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Résumé

Cette thèse porte sur la description de l’assemblage des virus dans le cadre de la physique
statistique ainsi que sur les méthodes de mesure de cet assemblage utilisant les marqueurs
fluorescents. Nous nous y attachons à décrire la dynamique de l’agrégation des protéines aux
échelles de la population et du virus unique. Nous proposons deux méthodes pour mesurer les
grandeurs physiques associées : taille et forme de la structure finale d’une part, taux d’agrégation
au cours de la croissance d’autre part.

Les virus sont des entités biologiques à l’interface entre l’inerte et le vivant. En effet ils ne
possèdent pas la capacité de se répliquer, et généralement pas de métabolisme pour produire
leur énergie, mais ils partagent les supports de code génétique et la constitution protéique du
vivant. Sans capacités reproductrices autonomes, ils sont des parasites obligatoires des cellules
dont ils détournent l’activité à leurs fins. Cette activité parasite est la source des effets patho-
gènes du virus qui touche l’ensemble du vivant depuis les bactéries unicellulaires jusqu’au règne
animal en passant par les plantes. Si leur petite taille (généralement sub-micrométrique) les a
longtemps tenus hors de portée des moyens d’investigation scientifique, l’importance des enjeux
sanitaires et économiques des maladies qu’ils causent a stimulé une importante recherche. Les
enjeux de la compréhension du fonctionnement viral sont évidents pour la lutte contre les virus
pathogènes, mais dépassent largement ce cadre. Les utilisations à des fins de recherches (ou
médicales) de leurs capacités ne manquent pas : pour altérer le fonctionnement cellulaire (thé-
rapie génique), pour cibler les bactéries (alternative possible aux antibiotiques), pour cibler une
cellule spécifique de l’organisme (nouvelles techniques de marquage pour l’imagerie du vivant,
ciblage des traitements médicaux). L’étude et la maîtrise des propriétés d’auto-organisation
des éléments constitutifs des virus trouve aussi des débouchées en micro-électronique où des
circuits hybrides incluent des éléments organiques et sont parfois conçus de façon biomimétique,
en chimie où l’encapsulation sélective de composés à des dimensions réduites est un enjeu et
où, une fois encore, la formidable “compétence” des virus à cette échelle peut-être mise à profit.

Dans ce travail, nous nous sommes intéressés à la description physique de l’auto-assemblage
des protéines virales. La physique de l’auto-assemblage in-vitro des virus sphériques, dont la
structure est déterminée par l’agencement régulier de leurs constituants protéiques, a été théo-
riquement et expérimentalement caractérisée auparavant par des modèles d’agrégation. Les
modèles existants décrivaient l’assemblage à quantité de composants viraux fixée dans un sys-
tème fermé à partir des constituants élémentaires du virus. In-vivo, la situation est bien entendu
différente. Abstraction faite de la grande complexité du milieu cellulaire, les virus s’échappent
de la cellule une fois formés pour aller infecter de nouvelles cellules. De plus, la quantité de
constituants est sans cesse modifiée par la fabrication ou la dégradation des protéines virales.
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Enfin les méthodes de mesures utilisées in-vitro ne sont généralement plus envisageables in-vivo.
Nous avons donc étudié les effets d’un flux de matière dans système ouvert via le calcul de l’état
stationnaire, et via la résolution numérique des équations d’évolution des populations d’agré-
gats qui décrivent la cinétique d’agrégation des protéines virales. Dans ce cadre, nous avons mis
en valeur le lien entre la description de l’état général du système en termes de populations et
le devenir individuel d’un virus en formation pour le suivi duquel des méthodes expérimentales
existent. Nous nous sommes alors attachés à proposer un traitement approprié de telles données
expérimentales pour déterminer les valeurs des paramètres physiques du modèle.

L’essor des moyens d’imagerie et d’analyse a joué un rôle clef dans le développement de la
compréhension de ces objets de tailles si réduites. Jusqu’à très récemment, ces échelles n’étaient
accessibles qu’aux équipements de microscopie électronique ou de rayonnements intenses im-
posants et onéreux. Dans les années 2000, plusieurs techniques cousines ont émergé et placé de
telles échelles à portée de la microscopie optique par fluorescence. Une partie de ces travaux a
été récompensée par le prix Nobel de chimie en 2014. Ces nouveaux moyens se révèlent parti-
culièrement adaptés à l’imagerie des cellules et sont une source d’information complémentaire
aux techniques existantes en ce qui concerne les virus. Cependant, au niveau le plus fin, le pro-
cédé même de ces méthodes modifie la notion habituelle de l’image. Les techniques (f)PALM et
(d)STORM, dites de microscopie superrésolue, permettent de générer des cartes de probabilité
de la position individuelle de protéines marquées avec un niveau de précision de l’ordre de la
dizaine de nanomètres. De la même façon que la notion de contour est mal aisée sur un ta-
bleau pointilliste, une mesure précise sur un objet délimité par ces positions n’est pas évidente.
Dans cette thèse nous nous sommes attachés à développer une méthode quantitative pour me-
surer les dimensions des objets ainsi “imagés” en prenant en compte la structure particulière
de l’information produite par les techniques de superrésolution. Cette méthode, construite sur
la théorie statistique du maximum de vraisemblance, a été caractérisée sur des images de vi-
rus de l’immunodéficience humaine (VIH –l’agent responsable du SIDA) simulées ou réalisées
expérimentalement pour cerner les forces et les limites d’une telle estimation.
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Abstract

In this thesis work, we study the self-assembly of viral particles and focus on the analysis of
measurements based on fluorescence labeling of viral proteins. We propose a theoretical model
of the dynamic of viral proteins self-assembly at the cell membrane based on previous models
developed to describe the in-vitro assembly of spherical viruses. We study the evolution of the
populations in the successive stages of viral budding as well as the evolution of single particle
within this framework. We also provide various data analysis to measure the physical values in-
volved in the process: rate of aggregation during the bud growth, size and shape of the eventual
structure. Viruses are biological objects unable to replicate without infecting an host cell since
they lack part of the molecular machinery mandatory for genetic code replication and proteins
production. Originally aimed at controlling the diseases they cause, the study of viruses is now
rich of applications in medical and technological field (gene therapy, phage therapy, targeted
therapy, bio-templating, cargo specific encapsulation, etc.). The existent models describing the
self-assembly of viral proteins have successfully captured many features observed in the in-vitro
experiments. We study the expected evolution when an open system is considered with an input
flux of proteins and an output flux of released virion, characteristic of the in-vivo situation. We
derive the population distribution at steady state and numerically study their dynamic under
constant viral protein input flux. We also study the case of a single bud evolution which can be
followed by its fluorescence emission. We study the possibility to estimate shape parameters at
the single viral particle level such as radius and completion for the human immunodeficiency
virus (HIV) from single molecule localization superresolution microscopy. These techniques
known as (f)PALM or (d)STORM, record labeled proteins position with a precision of few
to tens of nanometers. We propose an approach base on the maximum likelihood statistical
method which is tested on both real and simulated images of fully formed particles. Our results
suggest that it can offer a precision on the determination of the global structure finner than
the positioning precision of the single proteins. This efficiency is however tempered when the
parameter of interest does not affect the figures of merit to which the method is sensitive such
as the apparent area and the image contours.
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Introduction

The term virus comes from the Latin word for poison [106] which tells much about the
way they are usually perceived. They are mainly associated in the common sense to great
historical pandemics such as “Spanish” influenza (from 21 to 100 millions casualties depending
on the estimations (Johnson and Mueller [70]), smallpox, and more recently acquired immune
deficiency syndrome (AIDS) and Ebola hemorrhagic fever epidemic, or to less serious diseases
as chickenpox, common cold, cold sores...

Viral infections on animals are also present in public mind due to the possible transmis-
sion of the disease to humans in several cases, as well as the economic issue when farming
is concerned. The recent worldwide concern about avian influenza (highly pathogenic asian
avian influenza A (H5N1) virus) illustrates both the social, political and economic impact of
virus with global losses estimated in billions US$ (Mcleod et al. [93]). Also, many virus have
known animal reservoirs, as pigs and birds for influenza, fruit-bats being suspected in the case
of Ebola hemorrhagic fever (Laupland and Valiquette [81]). Historically, the term “vaccination”
was coined from the from Latin vaccinus, which means "from cows", by the British physician
Edward Jenner to designate his technique of inoculating people with cowpox virus to prevent
smallpox (Harper [62]).

Despite the prominence of animal viruses for public opinion, viral diseases are known to
affect a vaster part of the living realm. As a matter of fact, the discovery of virus was made
studying a plant disease damaging tobacco crops. As the approach underlines key characteristics
of viruses, we will present it in details before we expose the modern definition.

1.1 Viruses

1.1.1 The historical discovery

In the middle of 19th century, bacteria are already known and have been extensively studied,
among other by Louis Pasteur (1822–1895). Yet the agent of rabies still escaped the detection
in microscope’s observations. The size of bacteria is large enough to visualize them using op-
tical magnification or filter them out from a solution using the filtering protocol designed by
Charles Chamberland (1851–1931). In 1884, he successfully removed the typhoid fever bacteria
from an infected solution using the filters currently named after him. Later, Dmitry Ivanovsky
(1864–1920) working on tobacco plants infected by the tobacco mosaic virus (figure 1.1) showed
that extracts from crushed leaves can transmit the disease to healthy plants after filtration on
Chamberland filters. He concludes that the pathogenic agent is smaller than known bacteria
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Introduction

(a) A tobacco leaf with symptoms of infection
by tobacco mosaic virus (c [111])

(b) The tobacco mosaic virus observed in cryo-
electron microscopy (from Sachse et al. [113])

Figure 1.1 – The tobacco mosaic virus was the first discovered

and proposed that the bacteria could somehow produce a toxin causing disease on the healthy
plants. The microbiologist Martinus Beijerinck (1851–1931) eventually repeated this exper-
iment showing that further dilutions of the filtered solution remains infectious and that the
process can be reproduced using leaves from the newly infected plant. The hypothesis of a
toxin produced by bacteria in the former plant to cause the transmission of the disease was
thus excluded (Zaitlin [135]). Martinus Beijerinck used the term virus to designate this newly
discovered pathogen. He further characterized it as an entity that proliferate inside the living
organism but that does not reproduces in the solution itself.

A virus is nowadays defined as a infectious agent unable to replicate without an host cell.
The common characteristic of viruses is that they lack part of the molecular machinery manda-
tory for genetic code replication and proteins production. Viruses therefore depend on their host
cell resources and machinery to replicate, and are therefore parasites. As already mentioned,
the host cell is not necessarily an animals cell: plant, bacteria, fungi, any cell is potentially a
viral target. A virus is generally specific of a (or several) host cell(s) and to the great diver-
sity of cells corresponds a great variety of viruses. The number of known virus is constantly
increasing since techniques that enable their visualization and description are quite recent as
we will see in the following section.

1.1.2 Virus cycle

The simplest possible image to describe the essential nature of a virus is a box containing
instructions to produce kits to assemble the same box altogether with copies of the instructions.
If this box is left somewhere in a busy factory, many ready-to-assemble box are likely to be
produced... The factory we are speaking about is the host cell which has the cellular machinery
to assemble proteins from the nucleic acids sequence (the ribosome, mitochondria, etc.). The
viral replication necessitates to access and fool the cellular machinery in order to make it
produce viral elements instead of cellular ones. Cell being a closed and often compartmentalized
environment, production of new viruses follows a succession of steps known as virus life cycle.
Virus life cycle can be extremely complicated, as much as the host cell and its reactions to the

2



1.1. Viruses

presence of viral material can be complex. Hence the viral strategy will be different whether
its host is an eukaryote cell as animal cell where the genetic material is enclosed in a nucleus,
or a bacteria without a nucleus. Viruses constitutions are also very variable (see section 1.1.3)
leading to different disassembly and assembly strategies. However the virus goal is replication
in any case and the following steps are mandatory in all cases figure 1.2:

— The target host cell must be recognized (using cellular membrane receptors).

— The genetic code of the virus has to come to contact with the cellular machinery, which
imply its entrance inside the cell through the cellular membrane and its liberation (entry
and uncoating).

— The genetic code must be replicated (transcription).

— The genetic code must be translated to produce viral components: the viral proteins
(translation).

— Viral components including the replicated genetic code and the viral proteins must as-
semble to form the viral structure ((self)-assembly).

— The new virus must exit the cell.

Figure 1.2 – HIV life cycle illustrate the steps of all virus infection and more specific behavior.
The host cell outer/nuclear membrane is sketched in light green. As example of specific and
complex strategy, the transcription of the HIV genome carried by the virus coded on RNA into
DNA for integration into the host chromosome (retroviral strategy) and the production of non
packaged regulatory proteins that interfere with the cell regulation system and a maturation
step (from Ganser-Pornillos et al. [49])
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Each step could of course be achieved through very different strategies, and a consecutive
important variability of structure and interactions. However, in spite of this factors of diversity,
the virion remains a simple structure at the interface between the protein level and the complex
cellular machinery.

Interactions between cell and virus involve a rich physics with a promising range of fruitful
questions from polymer physics, mechanics of fluid membrane, solvation, charge interactions,
molecular bounds, crystallization, nucleation... Physical models based on simple concepts have
already proven to be successful, for instance in explaining how capsid elements assemble (pi-
oneer structural work by Caspar and Klug [23], Crick and Watson [31], Finch and Klug [42], see
section section 1.1.3) and paved the way for many applications relying in “encapsidation” (see
section 1.2.1). We will therefore detail the rich structure of viruses and how from simple protein
component so interesting polyvalent containers auto-assembly is possible.

1.1.3 Viruses structures

The complete virus as it can be seen before it infects a cell is called a virion. The general
organization consists in a genetic media made of nucleic acids (either DNA or RNA, simple
or double stranded, (+/−)-polarized, depending on the virus), that code for the viral genome,
protected by a coating of proteins called the capsid. This organization have been hypothesized
by Crick and Watson [31] in 1956 –six year after they determined the correct structure of DNA–
and completed in 1957 (Crick and Watson [32]) with the suggestion of the cubic and cylindrical
symmetries as the most economic choice in term of construction : most of the positions in those
constructions are equivalent so less protein variety are required to build it thus limiting the
size of the genome to enclose. This geometric structure made of a large number of identical
subunits is consistent with the crystallization of viruses first observed on the tobacco mosaic
virus in 1935 by Stanley [123]. The proposition was to be confirmed two years later with the
icosahedral structure of poliomyelitis solved by Finch and Klug [42] using the X-rays diffraction
pattern.

The self-assembly of the capsid is to a large extent akin to a 2D crystallization process in
which capsid protein aggregate to form an ordered layer. The hexagonal (triangular) lattice
is the planar crystal that allows close packing of identical units maximizing their interactions
and is basic canvas adopted by the capsid units. A two dimensional structure is obtained by
folding this network in one direction witch generates the tubular and helical structure that
we will describe first. Forming a closed structure requires curvature in both dimensions, and
pentagonal sites are necessary. They are indeed found in closed shape such as icosahedral,
prolate, and irregular capsids.

Helical viruses We have already introduced the tobacco mosaic virus which is a helical virus
family representative. The capsid proteins are stacked around the genetic material in helical
structure giving a rod shape as the tobacco mosaic virus or a filamentous shape such as Ebola
virus (figure 1.3b). Other well known animals viruses having a capsid with helical symmetry are
rabies virus and measles virus, but they are also surrounded by a lipid envelope and described
as enveloped viruses.

Spherical (icosahedral) viruses They are probably the best known and described viral
capsids. The proposition of Crick and Watson [32] was that one type of identical capsid subunits

4



1.1. Viruses

(a) Protein structure of the tobacco mosaic virus
shown in figure 1.1b is a rod with right handed
helical pitch of 23Å with 16.3 protein per helix
turn, inner diameter of 4nm and outer diameter
of 18nm (Mateu [91]) (c [122])

(b) En election micrograph of an Ebola viral par-
ticle showing its filamentous structure. Filament
diameter is 60-80 nm

Figure 1.3 – Ebola virus and tobacco mosaic virus are two helical virus

only (not necessarily a single protein, an assembly of protein is also possible) assemble so that
each sees the same environment (see figure 1.4). This provides a good container requiring a
minimal amount of genetic information. This theory was latter developed and generalized by
Caspar and Klug [23] under the name of quasi-equivalence theory to allow more flexibility in the
constitution than the sixty identical units inconsistent with the mass experimentally observed.
Equivalent Interaction between neighbors are termed “quasi-equivalent” as one admits that the
building block can withstand a slight modification of their conformation to adapt to a different
environment depending on their position in the capsid so that hexamers as well as pentamers can
be formed from the capsid proteins. When hexameric units are inserted between the pentameric
ones in a concerted manner, so that those are maintained as summit of a equilateral triangle,
the result is still an icosahedron with larger facets and involving more building blocs. In those
constructions, the number of subunits involved is still a multiple of sixty: n = 60 × T . T is
called the triangulation number and must verify T = h2+k2+hk, where (h, k) ∈ N∗ define the
steps to go from one pentameric summit to the next in the lattice. T also counts the number
of different binding conformations that are necessary to form the structure (figure 1.4). The T
number provides a classification of capsids inside the icosahedral family. Of course, if one relax
the genetic parsimony constraint to produce the least variety of different proteins, the large
icosahedral capsids can be build out of T different building bloc for each type of binding site
rather than one adaptive one. Several viruses are known to have adopted this strategy such
as picornavirus. Furthermore, large variations are observed among viruses. In prolate capsids
where the initial icosahedron is extended in one direction forming a cylinder constructed on
pure hexameric sites (Mateu [91]). This leads us to the next family.
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Figure 1.4 – (top) A portion of 2D triangular lattice of sixty identical capsid units folds in
an icosahedron for adapted binding angle. Each capsid subunits, or capsomer, has the same
environment in the resulting icosahedron, so it can self-assemble from identical subunits forming
a container with a good surface/volume ratio. (middle left) The quasi equivalence theory
assumes that capsomers can adapt to slightly different geometric binding configuration (not
any more equivalent but “quasi”) so that larger triangular facets (B,C,E or F, and D) can
be made including hexameric coordination sites to enlarge the resulting icosahedral capsid
(bottom). The new constructs, can be labeled by their T numbers.(middle left) in T = 1
all capsomer occupy an equivalent position (original idea), in T = 3 their are three different
binding configuration, and four in a T = 4 capsid (from Mateu [91])
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(a) The Cowpea chlorotic mottle virus icosahe-
dral capsid (diameter 300Å) is made of 180 iden-
tical proteins that assemble into dimers (cap-
somers) which in turn form the capsid (quasi-
equivalence rule).

(b) The picornavirus capside (diameter 308Å) is
made of 60 replica of 3 different proteins (cap-
somers) designed to bind in non equivalent envi-
ronments.

Figure 1.5 – Icosahedral capsids following T = 3 symmetry either following quasi equivalence
(same subunits) or using different proteins (from Viperdb [22]).

Irregular viruses Members of this family show either complex capsid, such as the assembly
of different part helical and (pseudo)icosahedral such as several bacteriophages that infect
bacteria, or as the mature Human Immunodeficiency Virus (HIV-1) capsid which does not adopt
a prescribed shape but rather varies between a closed cylinder or a conical shape. Recently
discovered Pandora virus has a shape similar to a lemon.

Enveloped viruses Capsid is not the only structural feature of virion. Enveloped virus
exhibit in addition, as the name suggest, a lipid bilayer taken away from the cellular host in
the late stage of the virus life cycle. It can be either a portion of the cellular membrane or
of the cellular compartment where assembly took place, or lipids recruited during assembly
stage. Viral proteins are generally embedded in the lipid bilayer that are typically needed by
the virus to recognize and enter its target cell. In addition a supplementary layer of proteins
called the matrix mediates the interaction between the membrane and the inner capsid. The
virus matrix, also formed of a viral protein lattice partly embedded in the lipid membrane, is
generally less organized than the capsid.

Human immunodeficiency virus immature structure In this thesis, we focus specifi-
cally on the case of enveloped virus that assemble under the cell membrane such as Human
Immunodeficiency Virus (HIV-1). This section presents a closer look at the structure of human
immunodeficiency virus virion shortly after it has left its host cell.

As other viruses, human immunodeficiency virus undergoes a maturation phase that brings
strong modification to its structure. It is only once it has passed the maturation phase that
the virus particle is able to infect a new cell. Before this stage, the human immunodeficiency
virus capsid is still not assembled and the virion is called immature. The human immun-
odeficiency virus is an enveloped virus. Just after its release from the cell, the external lipid
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membrane is spherical, enclosing the viral proteins and two identical copies of the viral (-)RNA.
A strong variability is observed: the outer diameter of the immature viral particles varies at
the level of the product from a single experiment: 133± 17 nm (Wilk et al. [133]), 126± 10 nm
or 130± 17 nm (Carlson et al. [20] using tomogram or cryoEM)). The standard deviation indi-
cated is the dispersion of the particle size distribution (much larger than the measure precision
in electron microscopy). Inside the immature particle, Wilk et al. [133] reported a incomplete
spherical shell of the structural protein gag 1 enveloped by the lipid membrane (figure 1.6).
The gag protein of the human immunodeficiency virus structure is a very long polyprotein of

Figure 1.6 – Cut in the reconstructed tomogram of an immature virion (from Wright et al. [134]).
The radial organization and incompleteness (black arrows) of the gag layer appears clearly

� 25 nm in its conformation inside the immature capsid (Wright et al. [134]) with well identified
domains (figure 1.7a):

— MA (matrix domain), binds directly to the inner leaflet of the plasma membrane by
insertion of a hydrophobic group and binding with several phospholipids. It is however
not necessary to observe particle formation (Ganser-Pornillos et al. [49]).

— CA (capsid domain) tightly associates in an organized lattice under the membrane and is
critical to observe particle formation. Cleaved and liberated in the maturation process,
this domain is responsible for the capsid formation inside the particle.

— SP1 is a spacer domain also contributing to gag-gag interaction and mandatory for lattice
formation.

— NC (nucleo-capsid) domain also participates to the gag-gag interaction to assemble the
gag lattice and also binds the viral RNA for packaging in the forming particle. It latter
folds the viral RNA in a compact structure during maturation steps.

— SP2 is second spacer domain.
— P6 does not affect the in-vitro assembly but is proved necessary for the proper release of

the virus at the very end of the viral assembly (Göttlinger et al. [55]).
Inside the immature particle Wilk et al. [133] showed that the gag proteins are anchored by

the MA domain into the lipid layer and radially oriented with the P6 domain pointing towards

1. gag stands for “group specific antigen” which designates the gene sequence that code for the structural
protein, as well as this protein itself, in the retrovirus family. The precise form of these proteins as well as their
properties are not identical from one virus to another (see Briggs et al. [18])
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P6

NC

CA

MA

SP1

SP2

LIPID MEMBRANE
BILAYER

(a) The different domains of the gag polypro-
tein (left) along with the electronic density in-
side a immature virion (adapted from Briggs and
Kräusslich [15]). The MA domain is partially em-
bedded in the protein bilayer, making if thicker.
Underneath CA domain organize in an hexam-
eric lattice (inset) with a 8 nm spacing (yellow
arrow)

(b) fit of an hexameric lattice in the tomogramm
density shows that gag organize into a continu-
ous coating inside the immature virion with sev-
eral defects that allow curvature of the lattice
and an important gap (from Briggs and Kräus-
slich [15]) as showed by Carlson et al. [20]

Figure 1.7 – Organization of the protein coat underneath the lipid membrane bilayer

the center of the particle. The number of gag forming the incomplete inner protein layer is of
the order of 103, and more accurate estimations vary much, depending on assumptions and
experimental technique used: the gag proteins content of a virion was reported to be 1400 gag
proteins (Zhu et al. [138] –using proteins ratio assumptions), 4900 (Briggs et al. [17] –assuming full
coverage of a 145 nm particle), 2400± 700 (Carlson et al. [20] –assuming 60-70% coverage, using
tomography and scanning transmission electron microscopy). The hexagonal organization of
the gag lattice was suggested by Nermut et al. [104] and identified by Briggs et al. [18], Wright
et al. [134] with a measured spacing of 8 nm between two hexamers centers using cryo-electron
microscopy tomography. Furthermore, the gag lattice coats only 2/3 of the inner surface of the
lipid membrane inside the immature particle (Carlson et al. [20]). This organization suggests a
revised model of the viral self assembly.

1.1.4 Human immunodeficiency virus cycle late stages: budding and
release

The building of the viral particle inside the cell with its exit and maturation constitutes
the late stage of the human immunodeficiency virus cycle. As many enveloped virus, its builds
directly on the membrane. During the process, the lipid membrane is locally curved around
the protein coat in a structure called a bud. This step of virus cycle prior to the release outside
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the cell is therefore called the budding of the virus. Based on mutation studies, cryo-electron
microscopy (Carlson et al. [20]) and fluorescence observations (Jouvenet et al. [72]), a sequence
of the human immunodeficiency virus formation steps from the beginning of viral proteins
production inside the cell can be hypothesized (figure 1.8a).

Yet this scheme is not sufficient to explain the variability and incompleteness of the im-
mature protein coat. The issue was thus challenged by proposition including a more detailed
description with many exit channels as showed on figure 1.8b. Those scenarios give a synthesis of
the information extracted from fluorescence and structural characterization experiments. The
various actors that take part in the viral life cycle are more and more exhaustively determined
and the succession of their intervention within the virus cycle described. Going deeper in the
details of the viral assembly now requires a quantitative approach to describe the consequence
of a physical parameter modification, such as a constituent concentration or the temperature,
on the measurement that is the form of the size distribution or the time evolution of the
concentrations.

The development of a quantitative approach of the observations and models based on phys-
ical rules enriches considerably the understanding of the virus. The next section is aimed at
broader overview of the recent advances on this field.

1.2 Physical Virology
The development of new means of measurement based on the 20th century discoveries (among

other X-rays, electron wave-particle duality...), discussed in section 1.3, contributed for a large
part in a precise description of the viruses. It granted access to scales unreachable until then.
Also physical based models took also an important share in the progress with a powerful
description of polymer physics that rules conformations of the genetic media, of the mechanical
properties at low scales with lipid membrane elasticity theory for instance (Helfrich [63]), and
of large population statistical behavior such as the micellization phenomenon. The use of the
physical concepts of forces, deformations, energy, entropy and equilibrium gives a universal
framework to understand the observations on the organization and dynamic of the virus in
more and more complex situations. The cell, that is the reference biological entity, is still a
very complex system regarding physical description, however the physics rules still apply and
the description of simpler sub-systems at the scale of the virus is not any more a thought
experiment.

1.2.1 Many exploration directions and applications

There are many interesting points related to the structures of viruses. Promising appli-
cations largely use it. For instance vaccination is more efficient using non pathogenic viruses
“decorated” on their surface with antigens of the target pathogen agent, than with antigen
alone. Vaccination relies on a successful recognition of a pathogen antigen that generates im-
mune memory. Since immune system has co-evolved with viruses in order to recognize and react
to viral presence, its reaction is much stronger than to the antigen alone (Andrade et al. [4]).
A good knowledge of viral structure is a key factor to find a protein residue exposed at its
surface as anchor. This also apply for functionlizing viral surface with markers or molecules in
order to image (Steinmetz et al. [124]) or deliver a treatment to their specific target cells (Ashley
et al. [6]); as well as for antiviral drug design. But outgrowth of the virus structure studies fall
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(a) Late stages of the human immunodeficiency virus cycle: budding an release. From left to right are
shown different stage of the bud growth: the gag structural proteins bind to the membrane, diffuse and
aggregate. This initiates a budding site (1). As more free proteins aggregate the bud grows. The viral
RNA and other non structural viral proteins are selectively packaged in the course of bud growth (2)
and the protein aggregation deforms the cell membrane. Active steps is needed to trigger the scission
of the virion from the membrane (3) eventually releasing the immature particle outside the cell (4).

(b) An amended description of the human immunodeficiency virus release in the cell to explain the
variability of released particles completeness. Each bud stands as representative of the population
present on the membrane and arrows area are proportional to the net flux between population (adapted
from Carlson et al. [20])

Figure 1.8 – The budding of enveloped virus such as the human immunodeficiency virus
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outside of the medical field. The viruses well defined structures at the manometer scale can be
used to template nanoelectronic devices fabrication (Bruckman et al. [19], Moon et al. [97]).

Yet, the “static” view of the structure evolved to a dynamical description. Fluctuations
of the capsid conformation, called breathing, have been shown (Lewis et al. [85]) as well as
strong, irreversible conformational changes called maturation. This fosters the study of capsid
as mechanical objects that deform, can withstand pressure or break under strong stress, and
how this properties are affected during virus cycle (Castellanos et al. [24], Mateu [90]).

The genome conformation inside the capsid is not frozen either. The pressure it applies
on capsid walls have been predicted with model from the confined polymer theory, osmotic
pressure and charge interaction (Angelescu and Linse [5], Muthukumar [103], Siber et al. [117]).
Interaction with the native viral package, RNA or DNA inside the capsid has been extensively
studied. In several cases, packaging inside the fully formed capsid is an active process requiring
a motor and consuming adenosine triphosphate, whereas in other cases, electrostatic interaction
between the negatively charged polymer and the capsid is likely to promote assembly. Packaging
and expulsion forces have been experimentally measured at the scale of the single virus on Φ29
phage using optical tweezers (Smith et al. [120]) emphasizing the strength (57 pN) and yield
of the molecular motor, as well as the experimental precision available to manipulate single
polymers and viruses.

A remarkable point in the viral dynamic is that the viral organization emerges, in most of
the cases, from the individual properties of the constituents. The structure assembly and self
organization has been early demonstrated in-vitro without the need of adenosine triphosphate
the biologic energetic unit that fuels active process. This was demonstrated for instance with
tobacco mosaic virus showed in figure 1.1 (Fraenkel-Conrat and C.Williams [48], and cowpea
chlorotic mottle virus pictured in figure 1.5a (Bancroft et al. [9]). These experiments showed an
important dependency on the structural proteins concentration, the pH and the ionic strength
of the solution. Other viral proteins in contrast do not assemble in the absence of their genome.

The physical rules that preside over virus formation set the basis of self-assembly and its
constraints. The capsid structure must be stable enough to protect the genome and yet weak
enough to allow for a versatile assembly/disassembly and deliver the genome during infection.
The assembly must be in addition exceptionally efficient to proceed in the cellular complex
environment whereas competitive events are likely to perturb it sequence. We will now look at
the physical principles that rule this self-assembly.

1.2.2 Viral assembly

At the global level self assembly of any viral structure is controlled by the specific binding
of its components (figure 1.9). The components are furthermore restricted to a limited small
number of varieties by the biological constraint (size of the genome, efficiency, etc.). As a rule,
viruses are made from the repetitive aggregation of the same subunits. The successful idea of
Caspar and Klug [23] that the constitutive units should be closed packed and maximize contact is
an optimization concept. The isolated constituent are actually free to build whatever structure.
Anyhow a structure with too few and weak coordination between the constituent is unstable
and will disappear shortly after it appears. Over a long observation time or equivalently for
a large sized system, the more stable assemblies are the prominent ones. This is at least
true at null temperature. In contrast, at non zero temperature, thermal fluctuations tend to
favor less ordered structures that can result from a larger number of possible combinations or
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assembly paths. This competitive effect are described by the enthalpy and entropy contribution.
This is the principle of statistical physics and thermodynamics. Quantitative derivation of this
principle is made using the thermodynamics potentials. The optimum of the potential indicates
equilibrium between the driving force of the system corresponding to the measure at the level
of the global system.

Application of the thermodynamic principle under the specified constraints of given volume
and temperature leads to the minimization of the free energy potential. How to derive this
potential from the microscopic physics of the system component is theoretically established by
statistical physics, but the complexity of the task is tremendous because of both the physical
needs for a proper description of all the interactions and degrees of freedom and the calculation
itself. Useful models rely on approximations and effective descriptions that model the properties
of the components in the system at the desired level of description.

1.2.2.1 In-vitro equilibrium assembly of empty icosahedral capsids

Figure 1.9 – Self assembly of an empty capsid driven only by the capsomers interaction and ag-
itation. Small magnets on the edges of the pieces mimic the interaction between the capsomers
and shaking the box mimic thermal agitation (from Olson et al. [105])

The quantitative distribution of self-assembly products of empty icosahedral capsid in-vitro
is dominated by the isolated capsomers and the complete capsid. The capsomer being the
most stable assembly of capsid proteins that can be found in solution (for instance the dimers
for figure 1.5a), and they are elemental block of the capsid assembly. It agrees well with the
thermal equilibrium state of a free energy potential dominated by the energy involved in close
distance binding of capsomers otherwise not interacting and thus described as ideal gas for the
entropic contribution. Such description is equivalent to a succession of chemical reactions where
capsomers are added or removed from the forming capsid (Zlotnick [139]). The binding energy
hence described can be tuned changing the pH of the solution with an acid or its ionic strength
by addition of salts. Consistently, the binding energy main contributions are identified, at the
microscopic level, as the electronic and hydrophobic interactions (Kegel and Schoot Pv [75]).
Both come from the properties of the residues of the proteins forming capsomers that are
exposed at their surfaces: basic or hydrophobic. Basic residues often present at the inner face
of the capsid create excess of positive charges leading to a repulsion that can be diminished by
the screening of added salt or a lower pH whereas hydrophobic interaction becomes potentially
stronger at higher temperature. These observations are supported by the in-vitro assembly of
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hepatitis B virus (Zlotnick et al. [142]). However, such an equilibrium description fails to explain
the observed hysteresis of the capsid stability. Experiences starting from pure capsomers or
from pure complete capsids do not yield the same final concentrations following equilibrium
rule (Luque Santolaria [86]). This last result suggests a kinetics effect.

1.2.2.2 In-vitro kinetics of empty capsids

The equilibrium state derived from thermodynamics corresponds to an dynamic equilibrium
where flux between reacting species are still present at the microscopic level (capsids keep
forming and disappearing) but balance at macroscopic level. This establishes a compatibility
relationship between the kinetics rates of all the reactions generating or consuming a specie
and the equilibrium concentrations called global balance. A more restrictive relationship, where
each reaction equilibrates with its reverse one independently (Van Kampen [131]), holds when
reactions have time reversibility property. The description from Zlotnick [139] thus also provides
a basis to describe the kinetics of the system with additional assumptions on the rate constants.
A model, constructed accordingly in two steps: formation of a stable nucleus and elongation
towards completion, was found to agree with the observed evolution (Kegel and Schoot Pv [75],
Zlotnick et al. [140], Zlotnick and Stray [141], Zlotnick et al. [142]). However refinement of the
description of the nucleation in two steps was needed to quantitatively fit the concentration
evolution of brome mosaic virus (Chen et al. [29]). The framework of classical nucleation theory
was proposed by Zandi et al. [136] as a unified approach to the capsid formation. All those
works were aimed at the description of the well defined in-vitro experimental condition where
the number of capsomer is fixed in a closed system. Our work is build on the same ground that
these models. We will detail them in chapter 2. We consider the extension of this approach to
model the aggregation process of the viral protein in the cell.

1.2.2.3 Towards in-vivo models

The cell is an open system for viral proteins: new monomers are constantly introduced in
the system, build by the cellular machinery, and formed virions escape the cell to infect new
cells. We considered the extension of the in-vitro approach to model the aggregation process of
the viral protein under the membrane in such an open system. We studied more precisely the
onset of viral production, when the system has not reached its steady state. Indeed, in contrast
with the closed system laboratory experiment, an infected cell producing virions consumes its
resources and can eventually die. Therefore the long time limits might not be the relevant
quantities to study. In chapter 2 we will look at how this flux in the system affect the kinetics
of the capsid formation.

A complete description of the capsid formation would include the effect of other constituents.
The more obvious one is the genome which is compulsory to obtain self-assembly in several cases
in-vitro and not necessary in others (like cowpea chlorotic mottle virus or B hepatitis virus)
however mandatory in-vivo. The complexity of the problem increases when the dynamic of
the capsomers interacting with the polymer is to be taken into account. In silico-experiments
as molecular dynamic and coarse grained simulation have thus been used to study the co-
assembly. Elrad and Hagan [39] used a coarse grain simulation approach to provide a detailed
phase diagram of the assembly success depending on the polymer length and binding energy.
They conclude to an enhanced efficiency of capsid growth when a polymer binds the capsomers.
If the binding between units is low enough and the adsorption on the polymer is strong enough,
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the phenomenon resemble more condensation, where all the proteins aggregate first and then
reorganize in the most stable conformation as around a template (Hagan [60], McPherson [94]).
However for a large range of concentration and binding energies, effect of the polymer binding
capsid subunit remains consistent with the classical nucleation. A latter work from Mahalik and
Muthukumar [87] reports also that the effect of the polymer binding capsid subunit is consistent
with the classical nucleation theoretically at higher effective concentration of capsomers. Indeed
capsomers bound by the polymer are maintained closed in a smaller volume.

For enveloped viruses, the assembly takes place at the membrane which must be deformed
in order to form the bud. The elastic properties of the fluid membranes such as the cell lipid
bilayer are described by the general Helfrich theory (Helfrich [63]). The free energy associated to
the deformation by a rigid coating during the budding process as been computed (Deserno [36])
and analytically derived in different limits (Foret [46]).

To confront the description of the model to the situation in cells, we envisaged fluorescence
microscopy as we were in contact with the team of Suliana Manley at the Ecole Polytechnique
Federale de Lausanne, who developed superresolution fluorescence microscopy techniques to
monitor human immunodeficiency virus HIV-1 budding. For obvious reasons the transfection
is made so that culture cells produce non infectious viral particles, with the same structure as
the authentic wild type virion, designated as “virus like particles”. Different techniques based
on fluorescence are promising for the in-situ observation of the virus cycle. They are introduced
in the next section.

1.3 Imaging viruses life
Understanding of the viruses cycle and interactions with the host cell relies on numer-

ous experimental techniques providing the different measures the biophysicist needs: atomic
structure, deformations, forces, velocities, diffusive constant, concentrations, etc. We briefly in-
troduce here a non exhaustive list of classical techniques related to the imaging of the structure
of the viruses. Our aim is to indicate in which context the analysis methods that we develop in
this manuscript find their place. The description of the fluorescence microscopy and its specific
use in virology is then developed in more details before we present our work in this “in this
light”.

1.3.1 Comparative overview

The figure 1.10, shows the different useful length scales in the study of viral world: organism,
cell, virus, proteins and long polymers, or atoms. Depending on the scale of interest, techniques
with the adapted resolution must be chosen. When alternatives exist a choice can be made
according to strengths and drawbacks of each method depending on the goal pursued. Good
biophysical characterization generally depends on their combination.

Nuclear magnetic resonance Structure of molecules can be resolved by probing how the
environment of atom nuclei affects the resonance frequencies associated to their magnetic mo-
mentum inversion and precession while relaxing (Larmor frequency). A magnetic momentum
is associated with any non zero spin nuclei such as H1 and C13. During the measure, a high
static magnetic field imposes an energy difference between aligned and anti-aligned states. As
sample nuclear spins are aligned in the static field, a carefully chosen sequence of pulses is
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Figure 1.10 – The various methods to get an insight of the structural features of an object.
Optics (red) imply labeling of small objects with dyes to enhance contrast and is limited by
the diffraction bound. This limit was recently overcome using superresolution techniques (see
section 1.3.3). High energy electrons (blue) have a smaller wave length at the expense of data
post-treatments, and demand an arbitration between low contrast, labeling and risk for the
sample integrity. At lower scale, only indirect imaging methods apply, either by probing local
interactions (atomic force microscopy) or by solving the structure identified by its response
signal: diffraction pattern in X-rays or nuclear spin relaxation spectra in nuclear magnetic
resonance.

sent at a frequency resonant with the transitions between aligned to anti-aligned spin of the
atom of interest thus modifying the initial orientations. A scan in frequency would provide a
spectrum of resonances, but a pulse excites a window of frequencies around the frequency of the
carrier signal allowing to probe all the spectrum space at once. Magnetic fluctuations due to
sample relaxation can then be recorded. The spectra generated by the procedure is then used
to deduce the molecular structure that satisfy the atomic environment recorded. The technique
uses purified molecules generally in solution. More details can be found in Cavanagh et al. [27].
As the response time of the technique is very short, it is possible to use it to study dynamical
properties and conformational changes. A detail monograph of nuclear magnetic resonance and
virus structure is available in Mateu [91]. Nuclear magnetic resonance has been applied for the
determination of structures of different viral proteins or protein sub-domains such as the human
immunodeficiency virus gag MA and NC (Turner and Summers [129]) in conjugation with X-ray
diffraction on crystallized subdomains.
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(a) Reddy et al. [109] reported the larger struc-
ture determined by Xray diffraction: the full hu-
man adenovirus, diameter 95 nm at 3.5 Å reso-
lution (illustration from Mateu [91])

(b) Structure of MA gag isolated subdomain
(top) reported by Gres et al. [56] from crystal
Xray scattering: the resolved electronic density
(blue mesh) at 2.4 Å is precise enough to posi-
tion the protein residues (bottom)

Figure 1.11 – The Xray scattering technique

Diffraction methods (X-rays, neutrons...) A crystallized structure diffracts the radia-
tions in distinct directions selected by constructive or destructive interferences. The diffraction
pattern obtained is used to solve the structure at atomic resolution. The inverse problem is
not simple since only the light intensity is recorded and the phase information has to be re-
constructed, based on experimental techniques and chemical models. The technique demands
regular enough structures that can be purified and crystallized in a fairly large amount. Gen-
erally portions of the full structures are used : part of a large protein, proteins figure 1.11b...
But regular viruses also have been successfully crystallized and reconstructed with a resolution
allowing the determination of protein tertiary conformations figure 1.11a. This is still the most
precise method at a time when crystal can be made, even if improvements in electron micro-
scope captors tend to reduce the gap between the two techniques. A known drawback is that
conformation can change between the native structure in situ and the crystallized form. In
solution, the intensity of the signal is much lower and spectra are broaden and the precision is
impaired (Small Angle X-ray Scattering).

Electron microscopy Two different set-ups are used with very different resolution powers
and possibility. Both of them need to image in vacuum so that liquid phases are excluded,
stability is essential at this resolution and object must be fixed. Surface of conductive bulk
samples can be imaged using the re-emitted electrons excited by the electron incident beam.
This is known as scanning electron microscopy and demands a metallic coating of most biological
samples that are insulators. It unveils surfaces shapes with a strong contrast and a large field of
view. However it is by far less precise than transmission electron microscopy and not much used
to study viruses. Transmission electron microscopy is in contrast limited to the study of very
thin samples (less than 1 μm) but reaches precisions of few angstroms. This second method
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Figure 1.12 – Tomogram showing two budding sites of the human immunodeficiency virus gag
protein (red) at a cell membrane (blue) (top left). A slice through the above tomogram –scale
bare 100 nm (bottom). Column on the right (G,H,I,J) shows tomogram slices through other
budding site (from Carlson et al. [20])

however suffers from the very weak contrast between organic molecules and, since electron
beam damages the sample, a trade-off is necessary between contrast, focus and magnification.
Production of contrasted images can be achieved via staining labeling the object with heavy
atoms absorbing electrons with an inherent limit in the resolution of 20Å an the inner part
of the structure is not accessible. Very thin sample can be obtained by ultramicrotomy (50-
100 nm). Fine study of the structure under the micrometer range is largely improved when the
sample is frozen in a liquid film (� 0.2 μm) at T < 100K with sufficient speed to vitrify the
water into amorphous ice therefore maintaining the structures in their native conformations and
avoiding electrons scattering. Two important issues arise: the signal to noise ratio is extremely
poor, and the image is a projection of the object density in the focal plan. Image orientation
and averaging is used in the Fourier space to produce high contrast images when the structures
studied are mono-disperse or (quasi identical) enough and show clear symmetries (icosahedral
or helical). This method leads to high resolution density maps reaching near atomic resolutions,
but necessitates tens of thousands of individual images and demands both experimental time
and computational power. Extension to non regular viruses has been carried out in cryo-
electron microscopy tomography where the same virus is imaged under many different angles
and reconstructed by back projection (see figures 1.7 and 1.12). However, the resolution is
limited by the number of acquisitions as imaging degrade the sample. An extended review of
the technique and its application to virus is made by Castón [26].

Fluorescence microscopy Fluorescent microscopy is an attractive technique to easily and
directly record the spatial organization of a selected target at small length scales with a high
contrast.
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A molecule that absorbs an incoming radiation transits from its ground state to an excited
state. There are many different ways for an excited molecule to return to the ground state
and dissipate the absorbed energy. Fluorescence consists in the emission of light during the
transition to a lower energetic state. As there can be several non radiative transitions before
this emission, the exciting transition often corresponds to a higher energy (lower wavelength)
than the fluorescence emission, allowing for a non visible ultra-violet excitation and a visible
green emission for instance.

Figure 1.13 – Fluorescence principle: excitation light brings the molecule to excited state which
almost instantaneously returns to ground state with a fluorescent light emission

As improvements have been made in the optical devices, and in the ability to label the object
of interest in situ by anti-body labeling or modification of the expression gene to obtain a label
with fluorescent properties fused in the expressed protein structure, the technique has become
more valuable and widely used in the cell biology field. But the spatial resolution that can
be achieved with an optical device is fundamentally bounded by the diffraction phenomenon.
The image of a point-like emitter produced is not a point but a spot, called the point spread
function (psf) of the imaging device. As a result, the image is blurred with a typical length
equal to the width of the point spread function. This width is of the order of magnitude of the
average emission wave length λ as given by Abbe’s law which links it to the lateral resolution
Rx,y in the image plane and the numerical aperture of the microscope η (Abbe [1]):

Rx,y � λ

2η
(1.1)

This limit therefore establishes both the typical distance between two simultaneous emitters
that it is possible to distinguish and the minimal excitation spot that can be created in order
to selectively excite the fluorescent labels in a region of interest with the mean excitation wave
length. The numerical aperture is of order one (η � 1.5 for most modern highly corrected
microscopes (Sengupta and Lippincott-Schwartz [114])) and visible light has wave length in the
hundreds of nanometers range. The resolution limit fixed by the optical microscopy is therefore
of the order of few hundreds of nanometers. This boundary to accessible spatial features lays
above typical sizes of organelles trans-membrane receptors, microtubules of the order of tens of
nanometers and of great interest in understanding the inner cell organization, and even further
apart from the typical size of their constitutive proteins of few nanometers.
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Actually, in fluorescence microscopy, diffraction affects both the excitation and the consec-
utive fluorescent light emitted. It thus also sets the limit of the excitation pattern that can be
produced.Reduction of the excitation pattern is one solution to enhance image performance by
depleting the background emission. This is the spirit of total internal reflection fluorescence
microscopy (TIRF). The volume of excitation is however still limited by the diffraction phe-
nomenon. In the same logic, superresolution techniques such as stimulated emission depletion
(STED) microscopy overcome this limitation by building an effective area of emitting labels
smaller than the excitation spot. This is achieved by combining two diffraction limited exci-
tation and depletion patterns at the expense of scanning the sample.Other techniques rely on
the post treatment of the emission pattern such as the point localization superresolution. In
the following, we will concentrate on the details of total internal reflection fluorescence and the
point localization superresolution. Those techniques indeed find natural applications in the in
situ assembly of viruses study and we will propose in this work different methods to extract
meaningful information from the data they produce.

1.3.2 Total Internal Reflection Fluorescence

Figure 1.14 – Total Internal Reflection Fluorescence principle: compared to classical display
(left) the excitation beam is fully refracted at the dioptre between cover slip and sample so
that only an evanescent wave with exponential decrease is seen in the sample. Only the labels
within excitation wavelength are efficiently excited (right)

The near field methods take benefit of the refraction principle to reduce the spatial extension
of the excitation field to the order of the wavelength in the vertical dimension. In this set-
up, the excitation beam is sent in the cover slip where the object of interest lays, with an
incidence angle greater than the total refraction angle of the interface cover slip-sample. Hence
the excitation beam is entirely reflected and only an evanescent wave penetrates the sample.
According to refraction law, the number of photons in the sample is exponentially decreasing
with penetration depth at a rate fixed by the excitation wavelength. The intensity that can
efficiently excite the label is thus found only in the vicinity of the surface. This configuration
is particularly useful to image with a very low background noise phenomenon happening at
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the membrane of the cell such as protein attachment and diffusion, budding, etc. Event if
the detail of the virion image can not resolved, the total emissions from different clusters of
proteins can be distinguished if the clusters are spatially separated by at least several times
the emission wavelengths. A single cluster intensity can this way be monitored in time to
image the dynamic of aggregation or interaction when different molecules are labeled in a
distinctive manner. This way insight of the dynamic of the human immunodeficiency virus
budding has been gained showing the arrival and cargo of the viral RNA (Jouvenet et al. [72]).
As a drawback, the excitation field is not homogeneous and the effect of stoichiometry on the
fluorescence intensity cannot be distinguished from the effects of the cluster position fluctuations
in depth. This issue can be addressed using more sophisticated imaging schemes with different
illumination incidence angles (Ku et al. [80]). Although those experiments do not establish
the structure of the protein clusters, they provide information about the assembly dynamic.
While early experiments were mainly aimed at establishing the sequence of assembly steps
(gag nucleation, RNA packaging,etc.) –figure 1.15; the latest experiments are dedicated to
determine the stoichiometry of the budding sites and monitor their time evolution, allowing
in situ determination of individual cluster dynamic. This new possibility calls for models of
the aggregation process in cell at the individual level of each protein cluster and establishment
of the relationship with the population behavior to foster quantitative interpretation of the
results.

Figure 1.15 – Intensity of the fluorescence signals from labeled RNA (green) and gag protein
(blue) from a single budding site at cell membrane using the total internal reflection configu-
ration. (from Jouvenet et al. [72])

1.3.3 Superresolution point localization imaging

The physical diffraction limit of light microscopy can however be bypassed using more
complex imaging scheme. In this work we focus on the superresolution family of single molecules
localization techniques that take benefit of specially designed fluorescent dies with two or more
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“states” between which that can be photo-switched to control their emission behavior figure 1.16.

Figure 1.16 – Photo-switching principle: a low intensity photo-activation laser (red) switches
a sparse subset of the labels from dark (“off”) to bright (“on”) state. Switched on label is
fluorescent at the excitation wave length (blue) and emits (green) by cycling between ground
to excited states (figure 1.13). Only the “on” label is imaged until it bleaches enabling a time
separation of the emission signals from the two neighboring labels. Indeed the second label
remains “off” and will be switch “on” at latter time

Using the scheme shown on figure 1.16, microscopist can photo-activate a subset of fluo-
rescent dyes within the sample by choosing the appropriate intensity of photo-activation laser.
Only a few dies interact with the photons and are stochastically turned “on”. If the density
of labels in the bright state is low enough, the probability is strong that they are spatially
distant from more than the typical diffraction length given by Abbe’s law (equation (1.1)) and
this sparsity guarantees that the diffraction spots are distinct on the camera sensor (CCD) as
shown on figure 1.17. The positioning of each emitter can then be achieved with a finer precision
than the diffraction spot dimension since emitter position image (corrected from diffraction) is
located at the center of the diffraction-limited spot it generates. The positioning precision de-
pends on how well the diffraction spot of the emitter is defined. This is function of the number
of photons received on the camera sensor, the size of the pixels on the sensor on which photons
are counted, and eventually, the signal to background noise ratio. The estimation theory gives
the following variance σi|2x,y of the center position for the diffraction spot i (Thompson et al. [127]

–assuming a Gaussian points spread function fitted by the least square method in 2D):

σi|2x,y �
s2 + a2/12

Ni

+
8πs4b2i
a2N2

i

(1.2)

Where s is the standard deviation of the point spread function, a is the pixel size in the image
(taking into account the system magnification), Ni is the total number of photons measured
from emitter i, and bi is the number of background photons collected in the fitting window used
for molecule i. By choosing a pixel size comparable to the standard deviation of the point spread
function, we see that the localization scales as σi|2x,y ∝

√
s2

Ni
which underlies the importance of

a good photon yield and let anticipate a consequent amelioration of the spatial resolution by an
order of magnitude for a hundreds of collected photons. In the early 2000s, analogous methods
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Figure 1.17 – Principle of point localization superresolution microscopy: the classic fluorescence
image is the sum of the simultaneous emission of all the labels emissions. Individual diffraction
spots cannot be distinguished (left). In point localization microscopy only a sparse subset of
the label is switch on at a time and non overlapping contributions can be assigned to individual
emitters. Each emitter can in turn be localized at the center of the point spread function by
fitting its point spread function with a centroid finding algorithm. The localization precision
depends on how well the point spread function is defined which is directly linked to the photon
yield of the emitter and the background noise.

based on such single molecule localization have been independently demonstrated. Variously
known as (fluorescence) photo-activated localization microscopy ((f)PALM, Betzig et al. [12],
Hess et al. [64]) or stochastic optical reconstruction microscopy (STORM, Rust et al. [112]). The
main difference between the techniques lies in the type of photoswiching dye used: synthetic
dies for STORM and fluorescent proteins for (f)PALM, and the sparse photo-activation design
(continuous low intensity laser in fPALM compared to short time laser pulses for the others). As
a result the spatial resolution of the final image composed of all of their molecular locations is
substantially improved (from 18 nm to 40 nm). Synthetic have generally a larger photon yields
of the order of 103 before bleaching when fluorescent proteins are in the order of 102. The
positioning precision is thus better but at the expense of a higher spontaneous emission rate
that degrades the contrast ratio and of larger sizes and to anti-body labeling or click chemistry
that might affect the tagged structure more than a � 5 nm fused fluorescent protein (Bates
et al. [11]).

In 2D superresolution point microscopy, a time or a spacial separation of the emissions
combined with the knowledge of the optical point spread function in the image plane are the
two necessary elements to calculate the emitters positions in (x, y) plane. In a classic set-up, the
point spread function changes, it width increasing, as the imaged point is moved out of focus.
The knowledge of the point spread function variations with the source distance from focus plan
is a natural measure to find the object axial position. However as this evolution is symmetric
with respect to the displacement ±δz it is not sufficient. In order to achieve 3D imaging
supplementary information must be provided. Different solutions have been demonstrated to
achieve this purpose (see figure 1.18). Huang et al. [68] introduced a cylindrical lens in the optical
path. The difference of curvature between x and y directions generate an elliptical point spread
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Figure 1.18 – Principle of two classically used 3D superresolution imaging solution: in a classical
fluorescence microscope setup (A) the shape evolution of the point spread function (psf) is
symmetric for a ±z displacement of the source from the focus plan (red surfaces) or equivalently
a CCD displacement. (B) Introducing astigmatism with a cylindric lens (CL) combined with
an spherical lens before the CCD, focus is achieved on the CCD in x (green dashed shape) or
y (blue dashed shape) for two different source positions in z. In between, those two positions,
the width of the psf in each direction gives the value of the z position of the emitter. (C) In
the two planes setups, the psf is simultaneously recorded in two different image planes using a
beam splitter (BS), this allows to interpolate the 3D-psf and deduce the source position.

function on the CCD with major extension in x or y depending on the displacement sign. The
price is a degraded precision in (x, y) directions (σi|x,y �20-30 nm and σi|z �50-60 nm. Juette
et al. [74] used a beam splitter to simultaneously image the point spread function in two different
plans to eventually fit the 3D-point spread function and extract the position (σi|x,y �30 nm and
σi|z �70 nm). Other techniques exists involving more delicate set-ups such as interferometry
that has demonstrated the best resolution at the time but is more (σi|x,y �20-30 nm and
σi|z �20-10 nm demonstrated by Shtengel et al. [116]). Further important improvements have
been showed such as multi color channels (Bates et al. [10], Bossi et al. [14], Dedecker et al. [35]),
3D and two color channel (Jones et al. [71]), or particle tracking Hess et al. [65], Manley et al. [89],
Shroff et al. [115].

Superresolution on virus It is a striking fact that among the different systems chosen to
test the new methods, one was the human immunodeficiency virus gag protein aggregation at
the membrane reproduced on figure 1.19! The use of superresolution microscopy is for a part
inherited of the classic fluorescence microscopy expertise, leading to natural co-localization
studies of different molecules of interest labeled with different dyes. The independent migra-
tion of the human immunodeficiency virus envelope glycoproteins to gag budding sites and its
incorporation in the viral particle as been shown by Muranyi et al. [102] using two color super-
resolution imaging. The dynamic of the influenza HA envelope protein with membrane specific
domains as also been analyzed this way by Hess et al. [65], demonstrating in addition the interest
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of superresolution for dynamical studies in identifying the movements of the proteins inside the
membranes clusters. Beyond the gain in the typical objects sizes that the technique can probe,
it seems clear that the appealing interest of the technique is to unveil structural informations of
the object and their evolution. In this spirit, Lelek et al. [83] used the superresolution microscopy
to study the delivery of the human immunodeficiency virus genome inside the nucleus of the cell
in the early steps of infection. The integrase protein, in charge of integrating the viral genome
in its host’s, was imaged in the cell cytoplasm. Resolution however is not sufficient to clearly
identify the capsid shape to deduce whether the protein had been liberated despite apparent
variations of the geometry. Structure was inferred by clustering the measures in two different
groups according to shape proximity providing evidence that the capsid remains intact across
the cytoplasm and delivers its content close to the nucleus. This illustrates the current state
of the art in term of structure identification and the scientific interest of inference methods.
Quantitative analysis of the proteins clustered on the membrane using statistical test function
as been proposed by Kiskowski et al. [78], Sengupta and Lippincott-Schwartz [114] to extract typ-
ical organization scales at the level of the population. The second method has been recently
adopted by Malkusch et al. [88], Muranyi et al. [102] in the study of the human immunodeficiency
virus gag assembly at the membrane to deduce the average cluster size. Furthermore Malkusch
et al. [88] pointed out that label density fluctuation of several assembly sites were well resolved
enough to possibly reconstruct the gag radius of curvature of selected clusters. The development
of a method to do so would undoubtedly be of large interest in further studies. Gunzenhäuser
et al. [59] working on the same system proposed the use of photo-activated light microscopy
technique to estimate the number of protein imaged in a gag cluster (which is not a simple task
as dyes are known to blink and can be counted more than once). They studied the shape and
size dispersion of the budding sites distribution on the membrane incidentally pointing out the
need of such a method to measure individual cluster sizes regarding a structural model.

Figure 1.19 – The very first PALM image of a viral protein at the membrane. “Summed-molecule
TIRF (E) and PALM (F) images, respectively, of a COS-7 cell expressing the retroviral protein
gag tagged with dEos. The PALM image highlights voids (arrows labeled V), a higher density
region (arrow R), and probable condensation at several points (arrows labeled P) into VLPs of
∼ 100 to 150 nm size (inset).” (reproduced from Betzig et al. [12])

Viruses, but also many cellular machines, such as the multi-protein structures involved in
membrane fission or fusion, transport across membranes, cell division, and more, lie below the
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resolving power of fluorescence microscopy. Superresolution fluorescence imaging promises to
finally directly reveal their organization in situ. Indeed, recent microscopy studies of the mid-
body (Elia et al. [38], Guizetti et al. [58]), centriole (Keller et al. [76], Mennella et al. [95], Sillibourne
et al. [118]), and nuclear pore (Szymborska et al. [125]) have advanced the models for how such
machines are assembled. At the same time, these studies reveal some of the current limitations
in interpreting superresolution images.

A good estimation of the structure on which lye the labels is the goal of imaging. To
construct a good estimation of the labels density from the photon recorded on the camera
captor, several different strategies ha been proposed. The most common consists in estimating
the most likely position of each single emitter as originally proposed. This leads to a image made
of the collection of all the estimated positions. The information of the positioning uncertainty
attached to each estimated position is sometimes included substituting each point for a Gaussian
with standard deviation given by equation (1.2) thus generating continuous intensity images
more alike the classical fluorescence ones. Various operations can be performed on the photon
measurement to obtain such results: they are called statistical estimators and the operation is
generally pointed out as deconvolution. They are implemented in image production algorithm
(see Fitzgerald et al. [44], Mukamel et al. [100]) or provide theoretical measure of the spatial
information included in the image (Mukamel and Schnitzer [99]).

Figure 1.20 – dSTORM images (300 nm × 300 nm) of gag clusters observed at the membrane
are potentially viruses budding sites (top row). 25 clusters were centered and averaged radially
from the center to produce the intensity distribution (down left) and give a typical cluster
width, thus neglecting clusters variance. Pair statistics such as distance to nearest neighbor
is used to identify close packing area (pink bars) where nearest neighbor distance is constant
indicating the typical mean cluster width of � 70 nm (from Malkusch et al. [88])

Indeed because of the stochastic nature of the method, images are inherently noisy and
the amount of information they carry is limited by the labeling density. Labeling density is
even lower than the dye density inside the imaged sample because all dyes cannot be read
due to misfolding, failed photo-conversion, or premature photo-bleaching for instance. The
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effect on the information in the image is generally described as a consequence of Nyquist
sampling theorem, which states that any spatial variations smaller than the distance between
two neighboring dyes is not accessible. The question of which features of the labeled structure
are conserved in the position image and what should be accounted as distortion is crucial for
those methods. The theoretical information content of such a point localization image was
estimated by Mukamel and Schnitzer [99] using the Fisher theory of unbiased estimation that
we will discuss further in the course of our work in section 3.6.3. It gives the minimal spatial
frequency that is meaningful given both the sample labeling density and the imaging point
spread function width and photon yield that set the localization precision bound.

Furthermore, when the localization precision of single molecules is not much smaller than
the size of the object, the structural information content of the image is distorted or obscured
by positioning errors. This positioning error is intrinsic to optical imaging and depends mainly
on the fluorophore quantum yield. Thus, individual images lack sufficient quality to test or
build structural models. Instead, significant particle averaging is often necessary to use the
data to prove a model (see the works from Keller et al. [76], Malkusch et al. [88], Szymborska
et al. [125], Van Engelenburg et al. [130]).

When molecular structures or particles are identical, statistical averaging over a large set
of images is a valid way to address these limitations. However, in the most general case,
there can be genuine structural variability as it has been stressed in the case of the human
immunodeficiency virus (see Carlson et al. [20], Gunzenhäuser et al. [59]), which is completely
discarded by averaging.

We propose to address this issue by introducing an estimation method applied at the single
particle level. This assumes that we have a geometrical parametrization of the structure –an a
priori structural model–, and that we want to determine its parameters from the superresolution
point localization images. Tomo-electron microscopy is of course a method of choice to obtain a
insight of in situ object shapes but does not allow to label specific protein. The complementarity
of the two techniques have already been used in correlation microscopy study. Methods designed
to use a prior knowledge on the shape of the imaged object at the single particle level and its
proper characterization is not available in literature to our knowledge. Yet the “inverse problem”
of finding the best model parameters given the measure is not new. We believe that refining the
analysis of superresolution image in regard of model comparison would open large perspectives
in the field.

It is however not obvious how model information can be transferred to the analysis of
superresolution images. For instance, in the case of the human immunodeficiency virus like
particles, tomo-electron microscopy has shown that the gag protein coat in each particle forms
a spherical and continuous lattice with a large gap of uncovered lipid membrane. We know
however that the size of this gap as well as the radius vary from one particle to another. In this
work we tested the possibility to estimates radius and completion of single particles imaged by
stochastic localization superresolution using the maximum likelihood approach. The method
calculates a score for all possible values of parameters. The score corresponds to the probability
of obtaining the observed data from the structure parametrized by this set. Thus, we can
identify the highest scoring set of parameters, which corresponds to the most probable structure
underlying the measured data. It is precisely the approach followed when superresolution image
is reconstructed by replacing each photon peak by the putative emitter at the estimated center
of the spot: its most likely position.

We will illustrate the interest of this approach by validating it on PALM images of budded,
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immature virus-like particles (VLPs) formed from the fluorescently labeled polyprotein HIV-1
gag. Cryo-electron microscopy has shown that VLPs are formed from an incomplete spherical
protein shell beneath the lipid viral envelope and are highly polydisperse (Briggs et al. [17],
Carlson et al. [20]). gag proteins from individual VLPs are therefore expected to lie on spherical
shells of variable radii and closure angles, features that would be obscured by particle averaging.
We compute the maximum likelihood 3D geometry, thereby estimating the particle radius and
protein coverage for individual VLPs. We apply this strategy to both simulated and real PALM
data. Comparison between the parameters used as inputs to simulate the data and the output
parameters of the estimation procedure gives an estimate of the precision reached at a statistical
level. This way, we are able to estimate the radii and the closure angle that best explains the
measured data from a given particle, and also provides a mean to extract the uncertainty on
this estimation.

1.4 Outline of the thesis
The manuscript is organized as follows: in the first chapter we detail the state of the art

concerning the models of viral capsid self-assembly and we introduce the model for an open
system submitted to a constant flux of proteins. We then describe the model behavior in two
different scenarios for the proteins aggregation, we give the steady state size distribution and
detail the transient regime. The last chapter section establish the link between the description
of the evolution in term of concentration and the time evolution of the size of a single aggregates.
A direct simulation of the size of the aggregate in time is given and a statistical treatment of the
associated fluorescent data is proposed. In a second chapter we describe our treatment of the
superresolution images. We first detail the procedure to properly orient and center the images.
In a second time, we detail the maximum likelihood principle to estimate the parameters of
a model describing the object imaged and study the method efficiency on simulated data.
Eventually we test the algorithm on real photoactivated light microscopy images.
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Chapter 2
Self assembly dynamic

In this chapter we study the dynamic of the viral proteins aggregation in an open system
when an constant input flux of protein is maintained at the entry. We first detail the existing
studies of in-vitro closed system, then we extend the model to open system and study its
behavior. Eventually we make a connection with the growth of a single viral bud which can be
tracked experimentally. The budding dynamic of a specific virus is unlikely to strictly follows
a universal model. The virus formation is affected by many different factors:

— A virus target a specific host cell. Cells organization and activities vary much. Cells are
indeed very different between two living organism (for instance plant cell and a bacteria)
as well as between two differentiated cells inside a complex organism (for instance a neuron
and a red blood cell), and even between two cell of the same tissue at different phases
of the cell life cycle... The environment in which budding occurs is therefore strongly
different for one virus to another.

— A virus interact with the host cell, either inside the nucleus by pontificating the host
genetic program and its regulation, or in the cytosol altering the cell protein production
and activity which modifies the parameters of environment of the budding.

— viral protein have a rich design that can undergo important modifications through confor-
mational changes or scission of a part. Virus can benefits from the structural plasticity of
constitutive proteins at various stages of the process which modifies its physical properties
(affinity of the neighbors)

Despite those specificities, virus budding strategies share commons features like the repeated
addition of elementary subunits the capsomers (a single protein or a proteins assembly), in order
to obtain a closed container enclosing the genome.

Enveloped viruses assemble at the membrane of the cell or of one of its compartment.
This scenario differs from most of the assembly of icosahedral viruses, for which all assembly
intermediates (from simple subunits to complete capsids) share the same volume. In the case of
enveloped viruses, there is a subunit flux towards the membrane, and completed capsids leave
the membrane. While in the case of non-enveloped virus, the self-assembly can be modeled by
a closed system, with constant subunit mass, the self-assembly in the case of enveloped virus is
likely to be modeled as an "open" system, with one input (subunits) and one output (completed
capsids).

In order to understand the features of this self-assembly process, simplified approaches have
already shown good results in providing a general canvas to understand the dynamic in a closed
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system.

2.1 Closed system
We summarize in this section the main results of this work, using the same notation for the

sake of simplicity.
Pioneer work was made by Zlotnick [139]. He looked at the case of experimental in-vitro as-

sembly of cowpea chlorotic mottle virus (CCMV) demonstrated by Bancroft [8]. In the modeled
situation, an initial number of capsid capsomers are introduced in the system in the presence of
viral material and the final state is observed to be “either intact [capsids] or completely disas-
sembled into stable poly- or monomeric subunits”. In such a closed system, the self-assembly of
virus polyhedral capsid is described as a set of chemical reaction. Each reaction consisting on a
single equivalent building block (called a capsomer) accretion or loss on the growing structure:

1 + 1
K1� 2

. . .

Ni + 1
Ki� Ni+1

. . .

(2.1)

Two key ideas, are proposed to simplify the model until it can be solved:

1. to restrict the assembly to the final capsid canvas: each building block being added with
the proper orientation and position it should eventually have in the complete capsid.

2. to consider only the formation of the most stable species at each step among all the
accretion possibilities.

In the case of dodecahedron capsid formed of twelve identical pentagonal subunits with five
identical edges he studied, the assembly pathway is a linear graph (a unique minimal free energy
configuration is found at each step). The equilibrium constant for each reaction is deduced from
the free energy difference between products and reactants:

Δ
i,i+1

G0 = ni,i+1ΔG0 (2.2)

where ni,i+1 count the number of newly formed bonds in the capsomer addition and ΔG0 is the
free energy involved in one bond formation. The resulting equilibrium constant at temperature
T is:

Ki(T ) ≡ [i+ 1]eq
[i]eq[1]eq

= S1
Ci,i+1

Ci+1,i

e
− Δ

ij
G0/kBT

(2.3)

Where S1 and Ci,i+1/Ci+1,i are entropic contributions that take into account rotational degrees
of freedom:

— S1 account for the number of equivalent ways for the building block to bind (five in this
case for each equivalent edge)
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2.1. Closed system

— Cij/Cji is the ratio of the number of binding sites on structure i where a binding event
leads to structure j and building units in structure j that can be removed to form i, as
j = i+ 1.

Key characteristics of the model are that even for very small binding energies, the exponential
dominates the other contribution. As binding is considered favorable, ΔG0 < 0 and the effective
potential a growing capsid shows no barrier to full-completion(see figure 2.1).
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Figure 2.1 – Free energy landscape from Zlotnick model Ω(i) =
∑
j≤i

e− logKj for ΔG0 = −kBT

The equilibrium concentrations can be recursively deduced from the concentration of free
capsomers [1]eq and the law of mass action:

[n]eq =

(
n∏

i=2

Kn

)
[1]neq (2.4)

The equilibrium size distribution is therefore a compromise between the enthalpy dominated
term

∏n
i=2 Kn growing at least exponentially for ΔG0 � 0 and the geometric evolution of the

second part [1]neq. The intermediates are always disadvantaged, and as a result, the equilibrium
is dominated by the extreme species, namely capsomers and full capsids. The greater ΔG0, the
stronger such behavior. A specific concentration emerges which is defined by [1]eq = [12]eq =
Capp, that is the turning point from which product fraction is not any more dominated by
capsomers, but by complete capsid (see figure 2.2).

The capsomers concentration at equilibrium can be deduced from the conservation of ma-
terial in the closed system:

N∑
n=1

n.[n] = [1]total (2.5)

The work also implements a study of the kinetics of the aggregation following the pathway
suggested by the scheme showed on equation (2.1):

1
kon1�
koff2

2
kon2�
koff3

...
konn−2�
koffn−1

n− 1
konn−1�
koffn

n (2.6)
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Figure 2.2 – The equilibrium capsids (blue) and capsomers (purple) concentration fraction
[i]eq/Ctot in Zlotnick model for two different ΔG0 ∈ {−1,−3}kBT (resp. solid and dashed
lines) as a function of the dimensionless parameters [1]eq/Capp and with Ctot =

∑12
j=1[j]eq the

total concentration in solution. The inversion concentration is marked by the vertical line.
For ΔG0 = −3kBT , only capsomer and capsid can be present in solution at equilibrium and
everything looks like there is a single equilibrium reaction between monomer and closed virus
[1]eq +

(∏12
i=2 Kn

)
[1]12eq = Ctot which gives [1]eq/Ctot = [1]eq/

(
[1]eq +

(∏12
i=2 Kn

)
[1]12eq

) and [12]eq/Ctot =(∏12
i=2 Kn

)
[1]12eq/

(
[1]eq +

(∏12
i=2 Kn

)
[1]12eq

). On the contrary, low binding energy (ΔG0 = −kBT ) leads to
mixture of intermediates in the neighborhood of Capp, so that the concentrations of monomers
and viruses do not sum to the total concentration in the system.
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2.1. Closed system

With corresponding rates-equation:

∂ [1]

∂t
= −kon

∑
j �=1

[j][1] +
∑
j>2

koff
n [j] + 2koff

2 [2]

. . .

∂ [n]

∂t
= koff

n+1[n+ 1]− koff
n [n] + kon ([n− 1][1]− [n][1]) (2.7)

. . .

∂ [N ]

∂t
= −koff

N [N ] + kon[N − 1][1]

with a constant accretion rate kon = 108mol−1.s−1 modeling a diffusion limited association of
two capsomers and the off rate koff

n+1 is set accordingly to the nth reaction constant Kn. Indeed,
by definition of the thermodynamic equilibrium of a reaction, on and off flux balance each other
and therefore:

koff
n+1

( ∏
n=products

[p]

)
= kon

( ∏
r=reactans

[r]

)

koff
n+1 =

kon
Kn

(2.8)

which is the “detailed balance” property. Interestingly, evolution of the different concentration
is non monotonic with the initial concentration of free monomers introduced in the system at
t = 0. At low initial capsomers concentration, all intermediates concentrations are kept low as
assembly proceeds and a lag-time is observed between the introduction and the formation of
the first capsids. The distribution asymptotically converges to the equilibrium distribution. As
the initial concentration is increased, on one hand the lag-time reduces but, on the other hand,
reaching the equilibrium takes more time. This kinetics trap is due to the proportionality of
the intermediate creation rate with monomers concentrations. Lots of intermediate species are
initially made at high concentration and consumes most of the monomers to assemble until
very few are left. For the assembly to carry on, free units must first be released in the system
by disassembling intermediates, process which faces energy barrier as shown by the potential
in figure 2.1.

The characteristics of the concentration distribution obtained in this model are consistent
with key observations from in-vitro experiments. Yet if the most stable intermediates are the
obvious choice to capture the long time stationary features of the system, it is less clear that
they must have the prominent role in the kinetic mechanism.

Concerns about the choice of a given pathway have been addressed either by a mean field
statistical treatment by Endres et al. [41], as well as simulations by Zhang and Schwartz [137].

Endres et al. [41] enumerated all the possible configurations of the previously described model
of dodecahedral capsid and consecutively the pathways between each. The number of config-
urations growing exponentially with the total number of unit in the final capsid. The most
stable intermediate can indeed be different from the one which is the more connected and ki-
netically favored at comparable reaction rates. The authors of the article concludes that early
stage of the assembly are dominated by most “probable” species whereas the most stable arise
as times goes on. In spite of this variation an accurate description of the evolution can be
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Chapter 2. Self assembly dynamic

produced considering only a relatively small subset of all the possible configurations at low
concentrations.

Zhang and Schwartz [137] studied, for their part, the effect of limiting the assembly to cap-
somers addition on the overall kinetics. They simulated assembly of the pentameric capsomers
as proposed by Zlotnick [139], implementing a second scenario granting to species formed of more
than a single capsomer (called aggregates) the possibility to aggregates if producing a valid in-
termediate. The assembly was followed using local rules and N-fold algorithm –or Gillespie
algorithm (Gillespie [51]). In a local rule assembly scheme unlike in classic molecular dynamic
simulations, the spatial features of the interactions between the building blocks are ignored and
each accretion event is described as a chemical reaction where two identified reactant build a
prescribed product –therefore shape is again prescribed by the capsid canvas. The Gillespie
algorithm was originally designed to sample stochastic time trajectories of a system ruled by
chemical reaction and disregarding spatial fluctuations. At each step, it iteratively draws the
next reaction to proceed as its waiting time from an exponential distributions with character-
istic time equal to the inverse of the reaction rate to actualize the system state. The study
compared various scenarios of assembly playing on association and dissociation rates assumed
equal for all the reactions. Despite those constant rates, a nucleation step is implicit in the
implemented assembly as “loops” formed by three capsomers are considered infinitely stable and
can’t be broken any more. However since the nucleating rate is of order of the elongating rate,
it does not prevent the system from falling in kinetic traps described before. As rule of thumb,
the assembly proceeds faster to the equilibrium when there is more available paths to reach the
final product. Obviously, kinetics traps are absent when intermediates can aggregate. Thus
allowing intermediate to bind together leads to better capsids formation yields in reachable
times.

The sensibility of the model to kinetic trap at high concentration seemed somehow an
important drawback in the viral replication strategy. So it was hypothesized in the following
works from Endres and Zlotnick [40], Zlotnick et al. [142], that a first nucleation step would
enhance robustness towards kinetics trap. Indeed a first energy barrier preventing the initial
strong capsomer concentration to be consumed in forming early intermediate would avoid the
stalling of the reaction. In a closed system with nucleation steps the consumption of monomers
is controlled by the order of the first nucleation reaction (the number of capsomer needed to form
the nucleus), and this rate limiting steps control the capsid formation rates since elongation
follows easily. The measure of the capsid formation rate was further demonstrated to be a
convenient tool to identify the stoichiometry of the nucleus formed by pentamers of dimers
in cowpea chlorotic mottle virus (Zlotnick et al. [140]). The kinetic approach models also the
stability of capsids observed by Singh and Zlotnick [119], that is greater than an equilibrium
model predict. Indeed dilution of the capsid solution does not lead to the size distribution
expected, suggesting a kinetic control of the reactions. The study of the dynamic in the
assembly line model starting from a solution of pure capsomers was completed by Morozov
et al. [98], showing that the size distribution looks like an assembly front that will propagate in
time until either it reaches the complete size and mimic an equilibrium distribution, or stops
before full capsid are formed and evolve extremely slowly towards equilibrium by diffusion.

A thermodynamic derivation of the assembly on a prescribed spherical canvas, akin to classic
nucleation theory, has been proposed by Zandi et al. [136], in the case where intermediate species
concentrations can be assumed negligible compared to fully formed capsid and that capsids are
formed of a large number of subunits. The assumptions support the presence of a nucleation
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2.1. Closed system

barrier in the system and allow to view capsid growth as the continuous filling of a sphere.
The idea that underlies classical 2D-nucleation theory is to treat all the capsomers aggregates

as a mixture of perfect gaz in an system of fixed size S at temperature T in contact with a
reservoir of single capsomers with chemical potential μ1. We will now briefly gives the statistical
physics derivation of the thermodynamic potential and equilibrium concentrations.

We first consider the full system including free capsomers reservoir. The single capsomers
are considered as aggregates of size n = 1. The perfect gaz hypothesis implies that low range
internal interactions are present only inside aggregates but they do not interact with long range
interactions. Within this framework, the canonical partition function accounting for all the
internal energy level of aggregate of size n fixed in space is denoted zn. The partition function
for states with a given number of capsomers in the system is the sum over the partition function
of each possible size distribution {Nn} that satisfies the conservation of the total number of
capsomers nt writes (Nn being the number of aggregate of size n in the system):

Z =
∑
{Nn}

Z({Nn}) =
∑
{Nn}

nmax∏
n=1

(Szn
λ2
l
)Nn

Nn!
|
∑
n

n.Nn = nt (2.9)

Where a classical integration over the translational degrees of freedom of the aggregates gives
a factor S

λ2
l

times zl, with λl the de Broglie thermal wave length of the aggregate, and indis-
tinguishably of the different aggregates of equal size is given by classic combinatoric formula
(qNl/Nl!) accordingly to the supplementary assumption that the number of thermally reachable
energy states is huge compared to the number of aggregates in the system –so that probability
to find many particles in the same state is negligible. As each gaz of aggregate with a given
size is independent from the other, count of the number of states of the mixture is given by
the product over sizes. A classic treatment assumes that in thermodynamic limit the sum is
strongly dominated by the term with equilibrium size distribution:

Z �
nmax∏
n=1

(Szn
λ2
l
)N

eq
n

N eq
n !

(2.10)

Which eventually gives the free energy

F(T, S, {Nn}) = −kBT lnZ

=
nmax∑
n=1

kBTNn(ln(s0.Nn/S)− 1) +Nnf(n) (2.11)

where : f(n) = −kBT ln zn + kT ln(s0/λ
2
l ) (2.12)

We denoted by f(n) the free energy contribution of all internal degrees within an aggregate of
size n and introduced s0 the typical surface area of a capsomer in an aggregate (the momentum
contribution with Broglie wave length contribution is included in f).

Now, if capsomers are not considered part of the system, but instead that a reservoir of
single capsomers with chemical potential μ1 is in contact with the system as proposed in the
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article, the thermodynamic potential to minimize is the following:

F(T, S, {Nn})− μ1

∑
n

n.Nn = −kBT lnZ − μ1

∑
n

n.Nn

=
nmax∑
n=1

kBTNn(ln(s0.Nn/S)− 1) +NnΔf(n) (2.13)

with: Δf(n) = f(n)− μ1.n (2.14)

Minimization of the free energy gives the following size distribution:

Ceq
n =

N eq
n s0
S

= e−βΔf(n) (2.15)

where β = kBT is the classical unit of thermal energy with the absolute temperature T and
the Boltzmann constant kB. Defining Ceq

1 = e−βΔf(1), the equation transforms into:

μ1 = f(1) + kBT lnCeq
1 (2.16)

Ceq
n = (Ceq

1 )ne−β(f(n)−n.f(1)) (2.17)

Which is consistent with the equilibrium mode proposed by Zlotnick [139].
To describe the effect of assembly through nucleation barrier, the phenomenological liquid

drop model is used. The proposed free energy difference between monomeric unit and the
growing capsid is written as:

Δf(n) = nΔμ+ ΓL(n) (2.18)
The first term is the mean energy gained through the subunit association process in the bulk,
while the second term is the cost associated to missing contacts at the free rim of the partial
capsid. It is a line tension term proportional to the length of the rim.

In the continuous limit, the following relation links the surface to the perimeter of a sphere
cap defined in geometrical coordinates by {r = R, φ ∈ [0, 2π], θ ∈ [0, θm]}:

L = 2πR sin θm S = 2πR2(1− cos θm) sin θ =
√
1− cos2 θm

⇒ L = 4πR

√
S

4πR2
(1− S

4πR2
) (2.19)

Back to the discrete case, under the classic assumption that the density is constant in the
aggregate and defining N the total number of capsomers to cover the full sphere, rp the radius of
the average disk occupied by a capsomers in the full aggregate and nL the number of capsomers
at the periphery of the bud:

S(n) = n
4πR2

N
, πr2p =

4πR2

N
, L = 2rpnL (2.20)

Eventually:

L(n) =
4R√
N
.π

√
n
(
1− n

N

)
(2.21)

Where the first factor gives the portion of the cap rim occupied by a capsomer on average (2rp)
and second factor is equal to nL, the approximate number of capsomers at the periphery with
unsatisfied coordination. Equation (2.22) can be rewritten as:

Δf(n) = Δμ.(n− 1) + Γ
4R√
N
.π

√
(n− 1)

(
1− n

N

)
(2.22)
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Where the shift in the indices ensures consistency with Δf(1) = 0 without changing the general
behavior in n (indeed our continuous description makes little sense at low n anyway), and
γ = 4ΓR/

√
N is the average line tension per periphery capsomer : the gain of free energy compared

to the bulk due to the absence of several of its neighboring bounds.
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Figure 2.3 – Δf(n)/γ = (n− 1)ρ+ π
√
(n− 1)(1− n

N
), variation of free energy of aggregates for-

mation in units of the maximum line tension per periphery capsomer γ = RΓ/
√
N of a truncated

sphere (continuous limit description of the capsid assembly) for various ratio ρ = Δμ/γ of the
bulk to periphery energetic contribution. With N = 100 and ρ ∈ {0.2, 0,−0.2,−0.4,−0.6,−2}
(resp. cyan, green, yellow, orange, black, and blue curves). Black dots show the position and
height of the energy barrier, dashed lines give the linear contribution without line tension.

This is the continuous limit for the free energy of a regular polyhedron build from many
subunits. The characteristics of energy barrier shown on figure 2.3, are easy to calculate solv-
ing ∂Δf(n)

∂n
|nb

= 0 for a chemical potential difference favoring assembly Δμ < 0:

nb = 1 +
N

2

⎛⎝1− 1√
1 + π2γ2

NΔμ2

⎞⎠ (2.23)

Δf(nb) =
NΔμ

2

(
1−

√
1 +

π2γ2

NΔμ2

)
(2.24)

As the difference between the mean energy per capsomer in the full capsid and the free capsomer
in solution Δμ increases at fixed line tension Γ, the position and the height of the energy barrier
are lowered.
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Chapter 2. Self assembly dynamic

2.2 Open System

2.2.1 Assembly model

In collaboration with Lionel Foret, we worked on a simplified model of self assembly in
an open system with both entrance and exit flux. The key features of the assembly dynamic
that we want to capture are the repetitive aggregation of identical units and constraints from a
prescribed geometry. These two criteria are found in Human Immunodeficiency Virus assembled
virions. HIV budding proceed by accumulation of gag proteins at the inner part of the cell lipid
membrane. Once gag-proteins have attached the membrane, the monomers diffuses until they
meet and bind together. So formed patches can be considered immobile compared to the gag-
proteins for their diffusion coefficient are different by at least on order of magnitude (Manley
et al. [89]). Area of membrane where a patch of proteins forms is reshaped during the process
into a spherical structure called bud until a scission event occurs and the bud is release outside
of the cell.

Jon

Figure 2.4 – HIV assembly and budding as it appears from cryo-electron microscopy

To model this process we consider identical subunits that can attach to a surface and diffuse
on. Such subunits aggregate with one another as they meet. Proteins are produced through the
translation of the viral DNA, which produces RNA. RNA strands are replicated and the proteins
production from the RNA sequences starts. Further maturation steps are often required for
the protein to reach its active form. We will not go into the details of the production of the
gag-proteins and instead consider that the whole production results in a mean flux of proteins
binding to the membrane Jon(t). In order to be able to infect new cells, the formed virus must
have packed among other things the viral genetic code. Different strategies of encapsidation,
for instance initiation of the capsid nucleation on RNA strands, can modulate the general
aggregation scheme that we focus on here.

A protein bound to the membrane is our building block and we note c1(t) the concentration
of monomers bound on the membrane per unit area. As a gag protein reaches a formed patch to
aggregate, it feels an interaction that depends on the configuration of the latter. This interaction
is a complex mix of different force sources as the shape of the membrane in the proximity of
the aggregate, and protein-protein interaction relatives to the positions of the proteins in the
aggregate. Assuming that the bud (protein patch and membrane) equilibrates with one another
between each binding event and disregarding the fluctuations, the buds consisting of a given
number of proteins are all in the same state of minimum energy and equivalent from the point
of view of a incoming protein. Under this simplification the interaction only depends on the
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2.2. Open System

size of the aggregate. Considering the low diffusion coefficient of the buds, fusion of forming
buds should be very rare events that we will neglect, as well as scission of buds in two child
buds is an unlikely event involving to break many proteins bounds and requires a very strong
fluctuation to provide the energy. We therefore adopt the assembly line mechanism proposed
by Zlotnick [139] to build our description:

1 + 1
k+1
�
k−2

2 ; 2 + 1
k+2
�
k−3

3 . . . nmer + 1
k+n
�
k−n+1

n+1mer . . . N-1mer + 1
k+N−1

�
k−N

Nmer (2.25)

As a bud equilibrates on a small time scale compared to the aggregation time scale, its
evolution follows a canvas prescribed by its successive equilibrium states. Each equilibrium
configurations giving the position of the protein in the patch and the shape of the patch that
minimizes the energy of the lipid membrane and the underlying protein patch. Prompted by
the shape of gag buds observed in cryo-EM (see Carlson et al. [20,21]) we approximate the shape
of the growing protein patch to a portion of sphere growing with a fixed radius of curvature
R as more proteins are recruited. The aggregation of proteins is reported to form a hexameric
lattice with few defects. We model the proteins under the membrane as packed with a constant
density per unit area of membrane d0. A fully closed bud of gag protein is thus a sphere of radius
R containing Nmax gag-proteins with R ≈ 70 ± 10nm and Nmax ≈ 3.103 ± 1.103 gag-proteins
(Carlson et al. [21]).

Those elements are close to the model presented by Zandi et al. [136] to study the assembly
of a spherical capsid. We will therefore adopt a similar description of the bud energetic. The
deformation of the membrane is assumed to add a energetic contribution to the bud internal
energetic disregarding any type of membrane mediated interactions between the buds. The
energy gain for adding a new protein to the patch is function of the energy of the formed
bounds and the energy involved in reshaping the bud to its new shape. Unlike Zandi et al. [136],
we include the freely diffusing monomers attached to the membrane in our system as bud of
size n = 1 (canonical ensemble). We model the different contributions to the free energy of the
bud as follows

— free energy involved by bounds between proteins of the patch follows the droplet model
as proposed by Zandi et al. [136]. Note that however the linear part differs in physical
meaning in the canonical formalism: here it is purely the internal free energy of the bud
and not its formation free energy (for which the chemical potential of each of the isolated
constituents is subtracted). Two terms are involved:

— εb: the difference between the mean free energy for internal degrees of freedom of a
protein inside the patch and the free energy of an unbound protein diffusing on the
membrane. In other words, εb is the mean bounding energy and εb < 0.

— γ: the correction term for the average number of unformed bounds for each proteins
at the periphery of the aggregates with perimeter L(n)

— a supplement of energy is involved to bend the membrane around the patch. The mem-
brane is a bilayer lipid membrane on which we can apply a continuous elastic model as
shown for instance in Foret and Sens [47] work. (A detailed calculation can be found in
Foret [46]). In the simplified model where the protein coat imposes it preferred shape
and membrane deformation is restricted to the bud, two terms are generally taken into
account:
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Chapter 2. Self assembly dynamic

— σ: the tension of the membrane, it is the work against the membrane tension to
extract a unit area of membrane from the surrounding membrane in order to augment
the amount of membrane in the forming bud. And ΔS is the excess of membrane
needed to build the bud. Under our hypothesis of spherical cap, ΔS = S(n) −
π(L(n)/2π)2 = s0

n2

N

— κm: is the bending modulus of the lipid bilayer, and the term explicit how much
energy is involved in shaping the membrane to the bud curvature.

Δemeca(n) = σΔS +
8πκm

R2
S = σ

s0
N
n2 +

8πκms0
R2

n (2.26)

The bud internal free energy writes, as reference free energy of unbound protein is set to 0:

f(n) = (n− 1).εb + γ.π

√
(n− 1)

(
1− n

N

)
+Δemeca(n) (2.27)

In order to derive the rate equation for the evolution of the bud size distribution, we need
the rate of attachment/detachment of proteins to a bud of given size (shape). In classical
kinetics rate theory, rates of attachment events depends on the local concentration of free
proteins around the bud that are likely to attach and the local interaction with the bud when
the protein is close enough to react. Within the framework of Eyring absolute rate theory (see
Hill [66]), the ratio of forward and backward reaction are given by the equilibrium constant of
the reaction:

k+
n

k−
n+1

= K(T )

= e−β.ΔrF 0

= e−β(f(n+1)−f(n)−f(1))

(2.28)

where ΔrF
0 is the free energy difference between a aggregate formed of n− 1 proteins plus

an isolated monomer and a aggregate formed of n proteins bound together. The free energy
difference derived from the binding energy is expressed in equation (2.27). Oriented flux in the
system can be labeled with the following convention:

Jon→ c1
J2
⇒ c2

J3→ c3 . . . cn
Jn+1→ cn+1 . . . cN−1

Jv→ virion (2.29)

The kinetics equations write then:

∂t cn = Jn − Jn+1 with Jn = k+

n−1c1cn−1 − k−
n cn for 2 < n < N (2.30)

∂t c1 = Jon(t)− J(2)−
N∑

n=2

J(n) (2.31)

Jv = k+

N−1cN−1c1 ≡ JN with k−
N = 0 (2.32)

An interesting limit for the interpretation of the dynamic is the theoretical situation in which,
the monomer concentration is maintained constant. Under this regime, the nature of the
equations ruling the aggregation becomes obvious.
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2.2.2 Dynamics under a constant monomeric concentration

As c1 is assumed to be constant and independent of time, the set of equation reduce to the
following: The kinetics equations write:

∂t c1 = 0 (2.33)
∂t cn = Jn − Jn+1 with Jn = K+

n−1cn−1 −K−
n cn for 2 < n < N (2.34)

Jv = K+

N−1cN−1 with k−
N = 0 (2.35)

Where we have defined the apparent reaction rates: K+
n ≡ k+

nc1 and K−
n ≡ k−

n . In this scheme,
a aggregate of size n during dt grows to size n+1 with probability K+

n dt or shrinks to size n−1
with probability K+

n dt. If the aggregates reaches the maximum size N , it leaves the system
whereas the constant concentration of monomer dispense a constant flux of nucleated dimers
at the entrance of the assembly line K+

1 c1. Overall, at the individual level, the growth process
is in this limit a Markovian random walk since the probability for each step is fully determined
by the size of the aggregate (K+

n dt) independent of the system history.
At the level of a population, the equation (2.34), simply conveys conservation of the “mate-

rial” (here the number of aggregates and not the number of monomers) in the system: variation
of the concentration is given by the balance between onward and outward flux. At this level
the one step random walk has to well known physical contributions: diffusion locally character-
ized by the diffusion coefficient D(x) and drift associated to local velocity V (x), which can be
identified by establishing a Fokker-Plank equation as the continuous limit. The Fokker-Plank
equation:

∂t c = −∂x V.c+
1

2
∂x2 D.c (2.36)

can be identified from the discrete equation:

∂t cn = K+

n−1cn−1 −K−
n cn − (K+

n cn −K−
n+1cn+1)

≡ 1

2

(
Dn+1cn+1 +Dn−1cn−1 − 2Dncn

Δx2

)
− 1

2

(
V +
n+1cn+1 − V +

n cn
Δx

)
− 1

2

(
V −
n cn − V −

n−1cn−1

Δx

) (2.37)

Term by term identification and ±1 shift of the indices leads to the system:⎧⎨⎩
1
2
(V +

n Δx−1 −DnΔx−2) = K−
n

DnΔx−2 + 1
2
(V −

n Δx−1 − V +
n Δx−1) = −(K+

n +K−
n )

1
2
(V −

n Δx−1 −DnΔx−2) = K+
n

(2.38)

First and last equations of the system of equations (2.38) lead to the intermediate one, this is
not a system of independent equations. Under the condition of a locally well defined velocity
V −
n = V +

n ≡ Vn, the unique solution is:{
Vn = Δx(K+

n −K−
n )

Dn = Δx2(K+
n +K−

n )
(2.39)

With the continuous limit sets as N → ∞ by x = n
N

and Δx = 1
N

. In our framework, the
velocity (resp. diffusion) corresponds to the average displacement (resp. square displacement)
per unit of time (see Van Kampen [131] for detailed discussion).
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So the concentration profile of aggregate will evolve with a drift proportional to the difference
between onward and backward rates, meanwhile it will be spread by diffusion to the sum of
onward and backward rates. Onward rate is proportional to monomer concentration c1(t)
whereas backward rates are constant. Therefore, the model results in a classic drifted diffusion
controlled by the evolution of the single gag proteins in time. Complexity arises from the
coupling between the evolutions of the monomers population and growth of the aggregates as
nucleation and growth consumes the monomers and thus alters its own evolution.

We are now ready to relax the constraint of fixed monomeric concentration to look at the
evolution of the system submitted to a constant input flux. Before starting the investigation
on the population dynamic, we will make a short detour to the steady state solution analysis.
This second limit is analytically tractable in full generality and helps to determine the relevant
parameters which might also be involved in the control of the dynamic.

2.2.3 Steady state under a constant flux

The steady state corresponds to the situation where the concentrations of any specie in the
system do not evolve any more in time:

∂ cn
∂t

= 0 for 1 ≤ p < N (2.40)

which gives once replaced in the previous system of equations:

Jn = Jn+1 = Js for 2 < n < N − 1 (2.41)

Jon = Js +
N∑

n=2

Js = NJs

⇒ Js =
Jon

N
(2.42)

Equation (2.30) with result equation (2.42) produces a recursive formula for the concentrations
of each aggregate sizes:

cn =
k+

n−1

k−
n

c1cn−1 − Jon

k−
nN

(2.43)

which can be solved starting from the free monomeric concentration, to express the concentra-
tion of any aggregate size in term of free monomeric concentration:

cn = cn1

(
n−1∏
q=1

k+
q

k−
q+1

)
− Jon

N

n∑
q=2

(k−
n )

−1cn−q
1

n−1∏
r=q

k+
r

k−
r

= cn1

(
n−1∏
q=1

k+
q

k−
q+1

)
− Jon

N

n−1∑
q=1

cn−q−1
1 (k+

q )
−1

k+
q

k−
n

n−1∏
r=q+1

k+
r

k−
r

= cn1

(
n−1∏
q=1

k+
q

k−
q+1

)
− Jon

N

n−1∑
q=1

cn−q−1
1 (k+

q )
−1

n−1∏
r=q

k+
r

k−
r+1

(2.44)
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with the convention on empty product
∏n−1

n = 1. The input flux can be found in term of c1
also by inserting the previous solution in the boundary condition at n = N (equation (2.32)):

Jon

N
= k+

N−1c1cN−1

= k+

N−1c
N
1

(
N−2∏
n=1

k+
n

k−
n+1

)
− Jon

N
k+

N−2

N−2∑
q=1

(
cN−q−1
1 (k+

q )
−1

N−2∏
r=q

k+
r

k−
r+1

)

⇒ Jon

N
=

k+

N−1c
N
1

(∏N−2
n=1

k+n
k−n+1

)
1 + k+

N−1

∑N−2
q=1

(
cN−q−1
1 (k+

q )
−1
∏N−2

r=q
k+r
k−r+1

)
=

1∑N−1
q=1

(
c−q−1
1 (k+

q )
−1
∏q−1

r=1
k+r
k−r+1

) (2.45)

We can replace Jon in equation (2.44) by the value derived in equation (2.45), to obtain the
analytic expression of the steady state concentration in the system submitted to a constant flux
of monomers:

cn = cn1

(
n−1∏
q=1

k+
q

k−
q+1

)
−

∑n−1
q=1 c

n−q−1
1 (k+

q )
−1
∏n−1

r=q
k+r
k−r+1∑N−1

q=1

(
c−q−1
1 (k+

q )
−1
∏q−1

r=1
k+r
k−r+1

)
=

∑N−1
q=n cn−q

1 (k+
q )

−1
∏q−1

r=n
k+r
k−r+1∑N−1

q=1 c−q
1 (k+

q )
−1
∏q−1

r=1
k+r
k−r+1

(2.46)

The equation (2.45) provides the stationary concentration of monomers at the membrane under
a constant flux Jon: c1(Jon), which in turn can be used in equation (2.46) to find the steady
state concentration of any other specie. So that the steady state is fully solved.

Kinetics results can be linked to the classic thermodynamics of self assembly. Let us rein-
troduce the classic expression of Helmholtz free energy density of an ideal dilute solution in the
linear approximation (see equation (2.11) or equivalently Zandi et al. [136] derivation):

F
S

� kBT
∑
i

ci(log ci − 1 + βf(i)) (2.47)

where ci represent the dimensionless concentration of specie i in the aggregate solution on the
membrane Nis0

S
. The chemical potential of the free monomers is defined as:

μ1 =
∂ F

S

∂c1

∣∣∣∣∣
V,T,Ci �=1

= kBT log c1 + f(1) (2.48)

and we use it to define the energy cost to create a aggregate of proteins compared to the
reference state of freely diffusing proteins. This aggregate formation free energy writes:

Δf(n) = f(n)− n.μ1 with μ1 = kBT log c1 + f(1) (2.49)
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Chapter 2. Self assembly dynamic

and the previously exposed steady states equations can be rewritten in terms of the free energy
cost using the detailed balance condition equation (2.28):

k+
n

k−
n+1

= e−β(f(n+1)−f(n)−f(1))

⇒
n2∏

r=n1

k+
r

k−
r+1

= e−β
∑n2

r=n1
f(r+1)−f(r)−f(1)

= e−β(f(n2+1)−f(n1)−(n2−n1+1)f(1))

which gives in equations (2.45) and (2.46):

Jon

N
=

c∞1∑N−1
q=1 (eβΔf(q)/k+

q )
(2.50)

c∞n = e−Δf(n)

∑N−1
q=n

eβΔf(q)/k+
q∑N−1

q=1
eβΔf(q)/k+

q

(2.51)

Where superscript ∞ emphasis that these relations hold at steady state. Now that we are able
to calculate the final composition of the system submitted to a constant flux, we will apply
our results to understand the dynamical evolution starting with the simpler case of constant
attachment rates.

2.2.4 Linear energy and fixed on-rate

In a first approximation, the forward rate is assumed to be constant for all sizes of proteins
aggregates:

k+

n = k+ ∀n (2.52)

Furthermore we keep only the linear terms in the expression of the energy of the bud (equa-
tion (2.27)), f(n) = (n−1)εb leading to a very simple detailed balance expression equation (2.28)
and to a constant backward rate:

k−
n+1

k+
n

= eβεb = c∗ (2.53)

In this constant case (constant chemical rates, constant flux), a scaling law can be found out.
Let’s consider for instance a modification of the value of the input flux Jon −→ Kon. We
are going to look under which condition the new solution can be found from a rescaling of
a former solution of the dynamic equation by applying a constant dilatation of time and a
re-normalization of all the concentration in the system:{

t −→ ηt
cn −→ dn : t �→ αcn(ηt)

(2.54)

The new set of equation is:

∂t dn = Kn −Kn+1 with Kn = k+

d (d1dn−1 − d∗dn) for 1 < n < N (2.55)

∂t d1 = Kon −K(2)−
N∑

n=2

K(n) (2.56)
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and transforms into:

∂t cn =
1

αη
(Kn −Kn+1) with Kn = α2k

+

d

k+
c

k+

c (c1cn−1 − d∗
αc∗

c∗cn) for 1 < n < N (2.57)

∂t c1 =
1

αη

(
Kon −K(2)−

N∑
n=2

K(n)

)
(2.58)

We want the new equations to be equivalent to the first set of equation from which cn is a
solution equations (2.30) and (2.32), identification of α and η leads to the condition for the two
solutions to collapse to the same master curve as shown on figure 2.5:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Kon

d2∗k
+

d

=
Jon

c2∗k+
c

= Ω

dn
d∗

=
cn
c∗

τ.k+

d d∗ = t.k+
c c∗

(2.59)

As a consequence all problems with the same Ω are equivalent up to a rescaling of the solution
and we can fix k+ and c∗ without any loss of generality. Please note that this demonstration
holds only for a fixed maximum size of aggregates (defining the number of equation in the set).
Should N change the solutions will not be comparable apart asymptotically. The ratios will
obviously appear naturally in the following calculations.

2.2.4.1 Steady state

The steady state equations can be further simplified as they end up to be geometric series:

Jon

N
=

k+c∞1 (c∞1 − c∗)
1− (c∞1 /c∗)1−N

(2.60)

c∞n = c∞1
1− (

c∞1
c∗ )

n−N

1− (
c∞1
c∗ )

1−N
(2.61)

As shows figure 2.6 picturing the concentrations profiles at steady state for different input flux,
the system switches between two regimes with very different behaviors. Either only the small
sizes are formed and a very small flux pass through the system or all the different sizes are
present in equivalent proportions with a larger flux throughout the system. The relationship
between those two different states can be understood by studying the mean growth velocity as
steady state is reached (see equation (2.39)). At steady state, the change in size for protein
patch reduces to a biased random walk with average growth velocity and diffusion coefficient:

v̄ = k+c∞1 − k− (2.62)
D̄ = k+c∞1 + k− (2.63)

When c∞1 < c∗, this average growth speed is negative and the system is non-propagating:
aggregates formed by a fluctuation tend to shrink and the chances to reach the fully closed
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(a) Five different solutions for the evolution of monomers concentrations (plain blue lines) with
Ω = 10 and k+ = 1 and Jon ∈ {20(+), 40(∗), 60(.), 80(×), 100(◦)}. Their respective steady state
limits c∞1 calculated from expression equation (2.45) are shown (red dashed)
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(b) Same solutions with rescaled time and concentrations: all the curves are equivalent and
collapse on the same master curve

Figure 2.5 – Scaling of the kinetic equation with constant rates for Ω = Jon
k+c2∗

= 10.
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2.2. Open System
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Figure 2.6 – Steady state concentration of the various sizes of aggregates in the system nor-
malized by the monomer concentration, for different input flux of monomers in the cell (from
lower left to upper right, Ω ∈ {0.99, 0.995, 1, 1.005, 1.01, 1.1} for a number of proteins in the
fully formed virions N = 1500).

state to escape are low. Oppositely, when c∞1 > c∗, the average growth speed turns positive and
the system is propagating. The condition can be rewritten as c∞1 > c∗. In terms of energetic,
the condition writes: c1

c∗ > 1 ⇔ eβ(μ1+εb) > 1 ⇔ μ1 > −εb, proteins will regroup in aggregates
as far as binding reduces their free energy.

With this description it appears that if the system submitted to a input flow of monomers
is in its non-propagating state, the monomers will accumulate until propagation starts, in
contradiction with the establishment of a steady state. There is indeed a mechanism left to
assure the transportation material throughout the assembly line: the diffusion which balances
the drift, resulting in a net flux. Only low flux are expected to be sustainable in such a regime,
and this is what one can see from the relation Jon(c

∞
1 ) equation (2.60) that is plotted on

figure 2.7. We note however that the existence of a steady state with positive input flux and
negative mean velocity is restricted to finite N . In fact, figure 2.7, illustrates that eligible Jon

tends to 0 for c∞1 with the power of N (dominant term of denominator in equation (2.60)).
Hence a continuous description such as proposed in equation (2.38), somehow equivalent to
taking N → ∞, will collapse all those states to Jon = 0. It is however possible to link discrete
and continuous situation, by looking for steady states with fixed concentration c∞1 at x = 0 and
cN = 0 at x = N . Two successive integrations lead to:

c(x) = c∞1
1− ev̄(x − L)/D̄

1− ev̄L/D̄
(2.64)

Which looks very much like our discrete expression and from which it can be inferred that
steady states concentrations are constant but on a small layer close to the boundary of typical
size D̄/̄v [110]. But finding c∞1 for a given Ω is assembly length dependent and cannot be done in
the continuous approximation.

In large systems, Ω(c∞1 ) tends to a step function resulting in a abrupt change in the vicinity

47



Chapter 2. Self assembly dynamic

0 1 2 3 4 5
0.5

1.

1.5

�

c 1�
�c
�

Figure 2.7 – Relation between the steady monomers concentration c∞1 and the input flux of ag-
gregates Ω at the entrance of the assembly line. The effect of the system size on the transition is
clear around c∞1 /c∗ = 1 (solid lines: N = 10–blue and N = 1500–red). Approximations (equa-
tion (2.65)) for c∞1 < c∗ and c∞1 > c∗ are shown (dashed lines). They fail in the neighborhood
of c∞1 = c∗

of c∞1 � c∗:

Ω

N
�

⎧⎪⎪⎨⎪⎪⎩
(1− c∞1

c∗ )
(

c∞1
c∗

)N
� 0 for c∞1 < c∗

1
N−1

for c∞1 = c∗
c∞1
c∗ (

c∞1
c∗ − 1) for c∞1 > c∗

(2.65)

Around Ω = 1, the two limits of our approximations are different which tells us that our
approximation is wrong at the transition between the two regimes discussed for c∞1 � c∗. Far
from the critical point for Ω = 1, we can solve the approximate forms to find c∞1 (Ω):

c∞1
c∗

�
⎧⎨⎩
(
Ω
N

) 1
N for Ω � 1

1
2

(
1 +

√
1 + 4 Ω

N

)
for Ω � 1

(2.66)

2.2.4.2 Dynamics

We now turn ourself to the time evolution. Steady state study let appear an important
quantity controlling the long time evolution of the system: the ratio Ω = Jon

k+c2∗
, linked to the

critical concentration c∗ = e−βεb .
Unlike in the steady state, we have not been able to solve analytically the equation for

the dynamic. To study the evolution of the monomers and aggregates population, we used a
discrete time step Δt and numerically solved the system of equations using a simple explicit
Euler method scheme.

Similarly to what was demonstrated concerning the steady state, dynamic itself behaves in
two different ways depending on the value of Ω as shown on figure 2.8:

— Ω ≤ 1: the evolution is monotonic. The aggregates concentration exhibit sigmoidal
evolutions. Following a lag time, longer as the size of the aggregates of interest is bigger,
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(a) Monomers concentration c1(t) and critical
concentration (c∗, red line) normalized by c∗
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(b) Tetramers concentration c4(t) normalized by
c∗

Figure 2.8 – The two different behaviors shortly after the input flux Jon as been turned on at
t = 0 depending on Ω = Jon

k+c2∗
∈ {0.1(+), 0.5(◦), 1(∗), 5(.), 10(×), 20(�), 50(�)}, is shown for the

early rising populations –monomers c1(t) (plain) and tetramers c4(t) (dashed)). The lag time
between the arrival of monomer in the system and the building of tetramers depends visibly on
Ω(Jon)
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Chapter 2. Self assembly dynamic

the concentrations gradually rise in the whole system towards the final steady state value.
The stronger the input flux and the smaller the time to reach the steady state.

— Ω ≥ 1: the evolution is non monotonic. The concentration of each aggregates rises
to eventually outnumber the steady state concentrations followed by heavily damped
oscillations (only apparent for very high Ω � 102) around the steady state value.

As discussed in section 2.2.2, we expect the solutions of our model to result from the trans-
port of the monomer concentration fluctuations throughout the different sizes of aggregates,
with deformations due to the diffusion. Consequently the study of c1(t) is rich of information
concerning the time evolution of the whole system. We can also expect a change in the evo-
lution as the first nucleated aggregates reach the final size N and leaves the system. We will
begin by focusing on the early evolution of monomer concentration when the propagation of
aggregates has not been sufficient for the final boundary condition to affect the solution.

2.2.4.3 Short times: overshot

When Ω � 1, the concentration of monomers peaks to a value much larger than the final
steady state value. This behavior is not obvious to characterize as it results from the competition
between the constant flux of monomers entering the system and their consumption both in
dimers nucleation (at a rate proportional to c21(t)) and in the growth or shrinkage of the formed
aggregates (proportional to the monomer concentration c1(t) times the sum of all the other
aggregates concentrations in the system) as stated by equation (2.31).

As this is a feature of the early evolution, observed for characteristic times τmax much
shorter than the typical time to reach the end of the system (τn ∼ N

k+c∗ ) this evolution should
be insensitive to the size of the line assembly in our range of interest (N � 102). Simulations
show that maximum value scales like Ω

1
2 (figure 2.9) as does the steady state value c∞1 when

the input flux is large compared to the size of the system (Eq equation (2.66) with Ω � N).
It stresses again that, in the steady state regime, the size of the assembly line indeed plays
an important role whereas the early state of the system looks insensitive to N . Furthermore,
The time to reach this maximum value also seems to follow tmax ∼ Ω− 1

2 . Since aggregates
concentrations play an equivalent role in the monomer consumption compared to the quadratic
term of dimers formation, we introduce the concentration of aggregates of all sizes in the system:

Ξ(t) =
N−1∑
n=2

cn(t) (2.67)

To understand the effect of the different factors involved in the early evolution, we look for a
rearrangement of the kinetics equations (2.30) and (2.31), into a simpler closed form on c1 and
Ξ:

∂t Ξ =
N−1∑
n=2

∂t cn

=
N−1∑
n=2

(Jn − Jn+1)

= J(2)− J(N − 1)

= k+c21 − k−c2 − k+c1cN−1

(2.68)
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This last equation tells that aggregates are added to the system only through nucleation of
dimers and removed both when dimers break or fully formed particle exit.

∂t c1 = Jon − k+c21 + k−c2 −
N∑

n=2

(k+c1cn−1 − k−cn)

= Jon − (k+c1 − k−)Ξ− 2k+c21 + k−c2

(2.69)

This second equation expresses that monomer are introduced in the system by the input flux Jon,
and they are consumed either by the growing aggregates at the average growing rate (k+c1−k−)
or to form dimers (two monomers are required to form a dimer or released as it breaks as the
last terms account for)... The analysis is simplified with further approximations. We neglect
k−c2 compared to the full aggregate consumption −k−Ξ in equation (2.69) and consistently
neglect the same term in equation (2.68) (thus formed aggregates cannot disappear any more).
And as we currently study the early times, we will also assumes that there is no aggregates
of great sizes in the system cN−1 � 0. Under those two assumptions, we obtain a non-linear
closed system of two equations for c1(t) and Ξ(t):{

∂t c1 = Jon − (k+c1 − k−)Ξ− 2k+c21
∂t Ξ = k+c21

(2.70)

Unfortunately, we have not been able to solve analytically this set of equation, event if the
second one appears obvious and we can have an integro-differential equation on c1:{

∂t c1 = Jon − (k+c1 − k−)
∫ t

τ=0
k+c1(τ)

2 dτ − 2k+c21
Ξ(t) =

∫ t

τ=0
k+c1(τ)

2 dτ
(2.71)

However as the system is originally empty, c1(0) = 0 and we have the approximations:

∂t c1|t→0 = Jon ⇒ c1(t) ∼ Jon.t (2.72)
⇒ −2k+c21 ∼ t2 (2.73)

⇒
∫ t

τ=0

k+c21(τ) dτ ∼ t3

⇒ (k+c1(t)− k−)

∫ t

τ=0

k+c21(τ) dτ ∼ t3 (2.74)

If we drop the highest order term (thus neglecting the aggregate growth compared to their
nucleation), we eventually have an equation on monomer concentration which solution can be
found by variable separation:{

∂t c1 = Jon − 2k+c21
c1(0) = 0

⇒ c1(t) =

√
Jon

2k+
tanh

(√
2k+Jon.t

)
(2.75)

This solution captures most of the main features we have seen to this point:

1. scaling law is maintained throughout the approximation steps c1(t) = c∗
√

Ω
2
tanh

(√
2Ωc∗k+t

)
2. ∂t c1|t=0 = Jon

3. maximum value is of order
√
Ω for fixed c∗ and k+
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4. typical time to reach maximum is Ω− 1
2 for fixed c∗ and k+

In this case, however, the monomer concentration does not peak as when the aggregates con-
sumption contribution is present. This tells us that the overshot behavior is an effect of this later
contribution rather than an effect of the nucleation non linear term (k+c21). Overshot behavior
could be observed for similar growth dynamic with different initiation steps, such as initiation
on seeds which involve a linear nucleation step with respect to the monomer concentration
(kseedc1) or nucleation steps involving more monomers at a time.

2.2.4.4 Intermediate times: propagation

In the previous section, we have shown that the initiation of growing aggregates as the
monomer population was increased by a constant flux was sufficient to overtake the incom-
ing proteins flux and deplete the monomer population. We have identified the limit rate
Jcritical = k+c2∗ (equivalently Ω = 1) beyond which the system enters this regime or below
which the monomer population gently grows towards its steady state concentration. But in
order to perform our analysis of the early stage of dynamic, we looked at the whole population
of aggregates without paying more attention at its size distribution and we focused on c1(t)
evolution. This choice was prompted by the results of section 2.2.2, where we pointed out
that size evolution of aggregates over time has to be a drift-diffusion process controlled with
c1(t) playing both role of emission source and driving force. We now turn our attention to the
implication of the previously described c1(t) on the bud evolution.

In Ω < 1 regime, we already understood that the system remains non propagating all the
time until steady state is reach. When submitted to such low flux, the system gradually fills as
diffusion equilibrates populations with consecutive sizes but with a strong attenuation as size
increase.

In Ω � 1 regime, There is a change in the system state as c1(t) becomes higher than c∗ and
formed aggregates begin to grow with a positive mean rate. As all accumulated small aggregates
grow with the same mean velocity a front starts to propagate. Meanwhile the consumption of
monomers increases faster that its renewal rate. The consequent diminution of the monomer
concentration leads to a diminution of the dimers nucleation and eventually of all the aggregates
populations at the back of the propagating front. A wave with a large tail propagates towards
large sizes at speed v(t) = k+c1(t)− k− as shown on figure 2.11b.

On the qualitative biological ground, the mechanism predicts that the distribution of the
growing buds will be peaked close to the maximum observable size until viruses are released
outside the cell.

In fact, without diffusion, the solution of the propagation equation with c1(t) boundary
condition would be the monomer concentration translated in space at speed v(t):

c(x, t) = c1

(∫ t

τ=0

v(τ) dτ − x

)
(2.76)

2.2.4.5 Long times: propagation in large size systems

As monomer concentration keeps decreasing, rapidly consumed by the aggregates, the
growth speed falls too. Simulations show that c1(t) seems to eventually reach a “quasi steady
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(a) Log-Log plot of the first peak of the monomer concentration as Jon is turned on for Ω = {5,
10, 50, 102, 5.102, 103, 5.103, 104, 5.104, 105} (from bottom to top) and N = 1500. The earliest
evolution is linear on time c1(t → 0) ∼ Jon.t (black plain line), until nucleation of dimers begins.
Then the concentration reaches a maximum (◦) and decreases. Very high Ω seems to evolve with
the same power law after maximum (∼ t−0.35 – dashed black line), which would not hold for
values of order 1. However a closer look emphasis that this part of the curve is slightly concave
rather than linear.
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Figure 2.9 – Short time scale, overshoot
53



Chapter 2. Self assembly dynamic

�
�

�
�

�
�

�
�

�
�

10−4 0.001 0.01 0.1 1 10
0.01

0.1

1

10

100

t k+ c*

c 1
/c

*

(a) Log-Log plot of the first peak of the monomer concentration as Jon is turned on for Ω = {5,
10, 50, 102, 5.102, 103, 5.103, 104, 5.104, 105} (from bottom to top) according to approximation
from equation (2.70) to compare with the full resolutions figure 2.9. Scaling of the maximum
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Figure 2.10 – Evolution of the species concentrations according to our approximation (equa-
tion (2.70) – plain lines) shortly after the input flux Jon as been turned on at t = 0 for various
Ω ∈ {0.1(+), 0.5(◦), 1(∗), 5(.), 10(×), 20(�), 50(�)}, are shown for the monomers concentration
c1(t) (left) and aggregates concentration Ξ(t)(right)). Neglecting the dimers breaking makes
no visible difference compared to the full calculation (see figure 2.8a for comparison). Approx-
imation from equation (2.75) (dashed lines) works well for c1(t) until the inflection point at
k+c∗t = (2Ω)−

1
2 where concentrations either drops (large Jon � k+c2∗) or increase further (small

Jon < k+c2∗)
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system for Ω = 5.103 and N = 1500: Colors in-
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(b) The propagating wave: Snapshots of
the sizes distribution aside at various times
(tik+c∗ ∈ {1(+),10(◦),50(∗),100(.)} – plain red)
and (tik+c∗ ∈ {200(×),400(�),600(�),800(�)}
blue).
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(c) Time evolution of the size distribution in the
system for Ω = 0.999 and N = 1500. The
monomer concentration is always the highest
(n(t) = max

n
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(d) The diffusing front: Snapshots of the
sizes distribution aside at various times
(tik+c∗ ∈ {50(+),100(◦),500(∗),1000(.)} –
plain red) and (tik+c∗ ∈ {2.103(×),4.103(�),
6.103(�), 8.103(�)} blue).

Figure 2.11 – Ω = 5000 � 1 assembly wave (top) and Ω = 0.999 � 1 diffusion front (below)
propagating in the system. Beware the change in axis due to the different scales of those two
process both in time and size.
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Chapter 2. Self assembly dynamic

state” with very low evolution, asymptotically approaching c∗. On one hand, should c1(t) be-
come smaller than c∗, the aggregates would shrink and c1(t) would rise again. On the other
hand for any c1 > c∗, both aggregates nucleation and growth occur. As the number of aggre-
gates only increases when c1 > c∗, so does the total amount of monomers needed to maintain
the growth. In a closed system with fixed amount of proteins Morozov et al. [98] concluded that
similar propagating front would eventually stop after having covered a finite distance as c1 reach
c∗. With the fixed input flux sustaining the growth, the story might be somehow different, even
if the velocity should eventually decrease towards 0. Indeed its decay is very low and in the
simulations it rather looks like the speed does not evolve on the time scale needed to reach the
virion state (full completion). Unlike the early peak, we have not been able to characterize this
decay rate.

To illustrate the previous discussion, we will evaluate the asymptotic velocity evolution when
growth is limited by the input flux. Let us consider the front propagation with no boundary
(in an infinite system N → ∞). As c1(t) quickly decreases towards c∗, the tail height is of the
same order. We neglect the exact form of the propagating wave and take instead a simple step
function from x = 0 to x = nmax(t) dominated by the tail contribution:⎧⎨⎩

c(x, t) = c∗ for x ≤ nmax(t)
c(x, t) = 0 for x > nmax(t)
v(t) ≡ ∂t nmax(t)

(2.77)

For the front to move forward to the next size (Δnmax = 1), one has roughly to supply one
monomer to each aggregate of each sizes in [0, nmax(t)], which takes Δt with an input flux Jon:

JonΔt =

nmax(t)∑
n=1

c∗ = nmax(t).c∗

⇒ v(nmax(t)) =
Δnmax

Δt
∼ Jon

nmax(t)c∗

(2.78)

We now have to estimate the time t it takes to reach size nmax(t). Using a simple material
conservation argument, this is equivalent to estimate the total number of monomers needed to
build all the aggregates. By definition, an aggregate of size n contains n monomers:

Jon.t =

nmax(t)∑
n=0

n.c∗ ∼ c∗
n2

max

2
(2.79)

Which leads substituting nmax from equation (2.79) in equation (2.78):

v(t) = k+(c1(t)− c∗) ∼
√

2Jon

c∗t

⇒ (c1(t)/c∗ − 1) ∼
√

2Ω

k+c∗t

⇒ nmax(t) ∼
∫ t

τ=0

v(τ) dτ ∼ 2
√

2.Ω.t.k+c∗

(2.80)

Unlike in a closed system, the front eventually moves as the square root of the time and does
not stop. We note that this behavior is linked to “material conservation” in the step function
front propagation rather than to the physics of diffusion. Monomer concentration should tend
to c∗ as t−1/2 if our approximations are correct –this is indeed observed on figure 2.12.
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Figure 2.12 – Scaling of the asymptotic decrease of the velocity of the propagating wave in
time for Ω ∈ {5(+), 10(◦), 20(∗), 50(.), 100(×)} (red) in an assembly line long enough so that
the absorbing boundary does not affect the evolution during running time (N = 3000). Dashed
line shows y = x−1. The expected power law and dependency in Ω are correct since all the
curves collapse.

2.2.4.6 Long times: oscillations in finite systems

According to our model, the formed virion reaches the absorbing boundary of the system
at size N . Or, in other words, when growing viruses reach their final size, they immediately
escape and do not weight any more on the monomer population consumption. So in small
enough system, the asymptotic flux limited evolution discussed in the previous section is not
reached and long time is dominated by the boundary condition.

In Ω < 1 subcritical regime, this takes place at a very slow rate due to the evanescent tail
of the diffusion front. And concentrations eventually reach their steady states.

In Ω � 1 overcritical regime, the change of the aggregate population is important since buds
are grown in a wave. If the tail of the assembly wave is a small part of the whole aggregate
population compared to the front peak (large overshoot Ω � 1 and small system sizes N), the
aggregate population rapidly vanishes altogether with the monomer consumption. Situation
is then very much alike the early time described in section 2.2.4.3. The monomer population
increases again and peaks a second time. Then a new assembly wave forms and propagates
through the assembly line (see figure 2.14). However the amount of aggregates remaining in the
system is frequently important and does not match the early evolution. Simulations results,
show that monomers concentration oscillates around the steady state value c∞1 (see figure 2.13).
Subsequently, the newly formed assembly wave propagates at fixed average speed as described in
section 2.2.2 until all the populations reach their steady states. As c∞1 is an increasing function
of Ω (equation (2.66)), the velocity at which the secondary waves evolves in the system follows
the same tendency.

We have a qualitative understanding of the damping of the successive waves. Total input
flux of monomer can be considered as partly directed to sustain the growth of aggregates
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Figure 2.13 – Monomer concentrations in time for Ω ∈ {74, 148, 222, 296, 369, 443, 517, 591,
665} (from bottom to top – blue) and steady states values (dashed red). As the front reaches
the absorbing boundary of the system at N = 500, formed virus stop consuming monomers
which foster a second rise of the monomers concentration (minima indicated by �) until a new
assembly wave is launched (maxima �).

remaining in the system after the front wave exited. This results in a lower effective input
flux to the monomer population. As the system progressively fills with more aggregates as
diffusion spread successive waves, each overshoot of the monomer concentration is weaker than
the previous one. With this in mind, dependency to the size and input flux can be forecast
from basic considerations.

For instance, the greater the exit size N and the longer the tail of the size distribution, and
thus the more remaining aggregates after the front reach the absorbing boundary. Furthermore,
in long assembly line, the time to cover the distance at given Ω is longer and thus the front
of the assembly wave is spread on a larger scale by diffusion. As it eventually reaches the end
of the line, the number of completed virions that exits the system per unit of time is lowered.
The assembly wave magnitude is therefore expected to be lower with increasing length N .

Stronger Jon leads to stronger overshoot, and then peaked waves. Also, the monomer
concentration at a given time is constrained to higher values for higher Jon. With increased
Jon, more peaked initial waves are moving at faster velocities throughout the system but face
higher diffusion coefficient. As variation of diffusion coefficient and velocity in c1 are the same,
the diffusion length obtain for the typical time to go through the assembly line l ∝

√
D.N
v

,
should not change much. As a result, higher Ω should exhibit waves of stronger magnitude,
consistent with what is observed on figure 2.13.

We observe furthermore that for higher Ω, first waves are initiated with higher frequencies
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(c) Ω = 5000.
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(d) Ω = 10 000.

Figure 2.14 – Long time size distribution evolutions for N = 1500 and Ω ∈
{5.102, 103, 5.103, 104}. Isoconcentration curves (point lines) are drawn logarithmically spaced
around the steady state monomer concentration c∞1 to emphasis small fluctuations and color
scale is linear in concentration. Assembly wave trajectories are showed (n(t) = max

n
cn(t) –

plain black line) and become straight lines once the velocities stabilize. The steady state can
be considered reached on figure 2.14d at tk+c∗ � 8.103 as concentrations are equal within
calculation precision and maximum cannot be localized any more.
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Chapter 2. Self assembly dynamic

(figure 2.14). This second observation is consistent with a smaller travel time T = N
k+c∞1 −k− (c∞1

being a increasing function of Ω). But it takes an extra time to form the following wave. This
lag time is apparent on trajectories showed on figure 2.14 (black lines): the next trajectory is
not initiated right after the previous ended but after an empty period that length for roughly
the same duration and during which aggregates leave the system and simultaneously monomer
concentration increases. From this observation, we expect the frequency to be of order f = 1/2T .
In simulations, we found that the measured period was given by:

T�� =
N

k+c∞1 − k− .α(Ω, N) (2.81)

with α a coefficient with values of order 2 that decreases as Ω increases and increases with
system size N . The values computed from the data showed on figures 2.13 and 2.15a are given
in following table (empty value ∅ indicates that two consecutive extrema could not be found
over the whole simulated time):

Ω (N = 500) T��k
+c∗ (×103) α = T��k+c∗(c∞1 /c∗ − 1)/N (±0.05)

74 ∅ ∅
148 3.45 1,65
222 2.35 1,55
296 1.80 1,50
369 1.50 1,50
443 1.30 1,50
517 1.15 1,50
591 1.05 1,45
665 0.95 1,45

Ω (N = 1500) T��k
+c∗ (×103) α = T��k+c∗(c∞1 /c∗ − 1)/N (±0.1)

5 ∅ ∅
10 ∅ ∅
50 98.7 2.1
100 43.6 1.8
500 8.8 1.6
1000 4.9 1.5
5000 1.5 1.4
10000 1.0 1.4

Time τs(η) to reach steady states as a function of dimensionless input flux Ω has been
monitored on long time simulations for system characterized by a final size N = 1500. We
defined it as the time we have to wait for the monomer concentration c1(t)/c∗ to remain in a
confidence interval of size 2η centered around its steady state concentration: [c∞1 /c∗−η , c∞1 /c∗+η].
Simulation results are shown on figures 2.14 and 2.15. Our simulations show that the time to
reach steady state is shorter for stronger input flux Ω, and evolve approximately according to
1/
√
Ω.

2.2.4.7 Flux of virions released from the cell

As the system is opened, viruses eventually exit the cell. In the model presented here, there
is no particular effect associated to this steps which is instantaneous. We showed in the sec-
tion 2.2.3 that when a constant flux of monomer Jon is imposed at the entrance of the assembly
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(a) log-log plot of the monomeric concentration
evolution in a finite size system (N = 1500) for
Ω ∈ {5, 10, 50, 102, 5.102, 103, 5.103, 104} (plain
blue) and steady state concentrations numeri-
cally solved from equation (2.45) (red dashed).

10
0

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

Ω

st
ea

dy
 ti

m
e 

−
 τ

s k
+  c

*

(b) Log-log plot of the time τs(η) for the
monomers to reach steady state concen-
tration within η confidence bounds (η ∈
{10−5(◦), 10−6(�), 10−7(�)}) depending on the
intensity of the input flux (Ω). Steady states
is reached faster for higher input flux. Black
dashed line has slope −1/2.

Figure 2.15 – Long time evolution of the monomers concentration in a finite system depending
on the input overcritical flux Ω > 1. Time τs(η) to reach steady state value within η confidence
bounds are indicated by symbols (η ∈ {10−5(◦), 10−6(�), 10−7(�)}).

61



Chapter 2. Self assembly dynamic

line, a steady state is eventually reached with a flux of virus given by the material balance
between entry and exit of the system: jv = Jon

N
. In the following sections (section 2.2.4.2) we

investigated the evolution of the growing virus inside the system and evaluated a few charac-
teristics of the assembly line time scales in the simple scheme of constant rates for all sizes. We
found that the dynamic towards the steady state is controlled by the ratio of incoming monomer
flux to a critical flux Ω = Jon

k+c2∗
as well as the total number of components in an assembled virus

N . Output flux monitored in simulation are displayed on figure 2.16. When the system is
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Figure 2.16 – Plot of the normalized flux of viruses exiting the system Njv
Jon

as Jon is turned on
at t = 0 for Ω = 5(+), 10(◦), 50(∗), 102(×), 5.102(�), 103(�), 5.103(�), 104(�) (from bottom to
top) and N = 1500.

propagative, the shape of the virus flux is inherited from the shape of the monomeric evolution
up to a broadening due to its diffusion part. As we noticed concerning the evolution of the
monomers and intermediate species, the flux of virus overshoots the steady flux for Ω � 1 but
very rapidly comes back to stabilize after strongly damped oscillations around its steady state.
Oscillations period is conserved and defined by the ratio of the size of the system to the steady
state velocity (equation (2.81)).

The first viruses are observed after a lag time. This lag time accounts for the propagation
time in the system from the time the input flux is switched on:

— When input flux is lower than the critical flux Ω ≤ 1, the system fills very slowly as it
remains dominated by a negative drift. As the virus flux rises also at very low rate, lag
time is not easy to define: since the derivative of the flux in time is low, a change in
the arbitrary limit above which we consider the virus production to be noticeable implies
important variation of the measured lag-time. For that reason we study instead the time
for the outflux to reach half of its steady state value jv(τ0) = Jon/2. This remarkable point
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2.2. Open System

is easy to identify in all regime.
— When the input flux is overcritical Ω � 1, the average velocity is positive and assembly is

achieved by propagating waves. The lag time τ0 is of the same order of the travel time T1 of
the first wave across the assembly line. Indeed travel time dominates the time to initiate
the wave τi = (c∗k+

√
2Ω)−1 (see equation (2.75)). In small systems the wave velocity

decreases rapidly during this early time as the first wave propagates, and we have not
been able to solve the related integro-differential equation (2.71) for a proper calculation.
For very large systems submitted to low input flux, however, this stiff deceleration phase
can be neglected compared to the asymptotic regime, the lag time should obey the flux
limited propagation equation (2.80):

τ0 ∝ N2

Ωc∗k+
(2.82)

We numerically studied the relationship between the size of the system, the input monomeric
flux and τ0. Figure 2.17 summarizes the observations.

In both regimes, the lag time is an increasing function of the system size and strictly
decreases with the input flux. This last remark underlines that the process is not subject to
a kinetic trapping effect comparable to what Zlotnick [139] reported for closed system kinetics.
Hence virus efficient strategies should always be oriented towards maximizing the production
of monomers to ensure both faster assembly of the first viruses and steady state onset.

For input flux smaller than the critical one, Ω < 1, the size of the system does not seem to
affect the dependency of the waiting time in the input flux Ω−0.6 (figure 2.17b). Furthermore
τ0 appears to scale in L2 for nearly critical regime (Ω = 0.5 on figure 2.17a), a behavior similar
to the asymptotic propagative regime but likely to have a very different physical source. Unlike
the flux limiting scenario, the undercritical size distribution remains dominated by small sizes
aggregates. The evolution is probably similar to a pure diffusive process (which have a similar
scaling law) since even if the mean velocity in the system is negative, it decreases towards zero
as c1(t) approaches c∗ (equation (2.66): c1(t) < c∞1 ∝ c∗Ω1/N � c∗ for N � 1).

For input flux larger than the critical one, Ω � 1, the evolution is more complex as effect
of size and input flux cannot be separated: a change in the size of the system affects the
dependency in the input flux (figure 2.17b – table Ω > 102). On this same figure, it is apparent
that the linear behavior observed for under critical flux is not maintained at higher values. In
fact, we never fully reached the asymptotic behavior in any of our simulations since it requires
large system with low flux and results in very time consuming calculations. However this
evolution can be foreseen in the data shown on figure 2.17a at fixed flux Ω = 20 where the
slope in log-log plot slightly diminish with respect to the total proteins numbers in a virus N ,
getting closer to 2 (linear adjustments on N < 102 and N > 5 102 produces respectively slopes
of 1.92 and 1.96). For increasing input flux Ω, the waiting time scales with a decreasing power
in the size of the system (figure 2.17a, Ω = 1 103), further apart from the flux limiting regime
as propagation time is more and more controlled by the early time regime.

2.2.5 Line tension effect and fixed on-rate

In case of constant onward and backward aggregation rates, we showed that the steady state
concentrations under a flux of monomer can be derived analytically in various regimes thanks
to simplifications in equation (2.45) summations and following simplifications. We were also
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(b) τ0 as a function of the input flux Ω and
for various number of proteins in virus N ∈
{50(+), 100(◦), 200(∗), 500(.), 1500(×)}.

Ω d log τ0
d logN

0.50 2.00
20 1.94

1.0 103 1.66

d log τ0
d log Ω

N Ω < 1 Ω > 102

50 -0.59 -0.53
100 -0.59 -0.54
200 -0.59 -0.59
500 -0.59 -0.65
1500 -0.57 -0.62

Figure 2.17 – Log-log plots of waiting time τ0 for the virus flux to reach half of its steady state
value after the input flux of monomer has been turned on (t=0). Slopes obtained from linear
adjustment are given in the table below the plots
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2.2. Open System

able to calculate the continuous limit of the equation and both the associated drift velocity and
the diffusion coefficient. From those two quantities we have been able to derive various scaling
limits.

But it is unlikely that, in a large proteins aggregate, the geometry of the assembly plays no
role on the interactions between proteins and their neighbors that are described in the energy
evolution. The next order in the model is to make the distinction between the mean energy
of a protein with all its neighbors in the core of the aggregate, and a protein at the edge of
the aggregate which interacts with significantly less other proteins, and cannot form as many
bounds as the former.

Taking the line tension per capsomer at the periphery γ �= 0, the internal free energy of the
aggregates is given by equation (2.27):

f(n) = εb.(n− 1) + γ.π

√
(n− 1)

(
1− n

N

)
(2.83)

The resulting free energy formation of the aggregate from n proteins with chemical potential
μ1 is, with the same definition for the critical concentration: c∗ = e−βεb :

Δf(n) = εb.(n− 1) + γ.π

√
(n− 1)

(
1− n

N

)
− n.μ1

= kBT ln(c∗/c1).(n− 1) + γ.π

√
(n− 1)

(
1− n

N

)
− μ1

(2.84)

Where we recast μ1 = f(1) + kBT lnC1 from equation (2.49). Similar equation has already
been introduced (see equation (2.22)) and plotted on figure 2.3. The aggregate formation free
energy is non monotonic with maximum at position n = nb. Barrier height and position of the
maximum both diminish for increasing c1/c∗.

Keeping k+ constant for the purpose of simplicity, the backward rate k− given by detailed
balance is not constant any more as a nucleation barrier has been added the model. Noticing
that equation (2.28) and equation (2.49) gives:

k+c1
k−
n+1

= e−β(f(n+1)−f(n)−f(1)+f(1)−μ1)

= e−β(Δf(n+1)−Δf(n))

(2.85)

We see that in the presence of the barrier, k−
n is stronger than k+c1 for small values of n < nb,

it decreases to k+c1 = k−
nb

at the top of the barrier and then to much lower values as n increases
further. Hence the drift velocity is negative before the barrier and positive afterwards.The
barrier therefore fosters the splitting of small aggregates and opposes to the nucleation (it
also restrains unbinding in larger aggregates). This is the key difference with the constant
aggregation rate model, in which the sign of the drift is the same in the whole system.

2.2.5.1 Scaling still holds

Within the detailed balance framework, the scaling demonstrated in section 2.2.5 still holds
when onward rates are not all equal but dependent on the aggregate size k+

n . It remains valid
as well when the formation free energy is not a pure linear function of the aggregates size,
provided that only its linear part is modified. A change of the coefficient of the linear part in
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the expression of the free energy of formation can be isolated as a simple multiplicative constant
in the detailed balance between k+

n and the new backward rate k̃−
n+1:

k+
n

k̃−
n+1

= e−β(εb+δεb) = c∗e−βδεb (2.86)

As a matter of fact, each local flow Jn satisfies the scaling individually thanks to the detailed
balance, so that the overall system of equation does –see equation (2.58):

J̃n = k+

n(c1cn−1 − e−βδεbc∗cn) for 1 < n < N (2.87)

And as a consequence, a solution of the new system is equivalent to a solution of the
previous, up to a scaling of times and concentrations, and corresponds to the previous flux
times the scare of the scaling factor.⎧⎨⎩

t −→ t.eβδεb

cn(t) −→ cn(t.e
βδεb).e−βδεb

Jon −→ Jon.e
−2βδεb

(2.88)

In the steady state, that we study in the following section, time does not play any role. So
a change of the free energy of bounding only alters the size distribution through a constant
factor multiplication and the equivalent input flux is found multiplying by the square of the
same constant. Two parameters are enough to describe the solutions: steady state capsomer
concentration c∞1 and line tension per capsomer at the periphery γ.

2.2.5.2 Steady state

The steady state solution is given by equations (2.50) and (2.51). With a non zero line
tension, the equations do not simplify as in the linear case. Assuming the barrier dominates
the formation energy landscape, the sum in equation (2.50), can however be approximated
using the Laplace’s method (steepest descent):

Jon

N
� k+c∞1 e−βΔf(nb)

√
− 1

2π

∂2Δf(n)

∂n2

∣∣∣∣
nb

(2.89)

consistently, nb � N
2
, altogether with

(
γπ√
NΔμ

)2
� 1 and Δμ = −kBT ln(c∞1 /c∗), so equa-

tions (2.23) and (2.24) lead to the following using those approximations:

nb � 1 +

(
πγ

2kBT ln(
c∞1
c∗ )

)2

, Δf(nb) � π2γ2

4kBT ln(
c∞1
c∗ )

− μ1

∂2Δf(n)

∂n2

∣∣∣∣
nb

� −
2
(
kBT ln(

c∞1
c∗ )
)3

π2γ2

(2.90)

And thus,

Jon

N
�

k+(c∞1 )2e
−β2 π2γ2

4 ln(c∞1 /c∗)
(
kBT ln(

c∞1
c∗ )
) 3

2

π
3
2γ

,
c∞1
c∗

∈]1, eβ πγ
2 ] (2.91)
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2.2. Open System

This last equation is valid as long as a pronounced barrier is present on a narrow interval of
the system. This condition implies that the difference of the chemical potentials of bound and
unbound proteins is such that it promotes binding Δμ < 0 ⇔ c∞1 � c∗. In addition, if the
input flux becomes too strong, free monomer concentration is high and so is their chemical
potential. The line tension contribution is then very low compared to the free energy difference
in binding a free monomer and the barrier eventually disappears. This is equivalent to the
condition nb = 1 in equation (2.90): c∞1 < c∗e

πγ/2kBT . In such a scenario, the steady state
regime tends to be the same as the linear free energy case described previously in section 2.2.4
and our approximation should also fail. This approximation of the steady flux in the system as
function of the steady concentration works well on it validity domain as shown on figure 2.18a.
Unfortunately, we have no analytical inverse expression of equation (2.91), to express c∞1 (Jon)
in the narrow barrier regime.

Relation between monomer concentration and the flux imposed to the system computed
from equation (2.50) is plotted on figure 2.18a and examples of the associated size distributions
computed from equation (2.51) with a solution of the equation (2.50) found numerically are
shown on figure 2.18b.
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Figure 2.18 – steady state flux and size distributions with line tension γ ∈ {0(blue), 0.5(green),
1.0(red), 2.0(cyan), 3.0(purple), 5.0(yellow)}kBT .

For a fixed line tension γ, the steady state regime establishes as follows. Capsomers flow
into the system with the input flux Jon. If c1 is low enough (c∞1 < c∗e

πγ/2kBT ), an energy barrier
dominates the energy landscape. Only a portion of the capsomers are allowed to nucleate and
pass the barrier, their flux decreasing exponentially with the barrier height (as in Kramers
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Chapter 2. Self assembly dynamic

theory). If the flux of capsomers in the forming capsids that passes the barrier is lower than
the input flux, free capsomers accumulate in the system and the barrier is lowered. On the
contrary, if the input flux is lower that the flux of capsomers in nucleated capsid, free capsomers
concentration decreases so the barrier height increases. Steady state is reached once the two
flux equilibrates, as it is stated by equation (2.91).

For increasing line tensions γ at a given concentration of capsomer c∞1 , the formation free
energy barrier is higher and so the steady flux Ω is lower as shown on figure 2.18a. Equivalently,
at fixed input flux Ω, the free capsomer steady state concentration c∞1 is an increasing function
of γ. Unlike the concentrations before the barrier, the concentrations of intermediates beyond
the barrier diminish for increasing line tension and fixed input flux (figure 2.18b). Indeed, it
requires lower intermediate concentrations cn to maintain the same flux with higher c∞1 and
thus with increased drift velocity. From an other point of view, as barrier height is maintained
constant increasing both γ and c∞1 , the slope of the energy landscape increases behind the
barrier.

At fixed line tension, γ, the steady state concentrations c∞n are all increasing with the input
flux Ω.

In the narrow barrier regime, linear term is the dominant contribution in the free energy of
formation and therefore the numerator in equation (2.51) can be approximated to a geometric
series whereas numerator is proportional to the flux in the system:

cn � e−β(n−1)Δμ Jon
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(2.92)

Which imposes a nearly constant concentration far from the system boundaries as c∞1 > c∗ (see
figure 2.18b).

2.2.5.3 Dynamic

The dynamic of the line assembly model with a nucleation barrier is quite different from
the dynamic with constant rates in the whole system. The drift velocity sign changes at the
barrier crossing: negative drift before the barrier fosters the accumulation of monomer whereas
positive drift beyond leads to faster assembly. The critical flux Ω = 1 that we identified to
separate low and high flux regime is no more of much interest. and regimes with c∞1 < c∗ are
not found in practice. However, the onset of the dynamic as the flux is turned on follows a
similar pattern at short times (figure 2.19).

At short time, the monomers accumulate to peak at a concentration higher than in the case
γ = 0 consistently with a strong dissociation rate compare to the association rate figure 2.19a.
The monomer concentration reaches its maximum value for the whole evolution. Despite a
higher monomer concentration of monomers for increasing line tension at a fixed input flux Ω,
the tetramers as well as greater sizes concentrations are lower due to the diminution of the
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nucleation rate (curves of the same color are in reverse order in figures 2.19a and 2.19b). The
evolution at short times is not described by equation (2.70) since most of the early nucleated
dimers are immediately dissociated and shrink rather than grow. The return rate k−c2(t) is
likely to be of the same order of magnitude than k+c21(t) and cannot be neglected to produce a
set of autonomous equations. Monomer concentration c1(t) increases until the barrier becomes
low enough and the barrier position –which is the size on the assembly line where the drift
velocity becomes positive– is close enough to the monomer size. Meanwhile, low sizes are
progressively populated as the barrier height also lowers (k+

nc1 increases compared to k−
n in the

whole system). As the barrier eventually reaches the neighborhood of the populated sizes, a
pool of nucleated aggregates can pass in the part of the assembly line where the mean velocity
is positive where they start to grow.
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(a) Monomers concentration c1(t) compared to
Ω.tk+c∗ (dashed lines).
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(b) Tetramers concentration c4(t).

Figure 2.19 – short times: monomer and tetramers concentrations for γ ∈
{0.5(×), 1(◦), 5(�)}kBT and Ω ∈ {0.5(blue), 1(green), 10(red)}

In the constant rate case the drift velocity remains positive in the whole system once this
regime is reached (c1 > c∗) and up to steady state. Otherwise the growth is stopped (as
c1 → c∗) until more monomers are supplied. As long as the growing aggregate front propagates
in the system, small aggregates are nucleated and the intermediate time distribution of sizes
shows a propagative front with a long tail with a very slow decay (see figure 2.11b). On the
opposite, when γ �= 0 the monomer consumption of the growing aggregate and the consequent
diminution of the monomer population impacts the drift velocity. As the barrier is displaced
towards greater sizes, drift velocity turns back to negative values at the entrance of the assembly
line. It follows that the nucleation of new aggregates is restricted as long as growing aggregates
consumes monomers. As a consequence, the tail at the back of the propagating front decreases
rapidly and the growth velocity is much higher than in the situation without line tension shown
on figure 2.20.

In very large systems, far from the boundaries, the linear part of f(n) dominates. Hence, the
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(a) Time evolution of the size distribution in
the system: colors indicate concentrations cn

c∗ for
each aggregate sizes in time. The wave trajec-
tory (n(t) = max

n
cn(t) – plain black line) shows

a short deceleration phase followed by a stable
speed.
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(b) The propagating wave: Snapshots of the
sizes distribution aside at various times (tik+c∗ ∈
{1(×), 5(◦), 10(∗)} – plain red) and (tik+c∗ ∈
{40(�), 60(�), 80(�), 100(�),120(♦)} plain
blue).

(c) Time evolution of the size distribution in
the system: colors indicate concentrations cn

c∗ for
each aggregate sizes in time. The wave trajec-
tory (n(t) = max

n
cn(t) – plain black line) shows

a stable speed.
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(d) The propagating wave: Snapshots of the
sizes distribution aside at various times (tik+c∗ ∈
{30(×), 60(◦), 90(∗)} – plain red) and (tik+c∗ ∈
{200(�), 400(�), 600(�), 800(�),1000(♦)} plain
blue).

Figure 2.20 – Assembly wave propagating in the system Ω = 5 103 (top) and Ω = 0.9999
(bottom), γ = 5 and N = 1500.
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average drift velocity and diffusion are constant over the sizes and change only with monomeric
concentrations. The propagation of a single peak rather than a front with a long tail changes
the front asymptotic velocity in the flux limited regime. The number of monomers required to
form the peak of width Δn and height cp at size nmax (neglecting broadening) is:

nmax(t)∑
n=nmax(t)−Δn

n.cp ∼ nmax.Δn (2.93)

If the monomer concentration is stable –assumption supported by the strong barrier that makes
nucleation events extremely rare– the input flux sustains the progression of the pool of forming
capsids:

nmax(t) ∼ Jon.t

Δn
(2.94)

Which implies a progression of the size of the growing aggregates linear with time and not
slowing down like in the case previously studied without line tension.

2.2.5.4 Long time in finite size systems: oscillations
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Figure 2.21 – Log-linear plot of the evolution in time of the monomeric concentration for differ-
ent input flux Ω ∈ 5×{ 102(blue), 101(green), 1(red), 10−1(cyan), 10−2(purple), 10−4(yellow),
10−5(black)}. Starting from high Ω, damping decreases to 0 (oscillations with constant ampli-
tudes –purple and yellow) and the steady state is not reached for Ω ∈ [ 10−2 10−4]. It is only at
very low flux that the damping is present once again (Ω = 5 10−5–black).

When the pool of growing capsid reaches the system boundary at n = N they escape. This
leads to oscillations of the concentration with the mechanism that we described in the case of
constant rate and overcritical regime Ω > 1. In presence of line tension, this phenomenon is
intensified as the shape of the propagating wave is much more peaked. As shown on figure 2.21,
many periods of oscillations are visible for any input flux Ω.
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Unlike in the linear cases where oscillations are apparent only for very strong overshots
consecutive to very high input flux, we observe that in the presence of line tension oscillations are
visible even at low input flux. Furthermore, the damping of those oscillations is not monotonic
with the input flux. There is indeed a range of input flux for which sustained oscillations
are observed and steady state is never reached. The mechanism behind this “resonance” in
the system is not elucidated. For input flux greater than the resonance range, the damping
increases with the input flux Ω. It appears that greater flux leads indeed to heavier tails at the
back of the propagating wave (compare for instance on figures 2.20b and 2.20d), which might
be an important element to explain the increase of the damping with Ω.

The frequency of the oscillation is also an increasing function of Ω similarly with the linear
case.

2.2.6 Estimations of the numerical values

In this section we have so-far used mainly dimensionless quantities and studied the behavior
of the system in as much generality as possible. In this section we estimate the effective values
of the parameters from those reported by the literature:

— s0, mean surface per protein at close packing in the gag clusters. We estimate this value
from the number of gag N = 2500 proteins Ganser-Pornillos et al. [50] covering 2/3 of the
closed immature particle of radius R = 70 nm:

s0 =
πR2

N
≈ 16± 5 nm2 (2.95)

— εb, average binding free energy of a free protein to the gag cluster. Protein-protein inter-
action must be stable enough for the structure to hold against thermal agitation but weak
enough to allow for reorganization in order to find the most stable structure. This advo-
cate for a protein-protein bound of the order of kBT (1.3 kBT is used in Kremer et al. [79] for
instance) and therefore, as several neighbors are binded simultaneously, εb � 5− 10 kBT.

— γ, line tension per monomer : mean energetic loss at the gag cluster periphery due to
unsatisfied bounds with missing neighbors. This is a fraction of εb (roughly

εb
2
� 5 kBT).

— k+, the diffusion limited clustering rate: the diffusion of gag clusters on the membrane has
been measured by Ivanchenko et al. [69] during virus growth: Da = 1.8× 10−5 μm2 · s−1,
whereas measurement have been performed on free gag proteins at the membrane by
Manley et al. [89]: Dgag 	 0.2 μm2 · s−1 on short time scale (single particle tracking using
PALM), coherent with the values given by Kenworthy [77] for a single protein bound to
the cellular membrane Dmemb. prot = 0.1− 0.5 μm2 · s−1 .This allows to calculate an order
of magnitude for the diffusion limited rate of gag aggregation to the clusters according to
a 2D Schmoluchovsky theory [128] (using the nondimensionalization factor s0 used for all
the concentrations) :

k+ � 4πDgagnbinding sites/s0 � 106 s−1 (2.96)

Where the order of magnitude of number of binding sites is estimated as nbinding sites � 102.
— c∗ the dimensionless critical concentration: since the dynamics studied in the previous

section all exhibit concentration of free proteins of the same order of magnitude that

c∗, we use c∗ � s0Nfree gag

S
. Therefore, c∗ can be estimated by measuring the free units
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Figure 2.22 – Long time size distribution evolutions for N = 1500, γ = 5kBT and Ω ∈
{50, 102, 5 102, 103}. Isoconcentration curves (point lines) are linearly spaced around the steady
state monomer concentration c∞1 and color scale is linear in concentration. Maximum of the
size distribution on the central part of the assembly line are shown to emphasis assembly wave
trajectories (n(t) = max

5%.N<n<95%.N
cn(t) – plain black line).
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concentration on the cell membrane. A rough estimate is obtained by counting the number
of isolated gag proteins localized in the superresolution image in Gunzenhäuser et al. [59]

and give two free gag per square micrometer and c∗ � 10−5 and is coherent with a
corresponding value of εb � 10 kBT.

— The order of magnitude for the time needed to build a full virus can be estimated from
the average speed as:

τ � N

k+c∗
� 102 s (2.97)

Consistent with the average time 10-20min reported between first detection and satura-
tion of the fluorescence signal in TIRF microscopy experiments (Ivanchenko et al. [69], Jou-
venet et al. [73]).

— Ω, the dimensionless input flux: the critical flux Jcrit = k+c2∗ � 10−4 s−1 compared to the
actual flux of proteins produced by the cell. Estimate of the flux of virus exiting the cell
are not easy to find. De Boer et al. [34] reported that a single cell produce in the order of
104 a day. Output flux per surface unit is estimated using a sphere of diameter 10 μm for
the typical sphere, leading to typical values of 1 gag · s−1 · μm−2 exiting the cell in formed
virion and corresponding to flux Jon � 10−5 s−1 and Ω � 10−1 in simulations.

2.2.7 Conclusion

In this section we studied the solutions of the line assembly model in an open system. Ac-
cording to the model, each bud grow by sequential additions of one subunit at a time. We made
the simple assumption that the aggregation rate is proportional to the subunit concentration
and equal for all the different aggregates and that the input flux of subunits was constant. The
detailed balance imposes the backward rate of a reversible subunit addition from its onward
rate and the work needed to add a new subunit to the growing capsid. We studied in details
the scenario where this work was assumed independent of growing capsid size (linear case) and
when a nucleation barrier was present in the system.

The steady state is defined by two coupled equations between the growing capsid flux in the
system and the subunits concentrations equations (2.45) and (2.46). However it is not possible
to find an exact solution of the system apart for the linear case scenario. In any case the size
distribution when a constant flux flow throughout the system does not resemble the equilibrium
distribution of the closed system. The most striking difference is that in all cases intermediates
are as likely as full capsid to be observed on the membrane as those latter do not accumulate.
The comparison between equilibrium distributions and steady state distribution when a flux
is maintained throughout the system has already been published (Castelnovo, Verdier, and
Foret [25]) and will be completed by a second on the transient dynamic.

In the linear case, two very different steady state distribution exist, depending on the
input flux. This model of pure elongation is characterized by a critical input flux Jon = k+c2∗.
The growth of virus is very unlikely below this flux that sustains the critical concentration
of subunits leading to aggregation and the production of virions is minimal, but since steady
state requires balance of input and output flux, virions are anyhow produced. This capsid
production is sustained by aggregates size fluctuations comparable to capsid size balancing a
situation were capsid shrinkage is favored. This flux becomes thus vanishingly small with the
total number of proteins per complete virus, as the amplitude of the fluctuations needed to
reach completion increases. So, it should not be observed in experimental conditions where
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this number are typically large. The mean field description (rate equation) used here is also
probably not adapted to describe these situations of small proteins number where fluctuations
are expected to dominates the dynamic... The critical flux also controls the dynamic of the
system:

— Below critical flux, the steady state distribution is reached very slowly. The subunits con-
centration is kept under the critical concentration and each size is progressively populated
in the system until the whole system is filled.

— Above the critical flux, monomers accumulates and oscillations appears. It means that
the cell releases virions in bursts in the early production time. As the relaxation to steady
state is extremely fast, only one burst is noticeable in practice, sharper at higher input
flux and for smaller complete capsid size.

In contrast with the closed system case, there is no kinetic trap in such dynamic as subunits
are provided continuously, and the stronger the flux, the larger the output of virions. Steady
state distribution is roughly constant over all the intermediate sizes for reasonably large number
of subunits in the complete capsid. This linear case, however, is likely to be a too simplistic
proposal to describe the aggregation of the capsid assembly since, to our knowledge, assemblies
experiments all reports nucleation barrier effects.

The presence of a nucleation barrier is already a more physical situation. The barrier height
is controlled by the subunits concentration. Subunits first accumulate irrespectively of the
input flux until the barrier is low enough to be crossed. In presence of a nucleation barrier
there is no critical input flux value anymore. The size distribution at a given time is bimodal,
with either small aggregates and forming capsid with similar sizes. Completing capsids grow at
constant speed in contrast with the linear case where the propagation slows down in time. The
lag time between the onset of subunits production and the first formed capsid is then reduced.
The nucleation barrier dramatically fosters the burst dynamic: many burst can be noticed and
simulation even indicate a range of flux where the production does not relax to steady state.

This description is a macroscopic average over all the growing capsids evolution in the limit
of a large system. At very low input flux, the fluctuations might be important compared to
the averaged behavior. Also very large flux generate a strong free subunits concentration that
might be incompatible with the single step mechanism proposed here.

We have not studied the membrane mechanics in the model at this point. Our model
rely on the assumption that the protein coat imposes its preferred curvature to the surround-
ing membrane, and that this curvature is independent of the bud size. The curvature of the
membrane contributes in the energy by a term linear with respect to the bud protein content
(equation (2.26)) and can be absorbed in the average binding energy term. In contrast mem-
brane tension generates a term that goes as the square of the aggregate size. Calculation from
Deserno [36], Foret [46] show that the energy profile including this fluid membrane contribution
also exhibit a barrier at high completion values which could give interesting behaviors such
as kinetically trapped particles (metastable completion states) before the full completion is
reached.

The released mechanism itself is not explicit in our model. We assume that there is an
irreversible step at the end of the assembly process and that fully formed capsid do not anymore
interact with the subunits. Human Immunodeficiency virus released mechanism is reported to
rely on the recruitment of proteins able to induce scission by polymerization at the bud neck
(Guizetti and Gerlich [57], Lenz et al. [84], Van Engelenburg et al. [130]). In such case, the bud is
not anymore accessible to free gag proteins and our model is consistent. However a recruitment
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rate may affect the dynamic. Furthermore, the virion are not immediately released and the
observed size distribution on the membrane will show an accumulation of complete capsids.

Eventually, the size of the cluster could be taken into account in the onward aggregation
rate to refine the model. Constant rate are maybe too simple to model the accretion on a ring
in 2D. Possible refinements also include the effects of membrane curvature in the vicinity of
the bud which might alter protein diffusion and mediate specific interactions (Matthews and
Likos [92], Müller and Deserno [101]).

In the next section we look at a complementary approach focused on single growing capsid
evolution at the membrane rather than measuring the size distribution of all the growing capsid
at the membrane, which is still a complex task.
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2.3 Model of single aggregate trajectories

In the previous section we studied the collective dynamic of the clusters using the framework
of the rate equation. We studied the average evolution of the cluster populations in time disre-
garding their fluctuations. However, recent experiments managed to probe the time evolution
of a single aggregate on the membrane inside the bath of capsomers.

The growth in time generate a trajectory in the sizes space which is inherently of stochastic
nature. We are interested by the information it carries about the detail of the microscopic
mechanism. At the population level the detail of each reaction event are averaged and it is
difficult to “work backward” and extract the rates from the population evolution if we do not
monitor the whole population evolution in time. Access to this information is not straightfor-
ward either in the single since one has to separate the random contribution of each single event
from the conserved part that describes the physics of the accretion. The purpose of our work is
to set on a simple model of the aggregation, comparable to chemical reaction, at the level of the
single aggregate and offer a simple method to extract the model parameters from experimental
data.

2.3.1 Generation of time trajectories on a modified Gillespie scheme

2.3.1.1 The direct Gillespie scheme

We consider the chemical composition in a vessel. The chemical composition is simply the
number of molecule of each species present in the vessel. If chemical reaction are possible in
the vessel, the chemical composition generally changes in time. In the course of its evolution,
reactants transforms into products at random times depending on the probability that they
collide and on the success rate of the collisions to lead to products. The evolution of the
chemical composition in the vessel is random and will be different from one experiment to an
other.

Let us consider that the vessel is filled with only these three species:

— aggregates of size 1 (monomers), noted (1)

— aggregates of size n, noted (n)

— aggregates of size n+ 1, noted (n+ 1)

And that the species can undergo only a single reversible aggregation step:

(n) + (1) � (n+ 1) (2.98)

Our fundamental hypothesis in what follows, is that all the species are maintained at thermal
equilibrium. Thus, on one hand the spatial probability distribution to find an aggregates is
homogeneous on the surface, and on the other hand the velocity distribution is stable in time.
Then, the probability for any given pair of one monomer and one (n)-aggregate to meet per
unit time exists. The reaction occurrence is simply a successful collision between a pair. If we
note N1 and Nn the number of monomers and (n)-aggregate in the vessel at the time, reaction
can then be properly characterized by its reaction probability that any pair of monomer and
(n)-aggregate merges anywhere on the surface during the infinitesimal time dτ (Gillespie [52]):

A(T,⇀) dτ = N1.Nn.α(T,⇀) dτ (2.99)
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This is the probability that any pair of (1) and (n+1) aggregates merge during dτ . The factor
α(T,⇀) summarizes the thermal properties of the mixture on the membrane (the distribution of
aggregates velocities) and the physical properties of the aggregates pair that affects the reaction
“⇀” (their probability of success per collision). The reverse reaction is also characterized by
a different probability per unit time (as no collision is involved, it is describe as a thermally
driven random event):

A(T,↽) dτ = Nn+1.α(T,↽) dτ (2.100)

In the following we will omit to remind the temperature dependence of our model as we
consider it is fixed.

The probability density P∅(Δt) that none of those two reaction has occurred during the
time Δt can be calculated arguing that the reactions are independent events. The probability
that any of those two reaction occurs is thus the sum of their probability, N1.Nn.α(T,⇀) +
Nn+1.α(T,↽) dτ , hence:

P∅(Δt+ dτ) = (1− (A⇀ dτ + A↽ dτ))P∅(Δt)

P∅(Δt) = (A⇀ + A↽) e−(A⇀+A↽)Δt
(2.101)

The probability that reaction (⇀) occurs between Δt and Δt + dτ has to be proportional to
the probability given in equation (2.99):

P (Δt,⇀) dτ ∝ P∅(Δt).A⇀ dτ (2.102)

And the same is true for the reverse equation. Eventually the normalized join density probability
to observe a given reaction occurring after Δt writes up:

P (Δt,�) = A� × e−(A⇀+A↽).Δt

= P� × P∅(Δt)
(2.103)

Where we see that waiting time and reaction to occur afterwards can be chosen independently.
The later being drawn according to the probability density:

P (�) =
A�

A⇀ + A↽

(2.104)

It is then possible to simulate successive reactions by starting from a known composition
{N1, Nn, Nn+1} with probability of reactions per unit time {α�} and iterate the following
algorithm called the “direct Gillespie method”:

— randomly choosing a time Δt for the next reaction to occur according to equation (2.101).

— randomly choosing the next reaction to occur according to equation (2.104).

— Update the time t = t+Δt and the composition of the membrane at this time following
the chosen reaction {N1, Nn, Nn+1} ⇀ {N1 − 1, Nn − 1, Nn+1 + 1} or {N1, Nn, Nn+1} ↽
{N1 + 1, Nn + 1, Nn+1 − 1}

— calculate the new probability of reaction per unit time {α�} according to the new com-
position and update the density of probability accordingly for the next sampling.
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2.3. Model of single aggregate trajectories

This method naturally generalizes to any set of reactions involving the collision of at most 1

two “molecule” of the environment with reaction probability per unit time {Ar} and the fol-
lowing probability density (resp. distribution) for the waiting time (resp. reaction to occur):

P∅(Δt) =

(∑
q

Aq

)
e−(

∑
q Aq)Δt (2.105)

P (r) =
Ar∑
q Aq

(2.106)

The advantage of the Gillespie method is to provide correct trajectories of the reaction as
solutions of a Markov process in the condition of thermal equilibrium for all the components
(equilibrium condition such as homogeneity of material and temperature in space are assumed
independent of the chemical ongoing process). Unlike an equivalent coarse grain molecular
dynamic simulation, it does not take into account the spatial position, orientations or speed of
the component but rely on stochastic average provided in the effective probability of reaction
per unit time. This is thus computationally much more efficient. It is however not a correct
design to simulate very fast reaction that would rapidly induce spatial inhomogeneities and
may not satisfy the requirement of thermal equilibration between each step. As it simulates
one reaction at each step, it is obviously not designed to follow the evolution of vast amount
of reactants in a long time which is left to kinetics rate equation in the thermodynamic limit
where fluctuations are negligible. Last but not least, the trajectories generated here are those
of the evolution of the broad chemical composition of a solution of indistinguishable particles
in the vessel, and not trajectories of each single particle.

2.3.1.2 Link between the kinetics rate equations and Gillespie reaction per unit
time

Gillespie [51] and Van Kampen [131] give the relation between the broadly used kinetics rates
kr of the “rate equations” proposed by Van’t Hoff which describe the average evolution of the
concentrations on an homogeneous medium and the probability of reaction per unit time αr

introduced in the previous section. Average is understood at a given time over an assembly of
system all prepared in the same state at t = 0. kr conventionally defined such that the average
number of reaction per unit time and unit area is:

kr

〈
Ni

S

〉〈
Nj

S

〉
(2.107)

Whereas in the microscopic description it is given by:

1

S
〈αrNiNj〉 (2.108)

The Equivalence of this two definitions leads to:

kr = Sαr
〈NiNj〉
〈Ni〉〈Nj〉 = Sαr

(
1− cov(Ni, Nj)

〈Ni〉〈Nj〉
)

(2.109)

1. reactions between more than two molecules at a time can be however included as composed of several two
intermediates sub-reactions
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Chapter 2. Self assembly dynamic

The logic behind the rate equation and the use of equation (2.107) is that the fluctuations of the
concentrations will be negligible compared to their mean values for a sufficiently large number
of reacting molecules in the system apart for few trajectories with vanishing probability in
the average. Hence the correlations (fluctuations) between the concentrations of each reactant
being neglected, 〈NiNj〉 � 〈Ni〉〈Nj〉, and those two rates are proportional up to the area of the
system S:

kr � S.αr (2.110)

as long as it makes sense to write down the rate equations.

2.3.1.3 Adaptation to single particle trajectories in a stationary monomers bath

Now we consider a singled out (n)-aggregate on the whole surface. Under the same hypoth-
esis that formulated for the Gillespie model, the probability per unit time that our aggregate
is involved in an occurring reaction knowing that one (n)-aggregate is undergoing this reaction
is simply:

1(
Nn

1

) =
1

Nn

(2.111)

The probability that this (n)-aggregate undergoes a reaction during dτ is then:

ar dτ =
Ar

Nn

dτ = Ni �=n.αr. dτ (2.112)

Where αr is the constant previously introduced that describes the average success rate of
collisions of reactant and Ni �=n is the number of particle of the other specie involved, with
convention Ni �=n = 1 in the case of the dissociation of the aggregate.

In our playground, that is the line assembly model, an (n)-aggregate can be involved only
in two reactions resulting in:

(n) → (n+ 1) (2.113)
(n) → (n− 1) (2.114)

So that the master equation describing the probability pn(t) to find our single out aggregate
with size n after a time t starting in n0 is quite obvious:⎧⎪⎪⎨⎪⎪⎩

ṗn = − (α+
nN1(t) + α−

n ) .pn + α+
n−1N1(t).pn−1 + α−

n+1.pn+1

α+
0 = 0

α−
N = 0

p(n, t = 0) = δnn0

(2.115)

The associated Gillespie time of occurrence and occurring reaction probability depends on
the evolution of N1(t) which is also a random variable... If the variation of the number of
monomers N1(t) is slow compared to the aggregate evolution however, the distribution are
given by equations (2.101) and (2.104):

P (±1) =

{
α+
nN1

α+
nN1 + α−

n

,
α−
n

α+
nN1 + α−

n

}
(2.116)

P∅(Δt) =
(
α+
nN1 + α−

n

)
e−(α

+
nN1+α−

n )Δt (2.117)

80



2.3. Model of single aggregate trajectories

The slow variation of N1 compares to the reaction rate of one cluster is somehow a strong
assumption since monomers are involved in all the reaction that takes place on the surface. It
holds at least:

— in large systems at steady state, where the mean value of N s
1 does not evolve in time and

when N s
1 � 1 fluctuations should be low compared to N s

1 (of order
√

N s
1 ).

— as long as the total amount of monomers forming aggregates is low compared to the total
number of free monomer in the system so that it can be considered as a reservoir.

We studied the somehow simplified case of the evolution of a singled out aggregate at the
surface of a membrane where the aggregates populations have reached assembly steady state.
We’ve seen in previous sections section 2.2.3 that there is a unique steady state solution in our
model of line assembly under constant flux (flux over the system is uniquely defined by the input
flux). This steady state point is generally reached and populations eventually stabilize at their
steady values. In this context, the population of each aggregate size is stable since incoming
flux balances the outgoing one at each size. However, at the individual level, aggregates keep
growing or shrinking.

2.3.1.4 Microscopic rates from the trajectories

In most of the assembly experiments, the precise measurement of the size distribution is an
hard task as the populations of intermediates are dominated by the assembled and monomers
population by several orders of magnitude. This observation obviously includes the measure of
its evolution on time.

Following a single particle size in time we access the information of its individual fate.
Its size-time trajectory is one succession of events among the many possible realizations whose
statistical properties rule the evolution of the whole system. Many trajectories must be collected
and collectively treated to extract the information relevant at the global scale.

In our model, the succession of the aggregate sizes in time forms a Markov chain: the current
state (size) of the aggregate is enough to fully determine the transition probability to future
sizes as stated by the master equation (2.115). When the number of reachable sizes is finite, the
matrix A whose element are An→m the transition rates from size n to size m, fully characterizes
the Markov chain and is known as the generator of the time continuous Markov chain.

2.3.1.5 Elaborate methods for estimations of continuous time Markov chain gen-
erator

The estimation of the transitions rates of a time-homogeneous random walk (a random
walk whose transition rates are time independent) from its trajectories are fairly easy when one
has an infinite knowledge of the positions at any time during the process. To understand the
construction of the estimation, we start with a discrete time random walk (a new jump occurs
after a time Δt, so that the list of the successive occupied positions {nv} at each step v is
enough to grant a full knowledge of the evolution). The maximum likelihood estimator of the
transitions probability from any position i to a position j, pi→j is constructed by maximizing
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the probability of the observed sequence:

P({nv}) = P(n1, t = 0)
∏
w

P(nw+1|{nv<w})

= P(n1, t = 0)
∏
w

pnw→nw+1

= P(n1, t = 0)
∏
i,j

p
jumpsi→j

i→j

(2.118)

Where we first used the Markovian properties of the walk and then regroup altogether the
jumpsi→j occurrences of the jumps from site i to site j, nw = i, nw+1 = j in the sequences of
positions. The transition probability jumps∗i→j that maximizes P({nv}) under the constraint∑

j pi→j = 1 is:

p∗i→j =
jumpsi→j∑
j jumpsi→j

(2.119)

Which is the classic estimation of the transition probability by the statistical frequencies and
converges for a sufficient number of observations. In the continuous time context, the transition
probabilities become transitions rates (transition probabilities per unit time). For a complete
observation over time [0, t] the estimation is also analytical [96]:

A∗
i→j =

jumpsi→j(t)

OTi(t)
(2.120)

With OTi(t) is the occupation time of the site: the portion of the total time t spent on the site i.
However, the limitations of such method arise in more realistic cases that are continuous time,
limited time sampling, and uncertainty on the position. When several transitions are missed or
mistaken by others and that the residence time on a site is not well known, the characterization
of the transition rates is harder...

Several works on the reconstruction of the Markov chain generator with finite sampling
on time exist. The analysis of market or diseases evolution have prompted several works in
economical and medical sciences [2,30].Metzner et al. [96] propose a comparison of classic iterative
methods. When sampling in time is finite, none offers a direct determination of the transition
rates but rely on subsidiary optimizations procedure. The common start of the methods is to
use a first estimate of the generator exponential at sampling time Δt:

(
eAΔt

)∗
=

jumpsi→j∑
j jumpsi→j

(2.121)

Where jumpsi→j pool together the jumps observed between each observation separated by Δt
(note the similarity with the discrete case, equation (2.119)). Unfortunately, such estimates of
the exponential eAΔt does not lead to a good estimate of A. The calculation of the estimate
logarithm does not forbid complex or negative off-diagonal entries (a theoretical issue known
as the “embedding problem”) incompatible with the physical meaning of a transition rate.
Crommelin and Vanden-Eijnden [33] project the approximation obtained on the set of acceptable
transition matrix defining a distance respectful of the left and right eigenvectors of the matrix
which encodes its stochastic properties. Bladt and Sorensen [13] propose to find an optimum of
likelihood function by iterations of the expectation maximization algorithm. Indeed, when no
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2.3. Model of single aggregate trajectories

analytical derivation of the maximum likelihood estimate is any more available, estimation of
the rates relies on the iterations of expectation maximization algorithm which involves to solves
systems of ordinary differential equations whose size is given by the total number of states in
the system. Application of those methods in our interest case supposes a perfect knowledge
of the occupied position at each measure, which is rather dubious concerning fluorescence
intensity measurement. Furthermore their computation complexity quickly increases with the
numbers of state considered. Eventually, they do not originally allow to restrict the form of
the generator on a chosen family. For instance, concerning our aggregation process, we would
like to forbid any transition involving more than one protein even when our resolution power
restricts ourselves to the observation of size changes of several tens of proteins.

When a parametrization of the process exists, a third way, following the theory of the
generalized moment method, consists in building a set of equations relating parameters values
to the expectations of as many “test functions”. The test functions expectations are evaluated
with the empirical expectation of the observation, relying on the law of large numbers to obtain
a consistent estimate. This is the spirit of the method proposed in the following.

2.3.1.6 A simple moment method to find microscopic rates from the trajectories

The master equation (2.115) can be seen as a parametrization of the random walk by 2×N
parameters, namely α±

n . The determination of the random walk generator is equivalent to the
determination of these parameters.

Averaging on all the possible trajectories using the probability of size given by the master
equation (2.115) gives the average growth rate of a cluster after a time t:∑

n

n.ṗn =
∑
n

− (α+
nN1 + α−

n

)
.pn.n+ α+

n−1N1.pn−1.n+ α−
n+1.pn+1.n

⇔ ∂t 〈n〉 =
∑
n

((
α+
nN1 + α−

n

)
+ α+

nN1(n+ 1) + α−
n (n− 1)

)
pn(t)

+ α+
0 N1p0(t) + α−

N(N − 1)pN(t)

= 〈α+
nN1〉 − 〈α−

n 〉

(2.122)

Using the same method of shifting summation indices, we also find:

∂t 〈(n− 〈n〉)2〉 = 〈α+
nN1〉+ 〈α−

n 〉+ 2〈n(α+
nN1 − α−

n )〉 − 2〈n〉∂t 〈n〉
= 〈α+

nN1〉+ 〈α−
n 〉+ 2

(〈n(α+
nN1 − α−

n )〉 − 〈n〉〈α+
nN1 − α−

n 〉
) (2.123)

Conditioning the average over size n0 a t = 0 for the aggregate, so that at t = 0, pn = δnn0
so

n(0) = n0, so we have:

∂t 〈n(t)〉n0 |t=0 = α+
n0
N1 − α−

n0
(2.124)

∂t 〈(n(t)− 〈n〉)2〉n0

∣∣
t=0

= α+
n0
N1 + α−

n0
(2.125)

Which gives us the difference of the local microscopic growing and shrinking rates from the
time derivative of the mean displacement conditioned on the starting size. We can also obtain
their sum using the time derivative of the variance of the positions at a given size. Hence
they can be directly measured from the experiment to reconstruct the kinetic landscape of the
aggregation. As times goes on, the time derivatives give those values averaged over all the sites
that the particle can visits weighted by the probability to visit each site.
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Concerning the mean squared displacement (equation (2.123)), we note an additional term
that we link to spreading or squeezing contribution of inhomogeneous drift velocity in space.
To understand its influence assuming a smooth variation of the microscopic transition with
size, we use the limit of continuous space. We can write this term with vn = α+

nN1 + α−
n as:

(〈nvn〉 − 〈n〉〈vn〉) ≡
∫

nv(n)p(n) dn−
∫

np(n) dn
∫

v(n)p(n) dn

=

∫
n(v0 + n∂n v|0 + . . .)p(n) dn−

∫
np(n) dn

∫
(v0 + n∂n v|0 + . . .)p(n) dn

� ∂n v|0
∫

n2p(n) dn− ∂n v|0
(∫

np(n) dn
)2

+ . . .

� (〈n2〉 − 〈n〉2).∂n v|0 + . . .

(2.126)

In the case of inhomogeneous velocity in space, this leads to the set of relations between the
two first moments of the position distributions at longer time scale :{

∂t 〈n〉 = 〈α+
nN1〉 − 〈α−

n 〉
∂t 〈(n− 〈n〉)2〉+ 〈(n− 〈n〉)2〉 ∂n ∂t 〈n〉 � 〈α+

nN1〉+ 〈α−
n 〉 (2.127)

Regions where velocity decreases in space tend to generate “traffic jams” in random walk (walk-
ers are concentrated in lowest velocity regions) and oppositely. This contribution vanishes in
regions with constant velocity and otherwise leads to non linear evolution of the mean square
displacement. This correction becomes non negligible at longer time scale and leads to un-
derestimating the diffusion in places where the velocity increases and overestimating it in the
reverse case.

This general analysis holds as long as the evolution of the aggregates is simply determined
by local microscopic rates (Markov linear random walk). In this condition, we can extract a
simple estimation of the microscopic rates from the early linear behavior in time of the mean of
displacement and its variance. In the following we will neglect the effect of the inhomogeneous
velocity field and use the approximation:{

∂t 〈n〉 = 〈α+
nN1〉 − 〈α−

n 〉
∂t 〈(n− 〈n〉)2〉 � 〈α+

nN1〉+ 〈α−
n 〉 (2.128)

This approximation becomes exact in the limit t → 0 or of microscopic rates independent of
the aggregate size.

The average 〈n(t)〉 considered here supposes that we perfectly sample the probability dis-
tribution with an infinite number of trajectories which, as a matter of fact, will never be
experimentally tractable. We will always consider instead a finite number T of trajectories over
which we will average. Since each trajectory is an independent variable drawn from the same
distribution, the best linear unbiased estimators of the moments that can be constructed [61] are
the empirical mean displacement and the empirical variance of the positions:

n(t)T =
1

T

∑
T

nT (t) (2.129)

n(t)T =
1

T − 1

∑
T

(nT (t)− n(t)T )2 (2.130)
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And a central limit theorem can be applied, providing that the two first moments m1(t) and
m2(t) of pn(t) are finite (to apply the theorem on n(t)T ) as well as the fourth order moment
m4(t) (to construct the variance of n(t)2). Hence our estimations will asymptotically approach
the true value with a variance shrinking with T 1/2. The calculation of the exact behavior
of n(t)T and (n(t)− n0)2

T would require however to properly solve the master equation to
find pn(t), for the expectation and variance of n(t)T and (n(t)− 〈n〉)2T gives for identically
distributed variable:

E

(
n(t)T

)
= m1(t) = 〈n〉(t) (2.131)

var
(
n(t)T

)
=

1

T
〈(n− 〈n〉)2〉(t) (2.132)

E

(
n(t)T

)
= m2(t)−m2

1(t) = 〈(n− 〈n〉)2〉(t) (2.133)

var
(
n(t)T

)
=

1

T
〈(n− 〈n〉)4〉(t)− T − 3

T (T − 1)
〈(n− 〈n〉)2〉2(t) (2.134)

The slopes βi of n(t)T and n(t)T are calculated on their measured values sampled in time
{ti, n(ti)T} and {ti, n(ti)T} with an ordinary least square adjustment of the model n(t)T = β1.t

and n(t)T = β2.t. The ordinary least square solution for the model f(t) = β.t is straightforward
(there is a unique normal equation see equation (A.7)):

β∗ =
∑

i yiti∑
i t

2
i

(2.135)

σ2
β∗ =

∑
i(yi − β∗ti)2

(
∑

i 1− 1)
∑

i t
2
i

(2.136)

In the following we investigate the use of n(t)T and n(t)T to extract α+
nN1 and α−

n from
trajectories.

2.3.2 The asymmetric random walk

The simplest test that can be proposed to evaluate the construction of trajectories and
subsequent reconstruction of the microscopic rates is the constant rates case :

α+
n .N1 = g

α−
n = r

v = g − r

D = g + r

(2.137)

The probability for a forward/backward step is independent of the position and biased in a
direction. If the boundaries are far enough to be ignored, the master equation (2.115) can be
solved by a discrete Laplace transform of pn which turns it into a differential equation of the
“probability generating function”: F (z, t) =

∑∞
−∞ znpn. Multiplying equation (2.115) on both

side by zn and summing yields:{
∂t F (z, t) = (gz + r

z
− (g + r))F (z, t)

F (z, 0) =
∑∞

−∞ znδn0 = 1
(2.138)

⇔ F (z, t) = e(gz+
r
z
−(g+r))t (2.139)
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The inverse transform (Van Kampen [131]) then gives the asymmetric random walk probability
to find the walker on site n at time t:

pn(t) =
(g
r

)n
2
e−(g+r)tI|n|(2

√
rgt) (2.140)

Where we used Ik the kth modified Bessel function, and set the initial site to be n = 0. Either
from this final expression or directly from the master equation, it appears that this random
walk is controlled by the ratio g/r, and once fixed the solution are equivalent up to a proper
scaling of the time τ = r.t.

Successive differentiations of F (z, t) with respect to z give the factorial moments of pn as
z → 1−:

〈n〉(t) = ∂z F |z=1 = (g − r)t = v.t

〈(n− 〈n〉)2〉(t) = ∂2
z F |z=1 + ∂1

z F |z=1 −
(
∂1
z F |z=1

)2
= (g + r)t = D.t (2.141)

〈(n− 〈n〉)4〉(t) = . . . = (g + r)t(1 + 3(g + r)t) = Dt(1 + 3Dt)

(2.142)

The two first results were expected from equations (2.122) and (2.123) since the drift velocity
is independent of the size. This equations set holds for an infinite space or at early times far
from the boundaries as already mentioned.

2.3.2.1 Simulations results:

The simplest stochastic simulation for the size evolution of a protein aggregates on time
n(t), both constant growth g and shrinking rates r, generates an asymmetric random walk.
Ten different realizations of the asymmetric random walk, are displayed for two different set
of transition rates on figure 2.23 with absorbing boundaries conditions set both at n = 0 and
n = N . The sum and difference of the transitions rates g and r are shown below on the same
figure. The estimations are distributed around the true values of the sum D = r + g and
difference v = r−g as calculated (equations (2.122) and (2.123)) and according to the expected
values (equations (2.131) and (2.133)). The variances of the empirical mean of the displacement
equation (2.132) and empirical variance of the position equation (2.134) calculated from the
exact results of equation (2.141) are:

var
(
n(t)T

)
=

D.t

T
(2.143)

var
(
n(t)T

)
� D.t

T
+

2D2.t2

T
, T � 1 (2.144)

The stochastic nature of the trajectories is likely to induces variations of the mean position
within an interval of typical length

√
Dt
T

around the expected value v.t for an asymmetric
random walk. As this typical length grows slower in time than the linear relation v.t that we
want to estimate, consequently a fit over a longer time should give better results in term of
relative uncertainty on the slope. This consideration does not hold for the empirical variance
of the positions whose variations are such that the typical interval grows at least linearly on
time (see equation (2.144)) so that no gain in relative precision on the slope determination is
expected.
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(c) theoretical values for the simulated trajec-
tories (dashed lines) D = g + r = 1(red) and
v = g − r = 0.05(green) and their estimated
values (plain lines).
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(d) theoretical values for the simulated trajec-
tories (dashed lines) D = g + r = 1(red) and
v = g − r = 0.4(green) and their estimated val-
ues (plain lines).

Figure 2.23 – 10 different realizations of the asymmetric random walk with different microscopic
rates. The total number of proteins is N = 1500. Aggregates all start at n = 100 proteins at
t = 0. Stronger asymmetry between the growth and shrinking rates generates stronger drift
velocity: boundaries are met in less time and trajectories are indeed less dispersed since we
work at constant D. Estimations of D and v are made based on a sample of 200 aggregates
trajectories and confidence interval build from equation (2.145) are plotted in light colors
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Chapter 2. Self assembly dynamic

The fluctuations of n(t)T slope are also stronger with an increased drift velocity v (compare
figures 2.23c and 2.23d). According to equations (2.143) and (2.144), the value of the drift
velocity should not affect the variance of n(t)T in apparent contradictions with the simulations.
This observation is an illustration of the indirect influence of v on the number T of trajectories
actually averaged in our method. At fixed diffusion D, a smaller drift velocity v increases the
probability for a particle to come back to a position it has already occupied (recurrent walk)
probing another time this domain. Different portions from the same trajectories starting on
the same point can thus provides several independent contributions in the sums so that a low
drift virtually increase the number of trajectories analyzed. In figure 2.23c, T � 400 portions
of trajectories can on average be used to construct the empirical means because an aggregate
shrinks back to earlier sizes many times. In contrast, on figure 2.23d, T � 200 for very few
aggregate shrinks so that each size is tested only once for each trajectory.

The ordinary least square method can certainly not be trusted to properly treats the stochas-
tic fluctuations in estimating the slope of n(t)T and n(t)T . To illustrate this point, let us sup-
pose that the recorded trajectories are not a good sample of the distribution so that we have
a positive bias: the average position increases faster than the expectation on early sampled
times. The Markovian property tells us that the evolution is independent of the early behavior.
We thus expect the average position to increase according to equation (2.122) as times goes on
and the position to remain biased until further strong deviations from the average adds to the
previous either lower or increase the bias.

Consequently, deviations from the expected linear relation are certainly not homogeneous
and uncorrelated on time as assumed by a least square estimation. The result does not change
much when we take instead the average of the slope between consecutive data points. We
propose to use least square not to correct fluctuations building up over time but to treat
correctly additive fluctuations arising from the measurement noise and poor determination of
the sizes in the experimental situations likely to fulfill the least square assumptions.

In those conditions, our confidence bounds for the estimated value of the slope are build on
the wrong assumption of a normal distribution of error equation (2.136) and are several order
of magnitude under the true amplitude of the fluctuations. They should not be used. Instead,
we found in our simulations that the following ad-hoc estimation based on the dispersion of the
sampled points around the fit gives a proper order of magnitude :

evarβ∗ =
var(yi − β∗ti)

var t2i
∼ var β∗ (2.145)

Where β is the estimated slope using equation (2.135). Assuming normal distribution, the
99%-confidence interval ±3(evarβ∗)

1
2 built on this estimation is displayed around the estimated

value on figure 2.23. The ratio of the real error (the difference between the true value and the
estimated one) over its estimated order of magnitude σβ∗ =

√
evarβ∗ is shown on figure 2.24.

As stated by the central limit theorem, the estimators of the difference v and sum D of the
microscopic rates are consistent and converge to the true values as the number of trajectories
used increases (figure 2.24a). Furthermore they are unbiased in the case of asymmetric random
walk studied here. Also the uncertainty on D dominate the uncertainty on v by one order
of magnitude (equation (2.141)). The two variances estimated by equation (2.145) follow on
average the real variance of the estimations v∗ and D∗ with a slight overestimation concerning
D.
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(b) Histogram of the ratio of the true error to
the estimated standard deviation: v∗−v√

evarv∗
, for

T ∈ {10, 100, 1000} (resp. blue, red, green). The
probability density function of N (0, 1) is shown
for comparison (dashed black).
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(c) Histogram of the ratio of the true error
to estimated standard deviation: D∗−D√

evarD∗ , for
T ∈ {10, 100, 1000} (resp. blue, red, green). The
probability density function of N (0, 1) is shown
for comparison (dashed black).

Figure 2.24 – Statistical comparison of the true error err(β∗) = β∗−β to the estimated variance
evarβ∗ (equation (2.145)). The data used were simulated in the same conditions than those
displayed on figure 2.23b: D = 1, v = 0.4, each sample of T trajectories produces N = 1500
independent estimations of v and D for all the possible sizes).
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Chapter 2. Self assembly dynamic

Figures 2.24b and 2.24c show in more detail the distribution of the real errors v∗ − v and
D∗ − D rescaled by σv∗ and σD∗ . It shows that what was established for the average holds
at individual estimation level: equation (2.145) statistically gives the order of magnitude of
the error. Note that the correlation between (evarβ∗)

1
2 and |β∗ − β| is almost null for any

given T � 1 (correlation coefficient r2 � 10−2), so that only the order of magnitude of the
error can be inferred from (evarβ∗)

1
2 . The normal distribution of the ratio on figures 2.24b

and 2.24c directly comes from the normal distribution of the true error, that the central limit
theorem guarantees asymptotically as T → ∞. Convergence is already good with a few tens
or trajectories averaged and justify a posteriori the use of the normal quantiles to deduce a
α-confidence interval:

β∗ ± φ−1(α)
√

evarβ∗ (2.146)
With φ−1 the inverse of the cumulative distribution function of the normal law, also called the
probit function.

The asymmetric random walk correspond to the steady state of the macroscopic equations
studied in the section 2.2.4 with a constant macroscopic on-rate corresponding to the diffusion
limited hypothesis and a bud free energy linear or approximately linear in the number of proteins
that determines off-rate through detail balance. Despite the strong impact of nucleation steps
on the steady state distribution demonstrated by including the line tension in the droplet
model, there is little hope that total internal reflection fluorescence single particle trajectories
can shed light on it. The main reason is that the sizes that are directly concerned are typically
of very few proteins and likely to lay beyond the resolution power of fluorescence among the
subsequent enrichment of the system in small aggregates likely to generate a strong fluorescent
background. Overall, the microscopic rates can be reconstituted with appreciable precision for
middle sized particles. In this range the two models we studied are equivalent when monomers
are abundant, as required for our stochastic description to make sense.

2.3.3 A non constant detailed balance case

A different model is proposed in the work of Ku et al. [80] where the difference between
macroscopic kinetics on-rate and off-rate is assumed proportional to the rim of the growing
protein cap in the bud and where the stochastic effects are neglected. At the microscopic level,
and under detailed balance, both on-rate and off-rate are proportional and vary the same way
with respect to the rim length. This is a model where the attachment rate is proportional to the
numbers of sites available to anchor at the rim of the bud and the detachment rate depends on
the strength of the binding at the edge of the protein cluster. We already derived the number
of available binding sites at the rim of a spherical bud in the continuous limit equation (2.21):

nL = π

√
(n− 1)

(
1− n

N

)
(2.147)

This version differs from the previous constant rates case for which our estimations where
exact. In this new model:

α+
n = Cte × π

√
(n− 1)(1− n

N
)

α−
n = Cte × π

√
(n− 2)(1− n− 1

N
)e

− f(n)−f(n−1)−f(1)
kBT

(2.148)
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2.3. Model of single aggregate trajectories

In order to be consistent with the model proposed by the article, we furthermore assume a
linear relation between the size of the bud and the enthalpy of formation of the bud, f(n). It
follows:

α+
n .N1/S

α−
n+1

= e
−Δf(n)−Δf(n−1)

kBT = e
− Δμ

kBT (2.149)

With Δμ the average free energy difference between a protein freely diffusing on the cell mem-
brane or inside a bud. Using the modified Gillespie scheme, we obtained the trajectories shown
on figure 2.25.

In contrast with the simple random walk model, the aggregate size evolution on time exhibits
a sigmoid shape as reported by Jouvenet et al. [72], Ku et al. [80]. However the background noise
hides in both cases the early evolution. A random walk with partial absorbing condition at
n = N (virus disappear at finite rate) would probably also accommodate the shape of the
experimental data showed by both publications and in our opinion it is not clearly established
that this model should be preferred without proceeding to a proper extraction of the microscopic
rate from the trajectories.

The microscopic rates can be found out of the time evolution of the mean displacement and
the position variances using the estimations equation (2.128) which are not any more exact
with size dependent rates. Results are shown on figures 2.25c and 2.25d. A experimentally
unrealistic number of trajectories was used to calculate the rates figure 2.25d in order to reach
a precision sufficient to see the limit of our method.

Both diffusion and drift velocity are overestimated for smallest sizes and underestimated
for larger ones. Two effects can be invoked to explain this result. Firstly, we probe the average
microscopic rates of the various sizes“visited” by the aggregate in the neighborhood of the
stating position. As the drift is positive everywhere, larger sizes are most likely to be visited
that smaller ones. Thus mostly probe the sizes ahead of the starting point and this is equivalent
to switch both reconstructed curves to the left of the theoretical ones as observed. This effect
is expected to be stronger at the center of the interval where the drift is stronger. Secondly,
higher space derivative of the drift velocity are not null, and we neglected their contribution
on the variance of the positions (equation (2.123)). As already discussed, this leads to an
overestimation of the diffusion with increasing drift velocity and underestimation in the reverse
case.It is expected to affect more the diffusion curves at the edges of the interval where the
derivatives values are higher.

With lower drift velocity, the probability for an aggregate to visit many time a given size
increases and a good enough sampling is reached with much less aggregates trajectories (fig-
ure 2.25c). In the condition of this simulation, the effects of our approximations are negligible
compared to the error bars, hidden by the amplitude of the stochastic fluctuations. We noticed
that our simulations produce estimations of the diffusion Dn with a relative error of constant
magnitude D∗

n−Dn

Dn
. According to the derivation of var n(t)T (equation (2.144)) for the asymmet-

ric random walk, there is indeed a regime such as n(t)T = D.t ± D.t
√

2
T

when the quadratic

term D2t2 dominates var n(t)T . Then the standard deviation is proportional to Dt and we
expect the relative error to be of order

√
2
T

(this leads to a 10% relative error on figure 2.23d
which agrees reasonably with the observations). The features seen on the study of the asym-
metric random walk seem general enough to hold locally in the more complicated landscape
that we study here.

91



Chapter 2. Self assembly dynamic

0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

time − t u.a

si
ze

 −
 n

(a) 10 single aggregates size evolution for Δμ =
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(b) 10 single aggregates size evolution for Δμ =
2kBT
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(c) Values of α+
n ± α−

n for the 50 simulated
trajectories according to equation (2.148) with
Δμ = 10−1kBT (dashed lines) and their esti-
mated values (plain lines) for the drift (green)
and diffusion (red)
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(d) Values of α+
n ± α−

n for the 1000 simulated
trajectories according to equation (2.148) with
Δμ = 2kBT (dashed lines) and their estimated
values (plain lines) for the drift (green) and dif-
fusion (red)

Figure 2.25 – 10 different realizations of the aggregate evolution with microscopic rates propor-
tional to the bud perimeter. The total number of proteins is N = 1500. Aggregates all starts
at n = 100 proteins at t = 0. Confidence intervals build from equation (2.145) are plotted in
light colors
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2.3. Model of single aggregate trajectories

Ku et al. [80] focused on the various “pauses” visible on the size evolution trajectories. The
pauses are defined as events where a longer time is spent in a size interval compared to what
would have been expected from the average sigmoid evolution. Or equivalently a pause is a
plateau on the size-time trajectory curve. Similar events can be pointed out in the trajectories
showed on figure 2.25a and are caused by mere fluctuations as the drift velocity is low compared
to the diffusion. Such pauses in the course of a real biological process can either be interpreted
as resulting of the stochastic fluctuations as in our model, or as the indirect signature of a
biologically relevant event such as proposed by Ku et al. [80]: unavailability of the protein lattice
to aggregation due to internal stress until relaxation by formation of a defect, or intervention
of an external protein. This alternative can be decided comparing the observed statistic of the
“pauses” to the expected statistic of the fluctuations.

The statistics of the time spent in a chosen interval due to the stochastic fluctuations alone
are given by the first passage time distribution. The probability to find “pauses” that are pure
fluctuations is given by the long time tail of the distribution for times larger than the mean.
In the case of a simple asymmetric random walk, and considering an interval of length d “long
enough”, the first passage time distribution is approximately the first passage solution on a
semi-infinite interval of a aggregate starting at distance d from the exit size. This distribution
is obtained in the continuous approximation with a drift velocity v and a diffusion constant D
by the renewal approach 2 using Laplace transform (see Redner [110]) and is sometimes called
the “inverse Gaussian function”:

P(τ, d) =
d√

4πDτ 3
e
−
(d− vτ)2

4Dτ (2.150)

This distribution is however not easily comparable to the data provided by the article from
Ku et al. [80] which are: the average growth rate of the buds B (completion is fulfilled when
the zenithal angle reach π) and τ the time constant of the exponential tail of the pause length
distribution.

B = 3± 2 10−3 rad.s−1 (2.151)
τ = 4, 7 min (2.152)

As pauses length have been compiled irrespectively of the length of the “pause” interval or of
the size in question and that only the large time tail have retained the attention of the authors
the identification with our model parameter are not possible.

The inverse gaussian solution is probably not a safe guess if there is significant microscopic
rates variation on the interval range or to evaluate the long time tail of the first passage time
distribution on a finite interval which would decreases exponentially in time with a typical time
constant given by the lowest eigenvalue of the Markov chain generator. More involved attempts
to properly solve the first passage problem require the details of the microscopic rates.

Looking at the question from a different point of view, we might also ask whether such
events are likely to leave their signature in the microscopic rates measured according to our

2. The renewal method requires to find the solution of the master equation considering infinite size interval
which is often a difficult task with the additional difficulty to calculate the Laplace transform. Alternatively, it is
also possible and sometimes easier to directly solve the adjoint equation on the interval of interest with absorbing
boundary conditions. The first passage time distribution is the solution defined this way (see Redner [110], Van
Kampen [131]).
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(a) 10 single aggregates size evolution for Δμ =
10−1kBT everywhere but at a random position
drawn all over the available sizes where Δμb =
1kBT , simulated according to equation (2.148)
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(b) 10 single aggregates size evolution for Δμ =
10−1kBT everywhere but at a random position
where Δμb = 1kBT drawn around half comple-
tion N = 750±20, simulated according to equa-
tion (2.148)
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(c) Values of α+
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n for 100 simulated trajec-
tories as shown above. Estimated values (plain
lines) for the drift (green) and diffusion (red).
Theoretical values in the absence of the random
perturbations are shown (dashed lines)
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Figure 2.26 – Effect of a randomly positioned barrier on the estimated microscopic rates
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2.3. Model of single aggregate trajectories

estimation. The answer depends much on the correlation between the event and the size. If
pauses are triggered by a random event uncorrelated with the bud size, the perturbation effects
are smoothed in the average over the different trajectories (figure 2.26c). The perturbation be-
comes noticeable only when pauses occurring on different trajectories overlap significantly. This
is likely to occur when the bud size and the occurrence of pause are correlated. Equivalently,
The problem can be stated considering the vector containing the attachment microscopic rates
for all the positions. For each trajectories in the sample one element has been modified on a
different position of this vectors. When all the trajectories are averaged together to build our
estimation, the modification are visible either if they are large enough or when several smaller
modifications happens on close positions (figure 2.26d). In any case the pauses will be easily
identified on the time trajectories before they lead to a significant change of the reconstructed
rates. However, an effect visible on the estimated rates is the signature of an event effecting
the whole sample.

2.3.4 Conclusion

We adapted the classic Gillespie algorithm to follow the evolution of a single cluster in
the steady state condition. This gives the possibility to generate the growth trajectory of an
individual object which is not provided by the classic nucleation theory of the previous section.

Experiences following growth of the budding viruses in time have already been reported
Jouvenet et al. [72], Ku et al. [80] and make possible the direct measurement of the reaction rates
partly including the subunit concentration in-vivo. However extraction of the microscopic rates
from the stochastic trajectories are not straightforward. We provide a simple treatment for the
data with an estimation of the confidence interval of the estimation that was accurate in the
conditions of our simulations. The method determine a quantitative kinetic landscape from
the trajectories. the typical rate of convergence is set by the central limit theorem. In the
simulations, the number of trajectories needed to differentiate the mean from the fluctuations
appears to be of the order of a hundred.

The effects of the experimental limitations: the limit of size variation that can be detected
in the fluorescence signal as well as the presence of additive experimental artifacts, are yet to
be evaluated to set the proper precision limit of the estimation. The most prominent limitation
is likely to be a rapid evolution of the free subunit concentration compared to the time a capsid
needs to complete and make the averaging method meaningless.
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Chapter 3
Superresolution image measurement

In this part we will address the issue of the measurement of a labeled structure imaged
by superresolution microscopy technique. When viruses or any biological object labeled with
fluorescent tags are imaged in superresolution microscopy, the label positions are recorded.
Measurement in this situation means finding the best morphological parameters for a model that
describes the observed positions. Regarding the immature HIV, we are willing to extract the
radius and protein coverage of each particle. Our first step is to properly define the relationship
between the underlying continuous structure that we want to characterize and the individual
label positions recorded experimentally that are discrete. In a second step, we derive a method
to center and orient the image in chosen references. Eventually we expose the method to find
the best parameters from the image.

3.1 Superresolved microscopy images seen as a probability
distribution

The quantity of interest in fluorescence microscopy is the spatial distribution of the labeled
object in the field of view. Depending on the scale considered, this quantity can be treated in
different ways that we will review here.

In the case of classical fluorescence and at a scale much higher than the diffraction limited
resolution, the distribution of emitter is modeled as a classic density in space Dclassical( �X). As
the scale is orders of magnitude higher than the diffraction length, the intensity of light received
by each pixel is assumed to be proportional to the number of emitters inside its area and the
proportionality factor given by the photon yield ni of the emitters:

I( �X) = Dclassical( �X).n̄i (3.1)

and the image is directly a representation of Dclassical.
At smaller scales, close but larger than the diffraction limit, the continuous description

Ddiffraction limited( �X) is still valid as emitters typical size is much smaller than the diffraction
length and each pixel receives the contribution from many of them. The blurring effect due
to the diffraction in the imaging device adds and the photon from an point-like emitter are
collected over all the pixel overlapping with its diffraction spot. The intensity of light received
by each pixel is now assumed to be proportional to the number of emitters inside the imaged
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Chapter 3. Superresolution image measurement

area and an additive contribution of neighboring area whose diffraction spots overlaps. The
resulting image is then the convolution of the spatial density of emitters by the point spread
function introduced earlier in section 1.3.1:

Idiffraction limited( �X) =

∫∫
Ddiffraction limited( �X − �Y ).n̄i. psf (�Y ) d�Y (3.2)

Closer again, at scales addressed by the diffraction limit, the discreteness of the emitter
distribution is prevalent and each photon count is attached to an emitter whose position is
estimated. But the emitter position is not determined with infinite precision. Instead super-
resolution imaging produce a density of probability for the emitter to be localized at a given
position. Unlike previous description of the emitters by a density, which imply a spatial av-
eraging over the emitter distribution, single molecules localization gives spatial information at
each recorded emitter level. The final image can be defined as the sum of all the probability
density for every localized molecule:

Isuperresolved( �X) =
∑
i

pdfi( �X) (3.3)

To relate the superresolution image to a emitter density as in precedent cases, we must consider
the physics of the superresolution measurement which consists in randomly drawing a position
from the emitter distribution known up to the localization precision. The emitter distribution
can be modeled by a density as previously said or a discrete distribution depending on the
level of description needed. Such description connects the image and the density taking into
account both the stochastic nature of the emitter excitation and the precision of the localization
procedure.

3.2 Modeling emitters physical distribution in the budded
virus

The experimental data that we want to model are superresolution images of human immun-
odeficiency virus like particles budded from cells transfected with a labeled capsid proteins vec-
tor. The labels positions are recorded with a typical localization precision of σx,y � 15− 20nm.
The typical structure of the gag protein shell reported in a review by Briggs and Kräusslich [15]

(section 1.1.3) is an hexameric lattice partially coating two third of the inner surface of the
lipid membrane folding the spherical particle. Distance between two hexamers centers observed
in cryo-electron tomography is of the order of 8 nm, whereas radius are of the order of 65 nm.
Regarding the uncertainty on precision at least twice as big as the typical distance between
proteins, it seems illusory to access the information of the protein lattice organization. However
the global features of the spatial distribution of proteins such as the spherical radius and the
size of the uncoated membrane patch are of the same order of size as the positioning uncertainty
and thus may be within the reach of the measure. With such a precision, we chose to model the
distribution of gag proteins in the budded virus with a continuous spatial density consisting in
a uniform distribution on a truncated sphere.

We parametrized the truncated sphere by its radius R and the maximal polar angle defining
its completion θ in spherical coordinates. The uniform probability distribution in the spherical

98



3.3. Modeling superresolution imaging process

coordinate system using the sphere center as origin and its symmetry axis aligned with �uz is
written as:

Dmodel ≡ D◦
R,θ(r, ϑ, ϕ) =

δ(r −R)I[0,θ](ϑ).r. sinϑ

2πR2(1− cos θ)
(3.4)

With I[0,θ] the indicator function of the domain [0, θ] and δ(r) the Dirac delta distribution.
Its position in space is given by the position of its center �Xc and two Euler angle α and

φ are enough to describe its orientation thanks to the cylindrical symmetry of the object (see
figure 3.1-right). In the following, we note the probability density in 3D space with prescribed
position and orientation D�β, and d�β its projection in the plane (x, y) that we chose as the focal
plane of the microscope in 2D imaging:

d�β(x, y) =

∫
R
D�β(x, y, z) dz (3.5)

Where �β = (R, θ, φ, α, �Xc} is the set that parametrize the spatial density of our model. Our
goal is to identify the spatial density (equivalently the parameter set �β) which best describes
the distribution of proteins imaged.

It is also necessary to take into account the effects of the environment and the measure
artifacts that constitute the measure “background noise” and the distortions. Background noise
adds to the object of interest on the image and distortions transform the image of the object
compare to the object itself.

By background noise, we mean any aspect of the image that is not linked to the physical
signal emitted by the structure that we are studying: positions of proteins that do not belong
to the virus as well as any spurious signal generating artifact positions for instance CCD noise.
We describe such background as a collection of outlier positions. In all this work, we used the
minimal model of a constant density added to the model density to account for the background
noise.

We use uncertainties of the measure or precision of the measure to speak about the distor-
tions between the object and its image. The next section details our effective description of the
superresolution positioning uncertainties. In order to be able to test our procedures, we will
first precise how to generate superresolution simulated images from a known density.

3.3 Modeling superresolution imaging process
Starting from an given density of presence for the emitters distribution, how can we generate

a superresolution image of it? Superresolution imaging process could be naively simulated
by mimicking each of its step. First the position of an exited emitter is drawn from their
distribution –for instance modeled as a continuous probability density function. Then a total
number ni of emitted photon randomly chosen from the emission statistic of the dies and as
many pixels position are drawn on the CCD from the point spread function of the imaging
device centered on the image of the exited emitter. Spurious photon detections must be added
on the CCD to account for the background emission. In a last step, the standard centroid
localization algorithm is used to obtain the probability density function for this emitter. And
eventually those steps are iterated until the desired number of recorded positions is reached.
However, all this cumbersome procedure can be simplified in a much basic one and details of
the operations can be bypassed to obtain equivalent results.
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Chapter 3. Superresolution image measurement

Figure 3.1 – Left: 5 103 positions uniformly sampled in the truncated sphere model (red dots)
with (R = 50 nm, θ = 2π

3
rad, φ = π

3
rad) and the simulated measured positions with a precision

σ̄ = 20 nm (black dots). Right: The 3D truncated sphere model and our parametrization
(convention: z axis correspond to the optical axis of the microscope).

We start by drawing the positions { �Xi} of the set of emitters that are to be imaged in the
emitter distribution. We first draw positions uniformly on the unit sphere as follows:

— we generate a set of normally distributed values using Matlab
 randn command:

{x, y, z} ∼ N (0, 1) (3.6)

— we normalize, so that {x1, y1, z1} are uniformly distributed on the unit sphere

{x1, y1, z1} = { x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

} (3.7)

We then reject the positions with height z1 < cos θ, so that no positions are sampled on the
surface patch ϑ > θ.

{x2, y2, z2} = {x1, y1, z1|z1 < cos θ} (3.8)

following this procedure, we produced a set containing an arbitrary number of 3D positions
�X2 = (x2, y2, z2) uniformly drawn in the truncated unit sphere St, according to the distribution
D◦

R=1,θ. This set is eventually transformed into a set of positions uniformly sampled on our
target distribution �X3 ∼ D�β by two successive rotations of angle φ with axis �ux (Rot�ux,φ) and
α with axis �uz (Rot�uz ,α), a dilatation of factor R, and finally a translation of vector �Xc.⎛⎝x3

y3
z3

⎞⎠ = R.

⎛⎝cosα − sinα 0
sinα cosα 0
0 0 1

⎞⎠ .

⎛⎝1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞⎠ .

⎛⎝x2

y2
z2

⎞⎠ + �Xc (3.9)
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3.3. Modeling superresolution imaging process

As we work on 2D images, a projection along �uz is considered, and positions are given by
�Xi ∼ d�β:

{ �Xi} =

{(
x3

y3

)}
(3.10)

In 2D imaging, the uncertainty measurement is expected isotropic and given for each protein
by the variance σ2

i of position determination, that summarizes the results of the localization
procedure including all that can affect its precision such as the photon yield, the stochastic na-
ture of the photon distribution on the CCD, the background noise.... In the real measurement,
each protein position is attached to a positioning uncertainty {σ2

i } reflecting the variation of the
number of photons emitted and of the background intensity at the precise time of its detection
(equation (1.2)). In our simulation, we randomly choose the positioning precision of each sam-
pled position (equation (3.10)). The positioning precision distribution should correspond to the
imaging conditions. Practically, we use a normal distribution with mean and variance identical
to the experimental distribution of positioning precisions observed in an actual experiment in
the conditions that we are interested to model.

{σ2
i } ∼ N (σ2, var σ2) (3.11)

Then the simulated localized position of each emitter �Li is obtained by adding a random
displacement according to their localization uncertainty

−−→
δXi. This is done by drawing the

displacement
−−→
δXi from a normal distribution with standard deviation σi and zero mean.

�Li = �Xi +
−−→
δXi | −−→

δXi ∼ N (�0, σ2
i 1) (3.12)

Where 1 is the 2×2 identity matrix. This procedure generates for each position a new one sam-
pled from the convolution of the projected protein density and the bivariate normal distribution
probability density function with mean �0, and variance Σ = σ2

i 1:

(xi, yi) ∼ d0�β = d�β ∗ pdf(N (�0, σ2
i 1)) (3.13)

In 3D imaging, the situation is quite similar, but the positioning precision is different –generally
much worse– along the optical axis in the z-direction (Huang et al. [68], Juette et al. [74], Shtengel
et al. [116]). The localization uncertainty are of the form {σi|2xy, σi|2z}. We can adopt the same
procedure as in 2D, with an anisotropic distribution of error:

�Li = �Xi +
−−→
δXi | −−→

δXi ∼ N
(
�0, σi

)
with σi =

⎛⎝σi|2xy 0 0
0 σi|2xy 0
0 0 σi|2z

⎞⎠ (3.14)

To account for the presence of proteins that do not belong to the virus, outlier positions
uniformly sampled in the neighboring of the generated positions are optionally added to the set.
The interest of this method is to generate simulated superresolution images consistent with the
model and the positioning uncertainty estimated on the experimental setup by the localization
algorithm. A drawback of this non-physical direct sampling is that whenever a source of error
is not taken into account in the positioning precisions calculation, it will be ignored as well in
the production of simulated images.
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Chapter 3. Superresolution image measurement

3.4 A first attempt to locate particles centers and estimate
their radii

A simple idea to estimate the size of the protein cluster is to calculate the mean distance
of each one to the center of the cluster. The center of the cluster has to be defined from the
collection of the measured protein positions �Xi in the cluster. The natural point is the mass
center of the cluster defined as:

−−→
CM =

1

N

N∑
i=1

�Xi (3.15)

From this center, the mean radius can be defined as:

Rmean =
1

N

N∑
i=1

‖ �Xi −−−→
CM‖ (3.16)

In the limit case of a full sphere with infinite sampling, the center of mass and the sphere center
coincide, and the mean radius to the center of mass is proportional to the sphere radius:

‖ �Xi −−−→
CM‖ = R sinϑ (spherical coordinates)

Rmean =

∫ π

ϑ=0

∫ 2π

ϕ=0

R sinϑ.
sinϑ dϑ dϕ

4π
=

π

4
R (3.17)

Estimation of the radius by this method is further investigated by simulation whose typical
result is shown in figure 3.2. As expected, estimated values are closer to the actual radius with
a higher sampling leading to narrower histograms (compare blue and green curves).

On the contrary when the sampled distribution is an incomplete sphere with a random
orientation, the estimation is rather unreliable. The origin of the error is that the center of
mass does not coincide any more with the sphere center, and that the projected positions are
not any more isotropically distributed around the center of mass (red histograms on figure 3.2).

Including in the simulations a limit in the precision of the localized position of σ � 20 nm,
leads to broader and shifted histogram. The bias (the shift) comes from the broadening of the
point distribution convolved by a Gaussian function with standard deviation σ. It is neither
simple to estimate as long as the typical size of the distribution is of the same order as σ, nor
constant for different distributions sizes. This lack of robustness towards positioning precision
is the strongest drawback of the naive method. A second limitation is that, being really simple,
it is not able to take into account the geometry of the imaged particles and extract other
parameter of interest than an effective radius.

However this method points out how to define a characteristic point directly from the
measured positions. This reference point, the center of mass, is a natural choice of origin for the
coordinates system. In the next section, we define the moments of the distribution, generalizing
this idea. We also examine the information that we can extract from their calculation, and their
behavior regarding positioning precision.

3.5 Identification of the distribution from its moments
Originally used in the physical study of mechanical systems, the first order moment of a

material distribution is often known as the center of mass of the distribution. The mathematical
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Figure 3.2 – distribution of radii estimated by the corrected mean radius 4/π×Rmean for various
clusters of N positions sampled on spheres with actual radius R = 56 nm (black dashed),
either complete (N = 50 – green, N = 103 – blue) or truncated with random completions
θ and random orientations φ uniformly drawn in (θ, φ) ∈ [π

2
, π] × [0, π] (N= 103 –red). Each

histogram is constructed from 104 clusters simulations and normalized to have the same unit
area.

definition of moments extends to any integers. Moments are a useful mean to characterize a
distribution even if, strictly speaking, the collection of all its moments is in general not enough
to fully determine it. However when the choice is restricted to a family of distribution, it can
be sufficient to identify the correct one. For instance, a Gaussian function is perfectly defined
by its two first moments. Furthermore, Hu [67]’s theorem states that a piecewise continuous
and compactly supported (non zero only in a finite region of the space) 2D distribution is fully
determined by the collection of all its moments and vice versa. Physical structure are generally
finite and are thus eligible for the theorem application when modeled by a continuous density.
Moments have since then been proposed in image analysis and recognition to perform task such
as defining symmetrical images orientation [54] or recognition in a library [45].

The rth moment of the one dimensional distribution D is defined as:

Mr =

∫
xrD(x) dx = E (xr) (3.18)

Central moments are calculated by setting the origin at the mass center and therefore con-
structed by subtraction of the 1st order moment:

μ1 ≡ M1 (3.19)

μr =

∫
(x− μ1)

rD(x) dx = E ((x− μ1)
r) (3.20)
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Chapter 3. Superresolution image measurement

These moments have the interesting feature to be translation invariants. Indeed, they remain
unchanged after we apply a translation Tt : d(x) �→ d(x+ t) to the original distribution:

μr(Tt ◦ d) = E ((x+ λ− E (x+ λ))r)

= E ((x+ λ− E (x)− λ)r)

= E ((x− E (x))r)

= μr(d)

(3.21)

The standard and central moments generalizes to random vectors in many dimensions:

Mr1,...,rn =

∫
xr1
1 xr2

2 . . . xrn
n D(x1, . . . , xn) dx1 . . . dxn

= E (xr1
1 xr2

2 . . . xrn
n ) (3.22)

μr1,...,rn =

∫
(x1 − μ1,0,...,0)

r1(x2 − μ0,1,0,...,0)
r2 . . . (xn − μ0,...,0,1)

rnD(x1, . . . , xn) dx1 . . . dxn

= E ((x1 − μ1,0,...,0)
r1(x2 − μ0,1,0,...,0)

r2 . . . (xn − μ0,...,0,1)
rn) (3.23)

The invariance of the central moments under any translation is trivially maintained. In the
case of random vectors, the pth order moment generally means the collection of all the (central)
moments (μr1,...,rn) Mr1,...,rn verifying

∑
i ri = p. Hence the “list” notations used in the following:

�μ1 =

⎛⎜⎜⎜⎝
μ1,0,...,0

μ0,1,...,0
...

μ0,...,0,1

⎞⎟⎟⎟⎠ (3.24)

μ2 =

⎛⎜⎜⎜⎝
μ2,0,0,...,0 μ1,1,0,...,0 . . . μ1,0,0,...,1

μ1,1,0,...,0 μ0,2,0,...,0 . . . μ0,1,0,...,1
...

... . . . ...
μ1,0,...,0,1 . . . . . . μ0,...,0,0,2

⎞⎟⎟⎟⎠ (3.25)

3.6 Application to the identification of HIV particles
The localization of a protein on a structure is seen as drawing a point from a probability

density describing both the original biological structure and the resolution of the measurement
process. It is possible to identify the structure features from the measured spatial position of
the proteins granted the knowledge of the measurement precision.

From a spatial positions set { �Xi} randomly sampled from a distribution, the following
quantities -called empirical estimators or symmetric unbiased estimators- can be defined:

Total number of positions: N =
∑
n

1 (3.26)

center of mass:
−−→
CM = 1

N

∑
n

�Xi (3.27)

Covariance matrix: COV = 1
N−1

∑
n

( �Xi −−−→
CM)( �Xi −−−→

CM)t (3.28)
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3.6. Application to the identification of HIV particles

In an experiment consisting of a series of N trials in which a fixed number of point are repeti-
tively and independently drawn from a given probability density, the above quantities will be
distributed around the original probability density moments. The name “unbiased empirical
estimator” recalls that we expect to have an estimate of moments of the underlying density
from the outcome of the measurement (see demonstration in appendix B.3):

E

(−−→
CM

)
= �μ1 (3.29)

E
(
COV

)
= μ2 (3.30)

And “symmetric” was coined to express the independence of the estimator in the order of the
measurement. Under this additional property, Halmos [61] demonstrated existence and unicity
of the above formula (equations (3.26) to (3.28)) at any order and proved that they are the best
(regarding their minimal variance) compared to other unbiased estimator. They later received
the name of “h-statistics”.

As we manipulate mutually independent measurement, the single point probability density
D is enough to fully define the join probability density function DN for the outcome of any
results of the N successive trials:

DN(x1 . . . xN) ≡
N∏
i=1

D(xi) (3.31)

Which enables us to determine the statistical behavior of the empirical estimators. Indeed
empirical estimator for different samples can be seen as a random variable whom we already
know the mean, and would like to know variance or other properties.

Limit and scaling with size of the sample N is given by the central limit theorem. When
the distribution D has a defined mean and variance, the central limit theorem applies and the
asymptotic law for

−−→
CM is normal with mean given by equation (3.29) and variance scaling in

∝ var(D)N−1. When the existence of higher moments is granted for the distribution of proteins
in which position are measured, central limit theorem also applies for empirical estimator of
higher order (equation (3.30)) with the same asymptotic scaling in N−1 for their variance,
which means that as the number of measurement grow, the values of the empirical estimators
are closer to the distribution moment.

In our case, the chosen model of the protein density inside a budded virus is a continuous
distribution taking non zero values only over in a finite region of space. Geometric moments
of the distribution are therefore defined at all orders. The image is a set of sampled positions
in this distribution from which we can estimate the distribution thanks to their respective
empirical estimators. The accuracy of the estimated moments is given by the inverse of their
standard deviation and increases as

√
N . Since our family of distributions is parametrized by

seven free parameters, namely (R, θ, φ, α, xc, yc)(equation (3.10)), a set of seven moments would
provide us all the equations to determine the best distribution. This approach is called the
“moments method”.

3.6.1 The moment method and its limitations

To illustrate this method, let us look at the first moments for a truncated sphere of radius
R, completion θ with its symmetry axis aligned with �uz in euclidean coordinates (density given
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Chapter 3. Superresolution image measurement

by equation (3.4)) calculated as detailed in appendix B.1:

�μ◦
1 = R.

⎛⎝ 0
0

cos2
(
θ
2

)
⎞⎠ (3.32)

μ◦
2 = R2.

⎛⎜⎜⎝
(2+cos θ) sin2( θ

2
)

3
0 0

0
(2+cos θ) sin2( θ

2
)

3
0

0 0
sin( θ

2
)4

3

⎞⎟⎟⎠ (3.33)

We note that redundancy in the expression of the second order moment, μ◦
0,2,0 = μ◦

2,0,0, comes
from the symmetries of the modeled distribution (x is equivalent to y in the truncated sphere)
and the resulting parity of the density D(−x, . . .) = D(x, . . .), gives the diagonal form.

If we were measuring budded viruses aligned perpendicularly to the microscope axis (tilt of
φ = π

2
or projection in the x direction), the first two central moments would provide us three

expressions of R and θ: ⎧⎪⎨⎪⎩
μ◦
0,0,1 = R cos2( θ

2
)

μ◦
0,2,0 = R2 (2+cos θ) sin2( θ

2
)

3

μ◦
0,0,2 = R2 sin

4( θ
2
)

3

(3.34)

this overdetermined system of non linear equations has to be solved to give an expression of R
and θ in terms of the distribution central moments. In this case the square of the first line and
the last lines leads to: ⎧⎪⎪⎨⎪⎪⎩

θ∗ = 2 tan−1

(√
3

μ◦
0,0,2

(μ◦
0,0,1)

2

)
R∗ = μ◦

0,0,1

√
1 + 3

μ◦
0,0,2

(μ◦
0,0,1)

2

(3.35)

It is clear that the task is not an easy one as the size of the system increases with the number
of parameters. Furthermore, we do not have access to the moments of the distribution, but
rather to their estimation from our sampling. We know that, due to sampling effect, the values
obtained from the empirical estimators fluctuate around the real distribution moments. In a
such overdetermined system, the fluctuations are likely to lead to incompatible equation.

The moments methods then turn to finding out the optimal parameter set (R∗, θ∗) for the
sets moment equations regarding the observed value:⎧⎪⎨⎪⎩

z−−→
CM

= R∗ cos2
(
θ∗
2

)
COV (y, y) = (R∗)2

(2+cos θ∗) sin2( θ∗2 )

3

COV (z, z) = (R∗)2
sin4( θ∗

2 )
3

(3.36)

In other words we have to fit the theoretical moments to the values measured with the empirical
estimators. To define this optimum we need a measure of the fitness of a parameter set. The
classic least squares method (see appendix A) is well suited in the case of normally distributed
fluctuations as we expect from central limit theorem. We expect the observed moments values
V obs to be distributed around the true moments values V0 according to:

P (V obs) ∝ e−
(V obs−V0)

t.Σ−1
0 .(V obs−V0)

2 (3.37)

106



3.6. Application to the identification of HIV particles

With V0 the true values and Σ the covariance matrix of the fluctuations. Then the Mahalanobis
distance:

d(V fit, V obs) ≡ (V obs − V fit)t.(Σfit)−1.(V obs − V fit) (3.38)

is appropriate to estimate how far are the values of V fit given by the tested parameters from
the observed values in V obs regarding the expected fluctuations Σfit. And the least squares
method consists in finding the optimal parameter that produces the values minimizing the
Mahalanobis distance. We need to know the amplitude of the fluctuations and correlations
–the theoretical “error bar” of our measurement. Those are the variances of the estimations
given by equations (3.27) and (3.28). In the case of our example described by equation (3.36),
direct calculations using the independence and identically distributed properties of the sampled
positions gives:

Σfit = var

⎛⎝ z−−→
CM

COV (y, y)
COV (z, z)

⎞⎠ � 1

N

⎛⎝μ◦
0,0,2 μ◦

0,2,1 μ◦
0,0,3

μ◦
0,2,1 μ◦

0,4,0 − (μ◦
0,2,0)

2 μ◦
0,2,2 − μ◦

0,2,0μ
◦
0,0,2

μ◦
0,0,3 μ◦

0,2,2 − μ◦
0,2,0μ

◦
0,0,2 μ◦

0,0,4 − (μ◦
0,0,2)

2

⎞⎠ (3.39)

Details as well as the expression of the coefficient as function of completion and radius are
in appendix B. As shown by equation (3.39), fluctuations due to sampling of the empirical
estimators of central moment are function of distribution higher central moments of the original
distribution, and the asymptotic scaling of their covariance is ∝ N−1, thus consistent with the
central limit theorem prediction.

Unfortunately, our distribution sampling is submitted to an additional noise since the po-
sitioning uncertainty imply a error of order σi on each xi. In first approximation this error
can be regarded as isotropic and identical for all positions, normally distributed with a mean
standard deviation given by the mean variance:

σ̄ =

√
1

N

∑
i

σ2
i (3.40)

The new random variable for the measure is the sum of the previous one and the error. Hence
the new reference distribution probability density function is obtained by convolution of the
previous one with the probability density function of the error. Equation (3.39) holds with the
central moments of the new reference distribution 1:

μ◦
0,2,0 −→ μ◦

0,2,0 + σ̄2 (3.41)
μ◦
0,4,0 −→ μ◦

0,4,0 + 3σ̄4 + 6σ̄2μ◦
0,2,0 (3.42)

And the moment method turns into a non linear optimization problem to find (R∗, θ∗) mini-
mizing equation (3.38).

In the general case, we need the moment of the distribution of a truncated sphere with any
orientation. Considering that any possible orientation (φ, α) is generated from the reference
truncated sphere by a linear transformation as expressed in equation (3.9), we can derive
the expression of the moments for any of those generated distributions using integration by

1. Note that variances add, but not fourth order moments. The cumulants of the function add at all order
and can then be expressed in terms of central moments
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Chapter 3. Superresolution image measurement

substitution as showed in appendix B.2. If J is the Jacobian matrix of the transformation in
euclidean coordinates:

J =

⎛⎝cosα − sinα 0
sinα cosα 0
0 0 1

⎞⎠ .

⎛⎝1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞⎠ (3.43)

We have the following relation between the moments of the centered distribution after trans-
formation:

�μ1 = J. �μ◦
1

= R.

⎛⎝− cos(α) cos(θ/2)2 sin(φ)
− cos(θ/2)2 sin(α) sin(φ)

cos(θ/2)2 cos(φ)

⎞⎠ (3.44)

As well as:

μ2 = J.μ◦
2.J

t

= R2Rot�uz ,α

⎛⎝μ◦
2x cos

2 φ+ μ◦
2z sin

2 φ 0 (μ◦
2x − μ◦

2z) cosφ sinφ
0 μ◦

2x 0
(μ◦

2x − μ◦
2z) cosφ sinφ 0 μ◦

2z cos
2 φ+ μ◦

2x sin
2 φ

⎞⎠Rott�uz ,α

with: μ◦
2x =

(2 + cos θ) sin2( θ
2
)

3
and μ◦

2z =
sin4( θ

2
)

3

(3.45)

Rules to calculate the moments for any possible orientations and radius of the truncated sphere
from the moment of the original vertical unit sphere are akin the rules of tensors transformation.

Again, the last step is to find the minima of the non linear function of the problem parameter
obtained in equation (3.38). This is a non trivial optimization problem given the number of
parameters with no analytical solution available. As the measurement noise increases there
is no guaranty that a well defined minimum is to be found. Teh and Chin [126] reported the
general rule that the sensitivity to the noise of image moments increases with their orders. We
will therefore limit ourselves to the use of the first moments and intent to limit the number of
parameters to eventually optimize.

3.6.2 The first moments to center and orient the distribution

As we have seen, the position of the center of mass of the distribution can be localized
from N measured positions (equation (3.29)) sampled with positioning uncertainty σ̄ up to a
precision given by:

var
(−−→
CM

)
=

1

N
.(μ2 + σ̄21) (3.46)

Where μ2 is the covariance matrix of the sampled distribution. This point is a natural reference
and in the following we use it as the origin of the coordinate system instead of the geometric
center of the sphere. This is a direct application of the previously introduced “moment method”
to free ourself from the translation in equation (3.9) using the more robust moment. In a
3D (resp. 2D) super-resolution image this identification diminishes the number of degrees of
freedom by 3 (resp. by 2).
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3.6. Application to the identification of HIV particles

A second parameter identification can be performed analytically using the already mentioned
symmetries of the truncated sphere distribution. Prior to the rotations that describes a change
of point of view, the second order central moment matrix is diagonal equation (3.33). If noise
is added in measurement, the variances of the noise and of the distribution add so that this
property is conserved as long as the noise covariance matrix is itself diagonal. We assume that
the positioning uncertainty is isotropic in the x, y dimensions and so, that it preserves all the
symmetries in this plane. In the absence of optical distortions, the noise on different spatial
dimensions uncorrelated and the second order moments observed will remain diagonal.

Let us now consider a different coordinate system: the covariance matrix is symmetric with
real coefficients. It can therefore be diagonalized using an orthogonal transformation. By
identification with the transformation rule 2 (equation (3.45)), this orthogonal transformation
corresponds to the inverse of the two successive rotations of angle φ and α in equation (3.9) and
the eigenvector of the covariance matrix associated to the non degenerated eigenspace gives the
direction of symmetry axis of the distribution.

In 3D imaging, it is possible to recover the initial orientation of the distribution by diago-
nalizing the covariance matrix. The covariance matrix of the distribution is real and positive,
it defines the quadratic approximation of the distribution around its center of mass which is an
ellipsoid. The axes of the ellipsoid are along or perpendicular to the symmetries axes of the dis-
tribution when they exist. With a higher degree of symmetry, the eigenstates are degenerated
which means that several orthogonal bases are equivalent.

— In the case of a complete sphere all the directions are equivalent and we have neither lost
nor gained information.

— In the case of a truncated sphere, the symmetry axis is given by the eigenvector associated
to eigenspace of dimension one, and all the bases of the orthogonal plane are equivalent.
However we have to choose between two opposite orientations for the z direction which
are not equivalent: either toward the top of the sphere or towards the hole.

In 2D imaging, after the rotation, the projection in the focal plane removes the information
we had about the z direction. The successive transformations in equation (3.45), leave the xy
upper block of the covariance matrix diagonal until the α rotation. Several cases are possible:

— φ = 0: the truncated sphere is viewed from the top and the cylindrical symmetry becomes
a circular symmetry in the focal plan. The eigenvalues are identical and no information
is obtained.

— φ �= 0: The eigenvectors of the 2D-covariance matrix are respectively aligned with and
perpendicular to the projection of the 3D-axis of symmetry. The largest eigenvalue,
corresponding to the greater spatial variance, is associated to the direction perpendicular
to the symmetry axis whereas the smallest is associated with the direction of the projection
of the 3D-symmetry axis. α is determined modulo π.

2. and regarding any rotation around the symmetry axis of the distribution as equivalent to the identity
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We can look for the rotation that diagonalizes a real symmetric positive definite matrix:

COV |x,y =
(
a c
c b

)
=
(
v+ v−

)
.

(
λ+ 0
0 λ−

)
.

(
vt+
vt−

)
λ± =

1

2

(
a+ b±

√
(a− b)2 + 4c2

)
v± ∝

( −2c

a− b∓√(a− b)2 + 4c2

)
(c �= 0)

(3.47)

The eigenvector associated to the smallest eigenvalue v− makes an angle α[π] with �ux:

α(a, b, c) [π] =

⎧⎨⎩ tan−1(a− b+
√

(a− b)2 + 4c2 , −2c) c �= 0
π
2

c = 0 , a > b
0 c = 0 , a ≤ b

(3.48)

The distribution can then be oriented with its symmetry axis along �ux by a rotation of angle
−α around its mass center (the origin).

The precision of the orientation can be further investigated by assuming a small noise and
uses the linear propagation of error around the estimated value. In this approximation, the
fluctuations of the matrix parameter around the expected values are approximated by a normal
law with covariance matrix Σa,b,c. Furthermore the function that associate α to (a, b, c) is
differentiable around the evaluation point Jα = �∇α|(a,b,c). Under this conditions, we have
(appendix A.4):

varα = Jα.Σa,b,c.J
t
α (3.49)

This calculation can be restricted to a single case without loosing generality. Consider that we
are given a set of sampled positions from the distribution and that we define the most probable
orientation of the distribution symmetry axis using equation (3.48). A collective rotation of all
the points together moves the actual symmetry axis and the estimation altogether, so that the
angular difference is not affected. We can arbitrary set the symmetry axes of the distribution
along �ux and look at the fluctuation of the estimated angle α around zero which is the limit
c → 0, a → λ−, b → λ+. This simplify the above equation into:

varα =
var(c)

(λ+ − λ−)2
(3.50)

The direct calculation of Σa,b,c would have required the explicit calculation of the second and
fourth order central moments of the reference distribution (see equation (3.39)). The first is a
3× 3 symmetric matrix with 6 coefficients and the second a 34 tensor with 21 free coefficients.
Each coefficient calculated is a function of the parameters (R, θ, φ), still unknown as we try to
orient the distribution.

According to the h-statistic, We have:

var(c) = var
(
COV (x, y)

)
=

1

N

(
μ2,2,0 +

N − 2

N − 1
μ2
1,1,0 −

1

N − 1
μ0,2,0μ2,0,0

)
� 1

N

(
μ2,2,0 +

N − 2

N − 1
μ2
1,1,0

) (3.51)
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3.6. Application to the identification of HIV particles

Where we have neglected a contribution of order N−2 in front of the other of order N−1. Using
the linear relations between the reference distribution and the one obtained through linear
transformation (equation (3.45)), we carry on:

var(c) =
1

N

(
μ◦
2,2,0 cos

2 φ+ μ◦
2,0,2 sin

2 φ

+
N − 2

N − 1
(μ◦

1,1,0 cosφ− μ◦
0,1,1 sinφ)

2

)
=

1

N

(
μ◦
2,2,0 cos

2 φ+ μ◦
2,0,2 sin

2 φ
)

� μ◦
2,0,0

(
μ◦
2,0,0 cos

2 φ+ μ◦
0,0,2 sin

2 φ
)

N

=
λ+λ−
N

(3.52)

Where we have taken benefit of the axis symmetry of the reference distribution (equation (3.33)).
Eventually we approximated the values of the fourth order moment coefficient by the square of
the second order moment for which we have an estimation at hand: those are the product of the
diagonal terms of μ2|x,y according to equation (3.45). This approximation is quite reasonable
as shows the plot of their respective ratios figure 3.3.
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Figure 3.3 – ratios of the fourth and second order central moments of the truncated unit sphere
reference distribution depending on the completion (maximum polar angle θ). μ◦
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and μ◦
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(red) are plot according to their calculated values in annexe. The ratios are of
order 1 and do not vary much, which justifies the approximation used in equation (3.52)

This gives an estimation of the precision in the determination of the orientation α of the
symmetry axis using the projection of a 3D object with cylindrical symmetry:

varα � λ+λ−
N(λ+ − λ−)2

, N � 1 (3.53)

The strong advantage of this estimation is that it does not depends on the unknown parameters
of the distribution, but only on the known eigenvalues of the covariance matrix of the sampled
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position. Furthermore, adding a uncorrelated Gaussian noise to the distribution preserving the
cylindrical symmetry in the (x, y) plane:

Δ �X ∼ N (0,Σ) with Σ =

⎛⎝σ2
x 0 0
0 σ2

x 0
0 0 σ2

z

⎞⎠ (3.54)

the expression for the second and fourth order moments transforms into:

μ2 = μ◦
2 + Σ (3.55)

μ2,0,2 = μ◦
2,0,2 + σ2

xσ
2
z + σ2

xμ
◦
0,0,2 + μ◦

2,0,0σ
2
z

� (μ◦
2,0,0 + σ2

x)(μ
◦
0,0,2 + σ2

z)

= μ2,0,0μ0,0,2

(3.56)

μ2,2,0 = μ◦
2,2,0 + σ2

xσ
2
x + σ2

xμ
◦
2,0,0 + μ◦

0,2,0σ
2
x

� (μ◦
2,0,0 + σ2

x)
2

= (μ2,0,0)
2

(3.57)

So that the approximation holds and the noise contribution is also taken into account into the
estimation of the uncertainty.

The variance diverges when the eigenvalues become identical indicating that the projection
has a circular symmetry around its center of mass and all axis are equivalent. Figure 3.4 com-
pares the real error to the estimated variance for various simulated geometries and additional
noise. It shows that we have indeed a good statistical estimator of the orientation of a spherical
particle in the focal plan. Furthermore we are able to estimate the statistical error including
the effect of noise and sampling. The limitations of the sampling appears on figure 3.4a as
the tilt angle decreases, the variance increases as the asymmetry of the particle becomes inap-
preciable with to few positions. The effect is of course worsen by increasing completion that
lowers the actual asymmetry until it disappears (α does not makes sens anymore for θ = π).
As the strength of noise is increased, the error does too. The strongest impact is seen for low
completions where the size of the particle is lower than the typical length of the spreading due
to noise and that the organization of the sampling positions is completely shattered.

To fully determine the orientation angle α[2π] the two first order moments are not enough.
The third order moment of the distribution has to be calculated because it is the smaller order
at which the asymmetry due to the sphere incompleteness might appear in the centered and
oriented distribution. Cylindrical symmetry of the distribution leads to a simple expression
given in appendix B.1 with all non zero coefficients equal. Transformation through tilt rotation
and α = 0 leads to:

μ3|x,y(i, j) =
⎧⎨⎩

μ◦
3 sinφ i = 2 or j = 2

3.μ◦
3 sinφ cos

2 φ i = 3
0 else

(3.58)

The non-zero coefficients are plotted on figure 3.5
A rotation of angle α = π rad is equivalent here to the symmetry x → −x, which turns

each non zero term of μ3|x,y into its opposite (x3 → −x3 and xy2 → −xy2). We therefore
use the sign of either μ3,0,0 or μ1,2,0 when the point distribution is oriented to fully determine
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Figure 3.4 – Estimation of the orientation in focal plan α of truncated spheres depending on their
3D-orientations (each point is a different sampling, 40 per vertical line). The sphere are sampled
with N = 1500 positions and planar angle is found using the second order moment according
to equation (3.48). Colors show the estimations of the variance according to equation (3.53) in
good agreement with the actual spread of the found values

α [2π] rad. As sampling fluctuations and noise lead to fluctuations of the estimated values, the
sign might be altered where the expectation is of the order of the variance, that is too close
to zero. Both coefficients are close to zero either at small completion (θ < π

2
) or at nearly full

completion (θ � π) (figure 3.5). However, they differs significantly regarding the tilt angle φ:
μ1,2,0 takes larger values that μ3,0,0 for strong tilt (φ > π/4) whereas μ3,0,0 dominates at low
tilt angles. When the sign of both estimate are not identical, we select the sign associated to
the higher absolute value max(|μ3,0,0|, |μ1,2,0|) –presumably μ3,0,0 when φ � π/2 or μ1,2,0 in the
other case. We limit this way the risk of error.

Using successively the three first moments of the 2D points distribution and analytical
calculations, we are thus able to center and orient the image of an individual particle with
cylindrical symmetry without setting up a complex optimization scheme as a native moments
method would require. Furthermore we are able to estimate the precision of our estimation at
each step. Doing so, we diminish the degrees of freedom of the single particle reconstruction
problem by a factor 2. From the six free variables {R, θ, φ, α, xc, yc} of the initial parametriza-
tion of the particle density projection, those that correspond to positioning and orientation in
the 2D plane have been extracted: we found out the reference position of pictures rotated and
displaced. Only three parameters are left unknown at this point: {R, θ, φ}. They correspond
to physical change of the scene imaged, either the point of view (φ) or the subject (R, θ). As
already stated, we could use the moments method to find estimates of these parameters. We
would face the dilemma of restricting ourself to the few first moments which leads to simpler
optimization task but an important lost of the information contained in the positions distribu-
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(a) μ1,2,0 (b) μ3,0,0

Figure 3.5 – Third order moment non zero coefficients for a sphere of completion θ, tilted with
an angle φ, and symmetry axis aligned along �ux. As both coefficients are positive, we deduce
that the projection of the top of the sphere is in x < 0 which is the reference orientation we
chose (α = 0)

tion, or introducing higher moments rapidly increasing the amount of calculation of the target
function to minimize and the assumption about the noise (for instance to generate the larger
covariance matrix of the estimates Σfit). Or we could instead use a different method that best
fit our needs.

3.6.3 Beyond the moments method: the maximum likelihood ap-
proach

The maximum likelihood approach, largely developed and popularized by R.A. Fisher [43],
is a general method for estimating the probability distribution that best corresponds to the
measured data. The choice criterion is the likelihood function that is the probability to obtain
the measured data given the probability distribution. If each element of the ensemble of the
probability distribution can be identified by a parameter �β, the likelihood function writes:

L(�β) = P(measure|�β) (3.59)

or in case of a continuous model with a probability density function p�β (Pawitan [108]):

L(�β) = p�β(measure) (3.60)

And the maximum likelihood estimator of the parameter β is the maximizer of the likelihood
function or, equivalently of the loglikelihood function that is S(β) = logL(β):

β∗ = argmax
β

logL(β) (3.61)
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3.6. Application to the identification of HIV particles

The attractiveness of the likelihood comes from the simplicity of the derivation of the likelihood
function from the model and thus setting the optimization problem. For instance, let us consider
the density of protein D�β that we adopted to model the viral structure. To build the likelihood
function, all we need is the probability to detect a protein at position xi, yi. As described in
section 3.3, the measurement process involved in superresolution imaging can be described by
sampling position in the density of protein blurred by the uncertainty of the measure.

dmes
�β

(xi, yi) =

∫∫
d�β(x, y)

2πσ2
i

e
− (x−xi)

2+(y−yi)
2

2σ2
i dx dy (3.62)

Each localization event being independent of the previous ones, the density of probability for
the whole set of measurements is obtained as a simple product of each individual probability
density:

L(�β) = p�β({ �Xi}) =
∏
i

dmes
�β

(xi, yi) (3.63)

logL(�β) =
∑
i

log dmes
�β

(xi, yi) (3.64)

The only required calculation is the convolution of the model density of emitters with the
Gaussian. This corresponds to take into account the effect of the measurement process on
the outcome of the experiment. The likelihood function otherwise only require the evaluation
of the probability density at each measured position and multiplication. Even if the maxi-
mization of the likelihood function can reveal itself a much harder problem, its construction is
straightforward.

Besides this simplicity, the loglikelihood estimator was designed to take benefit of all the
informations about the parameters that are contained in the data, according to the “minimal
sufficiency” property of the likelihood function put forward by R.A. Fisher [43]. Under sufficient
(but not necessary) hypothesis formulated by Wald [132], the maximum likelihood estimation can
be proven consistent, which means that the estimation is equal to the true value with probability
one as the number of analyzed measures increase towards infinity. Those sufficient conditions
ensure that for all possible sample but a subset with null probability, the likelihood function is
continuous with respect to the parameters, has an unique and well identified maximum on the
compact parameter space and does not diverge to +∞ on the parameter space. Cases where
the loglikelihood shows several local maxima are more complicated, the global maximum is not
necessarily a consistent estimator.

When the maximum likelihood achieve consistency and if the likelihood function is regular
enough around the maximum, it is asymptotically normally distributed with the minimal vari-
ance achievable for an unbiased estimator, the Cramer-Rao lower bound. The inverse of the
asymptotic variance of the maximum likelihood estimation is given in this case by the mean
second derivative of the likelihood function, called the Fisher information matrix (Pawitan [108]):

(var �β∗)−1 N→∞� I(�β0) = E�β0

(
I(�β∗)

)
= E�β0

⎛⎝− ∂2 logL(�β)

∂�β2

∣∣∣∣∣
�β∗

⎞⎠ (3.65)

Where E�β0
(.) stands for the conditional expectation on �β0, that is, over all the different sam-

plings that can be realized from the density parametrized by �β0. I(�β∗) is generally called the
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observed Fisher information matrix as it is attached to the curvature of the loglikelihood func-
tion around its maximum for a given sampling. Efron and Hinkley [37] reported that the observed
Fisher information matrix was a suited choice for accessing the precision of the estimation in
the regular case.

The maximum likelihood might be used to determine, from the superresolution image, the
most suited geometry for the protein coat among the truncated sphere. How does this results
apply to our description of the measure of protein density using surperresolution microscopy?
We used the normal law to model the measure precision. It is known among the regular
distribution that satisfy the consistency conditions given by Wald [132]. We can expect that the
distribution obtained by convolving the initial protein distribution with the Gaussian inherits
the smooth and differentiable properties of this later. However, the existence of a unique
maximum for the likelihood function is not granted. Indeed the parametrization we have
chosen already contains degenerated cases as different parameters lead to the same density. For
instance rotations do not affect the complete sphere, and for two different tilts φ1 and φ2 the
observable density is the same: DR,θ=π,φ1 ≡ DR,θ=π,φ2 . This does not matter when the maxima
correspond to physically equivalents distribution, but might call for additional assumptions if
not.

3.6.4 Likelihood computation for the truncated sphere model

Figure 3.6 – The axial projection of uniform density on a truncated sphere. The three value
domains of the indicator function (left) for the plane projection of a constant density laying on
the incomplete spherical shell (parameters: R, θ – right in black) parallel to a given projection
axis (parameter: φ – right in blue dashed arrow). Remarkable points (empty dots) and their
projections (filled dots) are shown: mass center (green), sphere center (black), and border
center (red). Note that the projection may change the distance measured between them. The
expression of the indicator function is deduced by combining the indicator functions of the
following regions: the circle that is the projected edge of the sphere (dashed blue – left) and
the ellipse (dashed red – left) that is the projection of the border and the strait line that links
their tangency points (dashed blue – left)

We computed the likelihood function of a measurement as follows. A mathematical difficulty
arises from the 2D surface chosen to model the distribution. When a parametrization of the
surface of the form z = f(x, y) is available, the element of integration on the surface is:

dS =

√
1 + ‖�∇f‖2 dx dy (3.66)
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Using the obvious parametrization z(x, y) of an hemisphere of radius R in Cartesian coor-
dinates, we deduce its projected density:

z =
√

R2 − (x2 + y2)

dS =

√
1 +

x2 + y2

R2 − (x2 + y2)
dx dy

=
R2√

R2 − (x2 + y2)
dx dy

⇒ d◦(ρ) =
1√

1− (ρ/R)2

(3.67)

Where ρ =
√
x2 + y2 is the distance to origin in polar coordinates. It appears that the measure

d◦ diverges close to the boundaries (ρ = R) where the surface normal is parallel to the (x, y)
plane and the unit surface on the sphere is projected on a line.

An analytical expression of the planar projection of the constant density on the truncated
sphere St with arbitrary orientation is obtained by combining various portions of the sphere of
radius R which can be parametrized as shown below. The different portions can be encoded in
a simple indicator function. This indicator function then traduces the completion: its value at
a given point corresponds to how often the projection axis crosses the surface on which proteins
are lying. Hence its values are in {0, 1, 2} as shown on figure 3.6. And the domain of each of
those values is given by the intersections of one circle, one ellipse and a strait line. Say, the
projected contour of the sphere (Ind1) centered in xc, the one of the completion edges (Ind2)
centered in xe and the line that joins their tangency points (Ind3) of abscissa xtangency. Those
equation are easy to parametrize in the axis system described in the above section:

dp[�β](�r) =
1√

1− (ρ/R)2
× Ind[�β](�r) (3.68)

Ind[�β](x, y) = 2.Ind1.Ind3.(1− Ind2) + Ind2 (3.69)

With the indicator functions given by:

Ind1[�β](x, y) =

{
1 if ‖y‖ ≤ R

√
1− (x−xc)2

R2

0 else.

Ind2[�β](x, y) =

{
1 if ‖y‖ ≤ R sin θ

√
1− (x−xe)2

R2 sin2 θ cos2 φ

0 else.

Ind3[�β](x, y) =

{
1 if x ≥ xtangency

0 else.

(3.70)

And the following coordinate for the projected reference points:

xc = −R
1 + cos θ

2

xe = R(cos θ − 1 + cos θ

2
)

xtangency = −R
8
(−2 + 6 cos θ + cos(θ − 2φ) + 2 cos 2φ+ cos(θ + 2φ)) cscφ

(3.71)
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The projected density obtained here dp[�β](x, y) is then numerically convolved to a Gaussian
function of full width at half maximum (FWHM) σ̄ in order to take into account the positioning
imprecision of the super-resolution method. Eventually the value of the 2D-convolution at
location (xi, yi) between the density and the Gaussian gi of variance σ2

i 1 in equation (3.73) is
evaluated numerically. As the projected density is null outside the disk of radius R, function is
evaluated on a square grid of R×R:

dmes
�β

∼
∑
ygrid

∑
xgrid

dp[�β](xgrid, ygrid)

2πσ2
i

e
− (xgrid−xi)

2+(ygrid−yi)
2

2σ2
i ΔxgridΔygrid (3.72)

The divergence for ρ → R in equation (3.68), albeit not problematic from a mathematical point
of view –integral is defined and Gaussian convolution regulates it, is complicated to handle
numerically on a basic grid evaluation scheme leading to strong numerical errors depending
on the evaluation grid (evaluation close to ρ = R produces Inf. values). In order to prevent
problematic numerical behavior, we used a regulation procedure to ensure that it is properly
treated. On a ring of size ε � σi around R−ε < ρ < R where the problem occurs, the projected
density is not evaluated to its actual value but taken as its mean value over this interval instead:

dp[�β](�r) =
R−ε<ρ<R

∫ R
R−ε

ρ dρ dϕ√
1−(ρ/R)2∫ R

R−ε
ρ dρ dϕ

=

√
(2R − ε)ε

Rε− ε2/2
∼
√

2

εR
(3.73)

We have then fixed the grid step Δx = Δy = 410−4 × R and ε = 2Δx in order to achieve
a convergence of the calculation with a relative precision of 10−4 on the result. This is a
trade-off with computation time and memory requirements. We used those parameters in
all our calculation in the following. For a grid of n × n, each position likelihood require
O(n2) evaluations so the computational complexity is O(P.n2) for P positions. This ad-hoc
calculation scheme generates rounding errors that may accumulates. However performing the
integration in equation (3.68) using an iterative procedure with controlled error and fixed
convergence tolerance as upper and lower integration (Since the integrand is analytical, the
function integral2 can be used for this purpose in Matlab
) is very consuming in time.

The convolution is to be repeated again and again to evaluate the likelihood of each recorded
protein position �Xi according to its known variance σ2

i issued by the surperresolution centroid
finding algorithm.

We also considered the case of homogeneous precision σi � σ̄2, for which the convolved
density is identical for all sampled positions. The calculation was performed once for the whole
grid followed by linear interpolation of the function on each sampled position. To speed up the
calculation time we implemented Fast Fourier Transform (FFT) using the relation:

dmes
�β

= dp ∗ g = FFT−1(FFT(dp).FFT(g)) (3.74)

So that the evaluation grids can be set fine enough without slowing to much calculation time
(classical convolution complexity is ∝ O(n4) whereas the FFT is ∝ O(2n2 log n)) which becomes
competitive with the previous scheme if the number of sampled positions is of the same order
as logarithm log n of the grid size. This provide a fast evaluation of the likelihood (use a fine
grid for convolution) at the expense off assuming a constant precision for each measure point.

Once the projected measure probability density function is obtained, uniform background is
added. This operation is equivalent to add a constant to the calculated density and diminish the
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sensibility to outliers. We used a background probability equal to 10% of the object probability.
The measure density of the object sums to � 1 on the whole image, so we calculated the
likelihood of parameter set given the position from:

dmes
�β

→ dmes
�β

+
10

100
A−1 (3.75)

Where A is the area of the image, and normalization is not needed since the likelihood is defined
up to a multiplicative constant.

3.6.5 Likelihood maximization

Once we were able to evaluate the likelihood function for any parameter set, the parameter
estimation requires to find its maximizer. We used different strategies of maximization in order
to favor control of the likelihood behavior or low computational cost and efficient search.

3.6.5.1 “Exhaustive” evaluation

Figure 3.7 – loglikelihood “landscape”: six linearly spaced isosurfaces of the loglikelihood (colors)
are extrapolated from the its evaluation over a grid (θ, φ, R) ∈ [π/6, π] rad × [0, π/2] rad ×
[44, 56] nm of 100×50×10 points. The input value (R0, θ0, φ0) = (50 nm, 3π/4 rad, π/3 rad) (�)
for the simulated the N = 5000 positions with a very low positioning uncertainty σ � 0.05 nm
coincides with the global maximum on the evaluation grid (© blue).

The most natural solution to check that the estimator corresponds to the requirement is
the brute force evaluation of the loglikelihood function on the parameter space. The interest
of this method is that, since our parameter space (R, θ, φ) is 3D, it is possible to visualize the
loglikelihood “landscape” on the parameter space plotting the isovalues surfaces extrapolated
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(linear extrapolation between neighbors) from the values calculated on the grid (see figure 3.7).
The drawback is clearly that many evaluations are made in regions far from the maximizer and
that the computational cost is enormous compared to the precision reached (which is of the order
of the grid step). Simulated super resolution image whose loglikelihood landscape is displayed
on figure 3.7 was generated using unrealistic positioning precision compared to superresolution
microscopy power and very good sampling density compared to the viral content in order to
emphasize the general features of the likelihood of the truncated sphere. On one hand, figure 3.7
shows that in this particular case, the maximum likelihood provides a good estimation of the
distribution from which the sampled positions were drawn. On the other hand, the likelihood
landscape is more complicated than what the perfect “regular” case should look like. Even if the
evolution around the so found maximum seems indeed an acceptable candidate for a quadratic
approximation, the function is not perfectly concave and for low tilts and completion φ < π/6
and θ < π/2 there is a “branch” region where the loglikelihood also takes stronger values than
in its neighborhood indicating a second optimum of the function. Furthermore this tortured
shape is not an easy task for optimization solvers. As the “branch” extend to higher radius,
it is likely that an iterative solver initiated with a higher radius will be attracted towards this
region and stuck in the vicinity far from the true optimum.

We studied in more details the maxima of these likelihood landscape. This study of the
local maxima positions was done by extensive calculations of the function values on a grid
around the initial value (R0, θ0, φ0) used to simulate the various set of positions for which the
“landscape” where calculated. No outliers were added and the set of point submitted for the
calculation was already properly oriented. As the radius R0 is only a scaling parameter for the
density, changing it for a new value simply shift the landscape accordingly. We focused on the
effect of the completion and orientation at fixed radius R0 = 50 nm.

The conclusion holds when the input image is simulated from a distribution with more than
half completed sphere figure 3.9. For an input completion of θ0 = 2π/3 the two branches of
maxima overlap. The correct estimation lies this time in the horizontal branch. A unequivocal
determination seems possible when the tilt angle is higher than the critical value φ0 > φc �
[π/6, π/5].

Figure 3.8 shows the regions of the parameter space where loglikelihood is maximum (logL ∈
[max(logL),max(logL) − 80]) for N = 5 103 input positions drawn from a spherical cap with
small completion θ0 = π/4 viewed from different tilt angles φ0. Low tilt angles φ0 < π/6 leads
to a landscape where high loglikelihood values are distributed in two distinct regions of the
space:

— The already mentioned vertical branch characterized by increasing radii R, low comple-
tions (θ < π/2), low tilt angles. The input parameter of the actual density from which
the image was simulated is localized in this region.

— An horizontal branch at constant radii R, high completions (θ > π/2), over a large range
of tilt angles φ. The typical radius of 40nm that maximizes the loglikelihood in the region
is much smaller than the input radius of the simulation R0.

The trends are either a low completion with a well determined tilt angle and poor precision
on radius, or a high completion with poorly determined tilt angle but well known radius:

— In the vertical branch, proteins are assumed to lie on a small cap. So the projected density
varies strongly with respect to angle of view (tilt angle φ). This explains why it is well
determined: from the top it looks like a disk, whereas the side view only a small portion
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3.6. Application to the identification of HIV particles

of a disk appears. In the top view, the curvature seems hard to infer so that various
trade-off between completion and radius are hard to distinguish: the compatible R and θ
form the observed branch.

— In the horizontal branch, the protein support is close to a full sphere and its projection
looks like a disk independently of tilt. However it is much more sensitive to a change in
radius which is the well determined parameter.

As the input distribution tilt angle φ0 is increased, the vertical branch is displaced to higher
tilt values, remaining centered on the correct estimation. The horizontal branch remains only
for high tilt angle and is moved towards smaller values of completions. Overall distribution with
stronger asymmetry are put forward. The horizontal branch eventually vanishes for φ0 > π/4.
The contour shape of the point distribution seems to be determining for the shape of the log-
likelihood landscape. The more asymmetry in the input image and the easier the determination
of completion by the loglikelihood. Under a critical tilt angle the determination between more
or less than half completion is poor.

Investigating further the geometrical effect on the loglikelihood landscape, we hypothesize
that the critical angle for a given input completion φc(θ0) was determined by a change in the
shape of the projected protein density. Also, it should be a characteristic feature that explains
similar loglikelihood value for each of the two branches of maxima observed.

φ
=
π/2−

θ
φ
=
θ −

π/
2

φ

θ

Figure 3.10 – the three different shapes identified for the projection of a truncated sphere
depending on its completion θ and on the observer point of view φ: (from left to right) ellipse,
portion of a disk and portion of ellipse (light red), full disk. The apparent area is the blue area.
Dashed contours are an indication of original 3D object

We identified three domains of shapes in the tilt/completion space showed in figure 3.10.
The projected truncated sphere leading either to an ellipse, a disc or to a mix of each. The
boundaries between this regions are φc = π/2 − θ0 and φc = θ0 − π/2 so that we expect
φc(π/4) = π/4 and φc(2π/3) = π/6 consistent with our previous observations. Under our
hypothesis, the input densities from the colored region in figure 3.10 are easily discriminated
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Chapter 3. Superresolution image measurement

from the others. On the contrary, a parameter set in a white region is less easy to distinguish
from other parameter sets in the other white region leading to distinct branches of maxima.

We refine further the description of the loglikelihood maxima branches. The dominant
factor of discrimination between the possible proteins densities is the projected shape of the
densities. This suggests that the area of the plane covered by their projections could be a
simple criterion of equivalence for two truncated spheres. This area is the apparent area, for
a full sphere it is the area of a disk Aapparent = πR2, whereas the projected area sums to 1 by
definition (equation (3.68)).

To test this hypothesis we calculated the apparent area of the truncated sphere of radius
R depending on its completion and orientation. As it appears on figure 3.10, the projection of
any truncated sphere can be constructed as the union of several portions of ellipses.

Figure 3.11 – portions of disk and ellipse used to calculate the apparent area of the projected
truncated sphere

In order to the area of a portion of ellipse, we first calculate the area of Ct the unit circle
centered on the origin truncated of the portion with abscissa x1 > x (see figure 3.11) is:

ACt(x) =
∫∫

Ct
dx dy

= 2

∫ −1+x

−1

√
1− x2

1 dx1

=
1

2

(√
x(2− x)(x− 1) + 2 cos−1(1− x)

) (3.76)

The area of an ellipse portion Et, with arbitrary axis length (a, b) is simply deduced from the
previous result using the 2D variable substitution x → x′

a
and y → y′

b
:

AEt(x, a, b) =
∫∫

Et
dx dy

= abACt
(x
a

) (3.77)

And eventually the apparent areas of the shapes showed on figure 3.10 writes (using equa-
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3.6. Application to the identification of HIV particles

tion (3.71) to position the truncature):

Aapparent(R, θ, φ) = Ind
x>0

(φ− (θ − π/2)). Ind
x>0

(φ− (π/2− θ))×(
SEt (R(1− cos θ/ sinφ), R,R)

+ SEt

(
R

(
sin θ +

cos θ

tanφ

)
cosφ,R sin θ cosφ,R sin θ

))
+ Ind

x>0
(π/2− θ − φ).πR2 sin2 θ cosφ

+ Ind
x>0

(θ − π/2− φ).πR2

(3.78)

Where the step function Ind
x>0

is used to generate the indicator function of the three different
shape regions identified in figure 3.10:

Ind
x>0

(y) =

{
0 y ≤ 0
1 y > 0

(3.79)

Figure 3.12a shows the apparent area of the truncated unit sphere depending on its completion
and orientation (θ, φ). Figure 3.12b is a plot of an isosurface the apparent area function, that
is the parameters sets of truncated sphere with the same apparent area. As already told, R is
a scaling parameter for the protein distribution, and thus for its projected area:

Aapparent(R, θ, φ) = R2Aapparent(1, θ, φ) (3.80)

Thus the knowledge of the values of Aapparent(1, θisoA, φiso) is sufficient to deduce the isosurface
passing by the point {R0, θ0, φ0} which can be parametrize as RisoA(θ, φ):

Aapparent(RisoA, θ, φ) = Aapparent(R0, θ0, φ0) ⇔ RisoA(θ, φ) = R0.

√
Aapparent(1, θ0, φ0)

Aapparent(1, θ, φ)

(3.81)
It defines a natural change of coordinates h : (R, θ, φ) �→ (RisoA, θ, φ). In the new coordinates
RisoA measures the apparent area of the object and the shape is given by (θ, φ). The reverse
transformation is: ⎛⎝ θisoA

φiso

RisoA

⎞⎠ h−1�→

⎛⎜⎝ θisoA
φiso

RisoA
√

π
Aapparent(1,θisoA,φiso)

⎞⎟⎠ (3.82)

The vertical and the horizontal branch of maxima follow an apparent area isosurface. The
match is not perfect since a slightly different values of the apparent area parametrize each of
the two branches of maxima (figure 3.13a).

The loglikelihood thus promotes the distributions showing the best overlap with sampled
distribution. Regarding our model of image analysis, we see that the loglikelihood favours
the extension of the distribution criterion at first (same apparent area, same overall shape),
before it accounts for the fluctuations of density inside the shape contours (projected area). In
particular, concerning the truncated sphere model, we noticed a low efficiency of the method
to decide between the two white regions in figure 3.10 that exhibit similar disk shapes. This
may lead to inconsistent results using the maximum likelihood estimator with the low sampling
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Chapter 3. Superresolution image measurement

(a) Apparent surface of a truncated sphere at
fixed radius Aapparent(R = 1, θ, φ). The red lines
shows the three different shape regions deter-
mined in figure 3.10.

(b) Aapparent(R, θ, φ) = 1 isosurface in the pa-
rameters space

Figure 3.12 – The apparent surface of a truncated sphere is the area seen from the observer
point of view –the second plot is rotated by π/2 rad clockwise

and higher positioning uncertainties that the experimental state of the art can provide. As
such, the likelihood estimator is likely to be inconsistent for the model. The estimation would
be greatly improved on a simplified case where the decision covers only a restricted parameter
space excluding one of the two competing regions and would leads to consistent results.

Adding information to enhance the distinction between the alternatives is another possi-
bility. A constant apparent area corresponds to surface in 3D that varies up to a factor 4
(comparing the disk and the sphere with identical apparent area and 3D area πR2 and 4πR2

resp.). This implies the same variation of protein density for a fixed number of sampled posi-
tions. The mean protein density could be used as a constraint for the optimization, or added as
a prior in a Bayesian approach. Concerning the HIV experimental study of budded particle, we
assumed that the protein coverage was greater than half completion and that we could restrict
the determination in the θ ∈ [π/2π] domain where a single maximum is found and where the
maximum likelihood estimator is consistent.

An other interesting outcome of the apparent area criterion, is the possibility to design the
maximum search implementation to benefit from this result. Compared to exhaustive search,
local maximum can be found in significantly fewer loglikelihood function evaluations using
iterative optimization procedure such as simplex search, quasi-Newton method. On one hand
it provides a constraint between the parameters to choose an appropriate starting point of the
iteration. On the other hand it provides a natural coordinate substitution to map the space
parameter in order to improve the convergence odd of the algorithm.
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Figure 3.13 – The maxima of the likelihood function are lying on isovalue surfaces of the
apparent area function. The original distribution radius used to simulate the image is R =
50 nm. Isolikelihood surfaces are evenly spaced for logL ∈ [max(logL),max(logL)− 200].
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Chapter 3. Superresolution image measurement

3.6.5.2 Quasi Newton-Algorithm optimization

The optimization problem was numerically solved using the “interior-point” algorithm of
MATLABs
 “fmincon” solver. This algorithm is a member of the quasi-Newton optimization
family. It looks for an extremum of the target function using successively its quadratic ap-
proximations around the iterations point. Rather than computing Hessian matrix and gradient
at each iteration steps, the Hessian matrix is approximated at each step using the gradient
values. Since no exact value is available for the gradient, it is evaluated numerically using
finite difference. The “interior point” algorithm handles boundaries in the parameter space by
introducing a effective function equal to the target function plus an extra barrier function that
diverges approaching the interval limits penalizing any solution outside the boundaries. At
each iteration, the proportion of the barrier function in the effective function is decreased so
that the algorithm converges at an extremum of the target function.

We tested the optimization procedure on already known landscapes. In naive implemen-
tations, the solver almost already failed to converge to the expected extrema of the function
and were either converging far from the optimum or did not converge at all. We identified two
important limitations on our loglikelihood function that might lead to failure:

— numerical evaluation error: if the likelihood landscape looks smooth enough at large
scales, at smaller scale the function is much more shaky since we only achieved a 10−3

relative precision. This impacts the solver both on the differentiation step leading to
improper evaluation of the gradient and on the convergence as solver get stuck in the
fluctuations (see figure 3.15).

— scaling of the problem: as the variations on one variable strongly dominates the log-
likelihood evolution compared to the others (for instance in the horizontal branch, the
loglikelihood evolve very slowly in θ and φ but extremely fast in R). The solver fails
to find the narrow direction of optimization that follow the branch and stops once the
dominant parameter only is optimized.

We solved the numerical precision issue by setting a lower limit to the step size of the finite
difference calculations so that gradient was evaluated on a scale larger than the scale of the
function fluctuation due to numerical error.

Scaling issue was more difficult to tackle. Simply rescaling the variables with a constant
factor using the option provided by the solver did not yield to satisfactory enough ameliorations.
As reported in the previous section, in first approximation the loglikelihood function maxima
branches follows the surface of iso-apparent area. By substituting the natural coordinates of
the physical model (R, θ, φ), to the iso-apparent surface parameters (RisoA, θisoA, φiso) given
in equation (3.81), we provide to the solver the natural direction for optimization along the
iso-apparent surfaces and enable the solver to find the optimum in both maxima branches
(compare). Maximization of logL ◦ h−1 is numerically much easier (compare figure 3.13c and
its transformed counterpart figure 3.14). Both maximum in the landscape are reached by the
solver depending on the starting point of the iterations. The solver is therefore able to identify
the two maxima as expected unlike in the original parameter space (R, θ, φ).

The solver produces an approximation of the Hessian matrix of the loglikelihood at the found
optimum in the new coordinate system. This matrix is by definition −I(�βiso), the opposite of
the observed Fisher information matrix (equation (3.65)). However, due to the evaluation
precision limit of our numerical loglikelihood, the finite difference matrix obtained this way had
a very poor precision (only the order of magnitude can be trusted). We refine the result using
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Figure 3.14 – Loglikelihood landscape of an image of N = 1500 positions sampled from a
proteins densities (R, θ, φ) = (50, 5π

6
, π
4
)(nm,rad,rad) and σ̄ = 20 nm. The successive positions

(red ∗) at each solver iterations are shown for 8 different initial starting points �βisoA|s=0 =
(RisoA|s=0 = rCH , θisoA|s=0, φisoA|s=0). The apparent area of the positions distribution convex
hull A = πr2CH is used to set the initial apparent surface parameter together with various
completions θisoA|s=0 ∈ [0, π] rad at fixed φisoA|s=0 = π/4 rad. In the simulation rCH = 64 nm

9× 9× 9 evaluation points in the neighborhood of the optimal position �βiso found by the solver
and a mean least square (see appendix A) fit of the quadratic form:

logL ◦ h−1(�βiso) = (�βiso − �β∗
iso)

tHiso(�βiso − �β∗
iso) (3.83)

Where −Hiso is the observed Fisher information matrix that we are willing to test as an estima-
tion of the variance and �β∗

iso is our optimal parameter in the modified coordinate system. We
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Chapter 3. Superresolution image measurement

come back to the natural parameter system using the inverse transformation (see appendix C).

�β∗ = h−1(�β∗
iso) (3.84)

I−1
�β∗ = −J t

h(
�β∗).H−1

iso .Jh(
�β∗) (3.85)

The whole process takes around 30 sec to localize the maximum and 3 min to provide the
final estimation with error bars for a single particle.
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Figure 3.15 – fits of the minus loglikelihood along �uR, − logL(�β∗
isoA + �uR. dR) in the neighbor-

hood of the minimum found by the solver (green dot) −∂2 logL
∂R2

isoA
to extract the Fisher informa-

tion matrix first coefficient from a simulation (N = 5000 points θ = 5π/6 rad, φ = π/4 rad,
R = 50nm). At low scales the shakiness of the function comes from numerical error (discretiza-
tion approximations and rounding errors).

3.6.6 Likelihood test on simulated PALM images

To evaluate the performance of the maximum likelihood reconstruction procedure, we im-
plemented it on simulated PALM images of truncated spheres of known geometrical parameters
�β0 = (R, θ, φ). The simulated images where all produced according to section 3.3 (page 99)
with parameters typical of the experimental data. We thus provided as an input 300 simu-
lated datasets composed of N = 1500 points each with an uncertainty in position of 20 nm
comparable to the experimental datasets (figure 3.1). To ensure consistency of the maximum
likelihood method, we restricted the parameter space to completion θ ≥ π/2 rad which we
assumed valid for the budded viruses according to what was reported from cryo-electron mi-
croscopy observations by Carlson et al. [21]. We could therefore compare the computed optimal
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3.6. Application to the identification of HIV particles

structure �β∗ to the known input structure �β0 and estimate the efficiency of the maximum like-
lihood method from these differences. This also provides a test for the proposed confidence
estimation calculated from the observed Fisher information matrix.

The input parameters set of the simulated data were randomly drawn with a uniform prob-
ability in the interval: (R, θ, φ) ∈ [30, 80]nm ×[

π

2
, π] rad ×[0,

π

2
] rad and a mean positioning

uncertainty of σ̄ = 20 nm was applied to simulate the image. The comparison between actual
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Figure 3.16 – Radii estimations R∗ using maximum likelihood estimator on 300 simulated super-
resolution images (• and �) and using the mean distance to center of mass RCM (blue �) are
plotted against the original ones R0. Perfect estimation follows the red dashed line. Particles
for which orientation was not properly determined (std.α > π

10
in equation (3.53) are shown

by �). Standard deviations values calculated from the Fisher information matrix are displayed

(
√
I−1
RR(

�β∗) grey error bars)

and estimated particle radii including the estimated error bars are shown in figure 3.16. We
found that the particle radius estimation Rfitted is nicely distributed around the input value.
The standard deviation of the difference ΔR = Rfitted − R0 was stdΔR = 1.3 nm while the
average error, or bias ΔR was under one nm). Thus 95% of the simulated particles have been
reconstructed with an error on the radius smaller than 3 nm when the proteins where localized
with a precision of 20 nm. Also, this error is independent from the original radius, unlike in
simplest procedures based on averages over the distribution of emitter positions (naive imple-
mentation of the moment method). Such a geometry-dependent error clearly affects the basic
2D radius estimation using the mean distance to the center of mass discussed in section 3.4
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(page 102) and shown for comparison.

RCM =
1

N

∑
j

√
(xj − 1

N

∑
k

xk)2 + (yj − 1

N

∑
k

yk)2 (3.86)

As already noticed simple estimator is biased with a strong variability since completion and
tilt degrees of freedom are not taken into account. Besides it is not able to distinguish any-
thing smaller or of the order of the positioning precision as does our procedure that takes this
information into account. Remarkably, this result shows that the radius of the particle can
be deduced at the single object level from a maximum likelihood estimation with an accuracy
better than the microscope precision (σ̄ ≈ 20 nm) by one order of magnitude in the conditions
of our simulation.

Variance on each fitted parameter is estimated from the diagonal element of the observed
Fisher information matrix given in equation (3.65). The average variance is equivalent to an
estimated uncertainty (standard deviation) of 3.2 nm and constitutes an upper bound of the
measured estimation error in good agreement with its order of magnitude. The details of the
error distribution is given in figure 3.19a. At the level of individual object the same observation
holds: error bar estimated from the observed Fisher matrix is an upper bound of the effective
error, which is regularly distributed and centered.

We performed a similar analysis to quantify differences between the actual and estimated
values of the Gag shell completion from the maximum likelihood estimation using the same
data (figure 3.17). We observed a standard deviation σΔθ = 0.3 rad. However, in contrast
to the maximum likelihood estimation values for the radii, the standard deviation is not any
more independent from the completion of the Gag shell. The best matches between simulated

completions and the maximum likelihood results are obtained for θ between
2π

3
rad and

5π

6
rad.

Values outside this range show both a larger systematic average bias and larger standard de-
viation. The effect is preponderant close to the boundaries, of the optimization domain, which
prompted us to verify that this was not an artifact of the interior point algorithm. Exhaustive
computation of the likelihood landscape were performed and we obtained the same maxima.
Sampling effect has also been questioned: since the simulations are run with a fixed number
of points, the sampling density decreases on the 3D surface when completion increases up to a
factor 2. We found no evidence that such variation of the 3D sampling density is correlated to
the precision of completion estimation. As a matter of fact, hemispheric densities, that have
the strongest 3D sampling density can also exhibit a large estimation error, indicating that this
is probably not the key parameter.

The observation of a stronger error close to the interval boundary is compatible with the
equivalence between densities close to the two boundaries of the interval: an hemisphere (θ =
π

2
rad) viewed from the top (φ ∼ 0 rad) or a complete sphere (θ = π rad) cannot be distinguished

from each other since they have the same density up to a multiplicative factor. This suggests
a geometric effect. Furthermore large completion θ as well as low tilt angles φ results in low
asymmetry of the position distribution. Combined with positioning error and small sampling
the symmetry information might be insufficient to properly orient the point distribution in the
plan. Indeed most of the nearly complete geometries are affected by a strong error whereas only
part of the nearly hemispheric geometries are. And among the nearly hemispheric geometries
affected, a large majority has uncertain orientation (�) or in other word a nearly isotropic
distribution. For low completions (θ � π

2
), there is an obvious correlation between a strong
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estimated variance of α (see � data in figure 3.17), a low tilt (cf. estimated orientation variance
and tilt on figure 3.4b), and the failure in θ estimation (figure 3.17 also). Nevertheless since
at low tilt the point distribution is close to isotropic, the orientation α is not a significant
parameter. So the completion determination by the maximum likelihood estimation failure is
rather conditioned by low tilt angle φ which also leads to high estimated variance of α (hence
the correlation).

Our interpretation is that the cause of the estimation error is not a wrong orientation of
the particle but that likelihood itself is not efficient to determine the completion when the
distribution is isotropic. Again, it seems that the likelihood criterion is primarily sensible to
deformation affecting the contours of the object, and less to its inner density fluctuations.
Hence near complete spheres as well as hemispheres seen from the top are nearly equivalents
“in the eyes” of the maximum likelihood estimator. This second interpretation advocates for a
careful treatment of the completion results of dataset with unclear symmetry axes, for which
only the fitted radius is not proven meaningful.

π/2 3π/5 7π/10 4π/5 9π/10 π
π/2

3π/5

7π/10

4π/5

9π/10

π

θ
simu

 − (rad)

θ
fi

tte
d −

 (
ra

d)

Figure 3.17 – Completion estimations θ∗ using maximum likelihood estimator on 300 simulated
super-resolution images (• and �) are plotted against the original ones θ0. Perfect estimation
follows the red dashed line. Particle for which orientation was not properly determined (std.α >
π
10

in equation (3.53) are shown by �). A third of the standard deviations values calculated

from the Fisher information matrix is displayed for readability (1
3

√
I−1
θθ (

�β∗) grey error bars)
since their values are very large.

Stronger sampling should enhance the precision on incomplete area detection associated to
densities lower than expected. We tried to estimate an order of magnitude of the limiting reso-
lution that can possibly be reached. Existing studies of this issue (Fitzgerald et al. [44], Mukamel
and Schnitzer [99]) focused on the estimation of the resolution on the 2D plane image in term of
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spatial frequency an Fourier analysis. Here we attempt to estimate the theoretical resolution
limit on contour of an empty patch on the sphere set by the sampling density. Our basic idea
is that the denser the points on the surface, the more suspect an empty space should be and
that in return sampling fluctuations set the typical empty patch size indicating incompleteness.
Given a set of N points uniformly sampled on a (possibly incomplete) sphere, what would
be the minimal size of an observed empty area patch for which the hypothesis “the sphere is
complete” should be rejected? To answer this question, we derived the probability distribution
of distance to the nearest neighboring point (see detailed calculation in appendix D). Any void
left between a point and the closest point can be suspected to identify an incomplete area and
the distance distribution give their typical distribution. If we observe a void much larger than
expected, then it is likely to be the incompleteness signature. To define “larger” we choose an
acceptable error level ε. This defines the confidence interval that the observed distance between
two neighbors lay within [0, dε] as the cumulated probability is equal to 1 − ε for dε and thus
fix the resolution. Figure 3.18 show the first neighbor distribution for various sampling (inset)
and approximated upper bounds of the confidence level ε –express in term of angle from the
center of the sphere– as function of the sampling:

d = R.θ (3.87)

θε = cos−1(1− 2

N
)
√
−π log ε �

√
−π log ε

N
= O(N

1
2 ) N � 1 (3.88)

In the absence of positioning uncertainty or projection, we see that the distance between nearest
neighbors diminishes very slowly and so does the tail of the distribution which gives an idea of
the large distances typically reached. Let us consider a sampling of N = 103 points. We choose
ε � 1

N
= 10−3 level leading to an estimated pure sampling resolution limit of � π

20
. This value

is relatively constant when the sampling increases. In the dense sampling limit, the resolution
limit is set by the Nyquist criterion as in a flat surface: O(N

1
2 ). This is still far from the limit

observed in our simulations at least twice as large.
Variances calculated from the observed Fisher information matrix on the completion angle

are very often much larger that the effective errors θ0 − θ∗ and spread over the whole value
interval. To enhance figure readability but yet deliver the information, the error bars shown on
the figure 3.17 correspond to a third of the standard deviation calculated from the estimated
variance. Again, the variance estimated from the Fisher Information matrix appears as an
upper bound in the order of magnitude of the error, but is not of any interest as the size of
the search interval is in the same range. The average variance is equivalent to an estimated
uncertainty (standard deviation) of 0.57 rad whereas the effective error is 0.24 rad. But the
variance of the actual error depends on the completion and on the tilt whereas this trend is not
found in the observed Fisher information matrix coefficient. The details of the distribution of
error normalized by this estimated variance is given in figure 3.19b.

The large variance and inaccuracy of the maximum likelihood completion estimator close
to the interval boundaries limits its relevance for a single particle. We investigated further the
distortions that it would induce at the scale of a larger population. We selected various subset
of the simulated particles to see how localized distributions are distorted in the estimation
process. Original subset and distorted distributions are shown on figure 3.20. Each estimate
contributes as a Gaussian centered on the maximum likelihood value with standard deviation
given by the inverse of observed Fisher information matrix

√
I−1
θθ (

�β∗). Each contribution is
normalized over the allowed completion interval [π/2, π] to guarantee that each particle has the
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3.7. Application: reconstruction from PALM images of budded HIV-1 virus like particles

Figure 3.18 – Limiting resolution for completion estimation due to finite sampling effect: the
dashed lines correspond to approximated confidence upper bound for various acceptable error
ε ∈ {0.9, 0.8, . . . , 0.1, 10−2, 10−3, . . .}. The average values are plot with solid lines: mean
distance between points θ̄ = cos−1(1 − 2

N
) (blue) and its simple approximation θ̄ N− 1

2 (red).
The maximal distance between two points observed averaged on 5. 103 simulations for each
sampling N is displayed (plain green). Inset: Several distribution of nearest neighbor distance
expressed as angle at the sphere center for various number of sampled points N

same weight in the constructed distribution before. All contribution are eventually added to
form the estimated distribution. Distributions are displayed with unit area.

As already pointed out the variances are overestimated and the spread of the distributions
are largely exaggerated. The distortion of the uniform distribution is surprising low: the density
at the interval center is slightly overestimated since wrong estimations at the boundaries are
likely to largely redistribute density on the whole interval (including its center) whereas the
accuracy is better at the center, creating a positive balance. Depletion is more sensible for
complete particles whose projection are always isotropic, presumably a difficult case for the
estimator. However, the estimated distribution of a population of complete particles remains
unimodal figure 3.20b with a broad maximum in the vicinity of 9π

10
. A larger distribution leads

to a mode displaced toward the interior of the interval (4π
5

in figure 3.20d).

3.7 Application: reconstruction from PALM images of bud-
ded HIV-1 virus like particles

We collaborate with Julia Gunzenhäuser and Suliana Manley from the Laboratory of Ex-
perimental Biophysics at the Ecole Polytechnique Federale de Lauzanne to apply the analysis
on PALM images of purified immature HIV-1 Virus-Like Particles (virus like particles). Cell
culture, transfection and imaging were made by Julia Gunzenhäuser according to the protocol
described in the following.
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Figure 3.19 – Estimation error of the maximum likelihood standardized using the inverse Fisher
information matrix.

3.7.0.1 Cell culture, transfection and virus like particles extraction

African green monkey kidney cells (Cos7) were cultured in DMEM supplemented with 10%
FBS (Sigma Aldrich). For virus like particle production 600,000 cells were grown in T75
flasks and transfected with 34 μg of Gag-mEos2 plasmid (detailed description is available in
Gunzenhäuser et al. [59] article) and 100 μl FuGene6 (Roche Diagnostics) in a total volume of 1
ml DMEM without FBS incubated for 15 min. 48 hours post transfection the supernatant was
collected from the cells and filtered through 0.45 μm filters. For virus like particles extraction
the supernatant was centrifuged over a 20% sucrose gradient at 27000 rpm for 2 hours at 4◦C.
The pellet was dissolved in filtered PBS and the virus like particles solution was directly used
for imaging or stored for not more than 24 hours at 4◦C prior to imaging. For imaging poly-L-
lysine coated coverslips containing 100 nm Au fiducial markers were incubated with virus like
particles for 1 hour at 4◦C, rinsed with PBS and directly used.

3.7.0.2 Superresolution imaging

Virus like particles were imaged using a Zeiss Axio Observer D1 inverted microscope,
equipped with a 100×, 1.49 NA objective (Zeiss). Activation and excitation lasers with wave-
lengths 405 nm (Coherent cube) and 561 nm (Crystal laser) illuminated the sample in total
internal fluorescence (TIRF) mode. We used a four color dichroic 89100bs (Chroma), fluores-
cence emission was filtered with an emission filter ET605/70 (Chroma) and detected with an
electron-multiplying CCD camera (iXon+, Andor Technology) with a resulting pixel size of
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Figure 3.20 – Deformation of the distribution by the estimation. The original distributions of
completion in the simulated data are plot in blue and the maximum likelihood estimation of
the distribution is plot in red.
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160 nm. For each region of interest, typically 30000 to 40000 images of a 20.5 x 20.5 μm2 area
were collected with an exposure time of 30 ms. The irreversible photoactivatable protein mEos2
was activated with low continuous 405 nm laser intensity to guarantee very sparse activation
and minimize blinking, and excited with 561 nm laser intensity of ≈ 1 kW.cm−2. Molecules were
localized using Peakselector (IDL, courtesy of Harald Hess). The single molecule localization
procedure consisted of the following steps: a) fluorescent intensity peaks were detected on each
image, b) each peak was fitted to a two-dimensional Gaussian by nonlinear least-square fitting
to obtain x and y coordinates as well as the localization precision, c) images were “dedrifted”
using Au fiducial markers, d) localizations detected within less than the measured mean local-
ization precision (typically between 19 and 24 nm) in space and 300 ms in time were grouped to
account for blinking of mEos2. One grouped molecular position is counted as one Gag-mEos2
protein (see Gunzenhäuser et al. [59]).

3.7.0.3 Superresolution analysis results

Dense clusters of molecules were chosen to be submitted to the maximum likelihood analysis
described in the previous section. The data consisted of 33 clusters of N superresolved position
triplets {xj, yj, σj}, N ranging from 714 to 3302 proteins and σ̄ ranging from 15 nm to 21 nm.
Results are shown on figure figures 3.21a and 3.21b.
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Figure 3.21 – Sizes and completion distribution estimated using the maximum likelihood esti-
mation based the truncated sphere model for the labeled proteins distribution (blue line). We
emphasis the position of the mean (plain red line) and standard deviation (±1std. large red
dashes, ±2std. small red dashes)

The distribution of estimated radii (figure 3.21a) is the sum of normalized Gaussians cen-
tered on each of the estimated radii with variance given by the first diagonal coefficient of the
corresponding observed Fisher information matrix. Hence a radius estimated with a large error
bar contributes on a large interval and each particle has the same weight in the total distri-

138
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bution. The resulting distribution shows a strong peak at R=45 nm and an extended tail for
larger radii. The major peak is characterized by a mean and standard deviation of 49 nm and
6 nm respectively. One object in the sample exhibits a radius much larger than the mode (up to
twice the main peak radius). The outsider particle figure 3.22 exhibits an elongated shape and
is likely to be an aggregate or an ill-formed particle for which the procedure produces abnormal
result. Other apparent aggregates of virus like particles as well as clusters with abnormal shape,
obviously not consistent with the truncated sphere model, were present in the field of view but
not selected for the fit.

The fluorescent protein tags imaged are attached to the Gag N-terminus, located at the inner
surface of the Gag layer in the virus like particle. Literature values from cryo-EM measurements
give virus like particle sizes in terms of outer diameters. To take this into account for the
purposes of comparison, we added the Gag length of 25 nm to the size of the measured particles
reported by Wright et al. [134]. The adjusted mean radius of HIV-1 virus like particles in our
measurement is on average 74± 6 nm, larger than values from cryo-EM of 66± 9 nm in Wilk
et al. [133] work or 65 ± 17 nm according to Carlson et al. [20]. The size obtain is closer to the
values reported by Briggs et al. [16] for mature particles 73± 12 nm.
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Figure 3.22 – Palm image of the protein cluster responsible for the peak at large sizes. Dots
correspond to the most probable position for the detected labels whereas colors maps the density
of proteins as when each detection contribution is a Gaussian with a width given by positioning
uncertainty. Red circles show two putative aggregated particles

The distribution of completion angles estimated from the data is shown in figure 3.21b. This
distribution is constructed using the protocol used for the radii with the difference due to the
interval finite size normalization was performed on the portion of the Gaussian on the allowed
completion interval [π/2, π]. This guarantees that each particle has the same weight in the

constructed distribution. This distribution shows a single peak located at θ ≈ 4π

5
rad, with a

standard deviation of 0.3 rad. As discussed previously, the estimation of the completion is likely
to produce inaccurate results and deform the distribution at the boundaries. The shape of the
distribution obtained from real data is not qualitatively consistent with simulated scenarios the
full completion of all the object neither with a uniform distribution on the interval figure 3.20a.
The results might indicate that the method is sensitive to the 2/3 surface coverage reported
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by Carlson et al. [20]. However the value of the peak is only indicative of a range of completion
around this value for the imaged virus like particles and should be treated as such.

3.8 Conclusion
We have implemented and tested an estimation procedure to extract structural information

from superresolution images from (f)PALM and STORM methods when a parametric structure
is assumed for the labeled object. The method includes two successive steps.

In a first step the image is centered on its center of mass and oriented based on the moment
method principles. At this stage, only the three first moments of the experimental position
distribution are used which is the minimum requirement to achieve centering and orientation.
This both limits the analytical and computational calculations while good robustness towards
positioning error and outliers measurements is still guaranteed. In order to use the resulting
centered and oriented image, one should know the model density values in the reference frame
centered on its center of mass. The center of mass position is thus the only required knowledge.
The orientation of the centered object used in this work apply to any object with symmetry
axis and take the measured position as only input (no analytical derivation of the second
order moment coefficients is necessary). We further precise how to control the relevance of
the orientation by a direct calculation from the measured positions to estimate the orientation
variance.

In a second step, the remaining model parameters are estimated by the mean of maximum
likelihood method. We discussed the natural description of superresolution data in terms
of statistical sampling in a projected probability density which brings us to this method of
estimation. The well established maximum likelihood method is natural and simple to use when
one needs to find the best match inside a family of parametric probability density function. The
major difficulties are technical. First the evaluation of the probability density of measurement
including the positioning uncertainty consists in a Gaussian convolution and a projection (the
order is arbitrary and should be decided for convenience). Both are very classic mathematical
steps, however greedy in computational resources when the required precision is high. This
issue is compounded when the model density diverges at some points as for a projected surface
density in our case. A bulk model, with protein distributed in volume, would be simpler to
treat. We proposed a solution to regularize the density in the spherical case before the numerical
Gaussian convolution. We detailed what we found to be the most efficient computation strategy
in this scheme. Finally we set up the condition to use an optimization solver to efficiently find
the maximizer of the loglikelihood function, limiting the number of evaluations.

The method was tested on simulated data to investigate which information could be ex-
tracted from a known content. We thus investigated the methods statistical performance on
truncated spherical object with a sampling range compatible with the experiment.

As described in section 3.3, the modeling of the imaging process was simplified and trans-
lated in an effective procedure that would describe a theoretically perfect microscope. A dis-
crepancies between the simulated precision and the experimental situation is expected whenever
factor of error are not taken into account in the simulations. Concerning the physics of imaging
the following optical aspect can be mentioned: in the TIRF configuration used to image the
particle, the excitation field decreases with depth. As a consequence, the photon yield and the
positioning precision also decreases with depth. We did not take this effect into account on
the simulated the images. We basically took into account precision fluctuations by randomly
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assigning the measurement precision from typical distribution to each sample position. In this
work, the estimation method is typically designed for object whose size is of the order of the
measure uncertainty up to a few times this value and so smaller or a worse comparable to
the penetration depth (estimated at several hundreds of nanometers compared to HIV typical
diameter of 140 nm). Modulation of the emission intensity by the excitation intensity decay
should be typically, in the worse case, in [1, exp(1)] and, precision that goes as the square root
of the photon number (of the intensity), in [1, exp(1

2
)] . So relative fluctuations are of 30%-40%

comparable with the stochastic fluctuations of photon yield that we simulated. Were the sim-
ulation method to be used on larger objects, the positioning precision would certainly convey
information about the label depth and the shape of the image might also be altered to a larger
extend. In this case, to obtain the precision of likelihood estimation procedure by simulations
would require to generate more realistic images. In contrast, this does not affect the symmetry
of the image in 2D that is crucial for our centering and orientation methods.

We found that, in the truncated sphere case simulated in the test, the projected area of
the model was the dominant contribution to the likelihood, followed by the overall shape of
the projection. However, in the tested conditions of shape and sampling, distinction between
different parameters sets based on their inner variations of density seems a harder task. The
study of the global variations of the loglikelihood function on various test case provided a
good insight of the regions that conflict for determination. In such conditions we might need
a restriction of the parameter space to achieve a consistent estimation. This restrictions are
supplementary hypothesis on the model to make a decision between competitive possibilities.
They must be representative of the physical knowledge of the data submitted. Restriction
of the parameter space is the way to incorporate information on the data in addition to the
model within the strict likelihood theory. Were the supplementary informations available in the
form outcomes of penalization compared to other in a probabilistic way, the theory of Bayesian
estimation using a prior probability could be considered but is not in the scope of our work.

We tested the performance of the method on simulated images generated out of a large
population of truncated spheres with more than half completion. Accuracy of the method with
a sampling of N = 1500 positions are of the order of the nanometer (≈ 1.3 nm), much smaller
than the localization uncertainty of a single emitter (≈ 20 nm). The accuracy is constant over
the tested range, even with radius as small as positioning precision itself.

Conversely, we found that the estimation of sphere completion using the reconstruction pro-
cedure is less successful. A confusion between different parameters sets is likely to happen when
their related density have a similar projected contour even if the 3D reality is much different.
This is a limitation probably contributing to this reduced efficiency. This is particularly clear
for nearly complete spheres and hemispheres viewed from the top. The projection hardens the
determination of the orientation of the particle in the focal plane which impacts the comple-
tion fit validity. Those effects accounts for the large spread at the extremes of the interval.
Eventually, a part of the complete particle are falsely identified as half complete and vice-versa.
Overall the balance of wrongly estimated particle is positive at the center of the interval which

results in an overestimation of the number of particle with completion in
[
2π

3
,
5π

6

]
and negative

close to full completion.
The aforementioned reduced efficiency for the estimation of completion at the single object

level only partially distorts an ensemble measurement. Nevertheless, we observed with the
simulated data that for completion values uniformly sampled on an interval [θ−, θ+], the maxi-
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mum likelihood estimation provides completion values centered on this interval, and marginally
spread values outside of this range. This information can be therefore used in order to roughly
define the range of variation for the completion of the imaged objects (see figure 3.20). Yet,
a better solution would be to use data with 3D information to avoid the loss of information
inherent to projection. Depending on the solution chosen to implement the 3D imaging, the po-
sitioning precision is likely to be inhomogeneous with depth in addition to the effects originating
from the TIRF configuration. This effect has been investigated theoretically by simulation of
the optical devices in Badieirostami et al. [7]. In both bi-plane and astigmatic setup, the ex-
pected fluctuations of the positioning precisions are typically lower than the variation of photon
yield by the inhomogeneous TIRF excitation field or the fluorophore stochastic emission. But
in the most commonly used astigmatic setup, the deformation of the point spread function give
rise to an anisotropic localization precision in the (x, y) plane (see figure 3.23), thus the overall
shape of the image is deformed in the plane compare to the original object which impairs the
orientation efficiency of the moments method. The bi-plane imaging method has the advantage
to keep a theoretical precision isotropic in (x, y) and relatively constant with depth within the
imaging volume of depth 600 nm chosen for the simulation.

However, in the reverse problem of estimating the best match for a given image, the position-
ing precision is directly estimated from the measurements. Spatially inhomogeneous positioning
error should primarily impact the orientation of particle found by the moment method. Then
the validity of the average positioning error approximation we used can be limited by the evo-
lution of the positioning error with depth. An important variation of positioning error with
depth would demand to take into account each point positioning error. This would require much
longer computation but the likelihood method exposed in this work would remains valid. This
is then on the side of the superresolution data treatment that limitations may arise preventing
a correct estimation of the positioning uncertainty.
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Figure 3.23 – Minimal theoretical positioning error evolution with emitter distance z to the
focus plane for two 3D superresolution imaging setups: astigmatic setup (red) or two planes
setup (green). Simulations were made using a fixed number of photons per emitter (N = 103)
at wave length λ = 630 nm on a CCD of 25× 25 pixels of effective width 160 nm in the focus
plane, with a uniform background noise of 2 photons/pixel. Both simulated setups are designed
to reconstruct the z position over a depth Δz = 600 nm (blue area). The typical size of the
human immunodeficiency virus is show (black circle). The plot on the left shows the in plane
positioning errors σx (dots) and σy (plain line), the plot on the right shows the error along
optical axis σz (dashed). (adapted from Badieirostami et al. [7])
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We analyzed PALM images obtained on immature HIV-1 virus like particle using the de-
veloped method in light of our simulations. The distribution of observed radii (figure 3.21a) is
characterized by a mean and standard deviation of 49 nm and 6 nm respectively. The fluorescent
protein tags that are imaged are attached to the Gag N-terminus, located at the inner surface
of the Gag layer. Literature values from cryo-EM measurements give virus like particle sizes
in terms of outer diameters. To take this into account for the purposes of comparison, we add
the reported Gag length of 25 nm to the size of the measured particles (Wright et al. [134]). The
adjusted mean radius of HIV-1 virus like particles in our measurement is on average 74± 6nm,
larger than values measured in T-cells from cryo-EM of 66± 8 (Wilk et al. [133]) and 65± 17nm
(Carlson et al. [20]). Many factor affect the measure. The fitted data were obtained in virus like
particle grown from a different cell line that in our reference article and this is known to affect
the virus formation. Furthermore, our estimation of the virion radius from the label measured
radius take into account neither the label size, which is of the order of 4 nm (Bates et al. [11]),
not the possible effect on the particle structure of the fused protein. On the other hand, the
order of magnitude is credible and the approach allows to quantitatively estimate spatial fea-
ture of the imaged object with greater precision than the localization precision limit, providing
insight of the variation in a sample for instance. In this sense, we note that the analysis was
precisely able to point out an ill formed HIV-1 virus like particle in the submitted set of objects
(see figure 3.22).

We were also able to estimate the completion distribution. The main peak of the completion

distribution is found at approximately θ =
5π

6
rad. As discussed previously, the value of the

peak is only indicative of a range of completion around this value for the imaged virus like
particles. Due to the increased uncertainty of the maximum likelihood estimation for closure,
rather than giving a quantitative interpretation, we show that we can distinguish between
complete versus incomplete closure. Our finding of incomplete closure is consistent with the
2/3 surface coverage reported in Carlson et al. [20]. These results are presented in an article
submitted for review at Biophysical Journal.

The maximum likelihood reconstruction method proposed in this work can be broadly ap-
plied to analyze at the single object level other features imaged by superresolution-microscopy
with known parameterizable shape. However, it is not possible to extract from the data more
information than it carries, even though the optimization procedure always provides a result.
It is therefore crucial to evaluate the amplitude of fluctuations in the estimated parameters for
a fixed set of parameters using control tests as described in this article or theoretical calcula-
tions when available. For instance, we were also willing to reconstruct geometries for simulated
budding sites. Due to the small number of sampling points, the strong positioning uncertainty,
small observation angles φ, and closely related shapes, estimated parameters would probably
not be meaningful. In such cases, improvements to the data such as 3D localizations or reduced
positioning uncertainty σ̄ would be required to make further progress. Brighter synthetic dyes
used in STORM technique could potentially give a better positioning precision that the one
reached in our data (see Malkusch et al. [88]). Fortunately, technological advances in the field
continue to improve image quality, and will allow maximum likelihood to become a more power-
ful tool in the future. Overall, maximum likelihood estimation applied STORM and (f)PALM
data appears a promising method to obtain quantitative measurements on structures, especially
those showing variability.
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Conclusion

In this work, we addressed the question of the self assembly of proteins during the for-
mation of the viral bud at the cellular membrane. Using the framework that describe close
system assembly as in-vitro, we studied the formation of the virus as a succession single protein
additions which is known as the assembly line model. We extended the assembly line model to
open systems and studied the response of the system to a constant production of proteins on
time according to various scenarios of binding kinetics.

At steady state, the capsomers leaving the cell as complete virus balance the capsomer pro-
duction and the flux of capsomers throughout the system maintain it out of equilibrium. This
is the main difference with the closed system. In closed system the equilibrium size distribu-
tion shows either complete capsids or capsomers in solution (Zlotnick [139]). No intermediates
can be seen. However, the capsids formed in the in-vitro experiment are more stable than the
thermodynamical equilibrium would allow, suggesting a kinetic control of the reaction ( [119]).
The line assembly model including a nucleation step in a system containing an initially pure
solution of capsomers, indeed shows a time evolution either leading to a quasi-equilibrium size
distribution or a kinetically frozen system (Morozov et al. [98]).

In the open system, when the mean bending energy dominates the work to assemble a capsid
and no nucleation effect is considered, we found that all the intermediates from capsomers
to closed capsids, are likely to be present in the same proportions at steady state, which
is not compatible with the experimental observations. If the nucleation barrier is taken into
account, using the line tension model, all the intermediates populations are depleted accordingly
compared to the capsomers, yet intermediates beyond the typical nucleus are found in the same
amount resembling the distribution of clusters observed at the cell membrane (Gunzenhäuser
et al. [59]).

We studied the dynamic of the aggregation. The time evolution of the system is controlled by
the drift-diffusion properties of the equation and by the non linear coupling with the monomer
consumption. Compared to a closed system, the size distribution of the open system also
looks like a transportation front. However, this front does not stop to asymptotically tends
to the equilibrium distribution since capsomers are constantly added in the system. So the
front eventually reaches the absorbing boundary. Our main finding is that nucleation
barrier favors production of viruses by successive bursts in early production time
and that, according to the model, the observed size distribution should be peaked
with most of the growing viruses having the same sizes. We have shown that spacing
between successive bursts depends on the protein number in complete viruses. We also pointed
out a domain of low flux where the system does not reach the steady state and oscillations are
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Chapter 3. Superresolution image measurement

maintained.
In future study, the effect of the membrane mechanical deformation on the dynamic is to be

explored. It is expected that the bending change the dynamic and steady state by generating a
second barrier in the free energy landscape. The constant input flux is a crude model of protein
production in biological condition. More elaborated dynamic of the capsomers generation could
be tested now that the behavior is clarified in the simple case.

We have also considered a description of the time evolution of a single virus. Under the as-
sumption of a constant monomeric concentration we have proposed a analysis to experimentally
estimate the microscopic rates of aggregations. This analysis is however limited to the case of
a steady capsomer concentration. Would this requirement be satisfied in the experiment, the
method is a simple answer to the stochastic nature of the data. The modified Gillespie scheme
we built provides single particle trajectories that can be used as basis to simulate fluorescence
signal including experimental artifacts and evaluate the performance of the average solution for
real data treatment.

In addition of the model of virus growth, we have also developed a method to extract
morphological measurement on the superresolution images. To our knowledge no parametric
estimations had been previously attempted from superresolution point localization microscopy.
Our first aim was to reconstruct the shape of the budding virus directly on the membrane
from the superresolution data. We started however on the simpler analysis of complete virions
released from the cell and purified. In this situation, the background noise is lower and the
superresolution precision expected higher. The method we propose is based on maximum
likelihood estimation theory. It requires a parametric model of the labels distribution on the
object of interest and the superresolution data. The most likely parameters set given the
data is then calculated. We designed a procedure to simulate the PALM image from ideal
structures to test the procedure on known data. We set up a first procedure to orient the
images along their symmetry axis using the moments of the image. Our tests shown that
it is indeed possible to extract geometric measurement with finner precision than
the positioning measurement. Our study suggests that the likelihood estimation performs
better on distinguishing fluctuations of the contours and might need larger sampling density to
be consistent at finner level. We were able to determine the radius of the simulated truncated
sphere with an excellent accuracy (a precision finner that 3 nm for ∼ 103 localized labels with
an uncertainty in position on � 20 nm) whereas their completion was not well determined for
several projection angle. Test on real virus like particles gave realistic results compare to the
literature. Our tests suggest that our method is not efficient enough for our primary purpose to
study the shape of the budding viruses at the membrane cell, at least with the data at hand. In
the future it would be interesting to challenge the method with 3D data and labeled structures
of calibrated geometries.
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Appendix A
Linear fit in the least square sense

A.1 Position of the problem
A polynomial relationship is expected between the variable x tuned during an experiment

and the measured values y:
y = ax2 + bx+ c (A.1)

We are interested in the values of the model parameters �β = (a b c)t that best explains the
produced data.

In the case of an infinite precision in the determination of y, three measurement with
different value of x are enough to fully determine the parameters by solving:⎧⎨⎩

y1 = ax2
1 + bx1 + c

y2 = ax2
2 + bx2 + c

y3 = ax2
3 + bx3 + c

≡
⎛⎝y1
y2
y3

⎞⎠ =

⎛⎝x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

⎞⎠ .

⎛⎝a
b
c

⎞⎠ ≡ �Y = X.�β

(A.2)
As the measure is not error-free, the values of y are not known with infinite precision, and

we get instead:
zi = yi + εi (A.3)

Where εi is the measurement error. Thus the inversion of the system in equation (A.2) for
three chosen values of x, {x1, x2, x3} corresponding to three rounds of the experiment:⎧⎨⎩

z1 = ax2
1 + bx1 + c

z2 = ax2
2 + bx2 + c

z3 = ax2
3 + bx3 + c

(A.4)

will either lead to a result {a, b, c} that depends on the choice of the selected rounds of measure,
or be impossible (for instance two measures with the same values of x, yielding different y
obviously generate an incompatible system).

A.2 Least square method and generalization
The least square method to estimate the optimal parameters of a linear model from the

measured values was first published by Legendre [82] and which benefited from Friedrich Gauss

147



Chapter A. Linear fit in the least square sense

major treatment regarding it links to probabilities. Its core idea is that the best estimate of the
parameters is the one that minimizes the square of the distance between the values predicted
from the estimated parameters and the measured values:

�β∗ = argmin
�β

d(�Z, �Y (�β))2 (A.5)

With S(�β) = d(�Z, �Y (�β))2 often called the score function. “Best” as estimator property is
understood as “with minimal variance” among the linear unbiased possible estimators. The
Gauss-Markov theorem demonstrates this property in the case of measurements affected by
uncorrelated errors of equal variance and the euclidean distance (neither the exact form of the
distribution nor independence or identical distributions of the error is required). Generalization
to correlated errors with known covariance matrix Ω was made by Aitken [3] giving the Maha-
lanobis distance d(�Z, �Y )2 = (�Z − �Y )tΩ−1(�Z − �Y ) as the proper one regarding this case. This
is formally equivalent to apply a linear transformation on the variable to scale and decorrelate
the error and then use the least square estimator on those modified variables. Linear model
means that there is a linear relationship between the parameters and the observed values for
given variables values. The model in our example below is linear as any polynomial relationship
between variable and observation.⎛⎜⎜⎜⎝

y1
y2
...
yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x2
1 x1 1

x2
2 x2 1

...
x2
n xn 1

⎞⎟⎟⎟⎠ .

⎛⎝a
b
c

⎞⎠ (A.6)

A.3 Normal equations

The normal equations correspond to the mathematical solution of the minimization defined
in equation (A.5). We propose thereafter a derivation in the general case of correlated error
with known covariance matrix Ω (symmetric and positive definite):

S(�β) = (�Z − �Y )tΩ−1(�Z − �Y )

= �ZtΩ−1 �Z − 2�ZtΩ−1�Y + �Y tΩ−1�Y

(we used the fact that a scalar is not affected by transposition: �Y tΩ−1 �Z = �ZtΩ−1�Y )

= �ZtΩ−1 �Z − 2�ZtΩ−1.X.�β + �βtX tΩ−1X�β

differentiating with respect to �β :

∂�β S = −2�ZtΩ−1X + 2�βtX tΩ−1X

conditions for minimum: ∂�β S|�β∗ = 0 & X tΩ−1X > 0

�β∗ = (X tΩ−1X)−1(Ω−1X)t. �Z (A.7)

Equation (A.7) are called the normal equations of the least square method and are theoretically
sufficient to perfectly solve the generalized least squares problem (classic least square correspond
to the particular case Ω = 1 so that Mahalanobis distance is equivalent to the euclidean one).
Uniqueness of the solution is equivalent to have linearly independent columns in the matrix X.
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A.4. Error propagation - confidence interval

A.4 Error propagation - confidence interval

With the normal equation, we see that there is a linear dependency between the observation
vector and the estimated parameters: �β∗ = JX . �Z and that in absence of error we would get
�β0 = JX .�Y . We know by hypothesis that the measurement is made with an error �ε with zero
mean and variance Ω:

�Z = �Y + �ε | E (�ε) = �0 & E
(
�ε.�εt
)
= Ω (A.8)

Thus the covariance matrix of the estimated parameters is such that:

E

(
(�β∗ − �β0).(�β

∗ − �β0)
t
)
= E

(
JX .�ε.�ε

t.J t
X

)
= JX .E

(
�ε.�εt
)
.J t

X

= JX .Ω.J
t
X

(A.9)

This formula is well known as the “propagation of error”. Last transformation comes from the
linearity of the expectation, A being a constant matrix: E (A.X) = A.E (X). Eventually,
replacing Jx = (X tΩ−1X)−1(Ω−1X)t leads to the final formula for the covariance matrix of the
estimated parameters:

E

(
(�β∗ − �β0).(�β

∗ − �β0)
t
)
= (X tΩ−1X)−1(Ω−1X)t.Ω.Ω−1X(X tΩ−1X)−t

= (X tΩ−1X)−1X t.Ω−t.X.(X tΩ−1X)−t

= (X tΩ−1X)−1X t.Ω−t.X.(X tΩ−tX)−1

= (X tΩ−1X)−1

(A.10)

In the particular case of uncorrelated errors of variance σ2 in the original least square method,
it gives:

E

(
(�β∗ − �β0).(�β

∗ − �β0)
t
)
= σ2.(X t.X)−1 (A.11)

When the error is assumed normally distributed, the variance σ2 can also be estimated from the
residuals of the fit. S(�β∗) is then the sum of the square of identically distributed independent
normal random variables and thus S(�β∗)/σ2 follows a χ2 distribution with n−m degree of freedom
with expectation n−m. So:

(σ∗)2 � S(�β∗)
n−m

(A.12)

A rough derivation of the confidence region would consist in first estimating the unknown
covariance of the error and then use this estimate to build the parameters covariance estimate
to eventually assume a normal distribution. This would lead with a α confidence level:

(�β∗ − �β0)
t.X tX.(�β∗ − �β0) ≤ S(�β∗)

n−m
(
√
2 erf−1(1− α))2 (A.13)

This procedure leads to a strong underestimation when the degree of freedom is low n−m
(few numbers of points compared to the umber of variables). The correct choice, asymptotically
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Chapter A. Linear fit in the least square sense

equivalent as n � m, consists in constructing the ratio of the independent scalar variables
following χ2 distributions [121]:

(�β∗ − �β0)
t.X tX.(�β∗ − �β0)

σ2
∼ χ2

m (A.14)

S(�β∗)
σ2

∼ χ2
n−m (A.15)

The ratio is independent of the actual variance of the errors and follows the Fisher–Snedecor
F -distribution:

(�β∗ − �β0)
t.X tX.(�β∗ − �β0)

S(�β∗)
∼ m

n−m
F (m,n−m) (A.16)

The confidence region for the variable with a α confidence level is then obtain from the value
of the Fisher–Snedecor F -distribution 1− α quantile Q1−α

F (m,n−m):

(�β∗ − �β0)
t.X tX.(�β∗ − �β0) ≤ mS(�β∗)

n−m
Q1−α

F (m,n−m) (A.17)

The ensemble of points that satisfies the equation being an ellipsoid whose axes direction and
length are given by the eigenvectors and square root of the eigenvalues of X tX.

A.5 Further considerations about numerical stability
The inversion of X tΩ−1X, as well defined as it may be mathematically, is not stable nu-

merically (see Golub and Van Loan [53]). As each number is stored with a finite precision in a
computer memory, the rounding leads to inaccurate results that can strongly diverge from the
exact ones. Rather than using the normal equation, the orthogonal decomposition scheme is
used. A simple description of the method follows in the simplest case.

First, we assume that Ω−1 is symmetric and positive definite 1. As such, it can be Cholesky
factorized as Ω−1 = Ct.C with C a real value upper triangular matrix with real positive diagonal
entries. Secondly, any n×m real matrix with n ≥ m such as CX can be efficiently numerically
factorized in the form CX = Q.R where Q is an orthogonal matrix (QtQ = 1) of size n and R
is an upper triangular matrix of size n×m:(

C1 C2

)
.X =

(
Q1 Q2

)
.

(
R1

0

)
(A.18)

With those notations, we have:

Qt.C(�Z − �Y (β)) =

(
Qt

1.C1.�z −R1.�β
Qt

2.C2.�z

)
(A.19)

Which leads to the expression of the score function (inserting QtQ = 1):

S(�β) = (�Z − �Y )t.Ω.(�Z − �Y )

= (�Z − �Y )t.Ct(QQt)C.(�Z − �Y )

= (Q1C1�z −R1
�β)t.(Q1C1�z −R1

�β) + (Q2C2�z)
t.Q2C2�z

(A.20)

1. if Ω is only non-negative definite general least square method still makes sense defining Ω−1 as its pseudo
inverse, the minimization problem is well defined. However the numerical solution are more elaborated (see
Paige [107] for instance)
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Only the first term depends on β. So, the minimization with respect to �β is equivalent to cancel
this term:

R1.�β = Q1C1�z (A.21)

This is easily solved thanks to the triangular form of R1. As it avoid to form and invert the
matrix product X tΩ−1X, the QR factorization does not lead to a dramatic augmentation of
the conditioning number of the problem and numerical instability of the solution.

A.6 Fit of a Hessian matrix / a quadratic form

Curvature around the maximum can be obtained fitting a second order polynomial on the
values measured along all the directions and their combinations (�ux,�uy,(�ux + �uy)/

√
2, etc.). In

3D this would require six successive fits for each free parameter of the Hessian matrix. The
correct fit is made out in one direct adjustment on the 3D function. Thus we take into account
the correlations between all the degrees of freedom at once for all the direction. To go from
P (x) = ax2 + bx + c to its 3D generalization P ( �X) = ( �X − �X0)

tH( �X − �X0) + b where H is a
3× 3 symmetric matrix and b a scalar does not add any complexity to the fitting procedure.

H =

⎛⎝ pxx 1/2.pxy 1/2.pxz
1/2.pxy pyy 1/2.pyz
1/2.pxz 1/2.pyz pzz

⎞⎠ (A.22)

logL( �X) � �X tH �X − 2 �X t
0H �X + �X t

0H
�X0 + b (A.23)

= pxxx
2 + pxyxy + . . .+ Cte (A.24)

The Hessian matrix coefficients are directly extracted as the second degrees coefficients of the
polynomial. The maximum position estimation �X0 has to be calculated by the inversion of the
Hessian and first order coefficients (−2 �X t

0H
�X terms) and the constant part of the polynomial

is left as a nuisance parameters.
At a given point there is still a linear relationship between fitting coefficients and function

value. The classic least square estimation can be found using the above procedure:⎛⎜⎜⎜⎜⎜⎜⎝
logLtheo

1
...

logLtheo
i

...
logLtheo

n

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
x1y1 z1y1 · · · z1 1

...
... . . . ...

...
xiyi ziyi · · · zi 1

...
... . . . ...

...
xnyn znyn · · · zn 1

⎞⎟⎟⎟⎟⎟⎠ .

⎛⎜⎝p10
...
p1

⎞⎟⎠ (A.25)

�logL
theo

= L.�p (A.26)

One wants to find �p∗ such that:

p∗ = min
p

‖ �logL
mes − L.�p‖2 (A.27)

Using the factorization L = Q.R with Qt.Q = I an orthogonal N ×N matrix, and R an upper
triangular N×10 matrix with same rank as L. The equation becomes as shown in the previous
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section:

p∗.R = Qt|10×N . �logL (A.28)

norm of residuals = ‖Qt|N−10×N . �logL‖2 (A.29)

Associated covariance for each of the Hessian matrix coefficients can be extracted from the fit.
There is no constraints to assure that H will be negative definite and this relies on the shape
of the function around its maximum.
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Appendix B
Statistical estimation from point sampling in a
distribution

We detail here several calculations about statistical estimation of the moments of a distri-
bution sampled several times.

B.1 Uniform distribution on the truncated unit sphere

The unit sphere S is the surface formed by the ensemble of the point at unit distance from
the origin. In Euclidean coordinates its equation writes x2+ y2+ z2 = 1. Spherical coordinates
(radius r, polar angle ϑ and azimuthal angle ϕ) are the natural coordinates to parametrize the
sphere. With the transformation of coordinates:⎧⎨⎩

x = r sinϑ cosϕ
y = r sinϑ sinϕ
z = r cosϑ

(B.1)

A parametrization is: ⎧⎨⎩
r = 1
ϑ ∈ [0, π]
ϕ ∈ [0, 2π]

(B.2)

We will in the following consider the unit sphere whom a cap has been removed at the bottom
and that we will call the truncated sphere St:⎧⎨⎩

r = 1
ϑ ∈ [0, θ]
ϕ ∈ [0, 2π]

(B.3)

From the elementary surface dS = sinϑ dϑ dϕ in spherical coordinates, we deduce the uniform
measure on the truncated sphere

dP =
dS∫∫
St

dS
=

sinϑ dϑ dϕ
2π(1− cos θ)

ϑ ∈ [0, θ], ϕ ∈ [0, 2π] (B.4)
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Chapter B. Statistical estimation from point sampling in a distribution

So that the expectation of any function f defined on St is:

E (f) ≡
∫∫

St

f(ϑ, ϕ) dP (B.5)

And the probability density function is:

dSt(ϑ, ϕ) =
sinϑ

2πR2(1− cos θ)
(B.6)

Which can be rewritten as a surface density in 3D:

DSt(r, ϑ, ϕ) =
δ(r − 1)I[0,θ](ϑ).r. sinϑ

2πR2(1− cos θ)
(B.7)

With I[0,θ] the indicator function of the domain [0, θ] and δ(r) the Dirac delta distribution.
In the Cartesian coordinates base but keeping the spherical parameters, central moments

of the distribution write:

�μ◦
1 =

∫∫∫
R3

⎛⎝x
y
z

⎞⎠DSt(r, ϑ, ϕ) dr dϑ dϕ

=

∫∫∫
R3

⎛⎝r sinϑ cosϕ
r sinϑ sinϕ

r cosϑ

⎞⎠DSt(r, ϑ, ϕ) dr dϑ dϕ

=

⎛⎝ 0
0

cos2 θ
2

⎞⎠
(B.8)

μ◦
2 =

∫∫∫
R3

⎛⎝x2 yx zx
xy y2 zy
xz yz z2

⎞⎠DSt(r, ϑ, ϕ) dr dϑ dϕ− �μ◦
1 ⊗ �μ◦

1

=

⎛⎜⎜⎝
(2+cos θ) sin2( θ

2
)

3
0 0

0
(2+cos θ) sin2( θ

2
)

3
0

0 0
sin4( θ

2
)

3

⎞⎟⎟⎠
(B.9)

As x and y are identically distributed and uncorrelated, many terms are equal in the higher
central moments, also the symmetries of the distribution lead to many null moments. We
identify the different terms by the power exponent of each coordinates in xiyjzk such that the
order is p = i+ j + k. With those notations:
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B.2. Uniform distribution on a truncated sphere with random orientations

μ◦
1 =

{
cos2 θ

2
k = 1

0 else (B.10)

μ◦
2 =

⎧⎪⎨⎪⎩
(2+cos θ) sin2( θ

2
)

3
i = 2 or j = 2

sin4( θ
2
)

3
k = 2

0 else
(B.11)

μ◦
3 =

{ − 1
12
sin2

(
θ
2

)
sin2 θ i = 2 or j = 2

0 else (B.12)

μ◦
4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
20
(19 + 18 cos θ + 3 cos 2θ) sin4

(
θ
2

)
i = 4 or j = 4

1
60
(19 + 18 cos θ + 3 cos 2θ) sin4

(
θ
2

)
i = 2 and j = 2

1
15
(3 + 2 cos θ) sin6

(
θ
2

)
k = 2 and (i = 2 or j = 2)

sin8( θ
2)

5
k = 4

0 else

(B.13)

B.2 Uniform distribution on a truncated sphere with ran-
dom orientations

A linear transformation formed of two rotations R�uy ,φ, R�uz ,α and a dilatation of HR trans-
forms the truncated unit sphere in a sphere of arbitrary radius and orientation. We can derive
the expression of the moments for any of those generated distribution using integration by
substitution. Let’s introduce the Jacobian matrix J = �∇


X

�Y of the transformation in euclidean
coordinates:

J = R.

⎛⎝cosα − sinα 0
sinα cosα 0
0 0 1

⎞⎠ .

⎛⎝1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞⎠ (B.14)

Then the probability density function in the new coordinates is obtained from the probability
density function in the old ones so that:

P�Y (
�Y ) ∝ P �X(J

−1.�Y ) (B.15)

The constant is determined by using the normalization conditions and substituting �X = J−1�Y :

1 =

∫
P�Y (

�Y ) d�Y

=

∫
CteP �X(J

−1.�Y ) d�Y

=

∫
CteP �X(

�X)| det J | d �X

⇒ Cte = | det J−1|

(B.16)
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Eventually we can calculate the moment of the centered distribution as:

�μ1 =

∫
�Y P�Y (

�Y ) d�Y

=

∫
J. �X.| det J−1|.P �X(

�X).| det J | d �X

= J. �μ◦
1

= R

⎛⎝− cos(α) cos(θ/2)2 sin(φ)
− cos(θ/2)2 sin(α) sin(φ)

cos(θ/2)2 cos(φ)

⎞⎠
(B.17)

As well as:

μ2 =

∫
�Y .�Y tP�Y (

�Y ) d�Y

= J.μ◦
2.J

t

= R2R�uz ,α

⎛⎝μ◦
2x cos

2 φ+ μ◦
2z sin

2 φ 0 (μ◦
2x − μ◦

2z) cosφ sinφ
0 μ◦

2x 0
(μ◦

2x − μ◦
2z) cosφ sinφ 0 μ◦

2z cos
2 φ+ μ◦

2x sin
2 φ

⎞⎠Rt
�uz ,α

with: μ◦
2x =

(2 + cos θ) sin2( θ
2
)

3
and μ◦

2z =
sin4( θ

2
)

3

(B.18)

We note that those rules to calculate the moments for any possible orientations and radius of
the truncated sphere from the moment of the original vertical unit sphere are akin the rules of
tensors transformation.

B.3 The h-statistic

Given a set of N positions { �Xi} independently and identically sampled in a 3D distribution
D:

{ �Xi} =

⎧⎨⎩
⎛⎝xi

yi
zi

⎞⎠⎫⎬⎭ (B.19)

we examine the estimation of the underlying distribution properties. We focus on the best linear
unbiased estimators described by Halmos [61]. The obvious sample moments of the distribution
are estimates of the distribution moment around the origin:

emk =
1

N

∑
i

�Xi ⊗ . . .⊗ �Xi =
∑
i

�Xi

⊗k
(B.20)
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B.3. The h-statistic

where ⊗ is the natural tensor product so that:

�U ⊗ �V = �U.�V t =

⎛⎝xUxV xUyV xUzV
yUxV yUyV yUzV
zUxV zUyV zUzV

⎞⎠ (B.21)

�U ⊗ �V ⊗ �W =

⎛⎝ zW .�U ⊗ �V

yW .�U ⊗ �V

xW .�U ⊗ �V

⎞⎠ (B.22)

Where equation (B.22) represents a cube of 33 coefficients. Although those moments are quite
natural, the classical moments of the distribution have few interesting features for image anal-
ysis. Besides other drawbacks, they are not invariant to a simple translation. We are therefore
more interested in an estimator of the central moments of the distribution.

The intuitive estimators for the central moment, derived from the estimation of the classical
moments, are biased:

eμk �= 1

N

∑
i

( �Xi − �em1)
⊗k (B.23)

The proper unbiased estimators of the central moments are known as “h-statistic” and are build
from a linear combinations of the previous intuitive but biased estimators:

eμ2 =
1

N − 1

∑
i

( �Xi − �em1)
⊗2 (B.24)

eμ3 =
N

(N − 1)(N − 2)

∑
i

( �Xi − �em1)
⊗3 (B.25)

eμ4 =
N(N2 − 2N + 3)

(N − 1)(N − 2)(N − 3)

∑
i

( �Xi − �em1)
⊗4

− 3(2N − 3)N

(N − 1)(N − 2)(N − 3)

(∑
i

( �Xi − �em1)
⊗2

)2 (B.26)

Since sampling are independently drawn with the same probability density function D, the
probability density for the outcome of any results of the N successive trials is:

DN(x1 . . . xN) ≡
N∏
i=1

D(xi) (B.27)

Which enables us to determine the statistical behavior of the empirical estimators. We will
note in the following:

〈f( �X)〉 =
∫

f( �X)
N∏
i=1

D(xi) (B.28)

Hence the classical results:

〈 �Xi〉 = m1 (B.29)

〈 �Xi ⊗ �Xj〉 =
{ 〈 �Xi〉 ⊗ 〈 �Xi〉 i �= j

m2 i = j
(B.30)
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Chapter B. Statistical estimation from point sampling in a distribution

All the results come from those properties and linearity and different partition of the sum.
The values of the terms we sums only depend on the equality or inequality of their indices
(permutation included), hence:∑

i,j

fi,j =
∑
i=j

f= +
∑
i �=j

f �=

= Nf= +N(N − 1)f �=

(B.31)

∑
i,j,k

gi,j,k =
∑
i=j=k

g=,= +

(
3

2

) ∑
i=j �=k

g=, �= +
∑
i �=j �=k

g �=, �=

= Ng=,= + 3N(N − 1)g=, �= +N(N − 1)(N − 2)g �=, �=

(B.32)

For instance, the expectation of the empirical mean is:

〈 1
N

∑
i

�Xi〉 = 1

N

∑
i

〈 �Xi〉

=
1

N
Nm1

= m1

(B.33)

and its variance matrix is given by:

〈( 1
N

∑
i

�Xi)
⊗2 −m⊗2

1 〉 = 1

N2
(
∑
i,j

〈 �Xi ⊗ �Xj〉)−m⊗2
1

=
1

N2
(Nm2 +N(N − 1)m⊗2

1 )−m⊗2
1

=
1

N
(m2 −m⊗2

1 )

=
μ2

N

(B.34)

the expectation of the empirical covariance of the sample is

〈 1

N − 1

∑
i

( �Xi − 1

N

∑
j

�Xj)
⊗2〉 = 1

N − 1
〈
∑
i

�Xi

⊗2 − 2

N

∑
i,j

�Xj ⊗ �Xi +
1

N2

∑
i,k,l

�Xk ⊗ �Xl〉

=
1

N − 1

(∑
i

〈 �Xi

⊗2〉 − 1

N

∑
i,j

〈 �Xj ⊗ �Xi〉
)

=
1

N − 1

(
Nm2 − 1

N
(Nm2 +N(N − 1)m⊗2

1 )

)
= m2 −m⊗2

1

= μ2

(B.35)

The calculation of the variance matrix (fluctuations from one sampling to another) of the
empirical covariance is a cumbersome calculation that follows the same principle. We find:

var(eμ2(i, j), eμ2(k, l)) =
1

N
μ4(i, j, k, l)− 1

N
μ2(i, j)μ2(k, l)

+
1

N(N − 1)
(μ2(i, k)μ2(j, l) + μ2(i, l)μ2(j, k))

(B.36)
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B.3. The h-statistic

Which reduces in one dimension to:

var(eμ2) =
1

N
(μ4 − N − 3

N − 1
μ2
2) (B.37)

Using the same method we can calculate the covariance matrix of the empirical mean and
the empirical covariance:

var(eμ2(i, j), eμ1(k)) =
1

N
μ3(i, j, k) (B.38)

Which complete the calculation of the full 9×9 covariance matrix between each pair of elements
in �μ1 and μ2.

From the h-statistic equations (B.35) and (B.36) together with the reference distribution
moments equations (B.10) to (B.13) associated to the rules of tensor transformations, we can
calculate the mean and std. of point distributions sampled from the truncated sphere in any
orientation. Figure B.1 shows the evolutions with growing sphere completion θ. As we only have
access to the x and y coordinates of the sampled positions, only this part of the information is
displayed. As x and y are equivalent in the absence of tilt, we give twice the same information
(figures B.1a and B.1c). A tilt (φ �= 0) shows that the degeneracy can be removed observing
from a different point of view in all the situations but full completion (figures B.1b and B.1d).

We semi-automated the calculation on Mathematica
 by designing a set of rules to handle
the sums and their partitions. The followings rules enable the software to treat symbolical sum
expressions over various indices. All the sums in Mathematica
 are of the form:

Sum[term[i,j] ,{i,imax},{j,jmax}]

With the explicit assumption that any sum start at 1. Symbolic manipulations such as expan-
sion of the terms inside the symbolic sum, summation over dummy variables are not part of
the default behavior but can be added as rules to partially automatize the calculation.

ExpandInSum=HoldPattern[Sum[a_Times ,y___List]]:>Sum[Expand[a],y];
OutnInSum=

Sum[Times[a__,o:(Power[n,p_]|n|_Integer)],l__List]:>o Sum[Times[a],l];
SplitInSum=HoldPattern[Sum[a_+c_,y___]]:>Sum[a,y]+Sum[c,y];
DummiInSum=HoldPattern[Sum[x_,y___,{k_,m_},z___]/;FreeQ[x,k]]:>Sum[m x,y,z];
SumProduct=

{HoldPattern[Times[Sum[a_ ,y___List],Sum[b_,z___List]]]:> Sum[a b,y,z],
HoldPattern[Sum[a_ Sum[b_,z___List] ,y___List]]:> Sum[a b,y,z]};
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Figure B.1 – Moments of a N = 1500 positions sampling of truncated spheres calculated
according to h-statistics, tensor transformation and reference truncated unit sphere moments
depending on the completion angle θ. Expected values (plain lines) and ±3 standard deviation
(dashed lines –99% confidence bounds) are plotted for each coefficient to show their evolutions
and dispersions.
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B.3. The h-statistic

Corresponding to the following operations:∑
i

(ai + bi)
2 /.ExpandInSum−→

∑
i

a2i + b2i + 2aibi∑
i

pq.ai
/.OutnInSum−→ pq

∑
i

ai∑
i

ai + bi
/.SplitInSum−→

∑
i

ai +
∑
i

bi

N∑
i,j

ai
/.DummiInSum−→ N

N∑
i

ai

∑
i

ai
∑
j

bj
/.SumProduct−→

∑
i,j

aibj

∑
i

(
ai
∑
j

bj

)
/.SumProduct−→

∑
i,j

aibj

The partitions of the indices of the sum depending on the equality of subset of the sum
indices can also be treated by rules thanks to the SetPartitions function of the module
Needs["Combinatorica‘"]. The sum

∑
i,j,k aibjck is coded as the set {a, b, c} where each

element is implicitly summed over an independent variable. We want all the possible subsets:

SetPartitions[a,b,c]
={{{a,b,c}},{{a},{b,c}},{{a,b},{c}},{{a,c},{b}},{{a},{b},{c}}}

Then we multiply the element of the inner lists and apply 〈.〉 ≡ esp to the product. The
multiplicity of each new term is N(N − 1) . . . = N !/(N − L)!, L being the number of elements
of the second level list obtain by the function Length. All terms and their multiplicity are
eventually added:

moment[list_] := esp[Apply[Times, list]]
moments[list_] := Map[moment, list, 2]
multiplicity[L_] := N!/(N - L)!
momentsum[indicesSet_]:=
Apply[Plus,Map[multiplicity,Map[Length,SetPartitions[indicesSet]]]
*Apply[Times,moments[SetPartitions[indicesSet]],1],0]

momentsum[a,b,c]
=(-2+N)(-1+N)N esp[a]esp[b]esp[c]

+(-1+N)N esp[a b]esp[c]
+(-1+N)N esp[b]esp[a c]
+(-1+N)N esp[a]esp[b c]
+N esp[a b c]

Which is equivalent to equation (B.32) in the case a ≡ b ≡ c.
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Appendix C
Hessian matrix in a change of coordinates
system

We want here to determine the relationship between the Hessian matrix around an extremum
point in a new coordinate system and the Hessian of the function in the prim coordinate system.

Given a function R3 �→ R, we define a change of coordinates as the composition with a
continuous and twice differentiable function R3 �→ R3 (a diffeomorphisme) h:

F : �X1 �→ F [ �X1] (C.1)

h : �X2 �→ �X1 (C.2)

G : �X2 �→ F ◦ h[ �X2] (C.3)

There is no change of the bases vectors that remains constant (Cartesian system).
In all the following the operation (mainly derivation) regarding the coordinates system will

be labeled for clarification: ∇2 is thus the derivation operator on each of the coordinates of the
second system ∇ �X2

...
The Hessian matrix of a real-valued function is defined as

HF [ �X] = ∇ �X(∇ �XF )t

=

⎛⎝ F (2,0,0) F (1,1,0) F (1,0,1)

F (1,1,0) F (0,2,0) F (0,1,1)

F (1,0,1) F (0,1,1) F (0,0,2)

⎞⎠ [x, y, z]
(C.4)

where:

F (i,j,k) =
∂i+j+kF

∂xi∂yj∂zk
(C.5)

Hessian matrix is real-valued and Schwartz theorem ensures that for all C2(R) the Hessian
matrix is symmetric. Consequently, the matrix is diagonalizable with real eigenvalues (Spectral
Theorem). The eigenvalues of the Hessian matrix determines the principal curvatures around
the position, and its eigenvectors gives their directions. At points where the function F reaches
an extremum (i.d. the gradient of the function is null),the principal curvatures informs us about
the type of extremum:
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Chapter C. Hessian matrix in a change of coordinates system

— if all eigenvalues are positive (resp. negatives), this is a local minimum (resp. maximum)
of the function

— if one of the value is equal to zero, the extremum is called degenerated.

— if the eigenvalues have opposite signs, this is a saddle point.

We use the rule of compound functions derivation and derivation of a product to calculate
the Hessian matrix of the new function G in the new coordinates:

HG = ∇2(∇2(F ◦ h))t
= ∇2(∇2h.∇1(F ) ◦ h)t
= ∇2(J

t
h.∇1(F ) ◦ h)t

= ∇2((∇1(F ) ◦ h)t.Jh)
= J t

h.∇1(∇1(F ))t ◦ h.Jh + (∇1(F ) ◦ h)t.∇2(Jh)

= J t
h.(HF ◦ h).Jh + (∇1(F ) ◦ h)t.∇2(Jh)

(C.6)

Where Jh stands for the Jacobian matrix of the coordinate transformation:

Jh =

(
∂ hi

∂xj

)
ij

J t
h = ∇2(h) (C.7)

Let’s note that we also introduced a third order tensor: ∇2(Jh). The signification of the cal-
culation results is that the new curvature decomposes into the former curvature transported
at the image point and modified according to the variations of the coordinates transforma-
tion J t

h.(HF ◦ h).Jh, and a correction from the curvature of the coordinates transformation
appropriately transformed by the variation of the function (∇1(F ) ◦ h)t.∇2(Jh).

C.1 (Inverse) Hessian matrix at extrema

A continuous change of coordinates affects the space so that the neighboring points of the
image of a given point are image of its neighboring points before the change. When one point
is a local maximum (resp. minimum) in a given system of coordinate –that is to say value of
the function is greater (resp. smaller) that all neighboring values–, this properties is conserved
in such a coordinate change even if the shape of the space is altered (thus the higher derivatives
values). Therefore the extremum points are localized at the image of the former extremum
points and gradient of the compound function remains zero ∇1(F )◦h|extrema = 0. We now look
for the modification of the curvature around the image extremum.

The second term however is zero at the extrema points since as we have seen before ∇1(F )◦
h|extrema = 0. And eventually the new Hessian matrix is:

H∗
G = J t

h.H
∗
F .Jh (C.8)

thanks to which it is obvious that the new form does have the symmetry properties of a Hessian
matrix. Furthermore, as the change of coordinate is continuous, a former local maximum
remains a local maximum in the new system of coordinate.

And we can turn back to the Hessian matrix of F in its original coordinates. This latter can
be expressed using the Jacobian matrix of the coordinates change at the extremum or using the
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C.2. Application to the truncated sphere iso apparent surface transformation

inverse function Jacobian matrix at the transformed extremum thanks to the inverse function
derivation theorem (Jh−1( �X1) = J−1

h ( �X2)):

H∗
F = J t

h−1 .H∗
G.Jh−1 = J−t

h .H∗
G.J

−1
h (C.9)

Sometimes we rather want the inverse of the Hessian matrix than the Hessian matrix itself
–for instance to deduce a confidence interval. It makes mathematically no difference to inverse
the matrix we know and proceed with the previous formula, but in the computer world, we
only store rounded numbers in our finite size memory (see “float numbers”) and inversion is
an unstable operation, that we might be happy to skip. The formula at the extrema points is
obvious to invert as each elements can be inverted:

(H∗
G)

−1 = (Jh)
−1.(H∗

F )
−1.J−t

h (C.10)

And the invert of the Jacobian matrix is evaluated analytically to ensure stability.

C.2 Application to the truncated sphere iso apparent sur-
face transformation

(a) Initial quadratic approximation around the
optimum in the modified coordinate system

(b) Deformed shape around the transformed op-
timum in the initial coordinate system

Figure C.1 – Effect of the change of coordinate h on the likelihood function

In our work only one of the coordinates is affected by a change: R → RisoA(θ, φ). The
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Chapter C. Hessian matrix in a change of coordinates system

precious calculation can be explicitly written using this form:

logL(θ, φ,R) ⇔ (logL ◦ h−1)(θisoA, φisoA, RisoA) (C.11)

h−1

⎛⎝ θisoA
φisoA
RisoA

⎞⎠ ≡
⎛⎝ θisoA

φisoA
RisoA

g[θisoA,φisoA]

⎞⎠ h

⎛⎝θ
φ
R

⎞⎠ ≡
⎛⎝ θ

φ
Rg[θisoA, φisoA]

⎞⎠ (C.12)

g[θisoA, φisoA] =

√
Aapparent(θisoA, φisoA, 1)

π
(C.13)

Jh =

⎛⎝ 1 0 0
0 1 0

R.g(1,0)[θ, φ] R.g(0,1)[θ, φ] g[θ, φ]

⎞⎠ (C.14)
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Appendix D
Sampling resolution on a sphere

We consider a uniform density covering a truncated spherical shell. We sample this density
of presence by several consecutive identical measurement, i.e. dots are laid on the shell surface.
How to identify the smallest truncated area that one is able to discriminate with a given number
of dots on such a sphere ? Looking at the measure, any area empty of dots can be assumed
to be a void patch, but one has to verify the statistical significance of the observation. Indeed
sampling a perfectly covered sphere would also lead to empty areas due to the finite number of
sampling points. A simple, yet robust, test for the statistical significance consists in verifying
that the size of the presumed empty patch is greater that the one that can be expected by the
purely statistical fluctuations of the sampling. The size of the truncated section is bounded by
the smallest distance along the sphere surface between the points adjacent to this area. We
thus want to monitor the distribution of orthodromic distances 1 between each point and its
closest neighbor. Such distance d is the length of the arc linking the two points on the circle
centered on the center of the sphere. It is linked to the opening angle between the point by:

d = Rθ (D.1)

As for the opening angle between two points A and B on the unit sphere of center O, the
relation is:

θAB = tan−1

(−→
OA×−−→

OB
−→
OA.

−−→
OB

)
(D.2)

For a uniform sampling on a sphere, one expects the points to be homogeneously distributed
over the area. This means that, on average, the solid angle of 4π sr for the total sphere, is
divided between the N points ω̂ = 4π/N sr. Note that a solid angle ω̂ is related to the opening
angle θ̄ by the relation:

ω̂ = 2π(1− cos θ̄) (D.3)

Then, on a complete sphere, the area (solid angle) between neighboring points actually fluc-
tuates around this value, which leads for N points to the expected mean apparent opening
angle:

θ̄(N) = cos−1(1− 2

N
) ∼
N→∞

N−1/2 (D.4)

This mean opening angle gives the mean to voids length between sampled points. We ran a
series of simulations of sampling N points uniformly on a sphere to check this expression and

1. also called “great circle distance” this is smallest distance between two points on the sphere surface
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Chapter D. Sampling resolution on a sphere

evaluate the fluctuations around the mean value. The results are plotted in figure D.1-inset, in
terms of opening angle distribution.

We calculated the exact form of the closest neighbor distribution on a sphere following
the spirit of a demonstration reported by Chandrasekhar [28] due to Hertz for the volume case.
Without loss of generality, we choose R = 1 (equivalent to divide all distances by R), so that
the distance d = R.θ on the sphere simply writes d = θ. We write the probability to find the
first neighbor between the distance θ and θ + dθ as the simultaneous realization of the two
following independent events:

— we did not find any neighbors in [0, θ]

— we found a point in [θ, θ + dθ]

D(θ, 1) dθ =

(
1−

∫ θ

0

D(θ1, 1) dθ1
)∫ θ+ dθ

θ

ρ dS

D(θ, 1) dθ =

(
1−

∫ θ

0

D(θ1, 1) dθ1
)
2πρ sin θ dθ∫ θ

0

D(θ1, 1) dθ1 = 1− D(θ1, 1)

2πρ sin θ

D(θ, 1) = −Ḋ(θ, 1)2πρ sin θ −D(θ, 1)2πρ cos θ

4π2ρ2 sin2 θ

D(θ, 1) = Cte sin θ e−2πρ cos θ

D(θ, 1) =
πρ sin θ

sinh(2πρ)
e−2πρ cos θ

(D.5)

And so:

D(d, 1) =
πRρ sin( d

R
)

sinh(2πR2ρ)
e−2πR2ρ cos( d

R
) (D.6)

When the sampling density on the sphere is strong enough, so distance to first neighbor is
low (d � 1), this distribution is extremely well fitted by a Rayleigh distribution which is the
distribution of nearest neighbor distances in the plane case 2 with mean θ̄ following the above
relation (equation (D.4)). The Rayleigh distribution has only one degree of freedom:

fλ(θ) =
θ

λ2
e−θ2/2λ2

density function

θ ∈ [0,∞[ support

θ̄ = λ

√
π

2
mean (D.7)

Varθ =
4− π

2
λ2 variance

θrand[ε](N) = θ̄(N)
√−π ln ε upper bound of confidence interval with error level ε ∈ [0, 1]

The upper value of the confidence interval, θrand[ε](N), is the minimum measurable opening
angle on sampled sphere that makes sense regarding fluctuations of the sampling given an
arbitrary acceptable probability of error ε. An empty patch with opening angle outside of

2. the supports of those two distributions are never the less somehow different ([0,∞[ v.s. [0, π])! However
we notice that the density of probability is vanishingly small on [π,∞[ even for very low sampling densities.
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Figure D.1 – Limiting resolution for completion estimation due to finite sampling effect. The
dashed lines correspond to approximated confidence upper bound for various acceptable error
ε ∈ {0.9, 0.8, . . . , 0.1, 10−2, 10−3, . . .}. The expected distance between points θ̄ equation (D.4)
(solid blue) and its simple approximation θ̄ ∼ N− 1

2 (solid red). The average maximal distance
between two points observed on 5 103 simulation for each sampling N (plain green). Inset:
Several calculated distribution of nearest neighbor distance probability expressed as angle at
the sphere center for various number of sampled points N and approximated by the Rayleigh
distribution. Blue histogram shows a simulated distribution.

the confidence interval [0, θrand] is likely to indicate a void in the density of presence (with
probability P = 1− ε). This theoretical limit is nonetheless far from being reached in the case
described in the main text where a Gaussian convolution adds to the fluctuations and a planar
projection withdraw information.
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