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Wireless Sensor Networks is an emerging technology enabled by the recent advances in Micro-Electro-Mechanical Systems, that led to design tiny wireless sensor nodes characterized by small capacities of sensing, data processing and communication. To accomplish complex tasks such as target tracking, data collection and zone surveillance, these nodes need to collaborate between each others to overcome the lack of battery capacity. Since the development of the batteries hardware is very slow, the optimization effort should be inevitably focused on the software layers of the protocol stack of the nodes and their operating systems.

In this thesis, we investigated the energy problem in the context of collaborative applications and proposed an approach based on node selection using predictions and data correlations, to meet the application requirements in terms of energy-efficiency and quality of data. First, we surveyed almost all the recent approaches proposed in the literature that treat the problem of energy-efficiency of prediction-based target tracking schemes, in order to extract the relevant recommendations. Next, we proposed a dynamic clustering protocol based on an enhanced version of the Distributed Kalman Filter used as a prediction algorithm, to design an energy-efficient target tracking scheme. Our proposed scheme use these predictions to anticipate the actions of the nodes and their roles to minimize their number in the tasks. Based on our findings issued from the simulation data, we generalized our approach to any data collection scheme that uses a geographic-based clustering algorithm. We formulated the problem of energy minimization under data precision constraints using a binary integer linear program to find its exact solution in the general context. We validated the model and proved some of its fundamental properties. Finally and given the complexity of the problem, we proposed and evaluated a heuristic solution consisting of a correlation-based adaptive clustering algorithm for data collection. We showed that, by relaxing some constraints of the problem, our heuristic solution achieves an acceptable level of energy-efficiency while preserving the quality of data.

Résumé

Les réseaux de capteurs sans fil est une technologie nouvelle dont les applications s'étendent sur plusieurs domaines: militaire, scientifique, médical, industriel, etc. Cette technologie a vu le jour grâce aux récents progrès en matière des Systèmes Micro-Electro-Méchaniques (MEMS) qui ont permis de construire des noeuds capteurs sans fil de taille miniature.

Quand ces noeuds sont déployés en grand nombre (à l'ordre de 10.000 à 100.000 noeuds) dans une zone à surveiller ou à contr ôler, l'interaction entre eux devient une véritable opportunité pour combler le manque de ressources par l'agrégation des moyens de calcul et de capacités de stockage des noeuds singuliers. Ceci permet la réalisation des applications aussi complexes que le pistage d'objets mobiles, la collecte de données multimodales ou bien la surveillance de zones sensibles.

Cependant, la miniaturisation malgré qu'elle facilite le déploiement et réduit les couts, induit des défis en matière de capacités de traitement, de stockage et de transmission de données. Les noeuds capteurs sans fil sont généralement dotés de puces de calcul d'une faible fréquence d'horloges et ne dispose que de quelques mégas voire des kilos d'octets de mémoire (vive et de stockage). De plus, les rayons de communication et de capture sont très limités (100m au maximum). Ceci impose impérativement que les noeuds communiquent en multi-sauts, et complique davantage les opérations de routage et de partage de médium sans fil. D'un autre point de vue, la possibilité de tirer profit de la densité du réseau et de l'autonomie des noeuds permet de mettre en place une collaboration entre eux afin de réaliser les applications citées ci-dessus. Ainsi, la fusion des données redondantes et multimodales issues de différents noeuds augmente la qualité d'estimation et aide à planifier les actions des noeuds selon leurs r ôles et leurs ressources d'énergie.

La batterie d'un noeud capteur, comme tout autre composant, est soumise à la contrainte de la taille ce qui réduit sa capacité. De plus, la contrainte matérielle sur le développement des batteries des noeuds capteurs semble être un problème persistant. D'o ù la nécessité de l'optimisation logicielle dans les différentes couches de la pile protocolaire et du système d'exploitation des noeuds. Ainsi, le problème d'énergie dans les réseaux de capteurs sans fil se transforme en un problème d'optimisation des algorithmes et des protocoles dans les différentes couches de la pile protocolaire qui font fonctionner le noeud.

L'une des méthodes les plus utilisées dans ce contexte est la sélection des noeuds basée sur la prédiction et la corrélation des données. Puisque les noeuds capteurs sans fil ne sont pas de simples interfaces de communication sans fil mais des sources de données (grandeurs physiques), ces données peuvent être utilisées pour optimiser leur énergie tout en préservant la qualité de données. Ceci constitue la problématique traitée dans cette thèse.

Pour approcher cette problématique, nous élaborons quatre (04) contributions pour la conservation des ressources énergétiques du réseau en utilisant la prédiction comme un moyen pour anticiper les actions des noeuds et leurs r ôles afin de minimiser le nombre de ceux qui sont impliqués dans la tâche en question.

Dans la première contribution, nous dressons un état de l'art des différentes méthodes et approches récemment proposées dans la littérature. Nous prenons l'application de pistage d'objets mobiles comme un cas d'étude. Nous proposons une classification qui s'inspire du fait que le sous-système de capture et le soussystème de communications d'un noeud capteur peuvent interagir via l'algorithme de prédiction pour optimiser la consommation d'énergie. Le sous-système de capture fournit des données de lectures bruitées et redondantes qui sont fusionnées par l'algorithme de prédiction afin d'extraire des informations utiles. Il estime l'état courant du système et génère une ou plusieurs prédictions pour les prochaines étapes. Ces prédictions sont utilisées par le sous-système de communication afin de réveiller les noeuds les plus probables pour prendre en charge la tâche de pistage dans les prochaines étapes. Le sous-système de communication organise le réseau sous forme d'arbres ou de clusters, détermine la zone d'activation et envoie les messages de réveil. De cette fac ¸on, nous épargnons l'énergie des noeuds qui sont loin de l'évènement d'intérêt et nous obtenons une qualité meilleure des données de mesure car l'objet mobile est supposé être proche des noeuds.

Par ailleurs, nous avons distingué deux sous-classes de chaque classe de méthodes à savoir: les méthodes de routage et d'agrégation et les méthode d'auto-organisation du réseau pour la classe des approches basées sur le sous-systèmes de communication, et les méthodes de traitement de signal à noeud unique et les méthodes de traitement de signal collaboratif pour la classe des approches basées sur le système de capture. Nous avons détaillé chaque sous-classe de méthodes avec plusieurs exemples récents afin de montrer l'idée de base de chaque méthode, son algorithme de prédiction, son mécanisme de transfert de données, son mécanisme d'activation des noeuds, sa métrique de la qualité de détection et enfin sa structure logique du réseau. Nous avons mené une comparaison théorique entre toutes les méthodes étudiées afin d'extraire les recommandations et les perspectives de recherche.

Dans la deuxième contribution, nous proposons un schéma de pistage d'objets mobiles basé sur le clustering dynamique qui utilise une variante modifiée du filtre de Kalman distribué. Le but est de localiser le traitement des données dans la région o ù est détectée la cible. Ainsi, les noeuds établissent de manière distribuée un cluster dynamique qui suit la trajectoire de la cible, et change de structure chaque fois que l'état de la cible change. La distribution du filtre de Kalman aide à alléger le calcul des estimations et des prédictions sans avoir besoin de transmettre toutes les données de lecture à un centre de fusion globale. Les noeuds détectent la cible en utilisant un modèle de détection probabiliste et exécute un consensus des filtres de Kalman distribués en se basant sur un modèle de communication par messages. Nous avons établit une règle d'élection du cluster-head qui utilisent des informations sur les noeuds se trouvant dans la liste des candidats telles que: (1) la distance entre le noeud et la cible, (2) le nombre des noeuds actifs dans le cluster, et (3) l'énergie résiduelle des noeuds. La comparaison avec d'autres schémas de pistage d'objets mobiles basés sur le filtre de Kalman montre bien l'efficacité énergétique de la méthode proposée.

Dans la troisième contribution, nous généralisons les résultats obtenus par les simulations de notre algorithme de clustering dynamique à tout autre algorithme de collecte de données basé sur le clustering géographique et qui soit efficace en énergie. Nous formalisons le problème que nous avons appelé EMDP pour Energy Minimization under Data Precision constraints Problem à l'aide d'un programme linéaire à variables binaires (BILP). Ce programme nous donne la solution exacte qui permet de déterminer à chaque étape de collection de données quels sont les noeuds sélectionnés pour faire la capture, les noeuds qui jouent le r ôle de relais et les noeuds d'agrégation (les clusterheads ou les noeuds racines).

Deux ensembles de variables sont définies à chaque étape: les variables a t i et les variables b t ij . Une variable a t i détermine si le noeud s i est sélectionné pour participer à la capture à l'étape t et une variable b t ij indique si le noeud s j est sélectionné comme parent du noeud s i dans l'arbre de collection de données à l'étape t. L'arbre ainsi construit est dynamique est il est reconfiguré à chaque étape. La fonction objectif est: minimiser la somme des énergies des noeuds dépensées dans la capture, la transmission et le traitement des données. Ce modèle est soumis à un ensemble de contraintes qui régissent la structure du réseau, l'élection des noeuds d'agrégation et de relais, la mise à jour des énergies des noeuds et l'acheminement des données. La contrainte sur l'acheminement des données a fait l'objet d'une preuve mathématique formelle afin de prouver l'exactitude du modèle. Par ailleurs, le modèle a été implémenté et testé en utilisant le langage GMPL (GNU MathProg modeling Language) pour de petites instances. Étant donnée la complexité du problème EMDP, nous avons jugé nécessaire de proposer des solutions heuristiques qui s'approchent de la solution exacte pour les grandes instances du problème. Ce qui a fait l'objet de la quatrième contribution.

Dans cette dernière contribution, nous avons proposé une solution heuris-tique qui consiste en un algorithme de clustering dynamique basé sur la corrélation des données, appelé CORAD (Correlation-Based Adaptive Dynamic Clustering Algorithm). CORAD adapte la topologie du réseau au dynamisme des données capturées afin d'optimiser la consommation d'énergie en exploitant la corrélation qui pourrait exister entre les données. C'est un algorithme gourmand inspiré de l'heuristique du plus proche d'abord. A chaque étape, CORAD sélectionne le noeud avec le maximum rapport proximité/budget d'énergie comme étant le noeud d'agrégation et ensuite construit l'arbre de collection de données. Pour ce faire, CORAD utilise un modèle d'énergie basé sur la propagation dépendante de la distance et les données capturées par les noeuds membres du même cluster.

A chaque étape, CORAD estime la qualité des données et la compare à un seuil défini: si la qualité estimée est en baisse, alors CORAD augmente le nombre de noeuds participant à la collecte des données à la prochaine étape. Ceci augmentera évidemment la consommation d'énergie mais sauvegarde la qualité des données. Sinon, si la qualité des données estimée par CORAD est en hausse, alors le nombre de noeuds qui seront impliqués dans la prochaine étape de collecte de données sera baissé. En faisant ainsi, nous préservons les ressources d'énergie des noeuds. Notre solution est testée par simulation et les résultats obtenus montrent bien son efficacité en termes d'énergie et de qualité de données.
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Introduction

W

IRELESS SENSOR NETWORKS (WSN) is one of the ten emerging technologies that will change the world [START_REF] Mcouat | Wireless Sensor Networks: Principles, Design and Applications[END_REF]. They are made possible by the recent technological advances in MEMS (Micro-Electro-Mechanical Systems) and the increasing rate of circuit integration and size reduction.

The idea behind WSN is to address the lack of single sensor nodes capacities in terms of power, data processing and communication by aggregating their capabilities to perform complex tasks. These tiny nodes that are in most cases randomly deployed in hostile or inaccessible areas, represent a real mine of multimodal redundant and correlated data, making WSN a new paradigm of extraction and collection of data, due to their proximity to the event of interest.

In addition to the intrinsic characteristics of WSN, integration with the Internetof-Things makes them a keystone of a wide range of applications from military to health-care through industry and agriculture. The market of WSN is increased from $500 millions in 2005 to $4.6 billions in 2011 and more than 4.1 millions of sensors are produced in 2010 [START_REF] José Marron | Research Roadmap on Cooperating Objects[END_REF]. This shows the growing interest of this new technology and the applications that can provide.

However, the energy problem remains a real bottleneck for WSN applications proliferation because of the hardware limitation. Thus, the collaboration between the nodes seems to be a promising strategy to overcome this constraint. Before addressing this problem and exploring the possible tracks and approaches for its solution, we introduce first the concept of WSN. Thereby in this chapter, we give details about WSN characteristics, applications and challenges in order to draw the context of this thesis. In Section 1.1, we give some basic definitions and concepts to understand the problem that we deal with. Then in Section 1.2, we give a rough description of this problem and our contributions to resolve it. These contributions are published and briefly presented in Section 1.3. Finally, we briefly describe the manuscript organization in Section 1.4 to make the reader more comfortable with the next chapters.

Wireless Sensor Networks

WSN can be abstracted as a set of a large number of tiny low-cost sensor nodes with limited energy, that collect data about a physical phenomenon evolving in the surrounding environment. These nodes can sense, process and send data to a base station for post-processing.

To perceive the importance of WSN, it is necessary to understand the characteristics of their basic blocks which are: the wireless sensor nodes.

Wireless Sensor Nodes

A wireless sensor node is typically composed of a set of necessary or optional components. As shown in Figure 1.1, the necessary components are: the energy sources, the power management unit, the radio unit, the microprocessor, the ADC unit, the sensors and the data storage units. Each component has a specific role and unique characteristics.

Energy Source/Harvesting Unit. It ensures the autonomy of the sensor node. The energy units are generally non-rechargeable batteries coupled with renewal energy harvesting units using vibrations, solar radiation or heat or any natural source of energy to produce electricity of the node when the batteries discharge. These batteries are not replaceable especially when sensor nodes are deployed in hostile or inaccessible environment. Thus, the use of energy harvesting devices or energy conservation techniques is necessary for long-term operation of the network. Table 1.1 shows some sources of energy harvesting with their respective features [START_REF] Suhonen | Low-Power Wireless Sensor Networks: Protocols, Services and Applications[END_REF]. The major sources of energy harvesting are: radiant, thermal and mechanical. In the scavenging of radiant energy, a node converts the energy from the signals sent in the RF spectrum. The solar cells are the most mature energy harvesting technology. They can provide up to 15 mW/cm 2 from direct sunlight in outdoor conditions. However, the performance decreases significantly in indoor conditions. In the scavenging of thermal energy, a node converts the energy from the temperature difference between both of its surfaces. A difference of 10 • C can be sufficient to produce electrical energy. Vibration is also used as a source for harvesting mechanical energy using piezoelectric conversion. Its role is to estimate the power supply at the ends of the energy unit, the current consumption and the level of residual energy.

Radio Unit. It is composed of radio antennas and wireless interfaces. Its role is the sensing of the carrier wave, the modulation/demodulation of the radio signals, and its transmission over the wireless medium. It also implements certain physical and MAC-layer protocols (details are in subsection 1.2.1). For example, an IEEE 802.15.4 compliant PHY includes: data frame synchronization for perceiving the start of an incoming frame, Clear Channel Assessment (CCA) for detecting ongoing traffic on a frequency channel, Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) for measuring signal strength and estimating link quality to neighboring nodes, respectively, Cyclic Redundancy Check (CRC) calculation for checking bit errors on received frames, data encryption/decryption for improving network security and automatic acknowledge transmissions after receiving frames. When these features are implemented in hardware, they can improve energy-efficiency. However, the increased complexity of the hardware increases its cost. Thus, in practice, we use COST (Commercial Off-The-Shelf) to reduce costs but this limits the features.

In general, the radio units of sensor nodes use a specific radio frequency band which is the license-free ISM (Industrial-Scientific-Medical) spectrum (see Table 1.2). For example, the chipcon CC1000 operates on the 433-915 MHz band and offers up to 50 programmable channels using FSK modulation. The CC2420 interface which succeeds to CC1000, is included in MicaZ motes and built to comply with the IEEE 802.15.4 standard for low data rate. It operates on 2400 MHz. Another example is the TR1000 family that can dynamically change its transmission power up to 1.4 mW, and transmits up to 115.2 kbps.

Table 1.2 provides the key figures about the characteristics of some transceivers in terms of data rate, RF band, buffer size, sleep energy, power and energy consumption of transmission and reception [START_REF] Suhonen | Low-Power Wireless Sensor Networks: Protocols, Services and Applications[END_REF]. The major manufacturers documented are: MC (Microchip), NS (Nordic Semiconductor), RFM (sRF Monolitics), SE (Semtech) and TI (Texas Instruments).

As we can see on Table 1.2, the data rate and frequency band have a low effect on current consumption and the radios operating on 2.4 GHZ frequency band are the most energy-efficient, which is mostly caused by their high data rate. Microprocessor/Controller Unit. This is the core component of the sensor node that executes programs. The microprocessor unit is usually based on a 8-16 bits RISC architecture and few number of registers, and its performance is limited. For example, Atmel128L microprocessors can process a maximum rate of 8 MIPS (Millions of Instructions Per Second) when running at 8 MHz [START_REF] Stojmenovic | Handbokk of Sensor Networks: Algorithms and Architecture[END_REF]. Table 1.3 shows and compares the characteristics of some microprocessors of different manufacturers. It indicates that Semtech XE8802 and Texas Instruments MSP430F1611 are the most energy-efficient chips [START_REF] Suhonen | Low-Power Wireless Sensor Networks: Protocols, Services and Applications[END_REF]. Sensors Units. They are a variety of different sensors for measuring different physical quantities such as: electromagnetic, vibration, temperature, humidity, luminosity, movement, etc. They generate and store the raw sampled data before conversion by the ADC unit. The requirements of sensor units are energy saving (low power) and early detection (short sampling interval). In addition, adequate accuracy is required in entire temperature range. Table 1.4 shows the features of some sensors [START_REF] Suhonen | Low-Power Wireless Sensor Networks: Protocols, Services and Applications[END_REF]. It indicates that most of the sensors fulfill the above requirements well. DSP and/or Storage Units. They are flash memories of RAM type or EEPROM type for storing volatile or permanent data. The storage units are usually small and unstructured. They can be represented by a long-array of 8-16 bits words.

In addition to these components, sensor nodes may contain application-specific equipments or optional components such as position-finding units, mobilizing unit, etc.

All these components are limited in size and capacity because they should fit in small boxes (see Figure 1.2). Many sensor nodes are designed as commercial products or scientific prototypes, such as: Mica [START_REF] Sound | [END_REF], Mica2 [START_REF]Crossbow[END_REF] and MicaZ [START_REF] Memsic | [END_REF], Telos [8], TelosB [START_REF]Crossbow[END_REF] and imote2 [10] of Crossbow, Smart Dust [START_REF] Kristopher | Smart Dust[END_REF] of Berkeley, Arduino [START_REF] Blum | Exploring Arduino: Tools and Techniques for Engineering Wizardry[END_REF], etc. Table 1.5 clearly shows the above-described characteristics [START_REF] Heurtefeux | Protocoles localisés pour réseaux de capteurs[END_REF]. As we can see on this table, Telos mote is the smallest in terms of size but it is equipped with MSP430 CPU that has a low speed. Imote2 on the other hand, is the most powerful mote with up to 416 MHZ of CPU frequency, but it requires much more energy (3 × AAA batteries) and has a double size compared to Telos. 

Applications

Today, WSN are in the heart of the Internet-of-Things, as they have a huge potential for applications. From military to health-care through automatic industrial chains control and agriculture, WSN have a place in every aspect of life. Figure 1.3 shows some applications of WSN. • In the military field, WSN are the basis of new concepts of modern battlefield, as they enable low-cost and efficient zone surveillance, barrier surveillance and target tracking. Hence, the random deployment with reduced operating costs allow fast and efficient control of the battlefield. The sensors can be deployed via UAV, artillery or may be broadcast from rolling vehicles like seeds [START_REF] Kristopher | Smart Dust[END_REF]. Wireless sensors also allow early and rapid detection of chemical and biological agents in combat. They also can be used to monitor precursors of chemical usage at and around manufacturing facilities. Interrogation of the WSN is possible via UAV or MAV systems [START_REF] Kristopher | Smart Dust[END_REF].

• In industry, wireless sensors are replacing increasingly wired sensors in embedded systems and automation control systems in production thanks to cost and maintenance effectiveness [START_REF] Ajith | An Industrial Perspective on Wireless Sensor Networks; A Survey of Requirements, Protocols, and Challenges. Communications Surveys Tutorials[END_REF][START_REF] Islam | Wireless Sensor Network Reliability and Security in Factory Automation: A Survey[END_REF][START_REF] Kyusakov | Integration of Wireless Sensor and Actuator Nodes With IT Infrastructure Using Service-Oriented Architecture. Industrial Informatics[END_REF][START_REF] Yoo | Guaranteeing Real-Time Services for Industrial Wireless Sensor Networks With IEEE 802.15.4[END_REF][START_REF] Merrill | Where is the return on investment in wireless sensor networks? Wireless Communications[END_REF].

• In agriculture, WSN are used in smart irrigation and precision agriculture. For example, sensor nodes take measurements on soil moisture and air humidity and send this information to a control center so that it provides instructions to irrigation actuators [START_REF] Labrador | Topology Control in Wireless Sensor Networks[END_REF][START_REF] Kalaivani | A survey on Zigbee based wireless sensor networks in agriculture[END_REF].

• In the urban monitoring, structures such as buildings, bridges and transports can be monitored by WSN. They can help predict adverse events such as: bridge collapse or road congestion, thus providing accurate information to make intelligent decisions. WSN are also used in ITS (Intelligent Transportation Systems) to control traffic on the intersections of roads and to reduce congestion [START_REF] Khanafer | WSN Architectures for Intelligent Transportation Systems[END_REF][START_REF] Pascale | Wireless sensor networks for traffic management and road safety[END_REF][START_REF] Zhou | A User-Customizable Urban Traffic Information Collection Method Based on Wireless Sensor Networks[END_REF].

• In the domain of rescue operations, natural disasters such as volcanic irruption [START_REF] Werner-Allen | Deploying a wireless sensor network on an active volcano[END_REF], deluge and floods, can be predicted by WSN which help the operations to search for victims. The fire-fighting is also a potential field of applications of WSN. Sensor nodes deployed in a forest can immediately alert the authorities before a fire begins to spread uncontrollably [START_REF] An | Virtual Sensor Network Lifeline for Communications in Fire Fighting Rescue Scenarios[END_REF].

• In health-care applications, The WSN are the basis of the concept of BAN (Body Area Network) where tiny sensor nodes are implanted on and in the patient's body to monitor vital signs [START_REF] Stojmenovic | Handbokk of Sensor Networks: Algorithms and Architecture[END_REF]. Patients are free to move around while they are under constant supervision and the doctors can be alerted and dispatched automatically to respond to an emergency [START_REF] Zhang | Ubiquitous WSN for Healthcare: Recent Advances and Future Prospects[END_REF].

WSN also find their use in home automation, habitat monitoring [START_REF] Burak Gokbayrak | Wireless sensor network gateway design for home automation applications[END_REF][START_REF] Basu | Wireless sensor network based smart home: Sensor selection, deployment and monitoring[END_REF], etc.

Challenges

Although WSN offer huge potential of applications, they are faced with many technological barriers and raise many challenges that require considerable research effort. Some challenges are due to cost constraints and hardware limitation of wireless sensor nodes. Others are common challenges for most networking technologies.

Even with many similarities that WSN share with other distributed systems, they are subject to specific challenges and constraints that affect their design, which leads to algorithms and protocols that differ from their counterparts in other distributed systems (see Table 1.6 [START_REF] Suhonen | Low-Power Wireless Sensor Networks: Protocols, Services and Applications[END_REF]).

In this section, we present and classify these challenges into four main categories, namely: energy, communication protocols, application requirements, and security and reliability. Energy. Energy is a fundamental constraint for WSN because sensor nodes are equipped with tiny batteries that have small capacities. In addition, the technological development of batteries is very slow and the nodes are increasingly involved in energy-consuming tasks such as sampling, transmission and reception of packets and data aggregation. Also, WSN are supposed to work for long-term autonomous operations.

To achieve such a long-time operation, the nodes must operate in very low duty-cycles and must save the transmission and reception of packets as much as possible because they are the most energy-consuming tasks, and this is a challenging task. For example, when the microprocessor runs 1000 instructions, it consumes an amount of energy equivalent to that consumed by the transceiver to send only one bit of data over the radio.

Thus, it is also important to set the maximum number of nodes that are not involved in WSN operations or have no useful information in the deep sleep state as long as possible to conserve their energy resources. On the other hand, the quality of data should not be degraded because of missing some important data when putting the node in sleep mode. Also, it is important to establish reliable estimations of the information utility and to trade between energy consumption and quality of data. Besides, the energy is also a key parameter in the routing and wireless medium sharing operations.

Communication Protocols.

For the success of the task of data reporting, the nodes in WSN need to be interconnected to reach the base station (or the sink node). However, short-range wireless communications and random deployment of the nodes require ad-hoc multi-hop routing with data forwarding via relays. In addition, the high-density of WSN and its scalability add more complexity to the MAC-layer problems such as collision and contention for the wireless medium.

The challenges related to communication protocols concern also the routing task and the multi-objective function that should satisfy1 . Since WSN do not use PP (Point-to-Point) communications and the nodes do not have complete information about the entire network and are not individually addressable, new com- munication paradigms based on data-centric view have been designed, such as directed-diffusion [START_REF] Krishnamachari | Modelling data-centric routing in wireless sensor networks[END_REF]. Topology control is also challenging in WSN because the nodes have to setup ad-hoc communication structures (such as trees or clusters) and maintain them each time the network dynamics change. As illustrated in Figure 1.4, a distributed algorithm is needed to identify the clusters and construct each cluster and maintain it.

It is worth noting here that communication is the most dominant energy consumption factor [START_REF] Stojmenovic | Handbokk of Sensor Networks: Algorithms and Architecture[END_REF] among all the other components as illustrated in Table 1.7 and will be explained in subsection 1.2.

Applications' Requirements.

WSN is an application-oriented technology where hardware and software solutions are specific to unique application. Due to the limited storage capacity of the nodes and for optimization of the transmission, aggregation is a widely applicable technique in WSN. However, the local aggregation of data can be challenging because the nodes have to define the limits of the aggregation zone in order to reduce the need for communications and thus to make it more energy-efficient. In addition, once the WSN is deployed and for reasons of autonomy and dependability, the lifetime should be as long as pos- Besides, even with redundant and correlated readings, data fusion remains challenging because readings are inaccurate due to the hardware differences. The requirements of applications vary depending on many QoS parameters such as: the coverage, the degree of exposure, the number of sensors to be selected for data collection, the accuracy and the sensitivity of data, etc.

Security and reliability.

Security is essential for any mission-critical system as autonomous and unattended as WSN. The information in military or health-care WSN-based applications must be confidential. However, the nature itself of WSN exposes the system to various risks in security such as malicious intrusion, denial of service, etc. The wireless communications make it easy for an adversary to eavesdrop on sensor transmissions and put the system out of service using jamming. Therefore, security threats in WSN are more challenging than in other systems given the constraints of resources of sensor nodes, which require new solutions for key establishment and distribution, node authentication, etc.

Since WSN are supposed to operate without human intervention and nodes are exposed to both system dynamics and environmental dynamics, reliability becomes a significant challenge. Nodes have to be self-managing devices to monitor their surroundings, adapt to changes in the environment and cooperate with their neighbors to self-organize the network. For example, a node can choose its transmission power to maintain a certain degree of connectivity to prevent the occurrence of voids in the networks. Moreover, the ability to self-heal allows sensor nodes to discover, identify, and react to network disruptions and achieve fault-tolerance. All these non-functional features should be implemented without incurring excessive energy and communication overheads [START_REF] Dargie | Fundamentals of Wireless Sensor Networks: Theory and Practice[END_REF].

The Energy Problem

In this section, we describe in depth the energy problem to understand the problematic addressed in this thesis. We present the layers of the protocol stack of sensor nodes and the factors that may effect energy consumption, and the behavior of each layer to deal with this issue.

Protocol Stack

As shown in Figure 1.5, there are typically five layers in the protocol stack [START_REF] Stojmenovic | Handbokk of Sensor Networks: Algorithms and Architecture[END_REF]. Physical Layer (or the Hardware). It is responsible for Point-to-Point wireless digital communications. It is composed of the transmitter, the channel and the receiver. It executes the operations of generating the analog baseband message signal, its conversion into discrete signal (both in time and amplitude) in order to be processed by the processor2 . Then, the discrete signal is converted into binary stream using source encoding techniques. This operation should satisfy bandwidth and power requirements. After that, the physical layer executes the channel encoding to make the signal robust to noise and interferences. After the channel encoding, the modulation takes place. It transforms the baseband signal to a passband signal. It is useful when the nodes have short antennas. At the receiver side, the reverse process is executed.

The choice of modulation scheme and transmission rate further affects the resources and the energy requirements of the sensor nodes. A power efficient modulator enables a communication system to reliably transmit information at the lowest practical power cost. A spectrally efficient modulator enables a communication system to send as many bits of data as possible within a limited bandwidth.

Power and spectrum efficiency cannot be achieved at the same time.

In WSN, since nodes produce small-volume of data, the power efficiency is a major concern while the bandwidth is not. For example, it is not allowed to use over-emitting, i.e. using larger transmit powers than necessary because it is a major contributor to excessive energy consumption.

MAC Layer. The MAC protocol is responsible for regulating the access to the common medium. Most sensing applications rely on radio transmission in the unlicensed ISM band which may affects significantly communications by the noise and interference. The choice of the MAC protocol has a direct impact on the reliability and efficiency of network transmissions. Other issues have to be faced by the MAC protocol include signal fading, simultaneous medium access by multiple nodes, asymmetric links, etc.

In the MAC protocol, energy is not only consumed for transmission and reception, but also for sensing the medium for activity, data packets retransmissions (due to collisions), packet overheads, control packet transmissions, and transmit at power levels that are higher than necessary to reach a receiver. Table 1.8 shows and compares the energy consumption of different radio interfaces [START_REF] Dargie | Fundamentals of Wireless Sensor Networks: Theory and Practice[END_REF]. As we can see on this table, there is a huge difference between TR family and CC family transceivers in terms of data rate and power requirements (0.7µA of standby current in TR1000 and 426µA in CC2420). This is due to the difference of applications in which TR and CC families can be used.

It is common for a MAC protocol in WSN to trade between energy efficiency for increased latency or reduced throughput or fairness.

A common technique used to preserve energy is DPM (Dynamic Power Management), where a resource can be moved between different operational modes such as active, idle and sleep. Without power management, most transceivers switch between transmit, receive and idle modes, although idle and receive modes are typically similar in their power consumption. However, dramatic energy savings can be obtained by putting the device in low-power sleep mode. Moreover, using periodic traffic models, the network application can benefit from the MAC schemes that do not require nodes to be active at all times. Instead, they allow nodes to obtain periodic access to the medium for a very small fraction of time called duty cycle and they return to the low-power sleep mode.

In addition to idle listening, the overheads are also caused by inefficient MAC protocol designs such as: large packet headers, reliability requirements (such as collisions requiring retransmissions, error control mechanisms, etc.), control messages (to address the hidden-terminal problem), etc.

Network Layer. The network layer is responsible for establishing paths from a source to a sink across one or more relays. When nodes are scattered into an environment randomly, the resulting topology is non-uniform and unpredictable. Thus, it is essential for the nodes to cooperate to determine their positions, identify their neighbors, and discover the paths to the sink.

The most crucial aspect in routing is energy-efficiency with many metrics that can be applied with various interpretations such as: minimum energy consumed per packet, maximum time to network partition, minimum variance in node power level, maximum average energy capacity, and maximum minimum energy capacity. Each formulation of energy-awareness lead to very different routing protocols that differ in their results and overheads.

Transport Layer. The transport layer is responsible for managing end-to-end connections using reliable stream-based communication (TCP or TCP-like protocols), or unreliable packet-based communication (UDP or UDP-like protocols). The use of one of the two protocols or both of them depends on the application, and has an impact on the energy consumption.

A reliable transport protocol maintains state information in each node on the path from the source to the destination which incurs more energy consumption. Energy is also excessively consumed when retransmissions of data packets are needed due to packet loss. That is why for a reliable transport protocol, to be energy-efficient, should deal with mobility of nodes as inherent characteristic not as an exception.

Unreliable transport protocol is suitable for multimedia WSN where the packet sequence is insignificant and the applications tolerate data loss. It does not maintain any information about the data transfer session.

Application Layer. The application layer gives the user a view of the WSN as a database that he can interrogate via queries. It hides all the details and complexities of the network and/or the node. Based on that, there are two types of application protocols: node-centric protocols and application-centric protocols.

In node-centric protocols, the overall network-wide sensing application is described as a collection of pairwise interaction of individual nodes. At the op-posite, the application-centric protocols focus on programming groups of sensor nodes and treat the entire network as a single entity.

The application protocols should deal with the frequent dynamic changes such that the WSN continues to serve its intended purpose even when some parts of the network fails. It should hide many faults due to topology changes, link errors, void appearance, etc. In addition, it should provide support for selfmanagement and self-configuration to make WSN scalable.

One WSN-specific concept to deal with all of these problems is data-centric applications. Since in WSN not only individual nodes are of interest but also the data that they generate and disseminate, collaboration is needed for some applications to analyze and process data in-network. At the opposite of other applications that are concerned only by collecting data at a central point, datacentric applications require to early identify if data should be propagated further or acted upon. This could help optimizing energy at the application layer.

Collaborative Applications

In this thesis, we address the problem of energy-efficiency at the application layer by exploiting the intrinsic characteristics of WSN such as: locality, distribution, data correlation and density. We believe that collaboration between nodes helps increasing the quality of data while reducing transmissions. For some applications such as target tracking, selective activation of some nodes and putting the other nodes in low-power operating mode enable network lifetime extension.

Therefore, the prediction of events and the exploitation of data and their correlation in collaborative applications can be of interest in optimizing the energy in WSN. That is what makes the subject of our thesis.

Our Contributions

Our contributions to tackle the above-described problems are four: Contribution 1: is a survey of recent energy-efficient target tracking schemes proposed in the literature. We propose a novel classification of these schemes based on the interaction between the communication subsystem and the sensing subsystem in a sensor node. We are interested in collaborative tracking systems instead of single-node tracking systems.

We show that energy-efficiency in a collaborative target tracking scheme can be achieved via two classes of methods: sensing-related methods and communicationrelated methods. We illustrate both of them with several examples. We show also that these two classes can be linked to each other through a prediction algorithm to optimize the communication and the sensing operations.

In addition to this general classification, we discuss also a particular classification of certain protocols that put specific assumptions on the target nature and/or use non-standard hardware for sensing. In the end, we make a theoretical comparison between all these schemes in terms of objectives and mechanisms. Finally, we give some recommendations to assist the design of energy efficient target tracking schemes in WSN.

Contribution 2: is a target tracking scheme called DKF DC (Distributed Kalman Filter with Dynamic Clustering). It exploits the predictions generated by the DKF algorithm to select the most appropriate nodes for the task. After selection, it constructs dynamic clusters that changes each time the target state changes.

Our proposed scheme exploits the fact that the presence of the target is a localized event. Therefore, to reduce energy consumption, we consider WSN with nodes of limited sensing range.

The simulation data show a clear improvement of network energy consumption, but the quality of estimation is slightly degraded compared to centralized approaches and other tracking schemes with limited sensing range that do not limit the set of involved nodes.

Our tracking scheme reduces the number of tracking nodes which reduces the network energy consumption. Contribution 3: is a generalization of contribution 2 to any collaborative application that uses geographic-based clustering for data collection. We propose a Binary Integer Linear Programming (BILP) model for the problem of Energy Minimization under the constraint of Data Precision in the context of correlated data collection in Wireless Sensor Networks, called EMDP.

The exact solution of our BILP model determines, in each round of data collection, the role of each node in terms of sensing, data relaying and processing. It gives the baseline for optimal network operations and helps characterizing the complexity of EMDP problem. Depending on the nature of the physical phenomenon, CORAD defines the structure of the network as a set of multi-hop reconfigurable clusters. Its goal is to avoid energy wasting when nodes report useless data that contribute very little in the improvement of the quality of data required by the end-user.

CORAD achieves also a certain level of data accuracy by selecting appropriate nodes for sampling: i.e. the nodes with the maximum energy resources and that are the closest to the physical phenomenon. It reconfigures the created clusters based on the current data accuracy and the set of participating nodes in sampling and data reporting operations. CORAD depends on several parameters whose sensitivity is analyzed via simulation.

The simulation results support our different proposed models for detection, data correlation and clustering. The performance evaluation demonstrates that CORAD performs well in presence of highly dynamic events and extends considerably the network lifetime with balanced distribution of energy consumption.

Research Publications

Our thesis yielded four completed publications and communications and one ongoing publication listed below: 

Manuscript Organization

The thesis manuscript is composed of six (06) chapters: Chapter 1 and Chapter 6 are respectively the introduction and the conclusion, and the four remaining chapters are devoted to the body of our four contributions. In addition, two appendices are added at the end of the manuscript to help the reader understanding related concepts: Appendix A for the Kalman Filter and Appendix B for the Gnu Linear Programming Kit.

Chapter 2

Energy Efficient Collaborative Target Tracking: A Survey T HANKS TO THEIR ADVANTAGES in terms of cost-efficiency, WSN can be considered as an alternative technology to expensive conventional tracking technologies such as RADARS. As, they are deployed without any centralized or pre-installed infrastructure, its operating mode is easy compared to RADARS [START_REF] Akyildiz | Yogi Sankarasubramaniam, and Erdal Cayirci[END_REF].

When sensor nodes are deployed with high density in the surveillance area, they allow to setup collaborative data processing in contrast to single-node tracking systems. These nodes exchange information between each other and cooperate to report the sensed data to a special node called the sink or the base station for post-processing.

However, in target tracking applications, energy is a challenging issue because of the limited capacities of sensor nodes. As we have explained in Chapter 1, the sensor nodes are equipped with low-cost small-capacity batteries which are, in most cases, non-rechargeable and irreplaceable, and their sensing, processing and communication capacities are minimal. In addition, the target tracking application is aimed to meet the same performance as the conventional technologies in terms of time and accuracy.

Furthermore, the measurements sent by the nodes to the sink are in most cases redundant, noisy and non-synchronized, and the inter-node communication is an energy-consuming task. Hence, neither reliable communication protocols nor complex data processing algorithms can be implemented on a sensor node because of its limited processing and communication capacities.

From this point of view, energy conservation in target tracking applications should be data-centric and can be achieved via collaboration. Different methods are proposed in the literature [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF][START_REF] Pantazis | A survey on power control issues in wireless sensor networks[END_REF][START_REF] Aziz | A Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery Powered Wireless Sensor Networks[END_REF] and the prediction coupled with selective activation of nodes is one of such methods. The previous active nodes predict the activation zone to which the target will probably go and a subset of nodes within this zone will be explicitly activated. These active nodes collaborate between each other to generate an accurate estimation of the target state using in-network light-weight data fusion algorithms such as the Kalman Filter. The gain of such algorithms is twofold: (i) it generates stateestimates of the target, and (ii) it produces state-predictions for the next sensing round.

Therefore, these predictions are the basis for node selection which leads to the problem called the Sensor Selection Problem (SSP) [START_REF] Isler | The Sensor Selection Problem for Uncertainty Sensing Models[END_REF]. Basically, this problem consists in finding the subset of nodes with minimum cost that provide the information with maximum utility among all the nodes of the network. In the case of target tracking problem, the cost and the information utility can be respectively defined by the energy consumption and the accuracy of data [START_REF] Xiao | Collaborative Sensing to Improve Information Quality for Target Tracking in Wireless Sensor Networks[END_REF].

Another technique for energy conservation is to define a schedule for activation and/or deactivation of nodes. Depending on the target trajectory predicted by the prediction algorithm, nodes are woken-up to perform some sensing and communication tasks for a very short period of time, and then they return back to a deep-sleep state. Other nodes that are not involved in the tracking task are put in the sleep state to preserve their energy resources. However, the schedule should not miss the target as it passes through the sensing zones of the nodes and it should concern only the nodes with the maximum energy resources.

This procedure requires collaboration between the nodes and coordination between the communication-related and the sensing-related operations because of several reasons. First, the sensing measurements are redundant and noisy, and the multi-node target detection in contrast to single-node detection generates correlated measurements that can be fused. Second, the communication links are lossy which can be overcome by using collaborative protocols to deal with the loss of messages. And finally, the dense nature of the WSN requires selforganization to reduce energy consumption.

In this chapter, we draw a taxonomy of some recent proposed approaches that aim to achieve all the above-described requirements by organizing the network in clusters and/or trees. Our goal is to extract general recommendations to design an energy-efficient target tracking scheme.

Nonetheless, we do not consider MAC-layer mechanisms such as duty-cycling [START_REF] Bachir | MAC essentials for wireless sensor networks[END_REF] because they are out of scope of this work.

Schemes Classification

Before presenting our proposed taxonomy, we first give some definitions that help characterizing a typical target tracking scheme [START_REF] Demigha | On Energy Efficiency in Collaborative Target Tracking in Wireless Sensor Network: A Review[END_REF].

Target Tracking Schemes Characterization

Typically, a target tracking scheme consists of three subsystems, namely: the sensing subsystem, the estimation/prediction subsystem, and the communication subsystem. Figure 2.2 shows the relationship between the sensing subsystem and the communication subsystem. The estimation/prediction scheme extracts useful information from the heterogeneous and redundant data transmitted by active nodes. It uses this information to extrapolate the position of the target in the future and then organizes the network to follow-up the target trajectory. The communication subsystem creates and maintains the clusters and/or the trees structures to make the communications more efficient. Besides, the prediction algorithm predicts the state of the target for the next sensing rounds on the basis of which, the instants and the durations of the sensing operations can be optimized.

In our classification, we assume that all the nodes should be initially in a sleep state, except the ones that are on the borders of the surveillance area. These nodes perform the first operations of detection and identification of the target, and then activate other nodes via external activation messages transmitted over a low-power channel called the paging channel.

The tracking process is generally divided into successive rounds whose durations are constant or variable depending on the estimation/prediction algorithm. In each round, the activation message is disseminated in a zone called the activation zone whose range depends on the estimated velocity of the target and the measurements' error in the current tracking round. After initialization of the network, the estimation/prediction algorithm generates a reliable estimation of the target state for the current tracking round, and one or more predictions for the next rounds. If the target has a dynamic behavior during the current tracking round, then a cluster and/or a tree reorganization is triggered to follow-up the target trajectory. It is the task of the current leader and/or the current root to generate state estimations of the target and report data to the sink.

For designing an energy-efficient target tracking scheme, the following elements should be considered: Quality of Detection. According to the network coverage ratio (which is related to the initial deployment, the sensing range, the network density, etc.), the target can be detected by one or many nodes, thereby generating correlated measurements. A tracking scheme should be able to decide which nodes should be selected for the next round? How long should be the diameter of the activation zone? How many nodes should be selected? etc., in order to obtain the required quality of detection which helps computing the current estimation error.

Estimation/Prediction Algorithm. The prediction algorithm should be distributed and light-weight depending on the state model equation of the target (linear or non-linear), the noise model of the sensor readings (Gaussian, non-Gaussian), the nature of data (mono-modal, multi-modal), etc. As sensor nodes have limited resources, the Kalman Filter algorithm (KF) [START_REF] Welch | An introduction to the Kalman filter[END_REF] is widely used for estimation/prediction because its distributed variants such as the Distributed Kalman Filter (DKF) [START_REF] Wan | The unscented Kalman filter for nonlinear estimation[END_REF] and the Kalman Consensus Filter (KCF) [START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF] are easy to implement for linear systems.

However, for non-linear systems, more sophisticated data filtering algorithms are needed, such as: the Particle Filter (PF) [START_REF] Kennedy | Particle swarm optimization[END_REF], the Variational Filter (VF) [START_REF] Teng | Decentralized Variational Filtering for Target Tracking in Binary Sensor Networks[END_REF], the Extended Kalman Filter (EKF) [START_REF] Meinhold | Understanding the Kalman filter[END_REF], the Unscented Kalman Filter (UKF) [START_REF] Candy | Model-based signal processing[END_REF], etc.

Data reporting mechanism. After the estimation and prediction of the target state, the target tracking scheme have to choose the nodes that report data to the sink. Ideally, when connectivity is ensured, the nodes that are close to the target with the maximum energy resources should be selected. However, the reconfiguration of the network may lead to a situation where the reporter node is far away from the sink and/or the target. In this case, the selection of backup reporter nodes or the establishment of a hybrid (static/dynamic) network structure can be applied.

Activation mechanism. The activation range depends on the target velocity. To avoid the loss of the target, a multi-step activation mechanism with variable activation range can be applied. The activation plan can be static (pre-established at the beginning of the tracking process) or dynamic, according to the current estimated state and the measurements' error.

Logical network structure. To optimize the communications, a flat network structure is not the better solution. By constructing temporary clusters and/or trees, data fusion can be localized within few number of nodes. However, the target tracking scheme should deal with some issues due to dynamic changes such as: leader election, cluster/tree reconfiguration, clusters boundary determination, etc. In this general classification, we divide the sensing-related approaches into two subclasses: Single-node Signal Processing approaches (SP) and Collaborative Signal Processing approaches (CSP). The first class is out of scope of our work and the second class is split into two other subclasses, namely: information-driven subclass and data filtering subclass. The difference between the two subclasses is that the first exploits the data content to optimize the future readings, however the second generates accurate information from noisy readings.

General Classification

We also split the communication-related approaches into two subclasses, namely: the Routing/Aggregation approaches and the Network Self-organization approaches. As routing and aggregation techniques are common to all WSN-based applications, and they are well surveyed in the literature [START_REF] Rajagopalan | Data-aggregation techniques in sensor networks: a survey[END_REF], we omit the first subclass and we detail only the second one which is directly related to the applications of target tracking. We divide it into three subclasses, namely: the node selection subclass, the sleep scheduling subclass, and the dynamic clustering subclass.

In node selection techniques, the resources of the nodes and their probability of target detection are estimated. Based on that, the contribution of each node in the target belief state [START_REF] Zhao | Information-Driven Dynamic Sensor Collaboration[END_REF] is computed, and the algorithm decides which node to activate and which one to put in the sleep state.

Since the sleep scheduling subclass is more important, we divided it again into three subclasses which are: geometric-based subclass, biological-based subclass and coverage-based subclass. These subclasses differ between each others with respect to the strategy of each subclass to activate and deactivate the nodes. An in-depth description of each approach is given in Section 2.2 and Section 2.3.

It is worth noting that it exists a previously proposed approach that merges Distributed Predictive Tracking (DPT) with regional Collaborative Signal Processing (CSP) and uses them alternately to track a group of objects. This approach is proposed in [START_REF] Benferhat | A Physical CPT and Regional CSP-Based Hybrid Algorithm for Energy Efficiency in Target Tracking in Wireless Sensor Networks[END_REF] and it uses the same concepts that rule our classification.

Collaborative Signal Processing Methods

In collaborative signal processing techniques (called also distributed in-network data processing techniques), instead of sending data to the sink node to be processed by the end-user application, sensor nodes collaborate between each others to retrieve the required information. They decide about which data to deliver and which one to aggregate, or to compress or to suppress (drop). The goal here is to optimize the network communications and to reduce the number of nodes involved in the tracking process as well as the volume of messages exchanged between them. That is what we refer to by data-centric approach. In the following subsections, we present two different techniques which are: the informationdriven techniques and data filtering techniques.

Information-Driven Techniques

To the best of our knowledge, Information-Driven Sensor Querying (IDSQ) technique has been first proposed in [START_REF] Zhao | Information-Driven Dynamic Sensor Collaboration[END_REF]. The basic idea behind it is to explore the content of the data captured by the sensor nodes to optimize the future readings. Specifically, it aims to determine which sensor should take the measurements, and to whom it should send them. IDSQ requires collaboration among sensor nodes because the targets may have sparse spatial-temporal distributions. Hence, the target tracking process in IDSQ can be seen as a sequential Bayesian estimation problem in which we can use different measures of the information utility such as: the Mahalanobis distance and the entropy-based utility measure.

When we use the entropy-based utility measure [START_REF] Wang | Entropy-based Sensor Selection Heuristic for Target Tracking[END_REF], the activation mechanism selects an informative sensor such that the fusion of the selected sensor observation with the prior target location distribution would yield, on average, the greatest or nearly the greatest reduction in the entropy of the target location distribution.

Therefore, the problem raised in [START_REF] Wang | Entropy-based Sensor Selection Heuristic for Target Tracking[END_REF] is how to efficiently evaluate the expected information gain attributable to each candidate node to selection without actually retrieving sensor data. The authors define the entropy-based heuristic to measure the quality of detection using the sensor's view about the target location (which is the geometric projection of the target location onto that of the sensor's observation perspective). This metric is a function of both target location and sensor location, and it is simpler than mutual-information method [START_REF] Ertin | Maximum mutual information principle for dynamic sensor query problems[END_REF]. The main difference between the the two methods proposed in [START_REF] Wang | Entropy-based Sensor Selection Heuristic for Target Tracking[END_REF] and in [START_REF] Zhao | Weighted Distance Based Sensor Selection for Target Tracking in Wireless Sensor Networks[END_REF] is that, the former involves only one sensor, while the later selects many sensors.

The Distributed Kalman Filter (DKF) with information-driven estimation algorithm is proposed in [START_REF] Olfati-Saber | Distributed Tracking for Mobile Sensor Networks with Information-Driven Mobility[END_REF] by Olfati-Saber. He showed that the common objective of improving individual information value of the sensors would force to perform an unplanned moving rendezvous near the mobile target. Collision avoid-ance between agents leads to a flocking behavior. He proposed a metric that measures the information value similar to the Fisher Information [START_REF] Michel | Optimal observer maneuver for bearings-only tracking[END_REF]. He showed also that adding the agent-target interaction to the flocking algorithm [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF][START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF] is a way of taking the information value of sensor measurements into account in motion planning of agents toward the target.

Another problem related to computational efficiency in information-driven methods is when we have to activate nodes with maximum information-utility. This problem can be non-trivial because the function of the next-step error covariance matrix can be non-convex. The authors in [START_REF] Weimer | Relaxation Approach to Dynamic Sensor Selection in Large-Scale Wireless Networks[END_REF] proposed to minimize the trace of the next step error covariance matrix to find the maximum of the function. They proposed a relaxation approach that searches for the computationally feasible sub-optimal solution. Thus, the trace of the next step error covariance matrix becomes a convex function and its minimum can be easily computed using convex optimization.

Data Filtering Techniques

With respect to the constraints of sensor nodes in terms of computation and communication, light-weight versions of classical filtering algorithms have been proposed. For example, in [START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF] the Kalman Consensus Filter (KCF) algorithm is proposed for nodes with limited sensing range. In this kind of network, not all the nodes of the network can observe the target but only a subset of them. The authors proposed a consensus-based filtering algorithm implemented over a logical P2P network of micro-filters. Each micro-filter is a local estimator. A high-level fusion center aggregates the local state-estimates and the error covariance matrix of each micro-filter. The goal of KCF algorithm is to reach for a consensus on estimates obtained by local KFs rather than distributing the construction of the fused measurements and the covariance information of the central KF, which is complex. The fusion center in this case (KCF) does not receive a large amount of data because of the hybrid architecture.

The extended variant of the Kalman Filter (EKF) can also be used as an estimation algorithm in cluster-based tracking schemes such as in [START_REF] Lin | Energy-Efficient Distributed Adaptive Multisensor Scheduling for Target Tracking in Wireless Sensor Networks[END_REF]. The tracking process is run as successive selections of nodes. To select a node, the leader needs to know its target detection probability (which can be deduced from the target state equations) and then it computes the Joint Detection Probability of all detecting sensors. Unfortunately, this process is very complex and requires a Monte-Carlo simulation method. The authors propose a greedy approach in which, the sensors with high detection probability are selected at first.

Another aspect of EKF when it is used as an estimation/prediction algorithm is the problem of the Inter-Sensor Interferences problem (ISI). This problem appears with active sensors that track non-collaborative targets [START_REF] Xiao Wen-Dong | Sensor Scheduling for Target Tracking in Networks of Active Sensors[END_REF]. To resolve this problem, a time-division distributed technique is proposed in which each sensor senses the target alternatively within a predefined number of slots.

The first variant of this technique, called the periodic scheduling, is based on the division of the time into periodic cycles each of which is assigned to a sensor (see Figure 2.4). If the scheduled sensor detects the target in its time slot, it computes the difference between its time of measurements and the previous time step and fuses its measurements with the existing target estimation using EKF. Finding the minimum number of time-slots can be modeled as a graph coloring problem which is known as NP-Complete.

The second variant is called the adaptive scheduling. Its goal is to eliminate empty slots by scheduling the next tasking node for the next time step according to the predicted tracking accuracy derived from the trace of the covariance matrix of state estimation using Unscented Kalman Filter (UKF). EKF can also be used by the current cluster-head to estimate the distance to the target. This technique has been proposed in [START_REF] Liu | Performance Analysis of Sleep Scheduling Schemes in Sensor Networks Using Stochastic Petri Net[END_REF] where detecting nodes send their measurements to a selected cluster-head which in turn sends a command message to the second nearest sensor to get initial coordinates of the target. After that, it executes the Least Square Estimation method to obtain a good estimation of the target position. The EKF algorithm is then triggered to estimate the current and the next target state. The target model in this scheme is Position-Velocity (PV) with 4 sensor distance measurements. The sampling period (δT ) is computed according to the target velocity.

It is worth to note that when we use EKF as an estimation/prediction algorithm, it is important to find the most energy-efficient logical network topology (ex. a tree) that satisfies state estimation constraints. This problem is addressed in [START_REF] Shi | Resource optimisation in a wireless sensor network with guaranteed estimator performance[END_REF] and it is shown that choosing the tree with the minimum energy consumption is very difficult. Thereby, the authors propose a tree reconfiguration algorithm composed of three procedures: (1) a recursive tree initialization procedure that uses the minimum power transmission to establish connections of each node with its immediate neighbors, (2) a switching tree topology procedure that is triggered when the desired quality is not achieved. It transforms some two-hop neighbors to one-hop neighbors, and (3) a minimum energy subtree procedure that finds all the possible subtrees satisfying the required quality. It returns the tree with the minimum overall energy cost.

In [START_REF] Shi | Resource optimisation in a wireless sensor network with guaranteed estimator performance[END_REF], the authors show that the minimization of the overall energy consumption may not lead to the maximization of the network lifetime. Thus, a tree scheduling algorithm that chooses M trees from N N -2 possible trees is necessary 1 . A linear programming solution has been proposed to search for that M trees, efficiently.

In all the above-described schemes, the main objective of collaborative signal processing methods is to measure the data quality delivered by the nodes to choose the most appropriate ones for activation. They focus on reducing the noise of measurements and predicting the target behavior in the future without paying attention to the network structure to reduce energy consumption in communications. Thereby, we address this complementary aspect in the next section.

Network Self-Organization Approaches

The objective of the network self-organization approaches is to extend the network lifetime by eliminating unnecessary wakening of the nodes, by planning rigorously their sleep state and adapting the network topology to the changes of the target dynamic. In the following subsections, we describe three subclasses that fit in these approaches.

Sleep Scheduling

The first subclass of the network self-organization methods is sleep scheduling. It focuses on planning the sleep state of the nodes along with the trajectory of the 1 Optimal scheduling of such trees is also known to be an NP-Complete problem.

target. As the presence of the target in the surveillance area is a localized event (because of the limited observability of the target, the limited sensing range of nodes, and the attenuation of the energy emitted by the target), only a subset of nodes located close to the target should be activated. The others should stay inactive until they receive an explicit activation message from the previous tracking nodes. It indicates that the target is probably in their sensing ranges and thus they can sense it. The predictability of the target trajectory helps to determine, with a sufficient degree of confidence, which nodes to wake-up? At which instant? And for which duration? From this standpoint, the sleep scheduling (or sleep planning) approaches should consider certain constraints such as: the coverage and the connectivity of the network, the network lifetime, the detection reliability, the accuracy of tracking, etc.

In what follows, we present three subclasses of sleep scheduling methods, namely: biological-based methods, geometric-based methods and coverage-based methods.

Biological-Based Approaches

Biological-based approaches use biological-inspired concepts such as insect communities, gene programming, ant colony, etc. [START_REF] Yousef | Metadata-Based Adaptive Sampling for Energy-Efficient Collaborative Target Tracking in Wireless Sensor Networks[END_REF][START_REF] Dai | An Energy-Efficient Tracking Algorithm based on Gene Expression Programming in Wireless Sensor Networks[END_REF].

In [START_REF] Yousef | Metadata-Based Adaptive Sampling for Energy-Efficient Collaborative Target Tracking in Wireless Sensor Networks[END_REF], the authors abstract the target as a virtual chemical emitter. They propose to construct contours of influence around the target whose strength decreases with the distance from the target. Then, they select the sampling period based on meta-data of the target using its net traveled distance (its past behavior). When the target enters the surveillance region, it is detected by the border nodes. After that, a group of nodes is pro-actively selected and assigned as Main Node (MN) or Helper Node (HN) 2 .

In [START_REF] Dai | An Energy-Efficient Tracking Algorithm based on Gene Expression Programming in Wireless Sensor Networks[END_REF], the concept of Parallel Gene Expression Programming (P-GEP) is used to schedule the sleeping state of the nodes. The target trajectory is modeled as a piecewise function divided into different shorter portions. This function is unknown before the target appears, but it can be extracted. The future positions can be predicted from the past locations. P-GEP includes a distance-based lightweight localization algorithm to estimate the current target position. During the trajectory mining process, some past location information are unnecessary, so they can be discarded using a sliding window mechanism whose size determines how many previous information is needed according to the prediction accuracy. This later is measured using the distance between the prediction position and the actual position. Given the prediction accuracy, an upper-bound and a lowerbound trajectories are computed. A fitness function is proposed to evaluate individuals in P-GEP: the higher is the function value, the better is the individual (the the prediction error is low). The node scheduling algorithm is based on a singlestep or multi-step prediction model that uses the trajectory found to determine which nodes to wakeup at time t i+j from the historical information up to time t i .

Coverage-Based Approaches

The goal of coverage-based approaches is to preserve the requirements of event coverage while running the sleeping plane of the nodes. Different problems arise.

First, the problem of determining the optimal length of the activation period in the sleep schedule of the Controlled Greedy Sleep algorithm (CGS) [START_REF] Gyula | Dependable k-coverage algorithms for sensor networks[END_REF]. It is addressed in [START_REF] Bergmann | Optimal Period Length for the CGS Sensor Network Scheduling Algorithm[END_REF] and modeled as a bi-parti graph whose properties determine the static and the dynamic k-coverage requirements. The basic idea behind this technique is that each node can estimate the number of neighbors that will benefit from its duty period. Based on this estimation, it decides to become active or not. The authors recommend to consider a short period of activation for dynamic networks.

Second, the problem of off-duty eligibility rules, which is addressed in [START_REF] Tian | Location and calculation-free nodescheduling schemes in large wireless sensor networks[END_REF]. The objective is to identify the redundant nodes to put them in off-duty mode without using any location information. The basic idea is that before scheduling the sleeping state of the nodes, the user application specifies the desired ratio of coverage loss. Then, the corresponding threshold is determined using a given mathematical expression or using the collected data.

Last, the multi-node event watching problem i.e. TEKWEM 3 which is formulated in [START_REF] Li | Survey of Maneuvering Target Tracking. Part III: Motion Models of Ballistic and Space Targets[END_REF]. The authors propose an algorithm that finds the sets of detection nodes that satisfy the warning delivery delay and the network lifetime constraints. The algorithm uses a color-based method to construct all the Breath-First-Search Trees (BFST) each of which is rooted at a gateway. Each tree corresponds to a detection set. The gateway adds greedily the sensors whose sensing components can help to k-monitor the atomic events, into the detection set. It can also add useless nodes for connectivity purposes. After that, the gateway builds the working schedule then broadcast it to all the sensor nodes. Multiple selection heuristics can be proposed in this context.

Geometric-Based Approaches

The geometric-based approaches use computational geometry to construct applicationoriented network topology. They profit from the location information of the nodes to optimize the localization and tracking of the target. In this subsection, we describe three different schemes, each one of them uses a different geometric concept. Face-based Object Tracking (FOTP) scheme [START_REF] Xu | FOTP: Face-based Object Tracking Protocol in Wireless Sensor Network[END_REF] uses a face-based architecture with a hexagon algorithm for prediction. It achieves energy efficiency by reducing the number of active faces and the number of waking nodes. A face is defined as "the subdivision of the maximal connected subset of the plane that does not contain a point on an edge or a node" [START_REF] Xu | FOTP: Face-based Object Tracking Protocol in Wireless Sensor Network[END_REF]. The main idea behind FOTP is as follows:

First, some active nodes called "soldiers" detect the target then wake-up all the nodes in the face by which the object entered. In Figure 2.6, the target enters by face F 1 and nodes A, B and N are woken-up to detect it. The nodes in the current face can estimate the distance to the target. After that, they select the nearest node (NN) to the target as a leader. In the example of Figure 2.6, node N is the leader. The NN determines by which edge the target enters and obtains its last position. Then, it computes its speed and direction. The current NN determines the next edge to which the target is going through. In Figure 2.6 it is the edge N -H. After that, it selects the next NN from the set of nodes in the adjacent faces that intersects with the predicted edge. In Figure 2.6, the next NN is node F . If the next NN cannot detect the target in its time slot, it sends a loss message to the last NN which will activate all its adjacent faces. If the target is not detected again, this last NN sends a message back to the base station.

Another concept used in geometric-based schemes is planar graphs. A typical scheme that demonstrates this concept is Polygon-based Target Tracking scheme (PTT) [START_REF] Md | Polygon-Based Tracking Framework in Surveillance Wireless Sensor Networks[END_REF], where a measure of the information-utility based on the Cramer-Rao Lower Bound (CRLB) 4 of the variance is used. The objective here is to minimize the number of nodes that participate in the tracking process. The algorithm is based on the brink construction procedure: it determines the critical region by connecting an edge called the brink to the active polygon. This critical region helps to confirm if the target is leaving the current polygon and entering another one, or not. The PTT scheme uses also a node selection procedure based on both the information-usefulness and the energy cost: before the target crosses the brink, a control message which contains the target state estimation is sent to the nodes in the forwarding polygon. The receiving nodes combine their measures with the received estimation to compute their weights. Each node can locally decides whether it should join the tracking operation or not, and thereby it determines its couple nodes.

Finally, Kinematics are used to reduce the active tracking area in multipletarget tracking [START_REF] Ashfaque | Atiqul Islam Mollah. Energy-efficient Multiple Targets Tracking Using Target Kinematics in Wireless Sensor Networks[END_REF]. The sensor nodes are classified into three categories: Boundary Nodes (BN), Worker Nodes (WN) and Computational Nodes (CN). The tracking area is mapped to a Voronoi Diagram (VD) and three different cases are identified depending on the overlapped area of interest. Larger overlapped area of interest between two polygons results in small number of sensors in that polygons, and vice versa.

Node Selection

The second subclass of network self-organization approaches is node selection approaches. As the network lifetime maximization problem is often formulated as an optimization problem under constraints, node selection can be seen as the result of the resolution of such a problem.

A a possible formulation of this problem is the knapsack model [START_REF] Delicato | An Efficient Heuristic for Selecting Active Nodes in Wireless Sensor Networks[END_REF]. The goal is to maximize the residual energy of the network while meeting the application QoS requirements. In this model, the duration of the submitted task T is subdivided in multiple rounds of size t. The execution of the algorithm is alternated between different subsets of active nodes whose role will not change during the round. The algorithm seeks to select the best subset of nodes according to different objective function such as: minimum energy consumption, maximum residual energy, etc. According to this model, the nodes are the objects of potential relevance estimation R i and residual energy U i . They have to be placed in a knapsack of capacity M which represents the energy budget. The energy cost of each node is its energy spent in sensing and communication activities. The other constraints of coverage, connectivity and QoS are included in the dynamic program that resolves the problem.

Other possible formulations are the Network Lifetime Maximization Problem (NLMP) and Routing Path Length Minimization Problem (RPLMP) which are jointly presented in [START_REF] Liu | Heuristics for Mobile Object Tracking Problem in Wireless Sensor Networks[END_REF]. NLMP aims to maximize the number of sensor nodes which are kept in sleep state, while RPLMP aims to minimize the routing path length. The activated nodes remain in active state until the end of the round.

These two problems are proved to be NP-Complete and three heuristics are proposed to solve them, namely: the Naive Shortest Path Selection heuristic (NSPS), the Dual Shortest Path Selection heuristic (DSPS) and the Weighted Shortest Path Selection heuristic (WSPS). NSPS is better in delay minimization while WSPS and DSPS are better in network lifetime maximization. The choice of one heuristic among the others depends on the application requirements.

The problem of node selection raises the question of finding the upper bound of the network lifetime for any collaborative protocol [START_REF] Bhardwaj | Bounding the Lifetime of Sensor Networks via optimal Role Assignments[END_REF]. A Role Assignment based approach is proposed in [START_REF] Bhardwaj | Bounding the Lifetime of Sensor Networks via optimal Role Assignments[END_REF] where three basic roles for nodes are defined, namely: sensing, gateway and aggregation. The question is first modeled as a linear optimization model under the constraints of network topology and sensing operations. After that, it is transformed into a flow maximization problem in order to reduce the complexity of computation. A point is worth to note here is that energy consumption in the MAC layer should be incorporated into the proposed model in order to give a reliable estimation of the network lifetime upper-bound.

Node selection usually refers to sensor management with respect to energyefficiency. This approach uses many concepts such as: state-centric strategy [START_REF] Lin | State-Centric Multi-Sensor Scheduling for Target Tracking in Wireless Sensor Networks[END_REF], rechargeable sensors [START_REF] Volodymyr Pryyma | Active time scheduling for rechargeable sensor networks[END_REF] and profile information of the target [START_REF] Chao-Chun Chen | HAMA: A Three-Layered Architecture for Integrating Object Tracking and Location Management in Wireless Sensor Networks[END_REF][START_REF] Ling | Localized sensor management for multi-target tracking in wireless sensor networks[END_REF], for the purpose of managing the sensing activities of the nodes.

For example, in [START_REF] Lin | State-Centric Multi-Sensor Scheduling for Target Tracking in Wireless Sensor Networks[END_REF], the selection of active nodes is based on a state-centric strategy. The prediction of the target state is computed whatever is the number of hops between the current data fusion center and the next one. In this scheme, the selection of the fusion center is based on the energy cost, and the data transmissions are all routed along the paths of minimal energy cost.

The sensor activation range is also an important factor in tracking mobile target with high acceleration [START_REF] Chao-Chun Chen | HAMA: A Three-Layered Architecture for Integrating Object Tracking and Location Management in Wireless Sensor Networks[END_REF]. A Proportional-Integral-Derivative (PID) control system is used to update the activation range in each sampling period. The proposed algorithm [START_REF] Kiam | PID control system analysis, design, and technology[END_REF] measures the effective tracking quality and compares it with the required tracking quality. The average error determines the number of nodes to be activated and the activation range as well. In this algorithm, the recovery process is based on the number of consecutive misses, the distance between the predictive positions, etc.

Another example of the use of sensor management is the greedy selection. The GSSM (Greedy-Selection Sensor Management) scheme is proposed in this context to assign a proper subset of sensors to track multiple targets [START_REF] Ling | Localized sensor management for multi-target tracking in wireless sensor networks[END_REF]. GSSM uses an information filter [START_REF] Vercauteren | Decentralized sigma-point information filters for target tracking in collaborative sensor networks[END_REF] for multi-sensor data fusion. Sensor management in this scheme is based on the fact that not all measurements contribute in improving the tracking accuracy 5 . The information propagation uses two mechanisms to decide which subset of nodes receive the target information: (1) the predicted subset mechanism which is more optimal, but less-effective, and (2) the nearest subset mechanism which is sub-optimal but communication and delay effective. In GSSM, the sensor management problem with the maximization of the information contribution of the sensors is formulated as a binary optimization problem. GSSM finds a near-optimal solution of this problem compared to the branch-andbound algorithm. However, this later is more difficult to implement in a localized fashion.

The sensor selection problem with rechargeable batteries that use energy harvesting techniques is proposed in [START_REF] Volodymyr Pryyma | Active time scheduling for rechargeable sensor networks[END_REF]. The basic idea is that the energy consumption depends on the current state of the nodes, namely: active state, inactive state, wakeup state, energy harvesting state and observation state. As in ANSWER architecture [START_REF] Olariu | ANSWER: AutoNomouS netWorked sEnsoR system[END_REF], a set of scheduling techniques that take into account uncertainties of the energy incomes are used. For example, in the static active time approach, the complete duration of the day contains a regular alternation between active and inactive time. This approach increases the observation quality but suffers from the lack of adaptation to unexpected events. To overcome this drawback, a multiparametric heuristic based approach is proposed. Multiple parameters such as the current stored energy, the probability of encountering an event, etc. are used to predict the length of the next active period. A third approach based on the utility active time is proposed to overcome the problems of the heuristic approach.

From the perspective of the target nature, node selection is also affected by the target speed. For example, a scheme called Distributed Spanning Tree Algorithm (DSTA) is proposed in [START_REF] Alaybeyoglu | A Distributed Wakening Based Target Tracking Protocol for Wireless Sensor Networks[END_REF] to track fast targets. Its goal is to decrease the probability of target loss. For this purpose, it generates successive predictions to awakening nodes at t + δt, t + 2δt, t + 3δt, etc. where δt is the duration of the tracking step. The protocol is designed in two layers: the lower-layer and the upperlayer. The lower-layer runs a spanning tree-based clustering protocol that builds a cluster-based network structure (see Figure 2.7(a) for illustration: DSTA forms three clusters: the current cluster {s 1 , s 2 , s 3 , s 4 } with node s 1 as the cluster-head, the wakeup cluster (i) {s 5 , s 6 , s 7 , s 8 , s 14 , s 15 } with node s 14 as the cluster-head and the wakeup cluster (i + 1) {s 9 , s 10 , s 11 , s 12 , s 13 } with s 10 as the cluster-head). The upper-layer runs the awakening algorithm where the clusters form a spanning tree rooted at the sink node. Due to the average speed of the target and its direction, the clusters in the same direction are woken-up. Their number depends on the target speed.

The node selection depends also on the profile information of the target. For example, the Global Prediction-Based Algorithm (GPBA) [START_REF] Garcia | A global profilebased algorithm for energy minimization in object tracking sensor networks[END_REF] considers two main parameters in this context: (1) the sampling duration and (2) the reporting frequency (to the sink). It uses global profile rather than local profile because it is accessible by all the nodes of the network. The mobile object (target) in GPBA can collect the information about its behavior from the network. Thus, nodes can use this information to activate a specific set of nodes. This approach is specific to objects tagged with a unique global ID. A learning phase is necessary to record the frequency of the object movements between the nodes. Each node saves the frequency of each node by which the object is traversing. After that, based on the object profile, a tracking leader is elected as the current cluster-head that detects the target. The object profile is updated each time the object is lost.

Dynamic Clustering

A WSN-based target tracking system is generally built on a cluster structure because of its aggregation and data fusion characteristics. In the literature, different types of clustering schemes exist such as: pure dynamic clustering schemes and hybrid (static/dynamic) schemes. The cluster formation, maintenance, reconfiguration and the cluster-head election are the main issues related to these schemes. In this section, we describe and discuss some cluster-based protocols such as: ADCT, HTTP and HCTT, etc. Each protocol has a different method to tackle the above-mentioned issues.

As a starting example, we have the Adaptive Dynamic Cluster-based Tracking (ADCT) protocol which is proposed in [START_REF] Yang | An adaptive dynamic cluster-based protocol for target tracking in wireless sensor networks[END_REF], and whose cluster formation procedure is based on a two-phase mechanism: a broadcast phase and a notification phase. The node with the smallest distance/ID is chosen as a cluster-head. The sensor selection procedure is based on an optimal selection function which is a mixture of both data usefulness and energy cost. The usefulness of the nodes can be deduced from the bid messages sent by the members to the cluster-head. The cluster reconfiguration procedure is triggered when the predicted position of the target is on the boundary of the current cluster. In this case, the clusterhead sends a command message to the neighbor node nearest to the predicted position. The receiving nodes send an election message to their neighbors and select the first replying one as the new cluster-head. The recovery mechanism is based on acknowledgment messages and waiting timers.

Cluster-based schemes can also be coupled with the Particle Filter (PF) [START_REF] Arienzo | Energy-Efficient Target Tracking in Sensor Networks[END_REF]. It uses a re-sampling method (SIR) to reduce the computation complexity of PF by eliminating samples with small weights and preserving samples with big weights: that is called bootstrap filter. This approach suffers from degeneracy problem: the system may collapse to a single point. The solution proposed in [START_REF] Arienzo | Energy-Efficient Target Tracking in Sensor Networks[END_REF] is a local linearization using EKF or UKF. The utility function used in node selection is defined as the uncertainty of the target reduced by the additional measurements. It can be represented by the entropy of the belief state which can be used to select the best node among sensor candidates to maximize information gain. The cost includes: the bit rate between the cluster-head and the neighbor, the distance from the sensor node to the cluster-head and to the target, and the energy needed to receive one bit from the neighbors. An optimization problem is formulated and two scenario-dependent solutions are proposed: a meta heuristic called GRASP for the static scenario and a branch-and-bound method for the dynamic scenario.

Another protocol called Herd-Based Target Tracking Protocol (HTTP) is proposed in [START_REF] Xing | Herd-Based Target Tracking Protocol in Wireless Sensor Networks[END_REF]. It uses a state transition model with three states, namely: sensing, sleeping and tracking. Each node computes its weight and decides to participate in the tracking process or not. The nodes in the tracking state form a cluster surrounding the target. The backup herd node is a node that has the same role as the herd node but it does not send the data to the base station. The geographic region of the network is divided into virtual grids, each of which is monitored by a cluster-head. A node in the sensing state computes its weight periodically then checks if it exceeds a specified threshold. Then, it changes to the tracking state. Note here that the weight of a node depends on its distance to the target, and the number of clusters that can participate in the tracking task is determined by the grid size. When the target moves out from the current grid to a new one, the nodes within it can change either to the tracking state or to the sensing state depending on the measurements' data. Meanwhile, the nodes of the previous grid return back to the sleeping state because they cannot sense the target anymore. The herd reconfiguration is triggered based on the distance between the current herd and the target.

An example of hybrid cluster-based protocol is HCTT (Hybrid Cluster-based Target Tracking) [START_REF] Wang | A novel mobility management scheme for target tracking in cluster-based sensor networks[END_REF]. It deals with the problem of the boundary of clusters (which increases the tracking uncertainties) by integrating a dynamic on-demand clustering protocol and a static cluster-based target tracking scheme. To solve this problem, HCTT checks first whether there exist neighbor nodes that belong to another cluster or not. If yes, then these are boundary nodes and the cluster region is divided into three types: safety region, boundary region and alert region. Consequently, the dynamic cluster includes active boundary nodes that detect the target. The hand-off between static and dynamic clusters is based on the sensing data received from the nodes within these different regions.

The scheme proposed in [START_REF] Jang | Location Tracking for Wireless Sensor Networks[END_REF] uses a backoff procedure to deffer the broadcast of messages, in order to reduce the energy consumption and to achieve data accuracy by varying the transmission range. It consists of two processes: the selection process and the release process. In the selection process, the nodes that detect the target simultaneously trigger the backoff procedure. The node with the lowest backoff period, broadcasts a DETECT message to its neighbors (nodes that are in its transmission range). The receiving nodes stop their backoff procedures and the other nodes (that are out of the transmission range and which has the lowest backoff time) will not receive the DETECT message. Thus, the node with the lowest backoff time will track the target. Collisions occur when two or more nodes transmit their DETECT message simultaneously because of their identical backoff time. In the release process, when the target moves out of the sensing range of the detecting nodes, a RELEASE message is transmitted to the neighbors. Upon receiving this message, nodes trigger a backoff procedure. Similarly, nodes having the lowest backoff time will be selected to track the target.

Classification of Specific Approaches

In this section, we describe certain schemes that put special assumptions on the sensor capacities and/or track special targets. These schemes do not fit in our classification proposed in Section 2.1 because they use different methods to achieve energy efficiency. However, they are related to the general classification by the ability of using predictions to optimize the sensing and communication operations. In the following subsections, we present the most important schemes that fit in this category.

Continuous Object Tracking

Continuous objects contrary to single or individual objects, have a geometric shape and may expand in a large area such as: gas leaks, animal troupes, etc. Generally, this kind of objects cannot be represented by a single point or an atomic event. They often need multiple attributes to be described with. Thus, sensor nodes should have multiple sensing modalities to track such objects, i.e. they form a Wireless Heterogeneous Sensor Network (WHSN), where one sensor node can detect multiple attributes of a target. WHSN are suitable for detecting and tracking composite events (ex. fire or pollution). A challenging task in tracking continuous objects is the event boundary determination. Contrary to individual object tracking, in which the main problem is how to predict the next location of the target, and how to inform the next tasking nodes to take charge of the tracking task, composite events occupy a large area. The goal here is not to construct and maintain a network topology but to estimate attribute regions and to determine the event region.

According to [START_REF] Jin | Energy-Efficiency Continuous Object Tracking Via Automatically Adjusting Sensing Range in Wireless Sensor Network[END_REF], there exist four methods to track continuous objects:

1. All the sensors in the phenomenon area report data to the sink.

2. Only nodes nearby the boundary area of the phenomenon are selected.

3. Nodes outside and inside the boundary area are selected (more nodes than in the previous method). [START_REF] Stojmenovic | Handbokk of Sensor Networks: Algorithms and Architecture[END_REF]. Few representative nodes that report data.

For example, in ECOT [START_REF] Jin | Energy-Efficiency Continuous Object Tracking Via Automatically Adjusting Sensing Range in Wireless Sensor Network[END_REF], an adjustable sensing range technique is used where nodes are classified in five types: (1) undetect-to-detect, (2), detect-toundetect, (3) border node, (4) representative node and (5) border point. Boundary detection is achieved by adjusting the sensing range of nodes: nodes of type 1 diminish their sensing range and nodes of type 2 increase their sensing range.

TOCOB is another scheme [START_REF] Kim | Energy-Efficient Tracking of Continuous Objects in Wireless Sensor Networks[END_REF] where each node wakes-up periodically and makes a local observation. A node becomes a CVN (Changed Value Node) when it observes a value in the current sampling period different from its last recorded value. This node broadcasts a COZ (Compare One Zero) message containing its ID and its status. A node becomes BN (Boundary Node) if it receives a COZ message with different value; It counts the COZ messages received during a period of time in order to decide to become a RN (Representative Node) or not. Contrary to the COBOM algorithm [START_REF] Zhong | Energy-Efficient Continuous Boundary Monitoring in Sensor Networks[END_REF], not all the nodes nearby the boundary will become BN but only those that receive different readings. RN selection is based on the number of COZ messages received by the BN nodes to determine the backoff time: the higher is the number of COZ messages, the shorter is the backoff time. Hence, the nodes near the boundary will have high probability to become RN nodes.

CODA [START_REF] Chang | CODA: A Continuous Object Detection and Tracking Algorithm for Wireless Ad Hoc Sensor Networks[END_REF] uses a hybrid static/dynamic clustering approach by constructing a static cluster backbone and determining the boundary sensors which then form a dynamic cluster to monitor the continuous object profile. CODA uses also the Graham Scan algorithm [START_REF] Chazelle | Approximation and decomposition of shapes[END_REF] to resolve the Convex Hull problem i.e.: determine the sensors located at the boundary of the cluster by the cluster-head. Boundary detection is based on the number of the static clusters that detect the object. The cluster-head is notified via sense messages. Then, it executes the Graham Scan algorithm and constructs a dynamic cluster. When the object boundary moves out of the sensing range of the current boundary sensors, new clusters are formed.

In CollECT [START_REF] Shih | CollECT: Collaborative event detection and tracking in wireless heterogeneous sensor networks[END_REF], the accuracy of event determination is achieved by subdividing the estimated attribute regions into multiple non-overlapping faces. In each face, the nodes determine whether the event has occurred or not. Some test rules such as AIT (Alert-In Triangulation), active role transition and passive role transition are used to implement these procedures of event determination and border node selection. A simplified strategy of logical neighbor selection called short diagonal wins is used. More general design strategies are needed to prove the effectiveness of such technique.

Tracking with Binary Sensors

Binary sensors generate one bit of information indicating that the target is approaching or moving away, or it is present in the sensing range of the sensor or absent. These primitive sensors indeed minimize the volume of data transmitted from the nodes to the sink. However, the quality of tracking may degrade when noisy measurements and/or lossy links are present.

In [START_REF] Aslam | Tracking a Moving Object with a Binary Sensor Network[END_REF], the authors propose a minimalist scheme of binary sensors that broadcast only one bit of information to the base station to indicate that the target is approaching or moving away. A derived tracking algorithm based on PF is proposed. The algorithm generates a set of particles whose weights are computed based on the probabilities of moving from one point to another and the distances between the sensors. The acceptance criterion of a particle is its associated probability which should be above of a certain threshold.

Although this model is energy-efficient because it generate small amount of data, it can not distinguish two targets close to each other or that move parallel to each other. Hence, an enhancement with proximity information is proposed in [START_REF] Cao | On collaborative tracking of a target group using binary proximity sensors[END_REF] to overcome this problem.

Binary proximity sensors can be used for tracking a group of targets as a con-tinuous region [START_REF] Cao | On collaborative tracking of a target group using binary proximity sensors[END_REF]. Sensor nodes compute their probability of detection based on the duration of the target presence in their sensing field. They use this probability to determine if the target is really detected or not. In order to localize the group of the targets, authors propose two algorithms to determine the monitoring region: the first one which is accurate but complex, computes the convex hull using the graham scan algorithm. However, the second one which compute the circle that contains the convex hull, is less complex but less accurate. The algorithm of selection of the reporter node chooses the node closest to the plus (+) sensors. Based on the distance transmitted by the data, and after iteration, the proposed algorithm gives the near-optimal coordinates of the reporter node. Finally, a redeployment control algorithm is proposed when the target group moves away from the current one. This algorithm aims to reduce the energy consumption by reducing the distances of the data transmission.

Another binary proximity sensor tracking scheme is proposed in [START_REF] Teng | Decentralized Variational Filtering for Target Tracking in Binary Sensor Networks[END_REF]. For non-Gaussian target state distribution, the tracking process becomes intractable. Instead of using a PF, the authors propose a Variational Filtering approach (VF) to reduce inter-cluster communications. In addition to this, a Binary Proximity Observation Model (BPOM) with a predefined threshold is used. This gives a solution to the problem with minimalist model. The advantage of VF over PF is the compression of the statistics required to update the filtering distribution between successive instants. In order to reduce the energy consumption, the authors adopt a non-myopic cluster activation based on the prediction generated by the VF.

Schemes Comparison and Discussion

All the above-described schemes share the double-objective of minimizing the energy consumption and improving the data accuracy:

• Energy-efficiency is related to the sensing and the communication operations.

• Data-accuracy can be expressed as the precision of the estimations or the amount of data extracted by the WSN given a certain network energy budget.

As it is shown in Table 2.1, on one hand, the sensing-related methods select nodes using prediction algorithms with respect to coverage, connectivity and network lifetime constraints. They use data fusion and data compression algorithms to minimize the volume of transmitted data. On the other hand, the communication-related methods optimize the routing and data reporting. They select reporter nodes based on the distance estimated between the current active nodes and the target. They use role-assignment and multi-step prediction approaches to balance energy consumption between the nodes. Another objective of the network self-organization techniques is to construct application-oriented topology that helps optimizing data-fusion process and extend the network lifetime.

Data accuracy and energy-efficiency should be traded as they are opposite objective. According to our study, data accuracy depends on the network coverage and the target observability. Constructing an efficient topology with respect to the coverage constraints and the message communication cost is a challenging problem. Furthermore, the use of a minimalist model of target observation such as binary sensors, adds additional constraints but helps reducing the energy consumption. The specification of the information-utility measurements and the target profile definition are also key problems to enhance the data accuracy.

Table 2.2, Table 2.3, Table 2.4 and Table 2.5 show the comparisons that we conduct between the sensing-related, the sleep scheduling, the sensor selection and the dynamic clustering mechanisms, respectively. It is easy to observe that few schemes consider all the energy-efficiency aspects of a typical target tracking scheme (subsection 2.1.1). All the schemes address only two or three aspects (except two schemes [START_REF] Lin | Energy-Efficient Distributed Adaptive Multisensor Scheduling for Target Tracking in Wireless Sensor Networks[END_REF], [START_REF] Chao-Chun Chen | HAMA: A Three-Layered Architecture for Integrating Object Tracking and Location Management in Wireless Sensor Networks[END_REF] that consider four aspects). Furthermore, the activation mechanism is the most important aspect addressed by the different schemes followed by network logical structure and the estimation/prediction algorithm. Hence, more attention should be put on the other aspects that are less-handled such as the data reporting mechanism.

As we can see on the tables, sensing-related schemes focus on the estimation/prediction algorithm in contrast to sleep scheduling based schemes and sensor selection and dynamic clustering based schemes which concentrate, respectively, on the quality of detection and the logical structure of the network. 

Quality of Detection

✓ ✓ ✓ ✓ - ✓ - - - Estimation/Prediction Algorithm ✓ - ✓ - ✓ ✓ ✓ ✓ ✓ Data Reporting Mechanism - - - - - - - - - Activation Mechanism ✓ ✓ - ✓ - ✓ ✓ ✓ ✓ Logical Network Structure - - ✓ - ✓ ✓ - - ✓

Quality of Detection

- ✓ ✓ ✓ ✓ - ✓ - Estimation/Prediction Algorithm - ✓ - - - ✓ - - Data Reporting Mechanism - - - - - - - - Activation Mechanism ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Logical Network Structure ✓ - - - ✓ ✓ ✓ ✓

Quality of Detection

- - - - ✓ ✓ ✓ - ✓ Estimation/Prediction Algorithm - - - - ✓ - - ✓ - Data Reporting Mechanism - - ✓ ✓ ✓ ✓ - - ✓ Activation Mechanism ✓ ✓ - ✓ ✓ - - ✓ - Logical Network Structure ✓ - - ✓ - - - ✓ ✓

Quality of Detection

- - ✓ - - Estimation/Prediction Algorithm - ✓ - - - Data Reporting Mechanism - - - - - Activation Mechanism ✓ ✓ ✓ - ✓ Logical Network Structure ✓ ✓ ✓ ✓ ✓

Conclusion

The energy problem in WSN is still an active research area where a huge body of research is produced. In this chapter we surveyed, some of the most recent target tracking schemes whose goal is to preserve the energy of the network while maintaining an acceptable level of data accuracy. All the schemes that we have described and discussed above try to resolve the energy problem by enabling the interaction between the sensing layer and the communication layer and allowing each layer to take profit from the other. However, we believe that the energy can be more likely optimized in the communication layer and the research effort should be focused on it. For this purpose, Chapter 4 and Chapter 5 deal with this aspect. In Chapter 4, we propose to model the energy problem by a BILP model to find the exact solution in the general context. And in Chapter 5, we relax the model by using a heuristic solution called CORAD.

Nonetheless, before going in depth in the communication related aspects, we first explore in Chapter 3 the possibilities of optimization in the sensing layer. We propose a dynamic clustering algorithm based on an enhanced version of the Distributed Kalman Filter for target tracking using sensors with limited sensing range.

Chapter 3

Energy Efficient Target Tracking Scheme with Limited Sensing Range T ARGET TRACKING APPLICATIONS in WSN can use either long sensing range or limited sensing range sensors, or both of them depending on the energy supply and consumption of the nodes. When the nodes use sensors with long sensing range, they consume energy excessively, especially if they are equipped with limited capacity batteries. At the opposite, when they use sensors with limited sensing range, they conserve the energy of their batteries due to the small quantities that they spend to sense the targets located in their restricted proximity.

The benefit of such sensors is also to localize the data fusion process. When the target is detected by a restricted set of nodes, the network can be self-organized into disjoint dynamic clusters that move along with the target trajectory. This will limit the number of nodes involved in the data fusion process. However, two problems are raised by this approach:

1. The distribution of the data fusion algorithm: since data are received from multiple sources and the data filtering algorithms are centralized which is not suitable for the sensor nodes, a lightweight distributed version of these algorithms could be used to limit the processing task over the set of detecting nodes.

2. The prevention of the target loss: as the detection zone is limited, then at each target state update, a network reconfiguration operation is required to prevent the loss of the target. The overhead of the reconfiguration should also be reduced to make the operation more efficient.

In this chapter, we propose a dynamic clustering approach based on a modified variant of the distributed Kalman Filter which we use as a data fusion al-gorithm to optimize the network communications and to reduce the energy consumption in target tracking applications.

Our data fusion algorithm is based on the work proposed in [START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF], in which the nodes implement local micro-filters and reach a consensus using message passing communication model. This scheme makes the assumption that passive nodes (nodes that do not detect the target) are considered with no contribution. Despite this, they are included in the fusion process.

There are also other versions of the Kalman Filters that refers to the Distributed Kalman Filter such as: the Kalman Consensus Filter (KCF) proposed in [START_REF] Olfati-Saber | Kalman-Consensus Filter : Optimality, Stability, and Performance[END_REF]. It uses a set of k Kalman micro-filters to fuse heterogeneous data received from sensors with non-linear sensing models. There are two variants of this approach: one fuses the measurements and the other fuses the estimations. In the variant of measurements' fusion, low-pass and band-pass filters are modified into high-gain high-pass filters. In the other variant, the estimations are fused instead of the measurements in order to accelerate the consensus convergence. This filter uses power-consuming complex matrix computations that generate latency and may fail detecting fast targets. Furthermore, the algorithm makes the assumption that all the nodes can observe the target simultaneously; which may not hold all the time.

Many approaches are proposed to distribute the Kalman Filter such as: biparti graph [START_REF] Usman | Distributed Kalman Filters in Sensor Networks: Bipartite Fusion Graph[END_REF], gossip communications [START_REF] Kar | Gossip and distributed Kalman filtering: Weak consensus under weak detectability[END_REF], etc. In biparti graph approach [START_REF] Usman | Distributed Kalman Filters in Sensor Networks: Bipartite Fusion Graph[END_REF], the global model is decomposed into n l (n l ≪ n and n is the network size) reduced sub-models, each one is executed by a micro-filter in a single node. Each node computes its local estimation and fuses it with the received estimations. Biparti graphs are used when dependencies exist between these sub-models. This method is suitable for the fusion of estimations because it includes data correlation between local estimations.

Distributed Kalman filter with Gossip communications is proposed in [START_REF] Kar | Gossip and distributed Kalman filtering: Weak consensus under weak detectability[END_REF]. Each node can sense only a part of the observed phenomenon, i.e., each node can measure or estimate a subset of the target state attributes and communicates them to its neighbors and then deduces the missed attributes. There are two drawbacks to this method: (1) message communication complexity, i.e. nodes exchange many messages (estimations and error covariance matrix), and (2) topology dependency model, i.e. a strong network connectivity is required for communicating estimations between neighboring nodes.

Instead of sending long messages, authors of [START_REF] Ribeiro | SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using the Sign of Innovations[END_REF] propose to send only one bit of information. A quantification function is defined to represent the estimation of the node and then the filter is executed in two distinct procedures: an observation-transmission procedure and a reception-estimation procedure. The main disadvantage of such approaches is that the quantification function may induce information loss when lossy links are present in the network.

All the above-mentioned approaches do not consider the problem of limiting the number of nodes participating in the tracking task and suppose that the target can be observed by the whole network. However, these two assumptions do not hold in all the cases: i.e. in a 2D ground deployed WSN, only nodes that are close to the phenomenon can sense it; the other nodes cannot. In addition, lowpower nodes have limited sensing ranges and can communicate only with their direct neighbors. This aspect can be exploited to reduce the energy consumption in target tracking applications, but also arises other issues.

System Model and Assumptions

In this section, we give some basic definitions of the WSN model and the centralized Kalman Filter. We describe the mathematical model of the Distributed Kalman Filter used in our proposed method.

WSN Model

WSN is modeled as a undirected graph G(V, E) where

V = {s 1 , s 2 , • • • , s n } is a set representing the nodes and E = {(s i , s j ) | ∥s i -s j ∥ ≤ R c
} is a set representing the communication links. R c is the communication range of each node and ∥s is j ∥ is the Euclidean distance between nodes s i and s j . The sensing range R s is assumed uniform among all the nodes and it is supposed to verify the condition of coverage and connectivity, i.e.:

R c ≥ 2R s

The target state is supposed also a 4-tuple vector:

X = (x, y, ẋ, ẏ) ∈ R 4
where (x, y) and ( ẋ, ẏ) are respectively, the target position coordinates and the velocity components along X and Y axes. Each node measures the distance to the target ρ, and the angle between the X axis and the target position vector θ.

For target detection, we use a probabilistic model formulated by the equation 3.1:

p s (q) =        0 if r + r e ≤ ∥s -q∥ e -α(∥s-q∥-(r-re)) β if r -r e ≤ ∥s -q∥ ≤ r + r e 1 if r -r e ≥ ∥s -q∥ (3.1)
where ∥s -q∥ is the Euclidean distance between the sensor s and the target q, r is the sensing range of s and r e is the sensing error (r e ≪ r). α and β are constants (see Figure 3.1). The nodes are assumed initially in the sleep state which guarantees minimum energy consumption. In fact, in this state, all the hardware units of the node are off, except the processing unit and a low-power paging channel to receive wakeup messages. Upon receiving a wake-up message, the nodes start up all their hardware units. We assume also that each node maintains a list of its neighboring nodes with their corresponding distances to it. All the nodes are aware of their geographic positions using either GPS-based or localization-based techniques to measure such distances.

The first target detection is supposed done successfully and the first activation is performed via an external activation message.

Centralized Kalman Filter

We assume that the target state and the measurement models are respectively defined by the following recursive linear equations:

x k+1 = A k x k + B k u k + w k z k = H k x k + v k
where: A k is the matrix that relates the previous target state to the current one, B k is the matrix that relates the commands to the current target state, w k is the system noise, H k is the matrix that relates the measurements to the current target state and v k is the measurements' noise at time step k. x k is the target state vector at time step k.

We suppose that w and v are white noises with respective Q and R covariances:

p(w) ∼ N (0, Q) p(v) ∼ N (0, R)
Also, we suppose that matrices A k and H k are detectable and all the matrices

A k , B k , H k , Q k and R k are time-independent, i.e: ∃A, B, H, Q, R : ∀k, A k = A, B k = B, H k = H, Q k = Q, R k = R
For Constant-Velocity (CV) target model, matrix A k and H k have these values:

A k = A =      1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1      , H k = H = ( 1 0 0 0 0 1 0 0 )
We denote xk and xk as the a priori and the a posteriori target state estimations at the time step k, respectively.

Similarly, the a priori and a posteriori estimation error covariance matrices P - k , P k at time step k are defined by:

P - k = E[(x k -x- k )(x k -x- k ) T ] P k = E[(x k -xk )(x k -xk ) T ]
The Kalman gain factor at time step k is defined by:

K k = P - k H T k (H k P - k H T k + R k ) -1
We summarize the Kalman model by the following diagram shown in Figure 3.2.

The two recursive steps of the Kalman Filter are1 :

1. The prediction step:

• Next step state prediction:

x - k+1 = A k xk + B k u k (3.2)
• Next step error covariance prediction: 2. The update step:

P - k+1 = A k P k A T k + Q k (3.3)
• Kalman gain:

K k = P - k H T k (HP - k H T + R) -1 (3.4)
• Estimation update:

xk = x- k + K k (z k -H k x - k ) (3.5) 
• Error covariance update:

P k = (I -K k H k )P - k (3.6)

Consensus on Kalman Micro-Filters

The Distributed Kalman Filter (DKF) gives the target state estimation using a set of k micro-filters. This model requires all-to-all communications between all the nodes. In [START_REF] Olfati-Saber | Distributed Kalman Filter with Embedded Consensus Filters[END_REF], the authors propose an algorithm of DKF using high-pass and low-pass filters for data fusion. It fuses heterogeneous data generated by a nonlinear sensing model:

y i = h i (x k ) + v k i
All the nodes have the same architecture illustrated in Figure 3.3. The observed system is modeled as follows:

x k = A k x k-1 + B k w k y k i = H k i x k + v k i
In addition to the equations of the Kalman Filter model described in Section 3.1.2, two new variables are included into the model, namely: (1) the reverse of the error covariance matrix, and (2) the fusion of the measurements. These two variables are given respectively by:

S k = ∑ n i=1 H kT i R -1 i H k i n y k = ∑ n i=1 H kT i R -1 i y k i n
Each node executes the following calculations:

M k i = (P -1 i,k + S k ) -1 xk = x- k + M k i (y k -S k x- k ) P k+1 i = A k M k i A T k + B k Q k i B T k xk+1 = A k xk with: Q k i = nQ k and P 0 i = nP 0 .
The estimations are identical in all the nodes, i.e.,

xk i = xk , ∀i
The filter dynamic is given by equation 3.7 (for more details see [START_REF] Spanos | Dynamic consensus on mobile networks[END_REF]):

{ qi = -β Lq i -β Lu i p i = q i + u i (3.7)
where L = L ⊗ I m is the m-dimension graph Laplacian, u i is the node input, q i is the Kalman Filter state and β (β > 0) is the gain (it should be big enough for random deployed topologies). The filter output is computed according to equation 3.8:

{ qi = β ∑ j∈N i (q j -q i ) + β ∑ j∈N i (u j -u i ) β > 0 y i = q i + u i (3.8)
With N i is the set of neighbors of node i (the reader could refer to [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF] to learn more about the filter discretization in connected graphs). A light-weight estimation-prediction algorithm can be used to estimate the target state and predict its next position. This helps selecting and awakening the most appropriate nodes and reducing the network communications. As nonselected nodes remain in the sleep state, the energy is conserved more than in periodic sampling-based approach2 . Intuitively, the periodic sampling provides accurate data but it wastes the energy resources of the nodes. At the opposite, the prediction-based schemes are more appropriate for dense networks where it is not necessary to wake-up all the nodes. However, they raise two main issues with respect to the quality of data: (1) the distribution of the estimation algorithm over the subset of detecting nodes, and (2) the dynamic changes of the group of tracking nodes according to the dynamic of the target.

Proposal of Dynamic Clustering Based on Distributed Kalman Filter

To resolve these issues we propose a Distributed Kalman Filtering approach with Dynamic Clustering, which we call DKF DC [START_REF] Demigha | Energy efficient target tracking in wireless sensor networks with limited sensing range[END_REF].

Our approach is inspired from the work proposed in [START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF]. But instead of activating all the network, our approach uses a dynamic clustering protocol to limit the communications between participating nodes. Our dynamic clustering algorithm consists of two phases: the leader election phase and the cluster reconfiguration phase.

The leader election is executed among active nodes that are close to the target. The other nodes stay inactive to conserve their energy resources. In the second tracking step, node s 22 is still active and nodes s 20 and s 21 are activated by the previous cluster nodes.

Therefore, the nodes are woken-up only when they receive activation messages to adhere to the current cluster. Unlike centralized fusion methods, the cluster-head in our method is not considered as a fusion center but as a cluster manager, as well, which is responsible for its reorganization. Hence, the communications are performed between all the active nodes and not only between the active nodes and the cluster-head.

The continuity of target tracking is guaranteed by allowing a subset of the last cluster members to adhere to the current cluster (such as node s 22 in Figure 3.

4).

That is what ensures the propagation of the estimation information along with the target trajectory. The role of each message exchanged between nodes is described in Table 3.1.

Cluster Formation and Leader Election

When a node receives an external intrusion message "MSG INTRUSION" that contains the target state estimation recorded by some border nodes, it wakesup and triggers the leader election phase. In this phase, the node sends first a wake-up message "MSG WAKEUP" to all its neighbors, then it broadcasts a cluster creation message "MSG CREATECLUSTER" containing the first detected position.

The nodes receiving "MSG CREATECLUSTER" message, compute a local decision value using measure functions such as: [START_REF] Mcouat | Wireless Sensor Networks: Principles, Design and Applications[END_REF] the distance between the node and the target, (2) the last estimation quality measured by the covariance matrix P k issued from the Kalman Filter or (3) the residual energy of the node. A node leaves the non-adhered state to go back either to the sleep state when the waiting timer expires, or to the waiting state when it receives a "MSG CREATECLUSTER" message. Figure 3.5 illustrates this process. Node s 4 receives the "MSG INTRUSION" message and it sends "MSG CREATECLUSTER" message to all its neighbors: s 1 , s 2 , s 3 , s 5 , s 6 and s 7 (see Figure 3.5(a)). These nodes enter the waiting state and the other nodes return back to the non-adhered state and then to the sleep state (see Figure 3.5(b)).

The node in the waiting state, computes its decision value and broadcasts it to its neighbors. If it receives a decision value sent by another neighbor, then it updates its list of candidates by including the couple (sender ID, value). Then, another timer is alarmed to wait for receiving such decision values. After expiration, the waiting node decides to become leader if it is on the top of the list of candidates. Otherwise, it changes to a temporary member state.

Figure 3.6 illustrates the steps described above. Nodes s 1 , s 4 , s 5 , s 6 and s 7 change to temporary-member state because of their exchanged values. However, nodes s 2 and s 3 are discarded from the election process because they have null values (that represent non-significant detected values).

During the waiting time, if a node receives a "MSG CHREADY" message containing the cluster-head ID, then it adheres as a member to this cluster. Temporary- member nodes discard themselves from the top list of candidates and wait for receiving a "MSG CHREADY" message to adhere to the cluster. If they do not receive such a message and they are on the top list of candidates then, they declare themselves leaders (cluster-heads).

Similarly, a member node leaves this state when it receives a "MSG NOTCH" message sent by a leader. Consequently, it goes back to the non-adhered state.

Figure 3.7 illustrates this last step. Node s 1 sends a "MSG CHREADY" message to the temporary-member nodes s 4 , s 5 , s 6 and s 7 , which adhere as members in the created cluster.

Cluster Reconfiguration

The leader node checks the target state estimation to decide about the cluster reconfiguration. When it detects that the target is lost, then it performs the following two tasks:

1. Sending back a "MSG JOIN" message to force the senders of "MSG CHREADY"

or "MSG CREATECLUSTER" messages to adhere to its cluster.

2. Updating the list of the cluster members upon receiving a "MSG JOIN" or a "MSG QUITCLUSTER" messages. A leader leaves this state when one of the following events occurs:

• Receiving a "MSG JOIN" message to become a member of the cluster of the message sender.

• Losing the target. In this case, the cluster should be reconfigured and the nodes return back to the non-adhered state.

The cluster reconfiguration operation consists of updating the list of candidates and informing the member nodes that the leadership has changed using a "MSG NOTCH" message. Upon receiving this message, the nodes trigger a new election process that may include the previous members. Figure 3.8 illustrates this operation. When the target moves away in the right direction, node s 1 (the cluster-head) can no longer detect it. Then it sends a "MSG NOTCH" message to all its cluster members. This message triggers a new election process. Note that, nodes s 6 and s 7 are also members of the newly created cluster because they still detect the target in the new election process.

On the contrary to the scheme proposed in [START_REF] Medeiros | Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks[END_REF], our dynamic clustering protocol prevents the tracking of one target by multiple clusters by letting only direct neighbors to adhere to the cluster and forcing the other nodes to return back to 

Target State Estimation

The member nodes of the current cluster perform the sampling to detect the target. They compute their information matrix u i and U i (including the leader node) as follows:

u i = H T i R -1 i z i (3.9) U i = H T i R -1 i H i (3.10)
Equations 3.9 and 3.10 represent respectively the measurements' information and the measurements' error. The Kalman Filter fuses the estimation errors to generate an updated state estimation. After that, each node broadcasts a message m i = {u i , U i , xi } containing the measurements u i , the measurements' error U i , and the last state estimation xi , to all the cluster members. Each node waits for receiving such messages from the other members to fuse the information matrix and generate the vectors y i and S i given by:

y i = ∑ j∈J i u j and S i = ∑ j∈J i U j
At the end of the data fusion phase, each node estimates the target state using the KCF equations:

M i = (P -1 i + S i ) -1 (3.11) xi = xi + M i (y i -S i xi ) + γM i ∑ j∈N i (x j -xi ) (3.12)
After that, each cluster-member node updates its state using equations 3.13 and 3.14: Each node can use a combined formula of the following information to update its list of candidates:

P i = AM i A T + BQB T (3.13)
• The distance to the target.

• The number of active nodes in the cluster.

• The residual energy of the nodes.

Based on this information, the node on the top list of candidates is elected as a leader.

Simulations and Results

We use TOSSIM simulator [START_REF] Levis | TOSSIM: accurate and scalable simulation of entire TinyOS applications[END_REF] to implement and evaluate DKF DC algorithm. TOSSIM is a discrete-time simulator of TinyOS operating system for wireless sensor nodes.

We compare DKF DC with three different target tracking schemes described at the beginning of this chapter which are: (1) the Centralized Kalman Filter (CKF) [START_REF] Welch | An introduction to the Kalman filter[END_REF], (2) the Distributed Kalman Filter with limited sensing range (DKF LSR) [START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF] and (3) the Distributed Kalman Filter with gossip communications (DKF GOSSIP) [START_REF] Kar | Gossip and distributed Kalman filtering: Weak consensus under weak detectability[END_REF]. The CKF is considered here as the base reference for our comparisons.

Simulation Setup

We vary the sampling period, the network size (or density) and the target speed and we measure the energy consumption and the estimation quality. The communication range is set to 50 m, the sensing range is set to 15 m and the mobility model of the target is Gauss-Markov.

The nodes' energy consumption is evaluated using POWERTOSSIM and the estimation quality is measured by the mean square error between the real target position and the estimated target position:

ϵ = √ (x -x) 2 + (y -ŷ) 2
In the following subsections, we present the simulation results we have obtained in terms of energy consumption and estimation quality.

Energy Consumption

In the first set of simulations, we create a network of 100 randomly deployed nodes in a 200 × 200m 2 2D area. We vary the sampling period in {1s, 2s, 3s}. The obtained results are depicted in Figure 3.10. As we can see in Figure 3.10, the network average energy consumption of the different simulated schemes is inversely proportional to the sampling period time because of the number of data messages exchanged between the nodes. CKF and DKF LSR schemes consume much more energy than DKF GOSSIP and DKF DC because CKF is based on a centralized approach and DKF LSR does not limit the number of participating nodes. DKF DC reduces the network energy consumption thanks to the dynamic clustering protocol that limits the number of nodes involved in the tracking task. We also evaluate the network energy consumption of the simulated schemes with respect to the network size. We vary the network size in {225, 150, 100} and we set the sampling period to 1s. The obtained results are shown in Figure 3.11.

We can see that the dense nature of WSN impacts the network energy consumption. In CKF and DKF LSR schemes, the number of tasking nodes is bigger than in DKF DC which induces excessive energy consumption because all the nodes execute the sensing operation in each tracking step. Note that the sensing and the communication energy consumptions are bigger than the processing energy consumption which explains the performance of our DKF DC scheme.

Quality of Estimation

The quality of estimation of the simulated schemes is evaluated for different sampling periods (Figure 3.12(a), Figure 3.12(b) and Figure 3.13 show the quality of estimation for 1s, 2s and 3s sampling period, respectively).

As we can see on the three figures, the estimation quality of our proposed scheme DKF DC is less than those of CKF and DKF LSR, and the CKF scheme outperforms all the other schemes with respect to the different sampling periods.

In DKF DC scheme, the reduced set of participating nodes in the estimation process may decrease the total utility of the nodes when inappropriate nodes are chosen. Therefore, including all the nodes in the estimation process and considering a uniform distributed noise model, improves the quality of estimation and speeds-up the model convergence, because lot of amount of data are fused despite the fact that they contribute or not in the estimation process. Peaks can be also observed on the graphs of DKF DC due to the cluster reconfiguration process. Figure 3.13 shows that with a large sampling period, our method presents poor estimation quality because of the latency generated by the clustering protocol. This can be considered as a drawback of DKF DC scheme. As we can see in Figure 3.14(a), the estimation error of CKF scheme decreases for the different target speeds. Indeed, we can observe that the Kalman Filter presents some peaks in the beginning of the estimation process but they disappear after that and the estimation error converges to zero due to the recursive nature of the KF algorithm.

In Figure 3.14(b), we can see that for a target moving with a relatively low speed, the estimation error of DKF DC scheme converges to zero. However, when the target speeds up, it overcomes the cluster reconfiguration mechanism. Thus, we observe a degeneration of the estimation quality for targets with velocity v 3 = 4m/s. A recovery process should be setup here to deal with this problem.

The estimation error of DKF LSR scheme is presented in Figure 3.15(a). As we can see, this scheme converges also for the different target speeds but in a slow rate compared with CKF, because the state vector and the covariance matrix are exchanged between a large number of nodes which slow down the convergence speed.

Figure 3.15(b) shows the convergence speed of the different simulated schemes. The estimation error of all the schemes converges to zero but with different rates. CKF converges quickly than the other schemes.

Conclusion

In this chapter, we proposed a Distributed Kalman Filtering algorithm coupled with Dynamic Clustering protocol (DKF DC) that helps reducing the network energy consumption in WSN with limited sensing range.

DKF DC prevents nodes from awakening up periodically and limits the selection process within the area close to the target. It structures the detecting nodes as a cluster that moves along with the target trajectory.

We implemented our DKF DC scheme for simulation and we compared it with three other schemes that use the Distributed Kalman Filter algorithm as a prediction algorithm.

The results show a clear improvement of the energy efficiency of the network in DKF DC than in the other schemes. However, the estimation quality has slightly degraded when tracking high-speed targets.

Exploiting the data correlation existing between the sensor readings and considering a realistic detection model of the sensor nodes can help improving data quality while achieving energy efficiency. We consider that this is a promising track for energy optimization in target tracking applications as well as other collaborative applications for data collection in WSN. This aspect is explored in the next chapter.

Chapter 4 Energy Modeling under Data Precision Constraints

A S SENSOR NODES HAVE LIMITED sensing and communication ranges, they must cooperate with each others to forward sensed data to the base station after possible aggregation. However, for optimizing the energy consumption in WSN, the research efforts have focused on the communication layer by using general-purpose methods previously applied to Mobile Ad hoc Networks (MANET). In this chapter, we argue and prove that data can also help improving the energy consumption in the data collection process in WSN.

Our proposition is based on two fundamental aspects:

• First, the density of deployed nodes in the surveillance area makes them close to each others which increases the probability to generate correlated data about the localized phenomenon. Thus, the sensor nodes can take profit from this spatial and temporal correlated data to reduce the energy consumption in wireless communications, and to schedule the future sampling operations.

• Second, the activation of the whole network to perform data collection tasks is not practical. A natural way to do so is to put all the nodes in a low-power operating mode except the ones who detect the events or relay the messages or process the data. However, to prevent the degradation of the quality of data, the nodes with the most meaningful information should be selected for sampling operations and the ones with the maximum energy resources should be selected for data relaying and processing operations.

From this point of view, an optimization problem arises here: how to select the best nodes in terms of quality of data with the minimum cost in terms of energy consumption?

To resolve this problem, we first start by defining the network topology as a set of cluster-trees, each of which collects the data about the nearby monitored phenomenon. We use this network structure because of its intrinsic characteristics in terms of network scaling and data aggregation. The problem is then transformed into a problem of finding the most energy-efficient data reporting cluster-trees (forest) that maintain the data precision within a certain interval and consume the minimum energy during the sampling, transmitting, receiving and processing operations.

We call this problem EMDP: Energy Minimization under the Data Precision constraint, and we present its formal definition in Section 4.2.

Background and Related Work

In this section, we present some related works that treat EMDP-like problems. Correlated data gathering subject to latency and energy-balancing constraints is addressed in [START_REF] Zhu | Practical limits on achievable energy improvements and useable delay tolerance in correlation aware data gathering in wireless sensor networks[END_REF] and [START_REF] Monaco | Understanding optimal data gathering in the energy and latency domains of a wireless sensor network[END_REF], respectively. The authors of [START_REF] Zhu | Practical limits on achievable energy improvements and useable delay tolerance in correlation aware data gathering in wireless sensor networks[END_REF] predict the practical limits on achievable energy improvements and usable delays when data correlation is included in the optimization problem. They found that the energy improvement is not significant compared to cost and complexity of the problem. On the other hand, the authors of [START_REF] Monaco | Understanding optimal data gathering in the energy and latency domains of a wireless sensor network[END_REF] showed that when all the nodes act as samplers, energy is naturally balanced. However, when only a subset of the nodes acts as data sources, aggregation helps balancing energy among them. We note here that in [START_REF] Zhu | Practical limits on achievable energy improvements and useable delay tolerance in correlation aware data gathering in wireless sensor networks[END_REF] and [START_REF] Monaco | Understanding optimal data gathering in the energy and latency domains of a wireless sensor network[END_REF], the optimization effort is done in centralized fashion, and in our case, we relax the delay constraint but we keep the centralized optimization.

An interesting result reported by [START_REF] Cristescu | On network correlated data gathering[END_REF] is that the standard solutions to the maximum flow problem as a model of EMDP-like problems may be sub-optimal because they do not consider data correlation. Thus, including correlation when solving an EMDP-like problem is necessary and it can be done using two methods as suggested by the authors: the Slepian-Wolf coding and the joint-entropy coding with explicit communications. EMDP problem fits in the second method.

Another EMDP-like problem is the RSP problem defined in [START_REF] Jamal | On the correlated data gathering problem in wireless sensor networks[END_REF] where aggregation is used to maximize the network lifetime. The authors define the RSP problem as a joint routing/aggregation linear optimization problem to which they propose a heuristic algorithm based on load balancing to reduce the complexity.

A worth noting point here is that in a cluster-tree topology, sensor nodes may have wide set of clusters to which they can adhere. Thus in [START_REF] Liu | Association Schemes in a Wireless Sensor Network with a Cluster Tree Topology[END_REF], the authors propose an association scheme based on linear optimization to improve the network throughput and to balance energy. However, their scheme is only applied when strong overlapping exists between the clusters.

We also note here that the energy minimization technique is often based on the optimization of the distance of transmission. When the distance between the nodes and their cluster-heads is small, their energy consumption will be small too. That is what we find in [START_REF] Tan | A Balanced Parallel Clustering Protocol for Wireless Sensor Networks Using K-Means Techniques[END_REF] under the constraint of clusters balancing.

Our work is closely related to the model proposed in [START_REF] Zhao Qun | Energy Consumption Optimization for Data Collection with Precision Constraints in Wireless Sensor Networks[END_REF] for the PCEO problem. While the objective functions are similar, the constraint on the data precision differs. The authors of [START_REF] Zhao Qun | Energy Consumption Optimization for Data Collection with Precision Constraints in Wireless Sensor Networks[END_REF] define the data precision as the mean square error between the estimated readings and the real values, i.e. data distortion. In our model, we define the data precision as a data sensitivity interval. We do not consider the data rate between the nodes because we assume it is constant, and we do not try to restore the non-collected data from the collected data.

In this chapter, we propose a formal definition of the EMDP problem using a binary integer linear program [START_REF] Demigha | A Novel BILP Model for Energy Optimization Under Data Precision Constraints in Wireless Sensor Networks[END_REF]. We discuss and analyze the resulting model and we prove certain of its properties for validation.

Problem Definition & Formulation

Modeling the EMDP problem as a BILP program is motivated by finding the exact solution to the problem of energy minimization under data precision constraints.

The correlation between data of the nodes is fundamental here. As a simple definition, we propose that two nodes have correlated readings if the absolute difference between these readings is less than a threshold ϵ (a user-defined constant). We also assume that:

• The structure of the network (topology) is defined as a set of data reporting cluster-trees, each of which is rooted at a special node called the clusterhead.

• The nodes send their readings periodically for k rounds to their corresponding relay nodes in the collection tree in order to be forwarded to the clusterheads (roots).

• All the trees should have a depth at most of n hops.

• A selected node at round t, 0 ≤ t ≤ k should have a non-zero energy budget (E t i > 0) and the readings of all the nodes in the same reporting tree should be correlated.

In addition, as the inputs of the EMDP problem, we have the data sensitivity parameter τ , a reference value v 0 and the set of nodes readings X.

Definition 1 (EMDP). Given a WSN topology G(V, L

), a number of data collection rounds k ≥ 1, a sensitivity parameter 0 < τ < 1 and a reference value v 0 . Find the successive minimum energy consumption data reporting tree(s) over the k rounds that maintain the data precision in the sensitive interval

[(1 -τ )v 0 , (1 + τ )v 0 ] in each round.
Optionally, we can define the LMEB problem (Lifetime Maximization under the constraint of the nodes' Energy Budget) as the dual problem of EMDP.

Definition 2 (LMEB). Given two real numbers E > 0 and τ > 0. All the sensor nodes have initial energy budget E. Find the maximum number of data collection rounds that maintain the data precision in the interval

[(1 -τ )v 0 , (1 + τ )v 0 ]
and no node runs over its energy budget.

System Model & Parameters

Given a large number of sensor nodes statically and densely deployed in the surveillance area that report data to a base station after aggregation. The nodes can be grouped on local clusters to monitor a local phenomenon. They communicate in multi-hop fashion. The nodes may have different roles: sampling nodes, relay nodes and cluster-heads.

We represent the WSN by an undirected graph G(V, L) where V = {s 1 , s 2 , . . . , s m } is the set of vertex representing the sensor nodes and L is the set of edges representing the communication links. The network size is m = |V |. An edge e i,j = (s i , s j ) ∈ L exists if a direct transmission link exists between node s i and node s j . We have e i,j ∈ L ⇒ e j,i ∈ L. We denote by E t i the energy budget remaining in node s i at round t. This energy is subject to decrease after each operation of sampling, transmitting, receiving or processing operations as we will show later in subsection 4.2.2.

The nodes report data periodically for k rounds. In each round, the data precision is ruled by a parameter τ and a reference value v 0 . They are organized in cluster-trees of maximum depth n.

The amount of energy consumed in sampling, receiving, transmitting and processing operations are respectively denoted by e s , e r , e t i,j and e p . Each node s i may generate a set of readings Xi = {v t 1 i , vt 2 i , . . . , vt k i i }, where vt i is node's s i reading in round t and v t i is the real value of the physical phenomenon at the position of node

s i . X = ∪ t=1,2,••• ,k
Xi is the set of all the readings of all the nodes. We assume also that each node s i can construct the set of its direct (one-hop) neighbors

N i = {s j ∈ V, d(s i , s j ) ≤ R c } and the set of its n-hop neighbors N n i = N n-1 i ∪ s j ∈N n-1 i N j , recursively.

Binary Integer Linear Programming Formulation

We define two sets of decision variables:

• a t i = 1 if node s i participates in the sampling operations at round t. 0, otherwise.

• b t i,j = 1 if node s i is parent of node s j in a collection tree 1 at round t. 0, otherwise.

Based on these decision variables, we define the following sets of nodes that help characterizing the EMDP problem:

• A t = {s i ∈ V, a t i = 1}
is the set of all selected nodes at round t. A = ∪ k t=1 A t is the set of all selected nodes in all the rounds.

• C t = {s i ∈ V, a t i = 1 & ∑ s j ∈N i b j,i = 0}
is the set of all elected cluster-heads at round t. C = ∪ k t=1 C t is the set of all elected cluster-heads in all the rounds. • T t i is the data collection tree rooted at node s i at round t. It is defined using the variables a t i and b t i,j as follows:

T t i ={s i ∈ C t } ∪ {s j ∈ A t : ∃s j 1 , s j 2 , . . . , s j k , s i ∈ A t : b t j,j 1 = 1, b t j 1 ,j 2 = 1, . . . , b t j k ,i = 1 and s i ∈ C t } • T t = ∪ s i ∈C t T t i
is the set of all data collection trees (forest) at round t. The total energy consumption in sampling, data reporting and processing in one round t is given by:

E t round = e s ∑ s i ∈V a t i + (e r + e p ) ∑ s i ∈V ∑ s j ∈N i b t i,j + ∑ s i ∈V ∑ s j ∈N i b t j,i • e t i,j (4.1)
As we can see in equation 4.1, the amount of the energy consumption depends on the roles of the nodes:

• Sampling: for all selected nodes.

• Receiving and processing (aggregating): for all selected nodes except the leaves (the nodes with no childes).

• Transmitting: for all the nodes except the roots (the cluster-heads).

Our program should determine who are the leaf nodes, the relay nodes and the root (cluster-head) nodes based on the following objective function: Minimizing the total energy consumption over all the k rounds 2 :

min k ∑ t=1 E t round (4.2)
1 To be determined by the program. 2 The amount of energy consumption depends on the variables a t i and b t i,j and e t i,j . i.e. it depends mainly on the sensor selection for sampling, data relaying and data aggregation. Theses aspects are defined in the constraints section.

s.t.

∑

s i ∈V a t i - ∑ s i ∈V ∑ s j ∈N i b t j,i ≥ 1, ∀t : 1 ≤ t ≤ k (4.3) ∑ s j ∈N i b t i,j ≤ a t i • (|N i | -1), ∀s i ∈ V, ∀t : 1 ≤ t ≤ k (4.4) ∑ s j ∈N i b t j,i ≤ a t i , ∀s i ∈ V, ∀t : 1 ≤ t ≤ k (4.5) ∑ s i ∈V a t i • vt i ≥ |V | • (1 -τ )v 0 , ∀t : 1 ≤ t ≤ k (4.6) ∑ s i ∈V a t i • vt i ≤ |V | • (1 + τ )v 0 , ∀t : 1 ≤ t ≤ k (4.7) (a t i - ∑ s j ∈N i b t j,i ) • E t i ≥ (a t i - ∑ s j ∈N i b t j,i -1 + a t j ) • E t j , ∀s i ∈ V, ∀s j ∈ N n i , ∀t : 1 ≤ t ≤ k (4.8) a t j - ∑ sp∈N j :d(sp,s i )<d(s j ,s i ) b t p,j ≤ 1 -(a t i - ∑ sq∈N i b t q,i ), ∀s i ∈ V, ∀s j ∈ N n i , ∀t : 1 ≤ t ≤ k (4.9) E t+1 i = E t i -[a t i • e s + ∑ s j ∈N i b t i,j • (e r + e p )+ ∑ s j ∈N i b t j,i • e t i,j ], ∀s i ∈ V, ∀t : 1 ≤ t ≤ k -1 (4.10) a t i ∈ {0, 1}, b t i,j ∈ {0, 1}, ∀s i ∈ V, ∀s j ∈ N i , ∀t : 1 ≤ t ≤ k (4.11)
Constraint 4.3 ensures that at least, one cluster should be constructed in each round. It is easy to observe that a cluster-head s i at round t is characterized by (see Figure 4.1(d)):

a t i - ∑ s j ∈N i b t j,i = 1
When it is summed over all the nodes of the network, the right side of equation 4.3 becomes greater than one. Constraints 4.4 and 4.5 ensure that a non-selected node should not have a child or a parent, i.e. when a node s i is selected, it must have at most one parent and |N i | -1 child. Reciprocally, before being a parent or a child, a node should first be selected (a t i = 1).

Constraints 4.6 and 4.7 specify the criterion of node selection: the nodes are selected based on the cumulative data among all the nodes which should fit in the interval defined by the sensitive parameter τ and the reference value v 0 .

Constraint 4.8 states that an elected cluster-head should have the maximum energy budget among all its n-hop neighbors. It ensures that for a node s i with equation a t i -∑ s j ∈N i b t j,i = 1, all its n-hop selected neighbors (with a t j = 1) should have their energy budget at round t less than E t i . Otherwise, if a t j = 0, i.e. s j is not selected, inequality 4.8 ensures that E t i ≥ -E t j which is evident. On the other hand, when node s i is not elected as a cluster-head, i.e. a t i -∑ s j ∈N i b t j,i = 0, the right side of inequality 4.8 becomes 0 and for any node s j ∈ N i , either selected or non-selected. Therefore, inequality 4.8 is verified.

Constraint 4.9 specifies the data forwarding rule. When a node s i is elected as a cluster-head among all its n-hop neighbors, i.e.

a t i - ∑ sq∈N i b t q,i = 1
the left side of inequality 4.9 is set 0 thereby forcing the right side of this inequality to be 0 because of the constraint of binary variables (constraint 4.11). This ensures that the other selected nodes within the n-hop neighborhood of node s i except the cluster-head (with a t j = 1) should have their parents, i.e. ∑ sp∈N j b t p,j = 1 as shown in Figure 4.1. In addition to its role in connecting all the selected nodes, this constraint ensures also that the data are forwarded toward the cluster-heads. This property is not evident and it needs to be proved mathematically. The proof is given in Section 4.2.3 Constraint 4.10 specifies the energy updating rule of the nodes between successive rounds. Each selected node s i for sampling at round t (with a t i = 1) consumes e s (Joules) of energy. Similarly, when it receives and process data from its child nodes s j i.e. with b t i,j = 1, it spends e r + e p of its energy budget. And finally, when it serves as a relay node, it sends data to its parent s j and consumes e t i,j . Note that all these amounts of energy are independent from the data rate between the nodes. Constraint 4.11 ensures that decision variables a t i and b t i,j are binary. The above-discussed constraints can be grouped into three categories:

• Constraints on the network structure (cluster-trees): 4.3, 4.4, 4.5 and 4.9.

• Constraints on the energy: 4.8 and 4.10.

• Constraints on the data precision: 4.6 and 4.7. 

Proof of Constraint 4.9

Proposition 1. For a cluster-head s i , a selected node s j member of the same cluster as s i , that satisfies the constraint 4.9 is a relay node or a leaf node.

Proof. A leaf or a relay node s j at data collection round t should satisfy the following condition (as shown in For simplicity and without loss of generality, we restrict the proof to only one round in which the constraint 4.9 becomes: With:

∀s j ∈ N n i , a j - ∑ sp∈F j,i b p,j ≤ 1 -(a i - ∑ sq∈N i b q,i ) (4.13)
F j,i = {s p ∈ N j : d(s p , s i ) < d(s j , s i )}
is the direct forwarding set as illustrated in Figure 4.2. Since node s i is selected as a cluster-head, condition 4.14 is achieved:

a i - ∑ sq∈N i b q,i = 1 (4.14)
Then, constraint 4.9 gives:

∀s j ∈ N n i , a j - ∑ sp∈F j,i b p,j ≤ 0 ⇒ ∀s j ∈ N n i , a j - ∑ sp∈F j,i b p,j = 0 (4.15)
Based on this last condition (4.15), two cases arise:

Case 1. a j = 0 and ∑ sp∈F j,i b p,j = 0. This case does not fit into Proposition 1 because it does not consider non-selected nodes.

Case 2. a j = 1 and ∑ sp∈F j,i b p,j = 1. Since F j,i ⊂ N j , condition 4.12 is effectively verified.

Proposition 2. Constraint 4.9 ensures data forwarding from leaf and relay nodes to their corresponding cluster-heads.

Proof. For simplicity and without loss of generality, we consider only one round of data collection t. We have to prove that for a cluster-head s i and a member node s j ∈ N n i , we have:

∃s j 1 ∈ F j,i , ∃s j 2 ∈ F j 1 ,i , . . . , ∃s jn ∈ N i : b j 1 ,j = 1, b j 2 ,j 1 = 1, . . . , b jn,i = 1 (4.16) With: F j,i = {s p ∈ N j : d(s p , s i ) < d(s j , s i )} F j 1 ,i = {s p ∈ N j 1 : d(s p , s i ) < d(s j 1 , s i )} . . . F jn,i = {s p ∈ N jn : d(s p , s i ) < d(s jn , s i )}
This proof is done recursively on n.

Base case. (n = 1) It means nodes s j and s i are direct neighbors. Then, the constraint 4.9 becomes:

∀s j ∈ N i , a j - ∑ sp∈N j :d(sp,s i )<d(s j ,s i ) b p,j ≤ 1 -(a i - ∑ sq∈N i b q,i ) (4.17)
If node s i is elected as a cluster-head, then the right side of inequality 4.17 becomes 0, which gives the following equation:

∀s j ∈ N i , a j - ∑ sp∈N j :d(sp,s i )<d(s j ,s i ) b p,j = 0 (4.18)
Two cases are considered here:

Case 1. a j = 1, which means that node s j is selected. Therefore, equation 4.18 gives: ∑

sp∈N j :d(sp,s i )<d(s j ,s i ) b p,j = 1 (4.19)
If the distance between s j and s i is the smallest among all the neighbors of node s i (as shown in Figure 4.3), then: Case 2. a j = 0, which means that node s j is not selected for the current round. Hence, equation 4.18 gives: ∑

∄s p ∈ N j : d(s p , s i ) < d(s j , s i ), b p,j = 1 (4.
sp∈N j :d(sp,s i )<d(s j ,s i ) b p,j = 0 (4.21)
This is coherent with the constraint 4.5. If node s i is not elected as a cluster-head, then inequality 4.17 becomes:

∀s j ∈ N i , a j - ∑ sp∈N j :d(sp,s i )<d(s j ,s i ) b p,j ≤ 1 (4.22)
The condition 4.22 is a general case, which is valid all the time.

Recursion Case. Suppose that the constraint 4.9 leads to condition 4.16 for n-1.

We have to demonstrate this implication for n (as illustrated in Figure 4.4). As a hypothesis for n -1, we have the following assertion:

∃s j 2 ∈ F j 1 ,i , ∃s j 3 ∈ F j 2 ,i , . . . , ∃s jn ∈ F j n-1 ,i : b j 2 ,j 1 = 1, . . . , b jn,i = 1 (4.23)
We need to prove that ∃s j 1 ∈ F j,i , b j 1 ,j = 1? Since the constraint 4.9 is verified for n and according to Proposition 1, node s j is a relay or a leaf node3 , i.e.

∃s j 1 ∈ N j : b j 1 ,j = 1
According to the recursion hypothesis, we have the following condition: 

∀s j ∈ N n i , a j - ∑ sp∈F j,i b p,j ≤ 1 -(a i - ∑ sq∈N i b q,i ) (4.24)
Given a selected node s j ∈ N n i -N n-1 i that verifies this last condition (4.24), we have:

∑ sp∈F j,i b p,j = 1
This means that ∃s j 1 ∈ F j,i : b j 1 ,j = 1 ⇔ d(s j 1 , s i ) < d(s j , s i ).

Model Validation

In this section, we demonstrate the validity of our BILP model for the EMDP problem. We implement the model in GMPL (Gnu MathProg Language) using the GLPK toolkit and we present the exact solution of EDMP for a small instance (m = 12, k = 1, n = 3). We also investigate the complexity of EMDP and we show its NP-Completeness. We implement our BILP model using GMPL 4 . We define four sets for: nodes, rounds, hops and neighborhoods. Next, we specify the parameters of the model: the network size m, the maximum depth of trees n, the number of rounds k, the sensitivity parameter τ , the energy parameter α, the reference value v 0 , the amounts of energy consumption e s , e r , e p and e t , the neighbors of the nodes L, the energy of the nodes E and the readings of the nodes v.

The decisions variables are specified using binary keyword and each constraint starts with s.t. keyword. Each line corresponds to a constraint. The objective function is specified using maximize (or max.) keyword.

The exact solution for a small instance of m = 12 nodes deployed in 100 × 100m 2 area is given in Appendix B. The maximum depth of data collection trees is set to n = 3 and the number of rounds is set to k = 1. A complete listing of the output of our BILP implementation is also given in Appendix B.

Conclusion

In this chapter, we formulated the problem of energy optimization in the context of correlated data collection in WSN. We proposed a novel BILP model to help characterizing this problem. We validated our BILP model by demonstrating formally certain crucial characteristics and implementing the model using GLPK toolkit. Given the complexity of EMDP, we argue that it requires heuristic solutions which constitutes the subject of the next chapter.

Chapter 5

Correlation-Based Adaptive Dynamic Clustering Algorithm for Data Collection W IRELESS SENSOR NETWORKS are not just like any other mobile ad-hoc network or wireless communication system; they are sources of spatialtemporal correlated data that can be used to optimize the network operations [START_REF] Akyildiz | Yogi Sankarasubramaniam, and Erdal Cayirci[END_REF], [START_REF] Mehmet | Spatio-temporal correlation: theory and applications for wireless sensor networks[END_REF].

In Chapter 4, we proposed a BILP model for the EMDP problem to find the exact solution in the general context of data collection applications. The proposed approach takes profit from the correlation that may exist between data and exploits it to reduce the energy consumption by selecting the most appropriate nodes. We showed that EMDP is NP-Complete and requires heuristic solutions for big instances of the problem.

In this chapter, we consider the same EMDP problem but using an approximative approach. We propose a heuristic solution called CORAD (Correlation-Based Adaptive Dynamic Clustering) that constructs dynamic clusters based on the collected data. It aims at reducing the energy consumption of the network by selecting the nodes with maximum energy resources that contribute the most in enhancing the quality of data.

As we showed in Chapter 1 and Chapter 2, the sensor nodes are equipped with small, limited-capacity and non-rechargeable batteries. The optimization effort should be concentrated on the software layers by enabling the interaction between the communication sub-system and the sensing sub-system. We also showed that the correlations between the sensory data can be exploited to: [START_REF] Mcouat | Wireless Sensor Networks: Principles, Design and Applications[END_REF] optimize the energy consumption during the data collection process by adapting the network structure to the dynamics of the events, and (2) preserve the data accuracy by reconfiguring the network each time these events change.

A standard way to reduce the energy consumption and extend the network lifetime is by turning-off all the nodes of the network (or putting them in a lowpower operating mode) except a selected subset of them that must stay active, i.e. the nodes that may probably provide the most useful information to the end-user application according to its accuracy requirements.

In our approach, we investigate the possibilities of exploiting such a spatialtemporal data correlation aspect to reduce the energy consumption in a dense network structured as clusters 1 . We propose CORAD as an algorithm of constructing and reconfiguring the structure of the network according to the dynamic of the current observed event. Hence, with CORAD, an activation schedule based on the residual energy of the nodes and their potential of detection of the events is established to trade between the energy consumption and the data accuracy.

Many algorithms based on the techniques of adaptive dynamic clustering have been proposed in the literature. However, few of them exploit the aspect of data correlations to setup the network topology and adapt it to meet the application requirements in terms of data accuracy [START_REF] Akyildiz | Yogi Sankarasubramaniam, and Erdal Cayirci[END_REF]. One of the most important algorithms among them is ASAP [START_REF] Gedik | ASAP: an adaptive sampling approach to data collection in sensor networks[END_REF]. It is a periodic distributed sensingdriven cluster construction algorithm in which the reconfiguration of the clusters is based on the infrequent network-wide samplings called forced samplings, to discover newly established correlations.

In [START_REF] Duc | Towards a distributed clustering scheme based on spatial correlation in wsns[END_REF], an ASAP-like protocol is proposed where a dissimilarity measure between two nodes different from that proposed in ASAP is defined. The sampling and the data reporting tasks are done by some randomly selected nodes, and the cluster maintenance is the same as in EEDC protocol [START_REF] Liu | An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. Parallel and Distributed Systems[END_REF]. Nonetheless, the randomness of the node selection cannot guarantee the quality of data.

At the opposite, EEDC [START_REF] Liu | An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. Parallel and Distributed Systems[END_REF] constructs the clusters according to the pairwise dissimilarity of the nodes and the intra-cluster dissimilarity threshold. Multiple sensors are randomly scheduled for sampling and the temporal correlation is used to reduce the amount of the transmitted data.

When we focus on data correlations, the effectiveness of prediction is unavoidable. The framework proposed in [START_REF] Jiang | Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks[END_REF] deals with this issue and proposes to predict the samplings of the nodes based on the desired error bound and the sensor data predictability.

Although AR (Auto Regressive) model is simplistic, it is frequently used by several algorithms to capture the spatial correlation such as in ELink [START_REF] Meka | Distributed spatial clustering in sensor networks[END_REF]. Elink is a parameterized clustering algorithm that measures the distance between the features of the nodes. It constructs the clusters using a sentinel structure while ensuring the δ-compactness of each constructed cluster.

When a data reporting tree is set, it is necessary to adapt the reporting period to eliminate unnecessary sending such as in [START_REF] Tang | Adaptive data collection strategies for lifetime-constrained wireless sensor networks[END_REF]. The nodes having current readings different from the previous ones, do not send their data to the sink and update their period of data reporting using an exponential aging method based on their residual energy and the user-defined level of data accuracy.

In a data collection process, some aspects are related to the nature of the data correlations. According to [START_REF] Yoon | The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks[END_REF], the data collection streaming mode is wellsuited for static environments in the presence of strong spatial-temporal correlation, while the interactive data collection mode is suited for dynamic environments in the presence of strong spatial correlation only. For joining the clusters, the nodes in CAG algorithm [START_REF] Yoon | The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks[END_REF] verify a certain condition about their readings. And for adjusting the clusters, the nodes check periodically their readings: if they do not satisfy the above condition then they should be evicted from their current cluster (migrate towards a near cluster or form a new cluster with themselves as cluster-heads).

In this context, neighborhood information is important to define the correlation region. In YEAST [START_REF] Villas | A spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks[END_REF] and EAST [START_REF] Villas | An Energy-Aware Spatio-Temporal Correlation Mechanism to Perform Efficient Data Collection in Wireless Sensor Networks[END_REF], the nodes that belong to the same correlation region, whose definition depends on the application requirements and the nature of the events, tend to detect similar values. Thus, the energy optimization in this context is based on eliminating useless notification of sampling nodes using correlation region adjustment.

Each method of all the above-described ones considers only one aspect of the data collection process. i.e. the energy or the data sources or the detection, etc. None of them considers all the aspects. In CORAD, we define the models for all the above aspects. We couple all these models in a single dynamic data collection scheme that is presented in the next sections.

Basic Idea & Objectives

The objective of CORAD is to extend the network lifetime by reducing the energy consumption of the nodes while preserving an acceptable level of the accuracy of the generated data. To illustrate the benefits of such approach, we first recall some characteristics about the WSN operating modes.

According to [START_REF] Akyildiz | Yogi Sankarasubramaniam, and Erdal Cayirci[END_REF], WSN operate generally in two main modes:

• Monitoring mode: where nodes report periodically their sensed data about a physical phenomenon to the base station for post-processing. It functions in a query-driven or time-driven fashion.

• Reactive mode: where nodes do nothing until they detect an event by themselves (this is also called event-driven mode). After that, only detecting nodes collaborate between each others to continuously report the data about the event until it despairs.

It is obvious that the second mode is more energy-efficient and suitable for regionlocalized and data-correlated event detection and tracking. However, it is more challenging given the additional temporal and quality constraints that it should satisfy. We start by studying the first mode for simple case to understand the underlying mechanisms that will serve for the second mode.

For system scalability, we use a dynamic clustering protocol whose objective is twofold:

• Setting-up a local data fusion (or aggregation) center instead of a global one to reduce the length of routing paths and decrease the communication overhead due to the network reconfigurations.

• Adapting the network topology based on the spatial-temporal data correlation generated by the sensors.

Since communications are the most predominant cause of energy depletion of the nodes, the initial election of the cluster-heads is based on their proximity to their neighbors and their residual energy. That is what we call static clustering. The correlations are then integrated in CORAD to adapt the network topology via two complementary mechanisms:

1. Topology reconfiguration: upon each major change of the event dynamics detected by the current cluster, the most appropriate nodes having the most accurate readings and that are close to the event focus, could selected for sampling and reporting their readings. The leader in this case specifies the participation of the nodes in the data collection process by establishing a schedule in terms active/inactive cycles. This mechanism reduces the energy consumption by selective activation of the nodes. However, in order to be efficient, it should take into account several parameters such as: event dynamics (in terms of computed correlation), required accuracy (in terms of user-defined accuracy), residual energy of the nodes, etc.

2. Nodes' behavior adaptation: according to the variation of measurements in time, the data reporting periods are adjusted based on the residual energy of the nodes and the data accuracy requirements.

Before presenting CORAD, we first describe the models used throughout our approach.

Network Model

We represent a WSN by an undirected graph G(V, E): with V = {s 1 , s 2 , . . . , s m } representing the set of nodes (|V | = m is the size of the network) and E representing the set of edges. An edge e ij ∈ E exists if and only if a bidirectional link between node s i and node s j exists. We suppose that the nodes are uniformly deployed over a 2D square area A. All the nodes are symmetric and homogeneous in terms of radio communication range R i c , sensing range R i s and initial energy budget e s i , i.e:

∀s i ∈ V, R i c = R c , R i s = R s , e s i = E max
In addition, each node knows its position and those of its direct neighbors. For coverage and connectivity issues, we also suppose that:

R c ≥ 2R s

Energy Model

We use the generic energy model proposed in [START_REF] Ye | Medium access control with coordinated adaptive sleeping for wireless sensor networks[END_REF] and [START_REF] Sha | Energy efficient clustering algorithm for data aggregation in wireless sensor networks[END_REF]. In this model, the energy consumption in transmission and reception depends on the radio signal propagation model. We consider two models: the free-space model and the multipath model. The nodes that transmit data spend e tx Joules to send l bits over a distance d, and spend e rx Joules to receive l bits independently from the distance. Equations 5.1 and 5.2 gives these two values:

e tx = kd α + c
(5.1)

e rx = c (5.2)
Parameter α is the shadowing factor: it depends on the signal propagation model (α = 2 for the free space model and α = 4 for the multi-path model). If we assume that all the exchanged messages are identical in size then c = le is constant. Moreover, the energy consumption in the sampling operations depends on the sampling duration and the hardware. In our case, we suppose that the nodes consume e sp = τ (Joules) in each sampling operation2 .

Data Source Model

Uniformly distributed data over the monitoring area are often not correlated nor in time neither in space. Instead, spatial-temporal correlated data are generally modeled as Random Gaussian Field (RGF). For simulation purposes, we use the framework proposed in [START_REF] Zordan | Modeling and Generation of Space-Time Correlated Signals for Sensor Network Fields[END_REF] to generate synthetic data by reproducing the signals gathered from real deployed WSN. To capture the spatial auto-correlation of the real signals, the framework assumes that the auto-correlation function is separable into temporal and spatial correlation:

ρ(p 1 , t 1 , p 2 , t 2 ) = ρ S (p 1 , p 2 )ρ T (t 1 , t 2 )
Where p 1 , p 2 ∈ D and t 1 , t 2 ∈ T , and D and T are space and time domain, respectively. The framework defines the spatial auto-correlation function by:

∀t ∈ T , ρ S (p 1 , p 2 ) = cov(z(p 1 , t), z(p 2 , t)) σ z (p 1 , t)σ z (p 1 , t)
It also uses two models to capture the spatial auto-correlation in the real signals, namely: the Power Exponential model and the Rational Quadratic model defined respectively by the equations 5.3 and 5.4:

ρS P E (d) = e -(d/ζ) ν (5.3) ρS RQ (d) = 1 1 + (d/ζ) ν S ν (5.4)
Both of the models depend on two parameters ζ and ν which are respectively: the length and the order of the auto-correlation function. Similarly, the framework defines the temporal auto-correlation function by:

∀p ∈ D, ρ T (t 1 , t 2 ) = cov(z(p, t 1 ), z(p, t 2 )) σ z (p, t 1 )σ z (p, t 2 )
At the end, the framework generates the synthetic data using a four-step algorithm described in [START_REF] Zordan | Modeling and Generation of Space-Time Correlated Signals for Sensor Network Fields[END_REF].

Detection Model

We use the Eifes Sensing Model as a detection model. According to [START_REF] Anwar Hossain | Sensing models and its impact on network coverage in wireless sensor network[END_REF], the detection probability of an event at distance d by a node s is:

p s (d) = { 0 if d ≥ R s e -λd if 0 ≤ d < R s (5.5)
Where R s is the maximum sensing range of node s. Constant λ depends on the sensor hardware.

Static Clustering Scheme

Using the network and the energy models, we first design a static clustering algorithm based on two rules: the election rule and the adhesion rule. This static clustering scheme serves as a building block of CORAD.

Definition 3 (Election rule).

The nearest node to the barycenter of the set of all the n-hop neighbors of some node s, with the maximum residual energy is elected as the cluster-head of the cluster to which node s belongs.

Definition 4 (Adhesion rule).

The parent of a member node s in the data collection tree is the one with the maximum energy resources that forwards the messages as further as possible toward its cluster-head.

Since each node knows its cluster-head and the positions of its direct neighbors, it computes its forwarding set and selects the node u with the minimum ratio:

dist(u, ch) e u
In Figure 5.7, the forwarding set of node u is

F (u) = {s 1 , s 2 }. As e 2 > e 1 and dist(s 2 , ch) ≈ dist(s 1 , ch), then parent(u, ch) = s 2 .
If the forwarding set is empty, then the member node is simply removed from the cluster. Algorithm 1 is the centralized version of our static clustering algorithm. It is a greedy algorithm, i.e.: the while loop between Line 2 and Line 11 is for electing the cluster-heads. For each node in the set of remaining nodes (lines between 3 and 7), the algorithm computes its centrality (Line 6) then it selects node s with the minimum centrality/energy ratio from all the n-hop neighbors (Line 8). Node s and its n-hop neighbors are then removed from the global set of nodes (Line 9) and the same process is repeated with the remaining nodes (Line 10).

After cluster-heads election, Algorithm 1 constructs the data reporting trees: the for loop between Line 12 and Line 25 is the portion of code responsible for this. For each node in the current cluster (lines between 13 and 24): the algorithm checks if it is a direct neighbor of the cluster-head. If so, then its parent is the cluster-head itself. Otherwise, it computes its forwarding set (Line 17) and selects the parent based on the minimum ratio distance/energy (Line 21).

It is worth noting that Algorithm 1 cannot guarantee neither optimal clustering nor size-balanced clusters (see Figure 5.2 and Figure 5.3). Nonetheless, at the end of the clustering process, each node knows its cluster-head to which it reports its readings (in Figure 5.2 and Figure 5.3 the cluster-heads are represented by red points). However, in one-hop clustering case, this issue is not raised since member nodes use massive MAC-level broadcasts to transmit their readings and they do not need the gateways to aggregate and forward the sampling data to their local fusion centers contrary to multi-hop clustering scheme (Figure 5.1).

CORAD: Correlation-Based Adaptive Dynamic Clustering Scheme

The static scheme constructs a network topology based only on the location information and the residual energy of the nodes. This can lead to wasting precious energy resources of the network when arbitrary reporting nodes are selected. A natural approach to overcome this problem is to adapt the WSN structure to the 

for ∀s ∈ V do 4: compute V n (s) 5: g s,n ←barycenter(V n (s)) 6: ce n (s) ← dist(s, g s,n ) 7:
end for end for 25: end for dynamics of the events. Our clustering algorithm should take profit from the correlation that may exist between the collected data and thus, it can reduce the energy consumption and improve the data accuracy by selecting only the nodes with useful data.

8: ch ← arg min s∈V {ce n (s)/e s } 9: V ← V -V n (ch)
for ∀u ∈ V n (ch) do 14: if u ∈ V 1 (ch)
By doing so, the dynamic clustering algorithm can be tunned based on the accuracy level required by the end-user application, the intrinsic nature of the event and the residual energy of the nodes. This dynamic behavior can be implemented via two complementary mechanisms: the adaptation of the data reporting period and the reconfiguration of the network topology. The former operates on the node level to optimize data collections by exploiting the temporal correlation, and the Correlation between data can be very high when the variation of data is minimal. Thus, the nodes should not waste their valuable energy resources to report them because they will not improve the quality of data. Generally, the absolute difference between two consecutive data values is compared to a threshold subject to update according to the residual energy of the nodes. If it exceeds this threshold then the nodes report their data. Otherwise, they do nothing but just adjusting their reporting periods.

What we presented above is the first mechanism. The second mechanism defines the way by which the clusters are constructed. It depends mainly on the data correlation capture model and the clustering rules.

Data Correlation Capture Model

The example of Figure 5.4 shows a region-based event distribution in a 2D surveillance area. We have six geographic regions: R 1 , R 2 , R 3 , R 4 , R 5 and R 6 . In each region R i , a representative value ṽi is associated with the set of the real signal values X i verifying the following property: 

∀v ∈ X

i : |v -ṽi | < δ (5.6)
δ is the maximum variation on real signal values between two points. For each set of values X i , we associate a corresponding set of detecting nodes S i called the clustered-nodes that depends on the data correlation capture model. In our case, we propose a Min-Max model:

The nodes lookup for the minimum and the maximum values in their sampled raw data, then they decide about their effective detected values based of the number of the occurrences of each minimum/maximum values which should exceed a threshold Thd.

As shown in Figure 5.5(a), each node s i executes the sampling operation for a period of time T sens and generates M values: v1 i , v2 i , . . . , vM i in each point p 1 i , p j i , . . . , p M i , respectively using the probabilistic detection model (Section 5.1.4):

vj i = v j i e -λd j i
where d j i is the distance between node s i and point p j i , and v j i is the real value of the signal at point p j i . After that, node s i looks for the number of the occurrences of its maximum and 

vj i ≤ V min (5.7) vj i ≥ V max (5.8)
where V min and V max are the thresholds on the minimum and the maximum values, respectively. We denote by W and W ′ the sets of the values satisfying equations 5.7 and 5.8, respectively.

If |W | ≥ Thd or |W ′ | ≥ Thd then the detected value of a node s i is vi = min(W ) or vi = max(W ′ ), respectively. Otherwise, node s i does not generate any significant value (s i in not a detecting node).

Note that we use the same equation 5.6 to characterize two correlated-value nodes, i.e: two nodes s i and s j are correlated-value nodes if and only if: |v i -vj | ≤ ϵ, where ϵ is the maximum variation between the effective values of nodes s i and s j . 

Dynamic Clustering Rules

Our adaptive dynamic clustering algorithm runs in two phases: the initialization phase and the reconfiguration phase. It uses the above models to initialize the clusters and the adaptive reconfiguration rule to reconfigure them.

Initialization Phase

In the initialization phase, the algorithm takes three parameters as inputs:

1. The direct neighboring information.

2. The residual energy levels of the nodes.

The list of the correlated-value nodes.

As outputs, it determines the clusters that should be constructed according to the nature of the phenomenon being monitored or tracked. Note that the nodes with weak-correlated values are not included in the cluster even if they are direct neighbors. At the opposite, the nodes with strongcorrelated values can be included as cluster members when they belong to the same neighborhood of other nodes with strong-correlated values. Otherwise, they represent a new cluster or even they are not clustered at all. Therefore, the set of clustered-nodes consists of n-hop neighboring nodes with correlated-values depending on the data correlation models explained above.

The clustering rule is defined as follows 3 :

|v i -vj | <ϵ ∧ H(s i , s j ) ≤n     
⇒ s i and s j belongs to the same cluster.

In Figure 5.6, s 1 and s 4 are neighbor nodes and correlated-value nodes. However, each node has a different set of correlated-values nodes: s 8 is neighbor to s 4 and have a correlated-value with s 1 , and s 9 is neighbor to s 1 and have a correlated-node with s 4 . The set of clustered-nodes is defined by all the connected neighbors with correlated-values: in Figure 5.6, it is the set S = {s 3 , s 1 , s 4 , s 5 , s 6 , s 7 }.

Algorithm 2 describes the initialization procedure. It is a greedy algorithm that runs in successive rounds: in each round, only one node is elected as a clusterhead within its set of clustered-nodes determined by the clustering rule procedure (Line 4). The repeat loop between Line 3 and Line 11 elects the cluster-heads based on the the minimum size of the set of clustered nodes S min The algorithm ends when no set of clustered-nodes S i with the minimum required size S min remains (Line 5).

The clustering rule(V, L, n, ϵ, V min , V max ) procedure computes all the sets of clustered-nodes S i using the rules described in subsection 5.3.2. Then, it elects 

: : V ← {s 1 , s 2 , . . . , s m }, L ← {e 1 , e 2 , . . . , e m }, S min , n ← #hops, ϵ, V min , V max 1: S ← ∅ {set of clustered nodes} 2: CH ← ∅ {set of cluster-heads} 3: repeat 4: {ch, S} ← clustering rule(V, L, n, ϵ, V min , V max )
{Refer to subsection 5.3.2} CH ← CH ∪ {ch} 10:

V ← V -S 11: until V = ∅ 12: construct clusters(CH)
the cluster-head ch with the minimum ratio centrality/energy (as in the static case) multiplied by the coefficient of variation

σ i |v i | : ∀u, ch = arg min i∈Su { ce(i) e i × σ i |v i | } (5.9)
The aggregated value at the elected cluster-head ch is the mean value of the all received readings from cluster members (denoted by vch in Algorithm 2, Line 8).

The centrality of node u, ce(u) is defined as the same way as in the static case except it is computed over the set of clustered-nodes S u instead of the set of n-hop neighbors V n (u).

It is worth to note here that V n (s) denotes the set of n-hop neighborhood of node s (including the neighbors from 1 to n hops and the node s itself). The barycenter of V n (s), g s,n (x s,n , y s,n ) is given by:

x s,n = ∑ u∈Vn(s) x u |V n (s)| ; y s,n = ∑ u∈Vn(s) y u |V n (s)|
We define the centrality of node s in V n (s) as:

ce n (s) = dist(s, g s,n )
The procedure of construction of the clusters construct clusters(CH) uses the same adhesion rule as in the static case (Definition 4). Figure 5.7 shows this rule. 

Reconfiguration Phase

Recall that the data collection process is run in successive rounds and in each round the member nodes report their detected values to the cluster-head. Thus, the reconfiguration procedure depends on two parameters: (i) the number of clustered nodes at round t denoted by k t , and (ii) the Mean Square Error (MSE) at round t denoted by ∆ t :

∆ t = √ ∑ kt i=1 (v i -v i ) 2 k t
The objective here is to determine the set of participating nodes in the sampling operations at round t + 1, denoted by CR t+1 .

If the number of clustered nodes is greater than threshold T 1 and the MSE is greater than threshold T 2 , then some of the k created clusters at round t should be shrunk for round t + 1 and the parameters V min , V max , S min and Thd should be increased. At the opposite, if the number of clustered nodes is smaller than T 1 and the MSE is smaller than T 2 , then the clusters should be stretched and the parameters V min , V max , S min and Thd should be decreased. In all the cases, a set of non-participating nodes that are randomly selected based on some percentage (probability) p are added to CR t+1 . Based on this observation, the definition of the dynamic reconfiguration rule is presented below: Definition 5 (Dynamic reconfiguration rule). The clusters with large size and poor quality of data are shrunk and the clusters with small size and good quality of data are stretched.

To stretch a cluster, we simply enlarge it by the 1-hop neighbors of the n-hop neighboring nodes of the cluster-head. Similarly, to shrink a cluster we reduce it by the 1-hop neighbors of the n-hop neighboring nodes of the cluster-head (see example of Figure 5.9).

Algorithm 3 describes the dynamic reconfiguration procedure: it first checks the size of the set of clustered nodes (Line 3) then the MSE (Line 4). The shrinking case is detailed between lines 5 and 10, and the stretching case is detailed between lines 14 and 19. Note that the parameters V min , V max , Thd and S min are simply updated by adding or subtracting the current value of MSE to V min and V max , adding or subtracting the mean size of the set of 1-hop neighbors to S min and adding or subtracting 1 to Thd (Lines 7, 8, 9, 10, 16, 17, 18 and 19).

Simulation Results & Analysis

The goal of the simulations is to show that CORAD helps reducing the energy consumption and improving the network lifetime while ensuring the quality of the collected data. To achieve this goal, we run centralized simulation on Matlab. We define the simulation scenario as follows: m identical nodes (with characteristics R c , R s , E max , λ, τ , l, α, k and c detailed in Table 5.1) are uniformly deployed in a 2D square of size A × A, where a physical phenomenon (luminosity) evolves. The end-user application requests values greater than V max and/or smaller than V min . In the initialization phase of CORAD, all the nodes execute the sampling operation to generate detections that are reported to the cluster-heads for r times (the value of r is specified in Table 5.1). After the initialization phase, CORAD is run for 100 rounds: in each round, the clusters are reconfigured based on the CORAD reconfiguration procedure described in Algorithm 3.

To show the CORAD performances, we define several parameters:

• The number of created clusters and the average size of the clusters to show the effectiveness of the clustering rules of CORAD.

• The mean residual energy of the nodes, the standard deviation of the residual energy and the ratio of dead nodes due to the energy depletion measured at the end of the simulation, to show the energy-efficiency of CORAD.

• The mean square error of the aggregated values in the cluster-heads, the average number of lost messages and the average ratio of lost events due to energy depletion of the nodes, to show the quality of data of CORAD.

All these parameters are averaged over 20 simulation runs taking as input 20 sets of synthetic data generated using the model presented in Section 5.1.3. The error bars on the figures represent the standard deviation of the measured values. Nevertheless, before comparing CORAD to other algorithms, we analyze the above-stated performance parameters with respect to S min , n, Thd and ϵ in order to determine the CORAD optimal behavior. Algorithm 3 Dynamic Reconfiguration Procedure.

Require:

: CH t ← {ch 1 , ch 2 , . . . , ch kt }, ∆ t , T 1 , T 2 , p 1: M t ← ∪ kt i=1 S n ch i {1 → n-hops selected nodes} 2: L t ← ∪ kt i=1 S 1 ch i {1-hop selected nodes} 3: if |M t | > T 1 then 4: if ∆ t > T 2 then 5: K t ← ∪ kt i=1 V * n-1 (ch i ) {(n -1)
-hops neighbors of cluster-heads} 6:

CR t+1 ← M t -{ ∪ j∈Kt S 1 j } {eliminating nodes} 7:
V min ← V min -∆ t 8: • Given a dense network (as in our case m = 500 and A = 100) where the events are spatially correlated and setting high values to S min , this means that the end-user application needs to aggregate the multiple detected values about a very localized event. This, of course, enhances the data accuracy but increases the energy consumption of the whole network because lot of nodes are selected to meet this constraint as shown in sub-figure 5.10(c).

V max ← V max +
K ′ t ← ∪ kt i=1 V * n (ch i ) 15: CR t+1 ← M t ∪ { ∪ j∈K ′ t S 1 j } {eliminating nodes} 16: V min ← V min + ∆ t 17: V max ← V max -
• On the other hand, setting small values to S min may create many clusters with small sizes, especially when the event is not extent as we can see in sub-figure 5.10(a) and sub-figure 5.10(b).

• It is easy to observe that the average size of the clusters increases with S min (sub-figure 5.10(b)) because of the spatial correlation of the events.

• Sub-figure 5.10(d) shows the ratio of dead nodes due to the energy depletion. We can see that this ratio decreases with S min because the created clusters have a large size, which balances the load of the data reporting process. Thus, many nodes participate in relaying data at the opposite of the case where S min is small. In this case few nodes relay the same volume of data. Recall here that the main cause of nodes' death is the energy depletion during the process of data collection.

From the above discussion, we deduce that S min should be set to medium value (in our case S min = 25) in order to trade between the number of the clusters (and their average size) and the residual energy of the nodes (which is maximum when S min = 25).

Analysis & Discussion with Respect to n

The parameter n reflects the extent of the clustering. When the event is localized then n should have small values to reduce the energy consumption in constructing the clusters and reporting the data. Otherwise, when the event is network-wide with strong spatial-temporal correlation, then n should be large.

To analyze this parameter, we set the constant parameters as follows: S min = 25, Thd = 5, ϵ = 0.001, and we vary n in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The ratio of dead nodes increases from 0% to 30% when n varies from 1 to 10. The same behavior with the number of lost events.

Note here that an event is declared lost when a participating node is scheduled to do sampling but it cannot do that because of the energy depletion.

• As shown in sub-figure 5.11(b), the average size of the clusters is quasiconstant for the different values of n (it increases slightly with n). This means that even within a dense network, when the physical phenomenon being monitored presents weak spatial-temporal data correlation, increasing n does not improve the quality of data. Hence, n depends on the degree of correlation of the physical phenomenon. From the above discussion, we set n = 5 for optimal CORAD performance.

Analysis & Discussion with Respect to Thd

The parameter Thd determines the accuracy of the sampling operations. It depends on the nature of the physical phenomenon and the level of the quality of data required by the end-user application.

To analyze this parameter, we set the constant parameters as follows: S min = 25, n = 5, ϵ = 0.001, and we vary Thd in {1, 3, 5, 7, 10, 12, 15, 20, 22, 25}. The obtained results are shown in Figure 5.12.

• From sub-figure 5.12(a), we can see that high values of Thd reduce the set of detected values that satisfy the min-max model (subsection 5.3.1). When the physical phenomenon does not have strong-correlated function then the set of detecting nodes will be small. Thus, the number of clustered-nodes is reduced which decreases the number of created clusters.

• However, as shown in sub-figure 5.12(b), the mean residual energy is kept quasi-constant because parameter Thd does not influence on the clustering structure of CORAD and the length of the paths of data collection, but it is directly related to the data accuracy.

• We can see on sub-figure 5.12(d) that the ratio of dead nodes decreases with Thd because few nodes participate in the data reporting operation when Thd is high.

• Also, the number of lost messages is quasi-constant (Figure 5.12(c)) because it is only related to the mean residual energy of the nodes.

Analysis & Discussion with Respect to ϵ

The parameter ϵ specifies the sharpness of the correlation model. With strongcorrelated data, very small values of ϵ do not influence on the number of the nodes with correlated-values. However, in the case of weak-correlated data, ϵ has a strong impact on the data correlation capture model.

To analyze this parameter, we set the constant parameters as follows: S min = 25, n = 5, Thd = 5, and we vary ϵ in {10 -5 , 5.10 -5 , 10 -4 , 5.10 -4 , 10 -3 , 5.10 -3 , 10 -2 , 5.10 -2 , 0.1, 0.15}. • The mean residual energy and the standard deviation of the residual energy graphs (sub-figure 5.13(b) and sub-figure 5.13(d)) have the same shape. They vary slightly with respect to ϵ. This is related to the tracked phenomenon for which V max and V min are relatively small.

Note here that ϵ is logarithmically scaled for presentation convenience.

Conclusion

Exploiting sensory data to optimize the energy in WSN is a shortfall that we have used in this chapter. We explored this track and proposed a dynamic clustering algorithm for data collection that takes profit from the data correlations to minimize the energy consumption.

Our algorithm CORAD maintains a certain level of quality of data while minimizing the energy consumption by: (i) smart selection of the nodes to be clustered, (ii) optimized election of the cluster-heads and the nodes that report data over the data collection tree, and (iii) reconfiguration of the clusters each time the physical phenomenon changes.

Certainly, CORAD is a model-depend algorithm but the results we obtained can be generalized to any other position-aware geographic-based clustering and data collection algorithm.

All the proposed and tested models are generic and can be applied to monitor or track any physical phenomenon with scaled-value detections.

We have proposed CORAD as a heuristic solution to the EMDP problem which is NP-Complete. It is not expected that CORAD provides the optimal solution but the obtained results show that it behaves well in many different configurations. Nonetheless, a comparison with other heuristic solutions is necessary to measure the near-optimality of CORAD.

Chapter 6

Conclusions & Future Work T HE RECENT ADVANCES in MEMS technology enable WSN applications in many domains such as: military, urban, health-care, agriculture, etc. However, the energy problem as a technological bottleneck slows down the development of these applications and thereby remains an open issue.

In our thesis, we approached this problem in the context of collaborative applications using some conceptual and mathematical tools, namely: the predictionbased schemes for target tracking using limited-range sensors, the correlationbased adaptive clustering for data collection, and the node selection based on energy-efficiency.

Our goal was to design energy-efficient mechanisms for data collection and tracking that take profit from the intrinsic characteristics of WSN such as: the limited ranges of sensing and communication, the density of the network and the correlated sensory data.

As it is shown, the severe hardware limitation of the sensors and the growing demand for data processing and communication involve new paradigms for the design of energy-efficient algorithms in WSN, including the optimization in the software layers of the protocol stack.

To undertake these challenges, we first studied the recent schemes proposed in the literature to extract the recommendations for possible research tracks. The elements that inspired us in designing our approaches are:

• The conception of the network as a sensing subsystem and a communication subsystem related by a prediction algorithm;

• The perception of WSN as a source of data that can used to optimize the network operations, and;

• The exploitation of the data correlations in the optimization effort of the energy consumption.

6.1 Contributions 123

Contributions

Given these inspiring elements, we proposed four contributions, each of which was presented in a whole chapter:

1. A survey of recent proposed target tracking schemes based on predictions.

2. A target tracking scheme that aims to reduce the energy consumption by using the distributed Kalman Filter coupled with a dynamic clustering algorithm, called DKF DC.

3. A mathematical model for the problem of energy optimization in the context of correlated data collection under data precision constraints, called EMDP.

4.

A heuristic solution for the EMDP problem called CORAD which is a correlation based adaptive clustering algorithm for data collection that exploits data correlations.

We validated these contributions via mathematical proofs and/or implementations for simulation. We confirmed via the obtained results our proposed ideas and hypothesis for the design of energy-efficient algorithms in collaborative applications. We showed that the trade-off between the quality of the collected data and the energy efficiency is difficult to achieve, and depends on the application requirements.

Moreover, we argued that EMDP problem is enough complex that requires heuristic-based approximate solutions. Our greedy-based heuristic solution CORAD is one of them. We showed that it minimizes the energy consumption while it maintains an acceptable level of data accuracy.

Future Work

In view of these results, two research tracks, at least, can be released for future work:

Characterization of EMDP

Our BILP model for EMDP is a first step in its characterization in terms of complexity. As BILP models are a special case of ILP (Integer Linear Programming) and 0-1 IP (0-1 Integer Programming) models which are proved as NP-Complete [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF], it gives us insight about the complexity of EMDP. However, it is necessary to formally define a reduction function that reduces, for example, ILP or 0-1 IP to EMDP, i.e.

ILP ≤ EMDP

It is also necessary to prove that this reduction function is polynomial, i.e. its computation is bounded by a polynomial function of the input size, in order to prove the NP-Completeness of EMDP.

Nonetheless, this function may not exist; In this case, we have to prove its nonexistence or to design a polynomial algorithm that solves EMDP to demonstrate that it is not NP-Complete, i.e. polynomial.

The characterization of EMDP may be a complex process because we have to explore all the possibilities to find the complexity class to which it belongs. We consider that this is a promising track for research.

Meta-Heuristics

In the case of the NP-Completeness of EMDP, the problem is intractable and the exact solutions are infeasible for medium and big instances. Thus, designing approximate solutions is the only possible approach of the problem.

Like our proposed CORAD solution, heuristics and meta-Heuristics are commonly applied in such context. The usual optimization methods such as: antcolony, taboo search, simulated annealing, genetic programming, etc. can be used to design approximate solutions. Each heuristic-based solution can be evaluated in terms of its approximation of the exact solution. Then, the different solutions can be compared to find the trade-off between time-space computation cost and the quality of solution.

If two outcome events are independent then the probability of both occurring is the product of their individual probabilities:

p(A ∩ B) = p(A)p(B)
Finally, the probability of outcome event A given the occurrence of outcome event B is called conditional probability, and is given by:

p(A|B) = p(A ∩ B) p(B)

A.1.2 Random Variables

At the opposite to discrete events, in the case of tracking or motion capture for example, the occurrence of the events is continuous. So, their probabilities are represented by continuous random variables. A random variable is typically a function that maps all the points of the sample space to real numbers. For example, if X(t) maps time to position, then it would tell us at any instant, the expected position.

In the case of continuous random variables, the probability of a single event A is in fact 0. Instead, we can only evaluate the probabilities within intervals. A common function representing the probability of some random variable is the cumulative distribution function:

F X (x) = p(-∞, x]
This function represents the sum (integral) of all the probabilities of random variable X for all the events up to and including x. It has the following properties:

F X (x) → 0 as x → -∞ F X (x) → 1 as x → +∞ F X (x) is non-decreasing
The probability density function is the derivative of the cumulative distribution function:

f X (x) = d dx F X (x)
Following the above properties of the cumulative probability function, the probability density function has the following properties:

f X (x) is non-negative ∫ +∞ -∞ f X (x)dx = 1
Finally, the probability over an interval [a, b] is given by:

p X [a, b] = ∫ b a f X (x)dx = F X (b) -F X (a)

A.1.3 Mean, Variance & Covariance

The expected value of a discrete random variable X is given by:

E(X) = n ∑ i=1 p i x i
for n possible outcomes x 1 , x 2 , . . . , x n and their corresponding probabilities p 1 , p 2 , . . . , p n . Similarly, for a continuous random variable, the expected value is defined as:

E(X) = ∫ +∞ -∞ xf X (x)dx
The expected value of a random variable is also known as the first statistical moment. We can compute the expected value of variable X k to obtain the k th statistical moments, by:

E(X k ) = ∫ +∞ -∞ x k f X (x)dx
A particular interest is put on k = 2, for the second moment given by:

E(X 2 ) = ∫ +∞ -∞ x 2 f X (x)dx
The variance is defined as:

V ar(X) = E(X -E(X 2 )) = E(X 2 ) -E(X) 2
It is an important statistical property for random signals because it gives a sense how much jitter or noise is in the signal. The square root of the variance is the standard deviation, which is also useful because while it is always positive, it has the same units as the original signal. The covariance between two jointly random variables with finite moments is defined as:

σ(X, Y ) = E[(X -E[X])(Y -E[Y ])]
By using the linearity property of the expectation, the covariance can be simplified to:

σ(X, Y ) = E[XY ] -E[X]E[Y ]
If X is a random vector with covariance matrix Σ(X), and A a matrix that can act on X, the covariance matrix of the vector AX is:

Σ(AX) = AΣ(X)A T

A.1.4 Gaussian Distribution

Many random processes occurring in nature actually appear to be normally distributed, or very close. Under some moderate conditions, it can be proved that a sum of random variables with any distribution tends toward a normal distribution. This is stated in the theorem called the central limit theorem.

Given a random process X ∼ N (µ, σ 2 ), i.e. a continuous random variable X that is normally distributed with mean µ and variance σ 2 , the probability density function of X is given by:

f X (x) = 1 √ 2πσ 2 e -(x-µ) 2 2σ 2
Any linear function of a normally distributed random process is also normally distributed. If Y = aX + b, then Y ∼ N (aµ + b, a 2 σ 2 ). The probability density function for Y is then given by:

f Y (y) = 1 √ 2aπσ 2 e -(y-(aµ+b)) 2 2a 2 σ 2
If X 1 and X 2 are independent, and

X 1 ∼ N (µ 1 , σ 2 1 ) and X 2 ∼ N (µ 2 , σ 2 
2 ), then:

X 1 + X 2 ∼ N (µ 1 + µ 2 , σ 2 1 + σ 2 2 )
The corresponding probability density function becomes:

f X (x 1 + x 2 ) = 1 √ 2aπ(σ 2 1 + σ 2 2 ) e - (x-(µ 1 +µ 2 )) 2 2(σ 2 1 +σ 2 2 )
The Bayes rule follows from the conditional probability definition. It offers a way to specify the probability density of a random variable X given a variable Y . It is given as:

f X|Y (x) = f Y |X (y)f X (x) f Y (y)
Finally, the discrete probability mass function of a discrete process X given a continuous process Y conditioned on Y = y, is given by:

p X (x|Y = y) = f Y (y|X = x)p X (x) ∑ z f Y (y|X = z)p X (z)

A.2 Discrete Kalman Filter

The KF is used for stochastic estimation from noisy measurements. It is composed of a set of mathematical equations that implement predictor-corrector type estimator that minimizes the estimated error covariance.

The KF addresses the problem of trying to estimate the state x ∈ ℜ n of a discrete-time controlled process that is governed by the linear stochastic difference equation:

x k = Ax k-1 + Bu k + w k-1
With a measurement z ∈ ℜ n that is:

z k = Hx k + v k
The random variables w k and v k represent the process and the measurement noises, respectively. They are assumed to be independent, white and with normal probability distribution:

w ∼ N (0, Q) v ∼ N (0, R)
In practice, the process noise covariance Q and the measurement noise covariance R matrices might change each time step or measurement, however we assume that they are constant. The matrix A of size n × n relates the state at the previous time step k -1 to the state at the current time step k, in the absence of a driving function or process noise. Matrix A may also change in the time, but we suppose it is constant. As for matrix B of size n × l, it relates the optional control input u ∈ ℜ l to the process state x. Matrix H of size m × n relates the state to the measurement z k . It may change in each time step or measurement, but for simplicity reasons, we assume it is constant.

A.2.1 Computational Origins of KF

We define xk ∈ ℜ n (super minus) to be the a priori state estimate at step k given knowledge of the process at step k, and xk ∈ ℜ n to be the a posteriori state estimate at step k given measurement z k . We can then define the a priori and the a posteriori estimate errors as:

e - k ≡ x k -x- k e k ≡ x k -xk
The a priori estimate error covariance is then:

P - k = E[e - k e -T k ]
and the a posteriori estimate error covariance is:

P k = E[e k e T k ]
In deriving the equations of the KF, we begin with the goal of finding an equation that computes an a posteriori state estimate xk as a linear combination of an a priori state estimate xk , and a weighted difference between an actual measurement z k and a measurement prediction H xk as shown in the following equation:

xk = x- k + K(z k -H x- k )
The difference in the above equation is called the measurement innovation, or the residual. It reflects the discrepancy between the predicted measurement H xk and the actual measurement z k . A residual of zero means that the two are in complete agreement.

The justification of the above equation is rooted in the probability of the a priori estimate xk conditioned on all prior measurements z k (Bayes' rule). Hence, it is clear that the Kalman Filter maintains the first two moments:

E[x k ] = xk E[(x k -xk )(x k -xk ) T ] = P k
The a priori state estimate reflects the first moment (the mean) and the a posteriori state estimate reflects the second moment (the variance).

The matrix K in the above equation, of size n×m is chosen to be the gain or the blending factor that minimizes the a posteriori error covariance. This minimization can be achieved by substituting this last equation in the definitions of e k and P k , performing the indicated expectation, taking the derivative of the trace of the result with respect to K, and setting that result equals to zero. Solving the resulting equation for K gives:

K k = P - k H T (HP - k H T + R) -1 = P - k H T HP - k H T +
R From this last equation, when the error covariance matrix R approaches zero, the gain K weights the residual more heavily:

lim R k →0 K k = H -1
On the other hand, as the a priori estimate error covariance P - k approaches zero, the gain K weights the residual less heavily:

lim P - k →0 K k = 0
Another way of thinking about the weighting by K is that as the measurement error covariance R approaches zero, the actual measurement z k is trusted more and more, while the predicted measurement H xk is trusted less and less. On the other hand, as the a priori estimate error covariance P - k approaches zero, the actual measurement z k is trusted less and less, while the predicted measurement H xk is trusted more and more.

A.2.2 High-Level Operation of KF

The KF estimates a process by using a form of feedback control: the filter estimates the process state at some time and then obtains feedback in the form of noisy measurements. As such, the equations for the Kalman Filter fall into two groups: time update equations and measurement update equations. The time update equations are responsible for projecting forward (in time) the current state and the error covariance estimates to obtain a priori estimates for the next time step. The measurement update equations are responsible for the feedback, i.e. for incorporating a new measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the measurement update equations can be thought of as corrector equations. In final, the estimation algorithm resembles that of a predictor-corrector algorithm for solving numerical problems.

The specific equations for the time update are presented below:

x- k = Ax k-1 + Bu k-1 P - k = AP k-1 A T + Q
The measurement update are as follows:

K k = P - k H T (HP - k H T + R) -1 xk = x- k + K k (z k -H x- k ) P k = (I -K k H)P - k
The first task during the measurement update is to compute the Kalman gain, K k . The next step is to measure the process to obtain z k , and then to generate an a posteriori state estimate by incorporating the measurement. The final step is to obtain an a posteriori error covariance estimate.

After each time and measurement update pair, the process is repeated with the previous a posteriori estimates used to project or predict the new a priori estimates. This recursive nature is one of the very appealing features of the Kalman Filter. It conditions the current estimate on all the past measurements.

Another way to present the KF equations is as follows. The state evolution is given by:

X t+1 = A t X t + b t + w t
Where X is the state vector we intend to estimate, A t is the square transition matrix of the process. The control b t is given, and there is a zero mean process noise w t with known covariance r w t . The noise w t is independent of X t .

The measured vector y t is given by the measurement equation:

y t = H t X t + v t
H t is a rectangular measurement matrix, v t is a zero-mean measurement noise of known covariance matrix r v t . The noise v t is independent from X t . The dimension of w t is the dimension of x t and the dimension of v t is the dimension of y t .

The covariance of the state vector X t is:

P t = E[(X t -E[X t ])(X T t -E[X T t ])]
Where X T is the transpose of X. The goal of the Kalman Filter is to deduce from y t the vector X t whose covariance matrix has the lowest norm. The steps of the estimation are:

• Prediction of the state X t :

X t+1|t = A t X t + b t
• Intermediate update of the state covariance matrix that takes into account the evolution given by the process transition:

P t+1|t = A t P t A T t + r w t
• Computation of the optimal gain:

K t+1 = P t+1|t H T t+1 (H t+1 P t+1|t H T t+1 + r v t+1 ) -1
This optimal gain depends on the statistical characteristics of the measurement noise, but it does not take the measures into account: it may be computed a priori.

• Update of the state covariance matrix:

P t+1 = P t+1|t -P t+1|t H T t+1 (H t+1 P t+1|t H T t+1 + r v t+1 ) -1 H t+1 P t+1|t
Or expressed as a function of K t+1 :

P t+1 = [I -K t+1 H t+1 ]P t+1|t
• Computation of the new estimate of the state:

X t+1 = X t+1|t + K t+1 [y t+1 -H t+1 X t+1|t ]

A.3 Extended Kalman Filter

The Kalman Filter addresses the general problem of trying to estimate the state x ∈ ℜ n of a discrete-time controlled process that is governed by a linear stochastic difference equation. If the process to be estimated or the measurement relationship to the process are not linear, the KF can be adapted to this situation by linearizing the current mean and covariance. That is referred to the Extended Kalman Filter (EKF).

To linearize the estimation around the current estimate, partial derivative of the process and the measurement functions are used. Let us consider that the process state x ∈ ℜ n is governed by a non-linear stochastic difference equation:

x k = f (x k-1 , u k-1 , w k-1 )
with measurement z ∈ ℜ m that is:

z k = h(x k , v k )
with random variables w k and v k that represent the process and the measurement noises. f and h are a non-linear functions. The state and the measurement vectors can be approximated without the noises w k and v k as follows:

xk = f (x k-1 , u k-1 , 0) zk = h(x k , 0)
xk is the a posteriori state estimate. It is important to note that a fundamental flaw of EKF is that the distributions of the different random variables are no longer normal after undergoing their respective non-linear transformations. EKF is simply an ad hoc state estimator that only approximates the optimality of Bayes' rule by linearization.

A.3.1 Computational Origins of EKF

The governing equations that linearizes the estimates are:

x k ≈ xk + A(x k-1 -xk-1 ) + W w k-1 z k ≈ zk + H(x k -xk ) + V v k With:
• x k and z k are the actual state and measurement vectors.

• xk and zk are the approximate state and measurement vectors.

• xk is an a posteriori estimate at step k.

• w k and v k represent the process and the measurement noises.

• A is the Jacobian matrix of partial derivatives of f with respect to x, that is:

A [i,j] = ∂f [i] ∂x [j] (x k-1 , u k-1 , 0)
• W is the Jacobian matrix of partial derivatives of f with respect to w, that is:

W [i,j] = ∂f [i] ∂w [j] (x k-1 , u k-1 , 0)
• H is the Jacobian matrix of partial derivatives of h with respect to x, that is:

H [i,j] = ∂h [i] ∂x [j] (x k , 0)
• V is the Jacobian matrix of partial derivatives of h with respect to v, that is:

V [i,j] = ∂h [i] ∂v [j] (x k , 0)
The matrices A, W, H and V can be different at each time step. However, they are represented without index k for simplicity reasons. The prediction error is defined as:

ẽx k = x k -xk
and the measurement residual is:

ẽz k = z k -zk
In practice, we have access to z k which is the actual measurement, but we do not have access to x k which is the actual state vector to be estimated. Thus, The error process can be expressed using the following approximations:

ẽx k ≈ A(x k-1 -xk-1 ) + ϵ k ẽ z k ≈ H ẽ x k + η k
with ϵ k and η k are new independent random variables having zero mean and covariance matrices W QW T and V RV T , respectively (R and Q are the same matrices defined in Section A.2). These two last equations are linear and closely resemble to the difference and measurement equations of the discrete Kalman Filer. The actual measurement residual ẽz k can be used to estimate the prediction error ẽx k . This estimate is called êk , and could then be used to obtain the a posteriori state estimate for the original non-linear process as:

xk = xk + êk

The random variables ẽx k , ϵ k and η k have the approximative probability distributions:

ẽx k ∼ N (0, E[ẽ x k ẽT x k ]) ϵ k ∼ N (0W Q k W T ) η k ∼ N (0, V R k V T )
Given these approximations and letting the predicted value of êk be zero, the KF equation used to estimate êk is:

êk = K k ẽz k
By substituting this equation back into the a posteriori state estimate, we get:

xk = xk + K k ẽz k = xk + K k (z k -zk )
This equation can now be used for the measurement update in EKF.

The EKF time update equations are shown below:

x- k = f (x k-1 , u k-1 , 0) P - k = A k P k-1 A T k + W k Q k-1 W T k
Similarly, the EKF measurement update equations are:

K k = P - k H T k (H k P - k H T k + V k R k V T k ) -1 xk = x- k + K k (z k -h(x - k , 0)) P k = (I -K k H k )P - k
As shown by these equations, the basic high-level operation of the EKF is the same as the KF. An important feature of the EKF is that the Jacobian H k in the equation for the Kalman gain K k serves to correctly propagate or magnify only the relevant component of the measurement information. For example, if there is not a one-to-one mapping between the measurement z k and the state via h, the Jacobian H k affects the Kalman gain so that it only magnifies the portion of the residual z k -h(x k , 0) that does affect the state. If over all the measurements, there is not a one-to-one mapping between the measurement z k and the state via h, then as it might be expected, the filter will quickly diverge. In this case, the process is unobservable.

min x (max x ) c 1 x 1 + c 2 x 2 + • • • + c n x n s.t. l 1 ≤ a 11 x 1 + a 12 x 2 + • • • + a 1n x n ≤ u 1 l 2 ≤ a 21 x 1 + a 22 x 2 + • • • + a 2n x n ≤ u 2 . . . l m ≤ a m1 x 1 + a m2 x 2 + • • • + a mn x n ≤ u m
The bounds l i (resp. u i ) may have infinite value +∞ (resp. -∞). In the case of pure linear problems, the variables x i are reals. In the case of mixed linear problems, some variables x i may be integers. The quantities c i , a ij , l i and u i are the input data given by the user.

A model is constructed based on elementary objects which are: parameters, sets, variables, constraints and objective. The objects parameter and set define the data of the problem. The object variable defines the variables of the problem. The object constraint defines the constraints of the problem, and the object objective defines the objective function of the problem. Each elementary object is composed of expressions defined in Section B.1.3.

B.1.1 Coding Rules

To model a problem in GLPK, a user should define two parts:

• The model section that contains all the declarations, the computed parameters, the definitions of the constraints and the objective.

• The data section that contains all the constant data such as: the values of the parameters, the content of the sets, etc.

The two sections may be introduced in the same file as illustrated in Listing B.1 or in two different files as illustrated in Listing B.2 and Listing B.3. In one-file declaration, it is necessary to separate the data section by data; and end;. The file may be saved with extension .mod.

In the case of two separate files declaration, the model file must be saved under the extension .mod and the data file must be saved under the extension .dat. Any quantity used in the dat file should be declared in the mod file. In practice, it is strongly recommended to separate the model and the data sections in order to have a generic model that accept a multiple sets of data. 

Symbols & Keywords

To describe a model, we use ASCII coded characters:

• Alphabetical characters: A, B, C, . . . , Z, a, b, c, . . . , z (case sensitive);

• Numerical characters: 0, 1, 2, . . . , 9;

• Special characters: " # & ' ( ) * + , -. / :

; <> = [ ] {} |
The spaces are effective only in the comments and the strings.

The symbolic names are composed of alphabetical and numerical characters; the first must be alphabetical. All the symbolic names must be unique. They are used by the user to identify the different objects: parameters, sets, variables, constraints and objective.

The numbers are wrote in the format xx(Esyy), where xx is a real number with an eventual decimal part separated by a point, s is the sign -or + and yy is the exponent. The letter E can also be replaced by e. The strings are delimited by " or '.

The keywords are a sequence of alphabetical and numerical characters that are recognizable by GLPK. We distinguish two classes: the reserved words having fixed meaning, which can not be used to define symbolic names, and the nonreserved words which are recognizable according to the context.

The reserved words are presented in It is also possible to include some comments on only one line using special character #, or on multiple lines using spacial characters /* and */. 

B.1.3 Expressions

The expressions serve to obtain the constructions used to define the objects of the model. The general form of an expression is:

primary expr operator primary expr operator..

.operator primary expr

There are two types of expressions: numerical expressions and symbolic expressions.

Numerical Expressions

A numerical expression is used to define or compute a numerical value. It is generally composed of at least two primary expressions and an arithmetic operator. For example, 2 * 5.5 represents a number or param s:=5; that represents a constant. We can also represent multi-dimensional parameters by:

a[i 1 , i 2 , . . . , i n ]
Where indices i 1 , i 2 . . . , i n may be numerical or symbolic expressions. For example, we can declare: param A := 1 2 3 4 5 6 7;

The element A[3] * 3 exists and its value is 12. GMLP provides a set of pre-defined functions that can be applied to the numerical expressions. Table B.4 gives a brief description of these functions. The user can also define its own functions, such as: var fraction {x in X, y in Y} := x/y;

Iteration Expressions

There are four operators of iteration that can be used in numerical expressions. They are summarized in Table B 

Conditional Expressions

There two syntax forms of the conditional expressions: if condition then solution1 else solution2. Or, if condition then solution1 Where condition is a logical expression, and solution1 and solution2 are numerical expressions.

The arithmetic operators presented in Table B.6 can be used with the numerical expressions.

x and y are primary numerical expressions. If the numerical expression include more than one operator, then all the operators are computed from left to right (except the power operator which is calculated form right to left) according to the hierarchy of operators presented in Table B.7. It is worth to note here that any operation put between parenthesis is executed at first. Operator Role sum{set} Sum: ∑ (i 1 ,i 2 ,...,in)∈∆ x(i 1 , i 2 , . . . , i n ) prod{set} Product: ∏ (i 1 ,i 2 ,...,in)∈∆ x(i 1 , i 2 , . . . , i n ) min{set} Minimum: min (i 1 ,i 2 ,...,in)∈∆ x(i 1 , i 2 , . . . , i n ) max{set} Maximum: max (i 1 ,i 2 ,...,in)∈∆ x(i 1 , i 2 , . . . , i n )

Symbolic Expressions

The symbolic expressions serve to execute operations on the strings. The primary symbolic expression is a string, an index, or a conditional symbolic expression. It is accepted in GLPK to use a numerical expression as a symbolic expression but in this case, the resulting value is converted to symbolic. In GLPK, there is only one symbolic operator which is concatenation (&): x & y It concatenates two symbolic expressions into one string. 

Expressions on Indices

An expression on the indices is a construction that allows defining the definition set of a variable or a constraint, or specify the set of the iteration operators. There are two forms of such expressions: {entry 1 , entry 2 , . . . , entry m }. Or {entry 1 , entry 2 , . . . , entry m : predicate}.

Where entry i is an expression specifying the set to which belongs index i, and predicate is a logical expression specifying some conditions about the indices. The index in not necessary when it is not used in the definition of the object, and the predicate must be at the end and may contain all the indices. For example: Some rules:

• An entry i may have 3 forms: t in S, or (t 1 , t 2 , . . . , t n ) in S, or S, where t 1 , t 2 , . . . , t n are indices and S is a set.

• When we write object(t in S), the variable i is local and does not exist outside. It is auto-declared and does not require general declaration. • Indexed formulation: the primary expression may be a simple set or a multi-dimensional set (ex. S[i-1,j+1]).

• Arithmetic formulation: the primary expression can be written as: t 0 ..t f by δ t or t 0 ..t f . t 0 , t f and δ t are numerical expressions. The resulting set is: {t 0 + δ t , t 0 + 2δ t , . . . , t f }.

• Iterated formulation: it has the following form:

setof indexing expression integrand

Where indexing expression is a set of indices specifying the number of repetition to run, and integrand is a number, a symbolic expression, or a list of numbers or symbolic expressions separated with commas and closed with parenthesis. For example, we can write: and X and Y are the sets. If x and y are symbolic expressions then only operators =, ==, <> and != can be used.

• Iteration: an iterated expression is a primary expression having the following form:

iterated operator indexing expression integrand

with iterated operator is an iteration operator, indexing expression is a set of indices that indicate the number of iteration to be executed, and integrand is a logical expression to be iterated. GLPK provides two operators of iteration:

1. forall: which is equivalent to the mathematical operator ∀. The resulting test is true if the test is true for all the elements generated by indexing expression.

2. exists: which is equivalent to the mathematical operator ∃. The resulting test is true if the test is true at least for one element generated by indexing expression.

Linear Expression

A linear expression is a rule to compute linear mathematical formulas. A linear expression is composed of:

• Variables: a primary expression is based on simple variables (ex. T) or indexed variables x[i,j].

• Iterations: a linear expression can be computed using iteration operators that conserve the linearity. The only operator available is:

sum indexing expression integrand with indexing expression is the set of indices to which the sum is applied, and integrand is the linear expression to be iterated.

• Conditional: we can compute a linear expression using conditional expression, of the form: if b then f else g, Or if b then f with b, f and g are linear expressions.

B.1.4 Modeling Objects

The modeling objects are the keystones of constructing a model. In GLPK, there are five modeling objects, which are: the sets, the parameters, the variables, the constraints and the objective. The different expressions defined in Section B.1.3 can be used to parametrize these objects.

Sets set in the model section declares the sets yet defined in the data section, or defines them using the expressions. The general form of a set declaration is:

set name {domain}, attrib, ..

., attrib

With:

• name is the symbolic name of the set.

• domain is optional, and it defines the dimension and/or the definition set.

• attrib, . . . , attrib is a list of optional attributes that define different specifications:

dimen n, specifies the dimension of the n-tuples of the set.

within expression, forces the elements of the set to be within a larger set.

-:= expression, assigns a fixed or a computed value to the set.

default expression, specifies a default value to the set or to one of its elements when no values are provided.

Examples: hereafter the declaration of some sets: set nodes; set arc (nodes cross nodes);

Parameters parameter in the model section declares the parameters defined in the data section, or defines computed parameters using analytical or logical expressions (in which the variables can not be used). The general form of a parameter declaration is:

param name {domain}, attrib, ..

., attrib

With:

• name is the symbolic name of the parameter.

• domain is optional, and it defines the dimension and/or the definition set of the parameter.

• attrib, . . . , attrib is list of attributes that define different specifications: With:

• name is the symbolic name of the constraint.

• domain is optional, and it defines the number of the constraints of this type.

• expressions are the linear expressions to compute the components of the constraint.

The keyword subject to can be replaced by s.t., or even can be omitted. If domain is not specified then the constraint is simple. Otherwise, the number of the constraints follows the number of the elements in the domain. The constraints should be linear. 
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 11 Figure 1.1: Typical architecture of a sensor node.
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 12 Figure 1.2: A set of sensor nodes with different sizes.
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 13 Figure 1.3: Examples of WSN applications: (a) Soil humidity measurement in agriculture, (b) Precise irrigation, (c) Volcanic irruption surveillance, and (d) Generic WSN testbed.
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 14 Figure 1.4: A simulation-generated topology for 150-nodes clustered WSN deployed in 100 × 100 square area.
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 15 Figure 1.5: Stack protocols of sensor nodes.
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 4 is a Correlation-Based Adaptive Clustering Algorithm called CORAD. Based on data correlations, CORAD reconfigures the network topology each time the dynamics of the events change.
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 21 Figure 2.1: Example of a prediction-based scheme.
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 2 Figure 2.1 shows an example of target tracking scenarios in event-driven WSN, where nodes are woken-up explicitly on-demand following the target trajectory.The previous active nodes predict the activation zone to which the target will probably go and a subset of nodes within this zone will be explicitly activated. These active nodes collaborate between each other to generate an accurate estimation of the target state using in-network light-weight data fusion algorithms such as the Kalman Filter. The gain of such algorithms is twofold: (i) it generates stateestimates of the target, and (ii) it produces state-predictions for the next sensing round.Therefore, these predictions are the basis for node selection which leads to the problem called the Sensor Selection Problem (SSP)[START_REF] Isler | The Sensor Selection Problem for Uncertainty Sensing Models[END_REF]. Basically, this problem consists in finding the subset of nodes with minimum cost that provide the information with maximum utility among all the nodes of the network. In the case of target tracking problem, the cost and the information utility can be respectively defined by the energy consumption and the accuracy of data[START_REF] Xiao | Collaborative Sensing to Improve Information Quality for Target Tracking in Wireless Sensor Networks[END_REF].Another technique for energy conservation is to define a schedule for activation and/or deactivation of nodes. Depending on the target trajectory predicted by the prediction algorithm, nodes are woken-up to perform some sensing and communication tasks for a very short period of time, and then they return back to a deep-sleep state. Other nodes that are not involved in the tracking task are put in the sleep state to preserve their energy resources. However, the schedule should not miss the target as it passes through the sensing zones of the nodes and it should concern only the nodes with the maximum energy resources.This procedure requires collaboration between the nodes and coordination between the communication-related and the sensing-related operations because
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 22 Figure 2.2: Target tracking scheme components.
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 2 Figure 2.3 shows our proposed classification which relies on two complementary aspects namely: the sensing-related aspect and the communication-related aspect.In this general classification, we divide the sensing-related approaches into two subclasses: Single-node Signal Processing approaches (SP) and Collaborative Signal Processing approaches (CSP). The first class is out of scope of our work and the second class is split into two other subclasses, namely: information-driven subclass and data filtering subclass. The difference between the two subclasses is that the first exploits the data content to optimize the future readings, however the second generates accurate information from noisy readings.We also split the communication-related approaches into two subclasses, namely: the Routing/Aggregation approaches and the Network Self-organization approaches.
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 24 Figure 2.4: Illustration of periodic scheduling.

  Figure 2.5 illustrates the problem of empty slots (nodes s 2 , s 3 and s 4 have empty detections because the target passes far from their sensing zones).
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 25 Figure 2.5: Effect of empty slots.
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 26 Figure 2.6: Example of FOTP operations.
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 27 Figure 2.7: Example of DSTA protocol operations.
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 2 Figure 2.8: Specific approaches.
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 31 Figure 3.1: Probabilistic detection model.
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 32 Figure 3.2: Kalman filter steps.
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 33 Figure 3.3: Micro-filter architecture of a DKF node.
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 22 Figure 2.2 in Chapter 2 shows the relationship between the sensing component and the communication component in a sensor node that uses a prediction-based scheme.A light-weight estimation-prediction algorithm can be used to estimate the target state and predict its next position. This helps selecting and awakening the most appropriate nodes and reducing the network communications. As nonselected nodes remain in the sleep state, the energy is conserved more than in periodic sampling-based approach2 .Intuitively, the periodic sampling provides accurate data but it wastes the energy resources of the nodes. At the opposite, the prediction-based schemes are more appropriate for dense networks where it is not necessary to wake-up all the nodes. However, they raise two main issues with respect to the quality of data: (1) the distribution of the estimation algorithm over the subset of detecting nodes, and (2) the dynamic changes of the group of tracking nodes according to the dynamic of the target.To resolve these issues we propose a Distributed Kalman Filtering approach with Dynamic Clustering, which we call DKF DC[START_REF] Demigha | Energy efficient target tracking in wireless sensor networks with limited sensing range[END_REF].Our approach is inspired from the work proposed in[START_REF] Olfati | Distributed Tracking in Sensor Networks with Limited Sensing Range[END_REF]. But instead of activating all the network, our approach uses a dynamic clustering protocol to limit the communications between participating nodes. Our dynamic clustering algorithm consists of two phases: the leader election phase and the cluster reconfiguration phase.The leader election is executed among active nodes that are close to the target. The other nodes stay inactive to conserve their energy resources. Figure 3.4 shows an example of 36 sensor nodes deployed in the surveillance area. Only nodes
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 34 Figure 3.4: Example of the dynamic clustering protocol.
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 35 Figure 3.5: Cluster formation operations (Steps 1 and 2).
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 36 Figure 3.6: Cluster formation operations (Steps 3 and 4).
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 37 Figure 3.7: Cluster formation operations (Step 5).
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 38 Figure 3.8: Cluster reconfiguration.
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 39 Figure 3.9: State-transition diagram of the proposed clustering protocol.
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 3 Figure 3.10: Energy consumption of the network vs. sampling period.
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 311 Figure 3.11: Energy consumption of the network vs. network density.
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 312 Figure 3.12: Quality of estimation vs. sampling period.
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 313 Figure 3.13: Estimation quality for a sampling period of 3s.
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 314 Figure 3.14: Performance vs. target speed (1).
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 315 Figure 3.15: Performance vs. target speed (2).
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 41 Figure 4.1: Cases of direct neighborhood of nodes.
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 42 Figure 4.2: Illustration of the data forwarding constraint.
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 204 [START_REF] Kyusakov | Integration of Wireless Sensor and Actuator Nodes With IT Infrastructure Using Service-Oriented Architecture. Industrial Informatics[END_REF] remains true only for j = j n .
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 43 Figure 4.3: Illustration of the base case.
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 44 Figure 4.4: Illustration of the recursion case.

  then

else 21 :

 21 = {s ∈ S 1 (u), dist(u, ch) > dist(s, ch)} 18: if F(u) ̸ = ∅ then 19: u.parent ← arg min s∈F(u) {dist(s, ch)/e s } 20:V n (ch) ← V n (ch) -{u} {failure! empty forwarding set.}
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 51 Figure 5.1: Static clustering with m = 100, A = 100m × 100m, R c = 30 and n = 1. Red points represent the cluster-heads and black (blue) points represent the members. The line segments represent direct communication links.
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 52 Figure 5.2: Static clustering with m = 150, A = 80m×80m, R c = 15 and n = 2. Red points represent the cluster-heads and black (blue) points represent the members. The line segments represent direct communication links.
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 53 Figure 5.3: Static clustering with m = 150, A = 100m × 100m, R c = 10 and n = 4. Red points represent the cluster-heads and black (blue) points represent the members. The line segments represent direct communication links.
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 54 Figure 5.4: Example of event regions.
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 55 Figure 5.5: Data correlation model.
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 56 Figure 5.6: Determination of the clusters based on data correlations and neighboring information.
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 57 Figure 5.7: Example of parent selection.
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 5 8(b) shows three clusters created in the initialization phase: CH1 with 15 nodes, CH2 with 11 nodes and CH3 with 26 nodes. We can see that the clusters are surrounding the event focus (see Figure5.8(a)) and only a small fraction of nodes are clustered according the physical phenomenon (luminosity) and the cluster sizes are close to each others (balanced).

  Figure 5.8: Initialization phase of CORAD.
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 59 Figure 5.9: Cluster reconfiguration.

Analysis&

  Figure 5.10: CORAD performance vs. S min .

  Figure 5.11 illustrates the obtained results. • When n has large values, this can lead to excessive energy consumption because the length of the routes of data collection may increase with spread events as shown in sub-figure 5.11(a) and sub-figure 5.11(d);

  Figure 5.11: CORAD performance vs. n.

  Figure 5.12: CORAD performance vs. Thd.
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 5 [START_REF] Heurtefeux | Protocoles localisés pour réseaux de capteurs[END_REF] show the obtained results.

  Figure 5.13: CORAD performance vs. ϵ.
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 3 Data file.

  ) Uniform01(x) Return a random number in interval [0, 1) Uniform(a,b) Return a random number in interval [a, b) Normal01(x) Normal function with mean 0 and deviation 1 Normal(m,s) Normal function with mean m and deviation s Table B.5: List of the iteration operators provided by GLPK.

••

  If we have three sets: A = {4,7}, B = {(1, Jan), (1, Feb), (1, Mar)}, C = {a, b, c}. The following declaration: {i in A, (j,k) in B, l in C} is equivalent to the following algorithmic declaration: ∀a ∈ A, ∀(j, k) ∈ B, ∀l ∈ C : action(a, j, k, l); Set Expressions A set expression is a rule for computing a set, i.e. a collection of n-tuples whose components are numerical and/or symbolic quantities. The different types of the set expressions are: Literal formulation: it has two forms: (e 1 , e 2 , . . . , e m ) or {(e 11 , . . . , e 1n ),(e 21,...,e 2n ),...,(e m1 , . . . , e mn )}

setof{i in 1 .. 2 , j in 1 .•

 121 .3}(i,j+1), which creates the set: Conditional formulation: the primary expression may be a conditional expression that attributes a set or another, according to a logical expression. The syntax is:if b then X else YWith X and Y are the sets and b is a logical expression. In addition, GLPK provides five set operator, presented in TableB.8.

Examples:

  hereafter the declaration of some variables: var x = 0; var y{I,J}; var An in I, integer, >= b[n], <= c[n]; Constraints constraint defines the constraints of the optimization problem. Its general form is as follows: subject to name {domain} : expression, = expression; subject to name {domain} : expression, <= expression; subject to name {domain} : expression, >= expression; subject to name {domain} : expression, <= expression, >= expression; subject to name {domain} : expression, >= expression, <= expression;

  : hereafter the declaration of some constraints: subject to C1 : x + y + z >= 0; s.t. C2 t in 1..T, i in 1..I: x[t] + y[t] <= sqrt(2) * i; Objective objective defines the objective of the optimization problem. Its general form is: minimize name {domain} : expression; maximize name {domain} : expression; If the domain is not specified then the objective function is a simple scalar. Otherwise, the number of the elements in domain determines the dimension of the objective. Only one objective can be defined in a problem. If many objectives are defined, GLPK considers only the first one; the others are simply ignored. Examples: hereafter the declaration of some objective functions: minimize obj: x + 1.5 * (y + z); maximize total gain: sumg in 1..G gain[g] * products[g]; B.2 GLPK Implementation for EMDP Listing B.4 shows the implementation of our BILP model for the EMDP problem using GLPK, and Listing B.5 shows the output of the glpsol solver for a small instance of the problem with the parameters specified in Table B.10. Table B.10: Parameters of the GLPK implementation. Parameter Value Network Size (Nodes) 12 Max. Energy (J) 5 Radio Propagation Coefficient (α) 2 Trees Depth (n) 3 Number of Rounds (k) 1 Sensitivity Parameter (τ ) 0.01 Reference Value (v 0 ) 0.7 Sampling Energy (e s , J) 5 × 10 -6 Receiving Energy (e r , J) 25 -6 Processing Energy (e p , J) 10 -9 Listing B.4: BILP implementation using GLPK. / * S e t s * / s e t V ; / * Nodes * / s e t K ; / * Rounds * / s e t H; / * Hops * / s e t N{V,H} ; / * Neighborhood * / / * Parameters * / param m, i n t e g e r , >= 1 , <= 1 0 0 0 ; / * Network S i z e * / param n , i n t e g e r , >= 1 , <= 1 0 ; / * Tree Depth * / param k , i n t e g e r , >= 1 , <= 1 0 0 ; / * Rounds * / param tau , > 0 ; / * Data S e n s i t i v i t y * / param alpha ; / * Energy Param . * / param v0 ; / * R e f e r e n c e Value * / param es ; / * Energy Consumption i n Sensing * / param e r ; / * Energy Consumption i n r e c e i v i n g * / param ep ; / * Energy Consumption i n Data P r o c e s s i n g * / param L{V, V} ; / * Neighborhood * / param e t { i i n V, j i n N[ i , 1 ] } : = 25 e-6+5e-9 * L [ i , j ] ˆalpha ; / * Energy Consumption i n t r a n s m i s s i o n * / param E{K, V} ; / * Energy o f Nodes * / param v{K, V} ; / * Readings o f Nodes * / / * V a r i a b l e s * / var a {K, V} , b i n a r y ; / * a i ˆt * / var b{K, i i n V, j i n V} , b i n a r y ; / * b { i , j } ˆt * / / *
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Table 1 .

 1 1: Examples of energy harvesting sources.

	Source	Power Density	Duration
	Solar cell (direct sunlight)	15 mW/cm 2	Continuous
	Solar cell (well illuminated room)	10 µW/cm 2	Continuous
	Piezoelectric	200 µW/cm 3	Operation
	Temperature Difference	40 µW/cm 3 /5 • C	Continuous
	Air flow	380 µW/cm	

3 

/5m/s Continuous Power Management Unit. It is a microchip to manage the power of the node.

Table 1 .

 1 2: Features of some of transceivers.

	Radio	Data Rate (kbps)	Band (MHZ)	Buffer (B)	Sleep (µA)	RX Power (mA)	TX Power (mA)	RX En. (nJ/b)	TX En. (nJ/b)
	MC MRF34J40	250	2400	128	2	18	22	264	216
	NS nRF2401A	1000	2400	32	0.9	19.0	13.0	39	57
	NS nRF24L01	2000	2400	32	0.9	12.3	11.3	17	18
	NS nRF905	50	433-915	32	2.5	14.0	12.5	750	840
	RFM TR1001	115.2	868	-	0.7	3.8	12	313	99
	RFM TR3100	576	433	-	0.7	7.0	10	52	36
	SE XE1201A	64	433	-	0.2	6.0	11.0	516	281
	SE XE1203F	152.3	433-915	-	0.2	14.0	33	650	276
	TI CC2420	250	2400	128	1	18.8	17.4	209	226
	TI CC2500	500	2400	64	0.4	17.0	21.2	127	102
	TI CC1000	76.8	433-915	-	0.2	9.3	10.4	406	363
	TI CC1100	500	433-915	64	0.4	16.5	15.5	93	99

Table 1 .

 1 3: Characteristics of some of microprocessors.

	Microprocessors	Flash (KB)	SRAM (BK)	EEPROM (KB)	Sleep (µA)	1 MIPS (mA)
	Atmel AT89C51RE2 (8051)	128	8	0	75	7.4
	Atmel ATmega103L (AVR)	128	4	4096	1	1.38
	Atmel AT91FR40162S (ARM)	2048	256	0	400	0.96
	Cypress CYC29666	32	2	0	5	10
	Freescale M68HC08	61	2	0	22	3.75
	Microship PIC1LF8722	128	3.9	1024	2.32	1.0
	Microship PIC24FJ128	128	8	0	21	1.6
	Semtech XE8802 (CoolRISC)	22	1	0	1.9	0.3
	TI MSP430F1611	48	10	0	1.3	0.33

ADC Unit. It performs analog-digital conversion of raw data to generate real values usable by the microprocessor/controller. In some cases, it is integrated with the microprocessor unit.

Table 1 .

 1 

	Physical Qty.	Sensor	Accu.	Power (µA)	Time (ms)	Consumption (µJ)
	Acceleration	VTI SCA3000	1%	120	10	3.6
	Air pressure	VTI SCP1000	150 Pa	25	110	8.3
	Humidity	Sensorionn SHT15	2%	300	210	190
	illumination	Avago APDS-9002	50%	2000.0	1.0	6.0
	Infrared	Fuji MS-320	-	35	cont.	-
	Magnetic field	Hitachi HM55B	5%	9000.0	30	810
	Position	Fastrax iTRAX03	1.0 m	32000	4000.0	380
	Temperature	Dallas DS620U	0.5 • C	800	200	480

4: Properties of some sensors.

Table 1 . 5 :

 15 Characteristics of some sensor nodes.

	Mote	MicaZ	Telos	Imote2	Wavenis
	Microprocessor	Atmel AT-Mega128L TI MSP430 Intel PXA271	TI MSP 430
	Processor Speed	16 MHZ	8 MHZ	13 -416 MHZ	8 MHZ
	Memory (KB)	4	2-10	256	2
	Program Space	128K	60K -48K	32K	128B
	Flash	512K	256K	32M	None
	Battery	2×AA	2/3 AA	3×AAA	2×AA
	Voltage(V)	2.7	1.8 -3.6	3.2 -4.5	2.4 -5
	Radio	CC2420	CC2420	CC2420	ASIC Wavenis
	Frequency(MHZ)	2400-2483	2400-2483	2400-2483	433/868/915
	Data rate(KB/s)	250	250	500	4.8 -153
	Dimension(mm				

3 ) 58 × 32 × 7 13 × 26 × 5 36 × 48 × 9 26 × 20 × 4.5

Table 1 .

 1 6: Differences between wireless computer networks and WSN.

	Requirement	Computer Networks	WSN
	Resource constraints	Low	Very high (1-2 MIPS, 32-128 KB)
	Adaptivity	Static	Dynamic environment
	Scalability	Moderates (10-100 nodes)	High (Up to 10000 nodes)
	Latency	High (250 ms -1 s)	Variable (1 s -1 H)
	Throughput	Very high (MB/s)	Low-moderate (bits/s -Kbits/s)

Table 1 .

 1 7: Power requirements for different operations in mica motes.

	Operation	Power (nAh)
	30-bytes packet transmission	20000
	30-bytes packet reception	8000
	1 ms radio listening	1250
	Sensor analog sample	1080
	Sensor digital sample	0.347
	Reading sample from ADC	0.011
	Flash read data	1.111
	4-bytes write/erase data	83.333

sible, and the scalability and nodes' heterogeneity may add more constraints to WSN-based applications.

Table 1 .

 1 8: Power requirements of different radio interfaces.

	Operation	RFM TR1000 RFM TR3000 MC12302 CC1000 CC2420
	Date Rate (kbps)	115.2	115.2	250	76.8	250
	Transmit Current (mA)	12	7.5	35	16.5	17.4
	Receive Current (mA)	3.8	3.8	42	9.6	18.8
	Idle Current (mA)	3.8	3.8	0.8	9.6	18.8
	Standby Current (µA)	0.7	0.7	102	96	426

Table 2 .

 2 1: Comparison between schemes objectives.

	Objectives	Sensing-Related	Communication-Related
	Energy Consumption	Information-Utility measures Measurements' Error Data fusion & Compression	Selection of data reporting node Role assignment Multi-prediction Application-oriented topologies
	Data Accuracy	Target Observability Sampling period length Sensor management	Network coverage & connectivity Geographic position information Topology reconfiguration

Table 2 .

 2 2: Comparison between mechanisms of sensing-related schemes.

	Mechanisms	[47] [49] [52] [56] [41] [57] [58] [59] [60]

Table 2 .

 2 3: Comparison between mechanisms of sleep scheduling based schemes.

	Mechanisms	[61] [62] [64] [65] [66] [67] [68] [69]

Table 2 .

 2 

4: Comparison between mechanisms of node selection and dynamic clustering based schemes. Mechanisms [70] [71] [72] [73] [75] [76] [74] [80] [81]

Table 2 .

 2 5: Comparison between mechanisms of node selection and dynamic clustering based schemes (continued).

	Mechanisms	[82] [83] [84] [85] [86]

Table 3 .

 3 1: Roles of messages.

	Message	Role
		It is an external message sent by border nodes via a low-
	MSG INTRUSION	power channel, indicating that a target is present in the
		surveillance field.
		It is broadcast by the first node receiving
	MSG WAKEUP	MSG INTRUSION message. The nodes receiving this
		message change to active state.
	MSG CREATECLUSTER	It triggers the cluster formation operation. It contains the estimated position of the target.
		It is sent by the nodes in the waiting state upon expiration
	MSG CHREADY	of their waiting timer. It indicates that the sender node is on the top of its list of candidates, and it can be elected as a
		leader.
	MSG JOIN	It is sent by the leader node to force the other nodes to ad-here as members in its cluster.
	MSG NOTCH	It is sent by the leader to indicate that it is no longer leader.

MSG QUITCLUSTER

It is the opposite of MSG JOIN message. It forces the member nodes of a cluster to leave this cluster.

Algorithm 1

 1 Static Clustering. Require: : V ← {s 1 , s 2 , . . . , s m }, L ← {e 1 , e 2 , . . . , e m }, n ← #hopes {cluster-heads election} 1: CH ← ∅ 2: while V ̸ = ∅ do

	3:

Table 5 . 1 :

 51 Simulation parameters.

		∆ t	
	18:	S min ← S min -|L t |/k t	{subtract mean size of 1-hop neighboring set}
	19:	Thd ← Thd -1	
	20:	end if	
	21: end if	
	22: R p ← random select(p)	
	23: CR t+1 ← CR t+1 ∪ R p	
		Parameters Values
		m 500 (nodes)
		R c 10 (m)
		R s 5 (m)
		E max 2 (Joules)
		λ 0.03
		τ 3.0 × 10 -6
		l 500 (bytes)
		α 2	
		k 5.0 × 10 -9
		c 25.0 × 10 -6
		A 100 (m)
		r 2000 (periods)
		V min -0.05
		V max +0.05

  Table B.1. The delimiters are simple or double special characters, which are presented in Table B.2.

		Table B.1: Reserved keywords of GMLP.
	and	diff	if	less	or	union
	by	div	in	mod symdiff within
	cross else inter not	then	

Table B .

 B 2: Delimiters in GMLP.In the general case, where the model and the data are in separate files model.mod and data.dat, the call is done as follows:

	+	ˆ==	!	: )
	-	&	>= && ; [
	*	<	>	|| := ]
	/ <= <> . .. {
	**	=	!=	,	( }
	B.1.2 Compilation				
	If we suppose that all the declarations are put in one file model.mod, the call to
	the solver is done as follows:				
	$glpsol --model model.mod

$glpsol --model model.mod --data data.dat

  Many options can be added to this command line. They are presented in TableB.3. 

Table B . 3 :

 B3 Main options for compilation using glpsol.

	General form	Function
	--display filename	Writes all the display of the model in filename
	--output filename	Writes the solution of the problem in filename
	--tmlim nnn	Limits the time of execution to nnn seconds
	--memlim nnn	Limits the size of memory to nnn MO
	--check	Checks only the correctness of the model
	--simplex	Uses the simplex method (default)
	--interior	Uses the Interior Points method
	--glp (resp. --wglp filename)	Read (resp. Write) the problem in Gnu LP format
	--mps (resp. --wmps filename)	Read (resp. Write) the problem in MPS format
	--freemps (resp. --wfreemps filename) Read (resp. Write) the problem in free MPS format
	--cpxlp (resp. --wcpxlp filename)	Read (resp. Write) the problem in CPLEX format
	--math	Read the problem in Gnu MathProg format
	--wtxt filename	Writes the problem in plain text file filename

sum{i in 1..2, j in 1..2} x[i,j]; It returns: x[1,1]+x[1,2]+x[2,1]+x[2,2].

  .5. For example, when we write:

Table B .

 B 4: List of the available functions in GLPK. , x 2 , . . . , x n ) Maximum value among x 1 , x 2 , . . . , x n min(x 1 , x 2 , . . . , x n ) Minimum value among x 1 , x 2 , . . . , x n round(x) Round x to the nearest value round(x,n) Round x with n decimals Truncate x to the nearest value trunc(x,n) Truncate x with n decimals Irand224(x) Return a random number in interval [0, 2 24

	Function Role
	abs(x) Absolute value of x
	atan(x) Arc tang. of x (radians)
	atan(y,x) Arc tang. of y/x (radians)
	ceil(x) Smallest integer close to x
	cos(x) cos(x)
	floor(x) Greatest integer close to x
	exp(x) exp(x)
	log(x) log(x)
	log10(x) log 10 (x)
	max(x 1 sin(x) sin(x) sqrt(x) √ x
	trunc(x)

Table B .

 B 6: List of the arithmetic operators. Positive difference: if x < y then 0, else x -y Rest of the exact division x ** y, x y Power Table B.7: Hierarchy of the arithmetic operators.

	Operator	Role
	+x	Plus 1: x = x + 1
	-x	Minus 1: x = x -1
	x+y	Addition
	x-y	Subtraction
	x less y x * y	Multiplication
	x/y	Division
	x div y	Quotient of the exact division
	x mod y	
		Operator	Hierarchy
	Evaluation of functions (abs, log,...)	1st
		Power (**)	2nd
		Plus 1, Minus 1 (+,-)	3rd
	Multiplication and division ( * ,/,div,mod)	4th
	Iteration operator (sum,prod,min,max)	5th
		Addition (+,-,diff)	6th
	Conditional (if .

.. then ... else ...) 7th

  

Table B .

 B 8: Set operators. Cartesian product of X and Y : X × YLogical ExpressionsA logical expression is a rule that verifies if a test is true or false. The different types of primary logical expressions are:• Numerical: if the primary logical expression is numerical then the result is true if the value is non-null. False, otherwise.• Relational: the different relational operators used in the logical expressions are presented in TableB.9. x 1 , x 2 , . . . , x n and y are numeric or symbolic,Table B.9: Logic operators. Test if x ∈ Y (x 1 , x 2 , . . . , x n ) in Y Test if (x 1 , x 2 , . . . , x n ) ∈ Y x not in Y, x !in Y Test if x / ∈ Y (x 1 , x 2 , . . . , x n ) not in Y, (x 1 , x 2 , . . . , x n ) !in Y Test if (x 1 , x 2 , . . . , x n ) /

	Formulation	Function	
	X union Y	Union of sets X and Y : X ∪ Y	
	X diff Y X symdiff Y Symmetric difference between X and Y : X Difference between sets X and Y : X ∖ Y	⊕	Y
	X inter Y	Intersection of X and Y : X ∩ Y	
	X cross Y		
	Formulation		Corresponding Test
	x < y		Test if x < y
	x <= y		Test if x <= y
	x = y, x == y		Test if x = y
	x >= y		Test if x >= y
	x <> y, x! = y		Test if x ̸ = y
	x in Y		
				∈ Y
	X not within Y		Test if X ⊆ Y
	X not within Y, X !within Y	Test if X ⊊ Y

  C o n s t r a i n t s * / s . t . c l u s t e r o n e { t i n K} :sum{ i i n V} a [ t , i ]-sum{ i i n V, j i n N[ i , 1 ] } b [ t , j , i ] >= 1 ; . t . c l u s t e r c h i l d b i s { t i n K, i i n V} : sum{ j i n N[ i , 1 ] } b [ t , j , i ] <= a [ t , i ] ; s . t . d a t a s e l e c t i o n 1 { t i n K} : sum{ i i n V} a [ t , i ] * v [ t , i ] >= m * (1-tau ) * v0 ; s . t . d a t a s e l e c t i o n 2 { t i n K} : sum{ i i n V} a [ t , i ] * v [ t , i ] <= m * (1+ tau ) * v0 ; s . t . energy { t i n K, i i n V, j i n N[ i , n ] } : ( a [ t , i ]-sum{ l i n N[ i , 1 ] } b [ t , l , i ] ) * E [ t , i ] >= ( a [ t , i ]-sum{ l i n N[ i , 1 ] } b [ t , l , i ]-1+a [ t , j ] ) * E [ t , j ] ; * sum{ j i n N[ i , 1 ] } b [ t , i , j ]+sum{ j i n N[ i , 1 ] } b [ t ,j , i ] * e t [ i , j ] ) ; / * O b j e c t i v e Function * / minimize energy min : sum{ t i n K} ( ( es * sum{ i i n V} a [ t , i ] ) + ( ( e r +ep ) * (sum{ i i n V, j i n N[ i , 1 ] } b [ t , i , j ] ) ) +(sum{ i i n V, j i n N[ i , 1 ] } ( b [ t , j , i ] * e t [ i , j ] ) ) ) ; end ; Listing B.5: Output of glpsol solver.

	Problem :	emdp
	Rows :	226
	Columns :	66

s . t . c l u s t e r c h i l d

{ t i n K, i i n V} : sum{ j i n N[ i , 1 ] } b [ t , i , j ] <= a [ t , i ] * ( card (N[ i , 1 ] ) -1) ; s s . t . d a t a f o r w a r d i n g { t i n K, i i n V, n1 i n 2 . . n , j i n (N[ i , n1 ] d i f f N[ i , n1 -1]) } : a [ t , j ]-sum{p i n (N[ j , 1 ] i n t e r N[ i , n1 -1]) }b [ t , p , j ] <= 1-(a [ t , i ]-sum{q i n N[ i , 1 ] } b [ t ,

q , i ] ) ; s . t . energy update { t i n K, i i n V} : E [ t +1 , i ] = E [ t , i ] -( a [ t , i ] * es +( e r +ep )

End-to-end delay, k-path routing, throughput, overhead are examples of these objective functions.

This operation requires sampling at Nyquist rate, so that the information will not be lost.

The MN selects the next tracking group based on the predicted target state and the node's centrality which should be the largest.

Timely Energy-Efficient k-Watching Event Monitoring.

CRLB is the inverse of Fisher Information Matrix.

This is called the Sensor Management Problem.

Exhaustive description of the Kalman Filter is given in Appendix A.

Contrary to the periodic sampling based approach, our proposed scheme refers to the eventdriven approach.

The left side of the implication is verified for n, we have to prove the right side.

Exhaustive description of the GMPL formalism is given in Appendix B.

For scalability purpose.

We can also consider the energy consumption in the data processing operations and the state transitions of the nodes, but in most cases, these amounts are insignificant.

In our simulations, we set ϵ = 0.001.
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Appendix A

The Kalman Filter

The Kalman Filter (KF) is a mathematical power tool that is applied to many important sensing based systems such as computer graphics, simulators of music instruments, target tracking, fitting spline surfaces, etc. It is the optimal estimator for a large class of problems, and its advantage is its easy usage.

The KF was first proposed in a famous paper published in 1960 by Rudolf Kalman: "A New Approach to Linear Filtering and Prediction Problems", Transaction ASME, Journal of Basic Engineering., vol 18, pages 34-45. R. Kalman based the construction of the state estimation filter on the properties of the Gaussian random variables. He proposed to minimize the state vector covariance norm, which yield to a classical recursion: the new state is deduced from the previous estimation by adding a correction term proportional to the prediction error.

A.1 Preliminaries

Te explain the essence of the KF, some preliminary concepts about the theory of probability and random variables are necessary.

A.1.1 Probability

Formally, the probability of the occurrence of a discrete event A is given by:

p(A) = possible outcomes f avoring event A total number of all possible outcomes

The probability of an outcome favoring either A or B is given by:

Gnu Linear Programming Kit

The Gnu Linear Programming Kit (GLPK) is an efficient tool for solving linear optimization problems with continuous and mixed variables (discrete and continuous). This kit is composed of a modeling language: the Gnu MathProg Language and a library of C functions used by the glpsol solver. The advantage of this toolkit is being open source and free for access, and its installation and usage are easy.

GLPK is a library of C functions that use the usual methods for solving the optimization problems such as: simplex, branch-and-bound, interior points methods, etc. In addition, GLPK provides a set of tools for objects creation, problem solving, output display, etc.

GLPK is not a program as it does not have a main() function. It is the user to write the program that calls the library functions. However, GLPK has a default solver, glpsol, that solves the generated program.

B.1 Gnu MathProg Language

To use the functions of GLPK, it is necessary to transform the problem in question into a formalism defined by the solver using the Gnu MathProg Modeling Language (GMLP). Through GMLP, the user writes the data file, defines the problem by a near-mathematical expressions, and the modeling language handles the model transformation and establishes the link to the solver.

GMLP is a subset of the AMPL language which is a powerful modeling language that can be coupled with many different solvers such as: CPLEX, EX-PRESS, MOSEK, etc. When it is coupled with the suitable solver, AMPL can easily be used to solve complex problems such as: non-linear optimization problems, convex optimization, etc.

The goal from the use of GLPK is to model linear optimization problems, pure or mixed, of the form:

integer, specifies that the parameter is integer.

binary, specifies that the parameter is binary.

symbolic, specifies that the parameter is symbolic.

relation with < <= = == >= > <> ! =, forces the parameter to verify the formulated conditions.

in expression, forces the parameter to be within a certain set.

-:= expression, assigns a fixed or a computed value to the parameter.

default expression, specifies a default value to the parameter when no values are provided. 

Examples

., attrib

With:

• name is the symbolic name of the variable.

• domain is optional, and it defines the dimension and/or the definition set of the variable.

• attrib, . . . , attrib is a list of attributes that define different specifications:

integer, forces the variable to be integer.

binary, forces the variable to be binary.

-<= expression, specifies the upper bound of the variable.

->= expression, specifies the lower bound of the variable.

-= (or ==) expression, specifies a fixed value of the variable. KKT . PE : max . abs . e r r = 0 . 0 0 e +00 on row 0 max . r e l . e r r = 0 . 0 0 e +00 on row 0 High q u a l i t y KKT . PB : max . abs . e r r = 0 . 0 0 e +00 on row 0 max . r e l . e r r = 0 . 0 0 e +00 on row 0 High q u a l i t y

End o f output