube

directly above the angled target. This window allows the X-ray to exit the tube with little

attenuation while maintaining a vacuum seal required for the X-ray tube operation.

As presented in figure C.1, X-ray tube work by applying controlled voltage and current to a

tungsten target, which results in a beam of X-rays.

Figure C.1: X-Ray generation principle

Once created, the X-ray beam is projected on matter. Some of the X-ray beam will pass

through the object, while some is absorbed. The resulting pattern of the radiation is then

ultimately detected by a detection medium including rare earth screens (which surround

photographic film), semiconductor detectors, or X-ray image intensifiers.
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In the case of XPS, the photoelectrons emitted by the sample are going through several

appliance before reaching the sensor, as presented in figure C.2.

Figure C.2: XPS principle schema
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[84] A Jablonski and C.J Powell. Relationships between electron inelastic mean free paths, effective
attenuation lengths, and mean escape depths. Journal of Electron Spectroscopy and Related
Phenomena, 100(13):137 – 160, 1999.

[85] Dominik Jaeger and Jrg Patscheider. A complete and self-consistent evaluation of XPS spectra
of TiN. Journal of Electron Spectroscopy and Related Phenomena, 185(11):523 – 534, 2012.

[86] National Institute of Standards and Technology. NIST XPS. Database, 2012.

[87] C.-S. Shin, Y.-W. Kim, D. Gall, J.E. Greene, and I. Petrov. Phase composition and microstruc-
ture of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by
reactive magnetron sputter deposition. Thin Solid Films, 402(12):172 – 182, 2002.

[88] Mikko Ritala, Pia Kalsi, Diana Riihel, Kaupo Kukli, Markku Leskel, and Janne Jokinen. Con-
trolled Growth of TaN, Ta3N5, and TaOxNy Thin Films by Atomic Layer Deposition. Chemistry
of Materials, 11(7):1712–1718, 1999.

[89] Tae Joo Park, Jeong Hwan Kim, Jae Hyuck Jang, Kwang Duk Na, Cheol Seong Hwang,
Jong Hoon Kim, Gee-Man Kim, Jae Ho Choi, Kang Joon Choi, and Jae Hak Jeong. Im-
proved electrical performances of plasma-enhanced atomic layer deposited TaCxNy films by
adopting Ar/H2 plasma. Applied Physics Letters, 91(25), 2007.

[90] O. van der Straten, X. Zhang, C. Penny, J. Maniscalco, S. Chiang, J. Ren, and P. Ma. Impact
of Direct Plasma Densification on Resistivity and Conformality of PEALD Tantalum Nitride.
ECS Transactions, 50(13):159–164, 2013.

[91] H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels. Reaction mech-
anisms of atomic layer deposition of TaNx from Ta(NMe2)5 precursor and H2-based plasmas.
Journal of Vacuum Science and Technology A, 30(1), 2012.

[92] H. L. Skriver and N. M. Rosengaard. Surface energy and work function of elemental metals.
Phys. Rev. B, 46(11):7157–7168, Sep 1992.

[93] B. Pelissier, H. Kambara, E. Godot, E. Veran, V. Loup, and O. Joubert. XPS analysis with
an ultra clean vacuum substrate carrier for oxidation and airborne molecular contamination
prevention. Microelectronic Engineering, 85(1):151 – 155, 2008.

[94] Sung-Lae Cho, Ki-Bum Kim, Seok-Hong Min, Hyun-Kook Shin, and Sam-Dong Kimd. Diffusion
Barrier Properties of Metallorganic Chemical Vapor Deposited Tantalum Nitride Films Against
Cu Metallization. Journal of The Electrochemical Society, 146(10):3724–3730, 1999.

[95] G.-C. Jun, S.-L. Cho, K.-B. Kim, H.-K. Shin, and D.-H. Kim. Low temperature deposition of
TaCN films using pentakis(diethylamido)tantalum. Japanese Journal of Applied Physics, Part
2: Letters, 37(1 PART A/B):L30–L32, 1998.

[96] Soo-Hyun Kim, Se-Joon Im, and Ki-Bum Kim. The effect of ion beam bombardment on the
properties of Ta(C)N films deposited from pentakis-diethylamido-tantalum. Thin Solid Films,
415(1):177 – 186, 2002.

186



Bibliography.

[97] Y. K. Chae, Y. Shimogaki, and H. Komiyama. The Role of Gas-Phase Reactions during Chem-
ical Vapor Deposition of Copper from (hfac)Cu(tmvs). Journal of The Electrochemical Society,
145(12):4226–4233, 1998.

[98] Mermet, J.-L., Mouche, M.-J., Pires, F., Richard, E., Torres, J., Palleau, J., and Braud, F.
CVD Copper Deposition from CuI(HFAC)TMVS Studied Through a Modeling Experimental
Design. J. Phys. IV France, 05(C5):C5–517–C5–523, 1995.

[99] D.P. Brady, F.N. Fuss, and D. Gerstenberg. Thermal oxidation and resistivity of tantalum
nitride films. Thin Solid Films, 66(3):287 – 302, 1980.

[100] MatWeb. Material Property Data @ONLINE. http://www.matweb.com/, 2012.

[101] Alain E. Kaloyeros, Xiaomeng Chen, Tanja Stark, Kaushik Kumar, Soon-Cheon Seo, Gregory G.
Peterson, Harry L. Frisch, Barry Arkles, and John Sullivan. Tantalum Nitride Films Grown by
Inorganic Low Temperature Thermal Chemical Vapor Deposition Diffusion Barrier Properties
in Copper Metallization. Journal of The Electrochemical Society, 146(1):170–176, 1999.

[102] A. Correia Anacleto, A. Zauner, D. Cany-Canian, J. Gatineau, and M.-C. Hugon. Atomic layer
deposition of tantalum nitride based thin films from cyclopentadienyl type precursor. Thin
Solid Films, 519(1):367 – 372, 2010.

[103] T. Elangovan, S. Murugeshan, D. Mangalaraj, P. Kuppusami, Shabhana Khan, C. Sudha,
V. Ganesan, R. Divakar, and E. Mohandas. Synthesis and high temperature XRD studies of
tantalum nitride thin films prepared by reactive pulsed dc magnetron sputtering. Journal of
Alloys and Compounds, 509(22):6400 – 6407, 2011.

[104] F. Ferrieu, K. Dabertrand, S. Lhostis, V. Ivanova, E. Martinez, C. Licitra, and G. Rolland. Ob-
servation of HfO2 thin films by deep UV spectroscopic ellipsometry. Journal of Non-Crystalline
Solids, 353(57):658 – 662, 2007.

[105] Jia-Hong Huang, Kae-Jy Yu, P. Sit, and Ge-Ping Yu. Heat treatment of nanocrystalline TiN
films deposited by unbalanced magnetron sputtering. Surface and Coatings Technology, 200
(1415):4291 – 4299, 2006.

[106] L.T. Zhuravlev. The surface chemistry of amorphous silica. zhuravlev model. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 173(13):1 – 38, 2000.

[107] P. Patsalas, C. Charitidis, and S. Logothetidis. The effect of substrate temperature and biasing
on the mechanical properties and structure of sputtered titanium nitride thin films. Surface
and Coatings Technology, 125(1):335 – 340, 2000.

[108] M. Bosund, A. Aierken, J. Tiilikainen, T. Hakkarainen, and H. Lipsanen. Passivation of GaAs
surface by atomic-layer-deposited titanium nitride. Applied Surface Science, 254(17):5385 –
5389, 2008.

[109] Xingsheng Wang, G. Roy, O. Saxod, A. Bajolet, A. Juge, and A. Asenov. Simulation Study of
Dominant Statistical Variability Sources in 32-nm High-κ/Metal Gate CMOS. Electron Device
Letters, IEEE, 33(5):643–645, May 2012.

[110] A. Bieder, A. Gruniger, and Rudolf von Rohr. Deposition of SiOx diffusion barriers on flexible
packaging materials by PECVD. Surface and Coatings Technology, 200(14):928 – 931, 2005.

[111] H. Surr, Ch. Gehr, H. Holzschuh, F. Schmaderer, G. Wahl, Th. Kruck, and A. Kinnen. Thermal
and plasma enhanced CVD OF HTc-superconductors. Physica C: Superconductivity, 153155,
Part 2(0):784 – 785, 1988.

[112] Chang jun Liu, Gheorghi P. Vissokov, and Ben W.-L. Jang. Catalyst preparation using plasma
technologies. Catalysis Today, 72(34):173 – 184, 2002.

[113] J.R. Roth. Industrial Plasma Engineering: Volume 2 - Applications to Nonthermal Plasma
Processing. Industrial Plasma Engineering. Taylor & Francis, 2001.

187



Bibliography.

[114] M. Danek, M. Liao, J. Tseng, K. Littau, D. Saigal, H. Zhang, R. Mosely, and M. Eizenberg.
Resistivity reduction and chemical stabilization of organometallic chemical vapor deposited
titanium nitride by nitrogen RF plasma. Applied Physics Letters, 68(7):1015–1016, 1996.

[115] R. Smoluchowski. Anisotropy of the Electronic Work Function of Metals. Phys. Rev., 60(9):
661–674, 1941.

[116] N. Mutsukura, Y. Fukasawa, Y. Machi, and T. Kubota. Diagnostics and control of radio-
frequency glow discharge. Journal of Vacuum Science and Technology A, 12(6):3126–3130,
1994.

[117] Xiang Xu, Jie Feng, Xiang-Mei Liu, You-Nian Wang, and Jia Yan. Study of the neutral gas
flow on discharges of capacitively coupled plasma in a PECVD reactor. Vacuum, 92:1 – 6, 2013.

[118] Hong Tak Kim, Maeng Jun Kim, and Sang Ho Sohn. Characterization of TiN thin films grown
by low-frequency (60 Hz) plasma enhanced chemical vapor deposition. Journal of Physics and
Chemistry of Solids, 73(7):931 – 935, 2012.

[119] Daniel L. Flamm. Frequency effects in plasma etching. Journal of Vacuum Science and Tech-
nology A, 4(3):729–738, 1986.

[120] M. Surendra and D. B. Graves. Capacitively coupled glow discharges at frequencies above 13.56
MHz. Applied Physics Letters, 59(17):2091–2093, 1991.

[121] Haruhiro H. Goto, Hans-Dirk Lwe, and Tadahiro Ohmi. Dual excitation reactive ion etcher for
low energy plasma processing. Journal of Vacuum Science and Technology A, 10(5):3048–3054,
1992.

[122] Zhen hua Bi, Yong xin Liu, Wei Jiang, Xiang Xu, and You nian Wang. A brief review of
dual-frequency capacitively coupled discharges. Current Applied Physics, 11(5, Supplement):
S2 – S8, 2011.

[123] V. Georgieva and A. Bogaerts. Numerical simulation of dual frequency etching reactors: In-
fluence of the external process parameters on the plasma characteristics. Journal of Applied
Physics, 98(2):–, 2005.

[124] Jae Koo Lee, N.Y. Babaeva, Hyun Chul Kim, O.V. Manuilenko, and Jong Won Shon. Simula-
tion of capacitively coupled single- and dual-frequency RF discharges. Plasma Science, IEEE
Transactions on, 32(1):47–53, 2004.

[125] P C Boyle, A R Ellingboe, and M M Turner. Independent control of ion current and ion impact
energy onto electrodes in dual frequency plasma devices. Journal of Physics D: Applied Physics,
37(5):697, 2004.

[126] H. C. Kim, J. K. Lee, and J. W. Shon. Analytic model for a dual frequency capacitive discharge.
Physics of Plasmas (1994-present), 10(11):4545–4551, 2003.

[127] M. M. Turner and P. Chabert. Collisionless Heating in Capacitive Discharges Enhanced by
Dual-Frequency Excitation. Phys. Rev. Lett., 96(4):205001, May 2006.

[128] J Robiche, P C Boyle, M M Turner, and A R Ellingboe. Analytical model of a dual frequency
capacitive sheath. Journal of Physics D: Applied Physics, 36(15):1810, 2003.

[129] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg. Stochastic heating in single and dual
frequency capacitive discharges. Physics of Plasmas (1994-present), 13(5):–, 2006.

[130] J P Booth, G Curley, D Maric, and P Chabert. Dual-frequency capacitive radiofrequency
discharges: effect of low-frequency power on electron density and ion flux. Plasma Sources
Science and Technology, 19(1):015005, 2010.

[131] Z. Donko, J. Schulze, P. Hartmann, I. Korolov, U. Czarnetzki, and E. Schungel. The effect of
secondary electrons on the separate control of ion energy and flux in dual-frequency capacitively
coupled radio frequency discharges. Applied Physics Letters, 97(8):081501–081501–3, 2010.

188



Bibliography.

[132] Ciprian Iliescu, Bangtao Chen, Daniel P. Poenar, and Yong Yeow Lee. PECVD amorphous
silicon carbide membranes for cell culturing. Sensors and Actuators B: Chemical, 129(1):404 –
411, 2008.

[133] W.S. Tan, P.A. Houston, G. Hill, R.J. Airey, and P.J. Parbook. Electrical characteristics of
AlGaN/GaN metal-insulator semiconductor heterostructure field-effect transistors on sapphire
substrates. Journal of Electronic Materials, 32(5):350–354, 2003.

[134] C. W. Pearce, R. F. Fetcho, M. D. Gross, R. F. Koefer, and R. A. Pudliner. Characteristics of
silicon nitride deposited by plasma-enhanced chemical vapor deposition using a dual frequency
radio-frequency source. Journal of Applied Physics, 71(4):1838–1841, 1992.

[135] L. Martinu, J. E. Klemberg-Sapieha, O. M. Kttel, A. Raveh, and M. R. Wertheimer. Critical
ion energy and ion flux in the growth of films by plasma-enhanced chemical-vapor deposition.
Journal of Vacuum Science and Technology A, 12(4):1360–1364, 1994.

[136] R. Kressmann, H. Amjadi, G.M. Sessler, D. Rats, L. Martinu, J. E. Klemberg-Sapieha, and
M.R. Wertheimer. Charge storage in PECVD silicon oxynitride layers. In Electrical Insulation
and Dielectric Phenomena, 1998. Annual Report. Conference on, pages 605–608 vol. 2, 1998.

[137] Yang Lei, Xin Yu, Xu Haipeng, Yu Yiqing, and Ning Zhaoyuan. Effect of Discharge Param-
eters on Properties of Diamond-Like Carbon Films Prepared by Dual-Frequency Capacitively
Coupled Plasma Source. Plasma Science and Technology, 12(1):53, 2010.

[138] Su B. Jin, Joon S. Lee, Yoon S. Choi, In S. Choi, and Jeon G. Han. High-rate deposition
and mechanical properties of SiOx film at low temperature by plasma enhanced chemical vapor
deposition with the dual frequencies ultra high frequency and high frequency . Thin Solid Films,
519(19):6334 – 6338, 2011.

[139] M. Moisan, C. Barbeau, R. Claude, C. M. Ferreira, J. Margot, J. Paraszczak, A. B. S, G. Sauv,
and M. R. Wertheimer. Radio frequency or microwave plasma reactors? Factors determining
the optimum frequency of operation. Journal of Vacuum Science and Technology B, 9(1):8–25,
1991.

[140] S Manolache, M Sarfaty, and F Denes. RF frequency effects on molecular fragmentation. Plasma
Sources Science and Technology, 9(1):37, 2000.

[141] Andreas Kafizas, Claire J. Carmalt, and Ivan P. Parkin. CVD and precursor chemistry of
transition metal nitrides. Coordination Chemistry Reviews, 257(1314):2073 – 2119, 2013.

[142] T. Kitajima, Y. Takeo, N. Nakano, and T. Makabe. Effects of frequency on the two-dimensional
structure of capacitively coupled plasma in Ar. Journal of Applied Physics, 84(11):5928–5936,
1998.

[143] V. A. Godyak and R. B. Piejak. Abnormally low electron energy and heating-mode transition
in a low-pressure argon rf discharge at 13.56 MHz. Phys. Rev. Lett., 65:996–999, Aug 1990.

[144] P. Chabert, N. Braithwaite, and N.S.J. Braithwaite. Physics of Radio-Frequency Plasmas.
Physics of Radio-frequency Plasmas. Cambridge University Press, 2011.

[145] J. P. Boeuf and Ph. Belenguer. Transition from a capacitive to a resistive regime in a silane
radio frequency discharge and its possible relation to powder formation. Journal of Applied
Physics, 71(10):4751–4754, 1992.

[146] J Schulze, Z Donk, D Luggenhlscher, and U Czarnetzki. Different modes of electron heating
in dual-frequency capacitively coupled radio frequency discharges. Plasma Sources Science and
Technology, 18(3):034011, 2009.

[147] F A Haas, A Goodyear, and N St J Braithwaite. Tailoring of electron energy distributions in
low temperature plasmas. Plasma Sources Science and Technology, 7(4):471, 1998.

189



Bibliography.

[148] C Bohm and J Perrin. Spatially resolved optical emission and electrical properties of SiH4 RF
discharges at 13.56 MHz in a symmetric parallel-plate configuration. Journal of Physics D:
Applied Physics, 24(6):865, 1991.

[149] Ph. Belenguer and J. P. Boeuf. Transition between different regimes of RF glow discharges.
Phys. Rev. A, 41:4447–4459, Apr 1990.

[150] V.A. Godyak and A. S. Khanneh. Ion Bombardment Secondaty Electron Maintenance of Steady
RF Discharge. Plasma Science, IEEE Transactions on, 14(2):112–123, 1986.

[151] S. K. Ahn and H.Y. Chang. Role of low-frequency power in dual-frequency capacitive discharges.
Applied Physics Letters, 95(11):111502–111502–3, 2009.

[152] Wang You-Nian Liu Xiang-Mei, Song Yuan-Hong. Driving frequency effects on the mode tran-
sition in capacitively coupled argon discharges. Chinese Physics B, 20(6):65205, 2011.

[153] R.W.B. Pearse and A.G. Gaydon. The identification of molecular spectra 4th edition. Chapman
and Hall, 1976.

[154] C. Schaffnit, L. Thomas, F. Rossi, R. Hugon, and Y. Pauleau. Plasma diagnostics of RF PACVD
of boron nitride using a BCl3-N2-H2-Ar gas mixture. Surface and Coatings Technology, 98(13):
1262 – 1266, 1998.

[155] J.L. Delcroix, C. Matos-Ferreira, and A. Ricard. Atomes et molécules métastables dans les gaz
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Abstract: For the sub-20 nm technological nodes metal conformity requirements are be-

yond the possibilities of the currently used PVD deposition technique. CVD techniques, more

specifically MOCVD and ALD, are identified as the best techniques for metal deposition.

For metal-gate application, titanium and tantalum carbo-nitrides alloys are considered as the

most promising. In this work, a detailed review of MOCVD and ALD deposition mechanisms

and plasma influence on the deposited material is carried out. First, process windows for

successful tuning of the metal properties are examined. Plasma impact on the metal and the

inherent reaction mechanisms are also highlighted with the help of plasma characterisation.

Then great importance is given to the integration of these metals, by careful study of the

interactions taking place at the interfaces. Correlations between physico-chemical proper-

ties and electrical behaviour of the metal/high-k dielectric stack are introduced thanks to

XPS characterisation. Finally, aluminium doping of MOCVD TiN and TaN is considered

for n-mos and p-mos gate characteristics achievement. By comparison of the properties and

behaviours of Al doped metals deposited by PVD and MOCVD, diffusion mechanisms are

proposed to explain the role of Al in the observed changes.

Key words: gate stack, MOCVD, ALD, plasma, Ti(C)N, Ta(C)N, HfO2, interface, inter-

action, XPS

Résumé : L’intégration du métal dans les nœuds technologiques sub-20 nm requiert une con-

formité supérieure à celle permise par la PVD. Les techniques de CVD, plus spécifiquement la

MOCVD et l’ALD, ont été identifiées comme les meilleures solutions pour le dépôt de métal.

Pour une application de métal de grille, les alliages carbo-nitrurés de titane et tantale sont

considérés comme les plus prometteurs. Dans ce travail une revue détaillée des mécanismes

de dépôt par MOCVD et ALD, ainsi que sur l’influence du plasma sur les matériaux déposés

est réalisée. Dans un premier temps, les fenêtres de procédés possibles pour un ajustement

des propriétés des métaux sont inspectées attentivement. L’accent est mis sur l’impact du

plasma sur le métal et sur les mécanismes réactionnels inhérents grâce à une caractérisation

poussée du plasma. Par la suite, l’intégration de ces métaux est étudiée avec une anal-

yse précise des interactions se déroulant aux interfaces. La corrélation entre les propriétés

physico-chimiques et le comportement électrique des empilements métal/diélectrique à forte

permittivité est soutenue par une analyse XPS. Finalement, le dopage aluminium de dépôts

de TiN et TaN MOCVD est étudié pour l’obtention de grilles n-mos et p-mos. Par compara-

ison des propriétés et comportements du dopage aluminium de métaux déposés par PVD et

MOCVD, des mécanismes de diffusion sont proposés afin d’expliquer le rôle de l’aluminium

sur les variations observées.

Mots clefs : empilement de grille, MOCVD, ALD, plasma, Ti(C)N, Ta(C)N, HfO2, inter-

face, interaction, XPS
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