
HAL Id: tel-01281384
https://theses.hal.science/tel-01281384v1

Submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An approach for Self-healing Transactional Composite
Services

Rafael Enrique Angarita Arocha

To cite this version:
Rafael Enrique Angarita Arocha. An approach for Self-healing Transactional Composite Services.
Other [cs.OH]. Université Paris Dauphine - Paris IX, 2015. English. �NNT : 2015PA090051�. �tel-
01281384�

https://theses.hal.science/tel-01281384v1
https://hal.archives-ouvertes.fr

N◦ attribué par la bibliothèque

Université Paris-Dauphine

ÉCOLE DOCTORALE DE DAUPHINE

THÈSE

préparée au LAMSADE

présentée par

Rafael ANGARITA

pour obtenir le grade de

Docteur de l’université Paris-Dauphine
Spécialité : Informatique

An Approach for Self-healing

Transactional Composite Services

Soutenue publiquement le 11 décembre 2015 devant le jury :

M. Rukoz Directeur de thèse Université Paris-Dauphine, France

Université Paris Ouest, France

M. Manouvrier Co-encadrant Université Paris-Dauphine, France

S. Reiff-Marganiec Rapporteur University of Leicester, U. K.

M. Younas Rapporteur Oxford Brookes University, U. K.

D. Grigori Examinateur Université Paris-Dauphine, France

S. Dustdar Examinateur Vienna University of Technology, Austria

P. Sens Examinateur Université Paris 6, France

Abstract

In this thesis, we present a self-healing approach for composite services supported

by knowledge-based agents capable of making decisions at runtime. First, we in-

troduce our formal definition of composite services, their execution processes,

and their fault tolerance mechanisms using Colored Petri nets. We implement

the following recovery mechanisms: backward recovery through compensation;

forward recovery through service retry and service replacement; and checkpoint-

ing as an alternative strategy. We introduce the concept of Service Agents, which

are software components in charge of component services and their fault tolerance

execution control. We then extend our approach with self-healing capabilities.

In this self-healing extension, Service Agents are knowledge-based agents; that

is, they are self- and context-aware. To make decisions about the selection of re-

covery and proactive fault tolerance strategies, Service Agents make deductions

based on the information they have about the whole composite service, about

themselves, and about what is expected and what it is really happening at run-

time. Finally, we illustrate our approach and evaluate it experimentally using a

case study.

Keywords: Composite Service, Self-healing Systems, Fault Tolerance, Auto-

nomic Computing, Dependability.

Résumé

Dans ce mémoire de thèse, nous présentons une approche d’exécution auto-

corréctive (self-healing) de services composites, basée sur des agents capables

de prendre, de manière autonome, des décisions pendant l’exécution des services,

à partir de leurs connaissances. Dans un premier temps, nous définissons, de

manière formelle, en utilisant des réseaux de Petri colorés, les services compos-

ites, leur processus d’exécution, et leurs mécanismes de tolérance aux pannes.

Notre approche offre plusieurs mécanismes de reprise sur panne alternatifs :

la récupération en arrière avec compensation ; la récupération en avant avec

réexécution et/ou remplacement de service ; et le point de contrôle (check-

pointing), à partir duquel il est possible de reprendre l’exécution du service

ultérieurement. Dans notre approche, les services sont contrôlés par des agents,

i.e. des composants dont le rôle est de s’assurer que l’exécution des services est

tolérante aux pannes. Notre approche est également étendue afin de permettre un

auto-recouvrement. Dans cette extension, les agents disposent d’une base de con-

naissances contenant à la fois des informations sur eux-mêmes et sur le contexte

d’exécution. Pour prendre des décisions concernant la sélection des stratégies de

récupération, les agents font des déductions en fonction des informations qu’ils ont

sur l’ensemble du service composite, sur eux-mêmes, tout en prenant en compte

également ce qui est attendu et ce qui se passe réellement lors de l’exécution.

Finalement, nous illustrons notre approche par une évaluation expérimentale en

utilisant un cas d’étude.

Mots clés : Services Composites, Système auto-corréctif, Tolérance aux Pannes,

Informatique Autonome, Sûreté de Fonctionnement.

Acknowledgements

My PhD thesis has come to an end; however, it is far from being the result of

only my work and effort. It has been possible thanks to numerous people who, in

different ways, have had a positive influence during all these years. Unfortunately,

I cannot list the name of every single person that I am grateful to.

Yudith Cardinale and the other Computer Science faculty of Universidad Simón

Boĺıvar in Venezuela, without you, none of this would have even started.

My supervisors Marta Rukoz and Maude Manouvrier, for your continuous sup-

port and guidance throughout this thesis. Thank you for always been there for

academic or non-academic support, and for always believing and trusting in me.

Stephan Reiff-Marganiec and Muhammad Younas, for all your support, for

agreeing to review my thesis, and for the valuable feedback you gave me. Also,

thank you for your patience despite all the bureaucratic problems we encountered.

Schahram Dustdar, for all the feedback you gave me and for always being ready

to answer my emails in the most sincere way. Daniela Grigori, for always being

ready to help me and to talk with me despite your busy schedule. Pierre Sens,

for immediately agreeing to be part of the jury of my defense.

The Computer Science faculty of LAMSADE, for always supporting me and

trusting me. The administrative staff of LAMSADE, I would have been lost

without you. The PhD students of Université Paris Dauphine, you made my

PhD more interesting, fun, and enjoyable.

My family, for always being there for me, believing in my work, and my capacity,

despite of living more than seven thousand kilometers away from me.

Laure, for dealing with my long nights working, unconventional work sched-

ule, travels, and worries. Thank you for making my life better, supporting me,

believing in me, and endless support and patience during all these years.

Résumé étendu

In this part, we present an extended resume of this thesis in French.

Chapitre 1. Introduction

Si nous regardons en arrière au début de la dernière décennie, plus précisément en

2001, quand tout était fait manuellement par des ingénieurs et des programmeurs,

IBM a publié le manifeste Autonomic computing : IBMs perspective on the state

of information technology [44] exprimant les préoccupations existantes au sujet

de l’augmentation inévitable de la taille et la complexité des systèmes informa-

tiques. Pour IBM, il était clair que cette complexité des systèmes hétérogènes et

distribués minimiserait les avantages de la technologie de l’avenir ; par conséquent,

la résolution du problème croissant de complexité était le “prochain Grand Chal-

lenge”. Deux ans plus tard, est apparu l’article The Vision of Autonomic Com-

puting [50] oú Kephart et Chess ont réaffirmé que la seule solution à la crise de

la complexité du logiciel était à travers des systèmes informatiques qui s’auto-

gérent. Ils ont présenté le concept de l’auto-gestion comme le bloc principal de

la construction de l’informatique autonome. Le concept de l’auto-gestion est

composé par les quatre aspects suivants : auto-configuration, auto-optimisation,

auto-guérison, et auto-protection.

Dans cette thèse, nous nous concentrons sur la propriété d’auto-guérison, ce

qui a été décrit par Kephart et Chess comme la capacité du système à détecter,

diagnostiquer, et réparer automatiquement les pannes. Dans un article publié en

2007, Ghosh et ses coauteurs ont présenté les concepts maintenant bien connus

concernant les propriétés et les états des systèmes auto-corréctifs [37]. Ils ont

expliqué que la vision de systèmes à grande échelle était déjà une réalité et que la

recherche sur les systèmes auto-corréctifs était active. En 2011, Psaiser et Dustar

ont publié un article montrant le progrès de la recherche en auto-guérison [71]. Les

viii Résumé

domaines de la recherche en auto-guérison concernent les systèmes embarqués, les

systèmes d’exploitation, les systèmes basés sur l’architecture, les systèmes basés

sur des multi-couches, les systèmes middleware-réflecteur, les applications multi-

agents, la Programmation Orientée Aspect, les systèmes de découverte, et les

systèmes basés sur les services Web et la Qualité de Service (QoS).

Plus récemment, le paradigme de l’Internet des Objet a gagné du terrain à

la fois dans l’industrie et dans la recherche académique [17]. Il a également été

inclus par le US National Intelligence Council dans le report “Disruptive Civil

Technologies - Six Technologies With Potential Impacts on US Interests Out to

2025” [1]. L’Union Européenne a investi plus de 100 millions d’euros dans des

projets liés à l’Internet des Objets, et le gouvernement de la Chine a publié le

12ème plan de développement de l’Internet des Objets [30]. Les applications de

l’Internet des Objets sont censées avoir un impact énorme dans le domaine du

transport et la logistique, de la santé, et des environnements intelligents. En effet,

l’une des applications les plus importantes de l’Internet des Objets concerne le

système de santé, lorsque les patients doivent être constamment surveillés par

des dispositifs implantés qui communiquent automatiquement avec les systèmes

hospitaliers [23, 88].

Dans Internet of Things Strategic Research Roadmap [91], Vermesan et ses

coauteurs montrent que le comportement autonome et responsable des ressources

est l’une des quatre tendances les plus importantes qui formeront l’avenir de

l’Internet des Objets dans les prochaines années. Nous extrayons le paragraphe

suivant en anglais :

“ ... the trend is towards the autonomous and responsible be-

haviour of resources. The ever growing complexity of systems, possi-

bly including mobile devices, will be unmanageable, and will hamper

the creation of new services and applications, unless the systems will

show “self-*” functionality such as self-management, self-healing and

self-configuration.”

Même si cette thèse ne tient pas en compte des aspects spécifiques du paradigme

de l’Internet des Objets, nous nous sommes inspirés du nombre croissant de ser-

vices dû à l’explosion des objets connectés, et de l’impact que les applications

composées par ces services auront sur nos vies. Par conséquent, dans cette thèse,

nous nous concentrons sur les aspects d’auto-guérison de services composites, où

les services composants peuvent être des services Web / API traditionnels, ou des

services offerts par des objets dans l’Internet des Objets.

Résumé ix

Contributions and publications

Cette thèse inclus les concepts et les résultats publiés dans les articles suivants :

[12] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. FaCETa: Back-

ward and Forward Recovery for Execution of Transactional Composite WS. In

Proceedings of the Fifth International Workshop on REsource Discovery (RED

2012), pages 1–15, Heraklion, Grece, 2012

[77] Marta Rukoz, Yudith Cardinale, and Rafael Angarita. FACETA*: Check-

pointing for Transactional Composite Web Service Execution based on Petri-Nets

. Procedia Computer Science, 10(0):874 – 879, 2012

[26] Yudith Cardinale, Marta Rukoz, and Rafael Angarita. Modeling Snapshot

of Composite WS Execution by Colored Petri Nets. In Resource Discovery, vol-

ume 8194 of Lecture Notes in Computer Science, pages 23–44. Springer Berlin

Heidelberg, 2013

[14] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Reliable Composite

Web Services Execution: Towards a Dynamic Recovery Decision . Electronic

Notes in Theoretical Computer Science, 302(0):5 – 28, 2014

[13] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Dynamic Recov-

ery Decision During Composite Web Services Execution. In Proceedings of the

Fifth International Conference on Management of Emergent Digital EcoSystems,

MEDES ’13, pages 187–194, New York, NY, USA, 2013. ACM

[16] Rafael Angarita, Marta Rukoz, and Yudith Cardinale. Modeling dynamic

recovery strategy for composite web services execution. World Wide Web, pages

1–21, 2015

[10] Rafael Angarita. Dynamic Composite Web Service Execution by Providing

Fault-Tolerance and QoS Monitoring. In Service-Oriented Computing - ICSOC

2014 Workshops and Satellite Events, Paris, France, November 3-6, 2014, Revised

Selected Papers, pages 371–377, 2014

[15] Rafael Angarita, Maude Manouvrier, and Marta Rukoz. A Framework

for Transactional Service Selection Based on Crowdsourcing. In Mobile Web

and Intelligent Information Systems, volume 9228 of Lecture Notes in Computer

Science, pages 137–148. Springer International Publishing, 2015

x Résumé

[11] Rafael Angarita. Responsible Objects: Towards Self-Healing Internet of

Things Applications. In Autonomic Computing (ICAC), 2015 IEEE International

Conference on, pages 307–312, July 2015

Dans [12], nous avons proposé une approche pour l’exécution tolérante aux

pannes des services composites qui étend celle de Cardinale et Rukoz [25]. Cette

approche est basée sur la réexecution de service, le remplacement de service, et

la compensation, et elle est formellement définie en utilisant le formalisme des

réseaux Petri Colorés. Dans [77], nous avons proposé l’idée générale et le cadre

d’un mécanisme de point de contrôle (checkpointing) pour les services composites.

Ce mécanisme est une alternative au mécanisme de compensation proposé dans

notre article précédent. Puis, nous avons présenté une modélisation formelle du

mécanisme de checkpointing en utilisant les réseaux Petri Colorés [26].

Par la suite, nous avons présenté une approche de tolérance aux panne prenant

en compte la Qualité de Service [14, 13, 16]. Dans [14], nous avons présenté une

étude de l’impact des différentes stratégies de récupération sur les services com-

posites. Dans [13], nous avons proposé un modèle pour décider dynamiquement

de la stratégie de récupération en terme d’impact sur la QoS des services com-

posites. Enfin, nous avons étendu le travail présenté dans les articles articles [14]

et [13] pour formaliser un modèle de QoS pour la tolérance aux pannes de services

composites [16]. Dans l’article [10], nous avons résumé la globalité de notre tra-

vail de recherche. Dans [15], nous avons présenté une approche de remplacement

de service qui est complémentaire à notre système d’exécution pour la tolérance

aux pannes de services composites.

Finalement, dans [11], nous avons présenté les perspectives futures que nous

envisageons dans le domaine de l’auto-guérison des applications de l’Internet des

Objets.

Notez que la plupart des titres de nos publications contiennent l’expression ser-

vice Web ; cependant, aucune de nos approches ne dépend des technologies telles

que SOAP ou styles architecturaux tels que REST. Nous abordons les services

dans nos approches à un niveau plus conceptuel.

Chapitre 2. Notions préliminaires

Dans ce chapitre, nous introduisons quelques notions de base sur la tolérance aux

pannes pour l’exécution des services composites. Nous illustrons l’Architecture

Résumé xi

Figure 1: Middleware pour l’Architecture Orientée Services (modifiée de : Atzori

et al. [17]).

Orientée Services et plaçons la contribution de cette thèse dans la couche Com-

position & exécution de services de la Figure 1. Ce middleware est composé des

couches suivantes :

• Objets : les objets physiques sont situés dans cette couche. Quelques ex-

emples d’objets physiques sont : les robots ; les téléphones mobiles ; les

serveurs Web ; et les montres intelligentes. Nous considérons que les logi-

ciels sans aucun lien avec le monde physique sont également dans cette

couche.

• Abstraction des objets : dans cette couche, l’application et les objets logi-

ciels sont représentés par un service publié sur Internet. En raison de la

nature hétérogène des objets et des logiciels connectés, l’un des principaux

objectifs de cette couche est d’harmoniser l’accès aux différents objets avec

un langage et une procédure communs.

• Gestion de services : dans cette couche, les services publiés sont découverts

et classés selon leur fonctionnalité. Par exemple, on peut trouver certaines

approches pour la découverte de service dans [66] et [79].

• Composition & exécution de services : cette couche fournit la composition

automatique des services en utilisant des approches telles que celle de [34].

xii Résumé

Aussi, cette couche a en charge le suivi de l’exécution de ces services com-

posites. Un aspect important de cette couche est la résilience aux pannes

et l’adaptation en fonction des changements dans le système.

• Applications : les applications sont au-dessus de l’architecture SOA. Ces

applications sont construites à partir des services et sont exécutées dans la

couche Composition & exécution de services.

Nous situons la contribution de cette thèse dans la couche Composition &

exécution de services du middleware SOA illustrée dans la Figure 1. Dans cette

couche, les objets ont déjà été exposés en tant que services, ont été découverts, et

classés par fonctionnalité. Les services composites sont créés automatiquement

ou manuellement.

Comme nous l’avons expliqué, et comme son nom l’indique, le SOA tourne

autour des services.

En 2004, le W3C a donné la définition de service Web suivante [92] :

“A Web service is an abstract notion that must be implemented

by a concrete agent. The agent is the concrete piece of software or

hardware that sends and receives messages, while the service is the

resource characterized by the abstract set of functionality that is pro-

vided.”

Cependant, cette définition a été donnée pour une norme particulière : les ser-

vices Web SOAP (aussi connus comme Big Web Services) [76]. Avec SOAP, il

existe un style architectural de développement des services : les services Web

RESTful basés sur le paradigme Representational State Transfer (REST) [76].

Beaucoup d’ouvrages existent sur ces deux technologies, et il y a eu beaucoup de

comparaisons des ces deux technologies afin de savoir laquelle est la mieux adaptée

aux applications de services composites [67, 76]. Les tendances de la recherche

et les services publiés sur Internet montrent que de nos jours les développeurs

préfèrent les services RESTful aux services SOAP. Nous pouvons également re-

marquer que les services sont principalement décrits en langage naturel dans

des pages Web ; par exemple, dans les annuaires de services publics tels que

ProgrammableWeb1. En revanche, les annuaires publics les plus importants de

1Le répertoire de service le plus populaire : http://www.programmableweb.com

http ://www.programmableweb.com

Résumé xiii

services SOAP (UDDI), maintenus par IBM et Microsoft, ont été fermés en 2006

(voir le Chapitre 10 de [76]). Les principales raisons de cette situation sont que

: les technologies SOAP, WSDL et WS- * sont perçues comme complexes et ont

rencontré de nombreux problèmes d’interopérabilité ; en revanche, les services dits

RESTful sont légers et se basent sur des normes W3C/IETF telles que HTTP,

XML, URI, MIME, l’infrastructure nécessaire est devenue omniprésente et il a

été démontré qu’elle passe à l’échelle [67, 76].

Dans cette thèse, nous considérons une définition plus générale des services ; en

d’autres termes, nous considérons que les services sont des opérations exposées

sur Internet qui sont indépendantes de leur mise en œuvre. Par conséquent,

les détails d’implémentations telles que SOAP ou REST sont hors du domaine

d’investigation de cette thèse.

Les services sont décrits en fonction de leur fonctionnalité et des critères de

qualité de service (QoS). Dans notre cas, la fonctionnalité d’un service est donnée

par les paramètres d’entrée et de sortie. Nous supposons que les paramètres

d’entrée et de sortie sont décrits en utilisant un langage d’ontologie telle que

celle de [3]. En particulier, nous adoptons la relation d’ontologie is-A, que nous

désignons comme ⊆is−A, pour déduire si un type de données est un sous-type

d’un autre type de données. Par exemple, pour deux types de données d1 et d0,

et la relation d1 ⊆is−A d0, nous disons que d1 est un sous-type ou du même type

que d0. La Figure 2 illustre une ontologie composée de 11 types de données. Les

arcs entre les types de données se réfèrent à la relation ⊆is−A, nous pouvons voir

que tous les types de données sont des sous-types de d0. Plus précisément :

d1 ⊆is−A d5 ⊆is−A d0

d13 ⊆is−A d2 ⊆is−A d0

d6 ⊆is−A d3 ⊆is−A d11 ⊆is−A d0

d7 ⊆is−A d4 ⊆is−A d0

d8 ⊆is−A d0

En ce qui concerne la Qualité de Service, le standard ISO 9000 :2000 [47] définit

la qualité comme :

“The degree to which a set of inherent characteristics fulfills a need

or expectation that is stated, general implied or obligatory.”

xiv Résumé

Figure 2: Ontologie d’exemple.

Il existe plusieurs modèles de qualité de service pour les services [73]. Dans ce

qui suit, nous présentons notre définition des critères de Qualité de Service :

• Temps de réponse : le temps estimé nécessaire pour achever une invocation

de service ; qui est, la durée entre une demande de service et la réponse du

service correspondant.

• Disponibilité : la probabilité d’obtenir une réponse correcte après une in-

vocation de service. Cela inclut la probabilité que le service est disponible,

qu’il s’exécute correctement, et que la transmission de message entre le

service et le demandeur a réussi.

• Prix : une mesure du coût d’exécution d’un service.

Parfois, l’opération exposée par un service élémentaire ne suffit pas pour résoudre

une tâche particulière, donc nous avons besoin de combiner plusieurs services

élémentaires. Ce nouveau service construit à partir de la combinaison de plus

d’un service est appelé un service composite. Un service composite peut également

être publié comme un service offrant une fonctionnalité et une QoS. Un scénario

d’utilisation très utilisé par les chercheurs au cours de la dernière décennie pour

étudier les compositions de service était l’application Réservation de Voyage2.

Dans ce scénario, une société d’agence de voyage offre la possibilité de réserver

2http://www.w3.org/2002/04/17-ws-usecase.html

http ://www.w3.org/2002/04/17-ws-usecase.html

Résumé xv

des forfaits de vacances complets, comprenant le transport, l’hébergement, les

activités, etc. L’agence de voyage peut alors sélectionner les services qu’elle juge

les plus appropriés pour créer un service composite qui répond aux demandes des

ses clients. Par exemple, l’agence de voyage sélectionne les services fournissant

une réservation d’avion, la location de voiture et la réservation d’hôtel. Notez

que ces tâches sont interdépendantes, louer une voiture et réserver un vol peut

être inutile si nous ne pouvons pas trouver un hôtel.

Pour résumer, nous disons qu’un service est une opération exposée sur le Web

avec des propriétés fonctionnelles et non fonctionnelles ; de la même manière,

un service composite est une combinaison de plus d’un service qui est également

exposée sur le Web avec des propriétés fonctionnelles et non fonctionnelles.

Nous présentons les pannes que nous considérons dans cette thèse, le modèle

transactionnel que nous utilisons pour fournir la tolérance aux panne automatique

pour les services composites, et les principaux mécanismes de récupération : la

récupération en arrière ; la récupération en avant ; et le checkpointing. Nous

présentons également une introduction sur les systèmes auto-corréctifs et sur les

Réseau de Petri colorés. Finalement, nous présentons un résumé des hypothèses

générales de cette thèse.

Les propriétés transactionnelles les plus utilisées pour les services élémentaires

sont pivot, compensable, et retriable [34]. Elles sont définies comme suit :

• Pivot(p) : un service est appelé pivot si ses effets restent pour toujours

et ne peuvent pas être annulés sémantiquement une fois qu’il a terminé

son exécution avec succès. Il s’agit de la propriété transactionnelle la plus

basique.

• Compensable (c) : un service est compensable s’il existe un autre service

qui peut sémantiquement annuler son exécution.

• Retriable (r) : un service est retriable s’il garantit une exécution réussie

après un nombre fini d’invocations. Cette propriété doit être combinée avec

les propriétés pivot ou compensable, créant les propriétés pivot-retriable

(pr) et compensable-retriable (cr).

Les services composites construits à partir des services offrant des propriétés

transactionnelles garantissent la cohérence du système et ont une propriété trans-

actionnelle agrégée comme suit :

xvi Résumé

• Atomique (a) : un service composite est atomique si au moins un de ses

services composant est pivot ou pivot retriable. Lorsqu’un service composite

atomique se termine avec succès, ses effets demeurent pour toujours et ils

ne peuvent pas être annulées. Si l’un de ses services composants tombe en

panne, le système est laissé dans un état sémantiquement similaire à celui

qu’il avait avant l’exécution du service composite.

• Compensable (c) : un service composite est compensable si tous ses services

composants sont compensables. Cela signifie qu’il existe un autre service

composite, contenant les services qui compensent les services du service

composite compensable, qui peut annuler sémantiquement les effets du ser-

vice composite compensable après son exécution réussie. Comme pour le

service composite atomique, si l’un de ses service composants tombe en

panne, le système est laissé dans un état sémantiquement similaire à celui

qu’il avait avant l’exécution du service composite compensable.

• Retriable (r) : un service composite est retriable si tous ses services com-

posants sont retriables. Un service composite retriable garantit l’exécution

réussie après un laps de temps limité. Cette propriété doit être combinée

avec les propriétés atomique ou compensable, pour créer les propriétés

atomique-retriable (ar) et compensable-retriable (cr).

Les services qui fournissent des propriétés transactionnelles sont utiles pour

créer des services composites fiables, assurant l’état cohérent de l’ensemble du

système, même en présence des pannes. La reprise sur panne d’une exécution

de service composite dépend de la propriété transactionnelle de ces composants :

il faut alors utiliser des mécanismes de récupération en avant ou en arrière [25],

ou retarder l’exécution du service composite [77]. Les principaux mécanismes de

récupération sont les suivants :

• Récupération en arrière : elle consiste à restaurer l’état du système avant

l’exécution du service composite ; c’est-à-dire, tous les effets produits par le

service en panne sont annulées par rollback, et les effets des services exécutés

avant la panne sont sémantiquement annulés en utilisant des techniques de

compensation (voir Figure 3 (a)) ;

• Récupération en avant : elle consiste à réparer la panne pour permettre au

service composite de poursuivre son exécution ; réessayer l’invocation de

service ou trouver un service remplaçant sont des techniques utilisées pour

fournir une récupération en avant (voir Figure 3 (b)).

Résumé xvii

Figure 3: Techniques de récupération.

• Récupération sémantique : elle est similaire à la récupération en arrière, sauf

que la récupération sémantique est effectuée après une exécution réussie

d’un service composite en compensant l’exécution de ses services com-

posants. L’idée est de laisser le système dans un état sémantiquement

proche de l’état qu’il avait avant l’exécution du service composite (voir Fig-

ure 3 (c)).

• Checkpointing : si une panne survient, le checkpointing consiste en contin-

uer l’exécution de la partie du service composite qui n’a pas été affecté par

cette panne, tout en retardant l’exécution de la partie affectée (voir Figure 3

(d)).

Chapitre 3. Contrôle d’exécution de services com-

posites et mécanismes de récupération

Dans ce chapitre, nous formalisons les services composites, leur exécution, et leurs

mécanismes de tolérance aux pannes en utilisant les réseaux de Petri Colorés.

Nous avons proposé un cadre composé de deux types de composants : un Co-

ordinateur d’Agents responsable de la gestion des aspects globaux d’exécution

xviii Résumé

Figure 4: Architecture du système d’exécution.

de services composites ; et, les Agents de Service qui exécutent les services et

sont en charge du contrôle de l’exécution et de la tolérance aux pannes. Notre

cadre assure l’exécution correcte et tolérante aux pannes de services composites,

et son modèle d’exécution distribué peut être implémenté dans des systèmes à

mémoire distribuée ou partagée. Les mécanismes fournis par notre approche sont

: la récupération en arrière par compensation, la récupération en avant par re-

exécution de service et remplacement, la réplication, et le checkpointing.

Au cours de l’exécution du service composite, il existe deux variantes de base de

scénarios d’exécution pour les services composants. Dans le scénario séquentiel,

les services se basent sur les résultats des services précédents et ne peuvent être

invoqués tant que les services précédents ne sont pas terminés. Dans le scénario

parallèle, plusieurs services peuvent être invoqués simultanément, car ils n’ont pas

Résumé xix

de dépendances de flux de données. La propriété transactionnelle globale d’un

services composite est affectée par ces scénarios d’exécution. Par conséquent, il est

obligatoire de suivre le flux d’exécution défini par le graphe du service composite

pour s’assurer que l’exécution séquentielle et l’exécution parallèle satisfont la

propriété transactionnelle globale.

L’exécution d’un service composite dans notre cadre est gérée par un Coordina-

teur d’Agents et une collection (Γ) d’Agents de Service (γ), organisés dans une ar-

chitecture trois tiers. La Figure 4 représente l’ensemble de l’architecture de notre

cadre. Dans le premier niveau, le Coordinateur d’Agents reçoit le service compos-

ite et son graphe de compensation correspondant, tous les deux représentés par

des réseaux de Petri Colorés. Ces réseaux de Petri Colorés peuvent être générés

automatiquement ou manuellement. Le Coordinateur d’Agent reçoit également

la préférence indiquant si le mécanisme de checkpointing est activé ou non.

Le Coordinateur d’Agents lance dans la seconde couche un Agent de Service

pour chaque service du service composite. La Figure 4 montre un exemple du

cadre pour un service composite contenant les services :

S = {s1, s4, s6, s7}

Par conséquent, les Agents de Service suivants sont instanciés :

Γ = {γ1, γ2, γ3, γ4}

où γ1 est en charge de s1, γ2 de s4, γ3 de s6, et γ4 de s7. Chaque agent de

service est responsable du contrôle de l’exécution de son service ; c’est-à-dire, les

Agents de Service :

• sont responsables de l’invocation de services ;

• surveillent l’exécution de leurs services correspondants ;

• envoient les résultats à leurs pairs selon le flux d’exécution ;

• prennent des actions de tolérance aux pannes en cas de panne.

xx Résumé

En répartissant la responsabilité de l’exécution d’un service composite à travers

de plusieurs Agents de Service, le modèle logique de notre exécuteur permet

l’exécution distribuée et l’indépendance de la mise en œuvre. Par exemple, ce

modèle peut être mis en œuvre dans un environnement de mémoire distribuée ou

partagée.

L’idée est de placer le Coordinateur d’Agents et les Agents de Service dans

différents noeuds physiques à haute disponibilité et fiabilité ; par exemple, dans un

environnement de cloud computing. Les connaissances nécessaires à chaque Agent

de Service peuvent être directement extraites des réseaux de Petri Colorés dans

un environnement de mémoire partagée ou envoyé par le Coordinateur d’Agents

dans une mise en œuvre distribuée.

Chapitre 4. Agents de services basés sur des con-

naissances

Dans ce chapitre, nous présentons les raisons pour lesquelles nous avons besoin de

dynamisme pour la choix de la stratégie de tolérance aux pannes et de surveillance

de la QoS : la récupération en avant est choisie si elle est possible ; si elle n’est pas

possible, la récupération en arrière est choisie. Le checkpointing est sélectionné

si l’utilisateur l’a choisi comme alternative à la récupération en arrière.

Avec le but de fournir un choix dynamique de la stratégie de tolérance aux

pannes, dans ce chapitre, nous introduisons une approche auto-corrective pour

les services composites. Dans cette approche, les agents de service sont des agents

basés sur des connaissances. Ils font la sélection de la stratégie de tolérance aux

pannes en se basant sur les informations qu’ils ont sur le service composite, sur

eux-mêmes, et sur ce qui est attendu et ce qu’il se passe réellement pendant

l’exécution. Sur cette base, notre conception considère une boucle d’auto-guérison

par Agent de service pour effectuer la détection, le diagnostic et la récupération

d’une manière décentralisée.

Le composant détection (Figure 5 (a)) prend en compte un source externe

et deux sources de données internes. L’information externe concerne la QoS

attendue ; par exemple, l’utilisateur peut permettre une certaine dégradation de

la QoS. L’information interne se réfère à la dégradation de la QoS des services

composants (par exemple, les variations négatives dans le temps d’exécution et

Résumé xxi

Figure 5: Boucle auto-corrective des Agents de Service.

le prix), et aux pannes de services, ce qui est également un cas particulier de

dégradation de la QoS.

Le composant diagnosis (Figure 5 (b)) effectue l’analyse du problème et la

détermination de l’état du service composite. Les trois diagnostics possibles cor-

respondent aux trois états d’un système auto-correctif : normal ; degraded ; et

broken. Le choix du mécanisme de récupération est influencé par les options

disponibles (par exemple, les services de replacement disponibles, les propriétés

transactionnelles, etc.), et les préférences de l’utilisateur (par exemple, la QoS

attendue, le checkpointing, etc).

Le composant recovery (Figure 5 (c)) est en charge de l’exécution des mécanismes

de tolérance aux pannes sélectionnés : la récupération vers l’arrière grâce à la

compensation ; la récupération en avant par reexécution ou remplacement ; la

prévention grâce à la réplication ; ou le retardement l’exécution par le checkpoint-

ing.

xxii Résumé

Chapitre 5. Évaluation expérimentale

Dans ce chapitre, nous présentons une mise en œuvre de notre cadre et une

évaluation expérimentale en utilisant un cas d’étude. Pour ce cas d’étude, nous

incluons une description de son scénario et de l’environnement correspondant.

Nous nous sommes intéressés à l’observation du cas d’étude pour trois systèmes

différents : un système sans tolérance aux pannes, un système transactionnel, et

un système auto-correctif. Ces trois systèmes différents sont définis comme suit :

• nt-sys : il s’agit d’un système qui a pas de mécanismes de tolérance aux

pannes. Si un service tombe en panne, le système génère une exception et

arrête son exécution.

• tp-sys : il s’agit de notre système d’exécution transactionnel présenté dans

le Chapitre 4. Il prend des décisions de récupération en tenant compte

uniquement des propriétés transactionnelles des services composants.

• sh-sys : il s’agit de notre approche pour l’exécution auto-corrective du

service composite présentée dans le Chapitre 5. Les décisions sont prises en

utilisant l’information et les règles contenues dans les bases de connaissances

des Agents de Service.

En conclusion, l’évaluation expérimentale présentée dans ce chapitre montre :

(i), la nécessité de fournir des mécanismes de tolérance aux pannes pour les ser-

vices composites ; (ii), comment notre approche du Chapitre 4 gère les pannes des

services composites en utilisant les propriétés transactionnelles ; et (iii), comment

notre approche auto-corrective du Chapitre 5 prend en compte la QoS pour la

prise de décision. L’évaluation présentée dans ce chapitre suggère que la combi-

naison des propriétés transactionnelles avec des capacités d’auto-guérison conduit

à des systèmes d’exécution plus intelligents ayant la capacité de gérer les exigences

de haut niveaux pour les exécutions de services composites avec une intervention

humaine minimale.

Chapitre 6. État de l’art

Dans ce chapitre, nous proposons une analyse des approches existantes pour

l’exécution fiable de services composites. Ces approches peuvent être classées en

Résumé xxiii

Recovery mechanism Eval.

a
p
p
ro
a
ch

p
u
bl
ic
a
ti
o
n
ye
a
r

tr
a
n
sa
ct
io
n
a
l
p
ro
pe
rt
ie
s

co
m
pe
n
sa
ti
o
n

re
tr
y

su
bs
ti
tu
ti
o
n

re
p
li
ca
ti
o
n

ch
ec
kp
o
in
ti
n
g

re
p
la
n
in
g

ig
n
o
re

be
pe
l

se
lf
-h
ea
li
n
g

in
tr
u
si
ve

si
m
u
la
ti
o
n

ca
se

st
u
d
y

Wenan Tan et al. [89] 2015 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Zheng et al. [102] 2015 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Li et al. [54] 2014 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Bushehrian et al. [24] 2012 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Saboohi and Abdul [78] 2012 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Behl et al. [20] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Brzeziński and et al. [22] 2012 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Dillen et al. [32] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Abdeldjelil et al. [8] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Cardinale and Rukoz [25] 2011 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Liu et al. [55] 2010 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Simmonds et al.[84] 2010 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

Sindrilaru et al. [85] 2010 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Zhou and Wang [104] 2010 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Lakhal et al. [51] 2009 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Yin et al. [96] 2009 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Moser et al. [61] 2008 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Subramanian et al. [86] 2008 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Halima et al. [40] 2008 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Moo-Mena et al. [60] 2008 ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Gotze et al. [38] 2008 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Baresi and Guinea [19] 2007 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Modafferi and Conforti [59] 2006 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Merideth et al. [57] 2005 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Table 1: Travaux sélectionnés.

plusieurs catégories : la recherche sur la tolérance aux pannes et la recherche sur

les systèmes auto-correctifs. Nous avons sélectionné les travaux les plus pertinents

publiés entre les années 2005 et 2015, et nous les comparons avec l’approche

proposée dans cette thèse. La Table 1 montre les travaux sélectionnés.

La plupart des auteurs évaluent leurs travaux respectifs en faisant des simula-

tions d’exécutions de services composites en utilisant des cas d’études. Habituelle-

xxiv Résumé

ment, les chercheurs se concentrent sur l’évaluation de la performance en mesurant

la surcharge introduite par leurs approches et en la comparant avec des systèmes

d’exécution de services composites sans mécanisme de tolérance aux pannes. En

raison de l’absence d’un banc de test ouvert, réel, et accepté pour les exécutions

de services composites, et de la complexité et des spécificités de la mise en œu-

vre de chaque approche, il est difficile de faire une bonne analyse comparative

d’une manière quantitative. Comme les chercheurs des travaux que nous avons

étudiés, nous nous limitons à la comparaison entre les approches par une analyse

qualitative en décrivant les différentes approches en termes de ce qu’elles offrent.

Plusieurs des approches étudiées sont des propositions pour étendre la spécification

SOAP et le langage WSDL ; par exemple, en interceptant, analysant et modifi-

ant les messages SOAP échangés. Les services basés sur SOAP ont perdu leur

popularité, et les registres publics les plus importants de services SOAP (UDDI)

ont été fermés il y a longtemps en raison de leur faible adoption, tandis que

la création de services RESTful semble être l’option préférée des développeurs

des services actuels. Par conséquent, la recherche basée sur SOAP a perdu son

impact, surtout lorsqu’elle se concentre sur des détails des enveloppes SOAP et

des documents WSDL. Néanmoins,, leurs concepts principaux et les techniques

mises en œuvre sont encore utiles indépendamment des technologies utilisées.

Certains de ces concepts sont : les étapes de détection, la surveillance, et la

récupération des systèmes auto-correctifs ; les techniques de redondance et de

diversité de conception pour augmenter la disponibilité et la protection contre les

pannes byzantines ; les techniques de roll-back et de compensation ; la médiation

de données pour résoudre les incompatibilités des données ; les remplacement des

services et des sous-graphes ; le checkpointing ; et les techniques de prédiction et

d’optimisation de ces techniques. En outre, de nombreuses approches de tolérance

aux pannes proposent des mécanismes de gestion des exceptions au niveau du

langage. Nous estimons que la tolérance aux pannes doit être gérée à un niveau

d’abstraction plus élevé. Enfin, certains travaux sont une combinaison entre des

techniques pour les phases de conception et d’exécution. Bien que nous ne nions

pas l’importance des techniques pour la phase de conception, dans cette thèse,

nous nous sommes intéressés à ce qui se passe et au processus de décision pendant

la phase d’exécution.

Dans cette thèse, tout d’abord, l’objectif est de formaliser les services compos-

ites, leur processus d’exécution, les mécanismes de tolérance aux pannes, et les

capacités d’auto-guérison. Ce modèle formel est indépendant du langage et des

technologies sous-jacentes. De plus, il nous semble pertinent d’avoir des agents

intelligents capables de gérer un service pendant l’exécution d’un service compos-

Résumé xxv

ite. L’idée est d’avoir un seul type d’agent, appelé agent de service, chargé de

l’exécution d’un service indépendamment de la technologie dans laquelle ce ser-

vice a été développé. Les agents de service doivent être capables de prendre des

décisions basées sur des connaissances du contexte et sur leurs propres connais-

sances. Parmi les stratégies de tolérance aux pannes que notre approche fournit,

nous avons : la récupération en arrière par compensation, la récupération en avant

par re-exécution de service et remplacement, la réplication, et le checkpointing.

Enfin, nous proposons des concepts et des techniques qui peuvent être facilement

mis en œuvre indépendamment des technologies sous-jacentes ; par exemple, les

agents de service peuvent être des abstractions de services SOAP ou RESTful,

et ces services peuvent représenter des objets physiques dans le monde réel. Ils

peuvent également exposer les fonctionnalités de systèmes logiciels.

En comparaison avec les techniques de tolérance aux pannes mises en oeuvre

dans les travaux de recherche du domaine, nous ne considérons pas les services

vitaux et non vitaux. Des approches de remplacement de sous-graphes et de

réorganisation du service composite, de tolérance aux pannes byzantine, et de la

médiation de données peuvent être facilement ajoutées à notre approche.

Chapitre 7. Conclusions et perspectives

Dans cette thèse, nous avons proposé une approche auto corrective pour l’exécution

de services composites. Notre approche est basée sur les propriétés transaction-

nelles et sur des agents à base de connaissances. Notre approche se situe dans

la couche de Composition & exécution de services de l’Architecture Orientée

Services présentée dans le Chapitre 2. Un des principaux avantages de notre

travail est l’utilisation des propriétés transactionnelles comme notion de base

pour la tolérance automatique aux pannes. Ainsi, nous avons mis en œuvre des

mécanismes d’exécution et de récupération qui fonctionnent d’une manière au-

tomatique sans avoir besoin de développeurs ou de tout autre type d’intervention

humaine. Puis, nous avons étendu notre approche transactionnelle avec des agents

à base de connaissances capables d’analyser l’exécution d’un service composite,

et de déduire de nouvelles informations à partir de cette analyse. L’information

ainsi déduite joue un rôle crucial dans le processus de prise de décision lors de

l’exécution. Un autre aspect important est le fait que notre approche étudie les

services à un niveau conceptuel pour fournir un modèle formel pour les exécutions

de services composites. Ce modèle est basé sur des concepts et techniques qui

peuvent être facilement mis en œuvre indépendamment des technologies sous-

xxvi Résumé

jacentes. Les services gérés peuvent être des services SOAP ou RESTful, avoir des

équivalents physiques dans le monde réel, ou peuvent correspondre à des fonction-

nalités de systèmes ou de ressources logicielles exposées sur Internet. Finalement,

notre travail a également établi la base pour une recherche future intéressante sur

la gestion et les aspects d’auto-guérison d’applications distribuées dans l’Internet

du Futur. Nos principales contributions peuvent se résumer comme suit :

• Nous avons proposé une modélisation formelle des services composites, de

leur processus d’exécution, et de leur mécanismes de tolérance aux pannes

en utilisant les Réseaux de Petri colorés.

• Nous avons proposé une mise en œuvre en utilisant les mécanismes de

tolérance aux pannes suivants : récupération en avant en réessayant ou

en remplaçant un service, et récupération en arrière avec compensation.

• Nous avons introduit le mécanisme de checkpointing comme une alternative

à la récupération en avant et à la récupération en arrière. En cas de panne,

ce mécanisme permet l’exécution de la partie du service composite qui n’a

pas été affecté par cette panne. La partie affectée peut rester en stand-by

pour être exécutée après.

• Nous avons étendu notre approche tolérante au pannes avec des propriétés

de systèmes auto-correctifs. Cette approche introduit des agents basés sur

des connaissances et permet une prise de décision plus sophistiquée. Nous

avons classé les types de connaissances des agents de la manière suivante :

connaissances du contexte et auto-connaissance.

Limitations

Les limitations les plus importantes de cette thèse sont les suivantes :

1) le manque d’un banc de test accepté par la communauté scientifique pour

faire des évaluations expérimentales.

2) la difficulté de déployer notre approche dans le monde réel en raison de

l’absence d’automatisation et d’interopérabilité entre les services publiés

par les entreprises.

Notez que ces limitations concernent tout le domaine de la recherche sur l’exécution

du services composites et pas seulement cette thèse.

Résumé xxvii

Perspectives

Nos perspectives de recherche concernent l’analyse des données générées par notre

système d’exécution de services composites, la mise en place de mécanismes

d’identification de pannes et de réaction plus sophistiqués, et la définition d’un

cadre d’auto-guérison pour l’Internet des Objets.

L’exécution de services composites et le big data

Le nombre de services publiés sur l’Internet a augmenté depuis leur introduction

; de plus, l’apparition des objets connectés a fait que ce nombre de services

augmente encore plus vite [91]. Des prédictions sur l’Internet des Objets estiment

qu’il y aura plus de 16 milliards d’objets connectés d’ici à 2020 [87].

Une des conséquences de cette explosion d’objets connectés est la génération

d’énormes quantités de données ; par conséquent, on prévoit que les volumes de

messages échangés pourraient facilement atteindre entre 1000 et 10000 par per-

sonne par jour [91]. Des chercheurs reconnaissent que l’un des défis les plus impor-

tants est l’analyse de toutes les données générées par ces objets connectés, car ces

données n’ont de valeur que si elles sont recueillies, analysées et interprétées [75].

Dans notre contexte, nos perspectives sont de collecter et de stocker les données

générées par notre système d’exécution de services composites, y compris le com-

portement des services, ainsi que les stratégies et leur impact sur l’exécution

du service composite. Ces données peuvent être analysées pour améliorer la

sélection des services de remplacement et la prise de décisions de récupération et

de stratégies proactives.

Identification des pannes

Dans notre approche, nous n’identifions pas le type de panne ; à la place, nous

traitons les pannes des services de manière générale. En cas d’échec, nous ap-

pliquons les mécanismes de tolérance au pannes en fonction de la disponibilité

de ces mécanismes et des préférences de l’utilisateur. Néanmoins, il est impor-

tant d’identifier le type de pannes puisque différentes pannes peuvent exiger des

réactions différentes [29]. Par exemple, une panne de délai d’attente peut être

résolue par une nouvelle tentative d’exécution du service, tandis que d’autres

pannes peuvent nécessiter un remplacement de service.

xxviii Résumé

De même, nous avons supposé que les services sont gérés par des agents fiables

qui ne tombent pas en panne. Par conséquent, il peut être pertinent de considérer

les pannes des agents ; par exemple, lorsqu’un agent participant à l’exécution d’un

service composite peut ne pas répondre.

Les systèmes auto-guérissants et l’Internet des Objets

Des chercheurs reconnaissent l’importance de la tolérance automatique aux pannes

des services composites comme un élément essentiel dans le paradigme de l’Internet

des Objets [68]. Comme nous l’avons expliqué dans cette thèse, les services ne

sont plus seulement des opérations logicielles exposées sur l’Internet, mais aussi

l’abstraction d’objets physiques capables de modifier le monde réel. Il est essentiel

de reconnâıtre ce caractère émergent des services pour faire face aux nouveaux

défis introduits par les services composites qui interagissent avec les deux mondes

: le monde physique et le monde virtuel. Les pannes dans ce type de services

composites peuvent conduire à la perte de temps de production, à des dommages

matériels, des catastrophes environnementales, ou à la perte de vie humaine [9].

Mrissa et al. [63] introduisent le concept d’avatar comme une extension virtuelle

pour les objets. Ces avatars ont un comportement autonome. Notre concept

d’agent de service n’est pas loin de celui des avatars. Par conséquent, nous

prévoyons d’étendre et d’adapter les agents de service avec des caractéristiques

similaires à celles des avatars. Par exemple, au lieu d’instancier un nouvel agent

de service pour chaque exécution d’un service composite, les agent de service

peuvent rejoindre des applications pour collaborer et participer à la réalisation

de l’objectif souhaité. Ainsi, nous obtenons un coordinateur de l’application à la

place d’un coordinateur d’agents. L’idée est d’avoir un coordinateur d’application

au lieu d’un coordinateur des agents pour les applications critiques. Une appli-

cation critique est un service composite avec des exigences de disponibilité et

de tolérance aux pannes élevées comme les applications pour la surveillance de

santé [23], l’Industrie 4.0 [68], ou d’autres applications présentées dans [9]. Le

coordinateur d’application gérera les agents de service participants, leur donnera

les informations requises pour atteindre les objectifs de haut niveau, et gérera des

mécanismes de déclenchement d’urgence si est nécessaire. En outre, il montrera

l’état de santé de l’application, d’autres informations pertinentes, et fournira des

paramètres d’administration à travers un site Web accessible aux utilisateurs.

Finalement, il est important de définir le sens des propriétés transactionnelles

dans le cadre des applications de l’Internet des Objets. Des concepts tels que la

Résumé xxix

compensation, la ré-exécution, le remplacement et la réplication peuvent avoir

des considérations particulières puisque nous considérons des services qui ont la

capacité de changer le monde physique.

Contents

Table of Contents 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research Question . 5

1.3 Challenges and Solution Requirements 6

1.4 Contributions and Publications 6

1.5 Organization . 8

2 Preliminaries 11

2.1 Service Oriented Architecture, Services, and Composite Services . 12

2.2 Composite Service Execution Control 16

2.2.1 Fault Hypothesis . 17

2.2.2 Transactional Properties for Services 18

2.2.3 Recovery Mechanisms . 22

2.3 Self-healing systems . 24

2.4 Petri Nets and Colored Petri Nets 26

2.5 Summary of General Assumptions 30

3 Composite Service Execution Control and RecoveryMechanisms 33

3.1 Modeling composite service executions 34

3.1.1 Backward Recovery . 42

3.1.2 Checkpointing . 48

3.1.3 Service Replacement . 52

3.2 Framework Architecture . 57

3.2.1 Fault Tolerance Algorithms 60

3.3 Conclusions . 69

xxxii CONTENTS

4 Knowledge-based Service Agents 71

4.1 Motivation . 72

4.2 A High-level Definition of Self-healing Composite Services 74

4.3 Knowledge-Based Service Agents 79

4.3.1 Self-awareness Knowledge 82

4.3.2 Context-awareness Knowledge 83

4.4 Knowledge Base . 96

4.4.1 QoS State Deduction . 99

4.4.2 Self-healing State Deduction 100

4.4.3 Action Deduction . 101

4.5 QoS Manager for Summation/Product QoS Criteria 105

4.6 Algorithms . 108

4.7 Conclusions . 111

5 Experimental Evaluation 113

5.1 Implementation Overview . 114

5.2 Case Study . 117

5.2.1 QoS dataset . 118

5.2.2 The e-Health System . 119

5.3 Results . 125

5.3.1 Composite Service Behavior (nt-sys) 125

5.3.2 Experimental Comparison Between nt-sys, tp-sys, and sh-sys128

5.3.3 Conclusions of Sections 5.3.2.1 and 5.3.2.2: tp-sys vs sh-sys 134

5.3.4 Self-healing Behavior . 135

5.4 Summary of Experimental Evaluation 138

6 Fault tolerance and self-healing composite service execution: an

state of the art 139

6.1 Fault tolerance for composite services 140

6.1.1 Transactional Properties-based Approaches 141

6.1.2 Redundancy and Design Diversity-based Approaches . . . 142

6.1.3 Exception Handling-based Approaches 143

6.1.4 Prediction and Optimization Approaches 146

6.2 Self-healing execution of composite services 147

6.2.1 BPEL-based approaches 147

6.2.2 Non-BPEL-based approaches 148

CONTENTS 1

6.3 Discussion . 150

7 General Conclusions 153

7.1 Summary . 153

7.2 Limitations . 155

7.3 Future Research Directions . 155

7.3.1 Fault Identification and Reaction 156

7.3.2 Self-healing Internet of Things Applications 156

7.3.3 Composite Service Execution and Big Data 157

A Algorithms 159

A.1 Expected Execution Time Knowledge and The Critical Path Method159

A.1.1 Critical Path Example . 160

A.2 Predecessors and Dependent Outputs 163

B Experiences on Random Composite Services 167

B.1 Estimated Execution Time and the Critical Path Algorithm . . . 168

B.2 Estimated Price and Availability 168

B.3 Dependent Outputs and Predecessors 169

bibliography 183

Chapter 1

Introduction

Contents

1.1 Motivation . 3

1.2 Research Question . 5

1.3 Challenges and Solution Requirements 6

1.4 Contributions and Publications 6

1.5 Organization . 8

1.1 Motivation

If we look back to the beginning of the last decade, more precisely in the year

2001 when systems were manually built and managed by engineers and pro-

grammers, IBM published the Autonomic Computing [44] manifesto expressing

their concerns about the inevitable increasing of the size and complexity of com-

puter systems. For them, it was clear that such complexity of heterogeneous

and distributed systems will minimize the benefits of future technology; there-

fore, solving the increasing complexity problem was the “next Grand Challenge”.

Two years later, we had the Vision of Autonomic Computing [50] where Kephart

and Chess reaffirmed that the only solution to the software complexity crisis

was through computing systems that can manage themselves. They presented

the concept of self-management as the building block of autonomic computing.

The self-management concept includes four main aspects: self-configuration, self-

optimization, self-healing, and self-protection.

4 Introduction

Kephart and Chess described the self-healing property of autonomic systems

as the system’s ability to automatically detect, diagnose, and repair software

and hardware problems. In a survey published in the year 2007, Ghosh and his

coauthors presented the now well-known concepts of self-healing states and prop-

erties [37]. They explained that the vision of large scale systems was already

a reality and that self-healing research was active. By 2011, Psaiser and Dus-

tar published a survey showing the advancements on self-healing research [71].

The collected self-healing research areas in [71] included embedded systems, op-

erating systems, architecture based, cross/multi-layer-based, multi agent-based,

reflective-middleware, legacy application and Aspect Oriented Programming, dis-

covery systems, and Web services and QoS-based.

More recently, the Internet of Things paradigm has gained ground, both in the

industry and in research worlds [17]. It was also included by the US National In-

telligence Council in the “Disruptive Civil Technologies - Six Technologies With

Potential Impacts on US Interests Out to 2025” conference report [1]. The Eu-

ropean Union has invested more than 100 million euros in projects related to the

Internet of Things, and the government of China released the 12th Five-Year Plan

for Internet of Things development [30]. Failures in this type of applications may

lead to loss of production time, equipment damage, environmental catastrophes,

or loss of human life [9].

The world of things is much more dynamic, mobile, and failure prone than

the world of computers, with contexts changing rapidly and in unpredictable

ways [56]. In the Internet of Things Strategic Research Roadmap [91], Vermesan

and his coauthors place autonomous and responsible behavior of resources as one

of the fourth macro trends that will shape the future of the Internet of Things in

the years to come. We extract the following paragraph:

“ ... the trend is towards the autonomous and responsible be-

haviour of resources. The ever growing complexity of systems, possi-

bly including mobile devices, will be unmanageable, and will hamper

the creation of new services and applications, unless the systems will

show “self-*” functionality such as self-management, self-healing and

self-configuration.”

Services exporting functionalities of things may be accessed on the Web and

may interact with existing traditional services to form value-added composite

1.2 Research Question 5

services [42], which is one of the key principles of the Service-Oriented Comput-

ing [43]. During the execution of a composite service, different situations may

cause a service failure [29]; due to the nature of services and their execution en-

vironment, they cannot be assumed to be stable. In this sense, more than ever

before, the reliable execution of composite services becomes a key mechanism to

cope with challenges of open-world applications in dynamic environments [82].

In this thesis, we are inspired by the growing number of services, the impact

that applications composed by those services will have on our lives, and therefore,

the increasing need of fault tolerance and self-healing mechanisms for composite

services. We deal with services at a conceptual level; they may be traditional Web

services/service APIs, or services offered by objects. Finally, the main objective of

this thesis is to tackle the composite service reliability problem by: (i), modeling

composite services, their execution processes, and fault tolerance mechanisms;

and (ii), defining self-healing properties of composite services executions.

1.2 Research Question

Given that composite services are executed in dynamic, unpre-

dictable, and heterogeneous environments, how may we provide QoS-

aware fault tolerance for composite service executions?

We tackle this question by formulating the following more specific questions:

1) If a service fails, which fault tolerance strategy is the most appropriate

regarding QoS?

2) Even during failure free executions, is it possible to improve QoS by taking

proactive measures?

By providing answers to these questions, our research aims to contribute to the

field of Service Oriented Computing, specifically in the areas of fault tolerance

and self-healing composite services.

6 Introduction

1.3 Challenges and Solution Requirements

Some major challenges and solution requirements of conceiving a self-healing

approach for composite services are the following:

• the formal modeling of composite services and their execution and fault

tolerance processes;

• the QoS monitoring of the whole composite service execution;

• the guaranteeing of the system consistency even in the presence of failures

by applying recovery mechanisms;

• the selection of the most appropriate recovery mechanism regarding QoS

and user preferences;

• the system must be as autonomous as possible, functioning with minimal

human intervention.

To deal with these challenges, we propose a self-healing composite service ap-

proach based on transactional properties and knowledge-based agents. We use

transactional properties as a deep-seated notion for fault tolerance, and we imple-

ment knowledge-based agents that are capable of representing facts and gathering

knowledge about a composite service execution to take smarter decisions at run-

time.

1.4 Contributions and Publications

The plan we followed during this thesis is the following:

1) the study and modeling of fault tolerance mechanisms for transactional

composite services;

2) the conception of a dynamic decision making mechanism for composite ser-

vices executions;

3) the definition of self-healing capabilities for composite services.

1.4 Contributions and Publications 7

In [12], we proposed a framework for the fault tolerant execution of composite

services as a continuation of the work of Cardinale and Rukoz [25]. This ap-

proach is based on service retry, service replacement, and compensation, and it is

formally defined using the Colored Petri net formalism. In [77], we proposed the

general idea and framework of a checkpointing mechanism for composite services.

This mechanism is an alternative to the compensation mechanism proposed in

our previous paper. Then, we have presented the formal modeling of the check-

pointing mechanism using Colored Petri nets in [26].

Later on, we presented a series of papers to provide QoS-aware fault tolerance

for composite services [14, 13, 16]. In [14], we presented a study of the impact

of the different recovery strategies on the execution time of composite services.

In [13], we proposed a preliminary model to dynamically decide which recovery

strategy is the best choice in terms of the impact on the composite service QoS.

Finally, in [16] we presented a complete model defining the different types of

knowledge required to make dynamic decisions during composite service execu-

tions. In the PhD Symposium paper [10], we summarized our work done so far

and highlighted our main research question and contributions. In [15], we pre-

sented a service replacement approach which is complementary to our execution

system for the composite services fault tolerance.

Finally, in [11] we presented some preliminaries ideas for building a frame-

work to provide self-healing capabilities for Internet of Things applications. This

framework serves mostly as future research directions of this thesis.

The complete list of published papers during this thesis is the following:

[12] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. FaCETa: Back-

ward and Forward Recovery for Execution of Transactional Composite WS. In

Proceedings of the Fifth International Workshop on REsource Discovery (RED

2012), pages 1–15, Heraklion, Grece, 2012

[77] Marta Rukoz, Yudith Cardinale, and Rafael Angarita. FACETA*: Check-

pointing for Transactional Composite Web Service Execution based on Petri-Nets

. Procedia Computer Science, 10(0):874 – 879, 2012

[26] Yudith Cardinale, Marta Rukoz, and Rafael Angarita. Modeling Snapshot

of Composite WS Execution by Colored Petri Nets. In Resource Discovery, vol-

ume 8194 of Lecture Notes in Computer Science, pages 23–44. Springer Berlin

Heidelberg, 2013

8 Introduction

[14] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Reliable Composite

Web Services Execution: Towards a Dynamic Recovery Decision . Electronic

Notes in Theoretical Computer Science, 302(0):5 – 28, 2014

[13] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Dynamic Recov-

ery Decision During Composite Web Services Execution. In Proceedings of the

Fifth International Conference on Management of Emergent Digital EcoSystems,

MEDES ’13, pages 187–194, New York, NY, USA, 2013. ACM

[16] Rafael Angarita, Marta Rukoz, and Yudith Cardinale. Modeling dynamic

recovery strategy for composite web services execution. World Wide Web, pages

1–21, 2015

[10] Rafael Angarita. Dynamic Composite Web Service Execution by Providing

Fault-Tolerance and QoS Monitoring. In Service-Oriented Computing - ICSOC

2014 Workshops and Satellite Events, Paris, France, November 3-6, 2014, Revised

Selected Papers, pages 371–377, 2014

[15] Rafael Angarita, Maude Manouvrier, and Marta Rukoz. A Framework

for Transactional Service Selection Based on Crowdsourcing. In Mobile Web

and Intelligent Information Systems, volume 9228 of Lecture Notes in Computer

Science, pages 137–148. Springer International Publishing, 2015

[11] Rafael Angarita. Responsible Objects: Towards Self-Healing Internet of

Things Applications. In Autonomic Computing (ICAC), 2015 IEEE International

Conference on, pages 307–312, July 2015

Note that most of these publications contain the phrase Web service; however,

none of them depends on technologies such as SOAP or architectural styles such

as REST. They deal with services at a conceptual level.

1.5 Organization

We structure the rest of this document as follows:

• Chapter 2 introduces some basic notions about fault tolerant execution of

composite services. These notions are: what a service and a composite

service are, and their place in the Service Oriented Architecture; a fault

1.5 Organization 9

hypothesis, transactional properties, and recovery mechanisms for compos-

ite services; an introduction to self-healing systems and Colored Petri nets;

and finally, a summary of the general assumptions of this thesis.

• Chapter 3 presents our approach to reliable execution of composite services

based on transactional properties. We formalize the execution and the

fault tolerance execution control of composite services using Colored Petri

nets. We consider the following recovery techniques: backward recovery

through compensation; forward recover through retrying and replacement;

and checkpointing as an alternative stand-by strategy.

• Chapter 4 builds on top of the framework presented in Chapter 3 to pro-

vide self-healing composite service executions. The self-healing approaches

still uses transactionality as a deep-seating notion of system consistency;

however, it employs knowledge-based Service Agents to make recovery and

preventive decisions considering the composite service execution context.

• Chapter 5 presents an implementation of our framework and evaluate it

experimentally using a case study. We implement and compare three dif-

ferent systems: a non-fault tolerant system, the transactional approach of

Chapter 3, and the self-healing approach of Chapter 4.

• Chapter 6 proposes a review of existing approaches to support the reliable

execution of composite services. This review includes approaches that may

be classified as fault tolerance and self-healing research.

• Chapter 7 concludes this thesis with a summary, contributions, limitations,

and future research directions.

Chapter 2

Preliminaries

Contents

2.1 Service Oriented Architecture, Services, and Com-

posite Services . 12

2.2 Composite Service Execution Control 16

2.2.1 Fault Hypothesis . 17

2.2.2 Transactional Properties for Services 18

2.2.3 Recovery Mechanisms 22

2.3 Self-healing systems . 24

2.4 Petri Nets and Colored Petri Nets 26

2.5 Summary of General Assumptions 30

This chapter recalls some important concepts and the context used throughout

this thesis. Section 2.1 presents the concepts of service and composite service,

and their place in the Service Oriented Architecture. Section 2.2 presents the

concepts related to the execution control of composite services which include: a

fault hypothesis to answer the question of which faults our system tolerates and

which it does not tolerate; the transactional model for composite services in which

we base part of our work; and the existing recovery mechanisms for composite

services using transactional properties. Section 2.3 provides a brief background

on self-healing systems. Section 2.4 presents an introduction to the Petri net

formalism we use to model composite services, their execution processes, and fault

tolerance mechanisms. Finally, Section 2.5 summarizes the main assumptions

that we consider in this thesis.

12 Preliminaries

Figure 2.1: Service Oriented Architecture based middleware (modified from At-

zori et al. [17]).

2.1 Service Oriented Architecture, Services, and

Composite Services

The Service Oriented Architecture (SOA) [4] provides a general architecture for

building service-based applications. Figure 2.1 illustrates a SOA based middle-

ware inspired from the one presented by Atzori and his coauthors in their 2010

Internet of Things survey [17]. This middleware is composed by the following

layers:

• Objects: physical objects are located in this layer. Some examples of phys-

ical objects are: robots; mobile phones; Web servers; and smart watches.

We consider that software with no connection with the physical world is

also in this layer.

• Object Abstraction: in this layer, software applications and objects are

represented by services published on the Internet. Given the heterogeneous

nature of connected objects and software, one of the main goals of this layer

is to harmonize the access to the different objects with a common language

and procedure.

2.1 Service Oriented Architecture, Services, and Composite Services 13

• Service Management: in this layer, published services are discovered and

classified according to their functionalities [58].

• Service Composition & Execution: it provides automatic service compo-

sition approaches [33, 74]. This layer is also in charge of the execution

control of these composite services. One important aspect of this layer is

the resilience to failures and the adaptation according to changes in the

system.

• Applications: final user applications are on top of the SOA architecture.

These applications are built from services and executed in the Service Com-

position & Execution layer.

We situate the contribution of this thesis in composite service execution control

of the Service Composition & Execution layer of the SOA middleware depicted

in Figure 2.1. In this layer, objects have already been abstracted and exposed as

services, discovered, and classified by functionality, and composite services may

be created either automatically or manually.

As we have explained, and as its name indicates, SOA revolves around services.

In 2004, the W3C gave the following definition of Web service [92]:

“A Web service is an abstract notion that must be implemented

by a concrete agent. The agent is the concrete piece of software or

hardware that sends and receives messages, while the service is the

resource characterized by the abstract set of functionality that is pro-

vided.”

However, this definition was given for a particular standard: SOAP Web ser-

vices (also known as Big Web Services) [76]. Along with SOAP, there exists an

architectural style for developing services: RESTful Web services based on the

Representational State Transfer (REST) paradigm [76]. There are already whole

books about these two technologies, and there have been a lot of discussions about

which one of these two technologies is the best or better suited for composed ap-

plications [67, 76]. Research trends and published services in the Internet show

that nowadays developers prefer to build RESTful services over SOAP services.

Also, we will notice that services are currently mostly described via narrative

Web pages in natural language; for example, in public service directories such as

14 Preliminaries

ProgrammableWeb1. In contrast, the most important public directories of SOAP

services (UDDI), maintained by IBM and Microsoft, were shut down in 2006 (see

Chapter 10 of [76]). Some reasons why this has happened are: SOAP, WSDL,

and the WS-* stack are perceived as complex and have encountered many inter-

operability problems; in contrast, RESTful services are lightweight, they leverage

on existing well-known W3C/IETF standards (HTTP, XML, URI, MIME), and

the necessary infrastructure has already become pervasive and scalable [67, 76].

In this thesis, we consider a conceptual, more general definition of services; in

other words, we consider that services are exposed operations on the Internet

which are independent of their implementation. Hence, we do not dig into the

details of service implementations such as SOAP or RESTful.

Services are described according to their functionality and Quality of Service

(QoS) criteria. In our case, the functionality of a service is given by the input

attributes it needs to be invoked, and the output attributes it produces after a

successful invocation. We suppose that service inputs and outputs attributes are

described using an ontology language, such as the Web Ontology Language [3].

In particular, we adopt the is-A ontology relation, which we denote as ⊆is−A, to

deduce if a data type is a subtype of another data type. For example, given two

data types d1 and d0, and the relation d1 ⊆is−A d0, we say that d1 is a subtype

or the same type as d0. Figure 2.2 illustrates an ontology composed of 11 data

types. Arcs between data types refer to the ⊆is−A relation, from where we can

see that all the data types are subtypes of d0. More specifically:

d1 ⊆is−A d5 ⊆is−A d0

d13 ⊆is−A d2 ⊆is−A d0

d6 ⊆is−A d3 ⊆is−A d11 ⊆is−A d0

d7 ⊆is−A d4 ⊆is−A d0

d8 ⊆is−A d0

Regarding service QoS, the standard ISO 9000:2000 [47] defines quality as:

“The degree to which a set of inherent characteristics fulfills a need

or expectation that is stated, general implied or obligatory.”

1The most popular service directory: http://www.programmableweb.com

http://www.programmableweb.com

2.1 Service Oriented Architecture, Services, and Composite Services 15

Figure 2.2: An Example Ontology.

There exist several QoS models for services [73]. In the following, we present

our definition of service QoS:

• Execution time: the estimated time required to complete a service invo-

cation; that is, the estimated time between making a service request and

receiving its corresponding service response.

• Availability : the probability of getting a correct answer after a service invo-

cation. This includes the probability that the service is up and it executes

successfully, and that the message transmission between the service and the

requester is successful.

• Price: a measure of the cost of invoking a service.

Sometimes, the operation exposed by a single elementary service is not enough

to solve a particular task, so we require the combination of several elementary

services. This new service built from the combination of more than one service is

called a composite service. A composite service may also be published as a service

providing a functionality and QoS. A common service usage scenario researchers

used over the last decade to study service compositions was the Travel Reser-

vation application2. In this scenario, a travel agent company offers the ability

to book complete vacation packages including transportation, accommodation,

2http://www.w3.org/2002/04/17-ws-usecase.html

http://www.w3.org/2002/04/17-ws-usecase.html

16 Preliminaries

activities, etc. The travel agent company can then select the services it consid-

ers the most appropriate to create the composite service that answers its client

requests. For example, the travel agent company selects services providing flight

ticket reservation, car renting, and hotel booking. Note that these tasks are in-

terrelated, so renting a car and booking a flight may be useless if we cannot find

a hotel.

To summarize, we say that a service is an operation exposed in the Web with

functional and non-functional properties; in the same way, a composite service

is a combination of more than one services which is also exposed in the Web

with functional and non-functional properties. In the next section, we present

the basic notions about the execution control and fault tolerance mechanisms for

composite services.

2.2 Composite Service Execution Control

The execution of a composite service implies the invocation of all component

services according to the execution flow imposed by the structure representing

the composite service. There exist two basic variants of execution scenarios:

sequential and parallel. In a sequential scenario, some services cannot be invoked

until the previous ones have finished, because they need the attributes produces

by them, or there are restriction controls sequentially imposed. In a parallel

scenario, several services can be invoked simultaneously because they do not

have data or control flow dependencies.

The execution control of composite services can be centralized or distributed.

Centralized approaches consider a coordinator managing the whole execution pro-

cess [80, 100]. In distributed approaches, the execution process proceeds with the

collaboration of several participants without a central coordinator [20, 24]. On

the other hand, the execution control could be attached to services [51, 55] or

independent of its implementation [25]. Some execution engines are capable of

managing failures during the execution. Ones are based on exception handling

[65, 83], others are based on transactional properties [24, 34], others use a com-

bination of both approaches [51, 55], while some works base fault tolerance on

replication techniques [20, 104]. In this thesis, we use transactional properties

as the building block for fault tolerance. The execution control of our system is

distributed and implemented using agents which are independent of implementa-

tions of services. On top, we implement redundancy and design diversity-based

2.2 Composite Service Execution Control 17

techniques such as service replacement and replication.

In the next sections, we present the fault hypothesis considered in this thesis,

the transactional properties for composite services used as the foundation of our

fault tolerance approach, and the main recovery mechanisms that we implement.

2.2.1 Fault Hypothesis

During the execution of a composite service, faults may occur at hardware, op-

erating system, component services, execution engine, and network levels [29].

These faults result in reduced performance and may cause unexpected behavior

during a composite service execution. Service faults may be classified as follows:

• Silent or fail-stop faults: these faults are generic to all services and cause

services to not respond, because they are not available, or a crash occurred

in the platform. Some examples of silent faults are communication timeout,

service unavailable, bad gateway, and server error.

• Logic faults: these faults are specific to services, and are caused by error in

input attributes (e.g., bad format, out of the valid range, calculation faults)

and Byzantine faults (the service still responds to invocation, but wrongly).

Moreover, various exceptions thrown by services to the users are classified

into the logic-related faults.

The standard ISO 10303-226 [46] defines fault as an abnormal condition or

defect in a component, equipment, or sub-system level which may lead to a failure.

Following this definition, in this thesis we consider that:

• component services may fail due to any type of fault;

• we do not distinguish among the types of faults. In our approach, a service

either fails or executes successfully;

• the failure probability of a service is related to its availability QoS criterion

(Section 2.1);

• we invoke services from a system that runs far from service hosts in reliable

servers which do not fail, which data network is highly secure, and which is

not affected by service faults, since its execution control is detached from

services.

18 Preliminaries

2.2.2 Transactional Properties for Services

In the research field of fault tolerance for composite services, one option to provide

fault tolerance is through low level programming constructs such as exception

handling [20, 78, 84]. A standard executable language for specifying actions

and exception handling for composite services based on SOAP services is WS-

BPEL [65], commonly known as BPEL. Exception handling normally is explicitly

specified at design time, regarding how exceptions are handled and specifying the

behavior of a composite service when an exception is thrown. This approach

is normally used to manage logic faults, which are specific to each service, and

therefore, specific to the considered composite service.

The reliability of composite services has also been handled at a higher level

of abstraction; i.e., at the execution flow structure level, such as workflows or

graphs; therefore, technology independent methods for the composition of reli-

able composite services and their fault tolerant execution have emerged, such

as transactional properties [24, 25, 27, 34, 51, 95, 96]. Transactional properties

implicitly describe service behavior in case of failures and are used to ensure the

traditional atomicity, consistency, isolation, and durability (ACID) properties.

When transactional properties are not considered, the ACID properties are the

responsibility of users or developers.

The Two-phase Commit (2PC) [35] is a standard protocol in distributed trans-

actions that has been used for achieving ACID properties. It is a distributed

consensus algorithm that coordinates all processes participating in a distributed

atomic transaction on whether to commit or abort the transaction. However, the

2PC protocol implements resource locking/blocking [35], which is not suitable for

long running transactional composite services [27]. As pointed out by Casado et

al. [27], researchers have developed advanced models to relax the ACID proper-

ties allowing the compensation of completed transitions. Some of these models

are: nested transaction [62], SAGA [36], open-nested [94], split-join [72], flex [99],

and WebTram [97]. Casado et al. highlighted the following transactional models

for services: OASIS Business Transaction Protocol [5], Web Services Business

Activity [7], and the Web Service Transaction Management [6]. They also talked

about the TQoS model [34], and classified it as “other models and frameworks”.

Indeed, TQoS is not SOAP-based and provides QoS-awareness for transactional

composite services.

The work presented in this thesis is based on this latter model, TQoS [34], which

builds on top of the following transactional properties for elementary services:

2.2 Composite Service Execution Control 19

• Pivot(p): A service is pivot if its effects remain forever and cannot be

semantically undone once it has completed successfully. It is the most basic

transactional property.

• Compensable (c): a service is compensable if there exists another service

that may semantically undo its successful execution.

• Retriable (r): a service is retriable if it guarantees a successful execution

after a finite number of invocations. This property has to be combined

with the pivot or compensable properties, creating pivot-retriable (pr) and

compensable-retriable (cr) services.

Composite services built from services providing transactional properties guar-

antee the system consistency and have an aggregated transactional property as

follows:

• Atomic (a): a composite service is atomic if at least one of its component

services is pivot or pivot-retriable. Once an atomic composite service fin-

ishes successfully, its effects remain forever and they cannot be undone. If

one of its component services fails, the system is left in a state semantically

similar to the one before the execution of the composite service.

• Compensable (c): a composite service is compensable if all its component

services are compensable. This means that it exists another composite

service, containing the services which compensate the component services of

the compensable composite service, which may semantically undo the effects

of the compensable composite service after its successful execution. As for

the atomic composite service, if one of its component services fails, the

system is left in a state semantically similar to the one before the execution

of the compensable composite service.

• Retriable (r): a composite service is retriable if all its component services

are retriable. A retriable composite service guarantees a successful execu-

tion after a finite amount of time. This property has to be combined with

the atomic or compensable properties, creating atomic-retriable (ar) and

compensable-retriable (cr) composite services.

A composite service must satisfy the graph structure imposed by the transac-

tional model to provide transactional support. Figure 2.3 illustrates some exam-

ples of valid and invalid combinations of services with transactional properties.

20 Preliminaries

Directed arcs reflect the execution order between the services. Some examples of

invalid transactional properties combinations are the following:

• In Figure 2.3 (a) if the pivot service is executed successfully but the com-

pensable service fails, the system remains in an inconsistent state since the

execution of the pivot service cannot be undone.

• Figure 2.3 (b) shows an incorrect combination of a pivot and a pivot-

retriable service since they should not be executed in parallel: the pivot-

retriable service guarantees a successful execution that cannot be undone;

therefore, if the pivot service fails and the pivot-retriable service was suc-

cessfully executed, the system remains in an inconsistent state.

• Figure 2.3 (c) and Figure 2.3 (d) show examples following the same principle

where the system remains in inconsistent states if one of the non-retriable

services fails.

Some examples of valid transactional properties combinations are the following:

• In Figure 2.3 (e), if the pivot service is successfully executed, the compensable-

retriable service guarantees a successful execution.

• The example of Figure 2.3 (f) is similar to the one of Figure 2.3 (e) since if

the compensable service is successfully executed, the pivot-retriable services

guarantee successful executions.

• Both Figure 2.3 (c) and Figure 2.3 (d) show valid combination examples

where all services are retriable. All retriable services guarantee a successful

execution.

Figure 2.4 shows the automaton modeling all possible transactional composite

services [34]. It contains five states: I representing the initial state; and c, cr,

a, and ar representing the four final states. The final states correspond to the

possible transactional properties of a composite service. Transitions between

states indicate the transactional property of a service that may be used to perform

compositions in sequence (;) or in parallel (//). For example, suppose that we

start from the initial state with a pivot service. We reach the final state a, but

we will never be able to reach another final state. The reason is that, if we

choose a pivot service, not matter with which service we compose it, we will

2.2 Composite Service Execution Control 21

Figure 2.3: Example of Transactional Properties Combinations.

never have a retriable or compensable composite service. However, to ensure the

transactional property, a pivot service may only be composed in parallel with a

cr service, and sequentially with retriable services (cr, pr, ar) as the automaton

shows. Composite services built from transactional services must comply with

the rules imposed by this automaton to guarantee the system consistency. If a

composite service is built from transactional services but it does not comply with

the rules of the automaton of Figure 2.4, then it is not a transactional composite

service.

Finally, in this thesis we use the presented transactional model to define a com-

pensation protocol to ensure a relaxed atomicity property for composite services.

22 Preliminaries

Figure 2.4: Automaton modeling all possible transactional composite services

from [34].

This relaxed atomicity property allows the compensation of successfully executed

services to leave the system in a state close to the one it had before the execution

of those services. It is worth noticing that, according to TQoS, a valid transac-

tional composite service cannot have more than one pivot service. Without this

hypothesis, all participating pivot services will need to implement protocols such

as 2PC to guarantee atomicity.

2.2.3 Recovery Mechanisms

Services that provide transactional properties are useful to guarantee reliable

composite service execution, ensuring the whole system consistent state, even

in the presence of failures. Failures during the execution of a composite service

may be handled according to the transactional property of its component services

by forward or backward recovery mechanisms [25], or by delaying the composite

service execution [77]. The main recovery mechanisms are the following:

• Backward recovery: it consists in restoring the state that the system had

at the beginning of the composite service execution; i.e., all the effects

produced by the failed service are undone through rollback, and the effects

of previously executed services are semantically undone by compensation

techniques (Fig. 2.5 (a));

2.2 Composite Service Execution Control 23

Figure 2.5: Recovery Mechanisms.

• Forward recovery: it consists in repairing the failure to allow the failed

service to continue its execution; retry and substitution are some techniques

used to provide forward recovery (Fig. 2.5 (b)).

• Semantic recovery: it is similar to backward recovery except that semantic

recovery is done after a successful execution of a composite service by com-

pensating the execution of its component services. The idea is to leave the

system in a state semantically close to the state it had before the execution

of the composite service (Fig. 2.5 (c)).

• Checkpointing: if a failure occurs, it consists of continuing the execution of

the part of the composite service not affected by the failure, while delaying

the execution of the affected part (Fig. 2.5 (d)).

Due to the great proliferation of services published on the Internet, equiva-

lent services designed/developed independently by different organizations, may

be readily employed as redundant alternative components for building diversity-

based fault tolerant systems. Equivalent services may be used to allow forward

recovery by replacing a failed service regardless of transactional properties.

24 Preliminaries

2.3 Self-healing systems

So far, we have presented the execution control and fault tolerance mechanisms

for composite services; however, the goal of this thesis is to provide a smarter

execution approach for composite services capable of making decisions depending

on what is happening at runtime. For this reason, part of this thesis enhances

composite services with self-healing capabilities. We present a brief introduction

to self-healing systems in this section.

As we saw in Chapter 1, IBM introduced the notion of self-healing as part

of the Autonomic Computing initiative [44, 45, 50]. They stated that the only

solution to the complexity crisis [44, 45] was to create computing systems capable

of managing themselves. The four main aspects of autonomic computing are self-

configuration, self-optimization, self-healing, and self-protection. IBM defined

these aspects as follows:

• Self-configuration: it refers to the automatic installation, configuration, and

integration of systems.

• Self-optimization: it refers to the automatic improvement of performance

and efficiency of systems; for example, by tuning system parameters.

• Self-healing: it refers to the automatic problem and failure detection and

recovery.

• Self-protection: it refers to the automatic detection and recovery from at-

tacks.

Later, in a survey of self-healing systems research, Ghosh and his coauthors [37]

gave the following definition:

“Self-healing can be defined as the property that enables a system to

perceive that it is not operating correctly and, without (or with) hu-

man intervention, make the necessary adjustments to restore itself to

normalcy.”

Furthermore, Ghosh and his coauthors [37] introduced the self-healing model

illustrated in Figure 2.6 to highlight the importance of understanding normal vs.

2.3 Self-healing systems 25

Figure 2.6: Self-healing States (taken from [37]).

abnormal behavior when designing and studying complex systems. Figure 2.6

depicts the three possible states of a self-healing system and the transitions be-

tween them. The “degraded” state refers to a fuzzy zone where there is no clear

distinction between a “normal” and an “broken” state. This fuzzy zones models

the fact that large scale distributed systems are composed by modular compo-

nents; therefore; if a small part of the system fails, the rest should be able to

continue its operations without disruption, while the fault tolerance mechanisms

try to fix the detected problems and go back to the “normal” state.

The health maintenance transition refers to the constant checking and main-

tenance of the normal functionality of the system. One common method for

maintaining system health is to provide redundancy for the system components.

The system can transition from a “normal” state to a “degraded” state by detect-

ing a failure, but it can go back to a “normal” state by repairing the failure. In

the same way, the system can transition from a “degraded” state to a “broken”

state by detecting a failure, and go to a “normal” state by repairing the failure.

The system can also remain in a “broken” state if the failure is not repaired.

Later on in this thesis, we use the model illustrated in Figure 2.6 as a base to

describe the self-healing properties for composite services; that is, we define the

normal, degraded, and broken states for composite services. Then, we specify

which actions should be taken at runtime based on the current self-healing state

of the composite service and information about the execution context.

26 Preliminaries

2.4 Petri Nets and Colored Petri Nets

Previously in this chapter, we have presented a composite service as a combina-

tion of several services to produce a more complex service. A composite service

concerns which and how elementary services are combined to obtain the desired

result, and it can be modeled using, for example, the Business Process Execution

Language (BPEL) [2] for SOAP Web services, or Petri nets [70]. In this thesis,

we extend Colored Petri nets to model the structure and behavior of composite

services; hence, we begin by presenting the Petri net formalism; then, we present

the colored Petri net formalism. Analysis methods for Petri nets were left out of

this introduction.

A Petri net [70] is an abstract, formal model of information flow. It is a math-

ematical modeling language useful to describe and analyze distributed systems

with asynchronous and concurrent activities. A Petri net is a directed, connected,

and bipartite graph in which each node is either a place or a transition. Places

represent states or conditions; transitions represent actions. Arcs in a Petri net

run from a place to a transition or vice versa, but never between places or between

transitions. Formally, we can define a Petri net as follows:

Definition 2.4.1 Petri net (PN). A Petri net is a 3-tuple PN= (D,S, F),

where:

• D is a finite non-empty set of places;

• S is a finite set of transitions;

• F ⊇ (D×S)∪(S×D) is a set of arcs representing the flow relation between

places and transitions.

To model systems, Petri nets use a notion of marking to represent the system

state at a given moment, and transition firing to the represent the system be-

havior. A marking in a Petri net is an assignment of tokens to the places of the

Petri net. Tokens reside in the places of the Petri net. The number and position

of tokens may change at runtime; therefore, tokens are used to define and control

the execution of a Petri net. More formally, a marked Petri Net is defined as

follows:

2.4 Petri Nets and Colored Petri Nets 27

Figure 2.7: Example Petri net.

Definition 2.4.2 Marked Petri net. A marked Petri net is a 3-tuple (PN,W,M),

where:

• PN is a Petri net;

• W : F → {1, 2, 3, ...} is a weight function of arcs.

• M : D → {1, 2, 3, ...} is a function that assigns tokens to places.

The weight function W for arcs specifies how many tokens an input place must

have so that its consumer transition is executed, and how many tokens are set

into the output places of an executed transition. The default value of W is 1. A

marking of M represents the state of a Petri net at a particular moment; that is,

tokens assigned to places.

In our context, places in D represent service inputs and outputs, while transi-

tions in S represent the services. When two services are connected by a place,

that place represents an output produced by one of the services and consumed by

the other service. Each service sets only one token to its output places; therefore,

w(s, d) = 1 for all output places d of a transition s. Figure 2.7 shows an example

Petri net composed by the service s1 which inputs are the places d1 and d2, and

which outputs are the places d4 and d5, and the service s2 which inputs are the

places d4 and d5, and which output is the place d6. Places d1 and d2 do not

have predecessors, they are the places representing the composite service inputs.

The place d6 does not have successors, it represents the output of the composite

service.

When a transition has the required tokens (defined by the W function) in its

inputs places to be executed, we say that the transition is fireable, as follows:

Definition 2.4.3 Fireable Transition. A transition s is said to be fireable if

each input place d of s is marked with at least w(d, s) tokens, where w(d, s) is the

28 Preliminaries

weight of the arc from d to s; that is, a transition is enable if for all its input

places:

M(d) ≥ w(d, s)

In our context, we define the initial marking M0 of a Petri net as the state

when all input places have tokens and the rest of the places do not have tokens.

Returning to our example, Figure 2.8 (a) shows the initial marking M0 of a Petri

net when both input places, d1 and d2, have tokens, while the rest of the places

do not have tokens. In other words, the transition s1 is fireable in the Petri net

state showed in Figure 2.8 (a) since Def. 2.4.3 satisfies as follows:

M(d1) ≥ 1 ∧ M(d2) ≥ 1

When a transition is fired, it consumes the required token from its input places,

it executes, and it puts tokens in its output places according to the weight function

W , as follows:

Definition 2.4.4 Firing of a Transition. The firing of a transition s removes

w(d, s) tokens from each input place d of s, and adds w(s, d) tokens to each output

place d of s, where w(s, d) is the weight of the arc from s to d; that is, for all

input places d of transition s:

M ′(d) = M(d)− w(d, s)

and for all output places d of transition s:

M ′(d) = M(d) + w(s, d)

Figure 2.8 (b) shows the marking M ′ of the Petri net after s1 has been fired and

the output places d4 and d5 contain their corresponding tokens. By Def. 2.4.4,

we have that:

2.4 Petri Nets and Colored Petri Nets 29

M ′(d1) = M(d1)− w(d1, s1) = 1− 1 = 0

M ′(d2) = M(d2)− w(d2, s1) = 1− 1 = 0

M ′(d4) = M(d4) + w(s1, d4) = 0 + 1 = 1

M ′(d5) = M(d5) + w(s1, d5) = 0 + 1 = 1

Then, s2 becomes fireable since:

M(d4) ≥ 1 ∧ M(d5) ≥ 1

Similarly, Figure 2.8 (c) shows the marking M ′ of the Petri net after s2 has

been fired and the output place d6 contains its corresponding token.

An illustration of modeling composite services as Petri nets is the work pre-

sented by Hamadi and Benatallah in 2003 [41]. In their work, they propose a

Petri net-based algebra to model control flows as a necessary constituent of reli-

able service compositions. As part of the conclusions of their work, they state that

some aspects of composite services such as the management of time and resources

cannot be modeled with Petri nets, but have to be dealt by using a suitable high-

level Petri net, such as Colored Petri nets. Usually, in systems modeled by Petri

nets, tokens represent objects or resources that may have attributes that cannot

be represented by a simple Petri net token.

The Colored Petri net [48] formalism was introduced by Jensen in the 80’s to

extend the Petri net model. Using this formalism, information can be modeled

by tokens and the type of information can be modeled by the color of those

tokens. This Petri net extension allows the attachment of data values to tokens

in contrast to Petri nets where we have only plain tokens with no additional

information. Data value attached to tokens belong to a given type.

In this thesis, we use colors to model the type of input and output places

of transitions. We associate these Colored Petri net types with concepts of an

ontology, as we showed in Section 2.1 for service input and outputs. Addition-

ally, we incorporate the notion of colors for transitions to represent transactional

properties, and additional information to control the execution of Petri nets.

30 Preliminaries

Figure 2.8: Fireable Transition Example.

2.5 Summary of General Assumptions

In this section, we summarize some general assumptions presented in this chapter.

We consider these assumptions address issues beyond the scope of this thesis since

they concern different, although related, research areas. The following are the

general assumptions considered in this thesis:

1) System consistency: we assume we are dealing with applications that

require transactional support. Therefore, services need to be combined to

create transactional composite services to guarantee the system consistency.

2) Service discovery and selection: we suppose services are published in

a machine or human oriented registry, they have already been discovered,

and classified by functionality. Therefore, services are ready to be selected

and used by our system.

2.5 Summary of General Assumptions 31

3) Service composition: composite services may be generated by either an

automatic composition process such as [34] or manually; however, their

structure always satisfy the definition of transactional composite services

given in Section 2.2.2.

4) Transactional properties: all our services are transactional, so they are

annotated with their corresponding transactional properties.

5) Service implementation: services may be implemented following the

SOAP standard, the RESTful architectural style, or any other technology.

We suppose we are able to dynamically invoke any service independently of

the underlying technologies.

In the next chapter, we build on top of the Colored Petri net formalism to

present an approach for composite service fault tolerance.

32 Preliminaries

Chapter 3

Composite Service Execution

Control and Recovery

Mechanisms

Contents

3.1 Modeling composite service executions 34

3.1.1 Backward Recovery 42

3.1.2 Checkpointing . 48

3.1.3 Service Replacement 52

3.2 Framework Architecture 57

3.2.1 Fault Tolerance Algorithms 60

3.3 Conclusions . 69

This chapter presents our fault tolerance approach for composite service exe-

cution. Our approach allows the efficient, fault tolerant, and correct execution of

composite services. It implements two main fault tolerance mechanisms: forward

and backward recovery. Forward recovery is done through service replacement

and service retry. Backward recovery is done by implementing a compensation

protocol. Additionally, we present a checkpointing mechanism to continue the ex-

ecution of the part of a composite service not affected by a failure, while delaying

the execution of the affected part.

The content presented in this chapter is the continuation of the work of Cardi-

nale and Rukoz [25], where they presented an approach for the modeling of fault

34 Composite Service Execution Control and Recovery Mechanisms

Description

CPN-EP A Colored Petri net representing the execution plan of a composite service.

BRCPN-EP A backward recovery Colored Petri net representing a compensation execution plan.

CPN-EPIN Colored Petri net inputs.

CPN-EPOUT Colored Petri net outputs.

CPN-EPsnapshot A checkpointed Colored Petri net.

CPN-EP ′IN Inputs of a checkpointed Colored Petri net.

CPN-EP ′OUT Outputs of a checkpointed Colored Petri net.

s A transition representing a service.

s≡ Set of equivalent services of s.

s∗ A replacement service for s.

s′ A compensation service for s.

s′∗ A replacement service for a compensation servcice s′.

S A set of services.

D Set of places in a Colored Petri net representing service inputs and outputs.

d A place in a Colored Petri net representing service inputs and outputs.

γ A Service Agent.

s♦ A control node representing the beginning of a composite service.

s� A control node representing the end of a composite service.

Γ The set of all Service Agents.
•s, •γ Inputs of service s/Service Agent γ.
•(•s), •(•γ) Predecessor services of service s/Service Agent γ.

s•, γ• Outputs of service s/Service Agent γ.

(s•)•, (γ•)• Successor services of service s/Service Agent γ.

p, a, pr, ar, c, cr The available transactional properties for services.

TP (s) Transactional property of a service s with TP (s) ∈ {p, a, pr, ar, c, cr}.

QoS(s) QoS of a service s.

d ⊆is−A d′ Data d represents a concept semantically equal or a subconcept of d′.

dvalue The actual value of a place of type d.

 Data value for places in a CPN-EP .

Control tokens for places in a CPN-EP and BRCPN-EP .

x Skip control tokens for places in a CPN-EP .

Table 3.1: Chapter 3 Notation.

tolerant composite services with Colored Petri nets. In particular, in this chap-

ter we refine the initial definitions proposed in [25], extend them to model the

checkpointing mechanism, and improve the service replacement approach. The

notation used in this chapter is presented in Table 3.1.

3.1 Modeling composite service executions

In this thesis, we model composite services and their execution process using

the Colored Petri net [48] formalism. In Section 2.4, we showed that a Colored

3.1 Modeling composite service executions 35

Petri net is an abstract, formal model of information flow useful to describe and

analyze distributed systems with asynchronous and concurrent activities. We

suppose that our composite services modeled using Colored Petri nets do not

contain cycles; that is, there is no transition reachable from itself.

We introduce the set of definitions of this chapter with the formal definition of

a composite service using the Colored Petri net formalism:

Definition 3.1.1 Composite Service (CPN-EP). A composite service CPN-

EP is a 4-tuple (D,S, F, ξ), where:

• D is a finite non-empty set of places, corresponding to input and output

attributes of the component services;

• S is a finite set of transitions corresponding to the set of services in the

CPN-EP ;

• F : (D × S) ∪ (S ×D)→ {0, 1} is a function establishing the flow relation

between places and transitions defined as: ∀s ∈ S, ∃d ∈ D | F (d, s) = 1 ⇔

d is an input place of s; and ∀s ∈ S, ∃d ∈ D | F (s, d) = 1 ⇔ d is an output

place of s;

• ξ is a color function such that ξ: CD ∪ CS, with:

– CD: D →
∑

D, a color function such that
∑

D = {DATA,CTRL}

representing the two types of tokens for places in the CPN-EP : DATA

represents the data types, associated to an ontology, of inputs and out-

put attributes of services, and it is visually represented by a black circle

“ ”; CTRL represents constant values to control the execution of the

CPN-EP . The possible value of CTRL is:

∗ CTRL TOKEN : controls the normal execution flow of a CPN-

EP , and it is visually represented by an empty circle “#”.

– CS : S →
∑

S, a color function such that
∑

S = {p, pr, a, ar, c, cr}

represents the transactional property of the corresponding service of

transition s (see Section 2.2.2).

From now on, we use the notation s to refer indistinctly to transitions and

services. Def. 3.1.1 presents a composite service model using the Colored Petri net

formalism; however, note that workflows, bipartite graphs, etc, can be matched to

36 Composite Service Execution Control and Recovery Mechanisms

Figure 3.1: A Composite Service CPN-EP .

our composite service definition, even if the relationship among services is defined

by data flow or control flow. In Figure 3.1, we show a composite service modeled

by a Colored Petri net. This Colored Petri net is composed of 8 services and 12

input and output attributes, as follows:

D = {d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12}

S = {s1, s2, s3, s4, s5, s6, s7, s8}

We can see that the transactional property of service s4 is pivot, so the transac-

tional property of the whole composition is atomic, as explained in Section 2.2.2.

Predecessor services of s4 are compensable, its successors are retriable, and its

parallel services are compensable-retriable, satisfying the transactional model for

composite services.

Note that the function F of Def. 3.1.1 may represent both data flow and control

flow. Data flow represents functional dependency between two services; that is,

an input needed by a service is the output produced by another service. For

example, in Figure 3.1, place d4 is part of the data flow dependency between

s1 and s3. The purpose of control flow is to make sure the CPN-EP satisfies

the transactional model presented in Section 2.2.2. An example of both data

and control flow dependency is the input place of s8, d9. Since the transactional

property of s8 is pivot-retriable, all non-compensable and non-retriable services

must be executed before it. That is why there is a control flow dependency

3.1 Modeling composite service executions 37

between s4 and s8. Without it, s8 may be successfully executed before a failure

of s4 making backward recovery through compensation impossible, and leaving

the system in an inconsistent state. Moreover, this control flow restriction works

both if s4 produces a control token or a data value for d9.

Regarding the accepted values by places, Def. 3.1.1 states that places may

contain any value which type is a subtype of the data type assigned to the place

following the relation ⊆is−A (Section 2.1), or control tokens CRTL.

Places with no predecessors represent the inputs of the composite service, while

places with no successors represent its outputs. The following is the formal defini-

tion of the inputs and outputs of a composite service represented by a CPN-EP :

Definition 3.1.2 Composite Service Inputs (CPN-EPIN) and Outputs

(CPN-EPOUT). The inputs of a composite service CPN-EP (D,S, F, ξ) are a

subset CPN-EPIN of D such that:

∀d ∈ D, d ∈ CPN-EPIN ⇔
•d = ∅

The outputs of a composite service CPN-EP (D,S, F, ξ) are a subset CPN-

EPOUT of D such that:

∀d ∈ D, d ∈ CPN-EPOUT ⇔ d• = ∅

Back to our example, the inputs and outputs of the composite service are:

CPN-EPIN = {d1, d2, d3}

CPN-EPOUT = {d10, d11, d12}

To control the execution of a composite service, we define initial s♦ and final

s� transitions, which are added to the CPN-EP . These transitions have only

control responsibilities to define the start and the end of composite services. We

define them as follows:

38 Composite Service Execution Control and Recovery Mechanisms

Figure 3.2: A Composite Service with Initial and Final Transitions.

Definition 3.1.3 Initial and final transitions of a composite service.

Let CPN-EP be a composite service; the initial and final transitions, denoted as

s♦ and s� respectively, are dummy transitions added to a composite service, such

that:

• S ← {s♦, s�} ∪ S;

• ∀ d ∈ D, •d = ∅ → F (s♦, d) = 1. s♦ is the predecessor transition of all

input places of CPN-EP ;

• •s♦ ← ∅;

• ∀ d ∈ D, d• = ∅ → F (d, s�) = 1. s� is the successor transition of all

output places of CPN-EP ;

• s•� ← ∅;

• ξ(s♦)← ∅;

• ξ(s�)← ∅.

As showed in Def. 3.1.3, s♦ is unconditionally fireable, while s� consumes tokens

but do not produce any. Figure 3.2 shows our composite service example with its

corresponding initial and final transitions. This way, the starting of the composite

service execution is controlled by s♦, and the firing of s� means the composite

service execution has finished.

3.1 Modeling composite service executions 39

A marking of a CPN-EP represents the execution state of the CPN-EP at a

particular moment. A marking contains the current values of attributes that may

be used for some component services to be executed, or control values indicating

the execution flow.

Definition 3.1.4 Marked executable CPN-EP . A marked CPN-EP=(D,

S, F , ξ) is a pair (CPN-EP ,M), where M is a function which assigns tokens

(values) to places such that ∀d ∈ D, M(d) ⊆ {∅, Bag(
∑

D)}, where Bag corre-

sponds to a multiset which may contain several occurrences of the same element.

The marking of a CPN represents the current state of the system, i.e., the set of

attributes correctly produced by the system and/or signals indicating failures.

A transition s is fireable when all its input places contain a token per predecessor

transition. If all the input places of s contain data values (DATA) and/or control

tokens with value CTRL TOKEN , we say that s is fireable. The following is

the definition of a fireable transition:

Definition 3.1.5 Fireable transition. A marking M enables a transition s

for execution if and only if all its input places contain tokens such that

∀d ∈ •s, card(M(d)) = card(•d) ∧

M(d) ⊆ (Bag({DATA} ∪ Bag({CTRL TOKEN}))

The execution control of a composite service is guided by an unrolling algorithm

of its corresponding CPN-EP . To start the unrolling algorithm, transition s♦ is

fired.

The firing of a transition of a CPN-EP corresponds to the execution of the

service or composite service represented by that transition. Then, when s finishes,

it is considered that the transition was fired, and other transitions may become

fireable. In our example, when s♦ is fired, tokens are added to places d1, d2,

and d3; therefore, s1 and s2 become fireable, and the composite service execution

starts. Formally, the firing rules for a CPN-EP are the following:

Definition 3.1.6 CPN-EP Firing rules. The firing for execution of a fireable

transition s for a marking M defines a new marking M ′, such that all tokens are

deleted from its input places:

40 Composite Service Execution Control and Recovery Mechanisms

∀d ∈ •s, M(d)← ∅

and the service s is invoked. After service s finishes, data value tokens are

added to its output places. These tokens contain the actual produced value dvalue
for a type d:

∀d ∈ s•, (M(d)←M(d) ∪ {dvalue})

These actions are atomically executed.

To model the internal behavior of a transition si, we add a transition si−INV OKE

representing the invocation of si and a place di−STATE representing the execution

state of si. di−STATE is added as output place of si−INV OKE. This way, we extend

the CPN-EP such that:

∀si ∈ S, S ← S ∪ {si−INV OKE}

∀di ∈
•si, F (di, si−INV OKE) = 1

∀si ∈ S, D ← D ∪ {di−STATE}

∀si ∈ S, F (si−INV OKE, di−STATE) = 1

Then, other internal transitions may use the results in di−STATE to execute

actions depending of the execution of si. We introduce the transition si−OK to

model a successful execution of si, and si−RETRY to model the reexecution of

retriable services. These transitions are added to the CPN-EP as follows:

∀si ∈ S, S ← S ∪ {si−OK}

∀si ∈ S, S ∪ {si−RETRY } if TP (si) ∈ {pr, ar, cr}

3.1 Modeling composite service executions 41

Then, si−OK and si−RETRY become successors of di−STATE, and si−OK becomes

the predecessor of all output places of si as follows:

∀si ∈ S, F (di−STATE, si−OK) = 1

∀di ∈ s•i , F (si−OK, di) = 1

∀si ∈ S, F (di−STATE, si−RETRY) = 1 if TP (si) ∈ {pr, ar, cr}

The transition si−RETRY does not have successors. The firing of si−INV OKE

means that it removes tokens from its input places, and it sets data values or

control tokens to di−STATE. When si−OK is fired, it removes tokens from di−STATE

and sets data values to its corresponding output places:

M(di−STATE)← ∅

∀d ∈ si−OK
•, (M(d)← M(d) ∪ {dvalue})

The firing of si−RETRY means that si is retried. This action neither removes

nor produces tokens.

Figure 3.3 illustrates these internal mechanisms taking the transition s3 as

example. The firing of s3 is decomposed as follows:

1) if s3 executes successfully, s3−OK is fired, d3−STATE ← ∅, and data values

are added to d7

2) If the execution of s3 was not successful, s3−RETRY becomes fireable, and

retries s3 until it executes successfully. Then, s3−OK becomes fireable.

42 Composite Service Execution Control and Recovery Mechanisms

Figure 3.3: Internal Mechanisms of a Transition.

Note that, throughout this thesis, we do not show the internal mechanisms of

transitions when illustrating whole composite services. The reason of not showing

them is to simplify the representation of our model.

3.1.1 Backward Recovery

The global transactional property of CPN-EP ensures that if a component ser-

vice whose transactional property does not allow forward recovery fails, then all

previous executed services can be semantically recovered by a backward recovery

of the composite service. To model the backward and semantic recovery process,

we define a Colored Petri net, called BRCPN-EP , associated to a CPN-EP as

follows:

Definition 3.1.7 BRCPN-EP. A BRCPN-EP , associated to a given CPN-

EP = (D,S,F ,ξ), is a 4-tuple (D′, S ′, F−1, ζ), where:

• D′ is a finite set of places, associated to the CPN-EP places such that:

∀d′ ∈ D′, ∃d ∈ D associated to d′, and d′ has the same semantic meaning

of d;

• S ′ is a finite set of transitions representing compensation services associated

to compensable services in CPN-EP such that: ∀s ∈ S, TP (s) ∈ {c, cr},

∃s′ ∈ S ′ which compensates s;

3.1 Modeling composite service executions 43

• F−1 : (D×S)∪(S×D) → {0, 1} is a flow relation establishing the restoring

order for backward recovery defined as: ∀s′ ∈ S ′ associated to s ∈ S,

∃d′ ∈ D′ associated to d ∈ D| F−1(d′, s′) = 1 ⇐⇒ F (s, d) = 1 and

∀s′ ∈ S ′, ∃d′ ∈ D′| F−1(s′, d′) = 1 ⇐⇒ F (d, s) = 1;

• ζ is a color function such that ζ: CD′ ∪ CS′, with:

– CD′: D′ →
∑

D′, a color function such that
∑

D′ = {CTRL} repre-

senting constant values to control the execution of the BRCPN-EP .

The only accepted value for CTRL is CTRL TOKEN , which is visu-

ally represented by an empty circle “#”;

– CS′: S ′ →
∑

S′, a color function such that
∑

S′ = {I, R, E, C,A},

representing the execution state of the transition in CPN-EP corre-

sponding to s′ ∈ S ′, with I: initial, R: running, E: executed, C:

compensated, and A: abandoned.

As we showed in the previous section, the execution control of a composite

service is guided by an unrolling algorithm of its corresponding CPN-EP . To

support backward recovery, it is necessary to keep the trace of the execution on

the BRCPN-EP . To start the unrolling algorithm, the CPN-EP is marked with

the Initial Marking of Def 3.1.8, and the state of all transitions in BRCPN-EP

is set to “initial”:

∀s′ ∈ S ′, ζ(s′)← I

While a service s in CPN-EP is executing, if TP (s) ∈ {c, cr}, the state of its

corresponding service s′ in BRCPN-EP is set to “running”:

ζ(s′)← R

Then, when s finishes, it is considered that the transition was fired following the

rules of Def. 3.1.6, and the state of its associated transition s′ is set to executed:

ζ(s′)← E

To handle failures using the backward recovery mechanism, the compensa-

tion control of a CPN-EP is guided by an unrolling algorithm of its associated

44 Composite Service Execution Control and Recovery Mechanisms

BRCPN-EP . When a service represented by a transition s fails, and the recov-

ery mechanism to apply is compensation, backward recovery is initiated with the

unrolling process on the BRCPN-EP . To control the backward recovery process,

we add to the BRCPN-EP initial and final transitions, s′♦ and s′�, similar to

Def 3.1.3. Additionally, a BRCPN-EP contains initial and final places, d′♦ and

d′�, such that:

• D′ ← {d′♦, d
′
�} ∪D′;

• F (d′♦, s
′
♦)← 1;

• •d′♦ ← ∅;

• F (s′�, d
′
�)← 1;

• •d′� ← ∅.

Then, the BRCPN-EP unrolling process may be initiated by placing a control

token in d′♦, as follows:

Definition 3.1.8 BRCPN-EP Initial Marking. This initial marking of a

BRCPN-EP means that a token is added to the input place of the BRCPN-EP :

M(d′♦)← {CTRL TOKEN}

and other places have no tokens.

We define a fireable compensation transition as follows:

Definition 3.1.9 Fireable compensation transition. A marking M enables

a transition s′ for compensation if and only if all its input places contain tokens

such that

∀d′ ∈• s′, M(d′) 6= ∅ ∧ ζ(s′) 6∈ {A,C}

where A means abandoned, and C means compensated.

3.1 Modeling composite service executions 45

Figure 3.4: CPN-EP example when s4 fails.

The following are the firing rules for a transition s′ in BRCPN-EP :

Definition 3.1.10 BRCPN-EP Firing rules. The firing of a fireable com-

pensation transition (see Def. 3.1.9) s′ for a marking M defines a new marking

M ′, such that:

• if ζ(s′) = I, ζ(s′) ← A (i.e., the associated transition s was abandoned

before its execution);

• if ζ(s′) = R, ζ(s′)← C (in this case, s′ will be executed after s finishes);

• if ζ(s′) = E, ζ(s′)← C (in this case, s′ is executed);

• all tokens are deleted from its input places (∀d ∈ •s′, M(d) = ∅) and tokens

are added to its output places (∀d ∈ s′•, M(d)← M(d)∪{CTRL TOKEN})

Then, the fireable compensation transition defined in Def. 3.1.9, and the firing

rules defined in Def. 3.1.10, guide the unrolling process of the BRCPN-EP .

To illustrate the backward recovery process, let us consider the marked CPN-

EP represented in Figure 3.4 which is the state of the CPN-EP when s4 fails.

When the failure of s4 is detected, the backward recovery process is initiated.

The corresponding initial marking on the BRCPN-EP is established to start its

unrolling process (Figure 3.5 (a)). Then, s′6 and s7 are abandoned, s′5 is invoked

to compensate s5, and a new marking is produced (Figure 3.5 (b)) in which s′3 and

46 Composite Service Execution Control and Recovery Mechanisms

Figure 3.5: Backward Recovery Example.

s′2 are both fireable and can be invoked in parallel. Finally, Figure 3.5 (c) shows

the BRCPN-EP sate when the backward recovery process has finished. Note

that only compensable transitions have corresponding compensation transitions

in the BRCPN-EP .

3.1 Modeling composite service executions 47

Regarding the internal mechanism of compensation, we add the transition

si−COMPENSATE for services which are not retriable as follows:

∀si ∈ S, S ← S ∪ {si−COMPENSATE} if TP (si) 6∈ {pr, ar, cr}

∀si ∈ S, F (di−STATE, si−COMPENSATE) = 1 if TP (si) 6∈ {pr, ar, cr}

∀si ∈ S, F (si−COMPENSATE, d
′
♦) = 1 if TP (si) 6∈ {pr, ar, cr}

This way, a non-retriable service is internally composed by the transitions

si−INV OKE, si−OK , and si−COMPENSATE; a retriable service is internally com-

posed by si−INV OKE, si−OK , and si−RETRY .

When a service si fails and TP (si) 6∈ {pr, ar, cr}, si−COMPENSATE is fired, it

removes tokens from si−OK and sets a control token to its output place, d′♦, to

initiate backward recovery as follows:

M(si−OK)← ∅

M(d′♦)← {CTRL TOKEN}

Figure 3.6 illustrates the internal mechanisms of a non-retriable transition using

s4 as example. If s4 fails, s4−COMPENSATE removes the token from d4−STATE and

puts a control token in d′♦ to initiate the unrolling of the BRCPN-EP .

Figure 3.6: Internal Mechanisms of a Transition using Compensation.

48 Composite Service Execution Control and Recovery Mechanisms

3.1.2 Checkpointing

During the unrolling of a CPN-EP using the checkpointing mechanism, the ex-

ecution of all services affected by a failure is skipped; the execution of services

not affected by the failure continues as normal. To control checkpointing exe-

cutions, we add a new type of control token to Def 3.1.1: SKIP . The SKIP

token controls the checkpointing execution flow of a CPN-EP , and it is visually

represented by the roman letter “x”. The execution of services may be skipped

in two cases: if the service fails, or if the service is successor of a failed service.

In both cases, the following skipping rules apply:

Definition 3.1.11 CPN-EP Skipping rules. The skipping of a transition s

for a marking M , defines a new marking M ′, such that all tokens are deleted from

its input places:

∀d ∈ •s, M(d)← ∅

and SKIP control values are added to its output places:

∀d ∈ (s•),M(d)← M(d) ∪ {SKIP}

These actions are also atomically executed. Differently from Def. 3.1.6, the

skipping rules do not affect the states of transitions in BRCPN-EP .

If a transition is successor of a skipped transition, it is going to receive the

SKIP control token as part of its inputs; therefore, we define a skippable transi-

tion as follows:

Definition 3.1.12 Skippable transition. A marking M enables a transition

s for skipping if and only if all its input places contain tokens such that

(∀d ∈ •s, card(M(d)) = card(•d)) ∧ (∃d ∈ •s, {SKIP} ∈M(d))

3.1 Modeling composite service executions 49

If there are skipped transitions at the end of a CPN-EP execution, we say that

the execution is a skipped execution. Formally, a skipped execution is defined as

follows:

Definition 3.1.13 Skipped Execution. The execution of a CPN-EP is skipped

if:

∀d ∈ CPN-EPOUT , M(d) = card(•d) ∧

∃d ∈ CPN-EPOUT | M(d) ∈ Bag({SKIP})

When a composite service execution is skipped, the state of the CPN-EP is

saved in persistent memory, and if partial output results exist, they are delivered

to the user. We call the state of a skipped execution a CPN-EP snapshot CPN-

EPsnapshot. This way, the composite service execution may be resumed later.

We illustrate the proposed checkpointing mechanism using the same example of

Figure 3.4 where s4 fails. Services s1, s2, and s5 have been successfully executed.

s3 is fireable, and s8 has already its input corresponding to d9, but it is still

waiting for the one corresponding to d8. If the checkpointing option is available,

the CPN-EP unrolling continues. The execution of s4 is skipped (Def. 3.1.11),

the SKIP control token is set to the output places of s4, d8 and d9, and s7 and

s8 become skippable (Def. 3.1.12). Since s3 was not affected by the failure of s4,

it continues its execution as if nothing happened (Figure 3.7 (b)).

Finally, Figure 3.7 (c) shows the state when the CPN-EP finishes its skipped

execution. The output d10 was correctly produced, which is not the case for

outputs d11 and d12. Therefore, Def. 3.1.13 is satisfied since the three output

places contain their necessary tokens, and at least one of them contains the SKIP

control value. In this case, both d11 and d12 contain the SKIP control value.

Figure 3.7 (d) shows the part CPN-EP ′ of the CPN-EP that has to be resumed.

We can see that the only services affected by the failure of s4 were s7 and s8. Note

that even though d9 has the service s4 as predecessor, it also forms part of the set

of inputs of CPN-EP ′ since it was already produced by s5. The complete sets of

inputs and outputs of CPN-EP ′ are the following:

CPN-EP ′IN = {d5, d9}

CPN-EP ′OUT = {d11,12 }

50 Composite Service Execution Control and Recovery Mechanisms

Figure 3.7: Checkpointing Example.

Note that a checkpointed composite service leaves the system in a temporarily

inconsistent state; therefore, it must be resumed. A resumed composite service

may either finish successfully, or fail again and be compensated. A user may not

want to resume a checkpointed service if he obtained the outputs he wanted as

part of the checkpointing partial outputs. In this case, the atomicity property is

responsibility of that user.

3.1 Modeling composite service executions 51

To model the internal mechanism of checkpointing for a transition si, we add

a transition si−CHECKPOINT representing the checkpointing action of si. This

transition is added to all services as follows:

∀si ∈ S, S ← S ∪ {si−CHECKPOINT}

∀si ∈ S, F (di−STATE, si−CHECKPOINT) = 1

∀di ∈ s•i , F (si−CHECKPOINT , di) = 1

When si−CHECKPOINT is fired, it removes tokens from si−OK and sets skip

control tokens to its corresponding output places:

M(di−STATE)← ∅

∀d ∈ si−CHECKPOINT
•, (M(d)←M(d) ∪ {SKIP})

A non-retriable service is internally composed by the transitions si−INV OKE,

si−OK , si−COMPENSATE, and si−CHECKPOINT ; a retriable service is internally

composed by si−INV OKE, si−OK, si−RETRY , and si−CHECKPOINT .

Figure 3.8 illustrates the internal mechanisms of a transition using checkpoint-

ing. In this case, s3−CHECKPOINT removes the token from d3−STATE and puts a

SKIP control token in d7 to initiate or continue the checkpointing process.

Figure 3.8: Internal Mechanisms of a Transition using Checkpointing.

52 Composite Service Execution Control and Recovery Mechanisms

3.1.3 Service Replacement

During the execution of composite services, if a failure occurs after many of

its components services haven been successfully executed, a backward recovery

process may lead to a significant resource wastage. Services with the retriable

transactional property guarantee a successful execution after a finite number of

invocations (Section 2.2.2); however, it is not always possible to provide a re-

triable composite service in which all its components are retriable to guarantee

forward recovery. To avoid aborting the composite service execution and doing

backward recovery, the replacement of a malfunctioning service is a forward re-

covery alternative. Therefore, when a service fails, if it is not retriable, we search

for a replacement service to be invoked on behalf of the faulty one.

As we have explained in Section 2.1, services have already been discovery and

classified according to their functionality; for example, using approaches such

as [66] or [79]. Services are grouped in classes with the same functionality, but

they can have different service descriptions, input and output attributes, trans-

actional property, and QoS. Hence, we can define service functional equivalence

according to the services input and output attributes. A service s is a functional

replacement, denoted by ≡F , to another service s∗, if s∗ can be invoked with at

most the input attributes of s, and s∗ produces at least the same output attributes

produced by s. A functional replacement service is defined as follows:

Definition 3.1.14 Functional Replacement. Let s and s∗ be two services.

We say that s∗ is functional replacement of s, denoted as s∗ ≡F s, if:

∀d∗ ∈ •(s∗), ∃d ∈ •s | d ⊆is−A d∗, and

∀d ∈ s•, ∃d∗ ∈ (s∗)• | d∗ ⊆is−A d

Figure 3.9 shows an example of different services in the same functional class.

These services have different input and output attributes, transactional property,

and though not showed in the example, may have different QoS. Regarding their

inputs and outputs data types, suppose that they are associated with the example

ontology described in the Figure 2.2 of Section 2.1.

By Def. 3.1.14 s1 ≡F s3 since d13 ⊆is−A d2, but s3 6≡F s1 since d2 6⊆is−A d13.

Similarly, s1 ≡F s4 since d3 ⊆is−A d11, but s4 6≡F s1. s3 6≡F s4 since d2 6⊆is−A d13

3.1 Modeling composite service executions 53

Figure 3.9: Functional Replacement Example.

and s4 6≡F s3 since d11 6⊆is−A d3. Finally, s2 cannot be replaced by any of the

other services because s1, s2, s3 require more inputs than s2. s2 can replace any of

the other services since d1 ⊆is−A d5, and d6 ⊆is−A d3, d6 ⊆is−A d11 and d7 ⊆is−A.

To guarantee the composite service global transactional property, also defined

in Section 2.2.2, a service s can be replaced by another service s∗, if s∗ can

behave as s in the recovery process. Hence, if TP (s) ∈ {p, a}, in which case s

only allows backward recovery, it can be replaced by any other service because

all transactional properties allow backward recovery. A service with TP (s) ∈

{pr, ar} can be replaced by any other retriable service (pr,ar,cr), because all

of them allow forward recovery. A compensable service can be replaced by a

service that also provides compensation; that is, c and cr services. A cr service

can be only replaced by another cr service because it is the only transactional

property allowing backward and forward recovery. We have said that to replace

a service s with another service s∗, they must satisfy Def. 3.1.14. However, if s

is compensable, its associated service s′ must also be replaced in the BRCPN-

EP (Def. 3.1.7) by the compensation service of s∗; that is, by a replacement

compensation service s′∗.

Thus, a service s is transactional replacement of another service s∗, denoted by

≡T , if s is a functional replacement of s∗ and their transactional property allow

the replacement. Def. 3.1.15 shows the rules for a transactional replacement.

Definition 3.1.15 Transactional Replacement Let s and s∗ be two services,

and s′ and s′∗ their corresponding compensation services if they exist. We say that

s∗ is transactional replacement of s, denoted as s∗ ≡T s if any of the following

statements is true:

54 Composite Service Execution Control and Recovery Mechanisms

• (TP (s) ∈ {p, a} ∧ TP (s∗) ∈ {p, pr, a, ar, c, cr}) ∧ s∗ ≡F s

• (TP (s) =∈ {pr, ar} ∧ TP (s∗) ∈ {pr, ar, cr}) ∧ s∗ ≡F s

• (TP (s) = c ∧ TP (s∗) ∈ {c, cr}) ∧ (s∗ ≡F s ∧ s′∗ ≡F s′)

• (TP (s) = cr ∧ TP (s∗) ∈ {cr}) ∧ (s∗ ≡F s ∧ s′∗ ≡F s′)

In Figure 3.9, s1 ≡T s3 and s1 ≡T s4, but s4 6≡T s1. s2 ≡T s1, s2 ≡T s3, and

s2 ≡T s4. s3 satisfies the transactional property of s1 and s4 but s3 do not satisfy

the functional replacement definition for those services. s4 cannot replace any

of the services since s1 and s3 require the retriable property, and s2 requires the

compensable and retriable properties. The following definition presents the steps

to take in case of service replacement:

Definition 3.1.16 Transactional Replacement Steps.

Let CPN-EP = (D,S, F, ξ) the Colored Petri net allowing the execution of a

composite service and BRCPN-EP = (D′, S ′, F−1, ζ) its corresponding backward

recovery Colored Petri net. In case a service s ∈ S fails, it can be replaced by

another s∗, if s ≡T s∗. Then, the following actions proceed:

1) S ← S ∪ {s∗}

2) ∀d ∈• (s∗), F (d, s∗)← 1 ∧ ∀d ∈• s, F (d, s)← 0;

3) ∀d ∈ s•, F (s∗, d)← 1, F (s, d)← 0;

4) S ← S − {s};

5) if TP (s) ∈ {c, cr}, s′ ∈ S ′ is replaced by s′∗ in the BRCPN-EP , since s′∗

compensates s∗;

6) TP (s∗)← TP (s).

When a substitution occurs, the faulty service s is removed from the CPN-

EP , the new s∗ is added, but the original CPN-EP structure remains intact. For

compensable services, it is necessary a service replacement capable of maintaining

the compensation control flow in the respective BRCPN-EP . In fact, when a

compensable service is replaced, the corresponding compensation service must be

also replaced by the new one in the BRCPN-EP .

3.1 Modeling composite service executions 55

The goal is to finish the execution with the same properties of the original

composite service. Let us go back to Figure 3.4 which shows the state of the

example composite service execution when s4 fails. Figure 3.10 (a) shows the set

of services providing the same functionality as s4. Note that services in Figure 3.10

(a) have different inputs and outputs, and transactional properties. Regarding

transactionality, s4 can be replaced for any of the four services since it is pivot. We

cannot replace s4 by s23 because we do not have enough input data to invoke s23
and thus, it does not satisfy the functional replacement definition (Def. 3.1.14).

Now, suppose that s20, s21, and s22 are all valid replacements for s4; that is, for

example:

d5 ⊆is−A d20

d5 ⊆is−A d24

d5 ⊆is−A d28

meaning that d5 is the same concept or a subconcept of d20, d24, and d28, and

d22 ⊆is−A d8

d26 ⊆is−A d8

d30 ⊆is−A d8

meaning that d22, d26, and d30 are the same concepts or subconcepts of d8.

d23, d26, d27, and d31 are data not needed by the composite service of Figure 3.4.

Finally, we suppose that s20, s21, and s22 are order by QoS:

s20 ≻ s22 ≻ s21

where s20 is the service with the best QoS, and s21 is the service with the worst

QoS; therefore, s20 is chosen as replacement (Figure 3.10 (b)).

In case of failure of a service s, depending on its transactional property, the

following actions can be executed:

56 Composite Service Execution Control and Recovery Mechanisms

Figure 3.10: Service Replacement Example.

• if TP (s) is retriable (pr,ar,cr), s is reinvoked until it finishes successfully

(forward recovery);

• otherwise, another transactional replacement service, s∗, is selected to re-

place s, and the unrolling algorithm goes on (forward recovery);

• if there are no replacement services, a backward recovery is needed; i.e.,

all executed services must be compensated in the inverse order they were

executed. For parallel services, the execution order does not matter.

3.2 Framework Architecture 57

When there exist several services candidates for replacing a faulty service s, the

one with the best QoS is selected. The service replacement is done such that the

replacement service locally optimizes the QoS. If several services have the same

QoS, then the service replacement is chosen by transactional property according

to Def. 3.1.15 and the following preference relation:

p = a ≺ c ≺ pr = ar ≺ cr

since we prefer compensable over pivot/atomic services, and retriable services

over non-retriable ones. Note that if more than one replacement is done for the

same service, all of them take into account the original required transactional

property, and not the transactional property of replaced service (Def. 3.1.16).

This is to avoid unnecessary restrictions imposed by the transactional property

of the replacement service. For example, the transactional property of the failed

service in Figure 3.10 is p. Suppose that s4 was replaced by another service s∗

with transactional property c. However, if it turns out that s∗ also fails, we have

to perform service replacement again. s∗ with TP (s∗) = c can then be replaced

by services with any transactional property, since the original requirement was p.

The internal mechanisms of service replacement are similar to the ones of service

retry showed in Figure 3.3.

3.2 Framework Architecture

In this section, we present the overall architecture of our execution framework

and a detailed explanation of its fault tolerance algorithms.

During the composite service execution there exist two basic variants of exe-

cution scenarios for component services. In a sequential scenario, services work

on the result of previous services and cannot be invoked until previous services

have finished. In parallel scenario, several services can be invoked simultane-

ously because they do not have data flow dependencies. The global transactional

property of composite services is affected by these execution scenarios. Hence, it

is mandatory to follow the execution flow defined by the CPN-EP (Def. 3.1.1)

to ensure that sequential and parallel execution satisfy the global transactional

property.

58 Composite Service Execution Control and Recovery Mechanisms

The execution of a composite service in our framework is managed by an Agent

Coordinator and a collection (Γ) of software components called Service Agents

(γ), organized in a three-level architecture. Figure 3.11 depicts the overall ar-

chitecture of our framework. In the first level, the Agent Coordinator receives

the composite service and its corresponding backward recovery graph, both rep-

resented by Colored Petri nets. These Colored Petri nets can be automatically

or manually generated.

The Agent Coordinator launches in the second layer a Service Agent for each

service in the composite service. Figure 3.11 shows an example containing the

services:

S = {s1, s4, s6, s7}

Therefore, the following Service Agents are instantiated:

Γ = {γ1, γ2, γ3, γ4}

where γ1 is responsible for s1, γ2 for s4, γ3 for s6, and γ4 for s7. Each Service

Agent is responsible for the execution control of its service; that is, Service Agents:

• are responsible for the actual invocation of services;

• monitor the execution of their corresponding services;

• forward results to their peers to continue the execution flow;

• take fault tolerance actions in case of failure.

By distributing the responsibility of executing a composite service across several

Service Agents, the logical model of our framework enables distributed execution

and implementation independence. For example, this model can be implemented

in a distributed memory environment supported by message passing, or in a

shared memory platform supported by a distributed shared memory or tuplespace

system.

3.2 Framework Architecture 59

Figure 3.11: Execution System Architecture.

The idea is to place the Agent Coordinator and the Service Agents in different

physical nodes with high availability and reliability; for example, in a cloud com-

puting environment. These highly reliable nodes will be not the same as where

the actual services are placed. Service Agents remotely invoke the actual compo-

nent services. The knowledge required at runtime by each Service Agent (service

descriptions, services predecessors and successors, and execution flow control) can

be directly extracted from the Colored Petri nets in a shared memory implemen-

tation or sent by the Agent Coordinator in a distributed implementation.

60 Composite Service Execution Control and Recovery Mechanisms

3.2.1 Fault Tolerance Algorithms

This section presents the algorithms implementing the execution control and fault

tolerance mechanisms for composite services. The whole execution process is

divided in several phases, in which the Agent Coordinator and Service Agents

participate. Table 3.2 shows implementation parameters and control messages.

Control messages are special messages sent within the framework to perform the

fault tolerant execution control of composite services.

Type Description

CHECKPOINT ENABLED Parameter Enables the checkpointing option.

MAX TRIES Parameter Maximum number of times a Service Agent can replace a service.

COMPENSATE READY Control Message Prepares components for compensation.

FINISH Control Message Ends a Service Agents lifecycle.

CHECKPOINT Control Message Requests Service Agents to send their checkpointing data.

CTRL TOKEN Control Token Control the execution flow.

SKIP Control Token Control the checkpointing unrolling process.

Table 3.2: Framework Parameters and Control Messages.

3.2.1.1 Initial phase

Whenever an Agent Coordinator receives a CPN-EP and its corresponding BRCPN-

EP , it instantiates a Service Agent for each transition in CPN-EP (Algorithm 3.1

line 4). Service Agents are instantiated with the following information:

• predecessor Service Agents;

• successor Service Agents;

• the information related to its corresponding service.

This means that the Agent Coordinator sends the part of the CPN-EP that

each Service Agent is interested in. Finally, it starts the CPN-EP unrolling by

sending the attribute values in CPN-EPIN to Service Agents responsible for the

successors of the initial transition (Def. 3.1.3). In Algorithm 3.1, lines 1 to 8

describe these steps.

3.2 Framework Architecture 61

3.2.1.2 Service Invocation phase

Once a Service Agent has been instantiated, it waits until its corresponding ser-

vice becomes fireable (Algorithm 3.2 line 2). Note that in the Service Agent

context, γIN represents a dictionary containing the input data types d as keys,

and their corresponding received data values and/or control tokens as dictionary

values. When a Service Agent is waiting for its inputs, its corresponding service

may become fireable for execution (Def. 3.1.5) or it may have become skippable

(Def. 3.1.12). When a Service Agent receives all its needed inputs, it becomes

fireable and it invokes its corresponding service (Algorithm 3.2 line 7). Upon the

successfully completion of a service, its corresponding Service Agent sends the

produced output values to its successor Service Agents. This step emulates the

firing rules in CPN-EP . Note that all fireable services can be invoked in parallel

for execution or for skipping. If a service fails during the execution (Algorithm 3.2

line 8), the Service Agents tries to perform forward recovery:

1) first, it verifies if its corresponding service is retriable. If it is, then the

service is reinvoked;

2) if the service is not retriable, then the Service Agent tries to replace it by

another service.

3) if the service is nor retriable and it does not have a replacement service,

the Service Agent is left with two options: compensate or checkpoint. The

default action is to compensate; checkpointing is chosen if the checkpointing

option is enabled.

When a Service Agent has finished with the execution control of its correspond-

ing service, it goes to the final phase (Algorithm 3.3).

3.2.1.3 Final phase

This phase is carried out by the Agent Coordinator and Service Agents (Algo-

rithms 3.1 line 9 and Algorithm 3.3, respectively). After it has instantiated all

Service Agents and initiated the composite service execution, the Agent Coordi-

nator goes to this phase and waits for the execution termination or for a message

indicating that it is necessary to compensate. In case the composite service ex-

ecution finishes successfully, the Agent Coordinator receives all the composite

62 Composite Service Execution Control and Recovery Mechanisms

service outputs and terminates all Service Agents by sending the FINISH mes-

sage (Algorithm 3.1 line 12). Then, it recalculates the composite service QoS, and

returns the values in CPN-EPOUT to the user. When a Service Agents receives

the FINISH message, it terminates its execution.

In case compensation is needed, the Agent Coordinator receives a COMPEN-

SATE READY message, and it executes the compensation phase. If a Service

Agent receives a COMPENSATE READY message, it also launches its compen-

sation protocol.

Finally, if the Agent Coordinator receives an SKIP control token for at least

one of the outputs in CPN-EPOUT , it executes the checkpointing phase (Algo-

rithm 3.1 line 14).

3.2.1.4 Replacing phase

If a failure occurs during a service execution, the corresponding Service Agent

checks if the service is retriable. If it is not retriable, it applies service replacement

(Algorithm 3.4). Services can be replaced if there exist candidate services and

while a maximum number of replacements has not been reached (Algorithm 3.4

line 2). From the set of candidate services that can replace the failed service

functionally and transactionally, the Service Agents selects the best one regarding

QoS.

Lines from 4 to 6 show the necessary steps to replace the service in a CPN-EP ,

including the service replacement in the BRCPN-EP (Def. 3.1.7) if the replaced

service is compensable.

3.2.1.5 Compensation phase

If forward recovery is not possible and checkpointing is not enabled, compensa-

tion is chosen to leave the system in a consistent state. The Service Agent re-

sponsible for the faulty service informs the Agent Coordinator about the failure

(Algorithm 3.2 line 10), then it goes to the compensation phase (Algorithm 3.5

line 3).

The Agent Coordinator sends a message COMPENSATE READY to all Ser-

vice Agents (Algorithm 3.5 line 2) and starts the compensation process following

3.2 Framework Architecture 63

an unrolling algorithm over the BRCPN-EP . Once all the Service Agents receive

the message COMPENSATE READY, they apply the firing rules in BRCPN-EP

to follow the compensation process. The compensation steps for Service Agents

are showed in Algorithm 3.5 line 2.

3.2.1.6 Checkpointing phase

This phase is carried out by the Agent Coordinator and the Service Agents which

cannot invoke their corresponding services, because they are in the path of a

failure, or their corresponding service failed.

In Algorithm 3.2 line 3, the Service Agent sends a SKIP message to its succes-

sors following the skipping rules (Def 3.1.11) and skippable transition (Def. 3.1.12)

definitions. If its corresponding service fails (Algorithm 3.2 line 8) and the check-

pointing option is enabled, the Service Agent also triggers the skipping rules,

sending a SKIP message to its successors. Service Agents which corresponding

service fails are the ones that trigger the checkpointing process in Algorithm 3.2

line 9.

Finally, a Service Agent which corresponding service execution was skipped

waits until it receives a CHECKPOINT message (Algorithm 3.3 line 1). When

a Service Agent receives a CHECKPOINT message, it sends its information

to the Agent Coordinator. This information consists of data values and/or con-

trol tokens received as input, the information of its corresponding service, and

produced outputs if they exist.

In Algorithm 3.1 line 14, in case of a skipped execution (Def. 3.1.13), the Agent

Coordinator saves the produced outputs CPN-EPOUT of the composite service,

and collects the information of Service Agents. Then, it returns a CPN-EPsnapshot

containing the part of the CPN-EP that could not be executed, the needed inputs

to resume it, and the produced composite service outputs.

3.2.1.7 Resume phase

There is no difference between a resumed execution of a checkpointed CPN-

EP and a non-checkpointed CPN-EP execution. In this phase, both Agent

Coordinator and Service agents execute a checkpointed CPN-EP by using the

previously described algorithms as for a normal execution.

64 Composite Service Execution Control and Recovery Mechanisms

Figures 3.12 depicts the flow diagrams showing the phases previously described

for the Agent Coordinator and Service Agents and their relation with the pre-

sented algorithms.

Algorithm 3.1 Agent Coordinator Algorithm.
Input: CPN-EP = (D, S, F, ξ), a Colored Petri net representing a composite service

Input: BRCPN-EP = (D′, S′, F−1, ζ), a Colored Petri net representing the compensation flow of

CPN-EP
Output: CPN-EPOUT : composite service outputs

1 Initial phase:

begin

/* The state of all transitions in BRCPN-EP is initial */

2 ∀s′ ∈ S′, ζ(s′)← I;

3 repeat

4 Instantiate a Service Agent γ responsible for s;

5 Send predecessors reference •(•γ) to γ ;

6 Send successors reference (γ•)• to γ;

until ∀s ∈ S | (s 6= s♦) ∧ (s 6= s�);

7 Fire γ♦ with the values of CPN-EPIN ;

8 Execute Final phase (line 9);

end

9 Final phase:

begin

10 repeat

Wait for message from •(•γ�);

if message = COMPENSATE READY then

Execute Compensation phase; (Algorithm 3.5 line 1)

Execute Final phase (line 9);

else

Put received output value in CPN-EPOUT ;

end

until ∀d ∈ CPN-EPOUT ,M(d) = card(•d);

/*γ� is fireable*/

11 if ∃d ∈ CPN-EPOUT |M(d) ∈ Bag(SKIP) then

//Skipped execution Def. 3.1.13

Execute Checkpointing phase (line 14);

end

else

12 Send FINISH message to •(•γ�);

13 Return CPN-EPOUT ;

end
end

14 Checkpointing phase:

begin

Save received data values of CPN-EPOUT ;

Send CHECKPOINT message to Service Agents;

Wait for responses from Service Agents;

Build CPN-EPsnapshot;

Return CPN-EPsnapshot;

end

3.2 Framework Architecture 65

Figure 3.12: Agent Coordinator and Service Agent Flowcharts.

66 Composite Service Execution Control and Recovery Mechanisms

Algorithm 3.2 Service Agent Algorithm: Initial and Invocation Phases.
Input: •(•γ), predecessors Service Agents

Input: (γ•)•, successors Service Agent of γ

Input: s: the corresponding service

Input: s≡: equivalent services of γ

Input: P: preferences //if checkpointing is enabled or not, and maximum number of replacements

Output: ∅

1 Invocation phase:

begin

∀d ∈ •γ, •γIN .put(d, ∅); //γIN is a dictionary with keys d with multiple values per key

2 repeat

Wait for message from •(•γ) or Agent Coordinator;

if message = COMPENSATE READY then

Execute Compensation phase (Algorithm 3.5 line 3);

Return;

else
•γIN .put(message.d, message.dvalue);

end

until ∀d ∈ •γIN , card(M(d)) = card(•d);

/* all the predecessor transitions have finished */

3 if SKIP ∈ γIN then

/*Skippable transition (Def. 3.1.12) */

Send SKIP to (γ•)• ;

Return;

end

/*Fireable transition (Def. 3.1.5) */

4 success← false;

cantry ← true;

tries← 0;

5 ζ(s′)← R;

6 repeat

7 Invoke s;

if (s fails) then

if ¬TP (s) ∈ {pr, ar, cr} then

if s≡ 6= ∅ ∧ tries < P.MAX TRIES then

if ¬TP (s) ∈ {pr, ar, cr} then

Execute Replacing phase (Algorithm 3.4);

tries++;

end
else

cantry ← false;

end
end

else

ζ(s′)← E;

Send s outputs to (γ•)•;

success← true;

end
until success ∨ ¬cantry;

8 if ¬success then

9 if P.CHECKPOINT ENABLED then

Send SKIP to (γ•)•;

else

10 Send COMPENSATE READY message to Agent Coordinator;

ζ(s′)← C ;

Execute Compensation phase (Algorithm 3.5 line 3)

end

else

Execute Final phase (Algorithm 3.3)

end
end

3.2 Framework Architecture 67

Algorithm 3.3 Service Agent Algorithm: Final Phase.
1 Final phase:

Input: ∅

Output: ∅

begin

2 Wait for message;

if message = FINISH then

Send FINISH message to •(•γ);

Return;

else

if message = CHECKPOINT then

//received data values and/or control tokens, and produced outputs

Send Service Agent γ information to Agent Coordinator ;

3 Return;

else

if message = COMPENSATE READY then

Execute Compensation phase (Algorithm 3.5 line 3)

Return;

end
end

end
end

Algorithm 3.4 Service Agent Algorithm: Replacing Phase.
1 Replacement phase:

Input: s≡: equivalent services of s

Output: s∗: a service if s≡ 6= ∅

begin

2 if s≡ 6= ∅ then

3 Select s∗ ∈ s≡| [∀s′′ ∈ s≡, (QoS(s∗) ≥ QoS(s′′))];

4 S ← S ∪ {s∗};

∀d ∈ •(s∗), F (d, s∗)← 1∧ ∀d ∈ •s, F (d, s)← 0;

5 ∀d ∈ s•, F (s∗, d)← 1, F (s, d)← 0;

S ← S − {s};

s≡ ← s≡ − {s∗};

TP (s∗)← TP (s);

if TP (s) ∈ {c, cr} then

s′ ∈ S′ is replaced by s′∗ in the corresponding BRCPN-EP ;

/*it compensates s∗*/

end

6 Return s∗;

else

7 Return ∅;

end
end

68 Composite Service Execution Control and Recovery Mechanisms

Algorithm 3.5 Agent Cordinator and Service Agent: Compensation Phase.
begin

1 Agent Coordinator:

begin

/*Mark the BRCPN-EP with the Initial Marking*/

2 Send COMPENSATE READY to all Service Agents γ ∈ Γ;

Send CTRL TOKEN to •(•γ�);

Wait for CTRL TOKEN from ((γ♦)
•)•;

Return ERROR;

end

3 Service Agents:

begin

/* s′: compensation service of the corresponding service s*/

if ζ(s′) = A ∨ ζ(s′) = C then

Send CTRL TOKEN to •(•γ);

else

repeat

Wait for CTRL TOKEN from (γ•)•;

Set CTRL TOKEN the corresponding input place d′ ∈• s′;

until (∀d ∈ γ•, card(M(d)) = card(d•);

/*γ may now fire the compensation service s′*/

if ζ(s′) = I then

ζ(s′)← A

end

if ζ(s′) = R then

Wait s finishes;

Invoke s′;

ζ(s′)← C;

end

if ζ(s′) = E then

Invoke s′;

ζ(s′)← C;

end

Send CTRL TOKEN to •(•γ);

end

/*The Service Agent finishes */

Return;

end
end

3.3 Conclusions 69

3.3 Conclusions

In this chapter, we have formalized the reliable execution of composite services

using Colored Petri nets. Our approach ensures the correct execution of com-

posite services and provides fault tolerance if needed. The execution model is

distributed, can be implemented in distributed or share memory systems, is in-

dependent of the implementation of services, and is transparent to users and

developers. We base our fault tolerance on transactional properties to provide a

deep-seated notion of what a correct state of a composite service is. The main

considered recovery mechanisms are: forward recovery by retrying or replacing

the faulty service, and backward recovery based on an unrolling process over a

Colored Petri net representing the compensation flow of the faulty composite

service.

Additionally, we have presented a checkpointing mechanism that provides an

alternative to the service retry, service substitution, and compensation mecha-

nisms. It allows to delay the execution of the faulty part of a composite service,

while continuing the execution of the part not affected by the failure. Also, the

checkpointing mechanism allows users to receive partial answers as soon as they

are produced and provides the option of resuming the composite service without

losing the work previously done, and without affecting the original transactional

property. We also pointed out that a checkpointed composite service leaves the

system in a temporarily inconsistent state; therefore, it must be resumed. A

resumed composite service may either finish successfully, or fail again and be

compensated.

As hypothetical limitations we can point out the following: the framework does

not take into account QoS to make decisions, decisions are based on transactional

properties and are only taken as a reaction to failures; it may be difficult to do

a sound experimental evaluation due to the lack of testbeds for the execution of

composite services under unreliable environments; and, it may be also difficult to

deploy our system in the real-world due to the lack of interoperability, integration,

and automation of inter-organization services.

In the next chapter, we present a knowledge-based approach for self-healing

composite services. This approach extends the framework based on transactional

properties presented in this chapter to provide smarter knowledge-based decisions.

Chapter 4

Knowledge-based Service Agents

Contents

4.1 Motivation . 72

4.2 A High-level Definition of Self-healing Composite

Services . 74

4.3 Knowledge-Based Service Agents 79

4.3.1 Self-awareness Knowledge 82

4.3.2 Context-awareness Knowledge 83

4.4 Knowledge Base . 96

4.4.1 QoS State Deduction 99

4.4.2 Self-healing State Deduction 100

4.4.3 Action Deduction . 101

4.5 QoS Manager for Summation/Product QoS Criteria 105

4.6 Algorithms . 108

4.7 Conclusions . 111

In the previous chapters, we have seen that different situations may cause a

component service to fail during the execution of a composite service. However, a

fault tolerant composite service is the one that, upon a service failure, ends up the

whole composite service execution successfully using forward recovery techniques,

or leaves the execution in a safe state using backward recovery. Examples of

forward recovery techniques are service retrying and service replacement; while

roll-back and compensation are examples of backward recovery techniques. In

72 Knowledge-based Service Agents

this sense, reliable execution of composite services becomes a key mechanism

to cope with challenges of open-world applications in dynamic, changing, and

untrusted operating environments. The reliable execution of composite services

ensures the consistent state of the whole system, even in presence of failures [98].

In this context, failures during of composite service executions can be repaired

by backward or forward recovery processes. Backward recovery implies to undo

the work done before the failure, and go back to a consistent state close to the one

the system had before the composite service execution Forward recovery tries to

repair the failure to continue the execution and finish it successfully. In Chapter 3,

we have presented our backward recovery approach by compensation, and forward

recovery by retrying. Both approaches are based on the transactional properties

model for composite services explained in Section 2.2.2. In Section 3.1.3, we have

presented our approach for forward recovery based on service replacement in case

a failed service cannot be retried.

For some users, partial responses may have sense. Also, encountered failures

may be temporary. Checkpointing techniques may be implemented to survive ser-

vice failures by executing the part of the composite service not affected by those

failures. Checkpointing may be implemented as a recovery technique indepen-

dent of transactional properties [85]. As an alternative to backward and forward

recovery, we have presented an approach for checkpointing in Section 3.1.2. In

our approach, the execution of the faulty part of a composite service is delayed

and put on stand-by to be resumed later. The part of the composite service not

affected by failures continues its execution as if nothing happened.

4.1 Motivation

Because services can be created and updated on-the-fly, the execution system

needs to dynamically detect changes during run-time, and adapt the execution to

the availability of existing services. The highly dynamic nature of Internet and the

compositional nature of services make the above static fault tolerance strategies

unpractical in real-world environments where users not only care about system

consistency, but also about QoS. This is why is necessary to create more sophis-

ticated composite service execution systems capable of making smarter decisions

at runtime. In fact, such a composite service execution system should take into

account:

4.1 Motivation 73

1) the composite service execution state at the moment of a failure; for ex-

ample, how many component services have been successfully executed and

how many have not been invoked;

2) the environment state; for example, network connectivity;

3) the impact of the recovery strategy in the composite service QoS.

In these scenarios some questions emerge to decide which recovery strategy is

the best in terms of its impact on the composite services QoS: are all recovery

techniques equally practical, effective, and efficient? When is it better to apply

backward (or forward) recovery? Is it replication the best strategy? These un-

predictable characteristics of SOA environments provide a challenge for optimal

fault tolerance strategy selection. There is an urgent need for more general and

smarter fault tolerance strategies, which are context-information aware and can

be dynamically and automatically reconfigured for meeting different user require-

ments and adapting to changing environments. Hence, it is important to define a

dynamic fault tolerant strategy which takes into account that kind of information

to choose the most appropriate recovery strategy.

In the model presented in Chapter 3, the recovery decisions are taken based

solely on the transactional capabilities of services; for example, according to the

diagram of Figure 4.1, when a service fails, the decision making process is as

follows:

1) if the failed service is retriable, then the recovery mechanism is forward

recovery by retrying;

2) if it is not retriable and has a replacement, then the recovery mechanism is

forward recovery by service replacement;

3) if it is not retriable and does not have replacements, the recovery mechanism

is backward recovery by compensating unless the checkpointing option is

enabled.

We call this described decision making process a static strategy selection. It is

static since the possible recovery actions are predefined before the composite ser-

vice execution starts; that is, they only depend on the composite service Colored

Petri net structure, transactionality, and the availability of service replacements.

From this static selection, we draw the following hypothetical issues:

74 Knowledge-based Service Agents

1) QoS degradation: the execution time of the whole composition can be de-

graded due to the additional time required to perform retries and substitu-

tions; execution time or any other QoS criteria can be degraded due to the

QoS of a replacement service.

2) Lost work : compensating a composite service execution can lead to the

loss of important work already done and resource wastage, such as waited

time, payed services execution, used computational power, or generated

user outputs.

3) Checkpointing too early : it is the opposite case of the previous point. It may

not be worth it to checkpoint composite services executions that produced

none or a just few user outputs, and executed a small percentage of it

component services.

Moreover, QoS degradation can also occur during failure-free composite ser-

vice executions due to dynamic nature of the execution environment and the

component services.

Focused on the needs presented in this section, we present a new approach to

deal with the limitations of static automatic fault tolerance selection for compos-

ite service executions. We start by giving a high-level definition of self-healing

composite services. This definition allows the further understanding of compos-

ite service states, and how to take the necessary actions in case of failures or to

maintain QoS.

4.2 A High-level Definition of Self-healing Com-

posite Services

Before defining a self-healing composite service, we propose the definition of the

following four states for composite services (Figure 4.2): “created”, “running”,

“waiting”, and “terminated”. In the “created” state, the composite service has

never been executed, while in the “terminated” state, the composite service has

been executed either successfully or with failures. In the “waiting” state the

composite service has been stopped to resume it later using the checkpointing

technique. We define the self-healing states of composite services from the states

of Figure 4.2 in the remaining of this section.

4.2 A High-level Definition of Self-healing Composite Services 75

Figure 4.1: The Problems of the Static Selection of Fault Tolerance Strategies.

Figure 4.2: Execution States of a Composite Service.

76 Knowledge-based Service Agents

In Section 2.3, we proposed an introduction to self-healing systems where Fig-

ure 2.6 on page 25 illustrates the three self-healing states: “normal state”, “de-

graded state”, and “broken state”. We also stated the importance of distinguish-

ing between these three self-healing states to make appropriate decisions regard-

ing recovery strategies. In the approach presented in this chapter, the composite

service QoS is a crucial indicator of the system behavior and health. We consider

the following QoS notions:

1) Expected QoS: it refers to the estimated composite service QoS; for exam-

ple, composite service execution time, price, and availability (Section 2.1).

2) Acceptable QoS: it refers to the degree to which the expected QoS can

be degraded; for example, a user may be ready to wait more time or pay a

higher price than expected for a composite service execution.

With the help of Figure 4.2, and using the notions of expected and accept-

able QoS, we propose a high-level definition of the “normal”, “degraded”, and

“broken” self-healing states for composite services. A composite service is in the

normal state (Figure 4.3 (a)) if:

• the composite service is in the “created” state; therefore, the system is in

a consistent state;

• the composite service is in the “terminated” state and it left the system in

a consistent state by the means of fault tolerance techniques or failure free

executions;

• the composite service is in the “running” state, there are no failures, and

the QoS remains within the expected values. Preventive measures such as

replication may be applied.

A composite service is in the degraded state (Figure 4.3 (b)) if:

• during its execution, the QoS is degraded but still within its acceptable

values;

• during its execution, some failures occur without affecting the global com-

posite service expected QoS;

4.2 A High-level Definition of Self-healing Composite Services 77

Figure 4.3: Self-healing States for Composite Services.

• during the checkpointing process; that is, a portion of the composite service

cannot be executed due to a failure, while a portion of the composite service

not affected by that failure continues its normal execution.

A composite service is in the broken state (Figure 4.3 (c)) if:

• during its execution, it has become unhealthy due to unacceptable QoS

degradation;

• after a checkpointing process finished; that is, during checkpointing stand

by;

• when an irreparable failure occurs and the only option is compensation.

In Section 3.2 we presented our composite service execution framework where

Service Agents were responsible for the execution control of component services.

In this chapter, we go deeper into the concept of Service Agents, and focus on

what they know and what they can do. The main goal of Service Agents is to

be autonomous components capable of making decisions by themselves. Taking

decisions locally does not mean that components neglect their surroundings; on

78 Knowledge-based Service Agents

the contrary, a Service Agent takes decisions based on the following three main

observations:

1) what is expected to happen and what really happened before the invocation

of its corresponding service;

2) what is expected to happen and what really happened during the invocation

of its corresponding service;

3) what remains to happen after the invocation of its corresponding service.

These are three key notions that comprise the Service Agent knowledge for

building self-healing composite services. Based on this, our design considers a

self-healing loop per Service Agent to perform the detection, diagnosing, and

recovering tasks in a decentralized fashion.

The “detection” component (Figure 4.4 (a)) takes into account one external

and two internal data sources. The external information regards the expected

QoS; for example, the user can allow a certain QoS degradation. The internal

information refers to the QoS degradation of component services (e.g., negative

variations in execution time and price), and to services failures, which is also a

special case of QoS degradation.

The “diagnosis” component (Figure 4.4 (b)) analyzes the problem and does the

triage of the composite service state. The three possible diagnosis correspond

to the three states of a self-healing system: normal; degraded; and broken. The

choice of the recovery mechanism is influenced by available options (e.g., replace-

ment services, transactional properties, etc), and user preferences (e.g., expected

QoS, checkpointing, etc).

The “recovery” component (Figure 4.4 (c)) is in charge of applying the selected

fault tolerance mechanisms: backward recovery through compensation; forward

recovery through service retry or substitution; prevention through replication; or

delaying the execution through checkpointing.

The next section provides a deeper view on the Service Agent architecture and

the formal definitions of the Service Agent knowledge model.

4.3 Knowledge-Based Service Agents 79

Figure 4.4: Service Agent Self-healing Loop.

4.3 Knowledge-Based Service Agents

We first introduced Service Agents as part of our execution framework in Sec-

tion 3.2. As a reminder, they are software components in charge of the execution

control of a service participating in a composite service execution. A Service

Agent waits for inputs, invokes its corresponding service, implements fault tol-

erance mechanisms if necessary, and sends produced outputs to other Service

Agents. Regarding the notation, a Service Agent is denoted by γ, and Γ is the

set of all Service Agents participating in the same composite service execution.

In this section, we elaborate on the description of the Service Agent architecture.

The idea is to enhance Service Agents with knowledge-based decision making

capabilities.

Figure 4.5 shows the architecture of Service Agents. The main components are

the Service Agent API, the autonomic component, and the knowledge base:

80 Knowledge-based Service Agents

Figure 4.5: Service Agent Architecture.

• Service Agent API: Service Agents are capable of sharing what they know

with other components through the Service Agent API. A Service Agent

is capable of answering questions regarding its current status; for example,

if it executed its corresponding service successfully or not. Service Agents

may also be notified of context changes, may receive input data, execution

control messages, etc, through their API. In summary, Service Agents pro-

vide two machine friendly interfaces: one to be told information; another

to be asked.

• Core: it contains the basic execution control elements of Service Agents;

that is, the algorithms presented in Section 3.2.

• Autonomic Component: it detects degradations on the composite service

behavior, selects an appropriate action, and applies it.

• Knowledge Base: contains information about the Service Agent itself, its

corresponding service, and the composite service execution context. It also

contains a set of rules to transition between self-healing states, and a set of

rules to deduce actions to take.

In the next section, we present and classify the knowledge required by a Service

4.3 Knowledge-Based Service Agents 81

Figure 4.6: Service Agent Knowledge.

Agent. Figure 4.6 shows the Service Agent knowledge classification and depen-

dency. The Service Agent knowledge about its self-haling state depends on its self-

and context knowledge. The self-awareness knowledge is the information Service

Agents have about their corresponding elementary service and their execution

control. The context-awareness knowledge is composed by the information about

the CPN-EP (Def. 3.1.1) computed by the Agent Coordinator, and configuration

information. Finally, the composite service control knowledge uses information

from the CPN-EP knowledge and from the service control knowledge.

The Agent Coordinator may always compute the Composite Service Knowledge

since it knows the composite service Colored Petri net structure and the functional

and nonfunctional properties of services, which is the Service Knowledge. Then,

the Agent Coordinator may traverse the composite service Colored Petri net

using Breadth-first search or Depth-first search-based algorithms. Finally, the

Composite Service Control Knowledge and Service Control Knowledge may be

computed by Service Agents at runtime by monitoring their execution.

Note that, in contrast with Chapter 3, in this chapter we model composite

services using the Service Agent notation (γ) instead of services (s) since we

focus on Service Agents. Also, γ♦ and γ� are never taken into account for the

82 Knowledge-based Service Agents

computations presented in the next sections. They are only used as control Service

Agents to define the beginning and the end of the composite service. This is the

same as if they had ideal QoS values: 0 execution time and price, and 1 for

availability.

4.3.1 Self-awareness Knowledge

The self-awareness definitions correspond to the knowledge Service Agents have

on their own, without knowing anything about other Service Agents participating

in a composite service execution. We classify the self-awareness knowledge into

two categories: Service Knowledge, and Control Knowledge.

4.3.1.1 Service Knowledge

Independently of the technique used for QoS criteria estimation, we assume that

each service is annotated with the QoS criteria introduced in Section 2.1: esti-

mated execution time, price, and availability. Services are also annotated with

their transactional property. This set of properties inherent to services are the

most basic ones in the category of self-knowledge.

The list of functionally equivalent services is also part of the self-knowledge.

Services in this list are functionally equivalent to the current service; however,

their inputs, outputs, QoS, and transactional property can vary. These services

can be used to replace or replicate the current service. We adopt the following

Service Agent-based notation to reflect what behavior is expected from a Service

Agent:

• γ≈time: estimated execution time (Section 2.1);

• γ≈price: price (Section 2.1);

• γ≈availability : availability (Section 2.1);

• γtp: transactional property (Section 2.2.2);

• γservices: the list transactional replacement services (Def. 3.1.15).

For example, if we say “Service Agent execution time”, it is the same as saying

“the execution time of the corresponding service of a Service Agent ”. With a

slight abuse of notation, we will refer to Service Agents γ instead of services s.

4.3 Knowledge-Based Service Agents 83

4.3.1.2 Control Knowledge

Control knowledge refers to information about the monitoring of the current local

execution. The first definition concerns the execution state of a Service Agent:

Definition 4.3.1 Service Agent Execution State (γstate). The execution

state of a Service Agent reflects the execution state of its corresponding service.

Its possible values are: I: initial; F : fireable; R: running, E: executed; C:

compensated; X: failed; and G: fixed. This definition extends the execution states

of Def. 3.1.7 and places this information as part of Service Agents knowledge

instead of only BRCPN-EP execution control.

The second type of control knowledge definitions is a set of QoS related defini-

tions. These definitions reflect the consumed QoS during the current execution,

and they are defined as follows:

Definition 4.3.2 Local Consumed Time (γtime). It is the runtime counter-

part definition of γ≈time; therefore, it is the time a Service Agent spends executing

its corresponding service. γtime starts running when γ receives the necessary in-

puts to invoke its corresponding service, and it can be measured at any moment;

for example, during a service execution, or after a successful or failed service

execution.

Definition 4.3.3 Local Consumed Price (γprice). It is the runtime coun-

terpart definition of γ≈price; it is the actual charged price after a service execution.

Definition 4.3.4 Local Consumed Availability (γavailability). It is the run-

time counterpart definition of γ≈availability ; it is the actual availability after a service

execution.

4.3.2 Context-awareness Knowledge

We define context as the current configuration and state of a composite service

execution. Thus, context-awareness is the knowledge a Service Agent has about

other Service Agents participating in the same composite service execution. The

84 Knowledge-based Service Agents

most basic context-knowledge comes from the estimations of the global QoS of

the composite service. The most interesting global QoS estimation is the one

regarding execution time since it depends on the CPN-EP structure; price and

availability do not depend on the CPN-EP structure.

4.3.2.1 Composite Service Knowledge

The composite service knowledge refers to the information that can be computed

by knowing the CPN-EP structure and its component services. This knowledge

is static and it does not depend on the composite service execution, so it can be

precomputed offline by the Agent Coordinator and distributed to Service Agents

before execution.

The first definition refers to the estimated execution time of the whole composite

service. Finding this estimated execution time is essentially computing the longest

path, in terms of service execution time, of the CPN-EP . This problem has a

well known application for project planning, scheduling, and coordination, and it

is known as the Critical Path [49]. The critical path of a graph can be computed

using a brute-force algorithm, the Bellman-Ford algorithm [21]; however, it has a

linear time solution for directed acyclic graphs using topological sorting. Ideally,

the CPN-EP structure will be annotated with this information at composite

service time.

Definition 4.3.5 Global Execution Time (◦≈time). It is the estimated exe-

cution time of the composite service; that is, the sum of the execution times of

Service Agents in the Critical Path of the CPN-EP :

◦≈time =
∑

i

γ≈itime
| γi ∈ CriticalPath (4.1)

Figure 4.7 shows an example composite service along with the QoS of its com-

ponent Service Agents. Service Agents in diamonds are in the critical path of the

CPN-EP . By Def. 4.3.5, we have that:

◦≈time = γ≈♦time
+ γ≈1time

+ γ≈3time
+ γ≈6time

+ γ≈�time
(4.2)

= 30 ms

4.3 Knowledge-Based Service Agents 85

Figure 4.7: Example Composite Service with Critical Path.

γ≈time (ms) γ≈price γ≈availability

γ1 10 2 0.9

γ2 7 4 0.85

γ3 11 3 0.91

γ4 3 2 0.82

γ5 4 2 0.87

γ6 9 5 0.9

γ7 6 1 0.8

γ8 5 4 0.88

Table 4.1: QoS of the Composite Service of Figure 4.7.

Note that, even though γ♦ and γ� appear in Eq. 4.2, they are systematically

excluded from actual computations. We can easily verify that no other path in

the composite service has a greater time than 30. Other global QoS values, such

as global price and availability, can be computed in simpler ways. The global

price of a composite service is defined as follows:

Definition 4.3.6 Global Price (◦≈price). ◦
≈
price is the sum of prices of all Service

Agents, defined as:

◦≈price =
∑

i

γ≈iprice (4.3)

Following the example, we have that ◦≈price = 23.

86 Knowledge-based Service Agents

The global availability is the product of all availabilities, as follows:

Definition 4.3.7 Global Availability (◦≈availability). It is the probability that

the composite service executes without failures. It is calculated as follows:

◦≈availability =
∏

i

γ≈iavailability

In our example, ◦≈availability = 0.314. This means that the example composite

service has 68.6 percent probability of failure.

Having these global QoS values, Service Agents may know if they may con-

sume more QoS than previously expected. We call available QoS the extra QoS

a Service Agent may consume. Once again, the computation of the available

execution time for a Service Agent is particular, different from the available price

or the available availability. Before presenting the definition of the available ex-

ecution time, we have to introduce three other definitions: expected firing time;

remaining time; and local critical path. The expected firing time is defined as:

Definition 4.3.8 Expected Firing Time (γ≈firing). It is the estimated time

from the beginning of the composite service execution until the corresponding ser-

vice of γ is fireable. It is defined recursively as follows:

γ≈firing =

{

0 if ∀d ∈ •γ, d ∈ CPN-EPIN

max(γ≈ifiring
+ γ≈itime

)|γi ∈
•(•γ) if ∃d ∈ •γ| d 6∈ CPN-EPIN

Let us take the Service Agent γ4 of Figure 4.7, on page 85, as example. Since

the execution time of γ♦ is 0, its expected firing time is given by the maximum

execution time between γ1 and γ2; that is, γ≈(4)firing = 10 ms. Similarly, the

remaining execution time is defined as follows:

Definition 4.3.9 Remaining Execution Time (γ≈remaining). It is the esti-

mated execution time from the end of a Service Agent execution until the end of

the composite service. It is recursively defined as follows:

γ≈remaining =

{

0 if ∀d ∈ γ•, d ∈ CPN-EPOUT

max(γ≈itime
+ γ≈iremaining

)|γi ∈ (γ•)• if ∃d ∈ γ•|d 6∈ CPN-EPOUT

4.3 Knowledge-Based Service Agents 87

The remaining time from γ4 is then the critical path from it until the end of

the composite service; that is, the sum of the execution times of γ6 and γ�, so

γ≈(6)remaining = 9 ms. Then, we can compute the local global time:

Definition 4.3.10 Local Global Time (γ(◦)≈time). It is the expected compos-

ite service execution time from the point of view of a Service Agent γ. γ(◦)≈time

is based on the expected firing time (Def. 4.3.8), the estimated execution time

(γ≈time), and the remaining execution time (Def. 4.3.9). It is calculated as follows:

γ(◦)≈time = γ≈firing + γ≈time + γ≈remaining (4.4)

Note that, by Def. 4.3.5, the local global time γ(◦)≈time always satisfies:

γ(◦)≈time ≤ ◦
≈
time

Also, by Def. 4.3.5, for services which are not in the Critical Path we have that:

γ(◦)≈time < ◦
≈
time

and for services in the critical path:

γ(◦)≈time = ◦
≈
time (4.5)

Then, the local global time for γ4 is:

γ4(◦)
≈
time = 10 + 3 + 9

= 22 ms

< ◦≈time

< 30 ms

Finally, by knowing the estimations of the global time ◦≈time and the local global

time γ(◦)≈time, Services Agents can compute their available extra time they can

use without affecting the composite service.

88 Knowledge-based Service Agents

Definition 4.3.11 Available Time (γ+
time). It represents the time a Service

Agent can consume additionally to the expected execution time of its corresponding

service. It is computed by subtracting the local global time to the global time as

follows:

γ+
time = ◦

≈
time − γ(◦)≈time (4.6)

The available time for γ4 is γ+
4time

= 30 − 22 = 8 ms. This means that γ4 can

use extra 8 ms; for example, taking more execution time or performing service

replacement. By Equation 4.5, we have that the initial available time for Service

Agents in the Critical Path is:

γ+
time = 0| γ ∈ CriticalPath

Given the nature the computation of other QoS such as price (Def. 4.3.6) and

availability (Def. 4.3.7), the concept of QoS availability does not exist as for the

execution time since QoS variation influences directly the global QoS.

Definition 4.3.12 Available Price (γ+
price). It represents the price a Service

Agent can consume additionally to the expected price of its corresponding service.

It is computed as follows:

γ+
price = ◦price −

(

∑

i

γi≈price[γiprice = 0] +
∑

i

γiprice[γiprice 6= 0]

)

(4.7)

The available availability follows similarly:

Definition 4.3.13 Available Availability (γ+
availability). It represents the avail-

ability a Service Agent can consume additionally to the expected availability of its

corresponding service. It is computed as follows:

γ+
availability = ◦availability −

(

∏

i

γi≈
availability

[γiavailability = 0]×
∏

i

γiavailability [γiavailability 6= 0]

)

(4.8)

4.3 Knowledge-Based Service Agents 89

Note that, in an ideal execution where all Service Agents consume the same

price and availability than expected, we have that:

◦price =

(

∑

i

γi≈price[γiprice = 0] +
∑

i

γiprice[γiprice 6= 0]

)

and,

◦availability =

(

∏

i

γi≈
availability

[γiavailability = 0]×
∏

i

γiavailability [γiavailability 6= 0]

)

therefore,

γ+
price = γ+

availability = 0 (4.9)

Service Agents are also aware of information not related to QoS. The first set

of definitions provides a way of knowing the progress of the whole composite

execution from the point of view of Service Agents. The first of these definitions

regards the composite service outputs which depend on a Service Agent:

Definition 4.3.14 Dependent and Nondependent Output (γd−outputs,

γ−1d−outputs). γd−outputs is the set of CPN-EP outputs that depend on a successful

execution of the Service Agent γ, while γ−1d−outputs is the set of CPN-EP outputs

that do not depend on a successful execution of the Service Agent γ; that is:

∀d ∈ CPN-EPOUT , d ∈ γd−outputs ⇐⇒ γ ∈ pred(d)

and

∀d ∈ CPN-EPOUT , d ∈ γ−1d−outputs ⇐⇒ γ 6∈ pred(d)

90 Knowledge-based Service Agents

where pred(d) is the set of all predecessors of d. This degree of dependent output

reflects the importance of a Service Agent in terms of the number of CPN-EP

outputs that depends on its successful execution. For example, in Figure 4.7,

all the CPN-EP outputs depend on the successful execution of γ4; therefore,

γ4d−outputs
= {d10, d11, d12}.

Knowing its predecessors allows a Service Agent to evaluate the progress of

a CPN-EP execution in terms of how many Service Agents have successfully

executed their corresponding services. The number of predecessors of a Service

Agent may be computed by traversing the CPN-EP , and it is defined as follows:

Definition 4.3.15 Predecessors (γpredecessors). It is the number of predeces-

sors Service Agents of a given Service Agent; that is:

∀γi ∈ Γ, γi ∈ γpredecessors ⇐⇒ γi ∈ pred(γ)

In the example of Figure 4.7, γ4predecessors = {γ1, γ2}.

Service Agents have to know their possibility to initiate a compensation process

to take smarter recovery decisions. This knowledge is important for retriable

Service Agents since they cannot know if they can initiate a compensation process

only by looking at their transactional property. The compensation ability of a

Service Agent is defined as follows:

Definition 4.3.16 Compensation Ability (γcompensable). It represents the

ability of a Service Agent to trigger a compensation process and it is denoted

as γcompensable. γcompensable = TRUE for a Service Agent γ if the following two

conditions satisfy:

1) ∀γi ∈ pred(γ), γiTP
∈ {c, cr}

2) ∀γi ∈ parallel(γ), γiTP
∈ {c, cr}

where pred(γ) is the set of all predecessor Service Agents of γ, and parallel(γ)

is the set of all Service Agents in parallel paths to γ. Service Agents in parallel(γ)

are not reachable from γ, and γ is not reachable from any of the Service Agents

in parallel(γ).

4.3 Knowledge-Based Service Agents 91

In the example of Figure 4.7, we have that:

γ1compensable
= TRUE

γ2compensable
= TRUE

γ3compensable
= FALSE

γ4compensable
= TRUE

γ5compensable
= FALSE

γ6compensable
= FALSE

γ7compensable
= FALSE

γ8compensable
= FALSE

Definition 4.3.17 Progress (γ(◦)progress). It refers to how many Service Agents

have successfully executed their corresponding services from the point of view of a

Service Agent. Service Agents know how many predecessors they have (γpredecessors)

and how many composite service outputs depend on their successful execution

(γd−outputs); therefore, a Service Agent can compute the CPN-EP progress as fol-

lows:

γ(◦)progress = ωpredecessors ∗
100 ∗ |γpredecessors|

|Γ|
+ ωd−outputs ∗

100 ∗ |γ−1d−outputs|

|Γ|
(4.10)

where ωpredecessors and ωd−outputs are weights corresponding to γpredecessors and

γd−outputs respectively, and ωpredecessors + ωd−outputs = 1.

In the case of γ4, using ωpredecessors = ωd−outputs = 0.5, we have that:

γ4(◦)progress = 0.5 ∗
100 ∗ |{γ1, γ2}|

8
+ 0.5 ∗

100 ∗ |{∅}|

8

= 0.5 ∗ 25 + 0.5 ∗ 0.0

= 12.5 + 0.0

= 12.5%

From the point of view of γ4, the composite service execution progress is 12.5%;

however, γ4 cannot know the progress of parallel paths such as γ3 and γ5. Note

that γ♦ and γ� are never taken into account for |Γ|.

92 Knowledge-based Service Agents

4.3.2.2 Composite Service Control Knowledge

So far, we have presented the definitions regarding estimated QoS and static in-

formation. Now, we are going to present their corresponding runtime definitions.

The global consumed time is the firing time of a Service Agent as follows:

Definition 4.3.18 Firing Time (γfiring). It is the runtime counterpart defi-

nition of Def. 4.3.8. γfiring is the time passed from the beginning of the CPN-EP

execution until γ is fireable. It is the corresponding actual value of the estimation

γ≈firing.

γfiring =

{

0 if ∀d ∈ •γ, d ∈ CPN-EPIN

max(γifiring
+ γitime

)|γi ∈
•(•γ) if ∃d ∈ •γ| d 6∈ CPN-EPIN

The global consumed time is defined as follows:

Definition 4.3.19 Global Consumed Time (◦time). It is the runtime coun-

terpart definition of Def. 4.3.5. It is the real time taken to execute a CPN-EP .

It is the firing time (Def. 4.3.18) of γ�; thus, it is measured only when all Service

Agents have finished as follows:

◦time = γ�firing

The global consumed price is defined as:

Definition 4.3.20 Global Consumed Price (◦price). It is the runtime coun-

terpart definition of Def. 4.3.6. ◦price is the actual price of the CPN-EP at any

moment of its execution. At the end of the CPN-EP execution, it is the corre-

sponding actual value of the estimation ◦≈price.

◦price =
∑

i

γiprice

and the global consumed availability is:

4.3 Knowledge-Based Service Agents 93

Definition 4.3.21 Global Consumed Availability (◦availability). It is the

runtime counterpart definition of Def. 4.3.7. It is the actual availability of the

CPN-EP at any moment of its execution. At the end of the CPN-EP execution,

it is the corresponding actual value of the estimation ◦≈availability .

◦availability =
∏

i

γiavailability

Service Agents can then recompute their available QoS using the actual con-

sumed one. The following definitions represent the updated available QoS values:

Definition 4.3.22 Updated Local Global Time (γ(◦)time). It is the run-

time counterpart definition of Def. 4.3.10. It is calculated as follows:

γ(◦)time = γfiring + γ≈time + γ≈remaining (4.11)

Note that Equation 4.3.2.2 represents the updated local global time when a

Service Agent is fireable; however, it can change depending of the Service Agent

execution state. For example, after the Service Agent executed successfully:

γ(◦)time = γfiring + γtime + γ≈remaining

where γtime is the time taken by the successful execution. If its corresponding

service fails, then the equation will be expressed as:

γ(◦)time = γfiring + γtime + γ≈time + γ≈remaining

where γtime is the time of the first failed execution.

In the same way, the available time (Equation 4.6) of a Service Agent can also

be updated using γ(◦)time instead of γ(◦)≈time as follows:

γ+
time = ◦

≈
time − γ(◦)time

94 Knowledge-based Service Agents

4.3.2.3 Configuration Knowledge

Configuration knowledge comprises the system parameters defining acceptable

system states and it may be set by users. We introduce thresholds for the global

execution time, global price, local availability, and global progress. We consider

that the values of these thresholds are given as user preferences. They are defined

as follows:

Definition 4.3.23 Time Threshold (θtime). It is the threshold for the CPN-

EP execution time ◦time (Def. 4.3.19); that is, it is the maximum allowed execu-

tion time for a CPN-EP execution, where:

θtime ∈ [◦≈time,+∞]

with +∞ as default value.

Definition 4.3.24 Price Threshold (θprice). It is the threshold for the CPN-

EP price ◦price (Def. 4.3.20); that is, it is the maximum allowed price for a

CPN-EP execution, where:

θprice ∈ [◦≈price,+∞]

with 0 as default value.

Definition 4.3.25 Availability Threshold (θavailability). It is the threshold

for the CPN-EP availability ◦availability (Def. 4.3.21); that is, it is the maximum

allowed availability for a CPN-EP execution, where:

θavailability ∈ [0, ◦≈availability] (4.12)

with 0 as default value.

We have shown in Eq. 4.3.2.1 and Eq. 4.9 that, initially,

γ+
time = γ+

price = γ+
availability = 0

4.3 Knowledge-Based Service Agents 95

Using the thresholds θtime, θprice and θavailability , we may let γ+
time, γ

+
price, and

γ+
availability become positive and, at the same time, we set a maximum value for

their corresponding QoS criteria. For example, a Service Agent may replace its

corresponding service with a service with higher price or lower availability, but

staying within the acceptable values imposed by thresholds θprice and θavailability .

Definition 4.3.26 Replication Threshold (θreplication). It is a threshold for

replicating according to γavailability. The service availability threshold may be used

by a Service Agent to trigger replication if the availability of its corresponding

service is lower than the threshold value. It is defined as:

θreplication ∈ [−∞, γ≈availability]

with −∞ as default value.

Definition 4.3.27 Progress Threshold (θprogress). It is the threshold for the

CPN-EP progress γ(◦)progress (Def. 4.3.17), where:

θprogress ∈ [0, 100]

with ∞ as default value.

4.3.2.4 Self-healing State Knowledge

The self-healing state knowledge is the state of the system expressed as one of the

three self-healing states: normal, degraded, or broken. The state of the system is

given by the values of the previously presented definitions. The self-healing state

of a Service Agent is defined as follows:

Definition 4.3.28 Service Agent Self-healing State (γsh−state). It refers

to the self-healing state of a Service Agent, where:

γsh−state ∈ {NORMAL,DEGRADED,BROKEN}

96 Knowledge-based Service Agents

Definition 4.3.29 Composite Service Self-healing State (◦sh−state). It

refers to the self-healing state of a composite service which depends on the self-

healing states of component Service Agents:

◦sh−state =

NORMAL if ∀γ ∈ Γ, γsh−state = NORMAL

DEGRADED if ∃γ ∈ Γ| γsh−state = DEGRADED

BROKEN if ∃γ ∈ Γ| γsh−state = BROKEN

Note that Def. 4.3.29 does not specify how to find the self-healing state, it

only defines the possible values of γsh−state. In the next section, Section 4.4, we

explain how to deduce the value of γsh−state given the self- and context-knowledge

information.

4.3.2.5 Summary of Service Agent Knowledge

To summarize, Table 4.2 shows the knowledge of Service Agents classified by

self- or context-awareness. Regarding the notation, the most important aspects

to remember are that γ represents a Service Agent, ◦ represents the composite

service, estimated values are marked with ≈, and that γ(◦) represents the global

composite service view of a Service Agent. Also, remember our abuse of notation:

we talk mainly about Service Agents instead of services.

4.4 Knowledge Base

Service Agents are equipped with a knowledge base containing the information

presented in Section 4.3.1 and Section 4.3.2. The knowledge base also contains

a set of rules to deduce the QoS state, the self-healing state, and the recovery

actions for a composite service execution. The Service Agent knowledge base is

defined as follows:

Definition 4.4.1 Service Agent Knowledge Base (KBγ). The Service

Agent knowledge base is a triplet

KBγ = (∆γ , φγ,Rγ) (4.13)

4.4 Knowledge Base 97

Awareness Definition

Self- Context-

γ≈time,γ
≈
price, γ

≈
availability ✓ Section 2.1

γtp ✓ Section 2.2.2

γ≈services ✓ Def. 3.1.15

γstate ✓ Def. 4.3.1

I ✓ Initial state of a Service Agent Def. 4.3.1

F ✓ Fireable state of a Service Agent Def. 4.3.1

R ✓ Running state of a Service Agent Def. 4.3.1

E ✓ Executed state of a Service Agent Def. 4.3.1

C ✓ Compensated state of a Service Agent Def. 4.3.1

X ✓ Failed state of a Service Agent Def. 4.3.1

G ✓ Fixed state of a Service Agent Def. 4.3.1

γtime,γprice,γavailability ✓ Def. 4.3.2, 4.3.3, 4.3.4

◦≈time,◦
≈
price,◦

≈
availability ✓ Def. 4.3.5, 4.3.6, 4.3.7

γ≈firing ✓ Def. 4.3.8

γ≈remaining ✓ Def. 4.3.9

γ(◦)≈time ✓ Def. 4.3.10

γ+
time,γ

+
price, γ

+
availability ✓ Def. 4.3.11, 4.3.12, 4.3.13

γfiring ✓ Def. 4.3.18

◦time, ◦price, ◦availability ✓ Def. 4.3.19, 4.3.20, 4.3.21

γ(◦)time ✓ Def. 4.3.22

γd−outputs, γ
−1
d−outputs ✓ Def. 4.3.14

γpredecessors ✓ Def. 4.3.15

γcompensable ✓ Def. 4.3.16

γ(◦)progress ✓ Def. 4.3.17

θtime, θprice, θavailability ✓ Def. 4.3.23, 4.3.24, 4.3.25

θreplication ✓ Def. 4.3.26

θprogress ✓ Def. 4.3.27

γsh−state ✓ Def. 4.3.29

Table 4.2: Summary of Service Agent Knowledge Classification.

where ∆γ is the set of possible conclusions, φγ is a set of observable findings,

and Rγ is a set of rules.

The set of observable findings φγ corresponds to the Service Agent knowledge

we have described in this chapter.

The conclusions ∆γ a Service Agent can deduce are related to preventive and

corrective actions. A Service Agent action may also be to continue its normal

execution. The Service Agent possible conclusions are the following:

98 Knowledge-based Service Agents

∆γ = {CONTINUE, RETRY,

REPLACE, COMPENSATE,

CHECKPOINT, REPLICATE}

where CONTINUE means not taking any action and continue the execution

as normal; RETRY refers to the service retrying mechanism for retriable ser-

vices explained in Section 3.2.1.2; REPLACE is the service replacement mecha-

nism presented in Section 3.1.3; COMPENSATE the compensation mechanism

explained in Section 3.1.1; CHECKPOINT the checkpointing mechanism of

Section 3.1.2; and REPLICATE is an active replication mechanism where all

transactional equivalent services are invoked in parallel and the first returned

response is taken as the final result. For a set of transactional equivalent services

s≡, if we invoke them using active replication, the expected execution time is the

minimum expected execution time among the replicas:

γ≈time = min(s≈itime
) | si ∈ s≡

and the expected availability is computed as follows:

γ≈availability = 1−

|s≡|
∏

i

(1− s≈iavailability) | si ∈ s≡

Rγ is a set of inference rules to allow Service Agents deducing actions. Premises

belong to φγ and conclusions to ∆γ . These rules follow the standard form:

premise1 ∈ φγ

premise2 ∈ φγ
...

premisen ∈ φγ

conclusion ∈ ∆γ

The ultimate goal of the knowledge base is to deduce an action given a system

state. The finding of a Service Agent action is based on its self-healing state.

Before presenting the rules to transition between self-healing states, we present

two QoS related rules: one rule to deduce if the composite service execution QoS

4.4 Knowledge Base 99

is worse than expected; another rule to know if the composite service execution

QoS is not acceptable. Then, we present the rules to deduce self-healing states,

and the rules to deduce actions.

Note that we do not intend these rules to satisfy the needs of every user and

system. Instead, we present them to illustrate the usage of the Service Agent

knowledge we define in this chapter. A real-world implementation of our system

should provide rule customization, verification, and analysis.

4.4.1 QoS State Deduction

Service Agents can have an idea of the QoS state of the composite service. They

can know if the QoS state is a degraded but an acceptable one; or an unacceptable

QoS state. Service Agents default QoS state is NormalQoS, which means that

there is no QoS criterion worse than expected:

6 ∃QoSi ∈ QoS| ◦QoSi
> ◦≈QoSi

RQoS1 :
NormalQoS

During execution, the NormalQoS state may change. We say that the QoS is

degraded if for at least one QoS criterion QoSi ∈ {time, price, availability}, its

actual global value ◦qos is greater than its expected value ◦≈QoSi
, as follows:

∃QoSi ∈ QoS| ◦QoSi
> ◦≈QoSi

6 ∃QoSi ∈ QoS| ◦QoSi
> θQoSi

RQoS2 :
DegradedQoS

We say that the QoS is broken if for at least one QoS criterion QoSi, its actual

global value ◦qos is greater than its threshold value θQoSi
as follows:

∃QoSi ∈ QoS| ◦QoSi
> θQoSi

RQoS3 :
BrokenQoS

RQoS1 compares the expected QoS values(Def 4.3.5, Def 4.3.6, and Def 4.3.7)

with their counterpart runtime values (Def 4.3.22, Def 4.3.21, and Def 4.3.20).

RQoS2 compares the QoS runtime values with their corresponding thresholds.

100 Knowledge-based Service Agents

4.4.2 Self-healing State Deduction

The self-healing state of a Service Agents depends on the QoS state (Section 4.4.1)

and the execution state γstate (Def. 4.3.1). In the following, we present a set of

rules to deduce the self-healing state of a Service Agent, which is derived from

the definition given in Section 4.2.

If the execution cannot continue without violating the threshold value for a

QoS criterion, then Service Agents go to a broken state:

BrokenQoS

γstate 6∈ {C, I, A}
Rstate1 : BROKEN

Service Agents go to a degraded state if the QoS state is NormalQoS but a

service has failed:

NormalQoS

γstate = X
Rstate2 : DEGRADED

It may also go to a degraded state if the QoS remains under the acceptable

values (Def. 4.3.23, Def. 4.3.24, and Def. 4.3.25) but at least one of the QoS

criteria is worse than estimated:

γstate ∈ {X,G, F,R,E}

DegradedQoS
Rstate3 : DEGRADED

We consider that a Service Agent may go back to a normal state after compen-

sation:

γstate ∈ {C, I, A}
Rstate4 : NORMAL

or after fixing its corresponding failed service, or running without failures, if

the QoS is not degraded:

γstate ∈ {G,F,R,E}

NormalQoS
Rstate5 : NORMAL

4.4 Knowledge Base 101

4.4.3 Action Deduction

We classified the action deduction rules according to the self-healing state; that

is, actions from the broken, normal, and degraded states.

Before presenting each rule, we give a brief description of the circumstances in

which a Service Agent should make a decision. The set of these circumstances

represents the use cases we identify from our transactional approach of Chapter

3, and from our proposed QoS-aware approach using knowledge-based Service

Agents.

Action Deduction from the Broken State

We have seen that a Service Agent is in the broken state if the execution cannot

continue without violating the threshold value for a QoS criterion (rule Rstate1).

A Service Agent may trigger a compensation process if:

γsh−state = BROKEN
γcompensable

γ(◦)progress < θprogress ∨ ¬checkpointingEnabled
Ractions1 : COMPENSATE

We have proposed the checkpointing mechanism as an alternative to compen-

sation; therefore, it is only taken into account if a Service Agent may trigger a

compensation process but the composite service execution has advanced too much

to compensate (γ(◦)progress ≥ θprogress):

γsh−state = BROKEN

γstate = X
γcompensable

γ(◦)progress ≥ θprogress
checkpointingEnabled

Ractions2 : CHECKPOINT

The rest of the rules concern a Service Agent which cannot trigger a compensa-

tion process; that is, the only option is continue the execution by replicating, or

retrying. A Service Agent chooses replication if there are available replicas and

there is no available time:

102 Knowledge-based Service Agents

γsh−state = BROKEN

γstate ∈ {F,X}
¬γcompensable

s≡ 6= ∅

γ+
time ≤ 0

Ractions3 : REPLICATE

A Service Agent chooses to retry if its corresponding service failed, there are

no replicas or there is available time:

γsh−state = BROKEN

γstate = X
¬γcompensable

γ+
time > 0 ∨ s≡ = ∅

Ractions4 : RETRY

For other execution states, the action is continue:

γsh−state = BROKEN

γstate 6∈ {F,X}
¬γcompensable

Ractions5 : CONTINUE

Action Deduction from the Degraded State

From the degraded state (rules Rstate2 and Rstate3), the only case when a Service

Agent chooses compensation is when its corresponding service failed and it cannot

do forward recovery:

γsh−state = DEGRADED

γstate = X

γtp 6∈ {pr, ar, cr}

s≡ = ∅
Ractions6 : COMPENSATE

Note that γtp 6∈ {pr, ar, cr} → γcompensable = TRUE.

If its corresponding service failed, there is available time, and the availability

of its corresponding service does not require replication, it chooses retry or re-

place according to its transactional property and the availability of transactional

equivalent services:

4.4 Knowledge Base 103

γsh−state = DEGRADED

γstate = X

γ+
time > 0

γavailability ≥ θreplication

γtp ∈ {pr, ar, cr}
Ractions7 : RETRY

γsh−state = DEGRADED

γstate = X

γ+
time > 0

γavailability ≥ θreplication

γtp 6∈ {pr, ar, cr}

s≡ 6= ∅
Ractions8 : REPLACE

A Service Agent in the degraded state continues as normal if its corresponding

services is fireable, there is available time, and the availability of its corresponding

service does not require replication:

γsh−state = DEGRADED

γstate = F

γ+
time > 0

γavailability ≥ θreplication
Ractions9 : CONTINUE

Regardless if its corresponding service failed or has not been executed, a Service

Agent in the degraded state chooses replication if there is no available time or the

availability of its corresponding service requires replication:

γsh−state = DEGRADED

γstate ∈ {X,F}

γ+
time ≤ 0 ∨ γavailability < θreplication

s≡ 6= ∅
Ractions10 : REPLICATE

However, if the corresponding service is fireable, there is no available time or

the availability of its corresponding service requires replication, but there are no

services to replicate, the action is continue:

104 Knowledge-based Service Agents

γsh−state = DEGRADED

γstate = F

γ+
time ≤ 0 ∨ γavailability < θreplication

s≡ = ∅
Ractions11 : CONTINUE

A similar case applies if the service failed:

γsh−state = DEGRADED

γstate = X

γ+
time ≤ 0 ∨ γavailability < θreplication

γtp ∈ {pr, ar, cr}

s≡ = ∅
Ractions12 : RETRY

For any other execution state γstate not requiring service execution the action

is continue:

γsh−state = DEGRADED

γstate 6∈ {X,F}
Ractions13 : CONTINUE

Action Deduction from the Normal State

When a Service Agent is in the normal state (rules Rstate4 and Rstate5), there are

only two possible actions: continue the execution as normal, and replicate as a

proactive action. A Service Agent does nothing if there is available time and the

availability of its corresponding service does not require replication:

γsh−state = NORMAL

γstate = F

γ+
time > 0

γavailability ≥ θreplication
Ractions14 : CONTINUE

A Service Agent chooses replication if there is no available time or the avail-

ability of its corresponding service does requires replication:

4.5 QoS Manager for Summation/Product QoS Criteria 105

γsh−state = NORMAL

γstate = F

γ+
time ≤ 0 ∨ γavailability < θreplication

Ractions15 : REPLICATE

For any other execution state γstate the action is continue:

γsh−state = NORMAL

γstate 6= F
Ractions16 : CONTINUE

As we said, these are rules intended to show the usage of the Service Agent

knowledge and they should be customizable in a real-world implementation; how-

ever, note that rules must always comply with the composite service transactional

properties. For example, a rule which conclusion is COMPENSATE can never

have ¬γcompensable within its premises.

4.5 QoS Manager for Summation/Product QoS

Criteria

Given the nature of composite service graphs, the QoS consumption regarding

execution time is different from other QoS criteria (Def. 4.3.5). A single Service

Agent may take execution time based decisions regardless of what is happening

elsewhere in the composite service execution. The execution time consumed by a

Service Agent depends only on its predecessors and it only affects its successors

(Def. 4.3.10 and Def. 4.3.22); parallel Service Agents are not affected. Summation

and product based QoS, such as price (Def. 4.3.6) and availability (Def. 4.3.7),

take into account all Service Agents regardless of the composite service graph

structure; thus; any variation on the expected summation or product QoS criteria

affects the QoS of the whole composite service. For example, we have shown in

Def. 4.3.12 and Def. 4.3.13 that Service Agents must know the actual consumed

QoS of all Service Agents to compute their available price (γ+
price) and availability

(γ+
availability).

To manage summation and product based QoS consumption at runtime, the

Agent Coordinator has a module in charge of managing the global QoS (Fig-

ure 4.8). In case a Service Agent needs to consume more product or summation

106 Knowledge-based Service Agents

based QoS than expected, it contacts the Agent Coordinator to ask for QoS

consumption permission. A Service Agent needs to ask for QoS consumption

permission according to the following definition:

Definition 4.5.1 Service Agent QoS Excess. Given a Service Agent γ with:

QoSOLD, its originally assigned QoS; QoS≈, its new QoS requirement. The Ser-

vice Agent γ must ask for QoS consumption permission if:

∃QoSi ∈ QoS≈ | QoSi 6= γtime ∧ valuei > valueOLD
i

where valuei is a new QoS value for a QoS criterion and valueOLD
i its corre-

sponding original value.

If Def. 4.5.1 satisfies, the Service Agent builds and sends a QoS consumption

request to the Agent Coordinator as follows:

Definition 4.5.2 QoS Consumption Request (QoSREQUEST). It contains a

list of QoS criteria and their requested consumption values. A QoS consumption

request is a function QoSREQUEST , such that:

QoSREQUEST : QoSi → valuei

where QoSi is a summation or product QoS criterion, and valuei its requested

consumption value.

The decision of granting or denying a consumption request for a QoS crite-

rion depends on its corresponding threshold, global estimation, and requested

consumption value. The QoS consumption granting rules are defined as follows:

Definition 4.5.3 QoS Consumption Granting Rules. Given a summa-

tion or product QoS criteria QoSi, its corresponding requested consumption value

valuei, and a requester Service Agent γ, the QoS Manager recomputes γ+
QoSi

by

substituting the original expected value of γ for QoSi by the requested value valuei.

Then, using the threshold θQoSi
, the following rules apply:

4.5 QoS Manager for Summation/Product QoS Criteria 107

θQoSi
− |γ+

QoSi
| > 0→ granted

θQoSi
− |γ+

QoSi
| ≤ 0→ denied

This reasoning applies for all summation and product QoS criteria such as price

and availability.

Using the QoS consumption granting rules of Def. 4.5.3, the QoS manager

builds a QoS consumption response which is sent by the Agent Coordinator to

the requester Service Agent. The QoS consumption response is defined as follows:

Definition 4.5.4 QoS Consumption Response (QoSREQUEST). A QoS con-

sumption response indicates granted or denied for each QoS criterion in the re-

quest message. A consumption response is a function QoSRESPONSE, such that:

QoSRESPONSE : QoSi → {granted, denied}

where QoSi is a summation or product QoS criterion and {granted, denied}

the set of possible responses for a QoS consumption request.

Finally, we consider the case when a Service Agent consumes less QoS than ex-

pected. If this happens, the Service Agent sends a QoS consumption notification

to the Agent Coordinator indicating a list of QoS criteria and their corresponding

consumed values. A QoS consumption notification is defined as follows:

Definition 4.5.5 QoS Consumption Response (QoSNOTIFICATION). A

QoS consumption notification is a function QoSNOTIFICATION , such that:

QoSNOTIFICATION : QoSi → valuei

where QoSi is a summation or product QoS criterion and valuei its correspond-

ing consumed value.

108 Knowledge-based Service Agents

Figure 4.8: QoS Management Protocol.

4.6 Algorithms

Algorithm 4.1 shows the steps for QoS management. We present the QoS con-

sumption request (line 1), QoS consumption notification (line 3), and Service

Agent QoS consumption response (line 5) in the form of message handlers; that

is, they are called when a message of their corresponding input type is received.

The Service Agent QoS consumption request (line 4) is the only one which is not

a message handler. It is called before invoking a service with worse QoS than

expected; for example, when replacing a service for another one with higher price

or lower availability.

Line 1 of Algorithm 4.1 shows the QoS consumption request message han-

dler. For each QoS criterion in the consumption request message QoSREQUEST

(Def. 4.5.2), it computes its available value γ+
QoSi

and verifies if it satisfies its

corresponding threshold value θQoSi
using the QoS consumption granting rules

(Def. 4.5.3). It builds the QoS consumption response indicating granted or denied

for each requested QoS criterion (Def. 4.5.4). Finally, if the QoS request was

granted, the QoS Manager updates the global QoS in line 2. Finally, it sends

the consumption response to the requester Service Agent. Line 3 shows the QoS

manager algorithm when it receives a QoS consumption notification message and

it updates the global QoS.

Algorithm 4.1 line 4 shows the Service Agent consumption request algorithm.

Here, the Service Agent needs the consumption of a new QoS, QoS≈, which is

greater than its originally estimated QoS. For example, we may encounter this

situation when replacing a service for another one which has higher price or lower

availability. Each QoS criterion in QoS≈ greater than its originally estimated

value in QoSOLD is put in the request message QoSREQUEST (Def. 4.5.2); then,

the consumption request is sent to the Agent Coordinator. Algorithm 4.1, line 5

shows when a Service Agent waits for a QoS consumption response QoSRESPONSE

4.6 Algorithms 109

(Def. 4.5.4). If the request for one of the QoS criteria was denied, it returns false.

Algorithm 4.2 shows the Service Agent using of its Knowledge Base to make de-

cisions. The initial phase and final phase are not modified from the Service Agent

algorithm presented in the previous chapter (Algorithm 3.2), in Section 3.2.1.

During these two phases, the Service Agent is waiting for messages, so decisions

are made by other Service Agents. In line 1, the Service Agent inserts its ini-

tial knowledge in the Knowledge Base. This initial knowledge corresponds to

the information that may be computed before the start of the composite service

execution presented in Sections 4.3.1 and 4.3.2.

The loop of line 2 is the main control component of the Service Agent algorithm:

1) in line 3, the knowledge base is updated with new information. This in-

formation was also presented in Sections 4.3.1 and 4.3.2; however, it cor-

responds to what is happing at runtime. At first, the knowledge base is

updated with the execution state when a Service Agent receives all the in-

puts it was waiting for. Then, the knowledge base may be updated as many

times as needed; for example, if a service fails and a new action needs to be

deduced;

2) in line 4, an action is deduced from the Knowledge Base. This action is

deduced from the self- and context-knowledge using the rules presented in

Section 4.4;

3) in line 5, the deduced action is executed using the algorithms presented

in the previous chapter, in Section 3.2.1, for service retry, service replace-

ment, checkpointing, and compensation. Active replication is performed

by invoking all replicas and taking the result of the first one the finishes

successfully.

The loop goes on until an action which makes success = true is taken. For

example, success = true after a successful execution, compensation, triggering

the checkpointing mechanism. success remains false when the execution of the

deduced action failed; for example; the action was CONTINUE or RETRY but

the service execution was not successful.

110 Knowledge-based Service Agents

Algorithm 4.1 QoS Management.
1 Consumption Request Message Handler:

Input: QoSREQUEST : the consumption request message

Input: γ: the requester Service Agent

Output: ∅

begin

QoSRESPONSE ← ∅;

for QoSi, valuei ∈ QoSREQUEST do

γ+

QoSi
← computeγ+

QoSi
(valuei) //for example, using Def. 4.3.12 or 4.3.13

//granting rules of Def. 4.5.3

if θQoSi
− |γ+

QoSi
| > 0 then

QoSRESPONSE[QoSi]← denied;

else

QoSRESPONSE[QoSi]← granted;

end
end

//update global QoS with new granted values

if ¬QoSRESPONSE.containsV alue(denied) then

2 updateQoS(QoSREQUEST); //Def. 4.3.20 and Def. 4.3.21

end

send QoSRESPONSE to requester Service Agent;

end

3 Consumption Notification Message Handler:

Input: consumption notification: the consumption notification message

Output: ∅

begin

updateQoS(consumption notification);

end

4 Service Agent Consumption Request:

Input: QoS≈: the requested QoS

Output: ∅

begin

QoSREQUEST ← ∅;

for QoSi, valuei ∈ QoS≈ do

if valuei > valueOLD
i then

QoSREQUEST [QoSi]← valuei;

end
end

if QoSREQUEST 6= ∅ then

send QoSREQUEST to Agent Coordinator;

end
end

5 Service Agent Consumption Response Message Handler:

Input: QoSRESPONSE: the consumption response message

Output: ∅

begin

wait QoSRESPONSE message;

return QoSRESPONSE.containsV alue(denied);

end

4.7 Conclusions 111

Algorithm 4.2 Service Agent Self-healing Code Snippet.
Input: ∅

Output: ∅

begin

//Initialize the Service Agent KB with self- and context-knowledge (Sections 4.3.1 and 4.3.2)

1 updateKB();

//The Service Agent waits for its corresponding inputs (Algorithm 3.2 line 2)

//When its corresponding service is fireable, the Service Agent

//updates the KB and deduces an action using the following loop

success← false;

2 repeat

//Insert in the KB updated self- and context-knowledge (Sections 4.3.1 and 4.3.2)

3 updateKB();

//Deduce an action using the KB rules (Section 4.4)

4 action← getActionKB();

//Execute the deduced action

5 success← Execute action;

until success;

Execute Final phase (Algorithm 3.3)

end

4.7 Conclusions

In this chapter, we have proposed an extension to the fault tolerance model

presented in Chapter 3 to support self-healing composite service executions. In

Section 4.1 we highlighted the main limitations of the transactional fault toler-

ance approach of Chapter 3 and the need of smarter composite service execution

systems. We proposed a high-level definition of self-healing composite services

in Section 4.2. In Section 4.3, we extended the architecture of Service Agents

to provide them with more sophisticated autonomous behavior, we presented the

main components of their architecture: the Service Agent API, Core, Autonomic

Component, and Knowledge Base. In Section 4.5, we introduced QoS Manager

component to coordinate additional QoS consumption requirements. Finally, we

presented the algorithms related to this chapter in Section 4.6. Regarding the

limitations of the approach presented this chapter, we may point out the same

ones as for Chapter 3: the difficulty to do sound experimentation and real-world

deployment. Another limitations is the fact that the QoS Manager for for sum-

mation/product QoS criteria presented in Section 4.5 is centralized; however, the

QoS Manager is only needed in case of service replacements that need more sum-

mation/product QoS than expected. We leave the proposal of a distributed com-

posite service QoS resource allocation approach for future work. Also as future

work, we plan to study the automatic rule identification and self-configuration of

execution parameters.

Chapter 5

Experimental Evaluation

Contents

5.1 Implementation Overview 114

5.2 Case Study . 117

5.2.1 QoS dataset . 118

5.2.2 The e-Health System 119

5.3 Results . 125

5.3.1 Composite Service Behavior (nt-sys) 125

5.3.2 Experimental Comparison Between nt-sys, tp-sys, and

sh-sys . 128

5.3.3 Conclusions of Sections 5.3.2.1 and 5.3.2.2: tp-sys vs

sh-sys . 134

5.3.4 Self-healing Behavior 135

5.4 Summary of Experimental Evaluation 138

In this chapter, we present an implementation of our framework and evaluate

it experimentally using a case study. For this case study, we include a description

of its corresponding scenario and environment. We are interested in observing

the case study running under three different systems: a non-fault tolerant, a

pure transactional, and a self-healing approach. These three different systems

are defined as follows:

• nt-sys : a system with no fault tolerance mechanisms. If a service fails, the

system throws an exception and stops its execution.

114 Experimental Evaluation

• tp-sys : our pure transactional composite service execution system presented

in Chapter 3. We call it pure transactional since it takes recovery decisions

taking into account only the transactional properties of component services.

• sh-sys : our approach for self-healing composite service execution presented

in Chapter 4. It makes decisions using information and rules contained in

the Service Agent knowledge bases.

The rest of this chapter is organized as follows: Section 5.1 presents the imple-

mentation architecture of our system and the specific technologies used to build

Service Agents; Section 5.2.1 describes the QoS dataset used to do the experi-

mental evaluation presented in this chapter; Section 5.2.2 contains experimental

observations using a case study; Finally, Section 5.4 concludes this experimental

chapter.

5.1 Implementation Overview

We implemented our system as a Web application using Java EE 7. It follows the

Web application architecture depicted in Figure 5.1. The user interface is pre-

sented as a Web page that allows the creation or uploading of composite services

and their execution. Clients and servers maintain a full-duplex communication

through a websocket. The communication among clients and the websocket is

done by interchanging JSON messages. There is a Java thread for the Agent

Coordinator and a Java thread for each Service Agent. The system was deployed

in GlassFish Server Open Source Edition 4.1 (build 13).

The Service Agent-Service Agent and Service Agent-Agent Coordinator com-

munication follows the asynchronous message passing paradigm. The agent coor-

dinator and each Service Agent has a queue where messages can be posted by com-

ponents participating in the current execution. We use the LinkedBlockingQueue

Java implementation of a blocking queue. In this type of queue, if a Service Agent

requests a message and its queue is empty, it will block and wait until there is

something in the queue. Figure 5.2 shows a typical asynchronous message passing

model where two agents communicate through a blocking queue.

Regarding the knowledge base inference engine, we use the Apache Jena frame-

work1. This framework provides an API to manipulate RDF graphs and a generic

1https://jena.apache.org/

5.1 Implementation Overview 115

Figure 5.1: Web Application Implementation Architecture.

Figure 5.2: Asynchronous Message Passing.

rule reasoner2 to infer logical consequences from a set of asserted facts. Although

it is beyond the scope of this thesis, Jena is also compatible with the Semantic

Web standards, allowing to share and reuse rules, and providing data interoper-

ation [81].

Listing 5.1 provides an example of the usage of Jena. In the example, we first

create a RDF model, which is a set of RDF statements. Then, a reasoner is

created with a set of predefined inference rules. Finally, an inference model is

created by attaching the instance of a reasoner to a set of RDF data. Additional

entailments derived from a set of RDF data appear as additional RDF data in

the inferred model. These models are loaded into memory in each Service Agent

instance; we did not implement persistent storage.

Listing 5.1: Jena Example.

Model model = ModelFactory.createDefaultModel();

Reasoner reasoner = new GenericRuleReasoner(

Rule.rulesFromURL("file:rules.txt"));

2https://jena.apache.org/documentation/inference/

116 Experimental Evaluation

reasoner.setDerivationLogging(true);

InfModel inf = ModelFactory.createInfModel(reasoner, model);

We use the Turtle3 triple-like serialization to tell Service Agents the predefined

inference rules. The predefined rules are the one presented in Section 4.4; however,

they may be changed by users according to specific requirements. These rules

are written in a text file rules.txt and loaded into the reasoner as showed in

Listing 5.1. Listing 5.2 shows some simplified example rules written using the

Turtle/N3 syntax. For example, the first rule tells that if the value a of certain

variable d if less than a threshold threshold, then the state is normal ; the second

rule deduces a broken state if the value the same variable is greater than the

threshold; the third rule deduces the action compensate if the state is broken;

and the fourth rules deduces the action continue if the state is normal. Note that

the third and fourth rules deduce actions based on the state inferred by the first

two rules. Each time a triple is inferred, it is added to the RDF model.

Listing 5.2: Example Turtle/N3 Rules.

@prefix int: <http://www.w3.org/2001/XMLSchema#integer>.

@prefix : <http://jena.hpl.hp.com/prefix#>.

[(?d int:value ?a) lessThan(?a,?threshold) ->

(<http://example/State/> :state <http://example/State/Normal/>)]

[(?d int:value ?a) greaterThan(?a,?threshold) ->

(<http://example/State/> :state <http://example/State/Broken>)]

[(<http://example/State/> :state <http://example/State/Broken>) ->

(<http://example/Action/> :action

<http://example/Action/Compensate>)]

[(<http://example/State/> :state <http://example/State/Normal/>) ->

(<http://example/Action/> :action

<http://example/Action/Continue/>)]

Service Agents query their respective models using ARQ4, which is a query

engine for Jena that supports the SPARQL RDF Query language. For example,

Listing 5.3 shows how to add a triple to a RDF graph using SPARQL. In this

case, the subject is time, the predicate is integervalue, and the object is the actual

value which comes from a Java variable called time. This way, Service Agents add

initial and runtime information to their knowledge bases. Listing 5.4 shows the

query used to retrieve the deduced action from the model. Note that SPARQL

3http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/
4https://jena.apache.org/documentation/query/

5.2 Case Study 117

queries RDF graphs and it is the triples in the graph that matter; therefore, these

queries are independent of the used serialization5.

Listing 5.3: Example SPARQL INSERT.

INSERT DATA {<http://jena.hpl.hp.com/prefix#time>

<http://www.w3.org/2001/XMLSchema#integervalue> time }

Listing 5.4: Example SPARQL SELECT.

SELECT ?action WHERE {<http://example/Action/> :action ?action }

Service Agents Ask and Tell interfaces are also implemented as SPARQL end-

points enabling humans or machines to communicate with Service Agents via the

SPARQL language. For security reasons, in this work we suppose that Service

Agents Ask and Tell interfaces are accessible only to components of the current

context; that is, the corresponding Agent Coordinator and the Service Agents

participating in the same composite service execution.

For our case study, we developed RESTful services using the Java API for

RESTful Web Services (JAX-RS). They were also deployed in GlassFish. These

services have a transactional property manually assigned; their execution time

and failure probability were taken from the dataset we describe in the following

section.

Finally, all the artifacts we implemented, including raw results and scripts to

generated plots and tables, are available in a public Git repository6.

5.2 Case Study

In this section, we present the case study we use to do the experimental evaluation

of our approach. First, we describe the QoS dataset we use to simulate service

behavior. Then, we propose the fictional e-Health composite service as case study.

5https://jena.apache.org/tutorials/sparql data.html
6https://bitbucket.org/rafaelangarita/

118 Experimental Evaluation

Figure 5.3: Distribution of failure probabilities from [103].

5.2.1 QoS dataset

We have said that services participating in our case study are RESTful services

created by us using JAX-RS; however, we still need to provide them with their

corresponding behavior. The behavior of a service can be seen as its perceived

QoS; therefore, to make our simulations closer to true experimentation, we use

the real world services QoS results presented in the WS-DREAM dataset [103].

In their work, Zheng et al. conduct large scale evaluations on real services to

measure failure probabilities and response time.

In [103], the evaluation of failure probabilities was done on 100 randomly se-

lected services from a set of 13,108 services. The 100 services were invoked for

about 100 times by 150 users distributed in 24 countries. In total, 1,542,884

invocations were collected. Figure 5.3 shows the value distribution of the com-

puted failure probabilities. We can see that 85.68% of the failure probabilities are

smaller than 1%, but 8.34% are higher than 16%. Table 5.1 shows the statistics

of the failure probability evaluation.

Regarding services response times, Zheng et al. performed 1,974,674 real world

service invocations. The invocations were done by 339 users distributed over 30

countries. 5,825 real services from 73 countries were used. Table 5.2 shows the

statistics for the response time evaluation. Figure 5.4 shows the overall response

time of services and users.

We consider two QoS criteria: execution time, and availability. Execution times

and availabilities are randomly generated according to the means and standard

deviations previously described in this section and presented in [103]. Figure 5.5

5.2 Case Study 119

Statistics Values

Num. of service invocations 1,542,884

Num. of users 150

Num. of services 100

Num. of user countries 24

Num. of service countries 22

Range of failure probability 0-100%

Mean of failure probability 4.05%

Standard deviation of failure probability 17.32%

Table 5.1: Statistics of the dataset 1 from [103].

Statistics Values

Num. of service invocations 1,974,675

Num. of users 339

Num. of services 5,825

Num. of user countries 30

Num. of service countries 73

Mean of response time 1.43 s

Standard deviation of response time 31.9 s

Mean of throughput 102.86 kbps

Standard deviation of throughput 531.85 kbps

Table 5.2: Statistics of the dataset 2 from [103].

illustrates the distribution of the failure probabilities for 10,000 services. The

distribution of the response times of the 10,000 services can be observed in Fig-

ure 5.6.

5.2.2 The e-Health System

Figure 5.7 illustrates a Colored Petri net representing a fictional e-Health appli-

cation we created for this evaluation. This application is composed by 9 services:

Sugar Implant, Vital Signs Implant, Sugar Analysis, Vital Signs Analysis, Diag-

noser, Call Emergency, Notify Contact, Notify Doctor, and Display Message.

The Sugar Implant and Vital Signs Implant services receive information about

a patient wearing smart devices. Each of them process this information and

send it to their respective analysis services, which send their conclusions to the

120 Experimental Evaluation

Figure 5.4: Overall response time from [103].

Figure 5.5: Distribution of generated failure probability for 10000 services.

Figure 5.6: Distribution of generated response time for 10000 services.

5.2 Case Study 121

service time (ms) availability tp

SugarImplant 12263.33 0.77 cr

VitalSignsImplant 51712.56 0.7 cr

SugarAnalysis 27403.77 0.96 c

VitalSignsAnalysis 10672.81 0.91 cr

Diagnoser 11671.86 0.87 c

CallEmergency 16123.66 0.90 cr

NotifyContact 1916.14 0.65 cr

NotifyDoctor 34228.88 0.93 c

DisplayMessage 21320.73 0.98 c

Composition 107287.06 0.22 c

Table 5.3: Case Study QoS Values and Transactional Properties.

Diagnoser service. The Diagnoser service sends its results to take the appropriate

actions.

This system is considered as critical since patient lives depend on it. Let us

suppose for this experience that experts do not want the e-Health application to

exceed a certain amount of time during its execution since it can be dangerous to

patients: if the system execution takes too much time, then it should be stopped

and call a nurse immediately through an emergency protocol. Therefore, the

system is restricted by an execution time threshold θtime. We suppose that the

emergency protocol consists on invoking a less sophisticated service which calls

or sends a message to a nurse directly with a high probability of success.

Table 5.3 shows the QoS values and transactional properties of each service in

the composite service showed in Figure 5.7. The last line of the table shows the

global values of the composite service. In particular, we highlight the low global

availability, which is given by the product of individual availabilities:

◦availability =
9
∏

1

γavailability

= 0.22

Figure 5.8 shows the execution time knowledge computed by the Agent Coor-

dinator (Def. 4.3.5, 4.3.8, and 4.3.9). For example, if we look at the VitalSign-

sImplant Service Agent, its knowledge about execution time is the following:

122 Experimental Evaluation

Figure 5.7: Case Study: e-Health Application.

γV italSignsImplant≈time
= 51712.56ms

γV italSignsImplant≈
firing

= 0.0ms

γV italSignsImplant≈remaining
= 56573.54ms

γV italSignsImplant+≈

time
= 0.0ms

If we take the SugarImplant service, which is parallel to VitalSignsImplant, we

can see that:

γSugarImplant≈time
= 12263.33ms

γSugarImplant≈
firing

= 0.0ms

γSugarImplant≈remaining
= 73304.51ms

γSugarImplant+≈

free
= 22718.26ms

Note that the extra available time of V italSignsImplant is γV italSignsImplant+≈

time
=

0.0ms. This means that VitalSignsImplant is in the critical path of the composite

service, then its execution time can directly affect the global execution time of

the composite service. SugarImplant can use some extra execution time without

5.2 Case Study 123

NotifyDoctor VitalSignsAnalysisDisplayMessage CallEmergency VitalSignsImplant Diagnoser SugarAnalysis NotifyContact SugarImplant
Service Agent

0

10000

20000

30000

40000

50000

60000

70000

80000

Ti
m
e
(m

s)

execution
firing
remaining
available

Figure 5.8: Composite Service Knowledge: Time.

affecting the whole composite service. The complete set of Service Agents in the

critical path is the following (Def. 4.3.5):

CriticalPath = {V italSignsImplant, V italSignsAnalysis;

Diagnoser, NotifyDoctor}

Remember that execution time knowledge is a set of execution time estimations

which can change during the execution of the composite service; however, for

Service Agents receiving the composite service inputs we have that:

∀γ ∈ (γ•♦)
•, γ≈firing = γfiring = 0

The computed progress (Def. 4.3.17) for each Service Agent is depicted in

Figure 5.9. This progress knowledge was computed by the Agent Coordina-

tor using ωpredecessors = ωd−outputs = 0.5. We can see that γprogress < 10% for

V italSignsAnalysis, V italSignsImplant, SugarAnalysis, and SugarImplant

Service Agents; γprogress > 60% for the rest of the Service Agents excepting

Diagnoser, which progress is about 22%.

Note that composite service knowledge about the execution time and the com-

posite service progress are only taken into account by sh-sys. tp-sys only considers

transactional properties.

124 Experimental Evaluation

NotifyDoctor VitalSignsAnalysis DisplayMessage CallEmergency VitalSignsImplant Diagnoser SugarAnalysis NotifyContact SugarImplant
0

10

20

30

40

50

60

70

W
or
k
Pr
og

re
ss
io
n
(%

)

Figure 5.9: Composite Service Knowledge: Progress.

Value

θtime (Def. 4.3.23) 5%

θprogress (Def. 4.3.27) 70%

θreplication (Def. 4.3.26) 0.5

ωpredecessors (Def. 4.3.17) 0.5

ωd−outputs (Def. 4.3.17) 0.5

Table 5.4: sh-sys execution Parameters.

Table 5.4 shows the values of the execution parameters used for this experience.

We can see that the execution time threshold (θtime) is only 5% of the global

estimated execution time.

The fault tolerance mechanisms considered in this evaluation are: backward

recovery through compensation (Section 3.1) for tp-sys and sh-sys ; forward re-

covery by service retrying (Section 3.2.1) for tp-sys and sh-sys, and replication

(Section 4.4) as a proactive mechanism for sh-sys. We consider the following for

the evaluations presented in this chapter:

• there are no replacement services. Forward recovery is done only by service

retrying. In fact, results with service replacement are the same as with

service retry. The only different is that other QoS may change with service

replacement, such as execution price;

• we do not activate the checkpointing option. We can think of it as an

alternative to compensated executions showed in these results;

5.3 Results 125

• the actual service execution time is the same as its estimated execution

time. Service either fail or succeed, but their execution time is equal to

their estimated value.

5.3 Results

In this section, we present the most relevant experimental results using the case

study proposed in Section 5.2.2. First, in Section 5.3.1, we propose an analysis

of our case study using the non-fault tolerant system, nt-sys. In Section 5.3.2, we

present an experimental comparison between nt-sys, tp-sys, and sh-sys. Finally,

in Section 5.3.4, we present some experimental observations specific to sh-sys.

5.3.1 Composite Service Behavior (nt-sys)

Before continuing with the actual evaluation of our approach, we present the

observed behavior of our case study. This evaluation is done by executing the

composite service using the nt-sys ; that is, our basic execution system without

fault tolerance capabilities. We remind that nt-sys does not take into account

the transactional properties of the e-Health application, and services may fail

according to their availability independently of their transactional property. We

executed the composite service illustrated in Figure 5.7 100 times.

Figure 5.10 illustrates the ratio between successful and failed executions. We

can see that only 17% of the execution finished without any failure, which is not

surprising given the availability of the composite service.

Figure 5.11 shows the ratio among the number of failures in failed executions.

69% of the failed executions had one failure; 14% of the failed executions had two

failures. Only 17% of the total executions were successful with no failures.

Figure 5.12 shows a scatter plot of failure occurrences for 100 executions of our

composite service under nt-sys. In our simulations, service execution times are

the same than their estimated execution time even if a failure occurs; therefore,

when a service fails, it has already consumed its estimated execution time. For

example, we can see that: a failure occurred between 0 ms and 20,000 ms, and

between 40,000 ms and 60,000 ms in several executions, but few failures occurred

after 100,000 ms.

126 Experimental Evaluation

Failure

83.0%

Success

17.0%

Figure 5.10: Failure percentage (nt-sys).

0

17.0%

1

69.0%

2

14.0%

Figure 5.11: Failure percentage by failure number (nt-sys).

We have also observed which services failed and when they failed (Table 5.5).

Most of the times, the composite service failed because of the malfunction of the

services SugarImplant and VitalSignsImplant. This can be explained by the fact

that both services have relatively low availability and they are at the beginning

of the composite service, so if they fail, their successors will not be executed.

Some services may be executed successfully despite the failure of other services

in the same composite service execution. If this happens, we say that the system

is in an inconsistent state. Table 5.6 shows measurements of system inconsis-

tency. We may see that the maximum number of failed services was 2, while the

maximum number of successful services in a failed execution was 8. We may also

use this metric as a measure of lost work; for example, the worst case was when

5.3 Results 127

0 50 75
Percentage of generated output

0

10

20

30

40

50

60

O
cu

rre
nc

es

Figure 5.12: Scatter plot of failure occurrences for 100 executions (nt-sys).

service failure (%)

VitalSignsAnalysis 6.02409638554

CallEmergency 7.22891566265

SugarAnalysis 4.81927710843

NotifyContact 18.0722891566

SugarImplant 26.5060240964

VitalSignsImplant 42.1686746988

Diagnoser 6.02409638554

NotifyDoctor 6.02409638554

Table 5.5: Failed services and their failure percentage (nt-sys).

8 services out of 9 were executed for nothing.

The last observation is the amount of generated outputs during failed execu-

tions. We consider this values of generated outputs as a way to measure lost work

along with the number of successful services in a failed execution. We can see in

Figure 5.13 that, for most of the failed executions, none of the composite service

output was generated; for around 5% of the executions half of the output was

generated; and for around 17% of the executions 75% of the output was gener-

ated. We consider that generated composite service outputs are useless after a

failed execution due to system inconsistency.

128 Experimental Evaluation

Failed Success

Max 2 8

Min 1 1

Mean 1.1686746988 3.53012048193

Table 5.6: System inconsistency (nt-sys).

0 50 75
Percentage of generated output

0

10

20

30

40

50

60

O
cu

rre
nc

es

Figure 5.13: Generated outputs during failed execution (nt-sys).

5.3.2 Experimental Comparison Between nt-sys, tp-sys,

and sh-sys

In this section, we include the most relevant experimental comparison between

nt-sys, tp-sys, and sh-sys. Since nt-sys is not really an approach, we use it as

an illustration of what would happen if we did not implement fault tolerance

mechanisms for composite services. We do the experimental evaluation of the

following two metrics:

1) Composite service execution time: we have chosen the analysis of the com-

posite service execution time to illustrated the QoS-awareness. A similar

analysis follows for other QoS criteria.

2) Resource wastage: successfully executed services in failed executions, and

successfully executed and compensated services.

5.3 Results 129

5.3.2.1 Execution Time Analysis

We analyze and compare the observed execution times of our three systems:

nt-sys, tp-sys, and sh-sys. Table 5.7 presents the following information about

execution time:

• Mean Time (ms): it is the mean time of executions with no failures; that

is:

MeanT ime = mean(◦¬failuretime)

• Overhead (%): it is the execution overhead relative to the global estimated

execution time. It is calculated as follows:

overhead =
MeanT ime − ◦≈time ∗ 100

◦≈time

• BROKENtime: it is the percentage of executions with exceeding QoS; that

is, that satisfy the rule RQoS2 of Section 4.4.1. In this evaluation, we evaluate

only execution time; thus, we count executions which satisfy:

BROKENtime =
(count(◦time)| ◦time > ◦

≈
time) ∗ 100

count(◦time)

where count(◦time)| ◦time > ◦
≈
time is the number of executions with exceeding

execution time, and count(◦time) is the total number of executions.

• Max Time (ms): it is the maximum time among executions with no failures:

MaxTime = max(◦¬failuretime)

• Mean Failed Time (ms): it is the mean time of executions with failures:

MeanFailedT ime = mean(◦failuretime)

130 Experimental Evaluation

nt-sys tp-sys sh-sys

Overhead (%) 0.0060911619717 0.00711834769777 0.00867147226917

BROKENtime (%) 0.0 30.0 0.0

Mean Time (ms) 108286.11 134103.61039 108320.886731

Max Time (ms) 108286.11 263423.79 110094.5

Mean Failed Time (ms) 70201.3518072 90744.0434783 72600.0416667

Max Time Failed (ms) 108286.11 95387.0 95388.0

Mean Compensation Time (ms) n/a 166241.559565 103376.655625

Table 5.7: Execution Times.

• Max Time Failed (ms): it is the maximum time among executions with

failures:

MaxFailedT ime = max(◦failuretime)

• Mean Compensation Time (ms): it is the mean time of compensated exe-

cutions:

MaxCompensationT ime = max(◦compensation
time)

where ◦compensation
time refers to the time of compensated executions.

Table 5.7 shows the different execution times under the three evaluated systems.

We can see that the overhead of the three systems is less than 0.009%. The

overhead of sh-sys is higher but close to the overheads of nt-sys and tp-sys. In

conclusion, the overhead incurred by adding self-healing behavior is acceptable

in relation to the global execution time, to the overheads of tp-sys, and to the

overhead of an execution system with no fault tolerance, nt-sys.

Regarding BROKENtime, nt-sys has never exceeded the execution time, since

successful services do not take more time than expected and failed executions stop

at the first failure. tp-sys exceeds the execution time by 30% due to successful

composite service executions using retry. sh-sys has never exceeded the execution

time due to its QoS-awareness capabilities.

The mean times for nt-sys and sh-sys are close to the composite service esti-

mated execution time ◦≈time, which is 107287.06, but the mean time for tp-sys is

5.3 Results 131

higher. This is due to the same reason why BROKENtime is higher for tp-sys ;

that is, global execution time degradation caused by service retry.

Again, for the max time, the values of nt-sys and sh-sys are again close to

◦≈time; however, the max time for tp-sys is more than the double of the max

times of nt-sys and sh-sys. This happens for the same reason exposed for the

BROKENtime and mean time measurements, and it illustrates the worst case

for tp-sys execution time using our study case.

The mean failed time for nt-sys represents the execution time when the first

service failed, and exception was thrown, and the whole execution was stopped.

For tp-sys and sh-sys, it is the time when the system decided to compensate. We

can see that mean failed time for nt-sys is close of the mean failed time for sh-sys ;

however, tp-sys has a higher mean failed time due to the composite executions

that were compensated after doing forward recovery. This measurement shows

that sh-sys keeps the execution time low for failed executions in comparison to

tp-sys, which wastes resources by compensating after doing forward recovery.

The max time failed is similar for tp-sys and sh-sys, while it is slightly higher

for tp-sys. In all cases, it reflects the situation when irreparable failures occurred

after many of the component services had been successfully executed, in many

cases, using forward recovery.

The final time related measurement regards the compensation time, which does

not exist for nt-sys, since it does not provide fault tolerance. The tp-sys mean

compensation time is 166241.559565 ms, against the sh-sys mean compensation

time of 103376.655625 ms. This measurement also reflects the resource wasting

by tp-sys.

5.3.2.2 Resource Wastage

We define the resource wastage in a composite service execution as the services

successfully executed for nothing ; that is, wasted service executions. In the case

of nt-sys, it refers to the successfully executed services in failed executions. For

tp-sys and sh-sys, it refers to successfully executed and compensated services. A

consequence of wasted service executions is the lost outputs. For, nt-sys the lost

outputs are the produced composite service outputs in a failed execution, while for

tp-sys and sh-sys are the produced composite service outputs in a compensated

execution.

132 Experimental Evaluation

nt-sys tp-sys sh-sys

Total Failure Count 97 125 101

Max Failure Count 2 3 3

Successful Executions (%) 17.0 77.0 52.0

Failed Executions (%) 83.0 23.0 14.0

Stopped Executions (%) n/a n/a 36.0

Compensated Services Mean n/a 4 2

Max Compensated Services n/a 8 8

Lost Outputs (%) 17.4698795181 2.17391304348 0.520833333333

Table 5.8: Resource Wastage.

Table 5.8 shows information related to the resource wastage under nt-sys, tp-

sys, and sh-sys. This information will help in the understanding of the results

presented in Section 5.3.2.1. The information showed in Table 5.8 is the following:

• Total Failure Count: it refers to the count of service failures of all composite

service executions. Some executions may have been free of failures, while

other executions may have had one or more failures.

• Max Failure Count: it reflects of the maximum number of failures occurred

during a single composite service execution.

• Successful Executions (%): it is the percentage of successful execution out

of all executions.

• Failed Executions (%): it is the percentage of failed execution out of all

executions.

• Stopped Executions (%): it is the percentage of stopped execution out of

all executions.

• Compensated Services Mean: it is the mean of the compensated service

number in compensated executions.

• Max Compensated Services: it is the maximum number of compensated

services during a single compensated execution.

• Lost Outputs (%): it is the mean of the percentage of generated outputs

during failed executions.

5.3 Results 133

In the total failure count column of Table 5.8, we can see that nt-sys produced

the lower number of failures, followed closely by sh-sys. tp-sys produced about

25% more failures than the two other systems due to service retry. The max

failure count remains about the same for the three systems.

Regarding the successful execution percentage, nt-sys had only 17% of successful

executions expected, since nt-sys does not implement fault tolerance mechanisms

and ◦≈availability = 0.22. tp-sys had 77% of successful executions by using service

retry, and sh-sys 52% of successful executions also by using service retry.

The failed executions percentage for nt-sys and tp-sys are the complement of

their corresponding percentage of successful executions; that is, 83% for nt-sys

and 23% for tp-sys. An important observation is that this is not the case for sh-sys,

for which the percentage of failed executions is only 14%. The missing executions

for sh-sys were stopped executions. Table 5.8 shows 36% of stopped executions

for sh-sys ; this is a non-existing concept for nt-sys and tp-sys since nt-sys does

not implement any fault tolerance mechanism, and tp-sys only considers stopping

an execution when forward recovery is not possible. sh-sys stops executions that

do not satisfy θtime = 5%, which is part of the execution parameters of Table 5.4.

The compensated service mean was 4 for tp-sys and 2 for sh-sys. This also can be

seen as if tp-sys wasted more resources than sh-sys. For example, 4 compensated

services means 4 successful executions and 4 executions to compensated them;

that is 8 compensation related executions of tp-sys against 4 of sh-sys. For both

systems, the maximum number of compensated services was 8.

Another metric that gives an idea about resource wasting is the lost output

percentage. nt-sys has a high lost output percentage of 17.46%. It also represents

system inconsistency for nt-sys, since the composite service produced some out-

puts before failing, while it does not provide a compensation mechanism. tp-sys

produced a mean of 2.17% of the outputs during failing executions; while sh-sys

only produced 0.52% of outputs, which is still better than the 2.17% of tp-sys.

Both tp-sys and sh-sys left the system in a consistent state by compensating

successful executed services.

134 Experimental Evaluation

5.3.3 Conclusions of Sections 5.3.2.1 and 5.3.2.2: tp-sys

vs sh-sys

Experimental evaluation presented in previous sections illustrates an example of

why it is necessary to provide fault tolerance for large, distributed, and hetero-

geneous systems running in unreliable environments such as the Internet. In

Sections 5.3.2.1 and 5.3.2.2 we haven showed the observed behavior of nt-sys,

which is a basic composite service execution system without fault tolerance. Be-

sides the low number of successful executions, the main problems of nt-sys are

the inconsistent system states and the wasted resources after failed executions.

Here, the question is to compare our systems providing fault tolerance: tp-sys

and sh-sys. The most important general property both systems have in common

is the transactional-based fault tolerance. Both systems guarantee the system

consistency even in the presence of failures.

The main difference between tp-sys and sh-sys is that tp-sys takes decisions

based only on transactional properties, triggered only when a service fails, and it

is not aware of the composite service QoS. We described the possible problems

of this approach in Section 4.1 and illustrated the transactional-based decision

making model in Figure 4.1. The main exposed disadvantaged for tp-sys are QoS

degradation and lost work.

Section 5.3.2.1 showed that tp-sys finished with QoS degradation 30% of the

times, while sh-sys never had QoS degradation. In the worst case, tp-sys finished

with ◦time = 263423.79, which is more than the double of the expected ◦≈time =

107287.06. Regarding lost work, Section 5.3.2.2 shows that tp-sys incurs in greater

lost of work than sh-sys due to higher number of successful execution, output

generation, and compensation of components services of failed executions.

In conclusion, tp-sys provides a transactional-based deep-seated notion of ac-

ceptable behavior to guarantee system consistency; however, tp-sys bases its de-

cisions only on its transactional properties, so it neglects other requirements such

as QoS. To solve this problem, sh-sys builds on top of tp-sys to provide fault

tolerance for composite services by extending Service Agents with a knowledge

base capable of taking decisions based on QoS and other user preferences.

5.3 Results 135

Normal Degraded Broken

Normal 76.7189384801 9.04704463209 5.79010856454

Degraded 2.29191797346 5.9107358263 0.241254523522

Broken 0.0 0.0 0.0

Table 5.9: Self-healing State Transitions (%).

5.3.4 Self-healing Behavior

The rest of this experimental evaluation corresponds to the observation of aspects

that are specific to the self-healing behavior; that is, we focus on the study of

sh-sys. We made the following observations about sh-sys :

• changes in the composite service self-healing states introduced in Section 4.2;

• actions taken from the different self-healing states, which were illustrated

in Figure 4.4.

• actions taken vs default transactional actions. Default transactional actions

are equivalent to the behavior of tp-sys ;

• actions taken by monitoring stage; that is, at which moment of their life-

cycle Service Agents deduced which actions.

5.3.4.1 Self-healing State Transitions

The transition among normal, degraded, and broken self-healing states are showed

in Table 5.9. States on the left represent the initial state, while states on the top

are the states to which the transition was made. For example, for 76.71% of the

times the self-healing state was normal and no transition was made. 2.29% of the

transitions were from degraded to normal state. Finally, even though Table 5.9

shows that there was no implicit transition from the broken state; however, we

consider that after compensation, the system goes always from broken to normal

state. Conceptually, going to a normal state through compensation means that

the system was left in a consistent state close to the one it had before the failed

execution of a composite service.

136 Experimental Evaluation

Continue Retry Replicate Compensate

Normal 38.102189781 0.0 61.897810219 0.0

Degraded 4.25531914894 42.5531914894 53.1914893617 0.0

Broken 0.0 0.0 0.0 100.0

Table 5.10: Self-healing States to Recovery Plans (%).

5.3.4.2 Actions By Self-healing State

We can see which actions were taken from each of the self-healing states in Ta-

ble 5.10. From the normal state, 38.10% of the times the action was continue;

61.89% of the times the action was replicate. sh-sys replicated services in the

critical path or services with no time to retry or replace in case of failure. Of

course, there are no failures in the normal state, so retry and compensate are not

taking into account in this state. From the degraded state, 4.25% of the times

the selected action was continue, 42.55% of the times it was retry after a service

failure, and 53.19% of the times it was compensate because a failed service was

not retriable or due to QoS violation. The only action considered from the broken

state was compensate.

5.3.4.3 Self-healing vs Transactional Choices

We also observed the action taken by sh-sys vs the default actions (Table 5.11).

The default actions are the recovery mechanism of the pure transactional system.

Evidently, the pure transactional system does not take actions if there are no

failures, so 100.0% of the times the self-healing system chose continue, the trans-

actional system also chose continue. 100.0% of the times the self-healing system

chose retry, the transactional system also chose retry since the only option is if

the service is retriable. The replicate and compensate actions are more interest-

ing. 93.67% of the times the self-healing system chose replicate, the transactional

system did not take any action. This is because replication does not exist in

the transactional system, while the self-healing system can use it as a preventive

action.

5.3 Results 137

Continue Retry Replicate Compensate

Continue 100.0 0.0 0.0 0.0

Retry 0.0 100.0 0.0 0.0

Replicate 93.6708860759 6.32911392405 0.0 0.0

Compensate 0.0 72.0 0.0 28.0

Table 5.11: Self-healing Recovery Plans vs Default Recovery Plans (%).

Continue Retry Replicate Compensate

Fireable 32.5227963526 0.0 67.4772036474 0.0

Failure 0.0 33.3333333333 25.0 41.6666666667

Fix 100.0 0.0 0.0 0.0

Table 5.12: Self-healing Recovery Plans by Monitoring Stage (%).

5.3.4.4 Self-healing Actions by Monitoring Stage

Table 5.12 shows the deduced actions by three monitoring stages: fireable, fail-

ure, and fix. The fireable monitoring is done before invoking a fireable service

(Def 3.1.5); the failure monitoring is done right after a service failure; and the fix

monitoring is done after a service failure is fixed.

When services were fireable, 32.52% of the times sh-sys chose to continue the

execution as normal, without taking any special action. 67.47% of the times sh-

sys chose to replicate to try to maintain the required QoS which, in this case, it

is the execution time limited by its corresponding threshold (Table 5.4).

When services failed, 33.33% of the times sh-sys chose to perform retry, since

the QoS stayed into the acceptable values. 25.0% of the times sh-sys chose to

replicate to avoid a new service failure, and therefore, QoS violation. 41.66% of

the times sh-sys chose to compensate could have been because the failed service

was not retriable or to avoid QoS violation.

Finally, 100% of the times a failure was fixed sh-sys chose to continue.

138 Experimental Evaluation

5.4 Summary of Experimental Evaluation

In this chapter, we reported on our experience of implementing and executing

a case study composite service. We compared the behavior of three different

systems: nt-sys, a system with no fault tolerance mechanisms; tp-sys, the pure

transactional composite service execution system presented in Chapter 3; and

sh-sys, our approach for self-healing composite service execution presented in

Chapter 4.

In Section 5.1, we presented the implementation architecture of our system

and the specific technologies used to build Service Agents. We implemented our

system as a Web application using Java EE 7, Service Agent knowledge is stored

in a RDF graph and queried using SPARQL. We developed RESTful services

using the Java API for RESTful Web Services. Finally, our system was deployed

in GlassFish 4.1. In Section 5.2.1 and Section 5.2.2, we described the real QoS

dataset used to perform the experimental evaluation in this chapter and proposed

the fictional e-heath system as case study. In Section 5.2.2, we reported the

experimental observations under nt-sys, tp-sys, and sh-sys.

In conclusion, the experimental evaluation presented in this chapter shows: (i),

the need of providing fault tolerance mechanisms for composite services; (ii), how

our approach of Chapter 3 handles composite service failures using transactional

properties; and (iii), how our self-healing approach of Chapter 4 builds on top of

our transactional approach to provide QoS-aware decision making. The evalua-

tion presented in this chapter suggests that combining transactional properties

with self-healing capabilities leads to smarter execution systems with the ability

to handle higher-level requirements for composite service executions with minimal

human intervention.

Chapter 6

Fault tolerance and self-healing

composite service execution: an

state of the art

Contents

6.1 Fault tolerance for composite services 140

6.1.1 Transactional Properties-based Approaches 141

6.1.2 Redundancy and Design Diversity-based Approaches . 142

6.1.3 Exception Handling-based Approaches 143

6.1.4 Prediction and Optimization Approaches 146

6.2 Self-healing execution of composite services 147

6.2.1 BPEL-based approaches 147

6.2.2 Non-BPEL-based approaches 148

6.3 Discussion . 150

In this chapter, we propose a review of existing approaches to support the re-

liable execution of composite services. The selected works can be classified as

fault tolerance research for composite services (Section 6.1), and as self-healing

research for composite services (Section 6.2). In many cases, self-healing research

focuses on QoS monitoring and pre- and post-conditions satisfaction, and makes

explicit reference to the monitor, diagnose, recover loop of autonomic comput-

ing [71]. Fault tolerance research may focus less on monitoring and more on the

140Fault tolerance and self-healing composite service execution: an state of the art

definition of the actual recovery mechanisms; however, the research classified into

these two categories may sometimes overlap.

The search for related work was used using the following databases:

1) ACM Digital Library;

2) IEEE Electronic Library;

3) SpringerLink;

4) Elsevier.

From the results, we selected peer-reviewed journals articles, conference pro-

ceedings, and book chapters. We searched for work published between the years

2005 and 2015, and we selected the ones which provide direct evidence to the re-

search question presented in Section 1.2 and were written in English. Fault toler-

ance or self-healing research concerning Service Oriented Architectures but not fo-

cused on services was excluded. Also, papers centered on providing fault tolerance

only at composition/design-time, and not at runtime, were excluded. Finally, we

submitted variants of the following search string to the research databases:

(fault-tolerance OR fault-tolerant OR fault tolerance OR fault tol-

erant OR self-healing OR adaptive OR reliable OR dynamic) AND

(composite Web service OR composite service OR composite Web ser-

vice execution OR composite service execution)

6.1 Fault tolerance for composite services

In some works, transactional properties of component services are considered to

ensure the system consistency even in presence of failures [24, 25, 51]. Some

works focus on implementing redundancy and design diversity techniques such

as replication [8, 32, 38, 57, 64, 104]. Exception handling is also a used tech-

nique for managing failures in composite services [22, 78, 84, 85]. Finally, other

approaches implement prediction and optimization techniques [89] for improving

the reliability of composite services.

6.1 Fault tolerance for composite services 141

6.1.1 Transactional Properties-based Approaches

Cardinale and Rukoz [25] propose a fault tolerance execution approach based

on the transactional composite service model presented in [34] (we a have dis-

cussed this transactional model in Section 2.2.2). Composite services and their

execution processes are modeled using Colored Petri nets. The proposed recovery

techniques are: backward recovery by compensation, forward recovery by retry or

replacement, and semantic recovery. The usage of transactional properties guar-

antee the consistency of the system event in the presence of failures by applying

recovery mechanisms in an automatic way. This way, developers or automatic

composition systems only have to care about building correct transactional com-

posite services since the fault tolerance execution is automatically done. When

a service fails, if it is retriable, it is retried until it finishes successfully; if it is

not retriable, it can be substituted by another service that satisfies its functional

and transactional requirements; if forward recovery is not possible, compensa-

tion is chosen as the recovery mechanism. In contrast, our approach provides

checkpointing as an alternative stand-by strategy, is QoS-aware, and provides

replication as a proactive mechanism.

Bushehrian et al. [24] present an algorithm based on transactional properties for

the automatic creation of a compensation workflow given the service dependencies

within the composite service. The idea is to minimize the created compensation

workflow cost by taking into account the rollback cost of component services. The

approach is explained using a case study, but no simulation is done. Compared

with our approach, the work of Bushehrian et al. is mostly a design-time approach

the runs before composite services are actually executed, since it is focused on the

creation of compensation workflows. Also, it differs greatly from our approach

regarding the proposed fault tolerance mechanisms.

Lakhal et al. [51] propose a transactional model called FENECIA that includes

forward recovery by retying and service replacement, backward recovery by com-

pensation, and the concept of vital and non-vital component services.If a vital

component fails and it is not retriable or it has no replacements, the whole com-

posite service execution is aborted. The execution of a composite services may be

considered as successful even if non-vital component services failed and were not

repaired. To ensure a correct execution order, the composite service execution

control is delegated to distributed engines that communicate in a peer-to-peer

fashion. Compared with our work, FENECIA proposes the concept of vital and

non-vital services, and the AND/OR constructs for the composite service graph,

which we do not consider. Our Colored Petri net formal model may be extended

142Fault tolerance and self-healing composite service execution: an state of the art

to provide both mechanisms. Among the advantages of our approach over FENE-

CIA we have: the formal modeling of composite services execution processes using

Colored Petri nets, the checkpointing mechanism, the replication as a proactive

strategy, and the QoS-awareness capabilities.

Liu et al. [55] propose another framework called FACTS to provide fault toler-

ance for composite services. It is a hybrid fault tolerance approach which com-

bines exception handling and transactional properties. The transactional model

and recovery mechanisms are based on FENECIA [51]. The difference between

FACTS and FENECIA is that FACTS proposes an implementation for BPEL,

while FENECIA proposes a new execution engine. When a failure occurs at

runtime, it first employs exception handling strategies to try to repair it. If the

failure cannot be fixed, it brings the composite service back to a consistent state

using compensation. Fault tolerance rules are specified in a declarative way using

Event-Condition-Action rules. Finally, the paper presents an experimental eval-

uation composed of a case study and a performance evaluation concerning the

adoption of the different exception handling strategies. Regarding our work, the

same analysis we did for FENECIA applies to FACTS.

6.1.2 Redundancy and Design Diversity-based Approaches

Redundancy and design diversity [52] are common computer science and engi-

neering principles for increasing the reliability of a system. They consist on

duplicating the critical components of a system. In the context of fault toler-

ance for composite services, redundancy and design diversity techniques take the

form of replication of component services or service replacement in case of failure.

Replication is done by invoking several equivalent services simultaneously, and

the response may be taken, for example, from the first one successfully finished,

by comparing service responses after all services finished, etc. Hence, replicating

a service creates the need for mechanisms to distribute messages, order requests,

coordinate replicas, and selecting a response. Replicating services not only in-

creases the availability of the whole composite service but it may also protect

against byzantine faults. Some works proposing redundancy and design diversity

for composite services are [8, 32, 38, 57, 104].

Dillen et al. [32] propose a classical N -version software fault tolerance approach

for redundancy; while Gotze et al. [38] define a majority fault tolerance operator

for the enhancement of reliability and availability. Majority is defined as an

operation that schedules the same request to all defined services, collects the

6.1 Fault tolerance for composite services 143

results of all successful services, and chooses the most common result. Abdeldjelil

et al. [8] describe a voting algorithm for deciding if multiple concurrent service

responses are equivalent or not.

Other examples of redundancy and design diversity to provide fault tolerance for

composite services are the works of Merideth et al. [57], and Zhou and Wang [104].

Merideth et al. [57] base their approach for byzantine fault tolerance on replica

agreement. Zhou and Wang [104] extend Castro and Liskovs Byzantine fault

tolerance method [28] to provide byzantine fault tolerance for composite services

to protect against arbitrary failures. They focus of their research is to present

a protocol which employs a basic replica agreement procedure. Zhou and Wang

evaluate their contribution in terms of the overhead generated by replication and

replicas agreement. Finally, it is not clear how the approach proposed by Zhou

andWang works for composite services. Since the paper is focused on a replication

protocol, it seems it only considers fault tolerance for elementary services instead

of composite services.

As a final thought on redundancy and design diversity techniques, we can say

that they are useful methods for increasing the availability of elementary services

and protecting against byzantine faults. Evidently, increasing the successful exe-

cution probability of elementary services has a positive impact on the successful

execution probability of composite services; however, redundancy and design di-

versity techniques do not add either specific or interesting considerations for the

fault tolerance design of composite services. Hence, we cannot compare our ap-

proach to the presented redundancy and design diversity works, since they are

mostly complementary research to this thesis. A byzantine fault tolerance tech-

nique may be easily plugged into our framework.

6.1.3 Exception Handling-based Approaches

The strategy described by Simmonds et al. [84] takes into account user guidance

to propose several recovery plans. Users manually choose the desired recovery

plan among those automatically computed and ranked by the system. It admits

the following user guidance: (i) application developers define a set of behavioral

correctness properties that need to be maintained at runtime, as well as compen-

sation costs; (ii) application users provide criteria for choosing between possible

recovery plans; i.e., based on the plan length, compensation cost, etc; (iii) applica-

tion users manually choose the desired recovery plan among those automatically

144Fault tolerance and self-healing composite service execution: an state of the art

computed, ranked, and proposed by the system. This paper presents a BPEL-

based prototype and experimental evaluation using case studies. Compared with

our approach, the work of Simmonds et al. is manly about exploiting redundancy

to find workarounds when failures occur, and suggest those workarounds to the

users. Our approach does not suggest recovery plans, it applies them immedi-

ately, as soon as possible; however, our chosen recovery strategies also take into

account user guidance in the form of QoS requirements and the composite service

execution progress specification.

Sindrilaru et al. [85] propose a fault tolerance approach that extends the Ac-

tiveBPEL workflow engine. Their idea is to develop mechanisms for building

an autonomic workflow management system that detects, diagnoses, notifies, re-

acts, and recovers automatically from failures during workflow execution. The

detection mechanism inspects the SOAP messages exchanged between the cur-

rent executing BPEL process and the invoked service. The default behavior of

ActiveBPEL may be modified to recover a process from a faulty state, using a

non-intrusive checkpointing mechanism. In the checkpointing mechanism, the

partial data that might be correct has to be saved and becomes accessible to

the user to make any appropriate changes. In general, the work of Sindrilaru et

al. focuses on minimizing the time loss in case of an error occurs in the system

by detecting failures before they reach the actual workflow engine by intercept-

ing SOAP messages. An experimental evaluation under a test environment is

presented to measure the performance of their approach using a case study. In

contrast, our work does not depend on SOAP technologies and provides other

recovery strategies different to checkpointing. Also, in the work of Sindrilaru et

al. it is not clear what happens with the part of the composite service not affected

by the detected failure.

Saboohi and Kareem [78] present a two phase approach for composite service

fault tolerance. The two proposed phases are: the offline phase, and the online

phase. The offline phase refers to an ongoing background process of subgraph

computation, while the online phase refers to the moment when a composite

service is executing. In the offline phase, the system calculates subgraphs for

created composite services. These subgraph are then added to a composite service

registry and they can be used later for subgraph replacement. Found subgraphs

are ranked according to the semantic description of their component services. The

online phase comprises forward recovery through retry and subgraph replacement.

If forward recovery does not succeed, backward recovery through compensation

is applied. This paper shows experimental evaluation by simulating composite

service executions. The goal of the simulation was to illustrate the improvement

6.1 Fault tolerance for composite services 145

of the recovery probability of composite services. In conclusion, the work of

Saboohi and Kareem is mainly about the computation of subgraphs during the

offline phase, which we consider as a design-time approach. The main different

during the offline phase, compared with our work, is that Saboohi and Kareem

consider subgraph replacement even if that implies the compensation of some

previously successfully executed services. We do not take into account this kind

of replacement, but we provide a more complete fault tolerance specification for

composite services, and QoS-awareness capabilities which the work of Saboohi

and Kareem does not consider.

Brzeziński et al. [22] present an approach called D-ReServE to support ser-

vice recovery by returning the system to a coherent state. To achieve this, the

proposed framework logs interactions between clients and services. These logged

interactions are replayed during the recovery procedure. Brzeziński et al. base

their model on recovery points which describe a consistent state of the services

regardless of fault tolerance mechanisms implemented by service providers. Each

service has at least one recovery point available. The only fault tolerance mech-

anism implemented is roll-back, which is based on the service recovery points.

Additionally, messages may be retransmitted periodically to tolerate transient

communication failures. Brzeziński et al. evaluate their approach in terms of the

overhead introduced by the D-ReServE fault tolerance mechanisms. In contrast,

our approach considers a wider range of fault tolerance mechanisms. Also, in our

approach compensation is handling automatically using transactional properties;

thus, additional mechanisms such as recovery points are not necessary.

Wang et al. [93] propose a framework for the dynamic selection of fault-handling

strategies for composite services. The framework contains three components: an

exception analyzer, a decision maker, and a strategy selector. The exception an-

alyzer builds a record from the system log of failed services. Next, the decision

maker adopts a k-means clustering approach to construct the recovery decision

according to fault handling mechanisms of each type of fault. Then, the strategy

selector uses an integer program solver to generate an optimal The implemented

fault tolerance strategies are skip, service retry, service replacement, and com-

pensation. This paper presents experimental evaluation using case studies to

evaluate the effectiveness and performance of the proposed approach. It seems

this paper focuses on the optimal selection of the recovery strategy according to

its associated QoS. In contrast, our approach takes into account knowledge about

the whole composite service execution to deduce recovery and proactive actions

using rules.

146Fault tolerance and self-healing composite service execution: an state of the art

6.1.4 Prediction and Optimization Approaches

Wenan Tan et al. [89] propose an approach for predicting the performance of

composite services. The QoS of component services are evaluated using historical

execution data; then, a back propagation neural network model based on particle

swarm optimization is used to predict the dynamic performance of the composite

service, and to analyze possible QoS violations. Services which violate QoS are

detected by computing the correlation between component services and composite

service QoS. After these component service are detected, the composite service

is optimized by replacing them. This work mostly focuses on the evaluation

of QoS time series and prediction. In contrast, our approach does not provide

predictions but reactions and adaptations to changes and failures at runtime.

Prediction approaches such as the one presented by Wenan Tan et al. may be

used to optimize the composite service at design-time in terms of availability,

which can be seen as a complement to runtime approaches like ours.

Zheng and Lyu [102] propose an approach for the selection of an optimal fault

tolerance strategy for building composite services. In particular, users may pro-

vide local and global constraints. Local constraints allow setting QoS maximum

values for component services, while global constraints concern the QoS of the

whole composite service. The problem of selecting an optimal fault-tolerance

strategy is modeled as a 0-1 integer programming problem. A QoS model is in-

troduced to reflect the QoS associate to each fault tolerance strategy; for example,

the execution time replication, if the first returned answer is taken, is the mini-

mum time among the estimated execution times of replicas, while the execution

time of replicating using N -version programming is the maximum time among

the estimated execution times of replicas. Then, starting from an execution plan

template, an optimal service selection is done under both local and global con-

straints. In conclusion, the presented dynamic fault tolerance strategy selection

is similar to the service selection problem with additional constraints and consid-

ering fault tolerance strategies QoS. In contrast, our approach does not deal with

the selection of services. It receives as input the composite service, its correspond-

ing compensation service, equivalent services for component services, etc. Hence,

the work of Zheng and Lyu may be considered as a complementary approach to

ours.

6.2 Self-healing execution of composite services 147

6.2 Self-healing execution of composite services

Regarding selfhealing approaches, some works build on top of BPEL [19, 59, 61,

86], while others propose new engines [40, 54, 60, 96, 101].

6.2.1 BPEL-based approaches

Modafferi and Conforti [59] present an approach where developers define a BPEL

process annotated with recovery information. This BPEL process is then trans-

formed to be executed in a standard BPEL engine. An important part of the

paper concerns the proposed abstract extended model, and their corresponding

algorithms to transform them into standard BPEL processes. During the design

phase, the developer has to design which recovery mechanisms must be used. The

supported recovery mechanisms are: modifying process information by external

variable setting; task timeout and its corresponding recovery action; re-execution

of a service or a part of the composite service; alternative path specification; and

rollback and re-execution. No experimental evaluation is presented in this paper.

The main differences between the work Modafferi and Conforti and ours is that

our fault tolerance approach is automatic following the transactional model, while

in the work of Modafferi and Conforti is designed by BPEL developers.

Moser et al. [61] present a system called VieDAME to monitor BPEL processes

regarding QoS constraints. It allows the adaptation of existing processes by

providing alternative services for a given component service. It also proposed

the transformation of SOAP messages to handle service interface mismatches.

The implementation is done using Aspect Oriented Programming to intercept

SOAP messages and allow services to be replaced at runtime. In general, Moser

et al. address two issues of BPEL: it is static by nature, it cannot be changed

dynamically at runtime; it does not provide mechanisms for monitoring running

processes. The experimental evaluation is done using a case study composed

of five services, and it is focused on the running of load tests to compare the

performance of VieDAME with the performance of a plain BPEL engine. In

contrast, our approach is more about the formal and unambiguous modeling of a

self-healing system, instead of particular additions to technologies such as BPEL

and SOAP. Additionally, we provide a wider range of fault tolerance mechanisms.

Baresi and Guinea [19] propose Dynamo, which is a rule-based approach to

enforce self-healing policies on top of BPEL composite services. It augments the

148Fault tolerance and self-healing composite service execution: an state of the art

BPEL technology with supervision rules to set what to check at runtime, and

to define how to react when anomalies are found. Each supervision rule states:

a location; metadata that influences the evaluation of a rule; monitoring pre-

and post-conditions; and a set of reaction strategies. In this paper, the recovery

strategies are not explicitly defined, since the focus is on the definition of the

supervision rules, and their translation into the language required by the rule

engine. Finally, the experimental evaluation concerns the overhead introduced

by the monitoring capabilities in comparison with the invocation of plain BPEL

activities. This approach is also oriented to BPEL developers, while we provide

automatic fault tolerance in our approach. Also, this approach does not provide

service replacement as a recovery strategy.

Subramanian et al. [86] propose an extension to BPEL to provide self-healing

policies. It allows the definition of pre- and post-conditions of BPEL activities;

monitoring; diagnosis; and recovery strategy suggestion. The proposed recovery

mechanisms are: service retry, data mediation to solve data and semantic mis-

matches, service replacement, and subgraph replacement. The BPEL engine is

enhanced by introducing a self-healing policy gathering the conditions, monitor-

ing, and recovery mechanisms for BPEL activities. Finally, the paper contains

a proof-of-concept prototype illustrating the proposed approach; neither perfor-

mance analysis nor other evaluations are done in this paper. In contrast to our

approach and besides being another extension to BPEL, the approach of Sub-

ramanian et al. does not provide replication, compensation or checkpointing

mechanisms.

6.2.2 Non-BPEL-based approaches

Halima et al. [40] propose a self-healing framework based on QoS. This framework

observes the SOAP messages exchanged between services, and extends them with

QoS metadata within their corresponding parameters values. This QoS metadata

is used to detect QoS degradation, and react accordingly using service replace-

ment or composite service reconfiguration. The detection of QoS degradation is

done by evaluating the general behavior of a given service through time, instead

of a specific invocation for that service. The behavior of a service refers to the

evolution of its QoS values monitored during its invocations. The experimen-

tal evaluation studies the overhead introduced by the QoS monitoring using a

case study. In contrast to our approach, the work of Halima et al. is based on

the specificities of SOAP, and it only proposes service replacement as recovery

6.2 Self-healing execution of composite services 149

strategy.

Moo-Mena et al. [60] present a self-healing approach for composite services

based on QoS degradation. They propose the introduction of a component to

intercept exchanged messages between services. The monitoring component re-

ceives data collected by the interceptor and sends it to the diagnosis component.

Diagnosis takes the data processed by monitoring and analyzes it using the re-

quired QoS information. In case of QoS degradation, it warns the recovery mod-

ule. The recovery module only works if QoS degradation was detected. In case

the services performance decreases, recovery will invoke another one to try to

meet the performance requirements. If a service fails, recovery replaces it by a

new one. Hence, the proposed recovery mechanisms are service retry and replica-

tion. In this paper, no experimental evaluation is presented; instead, Moo-Mena

et al. place their approach in the context of a real-world application. Similar

to the work of Halima et al. [40], this approach is made for SOAP and it only

proposes service replacement, which also differs from our approach.

Yin et al. [96] present a self-healing composite service model, which is a com-

bination of compensation and replacement techniques based on QoS and trans-

actional properties. This work focuses on analyzing the cost of compensating

composite services. The compensation cost is based on how long after a ser-

vice was successfully executed its compensation is done; that is, they consider

that compensating a service is more expensive as the time passes. An experi-

mental evaluation is done under a simulated environment, and it mainly shows

the scalability of the approach. Finally, it is not clear why Yin et al. consider

their approach as self-healing research instead of fault tolerance, since they do

not mention any of the self-healing principles. Compared with our approach, the

work of Yin et al. is QoS-aware regarding only the compensation cost, and it

offers limited options concerning fault tolerance strategies.

Li et al. [54] present a self-adaptive approach based on Stochastic Context-

free Grammar (SCFG). The authors state that one of the advantages of using

SCFG is the possibility of setting fault tolerance strategies as the production

rules of the SCFG to choose the optimal service using probabilistic functions.

Composite services are represented as automatons where services are connected by

transitions. Transition probabilities between services calculated from composite

services historical data, and services with higher probabilities will be selected as

service replacements. Li and his coauthors take into account service retry and

replacement as fault tolerance strategies. For the replacement strategy, local and

global decisions are advocated by considering the correlation degree among the

150Fault tolerance and self-healing composite service execution: an state of the art

services. In contrast with our work, their approach of is not QoS-aware and it

proposes a limited options of fault tolerance strategies.

6.3 Discussion

The work reviewed in this chapter represents existing approaches for the reli-

able composite service execution, which we have classified as fault tolerance and

self-healing research for composite services. The approaches were published be-

tween the years 2005 and 2015, and they are the ones we consider as the most

relevant to this thesis. Most of the authors evaluate their respective work by

doing simulations of composite service executions with the help of case studies.

Usually, researchers focus on performance evaluation by measuring the overhead

introduced by their proposed approaches and comparing it with plain composite

service execution engines with no fault tolerance mechanisms. Due to the absence

of an open, close to the real world, and accepted test-bed for composite service

executions, and to the complexity and specificities of the implementation of each

approach, it is difficult to do a sound comparative analysis quantitatively. We,

as well as researchers of reviewed works, mostly limit the comparison among ap-

proaches to a qualitative analysis by describing the different approaches in terms

of what they offer. To summarize the reviewed works, Table 6.1 shows their

publication year, proposed recovery mechanisms, if they are bpel-based or not,

if they can be classified as self-healing research, their intrusiveness, and their

experimental evaluation method.

Several of the reviewed approaches are propositions to extend the SOAP spec-

ification and the WSDL language; for example, by intercepting, analyzing, and

modifying exchanged SOAP messages. We have mentioned in Section 2.1 that

services based on SOAP have been loosing popularity, while building RESTful

services seems to be the preferred option of service developers. This may be

seen as a negative point for SOAP-based approaches; nonetheless, their main

implemented concepts and techniques are still useful independently of the used

technologies. Some of these concepts are: the detection, monitoring, and recov-

ering self-healing loop; redundancy and design diversity techniques for increasing

availability and protecting against byzantine faults; roll-back and compensation;

data mediation to solve data and semantic mismatches; service and subgraph

replacement; checkpointing; and prediction and optimization techniques. In ad-

dition, many fault tolerance approaches are supported by exception handling

constructs at the language level. We believe that fault tolerance must be handled

6.3 Discussion 151

at a higher level of abstraction. Finally, some reviewed works are a mix between

design-time and runtime techniques. While we do not deny the importance of

design-time techniques, in this thesis we are interested on what happens and the

decision making process at runtime.

In this thesis, first of all we aim to formalize composite services, their execution

processes, fault tolerance mechanisms, and self-healing capabilities unambigu-

ously. This formal model is language and technology independent. Then, our

vision is to have smart software agents capable of representing a component ser-

vice during a composite service execution. The idea is to have only one type of

agent, called Service Agent, responsible for the actual execution of a service inde-

pendently of the technology in which that service was developed. Services Agents

will be capable of making decisions by being context- and self-aware. Among the

fault tolerance strategies our approach provides we have: backward recovery by

compensation, forward recovery by service retrying and replacement, replication,

and checkpointing. Finally, our vision is to study services at a conceptual level

to propose concepts and techniques that may be easily implemented regardless

of the underlying technologies; for example, the proposed Service Agents may

be the abstractions of SOAP or RESTful services, and those services may have

physical counterparts in the real world or they may be the exposed functionalities

of software systems.

Recovery mechanism Eval.

a
p
p
ro
a
ch

p
u
bl
ic
a
ti
o
n
ye
a
r

tr
a
n
sa
ct
io
n
a
l
p
ro
pe
rt
ie
s

co
m
pe
n
sa
ti
o
n

re
tr
y

su
bs
ti
tu
ti
o
n

re
p
li
ca
ti
o
n

ch
ec
kp
o
in
ti
n
g

re
p
la
n
in
g

ig
n
o
re

w
s-
bp
el

se
lf
-h
ea
li
n
g

in
tr
u
si
ve

si
m
u
la
ti
o
n

ca
se

st
u
d
y

Wenan Tan et al. [89] 2015 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Zheng et al. [102] 2015 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Wang et al. [93] 2015 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

Li et al. [54] 2014 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Bushehrian et al. [24] 2012 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Saboohi and Abdul [78] 2012 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Behl et al. [20] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Brzeziński and et al. [22] 2012 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Dillen et al. [32] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Abdeldjelil et al. [8] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Cardinale and Rukoz [25] 2011 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Liu et al. [55] 2010 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Simmonds et al.[84] 2010 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

Sindrilaru et al. [85] 2010 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Zhou and Wang [104] 2010 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Lakhal et al. [51] 2009 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Yin et al. [96] 2009 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Moser et al. [61] 2008 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Subramanian et al. [86] 2008 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Halima et al. [40] 2008 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Moo-Mena et al. [60] 2008 ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Gotze et al. [38] 2008 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Baresi and Guinea [19] 2007 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Modafferi and Conforti [59] 2006 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Merideth et al. [57] 2005 ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Our approach 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Table 6.1: Reviewed Work By Publication Year.

Chapter 7

General Conclusions

Contents

7.1 Summary . 153

7.2 Limitations . 155

7.3 Future Research Directions 155

7.3.1 Fault Identification and Reaction 156

7.3.2 Self-healing Internet of Things Applications 156

7.3.3 Composite Service Execution and Big Data 157

7.1 Summary

In this thesis, we have proposed a self-healing composite service approach based

on transactional properties and knowledge-based agents. Our approach is situated

in the Service Composition & Execution layer of the Service Oriented Architec-

ture middleware presented in Chapter 2. One of the main advantages of our work

is the use of transactional properties as a deep-seated notion for fault tolerance.

This way, we implemented backward and recovery mechanisms which function

automatically without the need of developers or any other kind of human inter-

vention. Then, we extended our transactional approach with knowledge-based

agents capable of representing facts about a composite service execution, and

deducing new information from those facts. The new deduced information plays

a crucial role in the decision making process at runtime. Another important

consideration is the fact that our work deals with services at a conceptual level

154 General Conclusions

to provide a formal model for composite service executions. This model is com-

posed by concepts and techniques that may be easily implemented regardless of

the underlying technologies. Actual services may be SOAP or RESTful services,

and they may have physical counterparts in the real world, or they may be the

exposed functionalities of software systems or resources. Last but not least, our

work also sets the basis for interesting future research such as the managing and

self-healing aspects of distributed applications in the Future Internet. We propose

a summary of the chapters of this thesis in the following paragraphs.

In Chapter 3, we formalized composite services and their fault tolerance execu-

tion processes using Colored Petri nets. We then proposed a framework composed

by two type of components: an Agent Coordinator responsible of managing the

global aspects of composite service executions; and, Service Agents which execute

the actual services and are in charge of the fault tolerance execution control. Our

framework ensures the correct and fault tolerant execution of composite services,

and its distributed execution model may be implemented in distributed or shared

memory systems. The provided fault tolerance mechanisms are backward recov-

ery by compensation, forward recovery by retry and service replacement, and

checkpointing as an alternative stand-by strategy.

In Chapter 4, we have introduced a self-healing composite service approach that

extends the transactional approach of Chapter 4. We formulated a hypothesis

highlighting the need of providing dynamism regarding fault tolerance strategy

selection and QoS monitoring. In our self-healing approach, Service Agents be-

come knowledge-based agents. They make recovery and proactive fault tolerance

strategy selection based on the information they have about the whole compos-

ite service, about themselves, and about what is expected and what it is really

happening at runtime.

In Chapter 5, we presented an implementation of our approach and evaluated

it experimentally using a case study. We implemented three different systems: a

composite service execution system with no fault tolerance, the transactional ap-

proach of Chapter 3, and a self-healing approach of Chapter 4. The experimental

evaluation showed three main observation: (i) the importance of providing fault

tolerance mechanisms for composite services by analyzing the results of the sys-

tem with no fault tolerance; (ii) how the approach of Chapter 3 handles compos-

ite service failures using transactional properties regardless of QoS degradation;

and, (iii) how the self-healing approach of Chapter 4 builds on top of our transac-

tional approach to provide more sophisticated decision making through self- and

context-awareness. Additionally, experimental evaluation also showed that both

7.2 Limitations 155

transactional and self-healing approaches may be implemented without adding

significant overhead to the composite service execution control. The evaluation

presented in this chapter suggests that combining transactional properties with

self-healing capabilities leads to smarter execution systems with the ability to

handle higher level goals for composite service executions with minimal human

intervention.

In Chapter 6, we proposed a review of existing approaches to support the reli-

able execution of composite services. This review includes approaches that may

be classified as fault tolerance and self-healing research. We selected the most

relevant works between the years 2005 and 2015, and we compared them with

the approach proposed in this thesis. We highlighted the importance of having

technology-independent smart agents capable of representing a component service

during a composite service execution. These smart agents should possess knowl-

edge about the application they participate in, and be able of making decisions

by reasoning about this knowledge.

7.2 Limitations

The main limitations of this thesis are the following:

1) the lack of a testbed accepted by the research community to do sound

experimental evaluation. As we saw in Chapter 6, researchers usually test

their approaches by simulating study cases.

2) the difficulty to deploy our approach in the real world due to the lack of

automation and interoperability between services published in the Internet.

Note that these exposed limitations concern all the research on composite ser-

vice execution, and not only this thesis.

7.3 Future Research Directions

We envisage interesting possibilities by taking this thesis as point of departure.

Our future research concerns the implementation of more sophisticated fault iden-

tification and reaction mechanisms, the definition of a self-healing framework for

156 General Conclusions

the Internet of Things, and the analysis of the data generated by our composite

service execution system.

7.3.1 Fault Identification and Reaction

In Section 2.2.1, we presented the fault hypothesis considered in this thesis. We

talked bout the types of faults from which component services can suffer from,

and which ones our fault tolerance composite service approach handles. In our

approach, we do not identify the type of faults; instead, we handle general service

failures which may be caused by any of the considered faults. In case of failure, we

applied recovery mechanisms according to the availability of those mechanisms

and user preferences. Nonetheless, it is important to identify the type of faults

instead of general service failures since different faults may require different re-

actions [29]. For example, a time-out fault may be solved by retrying the failed

service, while other faults may require service replacement.

Also in Section 2.2.1 we have stated that services are managed by reliable

component which do not fail. Later on, in Chapter 3, we have called these

components Service Agent. In Chapter 4, we haven seen that the development

of these Service Agent is heading towards autonomous components which are

smarter abstraction of services. Hence, it may be pertinent to consider Service

Agent failures; for example, a Service Agent participating in a composite service

execution may not respond.

7.3.2 Self-healing Internet of Things Applications

Researchers recognize the importance of the automatic execution and fault toler-

ance of services as a critical feature in the Internet of Things paradigm [68]. As

we have explained at the beginning of this thesis, in Section 2.1, we showed that

services no longer are only software operations exposed on the Internet, but also

the abstraction of physical objects capable of modifying the physical world. It

is crucial to recognize this emerging nature of service to face the new challenges

introduced by composite services which interact with both virtual and physical

worlds. Failures in this type of composite services may lead to loss of production

time, equipment damage, environmental catastrophes, or loss of human life [9].

Mrissa et al. [63] introduce the concept of avatar as a virtual extension to ob-

jects. These avatars will exhibit autonomous behavior and collaboration, and

7.3 Future Research Directions 157

can be deployed directly on objects, or on a cloud infrastructure for resource-

constrained objects. The concept of Service Agent is not far from the one of

avatars; therefore, we plan to extend and adapt Service Agents to exhibit avatar-

like capabilities. For example, instead of instantiate a new Service Agent re-

sponsible for a component service each time a composite service execution starts,

Service Agent will join composite applications to collaborate in the achievement

of the desired goal. Also, we will have an Application Coordinator instead of an

Agent Coordinator. The idea is to have an Application Coordinator per critical

application. A critical application is a composite service with high availability and

fault tolerance requirements such as e-health [23], Industry 4.0 [68], or any other

of the applications presented in [9]. The Application Coordinator will manage

the participating Service Agents, given them the required information to achieve

high-level goals, and trigger emergency mechanisms if needed. Also, it will show

the application health, other relevant information, and provide administration

facilities through a dashboard accessible to human users. For achieving integra-

tion between objects and Service Agents, it is crucial to understand the nature

and capabilities of objects since handling the heterogeneity of Internet of Things

applications still a challenge [69]. A lightweight RESTful approach may be taken

for building our envisaged Internet of Things framework [39].

It is also important to define the meaning of transactionality in the context

of the Internet of Things applications. Concepts like rollback, compensation,

replacement, and replication may have special considerations due to the fact that

we are dealing with services with the capability of changing the physical world.

7.3.3 Composite Service Execution and Big Data

The number of services published in the Internet has been growing since their

introduction; moreover; the introduction of connected objects has made this num-

ber of services increase even faster [91]. Internet of Things predictions state that

there will be more than 16 billion connected objects by the year 2020 [87]. As we

have seen in Section 2.1, these connected objects will expose their functionalities

as services.

One of the consequences of this explosion of connected objects if the generation

huge quantities of data; therefore, it is expected that related messaging volumes

could easily reach between 1000 and 10000 per person per day [91]. Researchers

acknowledge that one of the most important challenges is the handling and anal-

158 General Conclusions

ysis of all the data generated by these connected objects, since it will only be of

value if it is collected, analyzed, and interpreted [75, 53, 90].

In our context, the vision is to collect and store the data generated by our com-

posite service execution system, including component service behavior, selected

strategies and their impact on the composite service execution. This data may

be analyzed to improve the selection of replacement services and the decision

making of recovery and proactive strategies.

Appendix A

Algorithms

In this chapter, we review some algorithms used throughout this thesis. In par-

ticular, we show the Critical Path method used to compute knowledge about esti-

mated execution times (Def. 4.3.5, 4.3.8, and 4.3.9). The Critical Path method we

implement is a depth-first search based algorithm. We also present the algorithm

to compute the predecessors (Def. 4.3.15) and dependent outputs (Def. 4.3.14)

for a given service.

A.1 Expected Execution Time Knowledge and

The Critical Path Method

We implemented the Topological Sort algorithm to compute the Critical Path of

a composite service. Further information about the basic algorithm can be found

in the Chapter 22 called Elementary Graph Algorithms of the book Introduction

to Algorithms, Third Edition of Cormen et al. [31].

The first step is to use the Depth-first search algorithm (page 604 of [31]) to

compute a list of services in topological order (page 613 of [31]). Once we have

computed the topological order of the composite service graph, we can find the

minimum time to execute all services. Essentially, we have to find the longest

path in the composite service graph, since the minimum amount of time needed

to execute all services is the time needed to execute the chain of services with the

longest execution time. Algorithm A.1 shows how to compute the longest path

given the topological sort of a composite service graph and a source service. The

160 Algorithms

result is a list of services with their corresponding minimum time to finish their

executions.

Algorithm A.1 Longest Path

Input: Topological Sort ts, source service source

Output: Distances d

begin

// Initialize distances to all services as infinite and distance

// to source as 0

∀s ∈ S, d[s]←∞

d[source]← 0

for s ∈ ts do

// Update distances of all adjacent services

if d[s] 6=∞ then

for succ ∈ (s•)• do

if d[s] + s≈time > d[succ] then

d[succ]← d[s] + s≈time

end
end

end
end

end

A.1.1 Critical Path Example

Let us go back to our case study depicted in Figure 5.7 on page 122 Section 5.2.2.

If we run the topological sort algorithm with the graph representing this compos-

ite service as input, we obtain the topological order showed in Figure A.1.

Now, we can compute the critical path from any service; for example, Table A.1

shows the output of Algorithm A.1 for the initial service. Column d[] shows the

minimum completion time for each service from the initial service; we can see

that

d[FinalService] = 108286.10999999999

= ◦≈time

A.1 Expected Execution Time Knowledge and The Critical Path Method 161

Figure A.1: Visual Representation of the Topological Sorting of the e-Health

Study Case of Figure 5.7

which satisfies Def. 4.3.5, and is actually the estimated execution time ◦≈time of

the whole composite service. We can also know the firing time (Def. 4.3.8) of each

service by looking at their corresponding values in column d[] of Table A.1. Let

us take the Diagnoser service as example. If we look at its value in Table A.1,

we see that:

d[Diagnoser] = 74057.23

= Diagnoser≈firing +Diagnoser≈time

therefore

Diagnoser≈firing = d[Diagnoser]−Diagnoser≈time

= 74057.23− 11671.86

= 62385.37

Finally, Table A.2 shows the result of Algorithm A.1 for every service in the

component service. From this table, we can obtain the remaining time (Def. 4.3.9)

for each component service. The column on the left of the table shows all the

162 Algorithms

services in the component service; the rest of the columns show the computed

values for each service, where −∞ means that the service on the left is not

reachable from the current service. For example, if we look at the computed

valued for the Diagnoser service in Table A.2, we have that:

d[γ♦, Diagnoser] = d[V italSignsAnalysis,Diagnoser]

= d[V italSignsImplant,Diagnoser]

= d[SugarAnalysis,Diagnoser]

= d[SugarImplant,Diagnoser]

= −∞

since none of the γ♦, V italSignsAnalysis, V italSignsImplant, SugarAnalysis,

SugarImplant services are reachable from Diagnoser. To know the remaining

time for Diagnoser, it suffices to look at the computed value for γ�, as follows:

d[γ�, Diagnoser] = 34228.88 (A.1)

= Diagnoser≈remaining

Note that Eq. A.1 satisfies Def. 4.3.9 since:

Diagnoser≈remaining = max(NotifyDoctor≈time +NotifyDoctor≈remaining,

CallEmergency≈time + CallEmergency≈remaining,

NotifyContact≈time +NotifyContact≈remaining,

DisplayMessage≈time +DisplayMessage≈remaining)

= NotifyDoctor≈time +NotifyDoctor≈remaining

= NotifyDoctor≈time + 0.0

= 34228.88

This time represents the remaining time from Diagnoser until the end of the

composite service execution. Now, we can calculated the local global time (Def. 4.3.10)

of Diagnoser as follows:

A.2 Predecessors and Dependent Outputs 163

d[]

γ♦ 0.0

VitalSignsAnalysis 62385.369999999995

NotifyDoctor 108286.10999999999

DisplayMessage 95377.95999999999

CallEmergency 90180.89

VitalSignsImplant 51712.56

Diagnoser 74057.23

SugarAnalysis 39667.1

γ� 108286.10999999999

SugarImplant 12263.33

NotifyContact 75973.37

Table A.1: Critical Path from γ♦ to γ�

Diagnoser(◦)≈time = Diagnoser≈firing +Diagnoser≈time +Diagnoser≈remaining

= 62385.37 + 11671.86 + 34228.88

= 108286.10999999999

In this case, Diagnoser(◦)≈time = ◦
≈
time since Diagnoser is in the critical path of

the composite service.

Finally, by looking at Tables A.1 and A.2, we may follow the same procedure

for every service in the composite service to compute their execution time-related

knowledge.

A.2 Predecessors and Dependent Outputs

Computing the predecessors and dependent outputs of a given service can be

seen as a reachability problem. Given a source service, all services we can reach

traversing the composite service graph starting from its adjacent predecessors

count as predecessors of the source service. In the same way, the outputs of all

composite service outputs we can reach traversing the composite service graph

are dependent outputs of the source service.

1
6
4

A
lg
o
ri
th

m
s

V
it
a
lS
ig
n
sA

n
a
ly
si
s

N
o
ti
fy
D
oc
to
r

D
is
p
la
yM

es
sa
ge

C
a
ll
E
m
er
ge
n
cy

V
it
a
lS
ig
n
sI
m
p
la
n
t

D
ia
gn

o
se
r

S
u
ga
rA

n
a
ly
si
s

S
u
ga
rI
m
p
la
n
t

N
o
ti
fy
C
o
n
ta
ct

γ♦ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞

VitalSignsAnalysis 0.0 -∞ -∞ -∞ 10672.81 -∞ -∞ -∞ -∞

NotifyDoctor 45900.74 0.0 -∞ -∞ 56573.549999999996 34228.88 45900.74 73304.51000000001 -∞

DisplayMessage 32992.59 -∞ 0.0 -∞ 43665.399999999994 21320.73 32992.59 60396.36 -∞

CallEmergency 27795.52 -∞ -∞ 0.0 38468.33 16123.66 27795.52 55199.29000000001 -∞

VitalSignsImplant -∞ -∞ -∞ -∞ 0.0 -∞ -∞ -∞ -∞

Diagnoser 11671.86 -∞ -∞ -∞ 22344.67 0.0 11671.86 39075.630000000005 -∞

SugarAnalysis -∞ -∞ -∞ -∞ -∞ -∞ 0.0 27403.7 -∞

γ� 45900.74 0.0 0.0 0.0 56573.549999999996 34228.88 45900.74 73304.51000000001 0.0

SugarImplant -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞

NotifyContact 13588.0 -∞ -∞ -∞ 24260.809999999998 1916.14 13588.0 40991.770000000004 0.0

Table A.2: Critical Path from each component service to γ�

A.2 Predecessors and Dependent Outputs 165

In our approach, the Agent Coordinator can perform the required computation,

in exchange for preprocessing time and some extra storage, using a basic graph

algorithm such as Bread-first search. Again, we implemented a basic Bread-first

search algorithm, which is explained on page 595, Chapter 22, of Introduction to

Algorithms, Third Edition [31].

Appendix B

Experiences on Random

Composite Services

In this chapter, we present the execution time of the main algorithms used in this

thesis. This analysis is done on random composite services generated using the

Barabási-Albert model [18], which is an algorithm for random generation of scale-

free networks using a preferential attachment mechanism. We used the random

graph generator provided by the JUNG library 1. All algorithms were ran in a

PC with the following configuration: Intel Core i5-3210M CPU @ 2.50GHz ×4;

1GB RAM, memory of 3.8GiB; Ubuntu 14.04 LTS 32-bit, and Java 7.

The rest of this chapter is structured as follows: in Section B.1 we present

the estimated execution times our randomly generated composite services, the

execution time of the Critical Path algorithm (Section A.1) to compute their

estimated execution times, and the overhead of the Critical Path algorithm on

the composite services execution times; in Section B.2 we show the estimated

price and availability of our random composite services; and in Section B.3 we

show the execution times of algorithms to compute the dependent outputs and

progress of our random composite services.

1http://jung.sourceforge.net/

168 Experiences on Random Composite Services

Figure B.1: Random Composite Services Estimated Execution Times.

B.1 Estimated Execution Time and the Critical

Path Algorithm

Figure B.1 shows the estimated execution times of our random composite services.

Given the nature of the generated composite services graphs, the estimated exe-

cution time does not change much. This is due to the fact the new services are

added in parallel to other services and their estimated execution time does not

affect the Critical Path of the composition.

Figure B.2 shows the execution times of the Critical Path algorithm for calcu-

lating the estimated execution times of our random composite services.

Figure B.3 shows the overhead of Critical Path algorithm. We compute this

overhead as the percentage of the estimated execution time (Figure B.1) taken

to compute the Critical Path.

B.2 Estimated Price and Availability

Figure B.4 shows the global price and Figure B.5 shows the global availability of

our random composite services. We do not show the execution time of computing

the global prices and availabilities; both computations run in O(n) and they are

close to zero for all composite services. Note that composite services availabilities

B.3 Dependent Outputs and Predecessors 169

Figure B.2: Critical Path Algorithm Execution Times on Random Composite

Services.

Figure B.3: Critical Path Algorithm Impact on Random Composite Services

Estimated Execution Times.

are low and decrease quickly, and for compositions of more than 40 services, the

availability is 0.

B.3 Dependent Outputs and Predecessors

Figure B.6 shows the execution time taken to compute the dependent outputs

(Section A.2) of component services of each of our random composite services.

170 Experiences on Random Composite Services

Figure B.4: Random Composite Services Prices.

Figure B.5: Random Composite Services Availabilities.

Figure B.7 shows the execution time taken to compute the predecessors (Sec-

tion A.2) of component services of each of our random composite services.

Figure B.6: Dependent Output Algorithm Execution Times on Random Com-

posite Services.

Figure B.7: Predecessors Algorithm Execution Times on Random Composite

Services.

Bibliography

[1] National Intelligence Council, Disruptive Civil Technologies Six Technolo-

gies with Potential Impacts on US Interests Out to 2025 Conference Report

CR 2008-07, April 2008. http://www.dni.gov/nic/NIC_home.html.

[2] OASIS. Web Services Business Process Execution Language Version 2.0.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

Accessed: June 2015.

[3] OWL 2 Web Ontology Language Document Overview (Second Edition).

http://www.w3.org/TR/owl2-overview/. Accessed: June 2015.

[4] The Open Group. The SOA Work Group. http://www.opengroup.org/

soa/. Accessed: June 2015.

[5] OASIS. Business transaction protocol Version 1.0. http://docs.

oasis-open.org/ws-tx/wsba/2006/06, 2002. Accessed: November 2015.

[6] OASIS. Web Services Composite Application Framework Version

1.0. https : //www.oasis - open.org/committees/tc_home.php?wg_

abbrev=ws-caf, 2005. Accessed: November 2015.

[7] OASIS. Web Services Business Activity Version 1.2. https : //

www.oasis-open.org/committees/business-transaction/documents/

primer/Primerhtml/BTP%20Primer%20D1%2020020602.html, 2009. Ac-

cessed: November 2015.

[8] H. Abdeldjelil, N. Faci, Z. Maamar, and D. Benslimane. A Diversity-Based

Approach for Managing Faults in Web Services. In Advanced Information

Networking and Applications (AINA), 2012 IEEE 26th International Con-

ference on, pages 81–88, March 2012.

[9] Pekka Alho and Jouni Mattila. Service-oriented Approach to Fault Toler-

ance in CPSs. J. Syst. Softw., 105(C):1–17, July 2015.

http://www.dni.gov/ nic/NIC_home.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/owl2-overview/
http://www.opengroup.org/soa/
http://www.opengroup.org/soa/
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
https://www.oasis-open.org/committees/business-transaction/documents/primer/Primerhtml/BTP%20Primer%20D1%2020020602.html
https://www.oasis-open.org/committees/business-transaction/documents/primer/Primerhtml/BTP%20Primer%20D1%2020020602.html
https://www.oasis-open.org/committees/business-transaction/documents/primer/Primerhtml/BTP%20Primer%20D1%2020020602.html

174 BIBLIOGRAPHY

[10] Rafael Angarita. Dynamic Composite Web Service Execution by Providing

Fault-Tolerance and QoS Monitoring. In Service-Oriented Computing -

ICSOC 2014 Workshops and Satellite Events, Paris, France, November 3-

6, 2014, Revised Selected Papers, pages 371–377, 2014.

[11] Rafael Angarita. Responsible Objects: Towards Self-Healing Internet of

Things Applications. In Autonomic Computing (ICAC), 2015 IEEE Inter-

national Conference on, pages 307–312, July 2015.

[12] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. FaCETa: Backward

and Forward Recovery for Execution of Transactional Composite WS. In

Proceedings of the Fifth International Workshop on REsource Discovery

(RED 2012), pages 1–15, Heraklion, Grece, 2012.

[13] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Dynamic Recov-

ery Decision During Composite Web Services Execution. In Proceedings

of the Fifth International Conference on Management of Emergent Digital

EcoSystems, MEDES ’13, pages 187–194, New York, NY, USA, 2013. ACM.

[14] Rafael Angarita, Yudith Cardinale, and Marta Rukoz. Reliable Composite

Web Services Execution: Towards a Dynamic Recovery Decision . Elec-

tronic Notes in Theoretical Computer Science, 302(0):5 – 28, 2014.

[15] Rafael Angarita, Maude Manouvrier, and Marta Rukoz. A Framework

for Transactional Service Selection Based on Crowdsourcing. In Mobile

Web and Intelligent Information Systems, volume 9228 of Lecture Notes in

Computer Science, pages 137–148. Springer International Publishing, 2015.

[16] Rafael Angarita, Marta Rukoz, and Yudith Cardinale. Modeling dynamic

recovery strategy for composite web services execution. World Wide Web,

pages 1–21, 2015.

[17] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:

A survey. Computer Networks, 54(15):2787 – 2805, 2010.

[18] Albert-László Barabási and Réka Albert. Emergence of scaling in random

networks. Science, 286(5439):509–512, 1999.

[19] L. Baresi and S. Guinea. Dynamo and Self-Healing BPEL Compositions.

In Software Engineering - Companion, 2007. ICSE 2007 Companion. 29th

International Conference on, pages 69–70, May 2007.

BIBLIOGRAPHY 175

[20] J. Behl, T. Distler, F. Heisig, R. Kapitza, and M. Schunter. Providing Fault-

tolerant Execution of Web-service based Workflows within Clouds. In Proc.

of the 2nd Internat. Workshop on Cloud Computing Platforms (CloudCP),

2012.

[21] Richard Bellman. On a routing problem. Technical report, DTIC Docu-

ment, 1956.

[22] Jerzy Brzezinski, Arkadiusz Danilecki, Mateusz Holenko, Anna Kobusinska,

Jacek Kobusinski, and Piotr Zierhoffer. D-ReServE: Distributed Reliable

Service Environment. In ADBIS, volume 7503 of LNCS, pages 71–84, 2012.

[23] Nicola Bui and Michele Zorzi. Health Care Applications: A Solution Based

on the Internet of Things. In Proceedings of the 4th International Sympo-

sium on Applied Sciences in Biomedical and Communication Technologies,

ISABEL ’11, pages 131:1–131:5, New York, NY, USA, 2011. ACM.

[24] O. Bushehrian, S. Zare, and N. Keihani Rad. A Workflow-Based Failure

Recovery in Web Services Composition. Journal of Software Engineering

and Applications, 5:89–95, 2012.

[25] Yudith Cardinale and Marta Rukoz. A Framework for Reliable Execution of

Transactional Composite Web Services. In Proceedings of the International

Conference on Management of Emergent Digital EcoSystems, MEDES ’11,

pages 129–136, New York, NY, USA, 2011. ACM.

[26] Yudith Cardinale, Marta Rukoz, and Rafael Angarita. Modeling Snapshot

of Composite WS Execution by Colored Petri Nets. In Resource Discovery,

volume 8194 of Lecture Notes in Computer Science, pages 23–44. Springer

Berlin Heidelberg, 2013.

[27] Rubn Casado, Muhammad Younas, and Javier Tuya. A Generic Frame-

work for Testing the Web Services Transactions. In Athman Bouguettaya,

Quan Z. Sheng, and Florian Daniel, editors, Advanced Web Services, pages

29–49. Springer New York, 2014.

[28] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In

Proceedings of the Third Symposium on Operating Systems Design and Im-

plementation, OSDI ’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX

Association.

176 BIBLIOGRAPHY

[29] K.S.May Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam

Guinea. A Fault Taxonomy for Web Service Composition. In Service-

Oriented Computing - ICSOC 2007 Workshops, volume 4907 of Lecture

Notes in Computer Science, pages 363–375. Springer Berlin Heidelberg,

2009.

[30] Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang. A Vision of

IoT: Applications, Challenges, and Opportunities With China Perspective.

Internet of Things Journal, IEEE, 1(4):349–359, Aug 2014.

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd

edition, 2009.

[32] Roeland Dillen, Jonas Buys, Vincenzo De Florio, and Chris Blondia.

WSDM-Enabled Autonomic Augmentation of Classical Multi-version Soft-

ware Fault-Tolerance Mechanisms. In Computer Safety, Reliability, and

Security, volume 7613 of Lecture Notes in Computer Science, pages 294–

306. Springer Berlin Heidelberg, 2012.

[33] Schahram Dustdar and Wolfgang Schreiner. A survey on web services com-

position. International journal of web and grid services, 1(1):1–30, 2005.

[34] Joyce El Haddad, Maude Manouvrier, and Marta Rukoz. TQoS: Trans-

actional and QoS-Aware Selection Algorithm for Automatic Web Service

Composition. IEEE Trans. Serv. Comput., 3(1):73–85, January 2010.

[35] Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced

Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1992.

[36] Hector Garcia-Molina and Kenneth Salem. Sagas. SIGMOD Rec.,

16(3):249–259, December 1987.

[37] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upad-

hyaya. Self-healing Systems - Survey and Synthesis. Decis. Support Syst.,

42(4):2164–2185, January 2007.

[38] J. Gotze, J. Muller, and P. Muller. Iterative Service Orchestration based

on Dependability Attributes. In Software Engineering and Advanced Appli-

cations, 2008. SEAA ’08. 34th Euromicro Conference, pages 353–360, Sept

2008.

BIBLIOGRAPHY 177

[39] Tor-Morten Grnli, Gheorghita Ghinea, and Muhammad Younas. A

Lightweight Architecture for the Web-of-Things. In Mobile Web Infor-

mation Systems, volume 8093 of Lecture Notes in Computer Science, pages

248–259. Springer Berlin Heidelberg, 2013.

[40] Riadh Ben Halima, Khalil Drira, and Mohamed Jmaiel. A QoS-Oriented

Reconfigurable Middleware for Self-Healing Web Services. In Proceedings

of the 2008 IEEE International Conference on Web Services, ICWS ’08,

pages 104–111, Washington, DC, USA, 2008. IEEE Computer Society.

[41] Rachid Hamadi and Boualem Benatallah. A Petri Net-based Model for

Web Service Composition. In Proceedings of the 14th Australasian Database

Conference - Volume 17, ADC ’03, pages 191–200, Darlinghurst, Australia,

Australia, 2003. Australian Computer Society, Inc.

[42] Son N. Han, Imran Khan, Gyu Myoung Lee, Noel Crespi, and Roch H.

Glitho. Service composition for IP smart object using realtime Web proto-

cols: Concept and research challenges. Computer Standards & Interfaces,

43:79 – 90, 2016.

[43] M.N. Huhns and M.P. Singh. Service-oriented computing: key concepts

and principles. Internet Computing, IEEE, 9(1):75–81, Jan 2005.

[44] IBM. Autonomic Computing: IBM’s Perspective on the State of Informa-

tion Technology. IBM, 2001.

[45] IBM. An architectural blueprint for autonomic computing. IBM, 2005.

[46] ISO. Automation systems and integration Product data representation

and exchange. ISO 10303, International Organization for Standardization,

2004.

[47] ISO. Quality management systems. ISO 9000:2005, International Organi-

zation for Standardization, 2009.

[48] Kurt Jensen. Coloured Petri nets. In Petri Nets: Central Models and

Their Properties, volume 254 of Lecture Notes in Computer Science, pages

248–299. Springer Berlin Heidelberg, 1987.

[49] James E Kelley Jr. Critical-path planning and scheduling: Mathematical

basis. Operations research, 9(3):296–320, 1961.

[50] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Com-

puter, 36(1):41–50, Jan 2003.

178 BIBLIOGRAPHY

[51] Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. FENECIA: fail-

ure endurable nested-transaction based execution of compo site Web ser-

vices with incorporated state analysis. VLDB Journal, 18(1):1–56, 2009.

[52] Peter A Lee and Thomas Anderson. Fault tolerance: principles and practice,

volume 3. Springer Science & Business Media, 2012.

[53] Martin Lehmann, Andreas Birn-Hansen, Gheorghita Ghinea, Tor-Morten

Grønli, and Muhammad Younas. Data Analysis as a Service: An Infrastruc-

ture for Storing and Analyzing the Internet of Things. In Mobile Web and

Intelligent Information Systems, volume 9228 of Lecture Notes in Computer

Science, pages 161–169. Springer International Publishing, 2015.

[54] Guoqiang Li, Lejian Liao, Dandan Song, and Zhenling Zhang. Self-Adaptive

Web Service Composition Based on Stochastic Context-Free Grammar. In

e-Business Engineering (ICEBE), 2014 IEEE 11th International Confer-

ence on, pages 139–144, Nov 2014.

[55] An Liu, Qing Li, Liusheng Huang, and Mingjun Xiao. FACTS: A Frame-

work for Fault-Tolerant Composition of Transactional Web Services. Ser-

vices Computing, IEEE Transactions on, 3(1):46–59, Jan 2010.

[56] Friedemann Mattern and Christian Floerkemeier. From the Internet of

Computers to the Internet of Things. In From Active Data Management to

Event-Based Systems and More, volume 6462 of Lecture Notes in Computer

Science, pages 242–259. Springer Berlin Heidelberg, 2010.

[57] M.G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and

P. Narasimhan. Thema: Byzantine-fault-tolerant middleware for Web-

service applications. In Reliable Distributed Systems, 2005. SRDS 2005.

24th IEEE Symposium on, pages 131–140, Oct 2005.

[58] Elena Meshkova, Janne Riihijrvi, Marina Petrova, and Petri Mhnen. A

survey on resource discovery mechanisms, peer-to-peer and service discovery

frameworks . Computer Networks, 52(11):2097 – 2128, 2008.

[59] Stefano Modafferi and Eugenio Conforti. Methods for Enabling Recovery

Actions in Ws-BPEL. In Proceedings of the 2006 Confederated International

Conference on On the Move to Meaningful Internet Systems: CoopIS, DOA,

GADA, and ODBASE - Volume Part I, ODBASE’06/OTM’06, pages 219–

236, Berlin, Heidelberg, 2006. Springer-Verlag.

BIBLIOGRAPHY 179

[60] F. Moo-Mena, J. Garcilazo-Ortiz, L. Basto-Diaz, F. Curi-Quintal, and

F. Alonzo-Canul. Defining a Self-Healing QoS-based Infrastructure for Web

Services Applications. In Computational Science and Engineering Work-

shops, 2008. CSEWORKSHOPS ’08. 11th IEEE International Conference

on, pages 215–220, July 2008.

[61] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive

Monitoring and Service Adaptation for WS-BPEL. In Proceedings of the

17th International Conference on World Wide Web, WWW ’08, pages 815–

824, New York, NY, USA, 2008. ACM.

[62] E. B. Moss. Nested transactions: An approach to reliable distributed com-

puting. Technical report, Cambridge, MA, USA, 1981.

[63] M. Mrissa, L. Medini, J.-P. Jamont, N. Le Sommer, and J. Laplace. An

Avatar Architecture for the Web of Things. Internet Computing, IEEE,

19(2):30–38, Mar 2015.

[64] Amanda S. Nascimento, Cećılia M. F. Rubira, Rachel Burrows, and Fer-

nando Castor. A Systematic Review of Design Diversity-based Solutions for

Fault-tolerant SOAs. In Proceedings of the 17th International Conference

on Evaluation and Assessment in Software Engineering, EASE ’13, pages

107–118, New York, NY, USA, 2013. ACM.

[65] OASIS. Web Services Businnes Process Execution Language (WS-BPEL),

Version 2.0. http://docs.oasis-open.org/wsbepel/2.0/wsbpel-v2.0.html,

2007. OASIS Standard.

[66] Massimo Paolucci, Takahiro Kawamura, TerryR. Payne, and Katia Sycara.

Semantic Matching of Web Services Capabilities. In Ian Horrocks and James

Hendler, editors, The Semantic Web ISWC 2002, volume 2342 of Lecture

Notes in Computer Science, pages 333–347. Springer Berlin Heidelberg,

2002.

[67] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful Web

Services vs. ”Big”’ Web Services: Making the Right Architectural Decision.

In Proceedings of the 17th International Conference on World Wide Web,

WWW ’08, pages 805–814, New York, NY, USA, 2008. ACM.

[68] C. Perera, C.H. Liu, S. Jayawardena, and Min Chen. A Survey on Internet

of Things From Industrial Market Perspective. Access, IEEE, 2:1660–1679,

2014.

180 BIBLIOGRAPHY

[69] M.E. Perez Hernandez and S. Reiff-Marganiec. Classifying Smart Objects

using capabilities. In Smart Computing (SMARTCOMP), 2014 Interna-

tional Conference on, pages 309–316, Nov 2014.

[70] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[71] Harald Psaier and Schahram Dustdar. A Survey on Self-healing Systems:

Approaches and Systems. Computing, 91(1):43–73, January 2011.

[72] Calton Pu, Gail E. Kaiser, and Norman C. Hutchinson. Split-Transactions

for Open-Ended Activities. In Proceedings of the 14th International Con-

ference on Very Large Data Bases, VLDB ’88, pages 26–37, San Francisco,

CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[73] Shuping Ran. A Model for Web Services Discovery with QoS. SIGecom

Exch., 4(1):1–10, March 2003.

[74] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Com-

position Methods. In Semantic Web Services and Web Process Composition,

volume 3387 of Lecture Notes in Computer Science, pages 43–54. Springer

Berlin Heidelberg, 2005.

[75] Mark Raskino, Jackie Fenn, and Alexander Linden. Extracting value from

the massively connected world of 2015. Gartner Res., Stamford, CT, USA,

Tech. Rep. G, 125949, 2005.

[76] Leonard Richardson and Sam Ruby. Restful Web Services. O’Reilly, first

edition, 2007.

[77] Marta Rukoz, Yudith Cardinale, and Rafael Angarita. FACETA*: Check-

pointing for Transactional Composite Web Service Execution based on

Petri-Nets . Procedia Computer Science, 10(0):874 – 879, 2012.

[78] Hadi Saboohi and Sameem Abdul Kareem. Failure Recovery of World-

altering Composite Semantic Services - a Two Phase Approach. In Pro-

ceedings of the 14th International Conference on Information Integration

and Web-based Applications #38; Services, IIWAS ’12, pages 299–302, New

York, NY, USA, 2012. ACM.

[79] Jordy Sangers, Flavius Frasincar, Frederik Hogenboom, and Vadim Chep-

egin. Semantic Web Service Discovery Using Natural Language Processing

Techniques. Expert Syst. Appl., 40(11):4660–4671, September 2013.

BIBLIOGRAPHY 181

[80] M. Schafer, P. Dolog, and W. Nejdl. An environment for flexible advanced

compensations of Web service transactions. ACM Transactions on the Web,

2, 2008.

[81] N. Shadbolt, W. Hall, and T. Berners-Lee. The Semantic Web Revisited.

Intelligent Systems, IEEE, 21(3):96–101, Jan 2006.

[82] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia Szabo,

Scott Bourne, and Xiaofei Xu. Web services composition: A decade’s

overview. Information Sciences, 280:218 – 238, 2014.

[83] Doron Sherman. BPEL: Make Your Services Flow. Composing Web Services

into Business Flow. Journal in Web Services, 3(7):16–21, 2003.

[84] Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik. Guided Re-

covery for Web Service Applications. In Proceedings of the Eighteenth ACM

SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE ’10, pages 247–256, New York, NY, USA, 2010. ACM.

[85] E. Sindrilaru, A. Costan, and V. Cristea. Fault Tolerance and Recovery in

Grid Workflow Management Systems. In Complex, Intelligent and Software

Intensive Systems (CISIS), 2010 International Conference on, pages 475–

480, Feb 2010.

[86] Sattanathan Subramanian, Philippe Thiran, Nanjangud C. Narendra, et al.

On the Enhancement of BPEL Engines for Self-Healing Composite Web Ser-

vices. In Proc. of the 2008 Int. Symposium on Applications and the Internet,

SAINT ’08, pages 33–39, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

[87] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé.

Vision and challenges for realising the Internet of Things. CERP-IoT. Clus-

ter of European Research Projects on the Internet of Things, 2010.

[88] Pawel Swiatek, Krzysztof Brzostowski, Jaroslaw Drapala, Krzysztof

Juszczyszyn, and Adam Grzech. Development of Intelligent eHealth Sys-

tems in the Future Internet Architecture. In Innovative Technologies in

Management and Science, volume 10 of Topics in Intelligent Engineering

and Informatics, pages 73–94. Springer International Publishing, 2015.

[89] Wenan Tan, Leer Li, and Yong Sun. A Novel Performance Prediction

Framework forWeb Service Workflow Applications. In Qiaohong Zu, Bo Hu,

Ning Gu, and Sopheap Seng, editors, Human Centered Computing, volume

182 BIBLIOGRAPHY

8944 of Lecture Notes in Computer Science, pages 55–68. Springer Interna-

tional Publishing, 2015.

[90] M Tilly and Stephan Reiff-Marganiec. Fast Data Processing for Large-

Scale SOA and Event-Based Systems. International Journal of Systems

and Service-Oriented Engineering (IJSSOE), 2015.

[91] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald

Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura,

Mark Harrison, M Eisenhauer, et al. Internet of things strategic research

roadmap. Internet of Things: Global Technological and Societal Trends,

1:9–52, 2011.

[92] W3C. Web Services Architecture, 2004. Available at http://www.w3.org/

TR/ws-arch/. [Online; Accessed: June 2015].

[93] Weidong Wang, Liqiang Wang, and Wei Lu. A Resilient Framework for

Fault Handling in Web Service Oriented Systems. In Web Services (ICWS),

2015 IEEE International Conference on, pages 663–670, June 2015.

[94] Gerhard Weikum and Hans-J. Schek. Concepts and applications of multi-

level transactions and open nested transactions. In Database Transaction

Models for Advanced Applications, pages 515–553. Morgan Kaufmann, 1992.

[95] Quanwang Wu and Qingsheng Zhu. Transactional and QoS-aware dynamic

service composition based on ant colony optimization. Future Generation

Computer Systems, 29(5):1112 – 1119, 2013. Special section: Hybrid Cloud

Computing.

[96] Ying Yin, Bin Zhang, Xizhe Zhang, and Yuhai Zhao. A Self-healing compos-

ite Web service model. In Services Computing Conference, 2009. APSCC

2009. IEEE Asia-Pacific, pages 307–312, Dec 2009.

[97] M. Younas, B. Eagelstone, and R. Holton. A Formal Treatment of a SA-

CReD Protocol for Multidatabase Web Transactions. In Database and

Expert Systems Applications, volume 1873 of Lecture Notes in Computer

Science, pages 899–908. Springer Berlin Heidelberg, 2000.

[98] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying

and managing Web services: issues, solutions, and directions. The VLDB

Journal, 17:537–572, 2008.

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

BIBLIOGRAPHY 183

[99] Aidong Zhang, Marian Nodine, Bharat Bhargava, and Omran Bukhres. En-

suring Relaxed Atomicity for Flexible Transactions in Multidatabase Sys-

tems. In Proceedings of the 1994 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’94, pages 67–78, New York, NY, USA,

1994. ACM.

[100] Z. Zhao, J. Wei, L. Lin, and X. Ding. A Concurrency Control Mechanism

for Composite Service Supporting User-Defined Relaxed Atomicity. In The

32nd Annual IEEE Int. Computer Software and Applications Conf., pages

275–278, 2008.

[101] Zibin Zheng and Michael R. Lyu. An Adaptive QoS-aware Fault Tolerance

Strategy for Web Services. Empirical Software Engineering, 15(4):323–345,

August 2010.

[102] Zibin Zheng and M.R. Lyu. Selecting an Optimal Fault Tolerance Strategy

for Reliable Service-Oriented Systems with Local and Global Constraints.

Computers, IEEE Transactions on, 64(1):219–232, Jan 2015.

[103] Zibin Zheng, Yilei Zhang, and M.R. Lyu. Distributed QoS Evaluation for

Real-World Web Services. In Web Services (ICWS), 2010 IEEE Interna-

tional Conference on, pages 83–90, July 2010.

[104] Wei Zhou and Lina Wang. A Byzantine Fault Tolerant Protocol for Com-

posite Web Services. In International Conference on Computational Intel-

ligence and Software Engineering (CiSE), pages 1–4, 2010.

	Table of Contents
	Introduction
	Motivation
	Research Question
	Challenges and Solution Requirements
	Contributions and Publications
	Organization

	Preliminaries
	Service Oriented Architecture, Services, and Composite Services
	Composite Service Execution Control
	Fault Hypothesis
	Transactional Properties for Services
	Recovery Mechanisms

	Self-healing systems
	Petri Nets and Colored Petri Nets
	Summary of General Assumptions

	Composite Service Execution Control and Recovery Mechanisms
	Modeling composite service executions
	Backward Recovery
	Checkpointing
	Service Replacement

	Framework Architecture
	Fault Tolerance Algorithms

	Conclusions

	Knowledge-based Service Agents
	Motivation
	A High-level Definition of Self-healing Composite Services
	Knowledge-Based Service Agents
	Self-awareness Knowledge
	Context-awareness Knowledge

	Knowledge Base
	QoS State Deduction
	Self-healing State Deduction
	Action Deduction

	QoS Manager for Summation/Product QoS Criteria
	Algorithms
	Conclusions

	Experimental Evaluation
	Implementation Overview
	Case Study
	QoS dataset
	The e-Health System

	Results
	Composite Service Behavior (nt-sys)
	Experimental Comparison Between nt-sys, tp-sys, and sh-sys
	Conclusions of Sections 5.3.2.1 and 5.3.2.2: tp-sys vs sh-sys
	Self-healing Behavior

	Summary of Experimental Evaluation

	Fault tolerance and self-healing composite service execution: an state of the art
	Fault tolerance for composite services
	Transactional Properties-based Approaches
	Redundancy and Design Diversity-based Approaches
	Exception Handling-based Approaches
	Prediction and Optimization Approaches

	Self-healing execution of composite services
	BPEL-based approaches
	Non-BPEL-based approaches

	Discussion

	General Conclusions
	Summary
	Limitations
	Future Research Directions
	Fault Identification and Reaction
	Self-healing Internet of Things Applications
	Composite Service Execution and Big Data

	Algorithms
	Expected Execution Time Knowledge and The Critical Path Method
	Critical Path Example

	Predecessors and Dependent Outputs

	Experiences on Random Composite Services
	Estimated Execution Time and the Critical Path Algorithm
	Estimated Price and Availability
	Dependent Outputs and Predecessors

	bibliography

