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Résumé

Le mélange des quarks est décrit dans le modèle standard de la physique des particules par le
mécanisme de Cabibbo-Kobayashi-Maskawa (CKM). À ce jour, l’angle γ du triangle d’unitarité
est un des paramètres de ce mécanisme mesuré avec la moins bonne précision. La mesure de cet
angle sert de référence pour le modèle standard, puisqu’elle peut être réalisée sans contribution
significative de nouvelle physique. La précision actuelle de la meilleure mesure directe de γ
est d’environ 10◦, alors que les ajustements globaux des paramètres CKM, potentiellement
sujets à une contribution de nouvelle physique, déterminent cet angle à quelques degrés près.
Par conséquent, une mesure directe précise de cette quantité est nécessaire pour contraindre
d’avantage le triangle d’unitarité de la matrice CKM et ainsi tester la cohérence de ce modèle.

Cette thèse présente une mesure de γ par une analyse de Dalitz du canal B 0→ DK ∗0, avec
une désintégration du méson D en K 0

S π
+π−. Elle est basée sur les 3 fb−1 de données enregistrés

par LHCb pendant le Run I du LHC, à une énergie de collision proton-proton dans le centre
de masse de 7 et 8TeV. Ce canal est sensible à γ par l’interférence entre les transitions b→ u et
b→ c. La mesure des observables de violation de CP réalisée est

x− = −0.09+0.13
−0.13 ±0.09±0.01 ,

x+ = −0.10+0.27
−0.26 ±0.06±0.01 ,

y− = 0.23+0.15
−0.16 ±0.04±0.01 ,

y+ = −0.74+0.23
−0.26 ±0.07±0.01 ,

où le première incertitude est statistique, la deuxième est l’incertitude systématique expérimen-
tale et la troisième est l’incertitude systématique venant du modèle de Dalitz. Une interprétation
fréquentiste de ces observables donne

rB 0 = 0.39±0.13 , δB 0 =
(
186+24

−23

)◦
, γ=

(
77+23

−24

)◦
,

où rB 0 est le module du rapport des amplitudes des désintégrations supprimées et favorisées et
δB 0 la différence de phase forte entre ces deux désintégrations.

Par ailleurs, un travail sur l’optimisation de la reconstruction des photons pour la mise à
niveau du détecteur LHCb est aussi présenté. Lors du Run III du LHC, la luminosité instantanée
reçue par LHCb sera augmentée d’un facteur cinq, générant un plus grand recouvrement entre
les cascades se développant dans le calorimètre électromagnétique. L’étude montre que l’effet
de ce recouvrement entre les gerbes est limité en réduisant la taille des clusters utilisés pour la
détection des photons, tout en évitant une diminution significative de l’énergie reconstruite.
Avec des corrections adaptées, la nouvelle reconstruction développée améliore la résolution en
masse de 7 à 12%, suivant la région du calorimètre considérée.

Mots-clés : Physique des particules, Physique des saveurs, Modèle standard, Violation de
CP , CKM, Triangle d’unitarité, LHC, LHCb, LHCb upgrade, Calorimètre électromagnétique.





Abstract

Quark mixing is described in the standard model of particle physics with the Cabibbo-Kobayashi-
Maskawa mecanism. The angle γ of the unitarity triangle is one of the parameters of this mecan-
ism that is still determined with a large uncertainty. It can be measured without significant
contribution of new physics, making it a standard model key measurement. The current pre-
cision of the best direct measurement of γ is approximately 10◦, whereas the global fits of the
CKM parameters determine this angle up to a few degrees. Therefore precise measurement of
this quantity is needed to further constrain the Unitarity Triangle of the CKM matrix, and check
the consistency of the theory.

This thesis reports a measurement of γ with a Dalitz analysis of the B 0 → DK ∗0 channel
where the D meson decays into K 0

S π
+π−, based on the 3 fb−1 of proton-proton collision data

collected by LHCb during the LHC Run I, at the centre-of-mass energy of 7 and 8TeV. This
channel is sensitive to γ through the interference between the b→ u and b→ c transitions. The
CP violation observables are measured to be

x− = −0.09+0.13
−0.13 ±0.09±0.01 ,

x+ = −0.10+0.27
−0.26 ±0.06±0.01 ,

y− = 0.23+0.15
−0.16 ±0.04±0.01 ,

y+ = −0.74+0.23
−0.26 ±0.07±0.01 ,

where the first uncertainty is statistical, the second is the experimental systematic uncertainty
and the third is the systematic uncertainty due to the Dalitz model. A frequentist interpretation
of these observables leads to

rB 0 = 0.39±0.13 , δB 0 =
(
186+24

−23

)◦
, γ=

(
77+23

−24

)◦
,

where rB 0 is the magnitude of the ratio between the suppressed and favoured decays and δB 0

the strong phase difference between these two decays.

In addition, the work performed on the optimisation of the photon reconstruction for the
upgraded LHCb detector is reported. During LHC Run III, the LHCb instantaneous luminosity
will be increased by a factor five, implying a larger shower overlap in the electromagnetic
calorimeter. The study shows that reducing the cluster size used in the photon reconstruction
limits the effect of the overlap between the showers, without inducing a significant energy
leakage. With some dedicated corrections, the new cluster reconstruction improves the B 0

s →φγ

mass resolution by 7 to 12%, depending on the calorimeter region.

Key words: Particle physics, Flavour physics, Standard model, CP violation, CKM, Unitarity
triangle, LHC, LHCb, LHCb upgrade, Electromagnetic calorimeter.





Synthèse

Le mélange des quarks est décrit dans le modèle standard de la physique des particules par
le mécanisme de Cabibbo-Kobayashi-Maskawa (CKM). Il relie les états propres de masse des
quarks à leurs états propres de l’interaction faible grâce à une matrice de rotation, la matrice
CKM :

VC K M ≡


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

 . (1)

Chaque terme Vi j de la matrice correspond au couplage entre les quarks de saveur i et j . En
adoptant la paramétrisation de Wolfenstein [1], qui se base sur une expansion en puissance de
λ≡Vus ≈ 0.22, l’ordre de grandeur de ces couplages apparaît clairement.

VC K M =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O
(
λ4) . (2)

Ainsi, les transitions au sein d’une même génération de quark sont favorisées. Avec un paramètre
η différent de zéro, la matrice CKM possède une phase complexe non nulle, qui explique la
violation de la symétrie CP dans le modèle standard.

La matrice CKM étant une matrice de rotation, elle doit être unitaire. Cette condition peut,
entre autre, se représenter dans un plan complexe par un triangle d’unitarité (Fig.1). Le sujet
principal de cette thèse porte sur la mesure de l’angle γ de ce triangle d’unitarité, défini comme

γ= arg

(
−Vud Vub

∗

Vcd Vcb
∗

)
. (3)

À ce jour, l’angle γ du triangle d’unitarité est un des paramètres du mécanisme CKM mesuré
avec la moins bonne précision. La mesure de cet angle sert de référence pour le modèle standard,
puisqu’elle peut être réalisée sans effet significatif de nouvelle physique. En effet, la contribution
de processus d’ordre supérieur aux diagrammes à l’arbre est négligeable. La précision actuelle
de la meilleure mesure directe de γ est d’environ 10◦, alors que les ajustements globaux des
paramètres CKM, potentiellement sujets à une contribution de nouvelle physique, déterminent
cet angle à quelques degrés près. Par conséquent, une mesure directe précise de cette quantité
est nécessaire pour contraindre d’avantage le triangle d’unitarité de la matrice CKM et ainsi
tester la cohérence de ce modèle.

Comme γ correspond à la différence de phase entre les termes Vub et Vcb de la matrice CKM,
sa mesure s’effectue en réalisant une interférence entre les transitions b→ u et b→ c. Le canal
classiquement étudié est B±→ DK ±. Dans cette thèse, c’est la transition neutre B 0→ DK ∗0 qui



FIGURE 1 – Le triangle d’unitarité de la matrice CKM

est étudiée. Elle présente un rapport d’embranchement inférieure à la transition B±→ DK ±,
mais l’interférence entre les désintégrations b → u et b → c y est plus grande. Donc le canal
B 0 → DK ∗0 a intrinsèquement une meilleure sensibilité à γ. Les diagrammes de Feynman
impliqués dans ce canal sont illustrés Fig. 2. Pour réaliser une interférence entre les diagrammes
Vub et Vcb , les mésons D0 et D0 doivent être reconstruits dans le même état final. Suivant les
méthode d’analyse adoptées, plusieurs états finaux sont utilisés. Les méthodes GLW [2, 3] et
ADS [4,5] sont basées sur des désintégrations à deux corps des mésons D . La méthode GGSZ [6,7]
utilise quant à elle une désintégration à trois corps, comme par exemple D → K 0

S π
+π−. Dans

ce cas, la distribution sur le plan de Dalitz, construit à partir des masses invariantes carrées
m2

± ≡ m2(K 0
S π

±), est fonction de l’angle γ. Cette distribution peut s’écrire

P− ∝|AD |2 + r 2
B 0 |AD |2 +2κrB 0Re

[
A∗

D AD e i (δB0−γ)
]

, (4)

P+ ∝|AD |2 + r 2
B 0 |AD |2 +2κrB 0Re

[
AD A∗

D
e i (δB0+γ)

]
. (5)

pour les désintégrations B 0→ DK ∗0 et B 0→ DK ∗0 respectivement. rB 0 est la norme du rapport
entre les amplitudes b→ u et b→ c et δB 0 la différence de phase forte entre ces transitions. Le
facteur de cohérence κ prend en compte l’effet des contributions non résonantes B 0→ DKπ.
Il est évalué dans cette thèse à κ = 0.93±0.04. Les amplitudes AD et AD des désintégrations

D0→ K 0
S π

+π− et D0→ K 0
S π

+π− sont ici décrites grâce à un modèle déterminé par l’expérience
BaBar. À partir d’un ajustement sur la distribution des événements dans le plan de Dalitz, les
paramètres cartésiens

x± ≡ rB 0 cos(δB 0 ±γ), (6)

y± ≡ rB 0 sin(δB 0 ±γ), (7)

sont évalués. Ce qui permet dans déduire des contraintes sur rB 0 , δB 0 et surtout γ.

Le détecteur LHCb (Fig. 3) est particulièrement bien adapté pour réaliser des mesures
de précisions relatives au secteur des saveurs lourdes. D’abord il profite de la grande section
efficace de production de paires bb au LHC, le collisionneur de hadrons installé au CERN
(Genève, Suisse). Et par sa conception, il offre d’excellentes performances en reconstruction
de vertex déplacés, en mesure d’impulsion et de paramètre d’impact, et en identification de
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ū

s

Vcb

Vus

D0

W−

d̄ d̄
K̄∗0

B̄0

(a)

b̄ c̄
u

s̄

V ∗
cb

V ∗
us

D̄0

W+

d d
K∗0

B0

(b)

b u

c̄

s

Vub

Vcs

D̄0

W−

d̄ d̄
K̄∗0

B̄0

b̄ ū
c

s̄

V ∗
ub

V ∗
cs

D0

W+

d d
K∗0

B0

FIGURE 2 – Diagrammes de Feynman impliqués dans les désintégrations B 0→ DK ∗0 (a) et B 0→ DK ∗0

(b). Les transitions proportionnelles au terme |Vcb |2 figurent en haut et les transitions proportionnelles
au terme |Vub |2 figurent au bas. Tous les diagrammes sont supprimés de couleur.

particules. Il est constitué d’un détecteur de vertex (Vertex Locator), de trajectographes placés
en amont et aval de l’aimant, de deux détecteurs à effet Cherenkov (RICH1 et RICH2), d’un
calorimètre électromagnétique et hadronique et de chambres à muons.
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FIGURE 3 – Coupe du détecteur LHCb.

Cette thèse présente une mesure de γ par une analyse de Dalitz du canal B 0 → DK ∗0,
avec une désintégration du méson D en K 0

S π
+π−. Elle est basée sur les 3 fb−1 de données

enregistrés par LHCb pendant le Run I du LHC, à une énergie de collision proton-proton dans
le centre de masse de 7 et 8TeV. Une sélection basée sur un algorithme d’arbre de décision



boosté (BDT) est appliquée pour sélectionner les événements de signal B 0→ D(K 0
S π

+π−)K ∗0 et
rejeter efficacement les bruits de fond. Les variables discriminantes utilisées par le BDT sont
des impulsions transverses, des critères de bonne reconstruction des vertex et des chaînes
de désintégration ainsi que des significances de distances de vol. Les efficacités d’acceptance,
de reconstruction et de sélection sont déterminées à partir de la simulation, en utilisant des
corrections évaluées à partir d’échantillons de calibration issus de données réelles, pour les
efficacité dues au système de déclenchement et d’identification des particules. Un premier
ajustement de la distribution de la masse invariante du méson B 0 reconstruite est réalisé (Fig. 4).
Il permet de déterminer les niveaux de signal B 0→ DK ∗0, du bruit de fond combinatoire et des
bruits de fond issus des désintégrations B 0

s → DK ∗0, B 0
(s)→ D∗0K ∗0 et B 0→ Dρ0.
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FIGURE 4 – Ajustement de la distribution de la masse du méson B 0 des événements B 0→ DK ∗0.

Une fois ces niveaux fixés, un ajustement de la distribution des événements sur le plan de
Dalitz est fait (Fig. 5. Il permet la mesure des observables de violation de CP

x− = −0.09+0.13
−0.13 ±0.09±0.01 ,

x+ = −0.10+0.27
−0.26 ±0.06±0.01 ,

y− = 0.23+0.15
−0.16 ±0.04±0.01 ,

y+ = −0.74+0.23
−0.26 ±0.07±0.01 ,

où le première incertitude est statistique, la deuxième est l’incertitude systématique expéri-
mentale et la troisième est l’incertitude systématique venant du modèle utilisé pour décrire la
désintégration D→ K 0

S π
+π−.

Pour déduire une contrainte sur rB 0 , δB 0 et γ à partir des mesures de (x±, y±), une interpréta-
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FIGURE 5 – Diagramme de Dalitz (a) et ses projections sur m2− (b), m2+ (c) and m2
0 (d) faits à partir

des événements B 0→ DK ∗0 sélectionnés dans les données. La ligne bleue superposée aux projections
correspond au résultat de l’ajustement.

tion statistique fréquentiste de ces observables est menée. Elle donne

rB 0 = 0.39±0.13 ,

δB 0 =
(
186+24

−23

)◦
,

γ=
(
77+23

−24

)◦
.

Les courbes correspondantes de niveaux de confiance sont illustrées Fig. 6 et 7. Les contraintes
obtenues dans les plans à deux dimensions (γ,rB 0 ) et (γ,δB 0 ) sont aussi illustrées Fig. 8 et 9.
La mesure de γ réalisée dans cette thèse avec le canal B 0 → D(K 0

S π
+π−)K ∗0 est comparée

sur la Fig. 10 avec les combinaisons des mesures directes faites par BaBar, Belle et LHCb, les
moyennes faites par les collaborations CKMfitter et UTFit et la mesure individuelle la plus
précise, obtenue avec des désintégration B±→ DK ±. Malgré une statistique réduite par rapport
au canal B±→ DK ±, le résultat de cette thèse montre la grande sensibilité à γ de la désintégration
B 0→ DK ∗0. Ce canal est donc très prometteur pour réaliser une mesure précise de γ avec les
données collectées lors du Run II du LHC.
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Par ailleurs, un travail sur l’optimisation de la reconstruction des photons pour la mise à
niveau du détecteur LHCb est aussi présenté. Il est basé sur la simulation d’événements B 0

s →φγ

dans les conditions prévues pour le Run III du LHC. Lors du Run III, la luminosité instantanée
reçue par LHCb sera augmentée d’un facteur cinq, générant un plus grand recouvrement entre
les cascades se développant dans le calorimètre électromagnétique. Ce recouvrement crée
un empilement des énergies déposées dans les cellules. Ainsi, comme le montre la Fig. 11,
la distribution de la résolution en énergie (Etrue −Erec)/Etrue, où Etrue est la vraie énergie du
photon et Erec son énergie reconstruite, présente une importante queue non gaussienne quand
Erec > Etrue (empilement). Cette queue non gaussienne est plus petite pour des clusters 2×2 et
croix, qui sont plus petits que les clusters 3×3 actuels. La taille de cette queue non gaussienne
est mesurée par un ajustement des distributions de la résolution en énergie par une fonction
Crystal Ball

f (x;α,n,µ,σ) ≡ N ·
e−

(x−µ)2

2σ2 for x−µ
σ >−α,

A
(
B − x−µ

σ

)−n
otherwise.

(8)

On remarque (Fig. 12) que les clusters à taille réduite ont toujours un paramètre α de la
Crystal Ball bien supérieur à ceux obtenus avec le clusters 3×3. Cela signifie que la queue non
gaussienne du à l’empilement est plus petite avec les clusters de taille réduite. Ainsi l’effet du
recouvrement entre les gerbes électromagnétiques est limité en réduisant la taille des clusters
utilisés pour la mesure de l’énergie des photons. Malgré une taille réduite, les clusters 2×2
ont même une résolution gaussienne (paramètre σ de la Crystal Ball) similaire au clusters 3×3
(Fig. 12).
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FIGURE 11 – Résolution en énergie dans la zone “middle” du calorimètre électromagnétique, pour deux
intervalles d’énergie [3,4]GeV (gauche) et ≥ 30GeV (droite) pour 5 vertex primaires et pour les clusters
3×3 (vert), 2×2 (bleu) et croix (rouge). L’effet de l’empilement est particulièrement visible à basse énergie.

Pour la mesure de la position des photons, les clusters 2×2 ne sont pas adaptés. En revanche,
les clusters en croix fonctionnent très bien, et avec les corrections adaptées, la nouvelle recons-
truction développée améliore la résolution en position de 15 à 20% (Fig. 13) et en masse de 7 à
12%, suivant la région du calorimètre considérée et pour des photons issus d’une désintégration
B 0

s →φγ.
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Introduction

The standard model (SM) of particle physics describes with an excellent accuracy the elementary
particles constituting the matter of our universe and their fundamental interactions. The theory
has been extensively tested over the past decades, especially in the electroweak sector, at the
LEP, Tevatron and LHC accelerators, and in the heavy flavour sector, at the SLAC, KEK and
LHC accelerators. Despite its numerous successes, the SM has some remaining challenges.
For instance, it does not include a description of the gravity and cannot explain the matter-
antimatter asymmetry observed in the universe. That is why particle physicists look for evidence
of new physics, in particular with the consistency check of the CKM model, which describes
quark flavour mixing. The SM and the CKM model are presented in Chapter 1.

This thesis focuses on the γ angle of the unitarity triangle, which is one of the least known
CKM parameters. It can be measured without significant contribution of new physics, making it
a SM key measurement. The current precision of the best direct measurement of γ is approxi-
mately 10◦, whereas the global fits of the CKM parameters can determine this angle up to a few
degrees. That is why, to further constrain the heavy quark sector and check the consistency of
the CKM model, more precise direct measurements of γ are needed. This is not an easy task,
since it involves the study of hadronic B meson decays with low rates. The experimental status
on γ and its measurement principle are presented in Chapter 2.

The LHCb detector is well suited to measure γ, and for flavour physics measurements
in general. For instance, with its silicon vertex detector, it efficiently reconstructs secondary
vertices, specific to B meson decay topologies. It can also separate kaons and pions thanks
to its Cherenkov detectors. In addition, the luminosity conditions are adjusted to limit the
occupancy of the detector, in order to efficiently reconstruct the whole decay chain of the signals.
A description of the LHCb detector is made in Chapter 3.

During the LHC Long Shutdown 2, the LHCb detector will be upgraded to cope with an
increase of the instantaneous luminosity. The operating conditions will be harsher, with a larger
detector occupancy, making the neutral objects such as neutral pions and photons more difficult
to measure. Thus, an optimisation of the calorimeter reconstruction for the upgrade should
be done. Chapter 4 reports the study of a new photon reconstruction, adapted to the upgrade
conditions.

Finally, the B 0 → DK ∗0 decays are a promising channel to measure γ. The sensitivity to
this weak phase arises from the interference between b → u and b → c transitions, which is
particularly high in the B 0→ DK ∗0 decays. Chapter 5 presents the measurement of γ using a
Dalitz analysis of these decays, using the so-called GGSZ method, and is the main work of this
thesis.
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The theory describing the structure of the matter that constitutes our universe is called
the standard model of particle physics (SM). It explains with a tremendous accuracy how the
elementary particles interact, at a subatomic scale, with three fundamental interactions (gravity
is not considered in the SM). In this chapter, a brief overview of the standard model is made.
Particular attention is given to quark flavour mixing, described by the CKM mechanism. The
remaining standard model challenges are also mentioned, as well as the reasons why the test of
the CKM paradigm can bring a valuable insight to the search of physics beyond the standard
model. A more detailed introduction to the standard model can be found for instance in Ref. [14],
to quantum field theory in Ref. [15] and to the flavour physics in Ref. [16].
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Chapter 1. The standard model of particle physics

Figure 1.1 – Illustration of the standard model of particle physics, taken from [17].

1.1 Particles, interactions and symmetries

The standard model is based on Quantum Field Theory, and describes matter as made of
elementary particles which are fermions (with spin 1/2), interacting through exchange of virtual
particles which are vector bosons (with spin 1). These particles are massive if they couple to the
Higgs field, mediated by the Higgs boson (with spin 0). This structure is illustrated in Fig. 1.1.
Before describing the SM Lagrangian, a quick overview of the constituents and the symmetries
included in this theory is presented, following roughly Fig. 1.1 from the right to the left.

1.1.1 The elementary particles

Currently, the behaviour of matter is described with four fundamental interactions: gravity, the
strong force, the electromagnetic force and the weak interaction; out of which only the last three
are in the SM. A fully satisfactory quantum theory of gravity has yet to be formulated. However
at the elementary particle scale, the effect of gravity is so weak that it can be neglected (see
Table 1.1). The three SM interactions are mediated through vector bosons, which exchange the
three fundamental charges: colour, weak isospin (T3) and hypercharge (Y ).

The strong interaction is mediated by gluons (g ) and takes place between particles carrying
a colour charge, which can take six values: (anti)red, (anti)green and (anti)blue. Only quarks and
gluons carry a colour and therefore feel the strong force. In nature, only strong colourless bound
states of quarks are observed, which are called hadrons. Among the hadrons, two types can be
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1.1. Particles, interactions and symmetries

Table 1.1 – Relative strengths of the four fundamental interactions observed in nature [14]. Notice that
their couplings, therefore the relative strengths quoted here, depend on the energy or the distance scales
considered.

Interaction Strength

Strong 10

Electromagnetic 10−2

Weak 10−13

Gravitational 10−42

made: the mesons, bound states of one quark and one antiquark (qq); and the baryons, bound
states of three quarks or three antiquarks (qqq or q̄ q̄ q̄). There are some experimental evidence
of more exotic hadrons such as tetraquark and pentaquarks (see for instance Ref. [18]and [19]).

Even though the gluons are massless, the strong interaction does not have an infinite range,
because of the way in which the strong coupling constant αs varies with the spatial (or energy)
scale considered. At large distance, or low energy, the effective coupling increases, making the
proton a bound states of quarks. Whereas at short distance, smaller than the size of a proton,
the coupling becomes smaller and reaches the quark asymptotic freedom. That is why at high
energy the strong interaction can be described perturbatively.

The residual effects of the strong interaction inside the nucleons are the origin of the nuclear
force, analogous to the Van der Waals force between neutral objects which has its origin from
the electromagnetic interaction.

The electromagnetic interaction is mediated by photons (γ) and takes place between parti-
cles which have an electric charge (Q = Y +T3). Since the photon is massless, the interaction
has an infinite range and is the only “Standard Model” force which can have direct macroscopic
effects, such as electromagnetic waves or Coulomb interaction.

The weak interaction is mediated by three vector bosons, two electrically charged, the W +

and W −, and one neutral, the Z . Because of their high masses (see Table 1.2) the interaction
has a very short range, making it weak. Unlike the strong and electromagnetic interactions, the
weak interaction violates a large number of the SM symmetries(see Sec.1.1.2), and couples to all
the fermions: the quarks, the charged leptons (electron e, muon µ and tau τ) and the neutral
leptons (neutrinos νe ,νµ and ντ).

In the top of Fig. 1.1, there are only massless fermions and gauge bosons (g , W 1, W 2, W 3

and B). The theory of Glashow Weinberg and Salam unifies the electromagnetic and weak inter-
actions into the electroweak interaction with the SU(2)L ×U(1)Y gauge symmetry, which would
be spoiled if the bosons and fermions were massive. In order to describe the observed massive
W ± and Z bosons, the SU(2)L ×U(1)Y symmetry is spontaneously broken into U(1)em by the
Brout-Englert-Higgs mechanism (see Sec. 1.2.3). Thanks to this mechanism, the fermions (see
Sec. 1.2.4) and the electroweak bosons get dynamically a mass. The resulting mass eigenstates
W ±, Z and γ are a mixture of W 1, W 2, W 3 and B , as illustrated in Fig. 1.1, and the weak isospin
and the hypercharge are not conserved, only their sum Q = Y +T3.

Finally, as this is related to the subject of this thesis, it is important to notice that the quarks
and leptons follow a particular mass hierarchy (see Table. 1.2), with three generations which are
poorly coupled between each other, as explained in Sec. 1.3).
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Chapter 1. The standard model of particle physics

Table 1.2 – Masses of the elementary particles of the standard model [20]

Quarks Leptons Gauge bosons Higgs boson

u 2.3MeV e 0.511MeV g 0 H 0 125.7GeV

d 4.8MeV νe < 2eV γ 0

s 95MeV µ 105.66MeV W 80.385GeV

c 1.275GeV νµ < 0.19MeV Z 91.1876GeV

b 4.18GeV τ 1776.82MeV

t 173.21GeV ντ < 18.2MeV

1.1.2 Symmetries

Physics tries to describe the evolution of the phenomena observed in nature. Often, the starting
point of any description of these phenomena uses a conservation law (like the energy one).
That is why symmetries in particle physics play a fundamental role. Emmy Noether’s theorem
demonstrates that a continuous symmetry is equivalent to a conservation law [21]. Hence, a
translation in time corresponds to the energy conservation, a translation in space corresponds to
the momentum conservation, rotations correspond to the angular momentum conservation and
a gauge symmetry corresponds to the conservation of the associated charge. As a consequence,
symmetries are a useful tool to build a theoretical model (a Lagrangian) which describes the
conservation laws observed in nature.

In quantum field theory a symmetry is related to an operator O, which transforms the states
in such a way that the physical observables are unchanged. In particular, two conditions are
needed [16]:

1. The vacuum must be invariant : O|0〉 = |0〉.

2. The action (i.e. the Lagrangian) must be invariant: S ≡ ∫
d 4x L (t ,~x)

symmetry−→ S.

A symmetry is not always exact. It can be conserved by one interaction and not by another.
There are two ways for breaking a symmetry:

1. Explicitly: the Lagrangian is not invariant under the symmetry operation. This is the case
of parity violation for the weak interaction for instance.

2. Spontaneously: the ground state is not invariant under the symmetry operation. But the
Lagrangian still conserves the symmetry. This is the case of the SU(2)L×U(1)Y electroweak
symmetry, which is broken into U(1)em because of a non zero vacuum expectation value
of the Higgs field.

In addition to continuous symmetries, there are the discrete space-time symmetries C , P
and T and the number conservation laws of leptons, baryons and quark flavour.
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1.1. Particles, interactions and symmetries

Parity

The parity operation P transforms a space coordinate ~x into −~x. It corresponds to a mirror
reflection followed by a 180◦ rotation. For instance, it transforms a left-handed particle into a
right-handed particle. The strong and electromagnetic interactions conserve parity, whereas the
weak interaction maximally violates parity [22]. Indeed, it couples only left-handed fermions (or
right-handed antifermions). An illustration is the π+→µ+νµ decay, where the antimuon and
the neutrino are emitted almost always with a left-handed helicity (i.e. a spin projection in the
opposite direction of their momentum, closely related to the chirality), to conserve the spin.

Charge conjugation

The charge conjugation C transforms a particle into its antiparticle, which has the same mass,
momentum and spin but opposite internal quantum numbers such as electric charge. C is
again conserved by the strong and electromagnetic interactions and maximally violated by weak
interaction. For instance, the electromagnetic decay of a C eigenstate π0, of eigenvalue +1
and spin 0, can only produce two photons and not three (photons have a C eigenvalue of −1,
and charge conjugation is a multiplicative number). And the weak decay π−→µ−νµ, charged
conjugate of π+→µ+νµ, almost never happens since it produces a left-handed antineutrino.

Time reversal

The time reversal symmetry T reflects the time coordinate t into −t , while leaving the spatial
coordinates unchanged. Assuming CPT invariance, it is equivalent to CP symmetry. Again, only
the weak interaction is not invariant under a T transformation. This phenomenon has been
directly observed for the first time by the BaBar collaboration [23].

CP

The CP transformation is the conjugation of C and P operators. Since it transforms a left-handed
fermion into a right-handed fermion, is an approximate symmetry of the weak interaction. For
instance the decays π+→µ+νµ with a left-handed neutrino, occurs with the same rate as its CP
conjugate π−→µ−νµ, with a right-handed antineutrino. However, CP violation appears with the
presence of the second and third generation of quarks. It was experimentally observed for the
first time in 1964 by Cronin and Fitch [24], extensively studied by the B-factories BaBar and Belle,
and the LHCb collaboration is pursuing the work. The current CP violation measurements are
in good agreement with the Cabbibo-Kobayashi-Maskawa (CKM) model, presented in Sec. 1.3.

CPT

The C PT symmetry is required to be exact for any interaction [25]. This is due to the so-called
C PT theorem [25–28], proving that any quantum field theory must be C PT invariant. The
consequence of this theorem is that particles and antiparticles have the same masses and
lifetimes. For now, no evidence of C PT violation has been found, see for instance the dedicated
section in Ref. [20].

Lepton number

Lepton number (1 for lepton, -1 for antilepton, in a same generation) is always strictly conserved
by electromagnetic interaction. The weak interaction also appears to conserve the absolute value

7



Chapter 1. The standard model of particle physics

of the three separate lepton numbers Le , Lµ and Lτ, apart from the neutrino in the phenomenon
of oscillations.

Baryon number

Baryon number (1 for baryon, -1 for antibaryon, 0 for anything else) is also found to be conserved.
Its violation could allow the proton to decay, like in the p → e+π0 transition, as predicted by
some Grand Unification Theory [29].

Quark flavour

Quark flavour is conserved by the strong and electromagnetic interactions, however the weak
interaction does not. An up-quark can turn into a down-quark, a bottom-quark can turn into
a charm or a up-quark. This flavour change, described with the CKM model, occurs only with
charged currents. Hence, flavour-changing neutral currents (FCNC) are only second order
effects in the SM.

1.2 The standard model Lagrangian

The standard model is based on quantum field theory. In this approach, particles are seen as
quanta of excitation of different fields with regards to a ground state, called “vacuum”. These
fields are encoded in a Lagrangian, which gives the propagation equation of a given particle
thanks to the Euler-Lagrange formula. According to the particle nature, scalar, spinor or vector,
the Lagrangian has an appropriate structure, leading to the Klein-Gordon, Dirac and Proca
equation respectively [14].

Quarks and leptons, which are fermions, are described by spinor fields. To explain the
presence of the gluons, photons, W ± and Z vector bosons, the Lagrangian of the standard
model is supposed to follow the SU(3)C ×SU(2)L ×U(1)Y local gauge symmetry. To conserve
this local symmetry, in addition to the quark and lepton free fields, new fields are required in
the Lagrangian. These additional fields are the vector bosons of the three fundamental interac-
tions. SU(3)C is the “colour” symmetry and is at the origin of the Quantum ChromoDynamics
Lagrangian (LQCD), responsible for the strong interaction (Sec. 1.2.1). SU(2)L ×U(1)Y is the
weak isospin and hypercharge (Y ) symmetry (LEW), describing the electroweak interaction
(Sec. 1.2.2).

The standard model Lagrangian can be written in a general way as

L = LQCD︸ ︷︷ ︸
Strong interaction (gluons)

+ LEW︸ ︷︷ ︸
Electroweak interaction (γ, W± and Z)

+ LHiggs︸ ︷︷ ︸
Higgs mechanism (masses of W±, Z and H0)

+ LYukawa︸ ︷︷ ︸
Yukawa coupling (fermion masses)

.
(1.1)

The third term corresponds to the Higgs mechanism responsible for the W ±, Z , H 0 boson
masses, and their interactions (Sec. 1.2.3). The last term is the Yukawa interaction between
the fermions and the Higgs field, which creates the fermion masses and their flavour mixing
(Sec. 1.2.4).

In this Lagrangian, some terms describe the propagation of the fields, free from any intera-
ction, and lead to the propagators in the Feynman diagrams. The other terms correspond to the
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1.2. The standard model Lagrangian

interactions. For a given interaction, the transition probability from an initial state |i 〉 to a final
state 〈 f | is deduced from the squared amplitude of the S matrix element

S f i = 〈 f |S|i 〉 . (1.2)

It can be shown that the S matrix depends on the exponential of the interaction Lagrangian
Lint [15],

S ∼ e i
∫

d 4x Lint . (1.3)

If the coupling constant of the corresponding interaction is small enough, this exponential can
be perturbatively expanded, leading to the vertices in the Feynman diagrams description, widely
used in particle physics.

The next sections briefly describe the four terms of the standard model Lagrangian, with a
particular emphasise on the origin of the CKM matrix.

1.2.1 Quantum ChromoDynamics

The QCD Lagrangian describes the strong interaction between the quarks and gluons with

LQCD =−1

4
Tr

[
GµνGµν

]− n f∑
f =1

ψ f ( /D +m f )ψ f . (1.4)

The trace on the Ga
µν gluon field tensor corresponds to a sum over the colour states a ∈ {1, ...,8}.

It is expressed as
Ga
µν = ∂µAa

ν −∂νAa
µ+ gS f abc Ab

µAc
ν, (1.5)

where gS denotes the strong coupling constant, Aa
µ the gluon fields and f abc the structure

constant of SU(3).
The Dµ covariant derivative is, with t a the SU(3) generators,

Dµ = ∂µ− i gS t a Aa
µ . (1.6)

The quark fields, for a given flavour f , are represented by the column vector ψ f , which includes
the three colour states. In this form, the QCD Lagrangian is invariant under a CP transformation.
However another gauge-invariant term can be also added:

L��CP = θTr
[
GµνGαβ

]
εµναβ . (1.7)

This term in not invariant under a CP transformation. Hence, for a non vanishing value of the θ
parameter, the strong interaction could violate CP symmetry. At present, no evidence of such
effect has been measured. Experimental limits on the electric dipole moment of the neutron
imply that |θ|. 10−10 [20]. This absence of CP violation in QCD is called the strong CP problem.

1.2.2 Electroweak Lagrangian

To account for the maximal parity violation observed in the weak interaction, the fermions are
described with left-handed doublets and right-handed singlets

QL =
(
U

D

)
L

, EL =
(
νl

l−

)
L

, UR , DR , l−R , (1.8)

9



Chapter 1. The standard model of particle physics

where U , D , νl and l− represent the flavour eigenstates of the up-type quarks, down-type quarks,
neutral leptons and charged leptons, respectively. With the three generations of the standard
model they are

U =


u

c

t

 , D =


d

s

b

 , νl =


νe

νµ

ντ

 , and l− =


e−

µ−

τ−

 . (1.9)

And the chiral fields are obtained by projection: ψL/R = 1
2 (1∓γ5)ψ.

The interaction between the fermion fields and the gauge bosons of the electroweak force is
based on three types of currents:

• Charged current:
J+µ =U LγµDL + l LγµνL , and h.c. , (1.10)

• Neutral current:

J 3
µ =

1

2

(
U LγµUL −DLγµDL +νLγµνL − l LγµlL

)
, (1.11)

• Electromagnetic current:

J em
µ = 2

3
U LγµUL − 1

3
DLγµDL − l LγµlL

+ 2

3
U RγµUR − 1

3
DRγµDR − l RγµlR .

(1.12)

These currents couple to the vector bosons W ±, Z andγ, and give the electroweak interaction
Lagrangian

L i nt
EW = gp

2

(
J+µW − µ+ J−µW + µ

)
+ g

cosθW

(
J 3
µ− sin2θW J em

µ

)
Zµ+e J em

µ Aµ , (1.13)

where the first term corresponds to the W ± exchange, the second to the Z exchange and the third
to the photon exchange; g and e are the constants of the weak and electromagnetic interaction
respectively. The angle θW defines the mixing between the isospin and hypercharge eigenstates
W 3
µ and Bµ of the SU(2)L and U(1)Y groups respectively, into the mass eigenstates Z and γ. At

this point, there is no mass term for the electroweak bosons included in the Lagrangian. Indeed,
a simple mass term would spoil the local symmetry SU(2)L ×U(1)Y . Instead, the masses of the
gauge bosons are generated dynamically thanks to the Higgs mechanism.

1.2.3 Higgs mechanism

The electromagnetic and weak interactions are unified in the electroweak interaction under
the SU(2)L ×U(1)Y gauge symmetry. SU(2)L is the weak isospin symmetry and U(1)Y is the
hypercharge symmetry. However, these gauge symmetries must be broken, since experimentally
isospin and hypercharge are not observed to be conserved. The relevant quantity which is
conserved is the electric charged, given by the operator

Q = τ3 +Y , (1.14)

where τ3 = σ3
2 is the third generator of the SU(2) group (σ3 is the third Pauli matrix), and Y the

generator of the U(1) group. Thus, the SU(2)L ×U(1)Y → U(1)em symmetry breaking is expected.

10



1.2. The standard model Lagrangian

This breaking is obtained spontaneously thanks to the Higgs mechanism, with the introduction
of a complex doublet H , whose corresponding Lagrangian is

LHiggs =
(
DµH

)† (
DµH

)+m2H †H −λ(H †H)2 . (1.15)

Written in this form the Lagrangian is invariant under the SU(2)L ×U(1)Y symmetry. The covari-
ant derivative is

DµH = ∂µH − i gW a
µ τ

a H − 1

2
i g ′BµH , (1.16)

where Bµ is the hypercharge gauge boson and W a
µ are the SU(2) gauge bosons. g and g ′ are the

SU(2)L and U(1)Y couplings. The potential in the Lagrangian (1.15) V (H) = −m2|H |2 +λ|H |4
induces a non zero vacuum expectation value (vev). Hence, the complex doublet can be written
as

H =
(

0
v+hp

2

)
, (1.17)

with h an excitation from the ground state v . In this formulation, the interaction term between
the gauge bosons and the Higgs doublet becomes (considering only the term with v)

|DµH |2 = g 2 v2

8

[(
W 1
µ

)2 +
(
W 2
µ

)2 +
(

g ′

g
Bµ−W 3

µ

)2
]

. (1.18)

To make appear the massive Zµ boson and the massless Aµ photon, the neutral bosons Bµ and
W 3
µ are rotated with the weak mixing angle θW such that

Bµ =cosθW Aµ− sinθWZµ ,

W 3
µ =sinθW Aµ+cosθWZµ .

(1.19)

Hence, the
(

g ′
g Bµ−W 3

µ

)2
term becomes equal to the Z boson mass term 1

2 m2
Z ZµZµ with mz =

g v
2cosθW

. Furthermore, the Aµ field does not get a mass term, leading to the correct description of
the photon. The charged bosons W ± correspond to the linear combination

W ±
µ = 1p

2

(
W 1
µ ∓ iW 2

µ

)
, (1.20)

and have the mass mW = g v
2 = mZ cosθW.

Eventually, from a Lagrangian invariant under a SU(2)L × U(1)Y transformation, a new
formulation is obtained, which hides this symmetry. Indeed, the symmetry does not leave
invariant the ground state. Thanks to this spontaneous symmetry breaking, the weak bosons
get masses and a new neutral boson appears, as the excitation h of the Higgs field H . This
mechanism was predicted in 1964 by three independent groups of physicists: F. Englert and
R. Brout [30]; P. Higgs [31, 32]; G. Guralnik, C. Hagen and T. Kibble [33]. The Higgs boson was
discovered in July 2012 by the ATLAS and CMS collaborations using the data recorded at the
CERN Large Hadron Collider [34, 35].

The Higgs field does not only provide masses to the gauge bosons, but also generates the
fermion masses through Yukawa interaction (see next section).
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Chapter 1. The standard model of particle physics

1.2.4 Yukawa interaction and quark masses

As for the gauge bosons, explicit fermion mass terms cannot be included in the SM Lagrangian
without breaking the SU(2)L symmetry. Therefore to describe massive fermions, a Yukawa
interaction term between the fermions and the Higgs field is added. Only the quark sector will be
developed here, since it is directly relevant to the analysis presented in this thesis 1 (see Chap. 5).
The Lagrangian related to the quark sector is

LYukawa = −Y d
i j Q

i
L H d j

R −Y u
i j Q

i
L H̃ u j

R +h.c. (1.21)

The indices i and j represent the sum over all the fermion generations, Q i
L =

(
Ui

Di

)
is the compo-

nent of the quark doublet defined in Eq. (1.8) corresponding to the i th generation , the Yi j are
the Yukawa matrix elements and the Higgs field conjugate is defined as

H̃ ≡ iσ2H∗ = i

(
0 −i

i 0

)(
φ+

φ0

)∗
=

(
φ0

−φ−

)
. (1.22)

With the electroweak spontaneous symmetry breaking, the Higgs field gets a vev with

H =
(
φ+

φ0

)
→

(
0
vp
2

)
and H̃ =

(
φ0

−φ−

)
→

(
vp
2

0

)
. (1.23)

Thus the Yukawa Lagrangian can be simplified as

LYukawa =− vp
2

Y d
i j d

i
Ld j

R − vp
2

Y u
i j ui

Lu j
R + h.c.

=− vp
2

[
Y d DLdR +Y uU LuR

]
+ h.c. ,

(1.24)

where in the last line the matrix notation is adopted. The quark mass matrices can be now
defined from the Yukawa matrices

M u = vp
2

Y u and M d = vp
2

Y d . (1.25)

The values of the Yukawa couplings are arbitrary, that is why the masses of the quarks are free
parameters of the SM. Moreover, these couplings can be complex and therefore lead to CP
violation (see next section).

1.3 The Cabbibo-Kobayashi-Maskawa paradigm

The weak interaction is experimentally observed not to conserve the quark flavours. A quark
b for instance can decay into a quark c or a quark u. Moreover the flavour transition is always
accompanied by a charge exchange 2. To describe quark flavour mixing, Cabbibo’s idea [38]
was extended to multiple quark generations by Kobayashi and Maskawa [39]. The fundamental
principle is that the quark eigenstates of the weak interaction differ from their mass eigenstates.

1A similar Yukawa interaction can be adopted for the leptons. It leads also to a flavour mixing matrix, describing
the neutrino oscillation, called PMNS [36, 37]

2At least, at the tree level.
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1.3. The Cabbibo-Kobayashi-Maskawa paradigm

1.3.1 The CKM matrix

Since the weak interaction mixes the quark flavour, in the weak basis the mass matrices M u

and M d defined in Eq. (1.25) are not diagonal. In order to diagonalise them, a basis change is
performed with four unitary matrices Vu,L , Vd ,L , Vu,R , and Vd ,R , such that

M u =Vu,L M uV †
u,R and M d =Vd ,L M d V †

d ,R (1.26)

are the diagonal mass matrices. As a result, the quark mass eigenstates are obtained from the
weak basis made of the states UL , DL , uR and dR , with

U m
L =Vu,LUL , um

R =Vu,R uR ,

Dm
L =Vd ,LDL , d m

R =Vd ,R dR .
(1.27)

Thus, the Yukawa Lagrangian (1.24) in the mass eigenstates basis is simplified into

LYukawa =−D
m
L M d d m

R −U
m
L M d um

R +h.c. (1.28)

The basis change on the electroweak Lagrangian (1.13) has two consequences:

• The neutral currents are unchanged. For instance the term U LγµUL is invariant,

U LγµUL = U
m
L Vu,LγµV †

u,LU m
L = U

m
L γµU m

L . (1.29)

Hence, only identical flavours of quarks can interact through neutral current. This corre-
sponds to the absence of flavour neutral changing currents (FCNC) at the tree level in the
SM, and is known as the GIM mechanism [40].

• The behaviour of the charged currents is different. They are not identical if they are written
in the mass or weak basis. For instance, the term U LγµDL is transformed according to

U LγµDL = U
m
L Vu,LγµV †

d ,LDm
L = U

m
L γµVC K M Dm

L , (1.30)

with the CKM matrix defined as

VC K M ≡Vu,LV †
d ,L =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

 . (1.31)

As a consequence, a given down-type quark in a mass eigenstate d m
i can couple to an

up-type quark with a different flavour um
j (and the opposite). The probability of the flavour

changing transitions are directly related to the squared module of the Vi j elements of the
CKM matrix. That is why, for instance, the b→ c and b→ u transitions are observed, and
with different probabilities.

1.3.2 CP violation phase

To describe the CP violation observed in charged weak interaction, a complex phase must be
present in the charged current, and appears in the CKM matrix. A n ×n unitary matrix has
a total of n2 independent real parameters. Since the quark fields can be freely rotated with
arbitrary phases, (2n −1) relative phases vanish among the n2 parameters (one global phase
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Chapter 1. The standard model of particle physics

remains). Hence, at the end, the CKM matrix has (n −1)2 independent real parameters, among
them Nangles = 1

2 n(n −1) angles and Nphases = 1
2 (n −1)(n −2) phases.

This implies that for two generations of quarks, only one angle is needed (the Cabbibo angle
θc ) and no phase appears. Therefore, no CP violation can occur with only two families. For three
generations, there are three angles and one phase which are irreducible. This is illustrated by
the standard parameterisation of the CKM matrix

VC K M =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13

 , (1.32)

where ci j = cosθi j and si j = sinθi j are the cosine and the sine of the three mixing angles. The
phase δ is the only CP violation source in the SM. Additional sources of CP violation would
require, for instance, a more complex Higgs sector, new quark generations, or CP violation in
the leptonic sector.

1.3.3 Wolfenstein parameterisation

To highlight the hierarchy encoded in the CKM matrix, Wolfenstein developed a parametrisation
through an expansion in powers of λ≡ sinθc ≈ 0.22 [1]. Using the convention [41]

s12 ≡λ ,

s23 ≡ Aλ2 ,

s13e−iδ ≡ Aλ3(ρ− iη),

(1.33)

resulting in

VC K M =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O
(
λ4) . (1.34)

From this development a clear pattern is unveiled: the matrix is almost diagonal and symme-
tric, and its elements are smaller the farther away from the diagonal. Hence, transitions inside a
family are favoured, and transitions between two different families are suppressed. Furthermore,
this suppression becomes larger when it involves the third quark generation. By increasing order
of suppression we have the 2 → 1, 3 → 2 and 3 → 1 generation transitions.

1.3.4 Unitarity triangle

The CKM matrix is unitary, and this implies the relations

3∑
i=1

Vi j V ∗
i k = δ j k and

3∑
j=1

Vi j V ∗
k j = δi k . (1.35)

The six vanishing relations can be graphically represented by triangles in the complex plane. It
can be shown that all the triangles have the same area [42]. However, among the six triangles
only two are not “squashed” [16], and the most commonly used is derived from the relation

Vud Vub
∗+Vcd Vcb

∗+Vtd Vtb
∗ = 0 , (1.36)
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1.3. The Cabbibo-Kobayashi-Maskawa paradigm

Figure 1.2 – The unitarity triangle of the CKM matrix.

which can be normalised by the best known term Vcd Vcb
∗, leading to

Vud Vub
∗

Vcd Vcb
∗ +1+ Vtd Vtb

∗

Vcd Vcb
∗ = 0 . (1.37)

Eq. (1.37) is the definition of the unitarity triangle (UT) of the CKM matrix, and is illustrated
on Fig. 1.2. The triangle apex is the complex number (ρ,η), which is by definition [41]

ρ+ iη≡ Vud Vub
∗

Vcd Vcb
∗ , (1.38)

and leads to the relation

ρ+ iη=
p

1− A2λ4(ρ+ iη)p
1−λ2[1− A2λ4(ρ+ iη)]

. (1.39)

The two sides of the UT which are not normalised to unity are, to all orders of the Wolfenstein
expansion,

Ru =
∣∣∣∣Vud Vub

∗

Vcd Vcb
∗

∣∣∣∣=√
ρ2 +η2 ,

Rt =
∣∣∣∣Vtd Vtb

∗

Vcd Vcb
∗

∣∣∣∣=√
(1−ρ)2 +η2 .

(1.40)

And the three angles are

α= arg

(
− Vtd Vtb

∗

Vud Vub
∗

)
, β= arg

(
−Vcd Vcb

∗

Vtd Vtb
∗

)
, γ= arg

(
−Vud Vub

∗

Vcd Vcb
∗

)
. (1.41)

It can be noted that, according to the Wolfenstein expansion, only the Vub and Vtd terms have a
significant imaginary part. Furthermore, the CP violation phase can be expressed as [41]

δ= γ+ A2λ4η+O
(
λ6) . (1.42)

Therefore, the γ angle can be well approximated as the complex phase of Vub . The subject of
this thesis is the measurement of γ with the B 0→ DK ∗0 decay. The measurement principle is
detailed in the next chapter. As further explained in Sec. 1.4, an important goal of the flavour
physics is to precisely measure the CKM matrix elements to test the consistency of the resulting
Ru , Rt , α, β and γ UT parameters. Any significant tension preventing the UT to be closed at its
(ρ,η) apex could be an evidence of new physics.

15
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1.4 Testing the CKM model as a probe of new physics

The standard model describes with a tremendous precision the elementary particles found in
nature, up to the electroweak scale (∼ 100GeV). However, there are several good reasons to
believe that this theory is inaccurate to higher energy. These reasons are briefly mentioned
in Sec. 1.4.1. Thus, particle physicists intensively look for experimental evidences of physics
beyond the standard model (BSM), also known as new physics. Flavour physics is an excellent
tool for hunting this new physics, with the consistency test of the CKM paradigm (Sec. 1.4.2).

1.4.1 The standard model is not the complete answer

As already mentioned, the standard model describes successfully all the current experimental
observations (cross-sections, branching ratios, asymmetries, angular distributions...). But it
cannot properly explain, for instance, the following points:

• Gravitation is well described by general relativity, which is incompatible with the actual
SM. There is no satisfactory quantum theory of gravitation yet, and therefore the SM is
expected to fail, if not before, at the Planck scale (∼ 1019 GeV).

• The Higgs boson mass seems unnatural, in a sense that the quantum correction needed
to stabilise its mass at higher energy than the electroweak scale, are much larger than its
on-shell mass. This implies a fine tuning, which could be avoided by the introduction of
new particles which compensate the SM Higgs mass radiative corrections. The theory of
supersymmetry (SUSY) proposes such new particle candidates.

• Cosmological observations indicate that the particles described in the SM can account
only for approximately 5% of the total energy of the universe [43]. The rest is composed
of dark matter (about 25%) and dark energy (about 70%). The dark matter explains, for
instance, the velocities in the galaxy rotations. Some extensions of the SM provide good
candidates of weakly interacting particle (WIMP), which could be dark matter objects.

• The current theory of Big Bang assumes that matter and antimatter were created in exactly
equal amounts. However, in our universe we are only surrounded by matter. To explain this
Matter/Antimatter asymmetry, Sakharov identified some necessary conditions, including
CP violation [44]. Nevertheless, the required amount of CP violation is far greater than
the one induced by the CKM phase δ. That is why there may be some other sources of CP
violation, in the lepton sector for instance.

Hence, it is commonly assumed that the SM is not a complete description of the high energy
physics, and can be seen as an effective theory valid only at energies below a scaleΛ (just as the
Fermi model of β decay is an effective theory of the weak interaction). In this scope, the effective
Lagrangian can be expressed through an operator product expansion [16]

Leff(φSM) =LSM(φSM)+
+∞∑
n=1

1

Λn O (n)(φSM) , (1.43)

where LSM and φSM are the SM Lagrangian and fields. The O (n)(φSM) denote all polynomials in
the SM fields of operator of dimension 4+n, that are consistent with the gauge symmetries of
the SM and Lorentz invariant. The scaleΛ tunes the probability to observe new physics at an
energy E lower thanΛ, with the expansion in power of E/Λ. If no new physics effect is observed
at the energy E this means either that the new physics energy scale is much larger than E , or
that the couplings involved in the operators are low.

16



1.4. Testing the CKM model as a probe of new physics

1.4.2 Looking for new physics in inconsistencies

Finding BSM physics implies the detection of new and heavier particle effects. This can be done
in two ways with particle colliders:

• New particles are produced from pp or e+e− collisions, and then directly detected. This
“relativistic” method can probe new physics scale only close to the collision energy, but
can show unambiguous direct evidence of new physics.

• New particles can have virtual effects in processes including loop diagrams (like in B 0B 0

mixing or B 0
s →µ+µ− transition). Precise measurement of some observables could high-

light deviations from the SM predictions, due to these new particle virtual effects. This
“quantum” method can probe new physics well beyond the collision energy (depending
on the new physics coupling involved), but requires collecting a sufficiently large data
sample to allow precise measurements to be performed.

The test of the CKM paradigm falls into the scope of the indirect constraint on new physics.
Indeed, one of the main goals of the flavour physics is to measure precisely all the CKM pa-
rameters and perform a consistency test of the unitarity triangle. If the CKM description is
valid, all the measurements of the matrix parameters must lead to a “closed” triangle. This
test is performed by two collaborations, CKMfitter [11] and UTFit [12], with a global fit of the
CKM parameter measurements. Fig. 1.3 shows the current result of the global fit performed by
CKMfitter, and a good overall consistency is found. Yet, the uncertainties on Vub , γ, ∆md and
∆ms still leave some room for future and hypothetical tension, which could be revealed with an
improved precision on these parameters. Fig. 1.4, taken from Ref. [45], illustrates this potential
tension by hypothesising an improved precision on the CKM parameter measurements while
keeping the central values the same as they were in 2011.
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Figure 1.4 – Extrapolation of the UTFit group to illustrate a potential tension in the CKM model, with an
improved precision on the CKM parameters and using the central values as of 2011 [45].
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The angle γ is the least known CKM parameter, but is considered as a standard model key
measurement. Since it does not depend on CKM elements involving the top quark, the contri-
butions of loop diagrams are negligible in this angle measurement and the associated relative
theoretical error is δγ/γ. O

(
10−7

)
[46]. Therefore it is a valuable input for the consistency

check of the CKM model. The measurement of this weak phase is based on the interference
between the b→ u and b→ c quark transitions, involving the Vub and Vcb elements of the CKM
matrix respectively. Because the b → u transition is highly suppressed, a large size B meson
sample is needed in order to have a good statistical sensitivity on γ.

B factories performed the first measurements of γ, and the LHCb experiment, described in
the next chapter, is well suited to perform a precise measurement of this angle, which is one its
the main goal. The present thesis reports a measurement of γ, made with the data collected by
LHCb, using a Dalitz analysis of the B 0→ DK ∗0 decay (see Chap. 5).

This chapter presents an experimental status of the CKM parameters, especially of γ.
The different measurement methods are described, with a detailed explanation of the B 0 →
D(K 0

S π
+π−)K ∗0 analysis principle.
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Chapter 2. Measurement principle of the CKM angle γ with B 0→ DK ∗0 decays

2.1 Overview of the unitarity triangle parameter measurements

The CKM matrix elements, defined in the previous chapter, are determined through different
measurements. A brief overview is made in Table 2.1 and more details can be found in Ref. [20].

Table 2.1 – Overview of the CKM matrix element measurements [20].

CKM matrix element Measurement channel

Magnitudes

|Vud | = 0.97425±0.00022 superallowed 0+ → 0+ nuclear β decays

|Vus | = 0.2253±0.0008 K 0
L →π`ν, K ±→π0`ν, K 0

S →πeν and K /π→µν(γ) decays

|Vcd | = 0.225±0.008 semileptonic charmed decays D→π`ν

|Vcs | = 0.986±0.016 semileptonic decays D→ K`ν, D+
s →µ+ν and D+

s → τ+ν
|Vcb | = (41.1±1.3)×10−3 inclusive and exclusive semileptonic B decays to charm

|Vub | = (4.13±0.49)×−3 inclusive and exclusive decays of the type B → Xu`ν

|Vtd | = (8.4±0.6)×10−3 B 0 mixing measurements

|Vt s | = (40.0±2.7)×10−3 B 0
s mixing measurements

|Vtb | = 1.021±0.032 single top-quark production cross section

Phases

α= (
85.4+3.9

−3.8

)◦
time dependent CP asymmetries in B →ππ,ρπ and ρρ

sin2β= 0.682±0.019 time dependent CP asymmetries with b→ ccs decays

γ= (
68.0+8.0

−8.5

)◦
b→ cus and b→ ucs interference (see Sec. 2.3 for latest values)

2.2 Status of the γ angle measurement

As illustrated in Fig. 1.3 of the previous chapter, the γ angle is by far the least well constrained
CKM angle. The most precise direct measurements to date have been obtained by the B-factories,
BaBar [8] and Belle [9], and by the LHCb collaboration [10],

γBaBar = (
69+17

−16

)◦
,

γBelle = (
68+15

−14

)◦
,

γLHCb = (
73+9

−10

)◦
.

(2.1)

The combination of these direct measurements has been made by the CKMfitter and UTfit
collaborations, and results in [11, 12]

γCKMfitter
comb = (

73.2+6.3
−7.0

)◦
,

γUTFit
comb = (68.3±7.5)◦ .

(2.2)
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Figure 2.1 – Global fit of the unitarity triangle, using only “tree” level constraints (a) and only “loop”
quantities (b), made by CKMfitter [11].

The direct measurements uncertainty is larger than the one resulting from the global fit out-
puts [11, 12]:

γCKMfitter
fit = (

67.08+0.97
−2.17

)◦
,

γUTFit
fit = (69.2±3.4)◦ .

(2.3)

Thus, the global fits manage to constraint the angle γ to a few degrees precision, whereas the
most precise direct measurement made by LHCb has a 10◦ precision. As a consequence, to
further constraint new physics from the UT description, significant reduction of the uncertainty
on the direct γ measurements is needed. This is also illustrated in Fig. 2.1, where the constraints
obtained with quantities related to tree level diagrams only are compared to constraints obtained
with quantities including significant loop contributions. The constraint on the apex is much
weaker with the combination of the γ and |Vub | measurements, than with ∆md , ∆ms , sin2β and
εK .

As further explained in Sec. 2.3.1, γ is essentially measured with B±→ DK ± decays. Its
extraction is always done along with two other (nuisance) parameters rB and δB , respectively
the magnitude of the amplitude ratio and the strong phase difference between the suppressed
and favoured decays. The measured values of rB and δB corresponding to the quoted γ values
in Eq. (2.1) are summarised in Table 2.2.

Table 2.2 – Summary of the latest direct measurements of γ, with the related values of the nuisance
parameters rB and δB corresponding to the B±→ DK ± decays.

rB δB (◦) γ (◦) Ref.

BaBar 0.092+0.013
−0.012 105+16

−17 69+17
−16 [8]

Belle 0.112+0.014
−0.015 116+18

−21 68+15
−14 [9]

LHCb 0.091+0.008
−0.009 127+10

−12 73+9
−10 [10]
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Chapter 2. Measurement principle of the CKM angle γ with B 0→ DK ∗0 decays

2.3 Measurement of γ from tree processes

The angle γ≡ arg
(
−Vud Vub

∗
Vcd Vcb

∗
)

corresponds to the phase difference between the Vub and Vcb ele-

ment of the CKM matrix. Therefore this angle is the weak phase difference between the b→ cus
and b→ ucs transitions. That is why the γ measurement are based on the interference of these
two tree-level only decays. Two types of method can be distinguished, the time independent one,
with B±→ DK ±-like decays (Sec. 2.3.1), and the time dependent one with B 0

s → D∓
s K ± decays

(Sec. 2.3.2)

2.3.1 Time independent methods

b c

ū

s

Vcb

Vus

D0

W−

ū ū

K−

B−

(a)

b u

c̄

s

Vub

Vcs

D̄0

W−

ū ū K−

B−

(b)

Figure 2.2 – Feynman diagrams of the B−→ D0K − (a) and B−→ D0K − (b) decays.

A measurement of γ can be made through CP violation observables in the decays of the type
B−→ DK −, where D stands either for a D0, when a b→ c favoured transition occurs, involving
Vcb ; or for a D0, when a b→ u suppressed transition occurs, involving Vub . The corresponding
Feynman diagrams are illustrated on Fig. 2.2. The weak phase difference between these two
diagrams is γ, therefore the sensitivity to this angle arises when the final state of the D mesons is
accessible both for D0 and D0, allowing for quantum interference. The strong phase difference is
denoted δB , and the magnitude of the amplitude ratio between the suppressed and the favoured
diagrams is called rB .

It can be noticed on Fig. 2.2 that the favoured Vcb diagram is not colour suppressed, because
of the presence of an external W − emission. Therefore the ratio between the two interfering

amplitudes can be approximated as rB ∼ 1
3

∣∣∣VubVcs
VcbVus

∣∣∣ ∼ 0.1. This parameter is important, since

it drives the sensitivity to γ in the interference. The larger the interference, the higher the
sensitivity to γ. More precisely, the uncertainty on γ scales as 1/rB .

Depending on the D decay mode used, several methods have been proposed to measure
γ with B±→ DK ± decays. They are named with the initials of their respective proponents. In
this section, only the most common B±→ DK ± decays are mentioned. The specific case of the
B 0→ DK ∗0 neutral counterpart is further described in Sec. 2.6.

GLW method

In the Gronau-London-Wyler (GLW) approach, two-body D decays into CP eigenstates are
used [2, 3]. Such CP eigenstates are both accessible for D0 and D0 mesons, with the same
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2.3. Measurement of γ from tree processes

amplitudes (neglecting any CP violation in the charm sector). The CP eigenstates can be
CP-even, such as K +K − and π+π−, or CP-odd, such as K 0

S π
0, K 0

S ω, K 0
S η. The widths of the

B±→ DK ± decays in the GLW modes can be expressed as

Γ
(
B+→ f CP±

D K +
)
∝ 1+ r 2

B +±2rB cos(δB +γ) ,

Γ
(
B−→ f CP±

D K −
)
∝ 1+ r 2

B +±2rB cos(δB −γ) ,
(2.4)

where f CP+
D ( f CP−

D ) denotes a D meson CP-even (CP-odd) final state. From these widths, two
types of observables sensitive to γ can be built: the CP asymmetries

ACP± ≡
Γ

(
B−→ f CP±

D K −
)
−Γ

(
B+→ f CP±

D K +
)

Γ
(
B−→ f CP±

D K −
)
+Γ

(
B+→ f CP±

D K +
) = ± 2rB sinδB sinγ

1+ r 2
B ±2rB cosδB cosγ

, (2.5)

which measure the amount of CP violation in these decays; and the ratios of charge averaged
partial rates using D decays to CP and specific flavour states

RCP± ≡
Γ

(
B−→ f CP±

D K −
)
+Γ

(
B+→ f CP±

D K +
)

Γ
(
B−→ D0K −)+Γ(

B+→ D0K +
) = 1+ r 2

B ±2rB cosδB cosγ , (2.6)

which provide an indication of the sensitivity of the method.

ADS method

The Atwood-Dunietz-Soni (ADS) method is based on flavour specific D final states, such as Kπ or
Kπππ [4, 5]. Compared to the GLW approach, the amplitudes of the decay D0→ fD and D0→ fD

are not anymore equivalent. The use of the doubly Cabbibo-suppressed decay D0→ K +π− allows
for a large interference between the B−→ D0K − and B−→ D0K − transitions. The difference
in the magnitude of the amplitude A(B− → D0K −) ¿ A(B− → D0K −) is compensated with
A(D0 → K +π−) ¿ A(D0 → K +π−). Therefore, this method has a better intrinsic sensitivity
to γ than the GLW one, but suffers from smaller signal yields. Furthermore, two additional
parameters are needed to describe the difference between the D0 → fD and D0 → fD decays:
the magnitude amplitude ratio rD and the strong phase δD . These two parameters are already
well constrained by some measurements performed in the charm sector [47]. As a result, the
B±→ DK ± widths can be expressed as

Γ
(
B+→ fD K +)∝ 1+ r 2

B r 2
D +2rB rD cos(δB +δD +γ) ,

Γ
(
B−→ f̄D K −)∝ 1+ r 2

B r 2
D +2rB rD cos(δB +δD −γ) ,

Γ
(
B+→ f̄D K +)∝ r 2

B + r 2
D +2rB rD cos(δB −δD +γ) ,

Γ
(
B−→ fD K −)∝ r 2

B + r 2
D +2rB rD cos(δB −δD −γ) ,

(2.7)

where fD denotes the Cabbibo-favoured D0→ fD decay. The resulting CP observables are

AADS ≡
Γ

(
B−→ fD K −)−Γ(

B+→ f̄D K +)
Γ

(
B−→ fD K −)+Γ(

B+→ f̄D K +) = 2rB rD sin(δB −δD )sinγ

r 2
B + r 2

D +2rB rD cos(δB −δD )cosγ
,

RADS ≡
Γ

(
B−→ fD K −)+Γ(

B+→ f̄D K +)
Γ

(
B−→ f̄D K −)+Γ(

B+→ fD K +) = r 2
B + r 2

D +2rB rD cos(δB −δD )cosγ

1+ r 2
B r 2

D +2rB rD cos(δB +δD )cosγ
.

(2.8)
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Figure 2.3 – Dalitz plots of B±→ D(K 0
S π

+π−)K ± candidates from B+ (a) and B− decays (b), of the model
independent GGSZ analysis of LHCb [13].

GLS method

The Grossman-Ligeti-Soffer (GLS) method adapts the ADS approach to singly Cabbibo sup-
pressed D decays with specific flavour states, such as D0 → K 0

S K +π− [48]. Because of the
three-body final state, some measurements of the average strong phase variation across the D
Dalitz are needed to constrain γ. A first GLS measurement has been performed by LHCb, and
shows a better sensitivity to γ in the phase-space region around the K ∗+ resonance [49].

GGSZ method

One of the most sensitive methods to measure γ is the Giri-Grossman-Soffer-Zupan method
(GGSZ) [6, 7]. It is based on self-conjugate three-body D final states, such as D → K 0

S π
+π− or

D → K 0
S K +K −. The Dalitz plot resulting of these decays is analysed, and the sensitivity to γ

arises in some particular region of the phase-space, depending on the resonance structure.
This approach follows in a way, the ADS and GLW methods in different areas of the Dalitz plot.
The D → K 0

S h+h− Dalitz plot is made from the two invariant masses m2
± ≡ m2(K 0

S h±), with h
standing for either K or π. The decay widths giving the Dalitz plot distributions are

Γ
(
B+→ D(K 0

S h+h−)K +)∝ ∣∣∣AD (m2
−,m2

+)+ rB e i (δB+γ) AD (m2
−,m2

+)
∣∣∣2

,

Γ
(
B−→ D(K 0

S h+h−)K −)∝ ∣∣∣AD (m2
−,m2

+)+ rB e i (δB−γ) AD (m2
−,m2

+)
∣∣∣2

,
(2.9)

where AD and AD denote the D0→ K 0
S h+h− and D0→ K 0

S h+h− amplitudes, respectively. The

B±→ D0K ±/B±→ D0K ± interference is clearly visible, and a fit performed on the Dalitz distri-
butions enables to evaluate the phase γ. In order to describe the AD and AD amplitudes, two
methods can be used:

• The model independent (MI) approach is based on a binned Dalitz plot, and relies on the
CLEO-c measurement of the average strong phase in each bin [50].
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Figure 2.4 – Feynman diagrams of the B 0
s → D+

s K − (a) and B 0
s → D+

s K − (b) decays.

• The model dependent (MD) approach uses an amplitude model determined by the BaBar
collaboration [51].

Both methods are competitive. Whereas the MI approach looses some statistical precision
through the binning and is dependent on the uncertainty of the CLEO-c measurement, the MD
method is subject to the uncertainty coming from the choice of the model. In LHCb, the two
methods have been used in GGSZ analyses of the B±→ DK ± mode [13,52]. Fig. 2.3 illustrates the
Dalitz plot obtained in the LHCb MI analysis, which led to the most precise single measurement
of γ to date, with γ= (

62+15
−14

)◦
[13]. In Chap. 5 a MD analysis of the B 0→ D(K 0

S π
+π−)K ∗0 decay

is reported.

The CP observables used in the GGSZ analyses are the cartesian parameters defined as

x± ≡ rB cos(δB ±γ) ,

y± ≡ rB sin(δB ±γ) .
(2.10)

They are preferred to the polar coordinates (rB ,δB ,γ) because they show a better Gaussian
behaviour.

2.3.2 Time dependent method

The B±→ DK ± and B 0→ DK ∗0 decays are not the only modes which provide a measurement of
γ at the tree level. The same b→ cus and b→ ucs transitions can interfere in the B 0

s → D∓
s K ±

decays [53] (the corresponding diagrams are illustrated in Fig. 2.4). However, this time the
interference takes place between the direct decay B 0

s → D+
s K − and the decay B 0

s → D+
s K − after a

B 0
s → B 0

s mixing. Therefore, a time dependent analysis using some flavour tagging methods is
necessary. Moreover, the phase difference between the two interfering contributions is not only
γ, but γ−2βs , where βs is the CP violating B 0

s mixing phase. The study of B 0
s → J/ψφ decays

provides a good constraint on −2βs [54], and can therefore be used as an external input to
measure γ from B 0

s → D∓
s K ±.
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Figure 2.5 – Decay time distribution of B 0
s → D∓

s K ± events observed in LHCb, with the fit result superim-
posed [55].

The time dependent decay rate of this decay can be expressed as

ΓB 0
s (B 0

s )→ f (t ) =e−Γs t

2
|A f |2

(
1+|λ f |2

)
×

[
cosh

(
∆Γs t

2

)
−D f sinh

(
∆Γs t

2

)
±C f cos(∆ms t )∓S f sin(∆ms t )

]
,

(2.11)

where Γs , ∆Γs and ∆ms are the mixing parameters of the B 0
s meson. The terms D f , C f and S f

depend on the amplitude ratio λ f , defined as

λ f ≡
Ā f

A f
= |λ f |e i (∆−(γ−2βs )), (2.12)

with A f (Ā f ) the decay amplitude of the B 0
s (B 0

s ) meson into the final state f . ∆ is the relative
strong phase, and (γ− 2βs) the relative weak phase. Hence, the D f , C f and S f parameters
depend on (γ−2βs).

LHCb has made the first measurement of γ with the B 0
s → D∓

s K ± decays [55]. The resulting
decay time distribution is illustrated on Fig. 2.5, and led to γ= (

115+28
−43

)◦
.

In a similar way, a γ measurement can be obtained with B 0→ D±π∓ decays, with this time a
direct dependence on 2β+γ [56]. However, in this case the interference amplitude is reduced.

2.4 LHCb γ combination

All the decays involved in the γ from tree measurements have a small decay rates. For instance,
the combined branching ratio involved in the B±→ DK ± ADS mode is approximately B(B−→
D0K −,D0→ K +π−) ∼ 5 ·10−8. That is why the measurement of γ relies on the combination of all
the available measurements.

The latest LHCb γ combination, as of September 2014 [10], includes CP violation measure-
ments of the B± → D(h+h−)K ± [57], B± → D(π±K ∓π+π−)K ± [58], B± → D(K 0

S h+h−)K ± [13],
B± → D(K 0

S K +π−)K ± [49], B 0 → D(h+h−)K ∗0 [59] and B 0
s → D∓

s K ± [55] decays, where h stands
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2.5. Measurement of γ from loop processes

either for a pion or a kaon. The combination uses a Frequentist approach. It takes into account
the D0 mixing and includes some auxiliary inputs for hadronic parameters coming from the
Heavy Flavor Averaging Group [47] or the CLEO experiment. The result of this combination
is γ= (

73+9
−10

)◦
at 68% confidence level. The corresponding confidence level curve is shown in

Fig. 2.6. This is the first time that a single experiment has reached 10◦ precision on γ. A bayesian
crosscheck has been also performed and is in good agreement.
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Figure 2.6 – Confidence level curve for the LHCb γ combination presented at the CKM 2014 conference.
The dotted lines indicate the 1σ and 2σ bounds. [10].

The perspective to reach a precise measurement ofγ, with the LHCb experiment is promising.
During the LHC Run II, LHCb is expected to collect an integrated luminosity of 5 fb−1 at the
centre-of-mass energy of 13TeV, and the precision on γ is expected to reduce to 4◦. After the long
shutdown 2 (LS2), the detector will be upgraded to cope with a large increase of the delivered
instantaneous luminosity. Ultimately, the LHCb collaboration foresees to collect a data sample
of 50 fb−1. With the combination of all the sensitive channels, the final uncertainty on γ should
be around 1◦. This would be a major improvement compared to the current precision on γ, and
would be an important milestone for the consistency check of the CKM model.

2.5 Measurement of γ from loop processes

In addition to the measurements with open-charm final states, γ can be determined from
charmless B decays. The sensitivity to γ is obtained by combining CP violation measurements
from B 0 → π+π−, B 0

s → K +K −, B 0 → π0π0 and B+ → π+π0 decays [60–64]. The contribution
of diagrams with loops, illustrated in Fig. 2.7, is non negligible in these decays. Therefore, a
precise extraction of γwith this method is difficult. Nevertheless, it is interesting to compare this
measurement, potentially affected by new physics contribution, to the γ measurement made
with tree only diagrams. The sensitivity to γ arises in the decay amplitudes, for instance for
B 0→π+π− decay [65]

A
(
B 0→π+π−)∝ e iγ−de iδ, (2.13)

where e iδ roughly corresponds to the ratio of penguin to tree amplitudes.
LHCb significantly contributed to the measurements of the B 0 → π+π− and B 0

s → K +K −

decays, whereas the B 0 → π0π0 and B+ → π+π0 decays have been studied by BaBar, Belle or
CDF. LHCb performed a combination of all these measurements in order to set a constraint on
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Figure 2.7 – Diagrams contributing to the amplitudes of charmless B 0
(s) decays. The topologies involved

are: Tree (T ), Penguin (P ), Penguin Annihilation (PA), Colour-suppressed Electroweak Penguin (PC
EW )

and Exchange (E) [65].

γ [66]. To reduce the number of free parameters in the global fit, the combination exploits the
isospin and U-spin (exchange of d and s quarks) symmetries.

A Bayesian analysis is performed to determine the probability density function (PDF) of γ,
while assuming the world average value of sin2β compiled by the HFAG collaboration [47]. The
dependence of the PDF on U-spin breaking is estimated by letting vary the maximum allowed
amount of U-spin breaking. This amount is described with a parameter κ: κ= 0 corresponds to
no U-spin breaking, κ= 1 corresponds to maximal breaking. The resulting probability intervals
of γ as a function of κ is shown in Fig. 2.8. They depend strongly on the amount of U-spin
breaking. If the breaking is assumed to be at most 50%, the global fit provides γ= (

63.5+7.2
−6.7

)◦
.

This measurement is compatible and competitive with the one obtained from tree-level decays
(see Sec.2.4). However, a better theoretical understanding of the U-spin breaking is needed to
assess a reliable determination of γ from charmless B decays.
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Figure 2.8 – Dependence of the 68% (hatched area) and 95% (filled area) probability intervals on the
allowed amount of non-factorizable U-spin breaking for γ (κ parameter).
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Figure 2.9 – Feynman diagrams involved in the B 0→ DK ∗0 (a) and B 0→ DK ∗0 (b) decays. Transitions
proportional to |Vcb |2 are at the top and transitions proportional to |Vub |2 are at the bottom. All diagrams
are colour-suppressed.

2.6 Measurement of γwith B 0→ D(K 0
S π

+π−)K ∗0

Fig. 2.9 shows the diagrams involved in the B 0 → DK ∗0 process (CP conjugation is implicit
unless stated otherwise). Compared to the charged mode B±→ DK ±, the neutral mode does not
include any diagram with an external W ± boson (see Fig. 2.2). Hence all B 0→ DK ∗0 diagrams are
colour-suppressed and the B±→ DK ± is a more frequent process. According to the PDG [20], the
branching fractions are B(B+→ D0K +) = (3.70±0.17)×10−4 and B(B 0→ D0K ∗0) = (4.2±0.6)×
10−5. However, the interference magnitude in the neutral mode is expected to be approximately
three times larger, therefore this mode is about three times more sensitive to γ. Furthermore,
the neutral channel is self-tagged thanks to the K ∗0→ K +π− decay. The flavour of the B meson
at the decay time is known thanks to the charge of the kaon in the final state. Therefore, a time
independent measurement can be performed, without relying on flavour tagging methods. The
B 0→ DK ∗0 and B±→ DK ± decays share only the weak phase γ, since the strong phase δB 0 and
the interference magnitude rB 0 of the B 0→ DK ∗0 decays are different parameters to those that
apply in B±→ DK ± decays.

An ADS/GLW analysis of the B 0→ DK ∗0 decay has been already published by LHCb [59].
The B 0→ DK ∗0 analysis described in this thesis follows the GGSZ MD method with the three
body D→ K 0

S π
+π− decay. This method based on the Dalitz plot study has two advantages:

• flavour specific and CP eigenstates are used simultaneously thanks to the amplitude
analysis of the D→ K 0

S π
+π− Dalitz plane,

• there is only a (δB 0 ,γ) → (δB 0 +π,γ+π) ambiguity (in the ADS method there is a 4-fold
ambiguity [5]).

First the B 0→ DK ∗0 event distribution across the Dalitz plane is developed, then the experi-
mental status on the measurement of γ made from this neutral mode is summarised.
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2.6.1 Dalitz PDF

Compared to the B±→ DK ± decay, the B 0→ DK ∗0 decay description must take into account
the interference with any B 0→ DK +π− decay, since the K ∗0 resonance is broad [67, 68]. In the
following we write X 0

s to represent any two body state composed by a K +π− pair.
The favoured B 0 decays amplitudes can be expressed as

A
(
B 0 → D0X 0

s ; p
)

= Ac (p)e iδc (p) ∝Vcb
∗Vus

∗, (2.14)

A
(
B 0 → D0X 0

s ; p
)

= Ac (p)e iδc (p) ∝VcbVus , (2.15)

and the suppressed as

A
(
B 0 → D0X 0

s ; p
) = Au(p)e i [δu (p)+∆weak ] ∝Vub

∗Vcs
∗,

A
(
B 0 → D0X 0

s ; p
)

= Au(p)e i [δu (p)−∆weak ] ∝VubVcs ,

where p is a position on the B Dalitz plane, δ represents the strong phase and ∆weak the
weak phase. We have ∆weak ≡ arg(Vub

∗Vcs
∗)−arg(Vcb

∗Vus
∗) ' arg(Vub

∗)−arg(Vcb
∗) and γ ≡

arg
(
−Vud Vub

∗
Vcd Vcb

∗
)
' arg(−Vub

∗)−arg(Vcb
∗) =π+arg(V ∗

ub)−arg(Vcb
∗), therefore∆weak = γ−π. With

the variable change δu(p)−π→ δu(p), the suppressed decays amplitudes are expressed as

A
(
B 0 → D0X 0

s ; p
) = Au(p)e i [δu (p)+γ], (2.16)

A
(
B 0 → D0X 0

s ; p
)

= Au(p)e i [δu (p)−γ]. (2.17)

The decay amplitude of D→ K 0
S π

+π− is denoted AD and depends on the position on the D me-
son Dalitz plane, described with any two of the three squared invariant masses m2+ = m2(K 0

S π
+),

m2− = m2(K 0
S π

−) and m2
0 = m2(π+π−). The amplitude AD is determined from the model devel-

oped by the BaBar collaboration [51], and is presented in Sec 5.6 of Chap. 5.

A
(
D0 → K 0

S π
+π−;m2

−,m2
+
) = AD (m2

−,m2
+), (2.18)

A
(
D0 → K 0

S π
−π+;m2

−,m2
+
)

= AD (m2
−,m2

+). (2.19)

Since we neglect CP violation in the charm sector,

AD (m2
−,m2

+) = AD (m2
+,m2

−). (2.20)

The partial width resulting from the B 0 → D0X 0
s / B 0 → D0X 0

s interference is noted
dΓ+(p,m2−,m2+) ≡ dΓ

(
B 0 → D(K 0

S π
+π−)X 0

s ; p,m2−,m2+
)

and from the B 0 → D0X 0
s / B 0 → D0X 0

s

interference dΓ−(p,m2−,m2+) ≡ dΓ
(
B 0 → D(K 0

S π
+π−)X 0

s ; p,m2−,m2+
)
. They can be expressed as

dΓ−(p,m2
−,m2

+) ∝
∣∣∣A

(
B 0 → D0X 0

s ; p
)

AD + A
(
B 0 → D0X 0

s ; p
)

AD

∣∣∣2
, (2.21)

and

dΓ+(p,m2
−,m2

+) ∝
∣∣∣A

(
B 0 → D0X 0

s ; p
)

AD + A
(
B 0 → D0X 0

s ; p
)

AD

∣∣∣2
. (2.22)

This gives

dΓ−(p,m2
−,m2

+) ∝
∣∣∣Ac (p)e iδc (p) AD + Au(p)e i [δu (p)−γ] AD

∣∣∣2
, (2.23)

dΓ+(p,m2
−,m2

+) ∝
∣∣∣Ac (p)e iδc (p) AD + Au(p)e i [δu (p)+γ] AD

∣∣∣2
. (2.24)
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+π−)K ∗0

Then it can be expanded to

dΓ−(p,m2
−,m2

+) ∝ A2
c (p)|AD |2 + A2

u(p)|AD |2+
2Ac (p)Au(p) Re

[
A∗

D AD e i [δu (p)−δc (p)−γ]
]

,
(2.25)

dΓ+(p,m2
−,m2

+) ∝ A2
c (p)|AD |2 + A2

u(p)|AD |2+
2Ac (p)Au(p) Re

[
AD A∗

D
e i [δu (p)−δc (p)+γ]

]
.

(2.26)

If we consider only the K ∗0 region φK ∗0 in the B 0 → D X 0
s phase space (i.e. we integrate over

φK ∗0 ):

dΓK ∗0

− (m2
−,m2

+) ∝|AD |2
∫
φK∗0

A2
c (p) dp + |AD |2

∫
φK∗0

A2
u(p) dp+

2Re

[
A∗

D AD e−iγ
∫
φK∗0

Ac (p)Au(p)e i [δu (p)−δc (p)] dp

]
,

(2.27)

dΓK ∗0

+ (m2
−,m2

+) ∝|AD |2
∫
φK∗0

A2
c (p) dp + |AD |2

∫
φK∗0

A2
u(p) dp+

2Re

[
AD A∗

D
e+iγ

∫
φK∗0

Ac (p)Au(p)e i [δu (p)−δc (p)] dp

]
.

(2.28)

We define now the D Dalitz PDF P± such that

dΓK ∗0

± (m2
−,m2

+) ≡P±(m2
−,m2

+) dm2
− dm2

+ ·
∫
φK∗0

A2
c (p) dp.

If we define

r 2
B 0 ≡

∫
φK∗0

A2
u(p) dp∫

φK∗0
A2

c (p) dp
, (2.29)

κe iδB0 ≡
∫
φK∗0

Ac (p)Au(p)e i [δu (p)−δc (p)] dp√∫
φK∗0

A2
c (p) dp

∫
φK∗0

A2
u(p) dp

, (2.30)

then

P− ∝|AD |2 + r 2
B 0 |AD |2 +2κrB 0Re

[
A∗

D AD e i (δB0−γ)
]

, (2.31)

P+ ∝|AD |2 + r 2
B 0 |AD |2 +2κrB 0Re

[
AD A∗

D
e i (δB0+γ)

]
. (2.32)

From the Schwartz inequality 1 we can deduce that

0 ≤ κ≤ 1. (2.33)

rB 0 is the ratio between the amplitudes of the B 0→ D0K ∗0 decay (b→ u suppressed transition)
over the B 0→ D0K ∗0 decay (b→ c favoured transition). δB 0 is the average strong phase between
B 0→ D0K ∗0 and B 0→ D0K ∗0. κ is the K ∗0 coherence factor, and measures the non-resonant
pollution in the Kπ pair. Indeed, the Dalitz PDF of Eq. (2.31) and (2.32) can be rewritten as

P− ∝κ|AD + rB 0 e i (δB−γ) AD |2 + (1−κ)
(|AD |2 + r 2

B 0 |AD |2) , (2.34)

P+ ∝κ|AD + rB 0 e i (δB+γ) AD |2 + (1−κ)
(|AD |2 + r 2

B 0 |AD |2) . (2.35)

1
∣∣∫ f (x)g (x)∗d x

∣∣≤√∫ | f (x)|2d x
∫ |g (x)|2d x for two squared-integrable complex-valued functions g and f .
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The first term, proportional to κ, corresponds to a coherent sum of the two amplitudes. The
second term is an incoherent sum, where no interference appears. If the K +π− pair were only
coming from the K ∗0, κ would be equal to unity.

It is convenient to define the C P violation observables

z± ≡ rB 0 e i (δB0±γ), (2.36)

and the function
P (A, z,κ) ≡ ∣∣A

∣∣2 +|z|2 ∣∣Ā
∣∣2 +2κRe

[
z A∗ Ā

]
. (2.37)

The Cartesian coordinates are defined as

x± ≡ Re(z±), (2.38)

y± ≡ I m(z±), (2.39)

so we have

rB 0 = |z±| =
√

x2
±+ y2

±. (2.40)

Expressions (2.31) and (2.32) can be expressed as

P− ∝P (AD , z−,κ) (2.41)

P+ ∝P (AD , z+,κ) (2.42)

These are the expressions of the PDFs used to describe the mixture of amplitudes in the
analysis reported in Chap. 5. Equations (2.41-2.42) suggest that five parameters are needed to
describe the PDFs, namely the Cartesian parameters and the coherence factor κ. Because of the
relation (2.40), over these five degrees of freedom, only four are physical, which correspond to
κ,rB 0 ,δB 0 and γ. As mentioned before, the use of the cartesian coordinates (x±, y±) is preferred
over the polar coordinates (rB 0 ,γ,δB 0 ) because they are expected to have a better Gaussian
behaviour.

2.6.2 Experimental status of the γmeasurement with B 0→ DK ∗0

The experimental status of the measurement of γ with the B 0→ DK ∗0 decay is summarised in
Table 2.3. Both B-factories published an ADS/GLW B 0→ DK ∗0 analysis [69, 70], whereas only
BaBar published a GGSZ analysis of this channel [71].

Table 2.3 – Summary of the direct measurements of γ, with the related values of the nuisance parameters
rB 0 and δB 0 corresponding to the B 0 → DK ∗0 decays. A hyphen is used when no constraint has been
made on a parameter.

Analysis type rB 0 δB 0 (◦) γ (◦) Ref.

BaBar ADS/GLW [0.07,0.41] @ 95% C L – – [69]

Belle ADS/GLW < 0.4 @ 95% C L – – [70]

BaBar GGSZ < 0.55 @ 95% C L [−23,147]∪ [77,247]∪
[71]

[157,327] @ 95% C L [257,426] @ 95% C L

LHCb ADS/GLW 0.240+0.055
−0.048 – – [59]
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The LHCb detector at the LHC
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The LHCb experiment [72] is located on the Large Hadron Collider (LHC) of the European
Organisation for Nuclear Research (CERN). It is dedicated to precision measurements in heavy
flavour physics. Its main goal is to look for indirect evidence of physics beyond the Standard
Model in CP violation effects and rare b and c-hadron decays. Precise measurements can be
sensitive to the effect of new particles in processes well predicted by the Standard Model. This
chapter presents an overview of the LHCb detector.

3.1 The Large Hadron Collider

The LHC is a proton and heavy ions collider of 27km of circumference. It is the biggest machine
of the CERN accelerator complex (Fig. 3.1) and is composed of two rings. Inside, protons or
ions circulate in opposite directions and can collide in four distinct interaction points, where
the detectors ATLAS, CMS, LHCb and ALICE are installed. ATLAS and CMS are general purpose
detectors mainly dedicated to Higgs physics and direct search for physics beyond the Standard
Model. The ALICE detector is designed for heavy ion physics and to study strongly interacting
matter at high energy densities. Three smaller experiments are also installed at the LHC, namely
TOTEM, LHCf and MoEDAL. The TOTEM experiment (Total cross-section, elastic scattering
and diffraction dissociation), located around CMS interaction point, is dedicated to the total
proton-proton (pp) cross-section measurement and to proton structure studies with elastic
and diffractive scattering processes. The Large Hadron Collider Forward (LHCf) experiment,
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Figure 3.1 – Accelerator complex at CERN [73].

located around the ATLAS collision point, aims to emulate particle cascades similar to cosmic
rays. It helps to understand the development of atmospheric showers, studied by astrophysical
experiments. Finally, the Monopole and Exotics Detector at the LHC (MoEDAL), deployed
around the LHCb interaction region, searches for magnetic monopole and for highly ionising
stable massive particles.

The design energy of the proton collision in the centre of mass is
p

s = 14TeV. However in
years 2010 and 2011, data were collected at

p
s = 7TeV and in 2012 at

p
s = 8TeV. During Run II,

the LHC runs at
p

s = 13TeV. To produce such high energetic beams, the most energetic to date,
the LHC is fed by a complex chain of smaller accelerators (Fig. 3.1). The protons originate from a
bottle of hydrogen gas which is ionised through an electric field. Thanks to the radiofrequency
cavities of the linear accelerator 2 (LINAC 2) protons reach an energy of 50MeV. Then they
are injected into the Proton Synchrotron Booster (PSB) to be accelerated to 1.4GeV. Next the
Proton Synchrotron (PS) and the Super Proton Synchroton (SPS) boost the beam respectively to
25GeV and 450GeV. From this step the protons are separated in two beams and injected into
the LHC, which ramps them up to the desired collision energy. The protons are gathered in
packets, called bunches. The LHC nominal collision frequency is 40MHz, which corresponds to
a bunch spacing of 25ns. This bunch spacing should be used during the second operating run
(Run II). During Run I, between years 2010 and 2012, milder operating conditions were used
with a bunch spacing of 50ns instead.

The design instantaneous luminosity of LHCb is 2×1032 cm−2 s−1, in contrast to 1034 cm−2 s−1

for the general purpose detector ATLAS and CMS. Indeed, the beam focusing at the interaction
point is not the same. The amplitude function β∗is set to 3m for LHCb whereas in ATLAS and
CMS it is set to 1m in 2011 and 60cm in 2012. This lower luminosity makes a reduced average
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Figure 3.2 – Instantaneous luminosity for ATLAS, CMS and LHCb experiment during LHC fill 2651.
By adjusting the transversal beam overlap, the luminosity for LHCb is kept a the desired value of 4×
1032 cm−2 s−1 for almost 15 hours.

number of visible pp interactions per bunch crossing, also known as pile-up. The design pile-up
value of LHCb is µvi s = 0.7. It is a critical parameter since it drives the detector ability to identify
the primary and secondary vertices and to reconstruct the whole decay chain. Another benefit of
working at a modest luminosity is the reduced radiation damage. In 2011 the majority of the data
were collected with an instantaneous luminosity of 3.5×1032 cm−2 s−1, with µvi s ≈ 1.4. In 2012
the data were collected at 4×1032 cm−2 s−1, with µvi s ≈ 1.7. Although these operating conditions
were harsher than the design conditions, the detector showed excellent performances [74].
Since 2011, the peak luminosity has been kept stable to within about 5% during a LHC fill. This
procedure is called “luminosity levelling” and consists of adjusting the transverse overlap of the
beams at LHCb. Figure 3.2 highlights this feature for the LHC fill 2651 in 2012. At the beginning
of the fill the two beams are transversely separated, and are then progressively brought closer as
the beam intensity decays until they are head-on (after almost 15 hours of operation for this fill).
Thanks to the luminosity levelling, the data taking conditions – like the trigger parameters and
the detector occupancy – are stable throughout the fill. The integrated luminosity recorded by
LHCb was 38 pb−1 in 2010, 1.11 fb−1 in 2011 and 2.08 fb−1 in 2012 (Fig. 3.3).

The bb production cross-section at a center-of-mass energy of
p

s =7TeV has been measured
to be σ(pp→ bbX ) = (284±20±49)µb by LHCb [75]. This value corresponds to about 1011 bb
pairs produced in the LHCb acceptance during Run I. To compare with e+e− B factories, the
cross-section production of a bb pair at the Υ(4S) resonance is σ(e+e−→ bb) = 1.05nb [76].
Therefore studying B physics at a hadronic collider has the advantage of a larger production
cross-section, hence a larger number of b-hadrons produced per unit of luminosity. Moreover
in a pp collision the bb pairs are mainly produced through a gluon fusion process, leading to a
significant boost along the beam axis. Thus the typical flight distance of a B meson in LHCb is of
the order of 1cm. It makes possible the topological discrimination of “flying” b or c-like signals
against light quarks background. At e+e− colliders such as PEP-II and KEK-B the boost was much
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Figure 3.3 – Delivered (dark colour) and recorded (light colour) integrated luminosity in the LHCb
experiment during the three years of LHC Run I.

smaller, with a resulting typical B flight distance of the order of 200−250µm. Another benefit of
a hadronic machine compared to e+e− colliders is the production of all types of b-hadrons. In
addition of the B±, B 0, D± and D0 mesons produced at B factories, LHCb can study also B 0

s , D±
s

and B±
c mesons as well as baryons like Ω−

b , Λ0
b or Ξ0

b .
However working at the LHC does not provide only advantages. Because of the hadronic

environment, the background is significantly increased. It makes more difficult to trigger
on signal events, to tag the b flavour states produced (there is no B 0–B 0 coherence) and to
reconstruct final states with missing or neutral particles. In addition, the collision energy at
the parton level is unknown. Therefore the constraint of the beam energy cannot be used to
discriminate signal and background as in B factories.

3.2 The LHCb detector

The LHCb detector is designed for indirect measurements of new physics in CP violating pro-
cesses and rare decays of beauty and charm hadrons. Many models of physics beyond the
Standard Model predict new sources of CP violating phases or enhancement of branching ratios
in the heavy quark sector (see for instance Ref. [77–79]).

Among the main LHCb physics results we can cite: the first measurement of branching
fraction of the rare decay B 0

s → µ+µ− [80, 81], the angular analysis of the B 0 → K ∗0µ+µ− de-
cay [82–84], the φs CP violating phase measurement with the decays B 0

s → J/ψh+h− (h stands
either for a pion or a kaon) [85, 86], the CKM angle γ measurement with B → DK decays [10, 87],
CP asymmetry studies in the charm sector with D0→ h+h− decays [88], measurement of elec-
troweak gauge bosons production in the forward region [89, 90], the measurements of the
properties of the exotic hadrons X (3872) and Z (4430) [18, 91], the searches for lepton number
and lepton flavour violation [92, 93] and the heavy quarkonia measurements in proton-lead
collisions [94, 95].
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Figure 3.4 – Polar angles between the beam axis and the b and b quarks, produced from a proton-proton
collision at a centre of mass energy

p
s = 8TeV. Simulation performed with the PYTHIA event generator.

The LHCb detector is a single-arm spectrometer with a forward angular coverage from
approximately 15mrad to 300 (250)mrad in the bending (non-bending) plane. This corresponds
to a pseudorapidity range of 2 < η < 5. This particular acceptance is driven by the angular
correlation of the bb pair produced in a pp collision at high energy. As can be seen in Fig. 3.4,
the b and b quarks are mostly produced in the same forward or backward cone.

The main performance requirements for the precision measurements made at LHCb are
a good vertexing and decay time resolution, an efficient track reconstruction, a good particle
identification and the ability to trigger on interesting events, containing beauty or charmed
hadrons. To fulfil these requirements, the LHCb detector is composed of several subdetectors,
shown in Fig. 3.5. The tracks made by charged particles are measured with the Vertex Locator
(VELO), the Tracker Turicensis (TT) and the Tracking Stations (T1,T2 and T3). The identification
of charged hadrons (pions, kaons and protons) is realised by two Ring Imaging Cherenkov
detectors (RICH1 and RICH2). Neutral particles, such as photons or π0, are measured with the
electromagnetic calorimeter (ECAL). The hadronic calorimeter (HCAL) is mainly used to trigger
on hadronic signals. Finally muons are identified thanks to dedicated chambers (M1 to M5).
Two system of coordinates are used to describe the detector: a right-handed Cartesian system,
with z along the beam axis toward the detector, y vertical and x horizontal; and a cylindrical
system with (r,φ, z).

This section briefly presents each subdetectors, the trigger system and the software. More
details can be found in [72].

3.2.1 The tracking system

The tracking system measures the trajectories of the charged particles produced by the proton
collisions. It determines the particle flight distances by reconstructing their production and
decay vertices, and their momentum via magnetic deflection. The system is composed of three
subdetectors: the Vertex Locator (VELO), located around the interaction point; the Tracker
Turicensis (TT) located upstream of the magnet; and the tracking stations T1–T3 which are
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Figure 3.5 – The LHCb detector in the (y, z) plane (z is the beam axis).

downstream of the magnet. In order to go through all the tracking system, a charged particle
must have a minimum momentum of 1.5GeV.

The Vertex Locator

The VELO is crucial to precisely reconstruct vertices, and separate primary vertices from sec-
ondary ones. Since B and D mesons have a mean lifetime between 0.5 and 1.6ps, and because
of the large boost resulting from the pp collision, their typical flight distance in the detector is
about 1cm. Therefore the interesting signals contain reconstructed particle candidates with
large flight distances and impact parameters. Thanks to the high spatial resolution of the VELO, it
is possible to distinguish such b and c-like topologies from light quark flavour background. This
topology criteria is the base of the High Level Trigger algorithm (see Sec.3.2.6). The other benefit
from the high spatial resolution is the precision on the proper time measurement, essential for
time-dependent analyses studying neutral meson mixing.

The VELO is separated in half along the beam axis, as represented in Fig. 3.6. Each half is
composed of 21 circular silicon modules, perpendicular to the beam. The module outer radius
is of 42mm and the inner radius of 8.2mm. Since this inner radius is too small compared to the
safety aperture required during the LHC injection, each VELO half is automatically retracted
by 29mm in the horizontal direction when the accelerator is not in stable beam conditions.
There are two types of modules: those measuring the r coordinates, called R-sensors, and those
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Figure 3.6 – Cross-section of the VELO in the horizontal (top) and vertical (bottom) planes. The R-sensors
are in red and the φ-sensors in blue.

measuring the azimuthal angle φ, called φ-sensors. These sensors are made of silicon strips,
with a pitch varying from 38µm in the innermost region to 102µm in the outermost region.
To minimise the material length traversed by the particles between the sensors, the latter are
placed in a vessel maintaining a secondary vacuum. The two halves are shifted along z by 1.5cm
to permit a complete overlap of the sensors once the detector is closed. Hence the azimuthal
coverage is perfect. Along the z-axis, the sensors are placed with a 3.5cm pitch to guarantee that
at least three of them are traversed by a particle flying in the LHCb acceptance. In addition, four
sensors are placed upstream the regular VELO sensors. They form the pile-up veto system, which
aims to identify and reject events with multiple pp interactions. These additional planes help to
measure the z position of the primary vertices and the total backward charged multiplicity.

Thanks to this layout, the VELO has a precision of 20µm on the impact parameters (IP) of
high transverse momentum (pT) tracks. The decay time resolution reaches 45fs. Such a time
resolution makes possible for instance the most precise measurement of the B 0

s oscillation
frequency using the decay B 0

s → D−
s π

+ [96]. With such a resolution, the oscillations in the flavour
tagged decay time distribution can be clearly observed (Fig.3.7).
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Figure 3.7 – Decay time distribution of B 0
s → D−

s π
+ candidates tagged as mixed (different flavour at decay

and production; red solid line) or unmixed (same flavour at decay and production; blue dotted line) [96].

The magnet

In order to measure their momentum, the trajectory of the charged particles is bent in the field
produced by a warm dipole magnet. This magnet is composed of two identical coils of conical
saddle shape, placed mirror-symmetrically to each other in the magnet yoke (Fig. 3.8). The
resulting integrated magnetic field is about 4 Tm. The non-uniformity of the field magnitude is
below 1%. This non-uniformity coupled with a slight detector asymmetry can provoke artificial
asymmetries between negatively and positively charged particles. As a consequence, it may
create systematic effects for CP violation measurements, which can be non negligible in a high
statistics regime. In order to reduce them, the polarity of the magnetic field is periodically
inverted. The two corresponding configurations are called MagUp and MagDown.

Figure 3.8 – Perspective view of the LHCb dipole magnet.
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The Silicon Tracker

The Silicon Tracker (ST) system is designed to perform well in an environment of high particle
densities. It is composed of one station upstream of the magnet, namely the Tracker Turicensis
(TT), and three stations downstream of the magnet forming the inner part of the tracking station
T1–T3, called the Inner Tracker (IT). These detectors are made of p+-on-n silicon microstrips,
with a strip pitch of 183µm and 198µm for the TT and the IT respectively. They are placed in
boxes which are opaque, thermally and electrically insulated. These boxes keep them also at a
temperature of 5◦C to reduce the damage caused by radiation. To avoid condensation on the
cold surfaces, they are continuously flushed with nitrogen.

The TT is about 150cm wide and 130cm high for a total active area around 8m2 (Fig. 3.9a),
corresponding to the full LHCb detector angular coverage. Its sensors are 9.64cm wide and
9.44cm high, for a thickness of 500µm. The IT is about 120cm wide and 40cm high for a total
active area around 4m2 (Fig. 3.9b). It covers the region of the tracking stations T1–T3 located
closest to the beam pipe, where the particles flux is the higher. Its sensors are 7.6cm wide, 11cm
high and either 320µm or 410µm thick. They are placed in a cross shape around the beam
pipe. There is some overlap between the modules to have a full coverage and allow an easier
alignment. To guarantee an efficient track reconstruction algorithm, with low ghost rates1, the
ST modules are arranged in x −u − v −x layers. The strips in x layers are vertical and rotated by
a stereo angle of −5◦ and +5◦ in u and v layers, respectively.

In the years 2011 and 2012, the hit efficiency of both TT and IT was well above 99%, for a hit
resolution below 55µm.

~30 cm

TTb

TTa

z
y

x

13
2.

4 
cm

157.2 cm

13
2.

4 
cm

138.6 cm

7.
4 

cm

7.74 cm

(a) TT

21
.8

 c
m

41
.4

 c
m

125.6 cm

19.8 cm

(b) IT

Figure 3.9 – The Silicon Tracker layout, including the TT (a) and IT (b) stations.

The Outer Tracker

The tracking stations T1 to T3 are hybrid detectors. The central region, with a higher occupancy,
is measured by the Inner Tracker. To cover the full LHCb detector angular acceptance, the

1A ghost track is made by a random combination of hits, faking a real track.
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surrounding area is handled by the Outer Tracker (OT). This is a drift-time detector, consisting of
an array of about 200 gas-tight straw tube modules. Each modules is composed of two staggered
layers of drift-tubes, with an inner diameter of 4.9mm. The counting gas is a mixture of Argon
(70%), CO2 (28.5%) and O2 (1.5%) to have a drift-time below 50ns and a spatial resolution of
200µm. As for the ST, the OT layers are in a x −u − v − x arrangement. The total active area
covered is 597cm×483cm.

Figure 3.10 – The LHCb tracking stations. The Silicon Tracker is in purple, the Outer Tracker in blue.

The trajectories of the charged particles are reconstructed from the hits measured in the
VELO, TT, IT and OT. Depending on their path through the subdetectors several track types are
defined (Fig. 3.11). The two most important ones are the Long and Downstream tracks :

Long tracks traverse the full tracking system. They have hits at least in the VELO and the T sta-
tions, and optionally in the TT. Since in this case the particle trajectories are reconstructed
with hits located across the whole magnetic field, they have the most accurate momentum
determination.

Downstream tracks pass only through the TT and T stations. They mainly correspond to
long-lived particles, such as K 0

S mesons and Λ baryons, which decay outside the VELO
acceptance.

During Run I, the tracking efficiency was larger than 96% for Long tracks. The momentum
resolution was of ∆p/p ∼ 0.4% at 5GeV to 0.6% at 100GeV. This performance corresponds to a
mass resolution of about 8MeV for B → J/ψX decays (with a constraint on the J/ψ mass), 22MeV
for two body B decays and 100MeV for B 0

s →φγ decays (dominated by the photon momentum
resolution).

3.2.2 The Ring Imaging Cherenkov detectors

The ability to identify charged hadrons, such as pions, kaons and protons, is crucial for an exper-
iment dedicated to flavour physics. For instance the following measurements are impossible
without the ability to distinguish between pions and kaons:
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Figure 3.11 – Illustration of the different track types reconstructed by the tracking system. The magnetic
field component on the y-axis, as a function of the z coordinate, is plotted above.

• measurement of the CP asymmetry ACP ≡ Γ(B 0→K +π−)−Γ(B 0→K −π+)
Γ(B 0→K +π−)+Γ(B 0→K −π+)

,

• B 0 meson flavour tagging in B 0 → DK ∗0 and B 0 → DK ∗0 decays (the K ∗0 → K +π− and
K ∗0→ K −π+ must be disentangled),

• distinction of the suppressed D0 → π+K − decay mode from the favoured D0 → K +π−

channel.

This charged hadron identification is possible thanks to the Cherenkov effect. A charge
particle which goes through a medium faster than the speed of light in this medium, emits
a cone of light. The cone angle depends directly on the particle velocity. Hence combining
the measurement of its velocity and momentum, the particle mass, therefore its type, can be
determined. In LHCb this identification is realised by two Ring Imaging Cherenkov detectors
(RICHs). They are designed to cover the momentum range of B and D daughters studied in
LHCb, which is typically from 2 to 100GeV. A schematic description of the two detectors is
provided in Fig. 3.12. RICH1, located upstream of the magnet, is dedicated to momentum from
2 to 60GeV. Its radiators are a combination of aerogel and C4F10 gas. The full LHCb acceptance
is covered, from 25 to 300 (250)mrad in the bending (non-bending) plane. RICH2 is placed
downstream of the magnet, just after the tracking stations. Its momentum range extends from
15 to 100GeV, with CF4 gas as a radiator. Its angular acceptance is limited from 15 to 120
(100)mrad and corresponds to the angular distribution of the highest momentum particles. The
momentum coverage of both detectors is illustrated in Fig. 3.13.

The Cherenkov photons are detected with Hybrid Photon Detectors (HPD). They are located
outside the spectrometer acceptance, in order to limit the material budget and protect them
from high radiation levels. The light is guided and focused thanks to a combination of spherical
and flat mirrors. The HPDs are put in iron shield boxes to reduce the magnetic field effect
inside the detectors. They measure the spatial position of the Cherenkov photons. Each photon
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reaching the photocathode of an HPD can produce a photo-electron. This electron is accelerated
in the detector vacuum chamber, thanks to a high voltage. The electron is then detected with a
silicon sensor. The major characteristic of an HPD is its large area coverage, high active-to-total
area ratio, high granularity and high speed. Simulated typical Cherenkov rings measured by the
HPDs can be seen on Fig. 3.14.

In 2012, the RICHs performance resulted in a kaon identification efficiency of 95% (probabil-
ity to detect a kaon as a kaon) for a pion mis-identification probability of 10% (probability to
identify a pion as a kaon).
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Figure 3.12 – The two Ring Imaging Cherenkov detectors: RICH1 side view (a) and RICH2 top view (b).
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3.2.3 The calorimeters

The LHCb calorimeters have three purposes. First, they identify electrons, photons and neutral
pions. They also provide useful information, in addition to the RICH, for charged hadrons
identification. Then, they measure the energy and position for the electrons, photons and
neutral pions. Such measurements are crucial for the study of radiative decays like B 0→ K ∗0γ or
B 0

s →φγ and electronic decays like B 0→ K ∗0e+e−. Finally, the hardware trigger (see Sec. 3.2.6)
needs a fast measurement of the particles transverse energy, to detect candidates from beauty
and charmed decays and take its decision in less than 4µs. The calorimeters provide such a
measurement, and make possible to trigger on electromagnetic and hadronic signals.

The calorimeters system is located between 12.3 and 15m after the pp interaction point.
It is composed of a Scintillating Pad Detector (SPD), a Preshower (PS), an electromagnetic
calorimeter (ECAL) and a hadronic calorimeter (HCAL). The whole follows a projective geometry
to cover the full LHCb angular acceptance. The same principle is used for the four detectors:
the scintillation light produced by the charged particles is collected by wavelength shifting
(WLS) fibres and transmitted to photomultiplier tubes (PMT). The longitudinal structure of
the calorimeters is shown in Fig. 3.15. The particle identification principle is also illustrated.
The charged particles produce scintillation light in the SPD and PS detectors. Electromagnetic
showers are initiated just before the PS, within the lead layer, and develop in the ECAL, whereas
hadronic showers develop later in the HCAL (with a potential energy deposit at the end of the
ECAL). The particle flux varies by two orders of magnitude between the region close to the
beam pipe and those more distant. Thus to have a high granularity, at reduced-cost, a lateral
segmentation is made. As illustrated in Fig. 3.16a, the SPD, PS and ECAL are divided into three
areas: the inner, middle and outer regions (listed by decreasing granularity). The HCAL needs
only to be divided in two areas: the inner and outer regions (Fig.3.16b). The following sections
focus on each calorimeter subsystem.

Pb

γ

e±

h±

HCALECALSPD PS

Figure 3.15 – Schematic illustration of shower development in the LHCb calorimeter system for the
photons, electrons and charged hadrons.

The scintillating pad and preshower detectors

The SPD/PS detectors consist of two layers of scintillator pads 15mm thick. Between them
is placed 15mm of lead, which corresponds to 2.5X0 radiation length and 0.1λi nt nuclear
interaction length. The lead serves to initiate the electromagnetic cascades. The SPD is used
to discriminate between the electrons and the photons. The number of hits in the SPD also
provides some information about the charged particle multiplicity in an event. The PS, coupled

46



3.2. The LHCb detector

 Outer  section :


 Inner section :


 121.2 mm
cells


  2688  channels


  40.4 mm  cells


  1472  channels


  Middle section :


  60.6 mm
cells


  1792 channels


(a) ECAL

 Outer  section :


 Inner section :


   262.6 mm  cells


   608  channels


    131.3 mm  cells


   860  channels


(b) HCAL

Figure 3.16 – The electromagnetic (a) and hadronic (b) calorimeters segmentation.

to the ECAL, provides a longitudinal segmentation of the electromagnetic calorimeter. This is
used to separate pure electromagnetic showers from charged pion background. The active area
of the PS is 7.6m wide and 6.2m high.

The electromagnetic calorimeter

The electromagnetic calorimeter is based on the shashlik technology. It is composed of al-
ternating layers of sampling plastic scintillator and lead converter tiles, transversely crossed
by wavelength shifting fibres. The measurement principle relies on the energy conversion of
incoming photons or electrons into electromagnetic cascades. These cascades develop through
a large number of the lead layers. When the charged particles composing the showers cross the
scintillator layers, the plastic emits scintillation light. In first approximation, the amount of light
produced by an electromagnetic shower is proportional to the energy of the incoming particle.
The scintillation light is collected thanks to the WLS fibres. These fibres are doped in such a
way that the scintillation light crossing a fibre is absorbed and re-emitted in wave lengths which
propagate inside the fibres.

The structure of an ECAL module is illustrated in Fig. 3.17a. One module is made of 66 lead
plates 2mm thick and 67 scintillator layers 4mm thick. Between each layer a light reflecting
TYVEK paper, 120µm thick, is inserted to improve the scintillation light collection. The whole
is assembled in a 42cm deep stack, corresponding to 25X0 and 1.1λi nt . The Molière radius of
this stack is 3.5cm. To ensure light tightness and have modules isolated from each others, they
are individually wrapped in black paper. As already mentioned and illustrated in Fig. 3.16a, a
variable lateral segmentation is made. The modules of the outer part of the ECAL are made with
one cell 121.2mm wide. Those of the middle part are divided in 4 cells 60.4mm wide, while in
the inner modules there are 9 cells 40.20mm wide. In each module the cells share the same lead
plate, but are made of distinct scintillator tiles. These tiles are chemically treated at the edges to
ensure an efficient light collection, a good lateral uniformity and a reduce tile-to-tile light cross
talk. The fibre density is also adapted to the variable granularity. In the outer area the modules
are crossed by 64 fibres, whereas in the middle and inner area there are 144 fibres. In each area
there is one PMT connected to one cell.

The energy resolution of a calorimeter can be expressed as

σE

E
= ap

E
⊕B ⊕ c

E
(GeV). (3.1)
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(a) ECAL module (b) HCAL module

Figure 3.17 – Structure of the electromagnetic (a) and hadronic (b) inner calorimeter cells.

The first term, namely the stochastic term, arises from the light collection fluctuation for a shower
at a given energy. The second is the constant term, linked to the calorimeter non uniformity. The
third is the noise term, corresponding to the electronic noise effect. The design ECAL resolution
is

σE

E
= 10%p

E
⊕1% (GeV). (3.2)

A measurement of this resolution has been performed with a test beam [97] and is in good
agreement with the design value:

σE

E
= (9.4±0.2)%p

E
⊕ (0.83±0.02)%⊕ (0.11±0.03)

E
(GeV). (3.3)

Due to the dynamic range imposed by the physics, the maximal transverse energy measurable by
the ECAL is 10GeV. The neutral energy deposit reconstruction is discussed further in chapter 4.
The photon energy and position measurement made by the ECAL drives directly the mass
resolution for the radiative decay channel, such as B 0 → K ∗0γ. For this channel the mass
resolution is found to be 93MeV [98].

The hadronic calorimeter

The hadronic calorimeter is located at 13.33m from the interaction point, just after the ECAL. It
is also a sampling device, based on the Tilecal technology. Scintillating tiles parallel to the beam
axis are assembled between iron absorbers (Fig. 3.17b). The scintillating light is collected by
WLS fibers, placed along the tiles, and guided to the PMTs at the back of the HCAL. The cells are
131.3mm and 262.3mm wide in the inner and outer part, respectively. The calorimeter is 1.65m
deep, which correspond to 5.6λi nt . This results in an energy resolution of

σE

E
= (69±5)%p

E
⊕ (9±2)% (GeV), (3.4)

filling the requirements imposed by the trigger system.
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The HCAL embeddes a self-calibration system based on a 137C s source. This source travels
through all the HCAL modules, thanks to steel tubes at the center of each tiles and a water
pumping system. This system enables ageing effects to be monitored, and to adjust accordingly
the gains to keep a constant trigger rate.

3.2.4 The muon system

The muon system has two purposes: triggering on high transverse momentum muons and
providing offline muon identification. These are essential requirements to study properly, for
instance, CP violation in B 0→ J/ψK 0

S or B 0
s → J/ψφ decays, or to search for rare decays such as

B 0
s →µ+µ−. One component of the flavour tagging of neutral B mesons relies also on the good

performances of the muon system. Indeed, muons from semi-leptonic b decays tag the flavour
at the production time of the accompanying neutral B meson.

Five rectangular stations, M1 to M5, are installed in a projective geometry to have an angular
coverage from 20 (16)mrad to 306 (258)mrad in the bending (non-bending) plane. All the
stations are composed of Multi Wire Proportional Chambers (MWPC), except the inner region of
M1, which is made of triple Gas Electron Multiplier (GEM) detectors to ensure a better ageing
in this high radiation area. There is a total of 1380 chambers. As illustrated in Fig. 3.18, the
chamber M1 is placed in front of the calorimeters to provide a better pT measurement to the
hardware first level trigger (L0). The chambers M2 to M5 are downstream of the calorimeters,
and separated by iron absorbers 80cm thick. In this way, only muons can penetrate the totality
of the chambers and reach M5. Indeed, the total interaction length including the calorimeters is
around 20λi nt . Thus, to cross all the stations a muon must have a minimal momentum of 6GeV.

The stations M1–M3 have a high spatial resolution on x (the bending plane) to efficiently
determine the track direction and measure the pT with a 20% resolution, sufficient for the L0.
The last stations M4 and M5 have a more limited spatial resolution. They are mainly designed
to select the penetrating muons. The layout of the stations is shown in Fig. 3.18. Each station
is divided into four regions, R1–R4, whose segmentation scales with the ratio 1:2:4:8. Thanks
to this adapted granularity, the channel occupancy is approximately constant between each
region.

Figure 3.18 – Sideview of the muon sytem (left), front view of a quadrant of one muon station where each
square represents a muon chamber (middle) and segmentation layout of the chambers in the different
region of M1 (right).
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To provide a muonic trigger at the 40MHz LHC collision rate, a good hit efficiency, a good
time resolution, a high rate capability, a fast electronics and a strong ageing resistance are
required features. During Run I operation, the muon identification efficiency was of 97% for a
pion to muon mis-identification probability of 1 to 3% (depending on the particle energy).

3.2.5 Charged hadron identification

The analysis presented in chapter 5 uses the charged hadron identification ability of the LHCb
detector. This section briefly explains how the particle identification (PID) information given
by the RICH, calorimeters and muon sub-detectors is combined to provide a powerful set of
discriminating variables. Two different methods are used. The first is based on the separate
likelihoods provided by each sub-system, Lsubsyst(h). These likelihoods give the probability,
according to a given sub-system, that a given track is from a particle of type h. The global
likelihood is simply obtained by multiplication:

Lcomb(h) = LRICH(h) ·LCALO(non e) ·LMUON(non µ). (3.5)

To discriminate one particle hypothesis against one another, the delta-log likelihood is computed.
It gives for instance the kaon-pion separation variable

DLLKπ ≡ ln
Lcomb(K )

Lcomb(π)
. (3.6)

The second method available is based on a multivariate technique. It combines directly the
different information provided by the RICH, calorimeters and muons sub-systems, into a single
estimator for each particle hypothesis. In this technique, the correlation between the sub-
detectors is taken into account. The likelihood and the multivariate methods show different
performances depending on the momentum range of the particles. Their usage depends on the
characteristics of each analysis.

3.2.6 The trigger system

At the design LHC bunch crossing rate and a luminosity of 2×1032, the rate of visible interaction
in the LHCb detector is about 10MHz. Among these interactions, only 100kHz correspond to a
bb pair production. And only 15% of these events produce a B meson with all his decay products
in the detector acceptance. Hence, it is essential for LHCb to trigger on b and c signals while
rejecting a large amount of uninteresting light flavour events.

To fulfil this requirement, the trigger system is divided in two levels: the Level-0 (L0) and the
High Level Trigger (HLT). This scheme, illustrated in Fig. 3.19, reduces to 5kHz the rate at which
the selected events are stored for further offline analysis. The L0 consists of a custom made
electronics, capable of a fast reading of the information provided by the calorimeters and the
muon system. It reduces the event rate to 1MHz. At this frequency all the detector can be read
out, and the HLT takes over. The HLT is a software application running on the Event Filter Farm
(EFF), containing around 29000 logical CPU cores. In 2012, a fraction of events accepted by the
L0 were deferred to disk, to be processed by the HLT during the time between LHC fills. This
deferral enables a more efficient use of available EFF resources. The deferred trigger scheme is
illustrated in Fig. 3.19b.

The trigger efficiency during Run I was about 90% for dimuon channels and 30% for multi-
body hadronic final states.
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Figure 3.19 – (a) Scheme of the LHCb trigger system used during the 2011–2012 data taking period. (b)
Scheme of the LHCb deferred trigger used during 2012 data taking period.

The Level-0 trigger

The L0 trigger runs synchronously with the 40MHz bunch crossing rate of the LHC. Its latency is
fixed and independent of the occupancy and the bench crossing history. As already mentioned,
the purpose of this hardware trigger is to reduce the event rate from 40MHz to 1MHz, while
keeping a maximum of interesting events. Hence, it relies on the fact that, due to the high mass
of the B mesons, their decay products have in average a higher transverse momentum (pT) and
transverse energy (ET) than more common decay products. Three independent units form the
L0 trigger: the L0-calorimeter, the L0-muon and the L0-PileUp.

The L0-PileUp is used for the determination of the luminosity [99]. It aims to veto events
with multiple interactions, by using the information provided by the four VELO sensors placed
most upstream of the collision point (see Sec. 3.2.1). This unit is also used for triggers dedicated
to Central Exclusive Production signal.

The L0-calorimeter unit gathers the information collected by the SPD, PS, ECAL and HCAL
to compute the ET in clusters of 2× 2 cells. Three kinds of candidates are built: L0Hadron,
L0Photon and L0Electron. A L0Hadron candidate corresponds to a highest ET HCAL cluster,
taking into account also the residual energy deposit in the corresponding ECAL cluster. A
L0Photon candidate is a highest ET ECAL cluster with 1 or 2 PS hits in front of the matching
ECAL cluster. In addition, no hit in the corresponding SPD cells has to be found. L0Electron
candidates must fulfil the same criteria as L0Photon, except that they must have at least one
SPD hit in front of the PS cluster. To fire the trigger, these candidates must have an ET larger
than a fixed threshold. The typical threshold used during Run I are listed in Table 3.1. Besides ET

cuts, events are required to have a total number of SPD hits lower than a particular limit (listed
in Table 3.1). This criterion prevents the HLT from spending a disproportionately large fraction
of the available processing time on events with a too high multiplicity.

The L0-Muon unit takes the two highest pT tracks in each quadrant of the muon chambers.
The resulting eight candidates are considered and compared to a single threshold on either the
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Table 3.1 – Typical L0 thresholds used in Run I. More details are in Ref. [100]

pT or ET SPD hits

2011 2012 2011 and 2012

Single muon 1.48GeV 1.76GeV 600

Dimuon pT1 ×pT2 (1.30GeV)2 (1.60GeV)2 900

Hadron 3.50GeV 3.70GeV 600

Electron 2.50GeV 3.00GeV 600

Photon 2.50GeV 3.00GeV 600

largest pT, or the product of the two highest transverse momentum pT
largest ×pT

2nd largest.
The L0 Decision Unit (DU) collects information from the L0-PileUp, the L0-Calorimeter and

the L0-Muon and combines it in a logical OR to make the global L0 trigger decision. The time for
the L0 trigger decision to reach the front end electronics is fixed to 4µs after the corresponding
pp interaction occurred. This time includes the particle time-of-flights and the delays arising
from the cables and the front end electronics. It means that approximately 2µs are left for the L0
data processing.

The High Level Trigger

The HLT runs asynchronously with the LHC collision rate and is a C++ application running
on each CPU of the Event Filter Farm (EFF). It reduces the 1MHz data flow at the L0 output
to 5kHz, at which rate the data can be stored on disk. Each HLT application has access to the
whole detector information and could, in principle, perform the full offline reconstruction.
However, given the EFF resources, the time per event available is around fifty times smaller
than in the offline processing and some simplification are adopted. The HLT is divided into
two steps, namely HLT1 and HLT2. Since it is a software trigger, the HLT is very flexible and can
easily be adjusted to follow the experimental needs and the development of the reconstruction
and selection software. Its selection principle relies on high pT tracks, but also on topological
properties – b and c-hadrons produce displaced vertices – and PID information.

The HLT1 performs a partial event reconstruction on the L0 candidates, by adding some
information coming from the tracking system. The tracks in the VELO are reconstructed, and
PVs are formed with at least 5 intersecting tracks. A vertex is considered as a PV if it lies within a
radius of 300µm of the mean position of the pp interaction. Then the VELO tracks are passed
to the forward tracking algorithm, performed in a simplified way. Only a subset of the VELO
tracks are selected. They must have either a significant Impact Parameter (IP) with respect to
all PVs, or be associated to a muon track. Several inclusive and exclusive lines are developed
with their appropriate selection requirements. For instance, the inclusive beauty and charm
trigger asks for a track of good quality with a minimal transverse momentum (with a typical
value of pT > 1.6−1.7GeV) and displacement from the primary vertex (with a typical value of
I P > 0.1mm). At the end, the HLT1 output rate is about 80kHz, low enough to apply the full
pattern recognition in HLT2.
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The HLT2 performs a complete event reconstruction, close to the offline algorithm. Because of
CPU constraints, only long tracks with p > 3GeV and pT > 0.3GeV are considered. HLT2 includes
both a mixture of exclusive lines, such as a prompt c-hadron decays line, a B → hh decay line
(with h standing either for a pion or a kaon), and inclusive lines, such as a dimuon trigger, a
φ→ K K line and a topological trigger. The topological trigger is the one used in the analysis
presented in Chap. 5. It is designed to trigger on partially reconstructed b-hadron decays, with at
least two charged particles in the final state and a displaced decay vertex. The considered tracks
are preselected on track fit χ2/ndf, IP, and electronic and muonic ID criteria. From these tracks,
two-, three- and four-body vertices are made, with a requirement on the distance to closest
approach of the tracks (DOCA). Then the n-body candidates are selected with a dedicated
Boosted Decision Tree (BDT) [101] based on the following discriminating variables:

∑ |pT|,
pT

min, n-body invariant mass, DOCA, IP significance, flight distance (FD) significance and the

corrected mass mcorr. The corrected mass is defined as mcorr ≡
√

m2 +|pT
′
miss|2+|pT

′
miss|, where

|pT
′
miss| is the missing momentum transverse to the line of flight between the n-body vertex and

the PV to which it has the smallest IP.

The deferred trigger

The LHC delivers stable beams – beams producing collisions used for the physics analyses –
only 30% of its operating time, on average. This would imply that about 70% of the time the EFF
would be idle. To optimise the CPU usage, a system of deferred trigger has been set up for data
taking in 2012 [102]. Its architecture is illustrated in Fig. 3.19b. Around 20% of the events at the
output of the L0 is buffered on disks. The events temporarily stored are processed by the HLT
during the inter-fill period (e.g. when the fill is prepared or when some machine development is
done). This results in an effective increase of the available CPU time to filter the events. Hence,
the pT threshold on the tracks can be relaxed and the Downstream tracks (see Sec. 3.2.1) have
been also included in the HLT. Another advantage of this deferring is the reduction of dead-time
in the farm. If a problem occurs downstream the L0, for instance preventing the HLT from
running correctly, the fraction of deferred events increases until the problem is fixed.

For Run II, the trigger scheme has evolved to allow a run-time calibration and alignment
on the HLT1 output, which is buffered. This enables a better online event reconstruction, and
therefore a better quality of the trigger decisions.

TIS and TOS categories

Depending on the source of a positive trigger decision, an event is classified with two categories
TOS and TIS:

TOS means Trigger On Signal event, in this case the trigger objects associated to the considered
signal candidate are sufficient to trigger the event,

TIS means Trigger Independent of Signal event, in this case the trigger objects which have
triggered the event are not associated to the considered signal.

The two categories are not mutually exclusive, some events can be classified as TIS and TOS
(TIS & TOS). Thanks to these TIS & TOS events, the trigger efficiency relative to the offline
reconstructed events can be evaluate from data alone [103]. The efficiency to trigger an event
independently of the signal is determined with

εTIS = N TIS&TOS/N TOS, (3.7)
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where N TOS (N TIS&TOS) is the number of events classified as TOS (TIS & TOS). In the same way,
the efficiency to trigger an event on the signal alone is determined with

εTOS = N TIS&TOS/N TIS. (3.8)

3.2.7 The LHCb software: data processing, event filtering and simulation
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Figure 3.20 – Software framework of the data processing in LHCb.

The LHCb software is based on the C++ Gaudi framework [104]. All the applications handling
the data processing in LHCb use this framework. Figure 3.20 illustrates this architecture. The
raw data produced by the detector are first processed with the Moore application, which runs
the HLT algorithm. The full offline reconstruction is performed by the Brunel application, which
stores the events in “data summary tape” (dst) files format. Running every single analysis on the
whole data set at the output of the offline reconstruction would take an unthinkable processing
time. As a consequence, a loose pre-selection of the events is set up to distribute the data into
several streams adapted to a particular topology, such as hadronic B decays, semileptonic B
decays or charm decays. Each stream includes several lines dedicated to the selection of specific
decay channel. This event filtering is called Stripping and is implemented in the DaVinci

application. The physics analysis are performed on stripped data. DaVinci is used to gather the
events passing a given stripping line and collect their measured physical properties into a ROOT
tree [105].

The Monte-Carlo (MC) simulation of the signals measured with the LHCb detector are
generated with the Gauss application [106]. It relies on the Pythia generator [107, 108] to
simulate pp collisions, the EvtGen package [109] to simulate the B meson decays and the
GEANT4 package [110, 111] to simulate the passage of the particles through the detector material.
This passage produces simulated hits (MCHits) in the different sub-detectors. These hits are
digitised with the Boole application. The output of this digitisation is similar to the raw data
produced by the detector.
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3.3 The LHCb detector upgrade

After the LHC Long Shutdown 2 (LS2), at the time of writing planned for the end of 2018, a
major upgrade of the LHCb Detector will take place. During Run II, LHCb is expected to take
around 5 fb−1 of data. After the first two runs, it is not feasible to operate long enough with the
current detector to double the collected statistics, which is required to produce results with a
more significant scientific impact. That is why the goal of the upgraded experiment is to take a
total sample of 50 fb−1 with an improved detector. The general upgrade scheme is detailed in
Ref. [112] and Ref. [113].

The luminosity will be increased from 4×1032 to a maximum of 2×1033 cm−2 s−1, with an
average number of (visible) interactions per bunch crossing ν= 7.6 (µvis = 5.2). To benefit from
such an increase of data rate, the trigger efficiency must be significantly improved. In particular,
ET thresholds used to trigger on the hadronic decays constitute a bottleneck. If the current
trigger scheme were kept, the thresholds would have to be raised to keep a 1MHz L0 output rate.
This would lead to a unacceptable loss of signal efficiency. As illustrated in Fig. 3.21, the trigger
yields of hadronic B decays saturate with an increase of the luminosity. The saturation is not
present for the muon channels, because the thresholds can be tuned to milder values.

To solve this issue, the detector readout will be performed at the 40MHz rate, instead of
1MHz. Thus a fully software-based trigger can be installed. Using a full software trigger provides
flexibility and the ability to use more information than simply ET to discriminate signals against
backgrounds. The resulting gain in trigger efficiency will lead to an increase of the signal yields
by a factor 10 in muonic channels and 20 in hadronic channels. In addition, it will be possible
to trigger on long-lived particles. To follow this strategy, the front-end electronics of the sub-
systems will be replaced to allow the 40MHz readout. The sub-detectors have also to be adapted
to operate at a higher luminosity and to record 50 fb−1 of data.

Figure 3.21 – L0 trigger yields for B 0→π+π−, B 0
s →φγ, B 0

s → J/ψφ and B 0
s → D∓

s K ± decays, normalised to
the yields at the design luminosity of 2×1032 cm−2 s−1. Taken from [114].
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(a) (b)

Figure 3.22 – Front view of a module of the upgraded VELO (a) and layout of the scintillating fibre tracker
(b). The red lines represent the SiPMs position.

The tracking system will be completely changed. Thanks to the new design of the VELO [115],
the speed and the precision of the track reconstruction will be improved, even with a higher
detector occupancy. The silicon strip R–Φ geometry of the VELO will be replaced by a square
pixel geometry, as illustrated Fig. 3.22a. The sensors will be also closer to the beam axis, with
a distance of 5.1mm. In total, there will be 41 million of 55µm×55µm pixels. The current TT
cannot survive the radiation damage foreseen after LS2, and its strip geometry is not suited
to the high occupancy. It will be replaced by the Upstream Tracker (UT), similar to the TT in
its design, but with thinner silicon sensors, finer segmentation and larger coverage [113]. The
T1–T3 stations are also not adapted to the expected occupancy, especially the OT. They will be
changed for the Scintillating Fibre tracker (SciFi) [113], composed of 2.5m long fibres with a
diameter of 250µm, read out by silicon photomultipliers (SiPMs). This layout is illustrated in
Fig. 3.22b.

The RICH will keep its overall structure largely unchanged [116]. The aerogel in RICH1 will be
removed, since it performs not efficiently at high luminosity [112]. The HPDs enclose the current
1MHz read-out electronics. They will be replaced by multianode photomultipliers (MaPMTs).
The optics of RICH1 will also be re-optimised.

The calorimeters will not be radically changed [116]. The PS and SPD will be removed since
they are mainly used for the L0 trigger. This will simplify the calibration of the ECAL. Moreover,
the PMT gains will be lowered in order to ensure a longer lifetime at a high luminosity operation.
Chapter 4 presents a study made to optimise the photon reconstruction with the ECAL, after the
upgrade.

The muon chambers will suffer much less from the luminosity increase, since they are shielded
by the other subdetectors. The particle rates will be tolerable, therefore the stations will be
unchanged, except M1 which will be removed [116]. To reduce the particle rate in the innermost
region of M2, additional shielding will be installed around the beam pipe, behind HCAL.
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The expected sensitivity on key measurements, at the end of the Upgrade era, are summarised
in Table 3.2, reproduced from [117] (with an update on the γ current precision).

Table 3.2 – Statistical sensitivities of the LHCb upgrade to key observables. Reproduced from [117], with
an update on the γ current precision. For each observable the current sensitivity is compared to that
which will be achieved by LHCb before the upgrade, and that which will be achieved with 50 fb−1 by the
upgraded experiment. Systematic uncertainties are expected to be non-negligible for the most precisely
measured quantities (such as as

sl, AΓ and ∆A CP ).

Type Observable Current LHCb Upgrade Theory

precision 2018 (50 fb−1) uncertainty

B0
s mixing 2βs (B0

s → J/ψφ) 0.10 [118] 0.025 0.008 ∼ 0.003

2βs (B0
s → J/ψ f0(980)) 0.17 [119] 0.045 0.014 ∼ 0.01

as
sl 6.4×10−3 [47] 0.6×10−3 0.2×10−3 0.03×10−3

Gluonic 2βeff
s (B0

s →φφ) – 0.17 0.03 0.02

penguins 2βeff
s (B0

s → K∗0K̄∗0) – 0.13 0.02 < 0.02

2βeff(B0 →φK 0
S ) 0.17 [47] 0.30 0.05 0.02

Right-handed 2βeff
s (B0

s →φγ) – 0.09 0.02 < 0.01

currents τeff(B0
s →φγ)/τB0

s
– 5% 1% 0.2%

Electroweak S3(B0 → K∗0µ+µ−;1 < q2 < 6GeV2/c4) 0.08 [120] 0.025 0.008 0.02

penguins s0 AFB(B0 → K∗0µ+µ−) 25% [120] 6% 2% 7%

AI(Kµ+µ−;1 < q2 < 6GeV2/c4) 0.25 [121] 0.08 0.025 ∼ 0.02

B(B+ →π+µ+µ−)/B(B+ → K+µ+µ−) 25% [122] 8% 2.5% ∼ 10%

Higgs B(B0
s →µ+µ−) 1.5×10−9 [123] 0.5×10−9 0.15×10−9 0.3×10−9

penguins B(B0 →µ+µ−)/B(B0
s →µ+µ−) – ∼ 100% ∼ 35% ∼ 5%

Unitarity γ (B → D(∗)K (∗)) ∼ 7–7.5◦ [11, 12] 4◦ 0.9◦ negligible

triangle γ (B0
s → Ds K ) ∼ 30–40◦ [55] 11◦ 2.0◦ negligible

angles β (B0 → J/ψ K 0
S ) 0.8◦ [47] 0.6◦ 0.2◦ negligible

Charm AΓ 2.3×10−3 [47] 0.40×10−3 0.07×10−3 –

CP violation ∆A CP 2.1×10−3 [124] 0.65×10−3 0.12×10−3 –
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Photon reconstruction optimisation
with the upgraded LHCb detector
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Neutral objects like photons or neutral pions do not leave hits in the tracking system. There-
fore they can only be measured with the electromagnetic calorimeter (ECAL). Reconstruct-
ing neutrals is not an easy task in an hadronic environment with high multiplicity. However
the performance of the LHCb electromagnetic calorimeter makes possible the study of ra-
diative decays such as B 0 → K ∗0γ [98], or decays with π0 mesons in the final state such as
B±→ D(K ∓π±π0)K ± [125]. After the Long Shutdown 2 (LS2) of the LHC, the delivered luminos-
ity will be increased by one order of magnitude above the LHCb design value (see Sec. 3.3). Thus,
the occupancy of the detector will significantly grow. This chapter presents a work performed
in order to optimise the photon reconstruction under LHCb upgrade conditions. The first sec-
tion summarised the current photon measurement method. Then the study for the upgrade is
developed in the second section.

4.1 Photon measurement with the LHCb Detector

Photon energy and momentum are measured by detecting the development of electromagnetic
cascades in the ECAL absorber material (for a presentation of the ECAL layout, see Sec. 3.2.3).
The energy is directly measured from the energy deposit in the ECAL cells. The 3-vector momen-
tum is deduced from the particle impact on the calorimeter surface, itself obtained from the
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measurement of the position of the cascade. This section summarised the characteristics of an
electromagnetic shower and its current reconstruction in LHCb.

4.1.1 Electromagnetic Shower

When a high-energy electron or photon, with an energy of at least few MeV, crosses the lead
tiles, an electromagnetic shower is produced. An incoming electron radiates a bremsstrahlung
photon and an incoming photon makes an electron-positron pair. These created photons and
electrons produce additional photons and electrons with lower energy, making a cascade. This
mechanism is illustrated in Fig. 4.1. The cascade stops when the electron energies fall below
the critical energy. In this case they dissipate their energy not any more by bremsstrahlung,
but by ionisation or excitation. Eventually, all the energy of the incoming photon or electron is
absorbed in the ECAL material.

The longitudinal development of an electromagnetic cascade can be well described with [20,
126]

dE

dt
= E0b

(bt )a−1e−bt

Γ(a)
, (4.1)

where E0 is the energy of the incoming particle, and a and b are parameters depending on the
absorber material. The longitudinal distance z is described in units of radiation length with the
scale variable

t ≡ z/X0. (4.2)

The maximal development of a shower is at tmax = (a −1)/b, and can be expressed as [20]

tmax = ln
E0

Ec
+C , (4.3)

where Ce = −0.5 for electron-induced showers and Cγ = +0.5 for photon-induced showers.
Ec is the critical energy, the energy at which the electron looses energy by ionisation and
bremsstrahlung at the same rates. Another definition of the critical energy, formulated by
Rossi [127], is the energy at which the ionisation loss per radiation length is equal to the electron
energy.

The transverse development of an electromagnetic shower is characterised by the Molière
radius RM, defined as [128, 129]

RM ≡ X0
Es

Ec
, (4.4)

where the Rossi critical energy is used and Es is the scale energy defined as

Es ≡
p

4π/αme c2 ≈ 21MeV. (4.5)

The Molière radius determines a cylinder in which 90% of the energy shower lies. The Molière
radius of the LHCb ECAL is 3.5cm. The energy transverse distribution is described with different
shapes in the literature, either with a sum of two exponentials [130, 131], or a sum of two
Gaussians [132], or a sum of two Bessel functions [133]. Alternatively, Grindhammer uses a sum
of two functions of the form [134, 135]

f (r ) ≡ 2r R2

(r 2 +R2)2 , (4.6)

with the average radial profile R depending on the energy and the shower depth t . For each
description, the use of the sum of two functions describes better the measured shower profile,
with a core and a tail shape.
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Figure 4.1 – Illustration of the creation an electromagnetic cascade.

4.1.2 Energy measurement in a calorimetric cell

As described in Sec.3.2.3, the calorimeter cells collect the scintillation light produced by the
charged particles making the cascade and transmit it to their corresponding photomultiplier
tube (PMT). The analog signals at the PMTs output is processed by a dedicated electronics
and converted in numerical signals with analog-to-digital converters (ADC). The number of
recorded ADC counts is proportional to the amount of scintillation light collected. This amount
of light may vary between two different cells even with incident particles of same energy. This
variation has multiple origins. For instance, the calorimeter is slightly non homogeneous, the
fibres are not exactly identical and they even do not age at the same speed, depending on their
location in the ECAL. Therefore, the calorimeter needs to be finely calibrated in order to provide
a precise measurement of neutral particles. The calibration of the ECAL is made in three steps.
First, an initial calibration has been made at the beginning of LHCb commissioning by using the
test-beam measurements. This calibration resulted in a 10% resolution on the π0 mass, for the
first collisions in 2009 [74]. During the Run I operations, the calibration was monitored with a
LED system. As can be seen in Fig. 3.17a, a fibre at the centre of each cell is linked to a LED. With
this system a monitored amount of light can be sent to the PMTs, and their response stability is
measured. It provides a calibration with a 8–10% accuracy. The second step of the calibration is
based on the measurement of the energy flow over the ECAL surface [136]. After a large number
of collisions, the accumulated energy deposit should be continuous across cell boundaries. This
constraint enables the calibration parameters to be refined and an inter-cell energy scale to be
established. Finally, the absolute energy scale (and an improved inter-calibration) is determined
with fits to the neutral pion mass distribution in the decay π0 → γγ [137]. The calibration
constant of a given cell is refined by combining a photon hitting the cell with another photon
over a large statistics. The resulting π0 mass distribution is fitted and the calibration constant
adjusted to obtain the correct π0 mass. The process is repeated as many times as needed to get
stable parameters. At the end, the cell-to-cell intercalibration is estimated to be approximately
2% [74].

4.1.3 Energy and position measurement of a calorimetric cluster

Once the energy is correctly measured in the calorimeter cells, they can be grouped in clusters
to reconstruct neutral particles. The recontruction of neutral particles in LHCb is detailed in
Ref. [138]. The following sections summarise the main points.
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To realise the clusterisation, local energy deposition maxima are first searched for. They
are required to have a transverse energy larger than 50MeV. A cell corresponding to one local
maximum is called a seed. Then a 3×3 cell pattern is applied around every seeds to build all the
clusters. Consequently, the seeds are always separated by at least one cell. If one cell is shared by
several clusters, the energy of the cell is shared between these clusters proportionally to the total
clusters energies. This sharing algorithm is iterative and quickly converges since the Molière
radius of the ECAL (3.5cm) is smaller than the cell sizes (4.04cm, 6.06cm and 12.12cm in the
inner, middle and outer regions respectively, see Sec.3.2.3). To each cluster can be associated an
energy Ecl and a position xb, yb defined as

Ecl ≡
8∑

i=0
Ei , xb ≡ 1

Ecl

8∑
i=0

xi Ei , yb ≡ 1

Ecl

8∑
i=0

yi Ei , (4.7)

where Ei , xi and yi are the energy, the x- and y-positions of the nine cells corresponding to the
3×3 cluster, respectively. The index b on xb and yb denotes the barycentre position. This cell
energy barycentre provides a biased position measurement [130], which must be corrected for
by the so-called S-shape correction (see Sec. 4.1.4). The cluster energy spread is also encoded in
a 2×2 symmetric matrix with the elements

Sxx ≡ 1

E ′
cl

∑
Ei>0

x2
i Ei −x ′

b
2,

Sx y ≡ 1

E ′
cl

∑
Ei>0

xi yi Ei −x ′
b y ′

b,

Sy y ≡ 1

E ′
cl

∑
Ei>0

y2
i Ei − y ′

b
2,

(4.8)

where the primed quantities E ′
cl, x ′

b and y ′
b are evaluated with only positive cell energies (a cell

energy can be measured to be negative because of the electronic pedestal suppression).
Photon candidates are reconstructed from neutral clusters. A cluster is considered as neutral

if it cannot be associated to a charged track. This decision is obtained by extrapolating all the
charged tracks – provided by the tracking system – to the calorimeter. Then the extrapolated
tracks are combined with the reconstructed cluster to build the χ2

2D estimator:

χ2
2D ≡ (~rtr −~rcl)

T (Ctr +Scl)
−1 (~rtr −~rcl) , (4.9)

where ~rtr is the 2D position of the track extrapolated at the zcl cluster longitudinal position,
~rcl = (xb, yb) is the barycentre position, Ctr is the covariance matrix of ~rtr and Scl the cluster
energy spread matrix defined in Eq. 4.8.

The longitudinal cluster position is set at the z-position of the maximal shower development.
It is evaluated from the ECAL front-face z-position zecal, with a logarithmic energy dependence
(see Eq. 4.3),

zcl = zecal +a lnEcl +b(EPRS). (4.10)

The b parameter takes into account the information provided by the energy deposit in the
preshower EPRS.

A cluster is considered as originating from a photon if it has a minimum value of χ2
2D larger

than 4, with respect to any extrapolated track.
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4.1.4 Making a photon from a cluster

The reconstructed photon candidates are made from the neutral clusters described in the
previous section. The energy and direction of the photons are obtained from the clusters
energies and positions, after applying dedicated corrections.

The photon energy is measured from the cluster energy Ecl with a correction taking into
account the leakage induced by the finite size of a 3×3 cluster. This correction is expressed as

Eγ =α
(
~rb|cluster,~rb|module

)
Ecl +β EPRS +δ, (4.11)

where the α and β parameters correct the energy leakage in the ECAL and PRS respectively,
and δ corresponds to a global offset. All these parameters depend on the ECAL region. And
α depends also on the photon barycentre position inside the cluster~rb|cluster, and inside the
module~rb|module (to take into account the dead material between the modules). The values
of these corrections have been determined from simulation. Moreover, the case of converted
photons – photons converting into an electron-positron pair before reaching the calorimeter –
is treated separately.

The photon momentum is deduced directly from its direction. The photon is first assumed to
come from the interaction point origin (some corrections are applied offline to take into account
the vertex position reconstruction). Therefore, as a first approximation, the photon direction
corresponds to the barycentre~rb = (xb, yb, zcl), where zcl is the cluster z-position defined in
Eq. (4.10). In this chapter, the lower case letters (x, y, z) correspond to position in the standard
LHCb frame, whereas capital letters (X ,Y , Z ) correspond to position inside a cell, with the origin
placed at the cell centre (Fig. 4.2).

As explained in Ref. [130], the energy barycentre is a biased estimator of the position. Because
of the non linearity of the transverse profile of the shower, the energy barycentre along the (X ,Y )
direction tends to be closer to the centre of the cell than the true photon impact. This bias is
highlighted in Sec. 4.2.2. The transverse profile of the shower can be assumed to approximately
follow a single exponential distribution E(X ) ∼ E0 e−|X−Xγ|/b (see Sec. 4.1.1), with Xγ the true

X

Y

x

y

z

Figure 4.2 – Coordinates convention used in this chapter. Capital letters refer to local positions relative to
the centre of a given cell. Lower case letters refer to absolute positions with the standard LHCb system.
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photon position and b the decay constant of the exponential profile. Under this assumption, the
relation between the barycentre position Xb and the true position can be expressed as [130]

Xγ = S(Xb,b) ≡ b asinh

(
Xb

∆
sinh

∆

b

)
, (4.12)

where ∆ is the cell half size. This non linear relation is a correction applied to the barycentre
in order to recover an unbiased position measurement. It is the so-called S-shape correction.
The larger the cell size compared to the Molière radius, the larger the correction. In LHCb, the
S-shape correction is slightly modified with [138]

S0(Xb,b) ≡ b asinh

(
Xb

∆
cosh

∆

b

)
. (4.13)

The parameter b is adjusted from simulation, and found to be around 14%, 17% and 18% of
the cell size in the outer, middle and inner region respectively. And since the transverse shower
profile is not perfectly described with a simple exponential, an additional correction is applied.
The residuals remaining after the S-shape correction are corrected with a 4th-order polynomial.

4.1.5 Photon identification

Two different estimators have been developed to check the compatibility between the recon-
structed electromagnetic cluster and the photon hypothesis. One is mainly built to separate
photons from electrons or charged hadrons. The other is made for distinguishing photons from
high ET merged π0 mesons. Indeed, energetic neutral pions decay into two photons that are
almost collinear in the laboratory frame and eventually produce a single cluster in the ECAL.

The first photon identification estimator treats separately the converted photons (with hits
in the matching SPD cluster) and the non-converted ones (without hits in the matching SPD
cluster). A photon hypothesis likelihood is based on three variables: the track matching χ2

2D,
the energy deposit in the preshower cluster facing the ECAL cluster and the ratio between the
energy of the seed and the total energy of the cluster. The dependence on the photon energy and
its location in the three ECAL regions are taken into account. The resulting estimator consists of
a delta-log likelihood between the photon and background hypothesis.

The estimator which aims to reject mis-identification of merged π0 with photons is based on
the difference in cluster shape expected. A Neural Network is trained to look for this difference.

4.2 Photon reconstruction with the upgraded LHCb detector

Starting from LHC Run III, the luminosity for LHCb operation will increase from 4×1032 cm−2 s−1

(end of Run I instantaneous luminosity) to 2×1033 cm−2 s−1. This will result in a large increase
in the particle multiplicity and the average number of interactions per bunch crossing will
be ν = 7.6. As for the number of visible interactions per bunch crossing, it will increase to
µvis = 5.2 (instead of 1.7 during 2012 operations). As explained in Sec. 3.3, no major upgrade
of the calorimeters is planned. The SPD and PRS will be removed, which will only simplify
the calibration, and the electronics will be changed to allow a 40MHz readout. As a result, the
ECAL modules will have no hardware upgrade to cope with a higher occupancy. Nevertheless,
the software may be optimised in order to avoid a degradation of the performances. The work
presented in the following sections has been made to adapt the photon reconstruction to the
upgrade luminosity conditions.
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Current Cluster New Clusters Studied

Figure 4.3 – Shapes of the three types of clusters considered: 3×3 (left), 2×2 (middle) and cross (right).

At higher luminosity, the showers produced in the ECAL will overlap more frequently. This
will lead to a degradation of the energy and position measurements for the calorimetric objects,
as other particles can contribute to the shower of the object to be measured. In the following, this
overlap effect is called “pile-up”. In order to reduce the resolution degradation due to the pile-up,
the size of the clusters used to reconstruct the neutral particles may be reduced with respect to
those formed at present. Two new shapes of smaller clusters have been studied, to investigate
whether they do mitigate the effects of pile-up without degrading the overall resolution. These
new shapes are 2×2 and cross clusters, illustrated in Fig. 4.3. For the 2×2 cluster, out of the nine
cells of the 3×3 cluster, only the 2×2 zone leading to the largest energy is retained. For the cross
cluster, out of the nine cells of the 3×3 cluster, the four corner cells are removed.

The study is based on three simulation samples of the decay B 0
s →φγ. This decay provides a

wide spectrum of photon energy. These samples correspond to three instantaneous luminosity
conditions, L = 1033, 2×1033 and 3×1033 cm−2 s−1 and therefore to three pile-up conditions
with ν = 3.8, ν = 7.6 and ν = 11.4, respectively. The intermediate sample corresponds to the
expected highest instantaneous luminosity for the upgrade period and the third sample provides
extreme conditions in order to investigate the limits of the reconstruction. Throughout all this
study the three simulated samples are merged to make one global B 0

s →φγ sample.

4.2.1 Energy measurement with alternative cluster shapes

Using a smaller cluster to measure the photon energy reduces automatically any inopportune
contribution of another particle inside the photon cluster. Intuitively, the pile-up effect should
be reduced by a factor 4/9 and 5/9 for the 2×2 and cross shapes respectively, with respect to the
standard 3×3. However with smaller clusters a larger fraction of the shower is not contained
anymore. If the leakage is too significant, the gain with the pile-up effect reduction can be
spoiled by a degradation of the overall energy resolution. That is why the energy resolution with
standard and alternative clusters is analysed.

The energy resolution is defined as (Etrue −Erec)/Etrue, where Etrue is the true photon energy,
and Erec is the reconstructed photon energy, for a given cluster. The resolution is computed for
each cluster shape and for several photon categories. The categories are related to the three
areas of the ECAL (inner, middle and outer zones) and the number of primary vertices (PV)
in the event. The photons which are studied come from B 0

s →φγ simulated samples, already
mentioned. Only photon candidates with transverse momentum pT > 250 MeV/c, originating
from the interaction region (∆r < 10 mm and ∆z < 150 mm) and successfully associated to a
true simulated photon are considered in this study. Only non-converted photons are analysed.

As can be seen in Fig. 4.4 the photon energy resolution distributions obtained do not have a
Gaussian shape. A tail is present on the left side of the distributions due to the reconstructed
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energy being larger than the true energy. This tail is a consequence of pile-up effects and is larger
for low energy photons, in the innermost region of the ECAL. The right part of the distribution
(reconstructed energy lower than the true photon energy according to the simulation) does
however possess a Gaussian profile.
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Figure 4.4 – Energy resolution in the ECAL inner (a), middle (b) and outer (c) regions, for events with 5
primary vertices, in two energy range [3,4]GeV (left) and ≥ 30GeV (right) and for the 3×3 (green), 2×2
(blue) and cross (red) clusters. The pile-up effect is clearly visible, especially in the inner area at low
energy.
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To quantify the pile-up effect the energy resolution distributions are fitted with a Crystal Ball
function [139],

f (x;α,n,µ,σ) ≡ N ·
e−

(x−µ)2

2σ2 for x−µ
σ >−α,

A
(
B − x−µ

σ

)−n
otherwise.

(4.14)

Out of the four parameters of this function, only α and n are related to the left tail and the
pile-up effect. The parameters σ and µ are related at first order to the resolution observed on the
right tail of the distribution and to the position of the maximum of the resolution distribution,
respectively. A positive µ indicates an average energy loss in the reconstruction. The parameter
α defines the start and the size of the tail: a smaller α is related to a larger tail. Hence, α is
strongly related to the observed pile-up and a reconstruction that maximizes α reduces the
pile-up. The parameter n tunes the amplitude of the tail but has less effect than α. Fig. 4.5
illustrates the Crystal Ball function tail behaviour for different values of α and n.

The energy resolution is measured for the three reconstructions and fitted using the model
described above. For all the regions of the detector, energy ranges and number of PVs, the
2×2 and cross shape clusters give larger α values than the 3×3 type. Even if sometimes the n
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Figure 4.5 – Crystal Ball distribution for µ= 0, σ= 0.07, and different values of α but same n (a), for same
α but different n (b) and different α and n (c). The α parameter tunes the start and the size of the tail and
n its amplitude. For different values of n, the tail size is mostly defined by α.
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Figure 4.6 – Fitted values of α (left) and n (right) Crystal Ball parameters describing the photon energy
resolution, as a function of the photon energy, for five primary vertices, in the ECAL inner (a), middle (b)
and outer (c) regions, and for the 3×3 (green), 2×2 (blue) and cross (red) clusters. The α parameter is
always significantly higher for reduced clusters than for 3×3 clusters, with n parameters not excessively
different, highlighting smaller pile-up tails for 2×2 and cross clusters.

parameter is larger for 3×3 clusters, for instance in the inner region, the tail due to the pile-up
effect is smaller with 2×2 and cross clusters. Indeed, the parameter α is always larger for the
reduced clusters and n has a limited influence on the tail (see Fig. 4.5c). Moreover, cross clusters
seem to give slightly better results than the 2×2 type. The results on α and n for five primary
vertices (the average value expected after the upgrade) are shown in Fig. 4.6. The fit results are
confirmed qualitatively by comparing the distributions of Fig. 4.4.

Therefore smaller clusters reduce the pile-up effect, but they potentially lead to a higher
energy leakage and may degrade the resolution, especially in the inner region whose cells are
approximately 4×4cm2 in size to be compared to the 3.5cm Molière radius. The average leakage
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can be estimated with the fitted µ parameter. The larger the energy leakage, the larger the µ
parameter as can be seen from the uncorrected results drawn in Fig. 4.7. The uncorrected results
correspond to the fit performed before the application of an energy leakage correction. Before
this correction, the µ values are positive and logically larger for the reduced clusters than for
the 3×3 clusters. Moreover the leakage is more important in the inner region than in the outer
one (see Fig. 4.7). This energy bias can be corrected. A simple correction factor β is evaluated in
order to recover the proper energy scale, such that

E corr
rec = (1+β)Erec (4.15)

and 〈
Etrue −E corr

rec

Etrue

〉
∼ 0. (4.16)

Therefore the correction factor
β= µ

1−µ (4.17)

is computed for each energy bin, in each ECAL region, but is averaged over the number of PVs.
As can be seen in the left-hand side of Fig. 4.7, the energy bias is essentially eliminated by this
correction. And after the correction, the tail parameters α and n are not changed. Therefore
the higher energy leakage in the reduced clusters does not impact the conclusions on the
performances with respect to the pile-up. The σ parameter fitted after the leakage correction
is similar for 2×2 and 3×3 clusters, whereas there is a slight degradation for the cross cluster
(right-hand side of Fig. 4.7). This can be easily understood: whenever a photon hits a seed cell
not close to its centre, a 2×2 cluster will contain a larger fraction of the energy than a cross
cluster.

In conclusion, energy reconstruction with 2×2 and cross clusters mitigates to a large degree
the effect of the pile-up with respect to the current reconstruction, without spoiling the energy
resolution (especially for the 2×2 type). This study shows that the photon energy measurement
after the upgrade will benefit from adopting a reduced size cluster reconstruction. The 2×2
method is chosen in order to maintain the performances in term of resolution. The effect on the
position reconstruction must also be analysed and is presented in the next section.
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Figure 4.7 – Fitted values of µ (left) and σ (right) Crystal Ball parameters describing the photon energy
resolution, as a function of the photon energy, for five primary vertices, in the ECAL inner (a), middle
(b) and outer (c) region, and for the 3×3 (green), 2×2 (blue) and cross (red) clusters. The µ parameter
is plotted before and after the energy leakage correction described in the text, whereas σ is shown only
after the correction. With the energy leakage corrected (µ ∼ 0), the σ parameter of the 3×3 and 2×2
clusters are similar, whereas it is slightly degraded for the cross type. The red curve on the σ plot is an
approximation of the calorimeter resolution, σ(E) = 10%p

E
⊕1.5%.
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4.2.2 Position measurement with alternative cluster shapes

As explained in Sec. 4.1.4, the photon position is reconstructed from the energy barycentre of
the cluster cells. The barycentre needs to be corrected because of the non linear transverse
profile of the showers. This section presents the work performed to determine whether position
reconstruction is possible with the 2×2 and cross clusters, and improves the performances
at high luminosity with respect to the standard 3× 3 clusterisation. First, a preliminary toy
study has been performed to determine if the S-shape correction is also adapted to the reduced
clusters. Then, using again the B 0

s →φγ simulated samples, position corrections are determined
and the resolutions obtained with the three cluster types are compared.

Toy simulation of the position reconstruction

In order to see the difference in the barycentre position reconstruction between the considered
cluster shapes, a simple toy simulation is performed. The electromagnetic shower is supposed
to follow a simple exponential distribution E(r ) = E0e−

r
b , with the transverse extension param-

eter b set to 10%, 13% and 15% to emulate the outer, middle and inner region, respectively.
Energy deposits are generated according to this distribution. In each cell the energy deposit is
reconstructed, and the barycentre position deduced. For the 3×3 (2×2) cluster the barycentre
is calculated with the 9 (4) cells. For the cross cluster the x (y) barycentre is made with the 3
horizontal (vertical) cells constituting the cross shape. Looking at the distributions of the true
position as a function of the energy barycentre, illustrated in the left-hand side of Fig. 4.8, the
expected S-shape is observed. With an exponential transverse profile, the barycentre is shifted
toward the cell centre compared to the true position, especially as the cell size increases. The
3×3 and cross S-shapes are identical (the curves are superimposed). However, the 2×2 S-shape
contains a discontinuity when the photon hits the centre of the cell (Xtrue = 0). Since with the
2×2 clusters the cells are not symmetrically located around the seed, the barycentre cannot be at
the seed centre. If the photon hits the seed centre and no energy is deposited in the three other
cells, the barycentre can point to the seed centre. However, as soon as there is some energy in
the three cells surrounding the seed, the barycentre is shifted away from the seed centre, towards
the other cells. This discontinuity is larger when the cell size is smaller. The S-shape correction
is determined for this toy simulation. The 3×3 and cross corrections correspond to the S-shape
expression S(Xb,b) given by Eq. (4.12). The correction parameter b is determined by a fit to
the S-shape. For the 2×2 cluster, in addition to S(Xb,b) two terms are added, one logarithmic
and one linear, to describe the discontinuity. The result of these corrections is illustrated in the
right-hand side of Fig. 4.8. A linear dependence between the reconstructed and the true photon
position is recovered. However, the correction for the 2×2 does not suppress completely the
discontinuity.
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Figure 4.8 – True position as a function of the barycentre (left) and corrected (right) x-position with 3×3
(green), 2×2 (blue) and cross (red) clusters, according to a toy simulation of the inner (a) and outer (b)
regions of the ECAL.
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Correction to the position measurement with the reduced cluster size

Similarly to the study made on the energy reconstruction, the B 0
s →φγ simulated samples are

used to determine the correction to be applied on the barycentre position for the alternative
cluster shapes. Here, only the photons coming from the B 0

s decay are taken into account.
First, the S-shape is determined for the three cluster types and the three calorimeter areas.

The non linear relation between the true position and the reconstructed one is clearly seen in
Fig. 4.9. As expected from the toy study, the S-shapes of the 3×3 and cross clusters are similar
and those of the 2×2 cluster show a discontinuity when the photon hit the cell close to its centre.
The S-shape corrected position for the 3×3 and cross clusters are expressed as

Xcor = b asinh

(
2Xb sinh

1

2b

)
, (4.18)

and for the 2×2 clusters as

Xcor = b asinh

(
2Xb sinh

1

2b

)
+ c ln Xb, (4.19)

with the positions in cell size unit. The classical S-shape S(Xb,b) term can be recognised. The
logarithmic term for the 2×2 cluster is used to try to correct the discontinuity at Xb ∼ 0. The
correction parameters b and c have to be determined. Thus, an optimisation is performed to
minimise the χ2 defined as

χ2
cor(~p) ≡ ∑

γ cand.

(
Xtrue −Xcor(~p)

)2 + (
Ytrue −Ycor(~p)

)2 , (4.20)

with ~p the correction parameters. The result of the minimisation are summarised in Table 4.1.
Notice that the uncertainty returned by the minimisation should be taken as a rough estimation,
since the χ2 is not properly normalised. The difference between the three calorimeter regions is
seen with an increasing value of the b parameter for a smaller cell size. For the 2×2 correction,
the minimisation is performed in two steps. First the b is evaluated with the logarithmic term
c fixed to zero. Then the c parameter is determined with b fixed to the value found at the first
step. This procedure is needed because the minimisation cannot converge properly with b and
c varying simultaneously.

The result of the S-shape correction for the cross and 2×2 clusters, in the inner region, is
illustrated in Fig. 4.10. The linear relation between the true photon position and the recon-
structed position is well recovered for the cross clusters. The result for the 3×3 shapes is similar.

Table 4.1 – Parameters of the S-shape correction determined for the 3×3, cross and 2×2 clusters.

3×3 cross 2×2

Inner b = 0.181±0.006 b = 0.149±0.004 b = 0.20±0.02

c = 0.009±0.002

Middle b = 0.159±0.005 b = 0.140±0.003 b = 0.16±0.02

c = 0.010±0.002

Outer b = 0.132±0.003 b = 0.111±0.002 b = 0.12±0.02

c = 0.010±0.001
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Figure 4.9 – True photon position as a function of the energy barycentre reconstructed with cross (left)
and 2×2 (right) clusters, in the inner (a), middle (b) and outer (c) regions of the ECAL.

However the correction for the 2×2 is not satisfactory. Even though the relation between true
and reconstructed position is more linear after the S-shape correction, the discontinuity around
the cell centre is still present. Hence, the 2×2 clusters cannot provide good performances on
the position reconstruction. They are not considered further in this study.

The S-shape correction is not perfect. As can be seen in Fig. 4.10a, there is some dispersion
around the (Xcor, Xtrue) diagonal. Therefore some additional corrections are needed to improve
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Figure 4.10 – True photon position as a function of the reconstructed position after the S-shape correction
with cross (a) and 2×2 (b) clusters, in the inner region of the ECAL.

the position resolution. A correction has to be made depending on the photon incidence angle
θx (θy ) on the x (y) direction. There is a linear dependence between the residuals remaining
after the S-shape correction Xcor − Xtrue (Ycor −Ytrue) and the incidence angle θx (θy ). This is
highlighted in the left-hand side of Fig. 4.11. For instance, at high positive θx , i.e. in the positive
x direction, the photon does not strike the calorimeter surface perpendicularly. It shifts the
reconstructed position at higher x, hence at lower X values (see Fig. 4.2). The residuals on Y
have a similar dependence on θy . It has been also checked that the residuals on X (Y ) do not
depend on the incidence angle in the other direction θy (θx ). The positions after the S-shape
correction (Xcor,Ycor) are therefore corrected with a simple linear relation

XTcor = Xcor −aTx θx ,

YTcor = Ycor −aTy θy ,
(4.21)

where aTx and aTy are correction parameters (the index ’T’ stands for ’theta’ correction). They
are determined with a similar minimisation procedure used for the S-shape correction, and are
based on the residuals shown in the left-hand side of Fig. 4.11 (after S-shape correction). The
X and Y are analysed separately. The fitted values are summarised in Table 4.2. The result of
this correction can be seen in the right-hand side of Fig. 4.11. The residuals XTcor −Xtrue are not
anymore dependent on the incidence angle.

After the incidence angle correction, applied to suppress a global calorimeter effect, some
non negligible local residuals remain (Fig. 4.12, left). An oscillation pattern can be recognised
that was already present in Fig. 4.11 (particularly visible in the outer region). These remaining
residuals are corrected with

XRcor = XTcor − Ax sin(2πXTcor) ,

YRcor = YTcor − Ay sin(2πYTcor) ,
(4.22)

where Ax and Ay are correction parameters which are fitted on the residuals distributions. The
values obtained by the minimisation are in Table 4.3. The result of this correction is illustrated
on the right-hand side of Fig. 4.12.
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Table 4.2 – Parameters of the photon incidence angle correction determined for the 3× 3 and cross
clusters.

3×3 cross

Inner aTx =−1.22±0.99 aTx =−1.50±0.99

aTy =−1.51±0.41 aTy =−1.50±0.41

Middle aTx =−0.83±0.45 aTx =−0.93±0.45

aTy =−0.80±0.21 aTy =−0.76±0.21

Outer aTx =−0.34±0.03 aTx =−0.35±0.03

aTy =−0.35±0.04 aTy =−0.37±0.04

Table 4.3 – Parameters of the residual correction determined for the 3×3 and cross clusters.

3×3 cross

Inner Ax =−0.046±0.010 Ax =−0.033±0.009

Ay =−0.050±0.010 Ay =−0.036±0.009

Middle Ax =−0.054±0.010 Ax =−0.053±0.009

Ay =−0.056±0.010 Ay =−0.052±0.009

Outer Ax =−0.073±0.008 Ax =−0.060±0.008

Ay =−0.069±0.008 Ay =−0.059±0.008
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Figure 4.11 – Residuals on the reconstructed photon position after the S-shape correction (left) and the
incidence angle correction (right) as a function of the photon incidence angle θx , with cross clusters, in
the inner (a), middle (b) and outer (c) regions of the ECAL. This also affects 3×3 clusters
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Figure 4.12 – Residuals on the reconstructed photon position after the incidence angle correction (left)
and the residual correction (right) as a function of the photon reconstructed position, with cross clusters,
in the inner (a), middle (b) and outer (c) regions of the ECAL.
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Figure 4.13 – Resolution on the reconstructed photon position after the three corrections described in the
text, for 3×3 (a) and cross (b) clusters in the outer ECAL region.

In summary, three corrections are made to the reconstructed position with the energy
barycentre: the S-shape correction, the incidence angle correction and the final residuals correc-
tion. The 2×2 clusters are problematic because of the discontinuity at X ∼ 0. The comparison
of the position resolution with 3×3 and cross clusters shows that the cross reconstruction is
more accurate. As illustrated in Fig. 4.13 for the outer region, the distributions of the residual
between the final measured position XRcor and the true position is narrower with cross clusters.
To quantify this improvement, the residuals are fitted with a double Gaussian distribution. From
this fit is deduced the effective resolution

σeff ≡
√

kσ2
1 + (1−k)σ2

2, (4.23)

where σ1 and σ2 are the widths of the two Gaussian distributions and k the proportion between
the core and the wider component. The effective resolutions are summarised in Table 4.4.
Depending on the ECAL region, the cross clusters show an improvement on the resolution
between 15 and 22% compared to the 3×3 clusters. The improvement is relatively lower in the
middle region since a lower pile-up effect is expected.

The effect of the position resolution on the B 0
s invariant mass reconstruction can be seen

on the simulated B 0
s → φγ candidates. The B 0

s mass distribution is made with the true four-

Table 4.4 – Effective resolution on the photon position obtained with the 3×3 and cross clusters.

ECAL region σeff Improvement

3×3 cross

inner 0.103 0.084 18%

middle 0.117 0.100 15%

outer 0.146 0.114 22%
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Figure 4.14 – Reconstructed invariant mass from the simulated decay B 0
s → φγ, taking the true four-

momentum of the φ and the true energy of the photon. The position is reconstructed either with 3×3
clusters (green) of cross clusters (red). Only photons from the outer region of the ECAL are considered.

momentum of the φ and the true energy of the photon. The photon position is reconstructed
either with the 3×3 or the cross clusters. Thus, only the effect of the position resolution appears
on the distributions. Fig. 4.14 shows the corresponding distribution for the outer region of the
calorimeter. The mass shape is slightly narrower with the cross clusters than the 3×3, in all the
three ECAL regions. This improvement in the mass resolution with cross clusters can roughly be
evaluated with the standard deviation of the histograms (rms). Table 4.5 compares the standard
deviation obtained with the two cluster types. The cross clusters improve the mass resolution of
7 to 12% with regards to 3×3 clusters, following the ECAL region. Again, the improvement is
relatively lower in the middle region since a lower pile-up effect is expected. Moreover the energy
of the photons in B 0

s →φγ decays is large, therefore the relative effect of pile-up is lower. The
improvement of the cross shape clustering varies oppositely to the photon energy with respect
to the standard reconstruction. As a consequence, the improvement on the mass resolution
observed on the B 0

s →φγ decay is expected to be larger for other decays involving photons with
a softer energy spectrum.

Table 4.5 – Standard deviation (rms) of the reconstructed mass of B 0
s →φγ candidates, taking the true

four-momentum of the φ and the true energy of the photon.

ECAL region Mass resolution (rms) Improvement

3×3 cross

inner 25.7MeV 23.3MeV 9%

middle 29.6MeV 27.6MeV 7%

outer 37.4MeV 33.0MeV 12%
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4.2.3 Conclusion and Prospects

In conclusion, adopting alternative cluster shapes from the standard 3× 3 improves the ro-
bustness of the photon measurement in high luminosity conditions such as after the LHCb
upgrade.

For the energy measurement, 2× 2 clusters reduce the pile-up effect while keeping the
resolution similar to the 3×3 clusters one. With the dedicated corrections, the cross clusters
show better performance than 3×3 clusters in term of position measurement.

To emphasise more the reduction of the pile-up effect, the same study can be performed
with decays producing photons at low energy, such as D∗0→ D0γ. Since the additional energy
due to pile-up does not drastically depend on the photon energy, the pile-up effect is relatively
more important for low energy photons. The two clusterisations (2×2 and cross-shape) have
been implemented in the reconstruction software of the LHCb calorimeter (Brunel) altogether
with their corrections. The Run II data will be already used to validate this new reconstruction in
realistic conditions.
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Chapter 5

Measurement of the CKM angle γwith a
Dalitz analysis of the B 0→ DK ∗0 decays
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This chapter reports the main work carried out during this thesis, which is the measurement
of the CKM angle γwith a Dalitz analysis of the B 0→ DK ∗0 decays (charge conjugation is implied
throughout this chapter, unless otherwise stated). The sample used in this analysis is the 3 fb−1

of proton-proton collision data provided by the LHC at a centre-of-mass energy of 7 and 8TeV,
and collected by the LHCb experiment during 2011 and 2012.

5.1 Analysis introduction

The CKM angle γ, defined as γ≡ arg
(
−Vud V ∗

ub
Vcd V ∗

cb

)
, is the least well known CKM parameter. The most

precise direct measurement to date comes from the LHCb collaboration, with a precision just
below 10◦ [10]. As explained in Chap. 2, this parameter can be measured without any significant
contribution of new physics and is therefore a benchmark for the standard model. A precise
measurement of this angle is crucial to check the consistency of the CKM model, and constraint
new physics scenarios. To measure it, a process involving interference between b→ u and b→ c
transitions is required, such as B 0→ DK ∗0 decays, where D stands either for a D0 or a D0 (the
corresponding diagrams are again illustrated in Fig. 5.1). The B 0→ DK ∗0 decays are particularly
interesting since they have a large interference magnitude rB 0 ∼ 0.3 (see Sec. 2.6). In the similar
B 0

s → DK ∗0 decays, the interference is suppressed by a factor λ2 (λ= sinθC ∼ 0.22 is the sine of
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Figure 5.1 – Feynman diagrams involved in the B 0→ DK ∗0 (a) and B 0→ DK ∗0 (b) decays. Transitions
proportional to |Vcb |2 are at the top and transitions proportional to |Vub |2 are at the bottom. All diagrams
are colour-suppressed.

the Cabbibo angle). Therefore, this channel is not used for measuring γ, but can be used as a
control mode.

The present analysis selects the D mesons decaying in the K 0
S π

+π− state, to perform an
amplitude analysis of the Dalitz plot, following the so-called GGSZ model dependent method
(see Sec. 2.3.1). The CP violation observables

z± = rB 0 e i (δB0±γ) (5.1)

are present in the expression of the Dalitz plot distributions

P− ∝|AD |2 +|z−|2
∣∣AD

∣∣2 +2κRe
[
z−A∗

D AD

]
, (5.2)

P+ ∝ ∣∣AD

∣∣2 +|z+|2 |AD |2 +2κRe
[

z+A∗
D

AD

]
, (5.3)

of the B 0→ DK ∗0 and B 0→ DK ∗0 candidates respectively (for a detailed description of these
PDF expressions, see Sec. 2.6.1). Thus, a fit of the Dalitz plot determines the cartesian parameters

x± ≡ Re(z±), (5.4)

y± ≡ I m(z±), (5.5)

then information on γ can be determined from (x±, y±) through a frequentist interpretation.

5.2 Candidates selection

5.2.1 Datasets and simulation

The analysis is based on the full Run 1 LHCb dataset, corresponding to 1 fb−1 of pp collisions atp
s = 7TeV (2011 data) and 2 fb−1 at

p
s = 8TeV (2012 data). It exploits the candidates preselected

by a dedicated stripping lines (see Sec. 3.2.7), whose cuts are summarised in Table 5.1. They
are based on momentum (p), transverse momentum (pT), quality of track reconstruction (track
χ2/ndf), impact parameter significance (χ2

IP), distance of closest approach (DOCA), quality of
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vertex reconstruction (χ2
vtx) and lifetime (τ) requirements. In addition there are also cuts on

the angle between the momentum of the reconstructed particle and the flight direction made
by the production and decay vertices (θdira). Finally, a BDT is also used in the stripping. This
BDT is trained to select B → Dh generic decays, using the pT of the B meson, its flight distance
significance and the good reconstruction quality of the B and D decay vertices.

The events are required to be triggered at the hardware trigger level L0 by the signal candi-
dates, on the hadronic line (hadron Trigger On Signal, L0HadronTOS, see Sec. 3.2.6) or by the
part of the event which is not associated to the signal, on any line (global Trigger Independent of
Signal, L0GlobalTIS, see Sec. 3.2.6). Hence, two categories of signal candidates can be made:
TOS and NotTOS.

• Candidates are TOS when at least one of the tracks of the signal B 0 meson fired the L0
trigger,

• candidates are NotTOS when no signal track fired the L0 trigger but at least one of the
tracks not associated to the signal fired the trigger (candidates are not L0HadronTOS but
are L0GlobalTIS).

This distinction is particularly relevant for the efficiency computation (see Sec. 5.3.1). At the first
level of the software trigger (HLT1) the signal candidates must pass a specific line relying on
track information, and at the second level (HLT2) they must pass the topological trigger lines for
b-hadron multi-body decays described in Sec. 3.2.6.

In order to estimate the efficiency and to describe the B invariant mass distribution, several
simulated samples were generated with the Gauss application [106]. These samples corre-
spond to B 0 → DK ∗0 signal, the B 0

s → DK ∗0 control channel and the specific backgrounds
B 0

s → D∗0(D0γ)K ∗0, B 0
s → D∗0(D0π0)K ∗0 and B 0→ Dρ0. The B 0→ DK ∗0 and B 0

s → DK ∗0 sam-
ples are generated with a phase-space model. This means that they are produced uniformly
across the D0 Dalitz plane (especially useful for efficiency computation, see Sec. 5.3). All the
samples were simulated with the 2012 data taking conditions and with loose generator level
cuts in order to avoid generating too many events that would have been later rejected by the
stripping selection. These cuts are listed in appendix A. It has been checked that this loose
selection introduce no acceptance biases on the D0 Dalitz plane (Fig. A.1).

5.2.2 K 0
S categories and masses used in the analysis

Before developing the selection, the K 0
S categories and the invariant mass variables used in the

analysis are presented.

K 0
S reconstruction categories

Two categories of K 0
S candidates exist, defined according to the reconstruction of their daughter

tracks (see Fig. 3.11 of Chap. 3). The K 0
S meson made from two Longstream tracks – made of hits

in the VELO and the trackers – are called Long-Long (LL). Those made from two Downstream
tracks – made with only hits in the trackers – are called Down-Down (DD). Compared to the
DD, the LL candidates are reconstructed with a better accuracy thanks to the VELO information.
They have better mass and flight distance resolutions. Fig. 5.3 shows this difference of mass
resolution between the LL and DD candidates. It can be also noticed that the background (data
sidebands) is more peaking for the DD candidates. Hence, it contains a higher proportion of
true K 0

S .
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Table 5.1 – Stripping selection for B 0→ DK ∗0 candidates

Particle Variable Cut value

Charged particles p > 1GeV

pT > 100MeV

Track χ2/ndf < 3

Min χ2
IP > 4

K 0
S pT > 250MeV

m(π+π−) ∈ [467;527]MeV

p(π±) > 2GeV

Min χ2
IP > 9(LL) or > 4(DD)

Max DOCAχ2(π±,π∓) < 25

χ2
vtx < 25

D0 |m(K 0
S π

+π−)−mPDG (D0)| < 100MeV∑
d aug hter s pT > 1.8GeV

Max DOCA(K 0
S ,π+,π−) < 0.5mm

χ2
vtx/ndf < 10

Distance to PV significance > 36

cosθdira > 0

At least one daughter (K 0
S or π±) p > 5GeV

pT > 500MeV

Track χ2/ndf < 2.5 (if π±)

Distance to PV significance > 1000 (if K 0
S )

K∗0 p(K±,π∓) > 2GeV

pT(K±)+pT(π∓) > 1GeV

m(K±π∓) < 5.2GeV

Max DOCA(K±,π∓) < 0.5mm

χ2
vtx/ndf < 16

Distance to PV significance > 16

cosθdira > 0

B0 m(DK∗0) ∈ [4.45;6]GeV

pT(D0)+pT(K∗0) > 5GeV

χ2
vtx/ndf < 10

τB 0 > 0.2ps

Min χ2
IP < 25

cosθdira > 0.999

Stripping BDT output > 0.05

At least two daughters p > 5GeV

pT > 500MeV

Track χ2/ndf < 2.5 (if K± or π±)

Distance to PV significance > 1000 (if K 0
S )

One track p > 10GeV

pT > 1.7GeV

Track χ2/ndf < 2.5

Min χ2
IP > 16

Min IP > 0.1mm

Global event cut Nlong tracks < 250
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Masses of B 0, D0 and K 0
S with constraints

The DecayTreeFitter package [140] enables the whole B 0→ DK ∗0 decay chain to be refitted
with some constraints on the intermediate resonance masses and the B 0 meson flight direction.
Three kinds of refit are performed:

KsFit is the refit constraining the K 0
S mass, and requiring the B 0 to point to the primary vertex.

DFit is the refit constraining the D0 mass, and requiring the B 0 to point to the primary vertex.

PVFit is the refit constraining the K 0
S and D0 masses, and requiring the B 0 to point to the

primary vertex.

The K 0
S constraint improves significantly the D0 mass resolution, and removes any difference

between the LL and DD candidates. Fig. 5.2 compares the mass distribution obtained with
and without constraint on the K 0

S mass and the B 0 flight direction. It can be noticed that these
constraints do not modify the background distributions and do not produce a peak. The data
sidebands distributions are unchanged once the constraints are applied.

The D0 mass constraint does not improve significantly the K 0
S mass resolution on the signal,

however it smears significantly the background distribution, especially for the DD candidates
(see Fig. 5.3). Without a D0 mass constraint, the K 0

S mass for the background is peaking. There-
fore the background is composed of real K 0

S . With a D0 mass constraint, the K 0
S mass for the

background peaks much less. If the D0 mass is required, the K 0
S daughters momentum are

modified by the refit such that it do not make a K 0
S mass anymore (whereas it should since they

are real K 0
S ). Therefore this D0 mass constraint makes the K 0

S mass window efficient in selecting
K 0

S mesons coming from a D→ K 0
S π

+π− decay.
Because of the broad natural width of the K ∗0, its mass resolution is unchanged if the mass

constraints on the K 0
S and D0, and the PV constraint are applied. Therefore, in all the analysis

the K ∗0 mass is taken without any constraint.
In summary, if not explicitly stated otherwise, the mass variables used in the analysis are the

following:

B 0 mass: mass with the K 0
S and D0 masses and the PV constraints,

D0 mass: mass with the K 0
S mass and PV constraints,

K ∗0 mass: mass without constraint,

K 0
S mass: mass with the D0 mass and PV constraints,

Dalitz coordinates: squared masses with the K 0
S and D0 masses and the PV constraints (except

for m2(Kπ) = m2
K ∗0 , used to described the B 0 Dalitz plot, where no constraint is applied).

The D0 mass constraint especially improves the resolution on the Dalitz coordinates and
ensure that the reconstructed events are inside the kinematically allowed region.
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Figure 5.2 – D0 invariant mass distributions without constraint on LL (a) and DD (b) candidates, and
constraining the K 0

S mass and the B 0 flight direction of LL (c) and DD (d) candidates. The blue distribu-
tions correspond to the MC B 0→ DK ∗0 truth matched signal (i.e. candidates with correct true ID and
correct daughters and mother), the red distributions to the signal failing the truth-matching, the orange
distributions to the mB 0 < 5.2GeV data sideband and the (dark) green distributions to the mB 0 > 5.8GeV
(> 5.5GeV) data sideband.
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Figure 5.3 – K 0
S invariant mass distributions without constraint on LL (a) and DD (b) candidates, and

constraining the D0 mass and the B 0 flight direction of LL (c) and DD (d) candidates. The blue distri-
butions correspond to the MC B 0→ DK ∗0 truth matched signal(i.e. candidates with correct true ID and
correct daughters and mother), the red distributions to the signal failing the truth-matching, the orange
distributions to the mB 0 < 5.2GeV data sideband and the (dark) green distributions to the mB 0 > 5.8GeV
(> 5.5GeV) data sideband.
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5.2.3 BDT selection

In order to efficiently remove the combinatorial background a Boosted Decision Trees (BDT) is
trained [141, 142]. A BDT is based on two concepts: Decision Tree and Boosting.

A Decision Tree is an algorithm which classifies events in two categories, signal and back-
ground. It uses a set of discriminating variables to apply a sequence of binary splits. One
split corresponds to a simple cut on one variable and produces two branches. The cut value
is optimised with a separation criteria such as the Gini index p(1−p), where p ≡ S/(S +B) is
the purity with S and B the numbers of signal and background events in the new branches,
respectively. The splitting sequence is repeated with other variables until a maximal number of
branches is reached or until the final branches, called leaves, contain pure signal event or pure
background event samples. The sample of signal and background events used to determined
this classification is called the training sample.

A Decision Tree has a simple structure and is trained quite quickly. However it suffers from
the statistical fluctuations present in the training sample. A splitting can be chosen because
of a peculiar fluctuation, and will not be adapted to another sample which does not have this
fluctuation. In such case, the Decision Tree will not show optimal selection performances.
The Boosting procedure overcomes this limitation and significantly enhances the selection
performance compared to a unique Decision Tree. Boosting consists in training sequentially a
Decision Tree with a reweighted version of the initial training data. Each reweighted data version
gives one Decision Tree (typically, a BDT contains between few hundreds to one thousand trees).
The reweighting is made such that the events which are misclassified (e.g. landing on a signal
leaf whereas it is a background event) have a weight increased, or boosted. Thus, a tree at a
given iteration will have a training more focused on the misclassified events. The final output
decision of the BDT F (~x;~p) is the weighted majority vote among all the N trees,

F (~x;~p) =
N∑

i=0
βi T (~x;~ai ), ~p = (

(β0,~a0), ..., (βN ,~aN )
)

, (5.6)

where~x is the set of discriminating variables, βi are the boosting weights, ~ai are the parameters
defining each trees and T (~x,~ai ) the tree decision (+1 for an event classified as signal, −1 for one
classified as background). The Boosting determines the optimal parameters ~p by minimising the
loss function L(F, y) between the model response F (~x;~p) and the true value y . In this analysis,
the BDT uses the Gradient Boost algorithm, implemented in the TMVA package [143]. It uses a
binomial log-likelihood loss function

L(F, y) = ln
(
1+e−2F y )

. (5.7)

Particular care must be taken during the BDT training to avoid its overtraining. A classifier is
overtrained when its decision is well adapted to the training dataset and less for an independent
dataset. This means that the classifier has “learnt” too much from the training sample. For
a BDT it can happen when the number of trees or their depth are too large. In this case the
performance of the BDT is high on the training sample, but poorer on another sample. That is
why the performance of a BDT must be evaluated on a testing sample after the training.

Preselection for the BDT training

In the present analysis, a loose preselection is applied on the training sample. This preselection,
detailed in table 5.2, removes the most obvious background candidates and focuses the BDT
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Table 5.2 – Preselection applied for the BDT training (PRESEL_BDT).

Particle Variable Cut value

K∗0 DLLKπ (K+) > 3

DLLKπ (π−) < 3

|m(K+π−)−mPDG (K∗0)| < 100MeV

D0 |m(K 0
S π

+π−)−mPDG (D0)| with PV and K 0
S mass constraint < 51MeV (5σ)

K 0
S |m(π+π−)−mPDG (K 0

S )| with PV and D0 mass constraint 2 < 24.1MeV (LL) (5σ)

< 33.2MeV (DD) (5σ)

on events more difficult to reject. It consists of a particle identification 1 (PID) selection on the
K ∗0 daughters, to remove double candidates (inherent of the PID swap between the two K ∗0

daughters), and wide mass windows on the K ∗0, D0 and K 0
S .

Crossed BDT motivation

The BDT is trained on two reference samples for the signal and the background. The signal
training sample is the truth matched B 0 → DK ∗0 simulated sample, after the preselection
described above. The candidates are also truth matched, which means that only candidates with
correct true ID and correct filiation in the decay tree are retained. The signal sample is composed
of 17787 LL candidates and 55992 DD candidates. The background training sample is the data
in the B 0 mass upper sideband (from 2011 and 2012 data), also preselected by the selection
described above. To have an efficient BDT selection it is important to have high statistics training
samples, with properties as close as possible to the signal and the background that we want
to disentangle. That is why an upper sideband above 5.5GeV is chosen as the background
training sample. This sideband is made of 10828 LL candidates and 7599 DD candidates. If the
sideband above 5.8GeV would have been chosen instead, only 3741 LL and 2448 DD candidates
would have been available. Moreover the 5.5GeV upper sideband has not the only advantage to
have three times the statistics of the 5.8GeV upper sideband. It includes also a kinematic and
topological region closer to the signal one (see appendix B). Despite these two advantages of the
5.5GeV sideband, a small bias could be introduced in the B 0 mass fit developed further. The fit
range is [4.9;5.8]GeV in order to constrain well the combinatorial background (described by an
exponential). Hence there is an overlap between the BDT training range and the fitting range.
Some events are used both to train the selection and to estimate the signal and background
yields. To get rid of any potential bias a crossed BDT method is developed. This method has been
already used in LHCb, for instance in the B 0

(s)→ K 0
S hh′ analysis [144] or in the B 0→ K ∗0µ+µ−

selection [84] (even in a more complex way with a 10-folding). The principle is to split randomly
the data in half (by throwing a uniform random number). It makes two samples called A and B.
Two independent BDTs, BDTA and BDTB, are trained on the upper sideband of samples A and B.

1The particle identification algorithm used in LHCb is presented in Sec. 3.2.5 of Chap. 3
2It should be noticed that because of a bug in the code, the preselection cut on the K 0

S mass for the DD events has
not the PV and D0 mass constraint. This bug has a negligible effect since this cut is loose (the stripping cuts on the
K 0

S mass is at 30MeV, without any constraint). On the 7599 candidates in the mB 0 > 5.5GeV sidebands, 187 should
have been removed from the training. That is why it has been decided to not retrain the BDT after bug correction
(but it has been corrected each time the full selection is applied).
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Figure 5.4 – Crossed BDT principle: data splitting and BDT selection application.

Then for the selection, BDTA is applied to sample B and BDTB is applied to sample A (hence the
name crossed BDT). Thus the candidates are selected in a fully unbiased way.

To take advantage of their different topology, the LL and DD candidates are separately
selected with independent crossed BDTs. Since LL K 0

S have hits in the VELO, their tracks are
much better measured than the DD K 0

S . For instance the impact parameter and the flight
distance of a LL K 0

S are more accurate. A comparison between LL and DD distributions can be
found in appendix C.

Eventually four independent BDTs are trained: BDTA_LL, BDTB_LL, BDTA_DD and
BDTB_DD. In the following they will all be gathered under the general denomination (crossed)
BDT. A summary of the multivariate selection process is illustrated in Fig. 5.4.

Training

After several tests on different training tuning, the version of the BDT with the best performance
(good ROC curve and no sign of overtraining) turns out to use a Gradient Boosting algorithm
with the following parameters:

• number of trees: 200

• shrinkage: 0.1

• bagging fraction: 0.6

• separation type: Gini index

• number of cuts: 20

• maximal depth of the trees: 5

The shrinkage parameter reduces the learning rate during the training, by controlling the
weight of the individual trees. Small shrinkage value of 0.1 enhance the robustness of the
BDT. The bagging fraction sets the fraction of the sample used in each iteration of the training
procedure. This bagging, which consists in using random subsamples of the training sample,
also enables the BDT answer to stabilise.

The signal and background training samples have the following size:

• Signal:

– LL: 17787

– DD: 55992

• Background:

– LL: A 5281 / B 5547

– DD: A 3866 / B 3733
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Table 5.3 – Discriminating variables used by the BDT. The symbol † denotes a variable with different
distributions for LL and DD candidates.

Variable name Description

log(B0_IPCHI2_OWNPV) B 0 χ2
IP w.r.t PV

log(Sum2_IPS)† Sum of χ2
IP w.r.t PV over K 0

S daughters

log(Sum4_IPS) Sum of χ2
IP w.r.t PV over all final

particles, except K 0
S daughters

log(B0_ENDVERTEX_CHI2_NDOF) B 0 χ2
vtx/ndf

log(D0_ENDVERTEX_CHI2_NDOF) D0 χ2
vtx/ndf

log(Ks_FDCHI2_OWNPV)† K 0
S flight distance signif. w.r.t PV

log(D0_FDCHI2_OWNPV) D0 flight distance signif. w.r.t PV

log(B0_FDCHI2_OWNPV) B 0 flight distance signif. w.r.t PV

Ks_DKs_FDSig† K 0
S flight distance signif. w.r.t the D0

D0_BD_FDSig D0 flight distance signif. w.r.t the B 0

log(D0_PT)† D0 pT

log(Kst_PT)† K ∗0 pT

log(B0_PT) B 0 pT

log(acos(B0_DIRA_OWNPV)) B 0 pointing angle

Kst_BKstarK_DecayAngle cosine of the K ∗0 helicity angle (cosθ∗)

log(B0_PVFit_chi2/B0_PVFit_nDOF) DecayTreeFitter vertex refit χ2/ndf

To maximise the selection performances the full statistics is used to train the BDT. This
choice does not prevent from having an independent sample for the testing (explained in the
following). The variables used to discriminate the signal and the background are summarised in
Table 5.3. Their distributions and their ranking can be found in appendix C. The K 0

S daughters
impact parameters are added separately from the four other final particles to take into account
the K 0

S LL/DD specificity. All variables are symmetric with regards to the D0 direct daughters
pions to avoid any bias on the Dalitz plane. All positive variables are put under natural logarithm
transformation. This reduces the spread in the distributions. The inclusion of the cosine of
the K ∗0 helicity angle (cosθ∗) in the BDT does not affect the γ extraction, as explained in
sections 5.4.5. The K 0

S and D0 flight distance significances compared respectively to the D0 and
the B 0 are defined as:

Ks_DKs_FDSig ≡
zK 0

S
− zD0√

σ2
zK 0

S

+σ2
zD0

, (5.8)

D0_BD_FDSig ≡ zD0 − zB 0√
σ2

zD0 +σ2
zB0

. (5.9)

They are particularly useful to select real D0 (K 0
S ) mesons, well separated from their B 0 (D0)

mother. Even though the BDT was trained with the data upper sideband as a background sample,
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Figure 5.5 – BDT output distribution of training (histograms with markers) and test (filled histograms)
samples, for BDTA_LL (a), BDTB_LL (b), BDTA_DD (c) and BDTB_DD (d) (vertical log-scale).

therefore trained against combinatorial-like events, it will significantly reject charmless and
B 0→ D(ππππ)K ∗0 backgrounds thanks to the presence of these two variables. Events with D0

and K 0
S vertices that are significantly detached from the B 0 and D0 vertices respectively will be

favoured by the BDT.
To check with the BDT output that there is no overtraining, we require signal and background

samples that are independent of those used during the training process. Hence, the B 0
s → DK ∗0

MC sample is used as a signal test sample. For the background test sample, the sideband
orthogonal to the one used during the training is taken. That means that for a BDTA, trained on
sideband A, the background test sample is the sideband B (and vice-versa). Fig. 5.5 superimposes
the distribution of the BDT output for the training and testing samples relative to the four
BDTs. All distributions are in good agreement between the training and the testing samples.
Therefore there is no evidence of overtraining and the performance of the BDT is considered
to be optimal. Moreover the BDT output value is not correlated to the B 0 mass. Fig. 5.6 shows
the reconstructed B 0 mass on “wrong sign” candidates as a function of the BDTA output value,
and no correlation appears. Wrong sign candidates are non physical candidates of the sort
D0→ K 0

S π
±π± reconstructed in the data.
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Figure 5.6 – B 0 mass reconstructed with wrong sign candidates as a function of the BDTA output value.

Signal significance and purity estimation

The signal (S) and signal plus background (S+B) yields are estimated to determine the signal
sensitivity in the data with this crossed BDT. To estimate S, a rudimentary fit is performed on
the full data set after a tight preselection (detailed in Table 5.4) and afterwards a cut is applied
on the BDT output. The fit model is composed of a simple gaussian with fixed mean and
width for the B 0

s peak, and an exponential to describe the combinatorial background. Only the
range [4800;4950]∪ [5331;5800]MeV is taken into account to be sensitive only to the B 0

s → DK ∗0

decay and the combinatorial background. Examples of this fit can be seen at Fig. 5.10. This
fit determines the B 0

s yield. The B 0 signal yield S is deduced with a scale factor k, accounting
for the relative differences for B 0 and B 0

s mesons in the branching ratios, the lifetimes and the
hadronisation ( fs/ fd ):

k ≡ NB 0

NB 0
s

= fd

fs
· B(B 0→ D0K ∗)

B(B 0
s → D0K ∗)

·
τB 0

s

τB 0
= 0.35±0.12. (5.10)

Note that the B (B 0
s → D0K ∗) value used here [145] is not the latest one. With the updated

value [20] the scale factor is equal to k = 0.47±0.11 (and is the value to be compared with the
ouput of the final mass fit in Sec.5.5). The S+B estimation is simply obtained by counting the
numbers of candidates falling in a ±3σ (σ= 13MeV) window around the B 0 mass. With these
values three figures of merit (f.o.m.) are computed:

• the significance S/
p

S +B ,

• the purity S/(S +B),

• the product of the significance and the purity S2/(S +B)
3
2 (called hybrid f.o.m.).

The evolution of the signal significance with an increasing BDT cut is summarised in Fig. 5.7.
The similar figures for the purity and the hybrid f.o.m. can be found in Fig. 5.8 and Fig. 5.9
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Table 5.4 – Tight preselection applied for signal and background estimation

Particle Variable Cut value

K∗0 DLLKπ (K+) > 3

DLLKπ (π−) < 3

η(K+) < 5

η(π−) < 5

|m(K+π−)−mPDG (K∗0)| < 50MeV

D0 |m(K 0
S π

+π−)−mPDG (D0)| with PV and K 0
S mass constraint < 30MeV (3σ)

K 0
S |m(π+π−)−mPDG (K 0

S )| with PV and D0 mass constraint < 14.4MeV (LL) (3σ)

< 19.9MeV (DD) (3σ)

B±→ DK± veto |m(D0K±)−mPDG (B±)| > 50MeV

respectively. These figures each comprise four plots organised as follows: the left and right
columns correspond to the application of different BDT to the same data sample A and B
respectively. The top and bottom rows correspond to the application of BDT A and B respectively.
Two important features can be observed:

1. On the same data sample (plots in the same column) BDTA and BDTB have the same
significance. The evolution of the significance vs. the BDT cut value applied is identical.
With two different BDTs applied on a same sample an identical response is observed.
Therefore the crossed BDT is not overtrained. This endorses the conclusion drawn in
section 5.2.3.

2. With the same BDT (plots in the same row) applied on the different samples different
shapes are observed (especially for the low statistics LL category). However the shapes
are fully statistically compatible. For instance if we focus on the worst case of BDTA_LL
(dashed line in the top row plots) with a cut at 0.7, we measure for sample A

S = 21±3 S +B = 48±7 S/
p

S +B = 3.0±0.4 S/(S +B) = 0.44±0.06 S2/(S +B)
3
2 = 1.3±0.3,

and for sample B:

S = 14±3 S +B = 50±7 S/
p

S +B = 2.0±0.4 S/(S +B) = 0.28±0.05 S2/(S +B)
3
2 = 0.6±0.2.

Hence the statistical fluctuations between samples A and B induce different f.o.m. shapes
for a same BDT. But the discrepancy is not significant. Fig. 5.10 shows the fit result with
no BDT cut, and with a BDT cut at 0.7, with the same BDTA_LL on samples A and B. The
difference in S and B is already visible before cutting on the BDT.

To conclude, BDTA and BDTB are not overtrained and perform alike on the same data sample.
Given that a Dalitz plot analysis is not directly sensitive to the signal significance, but more to
the background contamination, a preliminary working point at 0.7 was chosen for all the four
BDTs. It appeared as a good compromise between a good signal significance and a good purity.
Ultimately the selection working point is fixed at 0.75 with the sensitivity study on the cartesian
parameters based on pseudo experiments (see Sec. ??).
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Figure 5.7 – Estimation of the signal significance for several BDT cut values, with BDTA (top plots) and
BDTB (bottom plots), data sample A (left column) and data sample B (right column). DD candidates
are in solid lines, whereas LL candidates are in dashed lines. The straight black lines represents the
significance obtained with a rectangular cuts selection developed at the early stage of the analysis.
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Figure 5.8 – Estimation of the signal purity for several BDT cut values, with BDTA (top plots) and BDTB
(bottom plots), data sample A (left column) and data sample B (right column). DD candidates are in solid
lines, whereas LL candidates are in dashed lines. The straight black lines represents the purity obtained
with a rectangular cuts selection developed at the early stage of the analysis.
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Figure 5.9 – Estimation of the hybrid f.o.m. for several BDT cut values, with BDTA (top plots) and BDTB
(bottom plots), data sample A (left column) and data sample B (right column). DD candidates are in
solid lines, whereas LL candidates are in dashed lines. The straight black lines represents the hybrid fom
obtained with a rectangular cuts selection developed at the early stage of the analysis.
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Figure 5.10 – B 0
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Summary of the selection

The full selection consists of:

• the stripping and trigger requirements defined in Sec. 5.2.1,

• the tight preselection detailed on Table 5.4,

• an extra PID cut on the K + daughter of the K ∗0 to remove more B 0→ Dρ0 background:
DLLKπ(K ±) > 5 (see Sec. 5.5.6 for the cut value justification),

• a BDT cut at 0.75 (determined by the sensitivity study explained in Sec. 5.7.4),

• a cut on the cosine of the K ∗(892)0 helicity angle |cosθ∗| > 0.4.

Even if the K ∗0 helicity angle is one of the BDT discriminating variables, the extra cut at 0.4 is
applied to improve the purity by rejecting specifically the partially reconstructed background
B 0

(s) → D∗0K ∗0 in helicity states 001 and 100 (see Sec.5.5.2). This is because the 001 and 100

helicity components have a θ∗ angular distribution proportional to sin2θ∗, whereas the signal
follows a cos2θ∗ distribution. On top of all the other cuts, the extra cosθ∗ cut has a signal effi-
ciency of 93% for a background efficiency on B 0

(s)→ D∗0K ∗0 001 and 100 of 45%. It is particularly
interesting to remove these helicity contributions since they are those which leak the most under
the signal peak (see Sec.5.5.2). Furthermore, the BDT is trained on the upper B 0 mass sideband,
which has a flat distribution with respect to cosθ∗. Therefore it cannot efficiently remove this
specific background.

5.2.4 Study of the charmless background

To ensure that after the BDT selection there is no contamination from charmless background,
that do no have D meson in the final state, the D0 mass sidebands (Fig. 5.11a) are checked.
Such background does not peak in the D0 mass distribution, but does peak in the B 0 mass
distribution. Even if the BDT contains a cut on the χ2/ndf of the decay chain refit with a D0

mass constraint, it is safe to look at the D0 sidebands after a BDT cut. As shown later in Sec. 5.5.7,
dedicated to the combinatorial D0 background study, the D0 mass distribution of wrong sign
D0 candidates (D0→ K 0

S π
±π±) is flat even if a BDT cut is applied (Fig. 5.50).

The full selection described in Sec. 5.2.3 is applied, except the D0 mass window. Fig. 5.11
represents the B 0 invariant mass of these D0 sidebands candidates, after this selection and
with or without an additional cuts on the D0 flight distance significance (defined by Eq. (5.9)).
Although the D0 sidebands statistics is low, no peaking structure can be observed in the B 0 and
B 0

s mass region, even without a cut on the D0 flight distance. Moreover with a looser BDT cut
(at 0.4) no peak appears neither. Hence it can be safely deduced that after the BDT cut, any
charmless background contribution is negligible.

Another a posteriori crosscheck confirms this statement with the sWeighted distribution of
the D flight distance significance (Fig. 5.85), made for the Data/MC comparison in Sec. 5.8.3.
No peak appears at low D flight distance significance in the data, compared to the distribution
expected from simulation.

5.2.5 Study of the D0→ππππ background

Another possible background source which has been observed in the B±→ DK ± analysis is the
D0→ππππ decay. It can only occur for the LL candidates, where two pions can fake a K 0

S . This
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Figure 5.11 – (a) D0 invariant mass distribution on data after full selection (except for the D0 mass
window). The red lines represent the cuts applied to obtain the D0 mass sidebands. (b) B 0 invariant mass
in data D0 sidebands, after full selection except the D0 mass window, with an additional cut on the D0

flight distance significance (c), and with a looser BDT cut at 0.4 (d). The red (blue) lines delimit the B 0

(B 0
s ) regions.

background peaks in both D0 and B 0 mass distributions. Here the variable which can suppress
this background is the K 0

S flight distance, defined in Eq. (5.8), which is included in the BDT.
To ensure that this contribution is negligible the K 0

S sidebands are studied for LL candidates
(Fig. 5.12a). The full selection is applied, except for the K 0

S mass window. Fig. 5.12 represents the
B 0 mass distributions for candidates lying in the K 0

S sidebands, after the full selection, with an
additional cut on the K 0

S flight distance significance and with a very looser BDT cut. After the
full selection, the K 0

S sidebands contain few events. If a cut on the flight distance significance of
the K 0

S is applied in addition, there is not a strong depletion. Hence, this does not suggest there
is a contamination from D0→ππππ events. Moreover, if the BDT cut is set to a very loose value
compared to the nominal selection (0 instead of 0.75), no significant peak appears in the B 0 or
B 0

s region. A systematic effect is estimated when an additional cut is applied on the K 0
S flight

distance significance of LL candidates (see Sec. 5.8.1).
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5.3 Efficiency across the D0 Dalitz plane

A key point of the analysis is the knowledge the selection efficiency across the Dalitz plane. A
variation of the efficiency across the Dalitz plane artificially distorts the distribution. Hence it
can produce a bias on the CP violation parameters determination. That is why the description
of the efficiency must be taken into account in the Dalitz fit. This description can be obtained
through two methods.

It can be fitted directly on data, taking the B 0
s → DK ∗0 decay as a control sample. The

drawbacks of this method are the limited statistics available (around 200 B 0
s → DK ∗0 events)

and the assumption of no CP violation in this control channel. An alternative control sample
could be the B±→ Dπ± decay, analogue of the B 0

s → DK ∗0 decay for the B±→ DK ± transition.
In this case the statistics available would be much larger. However, the relation between the
B±→ Dπ± and the B 0→ DK ∗0 efficiencies is not direct and needs some input from simulation.

The description of the efficiency can be also obtained directly from B 0→ DK ∗0 simulated
data. In this case, particular attention must be paid to the data/MC agreement. The efficiency
can be expressed as

εT T (m2
−,m2

+) = εacc εgen ε
T T
rec ε

T T
strip ε

T T
sel ε

T T
trig ε

T T
PID, (5.11)

where εacc is the detector geometrical acceptance, εgen the generator level cuts efficiency (see
Appendix A), εrec the reconstruction efficiency, εstrip the stripping efficiency, εsel the offline
selection efficiency (excluding the PID selection and the trigger requirements), εtrig the trigger
efficiency (after the offline selection) and εPID the efficiency of the PID selection (on top of all
the other selection criteria). It should be noticed that the reconstruction splits the candidates in
two non overlapping categories, depending on the Track Type (TT) of the reconstructed K 0

S (LL
or DD). That is why LL and DD efficiencies are computed separately, especially as the offline
selection is different for the two categories.

This section presents the efficiency of the selection obtained with the MC-based method.
The B 0

s → DK ∗0 MC sample is particularly useful since it has high statistics (one million events
after stripping), whereas the B 0→ DK ∗0 sample was not generated with a stripping filtering 3.
This means that the statistics available after selection with the B 0

s → DK ∗0 sample is more than
twice the B 0→ DK ∗0 sample one. It has also been checked that the efficiency profile obtained
with the B 0→ DK ∗0 sample is in good agreement with the profile obtained with the B 0

s → DK ∗0

sample.
The events were generated with a phase-space (PHSP) model. Therefore the Dalitz plot of

the selected candidates gives directly the relative efficiency variation across the Dalitz plane
(we do not care about the absolute efficiency value). The PID and trigger selections are not well
reproduced in the simulation. That is why the Dalitz plot after full selection except any PID
cuts and trigger requirements is made. To include the effect of the PID and trigger selection
some data-driven correction weights are applied (see Sec. 5.3.1 and Sec. 5.3.2). The Dalitz plot
of LL and DD candidates passing the stripping (Fig. 5.13) illustrates the effect of the geometrical
acceptance, the reconstruction and the stripping. This effect is sizeable and is the main source
of distortion as it will be seen later. Throughout the study presented in this section the simulated
candidates are truth matched.

3A simulated sample can be stripping filtered. In this case only the generated events passing the stripping selection
are stored. It enables to produce samples with a large statistics, without taking an unreasonable disk space.
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Figure 5.13 – Dalitz plot and its projections of simulated B 0
s → DK ∗0 candidates after stripping selection.

The generation model is phase space and LL and DD categories are merged.

5.3.1 Trigger weights

As shown in [146, 147], the simulation does not reproduce well the L0 trigger efficiency. That
is why a reweighting is applied on the B 0

s → DK ∗0 candidates in simulation passing the full
selection without any PID and trigger requirement. This reweighting is deduced from look-up
tables which give for several bins of transverse energy the probability that an individual track (a
kaon or a pion in the present case) can be L0HadronTOS 4. These efficiencies are obtained from
well identified pions and kaons, daughters of D0 mesons, coming themselves from D∗+ decays.
From this invidual track weights, an event weight is computed assuming no correlation between
the tracks. Then the L0 correction weights for the Dalitz plot are obtained by averaging the event
weights in each Dalitz plot bin.

As explained in Sec. 5.2.1 two categories of events must be distinguished: TOS and NotTOS.
The L0 look-up tables give directly the TOS efficiency εTOS. The NotTOS efficiency is determined
by taking the L0GlobalTIS events (according to the MC) and computing from the tables the
probability not to be TOS, 1−εTOS. Since the L0Hadron threshold was different in 2011 and
2012 the efficiency is computed for each year and then combined according to the recorded

4See Sec. 3.2.6 of Chap. 3 for a description of the L0Hadron and TOS categories

105



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

luminosity fractions:

εTOS = L2011

L2011 +L2012
ε2011

TOS + L2012

L2011 +L2012
ε2012

TOS . (5.12)

The TOS efficiency combining the 2011 and 2012 years is shown on Fig. 5.14 and 5.15. Since
it is easier to fire the trigger with one π± track of high pT than with two π+ and π− tracks with
intermediate pT, a better trigger efficiency is observed in the top left and bottom right corner of
the Dalitz plot. However the effect is very small. The NotTOS efficiency combining the 2011 and
2012 years is shown on Fig. 5.16 and 5.17. The feature complementary to the TOS efficiency can
be observed, also with a small amplitude. A signal candidate fails more easily to fire the trigger
(i.e. cannot be TOS) if the two pions have intermediate pT, rather than if one pion has a high pT.
Therefore the NotTOS efficiency is larger at the Dalitz plot centre compared to the corners. The
TOS and NotTOS efficiency are then combined according to the fractions found in the selected
data candidates:

εL0 = fTOSεTOS + (1− fTOS)εNotTOS (5.13)

In the B 0 signal region, a total of 95 TOS candidates are selected for 46 NotTOS candidates
(including signal and background). This combination is represented on Fig. 5.18 and 5.19. These
are the correction weights used to account for the trigger effect on the Dalitz plot.

Two sources of uncertainties must be evaluated for this reweighting procedure: the calibra-
tion and the reference uncertainties. The calibration uncertainty is the uncertainty related to the
size of the sample used to calibrate the data. The reference uncertainty is the uncertainty arising
from the size of the B 0

s → DK ∗0 reference sample. Hence the total uncertainty is expressed as

σtot
i =σcalib

i ⊕σref
i . (5.14)

The individual track calibration weights have an uncertainty which depends on the cali-
bration data sample size. To propagate this uncertainty to the correction weights on the Dalitz
plane, one thousand alternative efficiency tables are randomly generated (according to the
efficiency errors given by the nominal look-up tables). The correction weights on the Dalitz plot
are smeared according to the calibration uncertainty and all the tracks falling in the same bin in
pT have the same efficiency for a given alternative table. These one thousand alternative tables
make one thousand alternative trigger efficiency Dalitz plots.

Then the uncertainty due to the limited statistics of the B 0
s → DK ∗0 reference sample must

be propagated. That is why the alternative Dalitz plot are smeared once more according to
the weighted Poisson fluctuation, which is equal to the square root of the sum of the squared
weights (computed in each bin i of the nominal dalitz plot)

σref
i =

√√√√ Ni∑
k=1

ε2
k , (5.15)

where Ni is the number of B 0
s → DK ∗0 candidates in the bin i and εk the candidate trigger

efficiency. After this smearing the one thousand alternative trigger efficiency Dalitz plots include
the effect of the calibration uncertainty and the statistical uncertainty of the reference sample.
These alternative efficiency Dalitz plots are used to determine the systematic uncertainty arising
from the efficiency description (see Sec. 5.8.3).

The High Level Trigger (HLT) efficiency across the Dalitz plane is studied directly from the
simulated B 0

s → DK ∗0 sample. It is expected that the HLT has a small impact on the Dalitz
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Figure 5.14 – L0 Hadron TOS efficiency weights over the Dalitz plane and their projections for simulated
B 0

s → DK ∗0 LL candidates, selected with BDTA.

distribution, since the overall HLT efficiency on top of the full selection is larger than 97%. The
effect of applying the HLT requirements on top of the full selection is shown in Fig. 5.20. It
corresponds to the Dalitz plots ratio between events passing the full selection, HLT requirements
included, and events passing the selection without applying the HLT requirements. It can be
seen that the HLT efficiency is completely uniform across the Dalitz plane. Therefore it is decided
to not apply the HLT requirements on the MC sample to estimate the total selection efficiency. A
systematic uncertainty derived from this choice is determined (see 5.8.3).
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Figure 5.15 – L0 Hadron TOS efficiency weights over the Dalitz plane and their projections for simulated
B 0

s → DK ∗0 DD candidates, selected with BDTA.
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Figure 5.16 – L0 Hadron NotTOS efficiency weights over the Dalitz plane and their projections for simu-
lated B 0

s → DK ∗0 LL candidates, selected with BDTA.
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Figure 5.17 – L0 Hadron NotTOS efficiency weights over the Dalitz plane and their projections for simu-
lated B 0

s → DK ∗0 DD candidates, selected with BDTA.
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Figure 5.18 – Combined L0 Hadron TOS and NotTOS efficiency weights over the Dalitz plane and their
projections for simulated B 0

s → DK ∗0 LL candidates, selected with BDTA.
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Figure 5.19 – Combined L0 Hadron TOS and NotTOS efficiency weights over the Dalitz plane and their
projections for simulated B 0

s → DK ∗0 DD candidates, selected with BDTA.
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Figure 5.20 – High Level Trigger efficiency over the Dalitz plane for simulated B 0
s → DK ∗0 LL (left) and DD

(right) candidates, selected with BDTA.
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5.3.2 PID weights

In the selection there are two PID requirements on the K ∗0 daughters with DLLKπ(K +) > 5 and
DLLKπ(π−) < 3. The simulation is known to not reproduce well the DLL distributions. Therefore
the PID selection efficiency cannot directly be evaluated on the simulated samples. The LHCb
collaboration has developed a common tool providing PID efficiency reference tables for a given
set of cuts on the DLL variables. These calibration tables are made from D∗+→ D0(K −π+)π+

decays found in the data with a high statistics and purity. In this decay, the flavour of the D0

meson is unambiguously determined from the charge of the excited D∗+ meson. Thus, the
kaons and the pions can be distinguished only by their charge, and especially without cutting
on PID variables. Therefore, the correct DLL distributions for kaons and pions can be obtained
directly on data.

The efficiency of a cut on DLLKπ is assumed to depend on a small set of kinematic variables,
in the present case, the momentum p and the pseudorapidity η. Indeed, it is found on simulation
that the RICH performance has the strongest dependence on these two variables. Hence, the
efficiency of the PID cuts applied on the B 0 → DK ∗0 signal is obtained from the following
procedure:

1. two dimensional efficiency histograms corresponding to the DLLKπ(K +) > 5 and
DLLKπ(π−) < 3 cuts are computed in a given binning in p and η, making use of the
D∗+→ D0(K −π+)π+ calibration sample,

2. this calibration is applied to the B 0
s → DK ∗0 simulated reference sample, with an efficiency

weight assigned to each individual B 0
s → DK ∗0 event, depending on its (p,η) bin.

The calibration is applied to the B 0
s → DK ∗0 reference sample after full selection except the

PID cuts, but with the trigger requirements imposed. After the calibration every candidates
has an individual weight corresponding to its PID efficiency. Consequently, a plot of the PID
efficiency over the Dalitz plot can be obtained with the same binning scheme as the trigger
efficiency. It should be noticed that only the year 2012 is considered, to agree with the simulation
condition used for the B 0

s → DK ∗0 sample. Fig. 5.21 and 5.22 show the PID efficiency computed
with the data-driven calibration for LL and DD events. The distribution of this efficiency is flat.
This is expected because the PID cuts are on the K ∗0 daughters and have no effect on the D
daughters.

The uncertainty on the efficiency is estimated in the same way as the trigger efficiency. From
the nominal calibration histograms in bin of (p,η) one thousand alternative histograms are
generated. When the PID efficiency is evaluated in a given (p,η) bin from the calibration sample,
its uncertainty is also determined. Therefore, the alternative calibration histograms are made
by smearing the nominal histogram with the corresponding calibration uncertainty. These
alternative histograms make in total one thousand alternative plots of the PID efficiency over
the Dalitz plot. They include the efficiency fluctuations due to the uncertainty on the calibration
weight. Then the statistical uncertainty coming from the size of the reference sample is also
propagated by smearing with the Poisson fluctuation as described in Eq. 5.15.
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Figure 5.21 – PID efficiency weights over the Dalitz plane and their projections for simulated B 0
s → DK ∗0

LL candidates, selected with BDTA.
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Figure 5.22 – PID efficiency weights over the Dalitz plane and their projections for simulated B 0
s → DK ∗0

DD candidates, selected with BDTA.
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Figure 5.23 – Inverse of the correction weights for the bin edge effect (1/wi ).

5.3.3 Bin edge correction

Some special care must be taken to the bins at the edge of the Dalitz plot. The bins which are not
fully inside the kinematically allowed region are artificially less populated than the bins totally
covered by this region (these are the blueish bins in Fig. 5.13 for instance). Hence a correction of
this edge effect must be applied. For a given bin i a weight wi is applied, which is equal to the
ratio between the total bin surface Atot

i and the bin surface inside the kinematic limit Ainside
i :

wi =
Atot

i

Ainside
i

. (5.16)

These correction weights are obtained by generating one billion D → K 0
S π

+π− phase space
events with the TGenPhaseSpace ROOT class. Their inverses are shown in Fig. 5.23.

5.3.4 Total efficiency

Finally the trigger and PID efficiency weights are combined (Fig. 5.24 and 5.25) before being
applied to the Dalitz plot after selection. The weight distribution is approximately flat. The
trigger and PID selection have a tiny effect on the Dalitz plot, especially compared to the stripping
effect. The bin edge correction is then applied and the resulting Dalitz plots are symmetrised
along their diagonal, since no significant asymmetry between the π+ and the π− in the selection
process occurs. These final Dalitz plots after selection with the BDTA, taking into account the
trigger and PID efficiency, are on Fig. 5.26. To have a continuous two dimensional description of
the efficiency an interpolation of the efficiency histograms of Fig. 5.26 is performed with a cubic
spline (a type of piecewise polynomial of degree three). The result of this interpolation is shown
in Fig. 5.27. These are the splines used as an input to the full fit (see Sec. 5.7). A comparison
of the efficiency obtained with BDTA and BDTB can be observed in Fig. 5.28. It shows the
efficiency ratio between the BDTA and the BDTB selections. No significant discrepancy can
be seen between the two BDTs. Therefore the splines obtained with the BDTA are used in the
baseline fit and a systematic uncertainty is estimated using alternatively the BDTB splines.
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Figure 5.24 – Combined L0 and PID efficiency weights over the Dalitz plane for simulated B 0
s → DK ∗0 LL

candidates, selected with BDTA.

The one thousand trigger and PID efficiency weights are also combined to make a total of
one thousand alternative Dalitz plots, making one thousand alternative splines. These splines
are used to estimate the systematic uncertainty due to the efficiency description (see Sec. 5.8.3).

It has been checked that the efficiency obtained with the B 0→ DK ∗0 MC sample instead
of the B 0

s → DK ∗0 gives the same results (except with a poorer statistical accuracy, since the
B 0 → DK ∗0 sample is not stripping filtered). The TOS and NotTOS proportion found in the
data in the B 0 and B 0

s regions are slightly different. For a BDT cut at 0.75, among the 141 B 0

candidates, 95 are TOS (67%) and 46 are NotTOS (33%). Among the 204 B 0
s candidates, 122

are TOS (60%) and 82 are NotTOS (40%). This difference makes the combination of TOS and
NotTOS efficiency slightly different. Nevertheless, since the total L0 efficiency is rather flat, there
is no visible difference between the total B 0 and B 0

s efficiency. The corresponding systematic
uncertainty is evaluated and its value is very small (Sec. 5.8.3).

117



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

)
2

 (GeV−
2m

0.5 1 1.5 2 2.5 3

)
2

 (
G

e
V

+2
m

0.5

1

1.5

2

2.5

3

L0xPID_Bd weights (BDTA_DD)

0

0.1

0.2

0.3

0.4

0.5

L0xPID_Bd weights (BDTA_DD)

)
2

 (GeV+
2m

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (BDTA_DD)
+

2
L0xPID_Bd weights projection on m  (BDTA_DD)

+

2
L0xPID_Bd weights projection on m

)
2

 (GeV−
2m

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (BDTA_DD)
−

2
L0xPID_Bd weights projection on m  (BDTA_DD)

−

2
L0xPID_Bd weights projection on m

)2 (GeV
0
2m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (BDTA_DD)
0

2L0xPID_Bd weights projection on m  (BDTA_DD)
0

2L0xPID_Bd weights projection on m

Figure 5.25 – Combined L0 and PID efficiency weights over the Dalitz plane for simulated B 0
s → DK ∗0 DD

candidates, selected with BDTA.
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Figure 5.26 – Total selection efficiency taking into account the trigger and PID selection, for simulated
B 0

s → DK ∗0 LL (a) and DD (b) candidates, selected with BDTA.
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Figure 5.27 – Cubic spline interpolation of the selection efficiency for simulated B 0
s → DK ∗0 LL (a) and

DD (b) candidates, selected with BDTA.
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Figure 5.28 – Selection efficiency ratio between BDTA and BDTB for simulated B 0
s → DK ∗0 LL (a) and DD

(b) candidates.
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5.4 Efficiency across the B 0 Dalitz plane.

Even though the present analysis is focused on the D → K 0
S π

+π− Dalitz plane distribution of
events coming from B 0→ DK ∗0 decay, the efficiency across the B 0→ DKπ Dalitz plane has also
to be determined. Indeed, the extraction of γ requires a precise determination of κ and rB 0 , and
the efficiency profile over the K ∗0 region in the B 0→ DKπ Dalitz plane may alter the rB 0 and κ
values, as explained further in Sec. 5.9.1.

The determination of the selection efficiency across the B 0 Dalitz plane is similar to the one
across the D Dalitz plane, except for the simulation sample used. The simulated B 0→ DK ∗0

signal sample coming from the LHCb official production used in this section, and only in this
section, is not modelled with a scalar to vector-scalar amplitude for the B 0→ DK ∗0 transition
(unlike the samples used in the previous section). The m2(Dπ) and m2(DK ) variables are
generated with a flat distribution, instead of a parabolic one if the K ∗0 helicity was taken into
account (see for instance Fig. 5.29). This flat distribution on m2(Dπ) and m2(DK ) is useful to
correctly assess the selection efficiency over the whole region of the B 0 Dalitz plane which is
considered. Since the simulated signal sample does not correspond to a phase space generation
over the B 0 Dalitz plane, the candidate distributions after the full selection are not directly
proportional to the efficiency. Therefore, the ratio between the Dalitz plots after the full selection
and at the generation level has to be made.

Notice that in this section the |cosθ∗| > 0.4 cut present in the selection is never directly
applied. It corresponds to a cut along m2(Dπ), which is represented on the Dalitz plots by two
dashed grey lines (see for instance Fig. 5.29). This approach avoids the edge effect for bins which
are only partially inside the |cosθ∗| > 0.4 region.

5.4.1 Geometrical acceptance

To evaluate the effect of the geometrical acceptance of the detector, 100000 events are privately
generated without simulating the detector response. The same model as the sample of the LHCb
official production is used (with a flat distribution along m2(Dπ)), except that no generator
cut is applied. The Dalitz plot and its projections are shown on Fig. 5.29. The solid black lines
represent the ±50MeV window around the K ∗0 mass and the dashed grey lines represent the
|cosθ∗| > 0.4 cut. Then, the detector geometrical acceptance is applied by requiring that all the
particles in the final state lie in a 10 < θ < 300mrad cone around the beam axis. The Dalitz plot
after this geometrical acceptance is shown on Fig. 5.30. The Dalitz profile is almost not distorted
by this cut, especially in the |cosθ∗| > 0.4 region. Therefore the geometrical acceptance has a
negligible effect on the region of the B 0 Dalitz plane considered in the analysis.

5.4.2 Generator cuts efficiency

Although the generator cuts have been designed to not alter the D0 Dalitz plane, this is not the
case on the B 0 Dalitz plane. Fig. 5.31 is the Dalitz plot made with the generated events of the
official production. A drop can be observed at low m2(Dπ) values. As explained just before
this drop cannot be a detector geometrical acceptance effect, but it is due to the generator cuts
described in appendix A. Indeed, when these cuts (which are looser or equal to the stripping
cuts) are applied to the private sample used to determine the geometrical acceptance, a similar
efficiency drop at low m2(Dπ) is observed (Fig. 5.32). This efficiency drop originates from the
momentum cuts on the K ∗0 daughter pion. When all the generator cuts are applied, except
those on the K ∗0 pion, the depletion at low m2(Dπ) disappears (Fig. 5.33).
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Figure 5.29 – Dalitz plot and its projections of simulated B 0→ DK ∗0 events in a 2π solid angle toward the
LHCb detector (private production, without generator cuts). The solid black lines represent the ±50MeV
window around the K ∗0 mass and the dashed grey lines represent the |cosθ∗| > 0.4 cut.

This behaviour means that making the ratio of the Dalitz plot with selected events and
generated events from the official production does not correctly give the total efficiency. The
generator cuts efficiency must be taken into account.

To determine the profile of the generator cuts efficiency, a ratio is made between the Dalitz
plots obtained with the private generation (without generator cuts) and the one obtained with
the official generation (with the generator cuts). It is shown in Fig. 5.34. This ratio does not give
the absolute efficiency value, only the shape over the Dalitz plane, which is what is needed.
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Figure 5.30 – Dalitz plot and its projections of simulated B 0→ DK ∗0 events in the LHCb detector geomet-
rical acceptance, without applying the generator cuts (private production). The solid black lines represent
the ±50MeV window around the K ∗0 mass and the dashed grey lines represent the |cosθ∗| > 0.4 cut.

123



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

)2 (GeV
πD

2m
4 6 8 10 12 14 16 18 20 22

)
2

 (
G

e
V

π
K2

m

0.7

0.75

0.8

0.85

0.9

 in Acceptance]
0

DK*→
0

Dalitz [B
Entries  2954732

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Entries  2954732

 in Acceptance]
0

DK*→
0

Dalitz [B

)2 (GeV
πK

2m
0.7 0.75 0.8 0.85 0.9

0

50

100

150

200

250

300

3
10×

 in Acceptance]
0

DK*→
0

 [B
πK

2Projection on m
Entries  2954732

 in Acceptance]
0

DK*→
0

 [B
πK

2Projection on m

)2 (GeV
πD

2m
4 6 8 10 12 14 16 18 20 22

0

20

40

60

80

100

120

140

160

180

200

3
10×

 in Acceptance]
0

DK*→
0

 [B
πD

2Projection on m
Entries  2954732

 in Acceptance]
0

DK*→
0

 [B
πD

2Projection on m

)2 (GeV
DK
2m

6 8 10 12 14 16 18 20 22 24 26 28
0

20

40

60

80

100

120

140

160

3
10×

 in Acceptance]
0

DK*→
0

 [B
DK

2Projection on m
Entries  2954732

 in Acceptance]
0

DK*→
0

 [B
DK

2Projection on m

Figure 5.31 – Dalitz plot and its projections of simulated B 0→ DK ∗0 events in the LHCb detector geomet-
rical acceptance, with the generator cuts applied (official production). The solid black lines represent the
±50MeV window around the K ∗0 mass and the dashed grey lines represent the |cosθ∗| > 0.4 cut.
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Figure 5.32 – Dalitz plot and its projections of simulated B 0→ DK ∗0 events in a 2π solid angle toward the
LHCb detector, with the generator cuts applied (private production). The solid black lines represent the
±50MeV window around the K ∗0 mass and the dashed grey lines represent the |cosθ∗| > 0.4 cut.
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Figure 5.33 – Dalitz plot and its projections of simulated B 0→ DK ∗0 events in a 2π solid angle toward
the LHCb detector, with the generator cuts applied except those on the K ∗0 daughter pion (private
production). The solid black lines represent the ±50MeV window around the K ∗0 mass and the dashed
grey lines represent the |cosθ∗| > 0.4 cut.
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Figure 5.34 – Generator cuts efficiency over the B 0 Dalitz plane. The solid black lines represent the
±50MeV window around the K ∗0 mass and the dashed grey lines represent the |cosθ∗| > 0.4 cut.
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5.4.3 Trigger efficiency

The trigger efficiency is obtained with the method explained in Sec. 5.3.1, but with the B 0→
DK ∗0 sample whose distribution is flat along m2(Dπ). The TOS and NotTOS efficiency for DD
candidates after BDTA are on Fig. 5.35. The distributions obtained on LL candidates are similar.
The TOS efficiency is larger if the kaon has a high momentum, which corresponds to a low
m2(Dπ).
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Figure 5.35 – Trigger efficiency over the B 0 Dalitz plane, for TOS (a) and NotTOS (b) DD candidates after
BDTA.

5.4.4 PID efficiency

The PID efficiency is obtained with the method explained in Sec. 5.3.2, but with the B 0→ DK ∗0

sample whose distribution is flat along m2(Dπ). The PID cut is tighter on the kaon (DLLKπ > 5)
than on the pion (DLLKπ < 3). That is why the PID efficiency is essentially sensitive to the kaon
momentum. It is larger if the kaon has a low momentum, which corresponds to a low m2(Dπ)
(Fig. 5.36).

5.4.5 Total efficiency

After taking into account the generator cuts, the selection, the trigger and the PID efficiency,
the total efficiency is obtained (Fig. 5.37). It is important to compare this efficiency to the one
obtained in the ADS/GLW analysis [59]. Indeed, the combination of the measurements per-
formed in the B 0→ DK ∗0 ADS/GLW and the present GGSZ analyses depends on their efficiency
compatibility (see Sec. 5.9.1). To make the comparison the ratio between the ADS/GLW and
the GGSZ efficiency is made (Fig. 5.38). It can be observed that this ratio is constant on the
|cosθ∗| > 0.4 region (the considered region in both analyses). Therefore the rB 0 and κ values are
expected to be the same in both analyses.
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Figure 5.36 – PID efficiency over the B 0 Dalitz plane for DD candidates after BDTA.
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Figure 5.37 – Total efficiency across the B 0 Dalitz plane for BDTA (left) and BDTB (right). The solid
black lines represent the ±50MeV window around the K ∗0 mass and the dashed grey lines represent the
|cosθ∗| > 0.4 cut.

The BDT includes cosθ∗ among its discriminating variables. Hence this could potentially
produce an efficiency distortion on the m2(Dπ) coordinate, with respect to the ADS/GLW
method. However this is not the case, and it is safe to include cosθ∗ inside the BDT. As it can be
observed on Fig. 5.39, the BDT efficiency compared to the stripping is flat in the |cosθ∗| > 0.4
region.
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Figure 5.38 – Efficiency ratio between the ADS/GLW and GGSZ analyses across the B 0 Dalitz plane (BDTA).
The solid black lines represent the ±50MeV window around the K ∗0 mass and the dashed grey lines
represent the |cosθ∗| > 0.4 cut.
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Figure 5.39 – BDT efficiency compared to the stripping across the B 0 Dalitz plane, for BDTA (left) and
BDTB (right). The solid black lines represent the ±50MeV window around the K ∗0 mass and the dashed
grey lines represent the |cosθ∗| > 0.4 cut.
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5.5. Mass fit and background identification

5.5 Mass fit and background identification

Before analysing the Dalitz plot, the signal and the different background contributions must be
determined. This is achieved by performing an unbinned extended maximum likelihood fit on
the B 0 reconstructed invariant mass. The two categories LL and DD are fitted simultaneously.
This mass fit fixes the signal and background yields and the PDF mass shapes used in the fit of
the Dalitz plot (see Sec. 5.7). In the following the full selection is applied on all the samples.

5.5.1 Signal PDF

To determine the best model for the B invariant mass distributions of the B 0
(s)→ DK ∗0 decays,

the truth matched MC samples are fitted. The truth matching consists in checking the true ID of
the decay chain and the relations among the particles. Among all the models tested, the double
Crystal Ball function (CB) [139] describes the signal peak with the best accuracy. In order to
avoid a too complex model some simplifications are adopted. For a given peak, the two Crystal
Ball functions have a common mean and a common width. The same shape is used to describe
either the B 0 or the B 0

s peak, and LL or DD candidates. The model retained is shown on Fig. 5.40.
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Figure 5.40 – Fit of the B 0 reconstructed invariant mass of simulated B 0→ DK ∗0 LL and DD candidates.
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data. The two Crystal Ball components are represented separately by the dashed red and purple lines.
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

Hence the model describing the B 0
(s)→ DK ∗0 signal is expressed as

fsig(m; NB 0 , NB 0
s
,µ,σ) ≡ NB 0

[
f · g (m;µ−δm,σ,α1,n1)+ (1− f ) · g (m;µ−δm,−σ,α2,n2)

]
+ NB 0

s

[
f · g (m;µ,σ,α1,n1)+ (1− f ) · g (m;µ,−σ,α2,n2)

]
, (5.17)

where

• NB 0 is the number of signal B 0 events.

• NB 0
s

is the number of B 0
s events.

• g is a simple Crystal Ball function.

• µ is the mean of the B 0
s peak.

• δm is the mass difference between the B 0 and the B 0
s mesons. It is fixed to the PDG value

δm = 87.19MeV [20].

• σ is the width of the B 0 and B 0
s peaks.

• α{1,2} are the double Crystal Ball functions tail parameters. They are fixed from the values
obtained in the simulation, α1 = 1.54 and α2 = 1.62, and the same values are used for B 0

and B 0
s .

• n{1,2} are the tail amplitudes of the double Crystal Ball. They are fixed from the values
obtained in the simulation, n1 = 2.8 and n2 = 6.6, and the same values are used for B 0 and
B 0

s .

• f is the fraction of the lower mass tail Crystal Ball. It is fixed from the value obtained in
the simulation, f = 0.46, and the same value is used for B 0 and B 0

s .

Only the yields NB 0 and NB 0
s

are different between LL and DD categories. All the other signal
parameters are shared among these categories.

5.5.2 Background PDFs

Combinatorial background

The combinatorial background is modelled with a decreasing exponential distribution with a
slope λ,

fcomb(m; Ncomb,λ) = Ncomb ·eλm |λ|. (5.18)

The yield Ncomb and the slope λ are different between LL and DD categories.

Partially reconstructed B 0
(s)→ D∗0(D0γ/π0)K ∗0 background

An important source of background comes from the partially reconstructed B 0
(s) →

D∗0(D0γ/π0)K ∗0 decays. Soft photons or neutral pions coming from the D∗0 decay are difficult
to reconstruct and easily missed in the B 0

(s) candidate reconstruction. Hence the reconstructed
invariant mass of this background has a rather broad distribution at a lower mass than the
B 0 or B 0

s meson. B 0
s → D∗0K ∗0 background is particularly annoying since it overlaps with the

B 0 → DK ∗0 signal range. The shape of this background is described with a non analytic rep-
resentation. From the simulated distributions a kernel density estimation [148] is performed
exploiting the RooKeysPdf method provided by the RooFit package.
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5.5. Mass fit and background identification

Since B 0
(s)→ D∗0K ∗0 is a decay of pseudo scalar to vector-vector mesons, the angular momen-

tum conservation implies that the B 0
(s) daughters can be in one of three helicity configurations,

corresponding to three unknown decay amplitudes:

• A100, the decay amplitude when the D∗0 and K ∗0 are produced in helicity state +1.

• A010, the decay amplitude when the D∗0 and K ∗0 are produced in helicity state 0.

• A001, the decay amplitude when the D∗0 and K ∗0 are produced in helicity state −1.

The reconstructed DK ∗0 invariant mass depends only on θ′, the angle between the D0 momen-
tum in the D∗0 rest frame and the D∗0 momentum in the B 0

(s) rest frame. The θ′ distribution can

be expressed for D∗0→ D0π0 decay as [149, 150]

I (θ′) ∝ 1

2

(|A001|2 +|A100|2
)

sin2θ′+|A010|2 cos2θ′, (5.19)

and for D∗0→ D0γ decay as

I (θ′) ∝ 1

2

(|A001|2 +|A100|2
)

(1+cos2θ′)+|A010|2 sin2θ′. (5.20)

Since the 001 and 100 configurations follow the same angular dependence expressed in Eq. 5.19
and Eq. 5.20, no distinction can be made between these two contributions in the DK ∗0 mass
spectrum. Therefore only the 010 and 001 states have been simulated to obtain the shape
describing the three helicity configurations. Fig. 5.41 shows the invariant mass distributions,
and their kernel estimation superimposed, of the B 0

s → D∗0K ∗0 background for the the 010
and 001 helicity configurations and for D∗0→ D0π0 and D∗0→ D0γ decays. The distributions
obtained for LL and DD candidates and with a cut on BDTA or BDTB are similar. In the nominal
mass fit the RooKeys used are those obtained with LL and DD candidates (taken separately),
with a cut on BDTA. To take into account the data/MC agreement, a smearing and a mass shift
is applied before making the final RooKeys. The B 0

s peak has a position µMC = 5367.5MeV in
the MC and µdata = 5370.6MeV in the data. Therefore a mass shift of 3.1MeV is applied. The B 0

peak has a width of σMC = 11.73MeV in the MC sample and a width of σdata = 13MeV in the data.
Therefore a smearing of

p
132 −122 = 5MeV is applied 5.

The function describing this partially reconstructed background is expressed as

f T T
part(m) = N s T T

part

{
α010F

T T
010 (m)+ (1−α010)F T T

101 (m)
}

+ N d T T
part

{
α010F

T T
010 (m −δm)+ (1−α010)F T T

101 (m −δm)
}

,
(5.21)

with,

F T T
010 (m) = GT T

010 f T T
γ010(m)+ (1−GT T

010) f T T
π0010(m), (5.22)

F T T
101 (m) = GT T

101 f T T
γ001(m)+ (1−GT T

101) f T T
π0001(m). (5.23)

The index T T stands for the Track Type, either LL or DD. N s T T
part (N d T T

part ) is the yield of the

partially reconstructed B 0
s → D∗0K ∗0 (B 0→ DK ∗0) decays. The relative proportion between the

helicity contributions 001 and (100+001) (written as 101) is described with the α010 parameter.

5The mean and resolution values here correspond to a previous iteration of the mass fit, slightly different from the
final version.
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Figure 5.41 – Reconstructed DK ∗0 invariant mass distributions and their kernel estimation superimposed,
from simulated B 0

s → D∗0(D0γ)K ∗0 (a) and B 0
s → D∗0(D0π0)K ∗0 (b) decays in helicity state 001 and

B 0
s → D∗0(D0γ)K ∗0 (c) and B 0

s → D∗0(D0π0)K ∗0 (d) decays in helicity state 010. Only DD candidates after
a cut on BDTA are plotted.

As a baseline, α010 is the same for the B 0→ DK ∗0 and B 0
s → DK ∗0 components. f T T

γX and f T T
π0 X

are the RooKeys PDF for a given helicity state X , determined with the B 0
s → D∗0K ∗0 simulated

samples as explained above. GT T
X is the proportion between the D∗0→ D0γ and D∗0→ D0π0

contributions. It is a fixed parameter of the mass fit and is defined as

GT T
X ≡ g T T

X

g T T
X +pT T

X

, (5.24)

where the g T T
X and pT T

X factors are the products of the branching ratio and the selection effi-
ciency

g T T
X = B(D∗0→ D0γ)εX

gen(D∗0→ D0γ)εX
strip(D∗0→ D0γ)εX T T

sel (D∗0→ D0γ), (5.25)

pT T
X = B(D∗0→ D0π0)εX

gen(D∗0→ D0π0)εX
strip(D∗0→ D0π0)εX T T

sel (D∗0→ D0π0). (5.26)

The generator efficiency εgen includes the detector acceptance and the generator level cuts.
εstripping is the stripping efficiency, and εsel the selection efficiency. They are summarised in
Table 5.5. The nominal mass fit uses the selection efficiency obtained with BDTA.
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5.5. Mass fit and background identification

Table 5.5 – Branching ratio and efficiency for B 0
s → D∗0K ∗0 partially reconstructed background.

Quantity D∗0→ D0π0 D∗0→ D0γ

LL DD LL DD

Branching ratio (61.9±2.9)% (38.1±2.9)%

ε010
gen (6.32±0.06)% (6.36±0.02)%

ε001
gen (6.72±0.08)% (6.76±0.02)%

ε010
strip (1.177±0.002)% (1.177±0.002)%

ε001
strip (1.158±0.002)% (1.144±0.002)%

ε010 BDTA
sel (9.73±0.04)% (26.06±0.06)% (9.54±0.04)% (25.66±0.06)%

ε010 BDTB
sel (9.73±0.04)% (27.77±0.06)% (9.53±0.04)% (25.26±0.06)%

ε001 BDTA
sel (4.59±0.03)% (12.13±0.04)% (4.45±0.03)% (11.86±0.04)%

ε001 BDTB
sel (4.59±0.03)% (12.03±0.04)% (4.44±0.03)% (11.73±0.04)%

Misidentified B 0→ Dρ0 background

Another source of background comes from the misidentified B 0→ Dρ0 mode. One of the ρ0

daughter pions in the ρ0→ π+π− decay can be taken as a kaon. It makes up a K ∗0 candidate
and results in a B 0 candidate with a larger mass compared to the nominal one. To have a model
of the invariant mass distribution of this misidentified background the same technique as the
B 0

(s)→ D∗0K ∗0 background is used. The distribution is built from a kernel estimation performed

on the B 0 → Dρ0 simulated sample, reconstructed as B 0 → DK ∗0, after full selection except
for the PID cuts. The PID cuts effect is obtained through the reweighting provided by the PID
calibration samples (see Sec. 5.3.2). In this way the K -π misidentification efficiency is correctly
modelled, avoiding a data-MC disagreement. Fig. 5.42 shows the mass distribution and the
kernel estimation superimposed for DD candidates after BDTA selection. As the yield of this
background is rather low and estimated with a large statistical uncertainty, a gaussian constraint
is applied to the yield ratio, denoted ρ, between the B 0 → Dρ0 and B 0

s → DK ∗0 components.
Hence the B 0→ Dρ0 PDF is expressed as

f t t
Dρ0 = ρt t N t t

B 0
s

g t t
Dρ0 , (5.27)

where gDρ0 is the corresponding RooKeys. The ratio ρ is computed as

ρ ≡ n(B 0→ Dρ0)

n(B 0
s → DK ∗0)

= fd

fs

B(B 0→ Dρ0)

B(B 0
s → DK ∗0)

ε(B 0→ Dρ0)

ε(B 0
s → DK ∗0)

. (5.28)

Taking into account the efficiency given by the Monte-Carlo simulation, with the PID efficiency
given by the PID calibration package, the following values are obtained:

ρLL = (3.92±0.96)%, (5.29)

ρDD = (3.81±0.93)%. (5.30)
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Figure 5.42 – Reconstructed DK ∗0 invariant mass distribution and its kernel estimation superimposed,
obtained from simulated misidentified B 0→ Dρ0 DD candidates (BDTA cut).

Table 5.6 – Constant parameters used in the B 0 invariant mass fit.

Constant Parameter Value Description

δm 87.19MeV Mass shift between B0 and B0
s

f 0.46214 Fraction of the Crystal Ball with the lower mass tail

α1 1.5422 α parameter of the CB with the lower mass tail

α2 1.6196 α parameter of the CB with the upper mass tail

n1 2.7836 n parameter of the CB with the lower mass tail

n2 6.6324 n parameter of the CB with the upper mass tail

GLL
010 0.38006 D∗0→ D0γ/D∗0→ D0π0 proportion in helicity state 010 (LL)

GDD
010 0.38107 D∗0→ D0γ/D∗0→ D0π0 proportion in helicity state 010 (DD)

GLL
101 0.37434 D∗0→ D0γ/D∗0→ D0π0 proportion in helicity state 100+001 (LL)

GDD
101 0.37633 D∗0→ D0γ/D∗0→ D0π0 proportion in helicity state 100+001 (DD)

5.5.3 Mass fit parameters

To summarise, the B 0 and B 0
s peaks are described with two double Crystal Ball functions which

share the same width. The mass difference between the two peaks is fixed to its PDG value [20].
The combinatorial background is described with an exponential, with separate slopes for LL and
DD candidates. The misidentified B 0→ Dρ0 background and the partially reconstructed B 0

(s)→
D∗0K ∗0 background are described with non analytical function obtained from the simulation.
The different helicity contributions, 010 and 100+001, of the B 0

(s)→ D∗0K ∗0 background are

described separately. The relative proportion between D∗0 → D0π0 and D∗0 → D0γ is fixed,
taking into account the relative difference in branching fraction and efficiency. Table 5.6 gathers
all the constant parameters of the mass fit, and Table 5.7 all the floating parameters.
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5.5. Mass fit and background identification

Table 5.7 – Free parameters used in the B 0 invariant mass fit.

Free Parameter Designation Description

µ Bs_mean Central value of B0
s peak

σ sigma_CB1 Width of B0 and B0
s peaks

N LL
B 0 nBd_LL Signal yield (LL)

N DD
B 0 nBd_DD Signal yield (DD)

N LL
B 0

s
nBs_LL B0

s → DK∗0 yield (LL)

N DD
B 0

s
nBs_DD B0

s → DK∗0 yield (DD)

λLL combi_tau_LL Combinatorial slope (LL)

λDD combi_tau_DD Combinatorial slope (DD)

N LL
comb ncombi_LL Combinatorial yield (LL)

N DD
comb ncombi_DD Combinatorial yield (DD)

N d LL
part Npart_d_LL B0→ D∗0K∗0 yield (LL)

N d DD
part Npart_d_DD B0→ D∗0K∗0 yield (DD)

N s LL
part Npart_s_LL B0

s → D∗0K∗0 yield (LL)

N s DD
part Npart_s_DD B0

s → D∗0K∗0 yield (DD)

α010 alpha010 010/(100+001) helicity components proportion

ρLL fracDrho_LL B0→ Dρ0/B0
s → D∗0K∗0 yield ratio (LL)

ρDD fracDrho_DD B0→ Dρ0/B0
s → D∗0K∗0 yield ratio (DD)

5.5.4 Mass fit result

The invariant mass fit is performed on the full Run 1 dataset. Fig 5.43 shows the data distribution
and the fit result superimposed for the LL and DD categories separated. Fig. 5.44 shows the data
distribution and the fit result superimposed with LL and DD categories merged. The B 0 and B 0

s

peaks are clearly seen, and the background description of partially reconstructed B 0
(s)→ D∗0K ∗0

and misidentified B 0→ Dρ0 is satisfactory. The results on all the free parameters are summarised
in Table 5.8. They correspond to an estimation over the full fit range. The parameter correlations
appear in the matrix of Fig. 5.45. However the signal region, which is used to make the Dalitz
plot, is a ±25MeV window around the fitted B 0 peak central value. Therefore, the signal and
background yields used for the final Dalitz fit (see Sec. 5.7) are computed for this signal region.
They are summarised in Table 5.9. In total 99 signal candidates are present for 42.9 background
candidates. It results in a signal significance of 8.3 and a purity of 70%. The yields obtained in
the B 0

s region (±25MeV window around the fitted B 0
s peak) are in Table 5.10 and lead to a B 0/B 0

s

yield ratio of Nd /Ns = 0.54±0.08, in good agreement with the scale factor of k = 0.47±0.11
mentioned in Sec. 5.2.3.
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Figure 5.43 – Invariant mass fit of B 0→ DK ∗0 candidates for LL (left) and DD (right) categories. B 0 peak
is in red, B 0

s peak is in dashed blue, B 0
s → D∗0K ∗0 is in solid orange, B 0→ D∗0K ∗0 is in dashed orange,

B 0→ Dρ0 is in brown and combinatorial background is in dotted blue.
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Figure 5.44 – Invariant mass fit of B 0→ DK ∗0 candidates for LL and DD categories merged.
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5.5. Mass fit and background identification

Table 5.8 – Result of the mass fit (on the full fit window).

Free Parameter Designation Fitted Value

µ Bs_mean 5369+1
−1 MeV

N d DD
part Npart_d_DD 103+25

−24

N d LL
part Npart_d_LL 61+22

−21

N s DD
part Npart_s_DD 174+23

−22

N s LL
part Npart_s_LL 117+20

−19

α010 alpha010 0.9+0.1
−0.1

λDD combi_tau_DD −0.00473+0.0003
−0.0003

λLL combi_tau_LL −0.00508+0.0004
−0.0004

ρDD fracDrho_DD 0.039+0.009
−0.009

ρLL fracDrho_LL 0.039+0.010
−0.010

N DD
B 0 nBd_DD 70+11

−10

N LL
B 0 nBd_LL 41+9

−8

N DD
B 0

s
nBs_DD 129+13

−12

N LL
B 0

s
nBs_LL 79+10

−9

N DD
comb ncombi_DD 391+32

−30

N LL
comb ncombi_LL 310+28

−26

σ sigma_CB1 14.1+1.0
−0.9 MeV
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Figure 5.45 – Correlation matrix of the fitted parameters.
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

Table 5.9 – Total yields in the B 0 signal region.

Component Yield

Total LL DD

N (B0→ DK∗0) 99±12 37±7 62±9

N (Comb) 26.9±1.8 11.5±1.1 15.5±1.3

N (B0
s → D∗0K∗0) 13.6±2.0 5.3±1.0 8.2±1.4

N (B0→ D∗0K∗0) 0.12±0.03 0.054±0.021 0.065±0.019

N (B0→ Dρ0) 0.61±0.11 0.23±0.07 0.36±0.09

N (B0
s → DK∗0) 1.7±0.3 0.65±0.13 1.06±0.20

Total background 42.9±2.6 17.8±1.5 25.2±1.9

Table 5.10 – Total yields in the B 0
s region.

Component Yield

Total LL DD

N (B0
s → DK∗0) 184±14 70±9 114±11

N (Comb) 17.6±1.7 7.4±1.1 10.2±1.3

N (B0
s → D∗0K∗0) 0.21±0.04 0.104±0.022 0.109±0.023

N (B0→ Dρ0) 2.3±0.4 0.90±0.24 1.4±0.4

N (B0→ DK∗0) negligible negligible negligible

Total background 20.1±1.8 8.4±1.1 11.8±1.3
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5.5. Mass fit and background identification

5.5.5 Mass fit with a reduced range

The [4.9,5.0]GeV region in the reconstructed B 0 mass spectrum can be polluted by sources of
background other than the combinatorial component. The contribution of the B 0→ D∗0K ∗0

partially reconstructed background is very low in this region. Any contribution of other par-
tially reconstructed background can artificially increase the exponential combinatorial back-
ground fraction. To check the mass fit result stability, a fit is performed with a range reduced
to [5,5.8]GeV. The results are shown on Fig. 5.46 with LL and DD categories separated, and on
Fig. 5.47 with LL and DD categories merged. The signal and background yields obtained with the
reduced range are in Table 5.11. The results are in rather good agreement with those obtained
with the nominal range. Some hint of discrepancy could be seen for instance in the combinato-
rial yield (26.9±1.8 with the nominal range and 24.6±2.2 with the reduced range). A systematic
uncertainty accounting for the contribution of B+→ D0K +π+π− and B+→ D0π+π+π− back-
ground is determined in Sec. 5.8.2.
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Figure 5.46 – Invariant mass fit of B 0→ DK ∗0 candidates with the reduced range [5.0,5.8]GeV for LL (left)
and DD (right) categories. B 0 peak is in red, B 0

s peak is in dashed blue, B 0
s → D∗0K ∗0 is in solid orange,

B 0→ D∗0K ∗0 is in dashed orange, B 0→ Dρ0 is in brown and combinatorial background is in dotted blue.

Table 5.11 – Total yields in the B 0 signal region, with the reduced range.

Component Yield

Total LL DD

N (B0→ DK∗0) 101±12 38±7 63±10

N (Comb) 24.6±2.2 9.6±1.3 14.9±1.6

N (B0
s → D∗0K∗0) 14.3±2.2 5.7±1.1 8.5±1.5

N (B0→ D∗0K∗0) 0.16±0.06 0.09±0.04 0.08±0.04

N (B0→ Dρ0) 0.62±0.12 0.25±0.07 0.37±0.09

N (B0
s → DK∗0) 1.76±0.32 0.68±0.14 1.08±0.21

Total background 41.4±3.2 16.4±1.9 25.0±2.5
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Figure 5.47 – Invariant mass fit of B 0→ DK ∗0 candidates with the reduced range [5.0,5.8]GeV for LL and
DD categories merged.

5.5.6 Kaon PID cut justification

Initially it was chosen to apply the same PID cut on the kaon candidate as for the ADS/GLW
analysis, which means cutting at 3 on DLLKπ on both K ∗0 daughters. Indeed it is important
to align the K ∗0 candidates selection between ADS/GLW and GGSZ analysis to not jeopardise
the γ combination (see Sec. 5.9.1). Nevertheless the opportunity to tighten the PID selection
has been investigated. A signal and background yield comparison for several DLLKπ cuts on
the kaon is summarised in Table 5.12. This study was performed with a former mass fit version,
without constraint on the B 0 → Dρ0 yield and without the cosθ∗ cut. Cutting at DLLKπ > 5
for the kaon, compared to 3, keeps (98± 17)% of the signal while cutting (59± 30)% of the
B 0→ Dρ0 background. This background is dangerous, since it partially peaks in the B 0→ DK ∗0

signal region. The DLLKπ cut at 5 improves a lot the purity of the signal with a moderate signal
efficiency reduction. This estimation is consistent with the one performed with the simulated
samples, using the PID calibration tool. The PID efficiency ratio are found to be (for the DD
candidates)

εB 0
s→DK ∗0 (DLLKπ(K ) > 5)

εB 0
s→DK ∗0 (DLLKπ(K ) > 3)

= (94.09±0.08)%, (5.31)

εB 0→Dρ0 (DLLKπ(K ) > 5)

εB 0→Dρ0 (DLLKπ(K ) > 3)
= (46.17±0.14)%. (5.32)

5.5.7 Fake D0 background estimation

Two categories can be distinguished among the combinatorial backgrounds: the combinatorial
D0 or the combinatorial K ∗0 candidates. In the first case the D0 candidate is not a real particle,
whereas in the second case the D0 candidate is real. Hence these two different backgrounds
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5.5. Mass fit and background identification

Table 5.12 – Signal and background yields comparison for several PIDK cuts on the kaon.

Component Yield

Nominal: BDT > 0.75 BDT > 0.75 BDT > 0.8 BDT > 0.75 BDT > 0.7

DLLKπ(K ) > 5 DLLKπ(K ) > 3 DLLKπ(K ) > 3 DLLKπ(K ) > 6 DLLKπ(K ) > 6

N (B0→ DK∗0) 106±12 108±14 106±13 98±12 102±13

N (Comb) 33.7±2.1 44.0±2.4 37.3±2.3 29.8±2.0 33.0±2.1

N (B0
s → D∗0K∗0) 19.7±2.6 22.8±2.8 23.1±2.8 19.2±2.5 20.1±2.6

N (B0→ D∗0K∗0) 0.17±0.04 0.19±0.04 0.19±0.04 0.16±0.04 0.16±0.04

N (B0→ Dρ0) 2.2±1.5 5.4±1.7 6.3±1.8 1.8±1.3 2.4±1.5

N (B0
s → DK∗0) 1.6±0.3 1.4±0.3 1.4±0.3 1.4±0.3 1.4±0.3

Total background 57.3±3.2 74±4 68.2±3.5 52.5±3.0 57.2±3.2

are called “fake D0” and “real D0”. It is important to disentangle these two backgrounds since
their distribution on the Dalitz plane is different. The fake D0 distribution is flat, whereas the
real D0 candidates are described through the D → K 0

S π
+π− model (see Sec. 5.6). In order to

estimate the fake D0–real D0 proportion in the combinatoric background, two methods have
been investigated: fitting the m(K 0

S π
+π−) invariant mass and counting the number of wrong

sign (WS) D0→ K 0
S π

±π± candidates. The WS candidates are a good proxy to mimic non physical
background due to random combination of tracks.

Mass fit of the D candidates

To distinguish the fake and real D0 a fit to the m(K 0
S π

+π−) invariant mass is performed on the
D0 candidates passing the full selection. Real D0 are described with a gaussian. Fake D0 are
described with a constant polynomial.

A first fit is performed on the D0 candidates in the B 0
s region (±25MeV around the fitted B 0

s

mass). The mean and the width of the gaussian are let free. The fit is performed simultaneously
on LL and DD candidates, with a common mean for these two categories. The result of this fit
is represented on Fig. 5.48. Since in the B 0

s region the statistics is higher, this fit enables to fix
the width of the gaussian for the second fit performed on the D0 candidates of the B 0 signal
mass region. The result of the second fit is represented on Fig. 5.49. As it is an extended fit, it
estimates directly the respective yields of the fake and real D0 candidates, given in Table 5.13.

The statistical sensitivity is poor. Nevertheless it shows that the proportion of fake D0

candidates is low. For comparison, the estimated total combinatorial yields, including the fake

Table 5.13 – Yields of fake and real D0 candidates lying in the B 0→ DK ∗0 signal region.

Yield LL DD

nfakeD 2+6
−4 2+5

−3

nrealD 53+9
−8 84+10

−10
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Figure 5.48 – Fit to m(K 0
S π

+π−) invariant mass of LL (a) and DD (b) candidates from the B 0
s region. The

gaussian is in red and the polynomial function in dashed green.

D0 and some real D0 candidates, are respectively of 11.5 and 15.5 for LL and DD categories.
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Figure 5.49 – Fit of m(K 0
S π

+π−) invariant mass of LL (a) and DD (b) candidates from the B 0 region. The
gaussian is in red and the polynomial function in dashed green.

To check that the constant polynomial is a reasonable model for the fake D0 candidates,
the D0 mass distribution of WS candidates is studied. Fig. 5.50 shows this distribution after
preselection and with several BDT cuts. The distributions are flat, even after BDT selections
keeping more signal-like candidates. Moreover no correlation between the BDT output value
and the D0 mass distribution appears (Fig. 5.51).

Wrong sign candidates estimation

Another possible method is to estimate the number of WS candidates left after full selection.
The selection is therefore applied on WS candidates. The B 0 invariant mass distribution of this
WS candidates can be seen on Fig. 5.52. After full selection, no event remains in the B 0 signal
region. If a 95% confidence level is assumed for a Poisson variable, no event corresponds to an
interval of [0.;3.09] at the 95% confidence level. Taking into account the 0.1 prescale applied to
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Figure 5.51 – D0 mass distribution for WS candidates after preselection as a function of the BDT ouput
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the WS lines 6, between 0 and 31 fake D0 events are expected, among the total 142 combinatorial
candidates. Therefore both estimations, with the D0 mass fit and with the WS candidates, are in
agreement. However, due to the low statistics, the WS estimation is less precise.

It is clear that the combinatorial background is mainly composed of real D0 candidates. As a
baseline the numbers of fake D0 candidates nfakeD estimated with the mass fit are assumed, with

6To prevent the WS events, which are pure background, from taking an unreasonable amount of the trigger
bandwidth, they are prescaled. Only 10% of the events which in principle fire the trigger are kept.
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nLL
fakeD = 2 and nDD

fakeD = 2. A systematic uncertainty is deduced from this hypothesis, by varying
these estimations within their statistical uncertainty. Which means assuming nLL

fakeD = 0 or 8 and
nDD

fakeD = 0 or 7.
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Figure 5.52 – B 0 invariant mass of WS candidates after stripping (black), preselection (blue), BDT cut at 0
(green) and at 0.7 (red). The extra |cosθ∗| > 0.4 cut is not applied

5.5.8 Mass fit stability study

Because of the low statistics available, it is important to check that the mass fit result is stable
and has no strong bias. Therefore a toy study is performed by generating ten thousand pseudo
datasets from the nominal fit result. These pseudo datasets are then fitted with the nominal fit
model. From these ten thousand fits the pull distributions of the floating parameters are made.
Some parameters have non gaussian errors, therefore the pulls are made with the asymmetric
errors given by the MINOS algorithm [151]. Hence the pull for a given parameter x is defined as

Px ≡
{ xfit−xgen

σ+ if xfit −xgen < 0,
xfit−xgen

σ− otherwise,
(5.33)

where xfit is the fitted parameter value on a given pseudo dataset, xgen is the generated value
(coming from the nominal fit result) and σ± the asymmetric statistical uncertainties.

Only the combinatorial yields (Fig. 5.55) and the Crystal Ball PDF width (Fig. 5.56) show
evidence of bias. Nevertheless these biases are small and can be neglected in the analysis. They
could be corrected with the following formula

xcor = xmeas −µpullσmeas, (5.34)

where xcor is the bias-corrected parameter value, xmeas is the measured parameter value with an
uncertainty of σmeas and µpull the identified bias. It would give on the combinatorial LL yields
N LL

comb = 391+32
−30 a correction equal to µpullσmeas =−0.053×32 ≈−1.7. Similarly, on the Crystal
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Ball width σ= 14.1+1.0
−0.9, it would give a correction of −0.035MeV. These corrections being very

small compared to the statistical uncertainty of the parameters, the effect of these biases are
neglected in the rest of the analysis.
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Figure 5.53 – Pull distributions of the B 0 → DK ∗0 yields of LL (a) and DD (b) categories and of the
B 0

s → DK ∗0 yields of LL (c) and DD (d) categories.

147



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

Pull of Npart_d_LL
­6 ­4 ­2 0 2 4 6

E
v
e

n
ts

 /
 (

 0
.2

4
 )

0

200

400

600

800

1000

Npart_d_LL pull

 =  0.009 +/­ 0.010µ

 =  0.996 +/­ 0.007σ

Npart_d_LL pull

(a)

Pull of Npart_d_DD
­6 ­4 ­2 0 2 4 6

E
v
e

n
ts

 /
 (

 0
.2

4
 )

0

200

400

600

800

1000

Npart_d_DD pull

 =  0.01 +/­ 0.01µ

 =  1.000 +/­ 0.007σ

Npart_d_DD pull

(b)

Pull of Npart_s_LL
­6 ­4 ­2 0 2 4 6

E
v
e

n
ts

 /
 (

 0
.2

4
 )

0

200

400

600

800

1000

Npart_s_LL pull

 =  0.008 +/­ 0.010µ

 =  0.993 +/­ 0.007σ

Npart_s_LL pull

(c)

Pull of Npart_s_DD
­6 ­4 ­2 0 2 4 6

E
v
e

n
ts

 /
 (

 0
.2

4
 )

0

200

400

600

800

1000

Npart_s_DD pull

 =  0.000 +/­ 0.010µ

 =  0.999 +/­ 0.007σ

Npart_s_DD pull

(d)

Figure 5.54 – Pull distributions of the B 0 → D∗0K ∗0 yields of LL (a) and DD (b) categories and of the
B 0

s → D∗0K ∗0 yields of LL (c) and DD (d) categories.
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Figure 5.55 – Pull distributions of the combinatorial background yields of LL (a) and DD (b) categories,
and of the combinatorial exponential slope of LL (c) and DD (d) categories.
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Figure 5.56 – Pull distributions of the mean (a) and the width (b) of the double Crystal Ball PDF modelling
the B 0 and B 0

s peaks.
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5.6 Model of the D→ K 0
S π

+π− decay

As mentioned in Sec. 5.1, the decay amplitude of the D→ K 0
S π

+π− transition (defined in Eq. 2.18
and 2.19) is described with the BaBar model. This empirical model, described in Ref. [51], is
used by this collaboration for the γ analysis of the B± → D (∗)K (∗)± decays [8] and is a mixture of
an isobar model for the P- and D-waves contributions, a generalised LASS amplitude for the K -π
S-wave contribution and a K-matrix with P-vector approach for the π-π S-wave contribution.
The model has been already used by the LHCb B±→ DK ± model dependent GGSZ analysis [52].
The present section summarises the main points of this model. A more detailed presentation of
the Dalitz plot formalism can be found for instance in Ref. [152].

The partial decay rate of a scalar particle into three daughters, like D→ abc , can be expressed
as

dΓ= 1

(2π)3

1

32m3
D

|M |2dm2
abdm2

bc , (5.35)

where mD is the mass of the D meson, m2
ab and m2

bc are the squared invariant masses of the (ab)
and (bc) daughter pairs, and M is the matrix element describing the dynamic of the D→ abc
decay. The scatter plot in m2

ab and m2
bc is called a Dalitz plot and is directly linked to the

underlying physics in the D→ abc process. The event distribution across the (m2
ab ,m2

bc ) arises
from the variation of |M |2. If it is constant, the kinematically allowed region of the plot is
uniformly populated. In the case of the D → K 0

S π
+π− decay a total of eleven partial waves is

used to describe the dynamics. The Lorentz invariant amplitude is obtained as a coherent sum
of quasi-2-body amplitudes

M =Mππ+aKπe iφKπMKπ+
∑

P,D−w aves
ar e iφr Mr , (5.36)

where:

• Mππ is the amplitude of the ππ S-wave, described by a K-matrix with P-vector approach.

• MKπ is the amplitude of the Kπ S-wave, namely the K ∗±
0 (1430) resonance, described by a

generalised LASS amplitude.

• Mr are the amplitudes of the narrow resonances, which are P-waves (ρ(770)0, ω(782),
K ∗(782)± and K ∗(1680)−) and D-waves (K ∗

2(1430)± and f2(1270)).

The aKπe iφKπ and ar e iφr are the complex coefficients of the linear combination of the
resonances. They are determined by the BaBar collaboration [51] and are parameters of the final
Dalitz fit of this analysis.

5.6.1 P and D waves

Since the P and D waves are narrow and isolated resonances, they are modelled by relativistic
Breit-Wigner propagators, except for the ρ(770)0 which is modelled with a Gounaris-Sakurai
propagator [153] (∆r ). The angular distribution of the decay products is described through the
Zemach formalism (Zl (m2

ab ,m2
ac ) factors). The spin effect of the resonance is accounted with

some effective centrifugal Barrier factors, namely the Blatt-Weisskopf factors (Bl (q, qr )). Hence
the Lorentz invariant amplitude of the decay D→ r (ab)c is expressed as

Mr = Zl (m2
ab ,m2

ac )Bl (p, pr )Bl (q, qr )∆r (mab), (5.37)
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where l is the orbital angular momentum between r and c (which is the spin of r since D, a, b
and c are scalars), p is the momentum of c in the (ab) resonance rest-frame, q is the momentum
of a (or b) in the (ab) resonance rest-frame, pr and qr are p and q values in the case of mab = mr .

The Zemach factors values are equal to

Z0 = 1, (5.38)

Z1 = m2
ac −m2

bc −
(m2

D −m2
c )(m2

a −m2
b )

m2
ab

, (5.39)

Z2 =
[

m2
ac −m2

bc −
(m2

D −m2
c )(m2

a −m2
b )

m2
ab

]2

− (5.40)

− 1

3

[
m2

ab −2(m2
D +m2

c )+
(m2

D −m2
c )2

m2
ab

][
m2

ab −2(m2
a +m2

b )+
(m2

a −m2
b )2

m2
ab

]
. (5.41)

Instead of the Zemach factors, the helicity formalism can also be applied. Then, the mass term
mab is replaced by the mass of the resonance mr . In the nominal model the Zemach factors
are used, and a systematic uncertainty is assigned, to take into account the difference with the
helicity formalism (Sec. 5.8.5).

The Blatt-Weisskopf factors are equal to

B2
0 (q, qr ) = 1, (5.42)

B2
1 (q, qr ) =

(
q

qr

)2 (Rqr )2 +1

(Rq)2 +1
, (5.43)

B2
2 (q, qr ) =

(
q

qr

)4 (Rqr )4 +3(Rqr )2 +9

(Rq)4 +3(Rq)2 +9
, (5.44)

where R is an effective radius fixed to 1.5GeV−1.

5.6.2 K matrix for ππ S-wave

The ππ S-wave is described with a K matrix formalism. Five channels, noted α, are considered:
π+π−,K K ,4π,η η and η η′. With the P vector approach, the decay amplitude is

Mππ(mππ) =∑
α

[
I − i K̂ (mππ)ρ(mππ)

]−1
ππ,α P̂α(mππ). (5.45)

K̂ is the matrix describing the S-wave scattering process, ρ is the phase-space matrix and P̂ is
the initial production vector. This formalism can be viewed as a production of five different
states all propagated into the final ππ state through the

[
I − i K̂ (mππ)ρ(mππ)

]−1
scattering term.

It supposes that the two-body ππ system does not interact with the rest of the final state in the
production process.

The K matrix is expressed as

K̂i j (mππ) =
(∑
α

g 0
αi g 0

α j

m2
α−m2

ππ

+ f sc
i j

1GeV2 − ssc
0

m2
ππ− s A

0

)
1GeV2 − s A

0

m2
ππ− s A

0

(
m2
ππ−

sAm2
π

2

)
, (5.46)

where all the parameters g 0
αi , mα, f sc

i j , ssc
0 , s A

0 and sA are fixed by scattering data [154]. All their
values are summarised in Tab. 5.14.

Similarly, the P vector is parametrised as

P̂ j (mππ) =∑
α

β0
αg 0

α j

m2
α−m2

ππ

+ f pr
ππ, j

1GeV2 − spr
0

m2
ππ− spr

0

, (5.47)
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S π

+π− decay

Table 5.14 – K-matrix parameters from a global analysis of ππ scattering data taken from [154] (unit is in
GeV).

mα gαππ gα
K K

gα4π gαηη gα
ηη′

0.65100 0.22889 -0.55377 0. -0.39899 -0.34639

1.20360 0.94128 0.55095 0. 0.39065 0.31503

1.55817 0.36856 0.23888 0.55639 0.18340 0.18681

1.21000 0.33650 0.40907 0.85679 0.19906 -0.00984

1.82206 0.18171 -0.17558 -0.79658 -0.00355 0.22358

ssc
0 f sc

ππ,ππ f sc
ππ,K K

f sc
ππ,4π f sc

ππ,ηη f sc
ππ,ηη′

-3.92637 0.23399 0.15044 -0.20545 0.32825 0.35412

s0
A sA

-0.15 1

where the β0
α complex production parameters and the production background parameters f pr

ππ, j

and spr
0 are determined by the BaBar collaboration, from a tagged D→ K 0

S π
+π− data sample [51].

They are summarised in Tab. 5.15. The parameters βηη′ , f pr
ππ,ηη and f pr

ππ,ηη′ are fixed to zero due
to a lack of sensitivity.

Table 5.15 – P vector parameters determined by the BaBar collaboration [51].

Amplitude Phase

βππ 5.54±0.06 −0.054±0.007

βK K 15.64±0.06 −3.125±0.005

β4π 44.6±1.2 2.731±0.015

βηη 9.3±0.2 2.30±0.02

f pr
ππ,ππ 11.43±0.11 −0.005±0.009

f pr

ππ,K K
15.5±0.4 −1.13±0.02

f pr
ππ,4π 7.0±0.7 0.99±0.11

5.6.3 Generalised LASS-like parametrisation

The LASS experiment found a broad spinless resonance in the K −π+ spectrum from K −p →
K −π+n scattering [155]. This K ∗

0(1430)± resonance cannot be described with an usual Breit-
Wigner function. Instead a sum of a Breit-Wigner and a non resonant component parametrised
with an effective range is used. This LASS parametrisation is generalised to production experi-
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ments as
MKπ = R sinδR e i (δR+φR )e2i (δB+φB ) +B sin(δB +φB )e i (δB+φB ), (5.48)

where

tanδR = mrΓ(mab)

m2
r −m2

ab

, (5.49)

cotδB = 1

aq
+ r q

2
, (5.50)

with a the scattering length, r the effective interaction range and q the momentum of the
resonant particles in the (Kπ) resonance rest frame. All the parameters of this line shape are
fixed to those determined by BaBar [51]. Their are summarised in Tab. 5.16.

Table 5.16 – Generalised LASS line shape parameters for the Kπ S-wave component, taken from [51].

Parameter Value

MK ∗
0(1430) 1421.5±1.6MeV

ΓK ∗
0(1430) 247±3MeV

B 0.62±0.04

φB −0.100±0.010rad

R 1

φR 1.10±0.02rad

a 0.224±0.003GeV

r −15.01±0.13GeV
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5.7 Full fit

To estimate the CP observables (x±, y±) defined in Sec.5.1, an unbinned extended maximum
likelihood fit is performed along three variables: the B 0 reconstructed invariant mass (mB 0 )
and the Dalitz plot coordinates (m2+ and m2−). Only the candidates falling in a ±25MeV window
around the fitted B 0 mass are analysed. The full negative log-likelihood of the fit can be expressed
as

L =−2
∑

B 0cand .

ln

( ∑
c∈{al l categ .}

Nc f mass
c (mB 0 ;~p mass

c ) f B 0 model
c (m2

+,m2
−; x+, y+,κ,~p model

c )

)

−2
∑

B 0cand .

ln

( ∑
c∈{al l categ .}

Nc f mass
c (mB 0 ;~p mass

c ) f B 0 model
c (m2

+,m2
−; x−, y−,κ,~p model

c )

)
+2N

(5.51)

where the sum is performed on all the candidates in the signal region. c is the event categories
(signal/backgrounds), Nc is the yield of a category c , f mass

c is the mass PDF of category c , ~p mass
c

are the mass PDF parameters for category c, f B model
c is the decay model over the Dalitz plane

of category c and ~p model
c are the parameters of the decay model for category c. The (x±, y±)

cartesian parameters and the κ coherence factor are explicitly written out from ~p model
c , and

enter only in the B 0→ DK ∗0 signal decay model.
The distortion caused by the selection efficiency is taken into account in the f B model

c PDF.
This term is the multiplication of the physics decay model (P B

c ) by the efficiency description
function ( ε, obtained from the spline interpolation described in Sec. 5.3),

f B model
c (m2

+,m2
−) =P B

c (m2
+,m2

−) ·ε(m2
+,m2

−) (5.52)

The fit is preformed in two steps:

1. 1D fit of the B mass distribution (called “mass fit”), as explained in Sec. 5.5. It determines
the signal and background yields as wells as their mass shape parameters (~p mass

c ).

2. 3D fit along (mB 0 ,m2+,m2−) (called “Dalitz fit”), corresponding to the full likelihood of
Eq. 5.51. All the mass shapes and the yields are fixed from the mass fit alone.

5.7.1 Signal description

The signal PDF on the Dalitz plane, as explained in Sec. 2.6.1, is expressed with the functional

P (A, z,κ) = ∣∣A
∣∣2 +|z|2 ∣∣Ā

∣∣2 +2κRe
[
z A∗ Ā

]
. (5.53)

With AD (AD ) corresponding to the decay amplitude of D0→ K 0
S π

+π− (D0→ K 0
S π

−π+) described
in Sec. 5.6, the signal PDF is

P− ∝P (AD , z−,κ), (5.54)

P+ ∝P (AD , z+,κ), (5.55)

for the B 0 and B 0 candidates respectively. The κ coherence factor is fixed to 0.93, thanks to the
method explained in Sec. 5.9.1.
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5.7.2 Background description

The different background components do not follow the same distribution as the signal. The
following section presents the models used to describe the considered background component
over the Dalitz plane. All the background contributions are taken into account except the
B 0→ D∗0K ∗0 component which has a negligible yield of 0.12 (see Tab. 5.9).

B 0
s → DK ∗0 and B 0

s → D∗0K ∗0 contributions

In the B 0
s → DK ∗0 and B 0

s → D∗0K ∗0 channels, the Cabbibo-suppressed diagram is negligible
(order O (λ4), where λ is the Wolfenstein parameter) compared to the Cabbibo-favoured one
(O (λ2)). Hence, the CP violation effect is neglected for B 0

s → DK ∗0 and B 0
s → D∗0K ∗0, which

implies for this channels rB 0
s
= 0. Hence the Dalitz PDF for this contributions are

PB 0
s
=P (AD ,0,0), (5.56)

PB 0
s
=P (AD ,0,0), (5.57)

where P (A, z,κ) is the functional form defined in Eq. 2.37, and AD (AD ) is the decay amplitude

of D0→ K 0
S π

+π− (D0→ K 0
S π

−π+) given by the model explained in Sec.5.6. One important thing
to notice, is that a B 0

s (B 0
s ) candidate corresponds to a K ∗0 (K ∗0) daughter. It is the opposite

for the B 0 → DK ∗0 signal, since a K ∗0 (K ∗0) tags a B 0 (B 0). Hence, on the Dalitz plot of B 0

candidates the contributions of B 0
s → DK ∗0 and B 0

s → D∗0K ∗0 are taken. On the contrary, for the
Dalitz plot of B 0 candidates the contributions of B 0

s → DK ∗0 and B 0
s → D∗0K ∗0 are used.

B 0→ Dρ0 contribution

For the misidentified B 0→ Dρ0 component, the B flavor state cannot be determined. It results
in an incoherent superposition of D flavor states. Hence the Dalitz PDF for this contribution
assumes equal probability for the D0 and D0 states:

PDρ0 = |AD |2 +|AD |2
2

. (5.58)

Combinatorial background

As explained in Sec. 5.5.7, the combinatorial background is composed of fake and real D mesons.
The fake D are candidates made by random combination of four tracks faking the D→ K 0

S π
+π−

decay. Hence this contribution follows a phase space distribution

P fake D
Comb = 1. (5.59)

The real D candidates arise from two random tracks faking the K ∗0 candidates, attached to real
D mesons to make some B 0 candidates. Assuming equal probability for the D0 and D0 states,
the decay model of this background is an incoherent superposition of D0 and D0 amplitudes

P real D
Comb = |AD |2 +|AD |2

2
. (5.60)
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5.7.3 Fitter validation

In order to check the fitter implementation two kinds of toy studies are performed. First,
signal only pseudo-data samples are considered, then pseudo-data samples including all the
considered background. The physics input values chosen are rB 0 = 0.24 [59], δB 0 = 336◦ [59],
γ= 73.2◦ [11] and a coherence factor of κ= 0.93. These values are translated in terms of cartesian
parameters, see Tab. 5.17.

The generated pseudo-data samples are fitted to make the cartesian parameters pull distri-
butions. The asymmetric errors given by MINOS are used to compute the pulls (as defined in
Eq. 5.33).

Table 5.17 – Input values of the cartesian parameters used in the toys generation.

x− -0.03 x+ 0.16

y− -0.24 y+ 0.18

Signal only toy experiments

A total of one thousand signal only toy experiments are generated, first with one hundred times
the signal yield found in the data (around 10000 signal events, Fig. 5.58), then with the same
signal level as found in the data (around 100 signal events, Fig. 5.59).

The Dalitz fit is performed on these pseudo-data samples. With one hundred times the
signal yield of the data, the resulting pull distributions are in good agreement with a standard
normal distribution. However, for sample sizes similar to the yield in the data non gaussian
behaviour appears, and some non-negligible biases are seen to occur.
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Figure 5.58 – Pull distribution of the fitted cartesian parameters for signal only toy-generation with one
hundred times the signal level found in the data.
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Figure 5.59 – Pull distribution of the fitted cartesian parameters for signal only toy-generation with the
signal level found in the data.
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Signal and background toy experiments

A total of one thousand pseudo-data experiments are generated, with the same signal and
background yields as found in the real data (around 140 events). The Dalitz fit is then performed
on these samples. The resulting fitted values, errors, residuals and pull distributions of the
cartesian parameters are shown in Fig. 5.60–5.62. As expected from the signal only toy study,
some non negligible bias are present and have to be taken into account in the final result. They
are directly estimated from the fit result on the data (see Sec. 5.7.6).
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Figure 5.60 – Distributions of the error on the fitted cartesian parameters for pseudo-generation with the
signal and background levels found in the data.
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Figure 5.61 – Residual distributions of the fitted cartesian parameters for pseudo-generation with the
signal and background levels found in the data.
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Figure 5.62 – Pull distributions of the fitted cartesian parameters for pseudo-generation with the signal
and background levels found in the data.
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5.7.4 BDT working point optimisation

With the preliminary sensitivity study of Sec. 5.2.3 a first BDT cut at 0.7 was chosen. However
the extensive sensitivity study detailed in this section fixes the best working point at 0.75. The
method consists in generating 5×5000 pseudo-experiments corresponding each to five BDT cut
values 0.7, 0.75, 0.8, 0.85, 0.9. The Dalitz fit is then performed on these pseudo-experiments. The
resulting distributions of the (x±, y±) residuals are then fitted with a gaussian, since the widths
of these residuals are the expected sensitivity to these cartesian parameters.

Table 5.18 summarises the background and signal yields obtained in the data for different
BDT cuts. The cut at 0.65 is not considered further in the sensitivity study since it gives the same
signal level with a worsened purity.

Table 5.18 – Signal and background yields obtained in the data for different BDT cut values.

BDT cut Signal Background Signal ratio Background ratio

0.65 99±12 51.4±2.8 0.99 1.1

0.7 100±12 46.7±2.7 1 1

0.75 99±12 42.9±2.6 0.99 0.92

0.8 98±12 39.1±2.5 0.98 0.84

0.85 91±11 34.7±2.3 0.91 0.74

0.9 77±10 29.3±2.1 0.77 0.63

The result of this sensitivity study is shown in Fig. 5.63. The statistical uncertainty of the
cartesian parameters, estimated as the width of the residuals, is plotted as a function of the BDT
cut value. It appears that the cut at 0.75 gives an good sensitivity on (x±, y±), without being close
to the increase of the statistical uncertainty after 0.8. Hence this is the final working point which
is chosen.
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Figure 5.63 – Statistical sensitivity to the cartesian parameters as a function of the BDT cut.
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5.7.5 Fit result

In order to avoid introducing some bias during the development of the analysis, the Dalitz fit
was blind. The fitted values of the cartesian parameters were unknown. Only their errors were
available. The Dalitz plot and its projections with the line shape corresponding to the fit result
are shown in Fig. 5.64.
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Figure 5.64 – Dalitz plot (a) and its projections on m2− (b), m2+ (c) and m2
0 (d) made with the selected

B 0→ DK ∗0 data candidates. The blue line superimposed on the Dalitz projections corresponds to the fit
result.

After unblinding, the fit result on the cartesian parameters is

x− = −0.09+0.13
−0.13 ,

x+ = −0.10+0.27
−0.26 ,

y− = 0.23+0.15
−0.16 ,

y+ = −0.74+0.23
−0.26 .

(5.61)

The errors returned by the HESSE module are in good agreement with the evaluation performed
by the MINOS module [151]. They are 0.13, 0.26, 0.15 and 0.23 for x−, x+, y− and y+ respectively.
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The covariance matrix is

V =

x− y− x+ y+
0.017 0.0025 0. 0.

0.0025 0.024 0. 0.

0. 0. 0.068 −0.0005

0. 0. −0.0005 0.056

, (5.62)

leading to the correlation matrix

Ṽ =

x− y− x+ y+
1. 0.124 0. 0.

0.124 1. 0. 0.

0. 0. 1. −0.008

0. 0. −0.008 1.

. (5.63)

5.7.6 Fit bias

The stability of the Dalitz fit has been first checked with the pseudo-experiments described in
Sec. 5.7.3. However, to correctly evaluate the biases on the cartesian parameters, some pseudo-
experiments are generated with the values of the cartesian parameters found with the fit to
the real data set. These pseudo-experiments are then fitted with the Dalitz fitter. The resulting
error, residual and pull distributions are illustrated in Fig. 5.65, 5.66 and 5.67, respectively. The
uncertainties returned by the nominal fit, quoted in the previous section, are in good agreement
with the uncertainty distributions obtained with the pseudo-experiments (Fig. 5.65). In the
residual distributions (Fig. 5.66), a small fraction of the fitted values deviates significantly from
the generated ones for the y− and y+ parameters, making some satellite residuals (around −0.8
for y− and 1.3 for y+). These satellites are significantly away from the generated values, since
they can be seen in the tails of the pull distributions (Fig. 5.67). It could highlight some secondary
minimum present in the negative log-likelihood. That is why a full likelihood scan is performed
in the (x−, y−) and (x+, y+) spaces to ensure that the nominal fit does not suffer from a secondary
minimum (see Fig. 5.96 of Sec. 5.9.2).

The evaluation of the fitter biases is made thanks to a Gaussian fit of the residuals. For the
y± distributions, only the pseudo-experiments with residuals smaller than 0.5 are taken into
account. The result of this fit is illustrated in Fig. 5.68. The fitted mean of the Gaussians are

µx− = −0.001±0.006,

µx+ = 0.008±0.008,

µy− = −0.034±0.005,

µy+ = 0.038±0.006.

(5.64)

For completeness, the corresponding pulls and their Gaussian fits superimposed are shown in
Fig. 5.69. Since the biases are small compared to the statistical uncertainty, their absolute values
are taken as systematic uncertainties.

164



5.7. Full fit

"fit
−x

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
v
e
n
ts

 /
 (

 0
.0

1
0
5
 )

0

20

40

60

80

100

120

140

160

−fitted error of x−fitted error of x

"fit
+x

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
v
e
n
ts

 /
 (

 0
.0

1
0
5
 )

0

20

40

60

80

100

+fitted error of x+fitted error of x

"fit
−

y
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
v
e
n
ts

 /
 (

 0
.0

1
0
5
 )

0

20

40

60

80

100

120

140

160

180

200

−
fitted error of y

−
fitted error of y

"fit
+

y
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
v
e
n
ts

 /
 (

 0
.0

1
0
5
 )

0

20

40

60

80

100

120

140

160

+
fitted error of y

+
fitted error of y

Figure 5.65 – Distributions of the error on the fitted cartesian parameters for pseudo-generation with the
cartesian parameters found in data.
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Figure 5.66 – Residual distributions of the fitted cartesian parameters for pseudo-generation with the
cartesian parameters found in data.
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Figure 5.67 – Pull distributions of the fitted cartesian parameters for pseudo-generation with the cartesian
parameters found in data.
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Figure 5.68 – Residual distributions of the fitted cartesian parameters for pseudo-generation with the
signal and background levels found in data. Pseudo-experiments with y± residuals larger than 0.5 are not
taken into account.
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Figure 5.69 – Pull distributions of the fitted cartesian parameters for pseudo-generation with the signal
and background levels found in data. Pseudo-experiments with y± residuals larger than 0.5 are not taken
into account.
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5.8 Systematic uncertainties

In addition to the statistical uncertainty on the fitted cartesian parameters, several sources of
systematic uncertainty must be taken into account. First the uncertainty on the mass fit result,
used as an input to the Dalitz fit, has to be propagated. Then any potential mis-modelling effect
of the different background components needs to be evaluated. The non perfect knowledge of
the efficiency description over the Dalitz plane produces also an additional uncertainty. Finally
the model used for the D→ K 0

S π
+π− decay amplitude has its own limitations to be accounted

for. Each time a systematic uncertainty is quoted in percentage of the statistical uncertainty,
the latter corresponds to the uncertainty of the nominal fit returned by the HESSE module (see
Sec. 5.7.5). All the systematic uncertainties have been determined before unblinding the result,
by measuring exclusively the deviations to the nominal result (see Eq. 5.65).

5.8.1 Mass fit induced systematic uncertainty.

As explained in Sec. 5.7, the minimisation evaluating the CP observables (x±, y±) is performed
in two steps. First the mass fit is run. Its results, detailed in Sec. 5.5.4, are used as an input to the
3D minimisation over the (mB 0 ,m2+,m2−) space. All parameters related to the mass fit are fixed to
their convergence value. To assess the effect of the uncertainty on these parameters, the Dalitz
fit is performed several times, with different alternative mass fit result configurations.

Mass fit floating parameters

The floating parameters listed in Table 5.8 are determined by the mass fit with a certain accuracy.
In order to evaluate the effect of their uncertainty on the cartesian parameter evaluation, they
are all varied within their uncertainties and taking into account their correlations. Only the
constraint on the B 0→ Dρ0 yield is fixed to its nominal value. As it is a special parameter, with a
gaussian constraint in the nominal fit, its systematic effect is evaluated separately from the other
floating parameters. From this parameter fluctuations, one thousand alternative mass fit results
are generated. For each alternative mass fit result one corresponding Dalitz fit is performed.
The values of the cartesian parameters obtained from the alternative mass fit results are then
compared to the nominal values, by computing the residuals defined as

δx± = xalt
± −xnom

± ,

δy± = yalt
± − ynom

± ,
(5.65)

where (xalt
± , yalt

± ) is the alternative cartesian parameter result and (xnom
± , ynom

± ) the nominal result.
The distributions of these residuals obtained with this one thousand alternative mass fit

results are illustrated in Fig. 5.70. A Gaussian fit on the distributions determine the standard
deviation on (x±, y±). The widths of the Gaussians give

|δx−| = (17.0±0.4) ·10−3,

|δx+| = (6.6±0.1) ·10−3,

|δy−| = (12.1±0.3) ·10−3,

|δy−| = (39.2±0.9) ·10−3.

(5.66)

Even though some distributions do not behave well like Gaussian, taking the root mean square
instead of the fitted width leads to essentially the same values.

168



5.8. Systematic uncertainties

gen
−­xfit

−x

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

E
v
e

n
ts

 /
 (

 0
.0

1
 )

0

50

100

150

200

250

 residuals−x

_xm_resid = ­0.00264 +/­ 0.0005µ

_xm_resid =  0.0170 +/­ 0.0004σ

 residuals−x

gen
+­xfit

+x

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

E
v
e

n
ts

 /
 (

 0
.0

1
 )

0

100

200

300

400

500

600

 residuals+x
_xp_resid = ­0.00156 +/­ 0.0002µ

_xp_resid =  0.0066 +/­ 0.0001σ

 residuals+x

gen

−
­yfit

−
y

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

E
v
e

n
ts

 /
 (

 0
.0

1
 )

0

50

100

150

200

250

300

 residuals
−

y
_ym_resid = ­0.00091 +/­ 0.0004µ

_ym_resid =  0.0121 +/­ 0.0003σ

 residuals
−

y

gen

+
­yfit

+
y

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

E
v
e

n
ts

 /
 (

 0
.0

1
 )

0

20

40

60

80

100

120

 residuals
+

y
_yp_resid =  0.006 +/­ 0.001µ

_yp_resid =  0.0392 +/­ 0.0009σ

 residuals
+

y

Figure 5.70 – Deviation to the nominal fit values of the cartesian parameters fitted with the alternative
mass fit parameters.

B 0→ D0π+π− background contribution

The yield of the mis-identified B 0 → Dρ0 background is gaussian-constrained to the values
figuring in Eq. 5.30. To take into account the systematic effect arising from the uncertainty
on the B 0 → Dρ0 fraction, the Dalitz fit is repeated with the fraction varied within its ±1σ
uncertainty. The resulting residuals are summarised in Table 5.19.

However B 0→ Dρ0 is not the only contribution in the general B 0→ D0π+π− decay. As shown
in the B 0 → D0π+π− Dalitz plot analysis performed by LHCb [156], the other contributions
correspond up to half the B 0 → Dρ0 one. Hence, to determine the effect of a more general
B 0→ D0π+π− contribution in addition to the B 0→ Dρ0 decay, the B 0→ Dρ0 fraction is fixed to
its upper value (+1σ) and multiplied by 1.5. The other B 0→ D0π+π− contributions are assumed
to follow the same mass distribution as the B 0→ Dρ0 mode. The Dalitz fit is then repeated and
the resulting deviation on the cartesian parameters are in Table 5.19.

The systematic uncertainty associated to the B 0 → D0π+π− background contribution is
deduced from the largest absolute value of the residuals for each cartesian parameter. This gives

|δx−| = (0.98±0.01) ·10−3,

|δx+| = (0.60±0.35) ·10−3,

|δy−| = (0.43±0.02) ·10−3,

|δy+| = (2.02±0.34) ·10−3.

(5.67)
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Table 5.19 – Deviation on the cartesian parameters arising from the B 0→ D0π+π− contribution uncer-
tainty.

B0→ Dρ0 fraction variation δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

ρLL +1σ ρDD +1σ −0.13±0.01 0.06±0.09 −0.23±0.03 0.45±0.13

ρLL −1σ ρDD −1σ 0.45±0.01 −0.35±0.11 0.07±0.02 −0.65±0.02

ρLL +1σ ρDD −1σ −0.02±0.06 −0.15±0.03 0.13±0.01 −0.20±0.07

ρLL −1σ ρDD +1σ 0.04±0.05 0.12±0.03 −0.11±0.01 0.17±0.06

1.5(ρLL +1σ) 1.5(ρDD +1σ) −0.98±0.01 0.60±0.35 −0.43±0.02 2.02±0.34

These uncertainties represent less than 1% of the statistical uncertainties.

Mass difference between B 0 and B 0
s peaks

In the nominal mass fit, the mass difference between the B 0 and B 0
s peaks is fixed to the PDG [20]

value δm = (87.19±0.29)MeV. The mass fit is repeated twice with the mass shift varied within
its uncertainty. The resulting deviations on the fitted cartesian parameters is summarised in
Table 5.20.

Table 5.20 – Deviation on the cartesian parameters arising from the B 0–B 0
s mass difference uncertainty.

B0-B0
s mass difference variation δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

δm +1σ −0.53±0.08 −0.50±0.35 −0.64±0.14 −2.33±0.33

δm −1σ 0.82±0.04 0.21±0.35 0.43±0.18 2.23±0.40

The systematic uncertainty associated to the B 0-B 0
s mass difference is deduced from the

largest absolute value of the residuals for each cartesian parameter. This gives

|δx−| = (0.82±0.04) ·10−3,

|δx+| = (0.50±0.35) ·10−3,

|δy−| = (0.64±0.14) ·10−3,

|δy+| = (2.33±0.33) ·10−3.

(5.68)

Mass PDF made with BDTB

In the nominal mass fit the Crystall Ball function for the signal or the different RooKeys PDF, are
determined with simulated samples on which the BDTA is applied. To check that this arbitrary
choice is not annoying, an alternative mass fit is performed with the mass PDF determined from
BDTB instead. Then the Dalitz fit is repeated on data with this alternative mass fit result. The
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resulting deviations on the cartesian parameters compared to the nominal result is

δx− = (−0.11±0.04) ·10−3,

δx+ = (0.17±0.04) ·10−3,

δy− = (−0.42±0.02) ·10−3,

δy+ = (1.22±0.11) ·10−3.

(5.69)

The systematic uncertainty assigned to this very small effect is the absolute value of these
deviations.

Signal PDF

In the nominal mass fit the B 0→ DK ∗0 and B 0
s → DK ∗0 peaks are described with a double Crystal

Ball function (see Sec.5.5.1). Two types of systematic uncertainties arising from this modelling
are investigated:

• the uncertainty on the Crystal Ball parameters which are fixed according to the fit result
on the simulated sample,

• the uncertainty due to the use of the Crystal Ball model itself.

To evaluate the effect of the uncertainty on the Crystal Ball parameters, one thousand
alternative parameters sets are generated randomly within their uncertainties and taking into
account their correlations. The mass fit and the Dalitz fit are repeated accordingly on the data.
The distribution of the deviation on the fitted cartesian parameters compared to the nominal
result is shown in Fig. 5.71. These distributions are fitted with a Gaussian. It highlights some
small but non negligible biases. That is why the quadratic sum of the width and the mean of the
fitted Gaussian is taken as a systematic uncertainty:

|δx−| = 0.39 ·10−3,

|δx+| = 0.35 ·10−3,

|δy−| = 0.35 ·10−3,

|δy+| = 0.74 ·10−3.

(5.70)

To check that these residuals distributions are expected, the same procedure is applied to a
pseudo data sample. Around 16k events are generated with the same signal and background
level found in the real data. Then the nominal and alternative mass and Dalitz fits are performed
again on this sample. The resulting distributions of the deviations on the cartesian parameters
compared to the nominal result are shown in Fig. 5.72. The shape of the distributions is close to
what is found with the real data, with smaller width thanks to the higher statistic available in the
pseudo-data sample.

To evaluate the effect of using a Crytal Ball model (Fig. 5.40), a triple Gaussian function
is used instead. The width ratio and the mass shift between the three Gaussians are fixed to
the values obtained in the simulation (Fig. 5.73). An alternative mass fit is performed with this
triple Gaussian, and the output result is used to perform an alternative Dalitz fit. The resulting
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Figure 5.71 – Deviation to the nominal values of the cartesian parameters fitted on data, when the Crystal
Ball parameters are varied.

deviations on the cartesian parameters compared to the nominal result are equal to

δx− = (4.08±0.04) ·10−3,

δx+ = (−1.87±0.99) ·10−3,

δy− = (3.93±0.21) ·10−3,

δy− = (−9.92±0.06) ·10−3.

(5.71)

The systematic uncertainty assigned to this effect is the absolute value of these deviations.

Proportion of D∗0→ D0π0/D∗0→ D0γ in B 0
(s)→ D∗0K ∗0

In the nominal mass fit the D∗0→ D0π0/D∗0→ D0γ decay proportion from the B 0
(s)→ D∗0K ∗0

background is fixed according to the relative branching fractions and efficiencies (see Sec. 5.5.2).
The parameters fixing this proportion, defined in Eq. 5.24, are equal to

GLL
010 = 0.378±0.033

GLL
101 = 0.373±0.033

GDD
010 = 0.379±0.033

GDD
101 = 0.374±0.033

(5.72)
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Figure 5.72 – Deviation to the nominal values of the cartesian parameters fitted on pseudo-data, when
the Crystal Ball parameters are varied.

To determine the systematic uncertainty arising from fixing these parameters, the mass fit is
repeated after varying the GT T

X parameters within their uncertainties. The Dalitz fit is repeated
accordingly to determine the resulting deviations on the cartesian parameters, compared to the
nominal result. These deviations are summarised in Table 5.21.

Table 5.21 – Deviation on the cartesian parameters arising from fixing the D∗0 → D0π0/D∗0 → D0γ

proportion in the B 0
(s)→ D∗0K ∗0 background.

D∗0→ D0π0/D∗0→ D0γ proportion δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

GLL
010 +1σ GDD

010 +1σ GLL
101 +1σ GDD

101 +1σ −1.71±0.48 1.40±0.44 −3.12±0.08 11.97±0.69

GLL
010 −1σ GDD

010 −1σ GLL
101 −1σ GDD

101 −1σ 2.66±0.55 −2.07±0.53 3.78±0.16 −14.49±0.68

GLL
010 +1σ GDD

010 +1σ GLL
101 −1σ GDD

101 −1σ −0.42±0.14 0.36±0.12 −0.91±0.02 4.66±0.29

GLL
010 −1σ GDD

010 −1σ GLL
101 +1σ GDD

101 +1σ 0.06±0.04 −0.12±0.02 0.30±0.05 −2.88±0.20

The systematic uncertainty associated to the D∗0→ D0π0/D∗0→ D0γ proportion is deduced
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Figure 5.73 – Fit of the B 0 reconstructed invariant mass of simulated B 0→ DK ∗0 LL and DD candidates,
with a triple Gaussian PDF. It is the alternative model to be compared with the double Crystall Ball
function used in the nominal mass fit.

from the largest absolute value of the deviations for each cartesian parameter. This gives

|δx−| = (2.66±0.55) ·10−3,

|δx+| = (2.07±0.53) ·10−3,

|δy−| = (3.78±0.16) ·10−3,

|δy−| = (14.49±0.68) ·10−3.

(5.73)

B 0→ D∗0K ∗0 effects

Two effects in the treatment of the B 0→ D∗0K ∗0 background are studied.

• In the nominal mass fit, it is assumed that the B 0 → D∗0K ∗0 and B 0
s → D∗0K ∗0 back-

grounds have the same helicity components proportion, described with the common pa-
rameter α010 (see Sec. 5.5.2). To check the effect of this assumption, an alternative mass fit
is performed using different parameters α010 for B 0

s → D∗0K ∗0 and β010 for B 0→ D∗0K ∗0.

• In the nominal Dalitz fit, the B 0 → D∗0K ∗0 contribution is neglected. Two alternative
Dalitz fits are performed on data, both without neglecting this contribution (using a model
without CP violation), and one using the β010 parameter and the other not.

The deviations on the cartesian parameters compared to the nominal result, resulting from
these two effects, are summarised in Table 5.22.
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Table 5.22 – Deviation on the cartesian parameters arising from neglecting the B 0→ D∗0K ∗0 background
and using a different helicity proportion parameter for B 0→ D∗0K ∗0 and B 0

s → D∗0K ∗0 decays.

B0→ D∗0K∗0 neglected Use β010 δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

yes yes −0.25±0.09 0.16±0.02 −0.38±0.04 1.13±0.10

no yes −0.42±0.13 0.32±0.10 −0.72±0.04 2.34±0.14

no no −0.19±0.05 0.17±0.09 −0.36±0.04 1.26±0.04

The systematic uncertainty associated to the B 0→ D∗0K ∗0 handling is deduced from the
largest absolute value of the deviations for each cartesian parameter. This gives

|δx−| = (0.42±0.13) ·10−3,

|δx+| = (0.32±0.10) ·10−3,

|δy−| = (0.72±0.04) ·10−3,

|δy+| = (2.34±0.14) ·10−3.

(5.74)

Fake D0 candidate yield uncertainty

The determination of the amount of fake D0 among the combinatorial candidates has a large
uncertainty. As explained in Sec. 5.5.7, the nominal fit uses nLL

fakeD = 2 and nDD
fakeD = 2. Alternative

Dalitz fits are performed on the data, using nLL
fakeD = 0 or 8 and nDD

fakeD = 0 or 7. The resulting
deviation on the cartesian parameters are summarised in Table 5.23.

Table 5.23 – Deviation on the cartesian parameters arising from the fake D0 background yield uncertainty.

nLL
fakeD nDD

fakeD δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

8 7 −47±12 −18.1±4.8 16.6±0.9 −16±9

0 0 29±8 8±4 −13.4±0.8 5±3

8 0 −35±12 3±10 4±4 −34±5

0 7 20±8 −11±8 1±3 24±1

The systematic uncertainty associated to the fake D0 yield uncertainty is deduced from the
largest absolute value of the deviations for each cartesian parameter. This gives

|δx−| = (47±12) ·10−3,

|δx+| = (18.1±4.8) ·10−3,

|δy−| = (16.6±0.9) ·10−3,

|δy+| = (34±5) ·10−3.

(5.75)

This systematic uncertainty evaluation assumes that the fake D0 candidates are well described
by an uniform distribution across the Dalitz plane (see Sec. 5.7.2). The potential mis-modelling
of the fake D0 background is assessed in Sec. 5.8.2.
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

Additional cut on the K 0
S flight distance significance

As seen in Sec. 5.2.5, looking at the K 0
S mass sidebands there is no evidence of contamination

from the D0→ππππ background. Since the statistics is low, this estimation might suffer from
fluctuations. As a conservative approach, the effect of applying a strong cut on the K 0

S flight
distance significance, Ks_DKs_FDSig > 3 on the LL candidates is evaluated. The mass fit with
this additional cut is illustrated in Fig 5.74. This mass fit adopts a strategy slightly different to the
nominal version. Here the B 0→ DK ∗0 yields are formulated in terms of fraction of B 0

s → DK ∗0

yields, with the B 0/B 0
s proportion identical in LL and DD categories. Even if there is an additional

cut on the LL sample, the effect should be the same on B 0→ DK ∗0 and B 0
s → DK ∗0 candidates.

Hence, the B 0/B 0
s ratio has to be the same for LL and DD candidates. The resulting yields are

summarised in Table 5.24. The LL signal yield decreases from 37±7 in the nominal fit, to 27±4,
with a decrease of the LL sample size in the [4.9,5.8]GeV region from 612 to 493 candidates.
Therefore, assuming a correlation of 493/612, this 10 signal event difference has a significance
around 2.2σ. This loss cannot only be explained by a reduction of the signal due to the K 0

S

flight distance significance cut. Indeed, according to the simulation, this cut has an efficiency
around 98.7% on the signal. However, with the given statistics it is difficult to evaluate correctly
the source of this loss. Consequently, it is decided to evaluate the systematic effect coming
from adding this extra cut on the K 0

S flight distance significance on LL candidates. The Dalitz
fit is repeated with this additional cut applied, and the resulting deviations on the cartesian
parameters compared to the nominal result are

δx− = −0.070±0.085,

δx+ = 0.054±0.135,

δy− = 0.005±0.072,

δy+ = 0.021±0.121.

(5.76)

The uncertainties on these deviations take into account the correlation between the nominal
dataset (141 candidates) and the dataset reduced by the additional K 0

S flight distance cut (122
candidates). The systematic uncertainties associated to this effect are taken as the absolute
values of these deviations.
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Figure 5.74 – Invariant mass fit of B 0→ DK ∗0 candidates with an additional cut on the K 0
S flight distance

significance for LL candidates. LL (DD) candidates are plotted in left (right).
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5.8. Systematic uncertainties

Table 5.24 – Total yields in the B 0 signal region, with the additional cut on the K 0
S flight distance.

Component Yield

Total LL DD

N (B0→ DK∗0) 83±11 27±4 56±8

N (Comb) 24.8±1.7 9.4±1.0 15.5±1.3

N (B0
s → D∗0K∗0) 12.9±2.0 4.4±0.9 8.5±1.4

N (B0→ D∗0K∗0) 0.13±0.03 0.06±0.02 0.07±0.02

N (B0→ Dρ0) 0.57±0.11 0.20±0.05 0.37±0.09

N (B0
s → DK∗0) 1.70±0.31 0.55±0.12 1.15±0.22

Total background 40.1±2.5 14.6±1.3 25.5±1.9

5.8.2 Background description on the Dalitz plane

The B 0→ DK ∗0 data sample is mainly polluted by two background sources, the combinatorial
candidates (with fake or real D0) and the partially reconstructed B 0

s → D∗0K ∗0 decay. To describe
them on the Dalitz plane some assumptions are made. In this section, the potential systematic
uncertainties arising from these assumptions are evaluated. The effect of the B+→ D0π+π+π−

and Λ0
b → D0pπ− backgrounds is also determined.

Fake D0 background model

In Sec. 5.8.1, the systematic uncertainty coming from the level of fake D0 background was
determined. Here, the systematic uncertainty arising from a potential mis-modelling on the
Dalitz plane is studied. Indeed, in the nominal fit, the fake D0 background is supposed to be
uniformly distributed across the Dalitz plane. This assumption can be partially wrong if an
amount of fake D0 candidates are coming from resonances such as K ∗±. This resonance decays
as K ∗±→ K 0

S π
± and can be associated to a random π∓ track to form a fake D0.

In order to check if any resonance is present among the fake D0 background, the Dalitz plot
projections on m2+, m2− and m2

0 are made with the sPlot technique [157]. The sWeights are taken
from the D0 mass fit made to estimate the amount of fake D0 background (see Sec. 5.5.7). In
this way the real D0 contribution is subtracted and only the fake D0 distribution remains. The
result of this “fake D0” weighting is shown in Fig. 5.75 and 5.76. No clear structure is visible.
For instance a K ∗± resonance would make a peak around 0.8−0.9GeV2. However the statistical
sensitivity is too poor to draw any conclusion from these distributions. Two other methods are
carried out, based on the candidates lying in the D0 mass sidebands.

First, to have a rough estimation of the maximal fraction of K ∗± resonance present in the fake
D0 background, the D0 mass sidebands are studied. Indeed candidates with a reconstructed D0

mass far from the real mass are fake D0 candidates. The Dalitz plot of the candidates lying outside
the ±30MeV mass window around the D0 mass, but passing the preselection requirements, is
made (Fig. 5.77). Only the preselection is applied since the statistics is too low after the BDT cut.
Here again no visible structure can easily be identified. In a conservative approach, the maximal
fraction of K ∗± resonance among the fake D0 candidates is estimated as the number of events
inside the 0.742 < m2

± < 1.042GeV2 region compared to the total number of events. The estimate
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Figure 5.75 – Dalitz plot projections of B 0→ DK ∗0 LL candidates found in the data, unweighted (a) and
sWeighted to keep only the fake D0 contribution (b).

yields a maximum of 17%. The Dalitz fit is then performed assuming the fake D0 background
model as 83% of a flat distribution and 17% of a K ∗± resonance. The fake D0 yields are also set to
their maximal upper fluctuation nLL

fakeD = 8 and nDD
fakeD = 7. The deviations on the fitted cartesian

parameters compared to the nominal result are found to be

δx− = (−39±7) ·10−3,

δx+ = (−3±7) ·10−3,

δy− = (4.6±0.8) ·10−3,

δy+ = (23±11) ·10−3.

(5.77)

These deviations are smaller in absolute values than those found in Sec.5.8.1, when only the fake
D0 yields vary (and the Dalitz model used is 100% uniform). They are therefore not taken into
account.

Another approach to evaluate the uncertainty on the fake D0 background model consists in
taking the Dalitz distribution found in the D0 mass sidebands (Fig. 5.77). As the BDT efficiency
is flat across the Dalitz plane (Fig. 5.78), the Dalitz plot of candidates after preselection in the D0

sidebands corresponds to the fake D0 distribution. Thus an alternative Dalitz fit is performed
with a spline interpolation on the Dalitz plot from the D0 sidebands, instead of using a flat model
for the fake D0 model. The fake D0 yields are set to their maximal upper fluctuation nLL

fakeD = 8
and nDD

fakeD = 7. The deviations on the fitted cartesian parameters compared to the nominal

178



5.8. Systematic uncertainties

)
2

 (GeV+
2m

0.5 1 1.5 2 2.5 3

 )
2

E
v
e

n
ts

 /
 (

 0
.1

5
 G

e
V

0

2

4

6

8

10

12

14

16

18

20

22

24

 (DD)
+

2Projection on m

)
2

 (GeV−
2m

0.5 1 1.5 2 2.5 3

 )
2

E
v
e

n
ts

 /
 (

 0
.1

5
 G

e
V

0

2

4

6

8

10

12

14

16

18

20

22

24

 (DD)
−

2Projection on m

)2 (GeV
0
2m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
2

E
v
e

n
ts

 /
 (

 0
.1

 G
e

V

0

2

4

6

8

10

12

14

 (DD)
0

2Projection on m

(a)

)
2

 (GeV+
2m

0.5 1 1.5 2 2.5 3

 )
2

E
v
e

n
ts

 /
 (

 0
.1

5
 G

e
V

­1

0

1

2

3

4

5

6

 (DD)
+

2FakeD­weighted projection on m

)
2

 (GeV−
2m

0.5 1 1.5 2 2.5 3

 )
2

E
v
e

n
ts

 /
 (

 0
.1

5
 G

e
V

­2

­1

0

1

2

3

4

5

6

 (DD)
−

2FakeD­weighted projection on m

)2 (GeV
0
2m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 )
2

E
v
e

n
ts

 /
 (

 0
.1

 G
e

V

0

1

2

3

4

5

6

7

 (DD)
0

2
FakeD­weighted projection on m

(b)

Figure 5.76 – Dalitz plot projections of B 0→ DK ∗0 DD candidates found in the data, unweighted (a) and
sWeighted to keep only the fake D0 contribution (b).

result are found to be

δx− = (−35±9) ·10−3,

δx+ = (19±5) ·10−3,

δy− = (21.7±0.3) ·10−3,

δy+ = (−24±11) ·10−3.

(5.78)

These deviations are of the same order of magnitude as the deviations obtained with only a
variation of the fake D0 yields (Sec. 5.8.1). The effects of the fake D0 yield variation and of the mis-
modelling of this background are related. As a consequence, there are not added in a quadratic
sum. The total systematic uncertainty arising from the fake D0 background (combining yields
and model effect) is taken as the largest absolute values between the deviations obtained when
the yields are varied (Eq. 5.75) and when the D0 sidebands distribution is used instead of an
uniform model (Eq. 5.78).

Real D0 background model

As explained in Sec. 5.7.2, the real D0 background description on the Dalitz plane assumes
equal probability for the D0 and D0 states. These real D candidates are combined with two
random tracks corresponding to a fake K ∗0 candidate. This assumption rely on the fact that the
D0 and D0 states are produced in equal proportion, in the LHCb acceptance. However LHCb
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Figure 5.77 – Dalitz plot and its projections of B 0→ DK ∗0 candidates in the D0 mass sidebands found in
the data (LL and DD candidates are merged).

measured a small D± production asymmetry in 7TeV pp collisions [158]. To determine the
potential systematic effect of supposing the D0 and D0 states in equal proportion, the Dalitz
fit is repeated including a D0-D0 production asymmetry of −1%. The deviations on the fitted
cartesian parameters compared to the nominal result are

δx− = (−0.07±0.04) ·10−3,

δx+ = (−0.16±0.23) ·10−3,

δy− = (−0.36±0.05) ·10−3,

δy+ = (−1.05±0.12) ·10−3.

(5.79)

The absolute values of these deviations are taken as the systematic uncertainties arising from the
D0-D0 production asymmetry. They correspond to less then 0.5% of the statistical uncertainty.
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Figure 5.78 – BDT efficiency across the Dalitz plane (LL and DD candidates are merged).

B 0
s → D∗0K ∗0 background model

As explained in Sec. 5.7.2, the decay model for the partially reconstructed background B 0
s →

D∗0K ∗0 neglects CP violation. This assumption is safe since there is a difference of two order
of magnitude – O (λ2) – between the Vcb and Vub diagrams. Therefore the interference is very
suppressed, and the CP violation effect very small. However the B 0

s → D∗0K ∗0 decay is the
second most prominent background. Hence neglecting CP violation effect in this background
could slightly bias the CP violation observables evaluated with the B 0→ DK ∗0 signal.

In order to determine the systematic effect arising from neglecting CP violation in B 0
s →

D∗0K ∗0 several alternative Dalitz fits are performed. In each of these fits the CP violation param-
eters relative to B 0

s → D∗0K ∗0 are fixed to γ= 73.2◦ [11], rB 0
s
= 0.02 (CKM elements magnitude

ratio) and δB 0
s
= {0◦,45◦,90◦,135◦,180◦,225◦,270◦,315◦}. The resulting deviations on the carte-

sian parameters compared to the nominal fit result are summarised in Table 5.25. The model
used to describe the B 0

s → D∗0K ∗0 decays consists in an incoherent sum of D∗0 → D0π0 and
D∗0→ D0γ contributions (the final state being different, they do not interfere). Following the
approach explained in Sec. 5.5.2, the relative proportion of D∗0→ D0π0 and D∗0→ D0γ is set to
62% and 38% respectively. Between the D∗0→ D0π0 and D∗0→ D0γ decays, there is an effective
strong phase shift of π which is taken into account [159].

The systematic uncertainty associated to the CP violation effect in B 0
s → D∗0K ∗0 background

is deduced from the largest absolute value of the deviations for each cartesian parameter:

|δx−| = (2.46±0.03) ·10−3,

|δx+| = (5.03±0.24) ·10−3,

|δy−| = (0.75±0.09) ·10−3,

|δy+| = (0.45±0.07) ·10−3.

(5.80)

This systematic uncertainty corresponds to less than 2% of the statistical uncertainty.
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Table 5.25 – Deviation on the cartesian parameters when CP violation in the B 0
s → D∗0K ∗0 background is

allowed.

rB 0
s

γ (◦) δB 0
s

(◦) δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

0.02 73.2 0 −0.92±0.04 −0.91±0.36 0.39±0.07 −0.07±0.18

0.02 73.2 45 1.09±0.05 −4.21±0.44 0.54±0.10 0.39±0.10

0.02 73.2 90 2.46±0.03 −5.03±0.24 0.36±0.19 0.07±0.05

0.02 73.2 135 2.41±0.01 −2.93±0.11 −0.03±0.17 −0.02±0.17

0.02 73.2 180 1.17±0.06 0.75±0.40 −0.62±0.08 −0.36±0.26

0.02 73.2 225 −0.83±0.06 4.06±0.47 −0.75±0.09 −0.43±0.18

0.02 73.2 270 −2.28±0.04 4.86±0.27 −0.56±0.19 −0.42±0.03

0.02 73.2 315 −2.150±0.003 2.76±0.08 −0.17±0.16 −0.45±0.07

B+→ D0π+π+π− background contribution

In the nominal fit, the potential contribution at low B mass of partially reconstructed B+→
D0K +π+π− and B+→ D0π+π+π− decays is neglected. They can potentially alter the slope of
the exponential describing the combinatorial background. To determine the effect of such
backgrounds, their description is included in an alternative version of the mass and Dalitz fit.
In the mass fit, the B+→ D0K +π+π− and B+→ D0π+π+π− background are described each with
RooKeys PDF built from simulated samples. As the fit cannot converge when these contributions
are simply added, their relative proportion to the B 0

s → DK ∗0 mode is fixed according to the
branching fraction and efficiency:

ρKππ ≡ N (B+→ D0K +π+π−)

N (B 0
s → DK ∗0)

= 0.237±0.110,

ρπππ ≡ N (B+→ D0π+π+π−)

N (B 0
s → DK ∗0)

= 0.134±0.059.

(5.81)

As a conservative approach, the upper fluctuation of these fractions is assumed. The result of
this alternative mass fit is illustrated in Fig. 5.79. The resulting yields in the B 0→ DK ∗0 signal
range are summarised in Table 5.26. The B+→ D0K +π+π− contribution is negligible, whereas a
small contribution of B+→ D0π+π+π− arises (2 candidates in total). Consequently, the Dalitz fit
is performed taking into account this additional B+→ D0π+π+π− contribution. Assuming equal
mis-ID probability either for π+ or for π−, the B+→ D0π+π+π− decay cannot be distinguished
from the B−→ D0π−π−π+ one. To make a K ∗0 candidate from mis-identification, in every case
a (π+π−) pair is reconstructed, and in the B+ (B−) case a π+ (π−) is missed by the reconstruction.
Therefore, the same model as for the B 0→ Dρ0, an incoherent sum of D0 and D0 amplitudes, is
used on the Dalitz plane. The resulting deviations on the fitted cartesian parameters, compared
to the nominal result are

δx− = (1.22±0.40) ·10−3,

δx+ = (−0.73±0.50) ·10−3,

δy− = (0.97±0.38) ·10−3,

δy+ = (−2.24±0.56) ·10−3.

(5.82)
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5.8. Systematic uncertainties

The absolute values of these deviations are taken as the systematic uncertainties arising from
the B+→ D0π+π+π− background contribution. They represent less than 1% of the statistical
uncertainties.
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Figure 5.79 – Invariant mass fit of B 0 → DK ∗0 candidates with the additional contribution of B+ →
D0K +π+π− and B+→ D0π+π+π− backgrounds, for LL and DD categories merged.

Table 5.26 – Total yields in the B 0 signal region, with the B+→ D0K +π+π− and B+→ D0π+π+π− contri-
butions included.

Component Yield

Total LL DD

N (B0→ DK∗0) 99±12 37±7 63±9

N (Comb) 24.5±1.7 10.6±1.1 13.9±1.3

N (B0
s → D∗0K∗0) 13.5±2.2 5.3±1.0 8.2±1.4

N (B0→ D∗0K∗0) 0.09±0.03 0.04±0.02 0.05±0.02

N (B0→ Dρ0) 0.62±0.11 0.25±0.07 0.37±0.09

N (B0
s → DK∗0) 1.73±0.31 0.66±0.13 1.07±0.20

N (B+→ D0K+π+π−) 0.111±0.008 0.042±0.005 0.069±0.006

N (B+→ D0π+π+π−) 2.02±0.15 0.77±0.09 1.25±0.12

Total background 42.6±2.5 17.6±1.5 25.0±2.5
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

Λ0
b → D0pπ− background contribution

Despite the PID cut on the charged kaon daughter of the K ∗0, this kaon could in some cases be a
mis-identified proton coming from a Λ0

b → D0pπ− decay. In this way, an invariant mass lower
than the Λ0

b is reconstructed, and could lie into the B 0 mass range. To determine the potential
systematic effect arising from this background, alternative versions of the mass and Dalitz fits
are performed including the Λ0

b → D0pπ− contribution. The mass distribution is described with
a RooKeys PDF determined from a simulated sample. The proportion of Λ0

b → D0pπ− relative

to the B 0
s → DK ∗0 mode is fixed according to the branching fraction and efficiency ratios:

ρΛ
0
b = 0.00612±0.00456. (5.83)

A conservative approach is adopted by assuming the “1σ” upper fluctuation of this ratio. The
result of the corresponding alternative mass fit is illustrated in Fig. 5.80. The yields computed
in the B 0→ DK ∗0 signal range are summarised in Table 5.27. The Dalitz fit is repeated with the
same model for Λ0

b → D0pπ− (Λ0
b → D0pπ+) as for B 0

s → DK ∗0 (B 0
s → DK ∗0) in the B 0→ DK ∗0

(B 0 → DK ∗0) Dalitz plot. The corresponding deviations on the fitted cartesian parameters
compared to the nominal result are

δx− = (−0.16±0.06) ·10−3,

δx+ = (0.28±0.39) ·10−3,

δy− = (−0.66±0.07) ·10−3,

δy+ = (1.77±0.19) ·10−3.

(5.84)

The absolute values of these deviations are taken as the systematic uncertainties arising from
the Λ0

b → D0pπ− background contribution. They represent less than 0.8% of the statistical
uncertainties.

Table 5.27 – Total yields in the B 0 signal region, with the Λ0
b → D0pπ− contribution included.

Component Yield

Total LL DD

N (B0→ DK∗0) 99±12 37±7 62±9

N (Comb) 26.7±1.8 11.4±1.1 15.3±1.3

N (B0
s → D∗0K∗0) 13.6±2.0 5.3±1.0 8.3±1.4

N (B0→ D∗0K∗0) 0.12±0.03 0.05±0.02 0.06±0.02

N (B0→ Dρ0) 0.61±0.11 0.25±0.07 0.36±0.09

N (B0
s → DK∗0) 1.70±0.30 0.65±0.13 1.05±0.20

N (Λ0
b → D0pπ−) 0.18±0.01 0.069±0.008 0.11±0.01

Total background 42.8±2.6 17.7±1.5 25.1±1.9

K ∗0 coherence factor

The K ∗0 coherence factor is evaluated with the phenomenological model described in Sec. 5.9.1.
Its value is κ= 0.93±0.04. In the nominal fit, κ is fixed. Therefore a systematic uncertainty is
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Figure 5.80 – Invariant mass fit of B 0→ DK ∗0 candidates with the additional contribution ofΛ0
b → D0pπ−

backgrounds, for LL and DD categories merged. The y-axis is in log-scale.

determined by repeating the fit with κ varied within its uncertainty. Table 5.28 summarises the
deviations of the cartesian parameters compared to the nominal result. The largest absolute
values of these deviations are taken as the systematic uncertainties arising from the coherence
factor:

|δx−| = (3.87±5.07) ·10−3,

|δx+| = (2.66±10.1) ·10−3,

|δy−| = (2.07±2.23) ·10−3,

|δy+| = (0.96±2.54) ·10−3.

(5.85)

Table 5.28 – Deviation on the cartesian parameters arising from the κ coherence factor uncertainty.

κ δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

0.89 3.74±4.78 2.66±10.1 −2.07±2.23 0.96±2.54

0.97 −3.87±5.07 −2.34±10.6 1.64±2.28 −0.65±2.12
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

5.8.3 Efficiency description on the Dalitz plane

Efficiency variation

As explained in Sec. 5.3, one thousand alternative efficiency Dalitz plots are made to take into
account the uncertainty on the efficiency. From these alternative efficiency descriptions one
thousand Dalitz fits are performed on the real data. The deviation to the fit result obtained
with the nominal efficiency is computed for each alternative fit. The resulting distributions of
these deviations are plotted on Fig. 5.81. A Gaussian fit determines the width of these residuals.
The biggest one is of the order of 5 ·10−3, almost two orders of magnitude below the statistical
uncertainty.
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Figure 5.81 – Deviation to the nominal fit values of the cartesian parameters fitted on data with one
thousand alternative efficiency description.

The width of the residuals given by the fits on data are different between the cartesian
parameters. To check that it is an expected feature, five pseudo datasets of around 16000 signal
and background events are generated. Each pseudo datasets are fitted then with the nominal
efficiency and with one hundred alternative efficiency. The resulting deviation from the nominal
results is in Fig. 5.82. Compared to the results on real data, similar distributions are obtained.

Hence the efficiency systematic is assumed to be the width of the residuals obtained with
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Figure 5.82 – Deviation to the nominal fit values of the cartesian parameters fitted on five different pseudo
datasets with one hundred alternative efficiency description.

the alternative fits performed on data:

|δx−| = (3.16±0.07) ·10−3,

|δx+| = (5.4±0.1) ·10−3,

|δy−| = (0.68±0.02) ·10−3,

|δy+| = (0.40±0.01) ·10−3.

(5.86)

Efficiency with BDTB

In the nominal efficiency description, the selection applied to the simulated sample implies a cut
on BDTA. Since on the data both BDTA and BDTB are applied, in a crossed way, the systematic
effect inherent to this arbitrary choice has to be evaluated. This effect is expected to be very
small since the efficiency of the BDTA and BDTB are very similar (see Fig. 5.28). An alternative
Dalitz fit is performed on the data with the efficiency determined on the simulated sample
selected by the BDTB. It gives the following deviations to the nominal results:

δx− = (0.24±0.01) ·10−3,

δx+ = (0.39±0.03) ·10−3,

δy− = (0.06±0.02) ·10−3,

δy+ = (−0.04±0.02) ·10−3.

(5.87)
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Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

The absolute value of this deviations are taken as the systematic uncertainty due to the use of
BDTB instead of BDTA in the efficiency evaluation.

HLT efficiency

As explained in Sec. 5.3.1, the HLT efficiency is uniform across the Dalitz plane. And the selection
efficiency is determined without applying the HLT requirements on the simulated sample. To
determine the effect of this choice the Dalitz fit is repeated with the efficiency computed with
the HLT requirements. The resulting deviations on the cartesian parameters compared to the
nominal fit result are

δx− = (−3.62±0.07) ·10−3,

δx+ = (−6.62±0.39) ·10−3,

δy− = (−0.88±0.28) ·10−3,

δy+ = (0.39±0.23) ·10−3.

(5.88)

The absolute values of these deviations are taken as the systematic uncertainties due to the HLT
efficiency. These uncertainties correspond at most to 2.8% of the statistical ones.

Data/MC agreement

In the determination of the selection efficiency, the simulation is assumed to be reliable, apart
from the L0 and PID efficiencies. To ensure that the BDT efficiency is correctly determined, a
Data/MC comparison is performed. The distributions of the discriminating variables used in
the BDT obtained with the B 0

s → DK ∗0 simulated sample and with the data are compared. The
simulated sample corresponds to B 0

s → DK ∗0 truth matched candidates after the full selection
(using the PID efficiency from the calibration samples). The distributions from data are made
with the sPlot method [157]. A simplified mass fit is performed only on the mass region between
5325MeV and 5800MeV. In this way, the study is focused on B 0

s → DK ∗0 data candidates with a
better signal significance and purity. In the simplified fit model only the contributions of the
B 0

s → DK ∗0 signal and the combinatorial background are taken into account, with a double
Crystal Ball function and an exponential respectively. The result of this mass fit is illustrated in
Fig. 5.83a and the resulting sWeights as a function of the B mass in Fig. 5.83b.

These sWeights are then used to make the distributions of the BDT discriminating vari-
ables. These distributions are compared to those obtained from the simulated sample. The
resulting distributions are drawn in Fig. 5.84–5.88. They are all in good agreement, except for
the DecayTreeFitter refit χ2/ndf (Fig. 5.87) and the K ∗0 helicity angle (Fig. 5.88). For these
two distributions, some slight discrepancies can be seen. To see if these discrepancies have a
significant impact on the efficiency determination, the simulated sample is reweighted to follow
the DecayTreeFitter χ2/ndf and cosθ∗ data distributions. From this reweighted sample, the
efficiency across the Dalitz plane is recomputed and the subsequent Dalitz fit performed. The
resulting deviations of the cartesian parameters compared to the nominal result are

δx− = (−0.68±0.09) ·10−3,

δx+ = (−2.00±0.11) ·10−3,

δy− = (−0.29±0.02) ·10−3,

δy+ = (−0.09±0.04) ·10−3.

(5.89)
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The absolute value of these deviations is taken as the systematic uncertainties arising from
the Data-MC disagreement on the BDT efficiency. They correspond to less than 0.8% of the
statistical uncertainties.
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Figure 5.83 – Simplified mass fit of data candidates in the B 0
s → DK ∗0 region (a) and distribution of the

resulting sWeights as a function of the B mass (b).
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Figure 5.84 – Data-MC comparison for the impact parameters . The B 0
s → DK ∗0 simulated candidates are

in solid blue, while the sWeighted B 0
s → DK ∗0 data candidates are in black.

189



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

B0_FDCHI2_OWNPV

0 5000 10000 15000

E
v

e
n

ts
 /

 (
 7

5
0

 )

0

0.05

0.1

0.15

0.2
 DK*→

s

0
MC B

 DK*→
s

0
Data B

D0_FDCHI2_OWNPV

0 2000 4000 6000 8000 10000

E
v

e
n

ts
 /

 (
 5

0
0

 )

0

0.05

0.1

0.15

0.2

0.25
 DK*→

s

0
MC B

 DK*→
s

0
Data B

Ks_FDCHI2_OWNPV

0 1000 2000 3000 4000 5000

E
v

e
n

ts
 /

 (
 2

5
0

 )

0

0.05

0.1

0.15

0.2

0.25  DK*→
s

0
MC B

 DK*→
s

0
Data B

D0_BD_FDSig
0 20 40

E
v
en

ts
 /

 (
 2

.7
5
 )

0

0.05

0.1

0.15

0.2

0.25  DK*→s

0
MC B

 DK*→s

0
Data B

Ks_DKs_FDSig
0 100 200 300 400

E
v
en

ts
 /

 (
 2

0
.5

 )

0

0.05

0.1

0.15

0.2

0.25

0.3

 DK*→s

0
MC B

 DK*→s

0
Data B

Figure 5.85 – Data-MC comparison for the flight distance significance. The B 0
s → DK ∗0 simulated candi-

dates are in solid blue, while the sWeighted B 0
s → DK ∗0 data candidates are in black.
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Figure 5.86 – Data-MC comparison for the transverse momemtum. The B 0
s → DK ∗0 simulated candidates

are in solid blue, while the sWeighted B 0
s → DK ∗0 data candidates are in black.
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Figure 5.87 – Data-MC comparison for the vertex-related variables. The B 0
s → DK ∗0 simulated candidates

are in solid blue, while the sWeighted B 0
s → DK ∗0 data candidates are in black.
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Generator level cuts

The B 0
s → DK ∗0 simulated sample used to determine the efficiency has been produced with

some cuts at the Pythia level (generators cuts). These cuts are detailed in Appendix A. They
were designed to be less tight than the stripping selection. However, there might be some effect
of the generator level cuts along the m2

0 Dalitz coordinates. Looking at Fig. A.1, the efficiency
of the cuts on top of the stripping selection might not be completely flat (here a specific MC
sample is used without generator cut). To see if this potential non-flatness causes some bias,
the generator cuts efficiency distribution along m2

0 is fitted with a first order polynomial. The
result of this fit is illustrated in Fig. 5.89. The fit results in a slight negative slope. In order to
measure the effect of this small bias, the B 0

s → DK ∗0 simulated sample is reweighted according
to this slope. The efficiency is then recomputed after this reweighting.The ratio of the efficiency
determined with and without the reweighting is illustrated in Fig. 5.90. No noticeable effect can
be seen. The Dalitz fit is repeated with the efficiency including the reweighting. The following
deviations on the cartesian parameters compared to the nominal fit result are observed:

δx− = (3.68±0.05) ·10−3,

δx+ = (5.82±0.31) ·10−3,

δy− = (0.62±0.30) ·10−3,

δy+ = (−0.50±0.25) ·10−3.

(5.90)

The absolute value of these deviations is taken as the systematic uncertainties arising from the
generator level cuts efficiency. They correspond to less than 2.8% of the statistical uncertainties.
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Figure 5.89 – Efficiency distribution along m2
0 of the generator level cuts after the stripping selection. The

fit result with a first order polynomial is superimposed. This determination uses the MC11a B 0→ DK ∗0

simulated sample.

Fraction of TOS events

As explained in Sec. 5.3.1 and at the end of Sec. 5.3.4, the trigger efficiency description uses
the TOS and NotTOS proportion found with the B 0 → DK ∗0 candidates selected in the data,
fTOS = (67.4±3.9)% (95 TOS, 46 NotTOS). This value has a limited statistical accuracy. To evaluate
the corresponding systematic uncertainty the Dalitz fit is repeated assuming the fraction of TOS
events found with the B 0

s → DK ∗0 candidates selected in the data, fTOS = (59.8±3.4)% (122 TOS,

192



5.8. Systematic uncertainties

)2 (GeV−
2m

0.5 1 1.5 2 2.5 3

)
2

 (
G

e
V

+2
m

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

 reweighting effect (LL)
0
2Generator Cuts m

)2 (GeV−
2m

0.5 1 1.5 2 2.5 3

)
2

 (
G

e
V

+2
m

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

 reweighting effect (DD)
0

2Generator Cuts m

Figure 5.90 – Efficiency ratio across the Dalitz plane when determined with and without the generator
level cuts reweighting.

82 NotTOS). This value differs from the nominal one by 1.4σ (assuming binomial errors). The
resulting deviations on the fitted cartesian parameters, compared to the nominal result are

δx− = (−1.91±0.02) ·10−3,

δx+ = (3.81±0.24) ·10−3,

δy− = (0.59±0.13) ·10−3,

δy+ = (0.13±0.12) ·10−3.

(5.91)

The absolute value of these deviations is taken as the systematic uncertainties arising from the
fTOS ratio. They represent less than 1.5% of the statistical uncertainties.

5.8.4 Resolution on the Dalitz coordinates

The reconstruction of the squared invariant masses m2
± is not perfect. These Dalitz coordinates

are measured with a given resolution, which produces a migration of the events in the Dalitz
plane. The resolution on the Dalitz coordinates is determined from the B 0→ DK ∗0 simulated
sample. The difference between the reconstructed and the true coordinates is measured, as
well as their correlation. As illustrated in Fig. 5.91, the resolution is very small, of the order of
0.007GeV2 and the variation of m2+ and m2− is anti-correlated.

To measure the effect of such a resolution on the Dalitz coordinates, a study is performed
with pseudo-experiments. Around sixteen thousand pseudo-candidates are generated, including
signal and background and become the nominal dataset. To simulate the migration effect, this
nominal sample is then smeared randomly according to the two-dimensional distributions
shown in Fig. 5.91. In this way, one thousand alternative data sample are generated. They differ
only from the original sample by a variation on m2

± according to the resolution. These alternative
data samples are fitted. The resulting distributions of the deviations of the cartesian parameters,
compared to those obtained with the non smeared sample are shown in Fig. 5.92. Since there
are non-negligible biases – nevertheless small compared to the statistical error on the cartesian
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Figure 5.91 – Difference between the reconstructed and the true Dalitz coordinates m2− (left) and m2+
(middle), and their correlation (right). The top (bottom) plots correspond to B 0→ DK ∗0 LL (DD) candi-
dates.

parameters – the systematic uncertainties arising from the migration across the Dalitz plane are
taken as the quadratic sum of the mean and the width of the residuals:

|δx−| = 4.35 ·10−3,

|δx+| = 4.00 ·10−3,

|δy−| = 2.90 ·10−3,

|δy+| = 3.05 ·10−3.

(5.92)

These systematic uncertainties are lower than 3.3% of the statistical uncertainties.
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coordinates.
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5.8.5 Model related uncertainty

The model used to described the D → K 0
S π

+π− decay, presented in Sec. 5.6, includes some
uncertainties. A choice is made on the type of resonances used, and how they are expressed.
Hence, a systematic uncertainty arising from the potential mis-modelling of the D→ K 0

S π
+π−

decay is determined, following the same procedure as the LHCb B±→ DK ± model dependent
GGSZ analysis [52]. Since this evaluation has not been performed by the author of this thesis,
only a brief summary is presented. The systematic uncertainty evaluation consists in taking
several alternative models and determining the deviations induced on the fitted cartesian
parameters, with pseudo-experiments.

Alternative D0 → KSπ
+π− models considered

Compared to the nominal model, each alternative model is made with only one change; either in
the parameterisation of a given component, or in the addition or suppression of one component.
The different variations considered are:

• ππ S-wave: The nominal model uses one of the three possible solutions of the K-matrix,
obtained from fits to scattering data. Two alternative models are defined to use the other
two solutions.

• ππ S-wave: Remove the non-resonant term of the P-vector.

• Kπ S-wave: Replace the generalised LASS parameterisation used in the nominal model
to describe the K 0∗(1430) resonance with a relativistic Breit-Wigner propagator, with
parameters taken from the E791 experiment.

• ππ P-wave: Replace the Gounaris-Sakurai propagator with a Breit-Wigner.

• Kπ P-wave: Vary the mass and width parameters of the K ∗(1680) resonance by their
quoted errors.

• ππD-wave: Vary the mass and width parameters of the f2(1270) resonance by their quoted
errors.

• Kπ D-wave: Vary the mass and width parameters of the K ∗
2 (1430) resonance by their

quoted errors.

• Change the Blatt-Weisskopf centrifugal barrier radius to 0 and 3 GeV−1.

• Add two extra resonances to the model - the K ∗(1410) and the ρ(1450).

• Replace the Zemach formalism for the spin sum rules with the helicity formalism. This
affects mostly D-waves.

One further alternative model is defined, containing several changes relative to the nominal
model. This model contains the prominent K ∗, ρ, ω and f 0 resonances, with an alternative
parameterisation for the S-wave contributions (LASS/K-matrix).
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Results of alternative model fits

From these alternative models, pseudo-experiments are generated and fitted, and the following
deviations are computed

δxm
± = xm

± −x0
±, (5.93)

δym
± = ym

± − y0
±, (5.94)

where m = 0 denotes the nominal model.
The different Cartesian parameters are assumed to be fully correlated or anti-correlated

(according to the sign of the δxm
± and δym

± deviations). Hence, the resulting covariance matrix
has the form:

V m =

xm− ym− xm+ ym+
δxm− δxm− δxm− δym− δxm− δxm+ δxm− δym+
δym− δxm− δym− δym− δym− δxm+ δym− δym+
δxm+ δxm− δxm+ δym− δxm+ δxm+ δxm+ δym+
δym+ δxm− δym+ δym− δym+ δxm+ δym+ δym+

, (5.95)

for each alternative model m. Table 5.29 enumerates the model-related systematic uncertainties
obtained for each alternative model considered.

The systematic uncertainties from different models are assumed to be independent. There-
fore, the total covariance matrix is simply the sum of the covariances matrices from the separate
models:

Vmodel =
∑
m

V m =

xm− ym− xm+ ym+
59.1 −37.4 59.5 1.0

−37.4 49.7 −59.2 20.4

59.5 −59.2 93.9 −10.9

1.0 20.4 −10.9 23.4

 · (10−6). (5.96)

Finally, the total systematic uncertainties on each cartesian coordinates are the square root
of the diagonal matrix elements:

δx− = 7.7 · (10−3),

δy− = 7.1 · (10−3),

δx+ = 9.7 · (10−3),

δy+ = 4.8 · (10−3).

They are of consistent with those found in the LHCb [52] and BaBar [160] B±→ DK ± model
dependent GGSZ analyses.
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Table 5.29 – Summary of model-related signed systematic uncertainties obtained for each alternative
model considered.

Model description δx−(·10−3) δy−(·10−3) δx+(·10−3) δy+(·10−3)

K-matrix 1st solution −1.7 0.9 1.9 1.2

K-matrix 2nd solution 0.3 0.3 0.0 −0.5

Remove non-res term of P-vector −0.7 0.2 0.5 0.6

gLASS→RBW 1.7 3.0 −1.2 3.0

Gounaris-Sakurai→RBW 0.7 0.0 −0.1 0.8

K ∗(1680)

m +δm −0.0 0.6 0.1 0.5

m −δm −0.2 −0.5 0.2 −0.9

Γ+δΓ −0.2 0.2 0.0 −0.2

Γ−δΓ 0.2 −0.1 0.5 −0.2

f2(1270)

m +δm −0.1 0.0 0.3 −0.2

m −δm −0.0 0.1 0.2 −0.2

Γ+δΓ −0.0 0.0 0.2 −0.2

Γ−δΓ −0.1 0.0 0.2 −0.2

K ∗
2 (1430)

m +δm 0.3 0.2 0.2 −0.2

m −δm −0.4 −0.2 0.3 −0.1

Γ+δΓ −0.2 0.2 0.1 −0.2

Γ−δΓ 0.1 −0.1 0.3 −0.2

rBW = 0.0GeV−1 −1.8 0.7 −1.0 −0.3

rBW = 3.0GeV−1 4.2 −1.6 4.1 2.3

Add K ∗(1410) and ρ(1450) −0.2 −0.2 0.3 −0.3

Zemach→helicity formalism −5.5 6.0 −8.4 2.3
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5.8.6 Summary of the systematic uncertainties

All the systematic uncertainties are summarised in Table 5.30. They are all quoted in absolute
values. The main uncertainties come from the fake D background (yields and model), the mass
fit floating parameters and the K 0

S flight distance cut. All have a partial statistical origin. With an
increased data sample, they are expected to reduce. The following effects are ignored since they
are expected to be negligible according to previous LHCb analyses [13, 52]: the D0 mixing, the
K 0

S mixing and CP violation effect and the pion charged asymmetries. Since they are relatively
small and coming from independent effects, the systematic uncertainties are assumed to be
uncorrelated.
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Table 5.30 – Summary of the systematic uncertainties and their proportion compared to the statistical
uncertainty.

Source of uncertainty δx− (·10−3) δx+ (·10−3) δy− (·10−3) δy+ (·10−3)

Mass fit induced

Floating mass fit parameters 17.0 (13%) 6.6 (2.5%) 12.1 (8.1%) 39.2 (17%)

B 0→ D0π+π− contribution 0.98 (0.8%) 0.60 (0.2%) 0.43 (0.3%) 2.02 (0.9%)

B 0-B 0
s mass difference 0.82 (0.6%) 0.50 (0.2%) 0.64 (0.5%) 2.33 (1.0%)

Mass PDF with BDTB 0.11 (0.1%) 0.17 (0.1%) 0.42 (0.3%) 1.22 (0.5%)

Signal PDF - CB parameters 0.39 (0.3%) 0.35 (0.1%) 0.35 (0.2%) 0.74 (0.3%)

Signal PDF - triple Gaussian 4.08 (3.1%) 1.87 (0.7%) 3.93 (2.6%) 9.92 (4.3%)

π0/γ proportion 2.66 (2.0%) 2.07 (0.8%) 3.78 (2.5%) 14.49 (6.3%)

B 0→ D∗0K ∗0 effect 0.42 (0.3%) 0.32 (0.1%) 0.72 (0.5%) 2.34 (1.0%)

K 0
S flight distance cut 70 (54%) 54 (21%) 5 (3.3%) 21 (9.1%)

Background description

Fake D0 background 47 (36%) 19 (7.3%) 22 (15%) 34 (15%)

Real D0 background (D0 asymmetry) 0.07 (0.1%) 0.16 (0.1%) 0.36 (0.2%) 1.05 (0.5%)

CP violation in B 0
s → D∗0K ∗0 2.46 (1.9%) 5.03 (1.9%) 0.75 (0.5%) 0.45 (0.2%)

B+→ D0π+π+π− contribution 1.22 (0.9%) 0.73 (0.3%) 0.97 (0.6%) 2.24 (1.0%)

Λ0
b → D0pπ− contribution 0.16 (0.1%) 0.28 (0.1%) 0.66 (0.4%) 1.77 (0.8%)

K ∗0 coherence factor (κ) 3.87 (3.0%) 2.66 (1.0%) 2.07 (1.4%) 0.96 (0.4%)

Efficiency on the Dalitz plane

Efficiency variation 3.16 (2.4%) 5.4 (2.1%) 0.68 (0.5%) 0.40 (0.2%)

Efficiency with BDTB 0.24 (0.2%) 0.39 (0.1%) 0.06 (0.04%) 0.04 (0.02%)

HLT efficiency 3.62 (2.8%) 6.62 (2.5%) 0.88 (0.6%) 0.39 (0.2%)

BDT efficiency (Data/MC agreement) 0.68 (0.5%) 2.00 (0.8%) 0.29 (0.2%) 0.09 (0.04%)

Generator cuts efficiency 3.68 (2.8%) 5.82 (2.2%) 0.62 (0.4%) 0.50 (0.2%)

TOS/NotTOS proportion 1.91 (1.5%) 3.81 (1.5%) 0.59 (0.4%) 0.13 (0.1%)

Migration in the Dalitz plot 4.35 (3.3%) 4.00 (1.5%) 2.90 (1.9%) 3.05 (1.3%)

Fit bias 1. (0.8%) 8. (3.1%) 34. (23%) 38. (17%)

Total experimental 87 (67%) 60 (23%) 43 (29%) 70 (31%)

Total model related 8 (6%) 10 (4%) 7 (5%) 5 (2%)
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5.9 Interpretation on γ

This section develops the interpretation of the results on the cartesian parameters in terms of the
polar coordinates rB 0 , δB 0 and γ. First, the evaluation of the K ∗0 coherence factor is explained,
as well as the compatibility check of this analysis with the ADS/GLW one already published by
LHCb.

5.9.1 K ∗0 coherence factor and compatibility with the ADS/GLW rB 0 value

The B 0→ DK ∗0 decay has already been studied in LHCb with an ADS/GLW analysis [59]. From
the measured observables it is deduced that rB 0 = 0.240+0.055

−0.048, in a Kπ mass region of ±50MeV
around the K ∗0 mass and for an absolute value of the cosine of the K ∗0 helicity angle larger
than 0.4 (corresponding to the variable Kst_BKstarK_DecayAngle, and noted cosθ∗ in the
following). To improve the measurement of γ, the result of the ADS/GLW analysis and the
present GGSZ analysis can be combined. Indeed, in addition to γ, the two analyses share the
same nuisance parameters rB 0 and δB 0 . However, as can be seen in its definition in Eq. (2.29),
rB 0 depends on the K ∗0 region considered. That is why the same mass window of ±50MeV
and cosθ∗ cut are used in both analyses. But the choice of adding cosθ∗ in the BDT selection,
instead of using a single rectangular cut at 0.4 in absolute value, might induce some difference
between the rB 0 values measured by the ADS/GLW analysis and the GGSZ analysis. In general,
any discrepancy in the selection efficiency across the B 0 Dalitz plane between the two analyses
could make a difference on the measured rB 0 . If the efficiency ε, determined in Sec. 5.4, is taken
into account Eq. (2.29) and (2.30) are transformed into:

r 2
B 0 ≡

∫
φK∗0

A2
u(p)ε(p) dp∫

φK∗0
A2

c (p)ε(p) dp
, (5.97)

κe iδB0 ≡
∫
φK∗0

Ac (p)Au(p)e i [δu (p)−δc (p)]ε(p) dp√∫
φK∗0

A2
c (p)ε(p) dp

∫
φK∗0

A2
u(p)ε(p) dp

. (5.98)

As seen in Sec. 5.4.5, the efficiency variation across phase space is very similar in the ADS/GLW
and the GGSZ analyses. Hence the two analyses are expected to measure the same rB 0 value. To
check this, the method used to determine κ in the ADS/GLW analysis is carried out to determine:

• the κ coherence factor of the GGSZ analysis,

• the eventual correction factor to translate the rB 0
ADS value to the rB 0

GGSZ value.

Model of the B 0→ DKπ decay

A realistic model is used for the B 0→ DKπ decay. The Ac (p) and Au(p) amplitudes are described
by an isobar model (a sum of Breit-Wigner functions, BW , and a constant term representing the
non-resonant contribution):

A(p) = AN R +∑
r

ar e iφr BW (p, Mr ,Γr , Jr ), (5.99)

where ar (φr ) are the relative amplitudes (phases) of each resonances. The resonances consid-
ered are the following:

• B 0→ D0K ∗(892)0 and B 0→ D0K ∗(892)0,
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Table 5.31 – Parameters of the resonances used in the B 0→ DKπ decay model.

Resonance Mass (MeV) M Width (MeV) Γ Spin J

K ∗(892)0 895.81±0.19 47.4±0.6 1

K ∗(1410)0 1414±15 232±21 1

K ∗
0 (1430)0 1425±50 270±80 0

K ∗
2 (1430)0 1432.4±1.3 109±5 2

K ∗(1680)0 1717±27 322±110 1

D∗
0 (2400)− 2403±38 283±42 0

D∗
2 (2460)− 2462.6±0.6 37±6 2

Ds2(2573)+ 2571.9±0.8 17±4 2

• B 0→ D0K ∗(1410)0 and B 0→ D0K ∗(1410)0,

• B 0→ D0K ∗
0 (1430)0 and B 0→ D0K ∗

0 (1430)0,

• B 0→ D0K ∗
2 (1430)0 and B 0→ D0K ∗

2 (1430)0,

• B 0→ D0K ∗(1680)0 and B 0→ D0K ∗(1680)0,

• B 0→ D∗
0 (2400)−K +,

• B 0→ D∗
2 (2460)−K +,

• B 0→ Ds2(2573)+π−,

• Non resonant B 0→ D0K +π− and B 0→ D0K +π−.

The contribution from B 0→ D∗(2010)−K + is not included since it is a narrow resonance. All the
resonance parameters are listed in Table 5.31.

The relative amplitudes between the resonances are deduced from the known branching
ratio or their upper limit. The following values are used:

• B(B 0→ D0K ∗(892)0)×B(K ∗(892)0→ K +π−) = (2.8±0.4)×10−5,

• B(B 0→ D∗
2 (2460)−K +)×B(D∗

2 (2460)−→ D0π−) = (1.8±0.5)×10−5,

• B(B 0→ D0K +π−) < 3.7×10−5 for the non resonant contribution,

• B(B 0→ D0K +π−) < 19×10−6 [161] for the non resonant contribution,

To estimate the B 0→ D∗
0 (2400)−K + branching fraction, the ratio

B(B 0→ D∗
0 (2400)−π+)×B(D∗

0 (2400)−→ D0π+)

B(B 0→ D∗
2 (2460)−π+)×B(D∗

2 (2460)−→ D0π+)
= 0.28±0.14 (5.100)

is applied to B(B 0 → D∗
2 (2460)−K +)×B(D∗

2 (2460)− → D0π−). The K ∗ modes are assumed
to have the same branching fraction as the B 0 → D0K ∗(892)0 transition, with the branching
fractions to the Kπ final state:
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• B(K ∗(1410)0→ K +π−) = 4.4%,

• B(K ∗
0 (1430)0→ K +π−) = 62%,

• B(K ∗
2 (1430)0→ K +π−) = 33.3%,

• B(K ∗(1680)0→ K +π−) = 25.8%,

The relative uncertainties on these branching fractions are assumed to be of 30%. For the
B 0→ Ds2(2573)+π− decay, the upper limit B(B 0→ D+

s π
−) < 2.26×10−5 is used.

To take into account the uncertainty on the branching ratios a simulation is performed,
generating the resonance fraction flat within the interval limits, when only a limit is known, or
with a Gaussian when uncertainties are known. The relative phases between the resonances are
generated flat between 0 and 2π. The amplitude of the K ∗(892)0 resonance is fixed to 1 for the
favoured mode, as a reference. The suppressed amplitudes (aub) are mainly deduced from the
favoured (acb), assuming a rB 0 value of 0.3. In summary:

• |aK ∗(892)0

cb |2 = 1

• |aK ∗(1410)0

cb |2 ∈ [0.066×0.7;0.066×1.3]

• |aK ∗
0 (1430)0

cb |2 ∈ [0.92×0.7;0.92×1.3]

• |aK ∗
2 (1430)0

cb |2 ∈ [0.5×0.7;0.5×1.3]

• |aK ∗
0 (1680)0

cb |2 ∈ [0.38×0.7;0.38×1.3]

• |aD∗
0 (2400)−

cb |2 = 0.18±0.12

• |aD∗
2 (2460)−

cb |2 = 0.64±0.21

• |aN R
cb |2 ∈ [0;1.3]

• aK ∗(892)0

ub = rB 0 aK ∗(892)0

cb

• aK ∗(1410)0

ub = rB 0 aK ∗(1410)0

cb

• a
K ∗

0 (1430)0

ub = rB 0 a
K ∗

0 (1430)0

cb

• a
K ∗

2 (1430)0

ub = rB 0 a
K ∗

2 (1430)0

cb

• a
K ∗

0 (1680)0

ub = rB 0 a
K ∗

0 (1680)0

cb

• |aDs2(2460)−
ub |2 ∈ [0;0.77]

• |aN R
ub |2 ∈ [0;0.68]

An example of a Dalitz plot obtained with this model is illustrated on Fig. 5.93. The projections on
the squared invariant masses m2(Dπ) and m2(Kπ) are also drawn. The dashed lines represent
the m(Kπ) and cosθ∗ cuts, applied both in GGSZ and ADS/GLW analyses. On the m2(Dπ)
projection, the lines correspond to a cosθ∗ cut at the value m(Kπ) = mK∗(892)0 .

Determination of κ and rB 0

Using the present model, the integrals figuring in the equations (5.97) and (5.98) can be com-
puted. Since the efficiency profile is known (see Sec. 5.4), the GGSZ κ coherence factor can be
estimated. Furthermore, the rB 0

ADS value obtained with the ADS/GLW efficiency profile can be
compared to the GGSZ one. A significant discrepancy is not expected, since the efficiency profile
of the ADS/GLW and the GGSZ analyses are similar in the |cosθ∗| > 0.4 region (see Fig. 5.38).

Two thousand Dalitz plots are generated according to the B 0→ DKπ toy model. The rB 0 , κ,
and the fraction of non-K ∗(892)0 resonance contributions are computed using a MC integration
(with 50000 points). The results obtained for the ADS/GLW and GGSZ efficiencies are illustrated
in Fig. 5.94. The computed rB 0 values are equal to rB 0 = 0.30±0.02 for the two analyses (the
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Figure 5.93 – Dalitz plot generated with the realistic model of B 0→ DKπ decay. The dashed lines represent
the m(Kπ) and cosθ∗ cuts, applied both in GGSZ and ADS/GLW analyses. On the m2(Dπ) projection, the
lines correspond to a cosθ∗ cut at the value m(Kπ) = mK∗(892)0

uncertainty arises from the fluctuation due to the model uncertainty). Therefore the rB 0 value is
the same in the ADS/GLW and GGSZ analyses. The coherence factor is also identical and is

κ= 0.93±0.04. (5.101)

As an illustration, the same parameters are computed taking into account the whole Dalitz
plane (i.e. without a K ∗0 mass cut), with a flat efficiency. In this case the coherence factor
severely decreases to a value of κ= 0.29±0.14 (see Fig. 5.95).
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Figure 5.94 – rB 0 , κ and non K ∗(892)0 fraction computed with the B 0→ DKπ model described in the text,
for the ADS/GLW (a) and GGSZ (b) efficiency.
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Figure 5.95 – rB 0 , κ and non K ∗(892)0 fraction computed with the B 0→ DKπ model described in the text,
with a flat efficiency and taking into account the whole Dalitz plane (no K ∗0 mass cut).
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5.9. Interpretation on γ

5.9.2 From the cartesian parameters to rB 0 , δB 0 and γ

The final result on the cartesian parameters is

x− = −0.09+0.13
−0.13 ±0.09±0.01,

x+ = −0.10+0.27
−0.26 ±0.06±0.01,

y− = 0.23+0.15
−0.16 ±0.04±0.01,

y+ = −0.74+0.23
−0.26 ±0.07±0.01.

(5.102)

The first uncertainty is statistical, the second is the experimental systematic and the third is
the systematic due to the Dalitz model. To check that this evaluation does not suffer from
multiple local minima, which could make the minimisation result inaccurate, a scan of the
likelihood is done separately on the (x−, y−) and (x+, y+) spaces. Indeed, the “plus” and “minus”
parameters are uncorrelated, they can be treated separately. The result of this scan is illustrated
on Fig. 5.96. It shows the ∆χ2 defined as the difference between the negative log-likelihood
(defined in Eq. (5.51)) at the scan point and at the best fit values, as a function of the scan points.
No secondary minimum is observed, therefore the minimisation is reliable. It can be noticed a
small structure on the (x+, y+) scan around (−0.1,0.5), which could be at the origin of the few
satellites observed in the residuals of the toys shown in Sec. 5.7.6.

−x
­1 0 1

−
y

­1.5

­1

­0.5

0

0.5

1

1.5

0

10

20

30

40

50

60

2
χ∆

+x

­1 0 1

+
y

­1.5

­1

­0.5

0

0.5

1

1.5

0

5

10

15

20

25

2
χ∆

Figure 5.96 – Scan of likelihood of the Dalitz fit in the (x−, y−) (left) and (x+, y+) (right) planes. The best fit
values are represented by the crosses (corresponding to ∆χ2 = 0).

To interpret the result on (x±, y±) in terms of the polar coordinates rB 0 , δB 0 and γ, the
relations

x± = rB 0 cos(δB 0 ±γ),

y± = rB 0 sin(δB 0 ±γ),
(5.103)

must be inverted. This is done thanks to the GammaCombo package, developed for the LHCb γ
combination [10, 87]. A global likelihood function is built from the probability density function
of the cartesian observables

L (x−, x+, y−, y+|rB 0 ,δB 0 ,γ), (5.104)
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which gives the probability of observing a set of (x±, y±) values given the true value (rB 0 ,δB 0 ,γ).
This likelihood provides an evaluation of the central values for (rB 0 ,δB 0 ,γ), as well as the un-
certainty on this evaluation by determining the confidence intervals. The central values are
obtained by maximising the likelihood for the observed value~zobs = (x−, x+, y−, y+)obs. This im-
plies a scan in the parameter space (rB 0 ,δB 0 ,γ) to retain the values which maximise the function
L (~zobs|rB 0 ,δB 0 ,γ). The confidence intervals are obtained either from a simple profile likelihood
method or with a pseudo-experiment based method, described in the following sections.

The likelihood is taken to be a multivariate Gaussian of the form

L (~zobs|rB 0 ,δB 0 ,γ) = 1

2π
p

detV
exp

(
−1

2
(~zobs −~zth)T V −1(~zobs −~zth)

)
, (5.105)

where~zobs is the vector of observed values and~zth = (x−, x+, y−, y+)th is the vector of the the-
ory parameters depending on the (rB 0 ,δB 0 ,γ) values with the truth relations (5.103). V is the
covariance matrix of the cartesian parameters.

Profile likelihood method

The profile likelihood method, also called “PROB” method, is based on the χ2-function defined
as

χ2(rB 0 ,δB 0 ,γ) =−2lnL (~zobs|rB 0 ,δB 0 ,γ). (5.106)

The (rB 0 ,δB 0 ,γ) central values correspond to the minimum χ2
min. It is possible to have different

values of (rB 0 ,δB 0 ,γ) which give χ2
min (multiple solutions are found). A scan is performed in

the ~α≡ (rB 0 ,δB 0 ,γ) space, and in each particular point ~α′, the χ2 is minimised to get the value
χ2

min(~α′). This value is compared to the best fit value χ2
min with the difference

∆χ2 =χ2
min(~α′)−χ2

min. (5.107)

By definition, this∆χ2 is positive. With a Gaussian likelihood, the p value defined as p ≡ 1−C L is
given by the probability that∆χ2 is exceeded according to a χ2-distribution [20]. The confidence
intervals are made by finding the points in the scan which intersect the levels C L = 68% or
C L = 95%. The PROB method is known to have a tendency to “undercover”. This means that
the intervals made with this method contain the true value in a lesser number of times than the
claimed 68% or 95% frequency. The “PLUGIN” method, described in the next section, shows
better coverage performance.

Pseudo-experiment based method

Instead of assuming that the ∆χ2 test follows a χ2-distribution, its distribution can be simulated
using pseudo-experiments. The approach described here, called the “PLUGIN” method [162],
is based on the Feldman and Cousins method [163] and introduces the concept of nuisance
parameters. With the PLUGIN method, the nuisance parameters are always kept at there best fit
values observed in the data.

The corresponding algorithm is [87, 162]:

1. ∆χ2 =χ2
min(~α′)−χ2

min is calculated as in the profile-likelihood method,

2. a pseudo result is generated leading to~ztoy, by using the likelihood in Eq. (5.104) with the
parameters fixed to ~α′,
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5.9. Interpretation on γ

3. the new ∆χ2 ′ is computed by replacing~zobs with~ztoy,

4. finally the confidence level is calculated from the fraction of pseudo-experiment results
which perform worse than the measured data:

1−C L = N (∆χ2 <∆χ2 ′)/Ntoy (5.108)

Results

The result of the pseudo-experiment method are illustrated on the 1− CL curves of Fig 5.97, 5.98a
and 5.98b for γ, rB 0 and δB 0 respectively. The two-dimensional contours in the (γ,rB 0 ) and
(γ,δB 0 ) are illustrated in Fig 5.99 and 5.100, respectively. Fig 5.97, shows that the profile-
likelihood method slightly undercovers compared to the pseudo-experiment method. Therefore
the confidence intervals retained are those made with the latter technique. In the 1− CL curve
of δB 0 (Fig. 5.98b), the 180◦ ambiguity is clearly seen. Only the solution corresponding to
γ ∈ [0,180]◦ is quoted in the following.

]° [γ

1
­C

L

0

0.2

0.4

0.6

0.8

1

50 100 150

24−

+23
77

68.3%

95.5%

(a)

]° [γ

1
­C

L

0

0.2

0.4

0.6

0.8

1

0 50 100 150

68.3%

95.5%

(b)

Figure 5.97 – 1-CL curves for the γ angle with the pseudo-experiment based method (a) and with the
profile-likelihood (shaded region) and pseudo-experiment (points) superimposed (b). The profile-
likelihood curve undercovers slightly.
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Figure 5.98 – 1-CL curves for rB 0 (a) and δB 0 (b) with the pseudo-experiment method.
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Figure 5.99 – Confidence level contour for rB 0 vs. γ, with the pseudo-experiments method. The contour
corresponds to the two-dimensional 1σ and 2σ level, and the best fit value is represented by the star.
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Figure 5.100 – Profile likelihood contour of δB 0 vs. γ (a) and comparison with the pseudo-experiment
method (brown area), focusing only on the local minimum at δB 0 = 186◦ (b). The contour corresponds to
the two-dimensional 1σ and 2σ levels, and the best fit value is represented by the stars.

211



Chapter 5. Measurement of the CKM angle γ with a Dalitz analysis of the B 0→ DK ∗0 decays

The interpretation of these curves gives at a confidence level of 68%:

rB 0 = 0.39±0.13 ,

δB 0 =
(
186+24

−23

)◦
,

γ=
(
77+23

−24

)◦
.

(5.109)

The central values, the 68% and 95% confidence intervals are summarised in Table 5.32. These
results are in good agreement with the B 0→ DK ∗0 ADS/GLW analysis, which measured a value
of rB 0 = 0.240+0.055

−0.048 [59], as illustrated in Figure 5.101. Moreover, the measured γ value is also in
good agreement with the current world averages [11, 12]. Fig. 5.102 shows the comparison of the
result on γ reported in this thesis with the direct measurements of B-factories and LHCb, and
with the world averages performed by the CKMfitter and UTFit collaborations.

Table 5.32 – Confidence intervals and central values obtained on the polar coordinates.

γ (◦) 77

68% CL (◦) [53,100]

95% CL (◦) [27,124]

rB 0 0.39

68% CL [0.26,0.52]

95% CL [0.06,0.64]

δB 0 (◦) 186

68% CL (◦) [163,210]

95% CL (◦) [140,236]
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Figure 5.101 – Comparison of the reported result on rB 0 (in blue) with the B 0→ DK ∗0 ADS/GLW measure-
ment performed by LHCb [59].
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Figure 5.102 – Comparison of the reported result on γ (in blue) with the BaBar [8], Belle [9], LHCb [10]
combinations of direct measurements, the averages performed by the CKMfitter [11] and UTFit [12]
collaborations, and the present single most precise measurement obtained with B±→ DK ± decays [13].
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Conclusion

The CKM angle γ is one of the standard model parameters still determined with a large uncer-
tainty. Precise measurement of this quantity is needed to further constrain the Unitarity Triangle
of the CKM matrix, and check the consistency of the theory. The measurement of this angle
involves B meson decays to open charm final states, which are detected with good efficiency in
the LHCb experiment. Thus, a precise measurement of γ is one of the main purposes of LHCb.

This thesis reports a measurement of γ with a Dalitz analysis of the B 0 → DK ∗0 channel
where the D meson decays into K 0

S π
+π−, based on the 3 fb−1 of proton-proton collision data

collected by LHCb during the LHC Run I, at the centre-of-mass energy of 7 and 8TeV. The CP
violation observables are measured to be

x− = −0.09+0.13
−0.13 ±0.09±0.01 ,

x+ = −0.10+0.27
−0.26 ±0.06±0.01 ,

y− = 0.23+0.15
−0.16 ±0.04±0.01 ,

y+ = −0.74+0.23
−0.26 ±0.07±0.01 ,

where the first uncertainty is statistical, the second is the experimental systematic uncertainty
and the third is the systematic uncertainty due to the Dalitz model. A frequentist interpretation
of these observables leads to

rB 0 = 0.39±0.13 , δB 0 =
(
186+24

−23

)◦
, γ=

(
77+23

−24

)◦
.

This is the most precise measurement of γ with B 0 → DK ∗0 decays to date. This result will
contribute to the next LHCb γ combination. Moreover, the perspectives for the γ measurement
with the B 0→ DK ∗0 channel are promising. The present result is based on about one hundred
signal events, and has a limited statistical accuracy. With the foreseen 8 fb−1 of data collected atp

s = 13TeV during the Run II, the measurement will significantly improve. With the 50 fb−1 of
data expected after the LHCb experiment upgrade, the CP observables will be measured with a
much reduced uncertainty, and lead to a precise direct measurement of γ.

The present thesis also reports on the optimisation of the photon reconstruction for the
upgraded LHCb detector. After the LHCb upgrade, the instantaneous luminosity delivered by the
LHC will be increased by one order of magnitude, above the LHCb design value. The occupancy
of the detector will significantly grows reducing the performance of the photon measurement
with the electromagnetic calorimeter. The study shows that reducing the cluster size used in the
photon reconstruction limits the effect of the overlap between the showers, without inducing a
significant energy leakage. With some dedicated corrections, the new cluster reconstruction
improves the B 0

s →φγ mass resolution by 7 to 12%, depending on the calorimeter region. This
new reconstruction will be tested with Run II data.
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Appendix A

Generator level cuts

All the samples used in the analysis were simulated with loose generator level cuts in order
to avoid generating too many events which would have been rejected at an early stage by the
stripping selection. These cuts are listed in table A.1. Their possible bias over the Dalitz plane
have been investigated with a specific sample without the cuts applied. Fig. A.1 shows the
efficiency of these cuts along the three Dalitz coordinates on the truth matched signal after
stripping. Since these distributions are flat, no bias is expected on the selection efficiency
computation.

Table A.1 – Generator level cuts applied on the 2012 samples.

Particle Variable Cut value

K ∗0 p > 12GeV

pT > 800MeV

p of daughters > 2GeV

pT of daughters > 98MeV

D0 p > 20GeV

pT > 300MeV

p of π± direct daughters > 1GeV

K 0
S p > 6GeV

z position of the decay vertex < 2.4m

p of daughters > 2GeV

B 0 p > 50GeV

pT > 5GeV

τB 0 > 0.35ps
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Figure A.1 – Efficiency distribution along the three Dalitz coordinates of the generator level cuts on the
MC11a signal events after stripping.
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Appendix B

Differences between 5.5GeV and 5.8GeV
upper sidebands

Three regions of the data upper sideband, mB 0 ∈ [5.5;5.6]GeV, mB 0 ∈ [5.6;5.8]GeV and mB 0 >
5.8GeV, were compared looking at the discriminating variables used in the BDT. In order to
highlight any discrepancy, a high statistics is needed and therefore no preselection is applied.
To check that the preselection applied before the training does not remove any difference, the
distributions after PRESEL_BDT are also shown. The B 0 pointing angle, its impact parameter
significance and its transverse momentum are the three variables with the most significant dis-
crepancy between the [5.5;5.6]GeV range and the region above 5.8GeV. Although the observed
differences are limited, they are sizeable enough for a multivariate classifier to influence its
selection performances.
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Figure B.1 – Distribution of the angle between the B 0 reconstructed momentum and the line made by
the PV and the B 0 decay vertex (θdira). Three data upper sidebands are compared: mB 0 ∈ [5.5;5.6]GeV
(orange), mB 0 ∈ [5.6;5.8]GeV (blue) and mB 0 > 5.8GeV (green), without any preselection (a) and after
PRESEL_BDT (b).
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Figure B.2 – Distribution of the B 0 impact parameter significance with regards to the PV (χ2
IP). Three data

upper sidebands are compared: mB 0 ∈ [5.5;5.6]GeV (orange), mB 0 ∈ [5.6;5.8]GeV (blue) and mB 0 > 5.8GeV
(green), without any preselection (a) and after PRESEL_BDT (b).
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Figure B.3 – Distribution of the B 0 transverse momentum. Three data upper sidebands are compared:
mB 0 ∈ [5.5;5.6]GeV (orange), mB 0 ∈ [5.6;5.8]GeV (blue) and mB 0 > 5.8GeV (green), without any preselec-
tion (a) and after PRESEL_BDT (b).
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Appendix C

Distributions of the variables used in
the crossed BDT

The distributions of the sixteen discriminating variables used in the crossed BDT are shown. They
are obtained from the signal and background samples used for the training (after PRESEL_BDT).
LL and DD candidates are drawn apart, but the background distributions include both A and B
data sidebands. It can be noticed that the signal and background distributions of the sum of the
χ2

IP with regards to the PV over the K 0
S daughters (Sum2_IPS), the K 0

S flight distance significance
with regards to the PV (Ks_FDCHI2_OWNPV) and to the D0 (Ks_DKs_FDSig) and the transverse
momentum of the D0 and the K ∗0 are different for LL and DD. Then the variable ranking given
by TMVA is shown for the four classifiers BDTA_LL, BTDA_DD, BDTB_LL and BDTB_DD.
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Figure C.1 – Distributions of the variables used by the BDT for LL (a) and DD (b) candidates, from the
signal (blue) and background (red) training samples.
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Figure C.2 – Distributions of the variables used by the BDT for LL (a) and DD (b) candidates, from the
signal (blue) and background (red) training samples.
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Figure C.3 – Distributions of the variables used by the BDT for LL (a) and DD (b) candidates, from the
signal (blue) and background (red) training samples.
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Variable ranking for BDTA_LL:

--------------------------------------------------------------------------

Rank : Variable : Variable Importance

--------------------------------------------------------------------------

1 : log(B0_PVFit_chi2[0]/B0_PVFit_nDOF[0]) : 1.243e-01

2 : log(Ks_FDCHI2_OWNPV) : 1.005e-01

3 : Ks_DKs_FDSig : 9.136e-02

4 : log(B0_FDCHI2_OWNPV) : 8.221e-02

5 : log(Kst_PT) : 7.515e-02

6 : log(acos(B0_DIRA_OWNPV)) : 6.895e-02

7 : log(Sum2_IPS) : 6.842e-02

8 : D0_BD_FDSig : 6.608e-02

9 : log(D0_FDCHI2_OWNPV) : 6.354e-02

10 : Kst_BKstarK_DecayAngle : 6.088e-02

11 : log(D0_PT) : 5.445e-02

12 : log(B0_PT) : 4.939e-02

13 : log(B0_IPCHI2_OWNPV) : 3.787e-02

14 : log(B0_ENDVERTEX_CHI2/B0_ENDVERTEX_NDOF) : 3.348e-02

15 : log(Sum4_IPS) : 1.657e-02

16 : log(D0_ENDVERTEX_CHI2/D0_ENDVERTEX_NDOF) : 6.791e-03

--------------------------------------------------------------------------

Variable ranking for BDTA_DD:

--------------------------------------------------------------------------

Rank : Variable : Variable Importance

--------------------------------------------------------------------------

1 : log(B0_PVFit_chi2[0]/B0_PVFit_nDOF[0]) : 1.231e-01

2 : log(Kst_PT) : 9.294e-02

3 : log(B0_FDCHI2_OWNPV) : 9.118e-02

4 : log(D0_PT) : 8.806e-02

5 : D0_BD_FDSig : 8.224e-02

6 : log(acos(B0_DIRA_OWNPV)) : 7.653e-02

7 : log(D0_FDCHI2_OWNPV) : 5.871e-02

8 : log(Ks_FDCHI2_OWNPV) : 5.760e-02

9 : log(B0_IPCHI2_OWNPV) : 5.627e-02

10 : Kst_BKstarK_DecayAngle : 5.540e-02

11 : Ks_DKs_FDSig : 5.355e-02

12 : log(B0_PT) : 5.242e-02

13 : log(Sum4_IPS) : 4.787e-02

14 : log(B0_ENDVERTEX_CHI2/B0_ENDVERTEX_NDOF) : 2.508e-02

15 : log(D0_ENDVERTEX_CHI2/D0_ENDVERTEX_NDOF) : 2.487e-02

16 : log(Sum2_IPS) : 1.420e-02

--------------------------------------------------------------------------
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Variable ranking for BDTB_LL:

--------------------------------------------------------------------------

Rank : Variable : Variable Importance

--------------------------------------------------------------------------

1 : log(Ks_FDCHI2_OWNPV) : 9.670e-02

2 : Ks_DKs_FDSig : 9.431e-02

3 : log(B0_PVFit_chi2[0]/B0_PVFit_nDOF[0]) : 9.122e-02

4 : log(B0_FDCHI2_OWNPV) : 7.431e-02

5 : D0_BD_FDSig : 7.422e-02

6 : log(Kst_PT) : 6.772e-02

7 : log(acos(B0_DIRA_OWNPV)) : 6.224e-02

8 : log(D0_FDCHI2_OWNPV) : 6.207e-02

9 : log(D0_PT) : 6.050e-02

10 : Kst_BKstarK_DecayAngle : 5.948e-02

11 : log(Sum2_IPS) : 5.525e-02

12 : log(B0_PT) : 4.810e-02

13 : log(B0_ENDVERTEX_CHI2/B0_ENDVERTEX_NDOF) : 4.556e-02

14 : log(B0_IPCHI2_OWNPV) : 4.217e-02

15 : log(Sum4_IPS) : 3.538e-02

16 : log(D0_ENDVERTEX_CHI2/D0_ENDVERTEX_NDOF) : 3.076e-02

--------------------------------------------------------------------------

Variable ranking for BDTB_DD:

--------------------------------------------------------------------------

Rank : Variable : Variable Importance

--------------------------------------------------------------------------

1 : log(B0_PVFit_chi2[0]/B0_PVFit_nDOF[0]) : 1.316e-01

2 : log(Kst_PT) : 9.651e-02

3 : log(D0_PT) : 8.948e-02

4 : log(B0_FDCHI2_OWNPV) : 8.628e-02

5 : D0_BD_FDSig : 8.301e-02

6 : log(acos(B0_DIRA_OWNPV)) : 8.169e-02

7 : Kst_BKstarK_DecayAngle : 6.683e-02

8 : log(B0_PT) : 6.439e-02

9 : log(B0_IPCHI2_OWNPV) : 5.719e-02

10 : log(D0_FDCHI2_OWNPV) : 5.625e-02

11 : Ks_DKs_FDSig : 5.440e-02

12 : log(B0_ENDVERTEX_CHI2/B0_ENDVERTEX_NDOF) : 4.385e-02

13 : log(Sum4_IPS) : 3.978e-02

14 : log(Ks_FDCHI2_OWNPV) : 3.575e-02

15 : log(Sum2_IPS) : 1.294e-02

16 : log(D0_ENDVERTEX_CHI2/D0_ENDVERTEX_NDOF) : 0.000e+00

--------------------------------------------------------------------------
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