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to Carlos Muñoz Camacho and Charles Hyde with whom we spent hours debatting on data
analysis, radiative corrections and many more analysis details. It was a great pleasure for me
working with you. Finally I would have never heard about generalized parton distributions
and deeply virtual Compton scattering without Alexandre Camsonne who made me discover
Jefferson Laboratory, the Hall A, hadronic physics, the best restaurants in Newport News,
and so on.

I would like to thank all the members of the examination committee. Special thanks to
Paul Stoler and Zein-Eddine Meaziani for their careful reading of the manuscript.

On the personal side, I thank my friends Benoit Latour, Jordane Soussi and Patrick Hsia
for encouraging me all along these years. I enjoyed our reflections about how to change the
world. A special thanks to my friends Cédric Mezrag and Laetitia Leduc who helped me
getting ready for the most important interview of my life. I have appreciated a lot watching
a good old Doctor Who episode before this “D-Day” in order to relax. Since I was born, my
family supports me and I would have never reached this far without them. I thank them
for having been there at anytime. Finally I want to dedicate the last sentences to my lovely
girlfriend. Although the last months were very difficult, she was there, helping me to give
the best of myself. Thank you for your patience, kindness and love. We finally did it!

1



Introduction

The deepest desire of mankind1 has always been to understand the universe. A significant
step toward this undertanding will be achieved when the following question is answered:
What is it made of ? Since the ancient greeks and the four elements, a lot have been learnt
about the structure of matter. It appears to be built with a finite set of elementary particles,
connected through four interactions which are described by the Standard Model. Whereas
the Large Hadron Collider keeps challenging the predictions of the Standard Model at higher
and higher energies, we are still far from completely understanding how these elementary
blocks organize themselves in a proton.

Indeed, in the late 1960s, DIS measurements at SLAC confirmed that the proton is a
composite object made of quarks and gluons. These particles interact through the strong
interaction. At high energy, the strong interaction can be computed using perturbative
quantum chromodynamics (QCD), the associated field theory. Indeed the coupling constant
becomes small and quarks behave as if they were free. It is the so-called asymptotic freedom.
Nevertheless, at long distance (typically the proton size), the coupling constant becomes large
and perturbation theory cannot be applied anymore. In other words, despite the promising
ways of non-perturbative calculations (Schwinger-Dyson equations, lattice QCD,. . . ), the
structure of the hadrons cannot be accessed through calculations yet.

Pieces of information about the nucleon structure have been revealed by scattering ex-
periments. Indeed scattering processes can be split into two parts:

• A hard part/short distance part calculable perturbatively.

• A soft part describing the interaction with the nucleon medium. This part encodes the
nucleon structure.

This splitting method is called factorization. As a consequence the scattering cross section is
parametrized by functions associated to the soft part. From the cross section measurement,
we derive these functions and get some insight about the structure of the hadron. For
instance form factors and parton distribution functions, related to spatial and momentum
distributions, have been studied using elastic and deep inelastic scattering. Unfortunately,
it is not enough to explain the confinement of the quarks inside hadrons, the proton mass
and spin.

In the mid 90’s, new kinds of distributions called generalized parton distributions are
defined. They represent a higher level of information than FFs and PDFs since they en-
capsulate both spatial and momentum information. Using the GPDs, we could derive the
total orbital angular momentum of quarks thanks to Ji’s sum rule. Experimentally they are
related to deep exclusive processes. A worldwide experimental program has been dedicated
to study such processes. This thesis deals in particular with two experiments measuring cross
sections of photon and π0 electroproduction in order to determine the GPDs. The thesis is
articulated as follows:

1It is maybe more exact to say one of the deepest desires.
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3

• Chapter 1 introduces the theoretical framework of GPDs and how they are involved
in the cross sections of interest. We discuss also GPD models and the existing experi-
mental data.

• Chapter 2 is dedicated to the description of Jefferson Lab, Hall A of Jefferson Lab and
the experimental setup.

• Chapter 3 focuses on the extraction of the DIS cross section in order to perform a
quality check of our data set. It allows us to develop a method for cross section
extraction.

• Chapter 4 is about the data analysis of the E00-110 experiment. All the cuts and
corresponding corrections are presented.

• Chapter 5 is subdivided into three parts: It presents the radiative corrections and the
Monte-Carlo simulation used for acceptance computation. In the last part, we explain
the fitting procedure employed to extract DVCS cross sections and effective CFFs.

• Chapter 6 summarizes the results on photon electroproduction and compares them to
predictions from different GPD-based models.

• Finally Chapter 7 is a condensate of chapters 4,5 and 6 applied on the π0 analysis.
The results of the first Rosenbluth separation performed on the π0 electroproduction
cross section are commented on and compared to two GPD models. A careful study
of systematic errors has been carried out.



Chapter 1

Nucleon structure through deep
exclusive processes

One of the hints that the proton has an internal structure were obtained by studying elastic
scattering off the proton in the late 1950’s at Stanford university by Hofstadter and his team.
The corresponding cross section can be parametrized using form factors (FFs), which are
related to the spatial distribution of charge in the nucleon (proton and neutron). In the late
1960’s at the Standford Linear Accelerator (SLAC), the study of Deep Inelastic Scattering
(DIS) confirmed the existence of quarks and that the proton is a composite particle. The
parton distribution functions (PDFs) parametrize the DIS cross section and are related
to the longitudinal momentum distribution of partons (quark and gluon) in the nucleon.
Nevertheless the correlation between both spatial and momentum information cannot be
derived from FFs and PDFs. It is only in the mid-90’s that was introduced the concept of
Generalized Parton Distributions (GPDs) which are a generalization of the FFs and PDFs.
GPDs are objects that encapsulate a higher level of information since they actually encode the
correlation between momentum and spatial distributions. GPDs obey a set of properties and
sum rules from which modelization is possible. These models are then tested by comparing
observables measured in deep exclusive processes. In particular we will focus here on Deeply
Virtual Compton Scattering (DVCS) and deep π0 electroproduction. After explaining how
GPDs are involved in these processes, we briefly present the current state of the experimental
program. Finally we introduce the experiments of interest in this thesis and what new
information we want to extract from the data.

1.1 Elastic scattering and form factors

A particle a scatters elastically off a particle b when the final state is only composed of
particles a and b. Figure 1.1 shows a diagram of elastic scattering. We note:

• ki = (ki, E) the 4-momentum of the incident electron.

• kf = (kf , E
′) the 4-momentum of the scattered electron.

• θe the scattering angle in the lab frame.

• q = ki− kf the 4-momentum of the virtual photon and Q2 = −(kf − ki)2 its virtuality.

In 1911, Rutherford studied the scattering of alpha particles off a gold foil [1]. Assuming
a point-like target with no recoil and a non-relativistic scattered particle, the cross section

4



Chapter 1: Nucleon structure through deep exclusive processes 5

is given by: (
dσ

dΩ

)

Rutherford

=
α

16E2 sin4
(
θe
2

) , (1.1)

where α is the fine-structure constant. If one uses relativistic electrons instead of α-particles,
the cross section reads:

(
dσ

dΩ

)

Mott

=
α

4E2 sin4
(
θe
2

) cos2
(
θe
2

)
, (1.2)

but the experimental cross section deviated from this formula. If the target is an extended
object, the electron cross section is modified and becomes:

dσ

dΩ
=

(
dσ

dΩ

)

Mott

|F (∆)|2, (1.3)

with ∆ = p− p′ and F (∆) the form factor. F (∆) is the Fourier transform of the transverse
spatial distribution of charge ρ(r):

F (∆) =

∫
ρ(r)ei∆rdr3. (1.4)

ik

fk

p p'

q

Figure 1.1: Elastic scattering diagram. Note that in the case of elastic scattering, ∆ = −q.

Following the steps of Rutherford, Robert Hofstadter studied the nucleon structure using
elastic scattering ep→ e′p′ at SLAC between 1954 and 1957. His work was awarded the Nobel
prize in 1961. In the nucleon case, the cross section can be parametrized by two structure
functions called the Sachs form factors GE and GM . The cross section is written [2]:

dσ

dΩ
=

α

4E2 sin4
(
θe
2

)E
′

E

[
G2

E(∆
2) + τG2

M (∆2)

1 + τ
cos2

(
θe
2

)
+ 2τG2

M (∆2) sin2
(
θe
2

)]
, (1.5)

with τ = −∆2

4M2 andM the mass of the proton. By measuring the cross section at the same ∆2

but two different beam energies, it is possible to extract GE and GM . This way of separating
the two FFs using different beam energies is called a Rosenbluth separation. Later in this
chapter, we will use the Pauli and Dirac FFs defined as:

F1(Q
2) =

GE(Q
2) + τGM (Q2)

2τ
(1.6)

F2(Q
2) =

GM (Q2)−GE(Q
2)

1 + τ
(1.7)
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In the Breit frame in which the initial and final proton momenta have the same magnitude
but opposite directions, GE and GM are the Fourier transform of the charge and magnetic
distributions of the proton. The proton charge radius can be derived from the knowledge of
GE using the formula:

〈r2E〉 = − 6

GE(0)

dGE(Q
2)

dQ2

∣∣∣∣
Q2=0

. (1.8)

Applying Eq. 1.8, a charge radius of rp = 〈r2E〉 = 0.879(8) fm was derived by extrapolating
GE-measurements performed at low Q2 [3]. This result is in good agreement with the radius
provided by the study of the Lamb shift and the hyperfine structure of electronic hydrogen
atoms [4], giving rp = 0.8768(69) fm. Nonetheless, recent studies of muonic hydrogen’s
Lamb shift [5] gave rp = 0.84184(67) fm, at 7-σ from the value given by the electronic
measurements. This discrepancy has not been understood yet.

1.2 Deep inelastic scattering and parton distribution func-
tions

Let us now consider the inelastic reaction ep→ eX. We define two additional variables:

• The Bjorken variable xB = Q2

2Mν , where ν = E − E′.

• W 2 = (p+ q)2 =M2 +Q2
(

1
xB

− 1
)
the invariant mass of the hadronic final state.

The deep inelastic regime is defined by W ≫ M and Q2 ≫ M2. In this regime, the final
state is composed of more particles than the initial state. Under the one-photon exchange
assumption, the DIS cross section is given by the contraction of the leptonic and hadronic
tensors. The information about the proton is encapsulated in the hadronic tensor. In the
case of unpolarized DIS, once symmetries and invariances have been applied, the hadronic
tensor can be parametrized by two dimensionless structure functions depending on Q2 and
xB. As a consequence the cross section is related to these two functions by:

dσ

dΩdE′
=

(
dσ

dΩ

)

Mott

[
F2(xB, Q

2)

ν
+

2

M
F1(xB, Q

2) tan2
(
θe
2

)]
, (1.9)

In the late 1960’s at SLAC, Friedman, Kendall and Taylor performed DIS cross section
measurements at several Q2 [6] [7]and were later awarded the Nobel Prize in 1990. From
these measurements they noticed first that F2 was independent of Q2, as if the electron was
scattering off point-like particles. Moreover F1 and F2 were related through the Callan-Gross
relation, indicating that these particles were fermions:

F2(xB) = 2xBF1(xB) . (1.10)

These results validated the theory of Gell-Mann [8] (Nobel Prize 1969) and Zweig [9] in
1964 that the proton was composed of quarks and gluons. Richard Feynman (Nobel Prize
1965) developed the parton model in 1969: In the limit Q2 → ∞ and ν → ∞ but fixed xB
(Bjorken limit), the virtual photon interacts with a single quark in the proton (Figure 1.2).
Within this model, F2 is related to the so-called parton distribution functions (PDFs).

F2(xB) = xB
∑

f

efqf (xB), (1.11)

where ef stands for the quark electric charge in units of the positron charge and qf the PDF
for a quark of flavor f .
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Figure 1.2: Deep inelastic scattering. In the Bjorken limit, the photon interacts with a single
quark.

In the infinite momentum frame, where the proton speed is close to the speed of light
along the z-axis colliding head-on with the virtual photon, xB represents the fraction of
momentum carried by the struck quark. In this frame qf (xB) can be interpreted as the
probability to find a parton with flavor f carrying a fraction xB of the proton momentum.
Since the time scale of the interaction between two partons is much greater than the one
between the photon and the active quark, the DIS cross section can be rewritten as the
product of the probability to find a quark and the probability to scatter off this quark:

d2σDIS

dxBdQ2
=
∑

f

qf (xB)×
d2σeq→eq

dxBdQ2
, (1.12)

=
∑

f

qf (xB)× e2f
2πα2

Q4

[
1 +

(
1− Q2

xBs

)]
, (1.13)

where s = (p + ki)
2. Through this factorized form, the parton model infers the notion of

asymptotic freedom: At high Q2 and therefore small resolved distance, the reaction occurs
as if the electron scatters off a free quark.

By extracting F2 over a larger kinematic domain, the experimentalists noticed that the
scaling becomes violated when moving away from the xB value of first SLAC measurements.
The scaling violation is explained by the active quark emitting gluons (see Figure 1.3), in
other words by QCD radiative corrections. The Q2-evolution of PDFs is driven by the
DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) equations, resulting in a loga-
rithmic Q2-dependence of the PDFs.

1.3 Generalized parton distributions

The FFs and PDFs give information on either the position or the momentum fraction of the
parton in the nucleon, but do not correlate both information. In the quest of understanding
nucleon structure, theorists have been looking for distributions containing the most informa-
tion and related to experimental observables. We are going to define the GPDs starting from
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Figure 1.3: Left: F2 measured at different xB and Q2. There is an apparent scaling at
xB ∼ 0.2 where SLAC performed their first measurements. Right: The green virtual photon
interacts with a quark with a momentum fraction xq. At Q2

1 >Q
2
0, the red virtual photon

resolves smaller distances and interact with a quark xq − xg which has emitted previously a
gluon. As a consequence, when going at higher Q2, the quark PDF decreases for xB >0.2
and increases below. The gluon PDFs also increases with Q2.

the Wigner distributions. Then we will describe their support and several of their properties
which may be used to constrain models. At the end of this section, we will present the double
distributions which are convenient ways to build a GPD model given their properties.

1.3.1 From Wigner distributions to generalized parton distributions

In 1932, Wigner (Nobel Prize 1963) defined a new kind of distribution which is a function of
both spatial and momentum coordinates. Taking a wave function ψ(r), Wigner defined the
following distribution:

P (r, k) =

∫ +∞

−∞
dzeikzψ∗(r − z/2)ψ(r + z/2) . (1.14)

The spatial distribution is recovered by simply integrating the Wigner distribution over
the momentum variables. Inversely, we integrate over the spatial variables to recover the
momentum distribution. Adapting this formalism in quantum field theory, we first define
the Wigner operators:

Wf
Γ(r, k) =

∫
d4zeik·zΨ̄f

(
r − z

2

)
ΓLΨf

(
r +

z

2

)
, (1.15)

where r is the space-time coordinates of the quark with flavor f , k being the associated
4-momentum and Ψ its field. Γ is a Dirac operator. L is a Wilson line which ensures the
gauge invariance.
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ξx+ ξx-

p p'

Figure 1.4: Diagram associated to the matrix element F f
Γ .

From the Wigner operators, the Wigner distributions are given by:

W f
Γ (r, k) =

1

2M

∫
d4q

(2π)4

〈
p′
∣∣∣Wf

Γ(r, k)
∣∣∣ p
〉
, (1.16)

where p and p′ are the inital and final momenta of a proton, with q = p′ − p. The Wigner
distributions encapsulate all the information about the momentum and spatial distributions
of partons, including their correlations. In the infinite momentum frame where the proton
moves along the z-axis, the interacting parton is mainly on the light cone + component
(see Appendix C for definitions). Therefore the k− and k⊥ components are very small and
difficult to access. By integrating over k− and both components of k⊥ and chosing a light
cone gauge, we obtain the so called generalized parton distributions (GPDs):

F f
Γ (x, ξ, t) =

P+

4π

∫
dz−eixP

+z−〈p′|Ψ̄q

(
−z
2

)
ΓΨq

(z
2

)
|p〉
∣∣
z+=~z⊥=0

. (1.17)

The GPDs F f
Γ are associated to the diagram illustrated by the Figure 1.4: x is the average

longitudinal momentum fraction carried by the active quark, −2ξ the longitudinal momentum
transfer and P the sum p+p′. ξ is approximately given by xB

2−xB
. t is the squared momentum

transfer to the proton |p − p′|2. Note that, in the case of GPDs and PDFs, the Wilson line
reduces to unity when chosing a light-cone gauge.

Taking Γ = γ+ or Γ = γ+γ5, we obtain the chiral-even GPDs (same helicity for the
emitted and reabsorbed parton):

F f
γ+(x, ξ, t) = Hf (x, ξ, t)N̄(p′)γ+N(p) + Ef (x, ξ, t)N̄(p′)σ+ν ∆ν

2M
N(p), (1.18)

F f
γ+γ5

(x, ξ, t) = H̃f (x, ξ, t)N̄(p′)γ+γ5N(p) + Ẽf (x, ξ, t)N̄(p′)γ5
∆+

2M
N(p), (1.19)

The correlator with Γ = σ+⊥γ5 is parametrized by four chiral-odd GPDs called also
transversity GPDs HT , H̃T , ET and ẼT . Unlike E-GPDs, H-GPDs are not sensitive to the
parton helicities. When they are tilded, GPDs are involved in processes with a flip of the
nucleon helicity. The variables x and ξ evolve between [-1 ; 1]. By comparing x and ξ, we
may interpret the process in different ways:
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• For x < −ξ an antiquark exits and is reabsorbed in the nucleon. Same thing with a
quark for x > ξ. These two regions are called the DGLAP regions since the GPDs
evolve in this region like the PDFs, i.e. according to the DGLAP equations.

• For −ξ < x < ξ: the nucleon emits a quark-antiquark pair. This region is called the
ERBL (Efremov, Radyushkin, Brodsky and Lepage) region.

1.3.2 Properties of GPDs

The chiral-even GPDs are generalizations of PDFs and FFs just by looking at their associated
correlator. Indeed, for a flavor f , we have when the squared momentum transfer to the proton
t→ 0:

Hf (x, 0, 0) = qf (x), (1.20)

H̃f (x, 0, 0) = ∆qf (x) . (1.21)

Moreover the elastic form factors are obtained from the first moment of the corresponding
GPDs:

∫ 1

−1
Hf (x, ξ, t) dx = F f

1 (t) ∀ξ, (1.22)

∫ 1

−1
Ef (x, ξ, t) dx = F f

2 (t) ∀ξ, (1.23)

∫ 1

−1
H̃f (x, ξ, t) dx = Gf

A(t) ∀ξ, (1.24)

∫ 1

−1
Ẽf (x, ξ, t) dx = Gf

p(t) ∀ξ . (1.25)

Finally the total angular momentum of quark Jf can be accessed through Ji’s sum
rule [10, 11]: ∫ 1

−1
x
[
Hf (x, ξ, 0) + Ef (x, ξ, 0)

]
dx = Jf ∀ξ . (1.26)

The chiral-odd GPDs are almost unknown compared to the chiral-even GPDs from the
experimental and theoretical points of view. Although the chiral-odd GPDs also describe
the nucleon structure, they are more difficult to interpret. No model-independent relations
with orbital angular momentum of quarks involves the transversity GPDs. The only existing
constraint is the forward limit of HT .

Hf
T (x, 0, 0) = δT qf (x), (1.27)

where δT qf (x) is the transversity distribution function. In a transversely polarized proton,
δT qf (x) represents the difference between the densities of partons with parallel and antipar-
allel spins with respect to the proton spin. The chiral-odd GPDs might be necessary to
describe several exclusive processes, especially pseudo-scalar meson production.

We finish this exhaustive list of GPD properties with the polynomiality. This property
states that the nth moment of GPDs is an even polynomial in ξ.

if n even :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + · · ·+ anξ

n , (1.28)

if n odd :

∫ 1

−1
dxxnH(x, ξ, t) = a0 + a2ξ

2 + a4ξ
4 + · · ·+ an+1ξ

n+1 . (1.29)



Chapter 1: Nucleon structure through deep exclusive processes 11

Note that the coefficients ai depend on t. The same property applies to E, H̃ and Ẽ. The
coefficient an+1 of E has the opposite sign of the one of H. In the case of odd n, the highest
power is n−1 for GPDs H̃ and Ẽ. Polynomiality is a consequence of the Lorentz invariance.

1.3.3 GPDs and double distributions

Previous properties constrain the GPD models. The polynomiality condition is the most
complicated to respect. Nevertheless A. Radyushkin [12, 13] and D. Mueller [14] noticed that
the double distributions (DDs) are a convenient way to naturally obey the polynomiality.
We first define two variables α and β such that:

(x+ ξ)P+ = βP+ − 1

2
(1 + α)∆+, (1.30)

where ∆+ is the longitudinal component of the transferred momentum ∆. α plays the same
role as ξ, except that it is not relative to P+. As −2ξ = ∆+

P+ , we have x = β+αξ. The GPDs
is then constructed from the DDs by:

GPDf (x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − ξα)DDf (α, β), (1.31)

The integration boundaries are constrained by x between [-1;1] and ξ between [0;1].
When the momentum transfer ∆ = 0, we recover the usual PDF. In the limit P = 0 and

∆ 6= 0, the matrix element becomes:

〈P +∆|Ψ̄q

(
−z
2

)
ΓΨq

(z
2

)
|P 〉
∣∣
z+=~z⊥=0

→ 〈∆|Ψ̄q

(
−z
2

)
ΓΨq

(z
2

)
|0〉
∣∣
z+=~z⊥=0

, (1.32)

which is a distribution amplitude (DA) representing the probability to produce a meson from
a quark-antiquark pair carrying respectively a longitudinal momentum fraction 1 + α and
1− α. A. Radyushkin [12, 13] found a profile which respects these two limits:

DD(β, α) = h(β, α)q(β), (1.33)

h(β, α) =
Γ(2b+ 2)

22b+1Γ2(2b+ 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1
, (1.34)

where q(β) is a PDF and h(β, α) a profile function allowing to recover a DA when α → 0.
The parameter b is a free parameter which tunes the ξ-dependence: when b → ∞, the DD
looks like a PDF.

Concerning the t-dependence, it was first included in a factorized manner, i.e. such as
H(x, ξ, t) = HDD(x, ξ)F1(t) where F1(t) is the form factor and HDD(x, ξ) computed with
Equation 1.31. Nowadays it is incorporated in the double distribution such as:

DD(β, α, t) = h(β, α)q(β)× exp (p(β)t) , (1.35)

where p(β) is a profile function. A usual choice is p(β) = a lnβ + c with a and c parameters
but more complex forms exist [15]. Later we will compare our results with several GPD
models based on double distributions.

1.4 Deep exclusive processes to access GPDs

GPDs are accessible through the study of deep exclusive processes: they are a rare subset of
deep inelastic processes where all particles in the final state are detected as shown in Fig. 1.5.
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Figure 1.5: Left: Diagram of electroproduction off a proton. Right: Definition of φ, the angle
between the leptonic and the hadronic plane. On this figure, Ph = q′, l = ki and l

′ = kf .

We focus on the photon and π0 electroproduction for which the final state is composed of
the scattered electron, the recoil proton and a photon or a π0.

We define φ the angle between the leptonic plane, formed by the scattered electron and
the virtual photon, and the hadronic plane defined by the virtual photon and the recoiled
proton (Fig. 1.5). We follow the Trento convention [16] defined such as:

cosφ =
(q× ki)

|q× ki|
· (q× q′)

|q× q′| , (1.36)

sinφ =
(ki × q′) · q

|q× ki||q× q′| , (1.37)

The GPDs parametrize the cross sections of deep exclusive processes but in a more
involved way than PDFs for DIS. Indeed we have seen that the DIS cross section factorizes
into two parts: a term describing the electron-quark scattering and the PDF related to the
quark content in the nucleon. GPDs are related to deep exclusive processes based also on
the concept of factorization. We will sketch the principle of factorization and derive another
essential property of the GPDs. Finally we will describe how GPDs enter the photon and
π0 electroproduction cross sections.

1.4.1 Light cone dominance

When computing the amplitude for DVCS (but also DVMP or DIS), we obtain a δ function
for momentum conservation involving the 4-momentum of the virtual photon.

δ4(q) =
1

(2π)4

∫
d4zeiqz . (1.38)

Applying the equality 1.38 to this δ function, the amplitude is given as an integral of eiqz.
In the proton rest frame, with the z-axis going in the opposite direction with respect to the
virtual photon, we have:

q =

(
Q2

2MxB
, 0, 0,− Q2

2MxB

√
1 + 4MxB/Q2

)
. (1.39)

In the Bjorken limit, Eq. 1.38 gives a non-vanishing result only when:

z− ∼ 1/MxB , (1.40)

z+ ∼MxB/Q
2 . (1.41)
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As causality ensures that z2 > 0, we have z⊥ < z−z+ ∼ 1
Q2 . Therefore, in the Bjorken

limit, only the space-time regions close to the light cone contribute to the amplitude.

1.4.2 Factorization and twist

The factorization has been proven rigorously at leading-twist for DVCS. In the case of deep
virtual meson production, only with longitudinally polarized photon. The following short
explanation of factorization is based on DVCS which is the simplest process.

The DVCS amplitude is given by:

TDV CS = i

∫
d4zeiqz〈p′|T{jµ(z)jν(0)}|p〉, (1.42)

with jµ(z) the electromagnetic current of quarks defined such as:

jµ(z) =
∑

f

ef Ψ̄f (z)γµΨf (z), (1.43)

In the Bjorken limit, z2 → 0 and the correlator of the electromagnetic currents becomes
singular. To describe the singularity of the product of operators, Wilson derived the operator
product expansion (OPE). It is a Taylor expansion of the product of currents using local
operators. Therefore we can write the correlator:

T{jµ(z)jν(0)} z2→0∼
∞∑

τ=2

∞∑

n=0

Cτ,n(z
2)zµ1zµ2 ...zµnÔτ

µ1...µn
(0), (1.44)

Ôτ
µ1...µn

(0) are a basis of local operators, z(µ1zµ2 ...zµn) traceless homogeneous polynomi-
als. Cτ,n(z

2) are coefficients carrying the singularity. They evolve as:

Cτ,n(z
2)

z2→0∼
(

1

z2

)(n−dO−2dj)/2

(1.45)

with dO the mass dimension of the operator Ôτ
µ1...µn

, and n its spin. τ = dO−n is called twist

and the most important singularities are carried by operators with the minimal twist τ=2.
The GPDs introduced in the previous section are associated with the lowest twist operators.
The soft part, or the nucleon medium, is described by the operators. The hard/high energy
part is given by the coefficients Cτ,n(z

2) which are calculated perturbatively in powers of αs

(Figure 1.7).
To separate the soft part from the hard part, a factorization scale µF is introduced. The

GPDs and the coefficient describing the hard part depends on it such that the observable is
µF -independent.

Therefore, the difference between all the exclusive reactions such as DVCS or DVMP lies
in the hard scattering kernel, the GPDs being factorized in the soft part. The GPDs are
therefore considered universal. As a consequence, we can combine the different reactions to
get a unified picture of the nucleon.

When Q2 → ∞, the leading-twist contribution dominates and higher-twist contributions
can be safely neglected. In practice, the experiments run at Q2-values of a few GeV2 and
higher-twist contributions might appear with increasing ratios M2

Q2 and −t
Q2 .
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Figure 1.7: The hard scattering kernel is computed perturbatively in αs.



Chapter 1: Nucleon structure through deep exclusive processes 15

1.4.3 Deeply virtual Compton scattering

Photon electroproduction arises from the interference of two processes:

• The Bethe-Heitler (BH) process where the photon is emitted by either the incoming or
outgoing electrons. In this well-known process, the structure of the nucleon is encoded
by the FFs.

• The DVCS process where the photon is emitted by the nucleon. At leading-twist and
leading-order, it is described by the handbag diagram (Fig 1.8).

As a consequence, the photon electroproduction cross section reads:

d5σ(λ,±e)
dQ2dxBdtdφdφe

=
dσ0

dQ2dxB

1

e6
×
[∣∣T BH

∣∣2 +
∣∣T DV CS

∣∣2 ∓ I
]
, (1.46)

where TDV CS is the DVCS amplitude, TBH the BH amplitude and I the interference term
between the two processes. e is the electron charge, λ the beam helicity. Then we have:

dσ0
dQ2dxB

=
α3

16π2(s−M2)2xB

1√
1 + ǫ2

, (1.47)

ǫ2 = 4M2x2B/Q
2 , (1.48)

s = 2ME +M2 . (1.49)
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Figure 1.8: On the left, diagram of DVCS at leading-twist, traditionally called handbag
diagram. The virtual photon interacts with a single quark inside the nucleon, which then
emits a real photon. All vertices in the short distance part are electromagnetic, making the
DVCS the golden channel to extract information about GPDs. The two diagrams on the
right represents the Bethe-Heitler process with the photon emitted by the electron.

1.4.3.1 Compton Form Factors

The GPDs parametrize the DVCS amplitude but are not directly accessible through the cross
section. Indeed, whereas ξ and t are kinematic variables defined by the scattered electron and
photon, x is integrated over. The DVCS amplitude is given, at leading-order, by integrals of
the form: ∫ 1

−1

H(x, ξ, t)

x− ξ + iǫ
dx = P

∫ 1

−1

H(x, ξ, t)

x− ξ
dx− iπH(ξ, ξ, t) , (1.50)
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where 1
x−ξ+iǫ is the bare quark propagator. By taking into account the crossed diagram, we

define the Compton Form Factors such as:

H =

∫ 1

−1
H(x, ξ, t)

(
1

ξ − x− iǫ
− 1

ξ + x− iǫ

)
dx . (1.51)

By reducing the integration range from [-1,1] to [0,1] and gathering imaginary and real parts,
we define 8 GPD-related quantities directly connected to the DVCS amplitude (same sign
conventions for E and Ẽ):

ℜeH(ξ, t) = P
∫ 1

0
[H(x, ξ, t)−H(−x, ξ, t)]C+(x, ξ)dx, (1.52)

ℑmH(ξ, t) = π (H(ξ, ξ, t)−H(−ξ, ξ, t)) , (1.53)

ℜeH̃(ξ, t) = P
∫ 1

0

[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
C−(x, ξ)dx, (1.54)

ℑmH̃(ξ, t) = π
(
H̃(ξ, ξ, t) + H̃(−ξ, ξ, t)

)
, (1.55)

(1.56)

where C± is :

C±(x, ξ) =
1

x− ξ
± 1

x+ ξ
. (1.57)

1.4.3.2 Higher twists and CFF extraction from DVCS

The photon electroproduction cross section depends on the angle φ. Mueller and Belitsky
performed an harmonic expansion of |TDV CS |2, |TBH |2 and I as a function of φ up to twist-3.
Since it is central to our analysis, we are going to review this expansion for the unpolarized
and beam helicity dependent cross sections. Further details can be found in [17].

1.4.3.2.1 The squared Bethe-Heitler amplitude The Bethe-Heitler process is a pure
QED process. Its cross section has been calculated and expressed as a harmonic expansion
as a function of φ [18]:

|TBH |2 = e6

y2x2B[1 + 4x2BM
2/Q2]2tP1(φ)P2(φ)

{
cBH
0 +

2∑

n=1

cBH
n cos(nφ)+sBH

1 sin(φ)

}
, (1.58)

with

J =
(
1− y − yǫ2

2

)(
1 +

t

Q2

)
− (1− xB)(2− y)

t

Q2
, (1.59)

P1(φ) = − 1

y(1 + ǫ2)
{J + 2K cos(φ)}, (1.60)

P2(φ) = 1 +
t

Q2
+

1

y(1 + ǫ2)
{J + 2K cos(φ)}, (1.61)

where y = ν
E and ǫ = 2MxB

Q . The kinematic coefficients can be found in [18].

1.4.3.2.2 The squared DVCS amplitude The squared DVCS amplitude contribution
has been calculated up to twist-3. When performing the harmonic expansion as a function
of φ, it reads:

|TDV CS |2 =
e6

y2Q2

{
cDV CS
0 +

2∑

n=1

cDV CS
n cos(nφ) + λsDV CS

n sin(nφ)

}
(1.62)
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where λ refers to the beam helicity. The cDV CS
i and sDV CS

i coefficients are given by bilinear
combinations of CFFs. For example we have:

cDV CS
0 = 2

2− 2y + y2 + ǫ2

2 y
2

1 + ǫ2
CDV CS
unp (F ,F∗), (1.63)

CDV CS
unp (F ,F∗) = 4(1− xB)HH∗ + 4

(
1− xB +

2Q2 + t

Q2 + xBt

ǫ2

4

)
H̃H̃∗ + · · · (1.64)

The different functions contributing to the squared DVCS amplitude for an unpolarized
target are listed in the table 1.1.

Order φ-dependence

CDV CS
unp (F ,F∗) twist-2 constant

CDV CS
unp (Feff ,F∗

eff ) twist-3 constant

ℜe[CDV CS
unp (Feff ,F∗)] twist-3/twist-2 cosφ

ℑm[CDV CS
unp (Feff ,F∗)] twist-3/twist-2 sinφ

Table 1.1: GPD content of the DVCS2 term up to twist-3.

1.4.3.2.3 The interference between the Bethe-Heitler and the DVCS processes
The DVCS squared amplitude is given by bilinear combinations of CFFs. In other words
we mainly get information about the modulus of the CFFs. We need information about the
phase to extract the CFFs and it cannot be provided by the squared DVCS amplitude. The
Bethe-Heitler/DVCS interference term makes the photon electroproduction unique because
it is parametrized by the real and imaginary parts of the CFFs. For instance, the unpolarized
cross section is sensitive to the real part of H whereas we extract its imaginary part from
the difference of cross sections for opposite beam helicities.

Using the same method as for the squared amplitude of DVCS and BH, we write:

I =
±e6

xBy3tP1(φ)P2(φ)

{
cI0 +

3∑

n=1

cIncos(nφ) + λsInsin(nφ)

}
. (1.65)

The Fourier coefficient are then given by:

cIn = C++(n) ℜeCI
++(n|F) + C0+(n) ℜeCI

0+(n|Feff ), (1.66)

sIn = S++(n) ℑmSI
++(n|F) + S0+(n) ℑmSI

0+(n|Feff ). (1.67)

The C++(n), S++(n), C0+(n) and S0+(n) are only kinematical factors depending on Q2, t,
xB, φ. And CI

0+(n|Feff ) and CI
++(n|F) are defined such as:

CI
++(n|F) = CI(F) +

CV
++(n)

C++(n)
CI,V (F) +

CA
++(n)

C++(n)
CI,A(F), (1.68)

CI
0+(n|Feff ) =

√
2

2− xB

K̃

Q

[
CI(Feff ) +

CV
0+(n)

C0+(n)
CI,V (Feff ) +

CA
0+(n)

C0+(n)
CI,A(Feff )

]
, (1.69)
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Finally, the CFFs are encapsulated in CI , CI,V , CI,A:

CI
unp(F) = F1H− t

4M2
F2E +

xB

2− xB + xB
t
Q2

(F1 + F2)H̃, (1.70)

CI,V
unp(F) =

xB

2− xB + xB
t
Q2

(F1 + F2)(H+ E), (1.71)

CI,A
unp(F) =

xB

2− xB + xB
t
Q2

(F1 + F2)H̃. (1.72)

We notice that the form factors F1 and F2 are associated with the CFFs because they
parametrize the Bethe-Heitler process.

Order φ-dependence

ℜe CI
unp(F) twist-2 cosφ

ℜe CI,V
unp(F) ”twist-3” constant

ℜe CI,A
unp(F) ”twist-3” cosφ

ℜe CI
unp(Feff ) twist-3 cos 2φ

ℑm CI
unp(F) twist-2 sinφ

ℑm CI,V
unp(F) ”twist-3” sinφ

ℑm CI,A
unp(F) ”twist-3” sinφ

ℑm CI
unp(Feff ) twist-3 sin 2φ

Table 1.2: GPD content of the interference term up to twist-3. ”twist-3” means kinematically

suppressed like a twist-3.

1.4.4 Deep π0 electroproduction

1.4.4.1 Deeply virtual meson production

Deeply virtual meson production is also a key process to study the nucleon. The DVMP
cross section can be decomposed into responses according to the polarization states of the
virtual photon and their interferences.

d4σ

dtdφdQ2dxB
=

1

2π
Γγ∗(Q2, xB, Ee)

[
dσT
dt

+ ǫ∗
dσL
dt

+
√

2ǫ∗(1 + ǫ∗)
dσTL

dt
cos(φ) + ǫ∗

dσTT

dt
cos(2φ)

]
,

(1.73)

Γγ∗(Q2, xB, Ee) =
α

8π

Q2

M2E2
e

1− xB
x3B

1

1− ǫ∗
, (1.74)

ǫ∗ =
1− y − Q2

4E2
e

1− y + y2

2 + Q2

4E2
e

, (1.75)

where Γγ∗(Q2, xB, Ee) represents the flux of virtual photons, and ǫ∗ its degree of polarization.
σL and σT are the responses to a photon with longitudinal and tranverse polarizations. σTL is
the interference between the longitudinal and the transverse responses, σTT the interference
between the two transverse polarizations.

Unlike DVCS, the hard part involves strong vertices and an additional non-perturbative
object, the distribution amplitude, to describe the structure of the produced meson.

Φπ(x) =

∫
dz−

2π
ei(2x−1)P+ z−

2 〈π, P |Ψ̄
(
−z
2

)
γ · nγ5Ψ

(z
2

)
|0〉
∣∣
z+=~z⊥=0

. (1.76)
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Figure 1.9: Two factorizations are needed to describe π0 electroproduction with GPDs. The
factorization scales µF1 and µF2 are not necessarily equal.
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Figure 1.10: One of the diagrams for π0 electroproduction at leading-twist, leading-order.
Unlike DVCS, there are strong vertices in the hard part and one needs to introduce another
non-perturbative object called distribution amplitude (DA), which describes the structure
of the meson. Note that factorization has been proven only for longitudinally polarized
photons.
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Because of this additional subtlety, the factorization theorem has been proven only for lon-
gitudinally polarized virtual photons. At leading-twist, the longitudinal amplitude involves
the unpolarized GPDs H and E for vector mesons, H̃ and Ẽ for pseudoscalar mesons. For
π0 at leading-twist and leading-order, the longitudinal amplitude reads:

ML
π0 = −ie4

9

1√
Q2

4παS

[∫ 1

0
dz

Φπ0(z)

z

]
× 1

2

∫ 1

−1
dx

[
1

x− ξ + iǫ
+

1

x+ ξ + iǫ

]

{
H̃p

π0(x, ξ, t)N̄(p′)/nγ5N(p) +
ξ

2M
Ẽp

π0(x, ξ, t)N̄(p′)γ5N(p)

}
, (1.77)

where Φπ0 is the neutral pion twist-2 asymptotic distribution amplitude, (H̃p
π0 , Ẽ

p
π0) linear

combinations of u/d-GPDs in proton defined such as:

Φπ0(z) =
√
2fπ6z(1− z), (1.78)

H̃p
π0(x, ξ, t) =

1√
2

{
2

3
H̃

u/p
π0 −

(
−1

3

)
H̃

d/p
π0

}
, (1.79)

Ẽp
π0(x, ξ, t) =

1√
2

{
2

3
Ẽ

u/p
π0 −

(
−1

3

)
Ẽ

d/p
π0

}
, (1.80)

with fπ=0.0924 GeV and z = (p · q′)/(p · q).
Using models of H̃ and Ẽ adjusted on DVCS data, the longitudinal response for π0

electroproduction is expected to be small.

1.4.4.2 Beyond leading-twist: Twist-3 DA and transversity GPDs

Although factorization has not yet been proven for transverse virtual photons in DVMP,
Goloskokov et al. have elaborated a model [19][20] involving the transversity GPDs. As the
transversity GPDs are chiral-odd, they cannot couple to the twist-2 DA of the pion which is
chiral-even. Chiral-odd DAs appear at twist-3 when considering the transverse momentum
of the quark entering the meson, with respect to the meson momentum. Although the twist-
3 contributions are kinematically suppressed with respect to twist-2 ones, the twist-3 DAs

include a factor µπ = m2
π

mu+md
(with mu and md are the bare quark masses) which does not

appear in the twist-2 DA. As a consequence, this factor boosts the transverse response and
significantly increases the π0 electroproduction cross section. It is interesting to note that,
within this model, we can directly access the information on HT , H̃T and ET by measuring
σT and σTT .

dσT
dt

=
4πα

2k′
µ2π
Q8

[
(1− ξ2)|〈HT 〉|2 −

t′

8m2
|〈2H̃T + ET 〉|2

]
, (1.81)

dσTT

dt
=

4πα

2k′
µ2π
Q8

t′

16m2
|〈2H̃T + ET 〉|2, (1.82)

where k′ is a phase space factor given by:

k′ =
16π

Q2

(
1

xB
− 1

)√
(W 2 −m2)2 +Q4 + 2W 2Q2 + 2Q2m2 . (1.83)

Finally 〈F 〉 stands for the following convolution of a GPD F with the hard scattering kernel
Dµ′λ′µλ summed over the incoming quark helicity λ.

〈F 〉 =
∑

λ

∫ 1

−1
dxDµ′λ′µλF, (1.84)

λ, λ′ are the helicity of the incoming and outgoing quarks, µ the helicity of the incident
electron. µ′ is the helicity of the produced meson which is 0 for pseudo-scalar mesons.
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1.5 Experimental status

1.5.1 DVCS results

A worldwide experimental program has been developed in order to measure DVCS observ-
ables in different kinematical regions (Figure 1.11). In this review, we are not going to talk
about the Jefferson Lab-Hall A experiments since they are the topic of this thesis.
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Figure 1.11: Q2 versus xB for the past and future experiments [21]. Unpolarized and beam-
helicity dependent cross sections have recently published by the CLAS [22] and Hall A [23]
collaborations.

1.5.1.1 H1 and ZEUS

The H1 and ZEUS experiments were located at DESY laboratory in Hamburg, Germany
and ran until 2007. They were collider experiments between an electron/positron beam
and a proton beam provided by the HERA (Hadron-Elektron-Ring-Anlage) accelerator. H1
and ZEUS measured total ([24][25]) and t-differential ([26][27]) cross sections for Q2 up to
25 GeV2 and W up to 100 GeV. Thanks to the ability to use both electrons and positrons,
the H1 collaboration also extracted beam charge asymmetries [28].

The factorization of the cross section and the dominance of gluon GPDs at low xB were
demonstrated with these data.

1.5.1.2 HERMES

The HERMES spectrometer also installed on the HERA accelerator was a fixed target ex-
periment using an internal gaseous target. The HERMES collaboration measured DVCS
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observables in the Q2 range from 1 to ∼6 GeV2 and xB from 0.04 to 0.2. For the first
measurements, exclusivity was ensured by a missing-mass cut M2

ep→eγX . For the last run
period until June 2007, a recoil detector was added to the spectrometer in order to reduce
systematic errors related to exclusivity [29].

The target could be polarized both longitudinally and transversely. Combining the tar-
get and beam polarizations, using electron and positrons, HERMES measured an almost
complete set of asymmetries, but no cross sections. This very complete set of observables is
a convenient way to unfold the different CFF contributions [30][31][32] (see section 1.4.3.2).

1.5.1.3 JLab-CLAS results

CLAS (CEBAF large acceptance spectrometer) is installed in the Hall B of Jefferson Labo-
ratory in Virginia, USA. As its name indicates, CLAS covers a large solid angle, compared
to Hall A for instance, albeit at a reduced luminosity. The CLAS collaboration measured
DVCS observables over a wide range in Q2 (between 1 and ∼4.8 GeV2) and xB (between
0.1 to almost 0.6). The longitudinally polarized electron beam from the accelerator inter-
acts with a liquid hydrogen target to study beam spin asymmetries [33]. Later, data on
longitudinally polarized NH3 target were taken to extract target spin [34] and double spin
asymmetries [35]. Very recently, the CLAS collaboration released unpolarized and beam-
helicity-dependent cross sections [22].

Within their statistical accuracy, HERMES and CLAS data are well described by leading-
twist predictions. Note that there is a disagreement between CLAS and HERMES data
concerning the sin 2φ harmonic of the asymmetry unpolarized beam on a longitudinally
polarized target (AUL): whereas CLAS find a result compatible with 0, HERMES finds a
sizeable sin 2φ harmonics which cannot be reproduced by only considering the leading-twist
contribution [36].

1.5.1.4 Future experiments

As seen on figure 1.11, available data are spread over a large kinematic area but there are
some domain with no data:

• A large area between xB=10−3 and xB=10−2 where no data are available yet. But
in 2016, the Common Muon and Proton Apparatus for Structure and Spectroscopy
(COMPASS) experiment will measure DVCS cross sections in this region, connecting
the fixed target domain to the high energy collider one. A 160 GeV muon beam
interacts with a 2 m-long liquid hydrogen target. A recoil detector, CAMERA, detects
the proton. The photon will be detected in a set of three calorimeters. The scattered
muon will be detected in the standard COMPASS spectrometer.

• The high xB-region suffers from a lack of statistically significant data. Nevertheless the
upgrade of CEBAF to 12 GeV allows for high accuracy experiments in this kinematical
region. In particular, a dedicated experiment started in Hall A at the end of 2014. After
the CLAS spectrometer is upgraded with a new detector package and new magnets, a
number of experiments will also take data in this enlarged kinematical domain. Finally,
Hall C of Jefferson Laboratory will perform the Rosenbltuh separation of photon and
π0 electroproduction cross sections around 2020, accessing higher Q2 and xB values
thanks to the High Momentum Spectrometer.

• Last but not least, it is the strong desire of the hadronic physics community worldwide
to build the ultimate accelerator in order to study nucleon structure: The Electron-
Ion Collider (EIC) will use intense and polarized beams of electrons and ions in order
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Figure 1.12: σT + ǫ∗σL (back points), σTT (blue points) and σTL (red points) extracted by
the CLAS collaboration [38]. The solid curves represent Goloskokov and Kroll’s model [20],
able to reproduce the behaviour of the cross sections. The dashed lines represent prediction
of the model developed by Goldstein and Liuti [39].

to study gluon-dominated matter. In particular, the ability to transversally polarize
protons will help tremendously to pinpoint the elusive GPD E.

1.5.2 Pion electroproduction data

Measurements of pion electroproduction cross sections have been carried out in the different
JLab experimental hall. We focus on the unpolarized cross section results of π0. We also
dedicate a section to the Rosenbluth separation performed on the π+ electroproduction.

1.5.2.1 π0 electroproduction data

Two experiments have measured π0 electroproduction cross sections in the valence region.
First results were published by the Hall A collaboration [37]. These measurements have then
been extended in a wider kinematical range by the CLAS collaboration [38] (Figure 1.12).
Whereas σL is expected small by twist-2 GPD models, both experiments measured high
unpolarized cross sections potentially indicating a large transverse contribution.

The large transverse-transverse interference term σTT also supports the assumption of a
large σT -contribution.

1.5.2.2 Rosenbluth separation on π+ electroproduction cross section

A L/T separation has been performed on ep → enπ+ in the Hall C of Jefferson Lab [40].
The longitudinal and transverse contributions have both been found significant (Figure 1.13),
even at high Q2, whereas the transverse response is supposed to be suppressed by 1/Q2 with
respect to the longitudinal one. Although σL is expected to be small for π0, it is enhanced
in the case of π+ by an additional channel. This channel consists of an exchange of a virtual
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Figure 1.13: γ∗p→ nπ+ extracted at two ǫ∗’s values [41]. Because σL and ∆ǫ are important,
the cross section has increased significantly.

π+ between the virtual photon and the nucleon. It can be seen as virtual photon scattering
off the pion cloud in the proton. As a consequence, the associated amplitude has (t −mπ)
in its denominator, coming from the pion propagator, enhancing the longitudinal response.
Finally, the Q2-dependence of σL was in agreement with the model whereas σT was found
to scale down much slower than the expected 1

Q8 .

1.6 The E00-110 and E07-007 experiments

In this thesis, we will describe and analyze two experiments which ran in the Hall A of
Jefferson Lab. We may consider them as two run periods of a same experiment. They both
studied photon and π0 electroproduction. We first introduce the 2004 [42] and then the
2010 [43] run periods.

1.6.1 The E00-110 experiment: the 2004 run period

The first run period was in 2004. Its purpose was to perform a Q2-scan at fixed xB of
the beam helicity dependent DVCS cross section to test the scaling of DVCS [44]. The
kinematical settings are listed in Table 1.3. In addition, an extra set of unpolarized cross
sections for the kinematics with the highest value of Q2 was extracted. Indeed it was possible
to evaluate the π0 contamination (explained later in the thesis) for the highest Q2 setting,
hinting that π0 electroproduction could be extracted.

Setting k′ (GeV/c) θe (◦) Q2 (GeV2) xB θq (◦) W (GeV) Eγ (GeV)

2004-Kin1 3.53 15.6 1.5 0.36 −22.3 1.9 2.14
2004-Kin2 2.94 19.3 1.9 0.36 −18.3 2.0 2.73
2004-Kin3 2.34 23.8 2.3 0.36 −14.8 2.2 3.32

Table 1.3: Experimental ep → epγ kinematics, for incident beam energy Eb = 5.7572 GeV.
θq is the central value of the q-vector direction. Eγ is the photon energy for t = tmin. Note
that only the average kinematic values for each setting are listed in this table : in order to
minimize systematic bin centering effects, we actually used the kinematic of each bin in xB,
Q2 and t according to their average value in the bin.

A CFF extraction was performed on the polarized and unpolarized results. From the
polarized cross section, hints of scaling was found since the extracted combinations of CFFs
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showed no Q2-dependence (Figure 1.14). Assuming a negligible contribution of |TDV CS |2,
the three lowest twist CFFs parametrizing the interference contribution have been extracted
using the unpolarized data. However, the large size of the extracted interference terms raised
doubts concerning the hypothesis of a negligible |TDV CS |2.

Figure 1.14: Left: Beam helicity dependent and unpolarized photon electroproduction cross
sections at t = −0.28 GeV2, Q2 = 2.3 GeV2 and xB = 0.36 from [44]. Right: Compton form
factors extracted from the 2004 experiment, assuming a negligible DV CS2 contribution.

From the same run period, π0 electroproduction cross sections have been extracted [37].
Almost instantly, π0’s decay into two photons with a branching ratio of 98.8%. As this
experiment was suited to detect the photon in the DVCS process, it was sensitive to π0’s
through the decay photons. However the threshold set on the energy of the photon at
∼ 1 GeV reduced the phase space of the π0 detection, possible only with 2-photon detection.
As the π0 energy decreases with decreasing Q2, this phase space was too small for 2004-Kin1
to extract π0 electroproduction cross section. However it was large enough for 2004-Kin3
and 2004-Kin2 [37]. They also studied the xB-dependence by defining new kinematics from
the 2004-Kin2 and 2004-Kin3 data set.

An interesting point is that π0 electroproduction cross sections have been extracted for
2004-Kin2. It implies that the π0 contamination can be estimated for 2004-Kin2 data. A
chapter of this thesis is dedicated to the full reanalysis of DVCS data from the E00-110
experiment.

1.6.2 The E07-007 experiment: the 2010 run period

The conclusion of the 2004 run period was that both photon and π0 electroproduction un-
polarized cross sections were higher than predicted. But we did not know the size of the
different contributions, nor did we understand the discrepancy with the predictions. It was
the goal of the 2010 experiment to perform a complete separation of photon and π0 electro-
productions. Similarly to 2004, the goal of the 2010 run period was to extract DVCS and
π0 electroproduction cross section but at two different beam energies E for each kinematical
setting (Table 1.4). The idea is to combine the dependences in φ and E to disentangle all con-
tributions. Indeed the kinematical factors in front of the dominant terms of interference and
DV CS2 do not depend on φ but have different beam energy dependences (see the tables 1.1
and 1.2). For π0, as shown explicitely in Eq 1.73, we have to measure the cross section at two
different values of ǫ∗ in order to disentangle the transverse and the longitudinal responses.

The experiment ran from October to December 2010, at the same time as the Q-weak
experiment in Hall C. Because of constraints on the beam energy due to Q-weak, kinematics
were slightly different compared to the E00-110 experiment.
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Figure 1.15: Results of π0 electroproduction from Hall A [37]. The lines represent predictions
based on t-channel meson exchange [45].

Name Q2 (GeV2) xB W 2 (GeV2) E (GeV) ǫ∗

2010-Kin1 1.5 0.36 3.55 (3.355 ; 5.55) (0.52 ; 0.84)
2010-Kin2 1.75 0.36 3.99 (4.455 ; 5.55) (0.65 ; 0.79)
2010-Kin3 2 0.36 4.44 (4.455 ; 5.55) (0.53 ; 0.72)

Table 1.4: Table of kinematics for the 2010 experiment.
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As explained in section 1.4.4, σL is expected to be very small and the lever arm in ǫ∗ is
rather small. It makes this measurement a technical challenge, with a dire need to reduce as
much as possible the systematic uncertainties.
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The experimental setup

Jefferson laboratory is located in Newport News (Virginia, USA) and was founded in 1985.
Its primary mission is to investigate the structure of nuclei and nucleons. To accomplish
this mission, a continuous electron beam accelerator facility (CEBAF) has been built and
has provided a longitudinally polarized electron beam to three experimental halls since 1995.
Both experiments of interest in this thesis took place in the Hall A of Jefferson laboratory,
dedicated to high luminosity and high precision experiments. Except for a few details which
will be presented in their dedicated chapters, the E07-007 and E00-110 experiments are
identical.

First, we are going to introduce CEBAF and then the Hall A of Jefferson Lab. We will
then describe the experimental setup of both experiments.

2.1 Continuous electron beam accelerator facility

The electron source is a stressed gallium arsenide crystal, placed in an ultra-vacuum chamber.
Using optical pumping, the conduction band of the crystal is filled with electrons from the
valence band [46]. By choosing the polarization of the pumping laser, we can choose the
polarization state of the electrons in the conduction band. To increase the probability for
the electron to go in the vacuum, a layer of cesium fluoride is deposited at the interface to
lower the potential barrier between the vacuum and the conduction band. Once the electron
escapes from the crystal, a difference of potential extracts it. Instead of a unique laser
illuminating the GaAs cathode, there are three lasers functionning at 499 Mhz each. Each
experimental hall is synchronized with its own laser.

Until 2014, CEBAF was composed of two superconducting linacs made of 20 cryomodules,
each cryomodule composed of 8 radio-frequency cavities in pure Niobium (see Figure 2.1).
The electromagnetic magnetic field in the cavities is a stationary sinusoidal field synchronized
with the injector (1497 MHz). The resulting increase for each cavity in energy is ∼7 MeV/m.
The two linacs were connected by recirculating arcs allowing to reinject the beam 5 times in
each linac for a maximal beam energy of ∼6 GeV. To avoid the spatial spread of the electron
bunches, the electrons from the source have to be accelerated by a first set of cavities up
to 45 MeV before entering the linacs. Using RF separators and magnets, the beam is then
sent in the 3 experimental Halls. Hall A and C could receive up to 150 µA of beam current,
whereas Hall B was limited to 200 nA.

28



Chapter 2: The experimental setup 29

Figure 2.1: Jefferson Lab has been upgraded to 12 GeV since late 2014. 10 cryomodules
have been added. An additional arc has been built in order to recirculate into the linac the
beam before ending in the brand new Hall D.

2.2 Hall A instrumentation

In the Hall, the beam goes through several diagnostic apparatus before hitting the target.
The basic Hall A detectors include two High Resolution Spectrometers (HRS). Extensive
details about the standard Hall A equipment can be found in [47].

2.2.1 The beamline

For the measurements of photon and π0 electroproduction cross sections, it is essential to
determine accurately the beam energy, position, current and polarization. A set of dedicated
apparatus are placed along the beamline.

2.2.1.1 Polarimeters

Two polarimeters are placed along the beamline. The first one is the Compton polarimeter.
As its name indicates, it is based on the Compton scattering process. At the Hall entrance,
the beam is deviated through a chicane (=magnets). In the middle of the chicane there
is a Fabry-Pérot cavity in which the electron beam crosses a circularly polarized photon
beam. As it is a pure QED process, the dependences of the cross section with respect to the
scattering angles and the polarization of the beams are known. Measuring the asymmetry
and knowing the photon beam polarization, we derive directly the polarization of the electron
beam. This measurement is non-invasive: The vast majority of electrons does not interact
with the laser, and continues to the target.

A second polarimeter uses the Møller scattering process. Electrons from the beam will
scatter off polarized atomic electrons in a ferromagnetic foil. This foil is placed within a
24 mT magnetic field. The scattering cross section depends on the beam polarization. A
dedicated spectrometer then detects the Møller events. This method is invasive: The foil is
directly inserted in the beamline before the target. Moreover the Møller method can only
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be performed at a low beam current ∼0.5 µA. But the polarization of the beam may vary
with the beam current.

Because the Møller polarimeter method is invasive, the polarization was measured with
the Compton polarimeter for both experiments. A comparison between the two methods
was performed for the 2004 run period: they were in good agreement within their systematic
and statistical uncertainties.
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Figure 2.2: Schematic view of the Hall A experimental setup. [47]

2.2.1.2 Beam Cavity Monitors

Two RF cavities are located in the beamline at the entrance of the Hall. They are stain-
less steel cylindrical waveguides amplifying the magnetic field created by the beam passing
through. This magnetic field induces a voltage which is proportionnal to the beam current
in the cavities. In order to extend the precision measurement to low currents, two amplifiers
with gains 3 and 10 are used.

2.2.1.3 Beam Position Monitors

Two beam position monitors are located 7.524 m and 1.286 m upstream of the target and
determine the position and direction of the beam. Each BPM consists of a set of four
antennas displayed around the beam. The beam induces a current in each of them. The
relative position of the beam with respect to the antennas is determined by comparing the
intensity in each antenna. For beam currents above 1 µA, the resolution is about 100 µm.
The BPMs are calibrated using wire scanners, whose positions are surveyed regularly and
known within 200 µm.
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2.2.1.4 Beam energy measurements

The beam energy is measured by two methods. The first consists in studying electron-proton
elastic scattering. A polyethylene foil is placed on the beam path, 17 m upstream of the
target. Silicon strips detectors, a Čerenkov gas chamber and scintillator paddles detect the
scattered electron and the recoil proton. With the scattering angles θp and θe, the beam
energy is given by:

E =M
cos θe + sin θe/ tan θp − 1

1− cos θp
+O

(
m2

e

E2

)
. (2.1)

The second is the ARC method. Between the accelerator and the Hall A, there is a 40 m
arc section. Tuned in dispersive mode, the beam is deflected using eight dipoles located in
the arc section. The bend angle is measured using wire scanners at the entrance and exit
of the arc. Because the eight dipoles are under vacuum, the field integral of the dipoles is
measured using a ninth dipole in a separate room. It is identical to the eight others and
powered in series with them.

Both methods are invasive.

2.2.2 The target system

The original plan of the E00-110 experiment was to detect all the particles in the final state.
Typical recoil proton momenta for DVCS events are about a few hundreds of MeV. Whereas
the usual scattering chambers in the Hall are 1-inch-thick stainless-steel cylinders, the custom
DVCS scattering chamber was a 1-cm-thick spherical chamber made of aluminium. Thanks
to the spherical shape, energy losses become independent of the scattering angle. This
chamber was also used for the E07-007 experiment.

The scattering chamber encloses several targets under vacuum. Liquid hydrogen (LH2)
and deuterium (LD2) targets were used to study DVCS and π0 electroproduction on protons
and neutrons for the 2004 and 2010 experiment. The target itself is an empty aluminium
cylinder mounted on a ladder, and is part of a loop in which the LH2 (or LD2) is circu-
lating. This ladder is remotely controlled to place the selected target on the beam path.
At 130 µA, the beam heating is about 700 W. To keep the temperature stabilized during
beam operation, the flow of hydrogen (or deuterium) has to go through a heat exchanger
with liquid helium at 15 K. The flow of helium can be adjusted by valves controlled from
the counting house. The temperature and pressure during beam operation were 17 K and
0.17 MPa for LH2, 22 K and 0.15 MPa for LD2. Because LH2 and LD2 are highly flammable,
their temperature, density and pressure are monitored accurately at several locations of the
loop. Finally E07-007 and E00-110 ran at low current (between 1 and 5 µA), so that the
boiling effect (local phase change along the beam path in the target) could be neglected.

Besides the cryotargets, the target ladder includes several solid targets used for different
purposes:

• Two dummy targets are empty replicas of the LH2 targets to study target wall effects.

• An empty target is used to reduce radiation for detectors during invasive beam studies
such as wire scanners.

• A BeO target which glows where the beam hits the target. Therefore we could visualize
the beam position with a camera installed in the scattering chamber.

• A C target which is a 1-mm-thick carbon foil used as a point-like target.
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Figure 2.3: Detector package of the left HRS which detects and characterizes the electron.
First the electron goes throught the VDCs, then scintillators and Čerenkov detector before
the pion rejector.

• An optics target consisting of seven 1-mm-thick carbon foils, used to determine the
optical matrix of the spectrometer.

2.2.3 The high resolution spectrometer

Hall A is permanently equipped with two HRSs. They are designed following a QQDQ
scheme: 2 quadrupoles focus the particles into a dipole. The dipole selects particles accord-
ing to their momentum and sends them to a detector package. At the exit of the dipole,
a last quadrupole focuses the interesting particles in the detector hut. Both HRS have a
momentum acceptance of 4.5% with respect to the central momentum set in the HRS1. The
angular acceptance is ±30 mrad horizontally and ± 60 mrad vertically.

Both spectrometer detector packages are quite similar. As the right HRS (with respect to
the beamline in the beam direction) was not used for our experiments, we only describe the
left HRS detector package. First the particles go through two sets of vertical drift chambers
(VDCs) placed in the focal plane of the spectrometer. These VDCs provide information
about the position of the particles in the focal plane and the angle of the track with respect
to the focal plane. With an optical matrix determined with dedicated runs using the optics
target, we are able to derive the track at the vertex from the focal plane variables. Two
scintillators S1 and S2 have been included for trigger purposes. Between the two scintillators,
a gas Čerenkov detector ensures the π/e discrimination. It is filled with carbon dioxide at
atmospheric pressure. The threshold for pions is 4.8 GeV/c whereas it is 17 MeV/c for
electrons.

Finally the last detector dedicated to particle identification is the Pion Rejector (PR). It
is an electromagnetic calorimeter made of two layers of lead glass blocks. Electrons deposit
almost all of their energy whereas hadrons deposit a few percent of its energy in most cases.

1The left HRS momentum range is 0.3-4 GeV/c, For the right HRS it is 0.3-3 GeV/c.
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2.3 The DVCS/π0 experiment design

The goal of both E00-110 and E07-007 experiments was to extract 4-fold differential cross
sections in Q2, xB, t and φ for DVCS and π0 electroproduction. Q2 and xB are determined
using only the scattered electron four momentum. For t and φ, we only need the four mo-
menta of the scattered electron and of the photon/π0. As a consequence, the left HRS is
dedicated to the scattered electron detection. In order to detect the photon(s), an electro-
magnetic calorimeter of lead fluoride and a dedicated DAQ system have been designed. To
ensure the exclusivity with a triple coincidence, a recoil proton detector was installed for the
E00-110 experiment. But, we are going to show that a cut on the missing mass2 M2

ep→eγX is
enough to validate the exclusivity, justifying the absence of a recoil detector for the E07-007
experiment.

2.3.1 The proton array

For the first experiment in 2004, a circular array of scintillators was installed in order to
detect the recoil proton. This detector was called the proton array (PA) and made of 20
columns, each column composed of 5 plastic scintillator blocks. As the DVCS final state
presents an azimuthal symmetry with respect to the virtual photon, the PA was placed
around the calorimeter as seen on Figure 2.4.

It subtended a solid angle (relative to the nominal direction of the virtual photon) of
18◦ < θγ∗p < 38◦ and 45◦ < φγ∗p < 315◦. The 90◦ cut-out in φγ∗p allows for the exit-
beam pipe in the kinematic setting where the detector stack is the closest to the beamline.
Therefore the triple coincidence analysis suffered from the absence of acceptance at φ = 180◦.
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Figure 2.4: The DVCS experimental setup for the 2004 experiment. The electron was de-
tected in the HRS and the photon in the calorimeter. The recoil proton was detected in a
plastic scintillator array called Proton Array.

2Here and in all the following chapters, missing mass refers to the missing-mass squared.
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2.3.4 Data acquisition

The DAQ is run by the software CODA (CEBAF online data acquisition). Each detector in
Hall is connected to analog digital converters (ADCs), time-to-digital converters (TDCs) and
scalers. They are gathered on VME crates, one crate per detector. Each crate is controlled
by a read-out controller (ROC). The ROCs are connected to the trigger supervisor (TS), a
multifunction VME board. Combining the different ROC data, the trigger supervisor tests
different triggers. If the test is positive for a specific trigger, the trigger supervisor orders
the read out of the VME crates. Data are then recorded and sent to a mass storage tape
silo for long-term storage. As long as one ROC is processing and sending data, the trigger
supervisor is inhibited and no trigger is accepted, resulting in acquisition deadtime. It is
only when all ROCs are available that the trigger supervisor can accept triggers again.

The calorimeter and the proton array are specific detectors for the DVCS experiment,
requiring the installation of two additional ROCs. A specific calorimeter trigger module has
been designed in order to synchronize the trigger supervisor with the calorimeter and the
proton array. The event builders, recorders and transfers were customized to include the
calorimeter and proton array data in the usual Hall A data package.

2.3.5 Trigger logic

The first level trigger is a coincidence between the scintillator S2 and the Čerenkov detector
in the HRS. A threshold is set on the Čerenkov detector, high enough to remove most of
the π− triggering the scintillator and low enough to keep most of the electrons. When a
coincidence between the two detectors occurs, the trigger supervisor issues a STOP signal
to the ARS system.

The signal of each block is integrated over 128 ns by 12-bit-flash ADCs reading the ARS.
Then the calorimeter trigger module computes the sum of the integrated ARS signals for all
2×2 neighboring blocks combinations in 340 ns. If a sum is above the hardware threshold,
the calorimeter trigger module sends a VALID signal to the trigger supervisor. Then the data
from HRS, calorimeter and proton array are transfered and recorded on disks while triggers
and ARS are reset. Only data of neighboring blocks above the threshold are transferred. It
takes 128 µs to digitize and transfer the ARS data for each 2×2 block combination.
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Normalization studies using deep
inelastic scattering

For five of the six kinematical settings of the E07-007 experiment, the trigger was formed by
the Čerenkov detector and the S2 scintillator only. In other words, it was an inclusive electron
trigger. It was therefore possible to extract the deep inelastic scattering cross section. A
high accuracy extraction of the DIS cross section allows us to test each run’s quality, evaluate
systematic errors and most importantly, check the quality of the normalization.

For the 6th kinematic settings, approximately 75% of the runs were taken with the
calorimeter in the trigger. The DIS cross section had been extracted for the remaining
25% of runs, with the inclusive electron trigger. A comparison based on the DVCS cross
sections between the two periods is described in appendix A.

3.1 Principle of the extraction

A cross section is a physical quantity associated with the probability for a process to happen.
In the case of DIS, it is the probability for an electron to interact with a proton at high Q2

and W . As a cross section is a universal quantity, it is not simply given by the ratio between
the number of detected electrons and the total number of electrons sent on the target. We
have to remove all dependences on the characteristics of the experimental setup: the so-called
normalization of the cross section. To extract the DIS cross section from the data, we apply
the following formula:

dσ

dΩdE
=
NC

L × 1

ηvirt × ηexp × ΓDIS
, (3.1)

with:

• NC : the number of events passing all the analysis cuts.

• ηexp: a factor correcting for event losses induced by deadtime, trigger inefficiency and
analysis cuts.

• ΓDIS : the phase space from which the NC events are coming. This is estimated by
Monte-Carlo.

• ηvirt: a term correcting for first order QED diagram interfering with the Born process.

• L: the integrated luminosity.

37
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The integrated luminosity is given by:

L =

∫
dL
dt

dt =
Q

e

NAρl

AH
, (3.2)

where e = 1.602 · 10−19C is the electron charge, AH = 1.0079 g/mol is the atomic mass of H,
and NA = 6.022 · 1023mol−1 is Avogadro’s number. The LH2 target length was l = 15 cm
and was operated at 17K and pressure of 25 psi, which gives a density of ρ = 0.07229 g/cm3.

We are going to first describe the set of cuts C applied to the data to select the events.
Then we focus on the computation of ηexp, ηDT and the integrated luminosity. Before
presenting the results and conclusions of this normalization study, we describe the Monte-
Carlo simulation developed to compute ΓDIS .

3.2 Event selection

The events selected by the inclusive electron trigger does not constitute a pure electron
sample scattered off the LH2 target. A set of cuts have to be applied in order to ensure the
reliability of the track reconstruction, as well as the particle and process identifications.

3.2.1 Acceptance cuts

In order to get a reliable kinematics reconstruction, one needs to select events which went
through a well known part of the HRS acceptance. Indeed our ability to properly reconstruct
the event depends on our knowledge of the magnetic field in the HRS, which is limited on
its edges. However the HRS acceptance is a complicated region depending on 5 correlated
variables (see Figure 3.1): xtg and θtg (the position of the particle and the tangent of the
angle made by its trajectory along the dispersive direction), ytg and φtg (the position and
the tangent of the angle perpendicular to the dispersive direction), and δtg (the fractional
deviation of the particle momentum with respect to the central momentum of the HRS).
Trajectories of higher momentum particles have lower curvature in the dipole, and in order
for them to fit into the spectrometer they need to have lower θtg. The dipole magnet has
trapezoidal cross section and higher momentum particles tend to fly closer to its shorter
base (high magnetic field) side, and this makes the accepted range of φtg smaller for higher
δtg. Finally, increasing ytg requires decreasing φtg in order for the particle to get into the
spectrometer entrance window. Making cuts independently in each of the variables to limit
events to flat acceptance regions in each of them is thus very inefficient. Instead, we used the
R-function, an acceptance function [50], which allows to place a 4-dimensional cut (xtg = 0
is assumed). This procedure is almost twice more efficient than the traditional sequential
acceptance cuts. This function takes the arguments ytg, θtg, φtg and δtg and returns a
so-called R-value which is the minimum distance (in radians) to the (θtg, φtg) solid angle
acceptance region appropriate for a given value of ytg and δtg. A value of 5 mr was used in
order to constrain a well-defined region of the HRS acceptance.

During the E07-007 experiment, five of the six kinematics were run with a collimator
in front of the HRS entrance in order to better define our acceptance. This collimator
consists of a 8 cm thick tungsten block. Its entrance (target side) is 12.18 cm-vertical and
6.29 cm-horizontal. It gets larger at the exit (HRS side) with a 12.97 cm-vertical and 6.68 cm-
horizontal opening. As the R-function was developed for the HRS without collimator, we
perform an additional set of cuts on the position of the particle at the collimator entrance
to select events.

Finally, more than one particle sometimes reach the VDCs. The VDC system of the HRS
has unfortunately not been designed to handle multiple tracks. For such events, the tracking



Chapter 3: Normalization studies using deep inelastic scattering 39

✁

✂

�

✄☎ ✆
✄☎

✆
✝✞✟✠✟

✡

☛☞✌✍✌ ✎✏✑✒✌

✓✌✑✔

☛✕✑✖✖✌✗✌✘

✌✏✌✕✖✗✙✒

✚

✛

✜✑✏✏ ✕✌✒✖✌✗
✡
✢✟✣✤✄

✆
✄☎

✄☎

✕✌✒✖✗✑✏ ✗✑✥

☛✎✌✕✖✗✙✔✌✖✌✗

Figure 3.1: HRS variables used to define its acceptance.

algorithm sometimes fail to reconstruct the tracks. As we cannot perform any acceptance
cut on these events, we remove them from the analysis and consider only events with one
track.

3.2.2 Cut on the vertex position

The target cell windows are made of ∼0.14 mm-thick aluminium and some electrons are
scattered by them into the spectrometer (Figure 3.2). In order to remove these events, we
cut on the position of the vertex. The spectrometer has a resolution on the position of the
vertex given by:

σvertex =
1.2 mm

sin θHRS
, (3.3)

where ΘHRS is the angle between the beam axis and the HRS central axis.
For the kinematical setting with the smallest HRS angle, the resolution is 4.3 mm. More-

over the center of the target is shifted by +5mm. So for all kinematics we decided to apply
a conservative cut and require the vertex to be in the interval [-6 cm ; 7.5 cm].

 (m)zv
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.10

2000

4000

6000

8000

10000

Figure 3.2: Z-coordinate of the vertex. The left and right peaks correspond to the target
aluminium windows at -7.5 and 8 cm.
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3.2.3 Particle identification

3.2.3.1 Čerenkov cut

In order to remove π− contamination, a threshold was set on the output voltage summed
over the ten PMTs of the Čerenkov detector. In order to simplify the evaluation of the
Čerenkov efficiency, we applied a software cut slightly higher than the hardware cut. As the
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Figure 3.3: Left: Čerenkov ADC spectrum for kin3low, the first kinematics which was run.
For the first two weeks, the threshold set on the Čerenkov was at 200 mV (black spectrum)
corresponding to about 200 ADC channels. Then it was lowered at 50 mV corresponding to
50 channels for the rest of the experiment (red spectrum). The single photo-electron peak
stands at 150 ADC channels. The average number of photo-electrons is 7. Right: Energy
spectrum in the pion rejector for events after Čerenkov and acceptance cuts.

threshold on the Čerenkov changed once during the experiment, there are two values for the
corresponding software cut: 250 ADC channels for the first two weeks and 80 ADC channels
for the rest of the experiment (see figure 3.3).

3.2.3.2 Pion rejector cut

Since the Čerenkov detector is in the trigger, we may think that all events are electrons. But
as seen on Fig 3.3, there is a peak corresponding to a single photo-electron emission at 150
ADC channels. This peak coresponds to δ-rays. δ-rays are secondary electrons, from pions
which ionize the matter before the Čerenkov detector, and which may trigger the DAQ. This
contamination represents up to 10% of the events, depending on the kinematics.

We can improve the particle identification by using the pion rejector (PR). Electrons will
deposit all their energy into the PR, whereas pions will most of the time deposit a small
amount. By applying a cut on the energy deposit, we are able to discriminate pions from
electrons.

In order to be able to apply a cut on the energy deposit in the PR, it needs to be
calibrated using a sample of electrons from a production run. This sample is created with
a high cut on the Čerenkov signal to maximize the fraction of electrons. The energy of the
electrons is determined by the tracking algorithm. If En is the energy of the electron from
the nth event, we have:

En =
∑

i

Gi ×An
i

with An
i the amplitude of the signal for the nth event and Gi the gain coefficient associated



Chapter 3: Normalization studies using deep inelastic scattering 41

with the ith block. In order to determine the Gi coefficients, we minimize the following χ2:

χ2 =
∑

n

(
En −

∑

i

Gi ×An
i

)2

, (3.4)

∂χ2

∂Gi0

= 0 =⇒
∑

i

Gi

(
∑

n

An
i0A

n
i

)
=
∑

n

EnAn
i0 ∀i0 , (3.5)

The gain coefficient are then obtained by solving the system AG = B, with Aij =∑
nA

n
i A

n
j and Bi =

∑
nE

nAn
i . We use the production run in the middle of each kinematics

with high statistics to perform the calibration.
As seen on figure 3.3 representing the PR spectrum for kin3low, we can discriminate

δ-rays from electrons by cutting on the energy deposit. This cut depends on the kinematic
settings. For kin3low, we set the cut at 0.8 GeV.

3.3 Efficiencies

A significant fraction of good events may be lost and need to be corrected for. There are two
main ways to lose good events: the inefficiency of the experimental setup (trigger efficiency,
deadtime, VDCs,...) and the cuts applied in the analysis. We are going to review the
corrections due to the trigger as well as the detector and analysis cuts. For each of them, we
evaluate the fraction of good events which are lost to estimate the correction factor ηexp of
Eq 3.1

3.3.1 Tracking efficiency

As mentionned in the previous section, we removed ∼10% of events with more than one track.
We have to estimate the fraction of good events that were lost by this cut. Historically the
correction factor ηoldTrk was defined by:

ηoldTrk = 1 +

∑
k≥2Nk

N1
, (3.6)

where Nk is the number of events with k tracks.
This correction factor assumes that there is the same probability to find an electron in

our acceptance cuts in multitrack events as in single track events. The usual assumption
was that these events were a scattered electron with another particle in coincidence. In that
case, one would expect the number of n-track events to follow the distribution rn−1 with r
the probability of a 2-track event. But there are far too many 3-track and 4-track events
compared to the number of 2-track events (Figure 3.4).

The PR energy deposit for these events allows us to get some information about their
content. First, they are mainly low energy events: it indicates that they are most likely
pions creating secondary particles in the VDC. Only 2-track events exhibit a signal in the
PR corresponding to electrons. However there is also a large contribution of pions. we
correct the multitrack events with the following factor:

ηTrk = 1 +
N c

2T

N c
1T

, (3.7)

where N c
2T and N c

1T are the number of 2-track and 1-track events with a minimum energy
deposit in the PR. This minimum is the same as the one we require for the 1-track event
analysis in subsection 3.2.3.2. Table 3.1 summarizes the corrections we applied to all E07-
007-kinematic setting.
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Figure 3.4: Left: Distribution of events according to the number of tracks. Right: Energy
deposit in the PR according to the number of tracks for kin3low. Only 2-track events show
a clear electron peak like 1-track events in Figure 3.3.

Kinematics ηTrk

Kin1low 1.01

Kin1high 1.021

Kin2low 1.018

Kin2high 1.02

Kin3low 1.016

Kin3high 1.019

Table 3.1: ηTrk for each E07-007-kinematics. The former correction ηoldTrk was therefore
inducing an error of ∼8%.
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3.3.2 Deadtime

The trigger supervisor is connected to a set of scalers. One scaler counts the total number
of coincidences between the Čerenkov and S2, even when the DAQ is busy. It is then the
total number of electrons NHRS detected by the HRS. Another scaler counts the number of
ARS STOP signals sent to the ARS when the DAQ is available. As a consequence the ARS
STOP scaler gives NSTOP the number of analyzed events. Thus the deadtime correction
ηDT is given by:

ηDT =
NSTOP

NHRS
, (3.8)

This correction is applied run-by-run and independently from the calorimeter being or
not in the trigger. The deadtime is correlated to the trigger rate in a non-trivial way. As
explained in section 2.3.5, the deadtime is mainly due to transfer of the ARS data. When the
calorimeter is not in the trigger, all ARS STOP signals give an ARS VALID. As a consequence
all ARS data are digitalized and transfered for all events. Including the calorimeter in the
trigger is equivalent to pre-analyzing the events, usually called a level-2 trigger. The goal is
to determine if it is worth transfering the data to increase the fraction of ep→ eγX events in
the transfered data. As seen in table 3.2, even though the beam current has been multiplied
by 2.2 for kin2high, the deadtime with the calorimeter in the trigger remains smaller than
without the calorimeter in the trigger. Scalers are also subject to deadtime but it is negligible
with respect to the averaged time between two events.

Kinematics Beam current (µA) Trigger rate (Hz) Deadtime (%)

kin1low 2.97 79 6.5

kin1high 1.1 297 35

kin2low 3 165 8.5

kin2high 1.5/3.3 240/552 19.7/18

kin3low 3.45 118 7.7

kin3high 2.77 222 17.7

Table 3.2: Trigger rate and deadtime according to kinematics at a given beam current. For
Kin2high, black is used for trigger without calorimeter, red for trigger with calorimeter.

3.3.3 Efficiency of S2 scintillator

In order to evaluate the efficiencies of the Čerenkov detector and S2, we took dedicated runs
with different triggers. For Čerenkov and scintillator efficiency runs, the triggers are listed
in the table 3.3.

Trigger Logic Measured efficiency

T3 S1 ∩ S2 Čerenkov / Scintillators

T4 T3 ∩ Cer ∩ (S1 ∪ S2) Scintillators

Table 3.3: Table summarizing the two triggers for efficiency. For each event of an efficiency
run, we know the trigger which fired the DAQ. T3 is the boolean complementation of T3.

To compute the efficiency of the scintillators, we need first to create a sample of particles
detected by the Čerenkov. Therefore we only keep events with a number of Čerenkov ADC
channels above 500. Thus the efficiency of S2 (ηS2) can be defined as:

ηS2 =
NSSC

NS1C
, (3.9)
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where NS1C is the number of events detected only by S1 and the Čerenkov detector, whereas
NSSC is the number of events detected by both scintillators and the Čerenkov detector.
NSSC is simply given by the number of T3 events passing the cut on the Čerenkov. Since
we have:

S1 ∩ Cer = (S2 ∩ S1 ∩ Cer) ∪ (S2 ∩ S1 ∩ Cer) , (3.10)

NS1C is given by the sum NSSC +NS1CS2 and we obtain:

ηS2 =
NSSC

NSSC +NS1CS2

. (3.11)

NS1CS2 is the number of T4 events with no hit in S2, passing the Čerenkov cut. The efficiency
of S2 was found to be around 99.9% during all the experiment.

3.3.4 Efficiency of the Čerenkov detector

To compute the Čerenkov detector’s efficiency, we use the T3 trigger introduced in table 3.3.
It corresponds to a particle, an electron or a pion, detected by both S1 and S2. We want to
evaluate the fraction of electrons passing the analysis cut applied in section 3.2.3.1.

We create an electron sample by applying a cut on the energy deposit in the PR. We
note NPR the number of electrons selected by this cut. NCer is the number of electrons in
the sample passing the software cut. Thus the Čerenkov efficiency is given by the following
ratio:

ηCer =
NCer

NPR
(3.12)

Applying this method, the Čerenkov efficiency was found to depend on the central mo-
mentum of the HRS.

Kinematics Momentum in HRS (GeV/c) ηCer ηcorCer

kin1low 1.136 95% 98.5%

kin3low 1.494 94%/97% 95%/98.5%

kin2low 1.864 98% 98.5%

kin3high 2.59 98.5% 98.5%

kin2high 2.96 98.5% 98.5%

kin1high 3.332 98.6% 98.6%

Table 3.4: Čerenkov Efficiency according to the different kinematics. The kinematics are
presented with increasing HRS central momentum. The red numbers are results for the runs
with high threshold for the Čerenkov detector.

However a cut on the energy in the PR is not enough to get a pure sample of electrons,
especially at low HRS central momentum. Indeed pions have a small probability to create
hadronic showers and thus lose all of their energy in the PR. We have to evaluate this
contamination in order to correct for this bias. The PR spectrum of our sample was fitted
with the sum of a skewed gaussian distribution S(E) for the electrons and a second order
polynomial P(E) for the pions (Figure 3.5).

S(E) = C

[
p√
2πσ

e
−(E−µ)2

2σ2 + (1− p)
α

2σ
e

−α2

4 eα
E−µ
σ

{
1 + erf

(−(E − µ)

σ

)}]
(3.13)

where µ and σ represent the position and the width of the electron peak. p and α
stand for the height and the length of the tail [51]. We define the efficiency for the PR ηPR
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Figure 3.5: PR spectrum for kin3low. The result of a fit using the sum of an asymmetric
gaussian (electrons) and a 2nd-order polynomial (pions) is also shown.

corresponding to the purity of the sample. ηPR is estimated by applying a cut Es on the
energy deposit E in the PR:

ηPR(Es) = 1−
∫ Ekin

Es
P (E)dE

∫ Ekin

Es
P (E) + S(E)dE

, (3.14)

where Ekin represents the root of the polynomial corresponding to the maximum value of
the energy deposit. Figure 3.5 represents the spectrum for kin3low, and Ekin ∼1.84 GeV
for kin3low. The actual number of electrons Ne− in the sample is given by the product
NPR × ηPR. Correcting ηCer with ηPR gives an efficiency of 95% for the first two weeks of
experiment and then a stable value of 98.5%.
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Figure 3.6: Left, ηPR for setting kin1low as a function of the cut applied on the PR energy
deposit. Right, the black points represent ηCer and the red points ηcorCer =

ηCer

ηPR
. The corrected

efficiency ηcorCer is more stable than ηCer with respect to the cut on the PR. Finally we associate
a 0.5% systematic error on the Čerenkov efficiency, coming from the dependence on the energy
deposit cut of ηcorCer.
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3.4 Monte-Carlo simulation

The last term of the equation 3.1 to be evaluated is ΓDIS . It represents the phase space
covered by the HRS. ΓDIS depends on the HRS acceptance but also on any cut we perform
to select events. To determine it, we use a Monte-Carlo simulation consisting in generating
events in a phase space ΓMC whose volume is known. ΓDIS is then simply given by:

ΓDIS = ΓMC × Nacc

Ngen
(3.15)

where Ngen is the number of generated events and Nacc the number of events detected by
the HRS according to the simulation. Because of the energy losses by radiative effects and
the detector resolutions, ΓDIS is vast. Consequently ΓMC has to be taken large enough and
the simulation has to consider radiative effects and detector resolutions in order to correct
for them.

This Monte-Carlo simulation is based on a C++ code written for the E97-110 experiment
analysis [52]. In this code, most of the Hall A experimental setup was included. It has been
adapted to our experimental setup and our kinematics. An event generator for inclusive
DIS events has been implemented, including radiative corrections. For clarity, I am going to
introduce first the radiative effects before the Monte-Carlo simulation.

3.4.1 QED radiative effects

Dealing with an electron beam has a lot of advantages such as the ability to reach high
luminosity. However, because of its very light mass, an electron easily radiates photons.
This emission of photons occurs when the electron goes trough matter: in that case, they
are said external. But this emission of photons also happens at the vertex, they are said
internal. We will first explain how the external photon emission is implemented. Then we
will describe the internal radiative effects and how they are corrected.

3.4.2 External radiative corrections

The external radiative effects are radiation of a real photon by the electron when it goes
through matter. This effect is also known as Bremsstrahlung. The energy loss by an electron
of energy E0, through a material thickness tmat given in units of radiation length, will follow
the distribution [53] (b ≃ 4/3):

I(E0,∆E, tmat) =
btmat

∆E

[
∆E

E0

]btmat

, (3.16)

Inverting the previous relation, we get an energy loss ∆E to simulate event-by-event,
material by material, with the following relation:

∆E

E0
= r1/btmat , (3.17)

with r generated uniformly in [0; 1]. We apply the energy loss within the peaking approxi-
mation: the radiated photon is emitted along the electron direction.

3.4.3 Internal radiative corrections

Photons emitted at the vertex may be real (bremsstrahlung) or virtual. We present here
the radiative corrections for ep elastic scattering. It represents a good approximation for
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Figure 3.7: First order internal radiative corrections illustrated in the case of DVCS.

DIS, DVCS or DVMP since all these corrections are taking place on the leptonic part of the
diagram which is the same for elastic scattering.

At first order in QED, there are three radiative processes:

• The vertex correction (Figure 3.7 (a)): the electron emits a photon before scattering,
which will change its momentum. Then this photon will be reabsorbed by the scattered
electron.

• The vacuum polarization (Figure 3.7 (b)): the virtual photon turns into a electron-
positron pair.

• The internal bremsstrahlung (Figure 3.7 (c)): A real photon is emitted by either the
incoming or outgoing electron.

As a consequence, the measured cross section is an interference of the Born process with
diagrams (a,b) in addition to a contribution from the internal bremsstrahlung diagram. Each
diagram iterated to all orders, we obtain the following relation between the measured and
the Born cross sections [54]:

σexp = σBorn
eδR+δver

(1− δvac)2
, (3.18)

with:

δvac =
α

3π

[
ln

(
Q2

m2
e

)
− 5

3

]
, (3.19)

δver =
α

π

[
3

2
ln

(
Q2

m2
e

)
− 2 +

π2

6
− 1

2
ln2

(
Q2

m2
e

)]
, (3.20)

δR =
α

π

[
Sp

(
cos

θe
2

)
− π2

3
+

1

2
ln2

(
Q2

m2
e

)]
+
α

π
ln

(
(∆E)2

EE′

)[
ln

(
Q2

m2
e

)
− 1

]
, (3.21)

Looking at Eq 3.21, we can separate a term dependent on the energy loss ∆E and
another which depends only on Q2. We can then rewrite the exponential of the internal
bremsstrahlung term:

e−δR ∼ e−δ
(0)
R ×

(
∆E

E

)δ
(1)
R
(
∆E′

E′

)δ
(1)
R

, (3.22)

with the definitions:

δ
(0)
R =

α

π

[
Sp

(
cos

θe
2

)
− π2

3
+

1

2
ln2

(
Q2

m2
e

)]
, (3.23)

δ
(1)
R =

α

π

[
ln

(
Q2

m2
e

)
− 1

]
(3.24)
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The term
(
∆E
E

)a
can be interpreted as the fraction of incoming electrons losing an amount

of energy ∆E. We can derive a distribution Iint such that:

∫ ∆E

0
Iint(E,X, δ

(1)
R )dX =

(
∆E

E

)δ
(1)
R

, (3.25)

Iint(E,∆E, δ
(1)
R ) =

δ
(1)
R

∆E

(
∆E

E

)δ
(1)
R

, (3.26)

We recognize the equation 3.16 in 3.26 with an equivalent radiator thickness δ
(1)
R . Thus,

to reproduce the energy loss by internal bremsstrahlung, we are going to apply the same
method as for the external case, presented in subsection 3.4.2. It will be applied two times:
once for the incoming and another time for the outgoing electron.

One can notice that we need to know Q2 to compute δ
(1)
R . But Q2 can only be computed

after having lost the energy by internal Bremsstrahlung. A method to resolve this ambiguity
is presented later in the section dedicated to the event generator.

Finally, the value of the logarithm in Eqs (3.19)(3.20)(3.23) is almost constant from
Q2 = 1.5 GeV2 to Q2 = 2.3 GeV2. For all the kinematics we take:

ηvirt =
eδ

(0)
R

+δver

(1− δvac)2
= 1.072. (3.27)

3.4.4 Computation of ΓDIS using Monte-Carlo

The Monte-Carlo simulation for the computation of ΓDIS can be split into two parts:

• The event generator, responsible for generating all kinematic configurations compatible
with the acceptance of our experiment. In addition radiative effects need to be taken
into account. Energy losses and the kinematics of the scattering events have to be
compatible. Therefore there is a list of steps that have to be executed in a specific
order.

• The transport of the electron from the vertex to the HRS entrance. We have to include
all materials between the vertex and the HRS to simulate all the energy losses. Inside
the HRS, the electron is in vacuum until it reaches the focal plane.

3.4.4.1 Event generator

As we mentioned before, ΓDIS depends on the acceptance of the spectrometer, a complicated
hypervolume of four variables. In order to compute it, we generate events in the full target
length and in a solid angle ∆Ω larger than the solid angle covered by the HRS.

We first generate the vertex vz. It determines the thickness of target material before
the scattering process. We then use the procedure described in 3.4.2 to compute the energy
loss by going through the upstream aluminum cell window and liquid hydrogen. We obtain
the electron energy Eext

v which can be much lower than E the beam energy. Then we
generate cos θe and φe in ranges large enough to cover the full geometrical acceptance of the
spectrometer.

Once the direction of the scattered electron is determined, we generate the energy after
scattering. However, because of the energy losses, the kinematics of the scattering process
can be far different from the central HRS kinematics. The phase space at the vertex of the
detected events is vast, including elastic scattering associated with an important energy loss.
Therefore we consider a large range for the scattered electron energy, going from the lowest
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Figure 3.8: Diagram representing the main steps of the Monte-Carlo simulation. Es-
caping photons represents energy losses either by external (black) or internal (orange)
bremsstrahlung. We specifiy the energy of the electron in green.
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detectable energy to the highest possible energy given by elastic scattering. The range ∆E′

is thus defined as follows:

∆E′ = [ 0.94 pHRS ; Eel(E
ext
v , θe) ] , (3.28)

Eel(E
ext
v , θe) =

Eext
v

1 + 2Eext
v

M sin2(θe/2)
, (3.29)

where pHRS and Eel respectively stand for the HRS central momentum and the energy of an
elastically scattered electron. For a small fraction of events, Eel is smaller than 0.94 pHRS

because of a very low Eext
v . In that case, the event is considered as lost.

Once E′ and the scattering angle are generated, we simulate the internal bremmstrahlung
as presented in 3.4.2. However generating r in [0; 1] may lead to an energy loss before
scattering which is incompatible with the generated scattering angle and E′. The idea is to
consider that internal bremsstrahlung occurs only if the scattering process occurs. Therefore,
to avoid this situation of impossible events, r is no longer generated in [0; 1] but [0; rlim] with
rlim defined as:

rlim =

(
1− Elim

Eext
v

)δ
(1)
R

. (3.30)

Elim is the lowest energy of the incoming electron allowing to get the generated scattered
electron. It is given by E′ = Eel(Elim, θe). As we do not know the Q2-value of the event

yet, we evaluate δ
(1)
R at our nominal kinematics. After the first energy loss by internal

bremsstrahlung, the incoming electron is left with an energy Ev for the scattering process.
For the internal post-scattering bremsstrahlung, we generate r in [0; 1] that we apply to
E′. Finally, the radiation lengths of the various materials crossing the path of the electron
between the vertex and the HRS entrance are evaluated using the setup geometry. We then
apply the method in subsection 3.4.2 to estimate the resulting energy losses.

Once the electron reaches the spectrometer, we smear the position of the vertex to sim-
ulate the resolution of the spectrometer. All the analysis cuts are then applied on the
”reconstructed” kinematic variables at the entrance of the HRS to compute the phase space
volume ΓDIS . Since the phase space factor ΓMC = ∆cos θe∆φe∆E

′ depends on the energy
Eext

v , ΓDIS is defined such that:

ΓDIS =
1

Ngen

∑

i∈C

Γi
MC (3.31)

where the sum is over the events passing the set of analysis cuts C and Ngen is the total
number of generated events.

3.4.5 Unfolding acceptance and radiative effects

We are interested in extracting deep inelastic cross section at our nominal kinematics. How-
ever, even if the acceptance of the spectrometer is small, events are spread over a large
range of Q2 and xB. Moreover radiative effects may move events which are outside the HRS
acceptance into it.

In conclusion, we do not control the kinematics at which the cross section is extracted.
To recover the cross section at the nominal values, we compute a coefficient α to correct for
the kinematic deviation and defined such as:

∫

ΓDIS

dσ

dΩdE
(Kinv)dΩdE = α× dσ

dΩdE
(KinHRS)× ΓDIS , (3.32)
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Figure 3.9: Distribution of vertex Q2
v and (xB)v for events detected in the HRS. The color

scale represents the energy just before scattering, after external and internal bremsstrahlung.
The black contour represents the acceptance of the HRS: all events have been reconstructed
at kinematic values inside the HRS acceptance. The migration exhibits two branches corre-
sponding to two important energy losses: the low and high-energy incoming electron events.
The two branches are the result of the peaking approximation and the two-step internal
bremsstrahlung.

with Kinv stands for the vector (Ev, Q
2
v, (xB)v) and KinHRS for the nominal kinematics

vector (E,Q2
HRS , (xB)HRS).Then one straightforwardly gets:

α =
1

ΓDIS × dσ
dΩdE (KinHRS)

∑

i∈C

dσ

dΩdE
(Kiniv)Γ

i
MC (3.33)

It is striking from eq. 3.33 that we need a parametrization of the cross section in order
to disentangle acceptance and radiative effects.

3.4.6 Parametrization of DIS cross section

The DIS cross section has been measured for a large set of kinematics over the past fifty
years. These data have been used by various groups to parametrize the structure functions F1

and F2, allowing us to compute the DIS cross section for our kinematics. But most of these
data are at much higher Q2 and lower xB where higher twist contributions are suppressed.
As seen on Figure 3.9, scattering events occuring at low Q2 values of about ∼1 GeV2 might
be detected. To correct for these events in the HRS, the cross section parametrization must
include these higher twist contributions no longer suppressed at 1 GeV2.

Table 3.5 shows the predictions for the DIS cross section for two different structure func-
tion parametrizations. To unfold radiative effects and as reference, we use the parametriza-
tions of F1 and F2 taking into account target-mass corrections [56], adapted for JLab kine-
matics.

3.5 Results

The extraction of the DIS cross section allows us to conclude on two different aspects of data
quality. The first one is to get a stable cross section over the runs of the same kinematic
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xB Q2 (GeV2) Ebeam (GeV) Name dσNMC

dΩdE (nb/GeV/sr) dσTMC

dΩdE (nb/GeV/sr)

0.36

1.5
3.355 Kin1low 9.16 9.0
5.55 Kin1high 56.1 55.2

1.75
4.455 Kin2low 13.4 13.14
5.55 Kin2high 29.4 28.93

2
4.455 Kin3low 6.7 6.6
5.55 Kin3high 16.1 15.93

Table 3.5: Comparison of the DIS cross sections for the NMC [55] and TMC parametriza-
tions [56].

setting. This gives us information about some systematic errors. The other one is the quality
of the normalization by comparing our theoretical and experimental results averaged over
all runs of a setting. This comparison revealed many problems needing a particular solution
and helped in elaborating a good run list. After fixing them, the extracted cross section
agrees with the theoretical prediction within 5%.

3.5.1 Stability and systematic errors

Except for the first kinematic setting kin3low, the run-by-run DIS cross section is stable and
stays between ± 2.2% of the global value extracted from all runs (Figure 3.10). A few runs
have been removed from the data analysis for two main reasons:

• the scalers counting the number of triggers for the deadtime were not read correctly
or encountered a problem. Therefore the deadtime was miscalculated for isolated runs
which were removed from the final analysis.

• the BCMs were experiencing electronic problems due to radiation damages. Indeed
the PRex experiment ran just before our experiment, using the electron beam on a
lead target. The induced radiations damaged the electronics of the BCMs. As a
consequence their gain was drifting or suddenly jumping, as seen on Figure 3.10 for
kin2low around run 8660. Problematic runs were removed from the analysis. However,
the different BCMs sometimes disagreed by 2%. Consequently we have decided to
average the measurement of both BCMs and to attribute a 2% systematic uncertainty
on the charge.

Concerning the kin3low setting, the threshold on the Čerenkov detector to trigger the
DAQ was lowered starting from run 8202. Despite the efficiency correction, the extracted
DIS cross section changes by 4% and no clear reason was found. Several factors may explain
this: the BCMs should have been regulated in temperature, but they were not at this time of
the experiment. Their gain are known to change by +1.3% with a 1F temperature increase.
Since the experiment stopped for several hours between runs 8202 and 8215, the temperature
may have decreased slightly in the hall. A 1.5◦C-variation would induce a 4% change in the
cross section. As no thermal regulation were applied for this specific kinematic setting, a
4%-systematic error on the charge must be apply on the kin3low set.

Concerning the HRS acceptance, the DIS cross section does not change by more than 1%
when increasing the cut on the R-value from 5 msr to 20 msr. As a consequence we assign
a systematic error of 1% to the HRS acceptance.

In conclusion, the charge and the radiative corrections represent the most significant
contributions to the total systematic error. All these errors need to be taken into account in
the π0/DVCS data analysis.
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Figure 3.10: DIS cross sections calculated run by run for kin3low (left) and kin2low (right).
The magenta band represents the stability of the extracted value given in table 3.7.

Systematic errors

Charge 2%
Deadtime 1%

Detector efficiency 1%
Multitrack events 0.5%
HRS acceptance 1%

Radiative corrections 2%

Quadratic total 4.5%

Table 3.6: Table of systematic errors for the DIS cross section.

3.5.2 Quality of the normalization factor

The difference between the theoretical prediction and the extracted cross section remains
below 5%. However it appears that the cross section tends to be overestimated for low
beam energy settings, whereas it is underestimated for high beam energy ones. After having
carefully studied all cuts applied for the analysis and found no explanation for this fact, we
conclude that it must be a systematic effect arising from global normalization parameters
such as the deadtime correction and/or the charge measurement.

Kinematics dσTMC

dΩdE

dσTMC
exp

dΩdE Relative difference (%) Stability (%)

Kin1low 9.0 9.26 +2.8 1.6

Kin1high 55.2 53.3 -3.4 1.3

Kin2low 13.14 13.14 0 2

Kin2high 28.93 27.9 -3.4 1.3

Kin3low 6.6 6.9 +4.5 4

Kin3high 15.93 15.26 -4 2.2

Table 3.7: Table summarizing the theoretical and the extracted values of the DIS cross
sections for both parametrizations.

Although the total systematic error is higher than the discrepancy between theory and
experiment, this systematic effect between low/high energy kinematics may have significant
consequences on the Rosenbluth separation.
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DVCS data analysis

Whereas the previous chapter focused on the 2010 run period, this chapter is dedicated to
the 2004 experiment. The HRS did not change between the two run periods, except for
the collimator which was not used in 2004. To extract the photon electroproduction cross
section, we follow the same procedure as for the DIS process. In this chapter, we first develop
the calorimeter analysis and the characterization of the photons. Then we describe the set
of cuts applied to select exclusive photon events. We also discuss the corrections and the
calculation of the luminosity. Concerning the Monte-Carlo simulation, it will be described
in length in Chapter 5.

4.1 Calorimeter analysis

The calorimeter analysis is done in two steps: first, the recorded ARS waveforms are analyzed
in order to extract the time and energy information. Then, an algorithm is used to aggregate
the block information into photon clusters with a measured position, time and total energy.

4.1.1 Waveform analysis

All the detector channels of the electromagnetic calorimeter were equipped with ARS elec-
tronics, which allowed us to save the full waveform of blocks that were recorded during a
trigger, in a manner similar to a digital oscilloscope. In order to extract time and amplitude
information from the ARS, a waveform analysis is needed and performed offline.

The waveform fit algorithm is based on the assumption that the signal shape is indepen-
dent of its amplitude. For an ideal event without noise, the amplitude of the pulse and its
arrival time are free parameters. For any given arrival time t, the amplitude a(t) which best
fits the signal {xi} is simply given by the one which minimizes:

χ2(t) =

imax∑

imin

(xi − a(t)hi−t − b(t))2 , (4.1)

where {hi} is the reference shape. Notice that we also fit a flat baseline b(t). Reference
shapes for each individual PMT are determined experimentally from data, using elastic
calibration runs, where the probability of pile-up is very small. In order to reduce the impact
of accidental events, only imax− imin=80 ARS samples were used in the calorimeter analysis.
These 80 ns are around the expected arrival time of DVCS events, which because of cable
lengths, varies slightly from one channel to another. The partial derivatives of χ2(t) with
respect to a(t) and b(t) yield a linear set of equations in order to obtain the best amplitude
for any given arrival time t. If the minimum value of χ2(t) found for all the possible t is

54
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above a given analysis threshold χ2
1, the algorithm will fit a second pulse to the waveform

by minimizing:

χ2(t1, t2) =

imax∑

imin

(xi − a1(t1, t2)hi−t1 − a2(t1, t2)hi−t2 − b(t1, t2))
2 , (4.2)

for every combination of t1 and t2. For every pair of t1 and t2 and the corresponding fitted
amplitudes and baseline, a reduced χ2 is also computed in a time window of ±20 ns around
the minimum of the pulse. The minimum reduced χ2 found determines the amplitudes
and arrival times of the pulses. Pulses were searched in a [−20, 25] ns interval around the
expectation arrival time of events, by steps of 1 ns. Increased time resolution is obtained by
interpolating around the time that minimizes the χ2 for any time t = t1, t2:

t = t(χ2
min) +

χ2
t−1 − χ2

t+1

2(χ2
t+1 + χ2

t−1 − 2χ2
min)

. (4.3)

The threshold value χ2
1 used for the analysis corresponded to an effective missed pulse of

around 280MeV for each particular calorimeter block (which translates to slightly different
ARS channel thresholds due to the different calibration of each block). Also, if the χ2 of
a fit by a flat-line b was below an equivalent energy of about χ2

0 ∼ 40MeV, no pulse was
fitted and the signal was discarded. Finally, if 2 pulses were found with a relative arrival
time smaller than 4 ns, the algorithm returns the best single pulse fit since results proved to
be unstable in those cases.

4.1.2 Calorimeter calibration

The crystal-by-crystal calibration coefficients were obtained from kinematically over-constrained
elastic scattering: H(e, e′CalopHRS) in which the electron is detected in the calorimeter and the
proton is detected in the HRS. The calibration procedure is explained in subsection 3.2.3.2,
except that the energy of the electron is given indirectly by the momentum of the recoil pro-
ton. In order to illuminate the full acceptance of the calorimeter with elastic electrons, it was
necessary to move the calorimeter back to a distance of 5.5 m from the target center during
these runs. However, data at 1 m, covering only the center part of the calorimeter were taken
nonetheless as a consistency check. Fig. 4.1 shows the energy resolution of the calorimeter
as measured during the elastic calibration runs. Two elastic calibrations were made, one a
few weeks after the start of the experiment and another one a few weeks before it finished.
Calibration coefficients changed by a considerable amount for some blocks, but the energy
resolution did not degrade during the almost 3 months of data taking: a value of 2.4% at
4.2GeV was measured during both calibrations. Since calibration coefficients changed with
time, in order to keep a good energy resolution all along the experiment, we interpolated
these coefficients between the two calibrations runs, together with an extrapolation before
and after them. This was done based on the radiation dose accumulated by each block. This
dose is proportional to the beam current and depends on the block polar angle with respect
to the beam line and also on the target type (LH2 or LD2). An estimate of relative dose
accumulation for each block was made using the anode current monitoring for each crystal
PMT [57].

4.1.3 Clustering algorithm

The algorithm used to separate clusters in the electromagnetic calorimeter is based on a
cellular automata, as described in [58], and uses only pulses arriving within a [-3,3] ns
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Figure 4.1: Energy measured in the calorimeter minus energy expected from elastic kinemat-
ics during elastic calibrations runs. In both elastic calibrations periods, we obtained 2.4%
energy resolution at elastic energy 4.2GeV. The results of the second calibration when first
calibration coefficients are used are also plotted to show the necessity of a careful monitoring
of the coefficients in between these two calibration points.

interval. This coincidence time window is more than 3 times the time resolution of the
detector (∼0.8 ns). For each cluster found, the photon total energy E is taken to be the sum
over the deposited energy Ei in each of the cluster blocks:

E =
∑

i

Ei Ei = CiAi , (4.4)

where Ai is the signal amplitude collected in block i and Ci its calibration coefficient. The
impact position xclus is calculated as the sum of blocks positions xi weighted logarithmically
by the relative energy deposition in each of them:

xclus =

∑
iwi xi∑
iwi

wi = max {0,W0 + ln(Ei/E)} . (4.5)

The parameterW0 allows a further tuning of the relative weight between blocks: asW0 → ∞
the weighting becomes uniform regardless of the energy deposited in each block, whereas
small values of W0 give a larger relative weight to blocks with large energy deposition. The
value of W0 fixes the energy threshold for blocks to be taken into account in the position
determination: blocks with a relative energy deposition less than e−W0 are neglected in the
calculation.

The calorimeter was placed at 110 cm from the 15-cm-long target. The incidence angle
of particles on the front face of the calorimeter could therefore vary by significant amounts:
corrections due to the vertex position in the target needed to be applied. Furthermore, the
electromagnetic shower does not begin at the surface of the calorimeter, but at a certain
depth. This depth is, in first approximation, independent of the incident particle energy.
Taking these two effects into account, the position xclus given by equation (4.5) is corrected
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Figure 4.2: Left: Distribution of the sum of all 10 Čerenkov PMT ADC values, for each
kinematic setting. The cut applied to remove the 1-photoelectron signal from data is also
shown. Right: Reaction point along the beam reconstructed by the HRS. The cut on the
target length applied is shown by the vertical lines. The figure shows the 7.8mm downstream
shift of the target during the experiment.

by:

xcorr = xclus

(
1− a√

L2
vc + x2

)
(4.6)

where Lvc is the distance from the vertex to the calorimeter and a is the distance of the
electromagnetic shower centroid to the calorimeter front face, taken along the direction
of its propagation. The algorithm depends on two parameters W0 and a, which have been
optimized toW0 = 4.3 and a = 7 cm by Monte-Carlo simulation and real data from the elastic
runs, where a 2mm position resolution (σ) at 1.1m and 4.2GeV was measured, compatible
with the one obtained from Monte-Carlo simulations (3mm at ∼3GeV). Position resolution
when two partially overlapping clusters are present is slightly worse than in the case of a
single cluster: simulated data show in this case a 4mm spatial resolution.

4.2 Selection of exclusive ep → epγ events

Before computing any missing mass value, we apply a set of cuts on the HRS and the
calorimeter to ensure a reliable reconstruction of the electron and photon momenta.

4.2.1 Electron selection

The HRS analysis is identical to the one performed for the DIS cross section. We require first
single track events and apply a R-function cut at 5 mrad. The HRS Čerenkov detector was
used for the electron identification. The number of photoelectrons detected is 7 on average,
therefore the distribution is Poissonian. Fig. 4.2 shows the distribution of the sum of all 10
PMTs (in ADC channels). The first ’peak’ in the spectrum is the tail of the electronic noise
in the pedestal. We remove 1-photoelectron events (either thermal emission in the PMT or
δ-rays from pions) by applying a cut at 150 ADC channels. The 1-photoelectron peak is only
visible if the Čerenkov signal is removed from the trigger, and a cut is made on the Pion
Rejector to select minimum ionizing particles (i.e. pions).

Fig. 4.2 shows the distribution of the reaction point along the beam vz reconstructed by
the HRS. The overall location of the target relative to the Hall center is 7.8mm downstream.
A cut in order to avoid the contribution from the target cell wall was applied to the data:
−6.00 cm < vz < 7.50 cm.
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4.2.2 Photon selection

The ep→ epγ events are selected among the calorimeter 1-cluster events. The cluster has to
be in coincidence with the HRS within 3 ns. A software threshold on the energy of the photon
at ∼1.1 GeV enforces the hardware threshold which was equivalent to 1 GeV. Finally, since
a typical shower develops in 9 adjacent blocks, only events whose cluster centroid resides in
one of the inner blocks of the calorimeter are kept.

4.2.3 Exclusivity of the reaction

When the experiment was designed, the exclusivity was thought to be ensured by the detec-
tion of all particles in the final state. However, the constraints on the PA geometry (cutoff,
surrounding the calorimeter) was greatly affecting the acceptance at small |t| and φ=180◦.
As the resolution on the photon and electron are both fair, one could wonder if, depending
on the background level (unknown at the time of the experiment), a cut on the missing mass
M2

ep→eγX could be enough to select exclusive events.

To check this idea, the missing mass M2
ep→eγX has been computed for triple and double-

coincidence events. After subtracting the π0 contamination (explained later in subsec-
tion 4.3.2), the double-coincidence spectrum presented a fair agreement with the triple-
coincidence spectrum (once rescaled) up to ∼1.1 GeV2. It was the proof that a double
coincidence electron/photon associated with a cut on M2

ep→eγX is sufficient to ensure the
exclusivity. By removing the PA from the analysis, the acceptance was fuly recovered for
small |t|-values and at φ=180◦ within the limit of the calorimeter geometry.

Figure 4.3: In green, missing mass spectrumM2
ep→eγX of eγ-coincidence events for 2004-Kin3.

Once the π0 contamination is subtracted from the green distribution, we obtain the black
histogram. The blue shaded histogram represents M2

ep→eγp for triple coincidence events.
The M2

ep→eγp distribution and the π0-subtracted M2
ep→eγX distribution are in agreement up

to ∼1.1 GeV2. For missing-mass values higher than 1.1 GeV2, the π0-subtracted M2
ep→eγX

includes some SIDIS events (blue histogram) such as ep→ epγπ events for which we missed
the pion.

In the rest of this manuscript, the exclusivity will be ensured by applying a cut on the
missing mass M2

ep→eγX . Nevertheless some contamination remains in our event sample,
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which needs to be subtracted

4.3 Contamination subtraction

The number of events below the cut can be written as the sum of three contributions:

NM2
X
<M2

cut
= Nep−>epγ +Nacc +Nπ0−1γ +NSIDIS , (4.7)

with:

• Nep→epγ number of events from DVCS+BH, the one we want to evaluate.

• Nacc number of events in which the photon is coming from the background and is not
related to the scattering process.

• Nπ0−1γ number of events in which the detected photon is coming from a π0 decay.

• NSIDIS number of semi-inclusive events. Among these events, we have for instance
ep→ epγπ events for which we missed the pion (see Figure 4.3).

4.3.1 Accidental subtraction

Although in coincidence, the photon in the calorimeter and the electron in the HRS are not
necessarily related to each other. To estimate the contribution of these accidental events,
we perform the clustering in the time window [-11;-5] ns, where all events are accidental.
As the probability for accidental events does not depend on the time, the number of events
in [-11;-5] ns is equal to the number of accidental events in [-3;3]. In order to reduce the
statistical uncertainty on the number of accidentals, we average the number of events in
[-11;-5] ns and [5;11] ns, as shown on Fig. 4.4.

Figure 4.4: Time spectrum of blocks with E > 300 MeV in kinematic 3. It shows the 45 ns
time window of waveform analysis. The 2 ns CEBAF beam structure can be seen. The
coincidence [-3,3] ns window used for clustering is shown by the solid line. Dashed lines show
windows used for HRS–calorimeter accidental subtraction. Right: Missing mass spectrum of
events in [-3;3] (black) and accidental (red) events for kin3.

On the missing mass spectrum in Fig. 4.5, we notice that accidental events are responsible
of the low missing mass tail. To increase the signal-over-background ratio and therefore
reduce the uncertainty from the accidental subtraction, we require a missing mass value
higher than 0.5 GeV2 for the data. The accidental events mostly affect the bins around
φ=0◦ or φ=360◦ as seen on Fig. 4.5, located on the beam side where the singles rate is the
highest.
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Figure 4.5: Left: Missing mass spectrum of events in [-3;3] (black) and accidental (green)
events for kin3. Right: In black, the total number of events in [-3;3] ns remaining after all the
analysis cuts and in green the number of accidental events for Q2=2.36 GeV2, t=-0.325 GeV2

and xB=0.37. Without the cut at 0.5 GeV2 on the missing mass, the number of accidental
events can easily be multiplied by a factor 2 at large t and φ=0◦.

4.3.2 π0 subtraction

Neutral pions decay into two photons with a probability of ∼99%. In their rest frame, the
two photons are emitted back-to-back with equal energy mπ

2 . In the lab frame, π0’s have a
speed close to c and the two photons from the decay undergo a Lorentz boost. We have to
distinguish two cases:

• If the two photons are emitted symmetrically with respect to the π0 momentum in
the lab frame, then its kinetic energy will be shared equally between the two photons.
Except if the π0 is pointing to an edge of the calorimeter, we detect the two photons.

• If the decay is asymmetrical, then one photon will get almost all the energy of the pion
whereas the other one almost nothing. With the threshold of ∼1 GeV, we only detect
the high energy photon.

P�✁✂ ✄☎✆✝ ✞✄✟✠☎ ▲✟✡✁✄✟✝✁✄☛ ✞✄✟✠☎

❉☞✌✍✎✏☞✑✒ ✑✓ ✏✔✍ ✕✑✑✖✏

❉☞✌✍✎✏☞✑✒ ✑✓ ✏✔✍ ✕✑✑✖✏

Figure 4.6: The energy of the photons depends on the symmetry of the decay with respect
to the pion momentum.

In the case of an asymmetrical decays, since exclusive π0’s have an energy close to a
DVCS photon, the energy of the detected photon may be compatible with a DVCS photon.
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However, the contamination is only a geometrical problem. Indeed we have to evaluate the
phase space of the decay leading to the contamination. Using a Monte-Carlo simulation, we
generate π0 decays using the sample of π0 detected during the experiment. Each detected
π0 is isotropically decayed Ndec=5000. We have then:

Ndec = n0 + n1 + n2 (4.8)

with n0 number of decays with no detected photon, n1 with one detected photon and n2 with
two detected photons. In the case of one detected photon, we can compute the missing mass
M2

ep→eγX : If the missing mass is compatible with a DVCS event, we compute all kinematical
variables as if it was an exclusive photon event. Then we add this event in the corresponding
experimental bin with a weight 1

n2
since we use the π0’s detected thanks to the two photons.

Finally we obtain the π0 contamination as illustrated on Figure 4.7.
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Figure 4.7: Left: Efficiency of the π0 subtraction method estimated by Monte-Carlo. The
black line corresponds to the geometrical cut to ensure an efficient subtraction. Right:
On top of the Figure 4.5, we have added the estimated π0 contamination in red. The π0

contamination is maximal at φ=180◦ whereas the photon electroproduction signal is minimal.

The advantage of this method is that all π0 production channels are included and properly
normalized. The only drawback is that it relies on our ability to detect the two photons
from a π0 decay. A self-consistency check was performed using a Monte-Carlo simulation.
π0’s are generated over our acceptance and classified into two categories: the one-photon-
detected and the two-photon-detected events. After applying our π0-subtraction method to
the two-photon category, we obtain the number of one-photon events and compare it to the
one-photon-detected category. This efficiency ratio is close to 1 except in the corners or close
to the edges as seen on Figure 4.7. Therefore we apply a geometrical cut to both data and
MC to ensure the efficiency of the π0 subtraction.

The 2004-Kin1 had a threshold on the energy deposit in the calorimeter too high for
detecting π0’s. As a consequence, π0 subtraction cannot be performed and we cannot ex-
tract unpolarized cross sections at Q2=1.5 GeV2. Nevertheless we have compared for all
bins of 2004-Kin2 and 2004-Kin3 the extraction of the beam helicity dependent cross section
with and without π0 subtraction. For all bins, π0’s subtract themselves when comparing
the different helicities, confirming a small beam helicity dependence of π0 electroproduc-
tion [37] [59]. Therefore, the beam helicity dependent cross sections have been extracted
without π0 subtraction for all kinematics, including 2004-Kin1.
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Figure 4.8: For the same bin presented in Figure 4.7, N+ −N− according to φ. In black are
represented all events, in red π0s and in green accidental events.

4.4 Corrections

After all the analysis cuts and contamination subtractions, we obtain a clean exclusivity peak
on the missing mass spectrum at the squared proton mass. For all events with a missing
mass between 0.5 GeV2 and a value ensuring exclusivity but determined later, we compute
φ and t to estimate the number of count in the experimental bins. Like in Chapter 3, we
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Figure 4.9: Missing mass spectra of 2004-Kin2 and 2004-Kin3 settings.

have to evaluate the efficiencies of the detectors and the impact of the cuts to correct for the
good events lost in the analysis and data taking.

4.4.1 Trigger efficiency

The efficiency of the scintillators that were used for the electron trigger was monitored
during dedicated runs along the experiment as explained in subsections 3.3.3 and 3.3.4. An
efficiency of 99.95% was measured over the duration of the experiment. The efficiency of
the C̆erenkov counter used to discriminate electrons from negative pions was measured to be
99%. The purity of the electron sample was estimated at 98.8%. However, the H(e, e′γ)X
missing mass cut increases the purity. We consider that a maximum of 0.5% of electrons may
still be misidentified and consider this value as the systematic uncertainty on the electron
identification.
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4.4.2 Multitrack events correction

Even if the electromagnetic calorimeter is in the trigger, the fraction of multitrack events still
represents ∼9% of the total number of events for the three kinematic settings. After having
calibrated the pion rejector for the 2004 run period, we have studied the energy deposit in
the PR of the multitrack events as in subsection 3.3.1. The PR spectra look exactly the same
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Figure 4.10: Energy deposit of multitrack events for 2004-Kin2 and 2004-Kin3.

as the spectra obtained during the 2010 run period. As a conclusion, the correction factor
has the same definition as in subsection 3.3.1. It results in a 2%-correction for 2004-Kin1,
Kin2 and Kin3. A systematic error of 0.5% is associated to this correction, estimated by
changing the cut on the PR energy deposit.

4.4.3 Multicluster correction

The events with more than one cluster in the calorimeter are removed from the analysis. It is
a fair assumption that 3-cluster (or even more) events are not related to an electroproduction
of photon. Yet, considering the rate of accidental events, we might have in 2-cluster events
one accidental photon with an interesting photon from an ep→ epγ reaction.

As a consequence, we have to analyze the 2-cluster events. We compute separately the
kinematics of each photon as if they were single photon events. If γ1 and γ2 are the two
photons, we compute t1,t2,φ1,φ2 and the squared missing masses M2

ep→eγ1X
,M2

ep→eγ2X
. We

have to consider three possibilities by looking at M2
ep→eγ1X

and M2
ep→eγ2X

:

• Both values are rejected by the cuts on the missing mass. In that case, none of the
photons are from an electroproduction.

• Only one value is compatible with the cuts (γ1 for example). Then we consider that
we have a DVCS1 event and put it in the experimental bin associated to (t1;φ1).

• Finally, if both photons are kept by the cuts on the missing mass, they are both
potentially a DVCS event. We know for sure that only one of them is related to the
scattered electron and the other one just accidental. By comparing the accidental rates
in the experimental bins (t1;φ1) and (t2;φ2), we can determine the likelihood of each
photon to be the interesting one. The probability P1 of γ1 being the exclusive photon
with respect to γ2 is given by:

P1 =
Nacc

2

Nacc
2 +Nacc

1

P2 =
Nacc

1

Nacc
2 +Nacc

1

(4.9)

1Here, we use DVCS in the loose sense, photon electroproduction.
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with Nacc
1 /Nacc

2 the number of substracted accidentals in the bin (t1;φ1)/(t2;φ2). Then
we simply add P1 to (t1;φ1), and P2 to (t2;φ2). Please note that we just add one event
to the total number of events.

To select ”good” 2 clusters DVCS events, we remove the 2-cluster events with an invariant
mass between 0.1 and 0.17 GeV because we used them in the π0 substraction. The multi-
cluster correction is around 1%, depending on the experimental bin. The cutM2

ep→eγX > 0.5

GeV2 removes a lot of ambiguous cases.

4.5 Luminosity and beam polarization

The beam is longitudinally polarized. The beam charges according to the beam helicity must
be evaluated in order to extract beam helicity dependent cross sections but also correct for
any asymmetries that would affect the unpolarized results. In the case of polarized cross
section, we also have to evaluate the polarization of the beam.

4.5.1 Beam polarization

The beam polarization was measured during the whole experiment concurrently with regular
data taking using the Compton polarimeter introduced in section 2.2.1.1.

Figure 4.11 shows a typical Compton run (∼ 3h). The beam polarization is then extracted
from the asymmetry and was measured at 75.3%±0.1stat. Because of the resolution on the
position of the Compton electron, an additional 2%-systematic error must be associated to
the beam polarization.

4.5.2 Luminosity

The charge is computed using the BCMs. For the 2004 experiment, the BCMs were perfectly
operationnal and the uncertainty on the charge is ∼1%. In order to evaluate positive and
negative-helicity charge, the BCM readout was synchronized with the helicity signal provided
by the injector. The deadtime was measured using two 62.5 MHz clocks: One is always
running whereas the other one is stopped when the DAQ is busy. Comparing them, we get
ηDT the fraction of time the DAQ was not available. The charge has already been corrected
by the deadtime in Table 4.1.

Kinematic settings ηDT Q+1 (C) Q−1 (C) Q+1,−1 (C) Qasy (10−3) L (fb−1)

1 0.404 0.3732 0.3733 0.7464 -0.1 3059

2 0.277 0.4057 0.4064 0.8121 -0.7 3328

3 0.143 0.6913 0.6937 1.385 -2.4 5676

Table 4.1: Deadtime, charge and luminosity for the three kinematics settings. Charge and
luminosity have already been corrected by the deadtime. L includes the small fraction of
charge with undetermined helicity.
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Figure 4.11: Top: Trigger rates normalized to the beam current as a function of the strip.
Bottom: Corresponding asymmetries according to the strip number, measured for each of
the laser polarization.



Chapter 5

Monte-Carlo simulation and cross
section extraction

By applying the set of cuts and corrections described in the two previous chapters, we
are able to evaluate a number of exclusive photon events. As explained in Chapter 3, the
next step to extract a cross section is to evaluate the phase space that our experimental
setup and the analysis cuts cover. However we are not only interested in extracting the
cross section, but also in performing a separation of different contributions. This separation
is realized by a fitting procedure, involving the Monte-Carlo to take into account all the
known kinematical dependences. As we will also study π0 electroproduction further in this
thesis and be confronted to the same challenges, this chapter deals with both photon and π0

electroproduction. In some cases we will compare both processes in order to shine light on
some subtleties of the analysis.

Before introducing the Monte-Carlo simulation, we discuss specifics about the radiative
corrections for photon and π0 electroproduction. The last section of this chapter is dedicated
to the fitting procedure: how to reduce errors such as bin migration, how to build the
covariance matrix and extract the cross section.

5.1 QED radiative corrections for exclusive processes

In this section dedicated to radiative corrections, we use the term DVCS within its exact
definition which is the emission of the photon by the nucleon. The term photon electropro-

duction must be associated to the coherent sum of DVCS and Bethe-Heitler processes.
As explained in Chapter 3, the same QED radiative corrections can be applied to DVCS,

π0 electroproduction and to DIS. However, some effects still depend on the studied process.

5.1.1 Process dependence of the radiative tail

As seen before, the energy of the incoming electron can be affected by external and internal
bremsstrahlung. It induces a radiative tail in the missing mass spectrum, which does not have
the same shape for photon or π0 electroproduction (see Figure 5.1). Indeed the dependence
of the cross section on the incoming electron energy is different between the two processes.

In order to convolute the value of the cross section into the evaluation of the radiative
tail, the very same cross section we plan to measure needs to be known. We achieve this by
using a parametrization of the cross section and evaluate it for each event in the Monte-Carlo
simulation. In the case of π0 electroproduction, we have used the parametrization extracted
by the CLAS collaboration [38] to reshape the raw radiative tail given by the equivalent

66
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Figure 5.1: Left: Distribution of the incoming electron energy at the vertex with only in-
ternal bremsstrahlung energy loss for Q2 = 2 GeV2, xB=0.36 and t=-0.25 GeV2. In blue
uncorrected energy distribution using the equivalent radiator method. In red, corrected
energy distribution for π0 events using a parametrization of the cross section. In orange,
energy distribution for the Bethe-Heitler process. Orange and red distributions have been
normalized to the blue one. Right: Missing mass spectrum for uncorrected and corrected π0

events.

radiator method alone. We therefore multiply our acceptance by a factor ηXS :

ηXS =

∑
i σiΘ(M2

cut −M2
i )∑

i σi
×

∑
i 1∑

iΘ(M2
cut −M2

i )
(5.1)

where the sum runs over the detected exclusive events,M2
i the missing mass ep→ e′(γ or π0)X

and σi the cross section of the ith event. The function Θ(x) returns 1 if x > 0, otherwise 0.
By applying a cut at 1 GeV2 on the missing mass, the fraction of events below the missing

mass cut would be 0.757 with the raw distribution whereas it is 0.768 with the cross section
behaviour. Therefore we have ηXS=1.015 for a cut at 1 GeV2.

For photon electroproduction, the beam energy dependence is known for all terms (inter-
ference, squared BH and DVCS amplitudes) but we do not know the decomposition of the
cross section between these terms. As the Bethe-Heitler process is mostly dominantin the
kinematics of our experiments, it is a fair assumption to reduce the photon electroproduction
cross section to the Bethe-Heitler cross section for this purpose.

5.1.2 Internal QED radiative corrections to the Bethe-Heitler process

The case of photon electroproduction is more involved because it is given by the interference
of the Bethe-Heitler and DVCS processes. Whereas the elastic approximation works fine
for DVCS and π0 electroproduction, the internal radiative corrections for Bethe-Heitler are
more sophisticated. It implies more diagrams at first order because of the real hard photon
which is emitted by the electron (as seen on figure 5.2).

The amplitude M for photon electroproduction including the virtual corrections can be
written as:

iM = TBH
1

1− δvac(−t)
+ TBHδver,BH + TBH,s.e. + TDV CS

1

1− δvac(Q2)
+ TDV CSδver,DV CS .

(5.2)
By squaring it, it becomes obvious that the radiative correction factor will be different
between Bethe-Heitler, DVCS and interference terms. The direct consequence is that the
correction factors of different observables will be different. D. Lhuillier et al. [54] have
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Figure 5.2: Example of diagrams including vertex and self-energy radiative effects to Bethe-
Heitler process. Self-energy gives a vanishing contribution when the lepton is on-shell, there-
fore it does not participate in DVCS and π0 electroproduction.

Q2 xB
dσBorn

dσExp
∆σBorn

∆σExp

1.5 0.36 0.9511 0.9671

1.9 0.36 0.9484 0.9724

2.3 0.36 0.9455 0.9790

2.06 0.39 0.9470 0.9755

2.17 0.34 0.9460 0.9766

Table 5.1: Radiative correction factors for polarized and unpolarized cross sections for the
E00-110 kinematic settings.

developed a code to compute this virtual correction for the unpolarized and polarized photon
electroproduction cross sections. This code uses a factorized GPD ansatz [60] consisting in
the product of a form factor and a PDF, neglecting the ξ-dependence.

It would be more rigorous to compute a correction factor for each contribution and apply
it separately. This could be perfectly incorporated in our cross section extraction as we will
discover later. Nevertheless such a procedure would induce a φ-dependence of the correction
and be model-dependent. Consequently, for the sake of simplicity and in prevision of more
suitable radiative corrections in the future, we have decided to apply a unique correction
factor to the entire observable (presented in table 5.1) and assign a 2% systematic error to
the combined real- and virtual-radiative corrections.

5.2 Monte-Carlo simulation

In a manner similar to the case of DIS we treated before, we use a Monte-Carlo simulation
to compute the phase spaces ΓDV CS and Γπ0 covered by the experimental setup. however,
this particular simulation is based on the GEANT4 toolkit for particle transport. GEANT4
handles the interaction of the final state particles with matter between the vertex and the
detectors. Interaction of the incident electron with matter before the vertex and internal
radiative effects are included in the event generator.

5.2.1 Implementation of the experimental setup

We use the GEANT4 simulation package to implement the experimental setup. It has been
designed in such a way that all interactions with matter from the vertex to the detector in
the experiment are taken into account for the detected particles of the final state.

Therefore the target cell has the exact same dimensions in the simulation as in the real
world. On figure 5.3, the scattering chamber in the simulation is an exact replica of the real
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one, including the kapton window. For the HRS, only its entrance is implemented. Once the
electron reaches it, we use an acceptance function (described in chapter 3) to determine if
the electron is detected or not in the focal plane.

Figure 5.3: Experimental setup as implemented in Geant4. In yellow, there are the beam
pipes and the scattering chamber. The kapton widow in the scattering chamber is represented
in magenta. The HRS entrance is the small cyan window. On the calorimeter side, we have
in green the shielding for stopping electromagnetic background from the beam pipe. The
calorimeter is enclosed in a box whose only edges are represented in green.

Unlike the HRS, the calorimeter has been fully implemented. For the 2010 run period,
the blocks have even been placed following a block-by-block survey performed in the Hall.
The full block package (screws, PM support, Tedlar and Tyvek paper,...) is included in the
simulation. Only the energy deposit of particles in the calorimeter is digitized in our sim-
ulation, as the generation and tracking of Čerenkov photons requires unrealistic simulation
times and proves to be unreliable due to the difficulty to define optical surfaces in an accurate
manner with GEANT4.

5.2.2 Calorimeter resolution

Because of Bremsstrahlung energy losses and resolution effects, the missing mass cut removes
a significant fraction of exclusive events. This is corrected through the Monte-Carlo (MC)
simulation by applying the same cut in simulated data as in the analysis. But this correction
is properly computed only if the MC and the experimental exclusivity peak are at the same
position and have the same shape. If there is a slight mismatch on the position or shape of
the missing mass between the simulation and the experimental distributions, the resulting
uncertainty may easily reach 5% or more.
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However the MC exclusivity peak provided by the simulation is very different from the
experimental peak:

• Its width is smaller due to a better energy resolution in the MC than in the experiment.
For instance, there is no darkening of the blocks in the simulation. Moreover energy
losses in the blocks are not computed using Čerenkov effect.

• The position is not centered at the squared mass of the proton whereas it is in the
experiment. Again the Čerenkov effect which is not implemented can be part of the
explanation. But there might be also systematic energy losses in the experimental data
that are corrected through the calibration procedure of the calorimeter.

As a consequence we calibrate the MC calorimeter data against the experimental data
to match the missing mass distributions in the exclusivity part. At the same time, we smear
the photon energy in the simulation to match the experimental resolution on the missing
mass. We call this method the smearing procedure, although there is also a calibration.

5.2.2.1 Necessity of a local smearing procedure

By showing how sensitive we are to a mismatch between MC and experiment about the exclu-
sivity peak, we also prove the necessity to reproduce locally the resolution of the calorimeter.

Figure 5.4: t and φ-distributions according to the position of the exclusive photon in the
calorimeter for 2004-Kin3. The farther the photon is from the center of the calorimeter, the
larger is t. φ is increasing by going counter-clockwise when looking the calorimeter from
behind.

The events of a (t,φ)-bin are located in a specific area of the calorimeter, as illustrated
on Figure 5.4. Drawing the missing mass spectrum for each (t,φ)-bin, the exclusivity peak
does not have the same width or position (Figure 5.5). Radiation damage, the quality of
crystals and imperfections of the calibration can explain this phenomenon.

Let us estimate the error induced by a uniform smearing procedure over the entire
calorimeter surface. We take as reference shape the missing mass distribution of all events
once all contamination sources are subtracted. In Figure 5.5 are summarized the mean and
the standard deviation of a gaussian fitted on two “local” missing mass spectra from a same
kinematical setting. We have also fitted with a gaussian distribution the sum of these two
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Figure 5.5: Comparison of the missing mass peaks of the beam-side edge and its opposite edge
for E00-110-Kin3. The dashed gray line corresponds to the cut applied to select exclusive
events. The table summarizes the parameters of a gaussian fitted on the left-side of each
spectrum and to the sum of both spectra.

distributions. Approximating the missing mass spectrum of exclusive events by a gaussian,
the induced error is derived by comparing the fraction of events below the exclusivity cut in
the experiment with the fraction estimated using the MC distribution:

δ =

∫ cut
0.5 M

2
exp(µexp, σexp)dM

2

∫ +∞
−∞ M2

exp(µexp, σexp)dM
2
×
∫ +∞
−∞ M2

MC(µMC , σMC)dM
2

∫ cut
0.5 M

2
MC(µMC , σMC)dM2

, (5.3)

where M2
exp and M2

MC stand for the experimental and MC smeared missing mass spectra. δ
should be equal to 1 as long as all the contamination is subtracted. In the case of a uniform
smearing procedure, we have µMC = µsum and σMC = σsum. Figure 5.6 shows δ as a function
of the exclusivity cut.
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Figure 5.6: Estimated bias due to the exclusivity cut when the Monte-Carlo is smeared using
the parameters µsum and σsum of the bottom row in Figure 5.5.

If we applied the analysis missing-mass cut after a uniform smearing, the cross section
would be underestimated by 15% at φ=0◦ and overestimated by 5% at φ=180◦ for the
corresponding (t, φ)-bins. The resolution study and the smearing have to be performed
locally to avoid introducing a large uncertainty.
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5.2.2.2 Smearing/calibration procedure of the Monte-Carlo calorimeter

We study and perform the smearing procedure of the Monte-Carlo simulation in the same
time. In order to achieve this, the detector is divided into 49 partially overlapping areas.
From the photon four-momentum in the Monte-Carlo simulation, the following smearing
transformation is applied:




qx
qy
qz
E


 7−→ gaus(µ, σ)×




qx
qy
qz
E


 , (5.4)

where µ is the calibration coefficient and σ the smearing coefficient. In each area, the
parameters µ and σ are fitted in order to best match the M2

X spectra of the simulated and
the experimental data in the exclusive region after subtraction of accidentals and π0’s. The
final values of µ and σ used to smear the simulated events are interpolated event-by-event
according to the impact point of the photon in the calorimeter. Fig. 5.8 shows the resulting
values of µ and σ for Kin3, interpolated across the calorimeter surface, and within the fiducial
region defined by the octogonal cut shown in Fig. 4.7. The parameter µ corrects imperfections
in the estimation of the energy in the Monte-Carlo simulation compared to the data. The
parameter σ accounts for different resolutions on different areas of the calorimeter. The
latter can be due to both different levels of background or the different quality of crystals.
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Figure 5.7: Left: Fit of the Monte-Carlo spectrum on an experimental local one. The fitting
range (between pink lines) has to be chosen such that the maximum of the peak is included
but the contamination is limited. Right: Comparison of Monte-Carlo spectra before (black
and scaled down with a factor 0.325) and after (red) smearing.

The missing mass cut which ensures the exclusivity, is chosen at the value where the
Monte-Carlo and the data spectra start to diverge, due to contamination by non exclusive
events (Fig. 6.2). This leads to two different values of missing mass cut: 0.95 GeV2 for Kin 1
and Kin 2, 1.1 GeV2 for Kin 3.

5.2.3 Event generator

The exclusive process ep→ e′X1X2 can be decomposed in a leptonic reaction e → e′γ∗ and
a hadronic reaction γ∗p → X1X2, with (X1, X2) the particles in the final state with masses
m1 and m2. For the e→ e′γ∗ stage, the philosophy is inspired from the DIS event generator
explained in subsection 3.4.4.1. But instead of generating the scattering angle θe and the
energy of the scattered electron E′, we generate xB and Q2 within the constraints of an
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Figure 5.8: Mean µ (top) and standard deviation σ (bottom) of the gaussian distribution
used to smear the simulated photon data of Kin3 viewed on the calorimeter surface yclus vs.
xclus (beam on the right side). A worse energy resolution is observed at small angles with
respect to the electron beam (positive xclus). We also notice areas of fluctuating resolution
corresponding to varying quality of the PbF2 crystals.

exclusive reaction. Concerning the hadronic stage, it consists in generating the variables t
and φ.

First we start with the process e → e′γ∗. Like in the DIS case, the first variable to be
generated is the vertex position vz. We apply the corresponding external radiative corrections
to infer the energy of the incoming electron Eext

v . The second generated variable is Q2,
uniformly in the following range:

Q2 ∈
[
4× Eext

v × pmin × sin2(θmin/2); 4× Eext
v × pmax × sin2(θmax/2)

]
, (5.5)

where (pmin,pmax) are the lower and upper momenta for the scattered electron, and (θmin,θmax)
the lower and upper bounds for the scattering angle. Note that the Q2-range depends on
Eext

v . Now, depending on the process of interest, the xB-range will be different. If there are
X1 and X2 in the final state, W 2 has to be greater than (m1 +m2)

2. For a given Q2, the
maximal value of xB is given by:

xlimB =
Q2

(m1 +m2)2 −M2 +Q2
(5.6)

Table 5.2 lists xlimB for different exclusive processes.

γ∗p→ pγ γ∗p→ pπ0 γ∗p→ ∆γ γ∗p→ ∆π0

xlimB 1 0.88 0.77 0.68

Table 5.2: xlimB for different exclusive processes at Q2=2 GeV2.
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Then xB is generated uniformly between xmin
B and xmax

B defined as:

xmin
B =Max

(
Q2

2Mp(Eext
v − pmin)

, 0.05

)
(5.7)

xmax
B =Min

(
Q2

2Mp(Eext
v − pmax)

, xlimB

)
if Eext

v > pmax (5.8)

= xlimB if Eext
v ≤ pmax (5.9)

The previous definitions are valid only if Eext
v > pmin and xmin

B < xmax
B . If it is not the case,

it means that Eext
v is not high enough to generate a physical event. It is considered as lost.

Once xB and Q2 are generated, we simulate the internal bremmstrahlung as explained
in section 3.4.2. The internal bremsstrahlung is simulated exactly in the same way as for a
DIS event, i.e. always compatible with the generated kinematics. The lowest energy Elim to
realize the generated kinematics is derived when we compute the scattering angle. Indeed it
is given by an arcsin-function whose argument has to be in [-1;1].

Elim =
4ν + 4

√
ν2 +Q2

8
, (5.10)

ν =
Q2

2MxB
, (5.11)

We remind that rlim is the upper bound (Eq. 3.30) for r in order to generate a pre-scattering

internal energy loss compatible with the generated kinematical variables. We evaluate δ
(1)
R

with the generated Q2. For instance, for the kinematic setting Q2=1.75 GeV2 and xB=0.36,
rlim is listed in Table 5.3 for different incoming electron energy:

Ev (GeV) 3.355 4.455 5.55

rlim 0.943 0.968 0.977

Table 5.3: rlim as a function of the incoming electron energy at the vertex.

After the first energy loss by internal bremsstrahlung, the incoming electron is left with
an energy Ev for the scattering process. For the internal bremsstrahlung post-scattering, we
generate r in [0; 1]. Finally we rotate around the beam axis the scattered electron by generat-
ing φe uniformly in a range large enough to cover the full geometrical acceptance of the HRS.
After all this procedure, GEANT4 handles the transport of the scattered electron to the HRS.

The second step involves the reduced reaction γ∗p→ X1X2. The four-momentum of the
virtual photon is computed from the four-momentum of the incident electron after internal
bremsstrahlung. But we use the outgoing electron momentum before internal bremsstrahlung
to ensure the momentum conservation. We place ourselves in the center-of-mass frame of
the system γ∗p. The squared momentum transfer t is uniformly generated between tmin and
tmax, both functions of xB, Q

2, m1 and m2. Once the four-momenta of X1 and X2 are
computed, they are boosted in the lab frame. Finally we rotate their momenta around the
virtual photon by φ, generated according to a uniform distribution in [0; 2π].

For the decay of the final state particle, π0 in our case, we isotropically generate the decay
in the rest frame of the particle. The decay products are then boosted in the lab frame.
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5.3 Cross section extraction and fitting procedure

The principle of the extraction is to compare an experimental number of events to a pre-
diction from our Monte-Carlo simulation bin-by-bin. We use a parametrization of the cross
section with the Monte-Carlo simulation to extract structure functions or CFFs. Once they
are extracted, we reconstruct the cross section. This method presents a lot of advantages,
especially in the case of the Rosenbluth separation:

• It corrects for bin migration which is the association of events to wrong bins. The bin
migration may be as large as 10%, depending on the bin.

• It integrates the kinematical dependences over the entire acceptance of the experimental
setup. As an example, the polarization state of the virtual photon is critical for the
Rosenbluth separation. Our method ensures a tight control of its value.

5.3.1 Vertex and experimental binnings

In data analysis, we reconstruct the kinematics of an event based on the information provided
by the detectors. Because of radiative effects and detector resolutions, the reconstructed kine-
matics might be different from the vertex kinematics. We define two binnings. One binning
uses the kinematics seen by the detectors and we call the corresponding bins reconstructed

bins. The second binning uses the kinematics at the vertex and we call the corresponding
bins vertex bins. If we note Nr the number of events in the rth reconstructed bin and Nrv

the number of events in the rth reconstructed bin coming from the vth vertex bin, we can
write the following relation:

∀r, Nr =
V∑

v=0

Nrv , (5.12)

where V is the total number of vertex bins. Reciprocally, we define R the total number of
reconstructed bins and Nv the number of events in vertex bin v can be written as:

∀v, Nv =

R∑

r=0

Nrv . (5.13)

Using experimental data only, there is unfortunately no way to accessNv (orNrv) whereas
it is needed for the cross section extraction. As we know both reconstructed and vertex kine-
matics in the Monte-Carlo simulation, we can derive a migration matrix K whose coefficients
Krv are the probabilities for an event to belong to the vertex bin v and the reconstructed
bin r:

∀r, Nr =
V∑

v=0

KrvNv , (5.14)

In practice, we are not interested in Nv but in d4σv. It is related to Nv by:

Nv = L
∫

Φv

d4σv
dΦ

dΦ, (5.15)

where dΦ = dQ2dxBdtdφ and Φv is the phase space at the vertex. We can write Eq. 5.14
using the previous relation:

Nr = L
V∑

v=0

∫

Φr
v

d4σv
dΦ

dΦ, (5.16)
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where Φr
v stands for the subvolume of vertex phase space contributing in Nr. Assuming a

cross section constant over Φv, we have:

Nr =

V∑

v=0

(
L
∫

Φr
v

dΦ

)
× d4σv

dΦ
, (5.17)

We recover a matrix expression such as in equation 5.14, which associates the number of
counts Nr and d4σv

dΦ . We define a new matrix K which convolutes migration, acceptance
and phase space effects. The integration in the previous equation is performed using the
Monte-Carlo simulation and gives the following result for K:

Krv = ηXS
rv

∑

i∈r
⋂

v

Γi
MC

Ngen
, (5.18)

where i is an event in the reconstructed bin r and the vertex bin v passing all the cuts
applied in the data analysis and Γi

MC is the associated phase space factor. We have added
the correction factor ηXS

rv from Eq. 5.1, computed with only the events in the reconstructed
bin r and the vertex bin v. Using the matrix K, we are now able to correct for bin migration
and we have a better control on the kinematics at which the cross section is extracted.

5.3.2 Fitting procedure

As seen in Chapter 1, the π0 or photon electroproduction cross section can be written as
the sum of several contributions. Let us give the following general expression of the cross
section:

d4σ

dQ2dxBdtdφ
=

N∑

n=0

̥n(E,Q
2, xB, t, φ)X

n , (5.19)

where ̥n is a known function, depending only on kinematical variables, and Xn a parameter
we want to extract. N is the total number of parameters. In the case of the unpolarized cross
section for DVMP, we would have N = 4 and Xn = {σT , σL, σTT , σTL}. The ̥n-functions
are the virtual photon flux multiplied by the corresponding ǫ∗-dependence associated to Xn

(see Chapter 1). Using Eq 5.16 and Eq. 5.19, we recover a relation between the number of
events in the reconstructed bin and the parameters of the cross section:

Nr =

V∑

v=0

N∑

n=0

Kn
rvX

n
v . (5.20)

By assuming that these parameters do not vary over the phase space Φv, the set of matrices
Kn is defined as follows:

Kn
rv =

∫

Φr
v

̥n(E,Q
2, xB, t, φ)dΦ , (5.21)

=
∑

i∈r
⋂

v

̥n(E
i
v, (Q

2
v)

i, (xB)
i
v, t

i
v, φ

i
v)
Γi
MC

Ngen
. (5.22)

(Ei
v, (Q

2
v)

i, (xB)
i
v, t

i
v, φ

i
v) represents the kinematics of event i at the vertex. The matrices

Kn integrates the kinematical dependences over all the acceptance, still taking into account
bin migration1.

1It is possible to include in these matrices a correction factor for virtual radiative effects as discussed in
subsection 5.1.2.
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Using the equation 5.20 we extract the parameters by minimizing the following χ2 (Fig-
ure 5.10):

χ2 =

R∑

r=0

(
N exp

r −NMC
r

σexpr

)2

, (5.23)

where R represents the number of experimental bins, N exp
r the number of events in the

reconstructed bin r from experimental data and σexpr the associated error. NMC
r is the

number of events in reconstructed bin r expected using Monte-Carlo simulation. By replacing
NMC

r with the expression from equation 5.20 and requiring the values X
n
v to minimize the

χ2, we have for all n and v :

0 = −1

2

∂χ2

∂Xn
v

∣∣∣∣
X

, (5.24)

0 =
V∑

v′=0

N∑

n′=0

An,n′

v,v′X
n′

v′ −Bn
v ∀v, n . (5.25)

To find the solutions, we have to solve the matrix system AX = B with A a matrix whose
dimensions are (N ×V)× (N ×V)and B a column vector with N ×V rows. Their coefficients
are defined such as:

An,n′

v,v′ =
R∑

r=0

L2
Kn

r,vKn′

r,v′

[σexpr ]2
, (5.26)

Bn
v =

R∑

r=0

L
Kn

r,vN
exp
r

[σexpr ]2
. (5.27)

We obtain the value of the parameters by inverting A:

Xn
v =

V∑

v′=0

N∑

n′=0

[A−1]n,n
′

v,v′B
n′

v′ , (5.28)

A−1 is the covariance matrix and the associated error on X
n
v is given by [A−1]n,nv,v . From the

covariance matrix, we can derive the correlation matrix C:

C = Diag(A)×A×Diag(A), (5.29)

where Diag(A) is a diagonal matrix defined by [Diag(A)]ii = Aii. The correlation between
the coefficients is an additionnal source of error on the extracted parameter.

Finally the experimental cross section is given by:

d4σexpr

dQ2dxBdtdφ
=
N exp

rv

NMC
rv

N∑

n=0

̥n(E,Q2
v, (xB)v, tv, φr)X

n
v , (5.30)

where all overlined kinematical variables are averaged values from the corresponding experi-
mental bin. An additional check of our procedure is the equality between these experimental
averaged values and the ones predicted by the Monte-Carlo simulation. Concerning E and
φr, they are purely kinematical, i.e. the extracted parameters are independent of them. As a
consequence we choose them freely. We used logically the beam energy and the φ-bin center.
The value N exp

rv represents the number of events whose experimental bin is the same as the
vertex bin. Using equations 5.14 and 5.20 , it is given by:

N exp
rv = N exp

r − L
N∑

n=0

∑

v′ 6=v

Kn
rv′X

n
v′ . (5.31)
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Figure 5.10: The number of events in a typical t-bin of Kin2 is represented by the black
points with their statistical errors. We extract the parameters by minimizing the difference
between the experimental number of counts and the estimate of the Monte-Carlo simulation
(grey histogram).



Chapter 6

Photon electroproduction results
and discussion

Using the formalism developed in Chapter 1, we derive a parameterization of the photon
electroproduction to use in the fitting procedure presented in the previous chapter. After
summarizing all sources of systematic uncertainties, we present cross section results asso-
ciated with an extraction of Compton Form Factors. Results are compared to GPD-based
models and a discussion is developed about specific kinematical higher-twist effects, also
known as target-mass and finite-t corrections.

6.1 Choice of parameterization

We study the harmonic coefficients introduced in subsection 1.4.3.2 which are the sum of
(c, s)In and (c, s)DV CS

n , themselves involving several combinations of twist-2 and twist-3 CFFs.
The φ-dependence is therefore not enough to separate all linear/bilinear combinations of
CFFs. The φ-dependence of the cross section can thus be properly described by different
choices of free parameters.

In this analysis, we chose to parametrize the DVCS helicity-independent cross section
by the three following combinations of effective CFFs: CDV CS(F ,F∗) (Eq. 1.63), ℜe[CI(F)]
(Eq. 1.68) and ℜe[CI(Feff )] (Eq. 1.69). The helicity-dependent cross section is fitted using
the ℑm[CI(F)] and ℑm[CI(Feff )]. Three reasons have lead to this choice:

• The contributions to the cross section associated with each of these parameters have a
distinct φ-dependence, minimizing the correlations among them,

• We keep the dominant twist DVCS2 contribution,

• Higher twist contributions are kinematically suppressed.

While this is the most physical choice of parameters, any other choice that provides a
good fit (χ2/dof ∼ 1) to the φ-dependence of the number of counts, is an equally valid
choice as far as the cross section extraction is concerned. The fitted parameters, though,
would have a less straightforward physics interpretation in that case. We have tested the
stability of our cross section results against a different choice of free parameters and results
are discussed in section 6.2.2.

The cross section extraction procedure described in section 5.3 was applied to all data sets,
for both the unpolarized and the helicity-dependent cases. In addition to the Q2-dependence
of the helicity-dependent cross sections, we were able to measure the Q2-dependence of
the unpolarized cross section, at two values of Q2=1.9 and 2.3 GeV2. Moreover, the xB

80
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Settings χ2
pol/dof χ2

unp/dof

Kin1 0.88 -
Kin2 1.00 1.16
KinX2 0.96 0.82
Kin3 1.15 0.99
KinX3 1.08 1.28

Table 6.1: χ2/dof resulting from the extraction method for all kinematics settings. The
subscript ”pol” stands for polarized cross sections, ”unp” for unpolarized cross sections.

dependence of helicity dependent and independent cross sections were studied using the
KinX2 and KinX3 settings.

An example of the cross section extraction is presented on Fig. 6.1 for xB = 0.37, Q2 =
2.36 GeV2 and −t = 0.32 GeV2, along with the different contributions resulting from the
fit, which gave an overall χ2/dof of 1.1. For the unpolarized cross section, one observes a

significant contribution from the term associated with
∣∣T DV CS

∣∣2 in our fit, in addition to a
large contribution from the interference term: the Bethe-Heitler is large, but the precision of
the data is such that other contributions are obviously necessary to explain the observed cross
section. The helicity-dependent cross section is dominated by the twist-2 interference term,
as noticed before [44] [32, 33]. These conclusions extend to all bins in our analysis, whose
results are shown in Appendix B. Table 6.1 lists the χ2/dof resulting from the extraction
method for all kinematics settings.

6.2 Systematic errors

Systematic uncertainties are divided into uncorrelated (or point-to-point) and correlated (or
normalization) uncertainties. The largest source of uncorrelated error in this experiment
was associated with the missing mass cut. The correlated uncertainties have been described
before, a summary table is shown in this section.

6.2.1 Missing Mass Cut

Two systematic effects are associated with the missing-mass-squared cut. The first comes
from semi-inclusive events contaminating our sample. These events have larger missing-mass-
squared values induced by extra missing particles. Indeed, even if the cut is supposed to keep
this contamination minimal, a small fraction of such events may remain below the missing-
mass-squared cut. In order to evaluate an upper value for this systematic error, we examined
the ratio of the integrals of the experimental and Monte-Carlo missing-mass-squared spectra.
As seen in Fig. 6.2, this ratio increases significantly with the missing-mass-squared cut, which
is expected since the Monte-Carlo only contains exclusive events. By varying the cut from the
nominal value 0.95 GeV2/c4 up to 1 GeV2/c4, the observed contamination remains smaller
than 1%, which we took as the systematic uncertainty on the cross section. The second
effect induced by the missing-mass-squared cut arises from a mismatch on the position and
shape of the missing-mass-squared peaks between data and Monte-Carlo. This is due to
our limited ability to reproduce perfectly the response of our calorimeter. This mismatch
increases as the missing-mass-squared cut decreases and is maximal around the maximum
of the distribution. We estimate the corresponding error by looking at the variation of the
cross section between the nominal cut and a lower cut value. This lower bound is chosen such
that the loss of statistics is 15%, ensuring that the observed variations are not statistical in
nature. The systematic error is evaluated for each (t, φ) bins of each kinematic setting and
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Figure 6.1: Unpolarized (top) and helicity-dependent (bottom) cross section extraction
for the typical Kin3 bin xB = 0.37, Q2 = 2.36 GeV2 and −t = 0.32 GeV2. The shaded
areas represent the statistical uncertainty for each contribution. The different contributions
are computed using the extracted parameter of the corresponding bin multiplied by the
associated kinematical factor evaluated at the kinematical center of the bin. For instance
the DVCS squared amplitude contribution is

|DV CS|2 = ̥DV CS

(
E = 5.7572, Q2 = 2.36, xB = 0.37, t = −0.32, φ

)
× CDV CS(F ,F∗).
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Figure 6.2: Top: Variation of the ep → epγ cross section for Kin2, −t = 0.17 GeV2, as a
function of the missing-mass-squared cut, for φ = 0◦ (upper blue points) and φ = 180◦ (lower
black points). The dotted vertical line corresponds to the nominal cut. The systematic errors
are evaluated bin by bin in φ and t for each kinematic setting by studying the variation of the
cross section between the nominal and the lower missing-mass-squared cut (dashed line). The
insert represents the same cuts on the missing-mass plot. Bottom: Ratio of the integrals of
the experimental and Monte-Carlo missing-mass spectra, as a function of the missing-mass-
squared cut. By varying the cut up to 1 GeV2/c4 , represented by the dotted-dash line, the
observed contamination remains smaller than 1% (green band).
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may reach up to a few percent. These point -to-point uncertainties are included in the data
tables of Appendix B.

6.2.2 Cross Section Parameterization

As mentioned in section 6.1, the cross section results should be independent of our choice of
parameterization in the extraction method. To evaluate the impact of this choice, we used a
different parameter set by replacing the squared DVCS amplitude term by the interference
term ℜe CI,V , which yields an equally good fit to the data. A difference in the cross section
up to 1% appears locally depending on the kinematic bin, as shown on Fig 6.3. As a
consequence, we estimated the systematic error from the parameter choice to be 1%.

Figure 6.3: Difference in % between the cross section extracted with the squared DVCS
amplitude term and with the ℜe CI,V term for xB = 0.37, Q2 = 2.36 GeV2 and −t =
0.33 GeV2. The φ-profile of the difference is a consequence of the small cosφ and cos 2φ
dependences of ℜe CI,V kinematic coefficient. Naturally, the two different extractions give
almost the same reduced χ2/dof=0.94 (nominal) and 0.93 (alternate) for the entire Kin2
setting.

6.2.3 Correlated Uncertainties

Table 6.2 presents the systematic uncertainties on the cross section stemming from normal-
ization effects, which are considered 100% correlated bin-by-bin. Note that the helicity-
dependent cross sections have an extra uncertainty coming from the beam polarization mea-
surement. The determination of these uncertainties are discussed in the associated section
listed in the table.

6.3 Photon electroproduction results

Before comparing our data to existing models, we will try to interpret the extracted effective
CFFs within the assumptions stated in section 6.1. Systematic uncertainties represented on
the figures are the point-to-point exclusivity uncertainties added linearly to the normalization
uncertainty.
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Systematic uncertainty Value Section

HRS acceptance cut 1% 3.5.1
Electron ID 0.5% 3.3.4
HRS multitrack 0.5% 4.4.2
Corrected luminosity 1% 4.5.2
Fit parameters 1% 6.2.2
Radiative corrections 2% 5.1.2
Beam polarization 2% 4.5.1

Total (helicity-independent) 2.7%

Total (helicity-dependent) 3.4%

Table 6.2: Normalization systematic uncertainties on the extracted photon electroproduction
cross sections. The systematic error coming from the fit parameter choice is not a normal-
ization error per se, but we consider that 1% is an upper limit for this error on all kinematic
bins. The helicity-dependent cross sections have an extra uncertainty stemming from the
beam polarization measurement. The last column gives the section in which each systematic
effect is discussed.

6.3.1 Scan in Q2

The different combinations of effective CFFs which have been extracted from our fits to
Kin1–3 using the formalism developed in [17] are shown integrated over t, on Fig. 6.4. With
the choice of parameters used to describe the kinematical dependence of the cross sections
(introduced in section 6.1), the contribution associated with the

∣∣T DV CS
∣∣2 term is large for

the unpolarized case. The twist-2 interference term is significant and the contribution of the
twist-3 interference term is often found to be small, with large systematic errors. For the
polarized case, the twist-2 interference term is dominant, the twist-3 contribution is small,
again with large systematic errors. Note that the errors on the effective CFFs represented
in this plot correspond to the diagonal of the error matrix.

Overall, the extracted parameters show noQ2–dependence for neither the helicity-dependent
or helicity-independent cases over our Q2–range. Note that the logarithmic Q2–evolution can
safely be neglected within this Q2 lever arm at this xB.

The full set of results for settings Kin1–3 are presented in Fig. B.1–B.7 in Appendix B.

6.3.2 Scan in xB

The results from KinX2 and KinX3 showing the xB-dependence of cross sections are pre-
sented in Fig. B.3–B.9 in Appendix B. KinX3 has a limited acceptance close to 0◦, which
increases the correlation between the different fit parameters describing the azimuthal de-
pendence of the cross section (Figure 6.5). Indeed, the separation of the real part of the

twist-2 interference and
∣∣T DV CS

∣∣2 contributions in the fit is particularly sensitive to the
relative value of the cross section measured around both 0 and 180◦. These difficulties have
basically no impact on the determination of the cross sections themselves. The measured xB-
dependence will set interesting constraints on GPD models and parametrizations, especially
thanks to the relatively high accuracy of our data.

6.3.3 Comparison with models

In Fig. 6.6, we compare our results with various models and previous fits to data. We have
chosen to use two different kinds of double-distribution GPD models, namely the VGG [61]
and KMS12 [36] models. Note that in contrast to VGG, the KMS12 model was tuned using
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Figure 6.4: Different combinations of effective CFFs extracted from our fits using the formal-
ism developed in [17], integrated over t and plotted as a function of Q2. The top three plots
show the effective CFFs resulting from the unpolarized cross section fit (Kin2 and Kin3),
whereas the bottom plots show the effective CFFs resulting from the helicity-dependent
cross section fit (Kin1–3). The shaded areas represent only the systematic error due to the
exclusivity cut. No significant Q2–dependence is observed on the full set of parameters.
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Figure 6.5: Correlation matrix for KinX3. The crosses represent negative correlation coef-
ficients. The correlation between ℜe[CI(F)] and CDV CS(F ,F∗) is getting important since
they are both φ-independent around 180◦ and there is no data at 0◦ to disentangle them.
The correlation matrices are shown in Appendix B.
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vector meson data at low to very-low xB, and is not adapted yet to the valence quark region.
In any case, one observes that both models overshoot the helicity-dependent cross section
data in this Kin2 bin, whereas VGG is more adequate for the unpolarized data.

In addition, we have compared our data with the KM10a model [62], which fits some
of its parameters to all DVCS data available worldwide except for the previously published
results from a subset of the present experiment. The consequence is that no absolute DVCS
cross-section data in the valence region were used for this fit. The KM10a model is clearly
very close to the helicity-dependent data, which is not a surprise considering that the CLAS
asymmetry data in the same kinematic region were used to constrain this model. However,
this same model significantly underestimates the DVCS unpolarized cross section around
φ = 180◦ (Figure 6.6).

Recently, kinematic twist-4 target-mass and finite-t corrections (TMC) have been cal-
culated for DVCS on the proton and estimated for the KMS12 model [63, 64] (shown in
Fig. 6.6). Since this model is not adapted to the valence quark region, we have extracted the
correction factor and applied it to the KM10a parametrization 1. This allows us to gauge
the effect of such corrections in the most realistic model available to us. It is striking that
the lack of strength observed at φ = 180◦ for the KM10a model is largely compensated by
the TMC, giving a surprisingly good agreement between this modified KM10a model and
our data.

An update of the KMS12 model, taking into account the DVCS data in the valence
region, would allow for a much stronger statement about the necessity of target-mass and
finite-t corrections at these moderate Q2. At any rate, we emphasize that the high accuracy
of the present data is crucial to disentangle the different contributions at play in this critical
area around 180◦. There is no doubt that the addition of our new data set to the KM fit
will be most interesting, especially in the light of these new higher-twist calculations.

All the features we have described remain true for most of our data bins, which are shown
in Appendix B. It is interesting to note that for the highest bins in t, especially for Kin2 and
KinX2 (Figure B.1 and B.3), the TMC to the unpolarized cross section is of the same order
as the cross section itself around φ = 180◦. This corresponds to values of (−t/Q2) ∼ 0.15 or
larger. It is not unreasonable to expect that higher-order corrections in (−t/Q2)2 start to be
important at these values, and may compensate the peculiar behavior of the TMC around
φ = 180◦, which is not visible in data. Efforts to achieve a resummation of the (−t/Q2)k

series to all orders are currently undertaken [66].

6.4 Conclusion about photon electroproduction

The E00-110 experiment [42] ran in Hall A at Jefferson Lab in the fall of 2004. Its goal was
to measure the Q2−dependence of the DVCS helicity-dependent cross sections at fixed value
of xB. A first analysis [44] extracted ℑm CI

unp(F) and ℑm CI
unp(Feff ) [18] which were not

showing any Q2-dependence, hinting the handbag diagram dominance. A set of unpolarized
cross section at Q2=2.3 GeV2 was also published. In the previous chapters of this thesis, we
have detailed a reanalysis of the E00-110 results.

Several improvements have been performed compared to the 2006-analysis:

• The DIS study of the 2010 run period performed in Chapter 3 brought new elements

1In principle, the full calculation of TMC can only be evaluated knowing the GPDs in the entire region
x > ξ. KM10a however uses a dispersion relation fit for the valence region by parametrizing the GPD H

on the cross-over x = ξ line and a subtraction constant. Moreover, even if the main part of the TMC for
unpolarized observables could in principle be evaluated by a change of conventions to CFFs and the ξ variable
[65], the KM10a parametrization is currently only available as a binary package giving directly the photon
electroproduction cross section.



Chapter 6: Photon electroproduction results and discussion 88

Figure 6.6: Unpolarized (top) and helicity-dependent (bottom) cross sections for the typical
Kin2 bin xB = 0.37, Q2 = 1.93 GeV2 and −t = 0.23 GeV2. The light blue area represents
the point-to-point systematic uncertainties added linearly to the normalization error. The
predictions from the distribution-based models KMS12 and VGG are shown respectively
as dashed green and solid red curves. The KM10 fit is represented as the solid blue line.
The target-mass and finite-t corrections are included in the KMS12 model and shown as the
dotted-dash curve. The correction is then applied to the KM10a model shown as the dotted
blue line.
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about the normalization of the cross sections. The main change concerns the multitrack
correction which drops from 10% to 2% (see section 3.3.1).

• The π0-subtraction method has been tested and validated for 2004-Kin3. Nevertheless
the full efficiency is reached for 2004-Kin2 as long as the edges and corners are removed.

• We have shown that the cut on the missing mass distribution could easily induce a sys-
tematic error of 10%. Consequently a calibration/fitting/smearing procedure has been
developed in order to reproduce as much as possible the resolution of the calorimeter
and reduce the corresponding systematic error.

• A careful study of the systematic uncertainties has been done.

• The radiative corrections have been improved by using a dedicated code [54] for photon
electroproduction.

• The formalism introduced in [18] neglects several kinematical terms by assuming Q2 →
∞. Since most of the published data are at Q2 of a few GeV2, an updated version
including these neglected terms was published in 2010 [17]. Considering the moderate
Q2 of the present measurements, this analysis uses the 2010 formalism.

Whereas the same set of parameters as for 2006-analysis was applied to extract the beam-
helicity dependent cross sections, we used a different set for the unpolarized cross sections.
Indeed, in 2006, only effective CFFs involved in the interference term were used and the
squared DVCS contribution was assumed negligible. Here we have replaced an interference
term by the twist-2 term of the DVCS amplitude. Thanks to the π0 results [37], we have
extracted another unpolarized data set at Q2=1.9 GeV2, making the scaling test possible
for unpolarized data. Although both parametrizations give the same result, it is interesting
to only recover the scaling with the set including the |DV CS|2 contribution. It seems to
confirm the handbag diagram dominance observed on polarized data . Moreover it is possible
that we performed a clean separation of the interference and |DV CS|2 contributions. Since
the interference and |DV CS|2 contributions have not the same beam-energy dependence, a
full separation will be possible using the data of the 2010 run period and confirm (or not)
the previous statement.

In addition to the Q2−dependence at fixed xB, we present here new results on the xB-
dependence of the DVCS cross section at fixed Q2 by using a subset of the data from the
Kin2 and Kin3 settings with 1.95 < Q2 < 2.30 GeV2.

The only unpolarized data in the valence region for comparison have been recently pub-
lished by the CLAS collaboration [22]. Unfortunately their small acceptance at our kine-
matical values induce large statistical uncertainty and jeopardize a strong consistency check
between both sets of results.

For all the data sets, the excellent accuracy in the 120-240◦ region allows for precise
comparison with models in this critical region where the Bethe-Heitler process is not the
dominating contribution. The era of 20%-accuracy measurements is over, where you can
fit any pure leading-twist parametrization with no correction. Moreover it was shown that
Next-To-Leading order corrections are significant with respect to the statistical accuracy of
these results and of the future experiments [67]. The extraction of GPDs is more challenging
and exciting than ever: it requires the theoreticians to work on their extraction codes and
models until they match the experimental data within its higher and higher accuracy .



Chapter 7

Rosenbluth separation of π0

electroproduction

Whereas we analyzed in the previous chapter the 2004 run period, the π0 analysis described
in this chapter was performed on the 2010 run period. The kinematical settings in 2010
(Table 7.1) are close from those of 2004. Since we want to perform a Rosenbluth separation
of the π0 electroproduction cross section, two beam energies are used for each Q2-value. The
detector package was the same as for the 2004 experiment, except for the calorimeter which
was larger for a total of 208 PbF2 blocks. As pointed out before, the trigger for the 2010 run
period was simply an inclusive electron trigger for most of the experiment, with no hardware
threshold on the energy deposit in the calorimeter.

Name Q2 (GeV2) xB W 2 (GeV2) E (GeV) ǫ∗

2010-Kin1 1.5 0.36 3.55 (3.355 ; 5.55) (0.52 ; 0.84)
2010-Kin2 1.75 0.36 3.99 (4.455 ; 5.55) (0.65 ; 0.79)
2010-Kin3 2 0.36 4.44 (4.455 ; 5.55) (0.53 ; 0.72)

Table 7.1: Table of kinematics for the 2010 experiment. Sometimes we will refer to the
high beam energy kinematical settings by adding a suffix high, and similarly for the low
beam energy with the suffix low. As an example, the 2010-Kin1 with the beam energy at
3.355 GeV is called 2010-Kin1low and 2010-Kin1high refers to 2010-Kin1 with the beam
energy at 5.55 GeV.

The calorimeter analysis is the same as for the 2004 run period, except for a new cali-
bration method introduced in the first section. Note that the HRS analysis is common with
the DIS analysis described in Chapter 3. Then we present the set of cuts used to select
exclusive π0 events. Before applying the fitting procedure introduced in Chapter 5, we per-
form the fitting/calbration/smearing procedure of the Monte-Carlo simulation to minimize
the systematic uncertainty associated with the exclusivity cuts.

7.1 Calorimeter calibration

The same waveform analysis and clustering algorithm explained for the DVCS analysis in
Chapter 4, have been used for the 2010 analysis. However the calibration of the calorimeter
differs slightly. The first step is nonetheless the same: dedicated elastic scattering runs
with the proton detected by the HRS and the scattered electron in the calorimeter were
used to extract first order calibration coefficients. The drawback of this calibration is that it

90
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cannot take into account changes in gain between two elastic runs. A complementary method
using π0’s has been elaborated, allowing us to monitor the gain and adapt the calibration
coefficients on a daily basis [68]. The principle of this method is to select exclusive π0 events
and derive the energy of each photon knowing the invariant mass and the squared missing
mass.

Indeed the energies of the decay photons in the reaction π0 → γ1γ2 are the solutions of
the following system of equations:

Eπ0 = E1 + E2 , (7.1)

m2
γ1γ2 = 2E1E2 (1− cos θγ1γ2) , (7.2)

where E1 and E2 represent the energies of γ1 and γ2. Eπ0 is the energy of the π0. The cosine
of the angle between the two photons is related to their 4-momenta by:

cos θγ1γ2 =
q1 · q2

E1E2
. (7.3)

Thanks to the gain coefficients extracted from elastic scattering calibration, we have an
experimental measurement of cos θγ1γ2 . In order to determine Eπ0 , we compute the missing
mass M2

ep→γ1γ2X
:

M2
ep→γ1γ2X =W 2 +m2

γ1γ2 − 2 (ν +M)Eπ0 + 2||q||
√
E2

π0 −m2
γ1γ2 cos θ , (7.4)

where cos θ stands for the angle between the momenta of the virtual photon and of the
π0. Therefore cos θ is also measured experimentally. In the case of events associated with
exclusive π0 electroproduction, we have M2

ep→e′γ1γ2X
= M and mγ1γ2 = mπ. We therefore

derive Eπ0 and solve the system 7.1. Once E1 and E2 are known, we write the usual relations:

E1 =

207∑

i=0

GiAi , E2 =

207∑

i=0

GiAi , (7.5)

where Ai is the amplitude of the ith block and Gi its calibration coefficient. To determine Gi

we apply the same method as in subsection 3.2.3.2. The change of calibration coefficients may
affect the position of the photons in the calorimeter, and consequently cos θγ1γ2 and cos θ.
This calibration is then iteratively performed, looping between calibration and clustering
with the new coefficients.

We need about one day worth of statistics to carry out an accurate π0 calibration. As
a consequence, the variations of the gain can be monitored and corrected on a daily basis
(Figure 7.1).

7.2 Event selection

A Rosenbluth separation requires a tight control of the kinematics at which the cross sections
are extracted. In particular, previous results from Hall A [37] and CLAS [38] show a large
Q2- and xB-dependence of σT + ǫ∗σL. To reduce the systematic uncertainty caused by a
slightly different bin center between low and high beam energy kinematical settings, we need
to select events with specific Q2 and xB values.

7.2.1 HRS acceptance cut

We select electrons going through a well-known part of the HRS acceptance, similarly to
the DIS analysis of Chapter 3. All the cuts detailed in this chapter are used here, except
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Figure 7.1: Comparison of the mean and standard deviation of the invariant-mass and the
missing-mass peaks for exclusive π0 events, before (black) and after (red) π0 calibration.
The dashed-lines represent elastic calibration runs. Using the π0 calibration, the resolution
on both peaks is slightly improved and their positions are much more stable.
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Figure 7.2: Left: Comparison of (Q2,xB) phase speaces between kin1low (black) and kin1high
(red). Right: Comparison of (Q2,xB) phase spaces between kin2low (black) and kin2high
(red).

for the cut on the energy deposit in the Pion Rejector. Indeed, the exclusivity cuts on the
two-gamma invariant mass and the missing mass are enough to clean the electron sample
without requiring a PR cut.

The phase space in (Q2, xB) selected by the HRS at high beam energy (HBE) is much
larger than at low beam energy (LBE) (Figure 7.2). Because of the uncertainty and size of
the kinematical dependences, we chose to apply a 2D-cut in the (Q2,xB) acceptance, limiting
the HBE phase space to match the LBE one. The induced uncertainty on the kinematics of
the extraction is therefore reduced and becomes similar for the two beam energy settings.

7.2.2 Selection of photons

The identification of π0’s is ensured by the invariant mass of the two photons from their
decay (Figure ??). Unlike the 2004 experiment, there was no hardware threshold on the
energy deposit in the calorimeter for most of the 2010 run period. A software threshold
needs to be applied in order to increase the signal-over-background ratio:

• An excessively low threshold would increase the multiplicity of detected photons, some
of them being uncorrelated background or noise.

• An excessively high threshold would reduce the number of accepted π0 events. We
recall that it was the reason why no unpolarized photon electroproduction cross section
were extracted from 2004-Kin1 since there were not enough detected π0’s to apply our
subtraction method.

For the π0 data analysis, we apply a software threshold at 500 MeV, filling the two
conditions above. We select only 2-cluster events. Finally we also applied a geometrical cut
on the two cluster positions in order to remove photons that hit the calorimeter less than
1.5 blocks away from the calorimeter edge. This limits the electromagnetic shower leakage
and ensures a full reconstruction of the photon energy.

7.2.3 Process identification

In order to evaluate the number of exclusive π0 events, we check the invariant mass of the
two photons for particle identification and the missing mass associated with the ep→ eγγX
reaction. Because of the correlation between the invariant mass and the associated missing
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mass stemming from imperfections in the calorimeter calibration, a 2-dimensional cut on
these variables is applied (Figure 7.3).
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Figure 7.3: Invariant mass of photon pairs (mγγ) versus missing-mass squared of the
ep → γγX system (M2

ep→γγX) for 2010-Kin1high (left) and 2010-Kin2high (right). The

two dimensional exclusivity peak is clearly spotted at M2
ep→γ1γ2X

= M2 and mγ1γ2 = mπ

(Intersection of the dashed lines). The π0-identification/exclusivity cut is shown in black
and is the same for all kinematical settings.

7.3 Accidental subtraction

Most of the contamination comes from accidental photons detected in the calorimeter. The
number of accidental events can be decomposed into three terms:

Nπ0

acc = Na−aa +Nc−ac +Na−cc , (7.6)

where:

• Na−aa is the number of events for which all three particles are accidental with each
other.

• Nc−ac is the number of events for which one of the photon and the scattered electron are
in coincidence and we detect an accidental photon. For instance, such events can result
from an exclusive photon event with an accidental photon detected in the calorimeter.

• Na−cc is the number of events for which both photons are related to each other but
accidental with respect to the scattered electron. Accidental π0’s create such events.

To estimate each term, we study the different cases looking at events in the coincidence time
window [-11;-5], [-3;3] and [5;11] ns (Figure 7.4).

1. We apply all analysis cuts to two-photon events in the time range [-11,-5] ns. The total
number of events passing the cuts is Nc−cc +Na−aa.

2. When an event presents one photon detected in [-3;3] ns and one photon in [-11;-5],
we combine the two photons and apply all analysis cuts to this event. The number of
events estimated with this study is Nc−ac +Na−aa.

3. Finally we study events with one photon in [-11;-5] ns and one photon in [5;11] ns,
combine the two photons and apply the analysis cuts. We obtain Na−aa. We get Nπ0

acc

by simply adding the two first terms and subtracting this last term.
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Figure 7.4: Left: Time distribution of 2-photon events. The horizontal and vertical bands
correspond to Nc−ac. The diagonal is related to Na−cc. Finally the random points give
Na−aa [69]. Right: Distribution of events in a typical bin. The total number of events in
[-3;3] ns after analysis cut is represented in black. We have represented in green 2 Na−aa +
Nc−ac +Na−cc given by steps 1 and 2. Na−aa is represented in blue (close to 0).

In order to reduce the statistical uncertainty on Nπ0

acc, we also use the window [5;11] ns
for steps 1 and 2 and divide the corresponding results by 2.

7.4 Corrections

The corrections associated with the spectrometer for the 2010 run period have been developed
in Chapter 3. We still need to apply the multicluster correction.

We use a method similar to the multicluster correction developed in section 4.4.3, but
applied to π0 events with two clusters in the calorimeter: For each 3-cluster events, photons
are paired two-by-two. For each of the three pairs, we apply the analysis cuts. If a pair
passes the cuts, we compute the corresponding kinematical variables and consider it as an
exclusive π0 to reintegrate in the corresponding experimental bins.

In the case of several pairs passing the analysis cuts, we cannot apply the trick used for
DVCS which consists in evaluating the probability for each photon to be the exclusive one
by looking at the accidental rates. Indeed for a few bins with small acceptance, we have no
accidental event. Nevertheless we assume that the pairs have the same possibility to be the
exclusive π0’s. As a consequence, we add in the experimental bin a fraction of event equal
to 1

Npair
, with Npair the number of pairs passing the analysis cuts.

7.5 Luminosity

Since the analysis of the Compton polarimeter is still in progress, we only show the integrated
luminosity in Table 7.2.

7.6 Monte-Carlo calorimeter calibration and resolution ef-
fects

In the case of the exclusive π0 analysis, we have to reproduce the main features of the two-
dimensional plot representing the invariant mass mγγ versus the missing mass M2

ep→eπ0X .
Whereas the missing mass is essentially sensitive to the energy resolution, the invariant mass
is mostly sensitive to the resolution on the angle between the two photons.
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Setting Luminosity (fb−1)

2010-Kin1low 3164

2010-Kin1high 522

2010-Kin2low 4415

2010-Kin2high 3102

2010-Kin3low 6095

2010-Kin3high 2233

Table 7.2: Integrated luminosity corrected for deadtime for the 2010 experimental settings.
The deadtime can be found in Table 3.2 in Chapter 3.

The two photons are separated on average by ∼ 13 cm, depending on the kinematics.
Although the resolution of the calorimeter changes less from a bin to another in the case
of π0 than in the case of γ electroproduction, it may still induce some systematic effects.
The accuracy of the local study is limited by the distance between the two photons and the
available statistics. For this reason, the detector is divided into only 9 partially overlapping
areas. The π0’s are associated with the area in which they would have hit the calorimeter.

Because we cannot disentangle the resolution effects on each photon separately, we work
with the π0 energy and 4-momentum. Indeed we apply the same transformation as in Eq. 5.4,
except that we apply it to the 4-momentum of the π0 instead of the photons. Concerning
the angular resolution, we smear isotropically the directions of the photons with an angle θs
generated according to a gaussian distribution.

Once the fitting/calibration/smearing procedure is performed, we have a map of the
calibration coefficient, the energy and angular resolutions. The resolutions are worse when
close to the beam side, as expected due to the high radiation background (Figure 7.5).

 (cm)0πx
-20 -15 -10 -5 0 5 10

 (
cm

)
0 πy

-20

-15

-10

-5

0

5

10

15

20

0.24

0.25

0.26

0.27

0.28

Angular resolution

 (cm)0πx
-20 -15 -10 -5 0 5 10

 (
cm

)
0 πy

-20

-15

-10

-5

0

5

10

15

20

0.056

0.058

0.06

0.062

0.064

Energy resolution

Figure 7.5: Left: θs for 2010-Kin3high as a function of the xπ0 and yπ0 , coordinates of the
points where the π0 would have hit the calorimeter. θs is given in degrees and corresponds
to a resolution on the cluster position of ∼4 mm. Right: Resolution on the π0 energy
(parameter σ) for 2010-Kin3high as a function of the xπ0 and yπ0 , coordinates of the points
where the π0 would have hit the calorimeter. The beam is located on the positive-x side.
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7.7 Cross section extraction and full separation

We adapt the method introduced in Chapter 5 to extract the different terms of the cross
section. Nevertheless the natural parametrization of the DVMP cross section (Eq 1.73) does
not include the kinematical dependences of σT , σL, σTL and σTT

1. We add a functionnal
form to take into account these dependences.

7.7.1 Principle of the extraction

In the Chapter 5, we introduced a method to extract a cross section based on the minimiza-
tion of a χ2. This χ2 compares the number of experimental events with the number of events
estimated with a Monte-Carlo simulation and a parametrization of the cross section. In the
case of a linear parametrization, the minimization of the χ2 is equivalent to solving a matrix
system:

AX = B , (7.7)

where A is the covariance matrix and B a vector, both defined in Eq. 5.26. X is a vector
encapsulating the parameters of the cross section we want to extract, i.e. σT , σL, σTL and
σTT for all vertex bins. Since we integrate some kinematical dependences over the acceptance
automatically with the Monte-Carlo, this method is very efficient to reduce the error from a
miscalculation of the bin kinematical center.

We apply the first steps of the fitting procedure on each beam energy setting separately.
We compute the matrices (Alow,Blow) for low energy and (Ahigh,Bhigh) for high energy
kinematics. Since we are looking for a vector X solution of both systems (Figure 7.6), we
can write:

AlowX = Blow

AhighX = Bhigh

}
⇒ (Alow +Ahigh)X = Blow +Bhigh, (7.8)

We have a new matrix system combining the two kinematics together, with
[Alow +Ahigh]

−1 as covariance matrix and Blow +Bhigh as column vector.
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Figure 7.6: Left: The black points represent the number of events in a t′-bin for 2010-
Kin2low. The red histogram represents the number of counts estimated by the Monte-Carlo
simulation once the fit has been performed. On the right: Same t′-bin for 2010-Kin2high
with the experimental number of counts represented by the black points and the Monte-
Carlo estimation by the red histogram. χ2/dof are close to 1 whereas we require the same
quadruplet (σT , σL, σTL, σTT ) for both bins.

1In order to simplify the notations, σi ≡
dσi

dt
.
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Then, with Eq. 5.30, we extract the experimental cross sections for both beam energies.
Figure 7.7 shows the experimental virtual photon cross section d2σ

dtdφ for both beam energies
corresponding to the bin in Figure 7.6.
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Figure 7.7: In red experimental d2σ
dtdφ for 2010-Kin2high at t′=0.12 GeV2, corresponding to

ǫ∗ = 0.79. In blue d2σ
dtdφ for 2010-Kin2low at t′=0.12 GeV2, corresponding to ǫ∗ = 0.65. The

shaded area represents the 2%-systematic error on the normalization.

7.7.2 Kinematical dependences

The terms σT and σTT depends strongly on Q2 and for only σTT on t′ = tmin(xB, Q
2) − t.

Because of this dependence, a slight error on the central value of the bin can induce a few
percent error on σT + ǫ∗σL. As the final goal is to compare σT + ǫ∗σL at two different beam
energies, you must either compute exactly Q2 and t′ for the two beam energies or integrate
these kinematical dependence in the fitting procedure to correct naturally for them. We
choose the latter. We rewrite σT such as:

dσT

dt = ΛT (t, Q, xB)× rT , (7.9)

Λ(t, Q, xB) =
(tmin(xB ,Q2)−t)aT

QbT
, (7.10)

where aT and bT are parameters to fit on data. Similarly we have dσTT

dt = ΛTT (t, Q, xB)×rTT

with the parameters aTT and bTT . |tmin| is the minimal squared momentum transfer to the
proton given by:

tmin =
(Q2 +m2

π)
2

4W 2
−
[√

W 2 +Q2 +M2

4W 2
−M2 −

√
W 2 −m2

π +M2

4W 2
−M2

]2
. (7.11)

Such a functional form is only used for σT and σTT which are the cleanest signals. Then,
the parametrization used for the extraction reads:

d4σ

dtdφdQ2dxB
=

1

2π
Γγ∗(Q2, xB, Ee)

[
ΛT (t, Q, xB)rT + ǫ∗

dσL
dt

+
√
2ǫ∗(1 + ǫ∗)

dσTL

dt
cos(φ) + ǫ∗ΛTT (t, Q, xB)rTT cos(2φ)

]
,

(7.12)

where rT and rTT are supposed to be independent of Q2 and t′. To determine aT , bT , aTT

and bTT , we have to iterate between the extraction and the fit. Then we follow the steps:
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1. For the first extraction, we set aT = bT = aTT = bTT = 0. Therefore we have
ΛT = ΛTT = 1 for all t′ and Q2 values.

2. We extract σT , σL, σTT and σTL. From this first extraction, σT shows a strong depen-
dence on Q2 and σTT on Q2 and t′.

3. Therefore we fit aT and bT with the extracted σT over all the bins. aTT and bTT are
obtained by fitting σTT .

4. Then we go back to step 1 and use the fitted values of aT , bT , aTT and bTT . As a
consequence, we extract no longer σT and σTT in step 2, but rT and rTT .

The results do not change anymore after three iterations. We reconstruct then σT and
σTT with Equation 7.9 at the mean kinematical value of the experimental data.

7.8 L/T separation of the π0 electroproduction

The results presented in this section are still preliminary results. Although all sources of
systematic errors have been identified, their propagation to the final results is still in progress.

7.8.1 Systematic uncertainties

7.8.1.1 Normalization

The normalization has been tested by extracting the DIS cross sections. Although the results
were found within 4% of the theoretical DIS prediction, there is a systematic underestimation
for high-beam-energy kinematics and an overestimation for low-beam-energy kinematics.
We have decided to normalize our result to the DIS prediction which allows reducing the
normalization systematic uncertainty from 4.5% to 2%.

To propagate this uncertainty, we extract 4 combinations for each response:

• σ++
T , σ++

L , σ++
TL and σ++

TT corresponding to an increase of 2% the normalization factor
for both beam energies.

• σ−−
T , σ−−

L , σ−−
TL and σ−−

TT corresponding to a decrease of 2% the normalization factor
for both beam energies.

• σ+−
T , σ+−

L , σ+−
TL and σ+−

TT corresponding to a decrease of 2% the normalization factor
for the low beam energy and an increase of 2% for the high beam energy, and vice
versa (σ−+

T , σ−+
L , σ−+

TL and σ−+
TT ).

We then define the lower and upper uncertainty for σT such as:

δ+T =Max(σ++
T , σ−−

T , σ−+
T , σ+−

T )− σT , (7.13)

δ−T = σT −Min(σ++
T , σ−−

T , σ−+
T , σ+−

T ) . (7.14)

The normalization uncertainties for σL, σTL and σTT are defined similarly as for σT .

7.8.1.2 Exclusivity cut

To evaluate the systematic error on the extraction induced by the exclusivity cut, we extract
the four terms using three different cuts. On Figure 7.8, we show the three cuts and the
corresponding σT and σL extracted for Q2=2 GeV2. The resulting variation is small for σT
and σL and it appears that we are dominated by the normalization uncertainty.
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Figure 7.8: Left: Invariant mass of photon pairs versus missing-mass squared of the ep →
γγX system for 2010-Kin3high. The black, orange and red lines represents the different
cuts used to evaluate the systematic uncertainty. Right: σL and σT in nbarn.GeV−2 as a
function of tmin − t extracted with the three different cuts. The error bands represent a 2%
normalization uncertainty.

Concerning σTT and σTL, the systematic uncertainty due to the exclusivity cut is larger
than the normalization uncertainty, as illustrated on Figure 7.9. Their extraction is based on
the φ-dependence of the cross sections, and therefore much more sensitive to local resolution
effects.
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Figure 7.9: Left: σTL in nbarn.GeV−2 as a function of tmin − t extracted with the three
different cuts on (mγγ ;M

2
ep→eπ0X) for Q2=2 GeV2. Right: σTT in nbarn.GeV−2 as a function

of tmin− t extracted with the three different cuts on (mγγ ; M
2
ep→eπ0X) for Q2=2 GeV2. The

error bands represent a 2% normalization uncertainty.

Indeed the value of the differential cross sections in t′ = (tmin − t) and φ changes locally
when changing the 2D-cut on (mγγ ; M

2
ep→eπ0X), as seen on Figure 7.10. Such point-to-point

uncorrelated errors must be included in our extraction to properly propagate the exclusivity
systematic uncertainty. This work is still in progress.

7.8.2 Results

We have used three bins in t′ for the kinematics at Q2=1.5 and Q2=2 GeV2. The high
statistics of the kinematical setting atQ2=1.75 GeV2 and the large t′-acceptance have allowed
us to extract a fourth bin for this intermediate setting. For most of the bins, σL is found
to be compatible with 0 and consequently σT represents almost all the φ-independent term.
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Figure 7.10: d2σ
dtdφ in nbarn.GeV−2 as a function of φ for two bins of 2010-Kin2 with different

exclusivity cuts. We apply the same color code as in Figure 7.8.

On Figure 7.11, we have a non-zero σL contribution at Q2=2 GeV2 and t′ = 0.02 GeV2. It
is at this kinematical values that the Goloskokov-Kroll (GK) model [20] predicts the largest
longitudinal contribution. Figure 7.11 shows also predictions from Liuti-Goldstein (LG) [39]
models involving also transversity GPDs. The GK model is in fair agreement, although it
overestimates slightly σT . The LG model is only shown for Q2=2 GeV2 on a limited range
in t′ and underestimate the transverse contribution. In addition, we have studied the Q2-
dependence of σT . We have fitted a function A

Qn on the average value of σT extracted at each

Q2. Since n ∼ 8, it seems to indicate that the handbag diagram dominates even though our
study is performed at moderate Q2.

Concerning σTT , its amplitude increases as Q2 decreases. Again the GK model over-
estimates this term (Figure 7.12), which tends to indicate that the ĒT contribution in the
GK model is larger than what it is in the experiment. We have studied the Q2-dependence,
using again a functional form A

Qn ; we find n ∼ 6 whereas it should be 8 in the hypothesis of
the handbag diagram dominance. However the error on n does not include the systematic
uncertainty from the exclusivity cut whereas it is the major source of uncertainty for σTT .
Although rather small, σLT is not compatible with zero and found negative whereas both
theoretical predictions give a positive value. But there is no theoretical constraint on the
sign of σTL. However it seems that the GK model succeeds to predict its amplitude for
the two highest Q2-values and underestimate it at Q2=1.5 GeV2. Because σTL is small and
the systematic uncertainty from exclusivity is large, no conclusion can be drawn from its
Q2-dependence.

The GK model reproduces the main features of the π0 electroproduction cross section.
Indeed its fair agreement with the results strongly suggests that there is a coupling between
the transversity GPDs and the twist-3 DAs of the pion. It makes π0 electroproduction an
interesting channel to study these GPDs, under the assumptions of a fairly good knowledge
of the DAs and that the factorization for transversely polarized photons is valid.

Concerning longitudinally polarized photons, the theoretical framework is well estab-
lished. The longitudinal contribution involving the GPDs H̃ and Ẽ is small, compatible
with 0 for most of the bins. At Q2=2 GeV2 and the smallest t′ value, i.e. the bin with the
highest expected ratio R = σL

σT
, σL is not compatible with 0. Therefore, at slightly higher

Q2, it should be possible to study H̃ and Ẽ using π0 electroproduction.
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Figure 7.11: Longitudinal and transverse π0 electroproduction cross sections, σT (red) and
σL (blue) in nbarn.GeV−2 as a function of tmin− t in GeV2. The shaded area represents the
systematic normalization uncertainty. The solid lines in the corresponding colors represent
predictions by GK [20], the dashed lines in corresponding colors represent predictions by
LG [39]. Bottom right: Fit Q2-dependence of σT when averaged over t′. The error bars are
the linear sum of the statistical uncertainty with the systematic uncertainty of normalization.
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Figure 7.12: Transverse/transverse interference term σTT for π0 electroproduction in
nbarn.GeV−2 as a function of tmin − t in GeV2. The shaded area represents the systematic
normalization uncertainty. The solid lines represent predictions by GK [20], the dashed lines
represent predictions by LG [39]. Bottom right: Fit Q2-dependence of σTT when averaged
over t′.
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Figure 7.13: Transverse/longitudinal interference term σTL for π0 electroproduction in
nbarn.GeV−2 as a function of tmin − t in GeV2. The shaded area represents the system-
atic normalization uncertainty. The solid lines represent predictions by GK [20], the dashed
lines represent predictions by LG [39].



Conclusion

In this thesis we have analyzed two different data sets and studied photon and π0 electro-
production cross sections. The high statistical accuracy of both data sets requires a careful
study of the systematic errors: identification, cause(s) and evaluation. For instance we have
identified the calibration and resolution of the calorimeter as the critical parameters that
might induce the largest systematic error for both processes. Nevertheless this error can be
reduced by reproducing as much as possible the calibration and resolution of the calorimeter
in the Monte-Carlo simulation. To do so, we have developed a fitting/calibration/smearing
procedure based on the comparison between the experimental and the Monte-Carlo missing-
mass squared distributions (and the invariant mass of the two photons in the case of π0

electroproduction). The systematic uncertaintes from the normalization and the HRS ac-
ceptance have been studied through the extraction of the deep inelastic scattering cross
section for the 2010 run period. Because of the damaged BCMs in 2010, we estimate the
normalization+HRS acceptance systematic uncertainty at 4.5% whereas it was only 2.5% for
the 2004 run period.

Concerning the photon electroproduction, we have extended the kinematical domain of
the previous Hall A measurements for both polarized and unpolarized cross sections. In
addition we have extracted a set of effective CFFs following the formalism developed in [17].
For both the unpolarized and polarized cases, these effective CFFs show no Q2-dependence.
In other words the handbag diagram seems to be dominant despite the rather low Q2 values.
The E07-007 experiment ran in 2010 and performed DVCS cross section measurements at
two beam energies in order to separate the contributions of the |DV CS|2 and the interference
terms. With such a clean separation, we will be able to further test the scaling property. We
have also compared our results to existing GPD models. The model of reference, KM10a, is
in good agreement with the polarized data points. Nevertheless it seems to underestimate the
unpolarized signal around φ = 180◦. Recent work about target-mass and finite-t corrections
have shown that such effects may change significantly the cross section behavior around
φ = 180◦. We have applied the bulk of the TMC to the KM10a model and noticed that this
modification improves very significantly the agreement with most of the unpolarized cross
section results.

We have also performed the first Rosenbluth separation of the π0 electroproduction cross
section. We observe that most of the cross section is induced by transverse virtual photons.
Although the factorization cannot be demonstrated with transversely polarized photons in
the case of DVMP, the fair agreement with the Goloskokov-Kroll model might indicate that
higher-twist contributions from the meson distribution amplitude couples to transversity

GPDs. Indeed the large kinematical factor µπ = m2
π

mu+md
coming with the twist-3 DAs

would compensate the twist-3 Q2-suppression and induce a large transverse response at our
moderate Q2. If this hypothesis holds, neutral pion electroproduction becomes the golden
channel to access these elusive transversity GPDs. The longitudinal π0 cross section is found
compatible with zero for most of our data. At the highest Q2 and smallest (tmin − t) values,
a non-zero longitudinal signal appears where R = σL

σT
is supposed to be maximal. Note that
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it should be possible to get information about GPDs H̃ and Ẽ by studying σL at higher
Q2 where it becomes sizable. Moreover π0’s are particularly good candidates to study these
GPDs as they do not involve a pion-pole contribution like π+.

Additional data for both processes will be provided by 12 GeV data at Jefferson and
by COMPASS at CERN in the near future. Indeed, the E12-06-114 experiment in Hall
A is currently running and aims at high precision measurements in a larger kinematical
domain compared to 6 GeV running. The CLAS12 DVCS program is also very ambitious,
with unpolarized and polarized target running in a large kinematical domain. Finally, using
the High Momentum Spectrometer in Hall C, Rosenbluth separations of photon and π0

electroproduction will be carried out at higher Q2 and xB compared to data shown in this
thesis. The COMPASS experiment at CERN will run its dedicated DVCS program starting
in 2016. Besides DVCS and π0 electroproduction, the GPD experimental program will also
include the studies of Timelike Compton Scattering, Double-DVCS and electroproduction of
other mesons. On a longer time scale, the Electron-Ion Collider will add the missing pieces
of the GPD puzzle such as an unprecedented kinematical domain and statistical precision, as
well as data related to GPDs which can only be accessed precisely with transverse protons,
easy to achieve in such a collider. The next 15 years will be extremely exciting!

Nevertheless, the experimental progress will be such that an equally intense effort has to
be carried out on the data analysis front, as well as in theory and phenomenology. For the
data analysis, most collaborations still use sequential cuts to select events, which is crude
and often inefficient: much cleverer tools such as neural networks or boosted decision trees
could be investigated in order to optimize the selection of events and improve the accuracy
of the measurement. Also, experimentalists and theorists need to work together in order to
improve the calculation of radiative corrections, which are sizable and still in their infancy
for the processes of interest. In this thesis, we have associated a systematic uncertainty of
2% to the QED radiative corrections and it is already a large uncertainty compared to the
statistical precision of the data. For instance, CLAS12 expects a statistical accuracy of 2%
or less in some experimental bins. Clearly, the present accuracy of radiative corrections is
not sufficient for the future experiments which will be limited by systematic errors. As far as
phenomenology is concerned, the statistical precision is already such that QCD corrections
(Next-to-Leading Order corrections, Q2-evolution,. . . ) have to be included in order to reli-
ably extract GPDs. Moreover, both the photon and the π0 electroproduction results shown
in this thesis strongly hint at the necessity to include some form of higher-twist effects for
their interpretation. However, it is striking to observe that only a few phenomenology groups
currently work on GPD extraction, which is a task immensely more complicated than the
extraction of PDFs from DIS data. It is absolutely crucial to start focusing our efforts on
GPD extraction. Once everything is in place, only then will we be able to cast our eyes on
the first realistic three-dimensional pictures of the nucleon.



Appendix A

Preliminary DVCS results for the
2010 run period

Another goal of the 2010 run period was to perform a Rosenbluth separation of the photon
electroproduction cross section. This separation allows to disentangle the contributions of
the squared DVCS amplitude and the interference terms which have different beam energy
dependences. We checked the normalization through the extraction of the DIS cross section
when the trigger was an inclusive elctron trigger. But there is a significant part of the
2010-Kin2high which ran with the calorimeter in the trigger and for which there is no direct
way to test the normalization. In the first section of this appendix, we compare the photon
electroproduction cross sections with and without the calorimeter in the trigger. In the
second one, we compare the results extracted from 2004-Kin2 to 2010-Kin3high which are
kinematically close to each other.

The 2010 results presented in this appendix are preliminary results.

A.1 Inclusive electron trigger versus dedicated DVCS trigger

In Chapter 3, we mentioned that the 2010-Kin2high ran with two different triggers. Whereas
it was possible to study the DIS cross section to check the normalization with the inclusive
electron trigger, there is no such check with the dedicated DVCS trigger (Level-2 trigger
requiring one cluster in the calorimeter above 200 MeV). Nevertheless we can compare the
photon electroproduction cross section for both triggers.

Both results are statistically compatible as illustrated by Figure A.1 whereas the triggers
were different.

A.2 Comparison with the 2004 run period

We have compared the 2010-Kin3high results (Q2=2 GeV2, E=5.55 GeV, xB=0.36) to the
2004-Kin2 results (Q2=1.9 GeV2, E=5.7572 GeV, xB=0.36) : indeed, using the effective
CFFs extracted on 2004-Kin2, we can estimate the cross section at the kinematics of 2010-
Kin3high with Eq. 5.19. We applied the same binning in t for this study as for the 2004
analysis. As seen on Figure A.2, the predictions with the 2004 results match the cross
sections extracted for 2010-Kin3high within the statistical/systematic uncertainties.

In conclusion of this appendix, all the results (2004, 2010 with or without calorimeter in
the trigger) are compatible with each other.
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Figure A.1: Photon electroproduction cross section in nbarn.GeV−4 as a function of φ in
degrees. The black points are extracted from the 2010-Kin2high data taken with the inclusive
electron trigger (runs from 9257 to 9292, and from 9577 to 9615), the red points with the
dedicated DVCS trigger (run 9705 to 9850).
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Figure A.2: Photon electroproduction cross sections in nbarn.GeV−4 as a function of φ in
degrees for 2010-Kin3high. The grey solid line is the Bethe-Heitler contribution, The blue
solid line CDV CS(F ,F∗) (Eq. 1.63), the red solid line ℜe[CI(F)] (Eq. 1.68) and the green solid
line ℜe[CI(Feff )] (Eq. 1.69). The black solid line represents the sum of all the contributions.
The dashed pink line is the prediction using the results of 2004-Kin2.
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Tables of unpolarized and polarized
dvcs cross sections

B.1 Unpolarized cross sections

Figure B.1: (Color online) Unpolarized cross sections for Kin2. Error bars are statistical only.
The light blue area represents the point-to-point systematic uncertainties added linearly to
the normalization error. The KM10a model along with its modified version including TMC
effects are shown as dotted blue and solid green curves respectively. The Bethe-Heitler
contribution is represented as a dashed red line.
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Figure B.2: (Color online) Unpolarized cross sections for Kin3. Error bars are statistical only.
The light blue area represents the point-to-point systematic uncertainties added linearly to
the normalization error. The KM10a model along with its modified version including TMC
effects are shown as dotted blue and solid green curves respectively. The Bethe-Heitler
contribution is represented as a dashed red line.

Figure B.3: (Color online) Unpolarized cross sections for KinX2. Error bars are statistical
only. The light blue area represents the point-to-point systematic uncertainties added linearly
to the normalization error. The KM10a model along with its modified version including
TMC effects are shown as dotted blue and solid green curves respectively. The Bethe-Heitler
contribution is represented as a dashed red line.
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φ (deg)
xB = 0.343 xB = 0.368 xB = 0.375 xB = 0.379 xB = 0.381

Q2 = 1.820 GeV2 Q2 = 1.933 GeV2 Q2 = 1.964 GeV2 Q2 = 1.986 GeV2 Q2 = 1.999 GeV2

t = -0.172 GeV2 t = -0.232 GeV2 t = -0.278 GeV2 t = -0.323 GeV2 t = -0.371 GeV2

7.5 111.6 ± 4.1
+ 2.3

76.9 ± 4.2
+ 0.0

75.2 ± 5.6
+ 2.2

66.2 ± 7.7
+ 3.2

70.6 ± 11.8
+ 13.1

– 0.0 – 1.1 – 1.7 – 0.9 – 0.0

22.5 117.6 ± 3.9
+ 0.7

68.6 ± 3.7
+ 0.0

59.7 ± 4.5
+ 1.4

64.1 ± 6.3
+ 0.9

66.3 ± 8.7
+ 5.2

– 0.3 – 2.8 – 0.6 – 2.0 – 0.4

37.5 99.8 ± 3.5
+ 0.3

61.7 ± 3.2
+ 0.0

57.9 ± 3.8
+ 0.9

43.9 ± 4.5
+ 1.8

45.1 ± 5.7
+ 0.0

– 0.5 – 2.6 – 1.5 – 0.0 – 3.3

52.5 94.1 ± 3.3
+ 0.0

66.9 ± 3.0
+ 0.0

50.4 ± 3.2
+ 0.0

42.5 ± 3.8
+ 0.0

39.0 ± 4.5
+ 0.0

– 3.4 – 1.2 – 4.2 – 2.8 – 5.8

67.5 88.2 ± 3.0
+ 0.0

55.5 ± 2.7
+ 0.0

40.0 ± 2.8
+ 0.2

35.3 ± 3.1
+ 0.0

41.0 ± 3.7
+ 0.0

– 2.1 – 2.0 – 1.1 – 2.9 – 2.4

82.5 78.7 ± 2.8
+ 0.4

46.1 ± 2.4
+ 0.1

36.1 ± 2.5
+ 1.3

29.4 ± 2.8
+ 1.2

26.7 ± 2.9
+ 0.0

– 0.4 – 0.9 – 0.0 – 0.4 – 3.3

97.5 67.2 ± 2.6
+ 3.6

40.1 ± 2.1
+ 0.1

35.2 ± 2.2
+ 0.6

27.4 ± 2.4
+ 0.0

29.2 ± 2.8
+ 0.0

– 0.0 – 1.4 – 1.8 – 2.0 – 3.3

112.5 60.8 ± 2.4
+ 0.5

37.7 ± 2.0
+ 0.0

33.0 ± 2.1
+ 0.0

24.0 ± 2.1
+ 0.0

25.9 ± 2.6
+ 0.0

– 1.3 – 3.1 – 1.4 – 1.3 – 1.0

127.5 57.5 ± 2.3
+ 0.0

34.0 ± 1.8
+ 0.0

29.3 ± 1.8
+ 0.1

25.5 ± 2.0
+ 0.0

21.4 ± 2.4
+ 0.1

– 2.3 – 2.2 – 3.0 – 2.2 – 1.4

142.5 50.1 ± 2.1
+ 0.2

33.9 ± 1.7
+ 0.0

28.0 ± 1.7
+ 0.0

22.4 ± 1.9
+ 0.5

16.1 ± 2.4
+ 0.0

– 0.8 – 0.9 – 1.4 – 1.3 – 1.4

157.5 49.9 ± 2.1
+ 0.0

34.6 ± 1.7
+ 0.2

26.3 ± 1.7
+ 0.0

21.3 ± 2.1
+ 0.0

13.5 ± 2.7
+ 2.7

– 0.9 – 0.5 – 2.8 – 2.6 – 0.0

172.5 48.1 ± 2.0
+ 0.0

30.7 ± 1.6
+ 0.9

26.8 ± 1.7
+ 0.0

17.4 ± 2.0
+ 1.3

17.5 ± 3.2
+ 0.0

– 2.0 – 0.3 – 0.7 – 0.0 – 1.7

187.5 48.3 ± 2.0
+ 0.0

31.5 ± 1.6
+ 0.0

26.6 ± 1.7
+ 0.2

21.4 ± 2.1
+ 0.7

20.5 ± 3.2
+ 0.0

– 1.5 – 1.6 – 0.6 – 0.3 – 1.4

202.5 53.2 ± 2.1
+ 0.0

35.7 ± 1.7
+ 1.2

24.7 ± 1.6
+ 0.0

22.5 ± 2.1
+ 0.6

21.7 ± 2.9
+ 0.0

– 1.6 – 0.0 – 1.5 – 0.3 – 1.8

217.5 52.7 ± 2.2
+ 0.0

33.3 ± 1.7
+ 0.6

28.4 ± 1.8
+ 0.0

25.1 ± 2.1
+ 0.0

26.5 ± 2.6
+ 0.0

– 0.7 – 0.0 – 4.2 – 1.7 – 1.4

232.5 55.2 ± 2.2
+ 0.0

33.7 ± 1.8
+ 0.2

28.4 ± 1.9
+ 0.0

26.0 ± 2.1
+ 0.0

20.1 ± 2.2
+ 0.0

– 3.4 – 1.1 – 1.5 – 0.4 – 2.4

247.5 58.5 ± 2.3
+ 0.2

37.7 ± 2.0
+ 0.0

37.3 ± 2.2
+ 0.0

30.5 ± 2.4
+ 0.1

25.7 ± 2.6
+ 0.0

– 0.9 – 1.3 – 2.5 – 3.1 – 1.8

262.5 63.1 ± 2.4
+ 0.0

40.4 ± 2.1
+ 0.0

37.8 ± 2.3
+ 0.0

28.2 ± 2.5
+ 1.3

21.7 ± 2.6
+ 0.6

– 2.8 – 1.7 – 2.5 – 0.3 – 1.6

277.5 74.2 ± 2.7
+ 0.8

42.9 ± 2.3
+ 0.2

40.2 ± 2.4
+ 0.0

32.6 ± 2.7
+ 0.0

26.2 ± 2.9
+ 0.5

– 0.7 – 0.7 – 2.6 – 1.7 – 0.3

292.5 81.8 ± 2.9
+ 0.3

52.8 ± 2.6
+ 0.6

42.6 ± 2.7
+ 1.1

36.4 ± 3.1
+ 3.0

29.7 ± 3.5
+ 0.4

– 2.1 – 1.2 – 0.1 – 0.0 – 0.7

307.5 96.7 ± 3.2
+ 0.0

59.3 ± 2.8
+ 0.0

46.8 ± 3.1
+ 0.4

47.4 ± 3.8
+ 0.0

33.8 ± 4.1
+ 0.0

– 1.8 – 2.6 – 0.4 – 3.2 – 4.1

322.5 105.6 ± 3.5
+ 0.0

62.0 ± 3.2
+ 0.0

48.0 ± 3.5
+ 0.0

46.0 ± 4.7
+ 0.7

39.6 ± 5.7
+ 0.0

– 1.2 – 1.9 – 2.0 – 1.8 – 5.5

337.5 108.6 ± 3.8
+ 1.5

73.3 ± 3.8
+ 4.1

60.3 ± 4.5
+ 1.6

52.6 ± 6.3
+ 1.4

44.9 ± 8.2
+ 6.9

– 1.5 – 0.0 – 0.5 – 0.8 – 0.0

352.5 113.6 ± 4.0
+ 2.9

76.8 ± 4.2
+ 0.0

60.7 ± 5.3
+ 0.5

50.0 ± 7.3
+ 0.0

59.5 ± 11.6
+ 4.4

– 0.0 – 1.1 – 3.5 – 13.0 – 0.0
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φ (deg)
xB = 0.345 xB = 0.363 xB = 0.368 xB = 0.371 xB = 0.373

Q2 = 2.218 GeV2 Q2 = 2.318 GeV2 Q2 = 2.348 GeV2 Q2 = 2.360 GeV2 Q2 = 2.375 GeV2

t = -0.176 GeV2 t = -0.232 GeV2 t = -0.279 GeV2 t = -0.325 GeV2 t = -0.372 GeV2

7.5 104.3 ± 3.6
+ 1.1

80.3 ± 3.5
+ 0.0

66.6 ± 4.2
+ 3.1

64.8 ± 5.8
+ 0.5

60.6 ± 8.4
+ 0.0

– 0.2 – 1.1 – 0.0 – 1.9 – 8.2

22.5 108.6 ± 3.6
+ 1.6

80.6 ± 3.3
+ 3.6

71.9 ± 4.0
+ 2.6

60.2 ± 4.9
+ 0.0

54.8 ± 6.3
+ 0.0

– 0.9 – 0.0 – 0.6 – 3.9 – 3.3

37.5 100.3 ± 3.4
+ 2.6

70.5 ± 3.0
+ 0.1

58.0 ± 3.2
+ 0.0

42.3 ± 3.4
+ 0.9

41.2 ± 4.1
+ 2.2

– 0.0 – 1.8 – 5.8 – 0.6 – 1.4

52.5 91.2 ± 3.2
+ 1.5

60.4 ± 2.7
+ 0.5

48.2 ± 2.8
+ 0.2

39.2 ± 3.0
+ 3.1

38.8 ± 3.3
+ 1.4

– 1.0 – 1.3 – 0.7 – 0.0 – 0.0

67.5 76.8 ± 2.9
+ 0.0

51.3 ± 2.4
+ 0.6

42.2 ± 2.4
+ 0.2

36.8 ± 2.6
+ 3.0

29.5 ± 2.6
+ 1.4

– 3.1 – 0.4 – 2.5 – 0.0 – 0.1

82.5 73.0 ± 2.8
+ 0.4

46.3 ± 2.2
+ 1.1

39.4 ± 2.2
+ 0.0

27.3 ± 2.1
+ 0.0

23.8 ± 2.2
+ 0.6

– 0.6 – 0.1 – 3.0 – 1.0 – 0.2

97.5 56.5 ± 2.5
+ 0.4

42.6 ± 2.0
+ 0.5

29.5 ± 1.9
+ 2.1

25.1 ± 1.9
+ 0.0

20.3 ± 1.9
+ 0.0

– 0.7 – 0.7 – 0.2 – 0.8 – 1.1

112.5 55.7 ± 2.3
+ 0.6

35.3 ± 1.8
+ 0.8

28.7 ± 1.7
+ 0.0

24.3 ± 1.7
+ 0.4

16.6 ± 1.6
+ 0.0

– 1.2 – 0.3 – 0.8 – 0.7 – 1.8

127.5 49.0 ± 2.2
+ 0.4

34.8 ± 1.7
+ 0.0

23.8 ± 1.5
+ 0.0

21.9 ± 1.6
+ 0.5

16.5 ± 1.5
+ 0.0

– 1.1 – 1.5 – 0.9 – 0.4 – 2.6

142.5 47.0 ± 2.1
+ 1.4

28.4 ± 1.6
+ 0.1

24.8 ± 1.5
+ 0.0

20.3 ± 1.5
+ 0.0

14.9 ± 1.4
+ 0.0

– 0.0 – 0.5 – 0.6 – 0.6 – 1.3

157.5 41.1 ± 2.0
+ 0.1

30.9 ± 1.6
+ 0.1

25.7 ± 1.6
+ 0.0

19.0 ± 1.5
+ 0.2

14.0 ± 1.5
+ 0.9

– 1.4 – 0.9 – 1.4 – 0.2 – 0.0

172.5 41.6 ± 2.0
+ 0.0

25.7 ± 1.5
+ 0.1

25.7 ± 1.6
+ 0.1

20.4 ± 1.6
+ 0.9

13.7 ± 1.7
+ 0.0

– 0.9 – 0.6 – 0.5 – 0.0 – 0.7

187.5 38.5 ± 1.9
+ 0.0

27.7 ± 1.5
+ 0.0

20.6 ± 1.5
+ 0.0

18.1 ± 1.5
+ 0.3

15.1 ± 1.7
+ 1.1

– 1.1 – 0.9 – 0.6 – 0.6 – 0.2

202.5 41.1 ± 1.9
+ 0.4

29.7 ± 1.6
+ 0.1

20.7 ± 1.5
+ 0.1

22.8 ± 1.6
+ 0.0

16.7 ± 1.6
+ 0.5

– 1.1 – 0.6 – 0.4 – 1.7 – 0.3

217.5 45.3 ± 2.1
+ 0.3

31.4 ± 1.6
+ 0.1

24.2 ± 1.5
+ 0.0

19.1 ± 1.5
+ 0.0

14.2 ± 1.4
+ 0.3

– 0.6 – 0.6 – 1.5 – 1.0 – 0.5

232.5 51.3 ± 2.2
+ 0.0

34.4 ± 1.7
+ 0.3

28.3 ± 1.6
+ 0.0

21.9 ± 1.5
+ 0.0

19.0 ± 1.5
+ 0.0

– 0.9 – 0.6 – 1.0 – 1.5 – 0.7

247.5 53.3 ± 2.3
+ 0.0

35.8 ± 1.8
+ 0.5

27.2 ± 1.7
+ 1.3

20.8 ± 1.6
+ 0.0

18.5 ± 1.7
+ 0.1

– 1.6 – 0.3 – 0.1 – 1.5 – 2.4

262.5 62.2 ± 2.5
+ 0.0

42.4 ± 2.0
+ 0.1

31.7 ± 1.8
+ 0.1

25.6 ± 1.9
+ 0.3

19.6 ± 1.8
+ 0.0

– 3.2 – 1.1 – 1.0 – 0.1 – 1.3

277.5 70.0 ± 2.7
+ 0.4

43.9 ± 2.1
+ 0.0

35.1 ± 2.0
+ 0.1

31.5 ± 2.1
+ 0.0

24.2 ± 2.0
+ 0.0

– 1.0 – 1.6 – 0.3 – 1.2 – 0.9

292.5 80.1 ± 2.9
+ 2.3

54.6 ± 2.3
+ 1.0

41.8 ± 2.2
+ 1.2

36.4 ± 2.4
+ 0.0

31.2 ± 2.5
+ 0.0

– 0.0 – 0.6 – 0.1 – 1.9 – 1.4

307.5 87.4 ± 3.1
+ 4.3

63.3 ± 2.6
+ 0.0

51.4 ± 2.7
+ 0.0

40.0 ± 2.7
+ 0.0

33.3 ± 2.9
+ 1.6

– 0.0 – 3.3 – 2.6 – 1.8 – 0.2

322.5 97.4 ± 3.3
+ 0.0

66.8 ± 2.9
+ 0.0

51.4 ± 2.9
+ 0.0

52.6 ± 3.4
+ 0.0

45.5 ± 4.0
+ 0.0

– 1.8 – 3.3 – 4.9 – 2.1 – 7.6

337.5 99.2 ± 3.5
+ 2.7

75.2 ± 3.3
+ 0.0

56.8 ± 3.5
+ 0.0

55.7 ± 4.6
+ 0.0

55.2 ± 6.4
+ 0.7

– 0.0 – 2.2 – 3.2 – 8.2 – 4.0

352.5 98.6 ± 3.6
+ 1.7

77.3 ± 3.5
+ 0.0

60.0 ± 4.1
+ 2.0

59.1 ± 5.7
+ 3.2

55.4 ± 8.7
+ 3.1

– 0.0 – 4.7 – 1.1 – 0.0 – 1.3
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φ (deg)
xB = 0.378 xB = 0.392 xB = 0.398 xB = 0.400 xB = 0.401

Q2 = 2.012 GeV2 Q2 = 2.054 GeV2 Q2 = 2.074 GeV2 Q2 = 2.084 GeV2 Q2 = 2.091 GeV2

t = -0.192 GeV2 t = -0.233 GeV2 t = -0.279 GeV2 t = -0.324 GeV2 t = -0.371 GeV2

7.5 64.0 ± 6.3
+ 1.1

57.0 ± 3.8
+ 0.1

56.3 ± 4.4
+ 1.4

50.5 ± 5.9
+ 2.1

53.3 ± 9.0
+ 8.9

– 0.9 – 1.2 – 1.7 – 1.3 – 0.0

22.5 68.2 ± 6.2
+ 1.8

55.1 ± 3.6
+ 0.0

45.2 ± 3.8
+ 0.1

51.7 ± 5.1
+ 0.8

52.0 ± 6.9
+ 3.4

– 2.0 – 2.5 – 0.9 – 1.7 – 0.3

37.5 52.8 ± 5.6
+ 0.0

48.2 ± 3.3
+ 0.5

44.9 ± 3.5
+ 1.4

36.2 ± 4.0
+ 1.0

36.9 ± 4.8
+ 0.0

– 4.6 – 1.3 – 0.5 – 0.0 – 3.8

52.5 52.4 ± 5.8
+ 0.6

51.4 ± 3.3
+ 3.3

41.2 ± 3.4
+ 0.0

36.4 ± 3.8
+ 0.0

33.8 ± 4.1
+ 0.0

– 2.8 – 0.1 – 4.4 – 2.7 – 4.5

67.5 53.0 ± 5.4
+ 1.3

42.0 ± 3.0
+ 0.0

34.6 ± 3.0
+ 0.0

30.7 ± 3.2
+ 0.0

31.0 ± 3.5
+ 0.0

– 0.5 – 3.0 – 1.5 – 3.2 – 2.0

82.5 47.3 ± 5.1
+ 2.3

41.4 ± 2.9
+ 0.0

30.9 ± 2.9
+ 3.3

24.9 ± 3.0
+ 1.8

22.0 ± 3.0
+ 0.0

– 0.0 – 3.0 – 0.0 – 0.0 – 3.9

97.5 48.2 ± 4.9
+ 3.3

32.8 ± 2.7
+ 0.3

30.5 ± 2.7
+ 0.5

26.4 ± 2.9
+ 0.4

27.4 ± 3.2
+ 0.0

– 0.0 – 2.6 – 2.0 – 1.4 – 2.7

112.5 46.9 ± 4.7
+ 4.8

33.9 ± 2.6
+ 0.0

28.9 ± 2.5
+ 0.0

20.0 ± 2.5
+ 0.0

24.0 ± 3.1
+ 1.3

– 1.3 – 2.9 – 1.2 – 1.2 – 0.2

127.5 45.8 ± 4.6
+ 0.0

28.0 ± 2.3
+ 0.0

23.1 ± 2.2
+ 0.0

24.5 ± 2.6
+ 0.0

19.7 ± 3.0
+ 0.0

– 1.5 – 2.3 – 3.4 – 1.8 – 1.5

142.5 36.5 ± 4.2
+ 1.0

27.3 ± 2.3
+ 0.0

23.2 ± 2.2
+ 0.0

18.9 ± 2.4
+ 0.3

16.2 ± 3.2
+ 0.0

– 0.0 – 1.0 – 1.4 – 0.7 – 2.6

157.5 33.2 ± 4.0
+ 0.7

27.6 ± 2.2
+ 0.0

25.4 ± 2.3
+ 0.0

20.0 ± 2.7
+ 0.0

15.5 ± 3.6
+ 2.7

– 1.3 – 1.7 – 2.8 – 1.6 – 0.0

172.5 36.3 ± 4.1
+ 0.0

26.7 ± 2.2
+ 1.6

24.2 ± 2.2
+ 0.0

18.5 ± 2.6
+ 0.3

15.9 ± 3.9
+ 0.1

– 3.1 – 0.3 – 2.3 – 1.2 – 1.1

187.5 35.6 ± 4.1
+ 0.3

26.6 ± 2.2
+ 0.2

22.4 ± 2.1
+ 0.0

16.6 ± 2.6
+ 0.5

17.4 ± 4.0
+ 0.0

– 0.8 – 1.0 – 0.9 – 0.4 – 3.5

202.5 37.7 ± 4.3
+ 0.0

30.9 ± 2.3
+ 1.3

20.4 ± 2.0
+ 0.0

22.8 ± 2.8
+ 1.5

17.2 ± 3.4
+ 0.0

– 4.5 – 0.0 – 1.1 – 0.3 – 3.0

217.5 43.6 ± 4.5
+ 1.1

28.3 ± 2.3
+ 0.8

29.1 ± 2.4
+ 0.0

22.1 ± 2.6
+ 0.0

22.2 ± 3.2
+ 0.3

– 1.0 – 0.0 – 5.0 – 2.9 – 0.9

232.5 38.1 ± 4.4
+ 0.0

25.6 ± 2.3
+ 0.0

21.6 ± 2.2
+ 0.0

20.8 ± 2.6
+ 1.0

17.1 ± 2.7
+ 1.5

– 3.5 – 1.5 – 1.2 – 0.0 – 0.1

247.5 37.7 ± 4.3
+ 0.9

30.5 ± 2.5
+ 1.7

26.7 ± 2.5
+ 0.0

28.1 ± 2.9
+ 0.0

22.6 ± 3.0
+ 0.0

– 1.8 – 0.0 – 3.1 – 4.2 – 4.7

262.5 43.4 ± 4.6
+ 0.0

34.3 ± 2.7
+ 0.7

30.0 ± 2.7
+ 0.0

24.8 ± 2.9
+ 1.2

19.5 ± 2.9
+ 0.4

– 8.3 – 1.1 – 2.2 – 0.2 – 1.6

277.5 44.1 ± 4.9
+ 1.0

34.5 ± 2.8
+ 0.0

34.9 ± 2.8
+ 0.0

28.2 ± 3.1
+ 0.4

23.7 ± 3.1
+ 0.3

– 0.8 – 0.9 – 4.2 – 1.1 – 1.0

292.5 50.5 ± 5.3
+ 2.3

41.8 ± 3.0
+ 0.2

30.5 ± 2.7
+ 1.4

27.0 ± 3.0
+ 3.6

27.2 ± 3.5
+ 0.4

– 0.0 – 0.6 – 0.2 – 0.0 – 1.4

307.5 57.7 ± 5.8
+ 0.3

43.2 ± 3.2
+ 0.0

35.9 ± 3.0
+ 1.6

39.3 ± 3.6
+ 0.0

29.7 ± 3.8
+ 0.2

– 3.4 – 3.8 – 0.0 – 1.4 – 2.8

322.5 62.1 ± 5.9
+ 0.9

53.2 ± 3.5
+ 0.0

41.0 ± 3.3
+ 0.0

39.5 ± 4.1
+ 0.6

31.6 ± 4.8
+ 0.0

– 0.9 – 2.5 – 0.8 – 2.2 – 4.5

337.5 62.3 ± 5.9
+ 1.5

53.2 ± 3.5
+ 2.3

46.9 ± 3.8
+ 1.4

41.4 ± 5.0
+ 0.9

33.4 ± 6.4
+ 4.6

– 0.0 – 0.3 – 0.7 – 1.2 – 0.0

352.5 65.4 ± 6.0
+ 0.0

55.5 ± 3.7
+ 0.0

44.0 ± 4.1
+ 0.3

37.4 ± 5.5
+ 0.0

43.6 ± 8.8
+ 2.9

– 1.5 – 1.5 – 1.6 – 9.8 – 0.0
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φ (deg)
xB = 0.336 xB = 0.342 xB = 0.343 xB = 0.342 xB = 0.342

Q2 = 2.161 GeV2 Q2 = 2.190 GeV2 Q2 = 2.194 GeV2 Q2 = 2.191 GeV2 Q2 = 2.193 GeV2

t = -0.171 GeV2 t = -0.231 GeV2 t = -0.278 GeV2 t = -0.324 GeV2 t = -0.371 GeV2

7.5 120.7 ± 4.7
+ 0.9

100.1 ± 7.6
+ 2.1

X X X
– 0.4 – 2.5

22.5 132.5 ± 4.9
+ 3.7

106.9 ± 6.8
+ 4.5

X X X
– 0.0 – 0.5

37.5 118.7 ± 4.5
+ 2.8

93.9 ± 6.1
+ 0.2

58.7 ± 7.0
+ 1.1

53.8 ± 10.1
+ 0.7

68.8 ± 21.3
+ 0.9

– 0.0 – 1.6 – 4.3 – 9.3 – 14.6

52.5 99.8 ± 4.1
+ 1.3

76.9 ± 5.0
+ 0.1

59.3 ± 5.8
+ 1.5

48.6 ± 7.3
+ 8.3

37.1 ± 10.4
+ 1.6

– 1.9 – 2.7 – 1.1 – 0.3 – 9.7

67.5 88.4 ± 3.8
+ 0.0

67.7 ± 4.5
+ 2.2

54.4 ± 5.1
+ 0.9

55.8 ± 6.2
+ 6.5

40.6 ± 7.0
+ 6.2

– 5.5 – 1.3 – 0.9 – 0.0 – 0.0

82.5 81.4 ± 3.6
+ 0.5

55.1 ± 3.9
+ 3.6

47.8 ± 4.2
+ 0.0

34.2 ± 4.4
+ 0.7

29.0 ± 5.0
+ 2.1

– 0.7 – 0.0 – 2.6 – 1.8 – 1.0

97.5 62.7 ± 3.1
+ 1.5

53.8 ± 3.7
+ 1.2

36.7 ± 3.6
+ 1.8

30.9 ± 3.8
+ 0.0

27.0 ± 4.3
+ 0.2

– 0.8 – 0.7 – 0.0 – 1.1 – 2.9

112.5 61.3 ± 3.0
+ 0.6

40.3 ± 3.1
+ 0.7

36.5 ± 3.3
+ 0.0

28.6 ± 3.4
+ 0.0

21.0 ± 3.5
+ 0.0

– 1.5 – 0.7 – 1.4 – 1.2 – 3.1

127.5 58.1 ± 3.0
+ 0.5

37.3 ± 2.8
+ 0.0

25.9 ± 2.6
+ 0.0

27.6 ± 3.1
+ 0.8

18.8 ± 2.9
+ 0.1

– 1.9 – 3.7 – 1.2 – 0.6 – 3.4

142.5 52.9 ± 2.7
+ 2.8

33.6 ± 2.7
+ 0.0

27.3 ± 2.7
+ 1.0

26.7 ± 3.0
+ 0.0

17.9 ± 2.8
+ 0.5

– 0.0 – 1.7 – 0.5 – 2.0 – 0.9

157.5 43.9 ± 2.6
+ 0.2

34.4 ± 2.8
+ 0.7

29.2 ± 2.8
+ 0.0

24.8 ± 2.8
+ 1.0

18.7 ± 3.0
+ 1.6

– 0.8 – 0.6 – 2.8 – 0.0 – 0.0

172.5 45.4 ± 2.5
+ 0.0

31.9 ± 2.6
+ 0.2

29.9 ± 2.8
+ 0.3

23.5 ± 2.8
+ 1.7

17.2 ± 3.2
+ 1.1

– 1.2 – 0.6 – 0.2 – 0.0 – 0.3

187.5 41.0 ± 2.4
+ 0.9

32.6 ± 2.7
+ 0.5

27.7 ± 2.8
+ 0.1

21.6 ± 2.8
+ 1.4

16.2 ± 2.9
+ 2.2

– 0.1 – 0.3 – 2.1 – 0.0 – 0.0

202.5 44.2 ± 2.5
+ 0.9

37.1 ± 2.8
+ 0.0

23.7 ± 2.6
+ 0.1

29.2 ± 3.0
+ 0.0

21.3 ± 3.0
+ 2.1

– 0.9 – 1.6 – 0.5 – 3.1 – 0.5

217.5 51.6 ± 2.7
+ 0.8

39.5 ± 2.9
+ 0.1

31.2 ± 2.8
+ 1.1

23.0 ± 2.7
+ 0.0

17.7 ± 2.8
+ 0.1

– 0.8 – 2.0 – 0.7 – 2.1 – 0.8

232.5 57.7 ± 2.9
+ 0.6

41.5 ± 3.0
+ 1.1

33.4 ± 2.9
+ 0.0

29.3 ± 3.0
+ 0.0

24.2 ± 3.0
+ 0.0

– 0.8 – 0.0 – 1.9 – 0.9 – 1.3

247.5 56.9 ± 2.9
+ 0.1

43.0 ± 3.1
+ 1.4

30.9 ± 3.0
+ 1.5

21.4 ± 3.1
+ 0.5

22.5 ± 3.4
+ 0.4

– 2.3 – 0.0 – 0.4 – 0.7 – 3.9

262.5 69.3 ± 3.2
+ 0.0

50.9 ± 3.5
+ 0.0

36.4 ± 3.4
+ 0.7

30.4 ± 3.9
+ 0.6

18.1 ± 3.6
+ 0.0

– 3.7 – 0.8 – 1.2 – 0.3 – 2.6

277.5 77.0 ± 3.5
+ 0.7

54.2 ± 3.7
+ 0.5

48.5 ± 3.9
+ 0.4

43.6 ± 4.4
+ 0.1

32.8 ± 4.5
+ 0.0

– 0.4 – 2.0 – 1.8 – 3.2 – 2.5

292.5 95.5 ± 3.9
+ 2.5

67.8 ± 4.2
+ 0.0

51.6 ± 4.3
+ 3.3

55.0 ± 5.6
+ 0.9

35.5 ± 6.3
+ 2.0

– 0.0 – 1.4 – 0.2 – 1.2 – 1.9

307.5 103.1 ± 4.0
+ 4.8

84.2 ± 4.8
+ 0.0

60.3 ± 5.4
+ 0.2

39.5 ± 6.2
+ 0.5

43.1 ± 8.7
+ 4.1

– 0.0 – 6.6 – 3.9 – 2.9 – 0.3

322.5 114.1 ± 4.4
+ 0.4

90.7 ± 5.5
+ 0.0

62.2 ± 6.4
+ 0.0

70.1 ± 9.9
+ 0.0

49.6 ± 15.5
+ 3.6

– 1.7 – 6.5 – 8.6 – 7.6 – 10.8

337.5 117.8 ± 4.6
+ 2.0

83.8 ± 6.6
+ 0.0

X X X
– 0.6 – 5.6

352.5 120.3 ± 4.8
+ 0.2

87.9 ± 7.4
+ 0.0

X X X
– 0.7 – 10.9



Appendix B: Tables of unpolarized and polarized DVCS cross sections 115

Figure B.4: (Color online) Unpolarized cross sections for KinX3. Error bars are statistical
only. The light blue area represents the point-to-point systematic uncertainties added linearly
to the normalization error. The KM10a model along with its modified version including
TMC effects are shown as dotted blue and solid green curves respectively. The Bethe-Heitler
contribution is represented as a dashed red line.

B.2 Polarized cross sections

Figure B.5: (Color online) Cross section differences for opposite beam helicities for Kin1.
Error bars are statistical only. The light blue area represents the point-to-point systematic
uncertainties added linearly to the normalization error. The KM10a model along with its
modified version including TMC effects are shown as dotted blue and solid green curves
respectively, except for the first t-bin which is outside the prescribed range of this model.
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Figure B.6: (Color online) Cross section differences for opposite beam helicities for Kin2.
Error bars are statistical only. The light blue area represents the point-to-point systematic
uncertainties added linearly to the normalization error. The KM10a model along with its
modified version including TMC effects are shown as dotted blue and solid green curves
respectively.

Figure B.7: (Color online) Cross section differences for opposite beam helicities for Kin3.
Error bars are statistical only. The light blue area represents the point-to-point systematic
uncertainties added linearly to the normalization error. The KM10a model along with its
modified version including TMC effects are shown as dotted blue and solid green curves
respectively.
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φ (deg)
xB = 0.345 xB = 0.374 xB = 0.385 xB = 0.391 xB = 0.399

Q2 = 1.453 GeV2 Q2 = 1.552 GeV2 Q2 = 1.589 GeV2 Q2 = 1.608 GeV2 Q2 = 1.633 GeV2

t = -0.170 GeV2 t = -0.232 GeV2 t = -0.278 GeV2 t = -0.323 GeV2 t = -0.370 GeV2

7.5 0.8 ± 7.9
+ 1.0

5.7 ± 7.9
+ 0.0

-7.2 ± 10.8
+ 0.0

4.2 ± 13.8
+ 4.5

12.7 ± 20.7
+ 0.0

– 3.0 – 3.8 – 13.5 – 3.2 – 16.2

22.5 5.2 ± 7.1
+ 0.0

-2.2 ± 7.1
+ 8.4

3.1 ± 8.9
+ 9.9

10.8 ± 13.1
+ 0.0

25.7 ± 16.3
+ 2.6

– 9.4 – 0.0 – 1.8 – 11.6 – 1.3

37.5 16.5 ± 6.3
+ 0.0

4.3 ± 6.1
+ 1.9

20.3 ± 6.9
+ 0.0

18.0 ± 8.7
+ 3.8

25.2 ± 11.2
+ 0.0

– 10.7 – 3.4 – 5.1 – 0.0 – 12.1

52.5 18.8 ± 5.2
+ 1.1

13.4 ± 5.1
+ 3.2

18.3 ± 5.7
+ 0.0

18.0 ± 6.6
+ 7.8

16.3 ± 8.3
+ 2.6

– 1.1 – 1.2 – 4.2 – 0.0 – 1.8

67.5 19.9 ± 4.5
+ 2.6

12.4 ± 4.6
+ 0.0

5.4 ± 4.8
+ 2.4

13.9 ± 5.4
+ 0.4

11.7 ± 6.2
+ 0.0

– 0.0 – 4.0 – 0.0 – 4.6 – 6.8

82.5 14.0 ± 4.0
+ 1.6

12.2 ± 3.8
+ 1.0

9.0 ± 4.1
+ 6.1

5.7 ± 4.6
+ 3.6

6.9 ± 4.9
+ 0.6

– 0.0 – 0.0 – 0.0 – 0.0 – 2.2

97.5 15.8 ± 3.8
+ 0.0

8.3 ± 3.5
+ 1.6

8.6 ± 3.9
+ 1.8

0.6 ± 4.2
+ 4.5

18.9 ± 4.7
+ 1.4

– 2.8 – 1.1 – 2.9 – 0.0 – 2.3

112.5 15.9 ± 3.6
+ 1.9

13.6 ± 3.3
+ 0.7

-2.2 ± 3.5
+ 5.1

6.3 ± 3.9
+ 1.3

2.2 ± 4.7
+ 4.8

– 0.2 – 1.7 – 0.0 – 1.4 – 0.8

127.5 12.7 ± 3.3
+ 1.5

6.7 ± 3.1
+ 0.0

4.0 ± 3.2
+ 4.7

2.0 ± 3.9
+ 0.1

7.1 ± 5.8
+ 0.3

– 0.3 – 4.9 – 0.0 – 2.1 – 7.2

142.5 10.0 ± 3.1
+ 0.0

7.7 ± 2.8
+ 0.0

4.2 ± 3.3
+ 1.8

1.2 ± 4.5
+ 0.6

-1.5 ± 7.1
+ 4.4

– 3.0 – 3.4 – 0.0 – 3.0 – 2.8

157.5 6.8 ± 2.9
+ 3.0

3.0 ± 2.7
+ 1.1

8.0 ± 3.7
+ 0.9

5.9 ± 5.6
+ 4.0

9.1 ± 10.9
+ 3.5

– 0.0 – 0.0 – 1.8 – 0.7 – 4.0

172.5 -3.5 ± 2.8
+ 0.4

-1.6 ± 2.7
+ 1.5

-2.0 ± 3.6
+ 5.0

-1.8 ± 6.6
+ 2.3

-18.3 ± 23.5
+ 0.0

– 1.6 – 0.3 – 0.0 – 0.0 – 34.1

187.5 -1.9 ± 2.8
+ 1.1

1.0 ± 2.6
+ 1.0

0.2 ± 3.6
+ 1.2

-13.9 ± 6.1
+ 0.0

-28.1 ± 15.5
+ 5.6

– 0.3 – 0.4 – 0.8 – 4.2 – 7.0

202.5 -5.3 ± 2.9
+ 1.1

-1.8 ± 2.8
+ 4.0

0.9 ± 3.4
+ 0.0

1.8 ± 5.5
+ 2.0

0.6 ± 9.0
+ 0.0

– 0.3 – 0.0 – 3.4 – 2.1 – 8.1

217.5 -4.4 ± 3.0
+ 2.0

-4.9 ± 2.9
+ 1.2

-1.5 ± 3.4
+ 1.1

-9.8 ± 4.8
+ 1.2

0.1 ± 7.4
+ 2.3

– 0.8 – 0.9 – 1.9 – 3.2 – 0.8

232.5 -8.0 ± 3.2
+ 1.1

-8.7 ± 2.9
+ 1.1

-5.2 ± 3.2
+ 1.9

1.8 ± 3.9
+ 1.8

-1.9 ± 5.6
+ 2.3

– 0.4 – 1.2 – 0.0 – 0.0 – 0.2

247.5 -11.8 ± 3.4
+ 0.0

-10.4 ± 3.2
+ 2.4

-11.5 ± 3.5
+ 0.7

-11.7 ± 4.1
+ 2.4

-10.9 ± 5.1
+ 0.8

– 5.7 – 0.0 – 0.2 – 0.0 – 1.3

262.5 -11.3 ± 3.6
+ 0.0

-7.9 ± 3.5
+ 2.4

-6.2 ± 3.7
+ 0.8

-15.0 ± 4.3
+ 0.4

-5.5 ± 4.6
+ 0.3

– 3.4 – 1.0 – 1.5 – 1.5 – 5.1

277.5 -24.0 ± 3.9
+ 2.4

-11.0 ± 3.6
+ 0.0

-9.3 ± 3.9
+ 1.0

-12.1 ± 4.6
+ 1.6

-5.8 ± 4.9
+ 0.9

– 0.2 – 3.3 – 0.0 – 2.1 – 0.5

292.5 -26.5 ± 4.4
+ 2.4

-16.4 ± 4.2
+ 0.9

-7.5 ± 4.5
+ 0.9

-4.2 ± 5.2
+ 0.0

-11.7 ± 6.1
+ 9.2

– 0.0 – 1.5 – 1.7 – 7.3 – 0.0

307.5 -16.6 ± 5.0
+ 5.2

-10.0 ± 4.7
+ 3.1

-2.5 ± 5.3
+ 0.0

1.8 ± 6.7
+ 0.0

-11.7 ± 7.8
+ 2.6

– 1.5 – 0.0 – 4.9 – 4.2 – 0.9

322.5 -18.7 ± 6.0
+ 4.7

-11.8 ± 6.0
+ 0.0

-17.4 ± 6.9
+ 7.5

-15.0 ± 9.4
+ 7.9

-14.9 ± 11.7
+ 6.7

– 0.0 – 5.5 – 0.0 – 0.0 – 0.5

337.5 -5.7 ± 6.9
+ 2.7

-6.8 ± 7.0
+ 4.3

-3.0 ± 9.4
+ 0.0

-8.7 ± 12.8
+ 9.5

-28.7 ± 20.1
+ 16.1

– 2.3 – 0.0 – 12.4 – 0.0 – 0.6

352.5 -1.4 ± 7.6
+ 1.6

-4.3 ± 7.8
+ 15.1

0.5 ± 11.2
+ 2.6

-10.2 ± 15.5
+ 0.0

-43.5 ± 23.1
+ 8.2

– 1.9 – 0.0 – 3.8 – 7.2 – 0.0
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φ (deg)
xB = 0.343 xB = 0.368 xB = 0.375 xB = 0.379 xB = 0.381

Q2 = 1.820 GeV2 Q2 = 1.933 GeV2 Q2 = 1.964 GeV2 Q2 = 1.986 GeV2 Q2 = 1.999 GeV2

t = -0.172 GeV2 t = -0.232 GeV2 t = -0.278 GeV2 t = -0.323 GeV2 t = -0.371 GeV2

7.5 -1.0 ± 6.0
+ 1.0

3.1 ± 6.1
+ 0.0

1.7 ± 7.7
+ 0.9

7.3 ± 11.1
+ 10.3

-12.1 ± 16.0
+ 1.4

– 1.1 – 4.8 – 2.5 – 0.0 – 5.2

22.5 12.2 ± 5.7
+ 2.3

-1.9 ± 5.4
+ 1.9

4.1 ± 6.2
+ 0.0

-0.1 ± 9.0
+ 0.0

1.1 ± 12.0
+ 3.6

– 0.0 – 1.4 – 7.5 – 3.7 – 1.4

37.5 16.8 ± 4.9
+ 2.6

12.0 ± 4.5
+ 1.6

16.1 ± 5.2
+ 4.2

7.9 ± 6.1
+ 3.2

4.1 ± 7.5
+ 4.0

– 0.5 – 2.0 – 0.0 – 3.4 – 0.0

52.5 15.3 ± 4.5
+ 1.9

19.3 ± 4.2
+ 0.1

15.0 ± 4.3
+ 3.2

22.4 ± 5.1
+ 0.2

7.3 ± 5.8
+ 4.4

– 0.9 – 0.9 – 0.0 – 1.9 – 0.2

67.5 15.8 ± 4.3
+ 0.5

14.4 ± 3.7
+ 0.1

1.8 ± 3.6
+ 1.2

9.9 ± 4.0
+ 0.1

9.9 ± 4.9
+ 1.1

– 1.2 – 3.0 – 1.1 – 1.6 – 1.1

82.5 20.5 ± 3.9
+ 2.0

10.8 ± 3.2
+ 0.2

10.9 ± 3.2
+ 2.0

5.1 ± 3.5
+ 2.1

10.8 ± 3.8
+ 0.0

– 0.0 – 3.1 – 0.0 – 0.0 – 1.4

97.5 15.1 ± 3.6
+ 3.8

8.6 ± 2.8
+ 2.6

4.8 ± 2.9
+ 0.4

11.3 ± 3.0
+ 0.6

4.7 ± 3.5
+ 1.4

– 0.0 – 0.5 – 1.7 – 0.4 – 0.3

112.5 6.7 ± 3.4
+ 0.0

4.3 ± 2.7
+ 1.6

8.6 ± 2.7
+ 0.2

1.5 ± 2.7
+ 0.7

10.5 ± 3.2
+ 1.5

– 1.7 – 0.7 – 1.3 – 0.1 – 1.2

127.5 14.9 ± 3.2
+ 0.0

7.2 ± 2.4
+ 0.4

6.4 ± 2.3
+ 2.2

12.2 ± 2.6
+ 0.0

2.1 ± 2.9
+ 2.4

– 1.1 – 1.0 – 0.0 – 1.9 – 0.0

142.5 6.9 ± 3.0
+ 2.4

7.0 ± 2.3
+ 0.0

6.9 ± 2.2
+ 0.8

1.0 ± 2.5
+ 2.5

3.7 ± 2.8
+ 0.0

– 0.0 – 0.5 – 0.0 – 0.0 – 3.6

157.5 5.7 ± 3.0
+ 1.5

6.2 ± 2.3
+ 1.3

5.4 ± 2.2
+ 0.0

2.7 ± 2.6
+ 1.4

0.1 ± 3.1
+ 0.0

– 0.9 – 0.7 – 1.1 – 0.0 – 1.6

172.5 0.7 ± 2.9
+ 2.0

0.4 ± 2.2
+ 0.0

-1.5 ± 2.2
+ 0.4

-0.3 ± 2.5
+ 2.1

-7.0 ± 3.8
+ 2.6

– 1.0 – 1.5 – 1.4 – 0.4 – 0.0

187.5 -0.3 ± 2.9
+ 1.4

-0.7 ± 2.2
+ 1.4

-1.4 ± 2.1
+ 1.8

-3.6 ± 2.7
+ 4.5

2.5 ± 3.7
+ 2.7

– 0.0 – 0.0 – 0.5 – 0.0 – 0.0

202.5 -6.5 ± 3.0
+ 1.6

-1.4 ± 2.3
+ 0.0

-0.5 ± 2.1
+ 0.0

1.5 ± 2.6
+ 1.4

0.6 ± 3.4
+ 0.0

– 0.7 – 2.1 – 1.3 – 0.0 – 1.3

217.5 -8.1 ± 3.1
+ 0.0

-2.6 ± 2.3
+ 0.0

-4.6 ± 2.2
+ 2.4

2.3 ± 2.6
+ 0.3

0.4 ± 3.1
+ 1.6

– 1.9 – 2.2 – 0.0 – 0.8 – 0.0

232.5 -9.2 ± 3.1
+ 0.4

-6.7 ± 2.4
+ 0.0

-5.0 ± 2.3
+ 0.0

0.0 ± 2.7
+ 3.0

-4.4 ± 2.7
+ 1.9

– 1.5 – 2.1 – 2.4 – 0.0 – 0.9

247.5 -11.8 ± 3.2
+ 3.2

-10.6 ± 2.6
+ 0.0

-7.0 ± 2.8
+ 0.4

-8.1 ± 3.0
+ 0.1

0.4 ± 3.1
+ 0.0

– 0.0 – 1.1 – 0.8 – 1.6 – 2.5

262.5 -17.5 ± 3.4
+ 3.0

-9.2 ± 2.8
+ 1.9

-11.0 ± 3.0
+ 1.1

-7.1 ± 3.1
+ 2.7

-2.5 ± 3.2
+ 2.2

– 0.0 – 0.0 – 1.0 – 0.0 – 0.7

277.5 -16.0 ± 3.8
+ 0.5

-15.5 ± 3.0
+ 0.0

-11.9 ± 3.2
+ 1.8

0.6 ± 3.5
+ 1.3

-6.1 ± 3.6
+ 0.0

– 1.4 – 3.5 – 0.0 – 0.0 – 2.1

292.5 -17.2 ± 4.0
+ 2.6

-16.0 ± 3.5
+ 0.9

-9.9 ± 3.5
+ 0.0

-8.9 ± 4.0
+ 1.6

-1.6 ± 4.4
+ 1.2

– 0.4 – 0.0 – 1.3 – 1.5 – 1.1

307.5 -16.3 ± 4.5
+ 1.7

-10.3 ± 3.9
+ 3.3

-6.0 ± 4.1
+ 0.0

-8.4 ± 5.1
+ 2.8

-7.1 ± 5.4
+ 1.6

– 0.6 – 0.0 – 3.9 – 0.0 – 1.9

322.5 -11.6 ± 4.9
+ 0.7

-16.5 ± 4.5
+ 2.3

-9.6 ± 4.8
+ 2.4

-20.1 ± 6.3
+ 0.0

-7.9 ± 7.6
+ 1.1

– 1.3 – 0.0 – 0.0 – 3.6 – 3.5

337.5 -1.9 ± 5.5
+ 2.7

-7.2 ± 5.5
+ 0.2

-17.2 ± 6.2
+ 0.0

-3.3 ± 8.8
+ 0.0

-1.2 ± 10.9
+ 1.7

– 1.0 – 2.3 – 8.0 – 6.7 – 15.4

352.5 -3.6 ± 5.9
+ 0.0

-0.7 ± 6.1
+ 0.5

1.8 ± 7.4
+ 6.3

-2.6 ± 10.6
+ 3.0

-5.1 ± 16.7
+ 13.3

– 2.2 – 1.1 – 1.3 – 8.5 – 0.0



Appendix B: Tables of unpolarized and polarized DVCS cross sections 119

φ (deg)
xB = 0.345 xB = 0.363 xB = 0.368 xB = 0.371 xB = 0.373

Q2 = 2.218 GeV2 Q2 = 2.318 GeV2 Q2 = 2.348 GeV2 Q2 = 2.360 GeV2 Q2 = 2.375 GeV2

t = -0.176 GeV2 t = -0.232 GeV2 t = -0.279 GeV2 t = -0.325 GeV2 t = -0.372 GeV2

7.5 5.2 ± 5.1
+ 0.0

7.4 ± 4.9
+ 0.2

11.5 ± 5.9
+ 3.9

1.7 ± 7.3
+ 2.9

9.4 ± 10.9
+ 2.0

– 5.4 – 1.8 – 0.1 – 0.0 – 2.5

22.5 1.8 ± 5.1
+ 3.6

15.4 ± 4.6
+ 0.9

8.6 ± 5.3
+ 1.6

4.4 ± 6.2
+ 0.0

6.4 ± 8.2
+ 4.6

– 0.0 – 1.3 – 0.4 – 4.3 – 1.9

37.5 8.0 ± 4.7
+ 1.5

8.3 ± 4.1
+ 1.8

15.4 ± 4.2
+ 0.0

1.9 ± 4.4
+ 0.0

10.0 ± 5.3
+ 0.0

– 0.7 – 0.0 – 1.9 – 5.3 – 3.6

52.5 16.7 ± 4.5
+ 5.7

11.5 ± 3.6
+ 1.5

10.5 ± 3.6
+ 1.5

9.6 ± 3.8
+ 0.0

21.8 ± 4.3
+ 1.6

– 0.1 – 1.5 – 0.2 – 2.3 – 0.4

67.5 21.1 ± 4.1
+ 6.0

17.1 ± 3.2
+ 3.7

16.7 ± 3.2
+ 1.2

15.0 ± 3.4
+ 0.0

6.2 ± 3.3
+ 0.0

– 0.0 – 0.0 – 0.0 – 1.4 – 3.5

82.5 16.0 ± 4.0
+ 2.1

6.6 ± 2.9
+ 1.6

11.9 ± 2.8
+ 2.4

9.3 ± 2.6
+ 1.7

9.3 ± 2.7
+ 1.0

– 0.1 – 0.0 – 0.4 – 0.2 – 0.5

97.5 10.1 ± 3.5
+ 1.9

12.3 ± 2.7
+ 0.0

9.8 ± 2.4
+ 1.4

9.9 ± 2.4
+ 1.3

9.0 ± 2.4
+ 0.1

– 0.1 – 0.7 – 0.0 – 0.0 – 1.8

112.5 20.7 ± 3.4
+ 0.1

11.6 ± 2.4
+ 0.1

8.0 ± 2.2
+ 0.0

3.7 ± 2.2
+ 0.5

-1.1 ± 2.0
+ 1.6

– 1.8 – 1.3 – 0.9 – 0.3 – 0.0

127.5 9.3 ± 3.2
+ 0.9

6.4 ± 2.3
+ 0.7

3.5 ± 1.9
+ 0.7

6.6 ± 2.0
+ 0.4

1.6 ± 1.8
+ 0.1

– 1.9 – 1.4 – 1.0 – 0.0 – 0.4

142.5 4.8 ± 3.1
+ 1.0

5.5 ± 2.1
+ 0.6

3.7 ± 2.0
+ 1.6

3.6 ± 1.9
+ 0.0

3.2 ± 1.8
+ 0.9

– 0.1 – 0.2 – 0.0 – 1.5 – 0.0

157.5 -0.4 ± 3.0
+ 1.4

2.7 ± 2.2
+ 0.9

4.0 ± 2.0
+ 0.3

5.5 ± 1.8
+ 0.8

3.6 ± 1.9
+ 0.7

– 0.0 – 0.1 – 0.5 – 0.2 – 0.0

172.5 3.3 ± 3.0
+ 2.9

0.0 ± 2.0
+ 1.5

-0.3 ± 2.0
+ 0.7

2.7 ± 1.9
+ 0.1

2.1 ± 2.0
+ 1.1

– 0.2 – 0.0 – 0.1 – 0.9 – 0.2

187.5 -0.6 ± 2.8
+ 0.6

0.2 ± 2.1
+ 1.2

1.0 ± 1.9
+ 0.0

-0.6 ± 1.9
+ 0.4

4.4 ± 2.0
+ 0.0

– 1.4 – 0.2 – 1.2 – 0.5 – 1.0

202.5 -2.6 ± 2.9
+ 0.9

-0.7 ± 2.1
+ 0.4

-1.8 ± 1.8
+ 0.0

-4.2 ± 2.0
+ 1.1

-0.1 ± 2.0
+ 0.0

– 2.0 – 0.7 – 0.5 – 0.0 – 2.5

217.5 -7.5 ± 3.0
+ 1.1

-5.4 ± 2.2
+ 0.2

-5.1 ± 2.0
+ 1.3

-5.2 ± 1.8
+ 0.4

-3.5 ± 1.8
+ 0.8

– 0.0 – 0.5 – 0.0 – 0.7 – 0.1

232.5 -13.1 ± 3.2
+ 3.3

-4.2 ± 2.3
+ 0.5

-4.7 ± 2.1
+ 0.0

-5.2 ± 1.9
+ 1.4

-4.0 ± 1.9
+ 0.2

– 0.0 – 1.2 – 0.8 – 0.0 – 0.7

247.5 -6.9 ± 3.3
+ 1.7

-9.5 ± 2.4
+ 0.4

-3.8 ± 2.1
+ 0.9

0.6 ± 2.1
+ 0.9

-1.8 ± 2.1
+ 0.6

– 0.0 – 0.7 – 0.0 – 0.4 – 1.0

262.5 -17.5 ± 3.6
+ 2.1

-9.0 ± 2.7
+ 0.1

-10.5 ± 2.4
+ 0.0

-6.8 ± 2.4
+ 0.4

-3.4 ± 2.3
+ 0.0

– 0.0 – 1.4 – 3.0 – 1.7 – 1.1

277.5 -13.0 ± 3.8
+ 1.4

-16.0 ± 2.8
+ 0.5

-9.8 ± 2.6
+ 2.1

-14.2 ± 2.7
+ 0.0

-5.8 ± 2.6
+ 0.7

– 0.7 – 1.2 – 0.0 – 1.5 – 0.3

292.5 -13.2 ± 4.2
+ 2.9

-12.6 ± 3.1
+ 0.4

-11.0 ± 2.9
+ 1.0

-9.6 ± 3.1
+ 0.0

-11.3 ± 3.1
+ 0.0

– 0.6 – 1.8 – 0.9 – 3.6 – 1.8

307.5 -16.6 ± 4.3
+ 0.4

-14.0 ± 3.5
+ 4.4

-15.8 ± 3.5
+ 1.7

-10.6 ± 3.6
+ 0.7

-8.8 ± 3.7
+ 0.4

– 2.1 – 0.0 – 0.5 – 0.6 – 0.5

322.5 -15.2 ± 4.6
+ 2.8

-14.0 ± 3.8
+ 0.2

-9.4 ± 3.8
+ 2.1

-14.2 ± 4.5
+ 4.4

-5.2 ± 5.1
+ 0.4

– 0.0 – 1.5 – 0.0 – 0.0 – 2.6

337.5 -3.1 ± 4.8
+ 0.5

1.4 ± 4.4
+ 1.1

-5.0 ± 4.7
+ 0.8

-0.5 ± 5.9
+ 0.7

-8.1 ± 8.1
+ 3.4

– 0.4 – 0.8 – 1.7 – 2.6 – 4.3

352.5 -1.2 ± 4.9
+ 1.1

-1.1 ± 4.8
+ 4.3

2.7 ± 5.5
+ 0.0

-0.5 ± 7.3
+ 2.9

7.3 ± 11.5
+ 2.2

– 1.5 – 0.0 – 3.8 – 1.5 – 1.1



Appendix B: Tables of unpolarized and polarized DVCS cross sections 120

φ (deg)
xB = 0.378 xB = 0.392 xB = 0.398 xB = 0.400 xB = 0.401

Q2 = 2.012 GeV2 Q2 = 2.054 GeV2 Q2 = 2.074 GeV2 Q2 = 2.084 GeV2 Q2 = 2.091 GeV2

t = -0.192 GeV2 t = -0.233 GeV2 t = -0.279 GeV2 t = -0.324 GeV2 t = -0.371 GeV2

7.5 -2.8 ± 9.1
+ 4.3

-2.4 ± 5.1
+ 0.0

-0.2 ± 5.9
+ 0.8

3.8 ± 7.7
+ 6.9

-9.0 ± 11.9
+ 1.1

– 2.5 – 3.5 – 1.0 – 0.0 – 3.2

22.5 2.7 ± 8.8
+ 0.7

-0.6 ± 4.8
+ 0.5

1.4 ± 5.0
+ 0.0

-1.2 ± 6.8
+ 0.0

0.9 ± 9.2
+ 2.7

– 5.6 – 2.4 – 4.0 – 3.5 – 1.1

37.5 -6.0 ± 7.9
+ 3.6

4.1 ± 4.4
+ 1.6

13.3 ± 4.6
+ 4.3

5.5 ± 5.2
+ 2.0

0.4 ± 6.2
+ 1.4

– 0.0 – 1.1 – 0.0 – 3.0 – 0.0

52.5 7.2 ± 8.1
+ 2.6

13.7 ± 4.5
+ 2.6

11.2 ± 4.4
+ 2.3

12.3 ± 4.8
+ 1.9

8.3 ± 5.3
+ 2.0

– 2.5 – 0.4 – 0.0 – 1.2 – 0.4

67.5 -5.9 ± 7.7
+ 2.2

5.0 ± 4.1
+ 1.1

6.0 ± 3.9
+ 0.6

8.4 ± 4.2
+ 0.4

5.9 ± 4.5
+ 0.6

– 0.7 – 0.0 – 1.4 – 2.0 – 1.0

82.5 18.2 ± 7.2
+ 0.7

12.4 ± 4.0
+ 0.1

10.6 ± 3.7
+ 0.2

3.5 ± 3.7
+ 0.0

7.9 ± 3.8
+ 0.0

– 1.9 – 3.3 – 1.8 – 1.4 – 1.7

97.5 -0.8 ± 7.3
+ 4.8

4.6 ± 3.6
+ 3.2

4.2 ± 3.5
+ 0.2

7.2 ± 3.7
+ 1.8

3.3 ± 4.0
+ 0.9

– 0.6 – 0.0 – 1.8 – 0.0 – 0.2

112.5 14.0 ± 6.7
+ 2.8

-0.6 ± 3.6
+ 0.0

7.2 ± 3.3
+ 1.0

-1.1 ± 3.1
+ 2.4

6.5 ± 3.9
+ 1.8

– 0.0 – 2.5 – 1.1 – 0.0 – 0.5

127.5 -0.3 ± 6.7
+ 2.9

3.0 ± 3.1
+ 0.0

7.3 ± 2.8
+ 3.5

11.1 ± 3.2
+ 0.0

-1.5 ± 3.6
+ 2.9

– 0.7 – 1.6 – 0.0 – 4.8 – 0.0

142.5 1.6 ± 6.0
+ 0.0

4.8 ± 3.1
+ 0.2

4.8 ± 2.8
+ 2.9

3.3 ± 3.0
+ 1.8

6.1 ± 3.8
+ 0.0

– 4.0 – 1.7 – 0.0 – 0.0 – 3.8

157.5 -9.0 ± 5.9
+ 2.5

4.9 ± 3.0
+ 0.1

5.6 ± 2.9
+ 2.1

5.3 ± 3.3
+ 0.1

-2.7 ± 4.2
+ 0.6

– 2.4 – 1.2 – 0.8 – 1.5 – 0.6

172.5 -4.9 ± 5.9
+ 0.0

1.0 ± 3.0
+ 0.8

0.6 ± 2.8
+ 1.5

-0.7 ± 3.2
+ 1.5

-8.4 ± 4.5
+ 0.1

– 3.1 – 1.5 – 0.1 – 0.3 – 2.0

187.5 -2.7 ± 6.0
+ 1.4

2.5 ± 3.0
+ 0.6

1.4 ± 2.7
+ 0.4

-0.5 ± 3.2
+ 2.2

2.9 ± 4.7
+ 4.7

– 3.3 – 1.1 – 1.1 – 0.7 – 0.0

202.5 6.7 ± 6.3
+ 0.9

-1.0 ± 3.2
+ 0.0

1.7 ± 2.6
+ 0.0

1.0 ± 3.4
+ 1.8

3.8 ± 4.1
+ 0.0

– 4.1 – 3.2 – 1.4 – 0.0 – 1.4

217.5 -0.8 ± 6.6
+ 0.5

1.3 ± 3.1
+ 0.0

-5.0 ± 3.1
+ 1.9

-1.2 ± 3.2
+ 0.0

0.8 ± 3.9
+ 2.6

– 10.0 – 2.6 – 0.0 – 1.6 – 0.0

232.5 -8.7 ± 6.3
+ 2.6

-1.1 ± 3.1
+ 0.0

-4.3 ± 2.8
+ 0.3

0.3 ± 3.2
+ 3.2

-6.6 ± 3.2
+ 0.5

– 0.0 – 4.4 – 1.0 – 0.7 – 0.2

247.5 -12.9 ± 6.2
+ 0.5

-10.3 ± 3.4
+ 0.0

-6.8 ± 3.2
+ 0.4

-6.6 ± 3.7
+ 1.6

-3.0 ± 3.7
+ 0.0

– 4.0 – 2.8 – 0.2 – 1.2 – 3.2

262.5 -4.0 ± 6.5
+ 0.3

-2.4 ± 3.7
+ 2.5

-8.4 ± 3.5
+ 1.9

-7.9 ± 3.6
+ 1.3

-0.1 ± 3.7
+ 3.5

– 3.8 – 0.0 – 0.4 – 1.1 – 0.4

277.5 -1.2 ± 6.9
+ 0.6

-12.5 ± 3.7
+ 0.0

-9.4 ± 3.7
+ 2.4

4.4 ± 3.8
+ 3.4

-3.2 ± 3.9
+ 0.4

– 2.9 – 3.0 – 0.6 – 0.0 – 1.0

292.5 -6.0 ± 7.4
+ 0.6

-13.8 ± 4.1
+ 2.6

-7.3 ± 3.5
+ 1.5

-4.5 ± 3.9
+ 0.6

-7.4 ± 4.4
+ 2.4

– 1.6 – 0.0 – 0.3 – 0.7 – 0.6

307.5 0.6 ± 8.3
+ 1.7

-5.3 ± 4.2
+ 5.0

-6.2 ± 4.0
+ 0.5

-4.1 ± 4.8
+ 4.7

-7.2 ± 4.9
+ 0.8

– 5.6 – 0.0 – 1.8 – 0.2 – 1.7

322.5 -2.6 ± 8.3
+ 0.0

-15.7 ± 4.6
+ 1.1

-10.4 ± 4.3
+ 1.0

-14.6 ± 5.3
+ 0.0

-5.8 ± 6.2
+ 1.0

– 8.0 – 1.2 – 1.1 – 3.9 – 2.7

337.5 -14.3 ± 8.6
+ 3.4

-1.8 ± 4.8
+ 0.8

-14.9 ± 5.0
+ 0.0

-0.2 ± 6.5
+ 0.0

-1.0 ± 8.4
+ 1.2

– 1.6 – 0.8 – 4.6 – 4.5 – 10.7

352.5 4.7 ± 8.7
+ 7.7

-3.1 ± 5.0
+ 0.9

1.0 ± 5.6
+ 4.9

-1.7 ± 7.3
+ 2.0

-3.8 ± 12.5
+ 9.3

– 0.0 – 0.8 – 0.7 – 5.9 – 0.0
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φ (deg)
xB = 0.336 xB = 0.342 xB = 0.343 xB = 0.342 xB = 0.342

Q2 = 2.161 GeV2 Q2 = 2.190 GeV2 Q2 = 2.194 GeV2 Q2 = 2.191 GeV2 Q2 = 2.193 GeV2

t = -0.171 GeV2 t = -0.231 GeV2 t = -0.278 GeV2 t = -0.324 GeV2 t = -0.371 GeV2

7.5 7.3 ± 6.5
+ 0.0

14.4 ± 10.1
+ 0.3

X X X
– 8.0 – 6.4

22.5 1.7 ± 6.7
+ 2.8

32.4 ± 8.9
+ 0.3

X X X
– 1.8 – 3.2

37.5 7.6 ± 6.1
+ 2.8

16.2 ± 7.9
+ 8.5

16.8 ± 8.7
+ 0.0

5.3 ± 11.9
+ 2.6

-23.9 ± 23.3
+ 5.6

– 0.4 – 0.0 – 7.4 – 3.5 – 11.7

52.5 22.5 ± 5.6
+ 9.3

17.7 ± 6.4
+ 3.3

11.7 ± 7.4
+ 6.6

16.5 ± 9.0
+ 0.0

7.7 ± 12.1
+ 10.5

– 0.0 – 2.7 – 1.6 – 4.3 – 0.0

67.5 25.8 ± 5.3
+ 5.7

20.2 ± 5.8
+ 2.9

12.5 ± 6.5
+ 0.0

17.9 ± 8.0
+ 0.0

5.9 ± 8.6
+ 0.2

– 0.0 – 1.6 – 4.6 – 5.4 – 4.5

82.5 14.9 ± 5.1
+ 3.2

8.7 ± 5.0
+ 0.7

17.9 ± 5.4
+ 0.9

13.0 ± 5.5
+ 4.5

0.2 ± 6.1
+ 3.9

– 0.4 – 3.4 – 0.9 – 0.7 – 1.3

97.5 14.2 ± 4.5
+ 3.3

21.1 ± 4.8
+ 0.4

13.5 ± 4.6
+ 2.4

12.5 ± 4.9
+ 5.0

12.7 ± 5.3
+ 0.9

– 0.0 – 0.8 – 0.0 – 0.2 – 3.4

112.5 23.3 ± 4.2
+ 0.0

18.6 ± 4.0
+ 1.4

11.3 ± 4.2
+ 0.2

1.5 ± 4.2
+ 3.8

-3.2 ± 4.3
+ 1.0

– 2.6 – 0.6 – 2.0 – 0.0 – 1.0

127.5 11.3 ± 4.2
+ 0.8

11.5 ± 3.6
+ 0.1

2.3 ± 3.3
+ 1.2

9.5 ± 3.9
+ 0.1

5.1 ± 3.6
+ 0.1

– 3.8 – 4.6 – 0.8 – 0.7 – 2.0

142.5 7.0 ± 3.9
+ 1.2

10.7 ± 3.5
+ 1.6

5.7 ± 3.4
+ 1.7

7.8 ± 3.7
+ 0.0

4.5 ± 3.5
+ 0.6

– 0.2 – 0.7 – 0.0 – 1.1 – 1.9

157.5 -3.1 ± 3.7
+ 1.2

6.4 ± 3.5
+ 0.2

4.1 ± 3.5
+ 0.2

7.2 ± 3.6
+ 0.0

3.8 ± 3.7
+ 0.5

– 0.0 – 0.9 – 3.0 – 1.0 – 0.4

172.5 4.5 ± 3.7
+ 4.0

1.4 ± 3.4
+ 3.6

0.8 ± 3.6
+ 0.5

0.8 ± 3.4
+ 0.4

-0.2 ± 3.9
+ 3.4

– 0.3 – 0.0 – 0.9 – 1.9 – 0.0

187.5 -1.7 ± 3.5
+ 0.1

-1.2 ± 3.4
+ 2.2

2.5 ± 3.6
+ 0.3

-0.2 ± 3.4
+ 0.0

8.5 ± 3.6
+ 1.3

– 2.5 – 0.5 – 1.9 – 1.0 – 0.3

202.5 -2.1 ± 3.6
+ 1.8

1.4 ± 3.6
+ 0.5

-3.3 ± 3.3
+ 0.9

-9.4 ± 3.8
+ 2.5

0.5 ± 3.8
+ 0.0

– 1.3 – 1.1 – 0.1 – 0.0 – 3.6

217.5 -9.2 ± 3.9
+ 0.6

-9.5 ± 3.7
+ 0.0

-6.3 ± 3.6
+ 1.4

-7.3 ± 3.4
+ 1.2

-4.1 ± 3.4
+ 2.6

– 0.7 – 2.2 – 0.0 – 0.0 – 0.2

232.5 -13.5 ± 4.1
+ 2.6

-3.8 ± 3.8
+ 0.0

-3.4 ± 3.7
+ 0.6

-3.9 ± 3.8
+ 0.9

-7.9 ± 3.8
+ 1.3

– 0.0 – 2.1 – 0.5 – 0.8 – 0.2

247.5 -6.8 ± 4.1
+ 2.4

-8.4 ± 4.0
+ 0.0

-3.6 ± 3.8
+ 0.2

-0.6 ± 3.8
+ 1.8

-4.9 ± 4.2
+ 2.1

– 0.0 – 1.8 – 0.9 – 0.0 – 0.5

262.5 -22.7 ± 4.5
+ 2.2

-11.2 ± 4.5
+ 0.9

-19.1 ± 4.3
+ 0.0

-3.0 ± 4.8
+ 0.7

-0.9 ± 4.4
+ 2.0

– 0.8 – 0.7 – 5.1 – 2.0 – 0.1

277.5 -19.9 ± 4.8
+ 0.4

-22.1 ± 4.8
+ 2.2

-14.7 ± 5.0
+ 5.1

-19.4 ± 5.6
+ 0.0

-4.8 ± 5.7
+ 0.0

– 1.4 – 0.8 – 0.0 – 3.1 – 2.5

292.5 -17.6 ± 5.4
+ 2.3

-21.5 ± 5.4
+ 0.8

-16.1 ± 5.5
+ 0.5

-20.0 ± 7.1
+ 1.5

-15.4 ± 7.7
+ 0.0

– 0.5 – 1.6 – 2.7 – 2.7 – 3.8

307.5 -23.2 ± 5.5
+ 0.0

-27.4 ± 6.3
+ 7.9

-3.2 ± 6.9
+ 1.1

-21.8 ± 7.8
+ 2.2

-9.7 ± 10.6
+ 2.2

– 4.8 – 0.0 – 3.4 – 1.8 – 1.5

322.5 -19.2 ± 5.9
+ 3.5

-17.0 ± 7.2
+ 0.0

-2.6 ± 8.1
+ 3.4

-26.5 ± 12.3
+ 13.9

-19.9 ± 17.6
+ 0.0

– 0.0 – 2.9 – 0.0 – 0.0 – 25.8

337.5 -4.7 ± 6.2
+ 0.4

5.9 ± 8.3
+ 0.0

X X X
– 0.9 – 5.4

352.5 -4.1 ± 6.5
+ 1.8

6.6 ± 9.4
+ 2.5

X X X
– 3.4 – 2.0
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Figure B.8: (Color online) Cross section differences for opposite beam helicities for KinX2.
Error bars are statistical only. The light blue area represents the point-to-point systematic
uncertainties added linearly to the normalization error. The KM10a model along with its
modified version including TMC effects are shown as dotted blue and solid green curves
respectively.

Figure B.9: (Color online) Cross section differences for opposite beam helicities for KinX3.
Error bars are statistical only. The light blue area represents the point-to-point systematic
uncertainties added linearly to the normalization error. The KM10a model along with its
modified version including TMC effects are shown as dotted blue and solid green curves
respectively.



Appendix C

Light cone coordinates

We are going to use the light cone coordinates, convenient to simplify the calculations and
to understand the physics. We define the Sudakov vectors such as:

p̃ =
1√
2




1
0
0
1


 and n =

1√
2




1
0
0
−1


 , (C.1)

As a consequence we have n · p̃ = 1 and n2 = p̃2 = 0.

With q+ = q0 + q3 and q− = q0 − q3, we can write:

q = q+p̃+ q−n+ ~q⊥, (C.2)

where ~q⊥ are the remaining components orthogonal to p̃ and n.
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M. O. Distler, L. Doria, A. Esser, H. Fonvieille, J. M. Friedrich, J. Friedrich, M. Gómez
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