
HAL Id: tel-01281404
https://theses.hal.science/tel-01281404v1

Submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Search for Dark Matter and Supersymmetry in the
single photon events with the ATLAS detector

Mengqing Wu

To cite this version:
Mengqing Wu. Search for Dark Matter and Supersymmetry in the single photon events with the
ATLAS detector. High Energy Physics - Experiment [hep-ex]. Université Grenoble Alpes, 2015.
English. �NNT : 2015GREAY046�. �tel-01281404�

https://theses.hal.science/tel-01281404v1
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Physique Subatomique et Astroparticules

Arrêté ministériel : 7 Août 2006

Présentée par

Mengqing WU

Thèse dirigée par Faïrouz Malek
et Marie-Hélène Genest

préparée au sein du Laboratoire de Physique Subatomique
et de Cosmologie de Grenoble
et de l’École Doctorale de Physique de Grenoble

Search for dark matter and su-
persymmetry in the single photon
events with the ATLAS detector

Thèse soutenue publiquement le 30 Juillet 2015,

devant le jury composé de :

Patrice Verdier
IPNL-Lyon, Président

Pascal Pralavorio
CPPM-Marseille, Rapporteur

Francesco Polci
LPNHE-Paris, Examinateur

Ingo Schienbein
UJF-Grenoble, Examinateur

Faïrouz Malek
LPSC-Grenoble, Directrice de thèse

Marie-Hélène Genest
LPSC-Grenoble, Co-Encadrante de thèse





“Trouver n’est rien, c’est le plan qui est difficile.”

– Fiodor Dostoïevski





Acknowledgements

Firstly, I would like to express my deepest gratitude to my advisers Dr. Marie-Hélène

Genest and Dr. Faïrouz Malek for their continuous support of my Ph.D study and related

research throughout these three years. I could not have imagined having any better adviser

and mentor for my Ph.D study. I remain incredibly indebted to Marie-Hélène Genest for her

patience, encouragement and immense knowledge. My sincere thanks also goes to Faïrouz

Malek for offering me this great Ph.D project opportunity and all the vital help she provides

to me at those most critical periods during my study.

Besides my advisers, I would like to thank the rest of my thesis committee: Dr. Patrice

Verdier, Dr. Pascal Pralavorio, Dr. Francesco Polci and Dr. Ingo Schienbein, not only for

their insightful comments and encouragement, but also for the hard questions which incited

me to widen my research from various perspectives.

I am grateful to Dr. Pierre-Antoine Delsart, Dr. Benjamin Trocme, Dr. Jan Stark, Dr.

Fabienne Ledroit-Guillon and Prof. Reinhard Schwienhorst, for those stimulating discus-

sions on writing of this thesis and preparing the defence. Throughout my Ph.D, I sincerely

ap- preciate all my fellow labmates from the Laboratory of Subatomic Physics and Cosmol-

ogy (LPSC), particularly from the ATLAS group for their never-ending support. Thanks to

the rich and stimulating ambience created by the people from LPSC, I have greatly enjoyed

the time I have spent so far working as part of LPSC.

In addition, I would like to thank Dr. Luca Fabbri for the extremely interesting theoreti-

cal courses that he gave me in the first year, and for his kindly guides and advices in helping

me complete the theory section of my thesis in the last year. I am also highly grateful to

Prof. Ximeng Chen and Researcher Guoshu Zhang for enlightening me the first glance of

research.

This thesis would not exist without all the support and encouragement given to me over

the years by my family, nor would it exist without Jiang Zhou for his love and support

throughout all the challenging moments of the last few years.





Abstract

This thesis presents the search for new physics in the final state containing a single pho-

ton and missing transverse momentum. The analysis is performed on 20.3fb−1 of proton-

proton collisions data at a center-of-mass energy of 8 TeV collected by the ATLAS detector

at the Large Hadron Collider. Given the good agreement of the data with the Standard

Model prediction of such events, an upper limit on the visible cross section produced by

new physics is derived. The observed limit at 95% confidence level is 3.64fb.

In this thesis, the results are also interpreted as limits in the parameter space of two

new physics models. The first model is an effective field theory, inspired by Fermi-LAT

results, in which dark matter particles couple to photons via a contact interaction vertex.

Limits are set on the effective mass scale and depend on the postulated coupling constants.

The limits set in this dark matter model provide an effective constraint in the parameter

space of the theory compatible with the Fermi-LAT results. The second one is a simplified

supersymmetric model describing the first and second generation squark pair production

with their subsequent decay into a quark and a neutralino. The photon is emitted as initial

or final state radiation and the spectrum is compressed, i.e. the mass difference between the

squark and the neutralino is assumed to be small. Limits are set on the production cross-

section; squark masses are excluded up to 250 GeV in the very compressed region. As

the photon can be radiated from the intermediate squark, this final state would eventually

provide the possibility to probe the charge of the squark.

A preliminary study has also been carried out to show the search sensitivity with 13 TeV

data, which indicate that the limits presented in this thesis can already be improved by 10%

with an integrated luminosity of 5fb−1.





Résumé

Cette thèse présente une recherche de nouvelle physique avec un état final contenant un

seul photon et de l’énergie transverse manquante. L’analyse des données collectées par le

détecteur ATLAS au LHC, issues de collisions proton-proton dont l’énergie dans le centre

de masse est de 8 TeV, est faite avec 20.3fb−1 de données. Cette analyse est sensible à la

présence de matière noire et/ou à la présence de particules supersymétriques. L’accord entre

les données mesurées et les prédictions du modèle standard permet d’établir une limite sur

la section efficace de production mesurable. Cette limite est observée à la valeur de 3.64fb

à 95% de niveau de confiance.

Dans cette thèse, la limite expérimentale obtenue est également interprétée comme une

limite dans l’espace des paramètres de deux nouveaux modèles.

Le premier est basé sur une théorie des champs effective qui s’inspire des résultats du

satellite Fermi-LAT. Dans ce modèle, les particules de matière sombre se couplent aux pho-

tons par une interaction de contact. Les limites sur l’échelle de masse effective sont établies

et dépendent d’un postulat sur les constantes de couplage. Elles contraignent l’espace des

paramètres qui est compatible avec les résultats de Fermi-LAT.

Le second est un modèle supersymétrique simplifié décrivant la production de paires de

squarks de première et de deuxième générations se désintégrant en un quark et un neutralino.

Dans ce cas, le photon est émis soit dans l’état initial soit dans l’état final. De plus, le

spectre en masse est compressé, c’est-à-dire que la différence de masse entre les squarks

et les neutralinos est supposée petite. Les limites sont établies sur la section efficace de

production. Ces limites montrent une exclusion sur la masse des squarks jusqu’à 250 GeV

dans la région la plus compressée de l’espace des paramètres. Le photon pouvant être émis

par le squark intermédiaire, cet état final pourrait permettre de déterminer la charge du

squark.

Enfin, une étude préliminaire prospective à l’énergie de collision de 13 TeV a également

été menée. Elle montre qu’avec une luminosité intégrée de 5fb−1 de données seulement,

les limites peuvent être améliorées de 10%.





Introduction

This thesis presents a search for new physics in a final state of a monophoton and missing

transverse momentum, performed on 20.3fb−1 of proton-proton collisions data at a center-

of-mass energy of 8 TeV collected by the A Toroidal LHC Apparatus (ATLAS) detector at

the Large Hadron Collider (LHC).

The thesis is arranged in three parts. Part I introduces the theoretical background for

the research work of this thesis, including Chapters 1 to 3. Part II introduces the LHC

and ATLAS, the data processing chain and the reconstruction of physics objects, covering

Chapters 4 to 7. Part III is the core of this thesis; it presents the analysis in detail, a com-

parison with other analyses, and a preliminary study towards the next LHC run. This part is

composed of Chapters 8 to 15. Finally, the thesis will be summarized in the Conclusion.

The Standard Model of particle physics (Chapter 1) is successful in describing the fun-

damental particles and their interactions. However, it is still far from a complete theory;

there are open questions it does not answer, such as the nature of dark matter and the energy

scale hierarchy problem, which some theories beyond the Standard Model try to address.

A compelling candidate for dark matter is the weakly interacting massive particle, WIMP.

Many experiments (Chapter 2) were sent to space to look for the dark matter annihilation

products, or installed deep underground to detect dark matter particles passing through. One

can also identify dark matter particles at colliders by producing them in collisions.

Many theories beyond the Standard Model can provide attractive WIMP candidates,

such as the lightest neutralino, χ̃0
1 , from supersymmetry (Chapter 3). Supersymmetry is an

internal symmetry, which relates bosons with fermions by a spinorial operator, known as

supercharge. Moreover, supersymmetry is able to provide a solution to the energy scale

hierarchy problem.

The LHC (Chapter 4), located at CERN, is the largest hadron accelerator and collider in

the world at present. It has collided proton beams at a center-of-mass energy of 7 and 8 TeV

from 2010 to 2012. One of the four detectors installed at the LHC is ATLAS (Chapter 5),

which is composed of various sub-detectors to identify and record particles coming out from

the proton-proton collisions.



xii

Monte Carlo simulations produce events which help to study the detector performance,

and to provide expectation to compare with the data. There is a full processing chain (Chap-

ter 6) to produce the simulated events, which converges with the data processing at the

so-called reconstruction step. The reconstruction step (Chapter 7) characterizes and iden-

tifies the physics objects, such as the photons, electrons, muons, jets or missing transverse

energy (Emiss
T ).

Particles from models beyond the Standard Model, such as dark matter or supersym-

metric models, can be produced at colliders. One can use an initial state radiation (ISR)

signature to probe new particles which are invisible to the detector. A possibility for the ISR

signature is the photon, which leads to a final state of γ +Emiss
T , called the monophoton final

state.

The analysis is performed by comparing a background expectation to the experimental

observation in order to assess if any significant excess of events (the signal) is produced in

the monophoton final state with respect to the Standard Model production (the background).

An analysis region is defined with a set of selections in the phase space of the kinematic

observables of the physics objects in the γ +Emiss
T events, which is called the signal region

(SR). The SR is defined (Chapter 10) by a trade-off between maximizing the signal strength

and minimizing the background level and the associated uncertainties. The background

expectation in the SR (Chapter 11) is derived from a likelihood fit using several ‘control

regions’, each control region being enriched in a given background process. The technique

used to estimate the background in the SR is validated (Chapter 11) with a validation region

defined kinematically close to the SR but with signal suppressed.

The observed event count in the SR is found to be consistent with the background ex-

pectation (Chapter 11), therefore, an upper limit at 95% confidence level (Chapter 12) is set

to the visible cross section of new physics, which is the product of cross section, acceptance

and selection efficiency (σ ×A× ε) using a Modified Frequentist (CLS) method. Generally,

this result can be applied to any model of interest which can produce a monophoton final

state in the same SR.

In this thesis, two new physics models are studied and limits are set to their parameter

spaces.

One is an effective field theory describing the interaction between pairs of dark matter

particles and photons (Chapter 13). It is inspired by the Fermi-LAT result issued in 2012

which hints at a dark matter particle mass of 130 GeV.

The other is a simplified supersymmetric model with squark pair production in a com-

pressed spectrum scenario (Chapter 13). In this case, the quarks in the decay product of the

squarks are too soft to be identified, leading to a monophoton final state.
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These two models can also be probed by other analyses in ATLAS with ‘monoX’ signa-

ture, such as the monojet and the monoW/Z analyses, and the possibilities are discussed in

this thesis (Chapter 14).

Besides, another analysis using the monophoton final state exists, which uses the Com-

pact Muon Solenoid (CMS) detector at the LHC. It is interesting to cross check the analysis

methodology and the result of this CMS analysis, and a discussion is presented in this thesis

(Chapter 14).

At the end, a preliminary study projecting toward the next LHC run (run 2) is presented

(Chapter 15), which shows the search sensitivity of the monophoton analysis with the data

that will be collected at center-of-mass energy of 13 TeV.
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Part I

Theoretical Background





Chapter 1

The Standard Model

The Standard Model of particle physics is the actual theory that describes the fundamen-

tal constituents of matter, and their interactions governed by three of the four fundamental

forces. So far, it has successfully passed all experimental tests and its predictions are well

confirmed, such as the existence of the Higgs boson.

Section 1.1 introduces the particle contents described in the Standard Model. The inter-

action principles are given in Section 1.2. Although the Standard Model has been well-tested

to successfully describe particles and their interactions, it still suffers from problems, a few

of which are introduced in Section 1.3.

1.1 Particle contents

The fundamental particles described in the Standard Model can be classified into fermions

and bosons, which differ by the spin. The Standard Model describes two types of fermions

(the quarks and the leptons), four different spin-1 bosons (photon, gluon, W and Z) and one

spin-0 boson (the Higgs boson). It is the quarks and leptons who make up the matter and

interact by exchanging spin-1 bosons, which are the mediators of the different forces. The

Higgs boson is responsible for the mass of both fermions and gauge bosons W and Z.

The fundamental fermions

There are twelve fundamental fermions in the Standard Model: six quarks and six lep-

tons, see Table 1.1 and 1.2. The quarks (leptons) are classified into three generations, and

the particle mass increases with generation number, except for the neutrinos as they are

massless in the Standard Model. Each particle has its antiparticle, which has the same mass

but opposite sign quantum numbers.
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There are three lepton flavor number, Le,Lµ and Lτ , which are equal to +1 for the related

leptons, −1 for the antileptons and 0 for the other particles. The basic properties of leptons

can be found in Table 1.1.

Leptons Le, Lµ , Lτ Charge Mass

e 1, 0, 0 −1 0.511 MeV

νe 1, 0, 0 0 < 2.2 eV

µ 0, 1, 0 −1 105.66 MeV

νµ 0, 1, 0 0 < 0.17 MeV

τ 0, 0, 1 −1 1.777 GeV

ντ 0, 0, 1 0 < 15.5 MeV

Table 1.1 All six leptons are shown along with the value of their lepton flavor numbers,

electric charge and mass (or mass limit for neutrinos).

Unlike leptons, free quarks can never be observed because they carry a color charge that

is confined by the strong force, so they are always bounded into either baryons (qqq or q̄q̄q̄)

or mesons (qq̄), both known as hadrons. Table 1.2 summarizes the properties of the quarks.

Quarks Charge Mass

u 2
3

2.3 MeV

d −1
3

4.8 MeV

c 2
3

1.275 GeV

s −1
3

95 MeV

t 2
3

173.07 GeV

b −1
3

4.18 GeV

Table 1.2 All six quarks are shown along with their electric charge and mass.

The fundamental forces

There are four fundamental forces responsible for all the phenomena observed in nature:

the gravitational, the electromagnetic, the strong and the weak forces. Each force has its

own effective range: gravity and electromagnetism are the most familiar ones because of

their infinite effective range, while the weak and the strong forces were only discovered

when probing the nuclei. Not all the particles interact via all the forces. For example, only

electrically charged particles interact electromagnetically. The weak force acts on particles

according to their weak isospin, and strong force only applies to color-charged particles

including the mediator of the strong force, the gluon, itself.
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The interactions governed by the fundamental forces result from exchanging the corre-

sponding intermediate vector bosons: the photon mediates the electromagnetic interactions;

the strong force is carried by another massless boson, the gluon; and the weak force is

mediated by the massive W± and Z0 bosons. Except for the familiar photon, all other me-

diator bosons have been discovered at experiments operated at CERN and DESY. However,

gravity is still beyond the Standard Model description so far, and its mediator particle, the

graviton has yet never been observed. A summary of the fundamental forces can be found

in Table 1.3 along with their corresponding effective range and mediator boson.

Force Effective Range Charge Force Carrier

[m] Vector Bosons Mass [1]

Electromagnetism infinite electric charge γ 0

Strong Force < 10−18 color charge g 0

Weak Force 10−15 weak isospin
W± 80.385 GeV

Z0 91.1876 GeV

Table 1.3 The effective range and the relevant charge of the three fundamental forces are

shown, as well as the force carriers with their masses.

1.2 The interactions

Gauge theories

Gauge theories build up the theoretical foundation of the Standard Model . In quantum

field theory (QFT), Lagrangians (L ) are introduced to describe the dynamics of the fields

(ψ): the Klein-Gordon Lagrangian describes scalar (spin-0) fields; the Dirac Lagrangian

is built for spinor (spin-1
2
) fields; the Proca Lagrangian represents vector (spin-1) fields.

Gauge theories are built up on these Lagrangians to describe the interactions in the Standard

Model .

Lagrangians must be invariant under the global phase transformation:

ψ → eiθ ψ, (1.1)

where θ is an arbitrary real number. By asking θ to be a function of x, a local phase

transformation is introduced:

ψ(x)→ eiθ(x)ψ(x), (1.2)

which is known as a gauge transformation. In order to keep Lagrangians invariant under
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gauge transformations, massless vector fields Aµ must be introduced. These vector fields

are called gauge fields, and describe the force carriers, called gauge bosons. Such a gauge

transformation forms a continuous symmetry group, called gauge group, and the group

generator relates to the charge of the force. A new Lagrangian can be written, including a

description of the particles interacting with the gauge fields.

Starting with a singlet spinor ψ , its Lagrangian follows the Dirac equation and is written

as

L = iψ̄γµ∂µψ −mψ̄ψ. (1.3)

Imposing gauge invariance ψ → Uψ (U†U = 1 and U = eiθ ) to the field ψ , one needs to

insert a massless vector field Aµ described by a Proca Lagrangian. The gauge field trans-

forms as Aµ → Aµ +∂µλ , where θ(x) =−qλ (x), and q is a constant referring to the electric

charge. Finally, the complete Lagrangian for QED invariant under U(1) symmetry is written

as [2]:

L = [iψ̄γµ∂µψ −mψ̄ψ]−
[

1

16π
FµνFµν

]

− (qψ̄γµψ)Aµ , (1.4)

where Fµν is the commutator defined as Fµν = [Dµ ,Dν ], and Dµ = ∂µ + iqAµ which is

called covariant derivative. The massless gauge field dynamics is given by the second

term of the Lagrangian, and the third term describes interactions between the Dirac fields

(spinors in QED) and the Maxwell field (photon). This abelian U(1) gauge symmetry group

sees only electrically charged singlet described by the Dirac Lagrangian, namely generating

all the interactions for electrically charged particles.

In addition to the U(1) symmetry discussed above, another internal symmetry in the

isospin rotation space can be introduced starting with a spinor isospin doublet:

ψ =

(

ψ1

ψ2

)

. (1.5)

The corresponding Lagrangian can be written as

L = iψ̄γµ∂µψ − ψ̄Mψ, (1.6)

where M is a diagonal mass matrix.The local SU(2) transformation can be written as:

S = e−igτλ (x), (1.7)

where τ is the generator of SU(2), and its elements refer to the Pauli spin matrices. In order

to force the SU(2) gauge invariance onto the Lagrangian described in Equation (1.6), one

needs to add additional new massless gauge fields: Aµ = (A
µ

1 ,A
µ

2 ,A
µ

3 ) by substituting the
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derivative of L with the covariant derivative:

D = ∂µ + igτAµ , (1.8)

where g is a coupling constant. Therefore, the complete Lagrangian based on the spinor

doublet is:

L = [iψ̄γµ∂µψ −mψ̄ψ]−
[

1

16π
FµνFµν

]

− (gψ̄γµτψ)Aµ , (1.9)

which is called a Yang-Mills Lagrangian [2], and describes the weak interactions with con-

servation of the weak isospin.

Similarly, one can impose gauge invariance on the Lagrangian of a color triplet:

ψ =

⎛

⎜

⎝

ψr

ψb

ψg

⎞

⎟

⎠
(1.10)

The invariance requires new gauge fields Aµ corresponding to the eight gluons, which me-

diate the strong force. This QCD gauge sector can be written with the same procedure,

including in the Lagrangian the free gluon dynamics and the strong interactions in terms of

the strong coupling constants. Gell-Mann matrices λ are used in this case instead of the

Pauli matrices τ which are used for the SU(2) sector.

The Glashow-Weinberg-Salam model [2] unifies electromagnetic and weak descriptions

into an electroweak description under the symmetry of U(1)× SU(2)L in the hypercharge

space. This unification was born in terms of the chirality of fermions: the left handed

fermion is described using ψL = 1
2
(1− γ5)ψ with chirality = −1, while the right handed

fermion with chirality =+1 is ψR = 1
2
(1+ γ5)ψ; and the opposite for the antiparticles.

The covariant derivatives depending on the generators of both U(1) and SU(2) can be

defined as [2]

DµψL,R =

[

∂µ + iqτL,RWµ + ig
YL,R

2
Bµ

]

ψL,R, (1.11)

where the Bµ gauge field is introduced by the U(1) gauge group; whilst Wµ represents the

gauge fields under the SU(2) gauge group; and the YL,R refers to the hypercharge, where

the subscript indicates the chirality of particles. The hypercharge Y is related to the electric

charge (Q) and weak isospin (I3) by Q = I3 +
1
2
Y .

Based on the values found in Table 1.4 and an Equation (1.11), one can see that ψL and

ψR transform differently, and only left-handed particles interact weakly. As a consequence,
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the gauge invariance would be broken by the fermion mass term mψ̄ψ = mψ̄RψL+mψ̄LψR.

Fermions are hence massless in the un-broken Lagrangian.

Fermions Q I3 Y

(

νe

e

)

L
,
(

νµ

µ

)

L
,
(

ντ
τ

)

L

(

0
−1

) (+ 1
2

− 1
2

) (−1
−1

)

eR, µR, τR -1 0 -2
(

u
d

)

L
,
(

c
s

)

L
,
(

t
b

)

L

(
2
3

− 1
3

) (+ 1
2

− 1
2

) (
1
3
1
3

)

uR, cR, tR
2
3

0 4
3

dR, sR, bR −1
3

0 −2
3

Table 1.4 Electroweak charges for chiral fermions.

The Higgs boson: the last fundamental family member

It was noted above that mass terms for the weak mediator bosons and the fermions would

break the gauge invariance. As most of them are massive, then the query of a mechanism to

give them masses arose. An SU(2) doublet of complex scalar fields was hence introduced,

namely the Higgs field:

φ =

(

φ+

φ 0

)

=
1√
2

(

φ1 + iφ2

φ3 + iφ4

)

, (1.12)

in which each φn (n = 1,2,3,4) is a scalar field described by the Lagrangian

L =
1

2
(∂µφ)(∂ µφ)−V (φ), (1.13)

where the potential term V (φ) is

V (φ) =−1

2
µ

2φ 2 +
1

4
λ 2φ 4, (1.14)

where µ and λ are constant1.

Given this potential V (φ), the ground state, which is called vacuum expectation value

(VEV), occurs at φ = ±

√

µ2

λ
but not at φ = 0. A small perturbation of the initial state

will lead to a non-zero VEV and break the initially symmetric configuration, as shown in

Figure 1.1. This is known as spontaneous symmetry breaking [3–6].

1
µ relates to the particle mass described by the scalar field Lagrangian, and λ is a new coupling constant

accounting for the self coupling term.
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Fig. 1.1 The Mexican hat of the Higgs potential [7].

By using the idea of spontaneous symmetry breaking and applying the gauge invariance

to the Higgs field doublet, three of the four degrees of freedom of the Higgs doublet are

used to construct mass terms for the W and Z gauge bosons, with one degree of freedom

remaining as a physical massive scalar boson: the Higgs boson. The fermion mass terms

are different from the ones of the weak bosons, in that they achieve their mass terms by

Yukawa couplings with the physical Higgs boson; their coupling constant is proportional to

their mass.

The Higgs boson was discovered in 2012 by ATLAS and CMS at the LHC at CERN,

and its mass, as measured, is 125.09±0.21(stat)±0.11(syst) GeV [8].

The Standard Model (SM) is a renormalizable gauge theory [2], based on a symmetry

group U(1)× SU(2)× SU(3), where the U(1) symmetry group describes QED, SU(2) de-

scribes the weak interaction and SU(3) represents QCD. The full SM Lagrangian describes

the three generations of fermions, the gauge bosons that mediate three of the four funda-

mental forces, and the Higgs mechanism which gives masses to the particles and gives rise

to the spin-0 massive Higgs boson.

1.3 Standard Model Limitations

So far, the Standard Model has remarkable successes at describing the currently known

particle phenomena. However, it is still far from a complete theory and has some open ques-

tions (see [2] for more details), as it does not explain, for example, the three generations of

quarks and leptons, the neutrino oscillation, the asymmetry between matter and antimatter,
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However, these radiative corrections are quadratically divergent because the momentum

of those virtual particles can take the highest energy scale at which the theory stops to be

valid. For example, if the Standard Model is believed to be suitable up to the reduced Planck

scale [13]

Mp = (8πG)−
1
2 = 2.4×1018 GeV, (1.16)

where the impact of quantum gravity should be strong, then the radiative corrections ∆m2
H ∼

M2
p, and the tree level Higgs mass must become unnaturally large and fine-tuned, as it is

known from the experimental measurements that m2
exp,H ≃ (125 GeV)2.

As a conclusion, the Standard Model suffers from an unnatural Higgs mass tuning due

to the scale hierarchy. A solution to constrain the divergent term is to lower the Planck scale,

by adding more dimensions. Another solution could be given by proposing a new theory

called, supersymmetry, which will be described in section 3.

Dark matter

Dark matter was named ‘dark’ not only for its luminous darkness for detectors, but also

for its unknown nature. Its existence was proven by many cosmological experiments, such

as the measure of galaxy rotation curves and the study of gravitational lensing effect.

When measuring the rotation tangential velocity (v) of objects as a function of the dis-

tance (r) from the galactic center, the velocity is expected to increase starting from the center

of the galaxy and then to decrease as v =
√

GMr/r when the radius r is larger than the edge

of the galaxy, resulting from Newton’s equation F = Gm1m2

r2 . If the rotation curve becomes

flat as is observed, it implies the existence of an unknown massive matter contributing to

Mr which is non-luminous and has a mass density proportional to 1√
r
. As an example, Fig-

ure 1.4 gives the experimental rotation curve measured for a dwarf spiral galaxy [14]. The

observed data can be explained by adding to the luminous and gas components a dark matter

contribution.

On top of the compelling evidence for dark matter introduced above, there are other ex-

periments which not only offer evidence but also measure the total amount of dark matter

in the Universe. As announced by Planck [15], an experiment analyzing the Cosmic Mi-

crowave Background (CMB), there is only 4.9% ordinary baryonic matter in the Universe,

while dark matter occupies 26.8%, and the rest of the energy is known as dark energy.

Dark matter would interact neither electromagnetically nor strongly, as it is found to

be non-luminous and non-baryonic. However, the possibility for dark matter to interact

only weakly is still allowed. In other words, massive particles who are neutral and interact

weakly are likely candidates to dark matter. There is no such candidate in the Standard
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Model. Solutions to this problem will be introduced in Section 2.

Fig. 1.4 Rotation curve of NGC 6503, which is a dwarf spiral galaxy located in a region

of space called the Local Void. The experimental measurement of the rotation curve is

represented by the dots with error bar, with a three parameter fit drawn in solid line. The

three simulated distribution of dark matter, luminous components and gas are shown in

dash-dotted, dashed and dotted lines respectively [14].



Chapter 2

Dark matter

2.1 Introduction

The existence of a non-baryonic dark matter is proven by many astrophysical observa-

tions, as discussed in Section 1.3, although its nature is yet unknown. Dark matter candi-

dates are usually classified as hot, warm and cold in astrophysics depending on their ther-

mal velocity in the early universe. According to the important role dark matter plays in the

galaxy formation and evolution, the dark matter candidate should be cold (more details can

be found in References [16, 17]). This forms a Lambda cold dark matter (ΛCDM) model,

which is tested via experiments measuring the cosmic microwave background (CMB), such

as Planck [15, 18].

An appealing candidate for the cold dark matter is a weakly interacting massive parti-

cle (WIMP), noted as χ , as it can provide a relic density of dark matter compatible with

experimental observation, which is known as the WIMP miracle. Many theories beyond

the Standard Model, such as supersymmetry or extra dimensions, can provide compelling

candidates for a WIMP.

2.2 Dark matter detection

Experimental detection of dark matter can be classified into different categories accord-

ing to their detection mechanism. One can directly measure the elastic scattering cross

section between WIMPs and a target nucleon, which is often called the direct detection

method. The indirect detection method looks for the annihilation products of WIMPs such

as photons or positrons. Finally, the collider detection method hunts for WIMPs production

in the collision of Standard Model particles. All these three detection methods are illustrated
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in Figure 2.1.

Fig. 2.1 A schematic diagram to show the various Dark Matter detection methods.

Each detection method introduced above can lead to different detectable final states

depending on the interactions between the WIMPs and the Standard Model particles, which

will be introduced below.

Direct detection

As observed in CMB experiments, the galaxy should be filled with dark matter particles.

From time to time, dark matter particles passing through the Earth can interact with nucleons

in very sensitive detectors, generating nuclear recoils which can be analyzed.

In order to reject cosmic ray backgrounds and thus increase the signal sensitivity, these

detectors are usually located deeply underground. Such experiments are setting limits on

the elastic scattering cross section of WIMPS on nucleons, if there is no significant signal

found.

Many experiments have been built using different techniques to measure the nuclear

recoil in a complementary way, such as SuperCDMS [19], LUX [20], ELDELWEISS [21],

XENON100 [22] or PICASSO [23]. For example, the LUX (Large Underground Xenon)

experiment, which is located at the Sanford Underground Research Facility in the USA, uses

liquid Xenon as target material. The LUX detector was completed in the spring of 2012 and

its first and latest result [24] published in 2013 using 85.3 live-days of data can be found in

Figure 2.2. As shown in this figure, LUX is more sensitive in the high WIMP mass region.

Indirect detection

The indirect detection of dark matter aims at detecting the flux of annihilation products

from dark matter particles. These detectors are usually set to focus on the areas where the

dark matter density should be high, such as the galactic center.
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Fig. 2.2 The observed upper limits at 90% CL are set on spin-independent elastic WIMP-

nucleon cross-section as a function of the WIMP mass [25], the results are obtained by

different but complementary dark matter experiments.

Depending on the final annihilation products, these dark matter experiments either look

for neutrinos such as the IceCube [26] detector, charged anti-particles (like positrons and

anti-protons) such as AMS-02 [27], or deviations in the gamma-ray spectrum like the Fermi

Large Area Telescope (Fermi-LAT) [28]. Considering that the analysis presented in Sec-

tion 13.1 uses a dark matter model inspired by the Fermi-LAT result, it is useful to introduce

in more details this indirect detection experiment.

The Large Area Telescope (LAT) is the principal instrument on the Fermi Gamma-ray

Space Telescope mission, which was launched into a near-earth orbit on June 11th 2008

with a designed lifetime of 5 years. This gamma-ray telescope covers the energy range

from below 20 MeV to more than 300 GeV.

One of the aim of the Fermi-LAT experiment is to detect the gamma-ray flux coming

from dark matter annihilation. The observed flux intensity φ of gamma-rays at a given

energy, coming from the annihilation of dark matter from a point-like source, can be written

as [29]
dφ

dEdV
=

1

4πd2

dN

dE

⟨σv⟩
2m2

χ

ρ2
DM, (2.1)

where ⟨σv⟩ refers to the mean value of the dark matter annihilation cross-section multiplied

by velocity, dN/dE denotes the photon spectrum per annihilation, mχ and ρDM are the mass

and mass density of the dark matter source, and d refers to the distance from the source

to the detector. The integral of Equation (2.1) over a solid angle α gives the gamma-ray
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flux of a given energy observed within α . If the dark matter particle is not its anti-particle,

Equation (2.1) should be reduced by a factor of two.

The gamma-ray spectrum produced by the dark matter annihilation at a given mass can

either be continuous, with a cutoff at the mass of the dark matter particle as shown in Fig-

ure 2.3a, or a line at the dark matter mass shown in Figure 2.4, depending on the annihilation

process.

There is no continuous gamma-ray spectra observed when fitting the data to the back-

ground flux estimation, and thus limits are set to the phase space of ⟨σv⟩ versus mχ for

different secondary particles, such as limits shown in Figure 2.3b in the χχ → τ+τ− case.

At the time the work on the thesis started, a gamma-ray line indicating the existence of

a dark matter particle at a mass around 130 GeV had been published [30], where the excess

events showed a local significance of 4.6σ which dropped to 3.2σ when taking into account

the look-elsewhere effect, see Figure 2.4 1. This result was obtained using 43 months of

public data from the Fermi-LAT. Another result was issued later, using 44.4 months of

data [31]: the 3.3σ local significance at mχ = 133 GeV translated into a global significance

of 1.5σ . The dark matter interpretation of the gamma-ray line at around 130 GeV was

hence disfavored by the latter result.

(a) Continuous photon spectra coming from dif-

ferent annihilation processes for a dark matter of

mχ = 500 GeV [32].

(b) Observed limits set on the dark matter annihi-

lation cross section, ⟨σv⟩, versus the dark matter

mass, mDM, in the χχ → τ+τ− channel [33].

Fig. 2.3 Expected continuous photon spectra at a given dark matter mass (a), and observed

limits set to the dark matter annihilation cross-section in the χχ → τ+τ− channel (b).

1The discovery of dark matter at a given mass could be claimed if the excess events at the gamma-ray line

had a significance over 5 standard deviations (5σ ).
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Fig. 2.4 A spectral gamma-ray flux measured by Fermi-LAT, where an excess of events

around 130 GeV is clearly visible in the data [34]. The blue dotted line in the upper indicates

the line flux component only, the red dashed line shows the best-fit DM model and the green

dashed line do not include any DM model.
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Collision production detection

With the high energy and large number of collisions produced in colliders, such as the

Large Hadron Collider (LHC) which will be introduced in Chapter 4, it may be possible to

produce dark matter particles from Standard Model particle collisions [35, 36].

One can use an accurate model, or a more model-independent Effective Field Theory

(EFT) [37–41], in which the mediator mass Mmed =
√

gqgχM∗ (where M∗ is the effective

energy scale) is assumed to be much heavier than the transferred momentum qtr, resulting

in an effective operator [38, 39].

q

q χ

χ

gχgq

M∗

q

q χ

χ

gχgq

M∗

Fig. 2.5 The Feynman diagrams for qq → χχ , with a s-channel heavy mediator exchange

(left panel) and its effective operator (right panel).

Figure 2.5 illustrates the qq → χχ process with an s-channel mediator exchanged in a

simplified model (left). The mediator can be integrated out to give a contact interaction

(right) if the following EFT condition is valid

M∗ >
qtr√
gqgχ

. (2.2)

This EFT validity requirement can be written as M∗ >
mχ

2π to satisfy the conditions of qtr >

2mχ for an s–channel model, and the perturbativity of the couplings gq,χ < 4π [41].

Detectors such as ATLAS, which will be introduced in the following Chapter 5, can not

identify the dark matter particles as they interact only weakly. Hence the experimental signal

to probe the dark matter production is the detectable signatures of initial state radiation (ISR)

emitted by the colliding Standard Model particles. This ISR can either be a gluon, a W , a

Z, or a photon, leading to various final states to analyze. The data analysis presented in this

thesis uses a final state containing a single photon as illustrated in Figure 2.6.

The EFT dark matter limits obtained by an LHC experiment can be translated into limits

in the same parameter space as the one used by direct detection experiments, which is shown

in Figure 2.2. However, this is model-dependent, as one needs to choose certain operators
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q

q χ

χ

gχgq

M∗

γ

Fig. 2.6 The Feynman diagram for qq → χχγ , where the photon is radiated from initial state

quarks.

and couplings [39] and take into account the validity of the EFT [41, 42]. The comparison

between the two kinds of results is hence not so straightforward if only limits are placed.

However, once a dark matter signal is discovered, it could help finding out the nature of the

dark matter.

The dark matter particles can be produced at colliders even if it is very light; the collision

production detection is very sensitive to the very low dark matter mass region. The direct

detection is highly sensitive in the high mass region due to the detecting mechanism (elastic

scattering between the WIMP and nucleon) but is not sensitive in the very low mass region.

The two results are hence complementary.
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Supersymmetry

3.1 Motivation and general idea

Symmetries play an important role in modern particle physics. The isometric group

of Minkowski space is called the Poincaré group, and includes translations, rotations and

boosts in 4–dimensional space. In addition to space-time symmetries, there are also internal

symmetries as introduced in Section 1.2. Due to the restriction of the no–go theorem [43],

supersymmetry (SUSY) was introduced as the only possible extension of the Poincaré group

which combines it with an internal symmetry, SUSY, relating bosons with fermions as:

Q| f ermion⟩= |boson⟩,
Q|boson⟩= | f ermion⟩,

(3.1)

where this spinorial operator Q, known as supercharge, generates transformations between

states differing by half a unit of spin. Together with its Hermitian conjugate Q†, they satisfy

the SUSY algebra with fundamental anti-commutator and commutator relations:

{Qa,Q
†
ȧ}= 2σ

µ

aȧPµ ,

[Pµ ,Qa] = [Pµ ,Q
†
ȧ] = 0,

(3.2)

where Pµ refers to the four-momentum generator of the Poincaré group.

All the particles are in the irreducible representations of the SUSY algebra, called super-

multiplets, which can be basically classified as chiral supermultiplet fields each containing

a spin 1
2

fermion and a spin 0 boson, and gauge supermultiplet fields each containing a spin

1 vector and a spin 1
2

fermion. In SUSY, each Standard Model particle acquires a super-

symmetric partner, called a sparticle. Since the supercharge commutes with the squared
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mass operator P2 ≡ PµPµ , as well as the gauge generators, particles in the same supermul-

tiplet should be degenerated in mass and the other gauge charges, such as electric charges,

weak isospin and color charge. Accordingly, sparticles interact similarly to their Standard

Model partners; they only differ by their spin.

If supersymmetry is an unbroken theory, the Lagrangian should be invariant under a

SUSY transformation. As there is no spartner found with the same masses as the Standard

Model particles, it is necessary to consider supersymmetry as a broken symmetry.

The supersymmetric Lagrangian can be broken either by adding supersymmetry break-

ing terms as free parameters, or by introducing given scenarios, such as a gravity-mediation

in the SUGRA model. For further discussion on the breaking models, see Section 3.3.

As introduced before, supersymmetry was naturally developed as a general extension

to the Poincaré group, but must be broken. It is still attractive as it can offer solutions to

many problems of the Standard Model , such as the hierarchy and the dark matter problems

introduced in Section 1.3.

Given the fact that fermion loops and boson loops contribute to the Higgs radiative

corrections with opposite signs, the large radiative corrections ∆m2
H would be canceled by

the new loops introduced in supersymmetry, see Figure 3.1.

HH

f̃

Fig. 3.1 One-loop quantum corrections to the Higgs squared mass parameter m2
H due to a

scalar f̃

Supersymmetry can also offer a weakly interacting candidate for dark matter (see Sec-

tion 3.2) and it can also help to unify the running gauge couplings at higher energy scale [44].

Many analyses have been set to look for evidence of SUSY, using data from detectors

at different colliders, such as the Tevatron at FermiLab, or Large Hadron Collider (LHC) at

CERN. A brief overview of SUSY analyses at LHC will be given in Section 3.4.
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3.2 Particle contents and interactions

Particle contents

The sparticles introduced here represent the minimal supersymmetric extension of the

Standard Model , and form the so-called Minimal Supersymmetric Standard Model (MSSM)

[45–49].

The nomenclature of sparticles has the following logic: the bosonic spartners of SM

fermions are named with a prefix of ’s’ (for example, the selectron is the spartner of the

electron), whilst the fermionic spartners of the bosons have a suffix ’ino’ instead, (for ex-

ample, the gluino is the spartner of the gluon). In addition, sparticles are written by adding

a tilde on top of the symbols of their SM partners, such as q̃ for squarks.

As detailed in Reference [13], two Higgs doublets need to be introduced in the MSSM

in order to be able to construct mass terms for the SM massive fermions and to avoid in-

troducing a gauge anomaly. The relevant two Higgs supermultiplet are constructed with

weak hypercharge Y of 1
2

and −1
2
, respectively. After the electroweak symmetry breaking,

five physical Higgs bosons are left: two charged Higgses (H±), one pseudo-scalar Higgs

(A) and two scalar Higgses (h and H0). Furthermore, the lightest scalar Higgs h has a mass

constraint in the MSSM, it should not be more than ∼ 150 GeV [13], in agreement with the

experimental Higgs mass discovered at 125.09±0.21(stat)±0.11(syst) GeV [8].

After electroweak symmetry breaking, the spartners of the electroweak gauge and Higgs

bosons form mass eigenstates known as charginos: χ̃±
1 , χ̃±

2 , and neutralinos: χ̃0
1 , χ̃

0
2 , χ̃

0
3 , χ̃

0
4 ,

where the subscripts of charginos and neutralinos are ordered in increasing mass.

As a summary, Table 3.1 shows the mass eigenstates of the sparticles introduced in this

section, together with their spin and partners.

Names Symbol Spin Partners

squarks
ũ, c̃, t̃

0
u,c, t

d̃, s̃, b̃ d,s,b

sleptons
ẽ, µ̃, τ̃

0
e,µ,τ

ν̃e, ν̃µ , ν̃τ νe,νµ ,ντ

charginos χ̃±
1 , χ̃±

2
1
2

H±,W±

neutralinos χ̃0
1 , χ̃

0
2 , χ̃

0
3 , χ̃

0
4 h,A,H,Z,γ

gluino g̃ g

gravitino G̃ 3
2

G

Table 3.1 The MSSM particles along with their spin and partner. The charginos (χ̃±
i ) and

the neutralinos (χ̃0
i ) are mixture of gauginos and Higgsinos.
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Decays and interactions

Sparticles have the same couplings as their SM partners, and accordingly will have the

same types of interactions. Another quantum number is introduced in SUSY, called R-

parity. It is defined as (−1)3(B−L)+2s [13], where B refers to baryonic number, L is the

leptonic number and s refers to the spin. It has a value of 1 for Standard Model particles and

−1 for sparticles.

In models for which R-parity is not conserved, the lightest sparticle can decay into SM

particles via a lepton number violating vertex, or a vertex with baryon number violation.

On the other hand, if R-parity is conserved, the lightest sparticle which is often the

weakly interacting χ̃0
1 , is predicted to be stable, satisfying the properties of dark matter

particles in ΛCDM model. Besides, if R-parity is conserved, sparticles must be generated in

pairs, and the decay production of a sparticle should always contain another lighter sparticle.

3.3 SUSY breaking and proposed solutions

As discussed in Section 3.1, SUSY must be broken to allow different mass terms for the

sparticles. In the general MSSM, the breaking mechanism is not specified, and leaves many

parameters free and independent. One can also introduce a given breaking mechanism, like

in Gauge-Mediated SUSY Breaking (GMSB) [50–55] and Supergravity (SUGRA) [56–61]

models; they are less generic than the MSSM but have fewer free parameters.

Another approach is the simplified model, which is not a complete model but a basic

building block of the supersymmetry. It usually concerns a given Feynman diagram such as

the diagram shown in Figure 3.2: the generation and decay modes are set and the sparticle

masses are fixed. Therefore, the cross section of this diagram can be calculated without

fixing the full supersymmetric Lagrangian.

q

q

q̃

q̃

χ̃
0
1

χ̃
0
1

q

q

Fig. 3.2 Pair production of squarks, followed by decay into quarks and neutralinos.

Experimental limits based on simplified models can eventually be translated into com-
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plete supersymmetric models.

3.4 Experimental signals

Different supersymmetric models predict different masses, production and decay modes

for the sparticles. For this reason, sparticles such as gluinos, squarks, charginos or neutrali-

nos could be generated and decay differently, and thus lead to many different final states for

experimental analyses; for example, in models with R-parity violation (RPV), the lightest

neutralino χ̃0
1 can decay to Standard Model particles identified in the detectors, whereas in

models with R-parity conservation, χ̃0
1 will not decay and escape the detectors as missing

energy which can be measured in the transverse plane.

Given that no sparticle was discovered so far, all these SUSY searches are presently

confined to setting limits on sparticle masses. In the ATLAS experiment at the LHC, var-

ious supersymmetry analyses have been developed according to different final states. As

discussed in Section 3.1, SUSY is expected to solve the hierarchy problem by introducing

new massive particles. This requirement implies rather light charginos, neutralinos and the

third generation squarks; supersymmetric models respecting this constraint are said to have

a natural spectrum. Due to this specific interest, dedicated analyses are arranged to search

for the third generation squarks and the electroweak SUSY in ATLAS.

A representative selection of the available mass limits from the supersymmetric searches

in ATLAS, together with the model and searching channel used, are shown in the summary

Figure 3.3. Besides the dedicated channels related to the natural spectrum, there are R-parity

conserving inclusive searches for production of strongly interacting sparticles, ‘exotics-like’

searches for long-lived sparticles and R-parity violating searches.

This figure also shows the SUSY model result presented in this thesis, which gives an

exclusion of the first and second generation squark mass up to 250 GeV in the inclusive

search for the simplified model of q̃ → qχ̃0
1 in a compressed mass spectrum where the mass

difference between q̃ and χ̃0
1 is very small on the order of 10 GeV .
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*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Fig. 3.3 Mass reach of ATLAS searches for supersymmetry. Only a representative selection

of the available results is shown [62].
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Chapter 4

The Large Hadron Collider

The Large Hadron Collider (LHC) is a hadron accelerator and collider, built in the

existing 27km underground tunnel of the LEP machine at CERN, which is located at the

border of France and Switzerland, close to Geneva.

Fig. 4.1 The LHC accelerator complex.

4.1 Accelerator complex

The LHC is an accelerator complex composed of a few different accelerators, as shown

in Figure 4.1. Protons first start from a single bottle of hydrogen gas from which they

are extracted by an electric field, and they are first accelerated to an energy of 50 MeV by
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the LINAC 2, which is the first element of the complex; then with the help of the Proton

Synchrotron Booster (PSB), the energy of the proton beam is pushed to 1.4 GeV, and later

increased up to 25 GeV via the Proton Synchrotron (PS); finally the proton beam reaches

450 GeV after the Super Proton Synchrotron (SPS) and is injected into the last element of

the complex, which is the circular Large Hadron Collider.

The LHC does the final acceleration of the proton beam to a designed maximum energy

of 7 TeV, using radiofrequency (RF) cavities. The proton beam is not continuous but is

divided among discrete bunches, thus each collision is called a bunch collision and the

interval between two bunch crossings is designed to be 25ns.

A high degree of vacuum in an accelerator system is crucial, otherwise, protons might

interact with gas molecules and thus create background.

4.2 Hadron collider

The LHC accelerates the two proton beams in two separate rings in opposite direction

and collides them at 4 crossing points, where particle detectors are installed as shown in

Figure 4.1: A Toroidal LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS), A Large

Ion Collider Experiment (Alice) and Large Hadron Collider beauty experiment (LHCb).

Both ATLAS and CMS are symmetric detectors around the interaction point which were

designed to search for the Standard Model Higgs boson and new physics beyond Standard

Model such as supersymmetry, dark matter, and extra dimensions; LHCb is designed for

bottom quark physics studies in terms of precision measurements of CP violation as well

as some new physics searches; and Alice is targeting at heavy-ion collisions for the quark-

gluon plasma study.

At each collision point the control of the magnetic system allows to bend the path of the

proton beams to collide them (dipole magnets), and squeeze the proton beams (quadrupole

magnets) to increase the absolute luminosity, noted as L (in cm−2s−1). The absolute lumi-

nosity allows to characterize the number of collisions per second, namely the interaction

rate R:

R = σ ×L, (4.1)

where σ is the cross-section. The luminosity can be given as [63]:

L =
N2kb frevγF

4πεnβ ∗ . (4.2)

In the numerator, N is the number of particles contained per bunch, kb is number of bunches,
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γ is the usual relativistic factor, frev refers to the accelerator revolution frequency, and F is

the geometric luminosity reduction factor due to the crossing angle at the interaction point.

In the denominator, εn is the normalized emittance giving a measure of the spread of the

beam in transverse phase space and β ∗ parameterizes the squeeze process at the interaction

point (IP) which is proportional to the square root of the beam size. The value of these

performance related parameters during the LHC operations from 2011 to 2012 can be found

in Table 4.1 where they are compared to the design values.

The integral luminosity,
∫

Ldt, has inverse unit of cross-section, and is often used at the

LHC to characterize the size of the collected data. Considering the limitation of increasing

the number of protons per bunch and the numbers of bunches per ring, the LHC is designed

to run at a maximum luminosity of 1034 cm−2s−1.

Parameter 2011 2012 Design

β ∗ [m] 1.5 0.6 0.55

Bunch interval [ns] 50 50 25

Number of bunches 1380 1380 2808

Max. protons per bunch 1.45×1011 1.7×1011 1.15×1011

Normalized emittance at start of fill [mm.mrad] 2.4 2.5 3.75

Table 4.1 An overview of the performance related parameters during LHC operations from

2011 to 2012, compared to the design values [64].

Another obstacle to the increase of luminosity is the pile-up which will change with the

number of protons per bunch or the bunch interval. Within one bunch crossing, multiple

secondary ’soft’ interactions can occur, which is counted as the in-time pile-up and can pol-

lute the interesting interaction for analyses. Another type of pile-up comes from collisions

of previous bunch crossings, which add on top of one another in the detector, due to the fact

that the intervals between bunch crossings are shorter than the detector response time; this

is called the out-of-time pile-up.

Collisions step by step

In terms of center-of-mass energy (
√

s) of proton-proton (p-p) collisions, the LHC has

so far experienced 3 stages from 2009 to 2012: it started colliding proton beams at
√

s =

900 GeV in late November 2009; its center-of-mass energy rose up to 7 TeV in 2010 and

2011, and finally reached 8 TeV in 2012. The relevant instantaneous luminosity evolution

along time from 2010 to 2012 is shown in Figure 4.2 (bottom). The number of colliding

bunches in ATLAS is also shown in this figure (top).
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Fig. 4.2 The number of colliding bunches in ATLAS (top) and the peak instantaneous lumi-

nosity delivered to ATLAS per day (bottom), versus time during the p-p runs of 2010, 2011

and 2012 [65].
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The cumulative integrated luminosity versus time from 2011 to 2012 is shown in Fig-

ure 4.3. Three categories are shown: the delivered luminosity from the LHC, the luminosity

recorded by ATLAS, and the luminosity corresponding to the data which is of good quality

to be used for analyses.

Fig. 4.3 Cumulative luminosity versus time from 2011 to 2012. The delivered luminosity

(green) accounts for all the luminosity the LHC delivered to ATLAS, while ATLAS only

records a subset shown as the yellow area. The luminosity finally used by physics analysis

(blue) refers to that recorded when the ATLAS detector is performing optimally [65].

The mean number of interactions per crossing, ⟨µ⟩, corresponds to the mean of the Pois-

son distribution of the number of interactions per crossing, µ , calculated for each bunch, and

µ is proportional to the instantaneous luminosity per bunch and the inelastic cross section. It

is shown in Figure 4.4. The inelastic cross-section used to compute the µ for data collected

at center-of-energy of 7 TeV and 8 TeV are 71.5mb and 73.0mb, respectively.
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Fig. 4.4 Luminosity-weighted distribution of the mean number of interactions per crossing

for the 2011 and 2012 data [65].



Chapter 5

The ATLAS detector

5.1 Introduction

The ATLAS experiment is a general-purpose particle detector installed at the LHC,

which records collision events for various physics analyses. It is 46 m long, 25 m high,

25 m wide and weighs 7000 tons. It is operated by an international collaboration with thou-

sands of scientists from all over the world: more than 3000 scientists from 174 institutes in

38 countries work on the ATLAS experiment.

The coordinate system of ATLAS

ATLAS describes collision events using right-handed spherical coordinates, with the

origin defined as the nominal interaction point, the z-axis along the beam direction and the

transverse x-y plane composed of the positive x-axis pointing at the center of the LHC ring

and the positive y-axis pointing upwards. Therefore, a vector can be described using the

azimuthal angle φ , the polar angle θ and the radius r, as shown in Figure 5.1.

Instead of using θ in the y-z plane, it is usual to take the pseudorapidity η defined as

η =− ln tan(
θ

2
); (5.1)

its absolute value varies from 0, corresponding to the vector being along the y-axis, to infin-

ity, referring to the vector being along the z-axis. Using the pseudorapidity-azimuthal angle

space, the distance ∆R between two objects can be defined using

∆R =
√

∆η2 +∆φ 2. (5.2)
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Fig. 5.1 The coordinate system of ATLAS.

The hadron collisions at the LHC are in fact parton collisions. The partons carry a

fraction of the hadron’s momentum which can not be evaluated on a collision-by-collision

basis. Given the initial momentum in the transverse x-y plane is zero, the transverse missing

energy Emiss
T is defined in this plane and the transverse momentum pT, and the transverse

energy ET, which are more often used in analyses.

The layout of the ATLAS detector

The overall layout of the ATLAS detector is illustrated in a cut-away view in Figure 5.2.

It is built with a cylindrical symmetry around the interaction point; it is geometrically di-

vided into a barrel region (low η region), two end-cap regions (medium η region), and

two forward regions (high η region). The ATLAS detector is a laterally symmetric detector

centered on the interaction point.

The full detector is made up of a chain of sub-detectors, that are designed to identify and

record the particles coming out of the proton-proton collisions. From inwards to outwards,

these sub-detectors form three systems: the inner detector (ID), the calorimeters and the

muon spectrometer. Besides, a central solenoid surrounds the ID to provide a 2 T magnetic

field, whilst toroids support magnetic fields of approximately 0.5 T and 1 T in the barrel and

end-caps sections of the muon spectrometer.

Particles produced from the proton-proton collisions firstly arrive in the inner detector

which covers the region of |η |< 2.5. The charged particles will interact with different layers

of the detector and form discrete hits which will be used to reconstruct their trajectory.

The momenta and charge of these charged particles can be measured, as their trajectories
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Fig. 5.2 An overall layout of the ATLAS detector [66].

are bent by the 2 T magnetic field provided by the central solenoid. As the innermost layer

of ATLAS, the ID provides essential information, such as the recognition of first and second

vertices. The ID is therefore designed to have a high granularity with intrinsic accuracy

varying from ∼ O(10) micrometers to ∼ O(100) micrometers and a high momentum mea-

surement resolution which is measured as σpT
/pT = (4.83±0.16)×10−4 GeV−1× pT [67].

In order to meet the performance requirement, semiconductor detectors are used for precise

measurement close to the beam (the pixel detector and the semiconductor tracker); and a

noble gas detector is used in the outer layer (the transition-radiation tracker), as shown in

Figure 5.2.

Further away from the collision point are the calorimeters, composed of the hadronic

calorimeters and the electromagnetic calorimeters, which are designed to identify hadrons

or electron/photon respectively and measure their energy and coordinates. The incident

particles can interact with the instrumented material of the calorimeters via electromagnetic

or strong processes, and produce a shower of secondary particles. The energy information

will eventually be recorded by collecting the charge or the light produced by the shower. The

position information is obtained by segmenting the calorimeters longitudinally and laterally.

Sampling calorimeters are composed of an absorber made of dense material to develop the

shower, and of an active medium to develop the signal.
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The calorimeters will not stop muons as they interact very little with the calorimeter

absorber. Muons will pass through the full detector and arrive in the outermost layer of

the ATLAS detector, which is the muon spectrometer designed to record and identify the

muons. The muon spectrometer contains four types of muon chambers: two types of pre-

cision tracking chambers providing position and momentum measurement, and two types

of trigger chambers to provide fast and robust information for the hardware-based trigger

decision making.

Figure 5.3 illustrates the detector response to different particles, using a transverse sec-

tion view of the ATLAS detector.

Fig. 5.3 A sector view in the transverse plane of the ATLAS detector, which illustrates how

the different particles interact with the detector [68].

5.2 Inner detector

The ID is placed closest to the beam line, therefore its design must allow excellent

radiation hardness and long-term stability in addition to ensure adequate performance. The

full ID is a cylinder of 6.2 m long and 2.1 m diameter with coverage of |η | < 2.5, and

is segmented into cylindrical layers in the barrel region, and coaxial disks in the end-cap

regions, as shown in Figure 5.4. The structural arrangement of the layers of the ID in
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the barrel region is shown in Figure 5.5, whilst one end-cap side of the ID is illustrated

in Figure 5.6. The basic geometrical parameters of each layer are also given in these two

figures.

Fig. 5.4 A cut-away view of the ATLAS inner detector [66].

The main parameters of each sub-detector are summarized in Table 5.1, including the η

coverage, the number of layers/disks/tubes, the number of hits left per track, the dimension

of the basic element and the hit resolution.

Hits/track Element size Hit resolution [µm]

Pixel, |η |< 2.5
3 barrel layers 3

50×400 µm2 10(R−φ ), 115 (z)

2×3 end-cap disks 10(R−φ ), 115 (R)

SCT, |η |< 2.5
4 barrel layers 8

80 µm
17(R−φ ), 580 (z)

2×9 end-cap disks 17(R−φ ), 580 (R)

TRT, |η |< 2.0
73 barrel tubes ∼ 30 d=4 mm, l=144 cm

130/straw
160 end-cap tubes d=4 mm, l=37 cm

Table 5.1 Summary of the characteristics for each sub-detector of the inner detector [69].

Pixel Detector: In order to have good vertex performance, the pixel detector is designed

to have the finest granularity, as shown in Table 5.1. The element size shown in the table

is the minimal size of the pixel, 47232 of which build up one pixel detector. The first layer
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Fig. 5.5 A three-dimensional drawing illustrating the structural arrangement of the ID layers

in the barrel region, with their radii [66].

Fig. 5.6 A three-dimensional drawing illustrating the structural arrangement of the ID layers

in one end-cap region, with their radii and z-axial distance (using the detector center as

origin) [66].
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of the pixel detector in the barrel region is known as the "B-layer" since it contributes to

the secondary vertex measurement performance, for reconstruction of τ leptons and bottom

quarks. As the first element facing the collision point, the B-layer has to be replaced after a

few years operation at the designed luminosity of 1034 cm−2s−1.

Semiconductor Tracker: In each SCT layer, it has two sets of SCT strips. In order to

measure both lateral and longitudinal coordinates, the two sets of strips are glued back-to-

back with an angle of 40 mrad in between, i.e. one set is either parallel, or perpendicular to

the beam line.

Transition Radiation Tracker: The TRT detector is packaged in straw tubes made of

polyamide, and uses a Xenon-based (70%) gas mixture with CO2 (27%) and O2 (3%). It

measures only one coordinate with z−axis or radius information missing in barrel or end-

caps due to their axial or radial placement. The TRT occupies the largest space of the ID

and provides the majority of hits per track, and hence it contributes most to the momentum

measurement. Although the TRT has lower precision compared to the silicon precision

detectors, it offers longer measurements of tracks to retrieve the momentum information.

The tracks left by the charged particle in the ID can be reconstructed using two main

algorithms. One is the baseline inside-out algorithm designed for the reconstruction of pri-

mary tracks left by the charged particles originating from the p-p collisions. It starts from

three point seeds from the silicon detectors (both Pixel and SCT), and adds the succes-

sive hits using a combinatorial Kalman-fitter [70]. The other algorithm is the outside-in

algorithm which is designed for the reconstruction of the secondary tracks orginating from

secondary particles in decays of primary or other secondary particles in the ID. The outside-

in algorithm extends the reconstructed TRT segment [70] by adding the silicon hits with the

combinatorial Kalman-fitter as the inside-out does. The TRT segments which do not have

any extension in the silicon detectors will be reconstructed as the TRT standalone tracks.

The reconstruction efficiency of a track can be measured in simulated events by taking the

ratio of the tracks matched to charged particles to the number of generated charged parti-

cles; the efficiency varies as a function of pT and η . For example, for primary tracks with

pT = 10 GeV, the efficiency is 92% when averaged over η [71].

The primary vertices are reconstructed from the reconstructed tracks using specific find-

ing algorithm with a χ2 fit [72]. For a single interaction with at least two primary tracks,

the vertex reconstruction efficiency is rather high at around 90% [71].
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5.3 Calorimeters

The calorimeters should contain the showers initiated by the incident particles and have

good segmentation for space-point measurements. Besides, the calorimeters must have suf-

ficient coverage for both η and φ to be able to measure well the total energy. The design of

the ATLAS calorimeters thus includes an overall pseudorapidity up to |η |= 4.9, and a full

φ coverage without cracks around the beam line. The overall layout of the calorimeters in

ATLAS is shown in Figure 5.7.

Fig. 5.7 A cut-away view of the ATLAS calorimeter system [66].

The inner part of the calorimeter system is composed of LAr electromagnetic calorime-

ters (EM Calo), in the barrel (EMB), the end-cap (EMEC) and the forward (FCal) regions.

The hadrons not stopped in the EM Calo will reach the hadronic calorimeters, consisting of

tile calorimeters in the barrel and extended barrel regions, the liquid argon (LAr) hadronic

end-cap calorimeter (HEC) and the LAr forward calorimeters (FCal).

The full calorimeter system must provide a good hermeticity to fully contain the elec-

tromagnetic and hadronic showers. The total depth of the material up to the end of the

calorimeter in ALTAS is shown in unit of interaction length as a function of |η | in Fig-

ure 5.8, where the amount of material before the first active layer of the muon system (up to

|η |< 3.0) is also given.
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Fig. 5.8 The total depth of the material in front of the EM Calo, of the EM Calo itself, of

each hadronic layer and of the cumulative amount of material between the outmost hadronic

layer and the first active layer of the muon spectrometer up to |η |< 3.0 [66]. It is shown in

unit of interaction length as a function of |η |.

The ATLAS calorimeters are sampling calorimeters using different absorber (lead, cop-

per or iron) and media (plastic scintillator or liquid argon), and the resolution of sampling

calorimeters can be written as:

σE

E
=

a√
E
⊕ b

E
⊕ c. (5.3)

The first term is called the stochastic (sampling) term, coming from the fact that the sec-

ondary particle shower has intrinsic fluctuations due to the interleaved layers of the absorber

and the active medium. The second term is known as the noise term which mainly comes

from the electronic noise of the readout channels. The last constant term depends mainly on

the detector mechanics and readout system, besides, it can be affected by the temperature

gradients, detector aging and radiation damage.

The electromagnetic calorimeter is measured to have a resolution of σE/E = 10%/
√

E⊕
(1.2±0.1+0.5

−0.6)% [73] in the barrel region, while the resolution for the hadronic calorimeter

in barrel and end-caps is measured varying from 0.13 to 0.06 [74] when jet (LCW+JES

calibration) pT increases; the FCal for electromagnetic measurements is measured to have

σE/E = 100%/
√

E ⊕ (2.5±0.4+1.0
−1.5)% [66, 73].
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5.3.1 Electromagnetic calorimeter

The EM Calo is a LAr sampling calorimeter. LAr was chosen as the active medium

for its stability of the response over time and its intrinsic radiation-hardness. The EM Calo

is arranged into three cylindrical layers of EMB and two co-axial wheels for each EMEC,

covering a pseudorapidity up to |η | = 3.2. Lead was chosen as absorber for EMB and

EMEC for its short radiation length (X0), which enables the calorimeter to have a compact

size while containing the showers.

The lead plates and the copper electrodes are all shaped in an accordion geometry, as

shown in Figure 5.9, which allows the EM Calo to have a full φ coverage measurement.

The EM Calo is divided into three layers in depth perpendicular to the beam axis; they

differ in terms of radiation length and resolution (∆φ ×∆η) in the φ −η plane. Besides,

another single thin liquid argon layer of 11 mm, the presampler, provides measurement of

the energy loss before the EM Calo.

Fig. 5.9 A sketch of a barrel module of the electromagnetic calorimeter illustrating the

different layers [66].

Figure 5.9 summarizes the geometry of a barrel module, showing the three accordion
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layers and the presampler:

Presampler It is segmented in the φ − η plane with identical resolution of ∆η ×∆φ =

0.025×0.1 for all its coverage of 0 < |η |< 1.8.

1st layer This layer is the closest layer to the interaction point after the presampler. It is

arranged in strip cells of approximately ∆η ×∆φ = (0.025/8)× (0.0245×4) in size.

It has a relative short depth of 4.3X0.

2nd layer It is the largest layer, with 16X0 deep, in which the incident particles deposit

most of their energy. Electrons and photons are mainly reconstructed from the energy

deposited (clusters) in this layer. The second layer is segmented into square cells

of ∆η ×∆φ = 0.025× 0.0245. Combined with the first layer, it can provide a good

separation of photons from π0.

3rd layer As most electrons and photons are absorbed in the second layer, the third layer

has a short depth of 2X0. Cells in the third layer have a coarse granularity of ∆η ×
∆φ = 0.05×0.0245 as it only contains the tail of the EM shower. Only the EMB and

part of the EMEC outer wheel (1.5 < |η |< 2.5) are equipped with a third layer.

The total thickness of accordion layers in the barrel region (0 < |η | < 1.475) is over

22X0. The cumulative amount of material in front of the presampler and in front of the

accordion layers is shown in Figure 5.10. This material will have an impact on the recon-

struction of some physics objects, such as the photons, as will be discussed in Section 7.1.

The η coverage and the dominant granularity of each layer within the EMB and EMEC

calorimeters are summarized in Table 5.2. The 1st and 2nd layers get coarser granularities

for regions where the presampler is not installed or instrumental transition regions between

EMB and EMEC or between EMEC and FCal1. In this case, only the best granularities of

the 1st and 2nd samples are shown in the table.

Finally, the first layer of the forward LAr calorimeter (FCal1) uses copper as the absorber

and can be used to measure electromagnetic showers; the FCAL will be described in the next

section.

5.3.2 Hadronic calorimeters

Tile calorimeter The tile calorimeter is longitudinally segmented into three layers with

different granularities as shown in Table 5.3. It uses steel as absorber and scintillator as the

active medium in which the hadronic shower’s energy information will be converted into

photons collected by photo-multiplier tubes. It covers up to |η | = 1.0 in the barrel region,
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Fig. 5.10 The cumulative amount of material in unit of radiation length X0 as a function of

pseudorapidity η in front of the electromagnetic calorimeter [66].

Presampler Layer

1st 2nd 3rd

EMB

Coverage |η |< 1.52 0 < |η |< 1.475 0 < |η |< 1.35

Granularity
0.025×0.1 0.025/8×0.1 0.025×0.025 0.05×0.25

(∆η ×∆φ )

EMEC

Coverage 1.5 < |η |< 1.8 1.375 < |η |< 3.2 1.5 < |η |< 2.5
Granularity

0.025×0.1 0.025/8×0.1 0.025×0.025 0.05×0.25
(∆η ×∆φ )

Table 5.2 A list of the main parameters of the EMB and EMEC calorimeters [66]. The gran-

ularities of the 1st and 2nd layers are varied with η , as shown in Reference [66], therefore

only the best values are shown here.

and from |η |= 0.8 to |η |= 1.7 in two extended barrel regions. Radially, it is placed between

2.28m and 4.25m.

LAr hadronic end-cap calorimeter The hadronic end-cap calorimeter (HEC) is a liquid

argon sampling calorimeter with copper as absorber. It covers the region of 1.5 < |η |< 3.2,

with a relatively fine granularity of ∆η ×∆φ = 0.1× 0.1 which decreases to 0.2× 0.2 for

|η | > 2.5. It is formed of two wheels at each end-cap, and each wheel is divided into two

sections in depth, that form four layers in total for each end-cap. Its main parameters are

summarized in Table 5.3.

LAr forward calorimeter The forward calorimeter is composed of three layers for each

side, with liquid argon as active medium because of the high radiation environment in the
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forward regions. All three FCal layers form an overall coverage of 3.1 < |η | < 4.9, see

its layout in Figure 5.7. The first layer next to the interaction point is the electromagnetic

forward calorimeter (FCal1) which uses copper as absorber to optimize the resolution, fol-

lowed by the two hadronic forward LAr calorimeters, FCal2 and FCal3, which use tungsten

to develop the showers. The forward calorimeter helps providing good Emiss
T measurement

by extending the η-coverage of the whole calorimeter system,

5.4 Muon system

The muon system is the outermost layer of ATLAS. It is designed to measure the mo-

mentum of muons in |η |< 2.7. It contains a muon spectrometer and a toroid magnet system

which consists in three large superconducting air-core toroid magnets. In addition to track-

ing the muons, the muon system contains trigger chambers with timing resolution of the

order of 1.5-4 ns.

The layout of the ATLAS muon system is shown in Figure 5.11. It is composed of

various gas detectors: Monitored drift tubes (MDT’s), Cathode strip chambers (CSC’s),

Resistive plate chambers (RPC’s) and thin gap chambers (TGC’s). The four components

can be classified by function into precision tracking chambers and trigger chambers. In the

barrel region, the chambers form layers in cylinders that are placed at radii of approximately

5m, 7.5m and 10m, and in the transitions and end-caps they are formed in wheels at a

distance from the interaction point of approximately 7.4m, 10.8m, 14m and 21.5m.

Precision tracking chambers The precision tracking measurement by the muon system

combines the output of the MDT chambers and the CSC chambers.

The MDT chambers are made up of aluminum tubes placed transverse to the beam axis,

and filled with mixed Ar/CO2 gas. They are designed to provide precision measurement of

hit over |η | < 2.0 with resolution of approximately 80 µm in r−φ . There are 1150 MDT

chambers in total, and they are arranged in cylindrical layers in the barrel region and end-cap

Tile HEC

Coverage |η |< 1.0 barrel 1.5 < |η |< 3.2
0.8 < |η |< 1.7 extended barrel

Longitudinal
3 layers 4 layers

segmentation

Lateral(∆η ×∆φ ) Layers 1&2, 0.1×0.1 1.5 < |η |< 2.5, 0.1×0.1
granularity layer 3, 0.2×0.1 2.5 < |η |< 3.2, 0.2×0.2

Table 5.3 The main parameters of the Tile calorimeter and HEC.
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Fig. 5.11 A cut-away view of the ATLAS muon system [66].

wheels as shown in Figure 5.11.

The CSC’s are filled with mixed Ar/CO2 gas and the basic element is a plane of perpen-

dicular cathodes strips with multiple anode wires. They are placed in the region 2.0 < |η |<

2.7, forming the two innermost wheels in the end-cap region, as shown in Figure 5.11. Each

wheel contains four small and four large chambers which comprise four CSC’s planes each,

leading to four independent measurements on both coordinates (φ , η) per track. The CSC’s

provide a resolution of ∼ 60 µm in r−φ per CSC plane.

Trigger chambers The trigger chambers of the muon system are composed of RPC’s

in the barrel region (|η | < 1.05) and TGC’s in the end-caps (1.05 < |η | < 2.7). They are

designed to provide fast muon information for Level 1 trigger determination, as well as tim-

ing information for bunch-crossing identification, within |η | < 2.4. In addition, the trigger

chambers provide a second coordinate measurement complementary to the MDT’s up to

|η |= 2.7.

The RPC is made of parallel electrode plates separated by a 2mm gap filled with mixture

of C2H2F4, isobutane and SF6. The RPC’s are constructed into three barrel layers: the two

inner layers (RPC1 and RPC2) enable the trigger to select low-pT tracks of 6–9 GeV, and

the outer layer (RPC3) provides information for higher momentum tracks of 9–35 GeV for

the trigger. All three layers are placed next to the MDT barrel layers in order to provide the
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second azimuthal coordinate to complement the MDT measurement, and it provides time

measurement with a resolution of approximately 1.5 nanoseconds.

The other trigger chamber, TGC, is a multi-wire proportional chamber, with a gas mix-

ture of CO2 and n-pentane. It also helps providing coordinate measurement complementary

to the MDT. Besides, it provides time measurement with a resolution of 4 nanoseconds.

To summarize, the whole muon system is designed to recognize muons within |η |< 2.7

with a threshold of pT >∼ 3 GeV, as lower–pT muons will mostly loose their energy before

entering the muons chambers. The muon spectrometer is measured to be able to provide

stand-alone muon pT resolution of approximately 20% at 1 TeV [75]. The magnetic field

leads to a maximum accessible muon momenta determination of around 3 TeV. In addi-

tion to the momentum measurement, the muon system provides good position and charge

measurements.

5.5 Trigger system

At the designed luminosity of 1034 cm−2s−1, the rate of collisions is approximately

1GHz. However, only ∼ 300Hz can be recorded due to limited resources. In order to

effectively operate an online reduction of the data to be recorded, a multi-level trigger sys-

tem is used, which is a chain of three levels of triggers: the Level-1 (L1), the Level-2 (L2)

and the event-filter (EF) triggers. A schematic illustration of the trigger flow used in the

ATLAS experiment is shown in Figure 5.12, with the event rate at each step.

The L1 triggers are hardware-based only, and they must take a decision in less than 2.5

microseconds using the information directly from customized front-end electronics, pro-

vided from the muon system and calorimeters only, with a relatively coarse resolution. The

L1 triggers effectively reduce the data rate to 50kHz. Before parsing events to next level

trigger, Regions-of-Interest (RoI’s) in (η , φ ) are defined containing the potential particle

candidates found by the L1 triggers.

The L2 and EF triggers make up the High-Level Trigger (HLT), which lowers the data

recording rate to the objective of 300Hz. Unlike the L1 triggers, the HLT takes full-

granularity measurement from all detectors using algorithms running on computers, and

thus the HLT operates slower than the L1 triggers. The L2 triggers use CPU farms to pro-

cess data from RoI’s, and it takes the L2 triggers an average of 40 milliseconds to lower

the rate from ∼ 50kHz to ∼ 5kHz. As the last element of this trigger chain, the EF uses

algorithms close to the offline ones, and operates on the complete information from events

to reach the final data rate within one second in average.

The trigger menu contains a list of physics signatures (trigger chains), each of which
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specifies the thresholds and selection criteria on selected physics objects implemented through-

out the trigger system. The trigger chain names follow a given convention defined in ATLAS

indicating the trigger level and the criteria, for example, the ’EF_g120_loose’ trigger repre-

sents a HLT chain selecting events with at least one loose photon of pT > 120 GeV.

Fig. 5.12 The trigger system [76].
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Data preparation and simulation

6.1 Simulated data processing

The simulated data aims at providing a good description of given processes in a format

similar to that of the real data taking from the ATLAS detector. A multi-step processing

scheme is developed, which is conceptually illustrated in Figure 6.1. Each step is shown

as an orange rectangle with its production output in a blue ellipse below, and the arrow

indicates the sequence.

The first step in the full simulation chain is the Generation, producing physics objects

with four-vectors from given physics processes, for example, a Z boson produced with a

photon and its decay to two electrons, Z(ee)+ γ .

As the proton-proton collisions are in fact parton-parton collisions, the generation prod-

ucts depend on the parton momentum, which is however not accessible within the experi-

ment. Many studies [78–80] were performed to give descriptions on the parton distribution

function (PDF) which describe the probability density x f (x,Q2) as a function of the mo-

mentum portion x each parton carries at a given energy scale factor Q. Relevant theoretical

parameters and the center-of-mass energy of the proton-proton collisions are parsed to the

generator, and the cross-section can be computed by summing over all the possible Feynman

diagrams of leading order (LO) or next-to-leading order (NLO) depending on the generator.

In the generation step, the following effects are also included: the cascades of radiation

from the QCD processes, known as parton shower; the hadronization processes to form

hadrons, and the underlying event (UE) coming from the interactions of the residual com-

ponents of the two protons from one hard scattering event. In order to provide optimal MC

description of the QCD processes, several simulation parameters sets, named ‘tunes’ [81],

are developed by comparing relevant kinematic distributions to data, and are used with dif-

ferent generators.
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Fig. 6.1 The concept of the full simulation chain is shown in a schematic form [77].



6.2 Physics validation 53

The generation products will be parsed to the Simulation software to obtain the corre-

sponding ATLAS detector responses, such as the tracking hits and the calorimeter showers.

The simulation software used is Geant4 [82], which uses as inputs a detailed ATLAS detec-

tor geometry and physics lists describing the possible interactions between incident particles

and the detector materials. Since it needs a lot of time and resource to produce the full de-

tector simulation, a fast simulation, known as Atlfast [83] was developed. It uses the full

Geant4 simulation of the tracker and the muon spectrometer, but a parameterized response

for the calorimeters.

The Digitization transforms the simulated analog detector response (Geant4 hits) to

digits (Geant4 digits). At digitization level, pile-up is added by overlaying minimum bias

events generated with PYTHIA 8 [84] onto the hard-scattering process, according to the

distribution of ⟨µ⟩, see Figure 4.4.

The processing chains from the simulation and the real data now converge, and the next

step for both is the Reconstruction, where physics objects will be identified and character-

ized using digitization outputs, see more details in Chapter 7. The reconstruction outputs are

stored in the format of Event Summary Data (ESD), which contains information sufficient

to identify particles, and apply fast tuning to the reconstruction algorithms and calibrations

of physics objects.

In order to have a rather concise data format with sufficient information on reconstructed

events for common analyses, one needs to transform the ESD into the Analysis Object Data

(AOD).

The full data production scheme is summarized in Figure 6.1, and further details on the

ATLAS simulation scheme are given in Reference [85].

6.2 Physics validation

The programs used in each procedure shown in Figure 6.1, are packaged into a software

framework, ATHENA [86]. Modifications in the software of the generation, simulation,

digitization, or reconstruction lead to a new ATHENA release tag.

Each new release version needs to be validated on physics variables at analysis level. A

physics validation group in the ATLAS collaboration is organized to take care of such work,

for changes related to the steps starting at simulation or after in the processing chain. This

group is composed of people from the different combined performance (CP) groups, such as

the Egamma group, and from physics analysis groups such as the supersymmetry (SUSY)

working group.

The validation task is performed by comparing the validation samples, which are pro-
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duced with un-validated new caches, to reference samples, which are processed with previ-

ously validated caches. For example, the new release version could include a geometry of

the ATLAS detector with an added new pixel insertable B-layer (IBL), while the reference

sample would be produced with the nominal ATLAS detector. In this case, it is expected

at the analysis level that the b-jets differ in events between the validation and the reference

samples, while other objects, such as non-tagged jets, leptons and photons, are not expected

to be affected.

The author has been in charge of the physics validation for the SUSY working group for

a year (2012–2013). Beside the normal validation tasks, since the validation code is built

up within the ATHENA framework and the ATHENA release can be different from sample

to sample, the validation work includes technical upgrades and maintenance of the code.

The SUSY validation group is looking at ∼ 400 hundreds of kinematic variables covering

all objects which could be interesting in SUSY analyses, including jets, leptons, missing

transverse energy or photons. In addition, cutflows of some SUSY analyses are checked.

As an example, one of the validation tasks performed was to check, for the Geant4

simulation, if a new description of the geometry of the pixel insertable B-layer (IBL) [87]

installed in ATLAS for run-2 was behaving as expected. Figure 6.2 shows this validation

example. In this figure, the test sample, with the updated IBL geometry description, was

compared to the reference sample A, which used a previous IBL description, and to another

reference sample B, which corresponded to the well-validated ATLAS run-1 geometry de-

scription. The test sample was an update to the description used in the reference sample

A; the latter had been found to be problematic in an earlier validation task, as it led to un-

expected differences in the photon energy resolution spectrum when comparing it to the

reference sample B. Therefore, the test sample was expected to agree with the reference B

but differ from the reference A for this variable, as shown in Figure 6.2. The test sample

was found to be in good agreement with the reference sample B, validating the geometry

description update.
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Fig. 6.2 Physics validation plots of the distribution of the photon energy resolution (normal-

ized to unity) for the test and reference samples described in the text.





Chapter 7

Reconstruction of physics objects

The reconstruction of the physics objects used in this thesis is introduced in this chapter.

All the reconstructed objects are calibrated using dedicated methods, then identified by

various criteria applied on relevant discriminating variables. The systematic uncertainty

sources related to the reconstruction, calibration and identification processes of the objects

are introduced here and will be considered in the analysis described in Part III.

7.1 Photons

7.1.1 Reconstruction

A photon can be reconstructed from the EM energy deposit (cluster) and tagged either

as unconverted photon without any matched track from the ID, or as converted photon with

one or two matched tracks originating from a conversion vertex. Unconverted photons pass

through the ID without leaving tracks and deposit energy in the EM Calo, as shown in

Figure 5.3. A photon converted into a pair of electron and positron leaves two tracks (or one

track only if the other one is mis-reconstructed) in the ID starting from the conversion vertex,

and finally deposits energy in the EM Calo. Figure 5.10 shows the amount of material before

the EM Calo varies with the pseudorapidity, and the fraction of converted photons Fconv is

related to the radiation length X
X0

of the local material via [88]:

Fconv = 1− e
− 7

9
X
X0 . (7.1)

The fraction of photons converted in the inner tracker (which covers up to a radius of

115 cm), is shown in Figure 7.1 as a function of |η |.

The EM clusters are reconstructed based on the second EM layer using a ‘sliding-
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Fig. 7.1 Fraction of photons converting within a radius of 115 cm (80 cm) in full (open)

circles as a function of |η | [66].

window’ algorithm [89], which clusters calorimeter cells within fixed-size rectangles. In

order to construct such a ‘window’, the full EM Calo is divided into a grid of Nη ×Nφ tow-

ers based on the size of the cell in the second EM layer, which is ∆η ×∆φ = 0.025×0.025.

In the barrel, the unconverted photons are reconstructed from clusters in a window size of

3× 5, while it is 3× 7 for the converted photons. In the end-cap regions, all the photons

are reconstructed from clusters with a size of 5×5 towers. Photons are reconstructed from

clusters with ET of at least 2.5 GeV [90].

The φ information is given by the energy-weighted barycenter of the EM cluster in the

second EM layer, while the η coordinate is given by combining the measurements from

both first and second EM layers.

The energy information is derived by summing up all the energy deposited inside the

EM cluster; for further studies on the cluster energy measurements, see References [90–

92]. Taking into account the lateral leakage to the EM cells outside the cluster and the

longitudinal leakage to neighbor instruments of the EM Calo, the energy will be eventually

corrected by dedicated calibration processes, introduced in Section 7.1.3.

The conversion vertices must be reconstructed at a radius smaller than 800mm. Depend-

ing on the number of tracks in the conversion vertex, there can be double-track conversions

or single-track conversions. The single-track conversions can happen if two tracks are too

close to be discriminated, or if one of the decay product is mis-reconstructed, for example,

its momentum is too small (less than 0.5 GeV) to be reconstructed. The single track left
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must be reconstructed only by hits found after the B-layer, and quite a few single-track con-

versions are reconstructed using hits found in TRT only. Therefore single-tracked photon

candidates are poorly reconstructed in terms of momentum and η information. Besides,

there is a large overlap between single-tracked photons and electrons, since the EM clusters

are also used to reconstruct electrons by matching a single track from the ID as introduced

in Section 7.2.

From time to time, some readout channels can randomly produce noise which can be

reconstructed as a signal with fake transverse momentum above the threshold of 2.5 GeV. A

database recording the known noisy cells has been used to mask these problematic channels,

and additional cleaning cuts are developed to reject new noisy channels at the reconstruction

level. These cleaning cuts are designed to flag out those photon candidates with very narrow

energy deposit, because this kind of fake photons are usually reconstructed from a cluster

containing only one cell.

7.1.2 Identification

A set of identification criteria has been developed to discriminate photons from back-

grounds, such as clusters polluted by residual jet-component or di-photon decay products

from neutral hadrons such as π0. As an example, Figure 7.2 illustrates the simulation of

the energy showers left by one single photon and one neutral pion in the EM Calo. A pair

of energetic photons produced from π0 decay can be very close to each other as shown on

the right-hand side. Comparing to the shower left by one single photon on the left-hand

side, neutral pions can be discriminated from the photon by checking the lateral width in the

second layer of the EM Calo and the energy deposit shape in the first layer.

Given the fact that EM Calo shower shapes can be used as discriminant variables to

identify photons, two sets of cuts are built according to their background rejection power.

Respectively, they are loose cuts and tight cuts.

The loose photon cuts are developed based on hadronic leakage, evaluating the fraction

of the EM Calo shower leaking into the hadronic layers, and the EM Calo cluster shape in

the second layer. Depending on the η region, the hadronic leakage of an EM cluster can

be evaluated, either as the ratio of the ET in the hadronic calorimeter to the ET of the EM

cluster for central η region, noted as Rhad , or as the ratio of the ET found in the 1st hadronic

sampling to the ET of the EM cluster in other η regions, noted as Rhad1. The variables

related to the EM Calo cluster shape in the 2nd EM layer used for the loose cuts include

the lateral width of the cluster, wη2, and the energy-weighted lateral width of the cluster,

quantified as the energy ratio from rectangular regions (Nη ×Nφ ) of 3× 7 cells to that of

7×7 cells, noted as Rη . As an example to show how the photon differs from the background
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Fig. 7.2 An example to illustrate the calorimeter shower shapes of the photon (left) and the

π0 (right) [65].

jets with these discriminant variables, Figure 7.3 illustrates the distributions of variables of

Rhad and Rη of converted and unconverted photons and of the corresponding fake-photon

jet candidates.

The tight photon criteria set tighter cuts on the variables used in the loose criteria, with

more requirements set for the shape in the 1st and 2nd EM layers. It further checks the

energy fraction of the central cells in 2nd EM layer along φ , by defining Rφ as the energy

ratio from regions of 3× 3 cells to that of 3× 7 cells. Due to the fine segmentation along

η in the 1st EM layer, the tight criteria is able to build up better separation of photon and

pions, as implied in Figure 7.2.

Table 7.1 summarizes the variables used to identify loose and tight photons with

the range of the cut values given. Cuts set on these discriminant variables are optimized

depending on photon η . The tight cuts are further optimized depending on photon pT

and treating unconverted and converted photons separately. The detailed cuts menu for the

loose and tight criteria can be found in Tables 16 to 18 in Appendix Conclusion.

7.1.2.1 Isolation

In order to strengthen the background suppression, a further discriminant quantity has

been introduced: the calorimeter isolation transverse energy E iso
T .

The E iso
T sums up all the positive energy deposits around the photon cluster in the 2nd

EM layer, in a cone of radius ∆R=
√

(∆η)2 +(∆φ)2, which takes the barycenter of the clus-

ter as center. Figure 7.5 schematically illustrates how the isolation variable, TopoEtcone40,

is computed. The ‘40’ refers to the ∆R < 0.40 cone, shown as the yellow area in the fig-
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Fig. 7.4 Total noise (electronics and pileup) as a function of |η | for each LAr calorimeter

layer [95].

Fig. 7.5 An isolation cone of ∆R < 0.4 illustrated by a circle is shown in a segmented η ×φ
plane of the 2nd EM layer, where the central rectangle of 5× 7 cells contains most of the

energy deposit of the photon candidate. The red areas refer to the topological clusters used

to compute the TopoEtcone40 variable [96].
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Description Loose Tight

Acceptance

|η |< 2.37 excluding 1.37 < |η |< 1.52 ✓ ✓

Hadronic leakage

Rhad1 =
E

1st had. sampling
T

EEM cluster
T

, if |η | < 0.8 or

|η |> 1.37

< 0.01975 or 0.02575 0.01525-0.01975

Rhad =
E

had. sampling
T

EEM cluster
T

, if 0.8 < |η |< 1.37 < 0.02275-0.02725 0.01825-0.02575

2nd EM layer

E7×7
s2

> 0.1 MeV 0.1 MeV

Rη = E3×7
η /E7×7

η > 0.750-0.9025 0.910-0.9025

wη2 lateral width of the cluster < 0.013-0.016 0.011-0.0130

Rφ = E3×3
φ /E3×7

φ > - 0.57-0.93

1st EM layer

f1 = Etot
s1 /Etot

shower > - 0.005

w3
η1 lateral width of 3 strips around the

max. strip
< - 0.645-0.75

wtot
η1 total lateral shower width < - 1.8-3.5

fside =
E7×1

s1 −E3×1
s1

E7×1
s1

< - 0.24-0.52

∆E = E
2nd max strip
s1 −E

min strip
s1

< - 120−560 MeV

Eratio =
E

max strip
s1 −E

2nd max strip
s1

E
max strip
s1 +E

2nd max strip
s1

> - 0.76-0.88

Table 7.1 The variables used for loose/tight photon identification [94]. The superscripts

in the form Nη ×Nφ refer to the cells (or strips) centering around the most energetic cell (or

strip), while the s1 and s2 subscripts refer to the 1st and 2nd EM samplings.

leakage issue was fixed after applying corrections binned in pT as a function of η derived

from studies on single particle simulation samples with converted and unconverted photons

treated differently as described in Reference [96]. However, a discrepancy was observed in

higher pT bins between the results obtained from simulation and from data. A data-driven

method to further correct the photon energy leakage is introduced [97], and the correspond-

ing isolation variable TopoEtcone40corr is used in this thesis.
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7.1.2.2 Identification efficiency

The simplest photon identification efficiency can be estimated using MC samples only.

It is defined as the ratio of the number of reconstructed photons passing a given criterion

(N
reco,pass cut
γ ) divided by the associated truth photon multiplicity, where the reconstructed

photons are checked to be associated with a truth photon to avoid counting fake photons. As

the efficiency depends on the η and ET of the photon, it is measured as a function of ET in

different η bins, thus forming a map of efficiency.

The photon identification efficiency can also be derived from data [94]. A discrepancy

between simulation and data is found for the efficiency result in some (η , ET) bins. Specific

corrections are thus derived by applying small modification to the simulated EM shower

shapes in the simulation samples, called fudge factors. The fudge factors give a good agree-

ment between the simulation and the data-driven results at ±5%. Since the fudge factors

change the identification results, they should be applied before the photon identification.

Figure 7.6 shows four η bins of converted photon identification efficiency (εID) as a func-

tion of ET, comparing the combined data-driven measurements with the nominal and cor-

rected simulation predictions. Especially, the bottom two figures show the residual ±5%

fluctuation between the data-driven and the corrected results.

7.1.3 Calibration

The energies of electrons and photons measured by the EM Calo are calibrated with a

multi-step scheme, shown in Figure 7.7. It derives an overall scale factor by comparing

MC simulation to data with respect to the Z boson resonance reconstructed using events of

Z → e+e−, referring to the Step 5 in the figure. In parallel, an effective constant term c,

referring to Equation (5.3), is extracted to smear the energy resolution of MC simulation to

be consistent with the data. The final results are validated in Step 6 with events of Z → llγ

for photons, and J/Ψ → e+e− events for electrons.

Before comparing energy response between the data and simulation for the Z → e+e−

events, corrections are applied to both data and MC simulated samples as a function of

|η | in bins of Ecalo
T in Step 3, for the lateral and longitudinal leakages introduced in Sec-

tion 7.1.1. This correction is based on MC simulation samples using a multivariate algorithm

(MVA) [98], discussed in detail in Reference [92]. The MVA method has been trained in

Step 1 treating electrons, converted and unconverted photons separately. As the EM Calo is

longitudinally divided, the scales of different layers have to be equalized in Step 2, in order

to apply an uniform scale factor at the end. The layer inter-calibration includes the cali-

bration between first and second EM layers, and the presampler energy scale determination.



7.1 Photons 65

Fig. 7.6 Comparison of weighted mean of the data-driven measurements of converted

photon identification (εID) to the nominal and corrected MC predictions in the region

15 GeV < ET < 300 GeV. The εID curves are shown in four different η regions. The green

uncertainty band refers to the total uncertainties estimated for the combination of the data-

driven methods. Only the statistical uncertainties are shown for the MC predictions [94].
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The third layer is not included as its contribution is proven negligible in current studies [92].

Various systematic uncertainties will be introduced during the electron and photon en-

ergy calibration. Well-described detector geometry and good physics lists for MC simula-

tion are needed for the MC-based calibration in Step 3. They rely on material distribution

measurements in data linked to the inter-calibration of first and second EM layers. The

variation of the energy response related to the material distribution measurement will lead

to a source of systematic uncertainty considered in this thesis, noted as material uncertainty

in Section 11.5. Besides, the presampler energy scale determination process described in

Reference [92] will introduce another independent uncertainty on the final electron/photon

energy response.

All other uncertainties on the calibration introduced in Reference [92] will be treated as

two independent systematic uncertainty sources: one on the energy resolution and the other

one on the energy scale.

Fig. 7.7 The procedure flow for energy calibration of photons and electrons in ATLAS [92].
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7.2 Electrons

Electrons will leave a track in the ID and deposit energy in the EM Calo, as illustrated

in Figure 5.3. Therefore, they are reconstructed from the EM clusters (Nη ×Nφ = 3× 5)

in the 2nd EM Calo layer, which must be associated with a well reconstructed track in

the ID. Reconstructed electrons cover region up to |η | = 2.5, as the ID. Forward electrons

(2.5 < |η |< 4.9) are not considered here.

Electrons and photons have a very similar detector response, thus sharing a lot in com-

mon with respect to reconstruction, identification, isolation and calibration. The uncon-

verted photons differ from the electrons since they must not have an associated track. Low–

pT (pe
T < 20 GeV) electrons are included in this thesis. Their calibration is improved with

a specific energy-momentum combination algorithm defined in Reference [92], based on

J/Ψ→ e+e− events. A relevant systematic uncertainty is taken into account in Section 11.5.

In addition to the variables of shower shape and hadronic leakage used for photon iden-

tification, see Table 7.1, more variables describing the track quality and the track-cluster

matching are selected as discriminant variables to identify electrons. Electron identification

is based on cuts and three sets of cuts are graded according to the background rejection

power, labeled as loose, medium and tight. It is interesting to note that these three criteria

require the electrons to be reconstructed in the central region of the detector with |η |< 2.47.

Detailed studies on electron identification can be found in Reference [99].

The electron identification efficiency εe
ID is measured as a function of |η | in bins of ET

from both data and MC simulation using three independent channels of W → eν , Z → e+e−

and J/ψ → e+e−, as described in Reference [99]. Scale factors which depend on ET and

η are derived from a global χ2 test to combine the results of the three channels. For the

medium electron, the identification efficiency increases from about 80% at 7 GeV to 90% at

50 GeV [99].

The identification efficiency has a large dependence to the number of reconstructed pri-

mary vertices NPV with the cut-based menu used at 7 TeV. For the data taking in 2012 at√
s = 8 GeV, the NPV increases up to 40 as indicated from Figure 4.4. In order to cope with

this effect, an optimized cut-based menu [100] is used to identify electrons for data collected

at
√

s = 8 GeV. These criteria can be noted with ‘++’ added at the end, such as medium++

used in this thesis. This ‘plus’ menu keeps the variation of the efficiency below 4% from

1 to 30 vertices, and the improvement can be seen in Figure 7.8, which shows the loose,

medium and tight identification efficiencies as a function of the number of reconstructed

primary vertices (NPV ) measured in data at 7 TeV and at 8 TeV.
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Fig. 7.8 The electron identification efficiency for loose, medium and tight cut-based se-

lections measured in data at 7 TeV and at 8 TeV as a function of the number of reconstructed

primary vertices [100].
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7.3 Muons

Muons will pass through the detector and interact with the ID and muons chambers,

leaving tracks as shown in Figure 5.3. The reconstruction of muons is based on information

from MS, ID and calorimeters. The ideal situation to identify a muon passing through AT-

LAS is when it leaves matched tracks found in both ID and MS, which is called a combined

(CB) muon [101, 102]. Muons can only be found in the ID if their transverse momenta are

too low to leave a complete track in the MS. They can be recognized if one ID track can be

extrapolated to be associated to at least one tagged segment in MS; these muons are called

segment-tagged (ST) muons [101, 102]. These two types of muons are reconstructed up to

region |η |< 2.5 following the coverage of ID.

The CB muons are tagged as tight muons, whilst the ST muons can be classified as

loose, medium and tight according to the MS chambers segment reconstruction, and the

tracking quality. Muons with different reconstruction methods have a different efficiency

as a function of |η |, as shown in Figure 7.9. This was obtained with muons measured

in Z → µ
+

µ
− events with pT > 10 GeV. The ‘CaloTag’ in the Figure refers to muons

reconstructed by combining information from the ID and the calorimeters. Due to the lack

of MS installed in region 1.1 < η < 1.3 and η = 0, the figure shows an inefficiency in these

two regions for both CB and ST muons. Figure 7.10 shows the efficiency as a function of

the muon pT, indicating that the efficiency starts to be maximal at pT ≥ 20 GeV. There is a

steep increase for the low–pT muons because muons need a minimum pT of approximately

3 GeV to arrive at the MS and to satisfy the reconstruction requirements of CB and ST

muons.

7.4 Jets

The QCD final states in the proton-proton collisions will pass through the ID and EM

Calo, and leave energy in the hadronic calorimeters to be reconstructed as jets as shown

in Figure 5.3. The reconstruction is implemented based on an algorithm using calorimeter

energy deposits as input. The jet finding algorithm groups the energetic inputs into subsets

(jets) defined by the algorithm. The algorithm used in this thesis to define jets is the "anti-kt"

algorithm, which is the default in ATLAS since 2009.

The default anti-kt algorithm [103] uses positive-energy calorimeter topological clusters

(TopoClusters) as input. A prior separation between EM and hadronic TopoClusters must be

applied based on shower shape parameters; more studies on the topoclusters can be found

in [89]. The input four-momenta are grouped within a distance parameter R, which is chosen
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Fig. 7.9 Muon reconstruction efficiency as a function of |η | for various muon types [102].

Fig. 7.10 Muon reconstruction efficiency as a function of pT for CB and ST muons [102].
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to be 0.4 in this thesis, by introducing a new distance quantity di j:

di j = min(k2p
t,i ,k

2p
t,j )

∆2
i j

R2
, (7.2)

where i and j refer to the candidate TopoClusters; kt,i and kt,j are the transverse momentum

of the TopoClusters; ∆2
i j = (yi − y j)

2 +(φi −φ j)
2 (y is the rapidity of the TopoCluster).

The parameter p is set to be −1 in the anti-kt algorithm, so that the jet algorithm always

starts from the most energetic input to merge the input pairs within the distance R, and ends

up with the jet candidate when di j equals to k
2p
t,i . The jet will be reconstructed as long as it

has a momentum above 7GeV.

A multi-level set of cleaning cuts has been devised to reject jets due to calorimeter

noise and non-collision backgrounds such as cosmic rays, leading to several quality cri-

teria labeled as "Loose", "Medium" and "Tight", which are described in details in [104].

In addition to the three criteria recommended for 7 TeV studies, a new "VeryLoose" (or

"Looser") criterion was developed as the default baseline for jet cleaning criteria for 8 TeV

studies [105].

The jet calibration is essential for jet energy measurement as the un-calibrated jet energy

might be polluted by additional interaction vertices, or affected by detector effects such as

calorimeter non-compensation response or signal losses due to noise thresholds. There are

many methods to calibrate jets, introduced in [104]. In this thesis the LCW+JES calibration

is adopted.

A local cluster weighting (LCW) calibration method [106, 107] is applied at TopoCluster

level. The calibration depends on whether the cluster is classified as EM or hadronic, and

the values are derived from MC and data studies.The LCW is dedicated to eliminate the

detector effects, and jets can then be built with these LCW calibrated clusters using a given

jet algorithm. As incident particles from pile-up are distributed uniformly in the η , φ plane,

the jet energy measurements are then corrected by subtracting contributions from pile-up,

which is evaluated using in-situ data based on a concept of jet area [108, 109] This pile-up

suppression is computed event by event. Further calibration is derived from a comparison

between the jets measured in data and the Monte Carlo simulated truth jets, and is known as

jet energy scale, or JES [104, 110].
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7.5 Missing transverse energy

The missing transverse energy, Emiss
T , is a crucial object in many analyses searching for

new physics. For example, the WIMP particles, χ̃0
, will definitely contribute to this Emiss

T

term. For a given physics event, the Emiss
T is reconstructed in basis of calibrated calorimeter

cells and the muon spectrometers, and is computed as the square root of the quadratic sum

of the x and y terms:

Emiss
x(y) = E

miss,calo

x(y)
+E

miss,µ
x(y)

, (7.3)

where the term contributed by muons is computed from the momenta as

E
miss,µ
x(y)

=−∑ p
µ

x(y)
. (7.4)

A refined scheme classifies the candidate cells into physics objects to be calibrated in

the following order, to avoid double counting clusters or tracks due to the similar detector

response of physics objects: electrons, photons, hadronic taus, jets and muons. Besides, the

energy of topological clusters or tracks which are not classified in the above classification

sequence will be summed up as a so-called SoftTerm entering the Emiss
T calculation, using

an energy-flow algorithm [111]. The regular Emiss
T computation can be written as

Emiss
x(y) = E

miss,e
x(y)

+E
miss,γ
x(y)

+E
miss,τ
x(y)

+E
miss,jets

x(y)
+E

miss,SoftTerm

x(y)
+E

miss,µ
x(y)

, (7.5)

where each term is calculated as the negative sum of the calibrated reconstructed objects,

projected to the x and y directions. A prior cut on pseudorapidity of |η | < 4.5 is applied

before the summation due to the fact that the MC does not provide a good description in the

very forward region [111]. The muon term only accounts for muons within the pseudora-

pidity range up to 2.7, limited by the MS.

Physics objects can be identified via different criteria introduced above. At the same

time the Emiss
T computation can even omit some of them, and hence various different Emiss

T

algorithms were developed satisfying specific usage. For a given Emiss
T algorithm, a relevant

computation is defined to store all the classified physics objects. As an example, a generic

Emiss
T computation, called MET_RefFinal, serves as a baseline to build up customized com-

putations. It contains all the well-calibrated standard terms in Equation (7.5) [112].

The Emiss
T performance has been studied in References [111, 112]. The Emiss

T resolution

σ follows a function of ∑ET as:

σ = k ·
√

∑ET, (7.6)
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where the k factor value is obtained from a fit and varies from 0.42GeV1/2 for Z → ℓ+ℓ−

events to 0.51GeV1/2 for di-jet events [111]. Figure 7.11 shows the two component of

Emiss
T , Emiss

x and Emiss
y , as a function of the total transverse energy ET measured in different

channels at 7 GeV; the fitted k value for each channel is also given.
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Fig. 7.11 The two component of Emiss
T , Emiss

x and Emiss
y , measured as a function of the total

transverse energy ET in different channels at 7 GeV; the fitted k value for each channel is

also given [111].

A specific computation used in this thesis is the MET_Egamma10NoTau_RefFinal, which

will not identify taus; they will thus be regarded as jets. Furthermore, a customized require-

ment is implemented to the Emiss
T computation to treat the muons as invisible, which will be

discussed in Section 10.1, leading to the Emiss
T being computed as:

Emiss
x(y) = E

miss,e
x(y)

+E
miss,γ
x(y)

+E
miss,jets

x(y)
+E

miss,SoftTerm

x(y)
. (7.7)

In the Equation (7.7), E
miss,e
x(y)

comes from standard calibrated [92] electrons identified with

the medium++ criteria (|η | < 2.47) and satisfying pe
T > 10 GeV; E

miss,γ
x(y)

refers to the

photons passing the tight criteria, calibrated using the electromagnetic scale [66] with

p
γ
T > 10GeV; E

miss,jets

x(y)
is made up of jets reconstructed using the anti-kt algorithm with

distance parameter R = 0.4, and calibrated using the LCW+JES scheme; besides, an extra

transverse momentum cut is applied to reject calibrated soft jets with p
jet
T < 20GeV. The

SoftTerm is summing over all the un-associated topoclusters (including the soft jets).
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Chapter 8

Introduction

8.1 Motivation of the monophoton analysis

Particles from models beyond the Standard Model (BSM), such as dark matter particles,

can be produced in pairs at collider. Particles which interact only weakly are invisible to

the ATLAS detector, and thus a pair production of such particles at the LHC, as shown in

Figure 8.1a, is not measurable. As discussed in Chapter 2, a solution is to look for an initial

state radiation (ISR) signature in the photon and Emiss
T final state, as shown in Figure 8.1b.

q

q

χ

χ

(a) Undetectable

q

q γ

χ

χ

(b) Detectable with an ISR single photon

Fig. 8.1 Feynman diagrams for dark matter pair production at the LHC, assuming the EFT

approach (see Chapter 2).

Various BSM models can produce an excess of events in the monophoton final state

competing with the Standard Model backgrounds which are mainly electroweak processes,

such as large extra dimensions theories, dark matter models, and supersymmetric models.

There are two new physics models of interest which will be considered in this thesis.

One is a dark matter model inspired by the gamma-ray line seen in the Fermi-LAT data

as introduced in Section 2.2. This gamma-ray line may come from the annihilation of dark

matter particles with mχ = 130 GeV, χχ̄ → γγ , at a rate of ⟨σv⟩= 10−27 cm3s−1 [30, 34].

A model was suggested in Reference [113] which would allow to confront this line with the
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search for pp → γ∗/Z → γχχ̄ at the LHC as illustrated in Figure 8.2. This model uses an

effective field theory (EFT) [37, 39], in which the mediator is integrated out of the propagator

to give a contact interaction with a suppression scale M∗.

q

q̄

γ

γ

χ

χ̄

Fig. 8.2 Production of a pair of dark-matter particles (χ − χ̄) via an effective γ − γ − χ − χ̄
vertex.

The effective operator of interest has dimensions of energy of E7 and involves fermionic

WIMPs as described in Reference [114], where the coupling constants of the DM to different

pairs of electroweak gauge bosons are given by:

gγγ =
1

4cos2 θw

k1 + k2

M∗3
,

gZγ =
1

2cosθw sinθwM∗3

(

k2

sin2 θw

− k1

cos2 θw

)

,

(8.1)

where θw is the weak mixing angle, and where k1 and k2 control the strength of the effec-

tive coupling of the WIMPs to the U(1) and SU(2) gauge sectors of the Standard Model,

respectively.

As the cross section σγ∗/Z→γχχ̄ is proportional to g2
γγ,Zγ , the relevant suppression scale

M∗ is therefore related to the cross section via

σ(γ∗/Z → γχχ̄) ∝ (1/M∗)6. (8.2)

For a given M∗, the cross section is determined by three parameters: the dark matter mass,

and the electroweak coupling strengths k1 and k2.

The annihilation rate of χχ̄ → γγ can be computed [113, 114] as:

⟨σv⟩γγ =
4(h̄c)2m4

χv

πM∗6
(k1 cos2 θw + k2 sin2 θw)

2, (8.3)

where the dark matter velocity v is ∼ 10−3c. For given k1 and k2 values, one can compute

the suppression scale M∗ which corresponds to the ⟨σv⟩ and mχ given by the Fermi-LAT
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result [30, 34], noted as M∗
Fermi. The values of ki considered are 0.01, 0.25, 0.5, 0.75 and

1.0, where i = 1 and 2. The values of M∗
Fermi computed for each combination of k1 and k2 is

shown in Figure 8.3. Therefore one can compare the limits on M∗ obtained by the ATLAS

analysis to M∗
Fermi for mχ = 130 GeV and for each value of k1 and k2 in order to probe the

nature of the Fermi-LAT result.

Fig. 8.3 The values of M∗
Fermi shown in plane of k1 and k2, computed using the Equation (8.3)

with ⟨σv⟩= 10−27 cm3s−1 and mχ = 130 GeV.

The other model considered here is the pair production of mass-degenerate left and right

handed first and second generations squarks (q̃ ¯̃q) in a R-parity conserving simplified super-

symmetric model. In this model, squarks are set to decay directly to a quark (q) and the

lightest neutralino (χ̃
0
) with a 100% branching ratio, see Figure 8.4a. All the other super-

symmetric particles are decoupled apart from the ones considered in the diagram shown in

this figure. This can lead to final states of multiple jets associated with Emiss
T without any

lepton; this final state is searched in the so-called “0–lepton” analysis [115]. Upper limits

on the cross sections have been set as a function of the squark mass (mq̃) and the lightest

neutralino mass (mχ̃0
1
) by this analysis in this model, see Figure 8.5.

In Figure 8.5, the dashed diagonal indicates an interesting region in the plane of (mq̃,

mχ̃0
1
), where the mass difference between the q̃ and the χ̃0

is very small. In this compressed

region, where ∆M = mq̃ −mχ̃0
1
! 10 GeV the quarks produced from the squarks decay are

often too soft to be reconstructed as jets. In this case, an additional photon radiated either

from an initial-state quark or an intermediate squark, see Figure 8.4b, would lead to a final

state of γ +Emiss
T .
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applying a set of selections to the kinematic observables, which is called signal region (SR).

The events in the SR are required to have one high pT photon and a large Emiss
T , with leptons

vetoed. The possibility to have one ISR jet is retained to increase the signal acceptance

and reduce the systematic uncertainties related to the modeling of initial-state radiation.

The tools and data samples used in the 8 TeV monophoton analysis will be introduced in

Chapter 9, and the SR studies are described in Chapter 10.

The irreducible Standard Model background in this monophoton final state is the process

Z(→ νν̄) + γ , since neutrinos are reconstructed as Emiss
T . The other reducible Standard

Model background processes are W and Z boson production in association with a photon or

a jet and decaying leptonically.

The Standard Model backgrounds with a real photon are dominated by:

• γ +W (eν): when the electron is not reconstructed, or reconstructed as a photon;

• γ +W (µν): when the muon is not reconstructed;

• γ +W (τν): similarly to the two leptonic processes above, if the tau decays leptoni-

cally, or if the tau decays hadronically, as taus are reconstructed as jets in this analysis;

• γ +Z(ℓ+ℓ−): when the two leptons are not reconstructed;

• γ + jet: events can mimic the signal events via Emiss
T faked from fully or partially mis-

reconstructed jet. Although the cross-section of γ + jet events is large at the LHC, this

fake Emiss
T background is strongly suppressed to be a minor background by the large

Emiss
T requirement and by requiring Emiss

T to be far from the jet if there is any.

During the photon reconstruction, other objects, such as jets or electrons, can some-

times be mis-reconstructed as photons due to their similar detector responses; such mis-

reconstructed photons are noted as ‘fake photons’. The fake photon backgrounds are:

• jet+Z(νν̄): if the jet is mis-reconstructed as a photon;

• jet+W (ℓν) (ℓ= µ , τ): if the jet is mis-reconstructed as a photon and the lepton is not

reconstructed;

• jet+W (eν): if the electron fakes a photon or the jet fakes a photon and the electron

is not reconstructed;

• tt̄, single-t and diboson: as in the W + jet processes;

• multi-jet and di-jet: if one jet is mis-reconstructed as a photon, and there is a large

fake Emiss
T .

Backgrounds with a real photon (V + γ backgrounds) are estimated using a semi-data-

driven method, with three lepton control regions (CRs) defined. The CRs are defined to be

enriched in a given background while have a strongly suppressed signal, in order to control

the Monte Carlo predictions of the backgrounds using the observed data in a fit, called

background-only fit (see more details in Chapter 11). The background-only fit neglects
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any possible signal contamination in the CRs. The SR yield of real photon background

are extrapolated from the CRs results. For backgrounds with a fake photon (dominated

by V + jet backgrounds), they are estimated using data-driven methods since the Monte

Carlo simulation does not describe well the faking mechanism. The background estimation

technique is validated with a validation region (VR) which is defined to be kinematically

close to the SR, acting as a trade-off between minimizing the signal contamination and

maximizing statistics. The background estimation technique with its validation and results

are described in Chapter 11.

A model-independent upper limit is set at 95% confidence level on the number of events

beyond the expected background in the SR, derived from a model-independent signal fit

(discovery fit) using both the SR and the lepton CRs. A background-only hypothesis is

tested in the discovery fit. The model-independent limit setting is described in Chapter 12.

In this thesis, the result is also interpreted as upper limits in the parameter space of two

new physics models. These limits are computed from a model-dependent signal fit (exclu-

sion fit) which is performed in CRs and SR simultaneously similarly to the discovery fit but

with a signal plus background hypothesis tested. One of the two physics models, described

in Section 13.1, is an effective field theory of dark matter inspired by the Fermi-LAT results,

in which dark matter particles couple to photons via a contact interaction vertex. The other

one, described in Section 13.2, is a simplified supersymmetric model describing squark pair

production with their subsequent decay into a quark and a neutralino.



Chapter 9

Analysis tools and samples

9.1 Analysis tools

This work is based on an analysis framework, known as SUSYTools, which is developed

and maintained by the SUSY working group of the ATLAS collaboration. This set of tools

is based on the ROOTCORE package within the ROOT framework [118]; it works in a

stand-alone way outside the Athena framework.

The SUSYTools offer basic algorithms to define the physics objects and make it conve-

nient to apply the latest corrections to the resolution, identification and calibration of these

objects. Besides, it provides algorithms for event selections, which can easily be adapted.

Adding further analysis tools, even customized packages, is flexible and convenient. More-

over, the variations of the event yields in analysis regions, caused by various sources of

systematic uncertainties, can be easily operated with this tool.

9.2 Data and trigger selection

The experimental data used in this thesis were collected in proton-proton collisions at√
s = 8 TeV by the ATLAS detector in 2012. Only the data taken during the periods when

the calorimeters, inner detector and muon system were well functioning are used for physics

analysis. These are selected by using good run lists (GRLs) which select the luminosity pe-

riods based on the data quality flags. The corresponding integrated luminosity is 20.3fb−1.

The systematic uncertainty on the integrated luminosity is ±2.8%, which is derived, fol-

lowing the same methodology as described in details in Reference [119], from a prelimi-

nary calibration of the luminosity scale obtained from beam-separation scans performed in

November 2012.
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The trigger used for signal events selection is an Emiss
T trigger, EF_xe80_tclcw_tight,

indicating a nominal threshold on Emiss
T of 80 GeV [120]. This trigger computes the value

of Emiss
T without considering the muons, as the Emiss

T computation used in this analysis. The

trigger efficiency can be expressed as a function of the reconstructed Emiss
T , and this trigger

is found to be fully efficient for the events selected in this analysis.

9.3 Monte Carlo samples

9.3.1 Event generation

The Monte Carlo (MC) samples for all the considered SM backgrounds are summarized

in Table 9.1, where the generators and PDFs used are shown, as well as the cross section

information. The SM backgrounds can be classified as V +γ , V + jet and minor backgrounds

including top productions, di–boson and γ + jet.

At parton-level of the event generation, a photon transverse momentum filter is applied

to V + γ backgrounds, which is set to p
γ
T > 70 GeV for Z+ γ samples and p

γ
T > 80 GeV for

W + γ samples, respectively. Besides, the di-lepton invariant mass, mℓ+ℓ− , is required to be

larger than 40 GeV in Z(→ ℓ+ℓ−)+ γ MC samples. The relevant cross sections are given

directly from the generator SHERPA which are computed at leading-order (LO) only.

The V + jet backgrounds are generated by SHERPA [121] as well, and they are binned in

the transverse momentum of the W/Z boson, which are 0 < p
W/Z

T < 70 GeV, 70 < p
W/Z

T <

140 GeV, 140 < p
W/Z

T < 280 GeV, 280 < p
W/Z

T < 500 GeV, and p
W/Z

T > 500 GeV, respec-

tively. Cross sections given in Table 9.1 for V + jet backgrounds are computed at next-to-

next-to-leading order (NNLO) in QCD perturbation theory, as described in Reference [122],

using the MSTW2008NNLO [78] PDFs.

The tt̄ background is generated by POWHEG [123], and its cross section is computed at

NNLO with resummation accuracy up to next-to-next-to-leading logarithm (NNLL) [124,

125]. An inclusive MC sample of the single-top production in t-channel is used, which is

generated by ACERMC [126]. Single-top productions via Wt-channel and s-channel are

generated exclusively by MC@NLO [127, 128]; they are split by the decay mode of the W

boson. Cross sections of all the single-top quark productions are computed at NNLO with

NNLL accuracy, as detailed in References [129–131].

Three di-boson (WW , WZ and ZZ) samples generated by HERWIG [132, 133] are used,

and their cross sections are computed at NLO [134, 135].

The γ + jet events are generated in three bins of photon transverse momentum, which

are respectively 80 < p
γ
T < 150 GeV, 150 < p

γ
T < 300 GeV, and p

γ
T > 300 GeV. The cross
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section of these γ + jet samples are given directly from their generator, PYTHIA 8 [84, 136].

HERWIG version 6.520 is used for simulating the parton shower and fragmentation pro-

cesses in combination with JIMMY [137] for underlying-event MC for the MC@NLO sam-

ples, while PYTHIA 6 version 4.2.6 is used for the POWHEG and ACERMC samples.

The proton PDFs used are CTEQ6L1 [79] for the PYTHIA 8 and ACERMC samples, and

CT10 [80] for the MC@NLO , SHERPA , and POWHEG samples. The ATLAS underlying-

event tune AUET2 [138] is used, except for the tt̄ sample, which uses the new Perugia

2011C tune [139]. SHERPA uses its own parton shower, fragmentation and underlying-

event model.

Channel Generator PDF set Cross section Cross section

normalization [pb]

Z(νν̄)+ γ SHERPA 1.4.1 CT10 LO 0.762

W (eν)+ γ SHERPA 1.4.1 CT10 LO 0.719

W (µν)+ γ SHERPA 1.4.1 CT10 LO 0.718

W (τν)+ γ SHERPA 1.4.1 CT10 LO 0.720

Z(e+e−)+ γ SHERPA 1.4.1 CT10 LO 0.186

Z(µ+
µ
−)+ γ SHERPA 1.4.1 CT10 LO 0.186

Z(τ+τ−)+ γ SHERPA 1.4.1 CT10 LO 0.186

W (eν)+ jet SHERPA 1.4.1 CT10 NNLO 12192.8
W (µν)+ jet SHERPA 1.4.1 CT10 NNLO 12188.0
W (τν)+ jet SHERPA 1.4.1 CT10 NNLO 12170.0

Z(νν̄)+ jet SHERPA 1.4.1 CT10 NNLO 6706.4
Z(e+e−)+ jet SHERPA 1.4.1 CT10 NNLO 1237.9
Z(µ+

µ
−)+ jet SHERPA 1.4.1 CT10 NNLO 1243.8

Z(τ+τ−)+ jet SHERPA 1.4.1 CT10 NNLO 1245.3

tt̄ POWHEG r2129 CT10 NNLO+NNLL 137.38

Single-t Wt-channel MC@NLO 4.06 CT10 NNLO+NNLL 22.373

Single-t s-channel MC@NLO 4.06 CT10 NNLO+NNLL 1.818

Single-t t-channel ACERMC 3.8 CTEQ6L1 NNLO+NNLL 28.393

γ + jet, p
γ
T > 80 GeV PYTHIA 8 CTEQ6L1 LO 932.91

WW HERWIG 6.520 CT10 NLO 20.864

ZZ HERWIG 6.520 CT10 NLO 1.539

WZ HERWIG 6.520 CT10 NLO 6.970

Table 9.1 Cross sections for the Standard Model backgrounds at
√

s = 8 GeV considered in

this analysis. The generator efficiency is included in the cross-section. Only semi-leptonic

decays are considered for the diboson and tt̄ samples and the W is requested to decay lep-

tonically in the s- and t-channel single-top samples.

The EFT DM signal samples are generated using MADGRAPH 5 1.4.2 [140] with

PYTHIA 8 using the LO PDF set CTEQ6L1. M∗ is set at a nominal value of 175 GeV. In ad-

dition to the 130 GeV WIMP mass compatible to the Fermi line, two other masses (10 GeV
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and 1000 GeV) are also generated in order to also test a more generic dark matter model not

necessarily connected with the Fermi-LAT result. For each WIMP mass, 25 independent

samples were produced with different k1 and k2, where ki ∈ 0.01,0.25,0.5,0.75,1.0 and

i = 1, 2. All the signal samples are asked to have photon with pT > 120 GeV and |η |> 2.5

at generator level.

The compressed squark signal samples are generated with MADGRAPH 5 [140] version

1.5.11 with showering and hadronization modeled by PYTHIA 6 [136] version 4.2.7 using

CTEQ6L1 [79] PDFs; the radiated photon is required at parton-level with pT > 80 GeV and

|η | < 2.5. The signal samples are generated on the basis of the existing grid used in the

“0–lepton” analysis in the phase space of mq̃ and mχ̃0
1
, and they are extended to the more

compressed region of the mass spectrum.

9.3.2 Detector simulation

All the V + γ , di-boson, γ + jet, the Wt-channel and s-channel of the single-top produc-

tions use the full detector simulation chain based on Geant4. The MC samples of single-top

t-channel production and the inclusive top pair production are based on a fast simulation,

Atlfast–II , introduced in Section 6.1. For the V + jet backgrounds, some of them uses

the Atlfast–II simulation for larger statistics, whilst the rest are simulated with the full

simulation chain.

All signal samples are produced with the Atlfast–II simulation.

In-time pile-up is simulated by overlaying minimum bias events, which are generated by

PYTHIA 8 with MSTW2008LO PDF set and A2 tune, onto the hard scattering event with

⟨µ⟩ (the mean number of interactions per crossing, see Chapter 4) ranging from 0 to 40.

The overlaying process also covers the impact of out-of-time pile-up.

As the distribution of ⟨µ⟩ differs between simulation and data, it is necessary to apply

further corrections to the pile-up overlaid process in the simulation samples by re-weighting

⟨µ⟩ according to the data measurement. Besides, another re-weighting is implemented for

the simulated events which corrects the MC description of the vertex position along the

z–axis to that observed in the data.

Atlfast–II and full simulation samples comparison

Both Atlfast–II and full GEANT4 simulation samples are used in this analysis. Since

this analysis is sensitive to the objects reconstructed in the calorimeters which is parame-

terized in fast simulation, it is important to validate the fast simulation samples against the

fully simulated samples.
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The validation study compares a sample produced with Atlfast–II to its corresponding

fully simulated sample. The study is based on the SR defined in the 7 TeV analysis, which

is detailed in Section 10.3.1.

The cutflow is checked, which indicates which fraction of the events in the dataset

survives each SR selection cut. Four pairs of samples were checked which are all dark

matter signal samples. The cutflows of the Atlfast–II and full Geant4 samples show

good agreement within one standard statistical deviation. The cutflow is further checked

by quantifying the difference on the number of events left after each selection cut as R =

|NFull −NAtl f ast |/NFull . All the differences are less than 5%.

The following discriminant kinematic variables used to define the SR are also checked

just before implementing the corresponding selection cut:

• distribution of the Emiss
T and the transverse momentum of the most energetic (leading)

photon;

• the photon isolation variable, TopoEtcone40corr;

• the numbers of photons, jets, electrons and muons per event;

• the azimuthal angle (φ ) between the leading jet and Emiss
T ;

• the azimuthal angle (φ ) between the leading photon and Emiss
T .

For a given discriminant variable, the Atlfast–II and full Geant4 distributions are com-

pared. As an example, Figure 9.1 shows the comparisons of the distributions of Emiss
T and the

photon isolation variable, with one pair of Atlfast–II and full Geant4 samples. In the bot-

tom part of each plot, a ratio between the number of events in the Atlfast–II and the full

Geant4 samples is shown. All the variables show good agreement between Atlfast–II and

full Geant4 samples with a ratio of 1 within one standard statistical deviation, except for the

the photon isolation variable, which needs to be further checked. This conclusion is cross

checked for the other three pairs of Atlfast–II and full Geant4 samples; they give the

same results.

Central photon study

The distribution of the photon isolation variable, TopoEtcone40corr, in Figure 9.1 seems

to indicate a discrepancy between the Atlfast–II and full Geant4 samples.

In order to understand better this potential discrepancy, TopoEtcone40corr is checked for

central (|ηγ |< 1.37) and end-cap (|ηγ |> 1.52) photons, separately. The photon candidates

are tight photons with p
γ
T > 125 GeV.

Figure 9.2 presents the distributions of the isolation variable with its statistical uncer-

tainty, where the top histogram accounts for the central photons and the bottom one for the

end-cap photons. The top histogram shows a good agreement between the Atlfast–II and
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(a) Comparison of Emiss
T between an Atlfast–II sample and the

relevant full Geant4 sample.

(b) Comparison of the photon isolation variable,

TopoEtcone40corr, between an Atlfast–II sample and the

relevant full Geant4 sample.

Fig. 9.1 Comparison of Atlfast–II and full Geant4, based on one dark matter signal sam-

ple.
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the full Geant4 samples. However, a significant difference is shown in the bottom his-

togram: the end-cap photons from the Atlfast–II events are reconstructed with larger

values of the isolation variable compared to that of the full Geant4 events.

The Atlfast–II simulation can hence only be used in the monophoton analysis if one

requests central photons (|η |< 1.37).

Fig. 9.2 TopoEtcone40corr distributions is compared from samples of Atlfast–II to full

simulation, where the top plot is for central photons (η < 1.37) and the bottom one, for

end-cap photons (η > 1.52).





Chapter 10

Signal region definition

The signal region used in the monophoton analysis at 8 TeV is defined in this chapter.

The definition of the object candidates will be introduced in Section 10.1. Mis-reconstructed

events are rejected in a pre-selection step introduced in Section 10.2. The full optimization

study to define the SR with improved signal sensitivity is introduced in Section 10.3.

10.1 Object candidates definition

Both converted and un-converted photons are considered in this analysis. They are re-

constructed following the standard ATLAS reconstruction algorithms and identified with

loose requirements; besides, recommended procedures for calibrations on energy scale

and resolution are applied; see more details in Section 7.1. Further cleaning cuts are applied

to reject bad quality photons arising from instrumental issues, see Section 7.1. The photon

candidates must satisfy p
γ
T > 10 GeV and |ηγ | < 2.37, while being outside the calorimeter

transition region 1.37 < |ηγ |< 1.52.

Electrons used in this analysis are reconstructed and identified using the medium++ crite-

rion, and their energy calibrated as described in Section 7.2. Similarly to photons, electrons

can be mis-reconstructed due to instrumental issues, thereby relevant quality cuts are ap-

plied to reject such bad electrons, see Section 7.2. The η of the electron (ηel) is derived

from its associated track when the track is reconstructed from at least 4 hits found in the

pixel detector and SCT, otherwise, the TopoCluster used to reconstruct the electron is used.

The electron candidates are further required to have pel
T > 7 GeV and |ηel|< 2.47.

The CB and ST muons, as introduced in Section 7.3, are taken into account in this anal-

ysis. Further quality requirements are applied on the ID track matched to the reconstructed

muon:
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• the sum of the number of hits found in the pixel detector and the number of dead pixel

sensors crossed by the track is asked to be at least one;

• more than five hits must be found in the SCT;

• the number of holes in the SCT and pixel detectors which are crossed by the track

must be no more than three;

• in the region 0.1 < |η |< 1.9, there must be more than five TRT hits, out of which the

outlier hits must be less than 90%.

Moreover, the muon candidates are required to have p
µ

T > 6 GeV and |ηµ |< 2.5.

The jet candidates are reconstructed from TopoClusters using the default anti-kt algo-

rithm with a radius parameter R = 0.4. The energy calibration has been done at cluster level

via LCW (see Section 7.4). Further calibrations are applied after the jet area offset correc-

tions, which are an η direction correction and a jet energy scale (JES) calibration. Through-

out the 8 TeV data collection, some tile modules needed to be temporarily or permanently

masked. Therefore, a correction to the energy scale needs to be applied for jets containing

such modules. The jet candidates are required to have pT > 30 GeV and |η |< 4.5. In order

to avoid double counting energy from an electron or a photon as a jet, an overlap removal is

applied to the jet candidates by requiring that the distance between the jets and the closest

electron or photon candidates must be no less than ∆R = 0.2.

The missing transverse energy Emiss
T computation is introduced in Section 7.5 as a variant

of the MET_Egamma10NoTau_RefFinal. The energy of all the physics objects used in the

Emiss
T computation are re-calibrated as described above.

10.2 The event pre-selection

Events are preselected by the following quality cuts:

1. Data quality: The events must be recorded during periods when the detector per-

formed well according to the Good Run List(GRL);

2. Trigger: The events must pass the EF_xe80_tclcw_tight trigger requirement;

3. Good vertex: The primary vertex of the events must be reconstructed with at least five

associated tracks. The primary vertex is defined as the vertex with the highest sum of

the squared transverse momenta of its associated tracks;

4. Event cleaning:

(a) Events recorded with noise bursts in the LAr calorimeters are rejected;

(b) Incomplete events coming from a reset of the readout system are rejected.

(c) Events are rejected if they are recorded with data corruption from tile channels;

(d) As introduced in Section 10.1, a correction is applied to the jet energy scale to
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account for the influence of masked tile modules. However, since not all the

masked modules are simulated in the standard ATLAS MC samples, any event

containing a jet candidate falling in a masked tile module was removed;

(e) Events with any jet candidate identified as VeryLoose bad jet (see Section 7.4)

are rejected to reduce the fake Emiss
T contribution;

10.3 The signal region event selection

The SR is defined for
√

s = 8 TeV by applying further selections on the preselected

events. It is developed based on the selections used in the published
√

s = 7 TeV monopho-

ton analysis introduced in Section 10.3.1. The full SR development first focused on opti-

mizing the signal over background ratio, and later on increasing the statistics by loosening

specific criteria without affecting the significance (see Section 10.3.2).

10.3.1 The 7 TeV event selection

The SR selection used in the 7 TeV analysis is described here. They will be used as a

baseline in the next section.

• The trigger used to select data is a Emiss
T trigger with a threshold of 70 GeV and it

does not include muons in the Emiss
T computation;

• Events are asked to have a large transverse missing energy with Emiss
T > 150 GeV;

• The event must contain a photon candidate with p
γ
T > 150GeV;

• In order to reduce the possibility to select events with a signal photon mis-reconstructed

from an electron or a jet, the highest pT (leading) photon is required to pass the tight

identification criteria and isolation requirement of TopoEtcone40corr < 5 GeV;

• As in the signal the photon and Emiss
T are expected to be more in a back-to-back

configuration, the leading photon is then required to be well separated from the Emiss
T

in the transverse plane by ∆φ(γ,Emiss
T )> 0.4;

• It is introduced in Chapter 8 that events are allowed to have at most one jet. The

fake Emiss
T backgrounds, such as γ + jet and di-jet productions, can mimic the signal

events if one jet is mis-reconstructed or partially mis-reconstructed as Emiss
T . Such

backgrounds are suppressed mainly because of the large Emiss
T requirement. A further

suppression is implemented by requesting events with one jet candidate to pass the

jet–Emiss
T separation cut of ∆φ(jet,Emiss

T ) > 0.4, since the fake Emiss
T backgrounds

usually have a single jet close to the fake Emiss
T ;

• Electrons with pel
T > 20 GeV and muons with p

µ

T > 10 GeV are vetoed to suppress
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the leptonic backgrounds, such as W (lν)+ γ .

10.3.2 The event selection optimization

In order to maximize the signal to background ratio in the SR, some optimization studies

are performed based on the nominal SR definition from the 7 TeV analysis. The signal sam-

ples used in this study are from a simplified supersymmetric model (which will be described

in Section 13.2) describing squark pair production with their subsequent decay into a quark

and a neutralino. The mass spectrum of the squark and the neutralino is considered to be

so compressed that the quark is too soft to be reconstructed as a jet. Four signal samples

with different kinematic profiles are used, and will be referred to as ‘squark’ or ‘compressed

squark’ in the following description. All the backgrounds used in this study are estimated

directly from MC simulation.

The discriminant variables checked are the jet multiplicity Njets, Emiss
T and ηγ . Their

distributions in the 7 TeV SR (nominal SR) are first checked by comparing the signal to the

backgrounds. The distributions are normalized to 1 in order to compare their shapes directly.

The normalized distributions of all the three variables are shown in Figures 10.1 – 10.3. A

specific loose nominal SR is defined with the SR jet multiplicity requirement released from

Njets ≤ 1 to Njets ≤ 10.

Figure 10.1 shows that the squark signal events tend to have more central photons than

the backgrounds. The Emiss
T distributions, shown in Figure 10.2, also differ between the

squark signal events and the backgrounds, suggesting that an increased Emiss
T cut may help

to strengthen the signal significance. Figure 10.3 contains the jet multiplicity distributions,

which indicate that the squark signal events with larger mq̃ −mχ̃0
1

contain more jets with

respect to the backgrounds. This is because the quark from the q̃ decay is more likely to be

reconstructed as a jet when mq̃ −mχ̃0
1

increases.

In order to quantify the signal strength in the SR, the following significance computation

is used:

Zn = erf−1 (1−2× p)×
√

2,

p = P(N ≥ Nobserved| background only hypothesis ),
(10.1)

where N follows a Gaussian probability density function with the Standard Model back-

ground expectation NSM as the mean value, and its overall systematic uncertainty ∆NSM as

one standard deviation; Nobserved is the result of a counting experiment following a Poisson

probability density function, treating the sum of the signal and background MC estimates as

the mean value.
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Fig. 10.1 The normalized distributions of |ηγ | of all the backgrounds and different com-

pressed squark signal points in the nominal 7 TeV SR (with |ηγ | < 2.37 and |p
γ
T| >

150 GeV). The masses shown in the legend are expressed in GeV.
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Fig. 10.2 The normalized distributions of Emiss
T of all the backgrounds and a compressed

squark signal in the nominal 7 TeV SR (with |ηγ |< 2.37 and |p
γ
T|> 150 GeV). The masses

shown in the legend are expressed in GeV.
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Fig. 10.3 The normalized distributions of N jets in a loose nominal SR (with the jet multiplic-

ity cut released to allow up to 10 jets) of all the backgrounds and a compressed squark signal

(with |ηγ | < 2.37 and |p
γ
T| > 150 GeV). The masses shown in the legend are expressed in

GeV.
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Figures 10.4 – 10.6 compare the selected signal (red dash line) to the backgrounds for

an integrated luminosity of 20.3fb−1. The bottom panels illustrate the significance (Zn) as

a function of different cuts on the discriminant variables. The overall systematic uncertainty

on the background used to compute the significance is set to a nominal value of 10%, as in-

spired by the overall 7.3% systematic uncertainty from the 7 TeV analysis [116]. It suggests

that the signal strength would increase by tightening cuts on |ηγ | and Emiss
T , and loosening

the cut on N jets.

The jet multiplicity cut will not be loosened, because other signal processes considered

in this analysis do not have as many jets as the squark scenario, such as dark matter models

(see description in Section 10.3.3 with Figure 10.10). Besides, allowing more jets can lead to

an increase of backgrounds like γ + jet, and thus change the background estimation strategy.

According to the background estimation strategy introduced in Section 11, the final

systematic uncertainty estimated in the SR is proportional to the data statistics in the control

region (CR). The statistics in the CRs decrease when tightening the SR cuts, as the CRs

are built to be as close as possible to the SR. This will influence the significance computed

above, which takes a nominal systematic uncertainty of 10%. In this case, two independent

and complementary studies were performed on tighter SRs, in order to determine if a tighter

SR would indeed increase the significance or not. The tighter SRs are defined with a lower

|ηγ | requirement and higher Emiss
T requirement.

The photon |ηγ | requirement is lowered to |ηγ | < 1.37 in the SR for the following rea-

sons. First of all, it improves the signal sensitivity as shown in Figure 10.4. Secondly, since

the |ηγ | is well described by the MC in the CRs, the cut can be kept at 2.37 in the CRs

so as to maintain the statistics for background estimation. One can also note that lowering

the |η | cut allows the use of Atlfast–II for simulating the signal samples, as discussed in

Section 9.3.2.

Therefore, tighter SRs to be checked are defined with the maximal |ηγ | requirement

ranging from 1 to 1.37, and the minimal Emiss
T from 160 GeV to 200 GeV. A 3× 5 grid

of tighter SRs were checked in the phase space of minimal Emiss
T and maximal |ηγ | in both

studies.

In a first study, the significance of the tighter SRs are computed with the systematic

uncertainty varied to determine the maximal systematic uncertainty for a given tighter SR

to maintain the improved significance. The other study evaluates the increase in statistical

uncertainty of the data in the CRs, assuming that the loss of events in the CRs is proportional

to the one in the SR for a given tighter SR. The SR data for 20.3fb−1 is estimated from the

MC prediction of backgrounds only.

Figure 10.7 shows the statistical uncertainty in each tighter SR estimated by 1/
√

NSM,
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Fig. 10.4 The distributions of |ηγ | in the SR of all the backgrounds with a compressed

squark signal. The bottom panel shows how the significance changes as a function of the

cut value on this variable. The masses shown in the legend are expressed in GeV.
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Fig. 10.5 The distributions of Emiss
T in the SR of all the backgrounds with a compressed

squark signal. The bottom panel shows how the significance changes as a function of the

cut value on this variable. The masses shown in the legend are expressed in GeV.
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Fig. 10.6 The distributions of N jets in a loose nominal SR (with the jet multiplicity cut

released to 10) of all the backgrounds and a compressed squark signal. The bottom panel

shows how the significance changes as a function of the cut value on this variable. The

masses shown in the legend are expressed in GeV.
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to be compared to the 3.8% statistical uncertainty of the nominal SR. In order to decide

on the best SR definition, one then needs to check whether or not, for a given tighter cut,

the increase in the CR statistical uncertainty brings the total systematic uncertainty above

the value for which no gain in significance is obtained. The full compressed squark signal

grid is used, which is in the parameter space of the squark mass mq̃ and the mass difference

between the squark and the neutralino ∆M = mq̃ −mχ̃0
1
.

Fig. 10.7 The statistical uncertainty in various tight SRs in a 3×5 grid of minimal Emiss
T and

maximal |ηγ |. The nominal SR has a 3.8% statistical uncertainty.

For example, for the tighter SR point with Emiss
T > 180 GeV and |ηγ | < 1.37 in the

figure, the uncertainty is increased by a factor of ∼ 1.45 (by comparing 5.5% to the nominal

3.8%). Figure 10.8 shows the change in significance in this tighter SR with respect to the

nominal SR (computed with an overall 10% systematic uncertainty) for all the SUSY signal

samples. The tighter SR significance is computed with an overall systematic uncertainty of

12% (top) and 14% (bottom), respectively.

Most of the ratios in the squark signal samples of interest (with ∆M ≤ 10 GeV) are pos-

itive for 12% (top figure) while they become negative for 14% (bottom figure). The signal

points at mq̃ = 100 GeV in the compressed region expect to have very high significance

(Zn > 8), while they do not expect to have large significance (Zn < 1) for large squark mass

(mq̃ ∼ 300 GeV); therefore one can still conclude that the maximal systematic uncertainty

allowed in this tighter SR is 12–14%, which is 1.2–1.4 times the nominal 10% system-

atic uncertainty. This tighter SR is excluded as the systematic uncertainty is allowed to be

increased by a factor smaller than the expected ∼ 1.45.
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Fig. 10.8 In the tight SR with |ηγ |< 1.37 and Emiss
T > 180 GeV, the change in significance

with respect to the nominal SR is shown for all the SUSY signal samples in the plane of

the squark mass mq̃ and the mass difference between the squark and the lightest neutralino

mq̃ −mχ̃0 . The tighter SR significance is computed with an overall systematic uncertainty

of 12% (top) and 14% (bottom), respectively.



104 Signal region definition

All the 15 tighter SRs shown in Figure 10.8 are excluded, as they significantly lower

the number of events in the CRs for background estimation, leading to an increase of the

systematic uncertainty beyond that allowed to have an improved signal significance. Finally,

the SR is optimized only by tightening the cut on |ηγ | from 2.37 to 1.37.

Lower–pT photon study

The possibility to loosen the p
γ
T threshold from 150 GeV to 125 GeV was also explored

in order to increase the statistics for background estimation. In the new SR with |ηγ |< 1.37,

the number of background events increases by ≈ 20% when loosening the cut on p
γ
T to

125 GeV. Such statistics enhancement is useful for the background estimation, but one

needs to check if the signal significance is affected or not.

Given a significance computed via NSignal/
√

NBackground , the number of signal events

needs to increase by at least ≈ 10% when going to p
γ
T > 125 GeV to maintain the signifi-

cance. Figure 10.9 (top) shows that most of the SUSY signal points do get a more than 10%

increase in the number of SR events. This leads to an increased significance as shown in

Figure 10.9 (bottom).

It can be concluded that loosening the cut on p
γ
T from 150 GeV to 125 GeV improves

the sensitivity for the squark scenario.

10.3.3 The 8 TeV event selection

The signal region (SR) event selection for the 8 TeV analysis after the pre-selection (see

Section 10.2) is built upon the object candidates defined in Section 10.1, in which the leptons

have lower pT cuts than the ones used in the 7 TeV analysis; and follows the suggestions

from the SR definition studies (see Section 10.3.2) on lowering the thresholds on p
γ
T and

ηγ with respect to the ones used in the 7 TeV analysis. The SR event selection used in this

analysis after the Preselections is summarized below:

1. Events must have Emiss
T > 150 GeV (muons are treated as invisible particles in the

Emiss
T computation);

2. Each event must contain at least one photon candidate (loose, |η |< 2.37, excluding

the calorimeter transition (crack) region 1.37 < |η |< 1.52) with pT > 125 GeV;

3. The highest pT (leading) photon must pass the tight identification criterion and

|ηγ |< 1.37;

4. The leading photon must be isolated by requiring TopoEtcone40corr < 5 GeV;

5. The leading photon must be sufficiently far from Emiss
T by requiring ∆φ(γ,Emiss

T ) >

0.4;
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(a) Relative increase of the event yield in the signal region

(b) Relative increase in NSignal/
√

NBackground

Fig. 10.9 Comparisons of the event yields (top) and the significance (NSignal/
√

NBackground)

when going from p
γ
T > 125 GeV to the p

γ
T > 150 GeV using the full compressed squark

signal grid in the plane of mq̃ and mq̃ −mχ̃0
1
.
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6. The jet ‘veto’ requirement asks each event to contain at most one jet candidate (p
jet
T >

30 GeV, |η jet|< 4.5). If there is a jet, this jet must be away from Emiss
T with

∆φ(Emiss
T , jet)> 0.4;

7. A lepton veto cut is applied to all the events by requiring no electron (medium++,

pT > 7 GeV) and no muon (pT > 6 GeV).

Table 10.1 shows the SR cutflow for the main backgrounds, based on the MC samples

introduced in Section 9.2. The first requirement on a large Emiss
T efficiently suppress most of

the background events, including the irreducible background of Z(→ νν̄)+ γ , The criteria

on the photon from cut 2 to 5 remove most of events without a real photon, such as the fake

photon background, W (eν)+ jet. The last two cuts, the ‘jet veto’ and ‘lepton veto’ strongly

suppress events with leptons or extra jets reconstructed, such as the real photon backgrounds

Z(→ ℓ+ℓ−)+ γ and W (→ ℓν)+ γ (noted as V + γ in the table).

Cutflow Z(νν̄)+ γ V + γ W (eν)+ jet

0. Pre-Selection 100% 100% 100%

1. Emiss
T > 150 GeV 33% 31% 45%

2. ≥ 1 loose photon with pT > 125 GeV (|η |< 2.37) 21% 18% 2.5%

3. the leading photon is tight with |η |< 1.37 15% 13% 0.33%

4. the leading photon is isolated 13% 10% 0.24%

5. ∆φ(γ leading,Emiss
T )> 0.4 13% 9.4% 0.15%

6. Jet veto: Njet ≤ 1 and ∆φ(jet,Emiss
T )> 0.4 10% 5.8% 0.12%

7. Lepton veto 10% 1.1% 0.05%

Table 10.1 The SR cutflow for the main backgrounds, based on MC samples, where the

V + γ refers to Z(→ ℓ+ℓ−)+ γ and W (→ ℓν)+ γ .

Figure 10.10 shows the distributions of four discriminant kinematic variables in the SR,

including the jet multiplicity, photon |η |, photon pT and Emiss
T . The irreducible background

Z(→ νν̄)+ γ (blue) is shown compared to one compressed squark signal (red) and an EFT

dark matter model (green) inspired by Fermi-LAT results, in which dark matter particles

couple to photons via a contact interaction vertex (see Chapter 13). This dark matter model

is referred as ‘EFT DM’ in the figure and in the following description. As the photon is not

an ISR photon in the EFT DM model, the photon pT and the consequential reconstructed

Emiss
T of this model are expected to be larger than the compressed squark model, as shown

in Figure 10.10 (bottom plots).

The compressed squark model tends to have more jets because the quarks from the

squarks decay product can be reconstructed if they are energetic enough. This is found in

the SR studies shown in Section 10.3.2. Events in the EFT DM model and in the irreducible

background only have jets coming from ISR; the jet multiplicity distribution in both cases
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thus agree quite well, as shown in Figure 10.10 (top left). This is also the reason why the jet

veto in the SR is not loosened.

Both signal models show a preference for central photons, which is shown in Fig-

ure 10.10 (top right). Therefore, the signal significance in both models is improved by

the tightened photon |η | cut.

(a) Jet multiplicity in the signal region with a

loosened jet veto.
(b) Photon |η | distribution in the SR

(c) Photon pT distribution in the SR (d) Emiss
T distribution in the SR

Fig. 10.10 Kinematic distributions in the SR for various signal samples compared with the

main irreducible background process Z(→ νν̄)+γ . The black dash line in the jet multiplic-

ity distribution indicates the SR cut.





Chapter 11

Background estimation

11.1 Background estimation scheme

The V + γ background in the SR is estimated from a background-only fit [141] based on

the profile likelihood method [142]. This fit only takes into account the CRs and assumes

no signal contamination. The following inputs from each CR are used: the number of

events observed in the data, the number of events predicted by MC simulation for the V +

γ background, the number of events yields estimated by the data-driven method for the

other backgrounds, and the number of events predicted by MC simulation for the γ + jet

background. In order to implement this fit, a customized statistical tool is derived from the

HistFitter [141] framework.

The numbers of observed and predicted events in each region is described using Poisson

probability density functions (pdf):

NR(data) ∝ Pois

(

NR(data)|σ × (A× ε)R ×L+∑NR(B)

)

, (11.1)

where R refers to a specific analysis region; σ × (A× ε)R ×L stands as the signal yield for
∫

Ldt = 20.3fb−1, which is zero in the control regions; NR(B) refers to each background

estimate.

The systematic uncertainties (see Section 11.5) on the predicted numbers of events and

the statistical uncertainties on the MC predictions are treated as nuisance parameters. Each

systematic uncertainty is constrained by a Gaussian pdf with its width referring to the size

of the uncertainty, whilst each statistical uncertainty is constrained by a Poisson pdf. Each

background is allowed to vary within its respective uncertainties.

The real photon backgrounds, Zγ and Wγ , in the SR are estimated by normalizing the
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MC prediction with two actual normalization factors obtained in the aforementioned like-

lihood fit to the data in the CRs. The CRs are built to be enriched in these specific back-

grounds. The two normalization factors, referred as the k factors, are applied to the Z + γ

and W + γ backgrounds respectively. Therefore the Equation (11.1) becomes:

NR(data) ∝ Pois

(

NR(data)|σ × (A× ε)R ×L

+kZγNR(Z(→ νν̄)+ γ)

+kWγNR(W (→ ℓν)+ γ)

+kZγNR(Z(→ ℓ+ℓ−)+ γ)

+ ∑
B̸=V γ,Zγ

NR(B)

)

,

(11.2)

where the R refers to the specific CR; NR(Z(→ νν̄)+ γ), NR(W (→ ℓν)+ γ) and NR(Z(→
ℓ+ℓ−) + γ) are the MC prediction for each of these processes; NR(B) refers to the fake

photon background estimates together with the γ + jet background; σ × (A×ε)R×L is zero

in these CRs; kWγ and kZγ are the free parameters in the fit, which will be applied to the

MC yields of the W + γ and Z+ γ backgrounds in the SR. The observed data in the CRs are

hence used to evaluate the real photon background contributions in the SR.

The product of the various pdfs forms the likelihood, built with the HistFactory [143]

package in the customized statistical tool, and the correlations of the parameters are taken

into account. The fit adjusts the various parameters in order to maximize the likelihood.

The definitions of the CRs together with the estimation of the real photon backgrounds

are given in Section 11.2. The data-driven methods which are used to determine the fake

photon backgrounds are described in Section 11.3. The last component of the considered

background is the γ + jet; its estimate is given directly by the MC prediction, described in

Section 11.4. In this section, further potential background sources are checked to ensure the

completeness of the current background composition.

The scheme to estimate the background in the SR is validated in a validation region

(VR) which is described in Section 11.6.

At the end of this chapter (Section 11.7), the final estimation results in both SR and VR

are given.
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11.2 Zγ and Wγ backgrounds

The Zγ and Wγ backgrounds are estimated by normalizing the MC expectations to data

with a likelihood fit to several control regions (CRs), as introduced in Section 11.1.

Three lepton control regions are constructed by inverting the SR ‘lepton veto’ cut to en-

rich these regions with Z(→ µ
+

µ
−)+ γ , Z(→ e+e−)+ γ and W (→ ℓν)+ γ events respec-

tively. The W (→ µν)+γ CR is built by requiring one extra muon, whilst the Z(→ ℓ+ℓ−)+γ

CRs are asking for the presence of either a pair of muons (Z(→ µ
+

µ
−)+ γ CR) or a pair of

electrons (Z(→ e+e−)+ γ CR).

The CRs must be as similar as possible to the SR, especially for the distribution of the

main objects, in order to be able to extrapolate the k factors to the SR. The Emiss
T distribution

for CRs with extra muons required are ensured to be similar to the SR since the muons are

treated as invisible particles in the Emiss
T calculation. For the Z(→ e+e−)+ γ CR, electrons

are also removed in order to mimic the Z(→ νν̄)+ γ background when computing Emiss
T .

The Emiss
T trigger used in the SR is therefore not suitable for the di-electron CR, and a photon

trigger EF_g120_loose is used in this CR.

The leptons in the CRs are selected using the same requirements as the lepton candidates

in the SR ‘lepton veto’. In order to insure that real leptons are selected in the CRs, they are

further required to be isolated by asking the scalar sum of the tracks pT within a cone of

radius ∆R = 0.2 around the lepton to be less than 15% of the lepton pT. The electrons in

the CRs are required to have pel
T > 10 GeV as that in the Emiss

T computation. Furthermore,

the distance between the lepton and photon is asked to be ∆R(ℓ,γ) > 0.5 (as in the MC

requirement at generator level). In the dilepton CRs, the dilepton invariant mass mℓ+ℓ− is

required to be greater than 50 GeV to match the generator-level requirement.

Since the shape of the photon η from the simulation is found to agree with data in

the CRs the CRs are allowed to relax the photon pseudorapidity requirement to |η | < 2.37

(excluding the calorimeter barrel and end-cap transition region 1.37 < |η |< 1.52) in order

to increase the number of events in the CRs. Furthermore, this is also viable as all the MC

samples used in the CRs are simulated with full Geant4.

The Emiss
T distribution in each of these CRs is shown in Figure 11.1 compared to that of

the post-fit background expectation. In Figure 11.1, one can see that all the CRs are enriched

in the background process of interest with a high purity. Besides, the lower panel of each

histogram in Figure 11.1 shows the ratio of data to the post-fit MC estimate, indicating

a good agreement in each region between the data and the post-fit background estimate

within the global uncertainty. The k factors obtained in the background only fit are kWγ =

0.81±0.05(stat.)±0.06(syst.) and kZγ = 0.89±0.08(stat.)±0.08(syst.).
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11.3.1 Fake photons from mis-identified electrons

Background contributions in the SR from processes in which an electron is mis-identified

as a photon are estimated by scaling event yields of e+Emiss
T (mono-electron) events with a

factor describing the probability of the electron-to-photon mis-identification. Similarly, the

fake photon contribution in the CRs are estimated by applying the mis-identification factor

to the event yields of regions similar to the CRs, but in which an electron is required instead

of a photon.

The electron-to-photon fake probability can be measured by comparing the number of

events in which there is one good electron (tag) and one electron (probe) to that with one tag

electron and one probe photon, requiring the ‘tag-and-probe’ mass to be compatible with Z

mass within mZ ±10 GeV.

The tag electrons are selected with |η | < 2.37 and outside the calorimeter transition

region (1.37 < |η | < 1.52). They are required to be identified with the Tight++ criterion

with ET > 20 GeV, TopoEtcone40corr < 5 GeV and TopoEtcone40corr/ET < 0.1. The probe

photons are selected as the signal photons (see Chapter 10). The probe electrons are selected

with the same kinematic and isolation cuts as the signal photons, passing the Tight++ elec-

tron criterion.

The electron can also come from the W (→ eν)+ γ events, therefore Emiss
T is asked to be

less than 40 GeV to suppress this potential background. As a result, the trigger used in this

study is the photon trigger EF_g120_loose rather than the Emiss
T trigger used in the SR. The

side-bands of |Minv −mZ| ∈ [10,20 ] GeV are used to estimate the QCD background which

will be subtracted.

The invariant mass reconstructed by a pair of tag and probe electrons, as measured in

data, is shown as the black dotted curve in Figure 11.2; in this figure, the red dotted curve

shows the invariant mass reconstructed by a pair of tag electron and probe photon. The mis-

identification factor is computed as the ratio of probe photon events to the probe electron

events within the window of mZ ±10 GeV after subtracting the QCD background.

The following three systematic uncertainty sources are considered when estimating the

fake photon backgrounds using a ‘tag-and-probe’ method. The first source comes from the

potential bias of the ‘tag-and-probe’ method, which is estimated by comparing the ‘tag-

and-probe’ result with the real value from Z → e+e− MC simulation samples. The second

one comes from the bias to estimate the fake photon SR events with the mis-identification

factor derived using only Z events. This is evaluated by comparing the difference of the

real electron-to-photon mis-identification factor between the Z → e+e− and the W → eν

MC simulation samples. The last one is contributed from the variation of the |Mint −mZ|

‘window’ size, this is evaluated by varying the ‘window’ size with the side-bands changed
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Fig. 11.2 Invariant mass, Minv of the ‘tag’ electron with the ‘probe’ electron or ‘probe’

photon as measured in data [144].

accordingly for the QCD background subtraction.

This mis-identification factor is found to depend on η and pT, and is therefore measured

as a function of pT in three pseudorapidity bins: |η | ≤ 0.8, 0.8 < |η | ≤ 1.37 and |η | >

1.52. The mis-identification factors measured from data for each combination of η and pT

bins are shown in Table 11.1 with the uncertainties. The measured mean value of the mis-

identification factors varies from 1.1% to 3.9%, with the maximum in the end-cap region

and the minimum in the central region, and the factors generally decrease with increasing

pT.

ET bins [GeV] |η |≤ 0.8 0.8 < |η |≤ 1.37 |η |≥ 1.52

[125,150) 2.1±0.3±0.6% 2.5±0.4±0.8% 3.3±0.5±0.4%

[150,200) 1.1±0.3±0.3% 1.5±0.4±0.4% 3.9±0.7±1.0%

[200,−) 1.1±0.4±0.2% 1.3±0.5±1.1% 3.6±1.3±1.0%

Table 11.1 The electron-fake-photon mis-identification factor measured from the data with

the statistic uncertainty followed by the systematic one [144].

The tag-and-probe control region used to estimate the electron-fake-photon events in

the SR selects e+Emiss
T events as in the SR, but with the ‘probe’ electron instead of the

signal photon. The electron-to-photon mis-identification factor is applied to electrons event-

by-event according to η and pT, in the mono-electron CR. In order to estimate the fake

electron background in the lepton CRs and the validation region (see Section 11.6), the

mono-electron control region is rebuilt correspondingly.
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11.3.2 Fake photons from mis-identified jets

The background from events containing a jet mis-identified as a photon is mainly sup-

pressed by the tight identification criteria and isolation requirement of the signal photon.

The remaining contributions in the SR from these events are estimated from a measurement

in a control region normalized by the jet-to-photon fake factor measured in data.

This control region is built to be orthogonal to the SR by inverting the photon isolation

cut. Considering that some true photon events could leak in this control region if it is

kinematically too close to the SR, the inverted isolation cut is therefore set to be 10 GeV <

TopoEtcone40corr < 45 GeV, as a trade-off between minimizing the true photon leakage

and keeping sufficient statistics.

The isolation requirement can be treated independently from the following shape vari-

ables in the first EM layer used for the ‘tight’ identification criterion:

• The lateral EM shower width for the three central strips around the maximum strip;

• The fraction of the energy in the seven strips centered around the first maximum which

is outside of the three cells centered around the maximum strip;

• The difference between the energy of the strip with the second largest energy deposit

and the energy of the strip with the smallest energy deposit between the two leading

strips;

• The difference between the maximum and the second maximum strips of the cluster.

One can therefore derive the jet-to-photon fake factor from data in a ‘non-tight’ region by

inverting the tight photon criterion to a customized ‘non-tight’ criterion based on the above

discriminant variables.

All the four regions, including the SR, are shown in Figure 11.3 in a two dimensional

plane defined by the photon isolation variable and a subset of the photon identification

variables. The number of events measured in the non-isolated control region is noted as

NB, and that of the two ‘non-tight’ regions are MA and MB. The jet-to-photon fake factor

is computed as the ratio MA/MB. The superscript indicates the two isolation quality, whilst

M and N refers to the tight and ‘non-tight’ identification criteria, respectively. The true

photon leakage in the non-isolated control region is estimated using MC samples and noted

as NB,leakage. The jet-to-photon fake event count in the SR NA is therefore computed by

NA = (NB −NB,leakage)×MA/MB.

There are two sources of systematic uncertainty in this data-driven method. First, a

potential bias comes from the variation of the MC estimation to subtract the real photon

leakage in the control region. The second bias comes from the fact that the subset of the

photon identification variables is considered to be independent from the isolation variable,

in order to apply the fake rate measured from ’non-tight’ regions to the ’tight’ regions. Both
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Fig. 11.3 The four regions used to estimate the jet-fake-photon background in the signal

region, illustrated in a two dimensional plane defined by the photon isolation variable and a

subset of the photon identification variables. The jet fake photon background in the signal

region NA is estimated from the three control regions NB, MA and MB.

systematic uncertainty sources are studied with MC samples, and the combination gives the

final systematic uncertainty to the estimate of this background.

The fake factor is computed by comparing the measurements from MA to MB, and it is

measured as a function of Emiss
T in the central (|η |< 1.37) and end-cap (|η |> 1.52) regions

separately. The fake factor measured from data for each combination of Emiss
T and |η | is

shown in Table 11.2 with its uncertainties. The end-cap region is found more likely to have

jet-fake-photon than the central region: in the central region, the fake factor varies from

0.24 to 0.14 decreasing with Emiss
T , while it varies from 0.24 to 0.30 in the end-cap region.

Emiss
T bins [GeV] |η |< 1.37 |η |> 1.52

[110,150) 0.24±0.03±0.16 0.30±0.07±0.58

[150,−) 0.14±0.02±0.03 0.24±0.06±0.10

Table 11.2 The jet fake photon factor measured from data as a function of Emiss
T for different

|η | bins with the statistic uncertainty followed by the systematic one [144].

This estimate also covers the estimation of the contribution from multi-jets events, which

can mimic the monophoton signature if one jet is mis-reconstructed as a photon and one or

more of the other jets are poorly reconstructed, resulting in a large fake Emiss
T .
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11.4 Other minor backgrounds

11.4.1 Fake Emiss
T background

Events from the γ + jet process can contribute to the background in the SR when the jet

is poorly reconstructed and partially lost, creating fake Emiss
T . Though they are produced at

a large rate, this background is suppressed due to the requirements of large Emiss
T and a good

jet-Emiss
T separation (∆φ(jet,Emiss

T )> 0.4).

This background is estimated from MC simulation only, as a result, 0.4+0.3
−0.4 events are

predicted in the SR. A potential data-driven estimate has been tested by defining a control

region with events selected as in the SR but inverting the ∆φ(jet,Emiss
T ) requirement to enrich

the sample in events with a large Emiss
T mis-reconstructed from the aligned jet. The result

was found to be compatible with the estimate derived from the MC simulation, but with a

large statistical uncertainty due to only 23 events observed in this potential control region.

11.4.2 Study of other potential backgrounds in the SR

A few further potential backgrounds, in which there is a real photon produced, are

checked to see if they should be taken into account for the background estimation in this

analysis. Contributions from these backgrounds are checked in the SR at the reconstruction

and the generator level. Table 11.3 shows each process considered, along with the generator

used, the cross-section computed at NLO (except for the di-photon production), the size

of the samples, the product of acceptance and efficiency (acceptance) in the SR, and the

SR yield using reconstructed objects (real objects) for 20.3fb−1 of data at a center-of-mass

energy of 8 TeV.

The check at the reconstruction level does not subtract fake-photon contributions sourced

from electrons or jets, which are already estimated by the data-driven methods described in

Section 11.3. Consequently, the yield predicted for samples such as tt̄ + γ may be overesti-

mated as the goal of this check is to find further sources of true γ background.

This study is performed on MC samples which were produced with an older version

for object calibration and have a worse resolution for Emiss
T compared to the MC samples

used in the analysis, due to a bug fixed when reprocessing the samples. Therefore, the

reconstruction-level yields should be considered as the upper limit on the number of ex-

pected events in the SR Summing up the yield of all the processes listed in Table 11.3 would

add a maximal contribution of 0.2% to the full background estimate in the SR. It can hence

be concluded from this study that the SM background composition already considered in

this thesis is sufficient for the background expectation study.
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11.5 Systematic uncertainties

At particle level, the processes of reconstruction, identification and calibration of each

interesting physics object (see Chapter 7) introduce various systematic uncertainties, which

affect the final event yields in all the analysis regions. These systematic uncertainties are

studied by dedicated combined performance (CP) groups in ATLAS . Recommendations are

given by the CP groups on how to take into account the variation of each uncertainty source.

These systematic uncertainties are introduced below according to the relevant particle type.

At the event level, uncertainties related to the integrated luminosity and the trigger effi-

ciency can also affect the final event yields; they are also introduced in the following text.

Various sources of systematic uncertainties are uncorrelated, and can hence be summed

in quadrature. Each source of systematic uncertainty can bring a variation to the event yield

giving a value greater or smaller than the nominal. All the systematic sources giving an

upward fluctuation are summed up to give the final upward variation on the yield. The same

is implemented for the systematic sources giving a downward fluctuation.

Photons and electrons

The uncertainties on the photon identification efficiency, introduced in Section 7.1, is

applied to all the photons in each event in the full Geant4 simulation samples. For all the

full-simulated samples, the photon identification efficiency variations are taken into account

to recompute the event yields. For the Atlfast–II samples, an overall conservative ±5%

uncertainty is applied to the event yield. It is a conservative uncertainty coming from the

preliminary studies which were available at that time. This conservative uncertainty was

validated when the recommendation became available. The final recommendation gives a

variation of ±2% on the event yield, which is well covered by the ±5% considered here.

An uncertainty on the photon isolation efficiency (ε
γ
iso) is also applied. It is obtained in

this analysis by comparing various MC simulation samples to the data in the central and the

end-cap regions. The MC simulation considered includes samples of background (Z+γ and

γ + jet) and signal. In order to take into account the effect brought by different generators,

two simulated γ + jet samples are checked, which are generated with SHERPA and PYTHIA

8, respectively. As all the validated MC samples are found to agree with data within 4%, an

overall symmetric uncertainty of 4% is applied to all the simulation samples in this thesis.

As introduced in Section 7.1.3, electrons and photons share a common energy calibration

process. Therefore, the corresponding uncertainties introduced from this calibration process

are introduced together here. Five uncertainties of this type are taken into account in this

thesis, and each type can be varied up and down. These five uncertainties are studied in
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details in Reference [92]. They are respectively:

• the uncertainty on the material distribution related to the inter-calibration of the first

and second EM layers, for electrons and photons;

• the uncertainty on the presampler energy scale for both electrons and photons;

• an additional scale uncertainty applied for low-pT (< 20 GeV) electrons;

• the uncertainty on the energy resolution smearing procedure;

• the uncertainty on the energy scale, given by the study of Z → e+e− events for elec-

trons and photons.

In addition to the systematic uncertainties coming from the electron/photon energy cali-

bration process, further uncertainties, described in Reference [99], are applied to electrons,

concerning the electron identification and reconstruction efficiency scale factors. The scale

factor comes from the combined efficiency measurement from three channels: Z → e+e−,

W → eν and J/Ψ → e+e−.

Jets

Systematic uncertainties related to the jets can be classified into two categories: one

refers to the jet energy resolution (‘JER’) and is described in details in Reference [145];

the other is coming from the jet calibration, including variations from the jet energy scale

(‘JES’) and from the pile-up suppression. All the uncertainty sources can be varied up and

down, except for the JER uncertainty.

The JES uncertainties are described in Reference [110], and ten different sources are

considered in this analysis, including the reduced set of nuisance parameters from in-situ

analyses, uncertainties in the η inter-calibration and the single hadron (corresponding to a

high pT jet) response measurements. Uncertainties due to the use of different simulation

conditions in Monte Carlo samples such as the fast simulation samples are also considered.

The pile-up conditions used in the pile-up corrections to calibrate the jet energy (see

Section 7.4) is sensitive to the distribution of the average number of interactions per bunch

crossing, ⟨µ⟩, and the number of reconstructed vertices in the event, NPV . Therefore, uncer-

tainty sources related to the pile-up corrections are included into the JES uncertainties.

Muons

Eight sources of systematic uncertainties related to the muons are taken into considera-

tion. They are linked to the momentum scale and the resolution, as well as to the reconstruc-

tion efficiency. The momentum resolution uncertainties considered include uncertainties
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coming from the measurement of the momentum in the muon spectrometer and the inner

detector.

Missing transverse energy

For the Emiss
T computation introduced in Section 7.5, energy deposits in the ATLAS de-

tector are associated to various physics objects which are specifically calibrated. All the

uncertainties related to the physics objects introduced above are propagated to the Emiss
T

computation. In addition, uncertainties on the energy scale and resolution of the SoftTerm

(see Section 7.5) are also taken into account.

Luminosity

As introduced in Chapter 9, an overall symmetric uncertainty of 2.8% [119] on the

integrated luminosity 20.3fb−1 is applied to all the number of events given by the MC

prediction, including γ + jet events and the signal samples (see Chapter 13).

Trigger efficiency

Two different triggers are used in this analysis: the Emiss
T trigger, EF_xe80_tclcw_tight

and the photon trigger EF_g120_loose. The uncertainties are obtained in the three lepton

CRs and the VR by comparing the efficiency measurement as a function of Emiss
T , measured

in the data to the one obtained in MC simulation. The trigger efficiency from MC simulation

is given as the average of the integrated efficiencies of background samples composed of

Z(→ νν̄)+ γ , W (→ µν)+ γ and Z(→ µ
+

µ
−)+ γ , weighted by the yield of the sample in

that region.

A conservative symmetric uncertainty of 1% is derived from this study and will be ap-

plied to all the MC event yields. This study shows a 0.99± 0.01 efficiency of the Emiss
T

trigger in the SR, and an efficiency of 1.00+0.00
−0.01 for the photon trigger in the lepton CRs.

Theory uncertainties

At the generator level, the uncertainties related to the PDF can lead to variations of both

the cross-section (σ ) and the acceptance times efficiency (A× ε). They are evaluated by

following the PDF4LHC recommendations [146]. The PDF uncertainties can be classified

into two categories:
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• The inter-PDF uncertainties are computed as the difference between the mean value

of PDFs from different families. They are evaluated as the symmetric uncertainty

around the center of an envelope of two PDFs, shown in Figure 11.4.

• The intra-PDF uncertainties are computed from the systematic uncertainties from

the fit process using all the PDF sets within a given PDF family. They are evalu-

ated using either the Hessian method [147, 148] or the standard deviation depend-

ing on the PDF family: uncertainties on CTEQ6L1 and CT10 are computed using

the symmetric Hessian method with a 68% confidence level; while uncertainties on

MSTW2008lo68cl are derived from the asymmetric Hessian method; the uncertain-

ties on NNPDF2.1LO are given simply as the standard deviation of the PDFs.

Another source of theoretical uncertainty for the MC simulated background samples

is the scale uncertainty, which comes from the uncertainties on the renormalization and

factorization scales. It can impact both the cross-section and the acceptance times efficiency,

and it is estimated by increasing and decreasing the scale factors by a factor of 2.

Fig. 11.4 Conceptual illustration of the PDF uncertainties.[149]

11.6 Background estimate validation

The techniques used to estimate the V + γ backgrounds are checked in a VR, which is

similar but orthogonal to the SR.
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The VR events are selected with the same criteria as the SR, but lowering the Emiss
T

to the region of (110,150) GeV and enlarging the photon pseudorapidity range to |η | <

2.37 (excluding the calorimeter barrel and end-cap transition region 1.37 < |η | < 1.52) to

increase statistics.

There are two more specific cuts added to the VR. Given the fact that γ + jet and fake

photon backgrounds will be increased when loosening the Emiss
T cut, the first additional cut is

set to suppress these backgrounds to a level similar to that in the SR. This is implemented for

the selected events with a jet by asking the azimuthal angle between the photon and the jet

to be ∆φ(γ, jet) < 2.7. The other additional cut is applied on the azimuthal angle between

the photon and Emiss
T with ∆φ(γ,Emiss

T ) < 3.0, in order to minimize the contamination of

the signal events in the VR. The signal suppression power with the cut ∆φ(γ,Emiss
T ) < 3.0

applied has been validated by comparing the signal significance from the VR to the SR

rescaled to the 7 TeV data size for all the signal samples. The signal significance in the VR

is below that in the rescaled SR.

The three lepton CRs are rebuilt to be consistent with the VR definition in order to

derive the VR Standard Model expectation. The ∆φ(γ,Emiss
T ) cut reduces too much statistics

in these CRs in which no signal event is expected, therefore this cut is not applied in these

CRs. This was proven not to bias the estimation, since the distribution shape of ∆φ(γ,Emiss
T )

is found to agree well between MC and data in these CRs. The fake photon backgrounds

based on data-driven estimation methods are recomputed accordingly.

In the VR, 307 events are observed in data. The total background estimate, obtained

from the background fit (see Section 11.1) gives 272±17(stat.)±14(syst.) events expected

in the VR. The post-fit background estimate in the VR is in reasonable agreement with the

observed data within two standard derivation (2σ ). Table 11.4 shows the post-fit expectation

for each of the background processes in the VR, where the irreducible background Z(→
νν̄)+ γ represents 56% of the whole background.

The discriminant kinematic distributions are also checked from data to the background

estimation in the VR. Figure 11.5 shows the comparison of the measured and expected

Emiss
T distribution in the VR; in the lower panel the ratio of the data and the background

expectation is given. A good agreement between the estimation and measurement is shown

in this figure for Emiss
T , and it is the same for the other variables checked.
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Process Event yield

Z(→ νν̄)+ γ 153±16±10

W (→ ℓν)+ γ 67±5±5

W/Z + jet, tt̄,diboson 47±2±14

Z(→ ℓ+ℓ−)+ γ 2.9±0.3±0.6

γ + jet 2.5+4.0
−2.5

Total background 272±17±14

Data 307

Table 11.4 Observed and expected event yields from Standard Model backgrounds in the

validation region (VR). The uncertainties given are the statistical uncertainty followed by

the systematic one. In the case of the γ + jet process, a global uncertainty is given.

Fig. 11.5 The Emiss
T distribution in the validation region (VR), where the bottom panel shows

the ratio of data and background expectation [150].
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11.7 Background estimate results

In the SR, there are 521 events observed in data, and the total Standard Model back-

ground expectation in the SR after the background-only fit is 557± 36(stat.)± 27(syst.).

Table 11.5 shows the post-fit expectation for each of the background processes in the SR.

The total background expectation is dominated by Z(→ νν̄)+ γ which represents approxi-

mately 70% of the background in the SR.

Process Event yield

Z(→ νν̄)+ γ 389±36±10

W (→ ℓν)+ γ 82.5±5.3±3.4
W/Z + jet, tt̄,diboson 83±2±28

Z(→ ℓ+ℓ−)+ γ 2.0±0.2±0.6

γ + jet 0.4+0.3
−0.4

Total background 557±36±27

Data 521

Table 11.5 Observed and expected event yields from Standard Model backgrounds in the

signal region (SR). The uncertainties given are the statistical uncertainty followed by the

systematic one. In the case of the γ + jet process, a global uncertainty is given.

The systematic uncertainties shown in Table 11.5 are obtained from the background-only

fit, considering all the uncertainty sources. The post-fit value of each uncertainty source is

listed in Table 11.6. The dominant systematic uncertainty (4.6%) comes from the electron

fake rate. Uncertainties from the reconstruction and identification efficiency corrections ap-

plied to the electrons and muons in the MC samples, give relative uncertainties of 1.3% and

0.7% respectively. The anti-correlation between the SR and the lepton CRs are taken into

account, with respect to the uncertainties related to the lepton identification and reconstruc-

tion efficiency. This comes from the fact that leptons are vetoed in the SR but identified

in the CRs. A 0.6% relative uncertainty comes from the uncertainties on the energy scale

calibration for simulated electrons and photons. The photon energy resolution, isolation and

identification efficiencies together give a relatively small uncertainty of 0.1%. The JES and

JER uncertainties contribute 0.1% and 0.5% respectively. The uncertainties associated to

the SoftTerm in the Emiss
T computation give a relative uncertainty of 0.3%. The theoretical

uncertainties related to the PDF and scale factors in the simulation samples at the genera-

tor level gives in total a 0.7% uncertainty on the background estimate in the SR. Besides,

the uncertainty on the jet energy scale for pile-up suppression, and the uncertainties on the

trigger efficiency and luminosity, are found to have negligible effects on the background

estimation.
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Uncertainty source Relative effect in SR

Electron id/reco efficiency −1.3%+1.3%

E/γ energy scale −0.6%+0.4%

E/γ energy resolution −0.1%+0.01%

Photon identification efficiency −0.04%+0.05%

Photon isolation efficiency −0.0%+0.01%

Jet energy resolution −0.5%+0.5%

Jet energy scale −0.0%+0.1%

Jet energy corrections related to pile-up −0.0%+0.06%

Luminosity −0.0%+0.01%

Emiss
T SoftTerms scale and resolution −0.3%+0.1%

Muon reco efficiency −0.7%+0.7%

Muon momentum scale −0.0%+0.01%

Muon momentum resolution −0.0%+0.01%

Theoretical uncertainty −0.7%+0.7%

Trigger efficiency −0.0%+0.01%

Electron fake photon −4.5%+4.6%

Jet fake photon −0.1%+0.1%

Statistical error −6.4%+6.4%

Total 557±36(stat)±27(syst)

Table 11.6 The relative effect of the various uncertainty sources on the total background in

the SR [151]. Results are shown for V γ backgrounds estimated with the simultaneous fit

technique. Uncertainties are the sum in quadrature of the corresponding individual contri-

butions.

All the systematic uncertainties are treated as orthogonal, giving a total systematic un-

certainty on the post-fit background estimate in the SR of ∼ 5%, with a statistical uncertainty

of ∼ 6%.

The Emiss
T distribution in the SR is shown in Figure 11.6 compared to that of the post-fit

background expectation, and the similar comparisons in the three lepton CRs are shown in

Figure 11.1. In Figure 11.1, one can see that the CRs are indeed enriched in the background

process of interest as introduced in Section 11.2. Besides, the lower panel of each histogram

in Figures 11.6 and 11.1 shows the ratio of data to the post-fit MC estimate, indicating a good

agreement in each region between the data and the post-fit background estimate within the

global uncertainty.
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Model-independent results

If an excess of γ +Emiss
T events is found with respect to the Standard Model expectation,

it can be noted as Nsig and presented as:

Nsig = σvis ×
∫

Ldt, (12.1)

where
∫

Ldt is the integrated luminosity equal to 20.3fb−1, and σvis is the visible cross

section produced by any BSM physics, defined as the product of acceptance (A), selection

efficiency (ε) and production cross section (σ ): σ ×A× ε .

As indicated in Table 11.5, the number of events observed in the SR is consistent with the

post-fit SM background expectation. A model-independent upper limit at 95% confidence

level (CL) will be set on the number of events in the SR, Nsig, which could come from any

BSM physics in the SR. This model-independent result can be applied to models of new

physics, by comparing this limit to their predicted yield in the SR.

A model-independent signal fit [141] is used in this case. It is similar to the background-

only fit introduced in Section 11.1, but with the likelihood being constructed from both the

SR and the CRs. The observed and expected numbers of events in the SR follow Poisson

pdfs. The correlations of the parameters are also taken into account. The number of signal

events in the SR is treated as a free parameter of interest (POI) in the fit, and no signal

contamination is considered in the CRs.

After the fit, the upper limit is derived based on the CLS method described in Refer-

ence [152]. The one-sided p-value is computed for each tested Nsig using the distribution

of the test statistic, which is obtained by throwing pseudo experiments. The test statistic is

defined as the profile likelihood ratio, shown in Equation 12.2, where the likelihood function

is constructed from the model-independent signal fit. In the numerator, N̂sig and θ̂ are the

values which maximize the likelihood function, whilst
ˆ̂θ maximizes the likelihood for each
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test value of Nsig in the denominator.

qµsig
=−2log

(

L (Nsig ,
ˆ̂θ)

L (N̂sig , θ̂)

)

(12.2)

As the distribution of the test statistic is well behaving for a sample of large data statis-

tics, asymptotic formulae [142] are used to compute the result instead of using pseudo

experiments. The expected p-values are computed using likelihoods obtained using the

background-only fit. The observed and expected p-values are shown as a function of σvis =

σ ×A× ε in Figure 12.1. The 1σ and 2σ uncertainty bands on the expected p-values are

also shown in this figure. The value of σ ×A× ε for which the p-value reaches 0.05 (0.10)

is the upper limit on the visible cross section for new physics production at 95% (90%) CL.

Fig. 12.1 Evolution of the p-values for the signal hypothesis (CLs) as a function of the

visible cross section (σ ×A× ε) of new physics. The σ ×A× ε values with observed p-

values below the 95% (90%) CL line are excluded at 95% (90%) CL.

The upper limits are also given on the fiducial cross section, σ ×A, in order to present the

model-independent result in a format better suited for re-interpretation. The selection effi-

ciency ε is determined from signal samples (the EFT DM samples described in Section 9.3)

with pure γ +Emiss
T final state giving a conservative estimate of 69%. The upper limits on

the visible cross section and fiducial cross section at 95% CL are shown in Table 12.1.
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σ ×A× ε [fb] σ ×A [fb]

95% CL, observed 3.64 5.3

95% CL, expected 4.68 6.8

Table 12.1 The observed and expected upper limits at 95% CL on the visible cross section

σ ×A× ε , in fb. The fiducial cross section (σ ×A) limits shown in the third column are

obtained by using a conservative estimate of ε = 69%.





Chapter 13

Model interpretation

The monophoton analysis results presented in Section 11.7 can also be interpreted in

the two models introduced in Section 8.1. They are a EFT dark matter model describing

the WIMP pair production coupling with two photons, and a R-parity conserving simplified

supersymmetric model describing a pair of left and right handed first and second generation

mass degenerate squark pair production. The result interpretation to put constraints to the

parameter space of these two models will be described in Section 13.1 and 13.2, respectively

13.1 Dark matter model inspired by the Fermi-LAT re-

sults

In the monophoton analysis, one can compute an upper limit on the cross section σexcluded

of the process χχ̄ → γγ as shown in Figure 8.2, for given mχ , M∗, k1 and k2. According

to the Equation (8.2), one can use σexcluded to compute the lower limit on the suppression

scale, M∗
excluded. For mχ = 130 GeV, an excluded area can then be drawn in the plane of k1

and k2, by comparing M∗
excluded to M∗

Fermi.

13.1.1 Signal cross section

The cross sections (σ ) for all the samples introduced in Section 9.3 are taken directly

from the generator; they are shown as a function of k1 and k2 for different masses of dark

matter particles in Figure 13.1. It shows that cross sections decrease with the increase of

the mass of dark matter particles since it is harder to produce heavier particles at the LHC.

For a given mass of dark matter particles, the cross sections increases more rapidly with k2

than with k1 resulting from their different ratios in the coupling of dark matter particles to
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a photon and a Z boson, as shown in Equation (8.1). The theoretical uncertainties on the

cross section are given in Section 13.1.2, they will be considered when setting the observed

exclusion limits in Section 13.1.3.

Fig. 13.1 Cross sections in fb as a function of k1 and k2 for the EFT DM samples with

mχ = 10 GeV (top left), mχ = 130 GeV (top right) and mχ = 1000 GeV (bottom).

13.1.2 SR yields and uncertainties

The SR event yields for all the signal samples for 20.3fb−1 at
√

s = 8 TeV are shown

in Figure 13.2 in the plane of k1 and k2 for each WIMP mass. Similarly, the product of

acceptance and efficiency (A×ε) for each signal sample in the SR are shown in Figure 13.3.

This figure shows that A× ε is mostly independent of k1 and k2, which mainly affect the

cross section, as these parameters control the interaction of the dark matter particles with

photon and Z boson.

Figure 13.4 shows how the distribution of Emiss
T changes with the dark matter mass for

a given k1 and k2. The Emiss
T distribution shifts to higher value as the dark matter mass

increases, leading to an increased A× ε , as shown in Figure 13.3.
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Fig. 13.2 Event yield in the signal region for 20.3fb−1of data as a function of k1 and k2

for the EFT DM samples with mχ = 10 GeV (top left), mχ = 130 GeV (top right) and

mχ = 1000 GeV (bottom).

Theory uncertainties

At the generator level, three independent categories of theory uncertainties are taken into

account, which will be added up in quadrature to estimate their effect on the cross section

or A× ε .

Two of the uncertainties, the PDF uncertainties and the scale uncertainties, are intro-

duced in Section 11.5. They are computed using LHAPDF [153, 154].

The third category is the ISR/FSR uncertainties which affect the A× ε . They are eval-

uated in PYTHIA 8 by varying the parameters such as the strong coupling strength αS or

the kinematic parameters, which control the ISR or FSR development in PYTHIA 8 . The

considered parameters are varied up and down with respect to their default values. Further

information can be found in References [84, 136, 155].

For all the signal samples, the PDF (scale) uncertainties on the cross section is approx-

imately ±8% (+10%
−8% ). They will be shown as a variation of the observed upper limits in

Section 13.1.3. The PDF and scale uncertainties on the cross section for each signal sample

are listed in Tables 2 to 4 in Appendix Conclusion.
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Fig. 13.3 The product of the acceptance and the efficiency [%] in the SR as a function of k1

and k2 for the EFT DM samples with mχ = 10 GeV (top left), mχ = 130 GeV (top right)

and mχ = 1000 GeV (bottom).

Fig. 13.4 The Emiss
T distribution for three EFT DM signal samples in the signal region.
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The uncertainties on A× ε vary among all the signal samples up to approximately 3%,

and are dominated by the ISR/FSR uncertainties. They will be treated as a nuisance param-

eter in the model-dependent fit procedure, as the other systematic uncertainties introduced

in Section 11.5. The PDF, scale and ISR/FSR uncertainties on the product of acceptance

and efficiency in the SR for each signal sample are listed in Tables 5 to 7 in Appendix Con-

clusion.

Other systematic uncertainties

Beside the theoretical uncertainties, the systematic uncertainties introduced in Section 11.5

are also computed for each signal sample. The final uncertainties on the SR yield of each

signal sample are dominated by the 5% symmetric uncertainty from the photon identifi-

cation efficiency, the 4% symmetric uncertainty from the photon isolation efficiency and

the 2.8% symmetric uncertainty from the integrated luminosity. The absolute values of the

systematic uncertainties for all the signal samples are approximately ∼ 7-8% as listed in

Tables 8 to 10 in Appendix Conclusion.

13.1.3 Results

As no excess of events is observed in this analysis, the results shown in Section 11.7 are

used to compute lower limits on M∗ for all the signal samples of this model via an exclusion

fit.

The exclusion fit [141] procedure is similar to the model-independent signal fit (discov-

ery fit) introduced in Chapter 12, but it takes the systematic and theoretical uncertainties on

the signal A× ε as input in the SR.

According to the Equation (8.2), the lower limits on the suppression scale (M∗
excluded)

are translated from the upper limits on the cross section (σexcluded) via

M∗
excluded =

(

Nexpected

Nexcluded

) 1
6

×M∗
nominal, (13.1)

where Nexpected refers to the expected event yields shown in Figure 13.1, and Nexcluded =

σexcluded × 20.3fb−1. The lower limits are computed at 95% CL on M∗ for all the signal

points. The results are shown as the numbers in Figures 13.5 to 13.7 in the plane of k1

and k2 for mχ = 130,10,1000 GeV. As indicated by these three figures, M∗
excluded decreases

with mχ for a given k1 and k2 whilst it increases with k1 and k2 for a given mχ , as expected.

As introduced in Section 2.2, the EFT can be valid for a s-channel model when M∗ >
mχ

2π .

Therefore some lower limits on the suppression scale M∗ with small k1 and k2 for mχ =
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1000 GeV may not be valid in this case. However, the procedure to insure EFT validity for

this specific model is still under discussion within the ATLAS-CMS Dark Matter Forum 1;

it was therefore not implemented neither in the published paper, nor in this thesis.

The results for mχ = 130 GeV are shown in Figure 13.5, where the observed and ex-

pected exclusion boundaries on M∗ are also given by comparing the M∗
excluded to the value

required to explain the Fermi-LAT results (see Section 8.1). A large area of the parameter

space of k1 and k2 is excluded in this model by comparing to the Fermi-LAT results.

Fig. 13.5 The 95% CL observed lower limits on M∗ as a function of k1 and k2 for the EFT

dark matter model inspired by Fermi-LAT (mDM = 130 GeV). The limits are proportional to

the expected number of event yields in the SR, which increase with k1 and k2. The observed

(expected) exclusion boundary indicates that the upper region is excluded at 95% CL by

comparing to the Fermi-LAT line results.

1 The forum aims at harmonizing the dark matter benchmarks used in both experiments for the next LHC

run.
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Fig. 13.6 The 95% CL observed lower limits on M∗ as a function of k1 and k2 for the EFT

dark matter model inspired by Fermi-LAT (mDM = 10 GeV).

Fig. 13.7 The 95% CL observed lower limits on M∗ as a function of k1 and k2 for the EFT

dark matter model inspired by Fermi-LAT (mDM = 1000 GeV).
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13.2 Squarks in a compressed mass spectrum scenario

In the monophoton analysis, one can compute the upper limits on the cross sections for

given mq̃ and msquark −mχ̃0 in this compressed squark model. One can put an exclusion

boundary in the plane of mq̃ and msquark −mχ̃0 by comparing the upper limits on the cross

section to the theoretical values.

13.2.1 Signal cross section

Cross sections for the signal samples introduced in Section 9.3 are calculated at next-

to-leading order in the strong coupling constant including the resummation of soft gluon

emission at next-to-leading-logarithm accuracy when available [156–160]. The nominal

cross section and its uncertainty are taken from an envelope of cross-section predictions

using different PDF sets and factorization and renormalization scales, as described in Ref-

erence [161].

The simulated signal points with their cross sections are shown in Figure 13.8, and the

most compressed region shown in these figures is at ∆M = 5 GeV.

Fig. 13.8 Cross section in fb for each signal of the squark model, shown in the plane of mq̃

and mq̃ −mχ̃0
1
.
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13.2.2 SR yields and uncertainties

Figure 13.9 contains four signal grids showing various SR quantities computed at each

signal point, including the SR event yield for 20.3fb−1at
√

s = 8 GeV (top left), the accep-

tance and efficiency in the SR (top right), the SR acceptance obtained with truth information

given by the MC simulation (bottom left), and the SR selection efficiency which is computed

from the measurement of the A× ε and A (bottom right).

(a) Event yield for 20.3fb−1of data
(b) The product of the acceptance and the effi-

ciency (%)

(c) Truth acceptance (%). (d) Selection efficiency (%)

Fig. 13.9 Various quantities in the SR is shown as a function of mq̃ and mq̃ −mχ̃0
1
, for all

the signal points of the supersymmetric simplified model in a compressed squark scenario.

Only the first and second generation squarks are considered and are degenerate in mass.

A× ε is found to decrease with increasing ∆M in Figure 13.9. This is expected as, for

signal events with larger ∆M, the quarks from the decay product of the squarks are more

likely to be reconstructed as jets, and thus to contain more than one jet in the final state.

This can be seen in the distribution of the jet multiplicity before the ‘jet veto’ cut, shown in

Figure 10.10 (top left). For the events with quarks more likely to be reconstructed as jets ,



142 Model interpretation

the corresponding Emiss
T distribution shifts slightly to lower values as shown in Figure 13.10

(top).

Figure 13.9 also shows that A×ε increases with mq̃, which is expected as the signals with

higher squark mass produce larger Emiss
T , as shown in Figure 13.10 (bottom). As discussed

in the SR optimization studies shown in Section 10.3.2, having exclusive SRs with different

Emiss
T cut could increase the sensitivity at higher masses if the statistics in the CRs with

higher Emiss
T cut was sufficient. This could potentially be done in the monophoton analysis

performed in the next LHC run, as will be discussed in Chapter 15.

Cutflow

Table 13.1 shows an example of the cutflow for one signal point with mq̃ = 200 GeV and

mχ̃0
1
= 195 GeV. This cutflow along with the efficiency, acceptance, σ and uncertainties for

all squark samples shown in Figure 13.9 are published on HepData [162], which offers aux-

iliary information for external users to re-implement the analysis result. This information

has been used in Reference [163], which has reproduced and validated this analysis using

the MadAnalysis5 [164, 165] framework.

Nominal 9989

Pre-selection:

1. Trigger 8582

2. Good vertex 8574

3. Cleaning cuts 8213

SR selection:

1. Emiss
T > 150 GeV 4131

2. At least one loose photon with pT> 125 GeV (|η |< 2.37) 2645

3. The leading photon is tight with |η |< 1.37 2068

4. The leading photon is isolated 1898

5. ∆φ(γ leading,Emiss
T )> 0.4 1887

6. Jet veto: Njet ≤ 1 and ∆φ(jet,Emiss
T )> 0.4 1219

7. Lepton veto 1188

Table 13.1 Example cutflow for the SUSY compressed squark signal point with mq̃ =
200 GeV and mχ̃0

1
= 195 GeV; 10,000 events were generated.

Theory uncertainties

The theory uncertainties on the cross sections come from the uncertainties on the PDFs,

renormalization and factorization scales and ISR/FSR. They are computed with a package

based on Prospino 2.1 [166] and developed by the SUSY working group in ATLAS, which is
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Fig. 13.10 The Emiss
T distributions of various squark signal points, for mq̃ = 100 GeV with

different mq̃ −mχ̃0
1

(top) and for mq̃ −mχ̃0
1
= 5 GeV with different mq̃ (bottom).

known as SUSYSignalUncertainties. These uncertainties are symmetric and are ∼ 15%

for different signal points. They will be used to compute the variation of the observed model

exclusion limits in Section 13.2.3.

The theoretical uncertainty on the SR acceptance (A) for each signal point is estimated

by varying the value of the strong coupling strength αS, the renormalization and factoriza-

tion scales, and the generator (MADGRAPH and PYTHIA 6) matching parameters. These

uncertainties vary from 0 to 9% and are treated as symmetric uncertainties on the SR event
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yields; they are treated as nuisance parameters in the exclusion fit with a Gaussian distri-

bution as described in Section 13.2.3. The overall theoretical uncertainties on cross section

and SR acceptance for each signal point are shown in Table 14 in Appendix Conclusion.

Other systematic uncertainties

All the systematic uncertainties introduced in Section 11.5 are computed for each signal

sample. The final systematic uncertainties do not differ much from one signal point to

another for ∆M < 10 GeV, and the absolute values of the uncertainties vary from 7% to 9%.

The dominant uncertainties come from the identification and isolation efficiencies of the

photon. For signal points with ∆M = 25 GeV and 50 GeV, the uncertainties are dominated

by the uncertainties related to the jet, varying from 7.5% to 11.7%.

Figure 13.11 shows the maximum [%] from the up and down systematic uncertainties

on A× ε for each signal point of the compressed squark model, including the theoretical

uncertainties.

Fig. 13.11 The maximum [%] from the up and down systematic uncertainties on A× ε for

each signal point of the compressed squark model, including the theoretical uncertainties.

13.2.3 Results

Mass degenerate limits

The upper limits at 95% CL on the cross section are computed using the exclusion fit. All

the uncertainties on A× ε introduced in Section 13.2.2 are treated as nuisance parameters,
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and the visible cross section is set as the free parameter of interest in the fit.

The expected and observed upper limits on the cross section for all the signal points are

shown in the plane of mq̃ and mq̃ −mχ̃0
1

in Figure 13.12. By comparing these to the cross

sections shown in Figure 13.8, one can derive the expected and observed exclusion areas in

the phase space of mq̃ and mq̃ −mχ̃0
1
. They are shown in Figure 13.12 along with the uncer-

tainty band on the expected limit and the uncertainty band on the observed exclusion line

coming from the theoretical uncertainties on the cross section introduced in Section 13.2.2.

As introduced in Section 8.1, the very compressed region in the mass spectrum of this

model is particularly interesting for the monophoton analysis. For the most compressed

region in Figure 13.12, the monophoton analysis is able to exclude the squark mass, mq̃,

up to 250 GeV. This result is included in the summary plot of the ATLAS SUSY working

group, see Figure 3.3.

Fig. 13.12 Upper limits at 95% CL on the cross section for the compressed squark model,

as a function of the squark mass, mq̃, and of the difference between the squark mass and the

mass of the neutralino, mq̃ −mχ̃0
1
, in the compressed region of mq̃ −mχ̃0

1
< 50 GeV. The

observed (solid line) and expected (dashed line) upper limits from this analysis are shown;

the upper limit on the cross section (in fb) is indicated for each model point.

Non-degenerate limits

As discussed in Section 8.1, the photon in the model considered here can be radiated

from either the initial-state quarks or the intermediate squarks. The cross sections therefore
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differ for the up-type squark (ũ) and the down-type squark (d̃), which makes it possible for

the monophoton analysis to probe the squark charge if any signal is observed.

In order to obtain the exclusion boundaries for non-degenerate ũ and d̃ (the left and

right handed sparticles are still mass degenerate), the cross sections for all the signal points

are recomputed by allowing one or the other component to be generated in MADGRAPH 5.

Their A× ε are obtained from the signal samples described in Section 13.2.1 by requiring

the squark to be of the appropriate type in the SR events. The kinematic distributions were

checked and found to be in good agreement between the up and the down type squark pro-

duction. Both the theoretical and the systematic uncertainties to compute the final exclusion

boundaries follow the results from the degenerate signals. The upper limits at 95% CL in the

phase space of mq̃ versus mq̃−mχ̃0
1

for the up and the down type q̃ are shown in Figure 13.13,

along with the mass degenerate squark results already presented in Figure 13.12.

The non-degenerate limits differentiate the up-type squark from the down-type squark,

as shown in Figure 13.13. If there is a signal observed, one possible way to exploit this

monophoton feature to probe the charge information of the squark is to compare its result

with other channels which have the same model interpretation but which are not sensitive

to the charge. Such channel can be the monojet analysis, which will be introduced in Sec-

tion 14.2.

Fig. 13.13 The observed upper limits at 95% CL on the compressed squark model as a

function of mq̃ and mq̃ −mχ̃0
1
. The limits with mass degenerate squarks (red) are shown

compared with two non-degenerate scenarios: ũ (blue) and d̃ (green).
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Comparison to similar analyses at LHC

The monophoton final state is studied not only in ATLAS, but also in CMS. The CMS

monophoton analysis will be introduced in Section 14.1 where it will be compared to the

monophoton analysis in ATLAS.

There are many other analyses performed by the ATLAS collaboration which are looking

for new physics with a missing transverse energy signature. For example, one can look for

dark matter in a H(γγ)+Emiss
T final state [167], in a final state composed of a large missing

transverse energy and at least one b-jet [168], or in a final state consisting of a single charged

lepton and missing transverse energy [169]. The last example can also used to search for a

new heavy vector W ′ boson.

For the compressed squark model described in Chapter 8, instead of having a photon one

can have a jet accompanying large Emiss
T , which results in a monojet analysis. Although this

model is not included in the published monojet analysis at
√

s = 8TeV the re-interpretation

is ongoing. For the other model considered in this thesis, the EFT dark matter model inspired

by the Fermi-LAT result can also be probed in the mono-Z analyses.

The analyses which can provide constraints on the models considered in this thesis,

namely the monojet and mono-Z analyses, will be introduced in Section 14.2 and Sec-

tion 14.3 respectively.

14.1 The monophoton analysis in CMS

A monophoton analysis has also been performed by the CMS collaboration using 19.6fb−1

of data at center-of-mass energy of 8 TeV; it is published in Reference [170].

CMS is the other general purpose detector at the LHC, as mentioned in Chapter 5. Its

design differs from the ATLAS detector. The electromagnetic calorimeters in the barrel
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(|η | < 1.479) and in the end-caps (1.479 < |η | < 3.0) are lead tungstate crystal calorime-

ters, whilst the hadronic calorimeter covering the same regions is a brass and scintillator

calorimeter. The tracking system consists of silicon tracking detectors only, which are em-

bedded in a magnetic field of 3.8T provided by a superconducting solenoid which also sur-

rounds the calorimeters. The muon spectrometer of CMS is composed of drift tubes, cath-

ode strip chambers (CSC’s) and resistive plate chambers (RPC’s) which are interleaved with

steel return yoke plates [66], in order to provide good measurement of high–pT muons. The

physics objects are reconstructed and identified using a particle flow algorithm [171, 172],

The SR event selections are listed in Table 14.1, compared to the ones used in the AT-

LAS analysis as described in Chapter 10. As in the ATLAS analysis, the CMS analysis also

requires a high pT central photon, a large transverse missing momentum and vetoes leptons

in the SR; both analyses allow at most one jet with p
jet
T > 30 GeV which is well separated

from the photon. The exact value of the cuts in the CMS analysis differ slightly from the

ATLAS analysis, as shown in Table 14.1. In this SR, the number of events observed in data

is 630.

CMS ATLAS

Emiss
T > 140 GeV Emiss

T > 150 GeV

≥ 1 isolated photon with pT > 145 GeV,

|η |< 1.44

≥ 1 isolated photon with pT > 125 GeV,

|η |< 1.37

∆φ(γ,Emiss
T )> 2.0 ∆φ(γ,Emiss

T )> 0.4

≤ 1 jet with p
jet
T > 30 GeV, ∆R(γ, jet)> 0.5 ≤ 1 jet with p

jet
T > 30 GeV, ∆R(γ, jet)≥ 0.2

leptons vetoed with pℓT > 10 GeV,

∆R(γ,ℓ)> 0.5
leptons vetoed with p

µ

T > 6 GeV, pel
T >

7 GeV

A χ2 test to reduce fake Emiss
T from jets ∆φ(jet,Emiss

T )> 0.4

Table 14.1 The SR selections for the monophoton analysis in CMS compared to that in

ATLAS. The ‘isolated’ photon criteria in both analyses use different discriminant variables

according to the reconstruction methods, in a slightly different cone size (∆R < 0.3 in CMS

and ∆R < 0.4 in ATLAS). Jets are both reconstructed using a default anti–kt algorithm but

with slightly different radius parameters of R = 0.5 in CMS and of R = 0.4 in ATLAS. The

‘leptons’ here refers to muons and electrons.

For the estimation of the fake photon background, the CMS and the ATLAS monophoton

analyses both use similar data-driven methods.

For the real photon background, different methods are used in these two analyses. The

CMS analysis uses MC prediction only to estimate the contribution of the real photon back-

grounds (Z(→ νν̄) + γ and W (→ ℓν) + γ). The estimates are then normalized with an
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overall factor F = 0.94±0.06 which corrects for different cut efficiencies between data and

MC. The results are then cross checked using a Z(→ ℓ+ℓ−)+ γ CR. As described in Chap-

ter 11, the ATLAS monophoton analysis normalizes the real photon SR contribution using

data from CRs in a simultaneous fit.

The final background estimation result is given in Table 14.2, where the ’Others’ term

refers to the small contributions from events of W → µν , Z(→ ℓ+ℓ−)+ γ , γγ and γ + jet.

In the CMS analysis, the contribution from non-collision backgrounds is non-negligible,

including events from anomalous signals, cosmic ray muons and beam halo. Its estimate is

obtained from a data-driven method, and is found to come mainly from beam halo events.

In the ATLAS analysis, the non-collision backgrounds are checked in data [173] but found

to be negligible.

The total expected number of events predicted from Standard Model only is 614± 63,

in good agreement with the observed 630 events.

Process SR yield

Z(→ νν)+ γ 345±43

W (→ ℓ+ν)+ γ 103±21

W (→ eν) 60±6

jet → γ MisID 45±14

Beam halo 25±6

Others 36±3

Total background 614±63

Data 630

Table 14.2 Summary of the estimated backgrounds and observed number of events in the

SR, given by the CMS monophoton analysis [170]. > Backgrounds labeled as "Others"

refer to the small contributions from events of W → µν , Z(→ ℓ+ℓ−)+ γ , γγ and γ + jet.

Uncertainties include both statistical and systematic contributions.

Figure 14.1 compares the E
γ
T distribution measured in data to the SM background ex-

pectation. The measured data is found to be consistent with the SM background expectation

only.

The model-independent limit on the product of the cross section and the SR acceptance

(σ ×A) is 14fb at 95% CL (13fb expected). It is higher than 4.7fb set in ATLAS (6.8fb

expected), which is linked to the fact that both of the expected number of events (614) and

the uncertainty (10.2%) are larger than the ones (557 and 8.1%) obtained in ATLAS.

The E
γ
T spectrum shown in Figure 14.1 is used to set the model-dependent limits. Al-

though none of the two models described in this thesis is covered by the CMS analysis, one

can nevertheless compare limits on some other EFT dark matter models which are common
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Fig. 14.1 The measured E
γ
T distribution in the SR is compared to the SM background pre-

diction [170]. The red dashed line shows the effect of a potential signal.

to both analyses, but which were not the focus of the work presented in this thesis. For

these models, the ATLAS expected limits are more stringent at lower dark matter mass (as

expected from the looser model-independent limit set by CMS) while the CMS expected

limits are more stringent at higher masses. This is expected as CMS uses a shape fit to the

E
γ
T spectrum to place exclusions on models, while the ATLAS analysis is a cut-and-count

analysis in one signal region. The higher mass models tend to populate the highest E
γ
T bins

(see Figure 10.10), which have less background; the shape fit is therefore more powerful for

high-mass models.

In order to give an idea on how the limits vary with the E
γ
T cut, the model-independent

limits at 95% CL are given as a function of the E
γ
T cut in Figure 14.2. The relative uncertainty

to the expected limits increases with E
γ
T. The tightest SR with E

γ
T > 700 GeV sets the

strongest observed limit of 0.22fb at 95% CL.
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14.2 The ATLAS monojet analysis

Pair production of invisible BSM particles, such as dark matter particles, can be probed

with an ISR signature, such as an ISR photon as described in this thesis. Another example

can be an ISR jet, leading to a production of qq → χχg as shown in Figure 14.3. The

corresponding event yield is higher than the one in the monophoton analysis due to the

strong coupling constant versus the electroweak coupling constant. A monojet analysis was

performed by ATLAS on 20.3fb−1 of proton-proton collisions data at
√

s = 8 TeV [174].

q̄ χ

χ

M∗

g

q

g χ

χ

M∗

g

g

Fig. 14.3 Feynman diagrams for dark matter pair production leading to a monojet final state.

The monojet analysis defines nine signal regions which differ by their Emiss
T cuts. The

SRs are ordered with the Emiss
T cut increasing from 150 GeV to 400 GeV with an inter-

val of 50 GeV and from 400 GeV to 700 GeV by 100 GeV. The dominant backgrounds

are coming from W (→ ℓν) + jet and Z(→ νν̄) + jet. These backgrounds are estimated

by normalizing the MC prediction in control regions. Other backgrounds include multijet,

Z(→ ℓ+ℓ−)+ jet, diboson and top. Apart from the multijet background , which is estimated

from a data-driven method, the other small backgrounds are given directly by the MC sim-

ulation. The estimated and observed distributions of Emiss
T in SR1 (Emiss

T > 150 GeV) are

illustrated in Figure 14.4, where the composition of the background is also shown. The

total observed events in SR1 is 364378, and the expectation is 372100±9900. The model-

independent limit set on the visible cross section (σ ×A×ε) in SR1 is 726fb at 95% CL. For

the tightest signal region, SR9 (Emiss
T > 700 GeV), 126 events are observed and the back-

ground expectation is 97±14. SR9 gives an observed model-independent limit of 3.4fb at

95% CL.

For the models probed by both the monojet and monophoton analyses, such as some

EFT dark matter models, the monojet analysis produces tighter limits than the monophoton

analysis The monojet limit could in principle also be interpreted as a limit on the squark

production in the very compressed mass spectrum scenario, as shown in Figure 14.5. The

monojet analysis should be able to set more stringent limits on the squark mass in the very
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14.3 The ATLAS mono-Z analysis

The EFT DM model discussed in Section 8.1 predicts the couplings of dark matter to

either photons or Z bosons. As the relative couplings are controlled by the coupling con-

stants k1 and k2, one can also search for this model in a complementary way in the Z+Emiss
T

final state. This final state can either be probed using a hadronically decaying Z boson or a

leptonically decaying one.

q

q

χ

χ

Z

Z/γ

Fig. 14.6 Production of a pair of dark-matter particles via an effective ZZχχ vertex at the

LHC.

A mono–Z analysis was performed using 20.3fb−1 of data at
√

s = 8 GeV by probing

a leptonically decaying Z (Z → ℓ+ℓ−) [175], where ℓ refers to electron or muon. The DM

model shown in Figure 14.6 is considered in this analysis. Two different operators were

taken into account, one is a dimension–5 operator mediated by Z exchange only, and the

other one refers to the dimension–7 operator used in the monophoton analysis.

Two mixtures of k1 and k2 for the dimension–7 operator were considered in this mono–

Z analysis which is introduced in Reference [176]. One is k1 = k2, leading to the maximal

contribution from γ exchange, while the other one, with k1 = cos2 θw/sin2 θwk2, has a neg-

ligible contribution from γ exchange.

Different signal regions with different Emiss
T cuts are used in this mono–Z analysis, which

are Emiss
T > 150 GeV, Emiss

T > 250 GeV, Emiss
T > 350 GeV and Emiss

T > 450 GeV. Given the

fact that no excess of events over the background is observed, lower limits are set on the

mass scale of the ZZχχ̄ EFT operators at 95% CL, and the SR with the best expected limit

is used to calculate the observed limit for each operator and mass point. Figure 14.7 shows

the results, where the dot-dash red line (ZZχχ max. γ) and the dotted cyan line (ZZχχ

no γ) correspond to the EFT model configured with k1 = k2 and k1 = cos2 θw/sin2 θwk2,

respectively; the other lines correspond to other DM models which are not considered in

this thesis.

The monophoton analysis and this mono–Z analysis are looking at orthogonal final
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states, but one can nevertheless compare the limits on the mass scale (M∗) of the EFT oper-

ator with similar k1 and k2 configuration. For the dark masses mχ at 10 GeV and 1000 GeV

which are common in both analyses, the mono–Z analysis obtains more stringent limits on

M∗ than the ones set by the monophoton analysis (see diagonals of Figures 13.6 and 13.7)

regardless of the value of k1 (= k2); however, the monophoton results are still complemen-

tary as the final states are orthogonal.

Fig. 14.7 Observed 95% CL lower limits on the mass scale, M∗, of the considered effective

field theory as a function of mχ . For each operator, the values below the corresponding line

are excluded [177].

Another mono–W /Z analysis performed in ATLAS was searching for a hadronically

decaying Z (or W ) boson with 20.3fb−1 of data at 8 GeV [178]. The EFT DM model

considered here is not studied in this analysis, but it is very likely to be considered in the

next LHC run following the recommendations [42] given by the ATLAS-CMS dark matter

forum.





Chapter 15

Prospects

15.1 Long–term LHC schedule

The LHC has collided proton beams at a center-of-mass energy of 7 and 8 TeV from

2010 to 2012. A long shutdown (LS1) has been operated from 2013 to 2014 in order to

maintain and adjust the machine for the next LHC run (run 2), which started at a center-of-

mass energy of 13 TeV on June 3rd , 2015. A higher peak luminosity of 1.7×1034 cm−2s−1

should be reached during run 2 compared to the 7.7× 1033 cm−2s−1 [63] achieved during

run 1 in 2012. The integrated luminosity expected during run 2 is on the order of 150fb−1.

Another long shutdown (LS2) is planned to start in July 2018 and continue until the end

of 2019, during which maintenance and upgrades will be carried out onto the machine and

the detectors, in order to perform the run 3 from 2020 to 2022 at 14 TeV with luminosity

peaking at 2.0×1034 cm−2s−1. In run 3, the integrated luminosity delivered by the LHC is

expected to be 300fb−1.

The LHC is scheduled to shut down again in 2023 for LS3, in order to prepare the High-

Luminosity Large Hadron Collider (HL-LHC) stage. The HL-LHC project is expected to

increase the total number of proton-proton collisions from run 3 by a factor of ten [179].

The long–term LHC schedule introduced above is summarized in Figure 15.1, where the

main features of each LS and run are shown.

15.2 Projection to the next LHC run

As suggested in the SR optimization study in Chapter 10, the monophoton analysis could

be optimized with more statistics by having various SRs with increasing Emiss
T cuts.

As the expected total integrated luminosity in run 2 is approximately six times that of run
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Fig. 15.2 Ratios of LHC parton luminosities from 8 TeV to 13 TeV [180].

which varies from 0.8 to 1.0; the ratio is below or around unity because of the increase in

the photon pT cut.

The simulated events of the irreducible background process, Z(→ νν̄)+γ , are reweighted

as well. Its MC prediction in the SR is increased by a factor of 2.1 from 8 TeV to 13 TeV.

As a simplifying assumption, all the other backgrounds are also scaled by this factor. Ta-

ble 15.1 shows the post-fit expectation for each of the background processes in the SR

(p
γ
T > 150 GeV) at 13 TeV. The total background estimate from the background-only fit is

290 events for 5fb−1 data at 13 TeV.

Process 5fb−1

Z(→ νν̄)+ γ 203

W (→ ℓν)+ γ 43

W/Z + jet, tt̄,diboson 43

Z(→ ℓ+ℓ−)+ γ 1.1
γ + jet 0.2
Total background 290

Table 15.1 Expected event yields from Standard Model backgrounds in the SR (p
γ
T >

150 GeV) for 5fb−1 data at 13 TeV.

The expected upper limits at 95% CL on the squark model are shown in Figure 15.3. In

the very compressed region, the result with 5fb−1 of data at 13 TeV is expected to exclude

mq̃ up to around 275 GeV, which is 10% better than that of 8 TeV analysis. According to
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the LHC schedule, this amount of data is expected to be ready after less than 2 months of

running with a beam bunch interval of 25ns.

This study was repeated with an increased luminosity of 15fb−1. For this luminosity, a

squark mass of mq̃ = 300 GeV is expected to be excluded at 95% CL in the very compressed

region.

Fig. 15.3 The expected upper limits at 95% CL for the compressed squark scenario with

5fb−1 of data at 13 TeV (blue) is compared to the ones obtained in the 8 TeV analysis

(gray) performed on 20.3fb−1 of data.



Conclusion

This thesis presents a search for new physics in the final state of a single high pT photon

with large missing transverse momentum, performed on 20.3fb−1 of proton-proton col-

lisions data at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the

LHC.

The final state is able to probe the production of particles predicted by new physics

models, which are in themselves undetectable, by relying on the presence of a visible object,

the photon which can come from initial state radiation (ISR).

Signal events are selected if they contain one isolated central (|η | < 1.37) photon with

transverse momentum above 125 GeV, a missing transverse momentum larger than 150 GeV

and no lepton (electron and muon). In order to increase the signal acceptance and reduce

the systematic uncertainties related to the ISR modeling, the events are allowed to contain

at most one jet with transverse momentum above 30 GeV. The number of events in the SR

from data is 521.

The SR contains background from various Standard Model sources: an irreducible com-

ponent from Z(→ νν̄)+γ events, and some reducible ones, such as events from leptonically

decaying W and Z bosons produced in association with a photon or a jet. Backgrounds with

a real photon (V + γ events) are estimated by normalizing the MC prediction by scale fac-

tors obtained from a fit using three lepton control regions (CRs), which are enriched in

background processes of interest. Backgrounds with a fake photon (dominated by V + jet

events) are estimated using data-driven methods, since the Monte Carlo simulation is not

reliable. A small amount of γ + jet events can also enter the SR by faking Emiss
T , and its es-

timate is given directly by the MC prediction. The final Standard Model expectation in the

SR is 557±36(stat.)±27(syst.) events. The background estimation technique is validated

using a validation region, in which the background expectation is in reasonable agreement

with the observed data.

As the Standard Model expectation in the SR is in good agreement with the observed

event count from data, an observed upper limit on the visible cross section, σvis, is computed

using a Modified Frequentist (CLS) method: it is 3.64 fb at 95% confidence level.
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The results are also interpreted into the parameter space of two new physics models in

this thesis. One is an effective field theory predicting a contact interaction between pairs of

dark matter particles and photons. This model is inspired by the Fermi-LAT result issued in

2012, which hinted at a dark matter particle with mass of 130 GeV. The limits are set to the

effective mass scale in the phase space of the coupling constants; they provide an effective

constraint on the parameter space of the theory compatible with the Fermi-LAT result. The

Fermi-LAT peak result is now highly disfavored, but this dark matter model can still be of

interest, it will thus be studied for various dark matter masses in the next LHC run.

The other model studied here is a simplified supersymmetric model describing the pair

production of mass degenerate squarks in a compressed spectrum scenario. The limits are

set to the cross-section in the plane of the squark mass versus the mass difference between

the neutralino and the squark. In the very compressed part of this plane, the analysis ex-

cludes a mass degenerate first and second generation squark mass up to 250 GeV. As the

photon in the final state can be irradiated by the intermediate squark in this model, this

search can provide the possibility to probe the charge information of the squark in case of

an excess.

A preliminary study has also been carried out to show the monophoton search sensitivity

with 13 TeV data. It indicates that the limits presented in this thesis can already be improved

by 10% with 5fb−1 which will be cumulated in the next few months.
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Auxiliary material for signal

interpretation

This appendix includes the auxiliary information on the two new physics models intro-

duced in Section 8.1.

Tables 2 to 13 show information for the EFT DM model. Tables 2 to 4 list all the

theoretical uncertainties on the cross section for each signal sample; whilst Tables 5 to 7

show these uncertainties on the product of acceptance and efficiency in the SR. The statistic

and systematic uncertainties for each signal sample are listed in Tables 8 to 10. The expected

and observed lower limits on the suppression scale M∗ at 95% CL for each signal sample

are shown in Tables 11 to 13

Tables 14 and 15 show the overall theoretical uncertainties on cross section and SR

acceptance, and the upper limits on the cross section at 95% CL for each signal point in the

compressed squark model.
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Sample ∆σ [%]

k1 k2 PDF uncertainty scale uncertainty

0.01 0.01 ±8.29 +10.3, −8.77

0.01 0.25 ±8.26 +10.4, −8.86

0.01 0.50 ±8.30 +10.5, −8.92

0.01 0.75 ±8.22 +10.4, −8.82

0.01 1.00 ±8.22 +10.5, −8.89

0.25 0.01 ±9.15 +10.4, −8.86

0.25 0.25 ±8.30 +10.3, −8.77

0.25 0.50 ±8.18 +10.4, −8.8
0.25 0.75 ±8.25 +10.4, −8.85

0.25 1.00 ±8.13 +10.4, −8.81

0.50 0.01 ±9.18 +10.4, −8.82

0.50 0.25 ±8.51 +10.4, −8.86

0.50 0.50 ±8.25 +10.3, −8.77

0.50 0.75 ±8.16 +10.2, −8.71

0.50 1.00 ±8.13 +10.3, −8.78

0.75 0.01 ±9.22 +10.5, −8.88

0.75 0.25 ±8.72 +10.5, −8.87

0.75 0.50 ±8.37 +10.4, −8.81

0.75 0.75 ±8.38 +10.3, −8.76

0.75 1.00 ±8.16 +10.2, −8.67

1.00 0.01 ±9.22 +10.4, −8.86

1.00 0.25 ±8.82 +10.4, −8.84

1.00 0.50 ±8.52 +10.4, −8.85

1.00 0.75 ±8.37 +10.4, −8.82

1.00 1.00 ±8.28 +10.4, −8.79

Table 2 Two theoretical uncertainties on the cross section for the EFT DM model with

mχ = 10 GeV and different k1 and k2.
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Sample ∆σ [%]

k1 k2 PDF uncertainty scale uncertainty

0.01 0.01 ±9.57 +11.8, −9.9
0.01 0.25 ±9.59 +11.8, −9.93

0.01 0.50 ±9.57 +11.8, −9.9
0.01 0.75 ±9.59 +11.8, −9.92

0.01 1.00 ±9.51 +11.8, −9.9
0.25 0.01 ±10.6 +11.6, −9.72

0.25 0.25 ±9.60 +11.8, −9.88

0.25 0.50 ±9.59 +11.7, −9.84

0.25 0.75 ±9.59 +11.8, −9.87

0.25 1.00 ±9.69 +11.8, −9.91

0.50 0.01 ±10.6 +11.6, −9.74

0.50 0.25 ±9.81 +11.8, −9.89

0.50 0.50 ±9.58 +11.8, −9.9
0.50 0.75 ±9.68 +11.8, −9.91

0.50 1.00 ±9.55 +11.7, −9.85

0.75 0.01 ±10.6 +11.5, −9.71

0.75 0.25 ±9.94 +11.7, −9.86

0.75 0.50 ±9.79 +11.8, −9.89

0.75 0.75 ±9.58 +11.8, −9.88

0.75 1.00 ±9.64 +11.8, −9.89

1.00 0.01 ±10.7 +11.6, −9.77

1.00 0.25 ±10.1 +11.7, −9.81

1.00 0.50 ±9.79 +11.7, −9.86

1.00 0.75 ±9.66 +11.8, −9.9
1.00 1.00 ±9.58 +11.8, −9.87

Table 3 Two theoretical uncertainties on the cross section for the EFT DM model with

mχ = 130 GeV and different k1 and k2.
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Sample ∆σ [%]

k1 k2 PDF uncertainty scale uncertainty

0.01 0.01 ±24.8 +19.6, −15.5
0.01 0.25 ±24.5 +19.6, −15.5
0.01 0.50 ±24.5 +19.5, −15.4
0.01 0.75 ±26.1 +19.5, −15.4
0.01 1.00 ±24.4 +19.5, −15.4
0.25 0.01 ±24.7 +19.5, −15.4
0.25 0.25 ±25.0 +19.6, −15.5
0.25 0.50 ±24.5 +19.5, −15.4
0.25 0.75 ±24.3 +19.6, −15.5
0.25 1.00 ±24.4 +19.6, −15.5
0.50 0.01 ±26.8 +19.5, −15.4
0.50 0.25 ±24.9 +19.5, −15.4
0.50 0.50 ±24.9 +19.6, −15.5
0.50 0.75 ±24.5 +19.5, −15.4
0.50 1.00 ±24.5 +19.5, −15.4
0.75 0.01 ±25.2 +19.5, −15.5
0.75 0.25 ±25.6 +19.5, −15.4
0.75 0.50 ±25.1 +19.6, −15.5
0.75 0.75 ±24.8 +19.6, −15.5
0.75 1.00 ±24.8 +19.5, −15.4
1.00 0.01 ±26.9 +19.5, −15.4
1.00 0.25 ±25.8 +19.5, −15.4
1.00 0.50 ±25.0 +19.5, −15.4
1.00 0.75 ±24.5 +19.5, −15.4
1.00 1.00 ±24.8 +19.6, −15.5

Table 4 Two theoretical uncertainties on the cross section for the EFT DM model with

mχ = 1000 GeV and different k1 and k2.
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Sample ∆A× ε [%]

k1 k2 PDF uncertainty scale uncertainty ISR/FSR uncertainty

0.01 0.01 ±0.648 +0.293, −0.277 +0.46, −1.27

0.01 0.25 ±1.04 +0.396, −0.373 +0.39, −2.56

0.01 0.50 ±0.937 +0.377, −0.352 +1.93, −1.10

0.01 0.75 ±0.859 +0.304, −0.288 +2.94, −0.00

0.01 1.00 ±0.946 +0.321, −0.305 +0.90, −0.61

0.25 0.01 ±0.778 +0.248, −0.239 +0.44, −0.89

0.25 0.25 ±0.653 +0.287, −0.279 +2.59, −0.70

0.25 0.50 ±0.852 +0.307, −0.288 +2.00, −0.45

0.25 0.75 ±0.811 +0.319, −0.301 +2.00, −0.21

0.25 1.00 ±0.851 +0.418, −0.396 +0.31, −0.57

0.50 0.01 ±0.706 +0.268, −0.255 +1.81, −0.00

0.50 0.25 ±0.836 +0.308, −0.288 +2.41, −0.60

0.50 0.50 ±0.957 +0.379, −0.359 +0.00, −1.20

0.50 0.75 ±0.718 +0.229, −0.222 +1.00, −0.61

0.50 1.00 ±0.642 +0.302, −0.287 +0.23, −1.36

0.75 0.01 ±0.714 +0.276, −0.262 +1.14, −0.57

0.75 0.25 ±0.676 +0.261, −0.25 +3.37, −0.60

0.75 0.50 ±0.855 +0.358, −0.34 +1.60, −0.00

0.75 0.75 ±0.8 +0.374, −0.355 +0.28, −0.86

0.75 1.00 ±0.809 +0.33, −0.313 +3.07, −0.00

1.00 0.01 ±0.634 +0.21, −0.2 +0.53, −0.31

1.00 0.25 ±0.702 +0.224, −0.212 +0.00, −2.64

1.00 0.50 ±0.651 +0.366, −0.345 +0.18, −0.92

1.00 0.75 ±0.677 +0.233, −0.226 +0.88, −0.75

1.00 1.00 ±0.699 +0.308, −0.291 +0.14, −0.67

Table 5 The PDF, scale and ISR/FSR theoretical uncertainties on the product of acceptance

and efficiency in the SR for the EFT DM model with mχ = 10 GeV and different k1 and k2.
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Sample ∆A× ε [%]

k1 k2 PDF uncertainty scale uncertainty ISR/FSR uncertainty

0.01 0.01 ±0.372 +0.0291, −0.0295 +1.27, −0.54

0.01 0.25 ±0.455 +0.0792, −0.076 +1.67, −0.00

0.01 0.50 ±0.389 +0.0833, −0.0769 +1.16, −0.85

0.01 0.75 ±0.475 +0.0547, −0.053 +1.01, −0.61

0.01 1.00 ±0.477 +0.116, −0.109 +1.09, −1.32

0.25 0.01 ±0.515 +0.0655, −0.0664 +1.06, −0.55

0.25 0.25 ±0.434 +0.0824, −0.0786 +2.31, −0.00

0.25 0.50 ±0.572 +0.0701, −0.0677 +1.46, −1.06

0.25 0.75 ±0.532 +0.0559, −0.0544 +1.79, −0.86

0.25 1.00 ±0.497 +0.0883, −0.0864 +0.98, −1.24

0.50 0.01 ±0.586 +0.0688, −0.0639 +0.55, −1.04

0.50 0.25 ±0.621 +0.0648, −0.0617 +0.00, −2.00

0.50 0.50 ±0.447 +0.108, −0.102 +0.79, −0.99

0.50 0.75 ±0.545 +0.0835, −0.0789 +0.80, −0.52

0.50 1.00 ±0.407 +0.0655, −0.0671 +2.16, −0.00

0.75 0.01 ±0.436 +0.0434, −0.0421 +0.00, −1.51

0.75 0.25 ±0.457 +0.0147, −0.0192 +1.47, −0.00

0.75 0.50 ±0.399 +0.11, −0.104 +1.35, −0.68

0.75 0.75 ±0.438 +0.0587, −0.0554 +1.98, −0.00

0.75 1.00 ±0.509 +0.148, −0.141 +1.80, −0.50

1.00 0.01 ±0.455 +0.00859, −0.00814 +0.00, −0.80

1.00 0.25 ±0.331 +0.0801, −0.0784 +2.11, −0.00

1.00 0.50 ±0.391 +0.102, −0.0957 +0.15, −3.70

1.00 0.75 ±0.522 +0.0386, −0.0377 +0.20, −0.63

1.00 1.00 ±0.648 +0.0748, −0.0717 +1.91, −0.00

Table 6 The PDF, scale and ISR/FSR theoretical uncertainties on the product of acceptance

and efficiency in the SR for the EFT DM model with mχ = 130 GeV and different k1 and

k2.
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Sample ∆A× ε [%]

k1 k2 PDF uncertainty scale uncertainty ISR/FSR uncertainty

0.01 0.01 ±0.447 +0.0274, −0.0257 +0.07, −0.70

0.01 0.25 ±0.466 +0.0188, −0.0207 +0.21, −0.51

0.01 0.50 ±0.287 +0.0248, −0.0205 +0.56, −0.76

0.01 0.75 ±0.503 +0.00286, −0.00341 +0.67, −1.08

0.01 1.00 ±0.553 +0.039, −0.0444 +0.87, −0.21

0.25 0.01 ±0.223 +0.0692, −0.0761 +0.63, −0.38

0.25 0.25 ±0.365 +0.0334, −0.0311 +0.00, −1.53

0.25 0.50 ±0.4 +0.0257, −0.0315 +0.92, −0.29

0.25 0.75 ±0.191 +0.0056, −0.00211 +0.00, −2.64

0.25 1.00 ±0.613 +0.0061, −0.00722 +0.96, −0.89

0.50 0.01 ±0.61 +0.0782, −0.0757 +0.70, −0.12

0.50 0.25 ±0.309 +0.0262, −0.0284 +0.91, −0.32

0.50 0.50 ±0.358 +0.0128, −0.00998 +0.33, −0.56

0.50 0.75 ±0.553 +0.00875, −0.0134 +0.94, −0.73

0.50 1.00 ±0.359 +0.0493, −0.0535 +1.55, −0.83

0.75 0.01 ±0.141 +0.0104, −0.0198 +0.00, −1.92

0.75 0.25 ±0.295 +0.00437, −0.00103 +2.94, −0.00

0.75 0.50 ±0.364 +0.01, −0.0155 +0.19, −2.23

0.75 0.75 ±0.433 +0, −0.00335 +1.40, −0.12

0.75 1.00 ±0.552 +0.0284, −0.0287 +0.44, −1.09

1.00 0.01 ±0.407 +0.0374, −0.034 +0.06, −1.14

1.00 0.25 ±0.257 +0.00157, −0.0015 +1.23, −0.00

1.00 0.50 ±0.426 +0.0208, −0.0225 +1.80, −0.00

1.00 0.75 ±0.385 +0.024, −0.0274 +1.06, −0.45

1.00 1.00 ±0.456 +0.0913, −0.0992 +1.43, −1.30

Table 7 The PDF, scale and ISR/FSR theoretical uncertainties on the product of acceptance

and efficiency in the SR for the EFT DM model with mχ = 1000 GeV and different k1 and

k2.
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Sample ∆NSR
events [%]

k1 k2 statistical systematic

0.01 0.01 ±1.70 +7.34, −7.30

0.01 0.25 ±1.68 +7.46, −7.34

0.01 0.50 ±1.69 +7.28, −7.30

0.01 0.75 ±1.70 +7.27, −7.17

0.01 1.00 ±1.70 +7.46, −7.33

0.25 0.01 ±1.61 +7.34, −7.32

0.25 0.25 ±1.70 +7.25, −7.27

0.25 0.50 ±1.70 +7.27, −7.19

0.25 0.75 ±1.68 +7.35, −7.27

0.25 1.00 ±1.70 +7.35, −7.42

0.50 0.01 ±1.60 +7.28, −7.34

0.50 0.25 ±1.66 +7.29, −7.35

0.50 0.50 ±1.73 +7.42, −7.29

0.50 0.75 ±1.71 +7.29, −7.23

0.50 1.00 ±1.71 +7.23, −7.24

0.75 0.01 ±1.63 +7.34, −7.50

0.75 0.25 ±1.68 +7.25, −7.31

0.75 0.50 ±1.69 +7.41, −7.35

0.75 0.75 ±1.71 +7.25, −7.27

0.75 1.00 ±1.71 +7.33, −7.30

1.00 0.01 ±1.60 +7.50, −7.39

1.00 0.25 ±1.65 +7.20, −7.40

1.00 0.50 ±1.68 +7.23, −7.21

1.00 0.75 ±1.69 +7.18, −7.15

1.00 1.00 ±1.69 +7.35, −7.58

Table 8 The global systematic uncertainty (not including the theoretical ones) on the event

yields for 20.3fb−1of data for the EFT DM model with mχ = 10 GeV and different k1 and

k2.
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Sample ∆NSR
events [%]

k1 k2 statistical systematic

0.01 0.01 ±1.54 +7.30, −7.21

0.01 0.25 ±1.55 +7.43, −7.27

0.01 0.50 ±1.55 +7.31, −7.22

0.01 0.75 ±1.54 +7.40, −7.49

0.01 1.00 ±1.53 +7.39, −7.25

0.25 0.01 ±1.54 +7.51, −7.52

0.25 0.25 ±1.52 +7.26, −7.35

0.25 0.50 ±1.54 +7.22, −7.31

0.25 0.75 ±1.53 +7.33, −7.41

0.25 1.00 ±1.52 +7.38, −7.35

0.50 0.01 ±1.56 +7.35, −7.26

0.50 0.25 ±1.54 +7.35, −7.40

0.50 0.50 ±1.51 +7.36, −7.44

0.50 0.75 ±1.55 +7.32, −7.28

0.50 1.00 ±1.55 +7.28, −7.36

0.75 0.01 ±1.56 +7.48, −7.53

0.75 0.25 ±1.56 +7.46, −7.52

0.75 0.50 ±1.55 +7.27, −7.29

0.75 0.75 ±1.55 +7.20, −7.21

0.75 1.00 ±1.54 +7.24, −7.29

1.00 0.01 ±1.55 +7.44, −7.54

1.00 0.25 ±1.55 +7.21, −7.12

1.00 0.50 ±1.55 +7.36, −7.25

1.00 0.75 ±1.56 +7.34, −7.30

1.00 1.00 ±1.54 +7.22, −7.21

Table 9 The global systematic uncertainty (not including the theoretical ones) on the event

yields for 20.3fb−1of data for the EFT DM model with mχ = 130 GeV and different k1 and

k2.
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Sample ∆NSR
events [%]

k1 k2 statistical systematic

0.01 0.01 ±1.46 +7.29, −7.31

0.01 0.25 ±1.48 +7.27, −7.35

0.01 0.50 ±1.46 +7.18, −7.26

0.01 0.75 ±1.47 +7.32, −7.32

0.01 1.00 ±1.48 +7.28, −7.28

0.25 0.01 ±1.48 +7.25, −7.25

0.25 0.25 ±1.46 +7.19, −7.25

0.25 0.50 ±1.46 +7.41, −7.32

0.25 0.75 ±1.48 +7.37, −7.29

0.25 1.00 ±1.46 +7.25, −7.34

0.50 0.01 ±1.47 +7.19, −7.28

0.50 0.25 ±1.46 +7.22, −7.26

0.50 0.50 ±1.48 +7.30, −7.38

0.50 0.75 ±1.45 +7.35, −7.39

0.50 1.00 ±1.46 +7.31, −7.44

0.75 0.01 ±1.48 +7.38, −7.26

0.75 0.25 ±1.46 +7.28, −7.33

0.75 0.50 ±1.47 +7.30, −7.45

0.75 0.75 ±1.46 +7.41, −7.32

0.75 1.00 ±1.47 +7.27, −7.27

1.00 0.01 ±1.47 +7.32, −7.35

1.00 0.25 ±1.47 +7.37, −7.32

1.00 0.50 ±1.46 +7.26, −7.32

1.00 0.75 ±1.47 +7.20, −7.19

1.00 1.00 ±1.48 +7.32, −7.34

Table 10 The global systematic uncertainty (not including the theoretical ones) on the event

yields for 20.3fb−1of data for the EFT DM model with mχ = 1000 GeV and different k1

and k2.
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Sample 95% CL limit on M∗ [ GeV]

k1 k2 expected observed

0.01 0.01 92.3 94.4

0.01 0.25 272.0 278.0

0.01 0.50 341.1 348.6

0.01 0.75 390.7 399.2

0.01 1.00 429.5 439.0

0.25 0.01 179.4 183.3

0.25 0.25 270.0 275.9

0.25 0.50 338.6 346.0

0.25 0.75 392.9 401.5

0.25 1.00 429.3 438.7

0.50 0.01 226.8 231.8

0.50 0.25 286.2 292.5

0.50 0.50 338.3 345.8

0.50 0.75 386.0 394.5

0.50 1.00 425.9 435.3

0.75 0.01 257.8 263.4

0.75 0.25 297.8 304.3

0.75 0.50 352.5 360.2

0.75 0.75 388.0 396.5

0.75 1.00 426.7 436.1

1.00 0.01 283.7 289.9

1.00 0.25 315.0 321.9

1.00 0.50 358.8 366.7

1.00 0.75 401.1 409.9

1.00 1.00 429.1 438.5

Table 11 The expected and observed lower limits of the suppression scale M∗ at 95% CL

for the EFT DM model with mχ = 10 GeV and different k1 and k2.
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Sample 95% CL limit on M∗ [ GeV]

k1 k2 expected observed

0.01 0.01 95.9 98.0

0.01 0.25 273.7 279.7

0.01 0.50 344.8 352.4

0.01 0.75 396.1 404.8

0.01 1.00 436.4 445.9

0.25 0.01 172.8 176.6

0.25 0.25 281.5 287.7

0.25 0.50 348.9 356.5

0.25 0.75 398.6 407.4

0.25 1.00 438.6 448.2

0.50 0.01 214.8 219.5

0.50 0.25 289.4 295.8

0.50 0.50 355.6 363.4

0.50 0.75 400.6 409.4

0.50 1.00 438.6 448.3

0.75 0.01 245.5 250.9

0.75 0.25 300.1 306.7

0.75 0.50 358.4 366.3

0.75 0.75 403.5 412.3

0.75 1.00 442.4 452.1

1.00 0.01 270.4 276.3

1.00 0.25 313.5 320.4

1.00 0.50 364.8 372.8

1.00 0.75 407.5 416.5

1.00 1.00 444.6 454.4

Table 12 The expected and observed lower limits of the suppression scale M∗ at 95% CL

for the EFT DM model with mχ = 130 GeV and different k1 and k2.
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Sample 95% CL limit on M∗ [ GeV]

k1 k2 expected observed

0.01 0.01 40.1 41.0

0.01 0.25 114.0 116.5

0.01 0.50 144.0 147.1

0.01 0.75 164.7 168.3

0.01 1.00 180.6 184.5

0.25 0.01 74.3 75.9

0.25 0.25 117.2 119.7

0.25 0.50 145.4 148.6

0.25 0.75 165.0 168.6

0.25 1.00 182.3 186.3

0.50 0.01 93.2 95.3

0.50 0.25 121.9 124.6

0.50 0.50 147.4 150.7

0.50 0.75 167.5 171.2

0.50 1.00 183.1 187.1

0.75 0.01 106.2 108.5

0.75 0.25 127.7 130.5

0.75 0.50 150.3 153.6

0.75 0.75 168.9 172.7

0.75 1.00 184.5 188.5

1.00 0.01 117.1 119.7

1.00 0.25 133.2 136.2

1.00 0.50 153.8 157.2

1.00 0.75 170.6 174.4

1.00 1.00 185.3 189.4

Table 13 The expected and observed lower limits of the suppression scale M∗ at 95% CL

for the EFT DM model with mχ = 1000 GeV and different k1 and k2.
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Sample Theory Uncertainties [%]

mq̃ [ GeV] mq̃ −mχ̃0
1

[ GeV] ∆σ ∆(A× ε)

100 1 ±14.4 +0.00, −1.03

100 5 ±14.4 +8.19, −3.63

100 10 ±14.4 +8.07, −3.63

150 1 ±14.5 +9.07, −3.63

150 5 ±14.5 +8.07, −3.63

150 10 ±14.4 +8.54, −3.63

200 1 ±14.6 +7.61, −3.63

200 5 ±14.6 +8.07, −3.63

200 10 ±14.6 +5.74, −5.46

250 1 ±14.6 +8.46, −3.63

250 5 ±14.6 +0.00, −0.00

250 10 ±14.6 +0.00, −1.03

300 1 ±14.8 +0.00, −0.00

300 5 ±14.8 +0.00, −2.84

300 10 ±14.8 +0.00, −1.03

87 25 ±14.5 +0.00, −1.46

162 25 ±14.5 +0.00, −0.00

237 25 ±14.5 +2.76, −0.00

100 50 ±14.4 +0.00, −0.00

175 50 ±14.5 +0.00, −1.03

250 50 ±14.6 +8.55, −0.00

Table 14 The theoretical uncertainties on cross section and the product of acceptance and

efficiency in the SR for all the signal samples used in the compressed squark model with

different squark mass and mass difference between the squark and the neutralino.
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Sample 95% CL limit on cross section [fb]

mq̃ [ GeV] mq̃ −mχ̃0
1

[ GeV] expected observed

100 1 35.8 42.8

100 5 42.6 50.9

100 10 63.0 75.3

150 1 28.2 33.7

150 5 32.8 39.2

150 10 41.2 49.2

200 1 24.3 29.0

200 5 25.9 31.0

200 10 33.2 39.6

250 1 20.6 24.6

250 5 21.3 25.4

250 10 25.8 30.8

300 1 20.1 23.9

300 5 20.2 24.1

300 10 22.9 27.3

87 25 180.1 215.4

162 25 76.8 91.7

237 25 51.1 61.0

100 50 254.0 303.1

175 50 135.0 161.3

250 50 95.6 114.4

Table 15 The upper limits on the cross section at 95% CL for all the signal samples used in

the compressed squark model with different squark mass and mass difference between the

squark and the neutralino.





Photon identification cuts

This appendix gives the detailed photon identification cuts in different |η | and pT bins.

Table 16 shows the cuts used to identify a loose photon. The cuts used to identify an

unconverted and a converted tight photon are listed in Tables 17 and 18.

|η | bins 0-0.6 0.6-0.8 0.8-1.15 1.15-1.37 1.52-1.81 1.81-2.01 2.01-2.37

Rhad < 0.02425 0.02275 - - 0.02725 0.02725 0.02725

Rhad1 < - - 0.02575 0.01975 - - -

E7×7
s2 > 0.1 MeV

Rη > 0.8825 0.8825 0.8575 0.8575 0.8575 0.9025 0.8875

wη2 < 0.013 0.014 0.015 0.015 0.016 0.015 0.015

Table 16 The loose cut menu used for photon identification.
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|η | bins 0-0.6 0.6-0.8 0.8-1.15 1.15-1.37 1.52-1.81 1.81-2.01 2.01-2.37

Rhad < 0.020 0.020 - - 0.02425 0.02575 0.02325

or 0.01825 0.01975 - - 0.02125 0.02275 0.01975

Rhad1 < - - 0.01975 0.01825 - - -

or - - 0.01525 0.01675 - - -

E7×7
s2 > 0.1 MeV

Rη > 0.92 0.92 0.93 0.925 0.925 0.925 0.910

wη2 < 0.011 0.0115 0.0115 0.0115 0.012 0.012 0.0128

Rφ > 0.93 0.93 0.93 0.92 0.93 0.93 0.93

f1 > 0.005

∆E[ MeV]< 180 170 165 160 425 500 560

Eratio > 0.80 0.80 0.76 0.82 0.78 0.80 0.80

wtot
η1 < 3.0 3.0 3.3 3.5 3.3 2.3 2.0

fside < 0.28 0.33 0.38 0.425 0.42 0.255 0.24

w3
η1 < 0.67 0.69 0.69 0.715 0.72 0.66 0.645

Table 17 The tight cut menu used for unconverted photon identification. The numbers

shown in rows starting with ‘or’ are applied to photon candidates with p
γ
T ≥ 80 GeV.

|η | bins 0-0.6 0.6-0.8 0.8-1.15 1.15-1.37 1.52-1.81 1.81-2.01 2.01-2.37

Rhad < 0.020 0.018 - - 0.02425 0.024 0.024

or 0.01825 0.01975 - - 0.02125 0.02275 0.01975

Rhad1 < - - 0.01975 0.018 - - -

or - - 0.01525 0.01675 - - -

E7×7
s2 > 0.1 MeV

Rη > 0.92 0.9125 0.915 0.91 0.908 0.917 0.903

wη2 < 0.011 0.0117 0.012 0.0120 0.0130 0.012 0.0127

Rφ > 0.57 0.60 0.60 0.64 0.68 0.72 0.72

f1 > 0.005

∆E[ MeV]< 160 160 120 125 350 520 525

Eratio > 0.85 0.85 0.80 0.78 0.82 0.86 0.88

wtot
η1 < 2.8 2.9 3.1 3.3 3.5 2.2 1.8

fside < 0.33 0.38 0.46 0.52 0.52 0.31 0.25

w3
η1 < 0.73 0.715 0.74 0.75 0.75 0.69 0.66

Table 18 The tight cut menu used for converted photon identification. The numbers shown

in rows starting with ‘or’ are applied to photon candidates with p
γ
T ≥ 80 GeV.


