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Foreword

Biodiversity has proven to be interwoven with ecosystem functioning: plant di-
versity appear to yield higher productivity than monoculture[Tilman et al., 2001],
the presence of species that respond differently to perturbations can sta-
bilize ecosystems[Hooper et al., 2005], species loss can have strong ecosystem
effects[Srivastava and Vellend, 2005] and invasion by a single foreign species might alter
existing dynamics with either positive or negative effects[Davis, 2011]. Broadly speak-
ing, biodiversity is an essential component of our environment. The signature in June
1992 of the Convention of Biological Diversity [Cropper, 1993] by 168 countries followed
by 13 Conferences Of the Parties (COP) organized so far attests the need to protect this
environment from destruction by human-related activities. The motivations for preserv-
ing it stem either from an utilitarian reasoning to preserve and foster human well-being,
including food, security, health and cultural aspirations, or from ethical principles about
our place in the world and in evolution. These ethical principles are sometimes presented
as a component of human well-being [Watson et al., 2003], since a desire to preserve the
world we live in can be said to result from a type of moral and cultural values1. Hu-
man well-being is commonly invoked as an overarching concept to justify compromises
between a reasoned impact on the environment to allow equal development for all and
the preservation of ecosystems. This opens the way to admitting that it is not possible
to erase completely the influence of human activity on the environment and that the
acknowledged target of environmental protection is not the preservation of a pristine
environment but the protection of certain identified features which will not be perturbed
by reasoned human activity. The selection of these features and determination of the
degree of protection they need motivates the attribution of a value depending on their
properties. An utilitarian and non-utilitarian value can be defined. The utilitarian
value corresponds to some useful service the ecosystems provide, such as food produc-
tion, decontamination, health benefits or CO2 capture. Those are gathered under the
concept of ecosystem services, which encompasses all the benefits people obtain from
ecosystems [Watson et al., 2003]. Their utilitarian value can be defined by the market
price of an equivalent service performed by alternative means. Ecosystem properties
also justify the definition of a non-utilitarian value, pertaining to their importance from

1However, this is putting those ethical motives for environmental protection on a par with other
cultural values such as potential traditions to exploit environmental resources without regard to
sustainability (e.g. excessive whaling, or slash-and-burn farming for communities too large).

xi



xii Foreword

a aesthetic, scientific, social, cultural or religious point of view. This non-utilitarian
paradigm attributes an intrinsic value to species, landscapes, ecosystem which is unre-
lated to the potential profit obtained by destroying them. In this case, attributing a
price or defining an equivalent value might not be possible, although attempts are pro-
posed building on the social and legal sanctions for deteriorating some feature of the
environment [Watson et al., 2003]. The difficulty to quantify the intrinsic value means
that this non-utilitarian paradigm does not easily lend itself to cost-effectiveness analyses
and calculations for prioritisation. However, the existence of an intrinsic value is largely
accepted among the advocates of environmental protection, as can be found in the first
line of the preamble of the Convention of Biological Diversity:

Conscious of the intrinsic value of biological diversity and of the ecological,
genetic, social, economic, scientific, educational, cultural, recreational and
aesthetic values of biological diversity and its components[. . . ]

It could be argued that intrinsic value also fills the space left by incomplete or im-
perfect information: the connection between the state of an ecosystem and the services
it provides is still poorly understood and thinking that we might be able to protect
selectively ecosystem services might be fanciful. Moreover, there might be services still
not discovered (examples include new drugs or development of biomimetic technologies)
which could be lost in a approach focusing on ecosystem services. On the other hand, it
is often assumed that adequately preserving the intrinsic value of an ecosystem will also
protect every service we receive from it. This justifies using intrinsic value as the target
of protection within a precautionary principle approach.

Once the targets of protection are identified, there are various considerations necessary
for implementing this protection. It is recognised that it might not be possible to avoid
influencing the environment altogether as agriculture, transportation and exploitation of
natural resources are bound to have some effect. An approach commonly adopted is to
try to quantify the total effect to the environment and keep it to a reasonable/sustainable
level. Furthermore, ethical considerations about human well-being compel us to weight
the benefits of protecting the environment against the benefits to populations resulting
from exploitation. Choosing to preserve biodiversity for its intrinsic value might clash
with political aims of reducing poverty, fostering development, or providing equal stan-
dards of living for all. An instance of these dilemmas is the replacement of rainforests
by palm oil plantations, which has dire environmental consequences but can benefit the
local industry of very poor areas2. These considerations make environmental protection
a difficult task, needing a variety of tools and methods to assess the both the risks to the
environment and effects on human well-being in order to make informed political and
management decisions.

Species Sensitivity Distribution (SSD) is one of those tools, whose aim is to protect
biodiversity in the most straightforward sense: it is used to assess the effect of any con-

2However this conception is debated as it has been noted that the benefits tend to be monopolised
by a wealthy minority whereas the majority of the population only suffers from the environmental
consequences (no trickle down effect)[Watson et al., 2003].
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taminant or stressor to communities3 of species, its final aim being to find concentrations
levels which will preserve the majority of all species. As such, it fits in the framework of
protecting the structure of ecosystems for their intrinsic value and ought to be comple-
mented with other tools considering ecosystem-level functioning and human well-being.
In its most common form, SSD acknowledges the impossibility to find a concentration
which has absolutely no effect. It takes a blind bet that ecosystems have some degree
of resilience and that a small perturbation may leave the global equilibrium untouched.
SSD assumes a static viewpoint in that it does not account for Darwinian evolution of
the species (over several generations some species might become more tolerant to con-
taminants) nor does it consider the possibility of evolution at the ecosystem level, where
some species might come to take other’s place because the presence of contaminants has
switched the dominance structure. As these phenomenon are not completely understood
and difficult to predict, SSD is a crude but useful tool that assesses the effects of a
stressor on some selected species. By doing so, it constitutes a first step at measuring
the impact of human activity on biodiversity.

SSD is subject to strong practical constraints on the length, the cost of the experiments
and the number of animals tested in a context of reduction of animal testing. These
constraints motivate efforts focused on a better use of available data. This thesis will
present several proposals in that direction. It is written as a data-driven progression
across increasingly detailed types of data: point-summarized data, end-of-experiment
data and time-resolved data. This actually follows a movement of peeling of layers of
summarisation to finish with the raw original data. As the data increases in complexity,
we propose a new modelling technique so they are included at best in SSD. With each
layer of summarisation removed, we show how to make use of the information discarded
to extend the predictive power of SSD.

3A community is an assemblage of populations of species occupying the same geographical area and in a
particular time; it involves interactions within (intraspecific interactions) and between (interspecific
interactions) species in communities, including the distribution, structure, abundance, demography.





Chapter 1
Introduction to Species Sensitivity
Distribution

1.1 Species Sensitivity Distribution in risk assessment
The framework for ecological risk assessment, which describes mandatory tests for the
commercialisation and use of new chemical substances, consists in two parts which are
described in the guidance on tiered risk assessment for plant protection products for
aquatic organisms in edge-of-field surface waters [Aagaard et al., 2013]:

• Assessing exposure to the contaminant, ie. determining time-dependent concen-
trations in the different compartments of the environment.

• Assessing the effect of these time-dependent concentrations on populations and
ecosystems.

Species Sensitivity Distribution is a tool which belongs to the second part. It is fre-
quently used as an intermediate stage of a tiered approach for ecological risk assessment.

1.1.1 Tiered risk assessment
The tiered structure for risk assessment (Figure 1.1) consists in increasingly detailed
appreciations of exposure and effect which all have the same protection goal, and result
in the determination of a safe concentration for the environment. The tiers rank with
increasing precision, cost and complexity, and with decreasing safety margins (conser-
vativeness) so that in principle, safely passing the first tier guarantees passing all the
superior tiers. This structure is intended to provide a cost effective procedure for an
adequate environmental protection.

The 1st tier consists in selecting the most sensitive species from standard laboratory
species (core toxicity data) and applying an ad-hoc assessment factor. For the 2nd tier,
additional data can be collected to form a sample representative of the community of
species to be protected and an extrapolation is performed to represent the sensitivities of
all species in the community. This extrapolation can consist in taking the geometric mean

1



2 Chapter 1. Introduction to Species Sensitivity Distribution

of all species sensitivities, or in modelling explicitly the species sensitivity distribution
in the community. The 3rd tier relies on artificially constructed model ecosystems which
contain an assemblage of species representing several trophic levels and can simulate
environmentally realistic exposure regimes [Aagaard et al., 2013]. The 4th tier represents
a combination of approaches to refine the degree of realism either in terms of exposure
or ecological relevance of the community of species [Brown et al., 2009].

A particularity of the hierarchical tiered structure is that the procedures for each tiers
are more and more loosely defined. While minimum data requirements are specified for
the second tier, there is some degree of latitude on the methodological choices for SSD.
For the higher tiers, only general guidelines are provided, along with a recommendation
for maximum transparency.

Figure 1.1: Four tiers of ecological risk assessment. Complexity, need for data and
ecological realism increase with the tier level (up and towards the cen-
tre of the figure), while conservativeness decreases. Figure adapted from
[Aagaard et al., 2013]

1.1.2 Toxicity data
The first two tiers use so-called toxicity data, which are produced during laboratory
experiments. Performing a laboratory experiment to characterise the effect of a con-
taminant for one species (the precise word is bioassay) means selecting how to mea-
sure an effect (choosing an endpoint): the contaminant can affect the survival of a
species, its reproduction, growth, behaviour or any physical property. The other deci-
sions to be made regard the concentration range, the duration of the experiment, the
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temperature and all the experimental conditions which are selected to maximise the
chance of observing an effect. Bioassays to produce toxicity data result in concentra-
tion - response or concentration - effect curves, which then contain all the available
information on the species response to the contaminant1. These curves are often sum-
marised by a single value which will act as a surrogate for the tolerance of the species
and might be stored in toxicity databases [RIVM, 2005, eco, ]. These single values are
concentrations of interest, a concentration producing a given level of effect (Effective
Concentration at x% (ECx)) or a concentration without effect (No Effect Concentration
(NEC)). A practical term to refer to these concentrations is Critical Effect Concentration
(CEC)[Forfait-Dubuc et al., 2012]. Another common type of CEC is the No Observed
Effect Concentration (NOEC). The concept of NOEC has been disparaged extensively
during the last decades because they are based on a wrong interpretation of statistical
tests (no statistically significant effect does not mean no effect), they are strongly depen-
dent on the experimental setting and they favour poor resolution on the concentration
scale [Chapman et al., 1996, Warne and Van Dam, 2008, Delignette-Muller et al., 2011,
Fox et al., 2012, Fox, 2008, van der Hoeven, 1997]. Nonetheless, they do linger in regu-
latory literature and are worth mentioning for that reason. CECs can be estimated by
fitting a model to the concentration - effect curve and calculating the CEC as a function
of the model parameters. Common models include the four-parameter log-logistic model
[Ritz, 2010]:

f(x) = d − c

1 + (x/e)b
+ c (1.1)

where f is the measured endpoint, x the concentration, c the asymptotic value of the
endpoint when the concentration grows to infinity, d the value of the endpoint at zero
concentration, e the Effect Concentration at 50% (EC50) and b a shape parameter,

and the Pires-Fox model [Pires et al., 2002, Fox, 2010]:

f(x) = f0e
−b(x−NEC)+ (1.2)

where f is the measured endpoint, x the concentration, f0 the value of the endpoint
at zero concentration, NEC is the No Effect Concentration, (x)+ is a shorthand for the
maximum between 0 and x and b is a shape parameter.

As estimates obtained from a model fit, these CECs are uncertain and come with a
confidence interval.

1.1.3 What is the Species Sensitivity Distribution
Due to its position near the base of the tiered system, SSD is routinely used in risk
assessment and thus represents an important topic of research. The principle of a species
sensitivity distribution approach to risk assessment is to select a few species to build a
representative sample of a community to protect, to carry out bioassay experiments for

1The distinction between response and effect concerns the nature of the measured endpoint: response
designate a quantal outcome (typically survival or death) whereas effect refers to a graded outcome
(typically length, mass, growth etc.).
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each of them in order to estimate their tolerance and to fit a distribution to describe the
whole community. From this distribution, a safe concentration can be estimated, often
the Hazardous Concentration for 5% of the species (HC5), the concentration at which
95% of the species should not be affected by the concentration.

The tolerance for each species is obtained by selecting an endpoint and estimating a
CEC. When it is not possible to fit a model to estimate the CEC, it is often possible
to determine bounds on the CEC. With a collection of CEC for a representative sample
of species, the next step is to fit a distribution to extrapolate the sensitivity of the
community of species from which the sample originates. Several options are available for
selecting the distribution, parametric or distribution-free. The various methods in use
to perform an SSD are reviewed in section 1.2.

For illustrative purposes, we present a very simple example of the classic SSD approach.
The SSD method starts from laboratory experiments. In this example we present a
toy dataset, where 10 hypothetical animals were exposed to increasing concentrations
of a contaminant. Survival was measured after a period of time, and the number of
survivors was recorded. The data was then presented as concentration-response curves
(Figure 1.2).

To estimate a CEC for each species, a three-parameter log-logistic model (Equa-
tion 1.1 with c = 0) was fitted by maximum likelihood using the R package drc
[Ritz and Streibig, 2005] (Figure 1.3). The CEC chosen was the Lethal Concentration
for 50% of the organisms (LC50), the concentration inducing a 50% reduction in sur-
vival probability. The last step of SSD is to fit a distribution, often log-normal, to the
CEC that were estimated. On this example, the SSD was fitted by maximum likelihood
(see section 1.2.3) using the R package fitdistrplus [Delignette-Muller and Dutang, 2015].
Usually, the uncertainty on the CEC is not taken into account and the CEC are consid-
ered as exact values. The 5th percentile of the distribution is computed to define the HC5
(Figure 1.4). The confidence interval around this HC5 can be estimated in a number
of ways. Wagner and Lokke[Wagner and Lokke, 1991] provided an analytical formula
for the log-normal distribution, Aldenberg and Slob tabulated values for the log-logistic
distribution and bootstrap can be used to approximate the confidence interval for any
distribution provided the number of species is large enough[Kon Kam King et al., 2014].
Wheeler[Wheeler et al., 2002] mentions the possibility to use the lower bound of the con-
fidence interval on the HC5 instead of the HC5 as the basis for environmental protection.

1.1.4 How Species Sensitivity Distribution is used
Nico van Straalen [van Straalen, 2010] defines a forward and inverse approach to SSD
(Figure 1.5). The forward approach consists in predicting the risk of a community
subjected to a known concentration in contaminant, based on the SSD. As SSD does not
take time into account, this is restricted to constant concentration scenarios.

If f is the probability density of the CEC in the community, for a constant concentra-
tion c present in the environment, Van Straalen defines a risk δc as:

δc =
∫ c

0
f(x)dx (1.3)
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Figure 1.2: Survival as a function of the concentration in contaminant for 9 simulated
species.
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zontal red dotted lines correspond to a survival reduction of 50% compared
to the control experiment. Vertical red dotted lines correspond to the LC50,
the concentration for which survival is reduced by 50%.
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which can be understood as the proportion of species whose CEC is below concen-
tration c. This is also termed affected fraction, or Potentially Affected Fraction (PAF)
[Posthuma et al., 2010] to stress the probabilistic nature of this risk assessment.

The second use of SSD, the inverse approach, aims at defining an admissible con-
centration for an arbitrary level of risk which is deemed acceptable. Leaving 5% of
the community at risk is the customary choice, based on the hypothesis of a certain
redundancy in the role of the species of the community[Forbes and Calow, 2002]. The
corresponding admissible concentration is the HC5, the concentration protecting 95% of
the community. Note that the meaning of the term “at risk” depends on the CEC chosen.
For instance with the LC50, leaving 5% of the community at risk means that 5% species
might have less than 50% survival, but that may be anywhere between 50% or 100%
which does not correspond necessarily to a full elimination of the species. Moreover,
the HC5 are used in combination with an assessment factor to account provide a better
protection than the bare HC5.

1.2 Different flavours of classical Species Sensitivity
Distribution

1.2.1 Today’s use of Species Sensitivity Distribution
SSD is one of the recommended tools for environmental protection agencies world-
wide: Australia and New Zealand [ANZECC, 2000], Canada [CCME, 2007], China
[Liu et al., 2014], European Union (EU) [ECHA, 2008], South Africa [Roux et al., 1996],
United States of America (US) [USE, 1998] all refer to SSD in their guidance documents.
These agencies do not always make precise recommendations on the specifics of the
method, except from minimum sample size, but rather insist on traceability and trans-
parency. For instance, European Chemical Agency (ECHA) recommends [ECHA, 2012]
to use SSD for risk characterisation of short-term or long-term environmental risk, then
further refer to the work of [Aldenberg et al., 2002] and to its implementation in the
ETx software [van Vlaardingen et al., 2004] for transparency of the statistical analysis.
[Nugegoda and Kibria, 2013] provides a survey of the SSD requirements of several agen-
cies in the world and reports that the minimum number of values ranges from 5 in
Australia (in 2001) to 10 in the European Union (in 2003), with various requirements
concerning the type of data (a summary table from their survey is reproduced in Ap-
pendix A).

It is possible to classify most variants of SSD by:

• the choice of a shape for the SSD

• the method to fit the SSD

• the method to account for external information in the SSD
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1.2.2 Choice of a shape for the Species Sensitivity Distribution
A first difference among SSD approaches is whether they assume a structure for the
sensitivities of the species in the community. One can assume that they are related in
that they come from a single parametric distribution, or from a mixture of distributions,
but since these assumptions do not rest on any particular ground one may wish to use
distribution-free methods instead.

Different parametric distributions for the Species Sensitivity Distribution
Several distributions2 have been proposed for SSD. The most used distribution is
the log-normal distribution because it is easy to compute confidence intervals on the
HC5. [Wagner and Lokke, 1991] explained that the quantiles of the normal distribu-
tion had a non-central t distribution, for which there are analytical confidence in-
tervals. By scaling and centring every distribution, it is possible to tabulate fac-
tors and to compute easily the confidence interval for any SSD. Aldenberg and Ja-
worska [Aldenberg and Jaworska, 2000] showed that from the Bayesian viewpoint, the
same confidence intervals could be obtained by choosing a non informative prior on
the position and scale parameters of the normal distribution. Aldenberg and Rorije
[Aldenberg and Rorije, 2013] later proposed to replace the non informative prior by a
uniform prior and derived new factors for calculating the confidence intervals for the
log-normal distribution. Note that in their approach, the toxicity data themselves do
not follow a normal distribution (they are strictly positive), but log-transformed toxicity
data can follow a normal distribution. Equivalently, toxicity data can be said to follow
a log-normal distribution and we will use this terminology throughout.

The log-logistic distribution is another widely used distribution (actually the first to
be used for SSD in Europe by Kooijman[Kooijman, 1987]), although it does not al-
low for an analytical expression of the confidence interval on a quantile. Aldenberg
and Slob [Aldenberg and Slob, 1993] approximated tables for the one-sided left confi-
dence interval on the HC5 for various sample sizes using a Monte-Carlo procedure. The
log-logistic has been advocated over the log-normal distribution because it provides in-
built conservatism [Aldenberg and Slob, 1993]: having heavier tails, the lower bound
of the confidence interval on the HC5 obtained fitting a log-logistic is lower than that
obtained fitting a log-normal distribution. Note that the HC5 itself, computed with
the [Aldenberg and Slob, 1993] method (a moment-matching method), is bigger though
[van der Hoeven, 2001]. This is easier to understand by reasoning on log-transformed
data: having heavier tails, the logistic distribution is narrower around its mean than
the normal distribution. This implies that below the median, the lowest quantiles of
the logistic distribution are smaller than those of the normal distribution while quantiles
closer to the median are higher (Figure 1.6). Symmetry of the distribution entails that
the situation is reversed above the median. Using numerical root finding, it is possible
to determine quantile for which the two distributions coincide: it is approximately the
4th percentile.

Shao [Shao, 2000] proposed to use a distribution with one parameter more than the log-
normal and log-logistic distributions, the Burr type III distribution which is commonly

2The definition of all the distributions mentioned here can be found on Table 1.1.
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used in engineering and economy. The common log-logistic distribution is a limiting case
of the Burr type III distribution, as are the reciprocal Weibull and reciprocal Pareto.
The Burr type III distribution is more flexible than the log-logistic in terms of skewness
and kurtosis, but it is also harder to fit due to the extra parameter, particularly in the
case of small datasets. To alleviate the difficulties of parameter estimation in the pres-
ence of strong structural correlation, [Shao, 2000] proposed to fit a Burr III distribution
nonetheless and to then switch to one of the limiting distribution if the values of the
estimated Burr III parameters suggest it. Confidence intervals are calculated either us-
ing the delta method [Casella and Berger, 2002] or bootstrap in the case of small sample
sizes. This distribution and its limiting cases have been included in the Burrlioz software
[Campbell et al., 2000] and are recommended for use in Australia and New Zealand.

[van Straalen, 2002] proposed to fit threshold distributions, to remove the need of
computing an HC5 or any cut-off point in the distribution. This is interesting for two
reasons: 1) choosing a cut-off, for instance 5% of species that will not be protected, is
unsatisfying as these species may play an essential role in the ecosystem. Their decrease
in abundance might have cascading effects on the other species of the community which
might result in a more severe harm than expected with an SSD approach. 2) Infinite
tail distributions are not realistic as they allow for infinitely sensitive species for any
contaminant. This is certainly false for essential metals that are naturally present in
the environment and for which all species in the community must have a degree of
tolerance. Among those threshold distributions, Van Straalen tried the log-uniform, log-
triangular, log-exponential and log-Weibull distributions. His conclusion was that among
the threshold models, the triangular distribution seems to provide the best fit, and that
the estimated threshold (HC0) is not very different from the log-normal or log-logistic
HC5.

[Zajdlik et al., 2009] proposed to fit a multimodal distribution to the toxicity data.
They quoted that when the dataset shows signs of multimodality, the recommended
practice is to select a taxonomic subset of the species. However, using a multimodal dis-
tribution makes it possible to use all the data available, not only a subset. They proposed
selecting the number of components with model comparisons based on Quantile-Quantile
plot (Q-Q plot)3, Kolmogorov-Smirnov tests and likelihood ratios. They developed their
approach with a case study on the herbicide atrazine with a dataset containing target
and non-target species. The sensitivity of this community showed visual evidence of mul-
timodality which they tested using Hartigan’s dip test4 [Hartigan and Hartigan, 1985].
On their particular dataset, their selection procedure yielded a two component mixture
model (on the log-transformed data) which they fitted using likelihood optimisation.
They observed that the bimodal distribution provided a better fit than a number of
unimodal distributions and that their SSD model predicted an HC5 comparable to the

3A Q-Q plot is a plot of the theoretical quantiles of a fitted distribution against the observed quantiles
of the sample. The fit of the distribution is assessed by comparing the points to a line representing
exact match between the theoretical and observed quantiles.

4Hartigan’s dip test consist in finding an unimodal distribution function which minimizes Kolmogorov
distance between that unimodal distribution function and the empirical distribution function. That
minimum distance is the dip of the distribution, which measures departure from unimodality and is
used as the test statistic.
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concentration at which effect start appearing in field experiments. Their conclusion was
that using a multimodal distribution allowed performing an SSD on all the species when
an unimodal distribution did not fit the data, and that the derived HC5 should be more
environmentally relevant than that derived on only a subset of the species.

We presented so far the various distributions proposed for SSD. Several comparisons
among these distributions were made, with the BurrIII distribution being found to pro-
vide a better fit than the log-normal or log-logistic distributions on a large dataset of 89
species exposed to dichlorodiphenyltrichloroethane (DDT) [Xu et al., 2015]. Comparing
BurIII, log-logistic, log-normal, reciprocal Weibull and Weibull models on 32 persis-
tent contaminants, He et al. [He et al., 2014] also found that the BurrIII distribution
model generally fitted better, also other models might show comparable fit. Among
two-parameter distributions, studying 30 datasets Newman et al. [Newman et al., 2000]
found that the Gompertz model fitted better than either the log-normal and log-logistic
models. Among the threshold models, Van Straalen [van Straalen, 2002] found the tri-
angular distribution to provide the best fit. [Xing et al., 2014] found that the Weibull
and log-triangular distributions provided the best fit based on the Akaike Information
Criterion (AIC)5 criterion and Residual Square Error (RSE). The lack of clear winner
and the generally small size of the datasets which precludes very informed distributional
choices has led to the adoption of the log-normal distribution as the most commonly used
parametric distribution [Wheeler et al., 2002]. [Newman et al., 2000] noted that among
30 tested datasets of NOEC data, half failed the shapiro-wilk [Shapiro and Wilk, 1965]
test for log-normality. He goes on to suggest the use of non-parametric methods for SSD.

Non-parametric methods
Distribution-free methods are more commonly called non-parametric methods, although
very different paradigms coexist under the name non-parametric. The adjective non-
parametric can refer to methods which avoid altogether the use of any parameter, or to
methods for which the structure of the model is not fixed and adapts to the data. Non
parametric tests (Spearman, Kruskal-Wallis, . . . ) fit in the first category, while kernel
density estimation or Bayesian non-parametrics fit in the second.

Distribution-free methods based on rank A naive way to compute an HC5 would
be to take n species, to rank them by sensitivity and take the 5th percentile. n would
have to be large enough for this percentile to be defined. Moreover, the definition of the
exact value of a given percentile is arbitrary and a choice would have to be made. Several
propositions are available, which are presented and discussed in [Aldenberg et al., 2002].

This naive approach was refined in [van der Hoeven, 2001] by using the asymptotic

5For a given statistical model fitted on data, the AIC is defined by AIC = 2k − 2 ln L where k is the
number of parameters of the model and L is the value of the likelihood at its maximum. The AIC
can be used as a tool for model comparison which includes a measure of the fit of the model and a
penalisation for model complexity. Indeed, a model with many parameters will tend to fit the data
very well but it might have poor predictive power, a phenomenon known as overfitting. A comparison
between model 1 and model 2 is achieved by computing ΔAIC = AIC1 − AIC2 where the order of
subtraction is chosen to have ΔAIC > 0, the best model being the one with the smaller AIC. The
strength of evidence of one model against the other is computed as l = e− ΔAIC

2 [Burnham et al., 2011]
and allows for statements such as “the evidence for model 1 is 1

l times stronger than for model 2”.
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Table 1.1: Distributions which have been proposed for the SSD, by alphabetical order.
The support for all these distributions is R

+.
Name CDF Constraints
Burr type III 1

(1+(x/α)−β)k α, β, k > 0

Gompertz 1 − exp
(
−η

(
ebx − 1

))
η, b > 0

log-Exponential with threshold
⎧⎨
⎩0 for x < a

1 − exp
(
− ln x−a

λ

)
for ln x ≥ a

a, λ > 0

log-Gumbel exp(− exp(− ln x−μ
σ

)) η, b > 0
log-logistic 1

1+(x/α)−β α, β > 0
log-normal 1

2 + 1
2erf

[
ln x−μ

σ
√

2

]
σ > 0

log-triangular

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for ln x ≤ a
(ln x−a)2

(b−a)(c−a) for a < ln x ≤ c

1 − (b−ln x)2

(b−a)(b−c) for c < ln x < b

1 for b ≤ ln x

a ≤ c ≤ b

log-uniform

⎧⎪⎪⎨
⎪⎪⎩

0 for ln x < a
ln x−a

b−a
for ln x ∈ [a, b)

1 for ln x ≥ b

a < b

log-Weibull with threshold and power 2

⎧⎪⎨
⎪⎩

0 for ln x < a

1 − exp
(

−
(

ln x−a
λ

)2
)

for ln x ≥ a
a, λ > 0

Reciprocal Pareto
⎧⎨
⎩

(
x
x0

)θ
for x < x0

1 otherwise
x0 > 0

Reciprocal Weibull exp(−αx−β) α, β > 0

properties of ranks in a sample. This refined method is applicable to find the HC5 from
sample size 19 and upwards. The first assumption of the method is that the total number
of species in the community is very large. If n species are sampled from a population
of N with N >> 1 and sorted by increasing tolerance, then the relative rank of a given
species among the N species is uniformly distributed between 0 and 1. Therefore order
statistics and notably the 5th percentile follow a Beta distribution. It is thus possible to
compute the HC5 and its confidence interval but by construction, the expectation of the
HC5 will be the CEC of one of the tested species, or the interpolation between two CEC.
This presents the inconvenient of leaving some of the species explicitly unprotected,
and require huge sample sizes to provide a 95% confidence interval (59 tested species
for a one-sided 95% confidence interval). The method was found to give HC5 higher
than a log-normal SSD and lower than a log-logistic SSD, while the one-sided 95%
confidence interval was consistently larger than those of log-normal and log-logistic SSD
[van der Hoeven, 2001], which led van der Hoeven to argue that log-normal and log-
logistic SSD were over protective.

[Chen, 2004] proposed another non-parametric method based on the tested species’
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rank, which also needs samples of at least 19 species. It used an asymmetric loss function
for which one must specify: 1) how costly is over-protection relatively to loss of species
and 2) what is the threshold below which over-protection entails a cost. He derived a
corresponding risk-minimization estimator for the HC5 and compared it to the van der
Hoeven HC5 for several parameters of the loss function, then argued that the van der
Hoeven HC5 is generally over-protective. Chen gave examples of parameters for which
the estimator was both less conservative and had a lower risk for data coming from
log-normal and log-logistic distributions. Once again, the method is only applicable
to datasets which are very large on current standards. Moreover, it requires arbitrary
choices regarding the risk function which are ultimately political, and can only be left
to environmental managers. These choices are difficult to calibrate, inasmuch as the
risk of losing a species of intrinsic value is difficult to define6, whereas resorting to a
precautionary principle is easier to explain.

Another non-parametric approach A last recent non-parametric approach relies
on non-parametric kernel estimation [Wang et al., 2015]. It was demonstrated on very
large datasets but not compared to other non-parametric methods. The authors argue
that kernel density estimation fits these huge datasets better than parametric distribu-
tions because of the presence of outliers. The method uses Gaussian kernel functions.

Bootstrap methods
Several boostrap methods have been proposed to improve on the previous parametric
and non-parametric approaches. The idea behind bootstrap methods is to approxi-
mately reproduce the properties of a population by sampling with replacement in a
sample of the population. Several types of bootstrap methods for SSD were proposed.
[Jagoe and Newman, 1997] proposed a first non-parametric bootstrap approach consist-
ing of repeatedly estimating the HC5 on samples with the same size as the number of
species in the dataset. [Grist and Leung, 2002] proposed an improvement on this method
using bias-corrected and accelerated estimators for the confidence interval. These correc-
tions ensure that the error in the coverage of the confidence interval decrease with 1

n
in-

stead of 1√
n

for the original method. This non-parametric bootstrap method is restricted
to large sample sizes. The bare minimum for estimating an HC5 is 20 species, otherwise
the 5th percentile of the empirical distribution is not defined. This is already very large
on most standards (only 5 % of the 3448 chemicals in the RIVM database published
in [Hickey et al., 2012] have 20 or more species), but attempts to define an optimal size
resulted in much larger estimates [Newman et al., 2000, Grist and Leung, 2002]. Grist
proposed a bootstrap regression method [Grist and Leung, 2002] for small sample sizes,
which is effectively a parametric method: it consists in 1) fitting a parametric SSD on
many bootstrap samples, then in 2) estimating the HC5 of the parametric SSD and finally

6 [Hickey et al., 2009] elaborated on the use of loss functions (but in a parametric setting, using a log-
normal distribution) and proposed a linear exponential loss function which penalizes exponentially
overestimation of the HC5 and penalizes linearly underestimation. This asymmetric penalization
is well suited to a situation where overprotection might have significantly less adverse effects on
the long term than underprotection (loss of more than 5% species). However there is no escaping
the definition of a relative cost of losing species against putting over-restrictive regulation, which is
difficult to reconcile with the intrinsic value paradigm in biodiversity protection.
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3) calculating the median then the confidence interval from the bootstrap distribution of
the parametric HC5. Wheeler[Wheeler et al., 2002] and Grist [Grist and Leung, 2002]
report differences between parametric SSD and bootstrap regression with the same
parametric distribution which can be large, while several authors report the contrary
[A.M Verdonck et al., 2001, Xing et al., 2014].

[Wang et al., 2008] proposes a modified bootstrap which consists, for N data points,
in defining an interval around each data point, in sampling randomly with replacement
N intervals then for each interval, sampling a point from a uniform distribution on that
interval. This amounts to a noisy version of the bootstrap, where each data point is
added random noise. Using that procedure, the probability to sample several times
the same value vanishes, and the jaggedness of the empirical cumulative distribution is
reduced. The length of the interval can be tuned to vary the intensity of noise around
the data. Wang et al. argue that their procedure is more robust than non-parametric
bootstrap.

1.2.3 Different frequentist methods to fit a parametric Species
Sensitivity Distribution

As bootstrap methods seem applicable only in the case of large toxicity datasets, which
are not the majority, parametric methods are much more commonly used for SSD. Pa-
rameter estimation in a frequentist framework can be performed by optimising a chosen
criterion: the likelihood or some goodness-of-fit distance.

Maximum Likelihood
The likelihood function gives the probability of observing the data given the parameters.
Maximizing the likelihood implies selecting the parameters for which the probability
of observing the data is highest. Maximum likelihood is by far the most standard ap-
proach to distribution fitting and more generally to model fitting. It is backed with a
consequent body of theoretical work ensuring many interesting asymptotic properties
[Armitage, Peter and Colton, 2005]: the maximum likelihood estimate converges to the
true value of the parameters with increasing sample size (consistency), it is the fastest
estimate to converge (efficiency) and the difference with the true value is normally dis-
tributed (normality). This last property is useful as it provides a method to compute
confidence intervals on the parameters. This approach is used by the Australian software
Burrlioz [Campbell et al., 2000], for instance, which fits a Burr III distribution to the
toxicity data. Moreover, a natural extension of the likelihood function allows to take
into account censored data [Helsel, 2005].

Least-square regression on the Cumulative Distribution Function and on
the Quantile-Quantile plot

Least-square regression on the empirical CDF is a popular method to estimate the pa-
rameters of the SSD. It consists finding the best parameters by minimizing the sum
of the squared vertical distances between the CDF of the chosen parametric distribu-
tion and the empirical CDF of the data (also known as the Cramer-Von Mises distance
[Von Mises, 1964]). Alternatively, least-square regression can be performed on the Q-Q
plot. A Q-Q plot is a plot of the quantile of the theoretical distribution against those
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of the empirical distribution. If the sample follows the theoretical distribution, then the
points would lie on a straight line. Regression on the Q-Q plot consists in minimizing the
horizontal or vertical sum of squared distances between a straight line and the theoretical
quantiles plotted against observed quantiles.

This is the approach adopted by the software CADDIS_SSD
[Shaw-Allen and Suter II, ], from US EPA, which performs a backwards least-square
regression on the Q-Q plot with a log-probit function [Hickey and Craig, 2012] (this
corresponds to assuming a log-normal distribution for the SSD). The software SSD
MASTER [Rodney et al., 2008] uses a least-square regression on the CDF, but tries sev-
eral other distributions : normal, logistic, Gompertz and Gumbel7. [van Straalen, 2002]
used the Systat - nonlin module to perform nonlinear regression on the CDF.

However, there is no unique way to build a CDF: several possible plotting positions
[Kefford et al., 2012a, Posthuma et al., 2010] all have desirable properties, but none of
them represent the data more faithfully than any other. Therefore, the resulting SSD
and its predictions depend on purely arbitrary decisions regarding the plotting positions,
a fact that undermines its scientific credibility. A number of plotting positions are
mentioned in [Aldenberg et al., 2002] and most of them have been proposed following a
reasoning on the mean, median or mode of the order statistics (the distribution of the
ith value). The different propositions can be presented as special cases of the following
formula:

pi = i − a

n + 1 − 2a
(1.4)

with 0 ≤ a ≤ 1 and where each proposition corresponds to a value for a. Values for
a proposed by several authors include a = 0, 0.3, 0.31, 0.3175, 0.375, 0.4, 0.44, 0.5, 1. The
choice of a value for a stems from a decision concerning the mathematical properties of
the plotting positions: for a = 0, the plotting positions will match the expectation value
of order statistics for samples drawn from a uniform distribution (the order statistics
follow a beta distribution), whereas for a = 1 the plotting positions will match the mode
of the order statistics distribution instead. Requirement to match the median of the order
statistics distribution do not lead to an exact value for a. For example, requirement to
match the median for different samples drawn for a log-normal distribution would yield
different values for a, so it is clear that there is not objectively best choice. Moreover, on
an example dataset used in [Aldenberg and Jaworska, 2000] we can see that the value
of the HC5 can be affected up to a factor 3 by the choice of the plotting positions
(Figure 1.7).

7They call it Fisher-Tippet, which is another name for the generalized extreme value (GEV) distribu-
tion of which the Gumbel distribution is a special case, but it seems that they are using the Gumbel
distribution.
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Figure 1.7: HC5 computed on the example cadmium dataset of
[Aldenberg and Jaworska, 2000] for several plotting positions, sorted
by increasing values of a.

Similarly, [A.M Verdonck et al., 2001] shows a difference by a factor 2 between the
Hazen plotting positions (a = 0.5) and mean plotting positions (Weibull, a = 0). Note
however that the effect of choosing particular plotting positions is expected to decrease
as the size of the sample increases.

When the choice of plotting positions is made, it is possible to measure the least-square
distance between the theoretical and the plotted empirical CDF or between the Q-Q plot
and a straight line. [Hickey and Craig, 2012] cites several limitations to the regression
method: 1) as we have seen, the HC5 depends on plotting positions, 2) the typical re-
gression assumption of errors being independently and identically distributed is false and
3) there is no reason to prefer horizontal least squares to vertical least squares minimiza-
tion. The reason why the regression assumption fails is two-fold: first, the CDF and the
quantile function are non decreasing functions, the value of the empirical CDF and of
the empirical quantile function at a given observation can only be equal or higher than
at the previous observations which is a clear violation of the independent errors assump-
tion. Second, in the case of regression on the CDF, the normal error model is not true,
in particular for the most sensitive and most tolerant species. For these extreme species,
the CDF is close to 0 or to 1 and bounded by 0 and 1, so the measurement error cannot
be symmetric around the model. Finally, according to Hickey [Hickey and Craig, 2012],
CADDIS_SSD [Shaw-Allen and Suter II, ] uses horizontal least squares to perform re-
gression on the CDF. Vertical least squares would be more natural since it amounts
to consider that the data is randomly distributed rather than the theoretical quantiles.
In summary, regression on the CDF or the Q-Q plot is not particularly recommended
[Hickey and Craig, 2012], all the more that simple alternatives exist which are much
more reasonable from a statistical point of view.
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Moment matching
Parameter estimation can also be performed without any distance but by matching
properties of the empirical sample with properties of the theoretical distribution. ETx
[van Vlaardingen et al., 2004], one of the tools recommended by ECHA for SSD esti-
mates the distribution parameters via moment-matching. Earlier versions of the software
performed estimation for log-normal, log-logistic and log-triangular distributions while
the current version uses only the log-normal distribution. Moment matching consists in
equating the empirical moments of the sample (possibly the centred moments and unbi-
ased estimates) with the moments of the distribution fitted to the data. This is practical
in the case where the moments of the distribution have a closed form as a function of
the parameters, as it is the case for the log-normal and log-logistic distributions. Mo-
ment matching is equivalent to maximum likelihood for distributions of the exponential
family, such as the normal distribution. However, distributions such as the Burr III ,
triangular and log-logistic distributions do not belong to this family. Moreover, moment
matching is sensitive to outliers and can give unrealistic results, as the estimators are
not guaranteed to be consistent.

1.2.4 Bayesian methods to fit a Species Sensitivity Distribution
Finally, various Bayesian methods were proposed to fit an SSD, which share the same
paradigm but different aims. A presentation of the Bayesian paradigm is provided in
Appendix B. One common idea in these Bayesian approaches is the realisation that clas-
sical SSD considers each experiment about a chemical as completely independent from
the past and general knowledge in ecotoxicology, and considers each species as a ran-
dom sample from an unknown community. In reality, there is considerable information
already available from the testing of other contaminants or from biological knowledge of
the species in the community. The flexibility of the Bayesian framework allows extend-
ing the SSD model to take various types of information available about the data into
account:

Species non-exchangeability
The question of species non-exchangeability has been recently discussed by
[Craig et al., 2012]. Species exchangeability is the bayesian counterpart to the assump-
tion of independently identically distributed CEC made in frequentist SSD (see also
section B.2). Exchangeability is an assumption that knowing additional information
about a species, such as its taxonomic group, would not provide a priori information
about its sensitivity. Non-exchangeability of species arise where some commonly tested
species have a tendency to be more sensitive or tolerant than others across contami-
nants, such that it is possible a priori to predict that it should be more sensitive than
another species. The trout Oncorynchus Mykiss is an example of non-exchangeable
species, as it appears to be generally more sensitive than other species to contaminants.
[Craig et al., 2012] proposed introducing a hierarchical model with two additional pa-
rameters for adjusting the mean and the variance of the sampling distribution of the
non-exchangeable species. Adjusting the mean amounts to assuming a general tendency
for that species, independent of the contaminant, while adjusting the variance can reduce
the variability across contaminants. Craig and colleagues derive new decision rules for
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SSD with non-exchangeable species which can be used as easily as those presented by
[Aldenberg and Jaworska, 2000].

Various subgroups
Another approach is proposed by [Hayashi and Kashiwagi, 2010] who suggest models
taking into account taxonomic information about the species and dividing them in three
groups: they propose to fit 4 models with a single distribution for all species, a mean
for each taxonomic group and common variance, a variance for each taxonomic group
and common mean, a variance and a mean for each group. Model selection is car-
ried out using Deviance Information Criterion (DIC)8 [Spiegelhalter et al., 2002]. When
there are several distributions, the global HC5 is obtained by simulating the same num-
ber of values from each distribution, or by simulating with weights as suggested by
[Duboudin et al., 2004b]. The result of Hayashi and Kashiwagi is that 3 times out of
7, the model with only one distribution is chosen, 3 times out of 7, the model with
varying means but common variance is preferred and 1 time out of 7, the model with
varying mean and variance is preferred. Other proposals for modelling subgroups based
on taxonomic information include [Grist et al., 2006] and [Hickey and Kefford, 2008].

Inclusion of expert knowledge
Yet another sort of information available about the data is experts’ opinion about the
general tolerance of species. [O’Hagan et al., 2005] proposes to estimate the sensitivity
of each taxon by including expert judgement about the sensitivity of that taxon and
assuming homogeneous within taxon variance for the tested species. In their model, the
estimated mean is linearly dependant on expert judgement with a normal error model,
and the parameters of a taxon sensitivity distribution (SSD, but at the taxon level) are
all fitted in a hierarchical model. This approach is also used in [Grist et al., 2006].

[Ciffroy et al., 2012] presented an informative SSD approach based on prior informa-
tion on other contaminants to estimate the variance. Their model does not take intra-
species variation of the data into account. The prior on the variance is estimated from
a pooled variance of all other contaminants. Their model allow for within contaminant
variance and inter-contaminant variance. This assumes that variance is similar across
contaminants and this assumption is found to hold reasonably well on a dataset of 21
substances. They contend that this assumption is not a very strict one, as prior infor-
mation will shift the posterior estimation, but in a subtle manner: the extremely small
or large variances will be shrunk towards the variance of the bulk of the contaminants.
In summary, for large sample size, the parameters are learnt from data and the prior
has little influence, whereas for samples of small size who naturally tend to have a small
variance, the prior pulls toward larger variance which is a conservative feature as it leads
to obtain a lower HC5.

Inclusion of uncertainty on Critical Effect Concentration
A last group of Bayesian approaches aims at taking into account the uncertainty on the
toxicity data. Noting that several values can be available for one species-contaminant
pair and that the general practice is to take the geometric mean of these values,

8The DIC is a generalisation of the AIC used for model selection in the Bayesian framework. It includes
the deviance and a penalisation for model complexity.
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[Hickey and Craig, 2012] argued that there exists a large inter-test variation and pro-
posed a model to take it into account. As it is not a simple problem, they proposed as a
first step to assume that the inter-test variability was homogeneous across all contami-
nants and to estimate it in a hierarchical model. They found that in general, including
intertest variability revealed that the classical SSD is overprotective, but there are ex-
ceptions to that rule which suggest that classical SSD might sometimes under-protect.
In any case, accounting for inter-test variability is a better alternative than taking the
geometric mean.

Another way to include uncertainty on the toxicity data was proposed by
[Moore et al., 2010], based on the inclusion of the raw data in the SSD approach instead
of the CECs, which are a only summary of the raw data (see also subsection 1.1.2).
They proposed to use a hierarchical model to account for inter-replicate variation and
inter-test variation of species sensitivity, by including the concentration-effect model for
the raw data, but they considered only one contaminant. They assumed a normal error
model for inter-replicate variation and a log-logistic concentration-effect model with four
parameters. These four parameters were allowed to vary for each test and followed a
normal distribution centred around a species specific mean, with a variance for inter-test
variation identical for the four parameters. Finally, the four species-specific means also
followed a normal distribution with a common variance but each their own mean. These
means were given peaked centred normal priors (N (0, 10−4)) while the variance parame-
ters (or rather the precision parameters, i.e. the inverse of the variance) at the replicate,
test and species level were given flat gamma(0.001, 0.001) priors. With the fitted hierar-
chical they were able to generate ECx and construct an SSD including sources of variance
at the level of model fit, test and species. They did not justify much their choice of prior
distributions, nor the choice that the variability of the four parameter should be the
same (common variance parameter). The concentration-effect model being nonlinear,
the parameters might play a very different role and vary on totally different scales, jus-
tifying different variance parameters. However, their methodology provide an elegant
way to deal with uncertainty on the toxicity data. This work was the starting point
of much of the work developed in this thesis. The structure of the hierarchical models,
the concentration-effect models, the prior distributions and the analysis of the posterior
distributions used in this thesis ended up to be quite different, but the motivation for
hierarchical modelling owes much the material presented in [Moore et al., 2010].

1.3 Motivation and outline of the thesis
Motivation

We drew a link between the multiple developments of SSD which used the Bayesian
framework by mentioning that they all endeavoured to include external information in
classical SSD, information gathered from the taxonomy of the species, from expert knowl-
edge of from bioassays performed on other chemicals. The last development proposed by
[Moore et al., 2010] fits that description in that it uses information from the raw data
instead of the CECs only, which can be considered as information external to classical
datasets. However, that information is not external in the same sense as taxonomic in-
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formation or expert knowledge. Constructing an SSD from the raw data really amounts
to avoid artificially summarizing the data, and in principle this does not require more
experimental effort than to measure the CECs in the first place. Rather, the effort is
switched to the modelling side. Toxicity data are generally expensive to collect and rare
compared to the needs. Acute toxicity experiments are easiest to perform and already
take days, while chronic toxicity experiments might last months and are possible only
for very specific species whom the experimenter knows how to maintain alive for so long
(this requires knowing what temperature, flow, food, physical and chemical conditions
are appropriate for that species). Moreover, there is a growing consensus towards re-
ducing animal testing which does not push in the direction of increasing data collection.
Therefore, it is crucial to make the best of the available data. A lot of data is currently
discarded in the classical SSD approach: 1) concentration-effect curves for which it is not
possible to estimate a CEC because it is too imprecise or because no effect was observed
for the concentration range tested are altogether discarded, 2) raw data are summarised
at the loss of valuable information, and 3) when data are recorded over time, only the
last measurement is usually taken into account.

Outline of the thesis
This thesis aims at revisiting SSD by proposing methods to take advantage of the data
currently discarded. We show how to account for these three types of data in SSD and
consider possible uses of the additional information made available. The remainder of
the thesis is divided in three chapters: Chapter 2 introduces censored data and describes
methods to include them in SSD. It then presents a web-tool specifically designed to in-
clude censored data in SSD and ends with a study of the added value of taking censored
data into account on various examples. Chapter 3 presents a hierarchical model of SSD
which includes together the concentration-effect model at the species level and the dis-
tribution structure at the community level. It explains that using this approach, the raw
data is not summarised as in classical SSD and uncertainty on the CEC is adequately
propagated to the HC5. The chapter begins by a section investigating several possible
concentration-effect models. It then presents the hierarchical structure of the model and
shows how additional information extracted from the data can be used to construct a
different description of the community response to contaminant exposure, which com-
plements the HC5. The results of the hierarchical SSD are compared to those of classical
SSD to assess the effect of discarding uncertainty on the CEC. Chapter 4 presents a
method to construct a time-resolved SSD from survival data using a hierarchical model
incorporating a Toxico-Kinetic model. It begins by a description of the Toxico-Kinetic
model including the derivation of the survival probability equations, followed by a de-
scription of the hierarchical structure of the time-resolved SSD. The time-resolved SSD
is then compared to the classical SSD to understand how time evolution comes into play.
The approach is illustrated on a salinity tolerance dataset for a large number of species
from Australia and France and concludes with possible developments of the approach to
compare the effects of salinity reduction intervention strategies.



Chapter 2
Inclusion of censored data in Species
Sensitivity Distribution

This thesis begins with a description of a simple method to include
censored data in SSD. Censored data is usually discarded or trans-
formed, which has a deleterious effect on SSD. We first show that
it is simple to adapt the standard SSD method to include censored
data, then we present a web-tool which encapsulates the method and
finally, we show the added value of including censored data in SSD.
The web-tool is based on an R-package which is not dedicated to SSD
and the work of this thesis consisted in adapting it to SSD. It in-
cluded participating in the development of this web-tool, in the de-
cisions concerning the methodological choices and studied the influ-
ence of including censored data into SSD. This work was published in
[Kon Kam King et al., 2014].

2.1 Different frequentist methods to deal with censored
data

2.1.1 Definition
Censored data is a general name given to data which are not in the form of fixed values
but belong to an interval, bounded or not. Censored sensitivity data occur when it is not
possible to determine a single value for the CEC for a given species. Possible reasons are
that 1) the highest concentration tested does not have any noticeable effect, 2) only a
tiny amount of contaminant already stamps out all the individuals, 3) the measurement
is simply too imprecise to be reasonably described by a single value instead of an interval.
In such cases, it is only possible to give a lower bound, a higher bound or an interval
to the CEC. Such data are said to be right-censored, left-censored or interval-censored,

23



24 Chapter 2. Inclusion of censored data in Species Sensitivity Distribution

respectively (see also Figure 2.1). Censored data can also occur when there are multiple
values for the sensitivity of one species to a given toxicant. When the quality of the
data seem equivalent, ECHA’s advice[ECHA, 2008] is to use the geometric mean as a
replacement for the different values. It might be more cautious to use these multiple
values to define an interval containing the sensitivity of that species.

Censored data are very different from doubtful or questionable data obtained from
failed experiments. They are produced using a valid experimental procedure and they
contain information as valid as non-censored data. Censorship is very common, es-
pecially for rare species where there are scant data available and for which no stan-
dard test procedure exists. There is a downside in discarding censored data, as they
could represent the better part of an extended dataset. For instance, in the work
by Dowse et al.[Dowse et al., 2013], discarding censored data entails a division of the
number of tested species by a factor 8. In spite of their ubiquity, censored data ap-
pear to be very much ignored in ecotoxicology. To our knowledge, there is no ex-
ample of SSD including all types of censored data in a frequentist framework. It is
possible in a Bayesian framework[Kefford et al., 2012a, Hayashi and Kashiwagi, 2010,
Hickey and Kefford, 2008], but fitting a Bayesian model requires a certain statistical ex-
pertise. Censored data are typically either discarded or substituted with arbitrary values,
which is a bias-prone approach in general[Helsel, 2006]. This can be understood because
discarding left or right censored data entails excluding from the dataset only the most
sensitive or tolerant species, which produces an obvious bias.

Figure 2.1: Illustration of the different types of censored data. Left censored data is in
blue, interval censored data in green and right censored data in red.

2.1.2 Kaplan-Meier estimator for the Species Sensitivity
Distribution with only left or right-censored data

One frequentist method which has been used to include censored data is based on the
Kaplan-Meier estimator[Dowse et al., 2013, Kefford et al., 2006, Kefford et al., 2003,
Hickey and Kefford, 2008, Kefford et al., 2005b, Kefford et al., 2012a]. It is a non-
parametric estimator which can accommodate for right or left-censored data, but not
for interval censored data nor for a mix a right and left-censored data. The Kaplan-
Meier estimator is the non parametric maximum likelihood estimator for right-censored
data[Kaplan and Meier, 1958].
We give a brief description of the Kaplan-Meier estimator in the case of an SSD with
right-censored CEC. Reading this description is not essential to understanding the work
presented in this thesis and it could be skipped. Let us define F , the CDF of the SSD
and (x1, . . . , xN) which are either the non-censored CEC or the lower bounds of the
right-censored CEC sorted by ascending order.



2.1 Different frequentist methods to deal with censored data 25

For a given concentration c, the probability of finding a concentration higher than xi

and the cumulative distribution are linked by:

1 − F (xi) =Pr(c > xi) (2.1)
=Pr(c > xi|c > xi−1)Pr(c > xi−1) (2.2)
=Pr(c > xi|c > xi−1)Pr(c > xi−1|c > xi−2) . . . P r(c > x1|c > 0)Pr(c > 0)

(2.3)

Pr(c > 0) = 1 since the concentration is necessarily positive, and the probability to have
a concentration higher than xi given that it is higher than xi−1 can be estimated by:

∀i, P (c > xi|c > xi−1) = ni − di

ni

(2.4)

where ni is the number of species whose CEC is higher than xi (Card({xj, j ∈ N
n; xj ≥

xi})) and di is the number of CEC which are not censored and have exactly the value xi.
If the CEC are estimated from the fit of a model (a continuous variable), there should
not be two CEC with the exact same value and most often di = 1, but di can be greater
than 1 to take into account the possibility of ties.
The Kaplan-Meier estimator for the CDF of the SSD is obtained by recurrence from
Equation 2.4:

F̂ (x) = 1 − ∏
j;xi<x

ni − di

ni

(2.5)

If xi is the lower bound of a right-censored CEC and there is no tie, then di = 0,
Equation 2.4 is equal to one and does not change the product of Equation 2.5. Therefore,
censored CEC participate in the values ni but not in the di. This is the mechanism by
which the Kaplan-Meier estimator accounts for censored data.
Using a similar construction, the estimator can be adapted for the case where there are
left-censored data only[Klein and Goel, 2013], but not for interval censored data or for
a mix of left and right censored data.

2.1.3 Maximum likelihood for all types of censored data
However, there is a simple method to include all types of censored data in a frequentist
framework. Parameter estimation of a distribution on any type of censored data can be
performed using a natural extension of the maximum likelihood method[Helsel, 2005].
This approach is traditionally favoured, for it benefits from a strong body of analytical
works and asymptotic properties: the maximum likelihood estimate converges to the true
value of the parameters (consistency), it is the fastest estimate to converge (efficiency),
the difference with the true value is distributed normally (normality), which provides
confidence intervals on the parameters. Moreover, other techniques such as moment
matching might not be easy to use, because moments are not trivially estimated for cen-
sored data[Kroll and Stedinger, 1996]. Let xi be N sensitivity data following distribution
f of parameter θ. The likelihood function for non-censored data writes as follows:
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L(θ) =
N∏

i=1
f(xi|θ) (2.6)

This likelihood function can be extended to censored data. Let xi be the Nnc non-
censored data, xup

j the Nlc upper bounds for left-censored data, xlow
k the Nrc lower bounds

for right-censored data and
(
xlow

l , xup
l

)
the Nic pairs of bounds for interval-censored data.

Then, the previous likelihood function now extends to:

L(θ) =
Nnc∏
i=1

f(xi|θ) ×
Nlc∏
j=1

(
F (xup

j |θ)
)

×
Nrc∏
k=1

(
1 − F (xlow

k |θ)
)

×
Nic∏
l=1

(
F (xup

l |θ) − F (xlow
l |θ)

)
(2.7)

where F is the CDF of distribution f .
We see that the likelihood function for censored data (Equation 2.7) writes as a product
of four terms, the first being the likelihood for non-censored data (Equation 2.6) and
the next three corresponding to the left-censored data, right-censored data and interval-
censored data respectively.

2.2 MOSAIC_SSD
2.2.1 Introduction
It is possible to use the method described in the previous section using the R-package
fitdistrplus[Delignette-Muller et al., 2013]. R-packages survival[Therneau, 2014] and
NADA[Lee, 2013] offer the same possibility. However, they require a certain fluency
in the R programming language, preventing the widespread use of censored data in
ecotoxicology. Minitab[min, 2000] is a commercial software with a graphical user inter-
face which fits multiple distributions to censored data rather easily, but there does not
seem to be any open-source alternative. Moreover, fitdistrplus and these other packages
and software are not specifically designed for SSD and their versatility in the choice
of distributions and fitting methods might discourage inexperienced users. Thus, we
developed a web-interface, MOSAIC_SSD (http://pbil.univ-lyon1.fr/software/
mosaic/ssd/), which is a wrap up of fitdistrplus into a SSD-dedicated online tool.
MOSAIC_SSD enables anyone to perform a simple, yet statistically sound SSD analysis
including censored data without worrying about the conceptually difficult underlying
statistical questions. The web-interface is easily accessible via any browser and simple
to use: given an input dataset, it sends the calculation to a server then hands in the
result.

2.2.2 Methodological choices
Distributions

We chose to offer few options to keep the tool more user-friendly. The user can choose
one or two among the log-normal and log-logistic distributions. These two distribu-
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tions are the most widely used[Wheeler et al., 2002] and parameter estimation appears
robust enough to accommodate for most datasets, as they contain only two parame-
ters. In order to select which distribution describes the data best, the first step is to
perform a qualitative assessment by looking at the representative curves. The value of
the likelihood function for each model can then be used as a further decision criterion.
The log-logistic distribution has heavier tails than the log-normal and is therefore more
conservative in the determination of the lower bound of the confidence interval on the
HC5[Aldenberg and Slob, 1993].

Bootstrap confidence intervals
The concept of bootstrap was introduced in section 1.2.2. Confidence intervals on the
HC5 maybe be computed via bootstrap by generating samples with the same size as the
original dataset and fitting an SSD on each of them. The reasoning is that each generated
sample is considered as a repetition of the experiment and that the distribution of the
HC5 for each sample approaches the frequentist distribution of the HC5 resulting from
repeated sampling. The quantiles of these HC5 thus provide a confidence interval. Cal-
culating the confidence intervals using a bootstrap method [Efron and Tibshirani, 1993]
has the advantage of using a unified framework for every distribution. The samples
might be generated using two methods, parametric bootstrap and non-parametric boot-
strap. In the case of parametric bootstrap, the parameters of the SSD are estimated
by maximum likelihood and samples are generated using these parameters and the form
of the distribution. In the case of non-parametric bootstrap, samples are generated by
sampling with replacement from the original data. Parametric bootstrap was chosen for
non-censored datasets, because a parametric SSD it fitted on the data and because it is
easier to observe convergence of the bootstrap confidence intervals with parametric boot-
strap on small datasets. Non-parametric bootstrap was chosen for censored datasets, as
there is no trivial method to generate a sample containing censored data1.
Within MOSAIC_SSD, the bootstrap 95% confidence intervals are automatically com-
puted. They yield confidence intervals on the parameters of the distribution and on
several computed HCp. The number of generated bootstrap samples to use for comput-
ing the confidence interval must be determined and this number is strongly dependent on
the dataset. Figure 2.2 illustrates the evolution of the bootstrap confidence intervals on
HC5s as the number of samples is increased. For a fixed number of samples, convergence
of the bootstrap procedure means that repeating the bootstrap procedure several times
with the same number of samples returns the same result for the confidence interval.
As the bootstrap procedure is not guaranteed to converge, I implemented an automatic
check of bootstrap convergence based on the following approach: for each dataset, the
bootstrap procedure is run five times with 5000 samples, comparing the magnitude of
the fluctuations of the bounds of the confidence interval to the span of the confidence
interval. When this fluctuation over the five runs is negligible with respect to the span
of the confidence interval, the bootstrap procedure is considered converged2 and the con-

1Starting from the estimated parameters, one would have to choose for each CEC generated from the
distribution the type of censoring and the value of the censoring bounds. We have not found a
procedure which is not strongly arbitrary and which would generate randomly censored sample.

2Let (Li)i∈{1,...,N} be the N lower bounds of the bootstrap confidence intervals and (Ri)i∈{1,...,N} the
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fidence interval is computed with the 25000 concatenated samples. In the case where
the bootstrap procedure fails to converge, additional computations are launched. If the
bootstrap eventually converges, or if the process has reached the time limit, the user is
advised whether the confidence intervals are reliable.

E
ndosulfan−arthropods

E
ndosulfan−fish

Fluazinam
S

alinity

100 10000
Number of bootstrap samples

H
C

5

Figure 2.2: HC5 estimate and bootstrap confidence interval for the four example datasets
provided in MOSAIC_SSD. The units of the HC5 are specific to each dataset,
and the y axis is in log scale.

higher bounds. Let sL =
√

V ari(Li) and sR =
√

V ari(Ri). We arbitrarily consider the bootstrap
converged if 1

N
max(sL,sR)

<Ri>i−<Li>i
< 5 ∗ 10−2, where the division by N is intended so that the condition

does not become more and more stringent with the number of bootstrap samples.
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2.2.3 Interface
Figure 2.3 shows a screenshot of the result page of the analysis with an example dataset
(provided in MOSAIC_SSD) containing censored data and documenting the salinity
tolerance of riverine macro-invertebrates[Kefford et al., 2006] (hereinafter referred to as
the censored salinity dataset). The dataset contains 72-hrs LC50 values for 110 macro-
invertebrate species from Australia. Data were collected using Rapid Toxicity Test-
ing (RTT)[Kefford et al., 2005a] and contain non-censored, right-censored and interval-
censored data. The result page shows a graphical representation of the censored data,
the Hazardous Concentration for p% of the species (HCp) computed for various values
of p which might be of interest and the bootstrap confidence intervals within brackets.
Figure 2.3 also shows the output of an SSD analysis with a non-censored dataset. It
is actually a non-censored version of the salinity dataset described earlier. The trans-
formation from censored to non-censored dataset followed the customary approach to
censored data, which consists in discarding some type of data and transforming others
(more details in subsection 2.3.1). An analysis with non-censored data follows identi-
cal steps as with censored data and yields results with the same outline, except that a
traditional CDF is used to represent the data.
The most apparent difference between the outputs of the censored dataset and the
non-censored dataset is the representation of the CDF. For non-censored data, the
CDF is represented using the traditional Hazen plotting positions[Posthuma et al., 2010].
The choice of plotting positions remains arbitrary and there is no perfect
solution[Hickey and Craig, 2012, Posthuma et al., 2010], so we gave preference to the
most standard approach. Representation of censored data CDF is a nettlesome problem
by itself. Building a CDF implies defining an ordering for the data. If obvious for non-
censored data, such an ordering has little meaning for interval-censored data. Should
they be ranked according to the median of the interval? To the higher bound, the
lower? What to think of left/right-censored data? Within MOSAIC_SSD, we chose to
answer this problem using the Turnbull estimate of the CDF, which is a non-parametric
maximum likelihood estimator of the CDF[Turnbull, 1976]. This estimate is obtained
through an expectation-maximisation algorithm and yields the CDF which predicts the
data with the highest probability. The Turnbull estimate is represented as a stepwise
curve as on Figure 2.3 (top panel).
Finally, we intended MOSAIC_SSD as a stepping stone to perform further analysis
with fitdistrplus. The last item on the MOSAIC_SSD result page (not shown on the
screenshots) is an R script which allows to perform a similar analysis using fitdistrplus
through a copy and paste operation in R. This script can be tuned by slightly changing
some of the options : for instance, an HCp for different values of p might be computed,
one may try alternative distributions or a different fitting method. Moreover, this script
ensures transparency and traceability of the results obtained with MOSAIC_SSD.

2.3 The added value of censored data
Changing a few parameters in the R script provided within MOSAIC_SSD, it is pos-
sible to use fitdistrplus to investigate on several fundamental aspects of SSD. We used
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Figure 2.3: Screenshot of the result page of MOSAIC_SSD on the salinity censored
dataset. The top panel shows the output of MOSAIC_SSD on the salin-
ity dataset, the bottom panel shows the output on a non-censored dataset
obtained from a transformation of the salinity dataset.
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fitdistrplus to study the influence of including censored data on the predicted HC5, and
for the purpose of comparing censored to non-censored data, we changed the bootstrap
method for non-censored data from parametric to non-parametric to remove a potential
confounding factor. A customary approach when dealing with censored data is to discard
or to transform it. More precisely, it is frequent to discard left or right-censored data
and to take the middle of the interval-censored data as a single value. Two datasets were
analysed to assess the effect of such data transformation on the predicted hazardous
concentrations.

2.3.1 Two examples
In the censored salinity dataset mentioned earlier, out of 108 LC50, 89 (82.4%) are cen-
sored, among which 60 (55.6%) are right-censored and 29 (26.8%) interval-censored.
Most of the censored data resulted from testing of rare species, for which the small
number of individuals captured prevented the calculation of an LC50 by fitting a
concentration-response model[Kefford et al., 2006]. This extensive dataset was collected
to be as representative as possible of the species found in nature[Kefford et al., 2006].
Hence, a first asset of taking censored data into account is to abstain from discarding or
altering the vast majority of the data. The resulting SSD is therefore more representative
of the community it aims to describe. Moreover, using only non-censored data in the
analysis introduces a strong selection bias towards abundant species. This is particularly
problematic when some rare species are likely to be among those that the environmen-
tal manager wishes to protect by carrying an SSD analysis. The second dataset was
published by Koyama et al. [Koyama, 1996], and contains vertebral deformity suscep-
tibilities of marine fishes exposed to trifluralin (hereinafter referred to as the censored
trifluralin dataset). The measured endpoint are 96-hrs EC50 on 10 species. Four of the
EC50 are censored, among which two are right-censored and two are left-censored. On
this dataset, the obvious advantage of taking censored data into account in that it allows
to fit an SSD on 10 species, whereas discarding the censored data reduces the size of the
dataset to six species only, which is below the minimum recommendation of ECHA (of
10, preferably 15[Aldenberg and Rorije, 2013]).
A non-censored version of the two datasets (hereinafter referred to as the transformed
salinity and transformed trifluralin datasets) was obtained following the habitual proce-
dure of discarding the right or left-censored data and taking the middle of the interval-
censored data. Fitting the log-normal distribution on the censored and transformed
versions of the datasets showed that discarding censored data had an adverse effect on
the predicted HC5 (Figure 2.4). For the salinity dataset, discarding the right-censored
data induced a clear upward bias for the cumulative curve and a therefore greater HC5
(Figure 2.4 left). The estimates for the HC5 were: 9.85 g.L−1[8.38; 11.80] for the cen-
sored dataset and 7.98 g.L−1[6.63; 9.93] for the transformed dataset, respectively. An
unnecessary high hazardous concentration might seem a harmless error, for using the
transformed salinity dataset would have proven more protective. However, that incor-
rectly low value might motivate the use of costly decontamination measures at a specific
location, when efforts could be spared and distributed elsewhere.
The influence of censored data is dataset-dependent and the bias could be in the opposite
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Figure 2.4: Fitted and empirical cumulative distribution and the HC5 for the salinity
dataset (left) and the trifluralin dataset (right). The dotted line corresponds
to a potentially affected fraction of 5%. Vertical arrows indicate the HC5.
The blue line is for the censored dataset, the red for the transformed dataset.
A log-normal distribution was fitted on the dataset.

direction. This is illustrated on the trifluralin dataset (Figure 2.4 right). Fitting the log-
normal distribution yielded the following estimates for the HC5: 2.4 × 10−3mg.L−1[4.7 ×
10−5; 2.6×10−2] for the censored dataset and 1.7×10−2mg.L−1[8.9×10−3; 4.3×10−2] for
the transformed dataset, respectively. Discarding the censored data led to underestimate
the variability in the community sampled by the tested species. Therefore, the width
of the distribution was underestimated and the fifth percentile had a value too large.
Discarding the censored data led to an underestimation of the trifluralin real toxicity
and of its potential hazard to the environment. Another striking differentiation was that
the span of the confidence interval was much larger when censored data were included in
the SSD. It reveals that a possible effect of transforming censored datasets is to severely
underestimate the width of the confidence interval and to give overconfident predictions
on the hazardous concentrations.

2.3.2 RIVM database
In order to confirm these findings, we studied a published dataset containing 3442 con-
taminants and 1549 species[Hickey et al., 2012]. This dataset contained both censored
and non-censored data, thus we compared the HC5 obtained on the non-censored dataset
to the HC5 obtained on the transformed dataset including only censored data. In or-
der to have consistent endpoints for SSDs, we restricted the dataset to EC50 only. To
ensure that there was at least a little variation between the complete and transformed
dataset, we also chose to focus on chemicals for which the proportion of censored data
was superior to 10%.
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Data aggregation
As the dataset may contain several sensitivity values for a given (contaminant, species,
endpoint) set, the data was aggregated according to the following scheme: to define
the censored sensitivity value for a species, the largest interval containing all the data
(censored or not) was chosen, i.e. the smallest lower bound and largest higher bound.
This is a precautionary approach, as it defines an interval which ought to contain the true
sensitivity value. To define the non-censored toxicity data for a species and endpoint, all
the interval censored data were transformed to non-censored data by taking the middle
of the interval. Left or right censored data were discarded. The unique non-censored
toxicity value was then chosen as the geometric mean of all the non-censored sensitivity
values for that species and endpoint, as recommended by ECHA[ECHA, 2008].

Description of the subsets
Two subsets of the dataset were considered: 1) a well documented subset (data-rich),
containing EC50 and more than 10 species per contaminant in order to produce good
quality SSDs. This first subset comprised 239 contaminants. 2) A poorly documented
contaminant dataset (data-poor), containing EC50 and between 5 and 9 non-censored
species sensitivity values after aggregation. This second subset comprised 180 contam-
inants. This second subset represents a common situation when there is insufficient
precise information on the species sensitivities to the contaminant.
On each of these subsets, we studied the ratio of the non-censored HC5 over the
censored HC5. We also studied the ratio of the non-censored lower bound of the
95% confidence interval on the HC5 ( HC5,2.5% ) over the censored HC5,2.5% for both
datasets. The HC5,2.5% has been proposed to derive safe concentration levels for
contaminants[Wheeler et al., 2002].

Calculation of the confidence intervals
The confidence intervals were computed using 50001 bootstrap samples. We used non-
parametric bootstrap (resampling from the data) so we could use the same method
for censored and non-censored data. The appropriate number of bootstrap samples
was determined by repeating the analysis several times and checking that the quartiles
and extremal values of the ratios HCncens

5,2.5%
HCcens

5,2.5%
were reasonably stable. The large amount of

contaminants prevented checking individually the convergence of the confidence intervals.
However, the extremal values which were used in the analysis were guaranteed to have
converged, since they were directly observed.

Results of the analysis
The study of the large ecotoxicity database revealed that it is risky to discard or trans-
form censored data. In both subsets, the non-censored data led to an overestimation of
the HC5 and of the HC5,2.5% in roughly half of the cases, showing that the bias induced
by the discarding and transformation of the data can be in both directions. Figure 2.5
shows that for a large proportion of the contaminants, the change in HC5 and HC5,2.5%
was rather small. Part of the explanation is that the proportion of censored data is
modest for a good proportion of the contaminants (the 8th decile is at 50% of censored
data). But this also demonstrates that in many cases, discarding and transforming the
censored data will not have a very strong impact on the HC5 and the HC5,2.5%. However,



34 Chapter 2. Inclusion of censored data in Species Sensitivity Distribution

since the HC5 or the HC5,2.5% are used for risk assessment, it is legitimate to consider
the worst case scenario, i.e. the worst bias on the HC5 and the HC5,2.5%. This represents
an estimation of the bias one should be ready to accept when transforming censored
data into non-censored data. On the data-rich subset, non-censored data lead to predict
HC5 and HC5,2.5% between 5 times too large and 4 times too small (Table 2.1). Such
bias factors could be compared to the safety factors applied to define safe concentration
levels, which range from 1 to 5[ECHA, 2008]. The maximum bias is comparable to these
safety factors and it could be argued that they exist indeed to compensate for this sort of
bias. However, the bias can be much worse on the data-poor subset, where non-censored
data lead to predict an HC5 up to 80 times too large, and an HC5,2.5% overestimated
by several orders of magnitude(Table 2.1). Three contaminants had a bias factor on the
HC5 greater than 5. Five contaminants had a bias factor on the HC5,2.5% greater than 5.
The result of this analysis is that when sufficient non-censored data is available, the
value of the HC5 might prove relatively insensitive to the degradation of the information
induced by arbitrarily transforming censored data into non-censored data. When little
data is available however, it appears crucially important to include censored data in the
determination of the HC5. The bias on the HC5 can lead to an overestimation by a
factor 80, yielding safe concentrations which fail to protect the target communities. The
bias on the HC5,2.5% can even be greater, as it reached five orders of magnitude on the
dataset studied.
Table 2.1: Extremal log10 HCncens

5 /HCcens
5 and log10 HCncens

5,2.5%/HCcens
5,2.5% ratios for the two

subsets, with the corresponding bias factor in parentheses. The bias factor
corresponds to the maximum overestimation (×) underestimation (÷).

Subset Data-rich Data-poor
Number of contaminants 239 180
max(log10 HCncens

5 /HCcens
5 ) 0.37(×2.34) 1.92(×82.22)

min(log10 HCncens
5 /HCcens

5 ) −0.61(÷4.04) −0.61(÷4.04)
max(log10 HCncens

5,2.5%/HCcens
5,2.5%) 0.7(×4.98) 5.45(×2.82 × 105)

min(log10 HCncens
5,2.5%/HCcens

5,2.5%) −0.47(÷2.92) −0.72(÷5.23)
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Figure 2.5: Boxplots for the log-ratio of HC5 log10 HCncens
5 /HCcens

5 and the log ratio of
the lower bound of the HC5 confidence interval log10 HCncens

5,2.5%/HCcens
5,2.5%. The

box extends to the inner quartiles, the whiskers to 1.5× inter-quartile range
as recommended in [McGill et al., 1978].

2.3.3 Discussion
In the introduction and the first part of the thesis, we reviewed the general approaches
to fit an SSD to sensitivity data and explained how it was possible to use maximum
likelihood to include censored data in SSD. We presented MOSAIC_SSD, a web-tool
developed during the thesis which allows any user to perform an SSD analysis includ-
ing censored data with few very simple steps. MOSAIC_SSD is an interface to a more
versatile tool, the R package fitdistrplus[Delignette-Muller et al., 2013] and presents a
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restricted number of options for an easier use. We supported the methodological ap-
proach behind MOSAIC_SSD with several arguments and showed the added value of
including censored data into the SSD. Discarding or transforming censored data has been
shown to alter the results of the SSD analysis. Using MOSAIC_SSD is a convenient
way to take censored data into account in the fitting of an SSD, but the sound general
statistical approach adopted is also an asset to perform any sort of SSD. Considering
the choice of a distribution, MOSAIC_SSD provides by default two standard distribu-
tions, the log-normal and log-logistic, but it fosters the use of alternative distributions
via providing a stepping stone to using the R package fitdistrplus. The question "which
distribution best fits a dataset?" cannot have a general answer and must be addressed
by testing several options. Therefore, having room to try multiple distributions is a
valuable asset. Someone might wish to fit a distribution that best describes the tails of
the dataset, because determining a HC5 is an extreme quantile estimation problem. In
that case, one might try a heavy tailed distribution such as the Weibull or exponential.
In selecting a distribution, special care should be taken not to pick a distribu-
tion with too many parameters. One of the easily accessible software for SSD is
BurrliOZ[Campbell et al., 2000], which fits the Burr III distribution using maximum
likelihood and computes confidence intervals using bootstrap. The Burr III distribu-
tion is very flexible[Shao, 2000, Fox, 2008], but it contains one parameter more than
the log-normal or log-logistic distributions. Fitting of a distribution with many param-
eters requires a lot of data and the Burr III distribution is likely to suffer from strong
structural correlation among the parameters[Shao, 2000], which means that convergence
of the likelihood maximisation algorithm might be difficult and the estimates produced
might not be very reliable. However, BurrliOZ is currently being developed so as to fit
the log-logistic distribution on small datasets, and provide a comparison between at least
the log-logistic and the Burr III distribution for larger datasets[Warne et al., 2013].
We hope that putting MOSAIC_SSD at everyone’s disposal will encourage the inclusion
of censored data in SSD analysis as a means to make better use of all the data at hand.
We did not address all the issues pertaining to the SSD approach and merely tried to
improve on the existing methods, with the aim to make better use of the available data
considering the cost of collecting them. There remain interrogations as to what might
happen if the proportion of censored data is too great and the dataset is small. It is
not possible to test this situation thoroughly, for there are many ways to censor data
and no trivial way to choose between them or scan even roughly the space of possible
configurations. A good practice would be to consider the span of the confidence interval
around the hazardous concentration of interest and decide if the dataset is adequate for
predicting such concentrations or if more data need to be collected. Taking censored
data into account would therefore be crucially important to have a precise assessment of
the confidence interval, and not an artificially reduced estimation as for the trifluralin
dataset.
We mentioned that censored data might represent an important part of any dataset
and that MOSAIC_SSD could be profitably used on many occasions. However, this
work could have a more general scope, since fundamentally all data with a confidence
interval could be considered as interval-censored data. Indeed, the confidence interval
around an EC50 or any CEC estimate might be considered as the range which has a 95%
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probability of containing the real value and be reported as an interval-censored data.
Using the confidence intervals on the CECs as censored data would provide a crude way
to propagate the uncertainty on the CEC into the SSD, a fundamental problem of SSD
which is seldom tackled[Dixon, 2007], but of interest nonetheless[Warne et al., 2013].
Moreover, Lowest Observed Effect Concentration (LOEC) data, which are often reported,
are indeed left-censored data. The only information LOEC carries is that the NOEC lies
below this concentration[Delignette-Muller et al., 2011]. Therefore, the SSD approach
we propose, which includes censored data, would allow ecotoxicologists to make more of
the available experimental data they used to calculate the NOEC.
However, we reach the limits of a traditional SSD based on CECs and still discard a lot of
information. Indeed, a CEC is only a summary of a full concentration-effect curve. This
summary sets aside several aspects of the response of a species to a contaminant, such as
the slope of the curve (is the species gradually affected or is there a threshold effect ?).
It is possible to include all the information present in the experimental concentration-
effect curve in the SSD by building a hierarchical model of SSD. This hierarchy would
model the joint probability of all the parameters describing a concentration-effect curve,
not only the CEC as in the classical SSD[Moore et al., 2010]. Moreover, this would also
allow to take proper account of the uncertainty on the species response modelling and
to propagate uncertainty into the SSD. This is the subject of the next part of the thesis.
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Chapter 3
Hierarchical modelling of
concentration-effect data

The first part of the thesis was dedicated to explaining how to take
censored data into account and how failure to do so affected the quality
of the SSD. In this second part of the thesis, we will focus on the
fact that data from a full bioassay experiment are summarized by a
single value, often given without uncertainty. This creates a number of
flaws for SSD which we will try to correct by modelling the raw data
instead of just a summary. We will build a global hierarchical model
including the concentration–effect model together with the distribution
law of the SSD. We will revisit the current SSD approach to account for
more sources of variability and uncertainty into the prediction than the
traditional analysis and to assess a global response for the community.
Working within a Bayesian framework, we will be able to compute an
SSD taking into account the uncertainty from the original raw data.
We will also develop a quantitative indicator of a global response of the
community to the contaminant. We will illustrate this methodology on
the study of the toxicity of six herbicides to benthic diatoms from Lake
Geneva, based on the biomass as endpoint. This work was developped
in collaboration with the INRAa of Thonon les Bains and published in
[Kon Kam King et al., 2015].

aInstitut National de la Recherche Agronomique

3.1 Three shortcomings of Species Sensitivity
Distribution

The classical SSD approach described in the introduction of the thesis and its many
variants present a number of flaws[Forbes and Calow, 2002, Power and McCarty, 1997]

39
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ranging from ecotoxicological concerns (use of laboratory data to predict field effects,
inferring community sensitivity from monospecific sensitivities, chronic vs. acute ef-
fects . . . ) to statistical issues (fitting a distribution on a small dataset, distributional
assumptions, treatment of the uncertainty, etc.). This work focuses on several of these:

Uncertainty
The classical SSD approach does not propagate the uncertainty on the CEC to the
prediction. This is a source of concern, because following this approach, the uncertainty
on the HCp depends on the number of species, but not on the quality of the data used.
Several sources of uncertainty enter at the various steps of the SSD approach and all
have an influence on the predicted HCp value. Firstly, there is an uncertainty on the
estimate of the CEC from the experimental data: when the CEC is estimated from a
concentration-effect curve or more generally from any model, it comes with a confidence
interval. Secondly, uncertainty arises from the fitting of a distribution to the CECs:
parameters of the distribution also have their own confidence intervals. This adds to the
total uncertainty on the HCp. The uncertainty of this second step has already been stud-
ied and methods have been found for specific distribution laws[Aldenberg and Slob, 1993,
Aldenberg and Jaworska, 2000, Wagner and Lokke, 1991]. For other types of distribu-
tions, it is possible to use bootstrap. This uncertainty was also investigated with
non parametric approaches in the estimation of the SSD[Jagoe and Newman, 1997,
A.M Verdonck et al., 2001, van der Hoeven, 2001, Grist and Leung, 2002]. However,
there are currently very few attempts to include together all the sources of uncertainty
into the final prediction of the SSD[Aldenberg and Rorije, 2013].

Information
As a summary of the concentration-effect curve, the CEC retains only a fraction of the
information originally present in the data. Since the aim of SSD is to model the variability
in sensitivity in the community, it should be important to consider all the information
available in the data to obtain the best estimation of that variability. Indeed, there is
relevant biological information in all the parameters of the concentration-effect curve and
their potential correlations. That information is discarded in classical SSD, although the
variability on the other parameters might be as important as the variability of the CECs.

Interpretability
Providing an HCp, the classical SSD approach outputs information about a struc-
tural response of the community only. It essentially yields the proportion of affected
species for a given concentration in contaminant. It does not give information about
the global response of the community[Forbes and Calow, 2002, Kefford et al., 2012b,
De Laender et al., 2008], i.e. a response of the same nature as the measured endpoint.
For instance, when using EC50 for biomass reduction as input, the SSD does not say
anything about the change in the biomass of the community. In other words, the SSD
aims to protect the structure of the community, but does not consider the effect on the
community endpoint linked to the tested species which could be growth, reproduction,
biomass, respiration, photosynthesis or any ecosystem process.
The HCp represents the concentration which affects p% of the community. The term
”affect” is directly linked to the type of CEC in terms of level of effect (for example the
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x of the ECx) and of biological effect (lethal, non-lethal, acute, chronic). If NOEC or
NEC were true no effect concentrations, one would expect the HCp to leave (100 − p)%
of the community species completely unharmed. Using EC50 however, which is a level of
effect commonly selected, one expects (100−p)% of the community to remain unaffected,
which means that they suffer a reduction of less than 50% to their measured endpoint.
But it is not possible to determine the reduction suffered by the unaffected species, which
could lie anywhere between 0 and 50 %.
The HCp for small p, such as the HC5, is ultimately used as a risk indicator. It is
compared to the actual concentration of contaminant in an environmental setting to
determine if the community living there is at risk, or to define an acceptably safe con-
centration for that community.
To address such issues, we revisited the current SSD approach to account for more
sources of variability and uncertainty into the prediction than the traditional analysis
and to assess the risk for the community from a global point of view. For this purpose, we
built a hierarchical model inspired by [Moore et al., 2010] including the concentration-
effect model together with the distribution law of the SSD. From this hierarchical model,
we were able to develop : 1) an indicator for the global response of the community,
which we compared to the structural response predicted by the classical SSD; and 2)
an SSD calculated on any level of effect (x of the ECx) including correlation among the
parameters of the concentration-effect model and the uncertainty from the original data.

3.2 Diatom data and concentration-response model
3.2.1 Description of the data
This work was developed on a previously published dataset[Larras et al., 2012] contain-
ing 11 diatom species exposed to six herbicides : atrazine, terbutryne, diuron, isopro-
turon, metolachlor and dimethachlor. Between five and ten species were tested per
herbicide (details on Table 3.1). Benthic diatoms are unicellular microalgae which form
a group of high diversity (see Figure 3.1) and which are often used to monitor water
quality. They are well known to evolve in the biofilm matrix, at the interface of water
column and substrata. The chosen diatom species were representative of Lake Geneva
benthic diatoms communities and covered a great diversity in terms of taxonomy, mor-
phology, herbicide sensitivity and ecological traits. More details about chosen diatoms
are presented in [Larras et al., 2012]. Then, a panel of herbicides was selected regarding
their occurence in Lake Geneva, their hazard to microalgae and their mode of action.
Atrazine and terbutryn (triazine family) and diuron and isoproturon (phenylurea fam-
ily) prevent the photosynthesis at the level of the photosystem II, but with different
mecanisms. Metolachlor and dimethachlor (chloroacematide family) inhibit especially
the biosynthesis of very long chains of fatty acids. The sensitivity of the species was
determined assessing the growth over four days as endpoint, based on chlorophyll a fluo-
rescence (the part of light which is absorbed by chlorophyll molecule and then re-emitted
at a defined wavelength), a proxy of the biomass. Bioassays were conducted in tripli-
cates on diatom strains in their exponential growth phase, when the daily growth ratio is
approximately constant. Seven to ten herbicide concentrations were tested. Chlorophyll
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Table 3.1: Species tested for each herbicide.
Atrazine Terbutryn Diuron Isoproturon Metolachlor Dimethachlor

CRAC 1 × × × × ×
NPAL × × × ×
UULN × × × ×
MAFO × × × × ×
SEMN × × × × ×
GPAR × × × × × ×
FRUM × × × × ×
CMEN × × × × × ×
ADMI × × × × × ×
FCVA × × × × × ×
ESLE ×

CRAC: Craticula accomoda, NPAL: Nitzschia palea, UULN: Ulnaria ulna var. acus,
MAFO: Mayamaea fossalis var fossalis , SEMN: Eolimna minima, GPAR:
Gomphonema parvulum, FRUM:Fragilaria rumpens, CMEN: Cyclotella meneghiniana,
ADMI: Achnanthidium minutissimum, FCVA: Fragilaria capucina var vaucheriae,
ESLE: Encyonema silesiacum.

a fluorescence was measured using Fluoroskan (Fluoroskan Ascent, Thermo-scientific,
Finland) at the beginning and at the end of the experiment.

3.2.2 Choosing the concentration-effect model
Representation of the original data

The response of each set (herbicide, species, replicate) was defined as the ratio:

R = βf

β0
(3.1)

where R is the response, βf the fluorescence after four days and β0 the initial fluores-
cence. Taking the logarithm of R and dividing by four, it would represent the daily
exponential fluorescence growth rate, a proxy for the daily biomass exponential growth
rate. Given the small number of replicates and given that this was not the focus of
this work, we chose not to model the replicate-effect. Therefore, data from the three
replicates were assumed to come from a single experiment and inter-replicate variabil-
ity was merged with measurement uncertainty. A first remark on the original data
is that there seemed to be an important heteroskedasticity. Inter-replicate variability
seemed larger for large values of the biomass growth rate than for small values (Fig-
ure 3.2). A second observation is that for several pairs of species, there seemed to be an
observable hormesis[Calabrese, 2009, Kefford et al., 2008, Calabrese and Baldwin, 2003,
Calabrese and Blain, 2011, Calabrese, 2005, Larras et al., 2012] phenomenon (NPAL,
CRAC, Figure 3.2). For the diatom dataset, hormesis describes the potential increase in
biomass growth for small concentrations which comes as a surprise given that the herbi-
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Figure 3.1: Several diatom species under the microscope.
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cides are expected to inhibit growth, and indeed do so at larger concentrations. Horme-
sis is a very common phenomenon characterised by low-dose stimulation and high-dose
inhibition[Calabrese and Baldwin, 2003], but it is apparent only when concentrations
small enough are tested in the experimental setting. Hormesis challenges the definition
of ECx as stimulation can either be considered as a positive or negative effect depend-
ing on the context (stimulation of algae growth might have an undesirable effect on an
ecosystem). We considered the possibility to account for hormesis in the original data
through the concentration-effect model.
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Figure 3.2: Original data for all species and for atrazine. R is plotted against the concen-
tration, with one colour per replicate. The concentration is in log-scale and
the control measurements (zero concentration) are drawn on the left border
of the plot. The data for the other herbicides can be found on Figure C.1.
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The observed heteroskedasticity prompted a log-transformation of the data to stabilise
the variance. Plotting inter-replicate variance against mean over replicates (Figure 3.3)
indeed revealed a clear heteroskedasticity in the original data which was reduced to some
degree by the log-transformation. Therefore, we chose to perform non-linear regression
on the log-transformed data rather than on the original data.
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Figure 3.3: For all species and herbicides, inter-replicate variance against mean over-
replicates for R with the original data (left) and the log-transformed data
(right). Axis follow a log-log scale.

Possible concentration-effect models

We tested the three concentration-effect models mentioned in [Cedergreen et al., 2009] to
describe the data. The first is one of the commonly used log-logistic (LL) concentration-
effect model, while the other two are simple alternatives which can account for horme-
sis, the Brain-Cousens (BC)[Brain and Cousens, 1989] model and the Cedergreen-Ritz-
Streibig (CRS)[Cedergreen et al., 2009] model. The log-logistic model is nested in the
BC and in the CRS models. All three models have a parameter which describes the
response at infinite concentration. We fixed this parameter to 0 as the fluorescence is
expected to become null for infinitely large concentrations.
In the three-parameter log-logistic model, the response of a species j to a given herbicide
at concentration C is:

R = d

1 +
(

C
e

)b (3.2)

where C stands for the concentration. d is the response in the control. e is the EC50 in
this model, ie. the concentration which induces a reduction of 50% with regards to the
response in the control. b is a shape parameter. Parameter b is usually called the slope
of the concentration-effect curve, although the real slope at C = e is − d

4e
b. Note that

through a simple algebraic transformation, an ECx for any value of x can be considered
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as a parameter of the model2. The model is defined for b, C, d, e > 0 and it is decreasing
with increasing concentrations with an asymptotic limit to 0. In the presence of hormesis,
non-linear regression provides estimates for d which can be higher than the response in
the control. This is an artefactual consequence of the model not allowing for an increase
with the concentration and the problem can be fixed by estimating parameter d as the
mean of the three control replicate, then estimating the other parameters by non-linear
regression.
In the four-parameter BC model, the response of a species j to a given herbicide at
concentration C is:

R = d + fC

1 +
(

C
e

)b (3.3)

where C stands for the concentration. d is the response in the control. e is not the
EC50 in this model ! There is no closed-form expression for the EC50 which has to be
computed numerically. b is a shape parameter. f is a parameter which controls the
magnitude of the hormesis effect. The model is defined for C, d, e, f > 0 and for b > 1
so that it is decreasing for large concentrations with an asymptotic limit to 0.
In the five-parameter CRS model, the response of a species j to a given herbicide at
concentration C is:

R =
d + f exp(− 1

Cα )

1 +
(

C
e

)b (3.4)

where C stands for the concentration. d is the response in the control. e is still not the
EC50 in this model. There is again no closed-form expression for the EC50 which has to
be computed numerically. b is a shape parameter. f is a parameter which controls the
magnitude of the hormesis effect. α is another shape parameter which controls the steep-
ness of the hormetic rise as a function of the concentration. The larger the value of α, the
steeper the rise. The model is defined for b, C, d, e, f ; α > 0 and it is decreasing for large
concentrations with an asymptotic limit to 0. Cedergreen et al.[Cedergreen et al., 2009]
do not recommend estimating the α parameter from the data. Fitting the model
with 6 parameters by frequentist likelihood maximisation can prove difficult. Instead,
they suggest fixing it at one of the following values: α ∈ {0.25, 0.5, 1} to avoid over-
parameterisation. These values give a different smoothness to the concentration-effect
curve, and the authors suggest selecting the most appropriate[Cedergreen et al., 2009].
There were no strong reason to select one of these values for our dataset, so we settled for
α = 0.25 for the purpose of comparison as it yielded the smoothest curves (Figure 3.4).

2log ECx = log e + 1
b log

(
x

1−x

)
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Figure 3.4: Comparison of the fit of the CRS model (Equation 3.4) on the log-
transformed atrazine data for the three values of α suggested in
[Cedergreen et al., 2009]. .

Comparison of the different models

With the log-transformation, the following error model for the non-linear regression was
used:

Y = ln(R) = g(C, θg) + ε (3.5)
where Y is the natural logarithm (ln) of the measured endpoint, R is defined in Equa-
tion 3.1, g is the natural logarithm of one of the three concentration-effect models, θg is
the vector of its parameters and ε ∼ N (0, σ).
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We performed a model comparison with the following ideas in mind:

• for the rest of the analysis, we wish to use the same model to describe the response
of all the diatom species to a given contaminant.

• parsimony is a criterion to consider, as each additional parameter means additional
complexity for the hierarchical modelling.

We fitted the three models on all (species, herbicide) pairs to judge how well they de-
scribed the data (Figure 3.5 for atrazine only, Figure C.2 for all herbicides). The fit
was performed using non linear least square regression[Bates and Watts, 1988] with the
R[R Core Team, 2013] function nls. The first observation is that it was not possible to
fit the BC and the CRS models for all (species, herbicide) pairs. The increased flexibility
gained from the additional parameters rendered likelihood maximisation difficult. Sev-
eral strategies for the starting values were tested, including that of using the estimates
from R package drc[Ritz and Streibig, 2005] which is dedicated to fitting these models,
but none permitted fitting all the (species, herbicide) pairs. The log-logistic model, how-
ever, could be fitted for all (species, herbicide) pairs. The second observation is that once
log-transformed, the data did not show an important hormesis effect anymore. The three
models tended to coincide in the region of large concentrations. In the region of small
concentrations where the models differed, the BC and the CRS models did not appear
to provide a significant improvement to the fit in general (except maybe for atrazine,
NPAL). The case of atrazine, ADMI (Figure 3.5) shows that the CRS model might also
suffer from poor robustness. The apparent hormesis seems to result from the influence
of a single point. If removed, the CRS model would probably show only a very small
hormesis effect.



3.2 Diatom data and concentration-response model 49

Atrazine, ADMI Atrazine, CMEN Atrazine, CRAC Atrazine, FCVA

Atrazine, FRUM Atrazine, GPAR Atrazine, MAFO Atrazine, NPAL

Atrazine, SEMN Atrazine, UULN

−1.0

−0.5

0.0

0.5

−2

−1

0

1

−2

−1

0

1

−5

−4

−3

−2

−1

0

1

−6

−4

−2

0

−6

−4

−2

0

−15

−10

−5

0

−2

−1

0

1

−2

−1

0

1

−3

−2

−1

0

1e−01 1e+01 1e+03 1e+05 1e−01 1e+01 1e+03 1e+05 1e−01 1e+01 1e+03 1e−01 1e+01 1e+03 1e+05

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03 1e+05 1e−01 1e+01 1e+03 1e−01 1e+01 1e+03 1e+05

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03
Concentration

Y

Model
LL

BC

CRS

Figure 3.5: Comparison of the fit of the three models on the log-transformed data. LL
stands for log-logistic, BC for Brain-Cousens and CRS for Cedergreen-Ritz-
Streibig.

We also computed the AIC for each fit (detailed results in Appendix sec-
tion C.3) to check if increasing model complexity really improved model fit.
Burnham[Burnham et al., 2011] mentioned that early literature on AIC recommended
that model 2 was to be preferred over model 1 if AIC1 − AIC2 > 2. He added that
this rule was now known to be poor in general and that if 7 > AIC1 − AIC2 > 2 or
−7 < AIC2 − AIC1 < −2, model 1 should rarely be dismissed. To estimate the propor-
tion of (species, herbicide) pairs for which a model more complex than the log-logistic
offered a better description of the data we used the following heuristic rule:
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• If a model cannot be fitted, then the log-logistic model is preferred.

• If AIC CRS − AIC LL > −7 or AIC BC − AIC LL > −7, then there is no strong
evidence against the log-logistic model in favour of the more complex model, so
following a parsimony principle we conclude that the log-logistic model is preferred.
(this corresponds to an evidence ratio lower than 33.1 for the more complex model
against the log-logistic model)[Burnham et al., 2011].

Using this heuristic rule, the log-logistic model was preferred over the CRS model for 94
% of the dataset and over the BC model for 87 % of the dataset.
If we made this rule less stringent on the AIC criterion, choosing for instance ΔAIC > −2
(this corresponds to an evidence ratio lower than 2.7 for the more complex model against
the log-logistic model), the log-logistic model was still preferred over the CRS model for
85 % of the dataset and over the BC model for 79 % of the dataset.
In summary, an hormesis effect seemed present in the original data, but a log-
transformation to stabilise the variance made this effect look less important. Visually
assessing the model fits lead to conclude that the more complex hormetic models did not
provide a much better fit while sometimes posing convergence problems. Using AIC as
a criterion for model comparison did not tip the scales in favour of one of the hormetic
models against the log-logistic model either. Therefore, the log-logistic model was se-
lected for use in the hierarchical model. Note however that in principle, the hierarchical
approach could have been developed on either of these models.
The model retained was:

Y = ln(R) = ln

⎛
⎜⎝ d

1 +
(

C
e

)b

⎞
⎟⎠ + ε (3.6)

where ε ∼ N (0, σ).
In what follows, as parameter d was estimated as the mean of the response in the control
replicates for all the herbicides, parameters b and e were estimated by fitting the model
from Equation 3.6 to data at the other concentrations, to avoid using data twice. This
was not the case for the model comparison study because AIC for different models must
be compared on the same dataset. Another reason to choose to estimate parameter d
separately was because we were not interested in modelling or predicting the response in
the control experiment. Only parameters b and e characterise the effect of the herbicide
on the diatom species.

3.3 Computing the classical Species Sensitivity
Distribution

We wanted to compare our hierarchical SSD to a reference log-normal SSD. For each
concentration-effect curve, we first fitted the model from Equation 3.6) by non-linear re-
gression using the R function nls and the R package nlstools[Baty et al., 2015]. We
extracted the EC10 and the EC50 in order to compare two levels of effect. We
computed bootstrap 95% confidence intervals on the EC10 and EC50 using non-
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parametric bootstrapping (results on Figure 3.6). Then, we fitted two log-normal dis-
tributions to the set of EC10 and EC50 using maximum likelihood via the web-tool
MOSAIC_SSD[Kon Kam King et al., 2014] and obtained the HC5 for the community,
with a bootstrap 95% confidence interval as well. The result for EC10 was HC5,EC10 =
1.3 μg.l−1 [0.41; 5] and for EC50 was HC5,EC50 = 38 μg.l−1 [17; 94].
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the right hand side of each plot is the distribution of the point estimates of
the ECx at the corresponding level of x for all the species. ECx are in μg.L−1.
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Table 3.2: Description of the links indicated in Figure 3.7
Node Type Equation
(log (bj) , (log (ej)) Stochastic (log (bj) , (log (ej)) ∼ Nm(μ, Σ)
Ri,j Deterministic (Equation 3.2)
Yi,j Stochastic Yi,j ∼ N (ln(Ri,j), σ)

μ =
(

μlog b
μlog e

)
, Σ =

(
σ2

log b ρσlog bσlog e
ρσlog bσlog e σ2

log e

)
, N is the normal

distribution and Nm is the multivariate normal distribution.

3.4 Hierarchical species sensitivity distribution

3.4.1 Structure of the model
A hierarchical approach is very different from the fitting of individual concentration-
effect curves. The philosophy behind the hierarchy is that all tested species represent a
random sample from the community and that their responses follow a distribution. More
precisely, parameters b and e of the concentration-effect model are assumed to follow a
multivariate distribution. This reasoning is an intuitive extension of the classical SSD,
where CECs of the species are assumed to follow a community sensitivity distribution.
A difference with the classical SSD approach is that the parameters of the community,
called the hyperparameters, are estimated in one stroke from all the experimental data.
This provides the advantage of pooling all the information together. Species for which
the data are of very good quality will have the most important contribution to the global
fit. Species for which the response is not characterized very precisely (large uncertainty
on the parameters), or where data are missing, contribute less. In other words, all the
data contribute to the estimation of the parameters at the extent of the information
they contain. The classical SSD approach, on the contrary, heavily relies on the quality
of the CEC estimates, and the requirements may be severe [Dowse et al., 2013]. In the
previous study of the diatom dataset [Larras et al., 2012], this entailed discarding all the
data on which it was not possible to fit a concentration-effect model.
Figure 3.7 sketches the hierarchy in the model and Table 3.2 describes the links of the
model. Parameter d having been estimated separately, we modelled the joint distribution
of parameters b and e. Both of them were assumed to follow a log-normal distribution.
The log-normal distribution is the most commonly used distribution for parameter e
[Wheeler et al., 2002] (which corresponds to the EC50). We assumed the same distribu-
tion for parameter b, knowing that the small number of species does not allow a better
informed choice of distribution. There could be a correlation between these two param-
eters, which we also modelled (parameter ρ). Therefore, log(b) and log(e) were assumed
to follow a multivariate normal distribution (log is used for the base-10 logarithm).

3.4.2 Bayesian methods
We used JAGS [Plummer, 2003] to fit the hierarchical model. JAGS performs Bayesian
inference using Gibbs sampling via Markov Chain Monte Carlo (MCMC) simulation. The
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Figure 3.7: Probabilistic directed acyclic graphical model of the hierarchical model
[Koller and Friedman, 2009](also called Bayesian network). Ellipses repre-
sent variables, rectangles represent covariables. Solid lines represent stochas-
tic links, dotted lines represent deterministic links. To avoid repetition, sim-
ilar subunit are summarized by plates. The inner set of plates denote the
different concentrations, the outer set of plates denote the different species.
Since the graph is directed and acyclic, any two variables are conditionally
independent given the value of their parents.
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Table 3.3: Prior distributions used for the hyperparameters of the hierar-
chical model (Figure 3.7)

Parameter Distribution Type of prior
μlog b ∼ U(−6, 6) vague
σlog b ∼ U(0, 10) vague
μlog e ∼ N (μlog C, σlog C) informed by the concentration range
σlog e ∼ U(0, 10) vague

ρ ∼ U(−1, 1) vague
σ ∼ U(0, 2) vague

μlog C = log(min(Ci,j))+log(max(Ci,j))
2 and σlog C = log(max(Ci,j))−log(min(Ci,j))

4 .
N (μ, σ) denotes the normal gaussian distribution of mean μ and standard
deviation σ, U(a, b) denotes the uniform distribution between a and b.

priors are detailed in Table 3.3. The prior on μlog e was a normal distribution centred on
the middle of the range of all tested concentrations. Its standard deviation was defined
so that μlog e had a 95% probability to lie between the largest and the smallest tested
concentrations. All the other priors were vague priors. The chains were run for 500 000
iterations and one in 40 were conserved.
The convergence of three chains was checked computing the Gelman-Rubin diagnostic
[Brooks and Gelman, 1998]. Prior and posterior distributions were compared to check
visually that the priors did not constrain the estimation of the posteriors. The relative
width of the prior and posterior distributions was also compared to ensure that sufficient
information was learned from the data. The parameters of the hierarchical model came
out as a joint posterior distribution. The median of the marginal distributions were
used as estimates of the parameters. The 2.5 and 97.5 percentiles of the distribution
were used to define a 95% credible interval (the concept of credible interval is described
in Appendix section B.5). The JAGS code to fit the hierarchical model is provided in
Appendix D.

3.4.3 Results from the fit of the model
3.4.3.1 Convergence of the MCMC algorithm

The MCMC chains converged for all contaminants, according to the Gelman-Rubin
statistics [Brooks and Gelman, 1998]. Figure 3.8 shows for diuron that except for pa-
rameter ρ, the vague prior distributions did not constrain the posterior distribution of
the parameters and that there was sufficient information in the original data to estimate
them. Similar results were observed for the other herbicides. The apparent constraint on
correlation parameter ρ is natural, since the correlation has to lie between 0 and 1. The
fit of the model was visualised at the level of the diatom species by superimposing the
fitted curves on the original data. The fitted curves were obtained by taking the median
values of parameters bj and ej from the marginal posterior distributions. Figure 3.9
shows that for all herbicides, the estimation of the global parameters of the hierarchical
model corresponds to a good fit at the level of the diatom species.
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Figure 3.8: Comparison of the priors (in red) defined in Table 3.3 with the marginal
posterior distributions (black histograms) for diuron.
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Figure 3.9: Original data and fit of the model at the level of the diatom species for all
herbicides. Each colour denotes a different species. The rectangle denotes the
control response in log scale. The curves are the median values of the poste-
rior survival probabilities as a function of the concentration. Concentrations
are in μg.L−1.

3.4.3.2 Estimated parameters
The estimated parameters for each herbicide are presented in Table 3.4, along with their
95% credible interval. For atrazine, the 95% credible interval on the correlation param-
eter ρ was centred around 0 and did not suggest the presence of correlation between
parameters b and e. For all the other herbicides, however, there was a correlation be-
tween these two parameters. Slope parameter b qualitatively determines how a species
is affected by the contaminant: for a small value of b, the species is gradually affected by
the contaminant, whereas for a large value of b, this species is almost insensitive to the
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contaminant up to a certain threshold, then suffers a drastic effect. A strong positive
correlation between b and e, the slope parameter and the EC50, implies that species with
a low slope parameter also have a small EC50, i.e. the most sensitive species are affected
gradually. A positive correlation also implies that the most resilient species show no
effect up to a certain threshold, followed by a sudden drop in fluorescence. In the ab-
sence of correlation, there is no constraint on the relative value of b and e for a given
species and all types of behaviours can be encountered. The effects of that correlation
are apparent on Figure 3.9: for atrazine, the contaminant for which species showed no
correlation between parameters b and e, exhibits all sorts of behaviours. For diuron, the
species with small EC50 have a gradual slope and those with large EC50 have a steep
slope. Such information about correlation between the concentration-effect parameters
is not considered or taken advantage of using the classical SSD approach. Yet this is
an information of biological relevance which can be addressed through the hierarchical
modelling of SSD.
The robustness of the parameter estimation to changes of the vague prior distribu-
tions was assessed. The vague priors on all the parameters except the correlation
parameter were shrunk by half and extended by half without a noticeable change
in the posterior distributions. For the correlation parameter, a common practice is
to give a prior distribution on the Fisher transform3 of the correlation parameter
[Gelman et al., 2013, Daniels and Kass, 1999] rather than on the correlation parame-
ter itself. The uniform prior on the range [−1; 1] was changed to a uniform distribution
between [−10; 10] and to a normal distribution N (0, 25) on the Fisher transformation
of the correlation parameter. The resulting priors on the correlation parameter both
had a density distribution concentrated around -1 and 1 and very little weight around
0, which favoured large correlation parameters (Figure 3.10). For an herbicide with a
strong correlation such as terbutryn, there was no strong influence of the prior, as could
be expected. For atrazine, which showed no strong correlation, we did not find a strong
influence of the prior either.

3.4.4 Simulating from the model
3.4.4.1 Building a global response

The hierarchical SSD approach extracts more information from the raw data than the
classical SSD. In particular, we can use it to compute an indicator of the global response
of the community, which is a relevant information for the protection of that community.
Once the model fitted, the joint posterior distribution of the parameters contained all the
information that can be extracted from the data about the response of the community
to the contaminant. For a set of global parameters θ = (μb, σb, μe, σe, ρ) obtained from
the posterior distribution, it was possible to reconstruct a full community by sampling
individual species and to predict its response to the contaminant. Sampling a species j

3The Fisher transform of ρ is defined as:

z =
1
2

ln
(

1 + ρ

1 − ρ

)
(3.7)
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Table 3.4: Median parameters of the hierarchical model and their 95% credible interval
for each herbicide, along with the number of species tested for each contam-
inant. The median of the marginal posterior distribution is taken as the
parameter estimate.

atrazine diuron isoproturon
Parameter Estimate Estimate Estimate

μlog b 0.28[0.02; 0.55] 0.16[-0.15; 0.46] 0.27[0.027; 0.48]
σlog b 0.37[0.22; 0.69] 0.46[0.3; 0.82] 0.33[0.21; 0.59]
μlog e 3.4[2.9; 3.8] 2.5[1.8; 3.2] 2.6[2.2; 3.1]
σlog e 0.58[0.37; 1.1] 1.1[0.7; 1.9] 0.66[0.42; 1.2]

σ 0.38[0.35; 0.43] 0.3[0.28; 0.33] 0.39[0.36; 0.43]
ρ -0.22[-0.74; 0.47] 0.83[0.39; 0.96] 0.86[0.47; 0.97]

Number of species 10 10 8
terbutryn metolachlor dimetachlor

Parameter Estimate Estimate Estimate
μlog b 0.16[-0.089; 0.39] -0.064[-0.45; 0.29] 0.42[-0.31; 0.96]
σlog b 0.35[0.22; 0.65] 0.4[0.22; 0.94] 0.59[0.28; 1.5]
μlog e 2.4[1.8; 3] 4[3.6; 4.3] 4[ 3; 4.5]
σlog e 0.83[0.52; 1.5] 0.38[0.19; 0.97] 0.61[0.29; 1.8]

σ 0.41[0.38; 0.46] 0.32[0.28; 0.36] 0.4[0.34; 0.47]
ρ 0.68[0.083; 0.92] 0.42[-0.49; 0.9] 0.85[-0.17; 0.99]

Number of species 10 10 5
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Figure 3.10: Prior on the correlation parameter ρ implied by putting a prior on its Fisher
transform z. Top shows z ∼ U(−10, 10), bottom shows z ∼ N (0, 25).
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is equivalent to sampling a pair of parameters (bj, ej) from the multivariate log-normal
distribution parametrised by θ.
In order to predict the response of a realistic community, we chose to focus on finite-size
communities. Diatom communities may number around 30 different species. Note that
a specific draw of 30 species produces a community with a certain response and that
another draw of 30 species would produce a different response. Therefore, there is some
uncertainty in the response obtained for a group of 30 species, even assuming that θ is
known. Moreover, the θ parameters themselves are uncertain and follow a distribution.
These two sources of uncertainty were taken into account by sampling around 10 000
sets θk, then sampling 30 species for each θk.
After a community was simulated, we defined its global response as the global fluores-
cence of the community, depending on the concentration. The global fluorescence was
defined as the sum of the fluorescence of each species.
To obtain a global response, we assumed that all species participated equally in the
global fluorescence. Following this assumption, it was possible to define an indicator of
the global response of the community at a given concentration, called rtot:

rtot =

∑
j∈species

Rj

R0
j

Nspecies
(3.8)

where Ri is the response of species i at a given concentration, and R0
i the response in

the control experiment. The indicator rtot of the global response is a quantity between
0 and 1 which describes the global reduction in fluorescence growth compared to the
control, as a function of the concentration in contaminant. Analogous to the HC5 for
the SSD, a Global Effect Concentration at 5% (GEC5) was defined, which corresponds
to the concentration leading to a reduction of 5% of the global response rtot. In our
case, the GEC5 corresponds to a reduction of 5% of the community fluorescence (rtot =
0.95). Following the terminology used for SSD in Posthuma [Posthuma et al., 2010],
the hierarchical SSD, and more precisely the prediction of the global response, can be
used in an inverse and a forward manner. The inverse approach consists in setting a
protective concentration threshold, the GEC5, below which 95% of the global response
of the community should be protected. The forward approach consist in determining the
reduction in the global response of the community for a given concentration level.
Figure 3.11 shows the importance of considering the global response of the community
for risk assessment. The top of Figure 3.11 shows the HC5 obtained using the classical
SSD approach on the EC10 endpoint, while the middle shows the HC5 obtained using
the EC50. This concentration is used for regulatory purposes as the Predicted No Effect
Concentration (PNEC), which determines the threshold under which the community is
considered protected. The HC5 only aims at preventing a proportion of the species from
being harmed, disregarding the possibility that harming key species could endanger the
whole community. In order to protect the community in terms of the endpoint measured
in the original data (fluorescence, biomass), it is interesting to consider also the GEC5 in
the risk assessment. In the case of atrazine, the concentration which induces a reduction
of 5% of the global biomass (GEC5) is lower than both the HC5 based on the EC10
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and on the EC50 (Figure 3.11). In the case of diuron, the GEC5 is much lower than
the HC5 based on the EC50 and similar to the HC5 based on the EC10. For the four
other herbicides, the GEC5 is between the two HC5 and in general, the GEC5 is close
to the HC5 based on EC10. Calculating the reduction in global biomass at the HC5
(i.e. using the forward SSD approach) indicates that for atrazine, the classical HC5 built
on the EC50, which protects 95% of the species, could protect only 81% [55%,94%]
of the global biomass. The classical HC5 based on the EC10 could protect only 92%
[73%,99%] of the global biomass. In the case of diuron, the classical HC5 built on the
EC50 protects 86%[69%, 96%] of the biomass, while the classical HC5 built on the EC10
protects 96%[86%, 100%] of the global biomass.
To summarize the comparison, there is no systematic relationship between the GEC5
and the HC5. Aiming to protect 95% of the global response of the community could
prove either more or less protective than aiming to protect 95% of the species. But it is
important to note that for atrazine and diuron, a HC5 based on the EC50 might protect
only 80 − 86% of the global response of the community.

3.4.4.2 Species Sensitivity Distribution as a function of the level of effect
(x of the ECx)

We have considered a new indicator, the global response of the community. From the
fitted model, it is also possible to reconstruct an SSD. In this case, the simulation aimed
at representing the variability of species sensitivity, i.e. the distribution of any ECx in
the community. For 2000 sets of global parameters θk, the effects (Equation 3.2) for each
species of a community were simulated, and their ECx calculated. Estimating an HC5
for a community consists in determining the fifth percentile of that ECx distribution.
To get the best estimation of the fifth percentile, large communities were simulated
(4 × 106 species). An SSD (and HC5) with a 95% credible interval was estimated for
these 2000 sets of parameters, from the median, 2.5th and 97.5th percentiles. This SSD
is an improvement on the classical SSD, since it was estimated taking into account
all the information present in the original data and accounting for the potential inter-
species correlation among the parameters b and e of the concentration-effect model. In
particular, the uncertainty in the estimation of the parameters of the concentration-effect
curves was propagated in the SSD estimation. Another advantage of reconstructing the
SSD from the fitted hierarchical model is that it does not require to choose the x of the
ECx in advance, contrary to the classical SSD, which starts with a certain level of ECx.
Fitting a classical SSD on another level of effect requires going back to the original data.
Using the fitted model and the simulation scheme instead, it is possible to calculate an
SSD on any x of the ECx. We used our hierarchical model to study how the HC5 may
vary as a function of the x of the ECx.
Figure 3.12 shows the HC5 as a function of the x of the ECx for the diatom community
exposed to diuron, computed from the hierarchical SSD. This is an HC5 which includes
the uncertainty from the original raw data. The prediction from the hierarchical model
was compared to the prediction from the classical SSD. The first striking observation
is that the classical HC5 based on the EC10, which ignores the uncertainty from the
determination of the CECs, is much higher than the hierarchical HC5. The second
observation is that for a hierarchical HC5 which includes the original uncertainty on the
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Figure 3.11: Species sensitivity distribution and global response of the community for
atrazine (left) and diuron (right). Top: classical SSD built on the EC10
with 95% bootstrap confidence intervals and the HC5. Middle: classical
SSD built on the EC50 with bootstrap confidence intervals and the HC5.
Bottom: global response of the community with 95% credible confidence
intervals and the concentration corresponding to a reduction of 5% of the
global response (GEC5). The vertical dotted lines are intended as visual
cues for comparing the HC5,EC10 , HC5,EC50 and the GEC5.
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CECs, the confidence intervals expand wildly for an x of the ECx below 50. This can
be linked to the fact that for small values of x, the uncertainty on the ECx estimated
from a concentration-effect curve is larger than on the EC50 (as was mentioned in the
results for classical SSD for the EC10, see also Figure 3.6). Therefore, in estimating
the HC5, the effect of discarding the uncertainty should be greater. This phenomenon
cannot be observed with classical SSD, since it does not take into account uncertainty
on the CECs. Such an observation contrasts with the reasoning from Aldenberg and
Rorije [Aldenberg and Rorije, 2013], which stated that taking uncertainty on the CECs
into account should increase the value of the HC5. However valid, their argument cannot
be directly applied to our case, for it rests strongly on the assumption of log-normality of
the CECs, be they NOEC, QSAR or ECx at any level of effect. In our model, the EC50
are assumed to follow a log-normal distribution (parameter b and e follow a log-normal
distribution), which implies that log ECx = log e + 1

b
log

(
x

1−x

)
for any other x than 50

does not follow a normal distribution. Therefore, it is not surprising to find a hierarchical
HC5 different from the classical HC5.
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Figure 3.12: HC5 as a function of the x of the ECx for diuron obtained from the hierar-
chical SSD, with the 95% credible bands. In red, the HC5 obtained from the
classical SSD based on the EC10 and the EC50 with bootstrap confidence
intervals.
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3.4.5 Sensitivity to modelling choices

The first advantage of the hierarchical approach was to introduce more ecological rele-
vance to the risk assessment than the bare classical SSD by taking into account all the
biological information available in the data. The hierarchical approach also provides a
perspective on the treatment of uncertainty in the classical SSD. Classical SSD adopts
the same approach whatever the level of effect chosen. Yet, the degree of uncertainty can
strongly depend on the level of effect and neglecting that uncertainty might certainly
bias the estimation of the HC5. The hierarchical SSD, which correctly propagates the
uncertainty from the raw data to the HC5 and builds the SSD on any ECx, does not suffer
from this problem. In particular, the hierarchical SSD shows that building an SSD on
EC10 without considering the uncertainty on these EC10 might lead to a wrong estimate
of the HC5 and of its confidence interval. To obtain this result, we simply assumed that
parameter e followed the usual log-normal distribution [Wheeler et al., 2002] and opted
for the same distribution law for the b parameter. With at most ten species per con-
taminant, there is not much ground to argue for other distributions, but in the future it
would be very interesting to analyse larger datasets. More tested species would provide
a better characterisation of the distribution laws for the concentration-effect model pa-
rameters and might support the current distribution choice or guide towards a different
structure for the hierarchical model. At any rate, quantile-quantile plots of the species
parameters did not show a strong deviation from log-normality (Figure 3.13).
In order to explore this issue, we tried to use a multivariate log-t distribution instead
of a multivariate log-normal distribution for the distribution of the parameters of the
concentration-effect model in the community. The t distribution with location and scale
parameters has one more parameter than the normal distribution, ν, which can be used
to tune the weight of the tails. With a large ν, the t distribution is close to the normal
distribution. The weight of the tails increases with decreasing ν. We first tried to
estimate this parameter on the data, giving it uniform priors of varying lengths, but
there was not enough information in the data to estimate ν (the posterior distribution
coincided with the prior). Given that there are at most 10 points per herbicide, this is not
so surprising. Then, we checked the robustness of the results to increasing tail weight.
We fitted hierarchical models with ν = 100, 50, 25, 12, 6, 3 and 1 which corresponds to
distributions with increasingly fat tail and compared the posterior distributions, the
global response and the value of the HC5 as a function of the level of effect. The
posterior distributions, notably the correlation parameter, were found to be very similar
for all values of ν. The global response was also quite insensitive to changes in ν except
for the extreme case ν = 1, for which the median global response was lower and the
credible intervals larger. This effect was strong for atrazine and terbutryn, intermediate
for diuron and isoproturon, and smaller for metolachlor and dimethachlor. The value
of the HC5 as a function of the level of effect and the bounds of the 95% credible
interval showed no change down to ν = 6, a small change for ν = 3 and were strongly
affected at ν = 1. The lower bound of the 95% credible interval was always the most
affected. This can be understood because adding weight to the tails of the distribution
increases the probability of finding extremely sensitive species and stretches the span of
the confidence interval. Overall, the results proved rather stable except for very heavy
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tailed distributions.
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Figure 3.13: Q-Q plot of the random effects of the hierarchical model for each herbicide.

We mentioned earlier that our result on the hierarchical SSD including more sources of
uncertainty and variability than the traditional analysis contrasted with the argument
put forward by Aldenberg and Rorije in [Aldenberg and Rorije, 2013], where they ex-
plained that taking uncertainty into account should increase the estimate of the HC5
compared to a classical SSD approach. We gave a first reason why their argument was
not in contradiction with our work: in our model the ECxs for x different from 50 do not
follow a log-normal distribution. A second reason is that in the hierarchical approach in
[Aldenberg and Rorije, 2013], it is assumed that the uncertainty on the CEC (the length
of the 95% confidence interval on the CEC) is identical for all species, whereas in our
model the uncertainty on the parameters of the concentration-effect model is specific to
each species. The species-specific uncertainty mostly depends on the quality of the raw
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data for that species. This is important because the reasoning of Aldenberg and Rorije
focuses on the estimation of the variance of the SSD, while including varying degrees
of uncertainty for each species could affect the estimation of the mean of the SSD. To
understand the role of varying levels of uncertainty, let us consider an extreme case: if
there is a large uncertainty on the most sensitive species and a rather small uncertainty
on all the other species, we can expect that taking uncertainty into account will shift
the estimate of the mean upwards. Since the value of the HC5 is a function of both the
mean and the variance of the SSD, taking uncertainty into account, although reducing
the variance of the SSD, does not necessarily increase the estimate of the HC5. A third
reason stems from the hierarchical structure of the model and the fact that the fit of
the concentration-effect models at the level of the species is performed in one stroke.
The fit of the b and e parameters for one species is influenced by the data from the
other species. More specifically, since the tested species are assumed to come from the
same community with the same species sensitivity distribution, the estimation of the
concentration-effect model parameters is the result of information coming from all the
species together. On the contrary, in classical SSD the fit of the concentration-effect
parameters obtained by non-linear regression depends solely on the data for one species.
Therefore, the e parameter for a given species estimated in the hierarchical model can
be slightly different from the e parameter estimated by non-linear regression. Translated
at the community level, this implies that the value of the HC5 is not determined by
the value of the CECs and their uncertainty, but by a more subtle interplay between
the raw data and the distribution law of species sensitivity in the community. This is
an example of the shrinkage property of a hierarchical model. For all these reasons, we
do not believe that our results are incompatible with previous work by Aldenberg and
Rorije4 [Aldenberg and Rorije, 2013].

3.4.6 Discussion
Classical SSDs are widely used to assess risk of chemicals for natural communities, but
they present certain limitations [Forbes and Calow, 2002, Power and McCarty, 1997]. In
this part of the thesis, we presented a hierarchical approach to SSD, which includes all
the information present in the raw bioassay data to overcome some of these limitations.
This hierarchical SSD differs from classical SSD in that the whole concentration-effect
curve is used to build the SSD instead of a single CEC per species. This implies that the
hierarchical model requires the full output from bioassay response curves. Unfortunately,
such data are not always available. For the three parameter log-logistic model used in
this study, providing two CECs, such as the EC10 and the EC50 would be sufficient to
describe the effect of the contaminant on a species. Therefore, reporting only two CECs
at the end of a bioassay would be enough to construct a hierarchical SSD in the same
spirit as that developed in this work, though without propagating the uncertainty on the
CECs.
Making full use of the bioassay data, the hierarchical SSD propagates not only all the
uncertainty from the concentration-effect curve, but also all the information on the shape

4Fox showed very recently that there was a mistake in the reasoning of Aldenberg and Rorije[Fox, 2015a]
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of the curve. It also unveils possible interspecies correlation among the parameters, which
have a biological significance.
HC5 thresholds obtained from our hierarchical approach were close to those previously
obtained with a classical method on the same dataset [Larras et al., 2012]. Photosynthe-
sis inhibitor herbicides (especially diuron, terbutryn and isoproturon) were clearly found
more hazardous than chloroacetamide family herbicides. Photosynthesis inhibitors are
known to exert a strong pressure on diatom communities especially because they prevent
photosynthesis, which is a vital process for microalgae.
One of the advantages of the hierarchical approach is the prediction of the global re-
sponse of a community as a concentration-effect curve which in turn makes it possible to
derive a global effect concentration of x%, the GECx. This new kind of threshold does
not provide a priori information at the species level (what and how much specific species
are affected) but it is a tool to make a priori risk assessment at the community level
(response of all the species together). This appeared especially interesting for microbial
community, for which chemical effects are often observed and reported at the community
level for many endpoints (i.e. biomass [Coutris et al., 2011], respiration, photosynthesis,
fluorescence, enzyme activity. . . ). This global response does not require the choice of
an arbitrary effect level such as the EC50 or the EC10. Moreover, on the tested con-
taminants, the hierarchical approach resulted in safe concentration levels which were
very close to the classical HC5 defined on the EC10. This led us to think that from an
operational point of view, the use of the global response should prove as protective as
the classical SSD approach. The global response may also be used to provide structural
or functional information depending on the structural or functional nature of the mea-
sured endpoint. In that last case, the global response would provide information on the
functional response of a community and solve one of the problems in the SSD approach
[De Laender et al., 2008, Kefford et al., 2012b]. Fundamentally, the global response is
an indicator containing a radically different type of information compared to SSD. The
HC5 aims to protect 95% of the species in a community, but there is considerable uncer-
tainty about the fate of the community if the 5% affected play a key role for some other
properties of the community (such as the global response). The GEC5 protects 95% of
the global response, but does not say what proportion of the species are significantly
affected (above a given level of effect). Together, both SSD and global response provide
complementary means to assess the effect of a contaminant on a community. Both ought
to be considered when defining acceptable levels of concentration for a contaminant.
Our definition of the global response strongly depends on the assumption of equipar-
tition of species contribution to the global response. In communities of diatoms, one
or several species may dominate and their contribution to the global biomass could
be preponderant. However, it has been observed that the dominance and the diver-
sity of diatom species within a community change across the seasons [Singh et al., 2010,
Pesce et al., 2009]. Therefore, when considering the biomass over a year, the contribu-
tion of many species might be averaged, rendering our assumption of equirepartition
more plausible. At any rate, this assumption is already present in the classical SSD
approach [Forbes and Calow, 2002]. As the simulated species are unidentified, it is not
possible to attribute a weight to each of them to sum their biomass. To circumvent this
assumption, it could be possible to define groups of species having comparable biomass
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and define weights according to these groups. On a larger dataset, it would certainly be
interesting to adopt this approach.
To summarize, benefits of the hierarchical SSD approach include that (i) all the exper-
imental data is taken into account, (ii) uncertainty from the concentration-effect model
can be included in SSD, (iii) there is no need for an arbitrary preliminary choice for the
level of effect, (iv) the hierarchical structure means that we address the issue of noise
in individual studies by shrinkage. Disadvantages include that (i) there are more distri-
butional choices to be made by the modeller and (ii) that the dependence of the final
inferences on the data and model choices becomes less clear as complexity of the model
increases.
Extension of this work could take two different directions. First, it would be natural to
consider a supplementary level of hierarchy to model inter-herbicide variability. This is
desirable because it would open the door to an across-chemical extrapolation. However,
this extension would require an assumption similar to those of classical SSD, namely that
the herbicides tested represent a random and representative sample of all the possible
herbicides. This is conceptually more difficult than the classical species representativity
assumption of SSD. Moreover, this new degree of hierarchy would require many distribu-
tional choices for the μlog e,herbicide, μlog b,herbicide etc. Whereas there is a strong tradition
of choosing a log-normal distribution for the SSD, there is no guide for choosing the
distribution of the parameters at the herbicide level. In developing the hSSD software
[Craig, 2013], Peter Craig has tackled this question and assumed a normal distribution
for the equivalent of μlog e,herbicide and a gamma distribution for 1/σ2

log e,herbicide. The hSSD
software relies on a hierarchical approach to SSD complementary to that presented in
this part of the thesis. Instead of including all the information from the raw data, hSSD
includes exterior taxonomic and across-chemical information in the SSD to predict a
scenario-based HCp for a community whose species are all identified. The second possi-
ble extension of our work stems from the following observation: our hierarchical SSD is
meant to avoid summarizing the full concentration-effect curve by a single critical effect
concentration and to make the most of the available data. However, only data at the
end of the experiment were used. Bioassay data often include a tracking over time of the
contaminant effect and this information could be included as well in the SSD. Modelling
time dependence would essentially consist in adding a supplementary level to the hierar-
chy. Studying the time component of SSD is particularly interesting because toxicity of
a contaminant clearly evolves over time, yet the observation period is often constrained
by practical considerations [Fox and Billoir, 2013]. The next part of the thesis will focus
on including time dependence into the SSD approach to improve the accuracy and the
biological relevance of its predictions.



Chapter 4
Hierarchical modelling of time-resolved
survival data

Toxicity data obtained from bioassay are often time-resolved. Indeed,
experiments need to be carried out for a certain period, typically from
a few days to a few weeks, to be relevant for environmental protec-
tion. Sometimes, there is little additional cost involved in monitoring
the endpoint over time compared to measuring it only at the end of
the experiment. But in spite of the availability of time-resolved data,
CECs reported in the literature are mostly based on data at the end
of the experiment only. This entails that they are only valid for given
exposure times and exposure scenarios. They are not relevant to de-
scribe the response to fluctuating contaminant exposures which occur
in the field, such as high concentration during the day and low con-
centration during the night for hospital effluents, or pesticide concen-
tration peaks after a rain event in a river surrounded by treated fields.
In this third part of the thesis, we present a concentration-response
model with a description of the time-dependence of the reponse. It is
based on a Toxico-Kinetic Toxico-Dynamic (TKTD) model published
in [Jager et al., 2011]. We apply it to model time-resolved data on
the salinity tolerance of riverine species. We use the same hierarchical
structure as in the previous part of the thesis and we adapt it for the
time-resolved model. We compute a time-resolved SSD usable in prin-
ciple for all exposure times, and we show how to compute the response
of the community for arbitrary contaminant exposure scenarios. This
work was developped in collaboration with Ben Kefford (University
of Canberra) and Christophe Piscart (Université de Rennes), it was
accepted for publication in Environmental Science & Technology.
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4.1 Time-resolved data

4.1.1 Introduction
Toxicity data obtained from bioassay are often time-resolved. Indeed, experiments need
to be carried out for a certain period, typically from a few days to a few weeks, to
be relevant for environmental protection. When it is possible to easily perform a non-
destructive measurement1 of the target endpoint (e.g. counting the number of survivors),
there is little additional cost involved in monitoring the endpoint over time compared
to measuring it only at the end of the experiment and indeed the raw bioassay data are
often time-resolved. But in spite of the data availability, CECs reported in the literature
are mostly based on data at the end of the experiment only. This is due to the fact that
concentration-response models rarely describe time-dependence of the response to con-
taminant exposure. But it entails that end-of-experiment CECs are only valid for given
exposure times and exposure scenarios. They are not relevant to describe the response to
fluctuating contaminant exposures which occur in the field, such as high concentration
during the day and low concentration during the night for hospital effluents, or pesticide
concentration peaks after a rain event in a river surrounded by treated fields. More-
over, in classical bioassays exposure times may be short relative to the life cycle of some
species. SSD can only hope to be relevant for exposures of that particular time-scale.
Another remark concerning the ecological realism of SSD bears on the difficulty to in-
terpret the HCp. Whether an HCp truly protects (1 − p)% of the community crucially
depends on the type of CEC. An HC5 based on EC50 is a concentration for which 95%
of the species are affected at a level between 0 and 50%. At such an HC5, a community
might suffer strong adverse effects if many species are affected at 45%. This encourages
the use of CEC for a lower level of effect, such as the EC10. However, the estimation
of a low level of effect is usually much less precise than that of the EC50. In particular,
the confidence interval on an EC10 obtained from a common log-logistic model is usually
larger than on an EC50, mostly because the slope at the EC10 is not as steep at the EC50,
as we have seen in the previous part of the thesis. Several authors have advocated that
SSDs should be based on NOEC to address this issue. However, the use of this type of
CEC has been disparaged extensively because they are based on a wrong interpretation
of statistical tests (no statistically significant effect does not mean no effect), they are
strongly dependent on the experimental setting and they favour poor resolution on the
concentration scale[Warne and Van Dam, 2008, Fox et al., 2012, Chapman et al., 1996,
Fox, 2008]. SSD has also been criticized on statistical grounds because the sample of
species tested to infer the sensitivity distribution of the community is not representative
of known communities and not random[van der Hoeven, 2004], because sample sizes are
usually small and because uncertainty on the estimated CEC is generally not taken into
account[Kon Kam King et al., 2015, Aldenberg and Rorije, 2013, Moore et al., 2010].
Various approaches have been proposed to improve SSD. Time-dependence has
been addressed by extrapolating long term effects from short term exposure
through the use of acute-to-chronic transformation[Grist et al., 2006, Mayer et al., 2002,

1In the case of the diatom data in the previous part of the thesis, fluorescence was only measured at
the end of the experiment.
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Duboudin et al., 2004a], or by specifically modelling the toxicity over time with
a Dynamic Energy Budget ecotoxicological model (DEBtox)[Smit and Ebbens, 2008,
Kooijman and Bedaux, 1996]. The potential implications of taking time-dependence
into account have also been investigated, showing that complex patterns can
emerge[Fox and Billoir, 2013]. For instance, although species become more sensitive
as exposure increases, shifting the mean of the SSD accordingly, they showed that
it was also critical to consider the evolution of the variance of the SSD to pre-
dict the evolution of the HC5. A solution proposed for the difficulty of interpreting
the HC5 was to use NEC models[Fox, 2008, van der Hoeven, 2004, Jager et al., 2011,
Kooijman et al., 1996]. Contrary to the HC5 based on a distribution of ECx, the HC5
based on a distribution of NEC can be considered as the threshold below which 95 %
of the species suffer no direct effect for the endpoint measured. NECs are estimated
as parameters of a threshold model and not from statistical tests, so they do not suf-
fer from the same defects as the NOECs. They represent a threshold below which the
concentration has no effect on the endpoint considered.
RTT[Kefford et al., 2005a] has been proposed as a way to overcome some of the statistical
issues of SSD, namely small sample size, non randomness and representativity. RTT aims
to approximate the sensitivity of a large number of species in order to get a representative
sample of the community. The focus of RTT is on the estimation of the variability within
the community rather than on the precise estimation of the sensitivity of a few species.
Yet, RTT raises the issue of including uncertainty on the tested species sensitivity with
increased sharpness. Rapid test data have a large uncertainty which is not included
in classical SSD. There have been proposals to include that uncertainty by describ-
ing species sensitivity as censored data[Moore et al., 2010, Kon Kam King et al., 2014,
Dowse et al., 2013, Kefford et al., 2012a, Hickey et al., 2012], using a frequentist or a
bayesian approach[Kon Kam King et al., 2015, Hickey et al., 2012, Craig, 2013]. There
is currently no method which addresses all these issues simultaneously. We propose in
this part of the thesis a new hierarchical Toxico Dynamic (TD) model for SSD which
provides a solution to all the aforementioned problems. It is derived from the TKTD
model presented in [Jager et al., 2011], but it aggregates everything related to Toxico
Kinetic (TK) in a single compartment (see subsection 4.2.2). We model mortality as
a stochastic process resulting from the damage induced by the contaminant to an or-
ganism. Contaminant concentration and damage are linked by a phenomenological one-
compartment model describing all the biochemical and physiological processes leading
to mortality[Jager et al., 2011]. Using this TD model, we model explicitly the time-
dependence of individual species sensitivity using parameters which do not depend on
time themselves, arriving at a time independent SSD. The TD model is parametrised
using a NEC, allowing for a convenient interpretation of the HC5. Additionally, the hi-
erarchical approach allows a consistent management of the statistical uncertainty which
is propagated from the original raw data to the HC5. The hierarchical model incorpo-
rates all the information available on the tested species regardless of the quality of the
data, making it easy to include rare species for which it would not be possible to fit a
concentration-response model.
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4.1.2 Salinity data
The dataset used for this study was published and described in
detail[Kefford et al., 2012a]. It contains salinity tolerance of 217 macroinverte-
brates taxa from Southern Murray Darling Basin, Victoria[Kefford et al., 2006] and
France (Britanny)[Kefford et al., 2012a]. The data consist in the mortality of stream
invertebrates exposed to artificial sea water with observations of survival after 24, 48,
72 and sometimes 96h. The salt source for the experiments was artificial sea water:
Ocean Nature in Victoria (Aquasonic,Wauchope, NSW, Australia) and Instant Ocean
(Red Sea Pharmaceuticals, Haifa, Israel) in France, and experiments confirmed these
two brands of artificial sea water had no effect on toxicity[Kefford et al., 2012a]. The
only difference in the method used was the temperature at which the experiments
were conducted reflecting local climate: 20(± 2)° C in Victoria and 18(± 1)°C
in France. All other methods were identical across the studies and are described
elsewhere[Kefford et al., 2012a, Kefford et al., 2006]. Multiple species were exposed in
the same water but prevented from physically interacting by housing them in enclosures
within a larger body of water. All species housed together in this way were collected
concurrently from the same site, so if they chemically interacted in the experiments,
they likely chemically interacted in the field. Data were collected according to the
RTT framework[Kefford et al., 2003] to approximate the sensitivity of large numbers of
field-collected taxa. Data coming from Australia and France were pooled together, as
the previous study[Kefford et al., 2012a] found that salinity tolerance was more variable
across taxonomic group than across region. The dataset is strongly inhomogeneous
(Figure 4.1) in the number of concentrations tested per taxa (1 to 98 measured
concentration), in the number of organisms tested per concentration (1 to 17) and in the
number of replicates per treatment (1 to 3). Notably, there are some common species
for which it is possible to estimate an LC50 precisely and rare species for which it is only
possible to estimate a censored value for the LC50 (Figure 4.1). The dataset includes
organisms that disappeared either because they were eaten, they completed the aquatic
phase of their life-cycle or were otherwise lost and thus could not be followed up (these
are hereafter referred to as lost to follow-up organisms).

4.2 Toxico-Kinetic Toxico-Dynamic models
4.2.1 General intro on Toxico-Kinetic Toxico-Dynamic models
TKTD models in ecotoxicology are compartmental models similar to what can be found
in toxicology (Pharmaco-kinetic Pharmaco-dynamic), electric systems, epidemiology
(Susceptible Infected Removed models), structured populations in ecology, etc. These
models are intended to provide a mechanistic description of contaminant effects, as
opposed to empirical models such as the log-logistic concentration-effect model or the
various hormesis models presented in the previous section. They account for the mul-
tiple processes involved in toxicity, such as entry of the contaminant in the organism,
metabolism, dispersion of the metabolites in the organism, build up of damage, lesions
and consequently an observable/measurable effect. This effect refers to the concept of
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Figure 4.1: 9 out of the 217 species of the salinity dataset. The survival probability
is plotted against the salinity for various measurement dates. The top row
contains species for which there is an apparent concentration-response rela-
tionship and little variability (there is no replicate). The middle row contains
species for which there is a lot of data available, but for which variability is
very large. The bottom row contains rare species for which very little data is
available, so that they do not allow fitting a concentration-response model.
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endpoint mentioned in the previous parts of the thesis. Classical endpoints in ecotoxicol-
ogy include size, body mass, fluorescence, survival, number of offsprings/size of clutch,
abnormalities, etc. An important feature of TKTD models is that they include a time-
resolved description of these processes. The model parameters are time-invariant, which
makes it possible to predict the mortality outside of the time span covered by the data
without the uncertainty exploding and to compute time-invariant HC5. In particular,
it is possible to compute a Lethal Concentration for x% of the organisms (LCx) for
any time. As noted in [Smit and Ebbens, 2008], in this model any LCx will decrease
asymptotically in time towards the NEC threshold.
[Jager et al., 2011] presented a General Unified Threshold model for Survival (GUTS), a
unified framework for the various survival TKTD models in the form of a general model
with many parameters from which many TKTD models can be obtained, as limit cases.
Their unification is more directed at the Toxico Dynamic (TD) part of the models: they
argue that two paradigms prevail for describing the death of an organism of a given
species, or more precisely for describing the variability among the response of several
organisms of the same species: either death is a deterministic process and there is a
variability in the tolerance of the organisms (this is called the Individual Threshold
(IT) model, Figure 4.2), or there is no intra-specific variability but death is a stochastic
process and variability results from stochasticity (this is called the Stochatic Death (SD)
model, Figure 4.2). One way to understand the difference between these two paradigms
is to consider the implications of exposing several organisms from the same species to
repeated identical concentration pulses of contaminant with a time interval sufficient for
complete recovery: in the IT model, only the first pulse will have an effect, wiping out the
most sensitive organisms, whereas in the SD model, all pulses will have the same effect
on the survival probability but there will be a variability in the number of survivors.
The General Unified Threshold model for Survival (GUTS) model incorporates both the
IT and SD concepts.

Toxico-kinetics

We start by presenting briefly the GUTS model to explain why we had to adapt it. In
the GUTS model, the TK part can be modelled using a simple one compartment model.

Ċi = kiCw − keCi (4.1)

where Ċi = dCi

dt
is the time derivative of the internal concentration, Cw is the external

water concentration in contaminant, Ci is the internal concentration, ki the rate at which
the contaminant enters the organism and ke the rate at which it is eliminated from the
organism. In Equation 4.1, Ċi, Cw and Ci depend on time, while the other quantities are
time-invariant. If there is information available, this model can be extended to include
other TK processes such as bio-transformation or saturation. To integrate Equation 4.1,
it is necessary to know the value of Ci at a certain date. The most common assumption
is Ci(t = 0) = 0. Several exposure scenarios (Cw as a function of time) lead to an
analytical formula for the solution Ci, notably constant exposure or piecewise constant
exposure.
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Figure 4.2: Schematic structure of the General Unified Threshold model for Survival
(GUTS), a toxicokinetic-toxicodynamic (TKTD) model, consisting of four
modules: internal concentration, damage (optional), hazard rate, and thresh-
old distribution. Various existing TKTD models can be derived as special
cases within GUTS by making specific toxicodynamic assumptions about the
killing rate and the threshold. These special cases consist of stochastic death
models (SD) and individual tolerance models (IT), whereas GUTS is a more
general, mixed model, comprising both SD and IT. hCTO: hazard (SD) ver-
sions of the Critical Target Occupation model; TDM: Threshold Damage
Model; DEBtox survival: survival part in the Dynamic Energy Budget mod-
els for toxic stress; CTO: Critical Target Occupation model; DAM: Damage
Assessment Model; CBR: Critical Body Residue concept. Figure and legend
reproduced from [Jager et al., 2011].
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Toxico-dynamics

The TD of the model involve an optional damage compartment to model all the bio-
logical, chemical and physiological processes linking internal concentration to toxicity.
[Jager et al., 2011] suggest using this damage compartment only when the internal con-
centration is not sufficient to explain the time-course of mortality.

Ḋ = kaCi − krD (4.2)
where Ḋ is the time derivative of the damage, Ci is the internal concentration in contam-
inant, D is the damage, ka the damage accrual rate and kr the damage recovery rate. In
Equation 4.2, Ḋ, Ci and D depend on time, while the other quantities are time-invariant.
To integrate this equation, it is also necessary know the value of D at a certain date.
It is possible to make the assumption that the initial damage due to the concentration
in contaminant is negligible. It seems reasonable to assume that the organism has not
been exposed to hazardous levels of contaminant before the experiment.
The survival model also belongs to the TD part of GUTS. The survival function and the
hazard rate are defined by:

S(t) = P (T > t) (4.3)

hz(t) = − 1
S(t)

dS(t)
dt

(4.4)

where T is the date of death of the organism and S(t) is the survival function, or the
probability to die after t. The hazard rate is the instantaneous probability to die at time
t conditional on surviving until then.
In the GUTS model, the hazard rate is supposed to be linearly dependent on the dose-
metric above a certain threshold specific to the dose metric and to the organism.

hz = m0 + ks
M (M − zM)+ (4.5)

hz is the hazard rate, or the instantaneous probability to die.
The notation (x)+ is a shorthand for max(x, 0). The M in this model is called the dose-
metric, this is the quantity which will control the dynamics of survival. M can be the
internal concentration Ci, or the damage D if a damage compartment is included. The
parameters in this model are zM , an individual threshold below which the dose-metric
does not have any impact on the survival of the organism, ks

M , a parameter controlling
how the dose metric increases the hazard rate and m0, the control mortality for a dose-
metric below the threshold. zM characterises all the intra-specific variability in the GUTS
model, the other parameters are the same for all the organisms of a given species.
The final part of the TD model is the multinomial error model for the number of survivors
at each time.
Given an initial number of organisms N0 at the beginning of the experiment, the likeli-
hood of measuring N = (N1, . . . , Nn) survivors at time (t1, . . . , tl) given the parameters
θ is given by (derivation in section F.1):
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f(N |N0, θ) = N0!SNl
l

Nl!

l∏
k=1

(Sk−1 − Sk)Nk−1−Nk

(Nk−1 − Nk)! (4.6)

Limit cases
The SD limit of the GUTS model is obtained by assuming letting the distribution zM

approach a Dirac distribution, i.e. letting the threshold to be the same for all organisms
of a given species. In the SD model, there is no individual variability at the level of the
organism and all the variability in the response is attributed to the stochastic variability
of the multinomial sampling.
The IT limit of the GUTS model is obtained by letting parameter ks

M → ∞, which
implies that if the dose metric goes above the threshold then the organism dies instantly.
Otherwise, toxicity does not have any effect on survival. This removes stochasticity
in the death process and all the variability in the response is attributed to individual
variability.

4.2.2 Adapting the General Unified Threshold model for Survival to
model salinity tolerance

We chose a GUTS-SD type model for the salinity dataset. This model is simpler than a
full GUTS model because it has less parameters. GUTS-SD is also a little more natural
than GUTS-IT, because the IT assumption with deterministic death (GUTS-IT) entails
that each organism dies instantly when its threshold is reached, in a sudden step from no
effect to effect[Baas et al., 2009]. Instead, the stochastic death assumption entails that
the survival probability of an organism decreases approximately exponentially with the
concentration over its threshold.
However, we could not use the GUTS-SD model in its exact original form. Our sur-
vival data contained no information on the initial internal salt concentration and it
could not be assumed to be negligible to solve Equation 4.1, contrary to the xenobi-
otic contaminants on which the GUTS model was developed. Salts are crucial com-
ponents of organisms and freshwater species are hyperosmotic, meaning that their in-
ternal salinity is greater than that of their environment. As salinity rises they either
maintain their internal salinity at the same level (osmoregulate) or osmoconform, mean-
ing that their internal salinity rises with their environment. There are no cases where
the initial internal salinity is negligible. This prevented the direct use of the GUTS-
SD model described by Jager and colleagues[Jager et al., 2011, Ashauer et al., 2010,
Ashauer et al., 2006, Ashauer et al., 2013]. We resorted to modelling damage to the
organism instead of internal concentration. This entailed a slightly different understand-
ing of the damage concept than for the GUTS model: damage still describes the state
of the organism resulting from all the biochemical and physiological processes which
are involved in toxicity[Jager et al., 2011], but it is driven by the external concentration
rather than by the internal concentration. More precisely, we used a one-compartment
model linking the damage directly to the external concentration, removing the inter-
mediary internal concentration. In that sense, damage aggregates everything related to
TK, whereas it was only contained in the TD part of the GUTS model. Hence, it is
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not really a TKTD model but a TD model. Entry of the contaminant in the organ-
ism is included among all the biochemical and physiological processes lumped into the
damage. Nevertheless, this understanding of damage remains fully compatible with the
very broad definition given in [Jager et al., 2011]. In our adapted model, mortality rate
results from the state of damage of the organism. Appendix G shows that under certain
assumptions, the GUTS model and its definition of damage are equivalent to the model
presented here, however there are no grounds for making that assumption. It is difficult
(albeit possible in principle) to establish what specifically is damage, and it could be
specific to the taxa considered. But damage is a concept sufficiently general to allow
within a single model to account empirically for a variety of processes.

The compartmental equation for damage is:

Ḋ = kaCw − krD (4.7)
where D is the salinity induced damage, ka is the damage accrual rate proportional to
the external salt concentration Cw and kr is the damage recovery rate.
Initial damage was assumed to be negligible for all organisms, as all organisms were
collected from salinity well below those that induced mortality. Taxa mortality resulting
from the capture, the stress from the experiment and everything which does not depend
on salinity is accounted for by a specific parameter m0 in the hazard rate.

With these assumptions and for a constant Cw , Equation 4.7 can be integrated as:

D = ka

kr
Cw

(
1 − e−krt

)
(4.8)

Parameter kr can be seen as representing the delay between exposure and effect. 1
kr is

the characteristic time-scale of the one-compartment model, i.e. the time needed for the
damage to reach e−1 = 63% of its maximum value at constant external concentration. In
the sense that D is the representation of several TKTD processes modelled with several
compartments, kr is conditioned by the slowest of these processes. This is similar to the
notion of rate-determining step in chemical kinetics.

In a standard threshold model, there is a no effect internal concentration NECi below
which the survival of the organism is not affected by the toxicity (salinity in our case).
This translates to a no effect internal damage NED below which the survival of the
organism is not affected. Given that limt→∞ D = ka

kr Cw it is possible to rescale the NED
to units of external concentration and define an external no effect concentration:

NEC = kr

ka
NED (4.9)

Next, we define the hazard rate hz with a linear effect of the damage above the threshold:
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hz =m0 + ks
d (D − NED)+ (4.10)

=m0 + ks
(
Cw

(
1 − e−krt

)
− NEC

)
+

(4.11)

where (x)+ means the maximum of x and 0, m0 is the control mortality (for D ≤ NED)
ks

d is the mortality induced by the damage over the no effect damage threshold and ks =
ka

kr ks
d is called the killing rate, as proposed by Kooijman[Kooijman and Bedaux, 1996]. ks

has the dimension (concentration.time)−1 and controls the effect of salinity on survival.
Contrasting with Equation 4.5, the hazard rate includes no individual variability, the
threshold is common for all organisms of the same species.

There is a time tNEC before which an organism starting with negligible initial internal
damage will have its internal damage below the no effect damage threshold. This time
can be obtained from Equation 4.8 and Equation 4.9 by :

tNEC = − 1
kr

ln
(

1 − NEC

Cw

)
(4.12)

Only after that time does the salinity start having an effect on the organism’s survival.

The survival probability for one species at time t > tNEC and constant concentration
Cw is obtained from the hazard rate by:

S(t) =e−
∫ t

0 h(u)du (4.13)

=e−m0t−ks[(Cw−NEC)(t−tNEC)+ Cw

kr (e−krt−e−krtNEC )] (4.14)

For t < tNEC :

S(t) = e−m0t (4.15)
Therefore, the parameters characterising the tolerance of a species are kr, ks, m0 and
NEC. The assumptions in this model are: 1) there is no intra-specific variability in sen-
sitivity to the contaminant, 2) there is a species-specific damage threshold below which
there is no hazard due to the contaminant (this assumption leads to the existence of a
species-specific NEC, see Jaynes[Jaynes, 2003] for a discussion of this assumption), 3)
the hazard rate for a species is proportional to the internal damage above the thresh-
old plus a constant. This means that it has a time-dependent component due to the
contaminant plus a constant component due to other causes. This implies that there is
no significant hormesis or essentiality. 4) Damage evolves following a one-compartment
model, it increases proportionally to the external concentration and decreases propor-
tionally to the damage level. 5) The mechanistic TKTD processes that cause acute and
chronic toxicity are the same and the greater sensitivity often observed with expanded
exposure is the result of a build-up of damage.
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4.2.3 More details about the interpretation of the Toxico-Dynamic
model parameters

The TKTD model describes a monotonous decrease of the survival probability both with
time and concentration. The survival probability can be represented as a function of time
and as a function of concentration (Figure 4.3). This illustrates the effect of parameter
kr, as the models with and without kr show different behaviours.
In the model without kr, ie. kr → ∞ =⇒ tNEC → 0, there is no delay between
exposure and effect. The consequences on the time representation (Figure 4.3 a)) is that
the survival probability is exponentially decreasing with a characteristic time dependent
on the concentration. The consequences on the concentration representation are that
the survival probability is flat for concentrations below the NEC and exponentially
decreasing for concentrations above the NEC (Figure 4.3 c)).
For a model with kr, there is a delay between exposure and effect. When the external
concentration is below the NEC, only parameter m0 has an influence on survival for
the lowest concentration. When the external concentration is above the NEC, there is
a delay tNEC before the internal damage reaches a level affecting the survival of the
organism. This delay depends on parameter kr, NEC and on the external concentration
(Equation 4.12). After this delay, the effect of salinity increases with time and saturates.
On the time representation, this results in a change of concavity (Figure 4.3, b) ). On
the concentration representation, this results in a flat region of decreasing length which
is above the NEC Figure 4.3 d). The flat part of the curve gets shorter and shorter with
time: this is because for any given time, there is an external concentration NECt below
which the internal damage cannot reach the NED before t, and this NECt decreases.
NECt is the external concentration such that starting at zero damage, the damage can
exactly reach the NED. For external concentrations below NECt, there cannot be any
effect of the concentration on survival at time t. We can find an analytical expression
for NECt starting from Equation 4.8 and using Equation 4.9:
for Cw = NECt,

D(t) =NED (4.16)

=⇒ NED =ka

kr
NECt(1 − e−krt) (4.17)

=⇒ NECt =kr

ka

NED

1 − e−krt
(4.18)

= NEC

1 − e−krt
(4.19)

NECt decreases with time as a logistic curve and limt→∞ NECt = NEC.
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Figure 4.3: a) and b): survival probability as a function of time for various concentrations
and c), d): as a function of the concentration for various times. Top panel
shows a model without kr, ie. kr → ∞ =⇒ tNEC → 0. Bottom panel
shows a model with a small value of kr. The scales and parameter values
were chosen in order to show the phenomenology of the model but do not
correspond to biologically realistic or meaningful values.

4.2.4 Error model for survival data

[Jager et al., 2011] used a multinomial formulation of the error model on the
number of survivors. The multinomial and the conditional binomial error
models[Forfait-Dubuc et al., 2012] are two mathematically equivalent formulations of
the same error model for survival without lost to follow-up organisms (see Appendix
F). The presence of lost to follow-up organisms precludes the use of the multinomial
model formulation and suggests instead modelling the number of survivors at time tk

conditionally to the number of organisms alive at time tk−1 and which have not disap-
peared between tk and tk−1. Replacing the multinomial error model in the presence of
lost to follow-up organisms makes the assumption that the mechanism by which they
are lost is not related to toxicity (does not influence the estimation of the parameters).
The probability for species j exposed to concentration Cw

j to survive until tk after having
lived until tk−1 is:

Si,j (tk|tk−1) = Si,j (tk)
Si,j (tk−1)

(4.20)

where the dependence on Cw
j was omitted to simplify the notation. We modelled the

observed number of survivors Ni,j,k with the following binomial distribution:
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Ni,j,k ∼ B
(
Np

i,j,k, Si,j(tk|tk−1)
)

(4.21)

where Np
i,j,k is the number of organisms alive at the previous time and which have not

disappeared since. Note that Np
i,j,k �= Ni,j,k−1 because some organisms might have dis-

appeared between tk−1 and tk.

4.3 Hierarchical Toxico-Kinetic Toxico-Dynamic model

4.3.1 Description of the model

The structure of the hierarchical model was built in the same spirit as that described in
subsection 3.4.1 for the diatom data. There, we modelled the multivariate distribution of
two parameters of the concentration-effect model. In this part of the thesis we modelled
the multivariate distribution of the four parameters of the concentration-response model.
The main difference lied in the modelling of the variance-covariance matrix and in the
interpretation of the parameters. The aim of this hierarchical modelling still was to
include all the information available in the raw data and specifically the uncertainty from
the fit of the model. In the particular case of RTT of rare species, this uncertainty can
be very large and ignoring it is not ideal. The shrinkage property (pooling of information
across species which shrinks together the model parameter estimates) of the hierarchical
SSD model was a convenient way of dealing with the very heterogeneous salinity data
(Figure 4.1), allowing each species to impact the estimation of the community parameters
at the extent of the information available on that species. The two levels of hierarchy
were again the species and the community (Figure 4.4 and Table 4.1), where the species
play the same role as random effects in a mixed model. As the log-normal distribution is
the distribution most frequently used in classical SSD[Posthuma et al., 2010], we followed
that custom and assumed a log-normal distribution for each of the parameters. This is the
same assumption as made for the hierarchical modelling of the diatom data (chapter 3).
We also modelled a potential correlation among the parameters with multivariate normal
correlation matrix.
μ and Σ are defined in terms of position, scale and correlation parameters for each of
the four dimensions of the multivariate normal distribution:

μ = (μlog kr , μlog ks , μlog m0 , μlog NEC) (4.22)

Σ = ξΛξ (4.23)
where:

ξ = diag(σlog kr , σlog ks , σlog m0 , σlog NEC) (4.24)
and
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Λ =

⎛
⎜⎜⎜⎝

1 ρlog kr,log ks ρlog kr,log m0 ρlog kr,log NEC

ρlog kr,log ks 1 ρlog ks,log m0 ρlog ks,log NEC

ρlog kr,log m0 ρlog ks,log m0 1 ρlog m0,log NEC

ρlog kr,log NEC ρlog ks,log NEC ρlog m0,log NEC 1

⎞
⎟⎟⎟⎠ (4.25)

i=concentration

k=time

j=species

Community
parameters

Monospeci c
parameters

Data

Figure 4.4: Probabilistic directed acyclic graphical model of the hierarchical
model[Koller and Friedman, 2009] (also called Bayesian network). El-
lipses represent variables, rectangles represent covariables. Solid lines
represent stochastic links, dotted lines represent deterministic links. To
avoid repetition, similar subunit are summarized by plates. The inner set of
plates denote the different times, the intermediate set of plates the different
concentrations and the outer set of plates denote the different species.
Since the graph is directed and acyclic, any two variables are conditionally
independent given the value of their parents. Links are detailed in Table 4.1.

4.3.2 Modelling the variance-covariance matrix

One of the main difference between this model and that presented in subsection 3.4.1
lies in the modelling of the variance-covariance matrix. It is not possible to use the same
method to model a 2×2 variance covariance matrix and a 4×4 variance covariance matrix.
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Table 4.1: Description of the links in probabilistic directed acyclic graphical model (Fig-
ure 4.4). Si,j is defined from Equation 4.20 and Equation 4.12. μ and Σ are
the position and scale parameters of the 4-dimensional multivariate normal
distribution, defined in Equation 4.22 and Equation 4.23.

Node Type Equation
θj Stochastic θj ∼ Nm(μ, Σ)
Si,j (tk|tk−1) Deterministic Si,j (tk|tk−1) = Si,j(tk)

Si,j(tk−1)

Ni,j,k Stochastic Ni,j,k ∼ B
(
Np

i,j,k, Si,j(tk|tk−1)
)

This is because a variance covariance matrix is constrained to be positive-definite2. For
the 2 × 2 variance covariance matrix, positive scale and correlation parameter between 0
and 1 automatically produce a positive-definite matrix. For a 3 × 3 matrix, it is possible
to generate two correlation parameters at random and to derive a interval where the last
correlation parameter must lie to satisfy positive-definitiveness. For higher dimensions,
it is not practical to proceed by correlation parameters, the most common method is to
sample correlation matrices from an Inverse Wishart distribution. However, this method
has been criticized because it introduces a correlation between the scale and the corre-
lation parameters in the prior, which is generally not a desirable feature for modelling.
Moreover, to determine a prior on a variance covariance matrix, it is more natural to
give separate priors on the scale and correlation parameters because they have a clearer
interpretation. Barnard, McCulloch and Meng[Barnard et al., 2000] proposed to use a
separation strategy and divide the variance-covariance matrix in a correlation matrix
and a scale matrix (Equation 4.23). Using this formulation, it is possible to specify pri-
ors separately on each scale parameter and on the correlation matrix. One type of prior
using this strategy is the scaled Inverse Wishart prior3[Gelman and Hill, 2007], how-
ever there remains some correlation in the prior (Figure 4.5). [Lewandowski et al., 2009]
proposed an efficient method to sample from the space of positive definite correlation
matrices, which allows to use a uniform prior on the space of all correlation matrices.
Using this last method, there is no undesirable correlation among the scale and cor-
relation parameters in the prior (illustration on a 2 × 2 matrix on Figure 4.5). The
Lewandowski-Kurowicka-Joe [Lewandowski et al., 2009] (LKJ) prior has a ν parameter
which allows to make the prior informative: for ν = 1, the prior is uniform on the space of
correlation matrices, for ν > 1 the prior favours small marginal correlations parameters
while for ν < 1 the prior favours large marginal correlation parameters. We chose to use
of a uniform prior on the space of all correlation matrices was made because we did not
expect a priori any particular correlation among the parameters. In a four dimensional
space, this uniform prior tends to favour small marginal correlation parameters against
large ones, because there are more positive-definite 4 × 4 matrices with small marginal

2A symmetric n×n real matrix M is said to be positive-definite if ∀x ∈ N
n \{0}n ; xT Mx > 0. Another

characterisation is that all the eigen values (which are all real) are stricly positive.
3The separation strategy for the scaled Inverse Wishart prior is to decompose the variance-covariance

matrix into a scale matrix and an unscaled variance covariance matrix rather than into a scale matrix
and a correlation matrix.
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correlation parameters[Barnard et al., 2000] (see also Figure 4.6).
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Figure 4.5: Comparaison between the Inverse Wishart and the LKJ prior for
the correlation matrices. Scatter plot and Pearson correlation co-
efficient between the parameters of a 2 × 2 variance-covariance
matrix generated using the two priors. The idea for this fig-
ure was inspired by https://dahtah.wordpress.com/2012/03/07/
why-an-inverse-wishart-prior-may-not-be-such-a-good-idea/ (last
accessed on July 14th 2015).

4.3.3 Fit of the model
The model was implemented using the software Stan[Gelman, 2014] via the R inter-
face RStan[Gelman, 2014]. As JAGS[Plummer, 2013] or WinBUGS[Lunn et al., 2000],
Stan performs Bayesian inference but it uses hamiltonian Monte Carlo with the No-U-
turn sampler[Hoffman and Gelman, 2011] instead of Markov Chain Monte Carlo Gibbs
sampling. Stan was chosen for convenience in writing the threshold model and for the
availability of various methods to define the prior on the correlation matrix. Hamiltonian
Monte Carlo is also expected to perform better than Markov Chain Monte Carlo in terms
of autocorrelation in the chains. We used four chains with 5000 warm-up iterations and
5000 post warm-up draws per chain. We chose vague uniform priors for the scale param-
eters of the normal distributions: σlog kr , σlog ks , σlog m0 , σlog NEC ∼ U(0, 5). This strategy
is recommended by Gelman[Gelman, 2006] in cases where a lot of data is available for
estimating the scale parameters. We also chose vague uniform priors for the position
parameters: μlog kr , μlog ks , μlog m0 ∼ U(−7, 2). The prior on the μlog NEC was chosen to be
a little larger than the concentration range, because for many species the concentration
range did no contain the NEC (no observable increase of mortality for the highest tested
concentration or 100% mortality at the lowest concentration, see also Figure 4.1):

μlog NEC ∼ U
(

log min
i,j

(Ci,j) − 1, log max
i,j

(Ci,j) + 1
)

(4.26)

Note that the log-normal marginal distribution of the NEC for each species implies that
the NEC can be arbitrarily small. The Stan script for fitting the model is provided in
Appendix H.
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4.3.4 Results of the fit

Model convergence

Model convergence was monitored using the split potential-scale-reduction statistic
R̂[Gelman and Rubin, 1992], ensuring that R̂ ≤ 1.1 for all the nodes as recommended by
Brooks and Gelman[Brooks and Gelman, 1998]. Comparison between priors and poste-
riors showed a clear shrinkage, sign that there was sufficient information in the data to
estimate the parameters (Figure 4.6).
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Figure 4.6: Comparison between prior distributions (red) and posterior distributions
(black histogram). The marginal priors on the correlation parameters are
obtained from the Lewandowski-Kurowicka-Joe distribution. The prior is
uniform over the space of the 4 × 4 correlation matrices.
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Estimated parameters
In a classical SSD, only variability on the ECx or the NEC (via parameter σlog NEC) would
be considered. All other parameters would be treated as if they were constant. However,
our hierarchical model shows that the variability on the other parameters is similar if
not greater than the variability on the NEC (Table 4.2). Particularly, there seems to
be a large variability on kr, the parameter controlling the delay between exposure and
effect. We found many species with a large value of kr, which corresponds to a rapid
equilibration between the internal damage and the water concentration. It could be
tempting to think that for many species, there is no delay between exposure and effect.
However, the survival function depends on the whole time course of the internal damage
(Equation 4.13) and for large external concentrations, a lot can happen even in the small
period it takes for the concentrations to equilibrate. We also observed a mild positive
correlation between parameters kr and NEC and between parameters ks and m0. It
means that the tolerant species tend to have a short delay between effect and exposure,
and that the species with large control mortality (who might have suffered a strong
stress from the capture and experimental setting) tend to suffer a strong effect of the
concentration.

Table 4.2: Estimated community parameters and their 95% credible interval. The esti-
mate is the median of the posterior distribution.

Position Estimate Scale Estimate Correlation Estimate
μlog kr -0.26 [-0.63,0.33] σlog kr 1.0 [0.72,1.6] ρlog kr log ks 0.12 [-0.43,0.23]
μlog ks -5.3 [-5.4,-5.2] σlog ks 0.39 [0.31,0.50] ρlog kr log m0 -0.15 [-0.50,0.23]
μlog m0 -3.1 [-3.3,-3.0] σlog m0 0.42 [0.30,0.58] ρlog kr log NEC 0.53 [0.25,0.73]
μlog NEC 4.1 [4.0,4.3] σlog NEC 0.38 [0.30,0.49] ρlog ks log m0 0.29 [0.05,0.57]

ρlog ks log NEC -0.20 [-0.48, 0.10]
ρlog m0 log NEC 0.01 [-0.32,0.32]

Robustness to a change of vaguely informative priors
Gelman reported that the estimate for the scale parameter in a hierarchical model with
a uniform prior can be sensitive to the higher bound of the support[Gelman, 2006].
To check if this was the case, we tested σlog kr , σlog ks , σlog m0 , σlog NEC ∼ U(0, 4) and
σlog kr , σlog ks , σlog m0 , σlog NEC ∼ U(0, 6). We found no appreciable difference in the pos-
terior distributions. Similarly, we studied the impact of changing the prior on the
correlation matrices to favour large correlations (ν = 2, ν = 4) or small correlations
(ν = 0.25, ν = 0.5) and found no appreciable difference in the posterior distributions.

4.3.5 Assessment of model fit
The fit of the model was assessed by comparing the agreement between the pre-
dicted and the observed number of survivors at each time and concentration. The
predicted number of survivors was obtained in a typical posterior-predictive check
approach[Gelman et al., 2014], by drawing 2000 sets of model parameters from the pos-
terior distribution and simulating 500 draws from the binomial error model for each of
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the parameter sets, using Cw and Np as covariates. Most observations in the dataset
seemed to sit well along the identity line (Figure 4.7).

Figure 4.7: Sunflower plot of the predicted number of survivors against the observed
number of survivors. A dot on the figure denotes the first data point and each
petal of a sunflower denotes an additional data point at the same location.
The black colour denotes points for which the 95% scredible interval around
the prediction (i.e. the interval between the 2.5th and the 97.5th percentiles of
the posterior distribution of the number of survivors) contains the observed
data, the red colour those for which this is not the case. The blue line denotes
the identity line. Therefore, points for which the prediction is equal to the
observation lie on the line.

The proportion of points for which the prediction differs from the observation by more
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than 6 is only 0.2%. To probe further, we tried to look at the points that were not
predicted very well and appeared as outliers on Figure 4.7. Some of these points are
on the top left corner of Figure 4.7. To select outliers more objectively, we selected the
points for which prediction and data were at 6 units apart and looked at them. Figure 4.8
shows the points (in black) which appear to be outliers in the sunflower plot among the
rest of the raw data for the same time and species. These outliers clearly appear to be
far from the bulk of the points, showing excessive mortality in all cases but one. Since
we did not consider intra-species variability/inter experiment variability in our model,
the prediction was expected to fail in these cases. The only variability that our model
allows for a given concentration, species and time is the variability from the binomial
error model. However, it can be noted that there are only 8 out of 4764 (0.2%) points
for which the prediction and the data differ by 6 or more, which suggests that the model
is performing well overall. There are 26 points which differ by at least 5 (0.6%), while
there are 4 points which differ by at least 7 (0.1%).
The coverage ratio of the 95% credible intervals is the proportion of the observation which
are included in the 95% credible intervals around the prediction. If the error model is
correct, the expected proportion of the data included in the 95% credible intervals is
95%. Strong deviations from this ratio indicate that the error model is false. For our
model, the 95% coverage ratio of the credible intervals was of 97 %, close enough to 95%
to deem the error model reasonable.
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Figure 4.8: Raw data (points) and median prediction of the model (horizontal dash)
with the credible interval (vertical bars). This figure place the outliers of
Figure 4.7 in the context of the raw data available for the same species and
time. The points for which the discrepancy between the prediction and the
data is superior or equal to 6 appear in black. The other points appear
in yellow. The credible intervals around the prediction were obtained by
simulation from the posterior distributions and follow the same colour code
as the points.
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4.4 Comparison with classical Species Sensitivity
Distribution

4.4.1 Methodology for the comparison
In order to show the added value of our hierarchical approach, we compared it to the
classical SSD. To fit the classical SSD, we followed the previous approach by Kefford
et al.[Kefford et al., 2003] and fitted a two-parameters log-logistic model to the sur-
vival data at 24, 48 and 72 hours using only widely available and user-friendly tools
to obtain LC50 on which we could compute an HC5 at 24, 48 and 72 hours. The
data at 96h were not used for the classical SSD because they concerned much fewer
species. For species with sufficient data, we were able to estimate the LC50 and a 95%
confidence interval with the delta method[Casella and Berger, 2002] using the R pack-
age drc[Ritz and Streibig, 2005]. For species with insufficient data, or when the delta
method gave incoherent confidence intervals, a range for the LC50 was estimated by
expert judgement from the raw data. For a fairer comparison between classical and hier-
archical SSD, some of the model fit uncertainty was taken into account in classical SSD by
estimating the LC50 as interval-censored data, the interval being defined by the 95% con-
fidence interval. A log-normal SSD was fitted by frequentist maximum likelihood on all
the censored LC50 using the web-interface MOSAIC_SSD[Kon Kam King et al., 2014]
(http://pbil.univ-lyon1.fr/software/mosaic/ssd/). The interface computes the
HC5 and estimates its confidence interval by bootstrap. Classical SSD is based on LCx

which depend on time. Therefore, it is itself time-dependent and can be computed at
24, 48 and 72 hours. The time-resolved SSD can be based on LCx obtained from the
hierarchical model at 24, 48 and 72 hours as well, but it can also be based on the NEC
obtained from the hierarchical model. Since the NEC is time-independent, the SSD
based on NEC is also time-independent. In the hierarchical TD model, it is possible to
compute numerically the LC50 of a species for each time. On these computed LC50, it
is possible to fit an SSD and to estimate an HC5 for each time. We computed the HC5
as a function of time by sampling 1000 community parameters from the joint posterior
distribution, then by simulating 5000 LC50 for each of them and calculating the fifth
percentile. The 5000 LC50 were used for computing accurately the HC5, while the 1000
parameters were used for computing the uncertainty around the HC5. We also com-
puted a time-independent HC5 based on the NEC and its credible interval from the joint
posterior distribution of μlog NEC and σlog NEC .

4.4.2 Results of the comparison
The HC5 of the classical SSD and the time-resolved HC5 both computed on LC50 decline
with increasing exposure time, while the HC5 based on the NEC is constant through
time (Figure 4.9). The HC5 based on the NEC (4407[3310 − 5634]μS/cm) is smaller
than the classical HC5 at 24, 48 and 72 H (10242[8106 − 12805], 8821[7112 − 10846] and
6800[5405 − 8643]μS/cm, respectively). Deciding to make management decisions based
on HC5 calculated from the LC50 calculated at the end of the experiment (72 hours) or
calculated from the NEC would be of practical importance. The time-resolved HC5 com-
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puted on LC50 are very similar to the classical HC5: the hierarchical NEC model seems
to reproduce the results of the classical approach for HC5 computed at 24, 48 and 72h.
The credible intervals around the HC5 are slightly smaller than the confidence intervals
on the classical HC5 which reveals that taking into account all the information in the raw
data including the uncertainty on the LC50 estimate may actually increase the precision
on the HC5. Finally, as any LCx converges towards the NEC[Smit and Ebbens, 2008],
the HC5 based on LC50 also converges to the HC5 based on the NEC (Figure 4.9).
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Figure 4.9: Classical HC5 (blue) and hierarchical HC5 (red) computed on the LC50 as a
function of time and hierarchical HC5 computed on the NEC (black). Vertical
segments delimit the 95% confidence interval on the classical HC5. Dotted
lines delimit the 95% credible intervals on the hierarchical HC5, solid lines
represent the median of the posterior distribution.
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4.5 Discussion

4.5.1 Principal findings
We were able to construct a time-resolved SSD by explicitly modelling the time compo-
nent of contaminant-induced mortality using a TKTD model. Our hierarchical TKTD
approach showed that although classical SSD only considers variability on the CEC,
there is a large variability on the other parameters of the concentration-response model
in a community and potential correlations. We showed that the HC5 calculated on LC50
was time-dependent and that 72h exposure experiments were unable to predict longer
term toxicity. We showed how to obtain a time-independent HC5 based on NEC whose
implications for the fraction of species affected are easier to interpret, because at the
HC5, salinity should have no effect on 95% of the species and this does not depend on
the exposure duration in the original experiment. Furthermore, we included data from
RTT which constituted a representative sample of the sensitivity from real communities,
while accounting properly for the large uncertainty associated with this testing method.

4.5.2 Comment on model generalisation
We presented a TD model with only two compartments (i.e. internal damage to the or-
ganism and the surrounding water), but the framework we used is very generic. Jager et
al.[Jager et al., 2011] contended that more complex compartmental models, if the com-
partments are not observed, could be rescaled to the two-compartment model because the
slowest compensating process (which can be a TK or TD recovery process) would dom-
inate the dynamics of toxicity. Only the interpretation of parameter ks would change.
Here, we opted for a very generic concentration-response model, so as to cover the whole
diversity of biochemical and physiological phenomena leading to salinity-induced mortal-
ity. It is a requirement of the hierarchical approach that all species should be described
with the same concentration-response model, or at least by nested models. If additional
data were available to describe some underlying TK or TD processes, it would be pos-
sible to move towards a more complex concentration-response model while keeping the
hierarchical structure.

4.5.3 Methodological implications
The comparison between the classical HC5 calculated at 72h and the time-resolved HC5
calculated using the whole time course of the experiment shows the added value of
including all the available data in the SSD analysis: there is no need to use a snap-
shot for an arbitrary exposure period when there is sufficient data to estimate a time-
independent HC5. As discussed in [Kon Kam King et al., 2015], the hierarchical struc-
ture of the model entails a shrinkage behaviour at the species level. For instance, the
assumption of log-normality of the NEC distribution has a two-fold bearing on the
NEC estimate for each species: 1) it is possible to estimate a NEC and its credible
interval for rare species and 2) the NEC for the most sensitive/tolerant species will
be shrunk in the direction of the intermediate species. Consequently, these species
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will have a NEC slightly different from what they would have had without this as-
sumption. Our approach renders more explicit the parametric assumption behind SSD.
Our time-resolved SSD model using RTT data also makes the traditional SSD assump-
tion that all tested species are randomly sampled. This is equivalent to making the
assumption of species exchangeability([Craig, 2013, Craig et al., 2012] and Appendix
B.2), which means that there is no taxonomic or trait-based structure to sensitivity.
This assumption has been questioned and proposals have been made to model non-
exchangeability[Craig, 2013, Craig et al., 2012], but they would require raw data from
other contaminants for the same species, which are not yet available.
Modelling the distribution of all the parameters in the concentration-response model
entails more distributional choices than in classical SSD. We defaulted to the same log-
normal distribution for all parameters. The estimated random effects showed that it
was a generally reasonable choice, although there were some slight departures from log-
normality (Figure 4.10). Notably, there was a hint for the presence of a mixture of
distributions for parameter m0 and kr, with a separation between those greater and
smaller than 0.3 for parameter kr. This corresponds to an equilibration time between
internal damage and external concentration of the order of 3 hours. The reason for
this mixture of distributions remains to be explored. Future work could develop the
model and divide the species into different sub-groups to take this into account. This
illustrates the fact that using a mechanistic description of toxic effects of salinity rather
than an empirical concentration-response model requires more modelling choices but
offers potentially richer interpretations.
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Figure 4.10: Quantile-Quantile plot and histogram of the distribution of each parameter.

4.5.4 Practical implications
The time-resolved SSD requires more data than what is usually available in databases
such as ECOTOX[eco, ] from US EPA, or etoxBase[RIVM, 2005] from RIVM. Therefore,
raw data from the experiments needs to be archived. This is anyway desirable, as
current databases store summaries of data of inhomogeneous quality which are treated
equivalently in an SSD. With the full raw data it would be possible to account for the
precise amount of information collected in the experiments on the sensitivity of the
species. As such, our method is also ideally suited to make use of data collected through
rapid toxicity testing[Kefford et al., 2005a]. However it is not limited to huge datasets
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with hundreds of species as presented here. The model was successfully fitted to a
dataset containing only 10 species exposed to triclosan, a organic contaminant used as
antibacterial and antifungal. The results were not included in the thesis, but using weakly
informative priors[Gelman, 2006] on the scale parameters of the hierarchical model and
giving up on modelling correlation, it was possible to use our time-resolved SSD on a
dataset of a more common size (the number of species recommended by ECHA is 10,
preferably 15[Aldenberg and Rorije, 2013]).

4.5.5 Implications for salinity
The hierarchical SSD reduces the discrepancy between the estimated LC50 and what
is observed in the field, but there remains a difference, hinting at other influences in
the field. For example there is approximately a 50% decline in Ephemeroptera, Tri-
choptera and Plecoptera (EPT) species richness at a salinity of 1000 μS.cm−1 in south-
east Australia[Kefford et al., 2011] while in Central Appalachia, USA 5% of stream
invertebrate genera were lost at 295 μS.cm−1[Cormier et al., 2011]. In comparison,
the HC5 based on estimated here was 4407 (95% CI 3310-5634) μS.cm−1. Dowse et
al.[Dowse et al., 2013] compared 72h LC50 to sub-lethal chronic endpoints of stream in-
vertebrates exposed to salinity and found the highest Acute to Chronic Ratio (ACR) of
6.1. Such ACR cannot alone explain the difference between loss of taxa in the field and
the NEC-based HC5 reported here. Other possible explanations include that only limited
sub-lethal salinity sensitivity data are available for salt sensitive stream invertebrates,
such as EPT, and these groups may have a higher ACR, that indirect effects of salinity
might be propagated via ecological interactions, that there are additional stressors in
the field or that salinity just lowers the fitness and affects other life history traits (re-
production, growth, . . . ), which means that mortality data is not a sufficient endpoint
to explain the field observations.

4.5.6 Wider application in risk assessment
Our hierarchical TKTD framework could be used for much more than computing an HC5
at each time. Previous work[Ashauer and Wittmer, 2011, Smit et al., 2008] showed that
fitted TKTD and Dynamic Energy Budget (DEB) models can be used to predict the
response of a community to a realistic exposure scenario. Smit et al.[Smit et al., 2008]
estimated five CECs at several dates from a DEBtox model fitted on five species, then
modelled the variability of these CEC in a typical two-stages process, ignoring the uncer-
tainty on the estimated CEC. Ashauer et al.[Ashauer and Wittmer, 2011] only modelled
the variability on the CEC, essentially fixing the other parameters of the TKTD model
at values found for Gammarus pulex. The variability on the CEC was then estimated
from an ecotoxicological database. The hierarchical model presented here offers the pos-
sibility to model the variability on all the parameters of the TKTD, with the interesting
addition that the Bayesian framework we used permits a rigorous propagation of the
uncertainty on the parameter estimates. Starting from the posterior distribution of the
parameters or summarizing it adequately, it would be possible to predict the distribution
survival probabilities in a community after an exposition to fluctuating salinity levels.
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The distribution of survival probabilities in the community could then be used as a tool
for risk management to compute the risk resulting from arbitrary scenarios of exposure,
in the same spirit as the forward classical SSD approach[van Straalen, 2010].

4.6 Prediction
We give here an example of application for computing the risk due to two different
contamination scenarios. We lacked the time to develop a completely realistic example,
so this is intended as a schematic proof of concept only.
The idea behind this approach is a variation on the global response defined in subsubsec-
tion 3.4.4.1 for diatom communities: since the hierarchical model captures all the infor-
mation in the raw survival data about the distribution of the TKTD model parameter,
it is possible to simulate communities and study their global response. The interesting
addition to the global response developed for diatoms is that although the parameters of
the TKTD model were estimated with constant concentrations, it is possible to predict
a response for scenarios with variable concentrations. The relation between exposure
and survival is not trivial. For instance, standard methods use time-weigthed average
concentrations[Ashauer and Wittmer, 2011] which assumes that toxicity is determined
by the product of exposure time and concentration. Ashauer et al. have compared the
effect of multiple concentration peaks during a short time against the effect of peaks
more distant in time with similar time-weighted average concentration and found that
the simple time-weighted average models failed to predict appropriate mortality in the
presence of several concentration peaks [Ashauer et al., 2013]. This was attributed to
the absence of a damage recovery process (Equation 4.7) in time-weighted average mod-
els which would have allowed the organisms to recover between peaks. Therefore, since
observation of the exposure concentration pattern is not enough to predict the effect of a
contaminant to a community, simulating a global response from the model is interesting.
As a large proportion of the species in the dataset came from Australia, we set the proof
of concept in the context of rising salinity levels in Australia streams. Stream salinity has
increased due do land clearing[Nielsen et al., 2003] for instance in River Murray, Victoria,
and it reached levels that affect stream communities[Halse et al., 2003]. Management
strategies have been implemented[Clarke et al., 2002], consisting in replacing the lost
vegetation, establishing watering plans, setting up salt interception schemes, etc. These
salt management strategies seem to have been relatively successful in reducing salinity
levels at some locations, for instance at Morgan, South Australia, on River Murray
(Figure 4.11).
We took monitored salinity data from the Murray Darling Basin Authority
(https://www.waterconnect.sa.gov.au/Systems/SiteInfo/SitePages/Home.
aspx?site=A4261110&period=DAILY#SiteSummary) for the same location: Morgan,
South Australia on River Murray. The data was collected daily between 2010 and
2012. Figure 4.11 clearly shows that salinity is now contained at reasonably low levels,
and we expect freshwater species to be tolerant of these levels. In order to observe an
effect of fluctuating salinity levels on survival, we arbitrarily increased the salinity by
multiplying it by 10. This brought the maximum salinity in the dataset to 4800 μS/cm,
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Figure 4.11: River Murray salinity at Morgan over time, and impact of management
strategies. Figure borrowed from http://www.mdba.gov.au/about-mdba/
corporate-documents/annual-reports/ar-2012-13/chapter-02

a little above the HC5 based on NEC (4405 μS/cm[3310 − 5634].
We chose to discount the effect of the control mortality parameter because it reflects
natural mortality, or mortality resulting from stress unrelated to salinity, and this is not
relevant for comparing between exposure scenarios. We computed the survival proba-
bility for communities of species by generating communities from the median marginal
estimates of the hierarchical model4. In the same spirit as the computation of the global
response in the case of the diatom hierarchical model, we sampled 100 communities with
500 species each. For each community we computed a global response, and we obtained
the uncertainty on that global response by considering the 2.5 and 97.5 percentiles over
the communities.
It would be possible to define a global response using the same mathematical formula as
for the diatom communities (Equation 3.8):

rtot(t) =

∑
j∈species

Sj(t)

Nspecies
(4.27)

where Sj(t) is the response of species j at a time t. This rtot(t) would be the mean
survival probability in the community. However, the mean survival probability of the
community does not seem an adequate target of protection, one would want to protect
the majority of species in the community. It seemed more interesting to define the global
response of a community by the survival probability of the most sensitive species in that

4A next step in developing this prediction tool would be to include the full uncertainty from the raw
data by using not the median of the marginal posterior distributions but the full joint posterior
distribution
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community. More precisely, at each time we ranked the species of the community by
survival probability and computed the 5th percentile. This percentile is considered as the
global response of the community and it can be interpreted as follows: if after t hours
the global response is x%, then 95% of the species have a survival rate of more than x%.
This global response is very similar in spirit to the HC5: the aim is to protect 95% of the
species in the community, and this global response describes the worst effect suffered by
the species meant to be protected.
Compared to the global response defined for the diatom communities, this new version
has the advantage that it does not require summing the response of each species and
assuming that each species contribute equally to the global response. Its focus on the
5th percentile is simply a translation of the 5% threshold used in classical SSD. However,
as we noted when we defined the global response for diatom communities, the SSD
assumption that all species are considered equally important remains, and no provisions
are made for the case where some of the 5% left at risk might play a key role in the
community.
We compared the global response thus defined for two scenarios: the salinity level ob-
served at Morgan, South Australia and a scenario corresponding to a schematic reme-
diation strategy succeeding in reducing salinity by 30%, a reduction factor chosen for
illustrative purposes. This reduction factor impacts peaks much more than low salinity
values, which is consistent with the pattern observed on Figure 4.11. This is a moderate
reduction however, as reductions up to 70% can be seen on Figure 4.11.
The time evolution of the global reponse (Figure 4.12) shows a clear difference between
the two concentration scenarios. While survival decrease sharply when no remediation
strategy is implemented, a 30% reduction of salinity preserves the global response for
much longer. Other remediation strategies which would have stronger or more targeted
impact could be compared using the same framework.
The time duration of the scenarios is a little disproportionate compared to the time-scale
of the experiments (two years versus 96H). Although in principle, the TD parameters are
time-invariant and could be used for arbitrary duration, it is likely that such a simple
model does not describe accurately survival of species over such a long period. Salinity
data in Australia is recorder automatically every 15 minutes in some areas, and it would
be possible to use this data for exposure scenarios which would be on the scale of days or
weeks. Or maybe salinity does not evolve much on short time scales and the framework
developed here would be more applicable for other contaminants. However, we showed
that using the posterior distributions of the hierarchical model, is it possible to predict
the responses in a community to arbitrary contamination scenarios and we proposed a
method to build a global response for the community using the same ideas as the for the
HC5 which can be used as an indicator for community protection.
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Figure 4.12: Top panel: Comparison of the global response over time for a community of
species located at Morgan, South Australia, with or without the implemen-
tation of a schematic remediation strategy which induce a 30% reduction
of salinity. The dotted lines represent the 95% credible interval. Bottom
panel: salinity profile with or without the schematic remediation strategy.



Conclusion and perspectives

In this thesis, we made several proposals to improve the current SSD method. In the first
part of the thesis, we explained how toxicity tests could produce censored toxicity data
and we showed a simple method to include it in SSD. We highlighted the adverse effects
of the standard practice to discard or transform censored data and provided a web-tool
to carry out easily an SSD study on censored data. In the second part of the thesis
we noted that in classical SSD, only a summary of the bioassay data is used, discard-
ing valuable information in the process. We showed how to extend the SSD method to
include that information using hierarchical modelling of the whole concentration-effect
curve. This approach allowed to take uncertainty on the CECs into account in the pre-
diction of the HC5 and to define a GEC5 to characterise the response of the community
in terms of the endpoint measured rather than in terms of the impact on biodiversity.
The GEC5 could potentially be based on a functional endpoint and make SSD capable
of protecting structure as well as function. In the third part of the thesis, we noted that
the experiments conducted for an SSD analysis are often followed through time, but that
only the result at the end of the experiment is used in classical SSD approaches. This
entails interpretability problems for SSD as the predicted HC5 inevitably depends on
the duration of the experiment, deteriorating its ecological relevance. Building on the
hierarchical model developed for the second part, we proposed to use a dynamical model
for survival to describe time-resolved data. This allowed estimating a time-independent
NEC for each species which could be used to estimate a limit HC5 valid for any time.
As with the hierarchical model of the second part of the thesis, including all the infor-
mation available in the raw data yielded additional benefits: it allowed including the
large uncertainty arising from RTT data, it revealed a considerable variability on all
the parameters of the concentration-response model and made it possible to compute a
global response for the community. The added value of the mechanistic modelling of the
species’ response was that this global response could be computed for arbitrary exposure
scenarios and used as a tool for comparing salinity remediation strategies.
We took special care not to suggest improvements which would require collecting more
data than what is routinely collected in a standard bioassay. Admittedly, there is a need
to archive the raw data from the experiments and this type of data is not widely available
for the moment. Since this data is already recorded and stored during the experiment,
the additional effort required to archive not a summary but the whole raw data would
not be so great. There are already several available options for on-line archiving of
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scientific datasets such as the Dryad Digital Repository (http://www.datadryad.org)
which could be used for that purpose.
Including mechanistic effects in SSD is an interesting perspective as it opens the door
to developing prediction tools, but models for sublethal effects can be more complex
[Kooijman, 2010] than models for survival and hierarchical modelling might prove more
difficult. One asset of the TD model we used in this thesis is that it leads to an analytical
expression for the likelihood function with constant exposure concentration which makes
fitting the hierarchical model almost straightforward. The need to integrate numerically
a differential equation to compute the likelihood would make things more complex and
require either discretising the equations, using an Ordinary Differential Equation solver
(such a functionality is available in Stan) or using methods such as Approximate Bayesian
Computation (ABC).
The forecasting tool for concentration scenarios analysis presented in the third part of
the thesis must be further developed and validated. The conditions for its applicability
to real-world scenarios must be defined properly, notably concerning the time-scale for
which it can be relevant. Although the parameters estimated in the TKTD model are
time-independent, extrapolation to long time scales must be validated because the TKTD
model will not remain valid for species that evolve from larval stage to imago such as
mayflies.
The SSD approach has many fundamental weaknesses and they remain in spite of the
improvements presented in this thesis. While we focused on improving some of the
statistical methodology of SSD, we remained in a fully parametric setting, which required
making arbitrary distributional choices. On one hand, this allows the method to remain
applicable to smaller datasets and the hierarchical TD model was successfully fitted on a
more standard dataset than the salinity dataset, which contained 10 species exposed to
triclosan. On the other hand, researchers developing non-parametric SSDs argued with
reason about the lack of any mechanistic explanation to underlie these distributional
choices. Yet, the parametric setting remains a pragmatic choice when the number of
species is too low to allow for other choices.
We did not implement recent developments to account for species non-exchangeability
[Craig et al., 2012] and selection bias [Fox, 2015b], and relied on some of the crude as-
sumptions underlying classical SSD. It would be possible in principle to extend the model
to account for species non-exchangeability but this relies on borrowing information from
other contaminants. A large database of information about other contaminants to tackle
this extension is not yet available, but as it might happen it could be possible to im-
plement those in the future, provided the full model does not prove computationally
intractable. Another possible development to our approach could be to use threshold
distributions as suggested by Van Straalen [van Straalen, 2002]. These distribution forms
could be used in the hierarchical models to avoid resorting to the concept of HC5, pre-
ferring an HC0, which fits better in the framework of protecting intrinsic value. It is
not computationally easy to deal with correlation for every type of distribution though.
The common method is to use a gaussian copula, i.e. to generate multivariate normal
correlated random variables with a given correlation and to transform them to the tar-
get distributions. There is a subtlety in that the correlation of the normal distributed
variables is not the same as the target correlation of the variables, because the transfor-
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mation does not preserve the Pearson correlation, so the correlation of the multivariate
normal variables should be chosen adequately.
Although we also tried to improve on the ecological relevance of SSD, we left some
important topics untouched such as the need to account for species interactions, or to
deal with mixture of contaminants. We also relied on the assumption that the selected
endpoint is ecotoxicologically relevant [Forbes and Calow, 2002], that the assumption
that a PNEC based on this endpoint is protective of all the properties of the community.
When introducing the GEC5 we tried to move from only protecting a portion of the
species to protecting other community features, but we were still dependent on the
endpoint tested in the bioassay which was selected not solely for its ecological relevance
but also taking into account strong experimental constraints about measurability and
repeatability.
The GEC5 for the diatom community was not trivial to define and rested on the as-
sumption that all diatom species contributed equally to the global response. Combining
species responses into a global response for the community must be envisioned on a case
by case basis regarding the endpoint considered. In the third part of the thesis, we
defined a global response in the case of survival data as the a quantile on the response of
the most sensitive species in the community. This approach was developed in the same
spirit as the HC5 concept: it defined an indicator delimiting between the proportion
of species left at risk in SSD and the rest of the community. This approach based on
quantiles is more general than the global response and it could also have been applied in
the case of the diatom community. However, it is restricted to protecting the structure of
the community and cannot be extended to function. The difference between the global
response defined in the second and that defined in the third part of the thesis is akin to
the difference between mean and median. The mean can be a meaningful combination of
individual properties, when those properties are additive5, but the median (or another
quantile) is more widely applicable as it is based only on the ranks.
From a general perspective, we strived to include as much information as possible that
was available in the raw data, while many recent developments of SSD focus on in-
cluding exterior information such as taxonomic information, information from other
contaminants, ecological information about the keystone species via weighting, expert
judgement, etc. It is certainly one of the most interesting direction for developing the
research presented in this thesis. If it can be decided that species are exchangeable
within a taxonomic group, for instance, this would justify adding intermediary levels to
the hierarchical models based on taxonomic information. Another development could
be to base the groups on mode of action of the contaminants, relying on knowledge of
the physiology of the tested species. Mechanistic modelling can also be seen as adding
external information, relative to the toxicity processes affecting the species, into SSD.
Developing the mechanistic models to increase the ecological relevance of SSD and eco-
logical risk assessment in general is the most desirable target for future progress. As
environmental protection is much more complex than simply preserving ecosystems in
their present states, the only way forward is to move from the static paradigm of SSD
to an integrative approach accounting for interactions, evolution, influence of abiotic

5biomass of species is a good example of additivity
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parameters and ultimately human well-being.
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Appendix B
The Bayesian paradigm

Bayesian approaches to the SSD have been the occasion of many developments recently.
The Bayesian paradigm offers a flexible framework for embedding multiple sources of
information in classical SSD. The Bayesian paradigm differs from the frequentist in that
it considers the data as fixed and the parameters as distributed, whereas the frequentist
paradigm considers that the parameters are fixed and that the data is one realisation of
an experiment among many others that could have occurred. These opposing stances
have important practical implications, notably the need for Bayesians to formulate their
reasonable convictions or available information prior to seeing the result of an experi-
ment, then updating this information by incorporating the data.

B.1 Bayes formula and likelihood principle
The Bayesian paradigm rests on the following formula:

p(θ|x) =p(x, θ)
p(x) = p(x|θ)p(θ)

p(x) (B.1)

∝p(x|θ)p(θ) (B.2)

where

• x is the data

• p(θ|x) is the posterior distribution of the parameters

• p(x|θ) is the likelihood of the data given the parameters

• p(θ) is the prior distribution of the parameters

• p(x|θ)p(θ) forms the unnormalised posterior density[Gelman et al., 2014]

• and
p(x) =

∫
p(θ)p(x|θ)dθ (B.3)
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p(x|θ) is the familiar likelihood used in the frequentist paradigm and it is complemented
by two other objects, the prior distribution which expresses the information available on
the parameters without knowing the data, and the posterior distribution which combines
the a priori information with evidence from the data into a density distribution for the
parameters. Depending on what is known about the value of the parameters beforehand,
the prior can be informative, vaguely informative or non-informative. p(x) is often not
considered as it does not depend on θ and will not influence the posterior distribution
of the parameters which solely depend on the likelihood and the prior. This dependence
entails that inference for different generating processes (e.g. binomial and negative bino-
mial), whose likelihood have the same dependence on the parameters, will be the same1.
This is not the case in the frequentist paradigm, notably for hypothesis testing.

B.2 Exchangeability
Another feature of the Bayesian framework is that the assumption of independently
identically distributed data used in frequentist statistics must be replaced by an ex-
changeability assumption. This can be understood on a simple lognormal SSD example:
if N species are randomly sampled from a community and if the log of the CECs in that
community are assumed to follow a normal distribution of parameters μ and σ (thus
they are identically distributed), and if μ and σ are given prior distributions, then the
CECs of the sampled species are not independent.
The joint probability of observing two CECs x and y is:

p(x, y) =
∫

μ,σ
p(x, y|μ, σ)p(μ, σ)dμdσ (B.4)

whereas the product of the probabilities of observing x and y is:

p(x)p(y) =
∫

μ,σ
p(x|μ, σ)p(μ, σ)dμdσ

∫
μ′,σ′

p(y|μ′, σ′)p(μ′, σ′)dμ′dσ′ (B.5)

Thus, the assumption of random sampling from a normal distribution does not imply
that the data is independently distributed in a Bayesian framework.
However, the assumption of random sampling from a community implies a property of
exchangeability: if species are sampled randomly, then the probability of observing x
then y is the same as that of observing y then x, or stated differently p(x, y) = p(y, x).
A non random sampling would consist for example in sampling one sensitive species,
then a tolerant one. Using this non random sampling, we cannot expect the probability
to find a small then a large CEC to be equal to that of finding a large then a small CEC,
then there is no exchangeability.
In his lecture notes, Jordan2 gives an intuitive description of the consequences of the
exchangeability assumption (more precisely of infinite exchangeability) implied through

1This is called the likelihood principle[Robert, 2007]
2http://www.cs.berkeley.edu/ jordan/courses/260-spring10/lectures/lecture1.pdf, a similar formula-

tion is given in [Bernardo, 1996]
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De Finetti’s representation theorem[Bernardo and Smith, 2000]:

• There must exist a parameter

• There must exist a likelihood

• There must exist a prior

• Those exist so that the data is independent conditionally on the parameter

These properties are often invoked to justify the Bayesian paradigm[Bernardo, 1996]. In
the particular case where the data is assumed to be exchangeable and to be sampled
from a normal, then the data is independently distributed conditional on parameters μ
and σ.
To come back to the simple lognormal SSD example, species exchangeability implies that
the species are independently and identically distributed conditionally on parameters μ
and σ. It also implies that the information available on μ and σ can be described by
their posterior density (Equation B.2).

B.3 Numerical methods
Many numerical methods have been developed to compute the posterior distribution,
relying heavily on Gibbs sampling to generate random numbers from complex joint
distributions. Tools to perform these computations include JAGS[Plummer, 2013],
STAN[Stan Development Team, 2014] and Winbugs[Lunn et al., 2000]. The perfor-
mance of these tools and the unified framework for computing the posterior distributions
make Bayesian inference a very flexible tool for modelling, able to cope with complex
model structures and notably hierarchical structures very well.

B.4 Prediction
Prediction in the Bayesian framework is easy to obtain by using Equation B.1 to define
a posterior predictive distribution p(x̃|x)[Gelman et al., 2014]:

p(x̃|x) =
∫

p(x̃|θ)p(θ|x)dθ (B.6)

This makes the Bayesian paradigm very useful for risk assessment as it provides a
straightforward method to compute the distribution of any quantity of interest, as the
HC5 or any other summary.

B.5 Credible intervals and confidence intervals
One implication of adopting a Bayesian framework is that the uncertainty on a parameter
is expressed as a credible interval instead of a confidence interval in the frequentist
framework. The 95% credible interval delimits a region where the parameters should
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lie with 95% probability, whereas the confidence interval delimits a region which has
95% probability of containing the true value of the parameter. As such, in the context
of repeated experiments the confidence interval focuses on giving a interval containing
the true value 95% of the time, but can give absurd results 5% of the time, while the
credible interval can fail to contain the true value most of the time if the value was really
unexpected (in the sense that the available prior information is that this value should be
very unlikely). In the context of fixed data (no repetition), the confidence interval may
be stuck in giving an absurd interval, while the credible interval will give the region where
the parameter is probably located and this region will always be reasonable provided the
prior is reasonable as well.
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Appendix for the diatom data

C.1 Raw data for all species and herbicides

131



132 Appendix C. Appendix for the diatom data
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Metolachlor, CMEN Metolachlor, CRAC Metolachlor, FRUM Metolachlor, GPAR

Metolachlor, MAFO Metolachlor, NPAL Metolachlor, UULN Dimetachlor, CRAC

Dimetachlor, ESLE Dimetachlor, FRUM Dimetachlor, SEMN Dimetachlor, UULN
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Figure C.1: Original data for all species and herbicides. R is plotted against the concen-
tration, with one colour per replicate. The concentration is in log-scale and
the control measurements (zero concentration) are drawn on the left border
of the plot.
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Figure C.2: Comparison of the fit of the three models on the log-transformed data. LL
stands for log-logistic, BC for Brain-Cousens and CRS for Cedergreen-Ritz-
Streibig.
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C.3 Akaike Information Criterion for the three
concentration-effect models

Pesticide Species AIC LL AIC BC AIC CRS AIC CRS-AIC LL AIC BC-AIC LL
Atrazine NPAL 11 -5 -9 -21 -16
Terbutryne NPAL 42 40 40 -2 -2
Diuron NPAL 33 33 NA NA 0
Isoproturon NPAL 29 33 33 4 4
Metolachlor NPAL 0 2 2 2 2
Atrazine ADMI -15 -17 -16 -1 -2
Terbutryne ADMI -49 -45 -45 4 4
Diuron ADMI 6 9 9 4 4
Isoproturon ADMI 26 NA 9 -17 NA
Atrazine FCVA 7 2 9 3 -5
Terbutryne FCVA 69 NA NA NA NA
Diuron FCVA 15 19 19 4 4
Isoproturon FCVA 48 52 52 4 4
Atrazine CMEN -1 NA 3 4 NA
Terbutryne CMEN 36 NA NA NA NA
Diuron CMEN 29 NA 32 3 NA
Isoproturon CMEN 51 55 55 4 4
Metolachlor CMEN -22 -22 -18 4 0
Atrazine MAFO 52 56 56 4 4
Terbutryne MAFO -14 -14 -14 0 0
Diuron MAFO -17 NA -22 -5 NA
Isoproturon MAFO 25 24 26 0 -1
Metolachlor MAFO 44 NA 32 -12 NA
Atrazine FRUM 37 39 41 4 2
Terbutryne FRUM -5 -7 -7 -2 -2
Diuron FRUM 26 29 29 4 4
Isoproturon FRUM 25 29 29 4 4
Metolachlor FRUM -19 NA NA NA NA
Atrazine GPAR 25 28 29 4 2
Terbutryne GPAR 4 3 3 -1 -1
Diuron GPAR 10 -16 4 -6 -26
Isoproturon GPAR -5 -14 -2 3 -8
Metolachlor GPAR -28 NA NA NA NA
Atrazine UULN 6 9 10 4 2
Terbutryne UULN 28 35 32 4 7
Diuron UULN -17 -26 NA NA -10
Isoproturon UULN -22 -19 -27 -5 3
Metolachlor UULN -9 NA NA NA NA
Atrazine CRAC 13 16 12 -1 3
Terbutryne CRAC -27 -23 -23 4 4
Diuron CRAC -17 NA -14 4 NA
Isoproturon CRAC 46 49 49 3 3
Metolachlor CRAC 26 26 30 4 0
Atrazine SEMN -20 -18 -20 0 2
Terbutryne SEMN 23 10 NA NA -13
Diuron SEMN 5 NA NA NA NA
Isoproturon SEMN -4 -13 -4 0 -9
Dimetachlor SEMN 26 27 27 1 1
Dimetachlor CRAC -8 -11 -7 2 -2
Dimetachlor UULN 24 21 21 -4 -4
Dimetachlor ESLE 35 39 NA NA 5
Dimetachlor FRUM 21 13 NA NA -8

Table C.1: AIC values for each of the three concentration-effect models for the diatom
dataset. The last two columns provide the ΔAIC for model comparison.
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Appendix D
JAGS code for the diatom log-logistic
hierarchical model

model
{

# Data and error model

for (i in 1:ndat)
{

R[i] <- log(d[species[i]] /
(1. + (concentration[i] / e[species[i]]) ^ b[species[i]]))

log_fluo[i] ~ dnorm(R[i] , tau)
}

# One set of parameters per species

for (j in 1:nspecies){

e[j] <- 10 ^ le[j]
b[j] <- 10 ^ lb[j]
lb[j] <- B[j , 1]
le[j] <- B[j , 2]

B.hat[j , 1] <- lb.mu
B.hat[j , 2] <- le.mu

B[j , 1:2] ~ dmnorm(B.hat[j , ] , Tau.B[ , ])
}
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# Parameter transformation

tau <- 1 / sigma ^ 2

Tau.B[1:2 , 1:2] <- inverse(VarCovar.B[ , ])
VarCovar.B[1 , 1] <- lb.sigma ^ 2
VarCovar.B[2 , 2] <- le.sigma ^ 2
VarCovar.B[1 , 2] <- rho * lb.sigma * le.sigma
VarCovar.B[2 , 1] <- VarCovar.B[1 , 2]

# Prior specification

le.mu ~ dnorm(lC.mu , 1. / lC.sigma ^ 2)
le.sigma ~ dunif(0 , 10)
lb.mu ~ dunif(-6. , 6.)
lb.sigma ~ dunif(0 , 10)
rho ~ dunif(-1. , 1.)
sigma ~ dunif(0. , 2.)

}
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Prior-posterior plots for all herbicides

E.1 Atrazine
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E.2 Diuron
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E.3 Isoproturon
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E.4 Terbutryne
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E.5 Metolachlor
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E.6 Dimetachlor
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Appendix F
Multinomial and conditional binomial
formulations of the error model

We wish to prove that the multinomial and the conditional binomial formulations of the
error model are equivalent when there are no lost to follow-up organisms. To do so, we
compute the likelihood of the data given the parameters using a multinomial error model
and a conditional error model.

F.1 Multinomial formulation of the model
Let θ be the parameters of the TKTD model for one species, T the time at which the
death of an organism of that species occurs and Sk(θ) = P (T > tk) the probability for
that organism to survive until time tk given θ.
Let N0 be the initial number of organisms, l the number of measurement dates, Nk the
number of organisms alive at time tk and mk the multinomial probability for an organism
to die between tk−1 and tk.
∀k ∈ Nl;

mk =P (tk−1 < T < tk) (F.1)
=P (T < tk) − P (T < tk−1) (F.2)
=1 − P (T > tk) − (1 − P (T > tk−1)) (F.3)
=Sk−1(θ) − Sk(θ) (F.4)

and the probability to die after the last measurement is:

ml+1 = Sl(θ) (F.5)
The number of organisms dying between tk−1 and tk is Δk = Nk−1 −Nk, and the number
of organisms dying after tl is Δl+1 = Nl, so the multinomial distribution for the values
N = (N1 . . . Nl) given N0 and θ is:
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f(N|N0, θ) =N0!
l+1∏
k=1

mΔk
k

Δk! (F.6)

=N0!SNl
l

Nl!

l∏
k=1

(Sk−1 − Sk)Nk−1−Nk

(Nk−1 − Nk)! (F.7)

where the dependence of Sk on θ was omitted for readability.
In this formulation, there are two necessary constraints associated to the use of the
multinomial distribution:

l+1∑
k=0

Δk = N0 (F.8)

and

l+1∑
k=0

mk = 1 (F.9)

F.2 Conditional binomial formulation of the model

We use the same notations as before and define pk the probability to survive until tk for
an organism alive at tk−1:

pk = Sk(θ)
Sk−1(θ) (F.10)

Note that pk was noted S (tk|tk−1) in the main text, but we use this shorter notation
here. In the absence of lost to follow-up organisms, the conditional binomial relation is:

f(Nk|Nk−1, θ) = Nk−1!
Nk!(Nk−1 − Nk)!p

Nk
k (1 − pk)Nk−1−Nk (F.11)

Notice that in this formulation, Nk−1 is both a variable predicted by the model and a
covariable for Nk. The full conditional binomial distribution is given by:
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f(N|N0, θ) =
l∏

k=1

Nk−1!
Nk!(Nk−1 − Nk)!p

Nk
k (1 − pk)Nk−1−Nk (F.12)

= N0

Nl!

l∏
k=1

1
(Nk−1 − Nk)!

l∏
k=1

(
Sk

Sk−1

)Nk

(1 − Sk

Sk−1
)Nk−1−Nk (F.13)

= N0

Nl!

l∏
k=1

1
(Nk−1 − Nk)!

l∏
k=1

SNk
k

S
Nk−1
k−1

(Sk−1 − Sk)Nk−1−Nk (F.14)

= N0S
Nl
l

Nl!SN0
0

l∏
k=1

(Sk−1 − Sk)Nk−1−Nk

(Nk−1 − Nk)! (F.15)

=N0S
Nl
l

Nl!

l∏
k=1

(Sk−1 − Sk)Nk−1−Nk

(Nk−1 − Nk)! (F.16)

Equation F.7 and Equation F.16 are identical, showing that the two formulations are
equivalent. In the conditional binomial formulation, it is possible to account for the lost
to follow-up organisms (which were eaten, or which emerged from the tank) by replacing
Nk−1 by Np

k in Equation F.11, where Np
k is the number of organisms alive at the previous

time minus the number of lost to follow-up organisms. Replacing the multinomial error
model in the presence of lost to follow-up organisms makes the assumption that the
mechanism by which they are lost is not related to toxicity in that it does not influence
the estimation of the parameters.
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Appendix G
Limit cases for the General Unified
Threshold model for Survival

G.1 General Unified Threshold model for Survival -
Stochastic Death equations with damage:

Ċi =kiCw − keCi (G.1)
Ḋ =kaCi − krD (G.2)

(G.3)

This model has three compartments, Cw, Ci and D.
In the following derivation, we assume that the external concentration Cw is constant.
Indeed, here the aim is to find a closed form for the survival probability to estimate the
parameters.
The hazard rate is supposed to be linearly dependant on damage :

hz = m0 + ks
D (D − D0)+ (G.4)

As the only the external concentration is known, we want to use it as the dose-metric.

G.2 Steady-state approximation
[Jager et al., 2011] explain that the slowest compartment will dominate the dynamic and
that only the slowest rate constant will be identifiable.
Let’s assume that the internal concentration is the fastest evolving compartment. We
can then assume that with respect to the evolution of the damage compartment, the
internal concentration is always in steady state, a typical approximation in chemical
kinetics.
This assumption translates to:
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Ċi =0 (G.5)

=⇒ Ci = ki

ke

Cw (G.6)

Substituting Equation G.6 in Equation G.3 yields :

Ḋ = ka
ki

ke

Cw − krD (G.7)

With this assumption, the Toxico-Kinetic and Toxico-Dynamic processes reduce to the
evolution of the damage compartment.
If instead we assume that the damage compartment evolves fastest, we get:

Ḋ =0 (G.8)

=⇒ D =ka

kr

Ci (G.9)

With this assumption, all the Toxico-Kinetic and Toxico-Dynamic processes reduce to
the evolution of the internal concentration compartment.

G.3 Scaling of the dose-metric to solve the identifiability
problem

Two of these compartments, Ci and D, are not measured in the most common type of
survival data. [Jager et al., 2011] explain that unobserved compartments prevent the
estimation of parameters ki and ka, but that these can be rescaled out by modelling a
scaled internal concentration and a scaled damage.
Let’s write Equation G.2 with a scaled internal concentration :

Ċ∗
i = Cw − keC

∗
i (G.10)

where

C∗
i = Ci

ki

(G.11)

Under the assumption that the damage compartment evolves fastest (Equation G.9), the
hazard rate (Equation G.4) can be written:

hz =m0 + ks
D

(
kaki

kr

C∗
i − D0

)
+

(G.12)

=m0 + ks (C∗
i − NEC)+ (G.13)



G.3 Scaling of the dose-metric to solve the identifiability problem 157

where ks = kaki

kr
ks

D and NEC = kr

kaki
D0.

As S(t) = e−
∫ t

0 hz(u)du, to compute the survival probability for a given Cw we need to
integrate Equation G.10 so we need to know the scaled internal concentration at one date.
The most likely assumption in the absence of information on the internal concentration
is C∗

i (0) = 0.
With this assumption:

C∗
i (t) = Cw(1 − e−ket) (G.14)

and Equation G.13 becomes:

hz = m0 + ks
(
Cw(1 − e−ket) − NEC

)
+

(G.15)

Under the assumption that the internal concentration compartment evolves fastest
(Equation G.7), Equation G.3 can be written:

Ḋ∗ = Cw − krD
∗ (G.16)

where

D∗ = ke

kaki

D (G.17)

It seems safer to assume that the initial damage is negligible (D(0) = 0 =⇒ D∗(0) = 0)
which yields:

D∗(t) = Cw(1 − e−krt) (G.18)
Replacing Equation G.18 and Equation G.17 in Equation G.4 yields:

hz =m0 + ks
D

(
kaki

ke

Cw(1 − e−krt) − D0

)
+

(G.19)

=m0 + ks
(
Cw(1 − e−krt) − NEC

)
+

(G.20)

where ks = kaki

ke
ks

D and NEC = ke

kaki
D0.

Equation G.13 and Equation G.20 are identical and use Cw as the dose metric. Only
the expression of the parameters ks, NEC and the rate constant in the exponential
term change. Both imply a four-parameters model which we have found to provide a
good description of survival data. The comment that only the slowest rate constant is
identifiable holds true.
However, we see that the assumption of negligible initial internal concentration is needed
when the damage compartment evolves fastest, whereas the assumption of negligible ini-
tial damage (conceptually easier) is needed when the internal concentration compartment
evolves fastest.
In the general case, there is no good reason to make any other assumption than D(0) = 0,
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therefore the GUTS model is not very suited when one cannot make the assumption
Ci(0) = 0.



Appendix H
Stan code for the time-resolved Species
Sensitivity Distribution based on a
hierarchical Toxico Dynamic model

data {
int<lower = 0> ndat; # Number of data points
int<lower = 0> nspecies; # Number of species
real<lower = 0> minc; # minimum concentration
real<lower = 0> maxc; # maximum concentration
real<lower = 0> x[ndat]; # Concentration
real<lower = 0> t[ndat]; # measurement date
real<lower = 0> tprec[ndat]; # previous measurement date
int<lower = 0> y[ndat]; # number of survivors
int<lower = 0> Nprec[ndat]; # Initial number of species
int<lower = 0> species[ndat]; # index of species number

}

parameters {#all the hyperparameters
real<lower = -7,upper = 2> lks_mu;
real<lower = -7,upper = 2> lkr_mu;
real<lower = -7, upper = 2> lm0_mu;
real<lower = log(minc)/log(10)-1,upper = log(maxc)/log(10)+1> lNEC_mu;
vector<lower = 0,upper = 3>[4] tau; # prior scale
matrix[4,nspecies] z;
cholesky_factor_corr[4] L_Omega;#Cholesky factor

#of the correlation matrix
}

transformed parameters{
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Appendix H. Stan code for the time-resolved Species Sensitivity Distribution based on a

hierarchical Toxico Dynamic model

vector[nspecies] m0;
vector[nspecies] ks;
vector[nspecies] NEC;
vector[nspecies] kr;
matrix[nspecies,4] lparams; #matrix for the log of the parameters,

#intermediary variable used
#in the matrix products

matrix[nspecies,4] Mu; #Position vector for the multivariate normal

for (i in 1:nspecies){#initialization of the position vector
Mu[i,1] <- lks_mu;
Mu[i,2] <- lNEC_mu;
Mu[i,3] <- lkr_mu;
Mu[i,4] <- lm0_mu;

}

lparams <- Mu + (diag_pre_multiply(tau, L_Omega)*z)'; #algebraic relation
#implementing

#lparams ~ normal_multivariate(Mu, Sigma)

for (i in 1:nspecies){
#translation from the matrix to the parameters for readability of the TKTD model
#there is no vectorised version of the power function in Stan yet
ks[i] <- pow(10.,lparams[i,1]);
NEC[i] <- pow(10.,lparams[i,2]);
kr[i] <- pow(10.,lparams[i,3]);
m0[i] <- pow(10.,lparams[i,4]);

}

}

model {
vector<lower = 0,upper = 1>[ndat] psurv;
vector<lower = 0>[ndat] tNEC;
vector<lower = 0>[ndat] tref;

to_vector(z) ~ normal(0,1);
#uniform prior on all correlation matrices
L_Omega ~ lkj_corr_cholesky(1);

for (i in 1:ndat) {
#Effect of the control mortality parameter
psurv[i] <- exp(-m0[species[i]] * (t[i]-tprec[i]) );
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if (x[i] > NEC[species[i]]){
#Time for the internal concentration to reach the NEC
tNEC[i] <- -1/kr[species[i]]*log(1-NEC[species[i]]/x[i]);

if (t[i] > tNEC[i]){
#The effect is counted either from the previous measurement time
#or from the NEC

tref[i] <- fmax(tprec[i],tNEC[i]);
psurv[i] <- psurv[i]*

exp(- ks[species[i]]*
( (x[i]-NEC[species[i]]) * (t[i]-tref[i]) +

1/kr[species[i]] *
x[i] *
( exp(-kr[species[i]]*t[i]) -

exp(-kr[species[i]]*tref[i])) ));
#Add the contribution of the salinity to survival probability

}
}

}

y ~ binomial(Nprec,psurv);
}

generated quantities{
#Computation of the traditional parameters

# of the multivariate normal distribution from the cholesky parametrization
#This is optional, these computations can be done directly

# on the posterior distributions

matrix[4,4] Sigma;
real lks_sigma;
real lNEC_sigma;
real lkr_sigma;
real lm0_sigma;
real rho_lks_lNEC;
real rho_lks_lkr;
real rho_lks_lm0;
real rho_lNEC_lkr;
real rho_lNEC_lm0;
real rho_lkr_lm0;

#variance covariance matrix
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hierarchical Toxico Dynamic model

Sigma <- quad_form_diag(tcrossprod(L_Omega), tau);

#scale parameters
lks_sigma <- sqrt(Sigma[1,1]);
lNEC_sigma <- sqrt(Sigma[2,2]);
lkr_sigma <- sqrt(Sigma[3,3]);
lm0_sigma <- sqrt(Sigma[4,4]);

#Correlation parameters
rho_lks_lNEC <- Sigma[1,2]/sqrt(Sigma[1,1]*Sigma[3,3]);
rho_lks_lkr <- Sigma[1,3]/sqrt(Sigma[1,1]*Sigma[3,3]);
rho_lks_lm0 <- Sigma[1,4]/sqrt(Sigma[1,1]*Sigma[4,4]);
rho_lNEC_lkr <- Sigma[2,3]/sqrt(Sigma[2,2]*Sigma[3,3]);
rho_lNEC_lm0 <- Sigma[2,4]/sqrt(Sigma[2,2]*Sigma[4,4]);
rho_lkr_lm0 <- Sigma[3,4]/sqrt(Sigma[3,3]*Sigma[4,4]);

}



Glossary

Acute to Chronic Ratio A factor to convert acute sensitivity to chronic sensitivity. 100,
167

Akaike Information Criterion A score based on deviance taking the number of pa-
rameters into account which allow to rank statistical models for a given dataset
[Akaike, 1974]. 13, 167

Approximate Bayesian Computation A range of methods and algorithms to deal with
models for which the likelihood is intractable, either because there is no analytical
form or because it takes too long to compute. 106, 167

Critical Effect Concentration General name for ECx, LCx, NEC, NOEC, LOEC . . . .
It is the concentration which is used to summarise a species tolerance and is most
often a parameter of a function of the parameters of a concentration - response
model. 3, 167

Cumulative Distribution Function Let X ∼ f . F (q) = P (X ≤ Q) is the Cumulative
Distribution Function of f . 7, 167

Deviance Information Criterion The DIC is a generalisation of the AIC used for model
selection in the Bayesian framework. It includes the deviance and a penalisation
for model complexity. 20, 167

ET X An RIVM sofware to fit an SSD and compute the HC5. 167

Effect Concentration at 50% A type of CEC, the concentration which induces an effect
of 50% compared to the control experiment. 3, 167

Effective Concentration at x% A type of CEC, the concentration which induces an
effect of x% compared to the control experiment. 3, 167

Global Effect Concentration at 5% Another type of PNEC, the concentration which
is intended to protect 95% of the global response of the community. 62, 168
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Hazardous Concentration for 5% of the species A type of PNEC, the concentration
which is intended to protect 95% of the species in the community. 4, 168

Lethal Concentration for x% of the organisms A type of CEC, the concentration
which induces a mortality of x% compared to the control experiment. 78, 168

Lowest Observed Effect Concentration The lowest tested concentration which shows
a statistically significant effect compared to the control. 39, 168

No Effect Concentration A concentration which has no effect on the endpoint consid-
ered. The existence of a NEC is an arbitrary assumption of threshold concentration
effect models. 3, 168

No Observed Effect Concentration The highest tested concentration which does not
show a statistically significant effect compared to the control. Extensively dispar-
aged for resulting from an incorrect interpretation of statistical significance tests
and for being strongly dependant on experimental design. 3, 168

Predicted No Effect Concentration Concentration estimated to have no effect on a
target community. Can be estimated from any tier, SSD or other. 62, 168

Quantile-Quantile plot Plot of the theoretical quantiles of a fitted distribution against
the observed quantiles of the sample. The fit of the distribution is assessed by
comparing the points to a line representing exact match between the theoretical
and observed quantiles. 12, 168

Rapid Toxicity Testing A method to rapidly sample a large number of species. The
focus is on having the best characterisation of the variability in the community
rather than a precise estimate for each species tolerance [Kefford et al., 2005a].
31, 168

Species Sensitivity Distribution A commonly used method in Ecological Risk assess-
ment (ERA). x, 169
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ABC Approximate Bayesian Computation. 106, 167, Glossary: Approximate Bayesian
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ACR Acute to Chronic Ratio. 100, 167, Glossary: Acute to Chronic Ratio

AIC Akaike Information Criterion. 13, 20, 51, 52, 141, 165, 167, Glossary: Akaike
Information Criterion
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DEBtox Dynamic Energy Budget ecotoxicological model. 75, 100
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Résumé

La SSD (Species Sensitivity Distribution) est une méthode utilisée par les scientifiques et
les régulateurs de tous les pays pour fixer la concentration sans danger de divers contam-
inants sources de stress pour l’environnement. Bien que fort répandue, cette approche
souffre de diverses faiblesses sur le plan méthodologique, notamment parce qu’elle re-
pose sur une utilisation partielle des données expérimentales. Cette thèse revisite la SSD
actuelle en tentant de pallier ce défaut. Dans une première partie, nous présentons une
méthodologie pour la prise en compte des données censurées dans la SSD et un outil
web permettant d’appliquer cette méthode simplement. Dans une deuxième partie, nous
proposons de modéliser l’ensemble de l’information présente dans les données expéri-
mentales pour décrire la réponse d’une communauté exposée à un contaminant. A cet
effet, nous développons une approche hiérarchique dans un paradigme bayésien. A partir
d’un jeu de données décrivant l’effet de pesticides sur la croissance de diatomées, nous
montrons l’intérêt de la méthode dans le cadre de l’appréciation des risques, de part sa
prise en compte de la variabilité et de l’incertitude. Dans une troisième partie, nous pro-
posons d’étendre cette approche hiérarchique pour la prise en compte de la dimension
temporelle de la réponse. L’objectif de ce développement est d’affranchir autant que
possible l’appréciation des risques de sa dépendance à la date de la dernière observation
afin d’arriver à une description fine de son évolution et permettre une extrapolation.
Cette approche est mise en œuvre à partir d’un modèle toxico-dynamique pour décrire
des données d’effet de la salinité sur la survie d’espèces d’eau douce.

Mots-clefs : SSD, modèle hiérarchique, modèle Toxico-Dynamique Toxico-
Cinétique, salinité, pesticides, diatomées, données censurées, protection des
communautés

Abstract

Species Sensitivity Distribution (SSD) is a method used by scientists and regulators
from all over the world to determine the safe concentration for various contaminants
stressing the environment. Although ubiquitous, this approach suffers from numerous
methodological flaws, notably because it is based on incomplete use of experimental
data. This thesis revisits classical SSD, attempting to overcome this shortcoming. First,
we present a methodology to include censored data in SSD with a web-tool to apply
it easily. Second, we propose to model all the information present in the experimental
data to describe the response of a community exposed to a contaminant. To this aim,
we develop a hierarchical model within a Bayesian framework. On a dataset describing
the effect of pesticides on diatom growth, we illustrate how this method, accounting for
variability as well as uncertainty, provides benefits to risk assessment. Third, we extend
this hierarchical approach to include the temporal dimension of the community response.
The objective of that development is to remove the dependence of risk assessment on the
date of the last experimental observation in order to build a precise description of its time
evolution and to extrapolate to longer times. This approach is build on a toxico-dynamic
model and illustrated on a dataset describing the salinity tolerance of freshwater species.

Keywords: SSD, hierarchical model, Toxico-Kinetic Toxico-Dynamic model,
salinity, pesticides, diatoms, censored data, protection of communities







Appendix I
Résumé étendu

I.1 Introduction
La SSD (Species Sensitivity Distribution) est la clef de voûte de l’analyse du risque en
écotoxicologie. Elle est utilisée par les scientifiques et les régulateurs de tous les pays
pour fixer la concentration sans danger de divers contaminants, qu’ils soient issus de
l’industrie ou de l’activité humaine en général. Bien que fort répandue, cette approche
souffre de nombreuses faiblesses sur le plan méthodologique, car elle repose sur une
utilisation partielle des données expérimentales et parfois sur l’application erronée de
tests statistiques. L’hypothèse de base de la SSD est que les sensibilités à un contaminant
d’une communauté d’espèces peuvent être décrites par une distribution de probabilité.
Les données écotoxicologiques sont vues comme un échantillon de cette distribution et
sont utilisées pour estimer la SSD. A partir de ce qui est observé au niveau d’espèces
prises indépendamment les unes des autres, la SSD est alors utilisée pour extrapoler un
niveau de protection pour la communauté. Le niveau de protection couramment utilisé
est la HC5 (Hazardous Concentration for 5% of the community), la concentration qui
est sans risque pour 95% de la communauté. L’objectif de cette thèse est de revisiter
l’approche SSD classique et de la développer pour permettre une utilisation plus complète
des données expérimentales. Dans cette optique, la thèse est construite autour de trois
axes principaux :

1. Le premier axe consiste en une revisite de la SSD actuelle, qui souligne ses man-
ques et propose de les combler. En effet, les méthodes d’ajustement sont parfois
inadaptées ou utilisées à mauvais escient. Par ailleurs, lorsque certaines données
sont censurées, c’est à dire qu’elle sont disponibles sous la forme d’un intervalle (pas
nécessairement borné) plutôt que d’une valeur ponctuelle, elles ne sont générale-
ment pas prises en compte dans l’analyse. On propose un méthode pour la prise
en compte des données censurées et l’on présente un outil web permettant de
l’utiliser de manière automatique. L’utilisateur n’a qu’à saisir ses données, procéder
à quelques choix très simples et l’analyse est effectuée en ligne immédiatement.

2. Le deuxième axe tourne autour de la proposition d’une nouvelle approche de la
SSD permettant de prendre en compte toutes l’information des données expérimen-

173



tales, contrairement à l’approche actuelle. Cette dernière résume chaque courbe
concentration-effet par un unique paramètre (une NOEC ou une ECx), ce qui induit
une perte considérable d’information. Pour remédier à ce problème, on cherche à
ne plus résumer la réponse d’une espèce à un contaminant par une seule valeur
mais par l’ensemble des paramètres d’un modèle concentration-effet caractérisant
l’effet du contaminant. Cela permet d’utiliser l’ensemble de l’information présente
dans les données, de modéliser toute la variabilité biologique observée lors des ex-
périences et de propager correctement l’incertitude entre les différents niveaux de
l’analyse du risque. À l’aide de ce modèle et de l’information supplémentaire ex-
traite des données, on propose un nouvel indicateur de risque environnemental qui
vient compléter celui de la SSD classique. On montre également que résumer les
données dans le cadre de la SSD classique peut mener à sous-estimer de manière
drastique l’incertitude sur la SSD.

3. Le troisième axe propose de prendre en compte la dimension temporelle des données
expérimentales. Les mesures de reproduction ou de mortalité sont souvent relevées
à plusieurs dates, mais l’approche SSD actuelle n’utilise que les données en fin
d’essai. Ainsi, le résultat des mesures de la sensibilité d’une espèce dépendent de
contraintes expérimentales liées à la durée de l’expérience, qui in fine influent sur le
niveau de protection déterminé pour la communauté. On peut restreindre ce côté
arbitraire en prenant en compte l’aspect dynamique des données pour conserver
le maximum d’information, et ainsi proposer une détermination plus robuste du
niveau de protection. Cette prise en compte s’effectue à l’aide d’un modèle mécan-
iste de la survie intégré dans un modèle hiérarchique développé dans le même esprit
que pour le deuxième axe. On développe une SSD évoluant explicitement avec le
temps et tendant vers une SSD limite indépendante du temps. On observe qu’une
SSD classique estimée sur les données en fin d’expérience n’est pas aussi protectrice
que la SSD limite et qu’avec la méthodologie traditionnelle, il faudrait prolonger
la durée des expériences pour parvenir à un niveau de protection suffisant.

I.2 Revisite de la SSD actuelle : prise en compte des
données censurées

Les données censurées sont en général exclues de la SSD ou transformées avant utilisation,
ce qui induit un biais incontrôlé dans l’estimation de la HC5. On montre d’abord qu’il est
relativement aisé d’adapter la méthode SSD standard pour prendre en compte les données
censurées, puis on présente MOSAIC_SSD, une plate-forme web intègre cette méthode et
qui permet de l’appliquer à un jeu de données arbitraire à travers une interface conviviale.
On justifie les choix méthodologiques qui ont présidé à l’élaboration de MOSAIC_SSD,
puis la nécessité de prendre en compte les données censurées à travers deux exemples et
une étude plus systématique. On montre en particulier qu’exclure les données censurées
peut induire plusieurs sortes de biais dans la SSD, notamment dans l’estimation des
intervalles de confiance sur les concentrations sans risque pour l’environnement. Le
travail présenté ici a fait l’objet d’une publication dans Environmental Toxicology and



Chemistry[Kon Kam King et al., 2014].
Deux jeux de données sont utilisés pour illustrer l’intérêt de la prise e compte des don-
nées censurées et pour étudier l’effet de l’exclusion et de la transformation de données
sur la HC5 prédite. Le premier jeu de données censuré décrit la tolérance à la salinité
de macro-invertébrés d’eau douce. La tolérance de chaque espèce est résumée par une
LC50, c’est à dire la concentration qui induit une mortalité de 50% des organismes par
rapport au témoin. Dans ce jeux de données, parmi 108 LC50 disponibles, 89 (82.4%)
sont censurées, dont 60 (55.6%) censurées à droite et 29 (26.8%) censurées par inter-
valle. La plupart des données censurées concernent des espèces pour lesquelles le faible
nombre d’organismes collectés n’a pas permis l’ajustement d’un modèle concentration-
réponse[Kefford et al., 2006]. Le jeu de données a été constitué de manière à être aussi
représentatif que possible des espèces présentes dans la nature[Kefford et al., 2006]. Un
premier avantage lié à la prise en compte des données censurées consiste à éviter d’exclure
ou de transformer la majorité des données. La SSD obtenue est ainsi plus représenta-
tive de la communauté que l’on cherche à protéger. Ensuite, n’utiliser que les données
non censurées introduit un fort biais de sélection vers les espèces abondantes, ce qui
est particulièrement problématique dans la mesure où les espèces rares pourraient juste-
ment être celles que le régulateur souhaiterait protéger. Le second jeu de données a été
publié par Koyama et al. [Koyama, 1996]. Il décrit la susceptibilité à la déformation
vertébrale de poissons marins exposés au trifluralin. Le trait mesuré est l’EC50 à 96h. 4
des EC50 sont censurées, parmi lesquelles deux sont censurées à droite et deux à gauche.
Sur ce jeu de données, prendre en compte les données censurées présente l’avantage év-
ident de pouvoir ajuster une SSD sur 10 espèces au lieu de 6 en excluant les données
censurées, quand les recommandations de l’ECHA sont de minimum 10 espèces, 15 de
préférence[Aldenberg and Rorije, 2013].
Une version non censurée de ces deux jeux de données a été générée en suivant la procé-
dure habituelle d’exclure les données censurées à droite et à gauche, et de remplacer
les données censurées par intervalle par le centre de l’intervalle. Ajuster une SSD log-
normale sur les jeux de données originaux et sur leur version non censurée permet de
révéler l’effet pernicieux de la transformation de données sur la HC5(Figure I.1).
Pour le jeu de données sur la salinité, exclure les données censurées à droite induit
un biais vers le haut de la courbe cumulée et donc une HC5 plus faible (Figure I.1
gauche). L’estimation pour la HC5 est respectivement de 9.85 g.L−1[8.38; 11.80] pour
le jeu de données censuré et de 7.98 g.L−1[6.63; 9.93] pour le jeu de données transfor-
mées. Une HC5 trop basse pourrait sembler une erreur bénigne, car utiliser le jeu de
données transformé aurait abouti à protéger quand même l’environnement. Pourtant,
cette valeur trop faible aurait pu déclencher l’utilisation de mesures de décontamina-
tion coûteuses qui aurait pu être mieux employées ailleurs. Par ailleurs, l’influence dans
un sens ou dans l’autre de la prise en compte des données censurées dépend au cas
par cas du jeu de données. Notamment, on observe un effet différent sur le jeu de
données trifluralin (Figure I.1 droite). Ajuster une distribution log-normale donne une
HC5 à 2.4 × 10−3mg.L−1[4.7 × 10−5; 2.6 × 10−2] pour le jeu de données censurées et à
1.7 × 10−2mg.L−1[8.9 × 10−3; 4.3 × 10−2] pour le jeu de données transformé. Exclure les
données censurées aboutit à sous-estimer la variabilité de la communauté échantillonnée,
ce qui conduit à une sous-estimation de la toxicité réelle du trifluralin et de son impact
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Figure I.1: Distribution cumulée ajustée et empirique avec la HC5 pour le jeu de données
salinité (gauche) et pour le jeu de données trifluralin (droite). La ligne pointil-
lée correspond à une fraction potentiellement affectée de 5%. Les flèches ver-
ticales indiquent la HC5. La couleur bleue indique le jeu de données censurés,
la rouge les jeux de données transformé. Les distributions ajustées sur les jeux
de données sont log-normales.

potentiel sur l’environnement. Une autre différence frappante est la largeur de l’intervalle
de confiance sur la HC5, beaucoup plus importante lorsque les données censurées sont
inclues dans la SSD. Cela révèle qu’un possible effet de la transformation de jeux de
données censurés est une sous-estimation sévère de l’incertitude sur la HC5.
La méthode pour inclure les données censurées dans la SSD est intégrée dans un outil
web: MOSAIC_SSD (http://pbil.univ-lyon1.fr/software/mosaic/ssd/). Cet
outil reprend le modèle de la SSD classique (distribution log-normale) mais l’étend pour
permettre d’intégrer les données censurées. Facile d’utilisation, il permet à n’importe
quel utilisateur d’entrer ses données dans un formulaire pour obtenir le résultat (Fig-
ure I.2).

I.3 Vers une nouvelle approche de la SSD : la SSD
hiérarchique

Après avoir présenté une méthode pour prendre en compte tous les types de données
y compris censurées, la deuxième étape dans la revisite de la SSD a été de revenir aux
données brutes de bioessais pour tâcher d’en extraire le maximum d’information. On
utilise un jeu de données de bioessais décrivant la croissance journalière d’une dizaine
d’espèces de diatomées exposées à divers herbicides afin de développer une nouvelle ap-
proche de la SSD. Cette approche repose sur une modélisation hiérarchique des données
écotoxicologiques, méthode innovante car elle permet de prendre en compte la totalité



Figure I.2: Capture d’écran de la page de résultats de MOSAIC_SSD sur le jeu de don-
nées censuré de salinité. Le haut la figure montre la sortie de MOSAIC_SSD
sur le jeu de données original, le bas de la figure la sortie de MOSAIC_SSD
sur le jeu de données de salinity non censuré obtenu après transformation du
jeu de données censuré.

.



de l’information présente dans les données expérimentales. En effet, l’approche SSD
traditionnelle se contente de résumer les courbes concentration-effet par une seule valeur
(e.g., la EC50), laissant de côté des informations comme la pente de la courbe, ainsi que
l’incertitude associée au modèle concentration-effet. A l’inverse, la SSD hiérarchique im-
plique un ajustement de l’ensemble des données simultanément, ce qui permet de ne rien
perdre de l’information originale. L’approche hiérarchique repose sur la modélisation
de la distribution interspécifique jointe de tous les paramètres du modèle concentration-
effet, et pas seulement du résumé statistique comme pour la SSD classique. Ce modèle
hiérarchique a permis de proposer deux nouvelles perspectives concernant la SSD. Tout
d’abord, il offre la possibilité de définir un nouvel indicateur de la réponse d’une com-
munauté à un contaminant. La SSD classique décrit la réponse d’une communauté en
terme de nombre d’espèces affectées pour une concentration donnée en contaminant. La
SSD hiérarchique fournit la même information, mais elle offre également un indicateur
quantitatif de la réponse globale de la communauté, liée à la variation globale de la
biomasse de la communauté dans le cas précis des diatomées. Cette réponse globale
est une information complémentaire à celle donnée par la SSD classique, qui ouvre la
voie à une protection non plus seulement de la biodiversité de la communauté, mais
aussi d’autres caractéristiques comme la biomasse, la reproduction, ou n’importe quel
"endpoint" mesuré sur les espèces test. Dans le cas spécifique des diatomées, la réponse
globale est comprise entre 0 et 1, et décrit la réduction relative de la biomasse globale
de la communauté de diatomées pour une concentration donnée. La figure I.3 montre
une comparaison entre la SSD calculée sur les EC10, la SSD calculée sur les EC50 et la
réponse globale. En particulier, la figure permet de comparer pour deux herbicides la
HC5,EC10 et la HC5,EC50 avec la GEC5, c’est à dire les concentrations protégeant 95% des
espèces et la concentration préservant 95% de la biomasse globale. On peut observer
que dans le cas de l’atrazine, la GEC5 est inférieure aux deux HC5, tandis que pour le
diuron, la GEC5 se trouve bien en dessous de la HC5,EC50 , et à peu près au niveau de la
HC5,EC10 . Ce dernier motif se retrouve pour les quatre autres herbicides. Il ne semble
pas y avoir de relation systématique entre la GEC5 et la HC5,EC50 . Viser une protection
de 95% de la réponse globale de la communauté peut s’avérer plus ou moins protecteur
que de viser une protection de 95% des espèces (au niveau de la EC10). Mais on peut
remarquer que pour les deux herbicides, une HC5 basée sur les EC50 ne protège que 80
à 86% de la réponse globale de la communauté.
Ensuite, la SSD hiérarchique permettant un traitement rigoureux de l’incertitude associée
aux données écotoxicologiques, on peut étudier l’impact de négliger cette incertitude dans
l’approche SSD classique. On observe que la SSD classique induit une sous-estimation
conséquente de l’incertitude associée au niveau de concentration sans risque prédit dans
certains cas d’utilisation. La figure I.4 présente cette comparaison entre les prédictions
de la SSD classique et celles de la SSD hiérarchique. On peut tout d’abord observer que
la HC5,EC10 classique, qui néglige l’incertitude liée à l’estimation des EC10, est bien plus
haute que la HC5,EC10 hiérarchique, alors que les deux HC5,EC50 semblent coincider. On
constate ensuite que l’intervalle de confiance autour de la HC5,ECx hiérarchique, qui elle
conserve l’incertitude originale sur les ECx, s’étend rapidement pour des valeurs de x
en dessous de 50. Ces différences peuvent se comprendre en partie parce que pour de
faibles valeurs de x, l’incertitude sur la ECx estimée à partir du modèle concentration-



HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5

0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05
0.00

0.25

0.50

0.75

1.00

1e+00 1e+03 1e+06

Po
te

nt
ia

lly
 A

ffe
ct

ed
 F

ra
ct

io
n

HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5

0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05
0.00

0.25

0.50

0.75

1.00

1e−02 1e+01 1e+04 1e+07

Po
te

nt
ia

lly
 A

ffe
ct

ed
 F

ra
ct

io
n

HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5

0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05
0.00

0.25

0.50

0.75

1.00

1e+00 1e+03 1e+06

Po
te

nt
ia

lly
 A

ffe
ct

ed
 F

ra
ct

io
n

HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5HC5

0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05
0.00

0.25

0.50

0.75

1.00

1e−02 1e+01 1e+04 1e+07

Po
te

nt
ia

lly
 A

ffe
ct

ed
 F

ra
ct

io
n

GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5

0.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.95

0.00

0.25

0.50

0.75

1.00

1e+00 1e+03 1e+06

Concentration (μg/L)

r to
t

GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5GEC5

0.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.950.95

0.00

0.25

0.50

0.75

1.00

1e−02 1e+01 1e+04 1e+07

Concentration (μg/L)

r to
t

Figure I.3: SSD et réponse globale de la communauté à l’atrazine (gauche) et au diuron
(droite). Haut : SSD classique, ajustée sur les EC10 avec la bande de confiance
à 95% calculée par bootstrap et la HC5. Milieu : SSD classique, ajustée
sur les EC50 avec la bande de confiance à 95% calculée par bootstrap et la
HC5. Bas : réponse globale de la communauté avec la bande de crédibilité à
95% et la concentration correspondant à une réduction de 5% de la réponse
globale (GEC5). Les lignes pointillées horizontales permettent de comparer
la HC5,EC10 , la HC5,EC50 et la GEC5
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Figure I.4: HC5 en fonction du x de la ECx pour le diuron obtenue à partir de la SSD
hiérarchique, et l’intervalle de crédibilité à 95%. En rouge figurent les HC5
obtenues avec la SSD classique ajustées sur les EC10 et les EC10, avec un
intervalle de confiance bootstrap à 95%.

effet est d’autant plus importante. Elle sont également liées à la structure du modèle
hiérarchique, qui rend explicite le fait qu’une ECx est liée par une relation mathématique
à la EC50 et à la pente de la courbe concentration-effet. Si l’on suppose que la EC50
suit une distribution log-normale, comme c’est souvent le cas dans le cadre de la SSD
classique, alors une ECx n’a aucune raison de suivre la même forme de distribution.
L’un des avantages de l’approche hiérarchique réside dans la prédiction d’une réponse
globale de la communauté sous la forme d’une courbe concentration-effet qui permet
de déterminer une concentration d’effet globale, la GEC5. Ce nouvel indicateur vient
compléter la HC5, plutôt que s’y substituer. En effet, la HC5 vise à protéger 95% des
espèces, mais il reste une incertitude considérable sur le destin de la communauté si
les 5% non protégés jouent un rôle clef pour certaines propriétés de la communauté.
La GEC5, elle, vise à protéger 95% d’une réponse globale mais ne renseigne pas sur la
proportion des espèces affectées de manière significative, donc in fine sur l’atteinte à la
biodiversité.



I.4 Vers une nouvelle approche de la SSD : prise en
compte de la dimension temporelle

Il y a deux motivations pour prendre en compte la dimension temporelle de la SSD.
Tout d’abord, dans le souci d’utiliser au mieux les données issues de bioessais, une suite
logique des travaux précédents consiste à modéliser la dimension temporelle des données
négligée jusqu’ici. En effet, un bioessai comporte couramment un suivi temporel, mais en
général seules les données en fin d’essai sont utilisées. La deuxième motivation provient
du fait que la sensibilité d’une espèce à un contaminant dépend du temps d’exposition,
or pour des raisons pratiques la majorité des tests sont menés sur de courtes durées.
Les SSD classiques calculées alors sont des descriptions très imparfaites de la sensibilité
d’une communauté, qu’il est possible d’améliorer en tirant un meilleur parti des données
déjà collectées.
Pour intégrer cette dimension temporelle à la SSD dans le cadre de mesures de survie,
l’approche générale retenue comprend une modélisation mécaniste de la survie en fonc-
tion du temps, puis de l’influence de la concentration en contaminant sur le taux de
survie à l’aide d’un modèle à seuil de type NEC (No Effect Concentration). Ensuite,
on construit un modèle hiérarchique de la SSD dans le même esprit que pour la section
précédente, que l’on ajuste sur les données. L’utilisation d’un modèle de type NEC est
particulièrement intéressante pour la SSD, parce que la sensibilité des espèces est définie
par une concentration sans effet. Dès lors, une HC5 construite sur les NEC et qui protège
95% des espèces signifie bien qu’à une concentration égale à la HC5, 95% des espèces ne
subissent pas d’effet du polluant. Pour une HC5 construite sur des EC50, la HC5 est une
concentration pour laquelle 95% des espèces sont affectées à moins de 50% d’effet, ce qui
peut signifier 1% comme 49%. Or selon le cas, il peut être problématique de considérer
des espèces affectées à 49% comme étant protégées.

I.4.1 Description des données
Dans le cadre d’une collaboration avec Ben Kefford et Christophe Piscart, j’ai eu accès à
des données de salinité proviennent d’expériences de survie menées sur des espèces d’eau
douce collectées en France et en Australie. Ce jeu de données se distingue par sa taille
et son hétérogénéité : il contient 217 espèces pour lesquelles le nombre de concentra-
tions mesurées varie de une à plusieurs dizaines. Le nombre d’individus survivants en
fonction de la concentration a été relevé tous les jours pendant 3 jours pour toutes les
espèces, et un jour supplémentaire pour une partie des espèces. Les concentrations sont
données en μS.cm−1, unité de conductivité ionique. Il est à noter que la salinité a une
toxicité chronique supérieure à la toxicité mesurée sur 3 ou 4 jours, donc les données en
fin d’expérience ne reflètent pas la toxicité réelle de la salinité sur une longue durée. Les
espèces ont été collectées au hasard et à grande échelle pour couvrir autant de groupes
taxonomiques que possible, et pour disposer d’un échantillon représentatif des espèces
présentes dans les régions de collecte. Les espèces peuvent être séparées entre espèces
rares et communes. Alors qu’il n’y a que quelques mesures de concentration pour les
premières, il peut y avoir de nombreuses concentrations et même des réplicats pour les
secondes. Une précédente étude de ce jeu de données a conclu a une relative simili-



tude entre les jeux de données provenant de France et d’Australie[Kefford et al., 2012a],
justifiant un rassemblement de toutes les espèces en un seul jeu de données. Plus précisé-
ment, il a été prouvé que bien que les espèces françaises semblent un peu plus sensibles,
la présence de divers groupes taxonomiques est une source de variabilité bien plus im-
portante que la région de collecte.

I.4.2 Modèle TKTD (Toxico-Kinetic Toxico-Dynamic)
I.4.2.1 Introduction

Les modèles TKTD sont une classe de modèles mécanistes de l’effet d’un contaminant
sur la survie, au sens où ils intègrent une description explicite du mécanisme menant
à la mort de l’individu. Ce processus est décrit en deux phases, une phase toxicociné-
tique qui modélise l’entrée progressive du contaminant dans l’organisme, et une phase
toxicodynamique qui modélise les dégâts graduels causés par le contaminant au sein de
l’organisme et menant à sa mort. Les avantages d’un modèle mécaniste résident dans le
(relativement) faible nombre de paramètres, et dans le sens biologique qu’on peut leur
attribuer, contrairement à un modèle phénoménologique.
Le modèle GUTS[Jager et al., 2011] (General Unified Threshold model of Survival) ap-
partient à cette classe de modèles TKTD mécanistes, avec la particularité que la partie
toxicodynamique comprend un modèle à seuil, c’est à dire un paramètre délimitant une
concentration en dessous de laquelle le contaminant n’a pas d’effet sur la survie de
l’individu.

I.4.2.2 Modèle
Les modèles à seuil, très courants en toxicologie font généralement l’hypothèse que le
seuil est indépendant du temps et n’est déterminé que par un seul paramètre. Cette
hypothèse a été conservée. Ces modèles à seuil n’incluent en général pas de phénomène
d’hormèse ou d’essentialité. Le modèle utilisé ici suppose une décroissance monotone de
la probabilité de survie avec le temps et la concentration. Le modèle GUTS a été adapté
pour l’étude de la toxicité de la salinité.
La probabilité de survie à un instant t est définie comme la probabilité que la mort de
l’individu survienne au delà de cet instant.

S(t) = P (T > t) (I.1)
On définit hz(t) (hazard rate) le taux de mortalité par la relation suivante :

hz(t) = − 1
S(t)

dS(t)
dt

(I.2)

Le modèle à seuil est défini, pour une exposition à concentration constante, sur ce taux
de mortalité :

hz = m0 + ks
(
Cw

(
1 − e−krt

)
− NEC

)
+

(I.3)

où Cw est la concentration dans l’eau, m0 est la mortalité naturelle, et ks est un paramètre
en jours−1concentration−1 qui contrôle la dépendance du taux de mortalité à la con-



centration. kr est un paramètre en jours−1 qui contrôle le délai entre l’exposition au
contaminant et l’effet sur la survie. (x − NEC)+ est une fonction de Heaviside qui vaut
0 si x est inférieur à la NEC, et qui vaut x − NEC sinon. Enfin, le paramètre NEC est
la No Effect Concentration, la concentration en dessous de laquelle le contaminant n’a
aucun effet. Cette absence d’effet est implémentée mathématiquement par la fonction
de Heaviside.

Pour Cw > NEC, il y a un temps tNEC avant lequel un organisme avec un niveau de
dommage initial négligeable ne ressentira pas l’effet du contaminant sur sa survie :

tNEC = − 1
kr

ln
(

1 − NEC

Cw

)
(I.4)

Pour t < tNEC :

S(t) = e−m0t (I.5)
et pour t > tNEC

S(t) =e−
∫ t

0 h(u)du (I.6)

=e−m0t−ks[(Cw−NEC)(t−tNEC)+ Cw

kr (e−krt−e−krtNEC )] (I.7)

Enfin, afin d’ajuster le modèle aux données, on a besoin de la fonction de vraisemblance
des données sachant les paramètres du modèle. On utilise un modèle d’erreur binomial
pour modéliser la survie d’un individu à un temps donné, sachant qu’il était vivant à un
temps précédent. On écrit la probabilité conditionnelle de survie de la manière suivante
:

P (T > t′|T > t) = P (T > t′)
P (T > t) = S(t′)

S(t) = e−(m0+ksHNEC(x)(x−NEC))(t′−t) (I.8)

pour t′ > t.

La fonction de vraisemblance pour les données d’une espèce se déduit de la relation :

Nx,t′ ∼ B(Nx,t, P (T > t′|T > t)) (I.9)
où B représente la distribution binomiale, et Nx,t le nombre de survivants à la concen-
tration x et au temps t.

I.4.3 Modèle hiérarchique
I.4.3.1 Présentation du modèle hiérarchique

Le modèle TKTD représente l’étage inférieur du modèle hiérarchique. C’est l’étage
monospécifique, qui décrit la réponse de chaque espèce. À l’étage supérieur se trouve le
modèle décrivant la distribution des paramètres du modèle TKTD au sein de la commu-
nauté. Il est construit selon une stricte analogie avec l’approche SSD classique. En effet,
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Figure I.5: Diagramme Acyclique Dirigé (DAG) du modèle hiérarchique. Les flèches
en pointillé représentent un lien stochastique, celles en traits pleins un lien
déterministe.

dans le cadre de la SSD classique, la sensibilité de chaque espèce est caractérisée par un
paramètre, la LC50, et on suppose que la distribution des LC50 dans la communauté suit
une loi log-normale. Dans le cadre de la SSD hiérarchique, la sensibilité d’une espèce est
caractérisée par quatre paramètres, kr, ks, NEC et m0 . On suppose que la distribution
de ces quatre paramètres dans la communauté est également log-normale. Il est naturel
de considérer une éventuelle corrélation entre les paramètres, donc on choisit une distri-
bution log-normale multivariée qui prend en compte ces corrélations via sa matrice de
variance-covariance. Le diagramme acyclique dirigé (DAG) représenté sur la figure I.5
donne une représentation graphique du modèle hiérarchique, qui met en évidence les dif-
férents niveaux du modèle. L’intérêt principal des DAG est qu’ils se traduisent presque
directement sous la forme d’un modèle analysable numériquement, mais celui-ci permet
déjà de visualiser quels paramètres caractérisent la distribution de sensibilité dans la
communauté, quels paramètres représentent la sensibilité d’une espèce, et quelles sont
les relations entre ces paramètres.

I.4.3.2 Intérêt du modèle hiérarchique
Le modèle hiérarchique est intéressant à plusieurs égards dans le cadre de l’analyse
des données de salinité. Il s’accommode bien de la grande hétérogénéité des données,
et permet par ailleurs de prendre en compte des espèces sur lesquelles on ne dispose
que de quelques points de mesure, c’est à dire les espèces rares qui sont nombreuses



Table I.1: Description des liens décrits dans le DAG(figure I.5)
Noeud Type Équation
ksj Stochastique ksj

∼ N (μks, σks)
NECj Stochastique NECj ∼ N (μNEC , σNEC)
Si,j,t Déterministe Si,j,t = e−(m0,j+ksjHNECj

(ci,j,t)(ci,j,t−NECj))t

yi, j, t Stochastique yi,j,t ∼ B(yi,j,t−1,
Si,j,t

Si,j,t−1
)

dans ce jeu de données. La structure hiérarchique implique que chaque espèce participe
à la détermination de la distribution de sensibilité de la communauté à la mesure de
l’information disponible sur cette espèce. Les espèces communes et bien documentées
fournissent beaucoup d’information mais sont peu nombreuses, tandis que les espèces
rares apportent peu d’information individuellement mais représentent la majorité des
espèces.

I.4.4 Comparaison SSD hiérarchique sur la NEC et SSD classique
On souhaite commencer par comparer l’approche NEC hiérarchique avec l’approche SSD
classique. On ne détaillera pas beaucoup l’approche SSD classique ici, mais celle retenue
consiste en l’ajustement d’un modèle log-logistique à deux paramètres sur la proportion
de survivants pour estimer les LC50. Quand les données ne permettent pas l’ajustement
d’un modèle, la LC50 est déterminée visuellement, sous la forme d’un intervalle qui
contient vraisemblablement la LC50. Une grande partie des LC50 est donc censurée, et
on utilise l’approche MOSAIC_SSD [Kon Kam King et al., 2014] pour ajuster une SSD
log-normale.
La SSD log-normale classique est ajustée sur les LC50 à 24, 48 and 72 heures pour obtenir
une HC5 à 24, 48 and 72 heures. La SSD temporelle permet de calculer la distribution
des LC50 à chaque temps, c’est à dire un équivalent de la SSD classique à chaque temps,
et ses prédictions peuvent être comparées à celles de la SSD classique. La SSD temporelle
permet aussi de calculer la distribution des NECs qui elles ne dépendent pas du temps.
La HC5 de la SSD classique et celle de la SSD temporelle, toutes deux fondées sur les
LC50 décroissent avec le temps, alors que la HC5 fondée sur les NECs est invariante
avec le temps (Figure I.6). La HC5 fondée sur les NEC (4407[3310 − 5634]μS/cm) est
plus faible que la HC5 classique à 24, 48 and 72 H (10242[8106 − 12805], 8821[7112 −
10846] et 6800[5405−8643]μS/cm, respectivement). Prendre des décisions de gestion de
l’environnement en se fondant sur la HC5 calculée à partir de données de fin d’expérience
(72 heures d’exposition) ou bien en se fondant sur la HC5 calculée sur les NECs aurait
des conséquences pratiques très différentes.
La HC5 temporelle calculée sur les LC50 au cours du temps est très similaire à la HC5
classique : l’approche hiérarchique semble reproduire les résultats de l’approche clas-
sique jusqu’à 72h. Pour toutes les valeurs de x, la LCx converge avec le temps vers la
NEC[Smit and Ebbens, 2008], ce qui implique que la HC5 fondée sur les LC50 converge
aussi vers la HC5 fondée sur les NEC(Figure I.6).
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Figure I.6: HC5 classique (bleu) et hiérarchique (rouge) calculées sur les LC50 en fonction
du temps et HC5 hiérarchique calculée sur les NEC (noir). Les segments verti-
caux délimitent l’intervalle de confiance à 95% sur la HC5 classique. Les lignes
pointillées délimitent l’intervalle de crédibilité à 95% sur la HC5 hiérarchique,
les lignes pleines représentent la médiane de la distribution postérieure.



I.4.5 Utilisation du modèle en prédiction
Le modèle dynamique de survie utilisé dans cette partie n’étant pas restreint à des
scénarios d’exposition constante, il est possible de prédire la réponse d’une communauté
d’espèces soumises à des pics de concentration ou n’importe quel scénario plus réaliste. A
partir de suivi de données de salinité dans le bassin hydrographique du Murray Darling,
en Australie, on observe l’effet d’une exposition à des fluctuations de salinité.
On compare la réponse de la communauté à deux scénarios d’exposition, l’un correspon-
dant à ce qui a été observé et l’autre correspondant au résultat d’une possible opération
de réduction de la salinité. Les deux scénarios d’exposition ont un effet très différent sur
la survie (Figure I.7). Alors que la survie décroît rapidement dans le cas sans interven-
tion, lorsque la salinité est réduite de seulement 30% on observe déjà un effet important.
On pourrait comparer l’effet de mesures plus réalistes sur la survie dans la communauté
en utilisant la même approche.

I.5 Conclusion et perspectives
Cette thèse propose diverses pistes pour améliorer la SSD actuelle. Dans la première
partie de la thèse, on a expliqué comment les tests de toxicité pouvaient produire des
données censurées et on a présenté une méthode simple pour inclure ce type de données
dans la SSD. Dans la seconde partie de la thèse, on a expliqué que la SSD classique
n’utilisait qu’un résumé des données disponibles, ce qui avait pour conséquence d’oublier
l’incertitude attachée au résumé en question ainsi qu’une partie de l’information bi-
ologique disponible. On a montré comment étendre la SSD pour prendre en compte
cette incertitude et toute l’information disponible via un modèle hiérarchique de la courbe
dose-réponse dans son ensemble. Dans la troisième partie de la thèse, on a expliqué que
les bioessais était souvent réalisés avec un suivi temporel, mais qu’en général seules les
données de fin d’essai étaient utilisées dans la SSD classique. Cela implique que la HC5
prédite dépend de la durée de l’expérience, ce qui réduit sa validité pour la protection
de l’environnement. Étendant le travail réalisé dans la deuxième partie, on a proposé
d’utiliser un modèle dynamique pour modéliser des données de survie suivies au cours
du temps. Cela a permis d’estimer une HC5 valable quelle que soit la durée d’exposition.
Tout au long de cette thèse, on a pris soin de ne proposer que des développements
de la SSD qui ne requéraient pas la collecte de données supplémentaires, mais qui se
fondaient au contraire sur une meilleure utilisation des données déjà disponibles. Or,
quelques récents travaux sur la SSD se sont concentrés sur l’inclusion d’information
de nature différente, comme la sensibilité à d’autres contaminants, les données is-
sues d’expériences antérieures, la sensibilité d’espèces taxonomiquement voisines ou les
avis d’experts[Craig et al., 2012, O’Hagan et al., 2005]. La piste la plus intéressante
d’extension du travail présenté dans cette thèse serait donc de relier ces approches pour
tirer le meilleur parti des différentes sources d’information disponibles sur la sensibilité
des espèces.
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Figure I.7: Haut: Comparaison de la survie dans la communauté en fonction du temps,
avec et sans l’effet du mesure de désalinisation schématique induisant une
réduction de 30 % de la salinité. Les lignes pontillées représentent l’intervalle
de crédibilité á 95%. Bas: profil de salinité avec et sans la mesure de désalin-
isation.


