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ABSTRACT

Keywords: weak gravitational lensing, cosmology, sparsity

Gravitational lensing, that is the distortion of the images of distant galaxies by intervening
massive objects, has been identified as one of the most promising probes to help answer questions
relative to the nature of dark matter and dark energy. As the lensing effect is caused by the total
matter content, it can directly probe the distribution of the otherwise invisible dark matter. By
measuring the shapes of distant galaxies and statistically estimating the deformations caused by
gravitational lensing, it is possible to reconstruct the distribution of the intervening mass. This
mass-mapping process can be seen as an instance of a linear inverse problem, which can be ill-
posed in many situations of interest, especially when mapping the dark matter on small angular
scales or in three dimensions. As a result, recovering a meaningful mass-map in these situations
is not possible without prior information.

In recent years, a class of methods based on a so-called sparse prior has proven remarkably suc-
cessful at solving similar linear inverse problems in a wide range of fields such as medical imaging
or geophysics. The primary goal of this thesis is to apply these sparse regularisation techniques
to the gravitational lensing problem in order to build next-generation dark matter mass-mapping
tools. We propose in particular new algorithms for the reconstruction of high-resolution 2D mass-
maps and 3D mass-maps and demonstrate in both cases the effectiveness of the sparse prior. We
also apply the same sparse methodologies to the reconstruction the primordial density fluctuation
power spectrum from measurements of the Cosmic Microwave Background which constitutes an-
other notoriously difficult inverse problem. We apply the resulting algorithm to reconstruct the
primordial power spectrum using data from the Planck satellite.

Finally, we investigate new methodologies for the analysis of cosmological surveys in spherical
coordinates. We develop a new wavelet transform for the analysis of scalar fields on the 3D ball.
We also conduct a comparison of methods for the 3D analysis of spectroscopic galaxy survey.



RESUME

Mots clés : Effet de lentille gravitationnelle faible, cosmologie, parcimonie

L’effet de lentille gravitationnelle, qui se traduit par une déformation des images nous parvenant
de galaxies lointaines, constitue I'une des techniques les plus prometteuse pour répondre aux nom-
breuses questions portant sur la nature de I’énergie sombre et de la matiére noire. Cet effet de
lentille étant sensible a la masse totale, il permet de sonder directement la distribution de matiére
noire, qui resterait autrement invisible. En mesurant la forme d’un grand nombre de galaxies loin-
taines, il est possible d’estimer statistiquement les déformations causées par I'effet de lentille grav-
itationnelle puis d’en inférer la distribution de masse de la lentille. La reconstruction de ces cartes
de masse constitue un probléme inverse qui se trouve étre mal posé dans un certain nombre de
situations d’intérét, en particulier lors de la reconstruction de la carte de masse aux petites échelles
ou en trois dimensions. Dans ces situations, il devient impossible de reconstruire une carte sans
I’ajout d’information a priori.

Une classe particuliere de méthodes, basées sur un a priori de parcimonie, s’est révélée re-
marquablement efficace pour résoudre des problemes inverses similaires pour un large champ
d’applications tels que la géophysique et I'imagerie médicale. Le but principal de cette these est
donc d’adapter ces techniques de régularisation parcimonieuses au probléme de la cartographie
de la matiére noire afin de developper une nouvelle generation de méthodes. Nous développons
en particulier de nouveaux algorithmes permettant la reconstruction de cartes de masse bi-dimen-
sionnelles de haute résolution ainsi que de cartes de masse tri-dimensionnelles.

Nous appliquons de plus les mémes méthodes de régularisation parcimonieuse au probleme
de la reconstruction du spectre de puissance des fluctuations primordiales de densités a partir
de mesures du fond diffus cosmologique, ce qui constitue un probléme inverse particulierement
difficile a résoudre. Nous développons un nouvel algorithme pour résoudre ce probléme, que nous
appliquons aux données du satellite Planck.

Enfin, nous investiguons de nouvelles méthodes pour 'analyse de relevés cosmologiques ex-
primés en coordonnées sphériques. Nous développons une nouvelle transformée en ondelettes
pour champs scalaires exprimés sur la boule 3D et nous comparons différentes méthodes pour
I’analyse cosmologique de relevés de galaxies spectroscopiques.



RESUME DE LA THESE EN FRANCAIS

REGULARISATION PARCIMONIEUSE DE PROBLEMES INVERSES

Parcimonie

La parcimonie est un concept mathématique permettant de décrire une classe de signaux dont
la représentation dans une base appropriée est essentiellement composée de coefficients nuls a
I'exception d’un faible nombre de coefficients non nuls. De tels signaux sont dit parcimonieux.
Cette notion en apparence trés simple constitue en réalité un outil trés puissant pour adresser une
multitude de problémes pratiques couvrant une large gamme de champs d’application.

Tout particuliérement, la parcimonie fournit un outil remarquable pour résoudre la classe parti-
culiére des problémes inverses linéaires. Dans ces problémes, le but est de reconstituer un signal
inconnu a partir d’'un jeu d’observations dégradées par l'effet d’'un opérateur linéaire, générale-
ment dit mal-posé i.e. non directement inversible ou possédant une inverse tres instable. Dans ce
contexte, il existe en général une infinité de solutions potentielles au probléme, c’est a dire per-
mettant de reproduire les observations, sans pour autant étre proche du signal recherché. 1l est
généralement impossible d’estimer une solution proche de la vérité sans 'ajout d’information a
priori sur le signal a estimer. Le concept de parcimonie fournit justement un cadre mathématique
pour résoudre ce type de problémes lorsque le signal a reconstruire peut étre considéré comme
parcimonieux. Dans ce cas, la solution du probléme inverse peut étre vue comme la solution d’'un
probléme d’optimisation ou I'on recherche le signal le plus parcimonieux compatible avec les ob-
servations.

Résoudre en pratique ce probleme d’optimisation n’est pas chose facile mais grice a de récentes
avancées dans le domaine de 'optimisation convexe (théorie proximale) nous avons a présent a
notre disposition une série d’algorithmes permettant de résoudre efficacement ces problemes pou-
vant aussi intégrer différentes contraintes additionnelles. Ces algorithmes sont la clé de I'application
des méthodes parcimonieuses a des problemes de grande taille tels que ceux qui seront adressés
dans cette these.

Ondelettes

Bien souvent, un signal n’est pas directement parcimonieux dans le domaine dans lequel il est
observé, mais sa représentation dans un domaine approprié peut tout de méme étre parcimonieuse.
C’est par exemple le cas d’une sinusoide qui n’est pas parcimonieuse dans le domaine temporel,
mais qui le devient dans le domaine fréquentiel, apreés transformée de Fourier. Cet exemple met en
valeur la notion de représentation parcimonieuse.

De méme que la transformée de Fourier est une représentation parcimonieuse pour des signaux
stationnaires harmoniques, la transformée en ondelettes est une représentation parcimonieuse
pour une vaste classe de signaux dits lisses par morceaux, incluant un grand nombre de signaux
naturels. De par leur flexibilité et leur faible cofit algorithmique, les ondelettes sont un outil de



base pour les techniques parcimonieuses. En particulier, dans toutes les applications présentées
dans cette thése, I'a priori de parcimonie est basé sur une représentation en ondelettes.

Application a la reconstruction du spectre de puissance primordial

La physique gouvernant les touts premiers instants de 'Univers est encore largement inconnue. Le
modéle cosmologique standard nécessite une courte période d’accélération exponentielle appelée
inflation, juste apres la singularité initiale. Ce mécanisme d’inflation est en particulier essentiel
pour expliquer 'origine des fluctuations de densité dans I'Univers primordial qui au fil du temps
ont évolué principalement sous l’effet de la gravité pour former la structure a grande échelle visible
aujourd’hui. Cependant, la physique de I'inflation n’est a ce jour pas élucidée et toute information
permettant de discriminer entre divers modéles est d’'un intérét crucial pour la cosmologie mod-
erne. En particulier, ’étude du spectre de puissance de ces perturbations primordiales peut perme-
ttre de discerner des traces particulieres a certains modeles d’inflation, comme des oscillations ou
d’autres sortes de traits localisés.

Malgré que le spectre de puissance primordial ne soit plus directement observable aujourd hui, il
est encore accessible indirectement en étudiant le spectre de puissance des fluctuations de densité
observées plus tard dans I’age de I'Univers. C’est par exemple le cas du fond diffus cosmologique
qui présente une image de ces fluctuations de densité apres quelques 380 ooo ans d’évolution sous
Iinfluence de phénomeénes physiques bien compris. Cette évolution pouvant étre décrite comme
un processus linéaire il est possible d’écrire le spectre de puissance du fond diffus cosmologique
comme le résultat de Paction d’un opérateur linéaire sur le spectre de puissance primordial: estimer
le spectre de puissance primordial devient un cas typique de probléme inverse linéaire.

Malheureusement, résoudre ce probléme inverse est non trivial en raison de plusieurs facteurs
dont le fait que Popérateur linéaire en question n’est pas inversible et surtout du fait de la variance
cosmique (I'incertitude sur le spectre de puissance du fond diffus cosmologique venant du fait que
nous devons l'estimer a partir d’une seule réalisation).

Nous proposons une nouvelle méthode pour résoudre ce probléme inverse basée sur la régu-
larisation parcimonieuse. Cette méthode nous permet de reconstruire le spectre de puissance pri-
mordial avec suffisamment de qualité pour discerner entre divers types de déviations par rapport
au modele le plus simple d’une loi de puissance. Nous démontrons I'efficacité de la méthode sur
divers types de spectres en simulant des observations de la mission WMAP et nous I’appliquons
aux données du satellite Planck. Malgré la sensibilité et la robustesse de notre méthode, nous ne
détectons aucune déviation d’une simple loi de puissance. Ces résultats sont en parfait accord avec
la derniére étude sur le sujet menée par la collaboration Planck.

CARTOGRAPHIE DE LA MATIERE NOIRE PAR EFFET DE LENTILLE GRAVI-
TATIONNELLE FAIBLE

L’effet de lentille gravitationnelle faible

L’effet de lentille gravitationnelle se produit lorsque la lumiere nous arrivant de galaxies lointaines
passe a proximité de structure massives, agissant comme des lentilles en déformant I’espace temps
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et causant au passage une déformation de 'image de ces objets lointains. Lorsque ces déformations
restent faibles (on parle alors d’effet de lentille gravitationnelle faible), I'image qui nous arrive de
ces galaxies se trouve trés légérement étirée selon une direction particuliére, c’est ce que ’on ap-
pelle le cisaillement gravitationnel. En conséquence, la forme mesurée d’une galaxie (caractérisée
par son ellipticité) peut étre vue comme la somme de la forme intrinséque de la galaxie et du champ
de cisaillement a la position de cette galaxie. Si ’'on suppose que les formes intrinséques des galax-
ies sont distribuées de maniére aléatoire on s’attend a ce que la moyenne de leurs ellipticités tende
vers zero alors qu’au contraire les déformations causées par le cisaillement sont cohérentes et ne
se moyennent pas a zero. Ainsi, mesurer la forme d’un grand nombre de galaxies nous permet
d’avoir un estimateur bruité mais non baisé (du moins en premiére approximation) du champ de
cisaillement.

L’intérét cosmologique fondamental du cisaillement gravitationnel réside dans le fait qu’il est
sensible 4 la masse totale de la lentille et donc en particulier a la matiére noire qui représente la
grande majorité du contenu total en matiére de 'Univers (autour de 85%) mais qui reste compléte-
ment invisible autrement que par ses effets gravitationnels. Une des applications de cet effet de
cisaillement est la cartographie de la distribution de masse d’une lentille (et donc majoritairement
de la matiére noire qui la constitue) en essayant d’inverser I'opérateur linéaire reliant cette distri-
bution de masse au champ de cisaillement observé. La encore, ce probléme constitue un exemple
typique de probléme inverse linéaire.

Dans le cas ou I'on cherche a reconstruire une carte bidimensionnelle d’une lentille situé & une
distance bien connue, le probléme n’est pas nécessairement mal posé. En effet, opérateur de ci-
saillement posseéde un inverse explicite et stable dans le cas ol le probleme est posé sur une grille
réguliére. Cependant, comme discuté plus en détails dans la prochaine section, en pratique le ci-
saillement n’est mesuré que la ou I'on observe des galaxies en arriere plan, qui sont distribuées de
facon aléatoire, ce qui complique 'inversion, particuliérement aux petites échelles.

Dans le cas ou I'on cherche a reconstruire une carte tridimensionnelle de la distribution de
matiere a l'origine du champ de cisaillement, le probléme devient extrémement mal posé. Plusieurs
méthodes ont été proposées dans la littérature pour essayer de reconstruire cette carte tridimen-
sionnelle mais sans grand succes, ce qui a largement limité jusqu’a ce jour 'application de ce genre
de techniques. En particulier, les cartes estimées par ces méthodes échouent a reconstruire correcte-
ment les structures le long de la ligne de visée, ainsi une lentille située a une distance spécifique
se retrouve completement étalée le long de la ligne de visée dans la carte reconstruite, si bien qu’il
est tres difficile d’en déduire les propriétés de la lentille, tels sa masse et sa distance.

Cartographie de haute résolution combinant cisaillement et flexion

Lorsque l'on cherche a reconstruire une carte bidimensionnelle d’une lentille a une distance con-
nue, on se trouve confronté a deux difficultés. Premiérement, le champ de cisaillement n’est accessi-
ble qu’a la position particuliére des galaxies en arriere plan, ce qui rend I'inversion de 'opérateur de
cisaillement mal posé si I'on ne lisse les données sur une grille réguliére au préalable. Deuxiéme-
ment, les mesures d’ellipticité sont trés largement dominées par la forme intrinséque des galax-
ies, ce qui rend l'estimation du champ de cisaillement extrémement bruitée si ’on n’applique pas
un lissage visant a réduire le niveau de bruit. Dans tous les cas, un simple lissage permet de re-
conditionner le probléme et de réduire le niveau de bruit mais au prix de la perte de 'information
aux petites échelles.
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La méthode que nous proposons a pour but de reconstruire une carte de masse de haute résolu-
tion, c’est a dire en préservant les détails aux petites échelles lorsque ceux-ci sont discernables du
bruit, en appliquant une régularisation parcimonieuse au probléme inverse nous évitant d’avoir
recours a tout lissage des données. De plus, afin de gagner en sensibilité, en particulier aux petites
échelles, nous proposons de combiner l'effet de cisaillement gravitationnel avec leffet de flexion
gravitationnel (causant des déformations d’ordre supérieur) particuliérement sensible aux détails.
Nous testons ’algorithme résultant sur un jeux de simulations correspondant a un relevé typique
effectué avec le satellite Hubble. Nous montrons en particulier I'apport de la flexion qui nous per-
met de résoudre certaines sous-structures de petites tailles d’amas de galaxies qui ne peuvent pas
étre reconstruites uniquement a partir du cisaillement.

Cartographie tridimensionnelle

Contrairement au probléme de la cartographie bidimensionnelle, la reconstruction tridimension-
nelle de la carte de matiére noire implique 'inversion d’un opérateur linéaire supplémentaire agis-
sant selon la ligne de visée qui se trouve étre particulierement mal posé. Il est donc nécessaire de
faire appel a une régularisation particulierement efficace pour tenter de résoudre ce probléme. Les
méthodes de I’état de l’art reposent soit sur un re-conditionnement de cet opérateur en utilisant
une décomposition en valeurs singulieres, soit sur un filtrage de Wiener basé sur un a priori du
spectre de puissance du signal recherché. Ces deux approchent se sont révélées particuliérement
inefficaces. La premiére du fait que les valeurs singuliéres de faible amplitude restent fondamen-
tales pour reconstruire une distribution de masse correctement localisée le long de la ligne de visée.
La seconde du fait qu’un a priori sur le spectre de puissance n’est absolument pas adapté a la dis-
tribution de masse que 'on cherche a reconstruire, trés difficilement caractérisable par son spectre
de puissance.

Nous proposons donc une méthode basée sur I’a priori que la distribution de matiére doit étre
parcimonieuse le long de la ligne de visée. En effet, le signal que I'on cherche a reconstruire est
constitué d’halos de matiére noire (autour des amas de galaxies) situés a des distances bien précises
tandis qu’en dehors de ces zones particuliéres, la densité de matiére est en moyenne trés faible et
peut étre correctement approximée a zéro étant donné le niveau de bruit. Nous démontrons sur une
simulation particuliere que notre algorithme est capable de reconstruire correctement la densité
de matiére d’un halo massif (avec la bonne amplitude et correctement localisé en distance) alors
que les méthodes précédentes produisent une distribution non localisée, a partir de laquelle il est
impossible d’inférer directement la masse ou la distance de I'objet.

Nous caractérisons notre méthode sur un vaste jeux de simulations basées sur les caractéris-
tiques de la mission Euclid et nous montrons que notre algorithme est capable de produire des
cartes de densité en trois dimensions a partir desquels nous pouvons directement mesurer la dis-
tance des amas de galaxies ainsi qu’estimer leurs masses. Cette nouvelle approche ouvre donc la
voie vers de nouvelles applications de la cartographie tridimensionnelle par cisaillement gravita-
tionnel jusqu’alors impossibles en raison des limitations des méthodologies existantes.
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COSMOLOGIE SUR LA BOULE

Ondelettes isotropes sur la boule 3D

Les relevés cosmologiques, et en particulier les relevés de galaxies, sont observés en coordon-
nées sphériques (position sur le ciel combinée a la mesure de la distance des objets par rapport
a nous) et vivent donc naturellement sur la boule tridimensionnelle. Afin d’extraire un maximum
d’information cosmologique il est nécessaire de développer des outils d’analyse appropriés a la
géométrie particuliére de ces relevés. Dans ce contexte, nous proposons une nouvelle construction
en ondelettes directement définie sur la boule et donc particuliéerement bien adaptée a des fins
d’études cosmologiques.

Cette ondelette est la premiere ondelette sur la boule permettant a la fois analyse et synthése.
Reposant sur la décomposition de Fourier-Bessel sphérique, elle est construite par extension sur la
boule des concepts développés sur la sphére utilisant la décomposition en harmoniques sphériques.
Contrairement a d’autres constructions proposées ultérieurement dans la littérature, cette on-
delette est non séparable, ce qui lui confére des propriétés telles que 'isotropie ou l'invariance
par translation qui sont extrémement désirables dans nombre d’applications.

Analyse tridimensionnelle de relevés de galaxies spectroscopiques

Les relevés de galaxies spectroscopiques fournissent d’excellentes sondes pour contraindre en par-
ticulier les parametres de I’énergie sombre. Cependant, cette information est principalement ren-
fermée dans I’évolution radiale de la distribution de galaxie. Il est donc primordial de correctement
extraire 'information radiale pour exploiter tout le potentiel de cette sonde. L’approche classique a
ce probléme, dite tomographique, consiste a séparer le relevé en couches de rayons différents puis
de calculer des spectres de puissances angulaires croisés entre les couches. Une autre approche,
jusqu’ici beaucoup moins explorée, consiste a procéder a une décomposition harmonique sur la
boule (transformée de Fourier-Bessel sphérique) du relevé puis de calculer le spectre de puissance
des coefficients obtenus.

En théorie, ces deux approches devraient permettre de capturer la méme information. Cepen-
dant, en pratique, elles ne sont pas sensibles de la méme maniére a un certain nombre d’effets et
de systématiques et ne sont donc pas nécessairement équivalentes. Nous procédons a une analyse
comparative a aide de matrices de Fisher afin d’investiguer I'impact de 'exclusion des échelles
non-linéaires (difficiles a interpréter) ainsi que I'incertitude sur le biais des galaxies (source de
systématiques) pour ces deux approches différentes.

Nous trouvons que 'analyse basée sur la décomposition de Fourier-Bessel est plus a méme de
distinguer l'incertitude sur le biais des galaxies de 'impact de I’énergie sombre et permet une ré-
jection plus nette des échelles indésirables. Ceci nous améne a conclure que cette approche devrait
étre favorisée par rapport a une analyse tomographique classique pour les prochains relevés tel
celui de la mission Euclid.






PUBLICATIONS

BOOK CHAPTER

e F.Lanusse, J.-L. Starck, A. Woiselle, and M.J. Fadili. 3D Sparse Representations. In Advances
in Imaging and Electron Physics, Academic Press: Elsevier Inc, pages 99—204. 2014.

REFEREED ARTICLES

e F.Lanusse, J.-L. Starck, A. Leonard, and S. Pires. High resolution weak lensing mass-mapping
combining shear and flexion. Submitted to Astronomy & Astrophysics.

e F. Lanusse, A. Rassat, and J.-L. Starck. 3D galaxy clustering with future wide-field surveys:
Advantages of a spherical Fourier-Bessel analysis. Astronomy & Astrophysics, 578:A10, June
2015.

e A.Leonard, F. Lanusse, and J.-L. Starck. Weak lensing reconstructions in 2D and 3D: implica-
tions for cluster studies. Monthly Notices of the Royal Astronomical Society, 449(1):1146-1157,
May 2015.

o A. Moller, V. Ruhlmann-Kleider, F. Lanusse, J. Neveu, N. Palanque-Delabrouille, and J.-L.
Starck. SNIa detection in the SNLS photometric analysis using Morphological Component
Analysis. Journal of Cosmology and Astroparticle Physics, 2015(04):041-041, April 2015.

o F.Lanusse, P. Paykari, J. L. Starck, F. Sureau, J. Bobin, and A. Rassat. PRISM: Recovery of the
primordial spectrum from Planck data. Astronomy and Astrophysics, 571:L1, November 2014.

o P. Paykari, F. Lanusse, J. L. Starck, F. Sureau, and J. Bobin. PRISM: Sparse recovery of the
primordial power spectrum. Astronomy and Astrophysics, 566:A77, June 2014.

e A.Leonard, F. Lanusse, and J.-L. Starck. GLIMPSE: accurate 3D weak lensing reconstructions
using sparsity. Monthly Notices of the Royal Astronomical Society, 440(2):1281, May 2014.

o F. Lanusse, A. Rassat, and J. L. Starck. Spherical 3D isotropic wavelets. Astronomy and
Astrophysics, 540(3):A92, April 2012.

CONFERENCE PROCEEDINGS

e F.Lanusse, A. Leonard, and J.-L. Starck. Density reconstruction from 3D lensing: Application
to galaxy clusters. In Proceedings of the International Astronomical Union, volume 10, pages
104-106, May 2014.

e P. Paykari, F. Lanusse, J.-L. Starck, F. Sureau, and ]J. Bobin. PRISM: Sparse recovery of the
primordial spectrum from WMAPg and Planck datasets. In Proceedings of the International
Astronomical Union, volume 10, pages 60-63, May 2014.



e A.Rassat, F. Lanusse, D. Kirk, O. Host, and S. Bridle. Combining Probes. In Proceedings of
the International Astronomical Union, volume 10, pages 192—201, May 2014.

o F. Lanusse, A. Leonard, and J.-L. Starck. Imaging dark matter using sparsity. In Dimitri Van
De Ville, Vivek K. Goyal, and Manos Papadakis, editors, SPIE 8858, Wavelets and Sparsity XV,
page 885824, September 2013.

o F. Lanusse and J.-L. Starck. 3D sparse representations on the sphere and applications in
astronomy. In Dimitri Van De Ville, Vivek K. Goyal, and Manos Papadakis, editors, SPIE
8858, Wavelets and Sparsity XV, page 88580K, September 2013.

SOFTWARE

e MRS3D: Implementation of the 3D Spherical Wavelet Transform on the Sphere in C++ with
an IDL interface.
http://jstarck.free.fr/mrs3d.html

o PRISM: Sparse recovery of the Primordial Power Spectrum implemented in C++ with an IDL
interface, part of the iSAP package.
http://www.cosmostat.org/research/cmb/prism

e CosmicPy: Python package for interactive cosmology, with an embedded fast C++ library
for efficient computation of Spherical Fourier-Bessel power spectra.
https://cosmicpy.github.io

e GLIMPSE: Implementation in C++ of the sparse reconstruction of 3D dark matter density
from weak gravitational lensing.
http://www.cosmostat.org/research/wl/glimpse
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INTRODUCTION

Cosmology has entered in the last decade a new era of precision. With the success of the WMAP
and Planck missions, the standard cosmological model is now well established and its main pa-
rameters are measured at the percent level. Yet, in this model, conventional baryonic matter only
accounts for a mere 5 % of the total energy content today, while an overwhelming 95 % of the
Universe is composed of 27 % of dark matter and 68 % of dark energy. If these two components are
necessary for the model to fit the observations, they remain largely mysterious and understand-
ing the physical nature of this dark universe constitutes one of the main challenges of modern
cosmology.

Gravitational lensing, that is the distortion of the images of distant galaxies by intervening
massive objects, has been identified as one of the most promising probes to help answer questions
relative to the nature of dark matter and dark energy. Indeed, as the lensing effect is caused by
the total matter content, it can directly probe the distribution of dark matter. In the weak lensing
regime, where those deformations are small, there is a direct linear mapping between the dark
matter distribution and the measured lensing effect. Reconstructing the dark matter map from
weak lensing therefore constitutes a linear inverse problem which can be ill-posed in practice
when mapping the dark matter in three dimensions and when part of the data is masked. In these
situations, the information is degraded in a way that makes it impossible to recover a meaningful
dark matter map without additional prior information.

Ill-posed linear inverse problems such as dark matter mass-mapping are in fact ubiquitous and
well studied in the signal processing literature. In recent years, a class of methods based on a so
called sparse prior has proven remarkably successful at solving inverse problems in a wide range
of fields such as medical imaging or geophysics. These methods rely on the assumption that the
signals to recover are sparse, i.e. can be represented with a small number of non-zero coefficients,
and use this information to constrain the solution of the inverse problem. As the sparsity of a
signal depends on the basis used to represent it, a key aspect of these methods is the choice of an
appropriate sparse representation for the signals of interests.

The primary goal of this thesis is therefore to apply these sparse regularisation techniques to the
weak lensing problem in order to build next-generation dark matter mass-mapping tools which
can eventually help us address the challenges of modern cosmology.

The aim of the first part of this thesis is to introduce the concepts and tools of sparse regular-
isation. In Chapter 3 I introduce the notion of sparsity, how it can be applied in practice to solve
inverse problem, and the sparse optimisation algorithms used in the rest of this thesis. In comple-
ment, I provide in Chapter 4 an introduction to wavelets, which are a particularly successful and
versatile class of sparse representations, at the core of all the applications presented in the follow-
ing chapters. Equipped with these tools I present in Chapter 5 a first application of these methods
to the problem of the recovery of the power spectrum of primordial perturbations. In this canoni-
cal example of a linear inverse problem, the aim is to use measurements of the anisotropies of the
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Cosmic Microwave Background we observe today to reconstruct this primordial power spectrum,
which carries valuable information about the physics at play in the primordial universe.

In the second part of this thesis I focus on the particular problem of weak lensing mass-mapping.
After introducing the weak lensing framework in Chapter 6, I first address in Chapter 7 the prob-
lem of the high-resolution 2D mass-mapping of galaxy clusters from weak lensing alone. I develop
a new approach, based on sparse regularisation which makes use of higher order lensing informa-
tion in order to improve the resolution of the mass map and allow the detection of small substruc-
ture. The ability to reconstruct mass maps at these resolutions from weak lensing alone can be of
considerable interest for investigating the nature of dark matter. In Chapter 8 I consider the more
difficult problem of reconstructing the dark matter density in three dimensions, using tomographic
weak lensing information. The sparse reconstruction method I develop in this chapter is capable
of recovering both the masses and distances of dark matter halos and represents a significant im-
provement over previous state-of-the-art techniques, opening the door to new applications for this
kind of analysis.

The last part of this thesis focuses on the 3D analysis of cosmological surveys in spherical coor-
dinates. By nature, cosmological surveys which include distance estimates, such as spectroscopic
galaxy surveys, live on the 3D ball. Preserving this spherical geometry in the subsequent analysis is
crucial to avoid unnecessary mixing of purely radial or angular effects. In Chapter 9, I develop the
first practical wavelet transform on the 3D ball which allows analysis and synthesis in both contin-
uous and discrete settings. This isotropic, shift invariant wavelet is ideally suited for the analysis
of galaxy surveys. Finally, I present in Chapter 10 a comparison of methods for the 3D analysis of
spectroscopic galaxy survey. The first method investigated is a partial, tomographic expansion of
the data while the second is a full harmonic expansion on the 3D ball. As demonstrated, the full
3D expansion is more robust to unavoidable systematic effects than a more standard tomographic
analysis, especially for constraining dark energy parameters.
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The purpose of this first chapter is to provide the general cosmological background for the rest
of this thesis. We introduce in particular the standard cosmological model and present some of the
current challenges of modern cosmology. This chapter is complemented by Chapter 6 which will
be dedicated to gravitational lensing.

2.1 THE ACDM MODEL

In this section, we briefly describe the cosmological concordance model, which has been so far
extremely successful at describing cosmological observations. This model is based on two primary
components, Cold Dark Matter (CDM) and a non-vanishing cosmological constant A, and is con-
sequently known as ACDM.

In the currently commonly accepted picture of the Universe, shortly after an initial singular-
ity, the Universe underwent a very brief period of exponential expansion, known as inflation (see
Section 2.3.1), which imprinted small fluctuations of quantum origin on an otherwise extremely
smooth background. This short period of inflation ended around 10732s after the initial singular-
ity, marking the beginning of an era of much slower expansion and progressive cooling. After
this initial phase, the Universe was filled with a hot plasma of baryons, electrons, and photons.
The mean free path of photons remained extremely short during a long time and this plasma was
therefore opaque. As the Universe expanded it slowly cooled down, until the temperature reached
the 3000 K mark, about 380,000 years after the Big Bang, at which point electrons and protons
combined to form neutral atoms. During this event, called recombination, the mean free path of
photons suddenly increased to reach the order of the Hubble scale and the Universe became trans-
parent. The first light emitted at this epoch is still visible to this day as the Cosmic Microwave
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Figure 2.1: Cosmic history of the Universe from the Big Bang to present day. Credit: ESA - C. Carreau

Background (CMB), now observed in the microwave domain at a temperature of 2.725 K and iden-
tified for the first time by Penzias and Wilson (1965). The evolution of the Universe then remained
dominated by its matter content, allowing the growth of the initial density perturbations into the
large scale structure we observe today, through gravitational collapse. About 4 billion years ago,
the Universe entered a new phase of accelerated expansion, believed to be driven by dark energy,
which will eventually stop the growth of structures. Our understanding of this history of the Uni-

verse is summarised on Figure 2.1.

In order to describe this evolution, the ACDM model assumes that the Universe is composed of
the following fluids, each behaving and influencing the dynamics of the Universe in a distinct way:.

DARK ENERGY The total energy content of the Universe today is dominated at 69.11 % by a
mysterious dark energy. As we will see in the following section, this energy has negative pressure
and is driving a new phase of accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999). So far,
this energy remains undistinguishable from a non-vanishing cosmological constant A in Einstein’s
equations. One the main goals of the next generation of cosmological surveys will be to determine
whether dark energy is indeed due to a cosmological constant or if it behaves as a dynamical field.

coLD DARK MATTER  The second largest contribution to the total energy content of the Universe,
accounting for 25.84 %, is due to dark matter. This non-baryonic matter does not interact through
the electromagnetic interaction, and is therefore invisible, hence its dark denomination. If the true
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Parameter name Symbol Value
Hubble constant H, 67.74 = 0.46
Dark energy density Qa 0.6911 + 0.0062
Total matter density Qn 0.3089 + 0.0062
Physical Baryon density Qph?  0.02230 +0.00014
Power spectrum normalisation o 0.8159 + 0.0086
Spectral index N 0.9667 + 0.0040
Reionisation optical depth T 0.066 + 0.012

Table 1: Main cosmological parameters 68 % confidence limits for the ACDM from Planck Collaboration
et al. (2015b). These parameters are derived from a combination of Planck CMB power spectra
with the lensing reconstruction and external data (BAO+JLA+Hj).

nature of dark matter remains unknown, it is an essential component of the standard cosmological
model and although it has not be directly detected or produced to this day;, its existence is necessary
to explain a number of observations, in particular, the famous weak lensing mass-mapping of the
Bullet cluster (Clowe et al., 2004, 2006). Several flavours of dark matter have been proposed, but
the currently favoured model is Cold Dark Matter (CDM), where the cold denomination implies
that dark matter particles are non-relativistic.

BARYONIC MATTER  The remaining 4.86 % are composed of ordinary baryonic matter, essentially
in the form of hydrogen and helium gas in the intergalactic medium.

RELATIVISTIC SPECIES  Finally, the Universe today contains trace amounts of electromagnetic
radiation, mainly due to the CMB photons. Cosmological neutrinos can also contribute to this
component.

One of the success of the ACDM model is its ability to describe this evolution of the Universe
and reproduce all cosmological observations from a small set of parameters, the most relevant of
which are summarised on Table 1.

2.2 THE HOMOGENEOUS ISOTROPIC UNIVERSE

2.2.1  Cosmological General Relativity and the FLRW metric

Our comprehension of the Universe and its evolution relies on Einstein’s theory of General Relativ-
ity (GR). In this geometrical theory of gravity, what appears like a gravitational force is only the
consequence of the curvature of the 4 dimensional spacetime. In turn the curvature of spacetime
will be generated by its energy-momentum content. Applied to cosmological scales, GR makes the
link between the geometry of the Universe and its matter and energy content and describes their
dynamical evolution with time.

5
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The local geometry of spacetime is entirely described by the metric tensor g,,, which allows the
computation of distances between two points by defining a line element ds*:

ds® = Guv dx¥ dx” (2.1)

where x* is some set of coordinates with indices ranging from o to 3, with by convention o being
the time dimension and 1-3 the spatial dimensions. As a special example, let us consider a flat
spacetime. In this case, the metric reduces to the Minkowski metric ,,, of special relativity defined
in Cartesian coordinates by:

—c“ 0 0 O
0 1 0 O
n = (2.2)
0 0 1 0
0 0 0 1

In GR, in the absence of external forces, the inertial motion of particles (including massless
photons) in a curved spacetime is determined by the geodesic equation:

dixH, dx® dy#
oz lapgrar 7O (23)

where the affine parameter A is a scalar parametrising the particle along its trajectory and F{g 5 are
Christoffel symbols, function of the metric g, and its partial derivatives:

ap 29 (2.4)

1 OGva  O9vp  09ap
" = ZgHv -
(axﬁ T xe  oxv

Trajectories which verify Equation (2.3) are known as spacetime geodesics. This equation will be
especially important to present the gravitational lensing effect in Chapter 6 as it describes how
light propagates in a curved spacetime and in particular how images from distant galaxies are
lensed by the intervening large scale structure of the Universe. In the particular case of a flat
spacetime, described by the metric 77, the Christoffel symbols simply vanish, as the components
of the metric are constants, and Newton’s first law of motion can be recovered:

d?xH
dtz = 0 (25)

In this case, the geodesic is simply a straight line as one would expect in the absence of external
forces.

If the motion of free falling objects can be explained by the curvature of spacetime, the question
is now what causes spacetime to acquire curvature in the first place. This is described in GR by
the famous Einstein field equations which relate the curvature to the local energy and momentum
content of spacetime through the following expression:

_Tpv (2.6)

where T, is the energy-momentum tensor and G, is the Einstein tensor which measures the cur-
vature of spacetime and can be expressed in terms of the Christoffel symbols and their derivatives
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but remains ultimately a function of the metric g,,. The energy-momentum tensor describes the lo-
cal density and flux of energy and momentum of all the content of spacetime, including matter and
radiation. Solving analytically the Einstein field equations without any additional considerations
such as symmetries of the system is generally not possible. In particular, applying these equations
to describe the evolution of the entire Universe will require some simplifying assumptions, as we
will see now.

One of the cornerstones of cosmology is the Cosmological Principle which implies that the Uni-
verse is both isotropic and homogeneous on large scales. Although this principle can seem at odds
with our own direct experience of the Universe, which is extremely inhomogeneous at our scale, it
is remarkably well verified on large scales by CMB and Large Scale Structure (LSS) observations.

Thanks to the Cosmological Principle, the Einstein field equations can be greatly simplified. First
and foremost, as was shown independently by Robertson and Walker in the mid 1930s, the metric
describing an homogeneous and isotropic Universe is unique and is known as the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric:

ds? = —c2dt? + d?(t) (drz + fr(r)? dQZ) (27)

where r is the time independent comoving distance, a(t) is the scale factor describing an isotropic
scaling of the cosmological comoving coordinate system with time and the function fx(r) is the
transverse comoving distance which depends on the curvature K of the Universe:

K~V2sin (K_l/zr) for K > 0 (spherical)
fxk(r)=1r for K = 0 (flat) (2.8)
IK|~'/2 sinh (|K|_1/2r) for K < 0 (hyperbolic)
The second simplification implied by the Cosmological Principle is that the matter-energy con-

tent of the Universe can be described as a perfect fluid which is completely characterised in a
comoving inertial frame by a simple energy-momentum tensor of the form:

0
T = 0
0

o o o v

0 0
p 0
0 p
0 0 p
where p is the energy density and p the pressure of the fluid. As we will see in the next section,
the total energy density and pressure can be separated into different contributions for the various
components of the Universe, each with their own equations of state.

Thanks to the simplification of both the metric and the energy-momentum made possible by the

Cosmological Principle, the Einstein field equations can now be used to describe the dynamical
evolution of the Universe.

7



8

| COSMOLOGICAL CONTEXT

2.2.2  The dynamics of the universe

Combining the FLRW metric and the energy-momentum tensor of a perfect fluid in Einstein field
equations yields two independent equations relating the dynamical evolution of the Universe to
its matter and energy content. These are known as the Friedmann equations:

a\? 8rnG Kc?
(5) =" (2.10)

a 4 3
o= —§7TG (p + c_lz)) (2.11)

Let us introduce the dimensionless Hubble parameter H(t) = a(t)/a(t) whose value at present
time t = ty, i.e. for a = 1, is the Hubble constant Hy = a(ty). The Hubble constant therefore
corresponds to the speed of the expansion of the Universe today. Hy is usually defined in terms of
the dimensionless reduced Hubble constant h according to:

Hy = 100 h km s™! Mpc™! (2.12)

Given the first Friedmann equation, the Hubble parameter at any given time or equivalently, any
given scale factor can simply be deduced from the total energy density p. To describe the evolu-
tion of p with the scale factor, both Friedmann equations can be combined to yield the following

dpo 3
—p+—(p+c%)=0 (2.13)

da a

conservation relation:

For the various components of the Universe, one can define an Equation Of State (EOS) relating
the pressure of the fluid to its energy density through a parameter w:

p=ctwp. (2.14)

In particular, for non-relativistic matter (cold dust), w,, = 0 while for relativistic species w, = 1/3.
For these two particular cases, the EOS is constant and Equation (2.13) is readily solved:

pr(a) = Pr,Oa_4 5 pm(a) = pm,Oa_3 (2.15)

As one can see from the acceleration equation Equation (2.11), a fluid with an EOS with w <
—1/3 would drive an acceleration of the expansion. In particular, a cosmological constant can be
interpreted as a fluid with a fixed EOS wy = —1, in which case its energy density remains constant
with time. However, in order to investigate the nature of dark energy, one can let its EOS free to
vary with time, which leads to the following expression:

Ina
pie=paead®  with  f@ = [ G4 wa(@)dina (216)
na J,

To restrict the functional space of wy.(a), several parametrisation have been used in the liter-
ature. Throughout this work we will be using the common Linder (Linder, 2003) parametrisa-
tion wge.(a) = wy + wu(1 — a). This parametrisation makes explicit a possible dependence of the
EOS with time through the w, parameter and would reduce to a simple cosmological constant
for wo = —1 and w, = 0. For this specific form of the EOS, the function f becomes f(a) =
=3(1 + wp) — 3w, (1 + 1;{;‘)) The total energy density p(t) can be expressed as the sum of

p(a) = pm(a) + pr(a) + pae(a) (2.17)
= pr,Oa_4 + pm,Oa_3 + pde,Oaf(a) (2-18)
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One can see from Equation (2.10) that for a specific value p. of the density p, the curvature of
the Universe K vanishes. This value is known as the critical density and can be expressed as:

3H?(a)
871G

It is common to rescale the density p by the critical p, and define a dimensionless density parameter
Q:

pela) = (2.19)

Q(a) = pla) (2.20)
pe(a)
which leads to
Qa) = Qra* + Qa™> + Qgea’ @ (2.21)

By definition of the critical density, Q = 1 would correspond to a flat universe otherwise, for
non-zero curvature Q # 1. The effect of curvature can conveniently be interpreted as an additional
energy density by defining a curvature density parameter Qx(a) = 1 — Q(a).

H%(a) = H? [Qra_4 +Qna + Qra? + Qdeaf(“)] (2.22)

2.2.3 Distances

Redshift

In an expanding Universe described by the FLRW metric it is easily shown that the light coming
to us from distant sources undergo a shift in frequency which can be expressed as the ratio of the
scales factor at the emission and observation:

Aobsy __ Qobsv
A_~ = a— (2.23)
emit emit
In the absence of expansion dohsy = demit and the wavelength of the light is not affected as it
propagates through the Universe. However, if the Universe expands, the scale factor at the time of
observation is larger than it was when the light was emitted by the distant source, in which case
Aobsy > Aemit: the spectrum is shifted towards the red. This shift in wavelength is quantified by the
dimensionless cosmological redshift z defined as:
)Lobsv - Aemit

z= —Aobsv (2.24)

Given that the scale factor is normalised at a = 1 at present time, the measured redshift z of a
distant source is directly linked to the scale factor at the time of emission by:

1

a= 2.2
1+2z (2.25)

The redshift of distant sources can directly be linked to their distance through the cosmological
model and therefore this effect provides us with an invaluable tool to probe the depth of the Uni-
verse.

This link between redshift and distance was first established by Edwin Hubble in 1929 who
observed a roughly linear relation between the velocity and the distance of "extra-galactic nebulae"
(Hubble, 1929) which is known as Hubble’s law : v = Hyr. This linear law is only true for the local
Universe and can be recovered from the definition of the Hubble parameter. On cosmological scales,
the evolution of the Hubble parameter with time needs to be taken into account.

9
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Comoving distance

The comoving distance r has been introduced with the formulation of the FLRW metric and cor-
responds to the distance between two points in the cosmological comoving coordinate system.
As the Universe is expanding, the physical proper distance between objects is always fluctuating
(increasing) but the comoving distance remains unaffected by the expansion by factoring out the
scale factor a.

As was mentioned in the previous paragraph, the cosmological model allows us to relate the
observed redshift of a distant source to its comoving distance with respect to the observer. The
expression of this relation can be worked out from the definition of the metric dr = a~!c dt and
the definition of the Hubble parameter dt = a"'H(a)™! da:

U cda
r(a) :/a TIH@) (2.26)

This expression gives us the comoving distance of an object given that we observe now light that

it emitted when the scale factor of the Universe was equal to a. Equivalently this relation can be
expressed in term of the observable redshift, given Equation (2.25) :

Z cdz’

o H(z') .

r(z) = (2.27)

Angular diameter distance

The angular diameter distance, as its name implies, is linked to another fundamental approach
to measuring distances based on geometrical considerations. In Euclidian geometry, the distance
to an object of a given size can simply be related to its apparent angular diameter. In complete
analogy, the angular diameter distance D4 is defined so that an object of physical size A observed
at a redshift z will have an apparent angular size 56 according to:

Da(z) = % (2.28)

This distance can directly be expressed in terms of the transverse comoving distance fx(r(a))
defined in Equation (2.8):

Da(a) = afx(r(a)) =

f(r(2) (20
z

Luminosity distance

A last essential measure of distances is the luminosity distance, which is based on the scaling of
the flux of a distant source with its distance. It is defined so that the observed flux F of a source at
distance Dy, with an intrinsic luminosity L correspond to:

L

=— (2:30)
2
47rDL

This distance can be expressed in terms of the transverse comoving distance fx or the equivalently
in terms of the angular diameter distance as:

a”' fx(r(a)) = a”*Da(a) (2.31)
(1+2)fi(r(2)) = (1+2)°Da(2) (2.32)

Di(a)
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Figure 2.2: Cosmological distances as a function of redshift in a flat universe with Q,, = 0.25 and Q4. =
0.75.

The three cosmological distances presented in this section are plotted as a function of redshift
on Figure 2.2.

2.3 LINEAR STRUCTURE FORMATION

The Universe described in the previous section is smooth and homogeneous, which if course is at
odds with observations of the LSS. It is however possible to describe the formation and evolution
of these structures by treating them as small fluctuations on top of the smooth FLRW background
which leads to the linear theory outlined in this section.

2.3.1  Primordial perturbations

The structures we observe today can be described by the gravitational collapse of small inhomo-
geneities present in the early Universe. The commonly accepted mechanism to explain the origin
of these perturbations is known as inflation (Guth, 1981; Linde, 1982) which corresponds to a short
period of exponential expansion underwent by the Universe, ending approximately 10~*°s after
the initial singularity. In simple inflationary models, this expansion is driven by a scalar field, the
inflaton, which can exert a negative pressure (much like dark energy) for a limited amounted of
time as the field slowly rolls towards a ground state, at which point inflation stops. In this process,
quantum fluctuations of the inflaton are imprinted in the metric and reach macroscopic scales
under this extremely fast period of expansion. As inflation ends, these perturbations of quantum
origin remain and will act as seeds for the eventual formation of large scale structures.

11
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The scale dependence of these perturbations are encoded by the Primordial Power Spectrum
(PPS), generally expressed in the following parametric form:

ns—1+%(x3 In(k/kp)
) : (2.33)

Pl =

P
where k, is a given pivot scale, A; is the overall amplitude of the power spectrum, n, is known as
the spectral index and « is an optional running parameter. An exactly scale-invariant PPS, known
as the Harrison-Zeldovich model, which sets n; = 1 and «; = 0 (Harrison, 1970; Zeldovich, 1972), is
now significantly disfavoured by CMB constraints (Planck Collaboration et al., 2015b), and a near
scale-invariant spectrum is instead preferred by current observations.

To this day, there is no direct evidence to confirm the validity of the inflationary paradigm, but
inflation is nonetheless a remarkably successful phenomenological model. In addition to providing
an explanation for the origin of primordial perturbations, it was realised by Guth that a period of
exponential expansion of the Universe could explain some of the major issues in cosmology not
directly addressed by the standard model, in particular the horizon and flatness problems described
below.

THE HORIZON PROBLEM  As mentioned in the previous section isotropy and homogeneity are
part of the fundamental assumptions of cosmology. Yet on the largest scales the Universe ap-
pears simply too isotropic. In particular, the level of isotropy of the CMB is baffling (temperature
anisotropies are at the 107> level) as it would have required regions of the universe at opposite
position on the sky to have been in causal contact in the past, in order to reach a common ther-
mal equilibrium, which should not have been possible under matter or radiation domination. The
period of exponential expansion associated with inflation conveniently solves this problem by al-
lowing the entire observable Universe to have originally occupied a very small volume. Within
this small volume, even the largest scales observable today would have been in causal contact and
reached thermal equilibrium before the onset of inflation.

THE FLATNESS PROBLEM  Current observations seem to suggest that the Universe today is in
fact flat, with Qg =~ 0. In itself this result is not paradoxical, however the curvature parameter
steadily increases with the scale factor during matter and radiation domination, which means that
in order for the curvature to be small today, the Universe would have needed to be exceptionally flat
in the past (Q of the order of 107! at the epoch of nucleosynthesis). Such small values seem oddly
specific and pose an acute fine-tuning problem. Inflation provides a mechanism to explain why the
Universe was so flat at early times as curvature is naturally diluted during a period of exponential
expansion. As a result, any non-zero initial curvature can be sufficiently suppressed by the end of
inflation to fall within the current constraints, thus eliminating the fine-tuning problem.

2.3.2 Linear growth

As discussed above, inflation can be invoked to produce small density perturbations in an otherwise
homogeneous universe. These primordial perturbations will act as seeds which will grow, driven
by gravitational collapse, to ultimately form the structures present in our Universe today. In the
limit where these perturbations remain small, their growth can be described by a linear evolution
as we will describe in this section.
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Figure 2.3: Linear growth factor as a function of scale factor for an Einstein-de Sitter universe (Q,, = 1)
and a flat universe with a cosmological constant. The presence of a non vanishing cosmological
constant suppresses the growth of structure when the universe leaves matter domination.

Let us introduce the matter density contrast §(x, a) at comoving position x and at scale factor a,
defined in terms of the matter density p,, as:

pm(x,a) — pm(a)

dea) =0 @

(2.34)

where p,,(a) is the mean matter density at scale factor a. In the limit of small perturbations § < 1
(verified on large scales and at early times), the evolution of the density contrast can be described
by linear perturbation theory. It can be shown (e.g. Dodelson, 2003; Peebles, 1980) that in the
limit of small peculiar velocities and for collisionless dark matter, the density contrast follows a
differential equation of the form:

5 +2HS6 — 4nGpmd = 0. (2.35)

In this very simple differential equation, the matter density p,, can be interpreted as a source term
while the Hubble parameter H behaves as a damping term. The growth of structure is therefore
suppressed by the expansion of the Universe. Another important point is that this equation allows
the decoupling of spatial and temporal coordinates and accepts general solutions of the form:

d(x,a) = D+(a) fi(x) + D_(a) f2(x) , (2.36)

where fi and f, are particular initial conditions while D, and D_ are respectively a growing and
decaying mode. We are only interested in the growing mode D, as D_ eventually decays and does
not affect structure formation. The general solution of this growing mode is:

5Q,, H(a)

a da/
D{a) = 2 Hp /o (a’H(a’)/Ho)* (37

This expression is normalised so that D, (a) = a during matter domination. Figure 2.3 illustrates
the impact of dark energy on this growth factor, which clearly suppresses growth compared to a
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matter dominated Universe. For the rest of this thesis, we will define the normalised linear growth

factor D as: D.(a)
a

D(a) = ———— . 2.38

(a) Dia=1) (2.38)

This normalisation ensures that the growth factor today is equal to 1, so that the density contrast

d(x, a) at a given time a can simply be described in terms of the density contrast today d(x) as:

d(x,a) = 5(x)D(a) . (2.39)

2.3.3 Matter power spectrum

As can be demonstrated using stationarity and isotropy arguments, the Fourier modes of a Statisti-
cally Isotropic and Homogeneous (SIH) field are uncorrelated. In particular, as the density contrast
d(x) can be expected to verify this STH condition as a consequence of the Cosmological Principle,
this implies that the two-point correlation function of the 3D Fourier transform of the density field
can be expressed as:

< 8(k)* (k") >= (2rr)® P(k) Sp(k — k') . (2.40)

where dp is the Dirac delta function and P(k) is defined as the 3D matter power spectrum. One of
the main cosmological parameters, og, quantifies the normalisation of this power spectrum and is
defined by the variance of the density contrast within a window of 8~ !Mpc.

Under linear evolution, the Fourier modes of the density contrast involve independently, and
this evolution can be described in terms of a linear transfer function T(k), defined in Fourier space

as:
S(k,a=1)8(k = 0,a = 0)

S(k,a=0)8(k =0,a=1)

This function therefore accounts for the modulation of each Fourier mode between their original

T(k) = (2.41)

value at the end of inflation (a = 0) and their current value (a = 1). This includes not only the total
linear growth described previously but also accounts for the different times of horizon crossing
of different scales and most importantly for Baryon Acoustic Oscillations (BAO) effects, which are
due to the propagation of acoustic waves in the baryon-photon plasma before recombination. The
proper computation of this transfer function requires the use of Boltzmann codes such as CLASS
(Lesgourgues, 2011) or CAMB (Lewis et al.,, 2000) but a number of analytical fitting formulae are
also available when an exact computation is not essential. In particular, we use in Chapter 10 the
common fitting formula from Eisenstein and Hu (1998). This transfer function allows us to relate
the power spectrum today P(k) to the PPS, according to:

P(k) = T2(k) P,(k) . (2.42)

This linear transfer function only accounts for the evolution of density fluctuations in the linear
regime. On small scales, and at late times, the evolution of the density contrast becomes non-linear
and this simple description of the growth of structure breaks down. Non linear corrections can be
added to the linear power spectrum using for instance the Halofit code corresponding to Smith
et al. (2003). The impact of these non linearities is an enhancement of the power spectrum on
small scales. A comparison of linear and non-linear power spectra is shown in Figure 2.4.
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Figure 2.4: Matter power spectrum as a function of scale factor. The linear power spectrum computed with
the fitting formula from Eisenstein and Hu (1998) is compared to the non-linear power spectrum
computed following Smith et al. (2003). In both cases, BAOs are causing characteristic wiggles
on the power spectrum.

2.4 CONCLUSION

If the parameters of ACDM are now well constrained (see Table 1), understanding the nature of
dark matter, dark energy and the physics of inflation are the main challenges of modern cosmology.

In the rest of this thesis, we will rely on this standard cosmological model and develop new tools
that can be used to help address the pressing questions of modern cosmology. In Chapter 5 we will
propose a new tool for probing inflationary models by reconstructing the PPS. In Chapter 7 and
Chapter 8 we will develop new tools for mapping the dark matter distribution, which can even-
tually be used to investigate different dark matter models and constrain cosmological parameters.
Finally in Chapter 10 we present a comparison of methods for the 3D analysis of galaxy surveys,
with a particular focus on constraints on the dark energy EOS.
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Sparsity is a concept used to describe signals which, when expressed in an appropriate basis, can
be represented with a small number of coefficients. More fundamentally, this apparently simple
notion implies that the intrinsic number of degrees of freedom of a sparse signal is low, which
makes in fact a very strong statement about the nature of the signal. Sparsity provides a mathe-
matical framework to characterise this class of signals and leverage their properties to address a
wide range of practical problems.

A particular class of problems efficiently solved using sparsity are linear inverse problems. In
such problems, one aims at recovering an unknown signal from a set of observations, degraded by
a linear operator. As we will see in this chapter, if the signal to recover is known to be sparse, it can
be robustly estimated from the measurements, even if the linear operator involved is not formally
invertible.

The aim of this chapter is to introduce the mathematical concept of sparsity, how it can be
applied to the regularisation of inverse problems, and most importantly, provide the algorithmic
tools allowing us to efficiently solve these problems in practice. These tools, combined with the
sparse representations introduced in Chapter 4, will form the core of the methods developed in
the rest of this thesis to address various problems in the cosmological context.

3.1 INTRODUCTION TO SPARSITY

The concept of sparsity is very akin to Occam’s razor: if two hypotheses can explain equally well
the observations, the one with the fewest assumptions (i.e. the simplest one) should be preferred.
Sparsity provides a mathematical framework to quantify the complexity of potential solutions to
an inverse problem and therefore identify the simplest one.
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— ST,
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Figure 3.1: Response of the Hard Thresholding (blue) and Soft Thresholding (red) operators. Hard Thresh-
olding only sets to zero coefficients with an amplitude lower than A. Soft Thresholding shrinks
the amplitude of coefficients by A and sets to zero coefficients of amplitude lower than A.

A signal is considered to be sparse when most of its coefficients are zero. More precisely, if we
consider a discrete signal x € RN then x is said to be exactly k-sparse if only k of its coefficients
Xi],[1...ny AT€ NON ZETO. Behind this definition is the notion that for two signals living in the same
space, a sparse signal has a lower number of degrees of freedom than a non-sparse signal.

Quantifying the sparsity of a given signal x is simply a matter of counting the number of ac-
tive (i.e. non-zero) coefficients of x. To describe this measure mathematically, we introduce the ¢
pseudo-norm, noted || - ||y, which counts the number of active coefficients of a signal. The £, norm
can formally be defined by considering the active support of a signal Supp(x), the set of indices of

non-zero coefficients, defined as
Supp(x) ={i € [L,N] | x;#0}. (3.1)

Therefore || x ||y is simply the number of elements of the set Supp(x) which leads to the following

definition
Vx € RY, || x [lo= Card(Supp(x)) , (32)

where Card(X) is the cardinality of set X.

In practice however, this mathematical definition of exactly k-sparse signals is not always adapted
to natural signals. Indeed, a signal may have only a few coefficients with a high amplitude, yet small
coefficients are seldom identically zero, in which case its €y, norm is potentially high. Nevertheless,
such a signal can be considered as compressible, or weakly sparse, in the sense that it can be well
approximated by a strictly k-sparse signal. Indeed, a good approximation of such a signal but with
a lower £y norm can be built by setting negligible coefficients to zero and keeping only the k most
significant coefficients.

To mathematically describe this operation, one can introduce the Hard Thresholding operator
HT, which sets to zero coefficients of amplitude lower than a given threshold A € IR:

x;  if x| = A
& (3.3)

Vie [L,N], HTu(x); = .
0 otherwise

The response of the Hard Thresholding operator is illustrated in Figure 3.1. Using this operator, one
can build a strictly k-sparse non-linear approximation %, = HT,, (x) of a signal x by adjusting
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Figure 3.2: Example of sparse approximation for a compressible signal. By setting the threshold A to the
amplitude of the fifth largest coefficient, only significant (blue) coefficients are preserved after
applying HT, while non-significant coefficients (red) are set to zero.

the level of the threshold Ay to the amplitude of the k-th largest coefficient of x. Provided that the
original signal x had only k significant coefficients (i.e. coeflicients of non negligible amplitude)
the error induced by the non-linear approximation will be small. Figure 3.2 illustrates this concept
of sparse approximation of a compressible signal. Only five coefficients (marked in blue) are sig-
nificant while the rest of the coefficients (marked in red) have negligible amplitude. By setting the
threshold value A to the amplitude of the fifth largest coefficient, after Hard Thresholding all but
the five most significant coefficients will be set to zero.

The quality of this non-linear approximation can be quantified by introducing a distance d be-
tween two signals and measuring the distance between the original signal and its approximation.
Depending on the specific application various distances can be used but the most common is based
on the quadratic £, norm which quantifies the energy of the approximation error. Given two signals
x and y in IRYN | the distance d between these two signals is

dx,y)=llx-yl . (3-4)

Therefore, one can quantify the degradation of the signal caused by a sparse approximation as
d(fq P x).

Using these concepts, we can formally define a class of signals said to be compressible if the sorted
magnitude of their coefficients decays quickly according to a power law. If i(n) is the index of the
n-th largest coefficient of x, such that |x;q)| > |xj1)| > ... > |x;v)|, then a signal is compressible
if there exists C € IR* and s > 1/2 such that:

Vne [I,N], |xjnl <Cn™°. (3:5)
With this definition, the larger the value of s, the faster the decay of the coefficients. For compress-
ible signals, the k-sparse non-linear approximation error can be bounded:
C?  aent
d(X),, x) < ——k™=". 6
(¥, x) < o (3.6)

This upper bound guarantees that the faster the decay of the coefficients, the smaller the non-linear
approximation error is when approximating a compressible signal by an exactly k-sparse signal.
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As a result, most of the developments presented in the following for exactly sparse signals still
hold to a very good approximation if the signals are in fact compressible.

Nevertheless, although the notion of strict sparsity can be extended to compressibility, most
natural signals are neither sparse nor compressible in the space in which they are measured. For
instance, a sinusoidal signal sampled in the time domain is clearly not sparse as most of its co-
efficients are of significant amplitude. However, through a Fourier transform, such a signal can
equivalently be represented in the frequency domain, in which it is extremely sparse (a sine is
1-sparse in the frequency domain).

This leads to the fundamental idea that the sparsity of a signal will be intrinsically linked to the
domain used to represent it. Therefore finding appropriate signal representations that maximise
the sparsity of certain classes of signals is an active and important research field for the application
of sparse methodologies.

3.1.1  Sparse signal representation

Any given signal can be represented in a variety of domains without loss of information, but
depending on the properties of the signal and on the application, a given representation may be
preferred. In particular, finding signal representations that maximise the sparsity of the coefficients
is of special interest in the perspective of applying sparse methodologies.

A signal can be modelled as a linear combination of elementary templates called atoms. A family
of atoms which can span the functional space in which the signal to represent lives is called a
dictionary. More formally, given a signal x € RN, x can be represented in a dictionary ® € RV*F

with P > N as a linear combination of P atoms ¢; € RN:

P
x=®ax=) ¢, (37)
i=1

where a € R¥ are the coefficients of x in dictionary ®. An important distinction can be made at
this point between redundant and non-redundant dictionaries. If the atoms of ® form a basis of
RV, the size of the dictionary is N X N and the decomposition & is unique and non redundant
as « has the same size as x. On the contrary, when P > N, the atoms of the dictionary are not
linearly independent and the decomposition « is no longer unique. On one hand, non-redundant
representations will lead to simpler sparse optimisation problems but, on the other hand, over-
complete dictionaries will offer more flexibility in their design to better suit specific applications.

A fundamental example of non-redundant representation is the Discrete Fourier Transform (DFT):

x =Fx, (3-8)
where x denotes the DFT of vector x and F is the Fourier matrix defined as :

1 .
Fan — elZn’kn/N )

VN

The Fourier transform is the classical example of sparse representation for stationary periodic

(3.9)

signals. Indeed, a sine, which is not sparse in the time domain, becomes exactly 2-sparse in the
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Figure 3.3: Examples of atoms from various dictionaries. As a general rule, to achieve a sparse representa-
tion, one should choose a dictionary whose atoms correspond to the morphology of the signal.

Fourier domain. Furthermore, the DFT benefits from efficient Fast Fourier Transform (FFT) algo-
rithms with a complexity in O(N log N). We will also mention the very closely related Discrete
Cosine Transform (DCT) defined by:

N-1
1
ag = Z X, COS (%(n + E)k) (3.10)
n=0
and its inverse formula:
N-1
21 1
Xk = N (50{0 + ; ap cos (%(k + E)n)) . (3.12)

The DCT dictionary can be extended to 2D discrete signals as a separable product of the DCTs
along each direction. This dictionary is particularly well suited to represent textures and can be
efficiently implemented using fast cosine transform algorithms with a complexity in O(N log N).
This makes the DCT a good candidate for image compression applications.

A major drawback of these dictionaries is that their atoms are non local. As a result, they are not
efficient at representing local features or more generally non stationary signals. These limitations
can be mitigated by analysing the signal in windows small enough so that the properties of the
signal can be assumed to remain stationary, which leads to the Short-Term Fourier Transform (STFT)
or the block-DCT, used in the popular JPEG format.

Yet an even more efficient solution to overcome these limitations is to resort to wavelets. Wavelets
are by construction designed to probe a signal in both time and frequency and provide sparse
representations for piecewise smooth signals. Again, efficient algorithms are available for their
computation, with complexities in O(N) compared to the O(N log N) of the FFT or the DCT. In
general, wavelets lead to very sparse representations of natural images and have replaced the DCT
in the more efficient JPEG 2000 format. Orthogonal and redundant wavelet transforms will be in-
troduced in detail in Chapter 4 and most of the applications presented in this thesis will be based
on wavelet dictionaries.

A plethora of more complex sparse representations have been developed over the years since
the first wavelets' with the aim of designing dictionaries adapted to specific applications or classes
of signals. For instance, one of the shortcomings of wavelets is their lack of directionality which
makes them rather inefficient at representing highly anisotropic features such as edges on 2D im-
ages. This has led to the development of ridgelets(Candes and Donoho, 1999) and curvelets (Starck

1 Seehttp://tinyurl.com/wits-wavelets-starlet for a great compilation.
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et al,, 2002; Candés and Donoho, 1999) which are respectively extremely effective representations
for lines and edges. Examples of typical atoms of these dictionaries are shown on Figure 3.3.

An alternative to the traditional design of sparse representations was proposed in Aharon et al.
(2006) and consists in directly learning sparse representations from examples of the signal. This
approach, known as Dictionary Learning (DL), involves solving an optimisation problem to find
a dictionary which leads to the sparsest representation of the signals in the training set. Because
these dictionaries are specifically built to optimise the sparsity of a given signal, they usually out-
perform more generic dictionaries such as wavelets (see for instance Beckouche et al. (2013) in the
context of astronomical image denoising).

Figure 3.4 illustrates the sparse representation of a natural image using an orthogonal wavelet
dictionary. The sorted amplitudes of both the pixels of the image and its wavelet coefficients are
plotted in Figure 3.4b. As can be seen, the amplitude of the coefficients decays much faster in the
wavelet domain than in the direct domain. In particular, because of the power law decay of the
wavelet coefficients, this image can be considered compressible in this wavelet dictionary. The
bottom panels show the non-linear approximation of the input image setting 99% of the coeffi-
cients to o in the direct and wavelet domains. Whereas, the remaining 1% most significant wavelet
coefficients retain most of the information, it is not the case of the 1% most significant pixels.

3.2 SPARSE REGULARISATION OF INVERSE PROBLEMS

As mentioned at the beginning of this chapter, a key application of the sparsity concept is the reg-
ularisation of linear inverse problems. Such problems cover a very wide range of applications and
typically involve recovering an unknown signal from a series of linear measurements. Most of the
time, either because of noise or degeneracies in the linear operator involved in the measurements,
the solution of the inverse problem is not unique and additional information is required to recover
the signal of interest. In this context, sparsity offers a framework to use the morphology of the
signal as a powerful regularising prior.

3.2.1 Basis Pursuit Denoise
In this section, we consider general linear problems of the form:
y=Ax+n, (3.12)

where x € RY is an unknown signal to recover, y € R™ contains the measurements and n €
RM is an additive noise, assumed to be Gaussian with diagonal covariance oI4. Finally A is a
bounded linear operator which degrades the signal x and which is typically ill-behaved so that
A~! does not exist or is extremely unstable with respect to the noise. For instance, in the case of a
deconvolution problem, A is a convolution by a blurring kernel which removes the high-frequency
details of x. Another example is the inpainting problem where A is a binary mask which sets to
zero portions of the signal x. In both instances, the operator is not invertible and without additional
prior information, an infinite number of solutions X are possible.

To constrain the space of possible solutions, we consider as additional prior information that
the signal x is sparse in an adapted dictionary ® i.e. there exists a set of coefficients a sparse such
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Figure 3.4: Non-linear approximation of a natural image using an orthogonal wavelet dictionary. The
sorted amplitudes of the image pixels and corresponding wavelet coefficients are shown in (b).
This image is not sparse in the direct domain but the fast decay of its wavelet coefficients indi-
cate that it is compressible in this wavelet dictionary. The vertical black line indicates the first
percentile of the coefficients. The non-linear approximations obtained by setting to zero all coef-
ficients except for the first percentile are shown in (c) and (d). Credit: Input image from NASA/APL/SwRI

that x = ®a. Thus the inverse problem can be regularised by imposing that the solution not only

has to fit the data but also needs to be sparse in the dictionary ®.

Finding the sparsest solution that fits the observations can be stated as an optimisation problem

of the form:

argmin | @ |lp st ||y-AdPx IISS €,
(04

where € > 0 is a parameter based on the level of noise which relaxes the data fidelity term to avoid
over-fitting the noise. As introduced at the beginning of this chapter, the {;, norm in the left-hand
side of this expression is a measure of the sparsity of the solution and will promote the sparsest

solution.

(3.13)
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Il e |l

Figure 3.5: Geometrical representation of the inverse problem. The shaded gray area represents the feasible
set allowed by the data fidelity constraint. The smallest ¢; (red) and ¢, (blue) balls intersecting
the feasible set each define a different solution of the optimisation problem (red and blue dots).
The ¢; solution is sparse, with only one non zero coeflicient, contrary to the £, solution.

Although this problem leads to the sparsest solution and is what we would aim to solve, it is
computationally hard to solve in practice (it is actually NP-hard Natarajan (1995)). As a result, we
will rather consider a convex relaxation of this problem obtained by replacing the £, norm by the
{1 norm:

argmin || @ ||y st ||y—-Ada ||22S €. (3.14)

04

This problem is known as Basis Pursuit DeNoise (BPDN). Both terms are now convex which will
enable the development of fast algorithms to perform the minimisation.

Although not equivalent to the original £, formulation, this relaxation of the problem still leads
to sparse solutions. For sufficiently sparse signals, the relaxed £; problem has even been shown
to recover the exact solution of the ¢, problem in the absence of noise (Donoho and Huo, 2001).
Figure 3.5 illustrates the behaviour of the £; norm on a simple two dimensional problem. Solving
the BPDN amounts to finding the smallest ¢; ball (red) intersecting the feasible set (grey shaded
area). The point of intersection (red dot) is the solution of the problem. As can be seen, the solution
is 1-sparse (only one active coefficient). In contrast, if one tries to address the same problem using
an ¢, norm, the ¢, ball (blue) will intersect the feasible set at a point which is not sparse (blue dot),
it has active coefficients in all dimensions. More generally, all £, norms with p € [0,1] tend to
promote sparse solutions but only the £; norm is convex and thus leads to tractable optimisation
problems.

The BPDN problem can also be equivalently recast either with explicit constraint on the ¢; norm:

argmin || y —A®«a |5 st || e i<, (3.15)
o
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which is commonly known as the Lasso problem, or in the form of an augmented Lagrangian:
! 9
argmma ly—A®ax ||; +A | @ |l; . (3.16)
[04

These three formulations are equivalent in the sense that for an appropriate choice of parameters
€, T and A they yield the same solution. However, the correspondence between these parameters
is not trivial and not known a priori. Therefore, depending on the specific application and on
algorithmic considerations one formulation or the other can be preferred.

3.2.2 Analysis sparsity prior

The formulation of the sparse recovery problem presented in the previous paragraph was under a
so-called synthesis prior: the minimisation problem aims at finding a set of coefficients & which are
sparse and from which the solution can be synthesised as x = ®a. However, one can also impose
an analysis sparsity prior by requiring the analysis coefficients ®’x to be sparse. In this case, the
sparse recovery problem can be formulated as:

o1
argmmg |y —Ax IIQ2 +A 0 ®ix ||; . (3.17)
X

The two formulations are completely equivalent in the case where ® is an orthogonal dictionary.
Indeed, in this case, ®' = ® ' and the analysis formulation only amounts to a change of variables.
However, in the case of redundant dictionaries the two problems are no longer equivalent.

The synthesis approach has received considerable attention over the last decade regarding the-
oretical guarantees and efficient algorithms. In contrast, the analysis model has been much less
investigated. Yet early works have advocated the use of the analysis prior Starck et al. (2004, 2005).
The fundamental distinctions between these two priors was made explicit in Elad et al. (2007) and
more recent results have shown superior recovery properties under this prior compared to the syn-
thesis approach. For instance, Selesnick and Figueiredo (2009) compare both priors on denoising
and deconvolution applications using undecimated wavelets and report superior results in both
instances under the analysis model.

Several factors can explain this difference of performance between the two priors. First and fore-
most, under the synthesis prior the recovered signal is constrained to the space spanned by a few
atoms of the dictionary whereas under the analysis model the solution can be any arbitrary signal
of RYN. Therefore, the atoms of an optimal synthesis dictionary should contain examples of the
signal (for instance Diracs for the recovery of spikes). However, even when a dictionary is specifi-
cally built for an application (e.g. using dictionary learning Aharon et al. (2006)), several atoms are
usually needed to reproduce examples of the signal. For instance synthesising positive structures
using wavelets requires a significant number of coefficients to compensate the oscillatory nature
of wavelet atoms. On the contrary, under the analysis prior, the recovered signal is not constrained
to belong to a specific subspace spanned by a few columns of the dictionary.

Another aspect in favour of the analysis prior is the reduced number of unknowns involved in
the optimisation problem. Indeed, when using redundant dictionaries, the dimension of the space
of coefficients in the dictionary ® can be much larger than the dimension of the signal to recover.
In this case, the analysis formulation has much fewer unknowns thus leading to a simpler and
more stable optimisation problem.
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Recovery guarantees have recently been shown for the analysis prior, in particular in the context
of Compressed Sensing (Candés et al.,, 2011) and in the presence of noise (Vaiter et al,, 2013). A
new framework, known as the cosparse analysis model (Nam et al., 2011), as also been proposed
to explain the behaviour of the analysis prior. This framework adopts a different view point on
the problem by defining the notion of cosparsity which focuses on the number of zero coefficients
instead of the number of non-zero coefficients (see Nam et al. (2013) for a review).

3.2.3 Enhanced sparsity through £;-reweighting

The £;-minimisation problem provides a robust and efficient framework to enforce sparse regulari-
sation on inverse problems. However, compared to the ¢, regularisation, it has one major drawback,
namely its dependence on the magnitude of the coefficients. As a result, in the presence of noise,
the solution of the ¢; minimisation can often be of biased amplitude. Indeed, without sufficient
evidence from the data, the prior will prefer solutions with smaller amplitude. Consequently, it is
often necessary to perform some additional debiasing step after convergence of the £; recovery to
correct for this effect.

An elegant approach to this problem has been proposed in Candés et al. (2008). The proposed
method consists in iteratively solving an £; minimisation, each time with a specific weighting of
the ¢; norm based on the previous estimate of the solution. The idea is to tend to a solution where
non-zero coefficients are equitably penalized independently of their amplitude, thus getting closer
to the solution of the £, minimisation problem. The strength of this approach is that it only involves
solving a series of convex problems which can efficiently be addressed by the proximal algorithms
presented in the next section.

The weighted ¢; minimisation problem is defined as:

1
argmmg ly—Ada ||§ +A || Wa |1, (3.18)
o

where W is a diagonal matrix of positive weights wy, wa, . . ., w,. The aim is to find a set of weights
which tune the shape of the ¢; border in order to promote a sparser solution and attenuate the
dependence of the penalisation on the amplitude of the coefficients.

The question is now how to set adequate weights. In Candes et al. (2008), the authors propose
the following iterative scheme to set the weights and converge to a solution:

1. Set the iteration count £ = 0 and initialise the weights to 1: Vi, wgo) =1

2. Solve the weighted ¢; minimisation problem:

1
a9 = argmin > Iy - Ada 1242 | WOa ||y .
(04

3. Update the weights based on the solution ')

(€+1) _ 1

- = N bl (3.19)
l |a§[)| +e€

where € is a small positive parameter preventing infinite weights.

4. Terminate on convergence. Otherwise, increment ¢ and go to step 2.
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As shown by Candés, this procedure has some analytical justification as it can be linked to solving
the inverse problem under a log-sum penalty of the form g(a) = }; log(|a;| + €) which is a better
approximation of the £y penalty but which is no longer convex. Unfortunately, this means that
this procedure is sensitive to the choice of initialisation and more importantly to the choice of
parameter €. Candés recommends empirically setting € to a small value of the order of the smallest
expected non-zero coefficient of the signal.

In practice, we find that this reweighting procedure does improve the results of the ¢; minimi-
sation and we have implemented it to address the problems presented in Chapter 5 and Chapter 7.
However, we advocate using a different update rule for the weights W based on the significance
of the coeflicients recovered at each iteration with respect to the level of noise:

1 e (0)
—_— if |a;”’| > Koj
WO Iy a7 2 Ko
1

, (3.20)
1 if |o\"] < Koy

where o; is an estimate of the standard deviation of coefficient @; due to noise and K is a given
significance level. The idea behind this rule is to reduce the penalty on coefficients which have
already been identified as significant at previous iterations. However, for coefficients below the
threshold Ko we keep the weights to 1 as we do not want to increase the penalty which would
prevent new features from being detected at subsequent iterations.

Finally note that we have introduced the reweighted-{; procedure in a synthesis setting. It can
also be applied to improve the results of the analysis ¢; problem as was demonstrated in Candés
et al. (2008, 2011). The iterative scheme is identical except for the optimisation problem in step 2
which becomes: 1

x = argming |y —Ax ||§ +A | WO x ;.
X

For the applications considered in the rest of this work, we have found the reweighted-{; analysis
to yield significantly better results compared to the synthesis approach.

3.3 PROXIMAL ALGORITHMS FOR SPARSE RECOVERY

The previous section has introduced the notion of sparse regularisation to address inverse problems
which involves finding a solution by solving an optimisation problem. As was mentioned, solving
the £, minimisation problem, which is NP-hard, is not tractable, however its £; relaxation is convex
and can efficiently be solved by algorithms derived from proximal calculus. The aim of this section
is to provide these algorithmic tools which make solving large scale optimisation problems possible
in practice.

3.3.1 Elements of proximal calculus

We begin by introducing some notions of convex analysis. For a reference on this subject, we
point the interested reader to Zalinescu (2002); Bauschke and Combettes (2011). Let us consider a
function f : R" —» R U {+o0} and define the domain of f, noted dom f, as the subset of R™ where
f does not reach +co:

domf={xeR" | f(x)<+oco}. (3.21)
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Property f(x) prox,(x)
Translation  f(x —z), z€ RN z + prox,(x — z)
Scaling f(x/a), ae R* a proxf/az(x/a)
Reflection f(=x) - proxf(—x)
Conjugation f(x) x— proxf(x)

Separability  f(x) = X1, fi(x:) (proxf1 (x1),... ,proxfn(xn))

Table 2: Useful properties of the proximity operator. See Combettes and Pesquet (2011) for a more extensive
compilation. In this table, the conjugation property is relative to the convex conjugation defined for
. .. -
a function f as f* : x > sup, < x,y > —f(y).

A function f will be said proper if its domain dom f is nonempty. We also define the epigraph of

f, noted epi f:
epif ={(x,})) e R"xR | f(x)<A}cR"™. (3.22)

The epigraph is useful to characterise several important properties, in particular the convexity and
lower semicontinuity of f:

epi f is closed & f is lower semicontinuous (3.23)

epi f is convex & f is convex (3.24)

We will note I the class of proper lower semicontinuous convex functions of IR”. Functions in Iy
are therefore characterised by a non empty closed convex epigraph.

The proximal operator, introduced by Moreau (1962) is at the center of the different algorithms
introduced in the following sections. This operator, which can be seen as an extension of the convex
projection operator is defined as:

Definition 3.1. Let F € I§. For every x the functiony — % | x —y |I> +F(y) achieves its infimum
at a unique point defined as proxp(x).

Therefore, given a proper lower semicontinuous convex function F, the proximity operator of
F is uniquely defined by:

o1
proxp(x) = argmlng ly—x ||§ +F(y) . (3.25)
Yy

To manipulate this operator, some useful properties and calculus rules are listed in Table 2.

In order to illustrate this operator in practice in a simple case, consider F = i¢ the indicator
function of a closed convex set C. Then the proximity operator reduces to the orthogonal projector
onto C, noted proj:

prox; (x) = argerrclin% | y — x |I5= projo(x) . (3.26)
Similarly to the simple case of the indicator function, explicit expressions for the proximity oper-
ator exist for a number of different simple functions. Some useful examples are listed in Table 3.

In the context of sparse optimisation, we will be particularly interested in the proximity operator
of the £; norm which appears in the various problems stated in the previous section. Thankfully,
the proximity operator of F(x) = A || x ||; is explicit and corresponds to Soft Thresholding:

prox, ., (x) = ST (x) , (327)
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f(x) prox,(x)
i.>0(x) [x]+
i.,1<a(x)  x—STa(x)
Allxlly  STix)

Table 3: Examples of explicit proximity operators. See Combettes and Pesquet (2011) for a more extensive
compilation.

where the Soft Thresholding operator ST} is defined for x € RY as:

Xi -A ifxi > A
Vie [LN], STi(x);=1{ 0  iflx|<A - (3.28)

xi+A ifx; <A

The Soft Thresholding operator shrinks the amplitude of the coefficients by an amount A and sets
to 0 coeflicients of amplitude smaller than A. The response of this operator is compared to the Hard
Thresholding in Figure 3.1.

Another situation of special interest for sparse optimisation is the precomposition of the £; norm
with a bounded linear operator. Indeed, under the analysis prior (see Section 3.2.2), the regulari-
sation term is not directly the £; norm of the variable but F(x) = A || ®‘x ||;. Unfortunately, in
the general case, this function no longer admits an explicit proximity operator which makes solv-
ing the ¢; analysis problem significantly more challenging than its synthesis counterpart. In the
absence of an explicit formula, the proximity operator can still be evaluated by going back to its
definition and directly solving the optimisation problem involved. It can be shown (e.g. Appendix
of Rapin et al., 2014) that for an arbitrary dictionary ®, the proximity operator of F can be evaluated
as the solution of:

.1 :
prox, ., (x) = x - @ (argmln 2 | x—®u |5 + .1 <a(u) (3-29)
u

Note that in the optimisation problem involved, the second term is the indicator function of the ¢;
ball whose proximity operator is explicit (see Table 3). Thus solving this problem can be efficiently
addressed with the proximal algorithms introduced in the next section. An explicit algorithm to
evaluate this proximity operator using Forward-Backward splitting (see Section 3.3.2.1) is provided
in Algorithm 3.1.

Algorithm 3.1 Evaluation of prox, 4.,

Require: Gradient step 0 < y < W.
1 for n = 0to Npax — 1 do
2 1™ = a4 @t (x — ou™)
3 u(n+1) — ﬁ(n+l) _ STA(ﬁ('H'l))
4: end for
5: return prox; ., (x) = x - Py (Nimax)
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3.3.2  Proximal algorithms

Based on proximal calculus a number of minimisation algorithms have been developed in recent
years for the purpose of solving sparse optimisation problems. In this section, we gather a few
proximal algorithms which have been useful over the course of this thesis.

3.3.2.1  Forward-Backward

The simplest and most well-known algorithm is the Forward-Backward (FB) algorithm (Combettes
and Wajs, 2005) which aims at solving problems of the form:

arg min F(x) + G(x) , (3-30)

where F and G are two proper lower semicontinuous convex functions but in the case where F is
differentiable with 8 the Lipschitz constant of VF, the gradient of F. Under these conditions, the
following algorithm converges to the minimum of Equation (3.30):

Algorithm 3.2 Forward-Backward Splitting algorithm

Require: Gradient step 0 < u < %
1: forn =0to Nyax — 1 do
2 D = X 4 VF (x)
5 x(n+1) — prOXyG (x~.(n+1))

4: end for

This algorithm applies in particular to the ¢; recovery problem stated in Equation (3.16) with
Fla) = % | y-AdPa ||22 and G(ar) = A || @ |l;. Indeed, the quadratic data fidelity term is
differentiable, with VF(a) = ®'A* (y — A®«) and f =|| A® ||> where || . || is the operator norm.
As was presented in the previous section, the proximal operator of the G is in this case a simple
soft thresholding prox;(x) = ST,(x). Therefore, for the ¢; recovery problem, forward-backward
splitting yields a simple Iterative Soft-Thresholding Algorithm (ISTA):

o™t = ST,2 (a(n) + ud'A* (y _A<I>a)) (3-31)

Although this algorithm is proven to converge to the solution, the convergence rate of this
simple iteration is slow. A simple variant of ISTA was proposed in Beck and Teboulle (2009) which
converges in O(1/n?) compared to O(1/n) for ISTA. This variant, called Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA), is based on a specific update rule which combines the current
and previous estimates at each iteration. This algorithm is presented in Algorithm 3.3.

3.3.2.2 Generalised Forward-Backward

The Forward-Backward algorithm is very useful in a number of situations but it is limited to the
minimization of only 2 terms. For some applications, additional constraints are desirable/required
but cannot be included in a single regularisation term G without losing the explicit formulation of
the proximity operator. This is for instance the case if one wants to include an additional positiv-
ity constraint on the solution of Equation (3.16). An extension of the FB algorithm was proposed
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Algorithm 3.3 Fast Iterative Shrinkage-Thresholding (FISTA)

Require: Gradient step 0 < p < %
fp=1
2: forn = 0to Nyax — 1 do
5 2 = x4 yVF (x(™)
gz = Prox,q (zm)

_ 1+\1+4e2

5 tn+1 - 2
6: x(n+1) = Z(n) + (t"_l) (z(n) —_ Z(Tl—l))

tns1

7. end for

in Raguet et al. (2013) to handle an arbitrary number of additional proximable constraints. This
Generalised Forward-Backward (GFB) algorithm aims at solving problems of the form:

arg min F(x) + Z Gi(x), (3-32)

i=1

where F and G; are proper lower semicontinuous convex functions and only F needs to be dif-
ferentiable. Compared to the simple FB algorithm, the regularisation G can be split into as many
terms G; as necessary so that each G; has a simple form with an explicit proximal operator. The
algorithm solving this problem is given in Algorithm 3.4.

Algorithm 3.4 Generalized Forward-Backward Algorithm

Require: Gradient step 0 < 1 < % Weights w; such that }; w; = 1.
1: fork =0to kpax — 1 do
2. forie [1,n] do
: zf.kﬂ) = ng) + prox u g (2x(k) - ng) - ,uVF(x(k))) - x®

3 i
ll.)l'

4 end for

. (k+1) _ von _(k+1)

5 X = D1 WiZ;

6: end for

3-3.2.3 Chambolle-Pock primal-dual algorithm

The algorithms presented so far rely on the evaluation of at least one proximity operator at each
iteration. Although in simple cases, a closed form expression of the operator can be used (for
instance soft thresholding for ¢; regularisation), in more complex cases the proximity operator is
not explicit and these algorithms lose some of their appeal as a nested optimisation problem needs
to be solved at each iteration. This is for instance the case of the ¢; analysis problem in which the
regularisation term G(x) =|| ®'x ||; does not have an explicit proximity operator for an arbitrary
linear operator ®.
Chambolle and Pock proposed in Chambolle and Pock (2011) an elegant way to address problems
of the form:
arg min F(x) + G(Wx) , (3.33)
X
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where F and G are two functions in I and W is a linear operator. Note that the first term F does
not need to be differentiable, and even if it is, this property is not used by the algorithm. These
authors recast this optimisation problem in the following primal-dual form:

arg min max (Wx, y) + F(x) — G*(y) , (3.34)
* y

where G* is the convex conjugate of the original function G, defined by G*(y) = maxy {(y,y’) -
G(y’)}. Note that in the above primal-dual formulation, the term G*(y) no longer involves the
precomposition by the linear operator W and as long as the G possesses an explicit proximity
operator, so does G*, thanks to the conjugation formula in Table 2. The algorithm proposed by
Chambolle and Pock is detailed in Algorithm 3.5.

Algorithm 3.5 Chambolle-Pock primal-dual algorithm
Require: L =|| W ||, 7> 0,0 >0, L’07 < 1.

1: for k =0to kpaxy — 1 do

2 y**Y = prox ;. (y* + oWxb)

5 x5 = prox_p(x® — rWiyk+D)
L U+D) = 9g(kt) _ (k)

4:
5: end for

3.3.2.4 Vu primal-dual algorithm

The drawback of the primal-dual Chambolle-Pock algorithm is that it does not exploit the differen-
tiability of F when this function F is actually differentiable. A wider framework was proposed in
Vu (2013) which can accommodate at the same time the precomposition by a linear operator and
a differentiable term. In particular, it can be used to solve problems of the form:

argmin F(x) + G(Wx) + H(x) , (3:35)

where F is convex and differentiable with a Lipschitzian gradient of constant f, (H,G) € I'? and
W is a non-zero linear operator. The algorithm proposed by Vu to solve a problem of this form is
given in Algorithm 3.6. As an example of application of this algorithm, consider the following ¢;

Algorithm 3.6 Vu primal-dual algorithm
Require: 7 > 0,0 > 0with1—-70 || W ||?> 78/2.
1: fork =0to kpax — 1 do
2 x®*) = prox_p (x® + (VF(x®)) - Wiu®)
5w = proxg. (u® + eW(2xk+D) — x(K)y)
4: end for

analysis problem, with positivity constraint:

.1 .
argmlné |y —Ax ||§ +A | @'x || +i.s0(x) . (3.36)
X
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This problem is not efficiently addressed by any of the previous algorithms as it contains three
different terms and one of these (4 || ®'x ||;) does not have an explicit proximal operator. Yet, it
can be easily solved using Algorithm 3.6, where steps 2 and 3 are specialised to:

x(k+D) = [x(k) + 7(VF(x®) - q)u(k)L (3-37)
w4 = (1d = ST @® + o (26 kD) — x®0y) (3-38)

3.4 CONCLUSION

In this chapter, we introduced the notion of sparsity and how it can be applied to the regularisation
of linear inverse problems. As we have seen, under a sparsity prior on the solution, these problems
can be recast as convex optimisation problems and we introduced the algorithmic tools necessary
to efficiently solve such problems.

However, the success of sparse recovery not only relies on efficient algorithms but more crucially
it depends on the quality of the dictionaries used to sparsely represent the signal of interest. This
question has barely been discussed in this chapter but will be developed in more details in the next
chapter where we introduce wavelets, a celebrated family of sparse representations, extensively
used throughout this thesis. Combined with the algorithms introduced in this chapter, wavelets
will be at the core of all the applications presented in Chapter 5, Chapter 7 and Chapter 8.
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Wavelets are a wide class of functions, localised in time and frequency, which can be used to
efficiently represent non stationary signals. The analysis of a signal through its wavelet coefficients
makes it possible to identify features of different scales and at different positions, contrary to, for
instance, a Fourier analysis which is limited to scale.

In the context of the sparse regularisation of inverse problems, our interest in wavelets stems
from their ability to provide sparse representations for most natural signals. In fact, wavelets lead
to sparse representations for the very general class of piecewise smooth signals. However, in sparse
recovery applications, depending on the specific type of wavelet, the quality of the end result can
vary greatly and therefore much consideration should go into the choice of an appropriate wavelet
for a given application.

In this chapter, we begin by introducing the fundamentals of the continuous and discrete wavelet
transforms, the latter being the one used in practice for digital signal processing. We review a few
specific wavelet constructions in 1D and 2D used in the rest of this work and outline the principles
of the fast transforms which make wavelets a particularly attractive option for building sparse
representations. This chapter also serves as an introduction to the Spherical 3D wavelets presented
in Chapter 9 which will extend to the 3D ball some of the concepts presented here.
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4.1 CONTINUOUS WAVELETS

4.1 Definition

The Continuous Wavelet Transform (CWT) was defined by Morlet and Grossmann (Grossmann
and Morlet, 1984) for functions in L?(IR), the space of square integrable functions. To ensure an
invertible wavelet transform, a wavelet is defined as a real function ¥ which verifies the following
admissibility condition:

Cy = /00 |1,5(v)|zv_1dv < 400, (4.1)

0

where 1 is the Fourier transform of 1. In order to verify this condition, wavelets must at least
have vanishing mean [ /(¢) dt = 0. The function ¢/ is called a mother wavelet, from which a family
of daughter wavelets can be defined through scaling and translation. Given a scaling parameter
a € R" and a translation parameter b € R, the daughter wavelet ¢/, ;, is defined as

a

Vx € R, ap(x) = %l// (x_ b) : (4.2)

The CWT is defined as the projection of a function f € L,(IR) onto the family of daughter wavelets.
The coefficients of this projection are called wavelet coefficients and are obtained by taking the
inner product of f and (¥45)a>0beR:

Vae R, beR, Wp(ab)=<f vop> (4-3)

- / FO () (4.4)
R

- = [orow (52 ax 49

Interestingly, these wavelet coeflicients can also be expressed in terms of a convolution product

by defining the function ¥/,(x) = (=), in which case:

o
Yae R*,b e R, Wy(a,b)= [ *a(b) (4.6)

This expression hints at an implementation of the wavelet transform using linear filters which will
be an essential aspect of the discrete wavelets introduced in the next section.

This wavelet decomposition is invertible (Grossmann and Morlet, 1984) and the function f can
be recovered from the wavelet coefficients (W (a, b))a>0,pcr With the following formula:

a

1 d
fe= g [ Wb "
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(a) Haar wavelet ¥/(¢) (b) Mexican hat wavelet /()

Figure 4.1: Mother wavelet function for the Haar and Mexican hat wavelets.

41.2  Examples

Haar wavelet

The simplest and first example of wavelet function is due to Haar (Haar, 1910) who defined the
following piecewise constant function:

1 iftefo, 5[
Y()=3-1 ifte[d, 1] (4.8)
0  otherwise
One of the particular properties of this wavelet, already recognised by Haar, is that the discrete

set {j.n}(jnyezz of shifted and scaled versions of the mother wavelet defined by the following
equation is an orthonormal basis of L?(IR):

am ez 9= v (5) (&9)

\/_

Therefore, this wavelet is also the first example of a discrete wavelet decomposition where the
scaling and translation parameters can be discretised. In practice this wavelet is extremely simple
to compute, as it only involves evaluating finite differences. However, its main drawback is its lack
of regularity which can cause severe artefacts in a number of applications.

Mexican hat wavelet

Another very common example of continuous wavelet is the Mexican hat wavelet (or Ricker

wavelet) which is built from the second derivative of a Gaussian. The expression of the wavelet is:

2 t2 —t?
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Contrary to the Haar wavelet, the Mexican hat is extremely regular. Its 2D generalisation is well
known in the field of computer vision under the name of Laplacian of Gaussian and is often used
as a blob detector.

An example of continuous wavelet decomposition using the Mexican hat wavelet is presented
in Figure 4.2. The top panel shows a non stationary 1D signal which is analysed to produce the
scalogram showed in the bottom panel. The x-axis of the scalogram represents the time while the
y-axis represents the scale. As can be seen, the signal contains two contributions which are clearly
separated on the scalogram in time and frequency.

1.5

0.5

—0.5}¢ .

-1.0f .

~50

NN IO mounaagG
25}¢ .

]

10} 8

-1.0 -0.5 0.0 0.5 1.0

Figure 4.2: CWT of the signal in the top panel using the Mexican hat wavelet. The input signal contains
two contributions, a high frequency cosine that spans the entire sequence and a low frequency
sine that starts at ¢ = 0. These two contributions are clearly identifiable in time and frequency
on the scalogram.

4.2 ORTHOGONAL AND BI-ORTHOGONAL WAVELETS

The wavelet transform introduced above is set in a continuous framework. However, for signal
processing purposes, a discrete wavelet transform is required. There are several ways to discretise
this transform but to be useful in practice such a transform must be fast and admit an exact recon-
struction formula. This has lead to the development of the Multiresolution Analysis framework
(Mallat, 1989; Meyer, 1992) which can be used to build orthogonal wavelet basis.
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4.2.1  MultiResolution Analysis

Mallat introduced in Mallat (1989) the concept of MutliResolution Analysis (MRA) in order to pro-
vide a framework for building orthogonal wavelet bases. The strength of this approach is that it
can be used to define a discrete wavelet transform, with exact reconstruction from a discrete set
of coeflicients, which can be efficiently implemented using simple linear filters.

The idea of multiresolution analysis is to build a sequence of approximations f; of a function
f € L%R) by smoothing f with a kernel of increasing width proportional to 2/. Each of these
approximations f; will belong to a subspace V; ¢ L*(R) which will regroup all possible approxi-
mations at scale 2/. Then, f; can be seen as the orthogonal projection of f on V;. For each approxi-
mation subspace V; one can build an orthogonal subspace W; which will contain all the details lost
between two consecutive approximations, such that f;_; = f; + w; with w; € W;:

Viai=VieWw,. (4.11)

By recursively using this decomposition of approximations subspaces V; for all j € Z it will directly
follow that the entire space L%(R) can be decomposed into a direct sum of detail subspaces W;:

L%R) = @ W . (4.12)
j=—oo

Mallat shows that one can build a wavelet ¢ such that for each j € Z the family of functions

1 t—2/n
fem (2}

forms an orthonormal basis of W;. Finally, the whole family of wavelets {1/; ,}(; n)ez> forms an
orthonormal basis of L2(R).
To formally develop these ideas, Mallat and Meyer (Mallat, 1989; Meyer, 1992) introduce the

following definition of multiresolutions.

Definition 4.1 (Multiresolution approximation). Let f be a function in Ly(IR). A multiresolution
approximation is a sequence {V;};cz of closed embedded subspaces {0} C ... Cc V; C V, Cc V; C
... C La(R) which verify the following properties:

o Translational invariance:Vj,k € Z, f(t) € V; & f(t — 2'k) € Vi

o Causality: f(t) e V; & f(t/2) € Viq

e Limit conditions: (\jez V; = {0} and m = L,(R)

o There must exist a function 0 such that {0(t — n)},z is a Riesz basis of V.

The purpose of the Riesz basis {8(¢t — n)},z of V, is to provide a sampling theorem: any function
of V; can be represented using a discrete set of coefficients. Thanks to the properties of the mul-
tiresolution approximation, Mallat shows that the function 0 can be used to construct a function
¢, called scaling function, such that the family {¢; » }»cz, defined as follows, forms an orthonormal
basis of V; for all j € Z:

¢j,n(t) =

- n) : (4.14)

(7
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Therefore, it becomes possible to compute f; the approximation of a function f at scale 2/ by taking
its inner product with the basis functions {¢; »}»cz of the approximation space V;:

fi=Puf= Z <f.Pjn > Pjn = Z aj[nldjn , (4.15)

ne”z ne”z

where Py, is the orthogonal projector on V; and a;[n] =< f,¢;» > are the discrete approximation
coefficients of f at the scale 2/. This extends the sampling theorem for V; provided by the Riesz basis
to all spaces V;: for all j € Z the approximation f; is uniquely defined by the set of approximation
coefficients {a;[n]}nez.

A key aspect of multiresolution analysis is that approximation coefficients at one resolution can
be computed from the coefficients of the previous resolution by convolution with a discrete filter
entirely defined by the scaling function ¢.

Indeed, since ¢ belongs to Vj, the scaled function %qﬁ(%) is in V] by causality and therefore in Vj
since V; C V;, which means that it can be decomposed on the basis {¢g , }nez of Vj leading to the
following scaling equation:

1 ¢

593 = 2, hlmlte =), (4:16)
neZ

where h[n] =< %gb(%), #(t — n) >. More generally, any basis function ¢;1, at scale 2/*! can be

decomposed on the basis {¢; ,}ycz of V; using the same filter h[n]:

bivip= ) hln=2plgjn . (4.17)

neZ

Taking the inner product of f with both terms of this equation leads to the following expression:

ajalpl = ) hln—2plajln] . (418)

neZ

This fundamental relation between approximation coefficients of two consecutive resolutions means
that these coeflicients can recursively be computed using a simple discrete filter, without the need
of actually computing the (continuous) inner products between f and the basis functions ¢; ,,. This
relation is at the heart of the fast wavelet transform algorithms detailed in the next section.

The filter h[n] derived from the scaling equation in Equation (4.16) exhibits interesting properties
in relation to the scaling function ¢ in Fourier space. In particular Mallat (1989); Meyer (1992) show
the following theorem:

Theorem 4.1 (Conjugate Mirror Filter). If ¢ € L2(IR) is a scaling function, then the Fourier series of
h[n] wverifies h(0) = V2 and is a Conjugate Mirror Filter (CMF) i.e. satisfies

Vo e R, [A(w)f +|h(w + 1) = 2. (4.19)
Reciprocally, if h is a CMF (i.e. verifies Equation (4.19)), 21t periodic, continuously differentiable around

w = 0 and satisfies h(0) = V2 and [ ir}f , ]|fl(a))| > 0 then
2,7 /2

weE|—

5

R 1 h(27P w)
Hw) = ﬂ 5 (4.20)

is the Fourier transform of a scaling function ¢ € L%(R).
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So far, the multiresolution analysis has allowed us to build orthonormal bases of the approxi-
mation subspaces V; and to recursively compute approximation coefficients. However, it is also
possible to capture the details lost between two consecutive approximations as a set of discrete
wavelet coefficients. Indeed, since for a given scale 2, V; is included in Vj_;, one can define W; the
orthogonal supplement of V; in V;_; so that:

Viai=VieWw,. (4.21)

Finally Mallat (1989); Meyer (1992) show that one can build an orthonormal basis {/; »}nez of W;
from a wavelet function ¢ associated to the scaling function ¢. This wavelet function is defined
Fourier space as:

1
V2

where we introduce the discrete filter g[n], defined by its Fourier series:

J(@) = =g(DH) . (4:22)

§(@) = R (@ + 7). (4.23)

If one defines ¢, = %lﬂ (t_zz;-j"), then for any scale 2/, {{/j n}nez is an orthonormal basis of W;

and for all scales {1/ »}(» jez2 is an orthonormal basis of L(R).
This result has many important consequences. First and foremost it implies that L?(IR) can be
decomposed as a direct sum of orthogonal subspaces W;:

LAR) = (Hw; . (4.24)

j:—oo

which means that any function of L%(IR) can uniquely be decomposed into a set of discrete wavelet
coefficients by an orthogonal projection:

f= Z Z <fi¥jn>VYjn= Z Z di[n]yjn (4.25)

jeZ neZ jeZ neZ

where d;[n] =< f,{;, > are the wavelet coefficients of f at scale 2/ and position 2/n.

Furthermore, similarly to the scaling equation in Equation (4.16), the wavelet function ;.1 , is
a function of V}, since V; = Vj,; ® Wj,1, and can therefore be decomposed on the basis {¢; » }nez
of V;. This decomposition can be written in terms of the filter g and leads to:

Yjsip= ), 9ln=2plgjn . (4.26)

nebZ

Taking the inner product of f with both terms of this equation yields:

diilpl = ' gln—2pla;[n] (4.27)
neZ

Again, this relation is fundamental to derive fast wavelet transform algorithms as it shows that
wavelet coefficients at scale 2/™! can simply be computed from the approximation coefficients at
scale 2/ using a simple discrete filter and eliminates the need to actually evaluate the inner product
of f with the wavelet i/ ,..
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4.2.2  Vanishing moments and size of the support

As was mentioned in the introduction of this chapter, our particular interest in wavelets stems
from their ability to provide sparse representations for a wide variety of natural signals. In fact,
as we will discuss now, wavelets bases are sparse representations for piecewise smooth functions
and can be optimised to maximise this sparsity.

A wavelet ¢ is said to possess p vanishing moments if

+00

Vk € [0,p[, / Fy(x)dx =0, (4.28)
which means that i is orthogonal to any polynomial of degree less than or equal to p — 1. Now
consider a function f which is assumed to be locally of class C then it can be locally approximated
by a Taylor expansion of order k. If k < p, the wavelet will be orthogonal to the Taylor polynomial
and therefore the coefficients | < f,¢;, > | will be small on fine scales at the vicinity of the
expansion.

Thus, in order to provide a sparse representation for a wider class of signals, a wavelet with a
large number of vanishing moments would be preferable from this point of view. However, this
conclusion is only valid where the function f is locally smooth. In practice, signals are often only
piecewise smooth and exhibit a number of singularities (for instance sharp edges in an image)
which will lead to significant coefficients even on small scales as they cannot be approximated by
low order polynomials. Therefore, a large number of vanishing moments is not enough, it is also
important to limit the impact of singularities in the signal to a small number of wavelet coefficients.
This can be achieved by reducing the size of the support of the wavelet.

To limit the impact of these singularities the support of the wavelet needs to be of minimal size
so that only coeflicients at the close vicinity will be affected. If the wavelet has compact support
of size N, at each scale 2/ only N wavelet coefficients < f,1/;, > will be affected by an isolated
singularity. The amplitude of these coefficients is potentially high and neglecting them usually
greatly impacts the quality of the representation. Thus, using a wavelet with large support can
lead to a very inefficient representation for signals with a significant number of singularities. To
maximise the sparsity of the representation in this case a minimal support size should be preferred.

In general, the size of the support and the number of vanishing moments are not necessarily cor-
related. However, in the specific case of wavelet bases the size of the support scales with the num-
ber of vanishing moments as described by the following property due to Daubechies (Daubechies,
1988):

Proposition 4.1. If{ is a wavelet with p vanishing moments that generates an orthonormal basis of
L%(R), then it has a support of size larger than or equal to 2p — 1. In particular, Daubechies wavelets
reach this minimum with a compact support equal to [—p + 1, p].

Therefore, vanishing moments and support size are two competing properties and Daubechies
wavelets (presented in the following section) are optimal in that they have minimal support for a
given number of vanishing moments. Depending on the nature of the signal to represent, one may
therefore wish to favour a large number of vanishing moments for smooth signals with only few
singularities or on the contrary a small support if the singularities are predominant.
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Figure 4.3: Battle-Lemarié and Daubechies wavelets with respectively 4 and 2 vanishing moments. By con-
struction, the support of the Daubechies wavelet is compact whereas the Battle-Lemarié wavelet
has infinite support.

4.2.3 A few wavelet bases

Battle-Lemarié

Battle-Lemarié wavelets (Battle, 1987; Lemarié, 1988) are based on spline multiresolution approxi-
mations. The scaling function is defined in Fourier space as:

P(w) = _exp(-iew/2) (4.29)
™l V52m+2(w)
where S,(w) = Y72 m ,and € = 1if mis even or € = 0 if m is odd. And the corresponding

wavelet is:

exp(~ia/2) \/ Soma(@/2+ ) (430)

y(o) = wm*1 Som+2(@)Szm2(0/2)

For splines of degrees m, the wavelet ¢ has p = m + 1 vanishing moments. Although Battle-Lemarié
wavelets are not compactly supported, they have an exponential time decay. The Battle-Lemarié
wavelet of order 3 (i.e 4 vanishing moments) is illustrated on Figure 4.3.

Daubechies wavelets

The wavelets proposed by Daubechies (Daubechies, 1988) have the orthogonal wavelets with a
support of minimum size for a given number of vanishing moments p. When p = 1 the Haar
wavelet is recovered. The regularity of the scaling and wavelet functions increase with the number
of vanishing moments p. The Daubechies wavelet for p = 2 is illustrated on Figure 4.3.

4.2.4 Filter banks and the Fast Pyramidal decomposition

As mentioned in the previous section, the key to the fast wavelet transform is the possibility to
recursively compute wavelet and approximation coefficients from one resolution to the next using
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a couple of linear filters (h, g) as demonstrated by Equation (4.18) and Equation (4.27). A second
essential feature is the ability to reconstruct the signal from its wavelet coeflicients. For orthogonal
wavelets, Mallat shows the same filters (h, g) form a couple of perfect reconstruction filters.

This defines the fast orthogonal wavelet transform, usually just called Discrete Wavelet Trans-
form (DWT), which, given a function f € L%(R), recursively computes its approximation a;[n] =<
f>¢jn > and detail (or wavelet) coefficients d;[n] =< f,¥;, > according to:

ajalpl = D hn—2plajln] = [a; Al alp] , (43)
neZ

dinlpl = ), gln—2plajln] = [a; gl 2[p] (432)
neZ

where h[n] = h[-n] and g[n] = [-n] and [-]}, stands for the decimation by a factor 2.
Conversely, approximation coefficients at scale 2/ can be reconstructed from approximation and
detail coefficients at scale 2/*! with:

alpl = > hlp—2nlazaln] + ) glp - 2nldjaln] , (433)
neZ neZ
= [ajs1lp2 * hlp] + [dj1]r2 * glp] - (4-34)

The DWT can be implemented as a simple cascade of linear filters as illustrated on Figure 4.4.
This filter bank implementation of the discrete wavelet is extremely, with a complexity in O(N),
in contrast to O(N log(N)) of the FFT.

With orthogonal wavelets, the analysis and synthesis wavelets are identical and the same filters
are used for the decomposition and reconstruction. However, perfect reconstruction can also be
achieved, under certain conditions, if a different wavelet is used for the reconstruction. Let (k, g)
and (h, §) be the filters associated with the analysis and synthesis wavelets. Then the two wavelets
are said to be bi-orthogonal and perfect reconstruction is possible if the following bi-orthogonal
conditions, proposed by Vetterli (Vetterli, 1986), are verified by the filter bank (A, g, h, g):

R+ mh(©) + @+ m)5 =0, (435)
and R R
R (@)h(0) + §"(@)5(w) = 2 . (4.36)

Thanks to the relaxation of the strict requirements of orthogonality, wavelets pairs can be
created that are symmetric, regular and compactly supported (Cohen et al., 1992). Given a bi-
orthogonal filter bank (h, g, h, g), the same Fast wavelet transform algorithm holds is illustrated
on Figure 4.4. Compared to orthogonal wavelets, only the reconstruction formula is modified and
becomes:

ajlp]l = [ajs1lr2 * E[P] +[dj1l12 * glpl - (4-37)

4.2.5 2D Bi-Orthogonal Wavelets

The 1D wavelet introduced in the previous section can be extended to higher dimensions, and in
particular to 2D by considering separable products of 1D wavelets. However, such a product can
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Figure 4.4: Fast pyramidal wavelet transform algorithm for a bi-orthogonal filter bank (k, g, &, §), note that
in the case of orthogonal wavelets the same algorithm applies with 2 = hand § = ¢. The top part
of the diagram represents the fast decomposition of an input signal s into a set of coefficients
{dy,d,, ...,a;}. The bottom part of the diagram represents the fast reconstruction of s from its
decomposition coefficients.

be built in several ways depending on the nature of the dimensions. If the two dimensions are
homogeneous, it is generally useful to probe details along each direction using the same physical
scale. In the contrary, in the case where the dimensions are not homogeneous (for instance, distance
and time or distance and energy) then it can useful to probe each direction using independent
scales, for instance to isolate slow moving large scale objects.

For the last case, a wavelet basis of L%(IR?) can easily be constructed using the basis functions
Vi joona,ne (X1, X2) = Wy n, (X1)Yj,.n, (x2). Note that the scale j; and j; are independent. Such a decom-
position leads to 3 kinds of coefficients:

o detail-detail coefficients: d}l djgz

e approximation-detail coefficients: a! d? and d! a*
Ji17J2 J17J2

e approximation-approximation coefficients: ajl.1 ajz.2

This construction is not optimal when the dimensions of the signal are homogeneous, like for
2D images for instance. Indeed, in this case, we want to probe the signal at a the same given scale
for all dimensions. Instead, a decomposition of L%(IR?) can be built by defining the concept of
separable multiresolutions such that the approximation of a function f(x,x;) at scale 2/ will be
the projection of f on the subspace Vj2 = V; ® V;. If one defines the detail space Wj2 the orthogonal
supplement of ij in ij_l then, as demonstrated for instance in Mallat (1999), a wavelet basis for sz
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can be built from separable products of 1D scaling functions ¢ and wavelet functions i/. Consider
the three functions:

UHx) = g (xa),  ¥P(x) = Y(x)p(xa), ¥ (x) = Y(x)y(x2) (4-38)
and denote for 1 < k < 3

—2jn1 XZ—Zjng
2/ 72

k00 = Sk ). (4.39)

Then for j € Z the family of wavelets {gbjl,n 2 Iﬁ;’n}nezz is an orthonormal basis of sz. And the

>

family {gb]{n, Jzn ¢j3’ 2 }(j.mezxzz is an orthonormal basis of L?(IR?).

From this result, one can build a 2D DWT to compute the following approximation and detail

coeflicients:
aj+1 = [aj * E_]lz s (440)
d}+1 = [a; = hgly2 , (4-41)
djz+1 = [a; = g_ﬁ]lZ > (4.42)
&,y =a; %3l » (4.43)

where we use the notation hg[x;, x2] = h[x;]g[x:]. Note that for d' and d?, the high-pass filter g is
only applied in one direction, this will lead to purely horizontal and vertical wavelet coefficients.
For d®, the details are computed by applying the high-pass filter g in both directions, the resulting
wavelet coefficients are diagonal.

Conversely, the reconstruction can recursively be implemented using the following formula:

aj = [ajsilrz * hh+ [djy 112+ hg + [y 1112 * gh + [d}, ]2 * 99 - (4.44)

Just as in the 1D case, this reconstruction formula can also use a different set of filters (f, §) while
preserving the perfect reconstruction property if the filter bank (h, g, h, ) verifies the bi-orthogonal
conditions Equation (4.35) and Equation (4.36).

Since the family of wavelets {lﬁ} " l#ﬁn}(j,n)ezz forms a basis of L2(IR?), the wavelet decom-

2
b j’n’
position of an image is non redundant and the wavelet coefficients can be arranged to form an
image of the same size as the input image. This representation of the wavelet decomposition, due

to Mallat, is illustrated on Figure 4.5.

4.3 THE STARLET TRANSFORM

In the previous section we introduced the framework for building non-redundant discrete wavelet
transforms. Although this construction has many advantages, it has one major drawback: the lack
of translational invariance of the wavelets. Indeed, for orthogonal wavelets, at scale 2/, the wavelet
atoms i/; , are positioned using a grid of step 2/n. Although this is enough to capture the signal,
for restoration applications it is also useful to compute wavelet coefficients at scale 2/ at each
position. This results in redundant wavelet transforms where more coefficients than necessary to
reconstruct the signal are computed. These wavelet decompositions offer more flexibility, at the
cost of an increased redundancy.



(a) Input image (b) DWT with one scale

(c) DWT with 3 scales (d) Mallat representation

Figure 4.5: 2D Discrete Wavelet Transform of Pluto image.
2D DWT of New Horizons’ image of Pluto (a) using an orthogonal Battle-Lemarié wavelet. The
image is first decomposed into 3 wavelets sub-bands (for horizontal, vertical and diagonal direc-
tions) and a smooth approximation at the finest scale (b). Then the decomposition is recursively
applied on the smooth approximation to compute the next 2 scales (c). The coefficients of the de-
composition are arranged according to Mallat’s representation. Credit: Input image from NASA/APL/SwRL

4.3.1 A trous wavelet transform

The basic idea to build an Undecimated Wavelet Transform (UWT) from the DWT introduced in
the previous section is to remove the decimation step. The resulting transform can efficiently be
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performed with the "a trous" algorithm (with holes in french) (Holschneider et al., 1989; Shensa,
1992) which computes the wavelet decomposition as:

ajnlk] = a;« ROTK] = > hllla;[1 - 2'K] (4.45)
leZ

dilk] = a; = VK] = ) gllla,ll - 2K], (4.46)
leZ

Compared to the DWT algorithm, different filters / and ¢’ are used at every scale and are obtained
from the original filters h and g by inserting 2/ — 1 zeros between every sample, thus the name "a
trous". For instance the filters h") and h®) can be written as:

RV =1[...,h[-2], 0, h[-1], 0, h[0], o, hA[1], O, A[2],...] (4.47)
h® =1[... h[-2], 0,0,0, h[-1], 0,0,0, A[0], 0,0,0, A[1], 0,0,0, A[2],...] (4.48)

It can be shown (Shensa, 1992) that the coefficients computed at position 2/ n using the a trous
transform still correspond to the coefficients of the original DWT decomposition. The signal can
still be reconstructed from these coefficients using the filter bank (£, §) with the following formula:

aj[k] = hY) « aj+1[k] +g~0) * j+1[k]- (4.49)

One important feature of the UWT is that the filter bank (h, g, &, §) no longer needs to verify the
de-aliasing condition Equation (4.35) for exact reconstruction as the decimation step has been
removed. It only needs to verify the exact reconstruction formula:

R (@)h(w) + §" (©)F(w) = 2 (4.50)

Therefore, this framework leaves much more flexibility for the design of filter banks which are
no longer restricted by the bi-orthogonal conditions. This will be exploited in the next section to
build the Starlet, a wavelet adapted to astronomical images.

Just like for the DWT, the UWT can be extended to 2D images using the same concept of sepa-
rable multiresolutions. The decomposition of an image using J scales will lead to 3] wavelet sub
bands (3 for each scale: horizontal, vertical and diagonal) and one smooth approximation, each
with the same size as the input image. The redundancy of this transform in 2D is therefore 3] + 1.

4.3.2 Isotropic undecimated wavelet: the Starlet transform

As mentioned in the previous paragraph, the UWT leaves a lot of freedom in the design of analysis
and synthesis filter banks. In particular, this flexibility can be exploited to build wavelet decom-
positions adapted to astronomical data where objects are most of the time more or less isotropic.
This has lead to the development of the Isotropic Undecimated Wavelet Transform (IUWT) (Starck
and Murtagh, 2006). This transform is built around two criteria:

o The filters h, g must be symmetric.

e In 2-D or higher dimension, the wavelet and scaling function must be isotropic.
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Figure 4.6: Bs-spline scaling function and associated wavelet function corresponding to the "astro"-filter.

One simple way to construct such a decomposition is to start from an isotropic scaling function ¢
and to define the wavelet function as the difference between two successive approximations:
22 = g, ) - 1002, D) (459
-Y(—, =) = P(x1,x2) — =P(—, — 51
47027 2 PRI 43
Therefore, if ¢ is isotropic, so is i. This relationship between wavelet and scaling function can
equivalently be written in terms of the associated filters h and g:

glk,1] = Sk, 1] = hlk, 1] (4.52)

where §[k, ] = 1is (k,1) = (0,0) and 5[k, I] = 0 otherwise. It can be shown Starck et al. (2007) that
for any pair of even-symmetric analysis Finite Impulse Response filters (h,g = & — h), this filter
bank implements a frame decomposition for which perfect reconstruction is possible using Finite
Impulse Response (FIR) filters. Indeed, based on the simple structure of the filter g, it can easily be
seen that exact reconstruction can be achieved by simple summation of the wavelet coefficients:

J
aolk,1] = ay[k, 1] + Z djlk,1] (4.53)

Jj=1

Therefore, the [UWTde is entirely defined by the choice of the scaling function ¢ and associated
filter h. The "astro"-filter, a specific choice of scaling function motivated by astronomical applica-
tions, was proposed in (Starck and Murtagh, 2006) to define the Starlet transform. This scaling
function, a B-spline of order 3, is defined as:

1
dap)(x) = (I = 2P — 4jx — 1P + 6l — 4fx + 1P + |x + 2) (4.54)

from which the N-dimensional scaling function can be built as a separable product of N ¢;p :
d(x1,x2) = P1p(x1)P1p(x2). These scaling and wavelet functions are illustrated on Figure 4.6. As
can be seen, the wavelet function is very regular, with a small compact support and minimum os-
cillations. These properties make the Starlet an excellent choice for many restoration applications.
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(d) wy (e) ay (f) Input

Figure 4.7: Starlet transform of the Pluto image. Images (a)-(d) are the wavelet coefficients w; for increasing
scale j and (e) is the smooth approximation ay. (f) is the input image which can be recovered
by simple summation of the wavelet coefficients: (f) = (a) + (b) + (c) + (d) + (e). Credit: Input image
from NASA/APL/SwRIL

The associated FIR filters h and g are:

huplk] = —-[1,4,6,4,1] (455)
hlk,1] = hapylklhapll] (4.56)
gl 1) = 81k, 1] - hlk, 1 (457

The Starlet has the advantage of using a separable 2D scaling function which makes the com-
putation of the 2D convolution products faster as they can be implemented as consecutive 1D
convolutions along rows and columns.

Because of its isotropy, the Starlet only has one wavelet band per scale in contrast to the UWT
which has three different directions for each scale. The redundancy of the Starlet is thus lower and
is equal to J + 1 where J is the number of scales. An illustration of a Starlet decomposition is given
in Figure 4.7.
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4.3.3 Second generation positive reconstruction Starlet

The Starlet transform introduced in the previous paragraph was defined based on considerations
on the analysis (mainly that the analysis wavelet must be isotropic). However, no constraints were
put on the synthesis (other than allowing exact reconstruction). Yet, for restoration applications,
where a signal is reconstructed from modified wavelet coefficients, the quality of the results de-
pends strongly on the properties of the synthesis operation. In particular, in the astronomical do-
main, most signals are positive, therefore a positive reconstruction formula (where positive wavelet
coefficients lead to a positive reconstructed image) is a very desirable property to avoid ringing
artefacts around positive structures.

With the freedom of wavelet design made possible by the UWT. Starck et al. (2007) have pro-
posed a second generation Starlet which admits a positive reconstruction filter. This new transform
uses the following filter bank:

hlk,1] = hap)lklhap)l!] (4.58)
glk.1] = 8[k,1] - hhlk,I] (4.59)
hlk,1] = K[k, 1] (4.60)
glk,1] = 5[k, 1] (4.61)

where h is the same low pass filter as for the first generation wavelet. One can check that this filter
bank verifies the perfect reconstruction condition defined in Equation (4.50). The analysis filter g
still corresponds to a wavelet as it still has zero mean but it is no longer the case of the reconstruc-
tion filter § which is now positive. The analysis wavelet and synthesis function associated to these
two filters are illustrated on Figure 4.8.

IS
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4.4 CONCLUSION

In this chapter, we introduced the theoretical background of wavelets as well as the practical fast
algorithms available to compute the wavelet transform. In the context of sparse regularisation of
inverse problems, wavelets are of special interest as they provide a family of sparse representations.

The applications presented in the rest of this thesis will rely heavily on the wavelet constructions
introduced in this chapter. In particular, Starlets will be used in the context of weak lensing mass-
mapping in Chapter 7 and Chapter 8 while the application presented in Chapter 5 will be based on
undecimated bi-orthogonal wavelets.

Finally, the framework presented in this chapter in 1D and 2D will be extended to the 3D ball in
Chapter 9 where we introduce a new isotropic 3D wavelet.
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This chapter presents, as a direct application of the sparse methodology introduced in Chapter 3
and Chapter 4, a new approach to the recovery of the power spectrum of primordial perturbations
from measurements of the CMB. As will be described in the first section, this problem is a typi-
cal instance of an ill-posed linear inverse problem, with, as an additional difficulty, measurements
contaminated by a multiplicative noise. We address this problem, using sparse regularisation, as-
suming that the PPS is sparse in a wavelet dictionary.

The resulting algorithm, coined PRISM, is tested on an extensive set of Wilkinson Microwave
Anisotropy Probe (WMAP) simulations and applied to both the WMAP nine-year and Planck 2013
data, processed with the Local-Generalized Morphological Component Analysis (LGMCA) compo-
nent separation pipeline (Bobin et al., 2013). We demonstrate how small features on the PPS can
be accurately recovered using PRISM. When applied to WMAP and Planck data, we do not detect
any significant deviations from the currently preferred near scale-invariant model, in accordance
with the latest results from Planck (Planck Collaboration et al., 2015a).

The results presented in this chapter were published in Paykari et al. (2014) and Lanusse et al.
(2014). This work has been conducted in collaboration with Paniez Paykari, Jean-Luc Starck, and
the CosmoStat team at CEA/Saclay.
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51 THE PRIMORDIAL POWER SPECTRUM RECONSTRUCTION PROBLEM

The PPS describes the initial curvature perturbations that over time evolved to form the large-scale
structure we observe today. Because the physics of the early Universe are encoded in the PPS, it
represents an invaluable probe of primordial cosmology, and measuring it is a crucial research area
in modern cosmology. The currently favoured model describing the physics of the early Universe,
inflation (Guth, 1981; Linde, 1982), produces initial perturbations from quantum fluctuations during
an epoch of accelerated exponential expansion (see Section 2.3.1). This inflation process produces
a power spectrum of specific shape and can leave characteristic features. For the simplest inflation
models, the power spectrum, generated by almost purely adiabatic perturbations, is predicted to
be nearly scale invariant. Hence, it is often expressed in terms of an amplitude As and a spectral
index ns with an optional ‘running’ «;,

, (5.1)

ns—1+iasIn(k/kp)
P(k) =As | —
—
where k, is a pivot scale. We consider here only the first-order expansion of the spectral index,
although higher orders can be considered (e.g., Debono et al., 2010). Exact scale invariance, known
as the Harrison-Zeldovich model, which sets n; = 1 (and a5 = 0) (Harrison, 1970; Zeldovich, 1972),
has been ruled out by different datasets. Instead, the near scale-invariant spectrum with n; < 1
fits the current observations very well (e.g., Planck Collaboration et al., 2015b). More complex
models generating deviations from scale invariance include those with features on the potential
(Starobinsky, 1992; Adams et al., 2001; Wang et al.,, 2005; Hunt and Sarkar, 2004; Joy et al., 2008;
Hunt and Sarkar, 2007; Pahud et al., 2009; Lerner and McDonald, 2009; Kumazaki et al., 2011;
Meerburg et al., 2012; Ashoorioon and Krause, 2006; Ashoorioon et al., 2009), a small number of e-
folds (Powell and Kinney, 2007; Nicholson and Contaldi, 2008), or other exotic inflationary models
(Lesgourgues, 2000; Feng and Zhang, 2003; Mathews et al., 2004; Jain et al., 2009; Romano and
Sasaki, 2008; Piao et al., 2004; Choudhury et al., 2013; Choudhury and Mazumdar, 2014). Therefore,
determining the shape of the PPS will allow us to evaluate how well these models of the early
Universe compare to the observations, possibly rule out some of the proposed models, and thus
provide some much needed insight into the conditions of the primordial Universe.

The difficulty of course is that the PPS is no longer directly observable today. Nevertheless, the
initial curvature perturbations present in the very early Universe and described by the PPS have
evolved with time to form the structures we observe today. In particular, the CMB still bears a
relatively clean imprint of the initial perturbations. Indeed, thanks to the linearity of the physical
processes at play at the time of the CMB emission, the initial perturbations can be linearly mapped
to the CMB temperature anisotropies through a transfer function, so that the theoretical CMB
power spectrum C}h can be linked to the unknown P(k) through:

Ch = 47 / dInkA%(k)P(k) , (5.2)
0

where ¢ is the angular multipole and A/(k) is the angular transfer function of the radiation anisotropies,
which depends on the cosmological parameters responsible for the evolution of the Universe. This
transfer function exhibits a high level of degeneracy due to projection effects which makes recov-
ering the PPS P(k) an instance of an ill-posed linear inverse problem. This problem proves to be
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particularly difficult as the statistics of the measured CMB power spectrum are not Gaussian and
an accurate estimation of this power spectrum is impeded by instrumental noise and various masks
applied to the data. Finally, as the CMB spectrum is jointly sensitive to the primordial spectrum
and the cosmological parameters in the transfer function, there is an induced degeneracy between
them. The impact and level of this degeneracy have been investigated in (Paykari and Jaffe, 2010).
A joint estimation of the cosmological parameters and a free form PPS would be prohibitively
expensive to perform (as the parameter space can become very large). As a result, a parametric
form of the PPS is assumed when jointly estimating this spectrum along with the other cosmo-
logical parameters. This potentially hides degeneracies between the cosmological parameters in
the transfer function and the form of P(k). One way to break this degeneracy is by adding extra
information, such as polarisation or LSS data (Hu and Okamoto, 2004; Nicholson and Contaldi,
2009; Mortonson et al., 2009).

There are generally two approaches to determine the shape of the PPS, one by parametrisation
and the second by reconstruction. Numerous parametric approaches that search for features with
a similar form to those in complex inflationary models have been performed along with a simple
binning of P(k) (Bridle et al., 2003; Parkinson et al., 2005; Sinha and Souradeep, 2006; Sealfon
et al., 2005; Mukherjee and Wang, 2005; Bridges et al., 2006, 2007; Covi et al., 2006; Hazra et al.,
2010; Joy et al., 2009; Verde and Peiris, 2008; Paykari and Jaffe, 2010; Guo et al., 2011; Goswami
and Prasad, 2013). Non-parametric methods, which make no assumptions about the model of the
early Universe, have also been probed (Hannestad, 2001; Wang and Mathews, 2002; Matsumiya
et al., 2002; Shafieloo and Souradeep, 2004; Bridle et al., 2003; Kogo et al.,, 2004a; Mukherjee and
Wang, 2003; Hannestad, 2003; Kogo et al,, 2004b; Tocchini-Valentini et al., 2005; Leach, 2006;
Shafieloo et al., 2007; Shafieloo and Souradeep, 2008; Nagata and Yokoyama, 2008, 2009; Nichol-
son and Contaldi, 2009; Nicholson et al., 2010; Hazra et al., 2013). For an extensive review on how
to search for features in the PPS using a wide range of methods, refer to the following papers
and the references therein, which provide a sample on non-parametric reconstruction: deconvolu-
tion (Tocchini-Valentini et al., 2006; Ichiki and Nagata, 2009; Ichiki et al., 2010), Richardson-Lucy
deconvolution (Hamann et al.,, 2010; Shafieloo et al., 2007), smoothing splines (Verde and Peiris,
2008; Peiris and Verde, 2010; Sealfon et al., 2005; Gauthier and Bucher, 2012), linear interpolation
(Hannestad, 2003; Bridle et al., 2003), and Bayesian model selection (Bridges et al., 2009; Vazquez
et al, 2012).

The recent Planck mission CMB temperature anisotropy data constrain the spectral index to
ns = 0.9655 + 0.0062 (Planck Collaboration et al., 2015b), ruling out exact scale invariance at over
50. Planck also failed to find a statistically significant running of the scalar spectral index, obtaining
as = —0.0134 £ 0.0090. On the other hand, high-resolution CMB experiments, such as the South
Pole Telescope (SPT)*, report a small running of the spectral index; —0.046 < a5 < —0.003 at 95%
confidence (Hou et al.,, 2014). However, in general, any such detections have been weak and were
consistent with zero.

Furthermore, the Planck collaboration extensively investigated features in the PPS. Initially, in
Planck Collaboration et al. (2014a) a penalised likelihood approach indicated that there might be a
feature near the highest wavenumbers probed by Planck at an estimated significance of ~ 3¢. This
nominally statistically significant feature was detected around k ~ 0.13 Mpc™'. However, it has

1 http://pole.uchicago.edu/spt/index.php
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been confirmed since that the large dip at £ ~ 1800 in the CMB power spectrum, which is associated
with residual electromagnetic interference generated by the drive electronics of the 4 K cooler, is in
fact responsible for the features detected at these high wavenumbers. The detection of this feature
was subsequently retracted in Planck Collaboration et al. (2015a) and the main conclusion of this
analysis is now that Planck does not find any significant departure from a simple power law model.

5.2 MODELLING

5.2.1  Empirical power spectrum

A CMB experiment, such as Planck, measures the CMB temperature anisotropy ©(p) in direction
p, which is described as T(p) = Tcmp[1 + ©(p)]. This anisotropy field can be expanded in terms of
spherical harmonic functions Yy, as

00 4
0F) =Y. > armYem(®), (53)

=0 m=—¢

with asp, being the spherical harmonic coefficients. The CMB anisotropy ©(p) is assumed to be
Gaussian distributed, which makes the a,y,, independent and identically distributed (i.i.d.) Gaussian
variables with zero mean, {(as,,) = 0, and variance

(aem@y ) = 5ggf5mm/C;h , (5.4)

where C;h is the CMB temperature angular power spectrum introduced in Equation (5.2). However,
we only observe a realisation of this underlying power spectrum on our sky, which we can estimate
using the empirical power spectrum estimator defined as

14
C' = 2£1+ 1 2 laenl® 55)
m=—{
where é\z,h is an unbiased estimator of the true underlying power spectrum; this becomes <6;h> =
C;h in the case of noiseless CMB data over full sky.
For a given ¢, the empirical power spectrum follows a y? distribution with 2¢ + 1 degrees of
freedom, as it is a sum of the squares of independent Gaussian random variables. To account for
this variability, we recast the relation between Etfh and C;h as

ch=cthz, (5.6)

where Zp = 3, |agm|*/LC", which is a random variable representing a multiplicative noise dis-
tributed according to
LZ, ~ )(E , where L=20+1. (5.7)

In particular, the standard deviation of the empirical power spectrum estimator for a given ¢ is

V2/L) .
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5.2.2  Accounting for instrumental noise and partial sky coverage

So far, we have considered that the CMB anisotropy data was available on the full sky which is
not possible in practice because of the different Galactic foregrounds. Applying a mask on the
sky results in the a modification of the spherical harmonic coefficients of the CMB temperature
anisotropy,

G = / OHWHY;, B (538)

where W(p) is the window function applied to the data. The presence of the window function
induces correlations between the a¢y,, coefficients at different ¢ and different m and hence Equa-
tion (5.4) is no longer true.

One can define the pseudo power spectrum Cy as the application of the empirical power spectrum
estimator on the spherical harmonic coefficients of the masked sky. When data is contaminated
with additive Gaussian stationary noise, the pseudo power spectrum is

¢

~ 1

Cr = E dem + feml? .
¢ 2€+1m__g|[m eml (5-9)

where 7is,, are the spherical harmonic coefficients of the masked instrumental noise.
Following the MASTER method from Hivon et al. (2002), the pseudo power spectrum C, and
the empirical power spectrum C}h can be related through their ensemble averages,

(Ce) = )" MeeACPR) +(Ny) (5.10)
.

where My describes the mode-mode coupling between modes £ and ¢’ resulting from computing
the transform on the masked sky. We note that in this expression (5?}) = C?} and we introduce
the notations

Ce = (Ce) and N = (N¢), (5.11)

where C; and Ny refer to the CMB and the noise power spectra of the masked maps, respectively.
We will also work under the approximation that the pseudo power spectrum Cp still follows a
x? distribution with 2¢ + 1 degrees of freedom and can be modelled as

Ce=CeZ¢, (5.12)
= (Z MepCh + N{) Z, (513)
5/

where Z; is defined in Equation (5.7).

5.2.3 Transfer function of the radiation anisotropies

Equation (5.13) relates the observables C; to the theoretical CMB anisotropy power spectrum C1,
taking into account instrumental noise, sample variance, and masking. The theoretical power spec-
trum Cz,h is itself related to the PPS through the convolution operation defined in Equation (5.2).
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For a finite sampling of the wavenumber k, this convolution can be recast as a matrix operator T
acting on the discretely sampled primordial spectrum, now referred to as Py,

ch ~ Z TerPre (5.14)
%

2
k>
sampling chosen in the integration of the system of equations. Because of the non-invertibility

with matrix elements Tyx = 47AInk A%, , where A ln k is the logarithmic k interval for the discrete
of the T operator, recovering the PPS Py from the true CMB power spectrum C;h constitutes an
ill-posed inverse problem. Finally, the complete problem we aim to solve can be condensed in the
following form:

Ce = (Z Mo TprPr + Nf) Zy . (5.15)
'k
We assume that the masked instrumental noise power spectrum N, is known for a given experi-
ment. It can be computed from a JackKnife data map or from realistic instrumental noise simula-
tions. Therefore, in the power spectrum of the data Cy, only the PPS Py remains unknown. Here
we assume that the cosmology is known and hence operator T is known.
As already mentioned, the degeneracies of the transfer function make the recovery of the PPS
an ill-posed inverse problem. The presence of the multiplicative noise Z, further complicates the
problem and requires a specific treatment.

5.2.4 Variance stabilisation

One of the major difficulties encountered while solving this problem comes from the multiplicative
nature of the noise Z, in Equation (5.13). Indeed, all the methods introduced in Chapter 3 to solve
linear inverse problems assume additive Gaussian noise. One way to address this problem is to
apply a variance stabilisation scheme to the data to turn the multiplicative noise into an additive
Gaussian noise of unit variance. This approach has been applied to the CMB power spectrum in
Paykari et al. (2012) to provide a proper treatment of the non-Gaussian noise on E;h based on the
Wahba Variance Stabilisation Transform (VST). After the variance stabilisation is applied, the noise
on @h can be treated as an additive Gaussian noise with zero mean and unit variance. The VST
operator 7 is defined as

Inx—
T:xeR+r—>M, (5.16)
oL
where pi;, = o(L/2) —In(L/2) and 6% = y4(L/2), where {, is the polygamma function i/,,(t) =

dm+l

<1 InT(2). We denote C; as the stabilised empirical power spectrum after applying the VST and

get
th

InC
C;=T(CMH=—+e, (517)
oL
where € = (InZp — 1)/ o ~ N(0,1). The inverse operator of 7 can be defined as
R:x € R - explopx) . (5.18)

Equipped with this VST tool, the question is now how to incorporate it within the reconstruction
problem to make it tractable with the methodologies and algorithm at our disposal. The VST can-
not simply be applied to the input data C; to solve the problem in the transformed space as the
logarithmic VST operator would make the problem non-linear.
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However, it can be used to build an estimator of the quantity we are interested i.e. the resid-
uals Ry(X) between the true noiseless pseudo power spectrum C, and the reconstructed power
spectrum C¢(X) = MTX + Ny given a PPS X:

Ri(X) =Cr—Ce(X) . (5.19)

Note that the true pseudo power spectrum C; is unknown and so is R¢(x). The aim is to find an
estimator Ry(X) of R¢(X) based on the measured C; so that:

Re(X) = Re(X) + ne (5.20)

where ng is a Gaussian noise with zero mean and covariance X. If such an estimator can be found
then the inverse problem can be stated as a minimisation problem with a y? data fidelity term of
the form 1 || 71/2R.(X) |I2.

Consider the following difference:

In(Ce(X)) _ In(Ce) ~In(Ce(X))

T (Ce) - o or €, (5.21)
- aiLl“ (@(X)) e 522
- GiLm(Hiig;) ‘e, (5.23)

where €, is the Gaussian noise with zero mean introduced in Equation (5.17). Assuming that the
residual Ry(X) is small compared to C¢(X), one can linearise the above equation, to a good approx-

imation, as In(Co(X))
~ n(Ce(X N 1
T (Ce) - . O'LC{(X)R[(X) +er, (5.24)
and (Co(X
R0 = Co0a (70 - LX) - craver (529

In this expression, the variance of the noise, i.e. the second term in the above equation, depends
on the current estimate C¢(X). As we will need to estimate the variance of the noise propagated
to the wavelet coefficients using Monte Carlo simulations, it would be too expensive to estimate
this every time C¢(X) changes. Therefore, we opted for an additional approximation and replace
the term C¢(X)or by Cp(X%)or, where X° is now a fixed fiducial power spectrum which can be the
initial guess of the solution. We can now define the estimator Ry(X) for R¢(X) as

= ~ . In(C/(X))
Re(X) = Ce(X")or, (T(Cf) e (5.26)
We can now verify that this estimator behaves as expected:
5 CE(XO) 0
Re(X) =~ Re(X) + Cp(X , .
e(X) ) ¢(X) + Ce(X7)oree (5.27)
~a Re(X)+ne, (5.28)
where we have introduced for convenience a(X) = %ff(g();))) and ny = C¢(X°)ore,. Note that in

this expression, the approximation comes from the development to first order of the logarithm
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and should remain small as long as the residuals are small. In particular, the quality of the ap-
proximation improves as the estimate of the PPS X converges to the true P(k). However, unless
C¢(X®) = Cp(X), the factor « is not equal to 1 thus this estimator yields a biased estimate of the
amplitude of Ry(X). Nevertheless, it still verifies the fixed-point property ﬁg(P]tch) = 0 necessary
to converge towards the solution and unless the estimated solution X deviates significantly from
X0, the ratio C¢(X°)/C¢(X) remains limited to within a few percents. Finally, in the iterative algo-
rithm proposed in the next section, the fiducial PPS X° can be reset several times as the current
estimated X as the algorithm converges towards a solution, thereby removing any potential bias
on the residuals once the algorithm has converged. Besides these small caveats, the noise ny on the
estimator ﬁg (X) is now Gaussian, additive, with zero mean and a fixed covariance ¥ independent
of the current estimate of the solution X, assumed to be diagonal with X, = (C¢(X%)or)?%.

5.3 THE PRISM ALGORITHM

5.3.1 Formulation of the inverse problem

The problem of reconstructing the PPS is stated in Equation (5.15). Solving this problem has three
inherent difficulties:

1. the singularity of the convolution operator Tyx, which makes the inverse problem ill-posed
even in the absence of noise;

2. the multiplicative noise on the power spectrum;
3. the mask applied to the maps, inducing correlations on the power spectrum.

To address this complex inverse problem, we adopt the sparse regularisation framework intro-
duced in Chapter 3 to recast the reconstruction of the PPS as a convex optimisation problem of the

form: .
argmin — || C¢ = (MTX + Nr) 2 +4 1| ®°X ||y, (5.29)
X

where X is the reconstructed estimate for the PPS Py. The first term in Equation (5.29) imposes
a {, fidelity constraint to the data while the second term promotes the sparsity of the solution in
dictionary ®. The parameter A tunes the sparsity constraint. This problem naturally incorporates
the inversion of both the MASTER mixing matrix and the radiative transfer function and thus
addresses the first and third difficulties stated earlier.

However this problem is what we would ideally like to solve but because of sample variance, the
true pseudo-power spectrum Cy is unknown, not the actual measurements Cy. This is linked to the
second difficulty; the measurements are contaminated with a multiplicative noise which cannot
be handled with the formulation of Equation (5.29). To overcome this issue, we use the variance
stabilisation scheme introduced in Section 5.2.4 to state an alternative optimisation problem which
is now tractable by the convex optimisation algorithms presented in Chapter 3:

.1 _1/9=
argmin _ || = V2R(X) 112 44 || X Iy , (5.30)
X
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where the estimator R;(X) has been introduced in Equation (5.26). The following section details the
algorithm used to solve this problem and addresses the problem of the choice of the regularisation
parameter A.

5.3.2 Sparse reconstruction algorithm

As was mentioned before, the solution of the ¢; regularised problem tends to be biased. To avoid
this problem, in practice the PRISM algorithm uses the re-weighted ¢; approach of Candeés et al.
(2008) (see Section 3.2.3) which tends to give results closer to the ¢, problem. This technique
amounts to solving a sequence of weighted ¢; problems of the form

1
I

min - | Re(X) llz +2 1| WX Iy, (531

Ce(X%)or

where W is a diagonal matrix applying a different weight for each wavelet coefficient, effectively
modifying the shape of the ¢; ball. By iteratively solving this problem and using the the previ-
ous estimate of X to define weights W for the next iteration, the sparsity of the solution can be
reinforced. The steps of this reweighted analysis-based ¢; recovery are summarised below:

1. Setj = 0, for each diagonal element of the weighting matrix W set w{ = 1. Set the first guess
X by fitting a pure scale-invariant PPS to the data C,.

2. Solve the weighted ¢; problem (5.31) yielding a solution X/.
3. Update the fiducial PPS with the current estimate: X° = X/
4. Estimate the threshold levels A; by Monte-Carlo simulation.

5. Compute a{ = ®X’ and update the weights according to:

1 o)
W{+1 = |0({|/K/11 lflail 2 KAI (5 32)
’ 1 if o] < KA;

where A; is the standard deviation propagated to the wavelet coefficients (see Section 5.3.3)
and K is a given significance level.

6. Terminate on convergence or when reaching the maximum number of iterations, otherwise
go to step 2.

In practice, we find that three iterations of this procedure are enough to reach satisfying conver-
gence and de-biasing of our results and we see no further improvements by performing additional
re-weightings.

To solve the relaxed problem (5.31) given a weighting matrix W, one can use the popular algo-
rithm ISTA, introduced in Section 3.3.2.1. This proximal forward-backward iterative scheme relies
on the iteration

)~(n+1 = X"+ yTtMt

WRZ(X") , (5:33)

1 vn+1
X" = proxXg i aowet ||, (Xn+ ) ) (5-34)
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where 1 is an adapted step size and prox,, | owaer.|, is the proximal operator corresponding to
the sparsity constraint. The gradient descent step u has to verify

2
T'M!(Ce(X%)or)MT || °

0<p< ” (5-35)

where || - || is the spectral norm of the operator.
As was explained in Section 3.3, in the absence of a closed-form expression for the proximal
operator, its value can be estimated by solving a nested optimisation problem:

A . 1 2
U =argming, cxui,w 3 | ®u—x || (5.36)
prOXK‘u”A@W(bt,”l(x) =x—Pi

We solve this optimisation problem at each iteration of the algorithm, using FISTA (Beck and
Teboulle, 2009), a fast variant of ISTA.
The details of the algorithm solving this weighted problem are provided in Algorithm 5.1.

5.3.3 Choice of wavelet dictionary and regularisation parameter

As mentioned in the previous section, the regularisation parameter K can be set according to a
desired significance level. In Equation (5.36), it can be seen that the wavelet coefficients u; are
constrained within a weighted £; ball and correspond to the non-significant part of the signal. In
order to place the radius of this ¢; ball according to the expected level of noise for each wavelet
coefficient, we propagate the noise on the estimator R, from Equation (5.34) through the operator
®T!M!(C¢(X)or)~? and estimate its variance at each pixel and each wavelet scale. In practice, we
estimate this noise level using Monte Carlo simulations of the noise on R;. We set each A; to the re-
sulting variance for each wavelet coeflicient. As a result, coefficients below KA; will be considered
as part of the noise and one only need to set a global parameter K to tune the sparsity constraint
according to the noise level. In Paykari et al. (2014), we used a very conservative threshold at K = 5
which robustly suppressed the noise while still allowing us to recover all of our test features. For
the analysis of the Planck data in Lanusse et al. (2014), we relaxed this parameter to K = 4 for
better sensitivity.

The choice of wavelet ® will have an impact on the performance of feature recovery. In the
following study, we use bi-orthogonal Battle-Lemarié wavelets of order 1 (see Section 4.2.3). These
wavelets are very regular, have limited oscillations, are exponentially localised and have two van-
ishing moments, which makes them well suited to recover a near scale-invariant power spectrum
in logarithmic scale. We have also tried various other orthogonal and bi-orthogonal wavelets but
the Battle-Lemarié provided the best results on the features we tested. More physically motivated
dictionaries could be used to reconstruct a specific type of feature predicted by a given theory.

5.4 VALIDATION AND RESULTS FOR WMAP NINE-YEAR DATA

5.4.1  Numerical simulations

To assess the performance of our non-linear algorithm we perform a series of reconstructions
for three different types of PPS: a near scale-invariant spectrum with ny = 0.972 (Hinshaw et al.,
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Algorithm 5.1 Weighted analysis-based Py sparse recovery

Require:
Pseudo power spectrum of the data: Ce,
Instrumental noise power spectrum Ng,
First guess PPS X°,
Sparsity constraint parameter K,
Weights w; for each wavelet coeflicients.

1: Initialise Cg = MTX".
2. Compute variance o; of noise ~ N(0,1) propagated to wavelet coefficients through
OT'M!(Cy(X)or)2 from Monte Carlo simulations.

3: for n = 0 to Nyax — 1 do
s R, = Cgo—L (T(Cg) _ H(M%L”W))

5 X" = X" 4 uT!ME(Co(X)or) 2R,

6:  Computing prox, , \we:.|, :

—nt1
:  Initialise u; = yo = o' X" ,h =1,
8: fork =1to Ky, —1do

9: U = ug + ,u/(l) ()_(Jﬁl - CDtuk)
10: Y = ﬁk - STywiKO',- (ak)

1 teer = (1+ 1+ 482)/2

12: Usr = Yk + F Yk = Y1)

13: end for

14:  Update of the reconstruction:

15: xn+l = Xvn+1 _ (DuKmax

16: end for

172 Return: The reconstructed PPS Py = XNmax,

2013), a spectrum with a small running of the spectral index with n; = 0.972 and @; = —0.017
(Hou et al,, 2014), and a spectrum with ng = 0.972 with a compensated feature around k = 0.03
Mpc™!. The first two simple models are the most favoured by the current data and the spectrum
with the feature (investigated in other works, see Nicholson and Contaldi (2009)) is only used to
demonstrate the ability of the algorithm to detect and reconstruct isolated features. In all cases,
the cosmological parameters responsible for the evolution of the Universe in the radiation transfer
function are kept the same and according to the WMAP nine-year parameters; (Hinshaw et al,,
2013), Qph? = 0.02264, Q. h? = 0.1138, Q5 = 0.721, and 7 = 0.089.

For a thorough comparison of our simulations to the WMAP nine-year data we perform the
Monte Carlo simulations at the level of the five WMAP frequency channels, taking into account

the propagation of the instrumental noise through the component separation and masking steps.

For each of the three test primordial spectra we produce a set of 2000 pseudo power spectra Ce
by processing the simulated channels through the LGMCA component separation pipeline (Bobin
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et al., 2013) before computing the empirical power spectrum of the masked maps. In detail, the
simulations are produced using the following steps.

* Frequency channels: We simulate CMB maps at the five WMAP channels at frequencies 23,
33, 41, 61, and 94 GHz. The frequency dependant beams are perfectly isotropic Point Spread
Functions (PSFs) and their profiles have been obtained as the mean value of the beam transfer
functions at each frequency as provided by the WMAP consortium (nine year version).

¢ Instrumental noise: Noise maps for each channel have been generated as Gaussian reali-
sations of pixel variance maps obtained by combining the nine one-year full-resolution hit
maps as provided by the WMAP consortium.

e Cosmic microwave background: Gaussian realisations of the CMB are computed from the
three power spectra C'', which were obtained by applying the radiation transfer function T
to each of the three test PPS. The transfer function is computed using CLASS? (Lesgourgues,
2011) according to the best-fit WMAP nine-year cosmology. The CMB signal for each channel
is then obtained by applying the corresponding beam to the simulated CMB map as well as
the HEALPix window for nside of 1024.

e LGMCA Component Separation: Full sky 15 arcmin resolution maps are obtained by ap-
plying LGMCA, with the precomputed set of parameters (Bobin et al., 2013), to the five simu-
lated channels for CMB and noise. Noisy full sky maps are obtained by adding the resulting
signal and noise maps.

* Masking: Final maps are obtained by applying the WMAP mask kq85 mask with fx, = 0.75.

The pseudo power spectra are obtained by applying the empirical power spectrum estimator
to the simulated maps. The noise power spectrum Ny is estimated by averaging the 2000 pseudo
spectra of masked noise maps. Figure 5.1 shows an example of a masked noisy CMB map obtained
from our simulation process. Figure 5.2 shows the pseudo power spectra for the three test primor-
dial spectra as well as the instrumental noise power spectrum estimated from the simulations. The
light blue crosses show one realisation of the pseudo power spectrum for the near scale-invariant
PPS and the pink crosses show the one with a small running. As can be seen, the three different
CMB spectra lie well within each other’s noise band and on large and small scales they become al-
most indistinguishable. Hence to accurately reconstruct the three underlying PPS from these CMB
spectra, a very good handle on both the instrumental noise and the sample variance is required.

5.4.2 Reconstructions of primordial power spectra

To apply PRISM to the simulated data, we build a transfer function T’ adapted to the simulations
so that it includes the effects of the 15 arcmin beam from LGMCA and the HEALPix window of
nside = 1024. Using the same radiation transfer function T as computed for the simulations, the
resulting transfer matrix T’ can be written as

T = bjh,TQ , (5:37)

2 http://class-code.net/


http://class-code.net/

5.4 VALIDATION AND RESULTS FOR WMAP NINE-YEAR DATA |

Simulated noisy signal map at 15 arcmin

=518 =— = 518 1K

Figure 5.1: A simulated noisy CMB map at 15 arcmin resolution obtained from LGMCA and masked with
the WMAP kq85 mask. The noise level corresponds to the WMAP nine-year data. This map was
generated from a CMB power spectrum for a primordial spectrum with n; = 0.972 and a5 = 0.

where bf, and h%, are the beam and the HEALPix window, respectively, and Q is an operator per-
forming a linear interpolation from the linear sampling in k of the CLASS transfer function T to
a logarithmic scale using 838 points in the range k ~ 10™* — 0.15 Mpc™!. We also compute the
MASTER coupling matrix Myggs corresponding to the kq85 high-resolution temperature analysis
mask used in the simulations.

We now have all the ingredients necessary in our algorithm: Myggs, T’, and ®, which we use to
construct our algorithm and apply it to the 3 X 2000 simulated pseudo power spectra. We use the
same set of parameters in PRISM for three types of primordial spectra: a Ko significance level for
the sparsity constraint with K = 5, three reweightings, and N,,,4, = 400 iterations per reweighting.

In Figure 5.3a we show the reconstructed primordial spectra in the range k ~ 0.001 —0.10 Mpc™?.
The blue lines show the 2000 reconstructed spectra for the spectrum with ny = 0.972 and a5 = 0.0
and the cyan lines show the reconstructions for the spectrum with ng = 0.972 and a; = —0.017. In
each case, the orange line is the mean of the reconstructions and the red line is the fiducial one.

The reconstruction of the PPS is limited by different effects on different scales. On very large
scales, there are fundamental physical limitations placed on the recovery of the PPS by both the
cosmic variance and the more severe geometrical projection of the modes. The physical limitations
in the radiation transfer function places an inherent limitation at large scales meaning the PPS can-
not be fully recovered on these scales, even in a perfect CMB measurement. On the other hand, on
small scales we are limited by the instrumental noise. This leaves us with a window through which
we can recover the PPS with a good accuracy. Nevertheless, as can be seen, for k > 0.015 Mpc™!
the PRISM algorithm can reconstruct the PPS to a great accuracy and easily distinguishes between
the two types of spectra.
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Figure 5.2: CMB pseudo power spectra for the three types of PPS. The blue solid line shows the pseudo
spectrum based on a primordial spectrum with ng = 0.972 and a5 = 0. The light blue crosses
show one simulation of this spectrum, computed from the map in Figure 5.1. The red line shows
the pseudo spectrum for a primordial spectrum with n; = 0.972 and a; = —0.017 and the orange
line corresponds to a power spectrum with a localised feature at k = 0.03 Mpc™!. These spectra
include the effects of the mask, the 15 arcmin beam, the HEALPix window for nside of 1024, and
the instrumental noise power spectrum, which is shown by a solid black line.

Figure 5.3b shows the 2000 CMB spectra obtained from the reconstructed primordial power
spectra of each type. The blue lines show the CMB power spectra obtained from the near scale-
invariant primordial spectra and the cyan lines show the ones for the primordial spectrum with
a running. In each case, the orange line shows the mean of the reconstructions and the red line
shows the fiducial spectrum. Comparing these CMB spectra to the input simulated ones, shown in
Figure 5.2, illustrates the performance of the PRISM algorithm.

Figure 5.4 shows the performance of PRISM in reconstructing a localised feature in the PPS. The
green lines show the 2000 individual reconstructions, the orange solid line shows the mean of the
reconstructions, and the fiducial spectrum is shown in red. As can be seen, both the position and
the amplitude of the feature can be recovered with good accuracy.
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Figure 5.3: Reconstructions for the PPS and their corresponding CMB pseudo spectra are shown. In blue we
show the 2000 reconstructed spectra with ng = 0.972 and a5 = 0 and in cyan the reconstruction
for ng = 0.972 and ag = —0.017. In both cases the mean of the reconstructions is shown in
orange and the fiducial input spectrum is shown in red. As can be seen, for k > 0.015 Mpc™!
PRISM can reconstruct the primordial power spectra with such accuracy that the two are easily
distinguishable, despite their very similar forms in C; space. The shaded regions in the right-
hand plot correspond to the 1o sample (cosmic) variance, which demonstrates the similarity of
the two types of CMB spectra.
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Figure 5.4: Reconstruction of the PPS with ng = 0.972, a5 = 0.0, and an additional feature around k = 0.03
Mpc™! shown in green. The 2000 reconstructions are superimposed with their mean shown in
orange. The fiducial input spectrum is shown in red.

5.4.3 Reconstruction from WMAP nine-year CMB spectrum

In the WMAP nine-year analysis (Hinshaw et al., 2013), the cosmological parameters in the radi-
ation transfer function are fitted along with ng and A, hence a power law form for the PPS is
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Figure 5.5: Reconstruction of the PPS from the LGMCA WMAP nine-year data and its corresponding
pseudo spectrum are shown in red. For comparison, we also show the mean of the reconstruc-
tion for ny = 0.972 and a; = 0 with a solid dark blue line with the 1o interval around the mean
shown as a shaded blue region. The WMAP nine-year fiducial PPS with ny = 0.972 and a5 = 0
is shown in yellow and in cyan we show the best-fit PPS with a running from WMAP nine-year
data with ny, = 1.009 and o = —0.019. On the right, we plot the LGMCA WMAP nine-year
pseudo power spectrum (blue crosses) and the estimated instrumental noise power spectrum
including the point sources power spectrum is shown (solid black line). The very small blue
region corresponds to the 1o interval around the mean reconstructed spectrum (i.e. blue region
on the left plot).

assumed. This means the transfer function computed using these best-fit parameters will always
allow a power-law PPS to fit the observed data. However, reconstructing a free form PPS from the
data, assuming the fiducial transfer function, allows us to test this null hypothesis by looking for
significant deviations between the reconstructed spectrum from data and the simulations.

The WMAP nine-year data is processed using LGMCA as described in Bobin et al. (2013), which
is the same pipeline as the one used to produce the simulations. As mentioned previously, a good
handle on the noise power spectrum is critical in order to yield an unbiased reconstruction of the
PPS. We estimate the noise power spectrum from the WMAP nine-year data by subtracting the
cross-power spectrum from the auto-power spectrum and applying a denoising, using the TOUSI
algorithm (Paykari et al., 2012). To account for the effect of point sources, which were not accounted
for in the simulations, we add an estimate of the point sources power spectrum, computed from 100
simulations, to the estimated noise power spectrum. Figure 5.5b shows the pseudo-power spectrum
computed from the LGMCA WMAP nine-year map (blue crosses) and the estimated instrumental
noise power spectrum (black solid line). We note that in theory, the noise power spectrum could be
computed from simulations. However, after comparing our estimated noise power spectrum from
the 2000 simulations to the actual noise power spectrum in the WMAP nine-year data we found a
small bias that we could not account for in the simulations. Hence we opted to use the data itself
to estimate the noise power spectrum.

We apply PRISM, with the same parameters as in the simulations, to the WMAP nine-year
LGMCA CMB pseudo power spectrum. The reconstructed PPS is shown in red in Figure 5.5a. In
this figure, we overlay the 1o interval around the mean of reconstructed primordial near scale-
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invariant spectrum, obtained from the simulations. The best-fit power-law power spectrum from
WMAP nine-year data with ny; = 0.972 and a5 = 0 is shown in yellow, while the best-fit power
spectrum with a running from WMAP nine-year data with ny = 1.009 and @s = —0.019 is shown in
cyan (Hinshaw et al., 2013). As can be seen, the reconstructed power spectrum from the data does
not exhibit a significant deviation from the best-fit near scale-invariant spectrum. The small depar-
ture from the 1o interval at small scales is not significant, especially since our simulations did not
thoroughly take into account additional effects such as a beam uncertainty and point sources. To
conclude, we find no significant departure from the WMAP nine-year best-fit near scale-invariant
spectrum.

5.5 RESULTS FOR PLANCK 2013 DATA

Compared to WMAP, the Planck satellite is able to probe the CMB up to much higher multipoles
and thus can constrain the PPS over a wider range of scales. In this section, we apply the PRISM
algorithm on the first public release of the Planck data (hereafter Planck PR1) processed with the
LGMCAS3 pipeline.

To estimate the mean and variance of the PRISM reconstruction, we set up a simulation pipeline
for Planck data, mimicking the complete LGMCA pipeline applied to the actual data. The steps are
very similar to the one described in Section 5.4.1.

We adopt as a base line the Planck PR1 best fit cosmology, which we used for the radiation
transfer function T (computed using CAMB* instead of CLASS) and to define a fiducial near scale
invariant PPS with A; = 2.215x 107? and ny = 0.9626. The lensing contribution to the CMB
temperature power spectrum, also computed with CAMB for the PR1 fiducial cosmology, was taken
into account as an additional contribution to Ng.

Using this model, we generate CMB realisations for the nine Planck frequency channels. On
each of these realisations, we added simulated instrumental noise maps provided by the Planck
team>. Unfortunately, only 100 out of their 1000 independent noise realisations were made publicly
available, which dramatically reduced the number of simulations we were able to perform for the
Planck data compared to the 2000 realisations used in the previous section for WMAP data.

For each simulation, we processed the nine frequency channels through LGMCA, with the pre-
computed set of parameters (Bobin et al., 2014). Full-sky noisy maps with a 5 arcmin resolution
were obtained, which were then masked using a Galactic and point sources mask with fq, = 0.76.

The pseudo power spectra were obtained by applying the empirical power spectrum estimator
to the masked maps. We also built an estimate of the instrumental noise power spectrum N, by
processing the noise maps through the same pipeline in LGMCA, masking the resulting noise maps
and applying the pseudo spectrum estimator to these masked maps. We set our estimate of Ny to
the average of the 100 noise pseudo spectra.

In contrast to the approach taken in the previous section, where the algorithm was initialised
to a scale-invariant power spectrum, we modified our choice of initialisation and used the best-fit
Planck PR1 PPS to initialise the algorithm, as we search for small deviations from the best-fit power

3 LGMCA codes and Planck PR1 data are available at http://www.cosmostat.org/planck_pr1l.html
4 http://camb.info
5 http://wiki.cosmos.esa.int/planckpla
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Figure 5.6: Reconstructions for the primordial power spectra from 100 simulations and Planck 2013 data.
The 10 and 20 dispersion of the reconstructed spectra from the simulations are shown as blue
bands around the mean of the reconstructions (blue line). We note that these bands do not
include the errors due to point sources and beam uncertainties. The Planck fiducial power spec-
trum used for the simulations, with A; = 2.215x 107 and n; = 0.9626, is shown as a yellow
dashed line. The inset shows a close-up of the main figure in linear scale.

law that already fits the data. With this choice of initialisation, the reconstruction will not depart
from the best-fit power law in the absence of evidence from the data.

As mentioned previously, we lowered the regularisation parameter K to K = 4 in this analysis
of the Planck data, compared to K = 5 in the previous section. This lower level of regularisation
increases the sensitivity of the algorithm while still robustly rejecting the noise due to sampling
variance.

For Planck data, we expect to be able to effectively constrain the PPS in the range k ~ 0.005 —
0.20 Mpc1.

In Figure 5.6 we show the reconstructed spectra from the simulations and the data. The mean
reconstructed power spectrum perfectly fits the input PR1 best-fit power law in the entire recon-
structed range. Of course this does not mean that the algorithm is able to perfectly reconstruct an
unknown power spectrum over this entire range, but that with the regularisation level used for
these reconstructions, no significant departures from the best-fit power law have been detected.
The reconstructed spectrum from the LGMCA PR1 power spectrum remains within the 1o bar of
the reconstructed spectra from the PR1 best-fit power law. Thus, we find no significant departure
from the PR1 best-fit near scale-invariant spectrum.

As a complementary test of PRISM on Planck-like data we assessed the algorithm’s ability to re-
cover a small local departure from the best-fit PR1 power law. We created a set of CMB simulations
from a fiducial PPS with a small localised test feature causing a dip in the angular power spectrum
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Figure 5.7: Top panel shows a fiducial PPS with a feature around k = 0.125 Mpc™! in red and in green
contours the 10 and 20 dispersion of 100 reconstructions from simulated CMB spectra. The
mean of reconstructions is shown in yellow. The bottom panel shows the residuals AC, between
the Cy for the fiducial PPS with a feature and the C; for the best-fit Planck power law in red and
for the mean reconstructed PPS in yellow. The green bands indicate the 1o and 2¢ bands for
the ACy from the simulations, the dashed blue lines show the 1o region due to cosmic variance.

around ¢ ~ 1800. The aim of this set of simulations was to mimic the feature that Planck Collab-
oration et al. (2014b) proposed to be accountable for the large dip in the angular power spectrum,
which was later confirmed as being caused by residual electromagnetic interferences. Our test PPS
was built from the best-fit PR1 power law with an added feature around k = 0.125 which causes a
dip in the angular power spectrum around £ ~ 1800. This feature and the residuals AC, between
the fiducial angular power spectrum and the PR1 best fit C; are shown in Figure 5.7.

From this test PPS, we generated a set of 100 CMB simulations using the exact same procedure
as previously mentioned, and we applied PRISM to the measured angular pseudo-power spectra
with the exact same parameters. As can be seen in Figure 5.7, the feature is successfully detected,
and the reconstruction shows little bias in position and amplitude. Using the PPS reconstructed
with PRISM enables a much better fit to the data than a power law, and the reconstructed angular
power spectra fall inside the 10 region due to cosmic variance. If such a feature existed in the
LGMCA processed Planck PR1 data, PRISM would therefore have been able to detect it.

5.6 CONCLUSION

In this chapter, we presented a direct application of the sparse regularisation framework introduced
in Chapter 3 and Chapter 4. Based on this framework, we proposed a new non-parametric method
for the recovery of the Primordial Power Spectrum from the measured CMB power spectrum.
This inverse problem is particularly important in the current cosmological context as the PPS is a
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fundamental probe of inflation and an accurate reconstruction of this power spectrum can provide
some much needed insight into the physics of the early Universe.

As we demonstrated on simulations, our method is able to robustly recover small isolated fea-
tures as well as the general shape of the PPS. We applied our reconstruction algorithm on WMAP
nine-year and Planck data but despite the sensitivity of the method we do not detect any significant
deviations from the best-fit near scale-invariant power spectrum.

To reconstruct the PPS over a wider range of scales and with more accuracy, this method can
easily be extended to include polarisation and LSS information.
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