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Unwin, cansado, lo detuvo.
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estos deben ser simples, recuerda la
carta robada de Poe, recuerda el
cuarto cerrado de Zangwill.
-O complejos, replicó Dunraven,
recuerda el universo.

Agacé, Unwin l’arrêta.
-Ne multiplie pas les mystères, dit-il ;
ils doivent être simples, rappelle-toi la
carte volée de Poe, rappelle-toi la
chambre close de Zangwill.
-Ou complexes, répliqua Dunraven,
rappelle-toi l’univers.

Jorge Luis Borges
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Résumé

Bien qu’ayant vu le jour dans un cadre dit relativiste avec l’avènement de la théorie de la
relativité générale, le lien intime existant entre géométrie de l’espace-temps d’une part, et
gravitation d’autre part, peut se voir étendu aux théories dites nonrelativistes, l’exemple
paradigmatique en étant la reformulation géométrique de la gravitation Newtonienne ini-
tiée par E. Cartan. De tels espace-temps nonrelativistes diffèrent structurellement de leurs
homologues relativistes, ces disparités étant le plus naturellement expliquées en réinterpré-
tant ces premiers comme réduction dimensionnelle d’espace-temps relativistes privilégiés.

L’ambition de cette thèse est double :

Dans une première partie, nous nous intéressons à une généralisation de la classe
d’espace-temps relativistes permettant le formalisme ambiant, étudions leur interpréta-
tion géométrique ainsi que la classe élargie de structures nonrelativistes pouvant y être
plongées.

La seconde partie de ce manuscrit concerne le point de vue, informé par la théorie des
groupes, que porte E. Cartan sur la géométrie différentielle et plus précisément l’éclairage
que projettent les géométries de Cartan sur les structures nonrelativistes, à la fois dans
leur définition intrinsèque et dans leur relation avec des structures relativistes au travers
du formalisme ambiant.

Mots clés : Symétries Nonrelativistes, Eisenhart Lift, Gravitation de Newton-Cartan,
Réduction Dimensionnelle, Formalisme Ambiant, Géométrie de Cartan.
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Abstract

With the advent of general relativity, the profound interaction between the geometry
of spacetime and gravitational phenomena became a truism of modern physics. However,
the intimate relationship between spacetime geometry and gravitation is by no means
restricted to relativistic physics but can in fact be successfully applied to nonrelativistic
physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity.
This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures
whose discrepancies in comparison with their relativistic peers are better understood when
embedded inside specific classes of relativistic gravitational waves.

The ambition of this Doctoral Thesis is twofold:

In a first part, we discuss a generalisation of the class of gravitational waves allowing
the embedding of nonrelativistic features, explore their geometric properties and the new
nonrelativistic structures emerging from this study.

In a second part, we advocate how the group-theoretically oriented approach of Cartan
to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic
and ambient fashion.

Keywords : Nonrelativistic Symmetries, Eisenhart Lift, Newton-Cartan Gravity, Di-
mensional Reduction, Ambient Formalism, Cartan Geometry.
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Introduction

αει θεoς γεωµετρει

Toujours le Dieu géométrise.

– Platon, cité par Plutarque dans ses “Quaestiones Convivales” VIII.2. Moralia

Physique et Géométrie

Ce travail de thèse traite de Géométrie et de Physique. Nous commencerons donc notre
exposé par une brève histoire des liens existant entre ces deux disciplines, avec un intérêt
particulier porté à la géométrisation de la notion d’espace-temps. La briéveté de cette in-
troduction ira de pair avec une certaine partialité dont nous ferons délibérément usage
afin d’introduire certains des protagonistes récurrents de ce travail (parmi lesquels Platon,
Galilée, Newton, Leibniz, Klein et Cartan).

En 300 AEC paraissent les Éléments, ouvrage fondateur de la géométrie occidentale,
dont la paternité est attribuée à Euclide d’Alexandrie, un étudiant de l’École Platoni-
cienne 1. Le caractère révolutionnaire de ce traité tient notamment en ce qu’il structure
les connaissances mathématiques de l’époque en une présentation axiomatique et logico-
déductive, formalisant ainsi un mode de raisonnement au rayonnement désormais universel.

Le rôle central joué par la science géométrique comme instrument de connaissance de
la Nature, au sein de la culture grecque ancienne, est capturé par le célèbre aphorisme
Platonicien qui sert d’exergue à ce Chapitre. L’idée d’une structure géométrique sous-
tendant l’Univers est héritée de la mystique Pythagoricienne et irrigue un pan important
de la pensée scientifique occidentale, jusqu’à Galilée, dont la célèbre citation qui suit, issue
du traité L’Essayeur (1623), enrichit la métaphore médiévale de la Nature comme un livre
d’un souffle géométrique :

1. En regard de l’absence de matériaux de première main, la biographie d’Euclide reste sujette à con-
troverse. Cependant, sa participation aux cours de l’Académie (probablement en tant qu’étudiant d’un des
étudiants mathématiciens de Platon : Eudoxe de Cnide, Théétète d’Athènes ou Philippe d’Oponte) est
bien établie.

i
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La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto
innanzi a gli occhi (io dico l’universo), ma non si può intendere se prima non
s’impara a intender la lingua, e conoscer i caratteri, ne’ quali è scritto. Egli è
scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure
geometriche, senza i quali mezi è impossibile a intenderne umanamente parola ;
senza questi è un aggirarsi vanamente per un oscuro laberinto.

La philosophie est écrite dans ce livre gigantesque qui est continuellement ouvert
à nos yeux (je parle de l’Univers), mais on ne peut le comprendre si d’abord on
n’apprend pas à comprendre la langue et à connaître les caractères dans lesquels
il est écrit. Il est écrit en langage mathématique, et les caractères sont des trian-
gles, des cercles, et d’autres figures géométriques, sans lesquelles il est impossible
d’y comprendre un mot. Dépourvu de ces moyens, on erre vainement dans un
labyrinthe obscur.

– Galileo Galilei, Il Saggiatore (1623)

On peut citer, parmi les autres figures de cette filiation intellectuelle, l’astronome Johannes
Kepler qui, dans son ouvrage Mysterium Cosmographicum (1596), proposa un modèle du
système planétaire s’appuyant sur les cinq solides Platoniciens.

En 1687 paraissent les trois volumes composant les Philosophiæ Naturalis Principia
Mathematica dans lesquels Sir Isaac Newton réalise l’ambition programmatique de Galilée
de constituer une descriptionmore geometrico des phénomènes naturels. Ce faisant, Newton
ajoute le calcul différentiel et intégral à la liste des “caractères” grâce auxquels s’écrit le
grand livre de la Nature 2. L’application du calcul différentiel à la géométrie, initiée par
Newton, fondera les bases de la géométrie différentielle.

Newton propose aux fondements de sa théorie de la mécanique les concepts de temps
et d’espace absolus. D’un point de vue géométrique, ce dernier s’identifie naturellement
avec l’espace de la géométrie Euclidienne. En effet, plus de deux millénaires après sa for-
malisation, l’espace Euclidien reste à l’époque le seul candidat susceptible de représenter
l’espace physique, à tel point que le philosophe Emmanuel Kant, dans sa Critique de la
Raison pure (1780) en fit l’exemple paradigmatique de connaissance synthétique a priori,
qualifiant l’espace d’Euclide de “nécessité inévitable de la pensée”.

Le changement de paradigme que constitua l’avènement de la géométrie Hyperbolique,
suite aux travaux de C. Gauss, J. Bolyai et N. Lobachevsky, vint disputer ce monopole
millénaire. Plusieurs possibilités s’ouvrirent alors quant à la description géométrique de

2. Notons que la forme moderne de ces caractères doit en réalité être attribuée à Leibniz qui a développé
parallèlement à Newton le calcul infinitésimal et en a fixé les notations.

ii
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l’espace physique (cf. la célèbre exclamation de Boylai : “J’ai créé un nouveau monde
à partir de rien. ”), cette question ne pouvant dès lors plus être résolue par le simple
raisonnement abstrait mais constituant désormais un problème d’ordre physique pouvant
par là-même faire l’objet d’un test empirique 3.

Les quelques décennies qui suivirent la découverte de la géométrie Hyperbolique virent
le développement d’autres géométries non-Euclidiennes, telles que les géométries Elliptique,
Affine et Projective. En dehors des cercles mathématiques, l’émergence de ces nouveaux
types de géométries provoqua un vif émoi dans la vie intellectuelle européenne, engen-
drant notamment dans l’Angleterre Victorienne de l’époque d’importants débats quant au
remaniement de l’enseignement de la géométrie alors basée sur les Éléments 4.

Face à cette profusion de géométries nouvelles, Felix Klein formula en 1872 une syn-
thése reposant sur une conception renouvelée de la géométrie envisagée comme l’étude des
propriétés invariantes de l’espace sous un groupe de transformations, mettant ainsi l’accent
sur les liens entre géométrie et théorie des groupes.

Il faudra attendre le début du vingtième siècle pour voir la révolution non-Euclidienne
irriguer les théories physiques avec la formulation quadridimensionnelle de la relativité
restreinte Einsteinienne par Hermann Minkowski (dans son essai de 1908 intitulé Espace et
Temps). L’approche de Minkowski repose sur l’idée ancienne de combiner espace et temps
dans une entité à quatre dimensions. Cependant, l’indépendance supposée des deux notions
rendait auparavant la procédure artificielle. La géométrisation de l’espace-temps opérée par
Minkowski permet ainsi de réinterpréter les principes de la relativité restreinte comme des
théorèmes d’une nouvelle géométrie à quatre dimensions. Les trajectoires des particules
libres sont alors décrites par des géodésiques de l’espace-temps plat quadridimensionnel.

Cette approche a connu le succès que l’on sait et de fait contient les germes de la
théorie de la relativité générale. La théorie de la gravitation formulée par Einstein en 1915
constitue en effet la première géométrisation réussie d’une interaction fondamentale. Le
contenu de la théorie de la relativité générale peut être schématiquement divisée en un ver-
sant cinématique (mouvement de la matière dans un espace-temps de géométrie fixée) et
un autre dynamique (rétroaction de la matière sur la géométrie de l’espace-temps), les deux
reposant sur le formalisme de la géométrie différentielle (pseudo)-Riemannienne. L’aspect
cinématique de la relativité générale est similaire à celui de la formulation Minkowskienne
de la relativité restreinte, à la différence que les particules libres y décrivent des géodésiques
dans un espace-temps courbe. La courbure de l’espace-temps est elle-même engendrée par la

3. Lobachevsky suggéra ainsi de décider la géométrie de l’Univers à l’aide d’une expérience de mesure
d’un “triangle stellaire” formé par l’étoile Sirius et deux positions de la Terre à six mois d’intervalle.

4. Parmi les protagonistes de cette controverse figure notamment Charles Lutwidge Dodgson, alias
Lewis Carroll, qui publia en 1879 une pièce en défense des Éléments, intitulée Euclid and his Modern
Rivals, mettant en scène le fantôme d’Euclide argumentant face à ses “rivaux modernes”.
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distribution de matière-énergie, ce qui constitue l’aspect dynamique de le théorie, encodée
dans les équations de champ d’Einstein 5. Einstein lui même, commentant ses équations de
champ, exprima éloquemment son idée de la perfection géométrique en opposant l’expres-
sion “temple de marbre”, pour désigner le géométrique tenseur de courbure d’Einstein, à
celle d’ “édifice en bois délabré”, référant au tenseur énergie-impulsion 6.

À l’époque où Einstein compose sa théorie, la notion de connexion n’a pas encore acquis
un statut propre et reste subordonnée à celle de structure métrique. Le transport parallèle
des géodésiques décrivant les particules en chute libre s’identifie donc naturellement avec
la notion de parallélisme étudiée par Christoffel, Ricci et Levi-Civita. Il faudra attendre les
travaux d’Hermann Weyl en 1918 et ceux d’Elie Cartan sur les espaces fibrés, à partir de
1922, pour voir émerger une notion autonome de connexion.

Cette indépendance conquise par la notion de connexion va jouer un rôle fondamental
dans l’entreprise de géométrisation de la théorie Newtonienne de la gravitation. Il est en
effet significatif que la première description invariante de coordonnées de la gravitation de
Newton ait été proposée par E.Cartan lui-même [11, 12] (1923).

En effet, contrairement à un préjugé tenace, la possibilité d’une géométrisation des
phénomènes gravitationnels (i.e. de l’espace-temps) n’est pas l’apanage des théories dites
relativistes mais existe tout aussi bien pour les théories dites nonrelativistes 7. Indépendam-
ment des travaux d’E.Cartan, Kurt Friedrichs introduit en 1927 (cf. [14]) l’utilisation d’une
métrique dégénérée avec une connexion de Koszul compatible à torsion nulle. Du point de
vue dynamique, Friedrichs montra que les équations de champ Newtoniennes dans le vide
prennent la forme (tenseur de Ricci)= 0, exactement comme dans le cas relativiste.

Cette description géométrique de la gravitation Newtonienne (théorie dite de Newton-
Cartan 8) connut un renouveau d’intérêt à partir des années 1960, dont l’histoire déploie
la liste (non-exhaustive) de noms suivante : Trautman [15], Havas [16], Dombrowski [17],
Künzle [18], Ehlers [19], etc.

5. Pour résumer ces deux versants dans les mots du physicien américain John A. Wheeler : “Space tells
matter how to move. Matter tells space how to curve. ” (cf. [1] p.5)

6. Comme observé dans [2], cette distinction tranchée opérée par Einstein s’est vue quelque peu amendée
suite aux travaux de divers auteurs [3, 4, 5, 6, 7, 8, 9] défendant le point de de vue selon lequel l’élegant
et géométrique membre de gauche des équations d’Einstein peut être reconstruit en faisant le postulat
physique que le (non géométrique) tenseur énergie-impulsion joue le rôle de source pour la gravitation
(voir e.g. le Chapitre 3 du livre [10] pour une introduction pédagogique à ce point de vue. )

7. Plusieurs auteurs (dont Levy-Leblond, cf. [13]) ont commenté le caractère impropre d’une telle
terminologie. En effet, les théories dites nonrelativistes encodent tout autant que celles dites relativistes le
principe de relativité. Seule change l’expression des boosts (Lorentz vs Galilée).

8. Nous désignerons par Newton-Cartan un spectre de théories plus large que celui couvert par l’accep-
tion habituelle, référant notamment à des théories admettant des variétés dont les tranches d’espace sont
courbes.
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Gravitation relativiste et nonrelativiste

Le diagramme suivant synthétise les relations entre les différents acteurs du contenu ciné-
matique de la relativité générale.

Figure 1 – Contenu cinématique de la relativité générale

Le rôle de structure métrique y est joué par une variété d’espace-temps munie d’une
métrique (pseudo)-Riemannienne (ou Lorentzienne) i.e. un champ de formes bilinéaires
non-dégénérées sur la variété. Cette structure métrique détermine (cf. Théorème 3.1.5)
une unique connexion (au sens de Koszul) à torsion nulle qui lui est compatible, à savoir la
connexion de Levi-Civita (flèche 1). Cette connexion munit donc la variété d’espace-temps
d’une notion de parallélisme, permettant de définir une classe de courbes privilégiée sur la
variété, les géodésiques (flèche 2). Une géodésique est ainsi définie comme une courbe dont
le vecteur tangent reste en tout point parallèle à lui-même, eu égard au parallélisme de Levi-
Civita. Les courbes géodésiques peuvent de manière équivalente être caractérisées comme
les courbes qui extrémisent la distance entre deux points infiniment proches. L’équation
caractéristique des géodésiques peut donc être obtenue comme équation du mouvement à
partir d’une densité Lagrangienne construite uniquement en termes de la structure métrique
(flèche 3). Les relations entre ces différentes structures sont exprimées de manière abstraite
par le diagramme suivant :

Figure 2 – Contenu cinématique des théories métriques de la gravitation

Il est intéressant de constater que le contenu cinématique de la gravitation Newtonienne
peut également être décrit via un diagramme similaire, les différences vis-à-vis du cas
relativiste étant dues au caractère dégénéré de la structure métrique Newtonienne (désignée
ci-après par le terme de structure Augustinienne, cf. Définition 3.2.1). Une des conséquences
les plus immédiates liée à la nécessité de faire usage d’une métrique dégénérée réside dans
le fait qu’à une structure Augustinienne donnée peut être associée une classe de connexions
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de Koszul compatible à torsion nulle. Cette multiplicité de connexions invite à définir une
structure plus riche (dénommée structure Lagrangienne, cf. Définition 3.2.40) permettant
ainsi de rétablir l’unicité (flèche 1). La connexion Newtonienne (cf. Définition 3.2.33) ainsi
définie pourvoit l’espace-temps Newtonien d’un parallélisme (différent de celui de Levi-
Civita) permettant la définition de courbes auto-parallèles, similairement au cas relativiste.
De telles courbes acquièrent ici l’interprétation de trajectoires dynamiques pour une classe
très générale de systèmes holonomes 9 (cf. Section 1.3) et peuvent dès lors être dérivées
via un principe variationnel construit à partir de la structure Lagrangienne (flèche 3).

Figure 3 – Contenu cinématique de la théorie de Newton-Cartan

Structures Newtoniennes plongées dans des structures Bargmanniennes

Jusqu’à présent, nous n’avons envisagé les structures Newtoniennes que dans leur carac-
térisation intrinsèque, ne faisant référence à des structures relativistes que pour les besoins
de l’analogie. Ce type de comparaison peut cependant laisser au lecteur l’impression que
les structures dites nonrelativistes sont en un sens moins naturelles que leurs avatars rela-
tivistes 10. Un nouvel éclairage peut cependant être porté sur les structures Newtoniennes
en envisageant ces dernières comme plongées dans des structures relativistes. Ce nouveau
point de vue a le mérite d’apporter une justification de ces structures et de leurs pro-
priétés en les important de structures relativistes usuelles. Ce point de vue prend sa source
dans un article datant de 1928 dû à L.Eisenhart [20] dans lequel ce dernier établit que les
trajectoires dynamiques d’un système mécanique nonrelativiste holonome à n degrés de
liberté peuvent toujours être mises en correspondance bijective avec les géodésiques d’un
espace-temps relativiste à n + 2 dimensions doté d’une structure métrique particulière.
Ainsi, les trajectoires dynamiques peuvent toujours êtres “remontées” vers des géodésiques
(d’où la dénomination “Eisenhart lift”) et inversement, toute géodésique peut se voir pro-

9. Un système dynamique à d degrés de liberté x1, · · · , xd soumis à n contraintes pouvant être exprimées
sous la forme f i (x1, · · · , xd, t) = 0, avec i ∈ {1, · · · , n} est dit holonome. Les contraintes d’un système
holonome dont l’énergie cinétique prend la forme standard T = 1

2
δabẋ

aẋb peuvent toujours être résolues.
Un tel système est donc équivalent à un système dépourvu de contraintes dont l’énergie cinétique prend la
forme T = 1

2
gij q̇

iq̇j +Aiq
i − U .

10. Nous renvoyons au §12.5 du livre [1] pour une réflexion d’ordre épistémologique sur la naturalité des
théories physiques dans leur formulation géométrique.
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jetée vers une trajectoire nonrelativiste. La classe d’espace-temps permettant le Eisenhart
lift est caractérisée par l’existence d’un champ vectoriel de genre lumière parallèle par rap-
port à la connexion de Levi-Civita. Cette classe de métriques s’était déjà vue décrite par
M.Brinkmann [21] dans un contexte différent et reçut par la suite l’interprétation d’ondes
gravitationnelles avec rayons parallèles, les rayons étant les courbes intégrales du champ
vectoriel nul et parallèle. Cet important résultat de Eisenhart demeura en réalité largement
confidentiel parmi les physiciens théoriciens pendant plusieurs décennies (à l’exception no-
table d’A.Lichnerowicz [22], sur laquelle nous reviendrons). Parmi les raisons possibles de
ce désintérêt figure probablement le fait que la procédure consistant à associer à un sys-
tème dynamique à n degrés de liberté un espace-temps de dimension n + 2 peut sembler
artificielle, en comparaison avec les espaces de dimensions respectivement n et n + 1 que
sont l’espace des configurations et l’espace-temps des configurations, plus naturellement
associés à un tel système Lagrangien (cf. Section 1 de [23]).

Ce pont dressé entre physique nonrelativiste et espace-temps relativiste a été ensuite
redécouvert de manière indépendante par C.Duval, G.Burdet, H.P.Künzle et M.Perrin dans
un article de 1985 [24] (cf. également [25]) dans lequel les auteurs généralisent cette ap-
proche à la Eisenhart, dite “ambiante”, afin de rendre compte des différents aspects cinéma-
tiques de la physique Newtonienne, tels que décrits dans le paragraphe précédent, comme
plongés dans des variétés de Bargmann-Eisenhart 11.

Figure 4 – Structures Newtoniennes plongées dans des structures Bargmanniennes

11. La référence à V.Bargmann [26] est justifiée par le rôle déterminant joué par l’extension centrale du
groupe de Galilée (dit groupe de Bargmann), dans la construction de [24, 25].
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Le diagramme précédent résume les différentes étapes relatives au plongement de struc-
tures Newtoniennes dans des structures Bargmanniennes. Comme indiqué précédémment,
les variétés de Bargmann-Eisenhart (cf. Définition 2.1.1) sont des espace-temps relativistes
possédant un champ de vecteur nul (dénommé vecteur d’onde par la suite), transporté par-
allèlement par la connexion de Levi-Civita associée à la métrique (cf. eq. (1.3.13) pour une
expression explicite du tenseur métrique en coordonnées). L’idée principale de l’approche
ambiante appliquée à la physique nonrelativiste est d’opérer une réduction dimensionnelle
d’une variété de Bargmann-Eisenhart le long de cette direction de genre lumière. En cela,
cette approche diffère du formalisme de Kaluza-Klein usuel dans lequel la réduction s’ef-
fectue le long d’une direction de genre spatial 12 ou encore de la réduction le long d’un
vecteur de genre temps pour des espace-temps stationnaires. La variété obtenue comme
quotient de la variété de Bargmann-Eisenhart par la direction nulle hérite ainsi une struc-
ture d’espace-temps Newtonien, ce qui peut s’apprécier aux différents niveaux de structure
représentés sur le diagramme de la Figure 2.

Ainsi, la structure métrique de l’onde de Bargmann-Eisenhart projette sur la variété
quotient en une structure Lagrangienne (flèche 7) tandis que la connexion de Levi-Civita
associée à la structure métrique relativiste définit la connexion Newtonienne (flèche 8) cor-
respondant à cette même structure Lagrangienne. Le Eisenhart lift compris comme une
correspondance entre trajectoires dynamiques et géodésiques relativistes, est symbolisé par
la flèche 9. De manière plus précise, on peut envisager le Eisenhart lift comme une com-
position des flèches 3 et 9, en ce sens que l’équation décrivant les trajectoires dynamiques
nonrelativistes est obtenue par variation de la densité Lagrangienne construite à partir
de la métrique relativiste. Le théorème d’Eisenhart assure que l’application 3−→ 9−→ est
bijective (à pu = m fixé, cf. Chapitre 1) pour la classe d’espace-temps considéré.

Généralisation

Revenons à présent sur l’apport d’A.Lichnerowicz au théorème d’Eisenhart. Ce dernier,
dans son livre intitulé Théories relativistes de la gravitation et de l’électromagnétisme [22]
et datant de 1955, généralisa la classe d’espace-temps relativistes permettant le Eisenhart
lift. Un aspect important de cette généralisation consiste en cela que les trajectoires d’un
système nonrelativiste donné peuvent désormais être “remontées” vers les géodésiques d’une
classe infinie d’espace-temps. Pour poursuivre la formulation imagée du paragraphe précé-
dent, on peut dire que l’application 3−→ 9−→ n’est désormais plus injective pour cette classe
élargie d’espace-temps.

Cette importante contribution de Lichnerowicz au formalisme ambiant soulève la ques-

12. De plus, le groupe de structure de la fibration (R,+) est non-compact, cf. Chapitre 4.
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tion naturelle de déterminer dans quelle mesure il est possible de généraliser les différents
niveaux d’intégration symbolisés sur le diagramme de la Figure 4 à cette classe élargie. Une
telle étude, au-delà de son intérêt intrinsèque, peut être motivée en vue de ces potentielles
applications, notamment dans le contexte de la dualité théorie de jauge/gravitation. En ef-
fet, depuis sa proposition en 1998 par J.Maldacena [27, 28], la correspondance 13 AdS/CFT
a fait l’objet d’un intérêt sans cesse renouvelé et ce parmi un nombre croissant de com-
munautés de physiciens. En particulier, il a été plus récemment suggéré que les techniques
de la correspondance holographique pouvaient se voir appliquées à des systèmes nonrela-
tivistes, avec l’espoir de permettre ainsi de décrire des systèmes de physique de la matière
condensée. Parmi les premiers candidats susceptibles d’une description holographique fig-
urent notamment les supraconducteurs à 2 + 1 dimensions [29] ainsi que les gaz unitaires
d’atomes froids [30, 31]. Ce dernier système se distingue par le fait que l’espace-temps de
fond de la théorie vivant dans le “bulk” diffère de l’espace-temps d’AdS usuel mais en est une
déformation choisie pour posséder un groupe d’isométries nonrelativiste (i.e. le groupe de
Schrödinger), d’où la dénomination d’espace-temps de Schrödinger [32, 33]. Cette nouvelle
approche à l’holographie a suscité un renouveau d’intérêt quant aux symétries nonrela-
tivistes et à leur description géométrique [34]. Dans ce contexte, la généralisation proposée
par Lichnerowicz acquiert une nouvelle actualité. Il est en effet possible de montrer que
cette classe élargie de variétés permettant le plongement de structures nonrelativistes con-
tient notamment les espaces-temps d’Anti-de Sitter et de Schrödinger (cf. Section 2.3),
espaces-temps qui n’étaient pas contenus dans la classe étudiée par Eisenhart. Ce résul-
tat suggère d’appliquer l’approche ambiante à la dualité holographique esquissée dans les
travaux [30, 31], de manière à obtenir une dualité holographique purement nonrelativiste
(i.e. reliant une théories nonrelativiste de la gravitation dans le bulk à une théorie nonrel-
ativiste de la matière condensée sur le bord, voir e.g. [35, 36, 37]). Dans cet ordre d’idées,
une correspondance entre le gaz unitaire de Fermi et une théorie de spin-élevés a récemment
été proposée [38, 39].

Depuis son introduction dans [24, 25], l’approche par plongement s’est révélée pertinente
pour traiter un large éventail de problèmes nonrelativistes, tels que l’électrodynamique de
Chern-Simons [40, 41, 42], la dynamique des fluides [43, 44, 45], la cosmologie de Newton-
Hooke [46], les symétries de Schrödinger [32, 34], le théorème de Kohn [47, 48, 49], les
symétries cachées [50, 51, 52], etc. Au-delà de sa pertinence dans le contexte de la corre-
spondance AdS/CFT, un élargissement du formalisme ambiant de [24, 25] pourrait ainsi
permettre de généraliser certains de ces résultats en s’appuyant sur la liberté supplémen-
taire présente dans la classe d’espace-temps étudiée par Lichnerowicz.

Sur le plan conceptuel, l’approche suivie dans [24, 25] repose de manière cruciale sur

13. On utilisera les acronymes anglo-saxons AdS pour l’espace-temps Anti de-Sitter et CFT pour théorie
conforme des champs.
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l’utilisation du groupe de Bargmann, i.e. l’extension centrale du groupe de Galilée. Les
variétés de Bargmann-Eisenhart sont ainsi décrites comme des G-structures pour le sous-
groupe de Bargmann homogène (cf. également [53]). L’approche de Duval et al. tire en
effet parti de ce qui peut être désigné comme l’équivalent au niveau théorie des groupes
du formalisme ambiant, à savoir le fait que certains groupes de symétrie nonrelativistes
(e.g. les groupes de Bargmann [26] et Schrödinger [54]) peuvent être plongés dans leurs
homologues relativistes (groupes de Poincaré [55] et conforme [56], respectivement). Les
groupes nonrelativistes peuvent être ainsi obtenus par ce qui est l’analogue en théorie des
groupes d’une réduction dimensionnelle de genre lumière, à savoir comme sous-groupes
préservant une certaine direction de type nul. Cette relation peut également être appréciée
au niveau des équations d’onde en espace-temps plat (cf. [57]).

Le leitmotif consistant à importer des résultats et structures provenant de la théorie
des groupes vers des structures géométriques est réminiscent du point de vue que porte
Cartan sur la géométrie différentielle, approche qui a connu depuis la fin des annés 90
un regain d’intérêt (à la fois dans la littérature mathématique et de physique théorique)
suite notamment à la parution de la première introduction moderne au sujet (cf. [58]). En
particulier, il a été suggéré [59, 60, 61] que la géométrie de Cartan constitue la formulation
appropriée à la description de théories de la gravitation comme théories de jauge. En effet,
il est bien connu dans la littérature de physique théorique que la formulation rigoureuse
des théories de jauge dont le groupe de transformation est semi-simple (théories de type
Yang-Mills) requiert l’introduction d’un fibré principal ayant pour base la variété d’espace-
temps et muni d’une connexion d’Ehresmann 14 prenant valeur dans le groupe considéré.
En revanche, cette formulation est impropre à décrire la théorie de la relativité générale,
cette dernière ne pouvant être vue comme une théorie de type Yang-Mills (cf. e.g. [63] ou
l’appendice A de [64]). Cependant, la théorie d’Einstein, dans la formulation qu’en donnent
S.W. MacDowell et F. Mansouri [65] (cf. également [66]) peut être interprétée comme une
théorie dynamique d’une connexion de Cartan pour une géométrie modelée sur la paire de
Klein (SO (d, 2), SO (d, 1)), cf. Section 5.1, donnant ainsi une interprétation géométrique à
la brisure de l’invariance de jauge de la théorie, du groupe d’isométrie d’AdS vers le groupe
de Lorentz (cf. [60]). Cette approche s’est également révélée féconde pour clarifier le statut
géométrique de la formulation donnée par Witten [67] de la gravité à 2 + 1 dimensions
comme théorie de Chern-Simons [59].

La seconde partie de ce manuscrit est ainsi construite autour de l’idée de “rendre
Newton-Cartan à Cartan” en embrassant le postulat selon lequel les géométries de Cartan
projettent un nouvel éclairage sur les structures nonrelativistes, à la fois dans leur définition

14. Charles Ehresmann fut l’étudiant de Cartan et a poursuivi la quête de ce dernier de conférer un
statut réellement géométrique à la notion de connexion. Dans [62], Ehresmann donna à la fois une définition
rigoureuse des connexions à la Cartan et des connexions qui portent désormais son nom.
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intrinsèque et dans leur relation avec des structures relativistes au travers du formalisme
ambiant.
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Plan

Le présent manuscrit se divise en deux parties. La première propose une généralisation
du formalisme ambiant de Duval et al. [24, 25] à la classe d’espace-temps étudiés par Lich-
nerowicz [22] (dites ondes Platoniciennes) permettant ainsi une formulation géométrique
générale du théorème d’Eisenhart-Lichnerowicz.

Dans le Chapitre 1, on rappellera le théorème d’Eisenhart-Lichnerowicz pour la classe
des ondes Platoniciennes, d’abord dans son cadre Lagrangien usuel, puis on proposera
une formulation Hamiltonienne de ce théorème pour cette classe élargie (cf. également
[50, 51, 52] pour une formulation Hamiltonienne du Eisenhart lift pour la classe des ondes de
Bargmann-Eisenhart). Nous défendrons alors l’idée selon laquelle cette perspective Hamil-
tonienne est la mieux à même de capturer la simplicité du lift d’Eisenhart-Lichnerowicz,
dont l’élégance est habituellement dissimulée derrière la complexité des équations du mou-
vement Lagrangiennes. Une présentation heuristique de l’approche ambiante sera ensuite
proposée en filant l’analogie suggérée dans [68] entre le formalisme ambiant et la célèbre
allégorie de la Caverne de Platon [69]. L’approche ambiante se verra ensuite étendue des
particules classiques aux particules quantiques ; l’équation de Schrödinger sur un espace
courbe sera ainsi obtenue par réduction dimensionnelle à partir de l’équation de Klein-
Gordon pour un champ scalaire libre sur une onde Platonicienne.

Le Chapitre 2 sera consacré à une analyse des propriétés géométriques des ondes
gravitationnelles et des structures nonrelativistes vivant sur l’espace de leurs rayons (i.e.
l’espace quotient par la direction de genre lumière, dénommé écran Platonicien par la
suite). Un intérêt particulier sera porté aux classes dites de Kundt, Platon et Bargmann-
Eisenhart et aux structures métriques nonrelativistes qu’elles induisent. Une nouvelle déf-
inition géométrique des ondes Platoniciennes sera proposée et comparée avec d’autres car-
actérisations existantes. Il sera par la suite fait usage de cette nouvelle définition afin de
généraliser à cette classe certains résultats connus pour les ondes de Bargmann-Eisenhart
concernant d’une part leurs propriétés globales et causales, et d’autres part leurs invariants
de courbure scalaires.

Le Chapitre 3 délaissera provisoirement l’approche ambiante pour se consacrer à l’é-
tude des structures nonrelativistes, envisagées d’un point de vue purement intrinsèque.
Une première partie comprendra un état de l’art dont l’ambition sera d’être pédagogique
sans toutefois concéder à une certaine exigence de rigueur dans l’exposé. L’accent sera mis
notamment sur le contraste entre de telles structures et leur homologues relativistes. Re-
flétant la littérature, on détaillera dans un premier temps les variétés nonrelativistes dont
la structure métrique comprend une 1-forme d’horloge fermée (structure dite Augustini-
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enne) et les notions de parallélisme associées 15 (connexions Galiléennes et Newtoniennes).
Ces dernières seront également abordées sous une forme légèrement moins standard dans
une formulation reposant sur l’existence de champs d’observateurs irrotationnels (structure
dite Lagrangienne, cf. [23]). Dans une seconde partie, on s’intéressera à la généralisation de
certaines de ces structures pour des variétés nonrelativistes dont la 1-forme d’horloge satis-
fait le critère de Frobenius (structure dite Aristotelicienne). Deux notions concurrentes de
parallélisme, reposant sur la généralisation au cas Aristotelicien des connexions Newtoni-
ennes dans leur formulation respectivement usuelle et Lagrangienne, se verront proposées
et discutées à la lumière du théorème d’Eisenhart-Lichnerowicz.

Outre une reformulation dans le langage des fibrés principaux des résultats du Chapitre
2 liés aux plongement de structures métriques nonrelativistes dans une onde gravitation-
nelle, le lecteur trouvera dans le Chapitre 4 un examen approfondi de la notion de par-
allélisme abordée d’un point de vue ambiant. Après avoir passé en revue les résultats de
[24, 25] relatifs au plongement d’une variété Newtonienne dans une onde de Bargmann-
Eisenhart, on étendra cette construction à la classe des ondes Platoniciennes. Un aspect
important de cette généralisation réside dans la non-unicité de la connexion nonrelativiste
induite par projection du parallélisme de Levi-Civita ambiant sur l’écran Platonicien. On
isolera parmi les choix possibles deux prescriptions différentes, permettant d’apporter un
éclairage ambiant sur les connexions introduites en fin de Chapitre 3 et discutera de
la pertinence de cette construction quant à la géométrisation du théorème d’Eisenhart-
Lichnerowicz.

La seconde partie de ce manuscrit est consacrée à l’étude des géométries de Cartan et à
leur intérêt quant à la formulation des théories de gravitation nonrelativistes. Le Chapitre
5 se présente comme une introduction aux géométries de Klein et à leur généralisation
par Cartan. Cette présentation générale sera émaillée d’exemples issus de la géométrie
(pseudo)-Riemanienne, envisagée comme géométrie de Cartan structurée par le groupe de
Poincaré. Une attention particulière sera portée à la façon dont des structures algébriques
naturelles d’un point de vue de la théorie des groupes induisent des structures géométriques
tout aussi naturelles sur la variété d’espace-temps.

Le Chapitre 6 se proposera d’appliquer ce leit-motiv dans le but de réinterpréter
à la Cartan certains pans bien connus de la physique nonrelativiste. Ainsi, les variétés
Galiléennes seront envisagées comme espaces de base d’une géométrie de Cartan admet-
tant comme groupe de structure le groupe de Galilée. Cette approche permettra notamment
d’examiner l’origine algébrique de la notion de champ d’observateurs et de Milne boost (cf.
Définitions 3.2.5 et 3.2.10). Les variétés Newtoniennes seront ensuite caractérisées comme
espace de base d’une géométrie de Cartan-Galilée plongée dans une géométrie (non réduc-

15. On restreindra l’analyse aux connexions à torsion nulle.
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tive) de Cartan-Bargmann, construction qui nous permettra ainsi de dériver naturellement
la condition classique de contrainte sur le tenseur de courbure (dite de Duval-Künzle)
comme condition d’involutivité de la distribution définissant ledit plongement. Outre son
rôle dans la définition de structures intrinsèquement nonrelativistes, le groupe de Bargmann
se révélera également pertinent en regard de la formulation à la Cartan du formalisme am-
biant. Ainsi, les ondes de Bargmann-Eisenhart se verront caractérisées comme espace de
base d’une géométrie (réductive) de Cartan-Bargmann, permettant notamment de réinter-
préter la contrainte de Duval-Künzle comme condition de torsion nulle.

Par souci de lisibilité, le plan de ce manuscrit a été agencé de manière à ménager une
progression en pente douce en termes d’abstraction et de géométrisation 16. Ainsi, les deux
premiers Chapitres ont très largement recours à la notation indicielle ainsi qu’à l’utilisation
d’un système de coordonnées, dit de Brinkmann. De plus, seules des notions élémentaires
de géométrie Riemannienne y sont mobilisées afin d’établir les résultats présentés. Du
point de vue nonrelativiste, seules les notions de structures métriques y sont examinées,
réservant l’étude de la notion de parallélisme, d’un point de vue intrinsèque et ambiant,
respectivement aux Chapitres 3 et 4. Le Chapitre 4 fait quant à lui usage de la géométrie des
fibrés principaux en se restreignant cependant à l’utilisation de connexions de Ehresmann.
Peut-être moins courante est l’utilisation qui est faite au Chapitre 6 des connexions de
Cartan, mais nous espérons que le lecteur non déjà familier avec ces notions trouvera dans
le Chapitre 5 matière à susciter son intérêt pour ces géométries.

En termes d’originalité du contenu, les Chapitres 1 et 2 reproduisent de manière ad
verbatim le texte de l’article [70]. Le reste de ce manuscrit est quant à lui original et
constituera la matière de l’article [71], à paraître.

16. Le lecteur restant seul juge de la mesure dans laquelle cet objectif a été atteint.
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Perspectives

L’introduction qui précède a mis l’accent sur la restriction du cadre de la présente étude
au contenu cinématique des théories de gravitation. Parmi les perspectives naturelles s’in-
scrivant dans la continuité de ladite étude figure donc une analyse des équations de champs
gravitationnels, autrement dit du contenu dynamique de ces théories. En ce qui concerne
l’approche ambiante, Duval et al. [24, 25] ont montré comment les équations de champ
d’Einstein pour la classe d’espace-temps de Bargmann-Eisenhart se ramenaient, après ré-
duction dimensionnelle, aux équations de champ de Newton-Cartan. Il serait dès lors in-
téressant de reproduire ce résultat pour la classe des ondes Platoniciennes, vues comme con-
formément Bargmann-Eisenhart et de comparer les équations de Newton-Cartan général-
isées obtenues avec l’analyse de Julia et al. [72].

Une seconde limitation imposée au cadre de notre analyse consiste à ne prendre en
considération que des géométries à torsion nulle. Une telle restriction reste assez naturelle
quand l’on s’intéresse à des structures métriques nonrelativistes dont l’horloge est fermée
(structure Augustinienne) puisque dans ce cas, il existe des connexions à torsion nulle
compatible avec la structure métrique, de manière semblable au cas relativiste. Cepen-
dant, l’introduction de connexions à torsion non-nulle gagne en pertinence lorsque l’on
considère des structures Aristoteliciennes, pour lesquelles les conditions de torsion nulle
et de compatibilité à la structure métrique sont mutuellement exclusives. De telles con-
sidérations suggèrent naturellement une extension du formalisme ambiant étudié ici à des
ondes Platoniciennes avec torsion. Une telle généralisation pourrait permettre d’étendre le
champ des applications possibles du formalisme ambiant à l’holographie et à la matière
condensée, telles qu’esquissées dans l’introduction, dans la mesure où de telles théories de
Newton-Cartan avec torsion (au niveau nonrelativiste intrinsèque) ont récemment fait leur
apparition pour décrire les symétries de systèmes de matière condensée exhibant l’effet Hall
quantique fractionnaire (cf. [73, 74]).

L’articulation du présent manuscrit en deux parties suggère de généraliser les résul-
tats préliminaires obtenus au Chapitre 6 afin de proposer une description dans le formal-
isme de Cartan des structures “Platoniciennes” nonrelativistes et relativistes discutées aux
Chapitres 3 et 4, respectivement. Outre la gravitation de Newton-Cartan, l’approche à la
Cartan pourrait projeter un éclairage nouveau sur d’autres théories nonrelativistes de la
gravitation. Dans un célèbre article datant de 1968 [75], Bacry et Levy-Leblond entreprirent
la classification des algèbres de Lie dites cinématiques, à savoir les algèbres encodant les
symétries infinitésimales d’une particule libre. Leur classification distingue les algèbres dites
relativistes (Poincaré, (A)dS) des algèbres nonrelativistes. Chacune de ces algèbres est as-
sociée à un groupe de Lie et définit un espace homogène. Outre l’algèbre de Galilée et
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son extension centrale (le groupe de Bargmann) figurent parmi les algèbres nonrelativistes
celles de Newton-Hooke et de Carroll. Les algèbres de Newton-Hooke peuvent être vues
comme un équivalent nonrelativiste des algèbres d’(A)dS. D’un point de vue ambiant, l’es-
pace homogène de Newton-Hooke peut être obtenu par réduction dimensionnelle de genre
lumière d’une Hpp-wave dont le groupe d’isométries est précisément l’extension centrale du
groupe de Newton-Hooke, comme montré dans [46]. Récemment, le groupe de Carroll [76]
a connu un renouveau d’intérêt suite aux travaux [77, 78, 79] (cf. aussi [80, 81]) montrant
d’une part la relation de dualité que ce groupe entretient avec le groupe de Bargmann
[77], et plus important encore, le lien avec le groupe de Bondi-Metzner-Sachs (BMS), ce
dernier pouvant être caractérisé comme extension conforme du groupe de Carroll [78, 79].
Il serait dès lors intéressant d’appliquer la procédure décrite au Chapitre 6 aux algèbres
de Carroll et Newton-Hooke et de comparer les structures obtenues avec celles dérivant
des algèbres de Galilée/Bargmann. Enfin, une application du formalisme de Cartan aux
structures conformes nonrelativistes (cf. [82, 34]) pourrait apporter un éclairage nouveau
sur lesdites structures.

La gravitation de Newton-Cartan a récemment connu un regain d’attention dans le con-
texte des théories de supergravité (cf. [83, 84, 85]). L’approche adoptée dans ces différents
travaux repose sur une procédure consistant à jauger une super-algèbre nonrelativiste (al-
gèbre de super-Bargmann) puis d’imposer des conditions de contrainte, générant ainsi
une théorie de supergravité de Newton-Cartan. Cette procédure est identique à celle util-
isée dans [86] permettant de retrouver la théorie de Newton-Cartan en jaugeant l’algèbre
de Bargmann. Au Chapitre 6 du présent travail se trouve défendue l’idée selon laquelle
l’approche à la Cartan de la géométrie différentielle constitue le formalisme géométrique
sous-tendant la procédure de [86]. Une telle géométrisation de la procédure de jauge en
termes de géométries de Cartan, outre son attrait esthétique en tant que structure glob-
ale et indépendante des coordonnées, fournit notamment une interprétation naturelle des
conditions de contrainte (comme conditions d’involutivité ou de torsion nulle, cf. Chapitre
6). À la lumière des travaux [83, 84, 85] émerge alors l’hypothèse naturelle d’une général-
isation possible du formalisme décrit aux Chapitres 5 et 6 pour une connexion prenant
valeur, non plus dans une algèbre de Lie, mais dans une super-algèbre nonrelativiste. De
plus, la pertinence de la description à la Cartan des structures nonrelativistes se révèle
en outre dans le traitement qu’elle permet de l’approche ambiante à ces théories. Un tel
éclairage porté sur les théories de supergravité nonrelativistes, envisagées comme plongées
dans des théories de supergravité usuelles permettrait ainsi d’en clarifier certains aspects
à la lumière de leurs avatars relativistes.
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Part I

Embedding nonrelativistic structures
inside a gravitational wave





Chapter 1

Nonrelativistic dynamical
trajectories as geodesic motions

In this Section, we start by introducing our notations and conventions. Then, we
present the old results of Eisenhart [20] and Lichnerowicz [22], firstly, by reviewing the
suggestive analogy proposed by Minguzzi between the null dimensional reduction and the
allegory of the cave, secondly, by motivating the form of the ambient metrics as an exten-
sion of some class of nonrelativistic Lagrangians and, thirdly, by checking explicitly that
the null dimensional reduction of the geodesic equations for a specific class of spacetimes
in D dimensions boils down to the Euler-Lagrange equations of some holonomic dynamical
systems of d = D − 2 degrees of freedom. However, this direct check in the Lagrangian
framework (similar to the original proofs [20, 22]) is slightly cumbersome and partially
obscures the simple mechanism behind the Eisenhart-Lichnerowicz Theorem. On the con-
trary, in the Hamiltonian formulation this mechanism becomes more transparent. Since
the Hamiltonian version seems not to have been discussed in detail yet in the literature
for the most general class (cf. however [50, 51, 52] for a Hamiltonian formulation of the
Eisenhart lift for Bargmann-Eisenhart waves), it is presented in the last subsection.

1.1 Notations and conventions

We will use the “mostly plus” convention for the signature of Lorentzian spacetimes.
The nonrelativistic spacetime will be a manifold of dimension n foliated by spatial hyper-
surfaces which are Riemannian manifolds of dimension d = n − 1. This manifold will be
embedded inside an ambient relativistic spacetime of dimension D = n + 1. Minuscule
greek indices µ, ν, ... will denote “world” (holonomic) ambient indices while minuscule latin
indices a, b, ... will denote “tangent” (anholonomic) ambient indices, both taking D = n+ 1
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values (0, 1, 2, . . . , D − 1). Minuscule latin indices as i, j, ... will denote (world or tan-
gent) spatial indices taking d = n − 1 values (1, 2, . . . , d). When it will be pertinent, one
introduces the Cartesian coordinates ~x = (z, ~y) on Euclidean space Rd.

1.2 Basic heuristics of the ambient approach

oι τoιoυτoι oυκ αν αλλo τι νoµιζoιεν τo αλητες η τας των σκεναστων

σκιας.

To them, I said, the truth would be literally nothing but the shadows of the
images.

– Plato, The Republic, Book VII (360 BCE)

Before introducing the technical details of the null dimensional reduction, the key ideas
will be presented pictorially by pursuing the entertaining analogy proposed by Minguzzi
between the ambient approach and the allegory of the cave [68].

The allegory of the cave was presented by Plato in his celebrated work “The Republic”
as an illustration of his theory of Forms [69]. Prisoners are chained in the middle of a
cave. They face a blank wall; behind them is a fire. They watch shadows projected on
the wall in front of them by objects which move behind them and which they cannot see.
In the allegory, the two-dimensional shadows represent material phenomena that can be
perceived while the three-dimensional objects correspond to Plato’s ideal Forms. According
to Platonism, the ultimate reality is the world of Forms (3D objects), while Phenomena
(2D images) are mere illusions because of the incomplete knowledge of mankind (prisoners).
Leaving aside these philosophical views and focusing on our topic, the allegory of the cave
provides an ancient example of “lightlike” dimensional reduction where objects are projected
on a codimension-one manifold along light rays. 1 The analogy between the allegory of the
cave and the ambient approach is even closer (Table 1.1): consider an ambient spacetime
(playing the role of the cave in the allegory) on which a gravitational wave propagates
and to which corresponds a congruence of graviton worldlines (replacing the light rays
emitted by the fire). Physicists detect the corresponding gravitons on a screen (the wall
where photons are projected in the allegory). 2 This projection of ambient events on the

1. In a sense, linear perspective in graphical arts is an even simpler instance of “lightlike” dimensional
reduction, where three-dimensional objects are represented on a two-dimensional surface via projection
along visual light rays. However, this example is not as useful for illustrating our purpose because linear
perspective is static while time plays a crucial role in the ambient construction.

2. The switch from the gravitational wave to the graviton description is simply understood by applying
the standard rules of translation (between wave and particle language) from geometric optics where the
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Allegory of the cave Ambient approach

Cave Ambient spacetime

Wall Screen

Light rays Graviton worldlines

Shadows Nonrelativistic physics

Table 1.1: Analogy: Allegory of the cave / Ambient approach

screen along gravitational rays is the most concrete way of formulating the null dimensional
reduction considered in this work. The main lesson from the ambient approach is that the
relativistic spacetime and the particle trajectories appear nonrelativistic when read on the
screen. In this sense, nonrelativistic structures are mere shadows of relativistic ones.

In order to present the heuristics behind this mathematical fact, notice that the screen
registers the following events: absorption or emission of a graviton by the screen. These
events are encoded via the position on the screen and the instant of the intersection. The
description of the screen worldvolume (i.e. the time evolution of the screen) via these
coordinates already suggests that the former might be endowed with a natural structure
of (codimension-one) spacetime. What is more remarkable is that this structure is non-
relativistic and that the shadows on the screen from ambient geodesics have a natural
interpretation as dynamical trajectories of nonrelativistic particles.

1.3 Nonrelativistic Lagrangian

Consider a smooth manifold with coordinates (t, xi) and the most general Lagrangian
that is a polynomial of degree two in the velocities ẋi = dxi/dt:

L(t, x, ẋ) =
1

2
ḡij (t, x) ẋiẋj + Āi (t, x) ẋi − V̄ (t, x) (1.3.1)

where ḡij is sometimes called the mass matrix. In order to avoid ghosts and constraints,
we require the kinetic term 1

2 ḡij
(
t, xi

)
ẋiẋj to be a positive-definite quadratic form in the

velocities. A dynamical system described by (1.3.1) can always be interpreted as describing
the motion of a charged particle minimally coupled to an electromagnetic field through the
vector potential Āi and the scalar potential V̄ , called “effective” potential in the following,
and moving on a Riemannian manifold with metric ḡij .

propagation of wavefronts is equivalently described by its orthogonal rays, which can be interpreted as
worldlines.
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Leaving aside this interpretation, this class of Lagrangians corresponds to the most
general holonomic dynamical system obeying d’Alembert’s principle with external forces
Fi = F̄ij ẋ

j + F̄i at most linear in the velocity satisfying the two further requirements:
the linear part F̄ij ẋj in the velocity of the external force does not develop any power
(F̄ij ẋiẋj = 0 ⇔ F̄(ij) = 0 3) and derives from a vector potential (F̄ij = 2∂[iĀj]) while the
part independent of the velocity derives from a scalar potential (F̄i = −∂tĀi − ∂iV̄ ). The
vector and effective potentials may depend on time. The Lorentz force is indeed the perfect
example of such an external force. For later purpose, let us emphasise that the holonomic
coordinates xi of a given holonomic system are only defined up to a reparameterisation

xi → x′i = x′i(t, x) (1.3.2)

t → t′ = t

which preserves the general form of (1.3.1), but redefines the various coefficients ḡij , Āi
and V̄ .

Let us emphasise that the gift of the Lagrangian (1.3.1) defines a nonrelativistic spatial
metric on the manifold labeled by the coordinates (t, xi). In other words, the mass matrix
ḡij , being positive definite, provides a collection of rulers at any event. As the notion
of a nonrelativistic spacetime necessitates absolute rulers and clocks, this motivates the
introduction of a collection of clocks, equivalent to the gift of a function Ω(t, x) > 0

specifying the unit of time at each point of spacetime. The lapse dτ ′ = mdτ of local time
τ ′ measured by the local clock (along a trajectory) corresponding to the lapse dt of absolute
time t is:

dτ ′ = Ω(t, x) dt = mdτ, (1.3.3)

where the constant m is introduced by analogy with affine parameters (which are also
defined up to a multiplicative constant τ ′ = mτ) and will acquire soon the interpretation
of a nonrelativistic mass.

Since our goal is to relate the Lagrangian (1.3.1) to the geodesic equation for some
spacetime, let us stress the similarities and differences of such an action principle with the
quadratic action principle for a geodesic. Suggestively, one can rewrite the action

S[xi ] = m

∫
L(t, x, ẋ) dt (1.3.4)

corresponding to the nonrelativistic Lagrangian (1.3.1) in terms of the local time along the

3. Curved (respectively, square) brackets over a set of indices denote complete (anti)symmetrisation
over all these indices, with weight one, i.e. S(µ1...µr) = Sµ1...µr and A[µ1...µr ] = Aµ1...µr respectively for S
and A totally (anti)symmetric tensors.
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trajectory as

S[xi ] =

∫
Ω

(
1

2
ḡij
dxi

dτ

dxj

dτ
+ Āi

dxi

dτ

dt

dτ
− V̄ dt

dτ

dt

dτ

)
dτ . (1.3.5)

where eq.(1.3.3) has been used. With the classical action (1.3.4) being defined up to a
multiplicative constant, the factor m has been introduced for later purposes. Notice that
the case m = 0 is special and corresponds to nondynamical trajectories in the sense that
eq.(1.3.3) implies dt = 0 and so the curve

(
t, xi (τ)

)
is at fixed t. Moreover, the action

(1.3.5) becomes S[xi ] = 1
2

∫
Ω ḡij

dxi

dτ
dxj

dτ dτ which has the form of a quadratic geodesic
action for the metric gij = Ω ḡij .

The action (1.3.5) looks like the quadratic action for a geodesic in the spacetime de-
scribed by the line element:

ds2
(n) = Ω

(
ḡijdx

idxj + 2 Āi dx
idt− 2 V̄ dt2

)
= gijdx

idxj + 2Ai dx
idt− 2V dt2 . (1.3.6)

However, an important discrepancy between (1.3.5) and the action principle for a geodesic
corresponding to the line element (1.3.6) is that the parameter τ is not an affine parameter
since its normalisation is not defined in terms of the metric defined by (1.3.6) but simply
as

Ω
dt

dτ
= m. (1.3.7)

Although the right-hand side (1.3.6) can naïvely be interpreted as a line element on the
nonrelativistic n-dimensional spacetime, this metric has actually no definite signature since
there is no a priori sign constraint on the potential V (which might even be vanishing).
Nevertheless, the gift of a Lagrangian of degree two in the velocities and of a time unit is
equivalent to the gift of an indefinite line element of spacetime. However, a nonrelativistic
spacetime has a somewhat weaker structure: it is rather defined only by the clocks Ω(t, x) dt

and by the rulers encoded in the spatial metric d`2 = gij(t, x)dxidxj on the spatial leaves
t=const.

In order to lift the dynamical trajectories (m 6= 0) to geodesics of an ambient spacetime,
the crucial ingredient is to add the value of the action as an extra coordinate. More
precisely, we introduce a coordinate u proportional to the action and to the local time τ
such that the infinitesimal variation of the action (1.3.4) along a trajectory is equal to

du = −Ldt− M2

m
dτ. (1.3.8)
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The minus sign and normalisation have been chosen for later convenience. By making use
of the relations (1.3.1) and (1.3.8), the line element (1.3.6) is equal to:

Ω
(
ḡijdx

idxj + 2 Āi dx
idt− 2 V̄ dt2

)
= −2Ω dtdu− 2M2dτ2. (1.3.9)

The main idea behind the Eisenhart lift (in Lagrangian terms) is to make use of (1.3.7) in
order to reinterpret this relation as expressing the fact that τ is an affine parameter along
a geodesic in an ambient spacetime of coordinates xµ ≡ (u, t, xi) and suitable metric gµν .
More precisely, we want to rewrite (1.3.9) as the relation gµνdxµdxν = −M2dτ2 where the
constant

∣∣M2
∣∣ stands for the ambient velocity norm squared. We will check that eq. (1.3.7)

simply arises as an equation of motion. We should stress that there is a large ambiguity in
reading off the ambient metric from (1.3.9) when the geodesics are not lightlike

(
M2 6= 0

)
.

More precisely, the relation (1.3.9) can be rewritten as a normalisation condition for the
affine parameter τ :

Ω (t, x)
[
2 dt

(
du+ Āi (t, x) dxi − Ū (t, x) dt

)
+ ḡij (t, x) dxidxj

]
= −M2 dτ2 (1.3.10)

if we define

Ū = V̄ − 1

2

M2

m2
Ω . (1.3.11)

In order to distinguish them, the potential V̄ will be referred to as effective potential while
the term scalar potential will be reserved to designate Ū . If the geodesic is lightlike, then
M2 = 0 and thus Ū = V̄ . The left-hand side of (1.3.10) can be interpreted as the ambient
line element

ds2 = Ω (t, x)
[
2 dt

(
du+ Āi (t, x) dxi − Ū (t, x) dt

)
+ ḡij (t, x) dxidxj

]
(1.3.12)

= 2 Ω (t, x) dtdu+ 2Ai (t, x) dtdxi − 2U (t, x) dt2 + gij (t, x) dxidxj

The ambient metric g is conformally equivalent to the metric ḡ with line element

ds̄2 = 2 dt
(
du+ Āi (t, x) dxi − Ū (t, x) dt

)
+ ḡij (t, x) dxidxj (1.3.13)

in the sense that

gαβ = Ω
(
t, xi

)
ḡαβ . (1.3.14)

Line elements of the form (1.3.13) were considered by Eisenhart in [20], while Lichnerowicz
[22] introduced the line element (1.3.12), but none of them provided an explanation for
their choice of metrics or a reason why the null dimensional reduction precisely works for
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this large class of metrics. The chain of arguments presented in this subsection is intended
as a plausible line of reasoning leading to this choice.

Remark 1: Given an effective potential V̄ , eq.(1.3.11) shows that to any choice of time
unit Ω corresponds distinct ambient metrics (1.3.12). Therefore, to a given Lagrangian
system corresponds an infinite class of relativistic spacetimes not considered in [20].

Remark 2: Let us remind the reader that two Lagrangians L and L′ are said to be equiv-
alent if the actions differ by a total derivative, L′ = L + df

dt , since their Euler-Lagrange
equations are identical. In terms of the potentials, this is equivalent to a gauge trans-
formation Ā′i = Āi + ∂if and V̄ ′ = V̄ − ∂tf . From the point of view of the action, this
means they differ by a boundary term, essentially equal to the variation of the function f .
The interpretation of the variation of u as linear in the variation of the action along the
trajectory suggests that the previous equivalence corresponds to the reparameterisations
u′ = u+f(t, x). One can indeed check that the form (1.3.12) of the line element is preserved
by this coordinate transformation, up to a gauge transformation of the potentials.

1.4 Ambient Lagrangian

Consider now the action principle S [xµ] =
∫
L dτ for the geodesics parameterised by

the affine parameter τ , on the ambient spacetime with line element (1.3.12), where the
quadratic Lagrangian reads

L
[
xµ,

dxν

dτ

]
=

1

2
gαβ (t, x)

dxα

dτ

dxβ

dτ
. (1.4.15)

The affine parameter τ is defined by the affine parameterisation constraint L = −M2

2 ,
which is nothing but (1.3.10). The equations of motion read

for u :
d

dτ

(
Ω
dt

dτ

)
= 0 (1.4.16)

for t :
d

dτ

[
Ω

(
du

dτ
− 2Ū

dt

dτ
+ Āi

dxi

dτ

)]
= −M

2

2Ω
∂tΩ

+Ω

(
−∂tŪ

(
dt

dτ

)2

+ ∂tĀi
dt

dτ

dxi

dτ
+

1

2
∂tḡij

dxi

dτ

dxj

dτ

)
(1.4.17)

for xi :
d

dτ

[
Ω

(
ḡij
dxj

dτ
+ Āi

dt

dτ

)]
= −M

2

2Ω
∂iΩ

+Ω

(
−∂iŪ

(
dt

dτ

)2

+ ∂iĀj
dt

dτ

dxj

dτ
+

1

2
∂iḡkl

dxk

dτ

dxl

dτ

)
(1.4.18)
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1.4. AMBIENT LAGRANGIAN

where the affine parameterisation constraint L = −M2

2 has been used to simplify (1.4.17)-
(1.4.18). We can solve eq.(1.4.16) in the form of (1.3.7) where m is now interpreted as a
constant of motion, dmdτ = 0. This conservation law comes from the fact that the Lagrangian
(1.4.15) does not depend on u. Thus the condition (1.3.7) is obtained as an equation of
motion. Two cases must be distinguished: m = 0 and m 6= 0. The particular case m = 0

corresponds to the geodesics that entirely belong to a given hypersurface t=const since
dt/dτ = 0. Contrary to the generic case m 6= 0, these curves have no interpretation as
dynamical trajectories: they are the rays of the congruence.

• m = 0, M2 = 0 (null rays): If the geodesic is lightlike then the affine parameterisation
constraint (1.3.10) with dt = 0 implies that dxi/dτ = 0. The latter equation together
with dt/dτ = 0 inserted into the equation of motion (1.4.17) imply that du/dτ=const,
since Ω(t, x)=const. In conclusion, the lightlike geodesics belonging to a hypersurface of
constant t are curves with xi constant and with u as an affine parameter. These are the
graviton worldlines defining the gravitational wave. As one can see, they generate the
hypersurfaces t=const which are called “wavefront worldvolumes”. A locus u = f (t, x)

defines a screen of detection/emission.

• m = 0, M2 < 0 (spatial trajectories): One can check that the spacelike geodesics are
at the same time geodesics xµ (τ) of the D-dimensional ambient spacetime and project
onto spatial geodesics xi (τ) of the metric gij = Ω ḡij . This can be seen by checking
that eq.(1.4.18) with dt/dτ = 0 is equivalent to the geodesic equation for the metric gij
and the affine parameterisation constraint reads L = 1

2 gij
dxi

dτ
dxj

dτ = −M2

2 . In this sense,
the wavefront worldvolumes t =const are totally geodesic submanifolds of the ambient
spacetime.

• m 6= 0 (dynamical trajectories): In the generic case m 6= 0, one can reexpress eqs(1.4.17)-
(1.4.18) as:

ü− ∂tŪ − 2∂iŪ ẋ
i + ∂iĀj ẋ

iẋj + Āiẍ
i − 1

2
∂tḡij ẋ

iẋj +
M2

2m2
∂tΩ = 0 (1.4.19)

ẍm + Γ̄mlj ẋ
lẋj + ḡkm

[
ẋi
(
∂tḡki + ∂iĀk − ∂kĀi

)
+ ∂kŪ + ∂tĀk

]
+
M2

2m2
∂kΩḡ

km = 0 (1.4.20)

We can put eq.(1.4.20) in the form of the Euler-Lagrange equation for the original La-
grangian (1.3.1)

ẍm + Γ̄mlj ẋ
lẋj + ḡkm

[(
∂tḡki + F̄ik

)
ẋi − Ēk

]
= 0 (1.4.21)

where we introduced the spatial Levi-Civita connection Γ̄mlj , the magnetic field strength

8



1.5. HAMILTONIAN PERSPECTIVE

F̄ik = ∂iĀk − ∂kĀi and the electric field Ēk = −∂kV̄ − ∂tĀk together with the definition
(1.3.11). Moreover, it can be checked that eq.(1.4.19) is compatible with the expression for
u̇ coming from the affine parameterisation constraint (1.3.10).

This completes the explicit check that the geodesics with m 6= 0 for the ambient space-
time (1.3.12) correspond to dynamical trajectories for the Lagrangian (1.3.1) in terms of
the coordinates xi and t so that the Eisenhart-Lichnerowicz theorem can now be formulated
as:

Theorem 1.4.1 (Eisenhart-Lichnerowicz). The null dimensional reduction along the direc-
tion u of the affine geodesic equation for a curve xµ (τ) =

(
u (τ) , t (τ) , xi (τ)

)
parameterised

by the affine parameter τ , satisfying dt
dτ 6= 0 and gµν

dxµ(τ)
dτ

dxν(τ)
dτ = −M2 on a manifold

endowed with the metric

ds2 = Ω (t, x)
[
2 dt

(
du+ Āi (t, x) dxi − Ū (t, x) dt

)
+ ḡij (t, x) dxidxj

]
reduces to the Euler-Lagrange equations of the holonomic dynamical system characterised
by the Lagrangian

L(t, x, ẋ) =
1

2
ḡij (t, x) ẋiẋj + Āi (t, x) ẋi − V̄ (t, x)

where the effective potential V̄ reads V̄ = Ū + 1
2
M2

m2 Ω, with m = Ω dt
dτ .

We remind the reader that the extra coordinate u can be interpreted as the value of
the action evaluated along the trajectory.

1.5 Hamiltonian perspective

The momenta corresponding to the Lagrangian (1.3.1) are given by pi = ḡij (t, x) ẋj +

Āi (t, x). Thus the Hamiltonian reads

H(t, xi, pj) =
1

2
ḡij (t, x)

(
pi − Āi (t, x)

)(
pj − Āj (t, x)

)
+ V̄ (t, x) (1.5.22)

where ḡij denotes the inverse of the metric ḡij . Obviously, this Hamiltonian function is the
most general polynomial of degree two in the momenta with a positive-definite quadratic
form as leading term.

The connection between the Hamiltonian action principles for the dynamical trajec-
tories and for the ambient geodesics will be manifest in the “parameterised” Hamiltonian

9
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formulation obtained from the Lagrangian formulation where t(τ) is taken as a dynami-
cal degree of freedom. The detailed Hamiltonian analysis 4 of such a system leads to the
following action principle:

S[t, xi, pt, pj , λ] =

∫ [
pi
dxi

dτ
+ pt

dt

dτ
− λ

(
pt +H

(
t, xi, pj

) )]
dτ (1.5.23)

where pt is the conjugate of the (now dynamical) variable t while λ is the Lagrange mul-
tiplier for the first-class 5 constraint pt + H = 0 corresponding to the reparameterisation
invariance of the parameter τ . Solving the constraint as pt = −H inside the action gives
the equivalent action principle

S[t, xi, pj ] =

∫ [
pi
dxi

dτ
− H

(
t, xi, pj

) dt
dτ

]
dτ (1.5.24)

where the reparameterisation invariance τ → τ ′ = τ ′(τ) can be used to impose the gauge
fixation dt/dτ = 1 in order to get the usual action principle S[xi, pj ] =

∫ [
piẋ

i −H
(
t, xi, pj

)]
dt.

Now let us consider the parameterised Hamiltonian formulation of a free relativistic
particle of mass M propagating on the ambient spacetime with line element (1.3.12) that

arises from the Lagrangian L′ = −M
√∣∣∣gαβ dxαdτ dxβ

dτ

∣∣∣:
S[xµ, pν , λ] =

∫ [
pµ
dxµ

dτ
− λ

2
Ω
(
p2 +M2

)]
dτ , (1.5.25)

with pu = Ω dt
dτ and λ a Lagrange multiplier for the mass-shell constraint p2 +M2 = 0 and

where

p2 = gµνpµpν (1.5.26)

= Ω−1 (t, x)
[
2 ptpu + ḡij (t, x)

(
pi − Āi (t, x) pu

)(
pj − Āj (t, x) pu

)
+2 Ū (t, x) p2

u

]
.

As one can see, the form of the inverse metric gµν can be characterised as the most general
ambient inverse metric that is independent of u and such that gtµ ∝ δuµ. These two
properties turn out to be the only two crucial ingredients in the null dimensional reduction
of the Hamiltonian. This again provides a justification for the line element (1.3.12).

4. See e.g. [87] for more details on parameterised systems and their Hamiltonian constraints. Let us
stress that, in the parameterised Hamiltonian formulation, the canonical Hamiltonian vanishes because of
the time reparameterisation invariance.

5. A single constraint is automatically first class.
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When pu 6= 0, it turns out to be convenient to define

Ū = V̄ − 1

2

M2

p2
u

Ω , (1.5.27)

because inserting (1.5.26)-(1.5.27) inside (1.5.25) leads to a form of the action which is
suggestively close to (1.5.23):

S[xµ, pν , λ] =

∫
dτ

[
pi
dxi

dτ
+ pt

dt

dτ
+ pu

du

dτ
− λ

(
ptpu + H(t, xi, pj , pu)

)]
, (1.5.28)

with

H(t, xi, pj , pu) =
1

2
ḡij (t, x)

(
pi − Āi (t, x) pu

)(
pj − Āj (t, x) pu

)
+V̄ (t, x) p2

u . (1.5.29)

The form of this Hamiltonian is the most general function of xµ and pµ that is a homoge-
neous polynomial of degree two in the momenta and independent of u and pt. It can be
seen as the homogenisation of the original Hamiltonian (1.5.22).

The main difference between the ambient action principle (1.5.28)-(1.5.29) and the
reduced action principle (1.5.22)-(1.5.23) is the dependence on the conjugate pair of variable
u and pu. The decisive observation is that, since there is no explicit dependence on the
variable u in the Hamiltonian (1.5.29), the conjugate momentum pu = Ω dt

dτ = m is a
constant of motion. Therefore, it will not play any role in the Hamilton equations for the
remaining variables which will thus be essentially the same as the original system. This
proves the Eisenhart-Lichnerowicz Theorem without the need for performing any tedious
computation. In Hamiltonian language, this Theorem may be phrased simply as follows:
the original system (1.5.22)-(1.5.23) can be seen as the symplectic reduction of the system
(1.5.28)-(1.5.29) through the addition of the extra constraint pu−m = 0, which is first-class
since H is independent of u. In other words, the action principle (1.5.23) is equivalent to
the action principle

S[xµ, pν , λ, µ] =

∫
dτ
[
pi
dxi

dτ
+ pt

dt

dτ
+ pu

du

dτ

−λ
(
ptpu + H(t, xi, pj , pu)

)
− µ

(
pu −m

)]
, (1.5.30)

where µ is a new Lagrange multiplier enforcing the constraint pu = m.

Retrospectively, from the parameterised Hamiltonian perspective the main trick behind
the ambient approach to dynamical trajectories is the homogenisation of the constraint
pt + H(t, xi, pj) = 0 to get a constraint ptpu + H(t, xi, pj , pu) = 0 that is quadratic in

11



1.6. GRAVITATIONAL WAVES AND PLATO’S ALLEGORY

the momenta, via the introduction of an auxiliary momentum coordinate. The resulting
constraint is a nondegenerate quadratic polynomial in the momentum with Lorentzian
signature and can therefore be interpreted as the mass-shell constraint p2 + M2 = 0 of a
free relativistic particle. There is an arbitrariness in such an identification which is reflected
in the relation (1.5.27).

As a side remark, one may notice that by dividing (1.5.29) by pu, one may see that
the auxiliary momentum pu actually plays the role of a nonrelativistic mass (e.g. the
kinetic term of the “light-cone Hamiltonian” H/pu is of the form ~p2/2m). This remark
provides a nice interpretation of the action obtained from (1.5.28) after solving the mass-
shell constraint as pt = −H/pu and fixing the reparameterisation invariance by τ = t:

S[xi, u, pj , pu] =

∫ [
piẋ

i + puu̇−
H
(
t, xi, pj , pu

)
pu

]
dt. (1.5.31)

This interpretation of the auxiliary momentum pu as a nonrelativistic mass is standard
when the ambient spacetime is Minkowski (or AdS) spacetime. In such cases, the ambient
approach essentially coincides with the light-cone formalism, but a remarkable fact is that
this setting actually generalises smoothly to the much wider class of curved spacetimes
with line element (1.3.12) that will be motivated and described more geometrically in the
following.

1.6 Gravitational waves and Plato’s allegory

In order to understand better the heuristics behind the ambient approach, let us de-
scribe the former spacetimes in more geometric terms, starting to sketch some technical
details and motivating our future choices of terminology.

Consider the propagation of a gravitational wave in the ambient spacetime and a screen
detecting the gravitons passing by. In a spacetime diagram, the worldlines of gravitons are
null rays, i.e. they define a null geodesic congruence, and the registered events on the
screen are simply intersections between the screen worldvolume and the null rays. So,
technically, the screen worldvolume is a codimension-one hypersurface which is transverse
to the congruence of null rays, in the sense that each ray intersects it only once (Fig. 1.1).
The events are encoded via the position on the screen and the instant of the intersection.
Heuristically, these coordinates on the screen worldvolume already suggest that the former
might be endowed with a natural structure of (codimension-one) spacetime. In order to
push the spacetime picture further, consider the screen at any given instant as a wavefront.
From a spacetime point of view, the propagation of this wavefront translates into the fact
that null rays generate the corresponding wavefront worldvolume, each such hypersurface
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Figure 1.1: The screen worldvolume is transverse to the congruence of null rays. (In all
figures, we will follow the standard spacetime diagram convention, i.e. time flows from
bottom to top and null directions are at 45◦.)

is labeled by the time of emission, the “retarded” time (Fig. 1.2). The family of these
wavefront worldvolumes provides a foliation of the ambient spacetime the leaves of which
are orthogonal to the null rays. Retrospectively, this provides a geometric definition for a
gravitational wave as a foliated spacetime. The screen worldvolume can then be thought
as a codimension-one hypersurface transverse to this foliation, such that the intersection
between a leave and the screen worldvolume is precisely the instantaneous screen we started
with.

The projection on the screen along rays maps the ambient spacetime on a codimension-
one manifold endowed with a notion of time induced from the foliation of the ambient
spacetime: the retarded time. If the relativistic structure (i.e. the metric) of the ambient
spacetime is preserved along the rays (i.e. they are Killing orbits), then it can induce a well-
defined structure on the quotient space which can be represented as a screen worldvolume.
The remarkable fact is that this projection defines a nonrelativistic spacetime structure
(i.e. absolute rulers and clocks) on the screen worldvolume. 6

6. By construction, this structure does not depend on the specific choice of screen worldvolume, for
instance two screens in relative motions would encode the same geometric data with respect to their rulers
and clocks.
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Figure 1.2: 1. Screen worldvolume; 2. Screen at t = t1; 3. Congruence of null geodesics
generating the wavefront worldvolume t = t1; 4. Wavefont worldvolume t = t1; 5. Screen
at t = t0; 6. Congruence of null geodesics generating the wavefront worldvolume t = t0; 7.
Wavefont worldvolume t = t0

Actually, the induced line element on the screen worldvolume encodes more information
than absolute clocks and rulers but is equivalent to the specification of a Lagrangian for
a holonomic dynamical system. Perhaps even more remarkable is that the projections of
ambient geodesics on the screen have a natural interpretation as dynamical trajectories
of nonrelativistic particles (Fig. 1.3). Furthermore, between the emission of a graviton
by the geodesic and its detection on the screen, the affine parameter along the null ray
is equal to the value of the action (modulo two fixed constants: a multiplicative and an
additive one). In other words, if the physicist knows the shadows of all geodesics together
with the value of this affine parameter, then she/he is able to reconstruct the ambient
spacetime. This procedure provides a concrete description of the Eisenhart lift. In a sense
one might say that if the value of the action is considered as a sort of extra coordinate
that one should add to the absolute space and time coordinates for the description of
nonrelativistic dynamical trajectories, then the corresponding constructed spacetime with
one more dimension admits a natural description in terms of a gravitational wave.

Spacetimes with a null hypersurface-orthogonal Killing vector field have already been
investigated in the literature [72, 88] but, to our knowledge, no specific name has been given
to this wide class of spacetimes. Since this is the one relevant for the ambient approach
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Figure 1.3: The Eisenhart lift, 1. Geodesic of ambient spacetime; 2. Shadow of the ambient
geodesic on the screen worldvolume; 3. Emission of a graviton by the geodesic; 4. Detection
on the screen at t = t1; 5. Emission of a graviton by the geodesic; 6. Detection on the
screen at t = t0;

and as a tribute for the stimulating analogy [88] with the allegory of the cave, we will refer
to such a spacetime as a “Platonic gravitational wave”. Accordingly, its orbit space of null
rays will be called “Platonic screen”. The projection of ambient objects (such as clocks,
geodesics, etc.) on this screen will be called their “shadows”.

1.7 Schrödinger equation from Klein-Gordon equation

As shown in Section (1.5), the Eisenhart-Lichnerowitz Theorem for the classical par-
ticle acquires a simpler formulation when seen from a Hamiltonian perspective. In the
present Section, the Theorem is extended to first-quantised equations for a scalar field, i.e.
the Schrödinger equation is derived as a null dimensional reduction of the Klein-Gordon
equation. In a first step, we review the results of [24, 33] by performing the reduction
for the line element (1.3.13) before generalising these results to the conformally equivalent
class (1.3.12).
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According to the standard rules of quantisation, the momenta appearing in the classical
Hamiltonian formalism are essentially converted into partial derivatives and the Hamilto-
nian turns into an operator such that the mass-shell constraint becomes the Klein-Gordon
equation. One then faces the ambiguity because of the introduction of noncommuting op-
erators. We choose to fix the ambiguity by focusing on the conformal invariant Laplacian
of Yamabe, in order to take advantage of the conformal relation between the classes of
spacetimes at hand. This formalism is reminiscent of the light-cone formulation [89] and
can be seen as a generalisation thereof to suitable curved spacetimes.

Starting with the D-dimensional Klein-Gordon action:

S =

∫
dDx
√
−gΦ∗

(
2Y Φ−M2Φ

)
, (1.7.32)

whose equations of motion read

2Y Φ−M2Φ = 0 , (1.7.33)

where 2Y = 2− D−2
4(D−1)R is the Yamabe operator, with 2 ≡ ∇µ∇µ the Laplace-Beltrami

operator. The Yamabe operator is also known as the conformal Laplacian, because of
the conformal invariance of the equation 2Y Φ = 0 (cf. e.g. appendix D of [90]). More
precisely, if g and ḡ are conformally related via g = Ωḡ, then the equation 2Y Φ = 0 is said
to be conformally invariant with weight −d

4 (where d = D − 2), i.e. it satisfies:

2Y

(
Ω−

d
4 Φ
)

= Ω−1− d
4 2̄Y Φ. (1.7.34)

We start by considering the line element (1.3.13) (this class of metrics will be referred
to as Bargmann-Eisenhart waves in the following Sections) and perform the dimensional
reduction of the action (1.7.32) along the lightlike direction ∂

∂u by considering a specific
Fourier mode in the direction u: Φ(u, t, ~x) = φ(t, ~x)eimu (cf. [24, 33]). As can be easily
checked, the scalar curvature and determinant of the metric (1.3.13) are equal to the ones
of the spatial metric ḡij so we have R̄ = R̄(d) and det ḡ = det ḡ(d).

The action (1.7.32) then reduces to:

S =

∫
dDx

√
ḡ(d) φ∗

[
D2φ+ 2im∂tφ+

1

2
im∂t

(
ln ḡ(d)

)
φ (1.7.35)

−
(
M2 + 2m2Ū +

d

4 (d+ 1)
R̄(d)

)
φ

]

where we introduced the covariant derivative Diφ = ∇̄(d)
i − imĀi. For cosmetic reasons,
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the term involving the time derivative of the determinant for the metric ḡ can be integrated
by parts to obtain:

S =

∫
dDx

√
ḡ(d)

(
φ∗D2φ+ 2m2ρ−

(
M2 + 2m2Ū +

d

4 (d+ 1)
R̄(d)

)
|φ|2

)
(1.7.36)

where ρ stands for the density probability: ρ = i
2m (φ∗∂tφ− φ∂tφ∗). The associated equa-

tions of motion then read:

2̄Y Φ−M2Φ = eimu
[
D2φ− 2m2Ūφ+ 2im∂tφ

+
1

2
im∂t

(
ln ḡ(d)

)
φ− d

4 (d+ 1)
R̄(d)φ−M2φ

]
= 0 (1.7.37)

so that Klein-Gordon equation on the curved spacetime (1.3.13) reduces to Schrödinger
equation on the curved space ḡij (cf. e.g. [91]):

i∂tφ =

[
− 1

2m

(
D2 +

d

4 (d+ 1)
R̄(d)

)
+mV̄ ′ − i

4
∂t

(
ln ḡ(d)

)]
φ (1.7.38)

where we defined V̄ ′ = Ū + M2

2m2 . The operator i∂t + 1
2m

(
D2 + d

4(d+1)R̄
(d)
)

+ i
4∂t
(
ln ḡ(d)

)
can be seen as a nonrelativistic equivalent of the Yamabe operator.

We now switch to the class of metrics whose line element takes the form (1.3.12) (later
referred to as Platonic waves), which are conformally related to the previously studied
class as we have g = Ω (t, x) ḡ. The choice of the Yamabe operator then turns out to be
handy, thanks to the property (1.7.34) which suggests the following ansatz: Φ(u, t, ~x) =

Ω−d/4φ(t, ~x)eimu under which the action (1.7.32) becomes:

S =

∫
dDx

√
ḡ(d) φ∗

[
D2φ+ 2im∂tφ+

1

2
im∂t

(
ln ḡ(d)

)
φ

−
(
M2Ω + 2m2Ū +

d

4 (d+ 1)
R̄(d)

)
φ

]
. (1.7.39)

The associated equations of motion read

2Y Φ−M2Φ = Ω−1− d
4 eimu

[
D2φ+ 2im∂tφ

+
1

2
im∂t

(
ln ḡ(d)

)
φ−

(
M2Ω + 2m2Ū +

d

4 (d+ 1)
R̄(d)

)
φ
]

= 0 (1.7.40)
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which once again leads to Schrödinger equation:

i∂tφ =

[
− 1

2m

(
D2 +

d

4 (d+ 1)
R̄(d)

)
+mV̄ − i

4
∂t

(
ln ḡ(d)

)]
φ (1.7.41)

with V̄ = Ū + M2Ω
2m2 .
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Chapter 2

Platonic waves

Similarly to the definition of manifolds endowed with a Riemannian structure, i.e. a
positive-definite metric, one can define relativistic spacetimes as smooth manifolds endowed
with a Lorentzian structure, i.e. a metric with signature (−,+, ...,+) . Somewhat less
familiar to most physicists are the nonrelativistic spacetimes which are smooth manifolds
endowed with absolute clock and rulers or even absolute time and space (to be defined
below). As will be shown, gravitational waves may hide such nonrelativistic structures
inside their space of rays.

The notions of a gravitational wave (defined geometrically as a spacetime with a
null hypersurface-orthogonal vector field), of a Bargmann-Eisenhart gravitational wave
(= with parallel wave vector field) and of a Platonic gravitational wave (= conformal to
a Bargmann-Eisenhart wave and with Killing wave vector field) are introduced together
with the canonical form of their metric.

2.1 Embedding nonrelativistic structures

The present work deals with nonrelativistic features embedded inside relativistic space-
times. In this context, one can legitimately ask: what constitutes the most general class
of relativistic spacetimes inducing a nonrelativistic structure ? In order to address this
question, one needs first to properly define nonrelativistic structures. We will at first fol-
low the definition of [92] of a Leibnizian structure, which will turn out to be too weak a
requirement and next switch to the more restrictive notion of Aristotelian structure.
A Leibnizian structure [92] comprises the following three elements: a manifoldM, a one-
form ψ and a positive-definite metric γ acting on the kernel of ψ (Everywhere in this work
are vector fields and one-forms assumed to be nowhere vanishing. This assumption will
often be left implicit for the sake of brevity. Similarly, manifolds are taken to be smooth
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and connected.). We will call ψ an absolute clock and γ a collection of rulers. As such, it is
easy to see that any relativistic spacetime induces a Leibnizian structure. Indeed, the tan-
gent space to a D-dimensional relativistic spacetime is isomorphic to Minkowski spacetime
and can be endowed at each point with a set of D orthogonal coframes (e0, e1, ..., eD−1).
Choosing ψ ≡ e0 as an absolute clock, each point is endowed with a positive-definite metric
acting on the kernel of ψ engendered by the vectors dual to the forms e1, ..., eD−1.

As is now manifest, the above definition of a nonrelativistic structure is too weak to
discriminate a subclass of relativistic spacetimes. Furthermore, it does not allow a global
definition of absolute time and space since it only provides a set of local clocks and rulers.
These two drawbacks of the previous definition can be circumvented by the introduction of
an extra condition on the one-form ψ. The requirement that the nonrelativistic structure
allows a global notion of absolute time and space amounts to define submanifolds of M
endowed with the spatial metric γ, i.e. they have to admit the kernel of the one-form ψ

as tangent vector space. The necessary and sufficient condition for the existence of such
integral submanifolds (cf. e.g. appendix B.3 of [90]) is the Frobenius integrability condition
ψ∧ dψ = 0, so that the kernel of ψ defines a foliation ofM by a family of hypersurfaces of
codimension-one called simultaneity slices. These are the integral submanifolds endowed
with the spatial metric γ. Locally, ψ = Ω dt where Ω > 0 and the function t is called
an absolute time. The simultaneity slices are the hypersurfaces of fixed absolute time and
are called absolute spaces, as they are endowed with the positive-definite metric γ. We
will call a Leibnizian structure whose absolute clock satisfies the Frobenius integrability
condition an Aristotelian structure. They were called Leibnizian structures with locally
synchronisable clock in [92]. 1

In order to determine the class of relativistic spacetimes inducing an Aristotelian struc-
ture, we seek for spacetimes admitting a hypersurface-orthogonal vector field [the dual to
the absolute clock ψ, denoted ξ ≡ g−1 (ψ)] and restrict for simplicity our analysis to the
case where ξ is of definite type throughout the entire spacetime. We further restrain to
cases when the transverse metric on the simultaneity slices is positive semidefinite, as seems
natural in order to induce an Aristotelian structure on them (or a quotient thereof). As
spacetimes admitting a spacelike hypersurface-orthogonal vector field necessarily induce a
Lorentzian transverse metric, they do not constitute natural candidates in order to yield a
positive-definite spatial metric. Therefore, we are left with the following two cases:

• g (ξ, ξ) < 0: Relativistic spacetimes admitting a timelike hypersurface-orthogonal

1. Note that the reference to Leibniz can seem somewhat improper since he actually debated with
Newton and strongly argued against absolute time and space. We thus prefer to refer to Aristotle because
Aristotelian physics is pre-relativist (even in the Galilean sense) and also does not include the inertial
principle. Accordingly, our definition of Aristotelian structure does not involve any notion of parallelism
(contrarily to a Galilean manifold, cf. [92, 24]).
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vector field indeed induce an Aristotelian structure as the transverse metric to the vector
field on the simultaneity slices is positive definite. This class of time-foliated spacetimes
includes the Friedmann-Lemaître-Robertson-Walker spacetimes whose cosmological time
labels the different slices which are homogeneous spaces. A peculiarity of time-foliated
spacetimes is that they possess both relativistic and nonrelativistic features, i.e. the
nonrelativistic spacetime merges with the relativistic spacetime, and not with a quotient
thereof. This interesting class will not be considered further here, being already well studied
and moreover stepping outside the scope of the present work which focuses on dimensional
reduction.

• g (ξ, ξ) = 0: The lightlike case will constitute the main object of study of the present
Section and associated relativistic spacetimes will be called gravitational waves.

2.1.1 Gravitational waves

The class of spacetimes with a null hypersurface-orthogonal vector field has the nice fea-
ture of allowing the introduction of a special chart of coordinates, the so-called Brinkmann
coordinates 2 which induce a canonical form for the metric. This is actually the chart we
used in Section 1 and which we will use extensively in the following. These spacetimes
are also interesting since, as suggested by their name, they possess the minimal structure
allowing a fruitful usage of wave-related features for their characterisation.

We start with some definitions: a wave vector field is a hypersurface-orthogonal null
and complete vector field, the orbits of which are called rays.

Definition 2.1.1. A gravitational wave is a Lorentzian structure possessing a wave vector
field.

Note that our definition of a gravitational wave is purely geometrical i.e. does not assume
the metric to be solution of field equations. This is in contradistinction with the more stan-
dard use of the term among relativists where gravitational waves are solutions of vacuum
Einstein equations.

The congruence of rays defines the gravitational wave via the standard rules of geometric
optics. For instance, a wavefront worldvolume is a hypersurface which is orthogonal to the
congruence of rays. Wavefront worldvolumes are thus codimension-one null hypersurfaces
containing a (sub)congruence of rays (because the wave vector field is orthogonal to itself),
cf. Fig.1.2. By definition, a gravitational wave is a spacetime foliated by the wavefront
worldvolumes.

2. The term Brinkmann coordinates seems standard for pp-waves [93] but they were originally intro-
duced for Bargmann-Eisenhart spacetimes [21]. Here we slightly generalise the denotation of this term.
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Figure 2.1: Two-dimensional Minkowski spacetime as a gravitational wave. The wavefront
worldvolumes are the lines x− = const.

Example: The simplest example of a gravitational wave (according to the above defi-
nition) is Minkowski spacetime. It can indeed be foliated by any collection of parallel
null hyperplanes, interpreted as flat wavefront worldvolumes (Fig.2.1). The corresponding
congruence of rays is provided by the parallel null lines inside each leave.

We will denote the wave vector field by ξ. The differential 1-form dual to ξ is referred
to as the wave covector field and written ψ ≡ g (ξ), the components of which are: ψµ ≡
gµνξ

ν = ξµ. Due to the hypersurface-orthogonality condition on the wave vector field ξ,
the wave covector field can be written locally as ψ = Ω df where the primitive f is called
the retarded time (or “phase”) and we assume without loss of generality that Ω > 0. In
components, this reads as ξµ = Ω ∂µf . As one can see, the level sets of the retarded time
(i.e. the loci f = constant) are the wavefront worldvolumes. Notice that, since the wave
(co)vector field is null, Lξf = 0 (since 0 = ξµξ

µ = Ω ξµ∂µf).

Lemma 2.1.2. The wave covector field defines a locally synchronisable absolute clock on a
gravitational wave, whose absolute time is the retarded time and whose simultaneity slices
are the wavefront worldvolumes.

Example: Light-cone time x− provides an absolute time on Minkowski spacetime (Fig.
2.2). Notice in this example, that contrary to nonrelativistic spacetimes, there may ex-
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ist several inequivalent “absolute” times (for instance x− or x0 in fig.2.2) on relativistic
spacetimes that admit inequivalent wave vector fields.

Figure 2.2: Several choices of screen worldvolumes are possible e.g. the timelike screen
worldvolume axis x0, so that leaves of the foliation are labeled by the retarded time t, or
the lightlike screen worldvolume axis x− which labels leaves with light-cone time x−. The
event E1 is encoded on the timelike screen worldvolume by its position x1 and the time of
emission (E2) of the graviton intersecting it: t2 = t1 − x1. Alternatively, on the lightlike
screen worldvolume, the moment of emission (E3) of the graviton intersecting E1 has for
light-cone time x− = t1−x1√

2
.

2.1.2 Brinkmann coordinates

The Brinkmann coordinates are now introduced as follows: two among the D = n+ 1

coordinate vector fields ∂
∂xµ are specialised, let us call them ∂

∂u and ∂
∂t . The first coordinate

is taken to be the affine parameter u along rays (so the corresponding coordinate vector
field is identified with the wave vector itself, ∂

∂u = ξ); the second coordinate corresponds
to the retarded time (t = f); and the remaining d = n − 1 coordinates xi are coordinate
systems on the wavefronts. 3 Thus, one has guµ = g

(
ξ, ∂

∂xµ

)
= ξµ = Ω δtµ. From this last

relation, one sees that the remaining d = n− 1 coordinate vector fields ∂
∂xi

are orthogonal

3. We follow the coordinate convention of [20] and [24] which differs from the standard notation in
gravitational waves literature where our (u, t) coordinates are usually denoted (v, u) respectively.
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to the null vector field, as they should since by construction the coordinates (u, xi) must
provide coordinates on the wavefront worldvolumes. Similarly, the coordinates (t, xi) pro-
vide coordinates on the hypersurface u = 0 that can be interpreted as a screen worldvolume
corresponding to the choice of transverse vector field ∂

∂t .

In a Brinkmann coordinate chart, the line element thus takes the canonical form:

ds2 = gtt dt
2 + 2 Ω dt du + 2 gti dx

idt + gijdx
idxj ,

where the metric components gµν are in general functions of all the coordinates. Looking
backward to Section 1.3 or forward to Section 2.2, one can introduce the (scalar) potential
Ū = −1

2Ω−1gtt, the Coriolis 1-form Āi = Ω−1gti and the conformally related spatial metric
ḡij = Ω−1gij and reexpress the canonical line element as:

ds2 = Ω (t, x)
[
2 dt

(
du+ Āi(u, t, x) dxi − Ū(u, t, x)dt

)
+ ḡij(u, t, x) dxidxj

]
(2.1.1)

where, without loss of generality, Ω can be taken independent of u, as will be shown later.
The inverse metric now reads:

g−1 = Ω−1
[(

2Ū + ḡijĀiĀj
)
∂u ⊗ ∂u + ∂u ⊗ ∂t + ∂t ⊗ ∂u − ḡijĀj (∂u ⊗ ∂i + ∂i ⊗ ∂u) + ḡij∂i ⊗ ∂j

]
.

Example: The light-cone coordinates xµ (µ = +,−, i), where x± = (x0± xn)/
√

2 on the

Minkowski spacetime Rn,1, provide Brinkmann coordinates for the simplest instance of a
gravitational wave (Fig.2.2). The flat line element reads

ds2 = ηµνdx
µdxν = −2 dx+dx− + δijdx

idxj , (2.1.2)

so that one might identify the retarded time t with x− and the affine parameter u with
x+.

It will be useful for some calculations to dispose of a frame version of the Brinkmann
coordinates. A light-cone frame is a moving (co)frame where the line element takes the
form

ds2 = ηabe
aeb = −2 e+e− + δije

iej . (2.1.3)

In the Petrov-type classifications, the vectors e−, e+, ei are often denoted by `, n, mi,
respectively 4. An adapted frame is defined as a light-cone frame where the null frame
` ≡ e− is taken to be the clock ψ = g (ξ). The other null (co)frame n ≡ −e+ is then

4. We keep this convention for the rest of this Section and adopt the following translation table for the
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completely determined by the line element (2.1.3). Often the Brinkmann coordinates will
be used, so that the null coframes will read ` = g (ξ) = Ω dt and n = du+ Āi dx

i − Ūdt.

There is no canonical prescription for the remaining “orthonormal” coframes mi ≡ ei

on the wavefronts, which must be such that

δije
iej = gij dx

idxj .

As one can see from (2.1.3), e+ and e− being null, the (co)frames ei must be spacelike in
order for the spacetime metric gµν to have a Lorentzian signature, and so the metric gij
must be positive definite. 5 However, the type of ∂

∂t (i.e. the sign of gtt and Ū) can be
anything.

The 1-forms ` and n are also useful to covariantly define the transverse metric

⊥γµν = gµν − 2n(µ`ν) = gije
i
µe
j
ν (2.1.5)

with n2 = `2 = 0 and n · ` = 1. It is easy to check that the wave vector field ξ = ∂
∂u ,

as well as ∂
∂t , belongs to the radical of ⊥γ. The transverse metric ⊥γ is necessary in

order to define the optical scalars associated to the wave vector field ξ, i.e. the expansion
θ = ∇αξα, the shear σ and the twist ω. The transverse part of the tensor ∇ξ can indeed
be decomposed into its o(d)-irreducible parts as ⊥γαµ⊥γ

β
ν∇βξα = 1

d θ
⊥γµν +σµν +ωµν with

σµν = σ(µν) and ⊥γµνσµν = 0 and ωµν = ⊥γα[µ
⊥γβν]∇βξα = ⊥γαµ

⊥γβν∇[βξα]. The shear σ
and twist ω are the scalar fields respectively defined by σ2 = 1

2 σ
µνσµν = 1

2 σ
ijσij and

ω2 = 1
2 ω

µνωµν = 1
2 ω

ijωij . Since σ2 and ω2 are sums of squares, the shear σ and the twist
ω respectively vanish if and only the tensors σµν and ωµν respectively vanish.

Remark: We stress that the “rotational” two-form (or “curl”) dξ with components ∂[µξν] =

∇[µξν] and the “rotation” (or “twist”) two-form ω with components ωµν = ⊥γαµ
⊥γβν∇[βξα]

are in general distinct tensors. Indeed, they must be distinguished for null forms, although
they coincide for time (or space) like ones. In fact, from Frobenius Theorem one knows that
a wave vector field is automatically twistless, although it is not necessarily irrotational.

rest of the manuscript 
l = ψ

n =
N

A

m = ei

⊥γ =
N
γ.

(2.1.4)

5. The positive-definiteness of the spatial metric γ is also obvious from the calculation of the determinant
of the ambient metric (2.1.1) which reads det g = −ΩD det γ.
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In the Brinkmann coordinates, the kernel of ψ at each point of the simultaneity slices
is the n-dimensional vector space composed of tangent vectors X satisfying g

(
X, ∂∂t

)
= 0.

Therefore, for X,Y belonging to the kernel of ψ, the action of g writes

g (X,Y ) = gijX
iY j = γ (X,Y ) = ⊥γ (X,Y )

so the induced (or transverse) metric ⊥γ on the simultaneity slices is of rank d = n − 1

and its action reduces to the one of the positive-definite d-dimensional spatial metric γ.
The wavefront worldvolumes are then endowed with a positive semidefinite metric ⊥γ and
then, as such, cannot be given the interpretation of absolute spaces. In order to obtain a
nondegenerate metric, one can quotient the wavefront worldvolume by the null direction.
However, this procedure is only well-defined if the rays are orbits of an isometry. As we
will argue, this further requirement is necessary in order for a gravitational wave to induce
an Aristotelian structure. The next subsection is devoted to a description of this quotient
manifold.

2.1.3 Platonic screens

The previous “gravitational wave” terminology is further justified when one considers
the following Lemma:

Lemma 2.1.3. Any wave vector field is geodesic.

Consequently, rays are null geodesics and can thus be interpreted as graviton worldlines.

Proof: Using the hypersurface-orthogonality of the vector field and Frobenius The-
orem, we see that the 1-form ψ ≡ g (ξ) satisfies dψ = α ∧ ψ for some 1-form α.
Expressing the left-side in terms of Koszul connections and contracting with ξ, one
obtains ∇ξξ − 1

2∇
(
ξ2
)

= (α · ξ) ξ −
(
ξ2
)
α, which, for a null vector field (ξ2 = 0), is

equivalent to the geodesic condition 6.

Proposition 2.1.4. Any gravitational wave admits an affine geodesic wave vector field.

Proof: Let ξ′ be a wave vector field and ξ the vector field defined by ξ′ = fξ, with f
a non-vanishing function. The vector field ξ is null since g (ξ, ξ) = f−2g (ξ′, ξ′) = 0.
Furthermore, denoting ψ′ ≡ g (ξ′) and ψ ≡ g (ξ), the hypersurface-orthogonality
condition of ξ′ reads dψ′ ∧ ψ′ = d (fψ) ∧ (fψ) = fdf ∧ ψ ∧ ψ + f2dψ ∧ ψ = f2dψ ∧

6. A comment on the terminology is in order. In this work, the term geodesic will be used to designate
not-necessarily affinely-parameterised geodesic vector fields (i.e. satisfying ∇ξξ = κ ξ with κ a function of
coordinates) and prefer the term affine geodesic for affinely-parameterised vector fields (satisfying∇ξξ = 0).
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ψ = 0, so that ξ is hypersurface-orthogonal. Since ξ is both null and hypersurface-
orthogonal, it is a wave vector field. Any gravitational wave thus admits a class
of conformally related wave vector fields. Now, Lemma 2.1.3 ensures that there
exists a function κ such that ∇ξ′ξ′ = κξ′. In terms of ξ, this equality becomes
f∇ξξ = κξ − ξ [f ] ξ. Choosing f such that ξ [f ] = κ, one obtains ∇ξξ = 0 and ξ is
thus affine geodesic.

Without loss of generality, the wave vector field ξ will be taken to be affine geodesic
from now on. The equation ∇ξξ = 0 implies that LξΩ = 0 (as can be obtained from the
local expression of the curl of the wave covector, ∂[µξν] = ∂[µΩ ∂ν]f , expressed in terms
of Koszul connections and contracted with the vector field ξµ). As mentioned above, the
factor Ω is thus independent of the affine parameter u along rays.

This property is important in order for Ω to acquire the interpretation of a time unit
on the quotient manifold defined as follows:

Definition 2.1.5. The Platonic screen is the orbit space of rays for a gravitational wave,
i.e. the points of the Platonic screen are identified with the rays of the gravitational wave.

There is no canonical realisation of the Platonic screen as a submanifold of the grav-
itational wave since various slicings are perfectly legitimate. However, any such slicing
corresponds to a specific choice of representative in each orbit. These subtleties justify
the rather abstract but geometric definition of the Platonic screen. A screen worldvolume
is a submanifold of a gravitational wave providing a complete set of representatives of
the Platonic screen. In other words, the points of a screen worldvolume are representa-
tives of equivalence classes constituted by the rays (Table 2.1). In some sense, any screen
worldvolume can be seen as a concrete realisation of the abstract Platonic screen (Fig.1.1).

Lemma 2.1.6. The Platonic screen is endowed with a locally synchronisable absolute clock.
The absolute time on any screen worldvolume is induced from the retarded time of the
gravitational wave.

Proof: The absolute clock locally reads ψ = Ω(t, x)dt which is well-defined on the
Platonic screen, in the sense that it does not depend on the choice of screen world-
volume since the time unit Ω does not depend on the affine parameter u, as was
shown previously.

Similarly to the abstract definition of the Platonic screen, one defines a wavefront as
the orbit space of rays of a wavefront worldvolume. Again it can also be defined more
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Spacetime Coordinates Structure

Manifold Ambient spacetime (u, t, xi) Lorentzian

Quotient manifold Platonic screen

(t, xi) Aristotelian

Submanifold Screen worldvolume, e.g. u = 0

Table 2.1: Summary of the spacetimes in the ambient approach

Leave Coordinates Signature

Manifold Wavefront worlvolume t =const (u, xi) Null

Quotient manifold Wavefront

(xi) Riemannian

Submanifold Screen t =const and e.g. u = 0

Table 2.2: Summary of the leaves in the ambient approach

concretely by the intersection between a wavefront worldvolume and a screen worldvol-
ume, intersection which will be called a screen (Fig.1.2). In other words, a screen is a
submanifold of a wavefront worldvolume providing a complete set of representatives of the
wavefront (Table 2.2). A smooth choice of representatives for the complete set of wave-
front worldvolumes defines a screen worldvolume. As a side remark, let us notice that the
screen worldvolumes can be of any type. When the context makes it clear, screen world-
volumes will sometimes be improperly referred to as “screen” for the sake of concision (as
in Fig.2.3). For instance, the Platonic screen actually corresponds to an infinite collection
of equivalent screen worldvolumes, only differing by the choice of representatives along the
rays.
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Figure 2.3: Examples of screens of different types

2.2 Definitions of Platonic gravitational waves

2.2.1 Bargmann-Eisenhart waves

Of high interest is the class of gravitational waves with parallel rays. Precisely this
class of metrics was considered by Eisenhart [20] in his description of dynamical trajecto-
ries as geodesic motions, so these spacetimes are sometimes called “Eisenhart spacetimes”
by mathematicians (cf. e.g. [22, 94]). However, the bridge between nonrelativistic physics
and general relativity was rediscovered independently much later and considerably gener-
alised in [24, 25] where such spacetimes were called “Bargmann spacetimes” in order to
stress the natural appearance of the Bargmann group [26] as the structure group in this
setting. Therefore, as a tribute to both prestigious men, we will refer to these spacetimes
as “Bargmann-Eisenhart” 7.

Definition 2.2.1. A Bargmann-Eisenhart wave is a Lorentzian structure with a parallel
null vector field.

In this subsection, the ambient metric will be denoted ḡ in agreement with the line
element (1.3.13). As suggested by our choice of terminology, these spacetimes are indeed
gravitational waves. This can easily be seen as follows. The null vector field, being parallel,
is necessarily curl-free and then the associated 1-form ḡ (ξ) is closed; thus, ξ is (trivially)
hypersurface-orthogonal. Therefore any parallel null vector field is a wave vector field and
the wave covector field is closed.

7. As a side historical remark, these spacetimes were considered by [21] so they are also sometimes
called “Brinkmann” spacetimes [95].
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Example: It looks somehow natural to look for examples among maximally symmetric
spacetimes, but this is deceptive because Minkowski spacetime is the only maximally-
symmetric Bargmann-Eisenhart wave. Indeed, spacetimes with a nonvanishing constant
curvature do not admit parallel vector fields.

Since Bargmann-Eisenhart waves are gravitational waves, one can use the Brinkmann
coordinates in order to bring their line element in its canonical form 8. Following the
prescription sketched in Section 2.1, one identifies ∂

∂u with the null vector field ξ. Being
parallel, ξ is also Killing and one has Lξ ḡ = 0, that is, all components of the metric ḡ are
independent of the coordinate u. Furthermore, locally ḡ (ξ) = df (since the wave covector
field is closed) and, identifying the phase f with the coordinate t, one obtains Ω = 1. The
line element of a Bargmann-Eisenhart wave then takes the canonical form:

ds̄2 = ḡtt(t, x) dt2 + 2 dtdu+ 2ḡti(t, x) dxidt + ḡij(t, x) dxidxj

= 2 dt
(
du+ Āi(t, x) dxi − Ū(t, x)dt

)
+ ḡij(t, x) dxidxj (2.2.6)

where in the second equation one introduced the scalar potential Ū = −1
2 ḡtt, the Coriolis

1-form Āi = ḡti (also called vector potential) and the spatial metric ḡij . This choice of
terminology essentially follows the common usage in the Bargmann framework [32]. We
will also refer to the coordinate t, that is the primitive of the parallel null vector field as the
absolute time (called “Galilean” time in [24, 25]), because of its nonrelativistic interpretation
in the Aristotelian structure. On flat spacetime

(
Ū = Āi = 0, ḡij = δij

)
, the absolute time

is identified with the light-cone time which is a null coordinate but one should keep in
mind that, in general, the coordinate vector field ∂/∂t corresponding to the absolute time
itself can be of any type. The arbitrariness of the signature of the screen worlvolume u = 0

befalls to the arbitrariness of the type of ∂/∂t, as can be seen from the screen worldvolume
line element (1.3.6). It is quite remarkable that the ambient spacetime, obtained from a
nonrelativistic spacetime by adding an extra coordinate u and endowed with line element
(2.2.6), has always a Lorentzian signature, despite the arbitrariness on the type of the
direction t.

The canonical form of the line element is preserved by local Abelian gauge transformations
along the null fiber (u 7→ u−Λ(t, x), Ū 7→ Ū−∂tΛ, Āi 7→ Āi+∂iΛ) and by coordinate trans-
formations of the last d = n− 1 coordinates (xi 7→ x

′i(t, x), Ū 7→ Ū − 1
2Āi

∂xi

∂t′ − ḡij
∂xi

∂t′
∂xj

∂t′ ,
Āi 7→ Āj

∂xj

∂xi′
+ ḡkl

∂xk

∂t′
∂xl

∂xi′
, ḡij 7→ ḡkl

∂xk

∂xi′
∂xl

∂xj′
). While the second transformations correspond

to coordinate transformations on the wavefronts, the first transformations correspond to
the arbitrariness in the choice of the origin for the affine parameter along the rays. Phys-

8. We closely follow the discussion in the Section 2.2 from the lecture notes [93].
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Figure 2.4: Gauge transformation of u relate different choices of screen worldvolume.

ically, these transformations correspond to different choices of the screen worldvolume,
from say the hypersurface u = 0 to the hypersurface u′ = u − Λ(t, x) = 0 (cf. Fig.
(2.4)). Let us point out that the previous transformations also have a nonrelativistic in-
terpretation. For instance, the Abelian gauge transformations correspond to equivalence
relation between Lagrangians differing by a total derivative, as mentioned at the end of
Section 1.3. Moreover, the coordinate transformations on the wavefronts correspond to the
reparameterisation (1.3.2) of holonomic coordinates.

Furthermore, locally, it can be shown (cf. e.g the Section 10.1 of [10]) that one of the
potentials, either the scalar or the vector one, can be put to zero by a suitable coordinate
transformation:

u = u′ + f
(
t′, x′

)
,

xi = xi
(
t′, x′

)
,

corresponding to the following redefinitions

Ū ′ = Ū − ∂f

∂t′
− 1

2
Āi
∂xi

∂t′
− ḡij

∂xi

∂t′
∂xj

∂t′
, (2.2.7)

Ā′i =
∂f

∂xi′
+ Āj

∂xj

∂xi′
+ ḡkl

∂xk

∂t′
∂xl

∂xi′
, (2.2.8)

ḡ′ij = ḡkl
∂xk

∂xi′
∂xl

∂xj′
. (2.2.9)

It seems plausible that in fact both potentials can be set to zero, Ū ′ = Ā′i = 0, as is
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natural since we have as many arbitrary functions (f and xi) as potentials (Ū and Āi) at
our disposal; however, we are not aware of any rigorous proof of this expectation.

The curvature two-form F̄ij = ∂[iĀj] of the Coriolis 1-form is called the Coriolis two-
form. A Bargmann-Eisenhart wave whose Coriolis 1-form vanishes will be called Coriolis-
free.

Let us turn back now to nonrelativistic structures and see in which sense the Platonic
screen of a Bargmann-Eisenhart wave is a nonrelativistic spacetime with an Aristotelian
structure. As mentioned earlier, the wavefront worldvolumes of a gravitational wave are
not absolute spaces since they are null hypersurfaces (the induced metric ⊥γ is degenerate
on the wavefront worldvolumes) and so although gravitational waves may induce a (locally
synchronisable) absolute clock on the wavefront worldvolumes, they lack the necessary
structure to define absolute spaces. However, the wavefronts of Bargmann-Eisenhart waves
are Riemannian manifolds (so the Platonic screen possesses an absolute space). In order
to see why, notice that since the coordinate vector fields ∂

∂xi
are orthogonal to ∂

∂u , the
(induced) metric on a wavefront is well-defined on the orbits. The tangent vectors to
the wavefront are equivalence classes [v] of vectors v ∼ v + α ξ (α ∈ R) and the Killing
property of ξ ensures that the induced metric is constant along rays. Very concretely, the
components of the positive-definite metric on the wavefronts read ḡij(t, x) in the Brinkmann
coordinates.

We now reformulate the very beginning of the Section 2 in [24] with our own terminol-
ogy:

Lemma 2.2.2. The Platonic screen of a Bargmann-Eisenhart wave is a nonrelativistic
spacetime, where the Aristotelian 9 structure is induced from the ambient metric.

Let us now focus on a subclass of Bargmann-Eisenhart spacetimes introduced by
Brinkmann [21] and vividly studied since: the so-called pp-waves. A gravitational wave
is plane-fronted if the wavefronts define an absolute space which is flat. Similarly, a
Lobachevsky-plane-fronted wave is a gravitational wave where wavefronts are Lobachevsky
planes [96] (or hyperbolic spaces in higher dimensions).

Definition 2.2.3. The term pp-wave stands for plane-fronted wave with parallel rays (or
propagation) and designates a spacetime admitting a parallel null vector field such that the
wavefronts are flat.

A widespread – though slightly misleading – terminology defines pp-waves as what
we called Bargmann-Eisenhart waves (cf. e.g. Section 10.1 of [10]). The reason behind

9. More precisely, the induced structure is Augustinian (cf. Definition 3.2.16) since the absolute clock
can be shown to be closed.

32



2.2. DEFINITIONS OF PLATONIC GRAVITATIONAL WAVES

this choice of terminology is the fact it implicitly assumes that only solutions of vacuum
Einstein equations are considered. Indeed, Bargmann-Eisenhart waves which are Ricci-flat
are plane-fronted in “low” dimensions D 6 5, since they have a Ricci-flat spatial metric
which, for d 6 3, is consequently flat. Moreover, Ricci-flat pp-waves are (essentially, cf.
discussion below) Coriolis-free. Presumably for this reason, pp-waves in the sense of the
literal Definition 2.2.3 were called “gyratons” in [97]. As suggested by this terminology,
(nonvanishing) Coriolis covector field somewhat encodes gyroscopic effects.

In a Brinkmann coordinate system with Cartesian coordinates on the wavefront, the
line element of a pp-wave takes the canonical form:

ds2 = 2 dt
(
du+ Āi(t, x) dxi − Ū(t, x)dt

)
+ a−2(t)δij dx

idxj (2.2.10)

since here each wavefront is a flat Riemannian manifold by assumption, i.e. the metric
ḡij(t, ~x) is flat for fixed absolute time t. However, the coordinate transformation ~x′ = a−1~x

preserving the canonical form of the metric allows us to assume without loss of generality
that the canonical form of the pp-wave metric is

ds2 = 2 dt
(
du′ + Ā′i(t, ~x

′) dx′i − Ū ′(t, ~x′)dt
)

+ δij dx
′idx′j . (2.2.11)

We now establish that Einstein pp-waves are (under topological assumptions on the
wavefront) Coriolis-free. We start by noting that the Ricci scalar of a Bargmann-Eisenhart
wave is equal to the one of the wavefront, and therefore vanishes for pp-waves. Einstein
pp-waves are then necessarily Ricci-flat. We now establish the following Lemma:

Lemma 2.2.4. When the first Betti number of its wavefront is zero, a gravitational wave
with zero Coriolis force (F̄ = 0) is Coriolis-free.

Proof: If the Coriolis force vanishes, then the Coriolis 1-form is closed (F̄ = d̄Ā = 0)
with respect to the spatial de Rham differential d̄ := dxi∂i. Furthermore, if the first
Betti number of the wavefront is zero, then the Coriolis 1-form is exact (Ā = d̄f)
and then can be gauged away via a local abelian transformation along the fiber.

Making use of this Lemma, we establish the following Proposition:

Proposition 2.2.5. When the first and second Betti numbers of its wavefront are zero, an
Einstein pp-wave is Coriolis-free.

Proof: The spatial 2-form F̄ on the wavefront is exact by definition (F̄ = d̄Ā), thus
it is closed (d̄F̄ = 0). The Ricci equation R−i = 0 implies that F̄ is also coclosed
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(? d̄ ? F̄ = 0). When the second Betti number of the wavefront is zero, there are no
harmonic 2-forms on it. Therefore, the Coriolis curvature is vanishing. When the
first Betti number of the wavefront is zero, this implies the Coriolis-freeness.

Coriolis-free pp-waves then occupy a distinguished place among Bargmann-Eisenhart space-
times. In fact, we can show that Coriolis-free pp-waves are Kerr-Schild spacetimes, a class
of metrics we now briefly review. We will refer to a (generalised) Kerr-Schild spacetime as
a manifold endowed with a metric of the following form: gµν = gµν−2U ξµξν , with ξ a null
vector field and gµν a constant curvature background. In flat four dimensional spacetime,
this class was studied in [98] by Kerr and Schild, and was generalised to higher dimensions
in [99] and to (A)dS backgrounds in [100] where the following properties have been shown
in full generality:

• The inverse metric takes the (exact) form: gµν = gµν + 2U ξµξν (and |g| = 1 for flat
background).

• The vector field ξ is null or geodesic (or even affine geodesic) equivalenty with respect
to g or g.

• The expansion, shear and twist are the same with respect to g or g.

• If the potential U of a Kerr-Schild spacetime is constant along the affine geodesic null
vector field, then the latter is Killing (or even parallel) equivalently with respect to g or g.

From the above canonical form, we see that Coriolis-free pp-waves
(
Āi = 0

)
are Kerr-

Schild spacetimes with Minkowski background metric: gµν = ηµν − 2Uξµξν . In Brinkmann
coordinates the Minkowski metric reads ds2 = 2 dtdu+ d~x2, while the Kerr-Schild potential
is identified with the pp-wave potential U ≡ Ū and ξ = ∂

∂u is the null parallel vector field.

A well-known property of the Kerr-Schild spacetimes is the fact that their fully nonlinear
Einstein equations reduce to their linearisation around the background metric g i.e. Kerr-
Schild spacetimes linearise the Einstein tensor. This feature greatly simplifies the equations
of motion. Accordingly, for Coriolis-free pp-waves the vacuum Einstein equations reduce
to the linear Laplace equation for the potential Ū and, as such, Coriolis-free pp-waves
traveling along the same direction are seen to obey to a superposition principle.

Examples of Coriolis-free pp-waves:

• An exact plane wave is a Coriolis-free pp-wave whose scalar potential is a quadratic form
in the Cartesian coordinates xi. The line element of an exact plane wave then takes the

34



2.2. DEFINITIONS OF PLATONIC GRAVITATIONAL WAVES

form:

ds2 = 2 dt
(
du−Mij (t)xixjdt

)
+ δij dx

idxj (2.2.12)

with Mij(t) an arbitrary symmetric d× d matrix.

A homogeneous plane wave is an exact plane wave whose quadratic form is independent
of the absolute time. A homogeneous plane wave whose matrix M is proportional to the
identity is a homogeneous pp-wave (Hpp-wave). Hpp-waves have been studied in the null
dimensional reduction framework in [46] where they were shown to induce nonrelativistic
spacetimes with cosmological constant (Newton-Hooke spacetimes), whose symmetry group
is that of the harmonic oscillator.

Exact plane waves are well known to enjoy the following two properties:

– An exact plane wave is conformally flat if and only if it is a Hpp-wave. Indeed, the
only nonvanishing component of the Weyl tensor of a Coriolis-free pp-wave reads, in
Brinkmann coordinates C−i−j = ∂i∂jŪ− 1

dδij∂k∂
kŪ . Substituting Ū = Mijx

ixj , one
obtains the following condition for the matrixM in order for the exact plane wave to
be conformally-flat: Mij = 1

dδijM
k
k and M is therefore proportional to the identity:

Mij = α (t) δij with α an arbitrary function of t. The graph of the potential of a
conformally-flat plane gravitational wave is therefore a paraboloid of revolution.

– The most important property of exact plane waves, that gave their name, is that
they are Einstein manifolds if and only if their quadratic form is traceless.
As we noted, demanding that a pp-wave is an Einstein manifold is then equivalent
for it to be Ricci-flat. The only nonvanishing component of the Ricci tensor of a
Coriolis-free pp-wave in Brinkmann coordinates reads: R−− = ∂k∂

kŪ . Substituting
Ū = Mijx

ixj , we see that the Ricci-flat condition is satisfied if and only if M is
traceless. A traceless symmetric d× d matrix indeed parameterises the (transverse)
polarisation states of an on-shell linearised gravitational wave. We saw that this
property remains manifest at nonlinear level for the Ricci-flat plane gravitational
wave.

2.2.2 Platonic waves as conformal Bargmann-Eisenhart waves with pre-
served null Killing vector

The following definition of a Platonic wave is motivated by the most general form
(1.3.14) of the line element for which the null dimensional reduction works. Its goal is
to explain the geometric origin of the line element considered by Lichnerowitz [22] and
their relation with Bargmann-Eisenhart waves. Later on, an equivalent definition will
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be provided that displays an explanation for the fact that their Platonic screen carries a
structure of nonrelativistic spacetime.

Definition 2.2.6. Platonic waves are Lorentzian structures with a null Killing vector field
such that the latter becomes parallel with respect to a conformally equivalent metric.

As suggested by our choice of terminology, they are indeed gravitational waves: their
null Killing vector field is a wave vector field, as explained below. The definition should
be understood in more concrete terms as follows: let ξ denote the null Killing vector field
with respect to the metric g, i.e. Lξg = 0. The further hypothesis is that there exists a
conformally related metric ḡ, that is to say g = Ωḡ, such that ∇̄ξ = 0, where ∇̄ is the
Koszul connection with respect to ḡ.

As is clear from the previous definition, a Platonic wave is conformally related to a
Bargmann-Eisenhart wave, both sharing the same null Killing vector field (Lξg = 0 =

Lξ ḡ) since a parallel vector field is automatically Killing. Hence a number of properties
of Platonic waves will be easily derived from those of Bargmann-Eisenhart manifolds.
Obviously, any Bargmann-Eisenhart wave is trivially a Platonic wave.

Examples: It is natural to look again for examples among maximally symmetric space-
times. Minkowski spacetime is of course a Platonic wave since it is even a Bargmann-
Eisenhart wave. Surprisingly enough, de Sitter spacetime is not a Platonic wave since it
does not admit a Killing vector field which is globally null (not only at the Killing horizon).
So the simplest example of a proper Platonic wave (“proper” in the sense that it is not a
Bargmann-Eisenhart wave) is anti de Sitter spacetime.

Before writing the canonical form of the Platonic metric in Brinkmann coordinates,
we first check that Platonic waves are gravitational waves. The proof rests on the one for
Bargmann-Eisenhart waves, where we established that the 1-form dual to the null vector
field ξ by the Bargmann-Eisenhart metric ḡ is locally exact: ḡ (ξ) = df . Therefore, the
1-form obtained via the conformally related metric g = Ω ḡ writes locally g (ξ) = Ω df and
ξ indeed is hypersurface-orthogonal.

For later purposes, let us establish the following facts:

Lemma 2.2.7. Two conformally equivalent spacetimes possess the same Killing vector field
if and only if the conformal factor is constant along this vector field.

Proof: The proof is quite straightforward: one makes use of the vanishing of the Lie
derivative of the metric along a Killing vector field and of the Leibniz rule. This
implies that the conformal factor Ω satisfies LξΩ = 0 (similarly to Lξf = 0 for any
gravitational wave).
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Proposition 2.2.8. For any Platonic wave:

• The conformal factor that relates it to a Bargmann-Eisenhart spacetime is constant
along the null Killing vector field.

• The null Killing vector field is hypersurface-orthogonal and its integrating factor is
equal to the conformal factor. So both the primitive and the integrating factor are constant
along the null Killing vector field.

Proof: A vector field is parallel if and only if it is Killing (so the Lemma implies
the first point) and curl-free (which shows the second point, since hypersurface-
orthogonal is equivalent to conformally-curl-free).

This justifies the use of Brinkmann coordinates and explains the form of canonical line
element of Platonic waves:

ds2 = gtt(t, x) dt2 + 2 Ω(t, x) dtdu + 2gti(t, x) dxidt + gij(t, x) dxidxj

= Ω (t, x)
[
2 dt

(
du+ Āi(t, x) dxi − Ū(t, x)dt

)
+ ḡij(t, x) dxidxj

]
. (2.2.13)

The second equation emphasises the interpretation of Platonic waves as conformal Bargmann-
Eisenhart waves. In order to obtain this canonical form, one can also repeat the argument
used in Section 2.1.3 and use the independence of the Platonic metric from the coordinate
u since it corresponds to a Killing direction.

Remark: A spacetime conformally equivalent to a Bargmann-Eisenhart wave via a con-
formal factor that only depends on the absolute time is itself a Bargmann-Eisenhart wave
admitting the same null parallel vector. As shown in [25], the converse is also true: two
Bargmann-Eisenhart waves are conformally equivalent if and only if the conformal factor
that relates them only depends on the absolute time. The metric of such a spacetime (with
conformal factor Ω(t)) can always be put in the canonical form (2.2.6) via a redefinition of
t of the form t 7→ t′ =

∫ t
Ω(τ)dτ , dt′ = Ω(t)dt:

ds2 = Ω(t)
[
Ū(t, x) dt2 + 2 dtdu + 2Āi(t, x) dxidt + ḡij(t, x) dxidxj

]
= 2 dt′

(
du+ Ā′i(t

′, x) dxi − Ū ′(t′, x)dt′
)

+ ḡ′ij(t
′, x) dxidxj

with Ū ′(t′, x) = Ω−1(t)Ū(t, x), Ā′i(t
′, x) = Āi(t, x) and ḡ′ij(t

′, x) = Ω(t)ḡij(t, x).

2.2.3 Platonic gravitational waves as Julia-Nicolai spacetimes

We now show the equivalence between the Platonic waves introduced in the previous
subsection and the class of spacetimes studied by Julia and Nicolai in [72].
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To do so, we proceed in two steps: firstly, by reviewing the equivalence between spacetimes
satisfying the Julia-Nicolai condition and gravitational waves with a Killing wave vector
field and, secondly, by showing the equivalence between the latter class and the one of
Platonic waves.

In [72], the authors focused on a class of Lorentzian structures which admit a null Killing
vector field and which are solutions of the vacuum Einstein equations. In the following, we
will consider spacetimes satisfying the Julia-Nicolai condition: R (ξ, ξ) := Rµνξ

µξν = 0,
with R the Ricci tensor, without the further assumption that the spacetimes considered
are Einstein, as the other components of the vacuum Einstein equations play no role in the
argument.

Lemma 2.2.9 (Julia-Nicolai [72]). A Lorentzian structure admitting a null Killing vec-
tor field satisfies the Julia-Nicolai condition if and only if the null Killing vector field is
hypersurface-orthogonal.

In order to be self-contained, we review the proof presented in the Section 2 of [72]
(here in arbitrary 10 dimension) and complete some steps that were left to the reader.

Proof: By contracting the commutator of two Koszul connections of the 1-form ψ ≡
g (ξ), by ξ and then contracting the indices, we easily see that the Julia-Nicolai con-
dition is equivalent to ξ

(
∇2ψ

)
:= ξµ (gρσ∇ρ∇σψµ) = 0 if ξ is Killing. Furthermore

we have, for any Killing vector field ξ with constant norm, the equivalence:

ξ
(
∇2ψ

)
= 0⇔ (dψ)2 = 0

with (dψ)2 := (dψ)µν(dψ)µν . We now prove the following Lemma:
Lemma 2.2.10. For ξ a null affine geodesic vector field with dual 1-form ψ ≡ g (ξ)

the following equivalence holds:
(dψ)µν(dψ)µν = 0⇔ ψ ∧ dψ = 0.
In order to establish this Lemma, we place ourselves in an adapted frame, such

that the only nonvanishing component of the 1-form is ψ+ 6= 0.
The vector ξ, being affine geodesic and null, satisfies ξ (dψ) = 0 which reduces in an
adapted frame to (dψ)a− = 0 and we then have (dψ)2 = (dψ)ij(dψ)ij . The condition
(dψ)2 = 0 is then equivalent to (dψ)ij = 0. On the other hand, the only nontrivial
component of ψ ∧ dψ in this frame is (ψ ∧ dψ)+ij = ψ+(dψ)ij which also vanishes if
and only if (dψ)ij = 0, concluding the proof.

We therefore established the following string of equivalences:

10. An alternative proof that a hypersurface-orthogonal vector field satisfies the Julia-Nicolai condition
via the four-dimensional Raychaudhuri’s equation can be found in [101].
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R (ξ, ξ) = 0 ⇔ ξ
(
∇2ψ

)
= 0 ⇔ (dψ)2 = 0 for a Killing vector with constant norm

and (dψ)2 = 0⇔ ψ ∧ dψ = 0 which stands for a affine geodesic null vector field.

Remembering that the constant norm and affine geodesic conditions are satisfied
by a null Killing vector field allows to write R (ξ, ξ) = 0 ⇔ ψ ∧ dψ = 0 for a null
Killing vector field. Using Frobenius Theorem concludes the proof.

We already showed in Section 2.2.2 that Platonic waves are gravitational waves. By
definition, they possess a wave Killing vector field. Our next task concerns the equivalence
of the class of Platonic waves with the class of gravitational waves with a Killing wave
vector field.

Proposition 2.2.11. A gravitational wave possesses a wave vector field that is Killing if
and only if it is a Platonic wave.

Proof: Starting from a spacetime characterised by the metric g and admitting a
Killing wave vector field ξ (i.e. Lξg = 0) whose dual 1-form locally reads g (ξ) = Ω df ,
we consider a conformally related metric ḡ via the integrating factor Ω, that is g = Ωḡ.
Computing the Lie derivative Lξg = LξΩ ḡ + ΩLξ ḡ and recalling from Section 2.1.3
that the integrating factor Ω of an affine geodesic wave vector field is constant along
this vector field (LξΩ = 0), we conclude that ξ is Killing for both metrics. Further-
more, the dual 1-form associated to ξ via ḡ reads ḡ (ξ) = df , so the vector field ξ is
curl-free with respect to the metric ḡ. Being both Killing and curl-free, ξ is parallel
with respect to ∇̄ and thus, we have shown that the initial spacetime admitting a
null Killing vector field is conformally related to a spacetime with respect of which
this same vector becomes parallel. In other words, it is a Platonic wave.

From the point of view of the ambient approach, the definition of Platonic waves as
gravitational waves with a Killing wave vector field is somewhat the most natural require-
ment for the wavefronts to define an absolute space. Indeed, the wavefront worldvolumes
are null hypersurfaces but the corresponding wavefronts or, equivalently screens, are Rie-
mannian manifolds. The proof of this fact follows exactly the same steps as for the case of
Bargmann-Eisenhart waves whose crucial ingredient was the Killing property which ensures
that the metric does not depend on the choice of screen worldvolume. In other words, the
Platonic waves are the most general class of gravitational waves such that their Platonic
screen is canonically endowed with an Aristotelian structure 11.

Proposition 2.2.12. The Platonic screen of a Platonic wave is a nonrelativistic spacetime,
where the Aristotelian structure is induced from the ambient metric.

11. Strictly speaking, the most general class is the class of Kundt waves (cf. Section 4.2). More accu-
rately, the Platonic waves are the most general waves inducing an Aristotelian structure on their space of
Killing orbits.
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In other words, the nonrelativistic structure of the Platonic screen is the shadow of
the relativistic structure of the Platonic wave. In a Brinkmann chart, the validity of the
Proposition is manifest since the absolute clock and space are respectively defined by:

ψ = Ω(t, x)dt , d`2 = gij(t, x)dxidxj .

2.2.4 Platonic gravitational waves as Kundt spacetimes

We conclude this Section by showing that Platonic waves belong to the Kundt class
(introduced in [102], see [103] for a detailed account), in the following sense 12:

Definition 2.2.13. A Kundt wave is a Lorentzian structure possessing a null geodesic,
expansionless, shearless and twistless vector field.

In other words, the three optical scalars of the gravitational wave must vanish.

Lemma 2.2.14. Platonic waves are Kundt waves.

This property will play an important role in the characterisation of Platonic waves (cf.
Section 2.4.2) since the classification of Kundt waves in any dimension has recently been
developed extensively [103].

Proof: We already know that the null Killing vector field ξ characterising a Platonic
wave is hypersurface-orthogonal and geodesic. Besides, being null and Killing, the
vector field ξ is necessarily affine geodesic, allowing the use of the following Lemma
(for a proof, see [104] Section 2.4.3):
Lemma 2.2.15. Consider an affine geodesic vector field ξ, then ξ is hypersurface-
orthogonal if and only if its twist vanishes.

Therefore the vector field ξ is twistless. Furthermore, being Killing, it is also
expansionless and shear-free.

Remark: The Kundt property implies that the second fundamental form (also called
extrinsic curvature) on the wavefront worldvolumes vanishes; thus, the latter are totally
geodesic.

The general form of Kundt metrics reads [105]:

ds̃2 = 2dt
(
du− Ũ (u, t, x) dt+ Ãi (u, t, ~x) dxi

)
+ g̃ij (t, x) dxidxj . (2.2.14)

12. As for other classes of spacetimes, the terminology is a bit fuzzy in the literature because of the fact
that often they are implicitly assumed to be solutions of Einstein equations (e.g. Section 27.1 of [101]).
We adopt a geometric definition which is used for instance in [103].
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From this canonical form of the line element, it is manifest that (i) Kundt waves are
gravitational waves and (ii) Bargmann-Eisenhart waves belong to the Kundt class. The
first assertion can morevover be refined as:

Proposition 2.2.16. A gravitational wave is a Kundt wave if and only if, in Brinkmann
coordinates, the wavefront metric ḡij is independent of the coordinate u.

Proof: The proof is straightforward by performing the redefinition u 7→ Ω (t, x)u in
2.2.14 and comparing with the line element 2.1.1.

However, the previously shown fact that Platonic waves belong to the Kundt class is
less transparent from this point of view and requires additional work to make link between
the canonical form of the line element for a Platonic wave (2.2.13) and the one for a
Kundt wave (2.2.14). Starting from the Platonic line element (2.2.13) and performing the
redefinition u′ = Ωu puts the Platonic metric in the Kundt form (2.2.14) with Ũ (u′, t, x) =

Ω (t, x) Ū (t, x) + u′∂t (ln Ω) and Ãi (u′, t, x) = ΩĀi (t, x) − u′∂i (ln Ω). The potential and
Coriolis form acquire a linear dependence in u′ and then Platonic waves are seen to belong
to the more restrictive class of degenerate Kundt spacetimes [103] for which the potential
and Coriolis form of (2.2.14) take the specific form 13:

Ũ (u, t, x) = u2Ũ (2) (t, x) + u Ũ (1) (t, x) + Ũ (0) (t, x) (2.2.15)

Ãi (u, t, x) = u Ã
(1)
i (t, x) + Ã

(0)
i (t, x) .

By comparison with the transformed Ũ and Ãi, we see that for a Platonic wave brought in
the canonical degenerate Kundt form (2.2.14)-(2.2.15), we have Ũ (2) = 0, Ũ (1) = ∂t (ln Ω)

and Ũ (0) = ΩŪ as well as Ã(1)
i = −∂i (ln Ω) and Ã(0)

i = ΩĀi.

Proposition 2.2.17. Platonic waves are degenerate Kundt waves.

The coordinate transformations

u = u′
(
∂t

∂t′

)−1

+ f
(
t′, ~x′

)
t = t

(
t′
)

xi = xi
(
t′, ~x′

)
13. A more geometric definition of degenerate Kundt spacetimes states that a degenerate Kundt wave

has to satisfy the following two conditions: i) it must be a Kundt wave with respect to a null vector ` and
ii) the Riemann tensor and all its Koszul connections must be of type II (or more special) in the kinematic
(i.e. aligned with `) frame, see Section 2.4.2 for terminology.
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together with the redefinitions

U
′(2)
(
t′, ~x′

)
= U (2)

U
′(1)
(
t′, ~x′

)
= U (1) ∂t

∂t′
−A(1)

i

∂xi

∂t′
+ 2fU (2) ∂t

∂t′

U ′(0) =
∂t

∂t′

[ [
U (0) + fU (1) + f2U (2)

] ∂t
∂t′

+

(
∂t

∂t′

)−2 ∂2t

∂t′2
− ∂f

∂t′

−
[
A

(0)
i + fA

(1)
i

] ∂xi
∂t′

]
− 1

2
gij
∂xi

∂t′
∂xj

∂t′

A
′(1)
i = A

(1)
j

∂xj

∂xi′

A
′(0)
i =

∂t

∂t′

[
∂f

∂xi′
+
(
A

(0)
j + fA

(1)
j

) ∂xj
∂xi′

]
+ gkl

∂xk

∂t′
∂xl

∂xi′

g′ij = gkl
∂xk

∂xi′
∂xl

∂xj′
.

preserve the canonical form of the line element (2.2.14)-(2.2.15) for a degenerate Kundt
wave. Remarkably, these transformations also preserve the subclass of Platonic waves
written in the canonical form of degenerate Kundt waves in the sense that Ũ ′(2) = 0,
Ũ
′(1) = ∂

′
t (ln Ω) as well as Ã

′(1)
i = −∂′i (ln Ω). This fact will be useful in the future proof

of Proposition 2.4.8.

Finally, we summarise the hierarchy of properties that have been discussed in the
following chain of inclusion:

Gravitational waves⋃
Kundt waves⋃

Degenerate Kundt waves⋃
Platonic waves⋃

Bargmann-Eisenhart waves⋃
pp-waves
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2.3 Miscellaneous Platonic waves

As an illustration, we now briefly review various types of proper Platonic waves (i.e.
which do not belong to the Bargmann-Eisenhart class).

Anti de Sitter spacetime: the most symmetric example of a proper Platonic wave. The
existence of a null Killing vector field is manifest in the Poincaré coordinates

ds2 =
1

z2
[2 dudt+ dz2 + d~y2]. (2.3.16)

As one can see, the wavefronts are hyperbolic spaces of dimension d as is manifest from
their line element: d`2 = 1

z2 [dz2 + d~y2]. In other words, anti de Sitter (AdS) spacetime is
an example of a Lobachevsky-plane-fronted wave.

AdS-gyraton [106]: Lobachevsky-plane-fronted wave conformally equivalent to a pp-
wave whose line element writes

ds2 =
1

z2

[
2 dt

(
du− Ū(t, z, ~y)dt+ Āi (t, z, ~y)

)
+ dz2 + d~y2

]
. (2.3.17)

All curvature scalar invariants of AdS-gyratons are constant and identical to the ones of
AdS.

Siklos spacetime [96]: Coriolis-free AdS-gyratons of line element

ds2 =
1

z2

[
2 dt

(
du− Ū(t, z, ~y)dt

)
+ dz2 + d~y2

]
. (2.3.18)

This definition is related to one of the equivalent characterisation of the class of “Lobachevsky-
plane gravitational wave” by Siklos himself in D = 4 dimensions [96]. They were later
reinterpreted as “AdS pp-waves” in [107]. Siklos waves are Kerr-Schild spacetimes i.e. can
be written as gµν = gµν − 2Uξµξν with g the AdS metric. In Brinkmann coordinates
the background metric reads (2.3.16) while the Kerr-Schild potential writes U = z2 Ū

and ξ = ∂
∂u is the null Killing vector field. Siklos spacetimes are Einstein if and only

if the scalar potential Ū has vanishing Laplace-Beltrami operator on AdS space, i.e.
1√
−g∂µ

(√
−ggµν∂νŪ

)
= z2

(
∂2
z Ū + ∂i∂

iŪ
)

+ (2−D) z∂zŪ = 0. Einstein Siklos waves
are furthermore weakly universal [108], as will be discussed in Section 2.4.2.

Kaigorodov solution [109]: Siklos spacetime with potential that only depends on the
coordinate z (in the Brinkmann-Poincaré coordinates) in the following way: Ū(z) ∝ zn

(with D = n+ 1 the dimension of spacetime). Without loss of generality, its line element
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is thus

ds2 =
1

z2

[
2 dt (du± zn dt) + dz2 + d~y2

]
. (2.3.19)

Kaigodorov solutions belong to the class of Einstein Siklos spacetimes. In other words,
they are vacuum solutions in the presence of a negative cosmological constant.

Schrödinger spacetime (SchZ): Siklos spacetime where, in the Brinkmann-Poincaré
coordinates, Ū(z) ∝ z2(1−Z) where Z > 1 is called the dynamical exponent because of the
nonrelativistic scale transformation t 7→ λZt, ~x 7→ λ~x, with ~x := (z, ~y) and u 7→ λ2−Zu,
which preserves the line element

ds2 =
1

z2

[
2 dt

(
du+ z2(1−Z)dt

)
+ dz2 + d~y2

]
. (2.3.20)

Anti de Sitter spacetime corresponds to Z = 1: Sch1 = AdS which is the homogeneous
manifold for the isometry group O(n, 2) acting on its conformal boundary as conformal
transformations. From the point of view of symmetries, the dynamical exponent Z = 2 is
also of high interest: Sch2 is a homogeneous manifold (cf. [33, 110] for detailed global and
coordinate-independent descriptions) with the Schrödinger group Sch(d) as the isometry
group that acts on the conformal boundary as Schrödinger transformations (this was the
property that motivated their introduction in [30, 31]). Contrary to Kaigorodov solutions,
the Schrödinger spacetimes SchZ for Z 6= 1 are not solutions of Einstein equations, even
in the presence of a cosmological constant. However, they are solutions of richer theories
with exotic matter (such as Proca fields [30, 31]) or some supergravity theories (cf. e.g.
references in [110]).

We summarise in figure 2.5 the main class of Platonic examples whose physical interest
is well established by the considerable literature dwelled upon.

Figure 2.5: AdS-gyratons
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Platonic plane waves: Spacetimes whose line element reads:

ds2 =
1

~x2

[
2dt
(
du− Ū (t, ~x) dt+ Āi (t, ~x) dxi

)
+ d~x2

]
. (2.3.21)

This name has been chosen because they are indeed plane-fronted Platonic waves in D = 4

(and their wavefronts are cylinders R × Sd−1 in higher dimensions), as can be seen in the
spherical coordinates with radial coordinate r = |~x|. TheD = 4 dimensional Platonic plane
waves form the only class of nonhomogeneous plane-fronted proper Platonic spacetimes
with constant scalar curvature invariants, as will be explained in Section 2.4.2. However,
they seem of little physical interest since none of them are Einstein manifolds.

2.4 Geometric properties of Platonic gravitational waves

2.4.1 Global properties: completeness and causality

Since global issues are investigated in the present Section, one should be more specific
about the global structure of the spacetimes which will be considered. For the sake of
simplicity, we will restrict our analysis to Platonic waves with:

(i) topology R2 × Σ, where R2 corresponds to the domain of (u, t) in the Brinkmann
coordinates,

(ii) conformal factor Ω and components gαβ of the spacetime metric that are regular
functions of t and xi,

(iii) geodesically complete wavefronts Σ endowed with the metric gij ,

(iv) conformally related Bargmann-Eisenhart waves such that their wavefronts Σ are en-
dowed with a time-independent metric ḡij and are geodesically complete.

Physically, an important property of spacetimes is the absence of singularities, in the
sense of geodesic completeness. Effectively, the geodesics of Platonic waves are described as
trajectories for a dynamical system (1.3.1) defined in terms of the components of the metric
ḡij , the vector potential Āi and the effective potential V̄ . Due to the above simplifying
assumptions, the only way for a geodesic to be incomplete in this restricted class of Platonic
waves is that the corresponding dynamical trajectory goes to spatial infinity in a finite time.

Heuristically, one might expect that the radial behavior of the effective potential at
spatial infinity controls the motion of observers at large distances, so that the behaviors
of the conformal factor and scalar potential would control the geodesic completeness of
Platonic waves. Indeed, these ideas can be converted into a Theorem, which is a perfect
example of the utility of the ambient approach in the study of gravitational waves. Its

45



2.4. GEOMETRIC PROPERTIES OF PLATONIC GRAVITATIONAL WAVES

proof is essentially a byproduct of Eisenhart-Lichnerowitz Theorem, i.e the geodesic com-
pleteness of Platonic waves follows from the completeness of the corresponding dynamical
trajectories. For Bargmann-Eisenhart waves, this is an equivalence [111]. The distinction
arises for proper Platonic waves (i.e. Ω 6=const) because of the fact that finite time inter-
vals ∆t = t1− t0 along a dynamical trajectory always correspond to finite affine-parameter
intervals

∆τ = τ1 − τ0 =
1

m

∫ t1

t0

Ω
(
t, x(t)

)
dt (2.4.22)

along an ambient geodesic, since by assumption (ii) the conformal factor Ω is finite for any
value of t and xi. However, the converse is not necessarily true because if Ω tends to zero
when |t| → ∞, then ∆τ may be finite even for infinite |∆t|.

In order to state our result, some definitions should be introduced. Let us denote by

‖x‖ =

x∫
x0

√
ḡij(x′) dx

′idx′j (2.4.23)

the geodesic distance from the “origin” (chosen to be any given point) x0 on Σ. “Spatial
infinity” corresponds to the limit ‖x‖ → ∞.

Definition 2.4.1 (Candela, Romero, Sánchez [112, 113]). A function f(t, x) on R × Σ

grows at most quadratically along finite times if for each T > 0 there exist some positive
constants AT and BT such that

f(x, t) 6 AT ‖x‖2 +BT ∀(t, x) ∈ [−T, T ]× Σ .

The function is said to grow subquadratically along finite times if the inequality is strict.

A Corollary 14 of the works [111, 112, 113] is the following fact:

Proposition 2.4.2 (Candela, Flores, Romero, Sánchez [111, 112, 113]). Bargmann-Eisenhart
waves obeying to conditions (i)-(iii) and with potential Ū(x, t) decreasing [i.e. −Ū(x, t)

growing] at most quadratically at spatial infinity along finite times are geodesically com-
plete.

Therefore, by merely adapting the powerful results of [112, 113] (in particular Theorem
2) on the completeness of dynamical trajectories, one can show:

14. Their Corollary was not stated with the same degree of generality as formulated here, though the
authors of [111, 112, 113] must be aware of this stronger formulation since it follows in a straightforward
way from their many results.
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Proposition 2.4.3. Platonic waves obeying to conditions (i)-(iv) with:
– conformal factor Ω(t, x),
– minus the scalar potential −Ū(x, t),
– absolute value of the time derivative of the conformal factor |∂tΩ(t, x)|,
– absolute value of the time derivative of the scalar potential |∂tŪ(t, x)|,

that grow at most quadratically at spatial infinity along finite times, are geodesically com-
plete.

One should stress that the above bounds on the growths are with respect to the geodesic
distance on Σ defined by the spatial metric ḡij (so not by the wavefront metric gij = Ωḡij).

Proof: Ambient geodesics with m = 0 are effectively described as geodesics of the
wavefronts Σ with respect to the metric gij . They are ensured to be complete by
hypothesis (iii).

Ambient geodesics with m 6= 0 are effectively described as dynamical trajectories
with respect to the action principle (1.3.4). Theorem 2 of [112, 113] applies because of
hypotheses (i)-(iv) and ensures that they are complete if minus the effective potential
−V̄ and the absolute value of its time derivative |∂tV̄ | grow at most quadratically
along finite times. Indeed, the effective potential V̄ = Ū+ 1

2
M2

m2 Ω, defined by (1.3.11),
decreases at most quadratically at finite times for all values of M2 ∈ R because of
the four hypotheses on the growing behavior. Similarly, |∂tV̄ | 6 |∂tŪ |+ 1

2 |
M2

m2 | |∂tΩ|
grows at most quadratically at finite times.

Application: Schrödinger spacetimes SchZ with Z > 2 are expected to be geodesically
complete gravitational waves, as follows from the above Proposition. This remains obscure
in the local Poincaré-like coordinates but becomes more manifest in the global “trapping”
coordinates

ds2 =
1

z2

[
2dt

(
du− 1

2

(
cos2(Z−2) (t) z2(1−Z) + z2 + ~y2

)
dt+ dz2 + d~y2

)]
(2.4.24)

introduced in [114, 115] for this purpose. The Schrödinger spacetimes with Z = 2 were
proved to be geodesically complete in [114, 115] but the case Z > 2 was left open. The
domain 0 < z < ∞ fulfills the assumptions (i)-(iii) for Z > 2 (this condition ensures the
regularity of the scalar potential). The conformal factor and scalar potential satisfy the
hypotheses of the Proposition 2.4.3 for Z > 5/2. Indeed, for all Z > 1, Ω and ∂tΩ go to
zero when z goes to ∞ and −Ū < 0. Moreover, |∂tŪ | =

∣∣(Z − 2) cos2Z−5 (t) sin (t) z2(1−Z)
∣∣

grows at most quadratically in z for Z > 5/2. Strictly speaking, the assumption (iv) is
not satisfied because ḡij = δij is the flat metric and the half-space 0 < z < ∞ is not
geodesically complete since straight lines may cross the boundary z = 0. Nevertheless,
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this subtlety should not be a problem in regard of the geodesic completeness taking into
account the known fact from [114, 115] that, for Z > 2, timelike and lightlike geodesics
cannot reach z = 0 for a finite value of the affine parameter. Still, this fact prevents us
from a full rigorous proof of the geodesic completeness for Z > 2. 15

Another important global property of spacetimes is their causal structure. By defini-
tion, a Platonic wave is conformally related to a Bargmann-Eisenhart wave; thus, both
share locally the same causal structure. Therefore, without loss of generality one may re-
strict the study of causal properties of the Platonic waves to the one of Bargmann-Eisenhart
waves, being careful about the domain of definition of the conformal map. Platonic waves
are causal spacetimes [116] but not more in general. 16 For instance, a celebrated result
of Penrose is his proof [117] that exact plane waves are strongly causal but not globally
hyperbolic (nor causally simple). As a byproduct of the ambient approach, the property
of causal simplicity of Bargmann-Eisenhart waves was shown to be equivalent (modulo
technical assumptions) to the existence of maximisers for the proper time between causally
related events [88].

As geodesic completeness, the causal structure of Platonic waves is governed by the
behavior of the potential at spatial infinity. Indeed, the following Theorem was shown [116]
for Bargmann-Eisenhart waves R2 × Σ which are Coriolis-free and with time-independent
geodesically-complete wavefronts Σ: if the potential decreases, at spatial infinity, with
respect to the Riemannian distance on the wavefront (I) at most quadratically, then it is
strongly causal, or (II) subquadratically, then it is globally hyperbolic. There is a wide class
of relevant gravitational waves which satisfy the assumption (I) but not (II) and which are
geodesically complete and strongly causal but not globally hyperbolic. Exact plane wave
solutions and anti de Sitter spacetimes are the perfect example of such Platonic waves.

As one can see, the faster the potential decreases, the weaker is the causal structure
of the Platonic wave. In fact, another result of [116] for these same generic classes of
spacetimes is that: if the potential is nonpositive and decreases superquadratically (i.e.
faster than −‖x‖2) at spatial infinity, then it is not distinguishing (which is the weakest
condition coming after mere causality). In any case, an important lesson to draw is that
Platonic waves should be such that their scalar potential is bounded from below or at most
decreases slowly at spatial infinity in order to have standard causality properties and no
singularity.

Finally, because of the importance of black objects in contemporary general relativity,
another important global issue is the existence of an event horizon. Partial answers are

15. The upper bound Z > 5/2 can be optimised till Z > 2 by adapting the Corollary 3 of [112, 113].
16. We refer to the Sections 4.1 of the review [95] for a useful reminder of the hierarchy of causality

conditions in general relativity.
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that Coriolis-free pp-waves cannot possess a horizon while some examples of Platonic waves
do possess one [118]. However, such black waves are generated by somewhat exotic matter
and it has been shown that a large class of Platonic waves with a regular horizon cannot
be solutions of Einstein equations in vacuum or with null matter [119].

2.4.2 Curvature scalar invariants: classification

Curvature scalar invariants (i.e. scalars built as polynomials formed from the Riemann
tensor and its Koszul connections) constitute a powerful tool in the equivalence problem,
that is the task to determine if two given metrics are locally isomorphic or not. As such,
Riemannian manifolds are entirely determined by their curvature scalar invariants [120]
and one is then able to tell if two Riemannian manifolds are isomorphic by systematically
comparing their respective curvature scalar invariants. For Lorentzian spacetimes though,
this Theorem does not hold and there exists a nontrivial class of spacetimes which are not
uniquely characterised by their invariants so that more elaborate procedures such as the
Cartan-Karlhede algorithm are needed in order to solve the equivalence problem. In four
dimensions, this special class of spacetimes is identified with the one of degenerate-Kundt
metrics [121], introduced in Section 2.2.4, so that nonequivalent degenerate Kundt metrics
can share identical invariants. Although it stays true that degenerate-Kundt spacetimes
are not determined by their scalar invariants in higher dimensions [122], it remains to be
proved that they are the only higher dimensional spacetimes enjoying this property. We
established earlier that Platonic waves are degenerate-Kundt; therefore, we formulate the
following:

Proposition 2.4.4. Platonic waves are not determined by their scalar curvature invari-
ants.

The very existence of a class of spacetimes not being characterised by their invariants
opens the possibility of Lorentzian manifolds having vanishing curvature scalar invariants
(called VSI spacetimes in the following) without necessarily being flat. As is obvious from
the previously stated Theorem, the only Riemannian VSI manifolds are flat. By definition,
curved Lorentzian VSI manifolds are not determined by their scalar curvature invariants
and, furthermore, it can be shown that they belong to the degenerate-Kundt class in any
dimension [123]. The authors of [124] showed that in arbitrary dimension a spacetime is VSI
if and only if it belongs to the Kundt class, i.e. admits a geodesic nonexpanding, shear-free
and twist-free null vector field ξ, and the Riemann tensor is of type III (or more special)
relative to ξ. The second condition involves the notion of the boost order of a tensor, which
we define, following the terminology introduced in [125, 126] (cf. [127] for a pedagogical
review), as the difference between the number of “+” and “−” in the components of a
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covariant tensor (concretely, all down indices) written in an adapted frame. The condition
prescribing that the Riemann tensor of a VSI spacetime must be of type III relative to ξ
is equivalent to have a Riemann tensor with strictly negative boost order when computed
in the adapted frame.

Concretely, the condition that the boost order of the Riemann tensor is strictly negative
amounts to the set of equations below:

Boost order Riemann component

2 R+i|+j = 0

1 R+−|+i = R+i|jk = 0

0 R+−|+− = R+−|ij = R+i|−j = Rij|kl = 0

We now focus on the VSI spacetimes among the Platonic waves and prove the following
Lemma:

Lemma 2.4.5. A Bargmann-Eisenhart wave is VSI if and only if it is a pp-wave.

Proof: Platonic waves belong to the Kundt class so the only remaining condition to
satisfy is that the boost order of the Riemann tensor is negative.

The existence of a congruence of parallel rays implies that Rab|cdξd = 0 and thus
we have, in the kinematic frame, Rab|c+ = 0 since ξ is nowhere vanishing. Therefore
the first six conditions are automatically satisfied for a Bargmann-Eisenhart wave.
The last condition is equivalent to be plane fronted.

The extension of this result to Platonic waves is rendered quite simple by the useful result
of [128] stating that if a VSI spacetime admits a null (or timelike) Killing vector field ξ,
then ξ is necessarily parallel. Therefore the class of VSI Platonic waves reduces to the one
of VSI Bargmann-Eisenhart spacetimes and we have the following Proposition:

Proposition 2.4.6. A Platonic wave is VSI if and only if it is a pp-wave.

One way to heuristically interpret this result is to consider that the VSI property of a
Platonic wave descends to the wavefront, which being Riemannian, must necessarily be
flat.

We now consider the natural extension of the VSI class that is spacetimes possessing
constant curvature scalar invariants (CSI). For Riemannian manifolds, the class of CSI
metrics reduces to (locally) homogeneous manifolds [129]. The Lorentzian case is again
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richer as, in four dimensions, the CSI class is composed of all (locally) homogeneous man-
ifolds as well as a subset of the degenerate Kundt spacetimes dubbed degenerate-CSIK
metrics [130]. Degenerate-CSIK are Kundt spacetimes for which there exists a frame such
that all curvature tensors (that is the Riemann tensor and all its Koszul connections) have
vanishing positive boost weight components and constant boost weight zero components.
In higher dimensions, the situation is less clear than in the VSI case as it is not yet known
if the class of (locally) homogeneous spacetimes together with the class of degenerate-CSIK
spacetimes exhaust the CSI class when D > 4. For this reason, we will focus in the sequel
on the D = 4 case.

We again start with the Bargmann-Eisenhart case. Actually, this question has already
been addressed in [131] (where Bargmann-Eisenhart spacetimes are denoted CCNV) and
the following Proposition has been established:

Proposition 2.4.7 (McNutt, Coley, Pelavas [131]). A four-dimensional Bargmann-Eisenhart
wave is CSI if and only if its wavefront is locally homogeneous.

Again, we note that the CSI property seems to befall to the wavefront. There are
three types of 2-dimensional locally homogeneous Riemannian spaces, respectively locally
isometric to: the sphere S2, the Euclidean plane E2 and the hyperbolic plane H2. The
general expression of a four-dimensional CSI Bargmann-Eisenhart spacetime, in Brinkmann
coordinates then reads:

ds2 = 2 dt
(
du− Ū(t, ~x)dt+ Āi(t, ~x) dxi

)
+ d`2 (2.4.25)

where the wavefront line element takes the form d`2 = dx2 + 1
λ2 sin2 (λx) dy2 where S2:

λ2 > 0, E2: λ2 = 0 and H2: λ2 < 0. Obviously, the Euclidean case corresponds to a
pp-wave and the spacetime is then VSI. In order to address the Platonic case, we will rely
on the classification of four dimensional degenerate-CSIK metrics proposed in [130] and
prove the following Proposition:

Proposition 2.4.8. A four-dimensional Platonic wave is CSI if and only if it belongs to
one of the following classes:

– locally homogeneous
– CSI Bargmann-Eisenhart
– AdS-gyraton
– Platonic plane wave.

Proof: As stated earlier, four-dimensional CSI spacetimes consist of all locally ho-
mogeneous or degenerate-CSIK spacetimes 17. We now focus on Platonic waves

17. Note that these two classes intersect, see e.g. footnote 14 in [132].
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belonging to the degenerate-CSIK class and make use of the classification of four-
dimensional degenerate-CSIK displayed in [130]. More technically, the authors of
[130] wrote, for each class of locally homogeneous wavefront (i.e. S2, E2 and H2)
the two-dimensional one-forms Ã(1)

i allowing the construction of a degenerate-CSIK
spacetime. Our task is then to require that the obtained line element matches the
form of Platonic waves seen as degenerate-Kundt metrics (cf. Section 2.2.4) for some
function Ω (t, x). This requirement is quite drastic as, besides the CSI Bargmann-
Eisenhart, only two classes of proper Platonic waves remain, namely AdS-gyratons
and Platonic plane waves.

We note that no nonhomogeneous spherical wavefront proper Platonic waves are CSI. The
figure 2.6 provides a summary of the Platonic CSI spacetimes.
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Figure 2.6: Four-dimensional Platonic CSI spacetimes: Note that the set VSIrpp-wave is
empty.

The study of CSI spacetimes is partly motivated by the physically relevant notion
of “universality” which designates the property enjoyed by spacetimes which are vacuum
solutions of any theory of quantum gravity (in the sense of effective field theory, e.g. the
string theory low-energy effective action). A more precise definition [108] distinguishes
between weakly (and strongly) universal spacetimes to designate spacetimes for which
any conserved symmetric tensor of rank two constructed from the metric, the Riemann
tensor and its Koszul connections is a constant multiple of the metric (vanishes). The
link between the universality and CSI properties has been highlighted in [133], where it
was shown that any universal four-dimensional spacetime must be CSI. However, there
is still no crisp result allowing us to discriminate which CSI spacetimes are universal.
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A conjectured candidate for a subset of universal CSI spacetimes are the so-called CSIΛ
spacetimes [134] whose invariants constructed from the traceless Ricci tensor, Weyl tensor
and their Koszul connections vanish. The work [134] displays a classification of four-
dimensional CSIΛ spacetimes which relies on the one proposed in [130]. Then, by similar
arguments as the one used in the proof of Proposition 2.4.8, we establish the following fact:

Proposition 2.4.9. CSIΛ Platonic waves are either pp-waves or AdS-gyratons.

Indeed, this class contains the two classes of universal Platonic waves already known
in the literature: Coriolis-free pp-waves have been shown to be strongly universal in [135]
while Siklos waves are known to be weakly universal [108].
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Chapter 3

Intrinsic geometric structures:
relativistic vs nonrelativistic

In the present Chapter, various geometric structures are introduced in a purely intrinsic
manner, i.e. without reference to the notion of embedding nor to Cartan geometry, which
will be examined further (respectively in Chapters 4 and 6). The content of this Chapter
consists mostly in a review of the existing literature, with the exception of the last Section
which proposes some new notions of parallelism.

After a briew review of standard definitions and properties regarding relativistic struc-
tures (Section 3.1), we switch to the investigation of nonrelativistic structures (Section 3.2)
by emphasising their points of divergence with their relativistic avatars. We first review
nonrelativistic metric structures in Section 3.2.1. These are characterised by a manifold
endowed with a degenerate contravariant metric whose radical (cf. Definition A.1.2) is
spanned by a 1-form, dubbed the absolute clock. The role played by fields of observers
in nonrelativistic physics will be discussed at length as well as related objects. We then
discuss two restrictions that can be imposed on the absolute clock 1-form, namely when
the 1-form is closed (Augustinian structure) or satisfy the Frobenius Criterion (Aristotelian
structure). In Section 3.2.2, we discuss the possibility to endow nonrelativistic metric struc-
tures with a notion of parallelism, in the guise of a Koszul connection 1. We first focus
on torsionfree Koszul connections compatible with the underlying metric structure, thus
restricting the scope of the analysis to Augustinian structures. We thus review the notions
of Galilean and Newtonian connections, with particular attention given to the equivalence
problem (i.e. the search for necessary structures in order to uniquely determine a given

1. We will prefer the denomination “Koszul connection” to the more widespread designations of “covari-
ant derivative” or “affine connection” in order to avoid confusion with the different meanings of these terms
in the mathematical literature.
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connection). Apart from the standard characterisation of Newtonian connections in terms
of equivalence classes of field of observers and 1-forms, this approach will lead us to re-
view the less standard Lagrangian formulation of Newtonian manifolds. Section 3.2.3 will
conclude this Chapter by examining two propositions of connections endowing Aristotelian
structures, dubbed respectively Horizontal and Platonic connections. The definition of
these two notions of connection will rely on the generalisation to the Aristotelian case of
the “standard” and Lagrangian formulations of Newtonian connections, respectively.

Minuscule Greek indices µ, ν, ... will denote spacetime indices taking d+1 values (0, 1, 2, . . . , d)
while minuscule latin indices as i, j, ... will denote spatial indices taking d values (1, 2, . . . , d).

3.1 Relativistic structures

We start by reviewing some standard material about relativistic structures in order to draw
comparison with nonrelativistic ones and fix some terminology.

Definition 3.1.1 (Riemannian structure). A Riemannian structure designates a manifold
endowed with a positive-definite metric.

Although this definition restricts to the case of signature (+, . . . ,+), a similar one can be
given in the pseudo-Riemannian case:

Definition 3.1.2 (Lorentzian structure). A Lorentzian structure consists in a manifold
endowed with a non-degenerate metric of signature (−,+, . . . ,+).

These “relativistic” structures are therefore characterised by a metric structure but, as such,
are not endowed with a notion of parallel transport. This supplementary notion of paral-
lelism can be implemented under the features of a Koszul connection (cf. Definition A.9.1)
compatible with the metric structure. The term “compatible” is here to be understood in
the sense of Definition A.9.4. We are thus led to define:

Definition 3.1.3 (Riemannian/Lorentzian manifold). A Riemannian (Lorentzian) mani-
fold consists in a Riemannian (Lorentzian) structure supplemented with a compatible Koszul
connection.

We will retain this convention in the following and use the word “structure” in order to
designate a manifold endowed with a metric-like structure while keeping the term “mani-
fold” for cases where a compatible Koszul connection is added. However, the distinction
drawn here is only relevant when the Koszul connection has torsion (cf. Definition A.9.2),
due to the following Theorem and its Corollary:
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Theorem 3.1.4 (Space of metric compatible connections). Let g be a (pseudo)-Riemannian
metric on a manifold M . The set of all Koszul connections compatible with the metric g
forms a vector space isomorphic to the vector space of all possible torsions.

Theorem 3.1.4 is a consequence of Cartan’s Lemma and can be restated in our terminology
by saying that a given Riemannian/Lorentzian structure supplemented with a vector field
valued 2-form (the torsion) defines uniquely a Riemannian/Lorentzian manifold. Further-
more, given a particular metric structure, there is no restriction on the possible torsion
which can span the whole vector space of vector field valued 2-forms. As we will see, these
features are characteristic of the relativistic structures and will be one of the main points
of discrepancy with nonrelativistic structures. The following Corollary is immediate:

Theorem 3.1.5 (Fundamental Theorem of (pseudo)-Riemannian geometry). There is a
unique torsionfree Koszul connection compatible with a given (pseudo)-Riemannian metric.

This torsionfree Koszul connection is called the Levi-Civita connection and plays the role
of the zero of the vector space corresponding to all possible Koszul connections compatible
with the metric structure. This should be distinguished from the case where no metric
structure is involved: in that case, the space of all Koszul connections on a manifold pos-
sesses a structure of affine space, with associated vector space the space of 1-contravariant,
2-covariant tensor fields Γ

(
TM ⊗ ∨2 T ∗M

)
. This translates the well-known fact that the

difference between two Koszul connections on the same manifold is a tensor
(
an element of

the vector space Γ
(
TM ⊗ ∨2 T ∗M

) )
although a Koszul connection is not. In holonomic

coordinates, if one writes ∇µY λ = ∂µY
λ + ΓλµνY

ν , then the components Γλµν defining the
Levi-Civita connection are equal to the usual Christoffel symbol:

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) . (3.1.1)

We stress that Theorem 3.1.5 involves no restriction on the metric structure, so that any
Riemannian/Lorentzian structure induces a unique torsionfree Koszul connection. As we
will see, this property is lost when one deals with degenerate metric structures.

Definition 3.1.6 (Lorentzian basis). Let (M , g) be a (d+ 1)-dimensional Lorentzian struc-
ture with non-degenerate covariant metric g. A Lorentzian basis of the tangent space TxM
at a point x ∈M is an ordered basis Bx = {e0x, . . . , edx} which is orthonormal with respect
to gx.

The basis vectors eax, with a ∈ {0, · · · , d} thus satisfy the condition gx (eax, ebx) = ηab,
with ηab the Minkowski metric. The denomination Lorentzian is justified by the following
Proposition:
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Proposition 3.1.7. At each point x ∈ M , the set of endomorphisms of TxM mapping
each Lorentzian basis into another one forms a group isomorphic to the Lorentz group.

Conformal relativistic structures

Definition 3.1.8 (Conformal class of metrics). A conformal class of metrics is an equiv-
alence class, denoted [g], in which two metrics g and g̃ ∈ Γ

(
∨2 T ∗M

)
are said to be

equivalent if there exists a positive function Ω ∈ C∞ (M ) such that g̃ = Ω g.

Regarding parallelism, there is no Levi-Civita connection compatible with a given con-
formal class, as the one preserving a given representative g of the class will not preserve
a metric g̃ = Ω g related to the first one by a (non-constant) conformal factor Ω. Each
metric thus induces its own Levi-Civita connection and the best that can be done is to
specify the transformation relations between Christoffel symbols. Explicitly, if we denote
by ∇̃ and ∇ the respective Levi-Civita connections associated to the conformally related
metrics g̃ and g with conformal factor Ω such that g̃ = Ω g, thus ∇̃g̃ = 0 and ∇g = 0 so
that the Christoffel symbols for ∇̃ read:

Γ̃λµν =
1

2
g̃λρ (∂µg̃ρν + ∂ν g̃ρµ − ∂ρg̃µν)

= Γλµν +
1

2

(
δλµ∂ν ln Ω + δλν∂µ ln Ω− gλρgµν ∂ρ ln Ω

)
(3.1.2)

with Γλµν the Christoffel symbols of ∇ given by eq.(3.1.1). One can make use of eq. (3.1.2)
in order to compute ∇̃g = −d (ln Ω) g. The metric g is therefore said recurrent (cf. e.g.
[136]) with respect to ∇̃, with recurrence 1-form −d (ln Ω).

Definition 3.1.9 (Weyl structure). A conformal class [g] of metrics supplemented with a
map F : [g] → Ω1 (M ) satisfying F

(
eλg
)

= F (g) − dλ, ∀ λ ∈ C∞ (M ) and g ∈ [g] is
called a Weyl structure.

A Weyl structure ([g] , F ) can be seen as an equivalence class [(g, ω)] with g ∈ Γ
(
∨2 T ∗M

)
and ω ∈ Ω1 (M ) in which two couples (g, ω) and (g′, ω′) are said equivalent if they satisfy
the Eichtransformation 2:

g′ = eλg and ω′ = ω − dλ (3.1.3)

2. The term Eichtransformation (german for Gauge transformation) and the associated transformation
were first written by H.Weyl in his book Gravitation und Elektrizität (1918) in an attempt to describe
gravitation and electromagnetism in an unifying geometric framework.
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for some λ ∈ C∞ (M ). To a given Weyl structure can be associated a torsionfree Koszul
connection ∇, called the Weyl connection, whose components in a holonomic basis are
given by:

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) +

1

2

(
δλµων + δλνωµ − gλρgµν ωρ

)
. (3.1.4)

The preceding expression can be recast in the form (3.1.1) with the partial derivative
operators replaced by “Maxwell covariant derivatives”: ∂µ → Dµ = ∂µ + ωµ. This makes
the coefficients (3.1.4) explicitly invariant under an Eichtransformation (3.1.3). However,
it should be noted that the Weyl connection ∇ corresponding to coefficients (3.1.4) does
not preserve any of the (conformally related) metrics g ∈ [g]. Rather, the metrics g are
recurrent with respect to ∇, i.e. they satisfy ∇µgαβ = −ωµgαβ , with recurrence 1-form
−ω.

Definition 3.1.10 (Integrable Weyl structure). A Weyl structure [(g, ω)] in which one of
the representative 1-forms ω is closed is called integrable.

Proposition 3.1.11 (cf. e.g. [137]). Integrable Weyl structures are in one-to-one corre-
spondence with Lorentzian structures.

Proof: In an integrable Weyl structure, since one of the 1-forms is closed, all of them
are, thanks to the transformation law (3.1.3), so that all the 1-forms of the class can
locally be considered as exact. In particular, one of the 1-forms vanishes and thus
defines a privileged metric, denoted g. Conversely, given a Lorentzian structure with
metric g, one can construct the couple (g, 0) from which all the other representatives
can be deduced by performing (3.1.3).

Note that, in the torsionfree case, the Weyl connection ∇ is the Levi-Civita connection
associated to the privileged metric g (since the coefficients in (3.1.4) become equal to those
of (3.1.1) whenever ω vanishes), so that g is the only metric of the integrable Weyl class
to be preserved by ∇.

3.2 Nonrelativistic structures

3.2.1 Nonrelativistic metric structures

As hinted in the previous Section, a crucial ingredient of nonrelativistic structures is the
presence of a contravariant (resp. covariant) degenerate metric 3 [11, 12, 14], whose radical

3. Throughout this work, the term “metric” will be used in a slightly broader sense than the customary
one in the physics literature. Namely, we will employ the term to designate a covariant or contravariant
bilinear form being either degenerate or non-degenerate.
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is spanned by a given 1-form (resp. vector field), which must be separately specified. More
explicitly, we can define the nonrelativistic analogue of a Riemannian structure, dubbed a
Leibnizian structure as follows:

Definition 3.2.1 (Leibnizian structure [18]). A Leibnizian structure comprises the follow-
ing three elements:
• a manifold M

• a nowhere vanishing 1-form ψ ∈ Ω1 (M )

• a positive semi-definite contravariant metric h ∈ Γ
(
∨2 TM

)
with radical Rad h =

Span ψ.

In holonomic coordinates, the condition that Rad h = Span ψ reads hµνψν = 0. If one
insists in dealing with a non-degenerate metric, an alternative definition of a Leibnizian
structure can be formulated as follows:

Definition 3.2.2 (Leibnizian structure [92]). A Leibnizian structure consists of a triplet
composed of the following elements:
• a manifold M

• a nowhere vanishing 1-form ψ ∈ Ω1 (M )

• a positive-definite covariant metric γ acting on 4 Ker ψ, γ ∈ Γ
(
∨2 (Ker ψ)∗

)
.

Proposition 3.2.3. Definitions 3.2.1 and 3.2.2 are equivalent.

Proof: The proof follows straightforwardly from Proposition A.1.5.

We will call ψ an absolute clock and γ a collection of rulers. The absolute clock allows
to distinguish between timelike tangent vectors Xx ∈ TxM for which ψx (Xx) 6= 0 from
spacelike tangent vectors Yx ∈ TxM satisfying ψx (Yx) = 0.

Definition 3.2.4 (Observer). An observer is a timelike curve n : I ⊆ R → M : s 7→
n (s) normalised such that the tangent vector Nn(s) ∈ Tn(s)M (defined 5 as Nn(s) ≡ n∗Ds)
satisfies:

ψn(s)

(
Nn(s)

)
= 1, ∀ s ∈ I. (3.2.5)

This notion can be generalised to define fields whose integral curves are observers:

Definition 3.2.5 (Field of observers). A field of observers is a vector field N ∈ Γ (TM )

such that ψ (N) = 1. The space of all fields of observers on M is denoted FO (M ).

4. At each point x ∈M , Ker ψx stands for the subspace of TxM spanned by vectors annihilated by ψx
and Ker ψ must thus be understood as the subbundle of TM of vector fields annihilated by the 1-form ψ.

5. The vector Ds ∈ TRs is defined by its action on functions f ∈ C∞ (R) as Ds [f ] = ∂f
∂t

∣∣∣
t=s

.
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Definition 3.2.6 (Proper time). Let C be a 1-dimensional immersed submanifold of M

defined by the injective immersion i : C → M . We will call proper time a function
τ ∈ C∞ (C ) satisfying dτ = i∗ψ.

The fact that the submanifold C is of dimension 1 ensures that the 1-form i∗ψ is closed, so
that locally there always exists a function τ such that dτ = i∗ψ. Obviously, this condition
only defines the proper time up to a constant.

Definition 3.2.7 (Proper time parameterisation). Let C be a 1-dimensional immersed
submanifold of M defined by the injective immersion i : C →M and let x : I ⊆ R→ C :

s 7→ x (s) be a curve on C . The curve x is said to be parameterised by the proper time τ if

τ ◦ x (s) = s+ a, ∀s ∈ I (3.2.6)

with a ∈ R a constant.

Proposition 3.2.8. Let C be a 1-dimensional immersed submanifold of M defined by the
injective immersion i : C →M and let x : I ⊆ R → C : s 7→ x (s) be a curve on C . The
curve x is parameterised by the proper time τ if and only if the curve n : I →M defined
as n ≡ i ◦ x is an observer.

Proof: We start from eq.(3.2.5) and show the following string of equivalences:

ψn(s)

(
Nn(s)

)
= 1, ∀s ∈ I ⇔ ψn(s) (n∗Ds) = 1, ∀s ∈ I (Definition of a tangent vector)

⇔ ψn(s) ((i ◦ x)∗Ds) = 1, ∀s ∈ I (Definition of n)

⇔
(
i∗ψn(s)

)
x(s)

(x∗Ds) = 1, ∀s ∈ I (eq.(A.2.5))

⇔ dτx(s) (x∗Ds) = 1, ∀s ∈ I (Definition 3.2.6)

⇔ x∗Ds [τ ] = 1, ∀s ∈ I (Action of a differential on a vector)

⇔ Ds [τ ◦ x] = 1, ∀s ∈ I (eq.(A.2.3))

⇔ ∂ τ ◦ x (l)

∂l

∣∣∣
l=s

= 1, ∀s ∈ I (Definition of Ds)

⇔ ∃a ∈ R/τ ◦ x (s) = s+ a, ∀s ∈ I.

Definition 3.2.9 (Spacelike projection of vector fields [92]). Let N ∈ FO (M ) be a field
of observers. The field of endomorphisms PN : Γ (TM )→ Ker ψ defined as

PN (X) = X − ψ (X)N (3.2.7)

where X is any vector field, is called the spacelike projector of vector fields along N .
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The transpose of a spacelike projector can be defined (cf. Definition (A.1.6)) as the field
of endomorphisms 6 P̄N : Ω1 (M ) → Ann N defined as P̄N (α) = α − α (N)ψ, with
α ∈ Ω1 (M ).

Given two fields of observers N ′ and N , their difference S = N ′ −N belongs to the kernel
of the absolute clock (ψ (S) = 0) so that S ∈ Γ (TM ) is not a field of observer. This
observation prevents the space FO (M ) of all fields of observers FO (M ) from being a
vector space. However, FO (M ) possesses a natural structure of affine space [92] with
associated vector space Ker ψ. Since any element X ∈ Ker ψ can be expressed using the
Leibnizian contravariant metric h as X ≡ h (χ) for some 1-form χ ∈ Ω1 (M ), the next
Proposition follows straightforwardly:

Proposition 3.2.10 (Milne boost [138, 139]). Let N and N ′ ∈ FO (M ) be two fields of
observers on M . Then there exists a 1-form χ ∈ Ω1 (M ) such that N ′ = N + h (χ). The
fields of observers N and N ′ are said to be related by a Milne boost parameterised by the
1-form χ.

In components, the previous Proposition can be restated, assuming ψµNµ = 1 as

ψµN
′µ = 1 ⇐⇒ ∃χν /N ′µ = Nµ + hµνχν .

The 1-form χ only appears through the combination h (χ) and thus can be taken space-
like, i.e. χ may be everywhere replaced by P̄N (χ) for some arbitrary N . Milne boosts
are sometimes referred to as local Galilean boosts, denomination that will be justified in
Proposition 3.2.14. A spacelike 1-form χ can be thought of as the local relative speed
between two fields of observers.

Fields of observers are bestowed upon a greater importance in nonrelativistic physics in
comparison with the relativistic case, since a great deal of structures can only be defined by
making use of a particular N (thus in a non-canonical way). Indeed, since the contravariant
metric h of a Leibnizian structure is degenerate, there is no natural covariant metric defined
on the whole tangent bundle TM (not just on Ker ψ). However, the gift of a field of
observers N allows to uniquely define a (degenerate) covariant bilinear form N

γ transverse
to N as:

Definition 3.2.11 (Transverse metric). Let L (M , ψ, γ) be a Leibnizian structure and
N ∈ FO (M ) a field of observers on M . The transverse metric

N
γ ∈ Γ

(
∨2 T ∗M

)
is

6. At each point x ∈M , Ann Nx stands for the annihilator of Span Nx in T ∗xM (cf. Definition A.1.1)
and Ann N is thus to be understood as the subbundle of T ∗M spanned by 1-forms annihilating the field
of observers N .
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defined by its action on vector fields X,Y ∈ Γ (TM) as

N
γ (X,Y ) = γ

(
PN (X) , PN (Y )

)
(3.2.8)

where γ ∈ Γ
(
∨2 (Ker ψ)∗

)
is the spatial metric of the Leibnizian structure and PN stands

for the spacelike projector associated to N (cf. Definition 3.2.9).

The right-hand side of eq.(3.2.8) is well-defined since the image of a spacelike projection lies
in Ker ψ. The epithet “transverse” is justified by the fact that N ∈ Rad N

γ . Furthermore,
it is easy to show that the contraction of Nγ with the contravariant metric h satisfies the
relation: h

(
N
γ (X)

)
= PN (X) ,∀X ∈ Γ (TM ). In components, we thus have the two

relations: 
N
γµν N

ν = 0
N
γ νλ h

λµ = δµν −Nµψν .
(3.2.9)

In fact, these two conditions completely determine Nγ , as expressed by the following Propo-
sition:

Proposition 3.2.12 (See e.g. [18], Section 4). Let L (M , ψ, γ) be a Leibnizian structure
and N ∈ FO (M ) a field of observers on M . There is a unique covariant bilinear form
N
γ ∈ Γ

(
∨2 T ∗M

)
satisfying the conditions (3.2.9).

As suggested by the superscript, the covariant metric N
γ depends on the choice of field of

observers N . More precisely, it can be shown that under a change of field of observers
N → N ′ via the Milne boost parameterised by the 1-form χ ∈ Ω1 (M ), the metric Nγ varies
as

N
γµν →

N
γµν +

(
2χ (N) + h (χ, χ)

)
ψµψν − 2χ(µψν). (3.2.10)

Definition 3.2.13 (Galilean basis). Let L (M , ψ, γ) be a Leibnizian structure. A Galilean
basis of the tangent space TxM at a point x ∈M is an ordered basis Bx = {Nx, e1x, . . . , edx}
with Nx the tangent vector of an observer and {e1x, . . . , edx} a basis of Ker ψx which is
orthonormal with respect to γx.

Explicitly, the basis Bx = {Nx, e1x, . . . , edx} must satisfy the conditions:

1. ψx (Nx) = 1

2. ψx (eix) = 0 ,∀ i ∈ {1, . . . , d}

3. γx (eix, ejx) = δij ,∀ i, j ∈ {1, . . . , d}.

63



3.2. NONRELATIVISTIC STRUCTURES

A basis of T ∗xM dual to Bx = {Nx, eix} is given by B∗x ≡
{
ψx, θ

i
x

}
, where the d one-forms

θix satisfy the requirement: θix (ejx) = δij .

The reference to Galilei in Definition 3.2.13 is justified by the following Proposition:

Proposition 3.2.14 (See [92], Section 2.C). At each point x ∈ M , the set of endomor-
phisms of TxM mapping each Galilean basis into another one forms a group isomorphic to
the homogeneous Galilei group Gal0.

Proof: Let us denote by T : TxM → TxM one of the endomorphisms considered.
Since T maps bases into bases, it must be a vector space isomorphism so that it can
be represented by an element of GL (TxM ) as the invertible matrix

T ≡

 a b

cT R

 (3.2.11)

where a ∈ R, b, c ∈ Rd and R ∈ GL
(
Rd
)
. Let Bx = {Nx, eix} be a Galilean basis

of TxM , the basis T (Bx) = {N ′x, e′ix} reads (dropping the index x for notational
simplicity):

T

N
ei

 =

 a b

cT R


N
ei

 =

 aN + biei

cTj N + Ri
jei

 . (3.2.12)

Requiring that T (Bx) is a Galilean basis (Conditions 1-3 following Definition 3.2.13)
imposes that T satisfy:

1. ψx (N ′x) = 1⇒ a = 1

2. ψx (e′ix) = 0 , ∀ i ∈ {1, . . . , d} ⇒ cTj = 0

3. γx
(
e′ix, e

′
jx

)
= δij , ∀ i, j ∈ {1, . . . , d} ⇒ R ∈ O (d).

The set of matrices representing the set of isomorphisms T is thus of the form

T =

1 b

0 R

 (3.2.13)

with b ∈ Rd and R ∈ O (d). This set of matrices form a subgroup of GL
(
R1,d

)
isomorphic to the homogeneous Galilei group Gal0. The homogeneous Galilei group
therefore acts regularly on the space of Galilean basis via the group action:

{N, ei} 7→
{
N + biei,R

j
iej

}
. (3.2.14)
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Proposition 3.2.14 is important since it constitutes the first occurrence of a link between
nonrelativistic groups and nonrelativistic physics, which will become a leitmotif of the
second part of this work. Together with Definition 3.2.13, it can be generalised in a
straightforward way from the tangent space at a point of M to the tangent bundle of M .
A Galilean basis of TM is thus defined as the ordered set of fields B = {N, e1, . . . , en}
with N a field of observers and {e1, . . . , en} a basis of Ker ψ, orthonormal with respect to
γ. Two Galilean bases {N ′, e′i} and {N, ei} are mapped via a local transformation where
R : M → O (d) now parameterises a local rotation and bi : M → Rd a local Galilean
boost. Explicitly, one has: N ′ = N + biei

e′i = Rj
iej

(3.2.15)

where the first expression is a Milne boost (cf. Proposition 3.2.10).

As such, a Leibnizian structure does not allow generically a global definition of absolute
time and space since it only provides a set of local clocks and rulers. This drawback can
be circumvented by restricting the vector space of possible absolute clocks. The suitable
restriction comes in a weak and a strong version. Denoting D = {Dx} the distribution de-
fined as Dx ≡ Ker ψx, ∀x ∈M , the weak version consists in imposing that the distribution
D is involutive. One is then led to define an Aristotelian structure (cf. Section 2.1) as:

Definition 3.2.15 (Aristotelian structure). An Aristotelian structure is a Leibnizian struc-
ture whose absolute clock induces an involutive distribution, i.e. ψ ∧ dψ = 0.

This supplementary condition ensures, by Frobenius Theorem (cf. Theorem A.3.7), that
the kernel of ψ defines a foliation of M by a family of hypersurfaces of codimension one
called simultaneity slices. These are the maximal integral submanifolds of D, so that the
tangent space TxM at each point x of the simultaneity slice is isomorphic to Ker ψx.
Locally, the 1-form ψ can be written as ψ = Ω dt where Ω ∈ C∞ (M ) is a positive function
called time unit and the function t ∈ C∞ (M ) will be referred to as the absolute time. The
simultaneity slices are the hypersurfaces of fixed absolute time and are thus also called
absolute spaces. In contradistinction with M , absolute spaces are Riemannian manifolds
since they are endowed with the positive-definite metric γ.

Now, let C be a 1-dimensional immersed submanifold of M defined by the injective immer-
sion i : C → M . The local condition ψ = Ω dt allows to write dτ = (Ω ◦ i) d (t ◦ i), with
τ ∈ C∞ (M ) a proper time on C . Integrating this equality, any observer on an Aristotelian

65



3.2. NONRELATIVISTIC STRUCTURES

Figure 3.1: Foliation of an Aristotelian structure by simultaneity slices.

structure can thus make use of the time unit Ω in order to compare or “synchronise” its
proper time τ with the absolute time t.

The situation regarding synchronisation is even clearer when considering the more restric-
tive case in which the absolute clock is a closed 1-form. We thus define an Augustinian
structure 7 as:

Definition 3.2.16 (Augustinian structure). An Augustinian structure is a Leibnizian
structure whose absolute clock ψ is closed.

Example 3.2.17 (Augustinian spacetime). The most simple example of a Leibnizian struc-
ture is given by a (d+ 1)-dimensional Augustinian spacetime characterised by a closed
absolute clock ψ and a flat spatial metric γ:ψ = dt

γ = δijdx
i ∨ dxj

where i, j ∈ {1, . . . , d} and δij the Kronecker delta.

This stronger condition allows locally to write ψ = dt, so that any observer
of an Augustinian structure is automatically synchronised with the absolute
time (τ = t ◦ i). Consequently, two observers sharing the same endpoints
A,B ∈ M will agree when comparing the proper time passed when going
from A to B, since the integral

τA→B =

∫ B

A
C

i∗ψ =

∫ B

A
C

d (t ◦ i) = t (i (B))− t (i (A))

does not depend on the path followed.

7. We chose to refer to Augustine of Hippo in order to pay tribute to the role he played regarding the
philosophy of time.
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3.2.2 Nonrelativistic manifolds

We now switch to the definition of nonrelativistic manifolds, i.e. Leibnizian structures
endowed with a compatible Koszul connection and discuss some peculiarities arising, in
contradistinction with the relativistic case sketched in Section 3.1.

Galilean manifolds

It should first be noted that the compatibility condition must apply to the whole metric-like
structure, i.e. to the absolute rulers and clock. One then defines:

Definition 3.2.18 (Galilean manifold [18]). A Leibnizian structure L (M , ψ, h) supple-
mented with a Koszul connection ∇ compatible with the absolute clock ψ and with the
contravariant metric h, i.e. satisfying

1. ∇ψ = 0

2. ∇h = 0

is called a Galilean manifold and is denoted G (M , ψ, h,∇).

These two conditions can be more explicitly stated as:

1. X [ψ (Y )] = ψ (∇XY ), ∀X,Y ∈ Γ (TM )

2. X [h (Y,Z)] = h (∇XY,Z) + h (Y,∇XZ), ∀X,Y, Z ∈ Γ (TM ).

Similarly to the Leibnizian case, an alternative definition can be formulated as follows:

Definition 3.2.19 (Galilean manifold [92]). A Leibnizian structure L (M , ψ, γ) supple-
mented with a Koszul connection ∇ compatible with the absolute clock ψ and with the set
of rulers γ, i.e. satisfying

1. ∇ψ = 0

2. ∇γ = 0

is called a Galilean manifold and is denoted G (M , ψ, γ,∇).

Condition 2. can be reformulated as:

2. X [γ (V,W )] = γ (∇XV,W ) + γ (V,∇XW ), ∀X ∈ Γ (TM ) and ∀V,W ∈ Ker ψ.

The right side of the previous equation is well defined as Y ∈ Ker ψ implies ψ (∇XY ) = 0

(cf. Condition 1.) which in turn, ensures that ∇XY ∈ Ker ψ, ∀X ∈ Γ (TM ).
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In components, these two sets of equivalent conditions read:∇µψν = 0

∇µγαβ = 0
⇐⇒

∇µψν = 0

∇µhαβ = 0
. (3.2.16)

A first peculiarity of a Galilean manifold, in contradistinction with the relativistic case, is
the fact that not all the torsion 2-forms are compatible with a given Leibnizian structure,
as the following Proposition shows:

Proposition 3.2.20 (cf. [18, 92]). Let G (M , ψ, γ,∇) be a Galilean manifold and denote
T the torsion of ∇. Then we have:

ψ (T (X,Y )) = dψ (X,Y )

for all X,Y ∈ Γ (TM ).

In components, this relation reads ψλT λµν = ∂[µψν], where the torsion T (cf. Definition
A.9.2) decomposes in holonomic coordinates as T ≡ T λµν dxµ ∧ dxν ⊗ ∂λ.

Proof: Starting with the definition of the torsion (cf. eq.(A.9.13)), and acting with
ψ on both sides:

ψ (T (X,Y )) = ψ (∇XY )− ψ (∇YX)− ψ ([X,Y ])

= X [ψ (Y )]− Y [ψ (Y )]− ψ ([X,Y ])

= dψ (X,Y )

where in the first step, condition 1. of Definition 3.2.18 has been used.

In particular, one sees that only Augustinian structures (dψ = 0) admit a torsionfree Koszul
connection. This is clearly a distinctive feature of nonrelativistic structures as there exists
no such restriction in the relativistic case. Furthermore, while in the relativistic case,
Corollary 3.1.5 ensures that a torsionfree Lorentzian manifold is uniquely determined by
the metric structure, in the nonrelativistic case, however, as the degeneracy of the metric
prevents Corollary 3.1.5 to hold, the gift of an Augustinian structure does not uniquely fix
a compatible torsionfree Koszul connection.

Example 3.2.21 (Galilean and Newton-Hooke spacetimes). The Augustinian spacetime of
Example 3.2.17 can be supplemented with the flat connection in order to yield the standard
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flat Galilean spacetime: 
ψ = dt

γ = δijdx
i ∨ dxj

Γλµν = 0.

Alternatively, one can endow the Augustinian spacetime with the (equally compatible)
connection Γ̄: 

ψ = dt

γ = δijdx
i ∨ dxj

Γ̄i00 = − k
τ2x

i

where the other components of Γ̄ vanish. This manifold is referred to as the Newton-Hooke
spacetime. The constant k can take the values +1 (expanding spacetime) or −1 (oscillating
spacetime).

As illustrated in the previous example, several Koszul connections are admissible, once
given a metric structure. In fact, to a given Augustinian structure corresponds a whole
class of compatible torsionfree Koszul connections, as expressed in the following Theorem:

Theorem 3.2.22 ([17, 18]). Given a field of observers N ∈ FO (M ), the set of torsionfree
Galilean manifolds compatible with a given Augustinian structure S (M , ψ, γ) is in bijective

correspondence with the set Ω2 (M ) of 2-forms
N
F on M .

Given a Galilean connection ∇ and a field of observers N ∈ FO (M ), the corresponding

2-form
N
F ∈ Ω2 (M ) is defined as

N
F (X,Y ) ≡ γ

(
∇XN,PN (Y )

)
− γ

(
∇YN,PN (X)

)
(3.2.17)

where X,Y ∈ Γ (TM ) are vector fields on M , γ ∈ and PN designates the spacelike
projector (cf. Definition 3.2.9). In holonomic coordinates, eq.(3.2.17) reads

N
Fαβ ≡ −2

N
γλ[α∇β]N

λ.

Under a Milne boost N → N + h (χ),
N
F transforms as

N
F →

N
F + dΦ where the 1-form

Φ ∈ Ω1 (M ) is defined as

Φ ≡ χ−
(
χ (N) +

1

2
h (χ, χ)

)
ψ. (3.2.18)

69
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We then define an equivalence class
[
N,

N
F

]
as follows: two couples

(
N ′,

N ′

F

)
and

(
N,

N
F

)
are said to be equivalent if there exists a 1-form χ ∈ Ω1 (M ) such that

N
′ = N + h (χ)

N ′

F =
N
F + dΦ

(3.2.19)

where the 1-form Φ is expressed in terms of the 1-form χ as Φµ = χµ−
(
χ (N) + 1

2h (χ, χ)
)
ψµ.

Therefore, torsionfree Galilean connections preserving a given Augustinian structure are

seen to be in one-to-one correspondence with equivalence classes of
[
N,

N
F

]
.

In holonomic coordinates, one writes ∇µY λ = ∂µY
λ + ΓλµνY

ν , where the components Γλµν
read [23]:

Γλµν = Nλ∂(µψν) +
1

2
hλρ

[
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

]
+ hλρψ(µ

N
F ν)ρ. (3.2.20)

Indeed, one can check that this expression is invariant under a Milne boost, so that it is

independent of the choice of representative in the equivalence class
[
N,

N
F

]
.

Expressing the 2-form
N
F on the Galilean basis (N, ei) (with

(
ψ, θi

)
the associated dual

basis) leads to the following decomposition:

N
F = 2

N
F (N, ei)ψ ∧ θi +

N
F (ei, ej) θ

i ∧ θj . (3.2.21)

The first term defines a spacelike vector field
N
G ∈ Ker ψ as

N
G =

N
F (N, ei) e

i (where
ei ≡ ejδ

ij) designated as the gravitational field. The second term corresponds to the

action of
N
F on spacelike vector fields and will be referred to as the Coriolis 2-form

N
ω ∈

Ω2 (Ker ψ) defined as
N
ω (V,W ) =

N
F (V,W ), with V,W ∈ Ker ψ. Using eq.(3.2.17), these

two definitions can be recast in a more geometric way which justifies further the terminology
used:

Definition 3.2.23 (Gravitational field and Coriolis 2-form [92]). Let G (M , ψ, γ,∇) be a
Galilean manifold and N ∈ FO (M ) a field of observers. The gravitational field induced

by ∇ on N is the spacelike vector field
N
G ∈ Ker ψ:

N
G ≡ ∇NN. (3.2.22)
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The Coriolis 2-form induced by ∇ on N is the 2-form
N
ω ∈ Ω2 (Ker ψ), acting on V,W ∈

Ker ψ as 8:

N
ω (V,W ) ≡ γ (∇VN,W )− γ (V,∇WN) . (3.2.23)

The compatibility condition of the Galilean connection ∇ with the absolute clock ψ (cf.
Condition 1 of Definition 3.2.19) ensures that ψ (∇XN) = X [ψ (N)] = 0, ∀X ∈ Γ (TM ).

This expression ensures ψ (∇NN) = 0, which in turn guarantees that
N
G is spacelike.

According to the decomposition (3.2.21), the gravitational field
N
G and the Coriolis 2-form

N
ω associated to the field of observers N encode all the information contained in the 2-form
N
F . Hence, given a field of observers N , torsionfree Galilean manifolds compatible with
a given Augustinian structure can equivalently be put in bijective correspondence with

couples
(
N
G,

N
ω

)
,
N
G ∈ Ker ψ,

N
ω ∈ Ω2 (Ker ψ) (cf. Corollary 5.28 in [92]).

Curvature of a torsionfree Galilean manifold

This paragraph is devoted to the study of the curvature tensor for a Galilean manifold.
We will establish some useful identities, focusing on the torsionfree case and discuss classic
constraints encountered in the literature.

Let us restate expression (A.9.14) for the Koszul curvature:

R (X,Y ; f) = ∇X∇Y f −∇Y∇Xf −∇[X,Y ]f

with X,Y ∈ Γ (TM ) and f ∈ Γ (E). In holonomic coordinates, the components of the
Koszul curvature read: dxλ [R (∂µ, ∂ν ; ∂ρ)] ≡ Rλ

ρµν .

Compatibility conditions (3.2.16) for the Galilei connection ∇ impose the following con-
straints on the Koszul curvature:∇µψν = 0⇒ ψλR

λ
ρµν = 0

∇µhαβ = 0⇒ hρβRα
ρµν + hαρRβ

ρµν = 0

Notation 3.2.24. In the following we will use a Galilean basis B ≡ {N, ei} together
with its dual B∗ ≡

{
ψ, θi

}
. Now, let Tµν be the holonomic components of a tensor T ∈

8. Note that our normalisation for the Coriolis 2-form differs by a factor 1
2
from the one used in [92].
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Γ (TM × T ∗M ). The following notation will prove to be handy:T 0
ν ≡ ψµT

µ
ν T iν ≡ θiµT

µ
ν

Tµ0 ≡ NνTµν Tµi ≡ eνi T
µ
ν .

The precedently stated constraints on the Koszul curvature can thus be reexpressed as:

R0
ρµν = R(ij)

µν = 0. (3.2.24)

Taking these constraints into account, the components of the curvature 2-form Rλ
ρ ∈

Ω2 (M ) can be expanded as:

Rλ
ρ = R i

jθ
j
ρe
λ
i +R i

0ψρe
λ
i . (3.2.25)

Proposition 3.2.25 (Symmetries of the Galilean curvature). The Galilean curvature ten-
sor satisfies the following identities:

R i
ρ(µν) = 0

R i
[ρµν] = 0

R i j
k l = Rj i

l k.

(3.2.26)

Proof: These identities follow respectively from eq.(A.9.15), (A.9.16) and (A.9.18) of
Proposition A.9.5 applied to the spatial metric γ ∈ Γ

(
∨2 Ker ψ

)
.

The second identity of the previous Proposition, known as the first Bianchi identity, de-
composes further into the following set:R l

[ij]0 + 1
2R

l
0ij = 0

R l
[ijk] = 0.

(3.2.27)

Proposition 3.2.26. The first Bianchi identity for the Galilei curvature leads to the fol-
lowing set of equations: R l

[ij]0 + 1
2R

l
0ij = 0

R l
[ijk] = 0.

(3.2.28)

Proof: The first Bianchi identity (cf. eq. (A.9.16)) admits a formulation in terms of
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differential forms as Rλ
ρ ∧ dxρ = 0 which can be expressed in the Galilean basis as

Rλ
0 ∧ ψ +Rλ

i ∧ θi = 0. (3.2.29)

Expressing the curvature 2-form Rλ
ρ in the Galilean 2-forms basis as

Rλ
ρ =

1

2

[
Rλ

ρ0iψ ∧ θi +
1

2
Rλ

ρijθ
i ∧ θj

]
(3.2.30)

and plugging back into eq.(3.2.29) leads to:[
Rλ

j0i +
1

2
Rλ

0ij

]
ψ ∧ θi ∧ θj +

1

2
Rλ

ijkθ
i ∧ θj ∧ θk = 0. (3.2.31)

Taking into account the compatibility conditions (3.2.24) as well as the antisymmetry
Rλ

ρµν = Rλ
ρ[µν] (cf. eq.(A.9.15)) gives the expected result.

Corollary 3.2.27 (cf. [72]). The Galilei curvature satisfies:

R
(i j)

[µ ν] = 0. (3.2.32)

One way to partially reduce the ambiguity in the definition of the torsionfree Galilean
connection is to impose supplementary conditions. The following condition [18, 53] has
been proved very useful:

Definition 3.2.28 (Duval-Künzle condition). Let G (M , ψ, γ,∇) be a Galilean manifold
and denote R the curvature of the Galilean connection ∇. The Duval-Künzle condition
then reads:

α
(
R (X,h (β) ;Y )

)
= β

(
R (Y, h (α) ;X)

)
(3.2.33)

∀X,Y ∈ Γ (TM ) and α, β ∈ Ω1 (M ).

This condition on the curvature operator R (cf. Definition A.9.3) writes more transparently
in components as:

R µ ν
α β = R ν µ

β α
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with R µ ν
α β ≡ h

νρR µ
αρβ . Decomposing on a Galilean basis leads to the set of equations:

R i j
k l = Rj i

l k

R
[i j]

0 0 = 0

Rj i
0 k = R i j

k 0

The first equation is already implied by the first Bianchi identity (cf. eq.(3.2.27)). However
the two remaining are non-trivial constraints that reduce the number of independent com-
ponents from 1

12d
2 (d+ 1) (d+ 5) to 1

12 (d+ 1)2
[
(d+ 1)2 − 1

]
, i.e. to the same number as

in a (d+ 1)-dimensional pseudo-Riemannian manifold (cf. e.g. [18]).

Proposition 3.2.29. The Duval-Künzle condition can be alternatively written as

R i
0 ∧ θi = 0. (3.2.34)

Proof: This alternative formulation imposes the following constraints:R
[i j]

0 0 = 0

R
[i k l]

0 = 0.

The first equality matches the second one from Definition 3.2.28 so what remains to
be proved is the following equivalence:

Rj i
0 k = R i j

k 0 ⇔ R
[i j k]

0 = 0. (3.2.35)

We start by totally antisymmetrising the first of the identities of the Bianchi set
(3.2.28):

R
[i j k]

0 +
1

2
R

[i j k]
0 = 0. (3.2.36)

Expanding the first term leads to:

1

3

(
2R

j [k i]
0 −R

i k j
0

)
+

1

2
R

[i j k]
0 = 0. (3.2.37)

Reusing the first Bianchi identity allows to transform the first term on the left-hand
side:

1

3

(
Rj i k

0 −R i k j
0

)
+

1

2
R

[i j k]
0 = 0. (3.2.38)

so that Rj i
0 k = R i j

k 0 ⇔ R
[i j k]

0 = 0.
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Along the Duval-Künzle condition, another constraint on the curvature, dubbed the Traut-
man condition 9 is frequently encountered in the literature:

Definition 3.2.30 (Trautman condition, cf. e.g. [1]). Let J be the Jacobi curvature
operator defined as

J (X,Y ;Z) ≡ 1

2
(R (Z,X;Y ) +R (Z, Y ;X)) (3.2.39)

where X, Y and Z are three vector fields. The Trautman condition thus states that the
Jacobi operator must be self-dual when acting on spacelike vectors, i.e.

γ (J (X,Y ; v) , w) = γ (J (X,Y ;w) , v) (3.2.40)

with X,Y ∈ Γ (TM ) and v, w ∈ Ker ψ.

In components, the Jacobi operator reads J λρµν = Rλ
(µ|ρ|ν) while the Trautman condi-

tion imposes:

R
[i j]

(µ ν) = 0. (3.2.41)

Proposition 3.2.31 (cf. [72]). The Duval-Künzle and Trautman conditions are equivalent
for a torsionfree Galilean manifold.

Proof: One starts by establishing the following Lemma:
Lemma 3.2.32. The curvature tensor of a torsionfree Galilean manifold satisfies
the relation:

R
(i j)

[µ ν] = 0

Proof: The relation is equivalent to the set:R
(i j)

[k l] = 0

R
(i j)

[0 k] = 0.

The first relation follows straightforwardly from the all-spacelike first Bianchi
identity and compatibility relations (3.2.24). The second identity is obtained

9. Although the denominations Duval-Künzle and Trautman conditions seem customary in the lit-
erature, it is amusing to note that in the respective works commonly cited when these conditions are
discussed, Trautman writes what is usually referred to as the Duval-Künzle condition (cf. eq.(IV) of [15])
while Künzle writes the Trautman condition (cf. eq.(4.14) of [18]).
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by taking the symmetric part in (l ↔ i) of the temporal/spacelike Bianchi
identity:

R(li)j0 −R(l|j |i)0 +R(l|0|i)j = 0. (3.2.42)

The first term vanishes, leaving R(l i)
[0 j] = 0.

Now, decomposing the Duval-Künzle operator as:

R i j
µ ν −Rj i

ν µ
(DK)

=
1

2

(
R(i j)

µ ν +R [i j]
µ ν −R(j i)

ν µ −R [j i]
ν µ

)
=

1

2

(
R(i j)

µ ν +R [i j]
µ ν −R(i j)

ν µ +R [i j]
ν µ

)
= R

(i j)
[µ ν]
(L)

+R
[i j]

(µ ν)
(T)

(3.2.43)

one recognises the operator (L) obtained in Lemma 3.2.32 as well as the Trautman
operator (T). Provided Lemma 3.2.32, the Duval-Künzle and Trautman conditions
are therefore equivalent.

Newtonian manifolds

We now focus our attention to the study of torsionfree Galilean manifolds satisfying the
Duval-Künzle condition (cf. Definition 3.2.28).

Definition 3.2.33 (Newtonian manifold). A Newtonian manifold N (M , ψ, γ,∇) is a tor-
sionfree Galilean manifold whose compatible Koszul connection satisfies the Duval-Künzle
condition.

Theorem 3.2.34 ([18, 53]). Given a field of observers N ∈ FO (M ), the set of Newto-
nian manifolds compatible with a given Augustinian structure S (M , ψ, γ) is in bijective

correspondence with the set of closed 2-forms
N
F .

In the light of the previous Theorem, the Duval-Künzle condition can be reinterpreted as a

geometric characterisation for the closedness of the 2-forms
N
F belonging to the equivalence

class
[
N,

N
F

]
characteristic of the Galilean manifold. Applying Poincaré Lemma, one can

locally write a given
N
F as an exact form so that there exists a class of 1-forms

N
A ∈ Ω1 (M )

satisfying
N
F = d

N
A. Two equivalent 1-forms

N

A′ and
N
A differ by an exact differential:

N

A′ =
N
A+ df , with f ∈ C∞ (M ). The transformation

N
A →

N
A+ df will be referred to as a

Maxwell-gauge transformation.
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On the other hand, the transformation law of a 1-form
N
A under a Milne boost N →

N + h (χ) follows directly from the one for
N
F and is given by

N
A →

N
A + Φ with Φ as

in (3.2.18). Again, one can define an equivalence class
[
N,

N
A

]
as follows: two couples(

N ′,
N ′

A

)
and

(
N,

N
A

)
are said to be equivalent if there exists a 1-form χ ∈ Ω1 (M ) and a

function f ∈ C∞ (M ) such thatN
′ = N + h (χ)

N ′

A =
N
A+ Φ + df.

(3.2.44)

A Newtonian manifold is thus (locally) determined by an Augustinian structure supple-

mented with an equivalence class
[
N,

N
A

]
. The different structures necessary to uniquely

determine a given manifold are summarised in the following table, both in the relativistic
and nonrelativistic cases:

Metric structure Supplementary structure Manifold

Lorentzian (M , g) × Lorentzian

Augustinian (M , ψ, γ)
Gravitational field strength

[
N,

N
F

]
Galilean

Gravitational potential
[
N,

N
A

]
Newtonian

Lagrangian structures

In this Section, we revisit the equivalence problem for Newtonian manifolds (i.e. the
search for extensions of a given Augustinian structure determining uniquely a Newtonian
connection) by displaying an alternative formulation [23], based on Coriolis-free fields of
observers (cf. Definition 3.2.23). We start by proving the following Proposition:

Proposition 3.2.35. Let N (M , ψ, γ,∇) be a Newtonian manifold associated to the equiv-

alence class
[
N,

N
A

]
. The field of observers Z ∈ FO (M ) is Coriolis-free if and only if there
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exists a function f ∈ C∞ (M ) such that

Z = N − h
(
N
A

)
+ h (df) (3.2.45)

where
(
N,

N
A

)
is any representative of the equivalence class.

Proof: Let us first check that the previous definition for Z is well-defined under a
change of representative (cf. eq.(3.2.44)). This is easily seen as:

Z ′ = N ′ − h

(
N
A
′
)

+ h
(
df ′
)

= N + h (χ)− h
(
N
A+ Φ + df

)
+ h

(
df ′
)

= N − h
(
N
A

)
+ h

(
d
(
f ′ − f

))
so the previous definition is consistent. Now, let us compute the Coriolis 2-form of a
field of observers Z = N + h (χ), with χ ∈ Ω1 (M ):

Z
ω (V,W ) = γ (∇V Z,W )− γ (V,∇WZ)

=
N
ω (V,W ) + γ (∇V h (χ) ,W )− γ (∇Wh (χ) , V )

with V,W ∈ Ker ψ. Note that the second and third terms make sense, since
ψ
(
∇V h (χ)

)
= V

[
ψ
(
h (χ)

)]
= 0. Using ∇γ = 0 allows to reformulate the first

term in brackets as γ (∇V h (χ) ,W ) = V [γ (h (χ) ,W )]− γ (h (χ) ,∇VW ). Proceed-
ing similarly with the second term in brackets leads to:

Z
ω (V,W ) =

N
ω (V,W ) +

(
V [γ (h (χ) ,W )]− γ (h (χ) ,∇VW )− (V ↔W )

)
=

N
ω (V,W ) + V [χ (W )]−W [χ (V )]− χ (∇VW −∇WV )

=
N
ω (V,W ) + V [χ (W )]−W [χ (V )]− χ ([V,W ])

=
N
ω (V,W ) + dχ (V,W )

where one used respectively: in the first step, the equality γ (h (α) , X) = α (X),
with α ∈ Ω1 (M ) and X ∈ Ker ψ; in the second step, the fact that the Newtonian
connection is torsionfree; in the third step, the definition of the exterior derivative
of a 1-form.
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Imposing that
Z
ω vanishes and using the local expression of

N
ω as

N
ω (V,W ) =

d
N
A (V,W ) leads to the condition:

d

(
N
A+ χ

)
(V,W ) = 0 , ∀V,W ∈ Ker ψ. (3.2.46)

Using the involutivity of the distribution induced by Ker ψ allows to locally rewrite
condition 3.2.46 as

∃f ∈ C∞ (M ) / χ (V ) = −
N
A (V ) + df (V ) , ∀V ∈ Ker ψ.

Therefore, there exists a function f on M such that Z = N − h
(
N
A

)
+ h (df).

In the following, we let N (M , ψ, γ,∇) be a Newtonian manifold associated to the equiv-

alence class
[
N,

N
A

]
. As mentioned in the proof, the quantity Z = N − h

(
N
A

)
is invariant

under a Milne boost, so that the 1-form
N
A can be understood as a compensator field which

can be used in order to construct Milne-invariant objects (cf. Table 3.1 below). Sec-
ondly, Proposition 3.2.35 ensures that any Newtonian manifold admits Coriolis-free fields
of observers and furthermore provides an explicit way to construct them: namely, one
can go from any field of observers N to a Coriolis-free field of observers Z via a Milne

boost parameterised by the 1-form −
N
A. Under such a Milne boost, the gravitational po-

tential
N
A gets mapped as

N
A →

Z
A ≡ 1

2φψ, where the function φ ∈ C∞ (M ) is defined as

φ ≡ 2
N
A (N) − h

(
N
A,

N
A

)
. It can be checked that φ is also a Milne-invariant object and

will be referred to as the scalar gravitational potential of Z. This denomination is justi-
fied by the form taken by the gravitational potential of a Coriolis-free field of observers
Z
G ≡ ∇ZZ = −1

2h (dφ). The couple
(
Z, 1

2φψ
)
is thus a distinguished representative of

the equivalence class
[
N,

N
A

]
characterising the Newtonian manifold N . Since the whole

equivalence class
[
N,

N
A

]
can be reconstructed from one of its representatives using re-

lations (3.2.44), one can characterise the Newtonian manifold N by the couple (Z, φ)

(supplementing the Augustinian structure S (M , ψ, γ)).

In order to make a converse statement, one needs first to acknowledge the fact that, as
a consequence of Proposition 3.2.35, a given Newtonian manifold do not define a unique
Coriolis-free field of observers but rather a class thereof. Indeed, two Coriolis-free fields of
observers Z and Z ′ ∈ FO (M ) have been seen to be related via a function f ∈ C∞ (M )

as Z ′ = Z − h (df). This is a direct consequence of the previously mentioned fact that at
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a given field of observers N corresponds a class of 1-forms
[
N
A

]
differing by

N ′

A =
N
A + df ,

for some function f on M . Consequently, the respective scalar gravitational potentials φ
and φ′ ∈ C∞ (M ) can be checked to be related according to φ′ = φ+ 2 df (Z)− h (df, df).
Newtonian manifolds thus can be put in correspondence with equivalence classes [Z, φ],
where two couples (Z ′, φ′) and (Z, φ) are said to be equivalent if there exists a function
f ∈ C∞ (M ) such that Z ′ = Z − h (df)

φ′ = φ+ 2 df (Z)− h (df, df)
(3.2.47)

We sum up this discussion in the following Proposition:

Proposition 3.2.36 (cf. [23]). Let S (M , ψ, γ) be an Augustinian structure. There is
a bijective correspondence between Newtonian manifolds N (M , ψ, γ,∇) and equivalence
classes [Z, φ].

An obvious benefit of the present formulation is that it allows to gather up the supplemen-
tary information needed to define Newtonian manifolds in a Milne-invariant equivalence
class. Indeed, two representatives of this equivalence class only differ by a Maxwell gauge-
transformation, so that the present characterisation of Newtonian manifolds is explicitly
Milne invariant. Another interesting feature of this formulation is embodied in the following
Proposition:

Proposition 3.2.37. Let S (M , ψ, γ) be an Augustinian structure. Let Z ∈ FO (M )

designate a field of observers and φ ∈ C∞ (M ) a function on M . There is a bijective
correspondence between pairs (Z, φ) and covariant metrics g ∈ Γ

(
∨2 T ∗M

)
satisfying the

condition g (X,Y ) = γ (X,Y ), ∀X,Y ∈ Γ (Ker ψ).

Proof: We start by proving the implication (Z, φ)⇒ g:
Lemma 3.2.38. Let S (M , ψ, γ) be an Augustinian structure, Z ∈ FO (M ) a field
of observers and φ ∈ C∞ (M ) a function on M . The metric g ∈ Γ

(
∨2 T ∗M

)
defined

as:

g ≡ Z
γ + φψ ∨ ψ

with
Z
γ the metric transverse to Z, is the only metric satisfyingg (Z) = φψ

g (X,Y ) = γ (X,Y ), ∀X,Y ∈ Γ (Ker ψ) .
(3.2.48)
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Proof: Let g ∈ Γ
(
∨2 T ∗M

)
be an arbitrary covariant metric on M . The

decomposition of g on the Galilean basis {Z, ei} (with dual basis
{
ψ, θi

}
)

reads:

g = g (Z,Z)ψ ∨ ψ + 2g (Z, ei)ψ ∨ θi + g (ei, ej) θ
i ∨ θj .

Requiring that g satisfies the conditions 3.2.48 reduces its expression to:

g = φψ ∨ ψ + γ (ei, ej) θ
i ∨ θj

where the second term is nothing but Zγ.

A statement converse to Lemma 3.2.38 can be formulated as follows:
Lemma 3.2.39. Let S (M , ψ, γ) be an Augustinian structure and g ∈ Γ

(
∨2 T ∗M

)
be a covariant metric on M satisfying the condition g (X,Y ) = γ (X,Y ), ∀X,Y ∈
Γ (Ker ψ). There is a unique pair (Z, φ), with Z ∈ FO (M ) a field of observers and
φ ∈ C∞ (M ) a function such that:

g (Z) = φψ. (3.2.49)

Proof: We start by proving that the condition g (X,Y ) = γ (X,Y ), ∀X,Y ∈
Γ (Ker ψ) implies that Rad g∩Ker ψ = {0}. Suppose there exists a vector field
v ∈ Γ (TM ) such that g (v) = ψ (v) = 0. Since ψ (v) = 0, g (v, w) = γ (v, w) =

0, ∀w ∈ Γ (Ker ψ), which leads to a contradiction since γ is positive definite.
In conclusion, such a vector field v does not exist and Rad g ∩Ker ψ = {0}.

The positive definiteness of γ implies also that the dimension of Rad g is
either 0 or 1, so that we will distinguish these two cases:

Dim (Rad g) = 1

Let v ∈ Γ (TM ) such that Rad g = Span v. The defining relation for Z and
φ then implies g (Z, v) = mψ (v) = 0, which in turn ensures φ = 0, since
ψ (v) 6= 0 in virtue of the precedent discussion. Then, one obtains g (Z) = 0

so that Z ∈ Rad g, i.e. Z ∼ v. The normalization condition ψ (Z) = 1 fixes
Z uniquely.

Dim (Rad g) = 0

Since the metric g is now assumed to be nondegenerate, one can introduce its
inverse g−1 ∈ Γ

(
∨2 TM

)
. Acting on each side of the defining equation for Z

and φ with g−1, one gets Z = mg−1 (ψ). Acting now with ψ on each side leads
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to φ g−1 (ψ,ψ) = 1, so that φ =
1

g−1(ψ,ψ) . Plugging back into the expression

for Z leads to Z =
g−1(ψ)
g−1(ψ,ψ) . We summarise our results in the following table:

Dim (Rad g) Definition of φ Definition of Z

1 0 {Z ∈ Rad g, ψ (Z) = 1}

0 φ =
1

g−1(ψ,ψ) Z =
g−1(ψ)
g−1(ψ,ψ)

Note that φ = 0 if and only if Dim (Rad g) = 1.

The characterisation of Newtonian manifolds using Coriolis-free fields of observers has
thus the nice property to define a (possibly non-degenerate) covariant metric g. Under a
Maxwell-gauge transformation Z → Z − h (df), the metric g transforms as

g → g′ = g + 2ψ ∨ df (3.2.50)

so that we are led to define an equivalence class [g] as:

Definition 3.2.40 (Lagrangian structure). Let L (M , ψ, γ) be a Leibnizian structure. An
equivalence class [g] of covariant metrics g ∈ Γ

(
∨2 T ∗M

)
on M satisfying the condition

g (X,Y ) = γ (X,Y ), ∀X,Y ∈ Γ (Ker ψ) and such that two representatives g′ and g differ
according to eq.(3.2.50), for some function f ∈ C∞ (M ), is called a Lagrangian class of
metrics. The triplet L (M , ψ, [g]) is called a Lagrangian structure.

Now, one can combine Propositions 3.2.36 and 3.2.37 in order to show:

Proposition 3.2.41 (cf. [23]). Let S (M , ψ, γ) be an Augustinian structure. There is
a bijective correspondence between Newtonian manifolds N (M , ψ, γ,∇) and Lagrangian
classes of metrics.

The following table sums up the Milne invariant objects introduced in this Section along
with their Maxwell-gauge transformation law:
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Type Name Definition
Maxwell-gauge

transformation law

Z ∈ FO (M )
Coriolis-free field of

observer
Z ≡ N − h

(
N
A

)
Z → Z − h (df)

φ ∈ C∞ (M )
Scalar gravitational

potential
φ ≡ 2

N
A (N)− h

(
N
A,

N
A

)
φ→ φ+2 df (Z)−h (df, df)

g ∈ Γ
(
∨2 T ∗M

)
Lagrangian metric g ≡ N

γ + 2ψ ∨
N
A g → g′ = g + 2ψ ∨ df

Table 3.1: Milne-invariant objects

The denomination Lagrangian metric is justified by the fact that the metric g defines a
Lagrangian as L ≡ 1

2g (X,X) with X ∈ FO (M ) the tangent vector field associated to an
(arbitrary) observer x : I ⊆ R → M : τ 7→ x (τ). In components, the Lagrangian then
reads

L =
1

2
gµν

dxµ

dτ

dxν

dτ
. (3.2.51)

In order to find the associated equations of motion, it must be kept in mind that the
variation of the Lagrangian (3.2.51) is not performed over the whole space of tangent
vectors but is constrained to the space of tangent vectors parameterised by the proper
time τ , i.e. to the space of observers (cf. Proposition 3.2.8). In the generic case, the
constraint ψµ dx

µ

dτ = 1 is non-holonomic (i.e. of the form f
(
xi, ẋi, t

)
= 0) and linear in

the velocities. However, in the Augustinian case, the absolute clock is closed (ψ = dt)
so that the constraint can be integrated to give a holonomic constraint (i.e. of the form
f
(
xi, t

)
= 0) which can be resolved by adopting the absolute time t as parameter:

L =
1

2
gµν

dxµ

dt

dxν

dt
. (3.2.52)

The Euler-Lagrange equations of motion derived from L take the form [23]:

gαβ
d2xβ

dt2
+

1

2
[∂µgνα + ∂νgµα − ∂αgµν ]

dxµ

dt

dxν

dt
= 0.
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Contracting with hλα and using the relation gαβhλα = δλβ −Zλψβ (as can be deduced from
the expression of g) leads to:

d2xλ

dt2
− Zλψν

d2xν

dt2
+

1

2
hλα [∂µgνα + ∂νgµα − ∂αgµν ]

dxµ

dt

dxν

dt
= 0. (3.2.53)

Now, differentiating the constraint ψµ dx
µ

dτ = 1, one obtains the relation

ψν
d2xν

dt2
= −∂(αψβ)

dxα

dt

dxβ

dt

which can be substituted in eq.(3.2.53) to give

d2xλ

dt2
+ Γλµν

dxµ

dt

dxν

dt
= 0

where the components Γλµν read

Γλµν = Zλ∂(µψν) +
1

2
hλρ [∂µgρν + ∂νgρµ − ∂ρgµν ] . (3.2.54)

Using Table 3.1, one can check that the expression (3.2.54) is identical to the one of
eq.(3.2.20), so that the Lagrangian L describes a free particle in geodesic motion with
respect to a Newtonian connection, hence providing a concrete implementation of Propo-
sition 3.2.41. Note that, although being explicitly Milne-invariant, the Lagrangian L is
not invariant under a Maxwell-gauge transformation of g as gµν → gµν + 2ψ(µ ∂ν)f but
transforms by adjonction of a total derivative L → L + df

dt which only contributes to the
boundary term, so that the equations of motion (and then the expression of Γλµν) are
Maxwell-gauge invariant.

Getting out of the Cave: Towards ambient formalism

An unspeakable horror seized me. There was a darkness; then a dizzy, sickening
sensation of sight that was not like seeing; I saw a Line that was no Line; Space
that was not Space: I was myself, and not myself. When I could find voice, I
shrieked aloud in agony, “Either this is madness or it is Hell.” “It is neither”,
calmly replied the voice of the Sphere, “it is Knowledge; it is Three Dimensions:
open your eye once again and try to look steadily.”

– Edwin A. Abbott, Flatland (1884)
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This paragraph is devoted to a heuristic discussion regarding the emergence of the am-
bient formalism from a nonrelativistic viewpoint, in contradistinction with the top-down
approach to be followed in Chapter 4. We here argue that a clever nonrelativistic physicist
studying Newtonian manifolds could in fact have a very firm grasp on Bargmann-Eisenhart
waves.

Let 10 N̄
(
M̄ , ψ̄, γ̄, ∇̄

)
be a Newtonian manifold and pick a field of observers N̄ ∈

FO
(
M̄
)
. The characterisation of a Newtonian manifold N̄ has been seen to require

the introduction of a set of 1-forms
N̄
A ∈ Ω1

(
M̄
)
with Maxwell-like transformation law

N̄
A →

N̄
A + df , where f ∈ C∞

(
M̄
)
. To the bundle-minded physicist, this transformation

law suggests to reinterpret the 1-forms
N̄
A as gauge Ehresmann connections for a principal

(R,+)-bundle:

R� _

��
M

π
��

M̄

where M is a (d + 2)-dimensional manifold. Recall that, if
N
A ∈ Ω1 (M ) is an (R,+)-

Ehresmann connection on M , choosing a section σ : Ū →M (where Ū ⊂ M̄ is an open

subset of M̄ ) allows to define a gauge connection
N̄
A ∈ Ω1

(
Ū
)
as

N̄
A ≡ σ∗

N
A. Reciprocally,

a collection

{
Ūα,

N̄
Aα

}
(where the Ūα form an open cover of M̄ and the set of

N̄
Aα differ

by Maxwell-like transformation laws) defines an unique Ehresmann connection
N
A.

The principal (R,+)-bundle involves a supplementary “internal” direction, the vertical
fiber foliation, which is a congruence of integral curves for the unique fundamental vector
field of the principal bundle M , denoted ξ ∈ Γ (TM ) and designated as the wave vector

field. Since ξ is the fundamental vector field, it satisfies
N
A (ξ) = 1 (since 1 is the generator

of the Abelian Lie algebra R).

Usually (e.g. in Yang-Mills theories), the fiber of an Ehresmann bundle is interpreted
as an auxiliary geometric object allowing to define an internal symmetry. The key to the
ambient approach consists in reinterpreting this additional direction as a new spacetime
dimension.

10. We anticipate here on the notation to be used in Chapter 4 where nonrelativistic objects are topped
with a bar.
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Now, we investigate how structures on M̄ can be lifted up to M . First, the absolute
clock ψ̄ ∈ Ω1

(
M̄
)
defines an unique closed 1-form ψ ∈ Ω1 (M ) as ψ ≡ π∗ψ̄, called wave

covector field. It can be checked that ψ (ξ) = 0, so that ξ ∈ Ker ψ. The kernel of ψ
defines an involutive distribution (ψ being closed) whose integral submanifolds are called
wavefront worldvolumes. Each wavefront worldvolume can thus be envisaged as the union
of an absolute space with the fiber. A wavefront wordlvolume W is therefore endowed with
a contravariant metric γ ∈ Γ

(
∨2 Ker ψ

)
defined as the generalised pullback of the spatial

metric γ̄ ∈ Γ
(
∨2 Ker ψ̄

)
, i.e. γ ≡ π∗γ̄. Contrarily to its nonrelativistic counterpart, the

metric γ is degenerate since γ (ξ) = 0 (in the language of [77], the triplet (W , γ, ξ) is thus
a Carroll metric structure). The field of observers N̄ ∈ FO

(
M̄
)
can be lifted up to M

by defining N ∈ FO (M ) as the horizontal lift of N̄ with respect to
N
A (i.e. π∗N = N̄

and
N
A (N) = 0) while an ambient covariant metric N

γ ∈ Γ
(
∨2 T ∗M

)
can be defined as

the generalised pullback of the transverse metric N̄
γ ∈ Γ

(
∨2 T ∗M̄

)
. It can be checked that

Span {ξ,N} ∈ Rad N
γ .

According to Proposition 3.2.41, a Newtonian manifold defines a class of Lagrangian

metrics [ḡ] where each metric ḡ ∈ Γ
(
∨2 T ∗M̄

)
is given by ḡ ≡ N̄

γ + 2 ψ̄ ∨
N̄
A and transforms

under a gauge transformation as ḡ → ḡ′ = ḡ + 2 ψ̄ ∨ df . Similarly to the definition of an
Ehresmann connection on M , it can be shown that the set [ḡ] defines a unique covariant
metric g ∈ Γ

(
∨2 TM

)
as satisfying ḡ = σ∗g. Explicitly, the metric g can be expressed as

g ≡ N
γ + 2ψ ∨

N
A. Furthermore, the metric g can be shown to be nondegenerate so that M

is a Lorentzian manifold. The expression for g can be used in order to compute g (ξ, ξ) = 0

and g (N,N) = 0 (so that ξ and N are null vector fields). Furthermore, g (ξ) = ψ and

g (N) =
N
A. Since g is nondegenerate, it defines a notion of parallelism on M in the guise

of the Levi-Civita connection ∇ and it will be shown in Section 4.4.1 (following [24]) how
the Levi-Civita connection ∇ projects downto the Newtonian connection ∇̄ endowing M̄ .
The wavevector field can then be shown to be parallel with respect to ∇, so that M can
be characterised as a Bargmann-Eisenhart wave.

The conclusion emerging from the line of reasoning sketched here is that the usual hier-
archy between Bargmann-Eisenhart waves and Newtonian manifolds (where the latter are
obtained from the former) can in fact be reversed given that a deep geometrical understand-
ing of Newtonian manifolds leads naturally to the reconstruction of Bargmann-Eisenhart
waves 11.

11. In more Platonic terms, this conclusion can be restated by saying that geometrical understanding
provides a way out of the Cave.
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3.2.3 Nonrelativistic manifolds based on an Aristotelian structure

Having reviewed in details how a given Augustinian structure can be endowed with a notion
of parallelism, we now turn our attention to Aristotelian structures (cf. Definition 3.2.15)
and investigate how a connection can be defined on such structures. We will propose two
competing definitions of connections, both of which will acquire a natural interpretation
in the context of the ambient formalism (cf. Section 4.4.3 below). Each of these two
definitions generalises a different formulation of a Newtonian connection. The first one
relies on an alternative set of axioms for a Galilean manifold (as compared with Definition
3.2.18) while the second one adapts the Lagrangian approach to Newtonian connections to
the Aristotelian case. This last approach will be seen to be the best suited regarding our
aim to geometrise the Eisenhart-Lichnerowicz lift.

Horizontal connection

Before introducing the notion of a Horizontal connection, we first give a set of necessary
and sufficient conditions defining a torsionfree Galilean manifold in a form better suited
for its subsequent generalization. To this end, we will make use of the notion of conservor:

Definition 3.2.42 (Conservor [23]). Let ∇ be a Koszul derivative on M and ψ ∈ Ω1 (M )

be a 1-form field. The 1-form ψ is said to be a conservor if it satisfies

(∇Xψ) (Y ) + (∇Y ψ) (X) = 0, ∀X,Y ∈ Γ (TM ) . (3.2.55)

The conservor condition can be seen as an analogue of the Killing equation (cf. Definition
A.9.8) for non-Riemannian spaces. The terminology, as justified in [23], follows from the
Proposition:

Proposition 3.2.43 (cf. [23]). Let L (M , ψ, γ) be a Leibnizian structure endowed with
the Koszul connection ∇ and let X ∈ Γ (TM ) be a vector field which is affine geodesic with
respect to ∇. If ψ is a conservor for ∇, then the quantity ψ (X) is conserved along the
integral curves of X.

Proof: Starting with the equality X [ψ (X)] = (∇Xψ) (X)+ψ (∇XX). The first term
on the right-hand side vanishes due to the conservor condition while the second term
is null since X is affine geodesic. Therefore X [ψ (X)] = 0, so that the quantity ψ (X)

is conserved along X.
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Corollary 3.2.44 (cf. [23]). Let L (M , ψ, γ) be a Leibnizian structure endowed with the
Koszul connection ∇ and assume that ψ is a conservor for ∇. Then any geodesic whose
tangent vector lies in the absolute space Σt at one point stays entirely in the hypersurface
Σt.

Proof: Let x : I ⊆ R → M : s 7→ x (s) be an integral curve for the vector field
X, which is assumed to be affine geodesic. Suppose furthermore that there exists
a value s0 ∈ I of the curve parameter such that ψx(s0)

(
Xx(s0)

)
= 0. According to

Proposition 3.2.43, ψ (X) = 0 is conserved along X so that ψx(s)

(
Xx(s)

)
= 0 for all

s ∈ I. Therefore, denoting Σt the absolute space of absolute time t, x (s0) ∈ Σt ⇒
x (s) ∈ Σt, ∀s ∈ I.

In the case of a Galilean manifold, the Galilean connection ∇ reduces to the Levi-Civita
connection for the spatial metric γ on the absolute spaces Σt, so that geodesics whose
tangent vector lies in the absolute space Σt at one point are geodesics of Σt for the spatial
Levi-Civita connection. In this particular sense, the absolute spaces of a Galilean manifold
can be qualified as totally geodesic.

Equipped with this notion of conservor, we are now able to provide the following alternative
definition of torsionfree Galilean manifolds:

Proposition 3.2.45. Let S (M , ψ, γ) be an Augustinian structure and ∇ a torsionfree
Koszul connection on M . The quadruple G (M , ψ, γ,∇) is a torsionfree Galilean manifold
if and only if the Koszul connection ∇ satisfies the following axioms:

1. The absolute clock is a conservor for ∇.

2. ∃ N ∈ FO (M ) / (∇Nh) (α, β) = 0, ∀α, β ∈ Ann N .

3. ∇Xh = 0, ∀X ∈ Ker ψ.

Proof: We start by showing how the present conditions imply Definition 3.2.18 in the
torsionfree case. Since one considers an Augustinian structure, the absolute clock
ψ is closed so that ∂[µψν] = ∇[µψν] = 0. Furthermore, ψ is assumed (Axiom 1)
to be a conservor with respect to ∇ (cf. Definition 3.2.42) so that ∇(µψν) = 0.
Both equalities lead to ∇µψν = 0 and ∇ is then compatible with ψ (Condition 1 of
Definition 3.2.18).

Regarding the compatibility of the contravariant metric h, Axiom 3 implies the
existence of a symmetric tensor S ∈ Γ

(
∨2 TM

)
such that ∇µhαβ = ψµS

αβ . Fur-
thermore, using Axiom 2, one can decompose the tensor S as S ≡ N ∨ K, with
K ∈ Γ (TM ) an arbitrary vector field, so that ∇µhαβ = ψµN

(αKβ). Finally, the
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consistency requirement ∇µ
(
hαβψβ

)
= 0 together with the previously shown com-

patibility of ψ require that K vanishes, so that ∇ is compatible with h as it should
to meet Condition 2 of Definition 3.2.18.

Let us now show how a torsionfree Galilean manifold in the sense of Definition
3.2.18 matches the present definition. As noted earlier, a direct consequence of
the compatibility of ∇ with ψ is the fact that only Augustinian structures admit
torsionfree compatible Koszul connections (cf. Proposition 3.2.20), so that Condition
1 of Definition 3.2.18 ensures that ψ is closed. Furthermore, the same condition
ensures Axiom 1. Finally, that Condition 2 of Definition 3.2.18 implies Axioms 2-3
is obvious.

Note that, although Axiom 2 seems to particularise a field of observers N , the resulting
Galilean connection does not depend on a particular N which is consistent with the Milne-
invariance of the coefficients (3.2.20).

This new characterisation of torsionfree Galilean manifolds turns out to be better suited
in order to endow an Aristotelian structure with a Koszul connection, which is achieved
by merely substituting the Augustinian structure of Proposition 3.2.45 by an Aristotelian
structure.

Definition 3.2.46 (Horizontal manifold). Let A (M , ψ, γ) be an Aristotelian structure and
∇ a torsionfree Koszul connection on M satisfying Axioms 1-3 of Proposition 3.2.45. The
Koszul connection ∇ is then called a Horizontal connection. The quadruple H (M , ψ, h,∇)

is then called a Horizontal manifold.

The justification for this choice of terminology will be provided in light of the ambient for-
malism in Section 4.4.3. The following Proposition establishes how compatibility relations
of Definition 3.2.18 are affected by the previous substitution:

Proposition 3.2.47. Let A (M , ψ, γ) be an Aristotelian structure and ∇ a Horizontal
connection on M . Then there exists a field of observers N ∈ FO (M ) such that:

∇µψν = ∂[µ ln Ω ψν] (3.2.56)

∇µhαβ = ψµN
(αhβ)ρ∂ρ ln Ω. (3.2.57)

where the function Ω ∈ C∞ (M ) is defined by dψ = d ln Ω ∧ ψ.

Proof: First, we recall that since ψ is assumed to induce an involutive distribution,
being part of an Aristotelian structure (cf. Definition 3.2.15), Frobenius Theorem
ensures that locally, there always exists a function Ω ∈ C∞ (M ) such that dψ =
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d ln Ω ∧ ψ. Eq.(3.2.56) follows straightforwardly from the fact that ψ is assumed to
be a conservor (i.e. ∇(µψν) = 0), so that ∇µψν = ∇[µψν] = ∂[µψν] = ∂[µ ln Ω ψν].
Before establishing eq.(3.2.57), let us show how the non-preservation of ψ affects
the consistency requirement ∇µ

(
hαβψβ

)
= 0. Indeed, ∇µhαβψβ = −hαβ∇µψβ =

−hαβ∂[µ ln Ω ψβ]. Now denoting ∇µhαβ ≡ Tαβµ , the consistency requirement allows
to simplify the decomposition of T on a Galilean basis (N, ei) (with dual

(
ψ, θi

)
) as

Tαβµ = T jki θiµe
(α
j e

β)
k +T ij0 ψµe

(α
i e

β)
j +ψµN

(αhβ)ρ∂ρ ln Ω. Axiom 2 imposes furthermore
T ij0 = 0 while Axiom 3 ensures that T jki = 0.

Similarly to the Galilean case, the “compatibility” conditions eq.(3.2.56)-(3.2.57) do not
fix uniquely the torsionfree Koszul connection. A result similar to Theorem 3.2.22 can be
formulated as follows:

Proposition 3.2.48. Given a field of observers N ∈ FO (M ), the set of torsionfree
Koszul connections satisfying the relations (3.2.56)-(3.2.57) for a given Aristotelian struc-

ture A (M , ψ, γ) is in bijective correspondence with the set Ω2 (M ) of 2-forms
N
F on M .

The proof is formally identical to the one of Theorem 3.2.22 and will not be displayed here.

This result suggests that, given an Aristotelian structure A (M , ψ, γ), the gift of a couple(
N,

N
F

)
thus determines entirely a “compatible” Koszul connection. Note that contrarily

to the Galilean case, there are no equivalence classes involved since changing N amounts
to changing the compatibility conditions, and thus ∇. Indeed, one notices that eq.(3.2.57)
features the field of observersN ∈ FO (M ) originating from Axiom 2 so that the torsionfree
connection thus defined is not independent of N , contrarily to the Augustinian case. We

will make explicit this dependence by denoting
N
∇ the Koszul connection associated to a

couple
(
N,

N
F

)
. As usual, the “compatibility” conditions for ψ and h can be used in order

to display an explicit expression for the coefficients
N
Γλµν of

N
∇. As it turns out, the obtained

coefficients read, in holonomic coordinates

N
Γλµν = Nλ∂(µψν) +

1

2
hλρ

[
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

]
+ hλρψ(µ

N
F ν)ρ (3.2.58)

and are therefore formally identical to the ones derived for a torsionfree Galilean connection,
with the important difference that the absolute clock ψ is not closed anymore. A major
consequence of this fact is that the coefficients (3.2.58) are not invariant under a Milne boost
(as is consistent with the dependence on the field of observers N) but rather transforms

as
N
Γλµν →

N
Γλµν + hλα∂[αψν]Φµ + hλα∂[αψµ]Φν , with Φ as in (3.2.18). This transformation

relation shows explicitly how the dependence on N can be related to the fact that ψ fails
to be closed.
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Platonic manifolds

In the present Section, we broach a different notion of parallelism that can endow Aris-
totelian structures and hence provide the necessary tools in order to apprehend the geome-
try underlying the Eisenhart-Lichnerowicz lift. This is more naturally done by generalising
the Lagrangian approach to Newtonian connections to the Aristotelian case. Our starting
point is thus an Aristotelian structure A (M , ψ, γ) endowed with a Lagrangian metric
g ∈ Γ

(
∨2 T ∗M

)
. We write the Lagrangian:

L =
1

2
gµν

dxµ

dτ

dxν

dτ
(3.2.59)

where x : I ⊆ R→M : τ 7→ x (τ) is an observer.

Note that, in contradistinction with the Augustinian case, the absolute clock ψ is not closed,
and the normalisation condition ψµ dx

µ

dτ = 1 is therefore a non-holonomic constraint. Taking
this constraint into account while varying the action

S =

∫
1

2
gµν

dxµ

dτ

dxν

dτ
dτ (3.2.60)

we find the following Euler-Lagrange equations of motion:

d2xλ

dτ2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0 (3.2.61)

where the coefficients Γλµν now read:

Γλµν = Zλ∂(µψν) +
1

2
hλρ [∂µgρν + ∂νgρµ − ∂ρgµν ] + gµνh

λρ∂[ρψα]Z
α. (3.2.62)

Comparing with the same derivation in the Augustinian case, we note the appearance of an
extra term gµνh

λρ∂[ρψα]Z
α whose presence is due to the non-holonomicity of the constraint

ψµ
dxµ

dτ = 1. It can be checked that expression (3.2.62) is invariant (when the absolute clock
satisfies the Frobenius Criterion) under a Maxwell-gauge transformation (cf. Table 3.1).
Similarly to the Newtonian case, one can make use of the relations of Table 3.1 in order to
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recast the previous expression in the form:

Γλµν = Nλ∂(µψν) +
1

2
hλρ

[
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

]
+ hλρψ(µ

N
F ν)ρ

+
N
γµνh

λρ∂[ρψα]N
α (3.2.63)

where the 2-form
N
F ≡ d

N
A ∈ Ω2 (M ) is exact. Comparison with the coefficients (3.2.58)

reveals the presence of the extra term N
γµνh

λρ∂[ρψα]N
α. This extra term has the nice

feature of making coefficients (3.2.63) Milne-invariant (again, when the absolute clock ψ
satisfies the Frobenius Criterion). Thus no field of observers acquires a privileged status,
in contradistinction with the preferred field of observers characteristic of the Horizontal
connection.

However, a peculiarity of the present connection lies in the fact that it does not reduce
to the Levi-Civita connection for the spatial metric γ on the absolute spaces Σt. Rather,
the extra term N

γµνh
λρ∂[ρψα]N

α furnishes a contribution so that

Γijk =
1

2
γil [∂jγkl + ∂kγjl − ∂lγjk + γjk∂l ln Ω] .

This odd feature is in contradistinction with both Galilean connections and Horizontal con-
nections but will appear as a necessary evil in order to acquire a geometric understanding
of the Eisenhart-Lichnerowicz lift.

As a first step, we will rely on the coefficients (3.2.63) in order to define the Aristotelian
analogue of a Newtonian connection, dubbed Platonic connection:

Definition 3.2.49 (Platonic manifold). Let A (M , ψ, γ) be an Aristotelian structure en-

dowed with an equivalence class
[
N,

N
A

]
defined as in eq.(3.2.44). The Koszul connection

whose coefficients are given by eq.(3.2.63) is called a Platonic connection. The quadruple
P (M , ψ, γ,∇) is then called a Platonic manifold.

Progressing towards more intrinsic characterisations of Platonic connections, we now in-
vestigate in what sense a Platonic manifold can be said to be conformally related to a
Newtonian manifold. The two next definitions provide a meaning to this notion at the
level of structures (cf. Definition 3.2.50) and manifolds (cf. Definition 3.2.51).

By definition of an Aristotelian structure, the absolute clock ψ satisfies the Frobenius
Criterion and thus there exists a closed 1-form ψ̄ and a positive function Ω (called time
unit of ψ) such that ψ = Ωψ̄. Therefore, one can formulate the following Definition:

Definition 3.2.50 (Conformally related structures). An Augustinian structure S
(
M , ψ̄, γ̄

)
and an Aristotelian structure A (M , ψ, γ) are said to be conformally related if the following
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relations hold: 
ψ = Ω ψ̄

γ = Ω γ̄

h = Ω−1h̄

(3.2.64)

with Ω ∈ C∞ (M ) the time unit of ψ.

Definition 3.2.51 (Conformally related manifolds). Let A (M , ψ, γ) be an Aristotelian
structure conformally related to the Augustinian structure S

(
M , ψ̄, γ̄

)
. Let ∇ be a Pla-

tonic connection endowing A associated to the equivalence class
[
N,

N
A

]
and ∇̄ a Newtonian

connection endowing S associated to the equivalence class
[
N̄ ,

N
A

]
. The Platonic manifold

P (M , ψ, γ,∇) is said to be conformally related to the Newtonian manifold N
(
M , ψ̄, γ̄, ∇̄

)
if N = Ω−1N̄ , with Ω ∈ C∞ (M ) the time unit of ψ .

Proposition 3.2.52. Let A (M , ψ, γ) be an Aristotelian structure conformally related to
the Augustinian structure S

(
M , ψ̄, γ̄

)
and let ∇ be a Koszul connection endowing M . The

Koszul connection ∇ is a Platonic connection for A if and only if there exists a Newtonian
connection ∇̄ endowing S such that

∀X, X̄ ∈ Γ (TM ) / X = Ω−1X̄, ∇XX = Ω−2∇̄X̄X̄. (3.2.65)

Proof: Let ∇̄ be a Newtonian connection associated to the equivalence class
[
N̄ ,

N
A

]
.

The coefficients Γ̄λµν are given by eq.(3.2.20), with
N
F ≡ d

N
A. Computing Ω−2∇̄X̄X̄

and using X = Ω−1X̄ leads to

Ω−2∇̄X̄X̄λ = Xµ∂µX
λ + ΓλµνX

µXν (3.2.66)

where the coefficients Γλµν are given by (3.2.63) with

ψ = Ω ψ̄

h = Ω−1h̄

N = Ω−1N̄
N
γ = Ω γ̄.

(3.2.67)

Since relation (3.2.66) holds for all X ∈ Γ (TM ), then ∇ is the Platonic connection
conformally related to ∇̄. The converse statement is straightforward by the same
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computation.

Condition (3.2.65) is reminiscent of the equation relating the affine parameterisations of
a null geodesic vector field in two conformally related Riemannian manifolds (cf. e.g.
Appendix D of [90]). Indeed, in Section (4.4.5), we will reintepret this condition along
these lines using hindsight provided by the ambient approach.

Definitions 3.2.49 and Proposition 3.2.52 can be easily generalised in order to charac-
terise a “Galilean” equivalent to a Platonic connection, i.e. a connection with coefficients

given by (3.2.63) with
N
F non-necessarily closed. We conclude the present Section by pro-

prosing an axiomatic formulation for such a “Galilean” equivalent of a Platonic connection
mimicking Definition 3.2.18.

From the expression (3.2.63) for the coefficients of a Platonic connection, we can com-
pute the “compatibility” conditions of ∇ with ψ and h: 12

∇µψν = ∂[µ ln Ω ψν] (3.2.68)

∇µhαβ = δ(α
µ h

β)ρ∂ρ ln Ω. (3.2.69)

Adopting a bottom-top approach, we can formulate a set of axioms allowing to recover the
compatibility conditions (3.2.68)-(3.2.69) as follows:

Proposition 3.2.53. Let A (M , ψ, γ) be an Aristotelian structure and ∇ a torsionfree
Koszul connection on M . The compatibility conditions (3.2.68)-(3.2.69) are satisfied if
and only if ∇ satisfies the following axioms:

1. The absolute clock is a conservor for ∇.

2. ∃ N ∈ FO (M ) /

(a) (∇Nh) (α, β) = 0, ∀α, β ∈ Ann N .

(b) ∃ a vector field V ∈ Γ (TM ) / ∇Nhαβ = N (αV β).

Proof: Making use of the arguments composing the proof of Proposition 3.2.47 ensures
that a torsionfree Koszul connection satisfying Axiom 1 admits eq.(3.2.68) as compat-
ibility conditions for the absolute clock. Furthermore, we showed there that, denoting
∇µhαβ ≡ Tαβµ , the decomposition of T on a Galilean basis (N, ei) (with dual

(
ψ, θi

)
)

reads Tαβµ = T jki θiµe
(α
j e

β)
k + ψµN

(αhβ)ρ∂ρ ln Ω, where Axiom 2.(a) has been used.
Now, Axiom 2.(b) guarantees that ∇Nhαβ = NµTαβµ = N (αhβ)ρ∂ρ ln Ω = N (αV β).
Contracting with ψα leads to hβρ∂ρ ln Ω = V β +NβV 0. Contracting again with ψβ

12. Again, comparing the relation (3.2.69) with eq.(3.2.57) reveals the absence of a privileged field of

observers N which characterised the connection
N

∇.
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imposes V 0 = 0, so that V β = hβρ∂ρ ln Ω, and compatibility condition (3.2.69) is
met.
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Chapter 4

Ambient geometric structures:
Gravitational waves as principal
bundles

The ambition of the present Chapter is to provide a complete account regarding the
embedding of nonrelativistic structures inside gravitational waves. In order to do so, we will
rely on the language of principal bundles, in which we start by reformulating the notions
regarding gravitational waves introduced in Chapter 2 (Section 4.1). In Section 4.2, the
results obtained in Chapter 2 regarding the embedding of nonrelativistic metric structures
inside Platonic waves are generalised to the larger class of Kundt waves. Section 4.3 will
act as an interlude allowing us to explore the relativistic avatar of field of observers as well
as some related notions such as Bargmann bases and Ehresmann connections. Section 4.4
will address the notion of parallelism in the ambient formalism, thus providing a detailed
account regarding the projection of the Levi-Civita connection of a gravitational wave.
We will start by reviewing the construction of [24] for Bargmann-Eisenhart waves (Section
4.4.1) and then investigate some generalisations to larger class of gravitational waves. As
a first step, we will pursue the generalisation initiated in Section 4.2 by showing how the
Levi-Civita connection of a Kundt wave projects onto the nonrelativistic absolute spaces.
This preliminary step will prepare the subsequent generalisation of the construction of
[24] to the class of Platonic waves (cf. Section 4.4.3). The most striking feature of this
generalisation lies in the non-uniqueness of the induced nonrelativistic Koszul connection.
We will discuss two different prescriptions, allowing to recover the Horizontal and Platonic
connections introduced in the previous Chapter. Finally, we will conclude by making use
of these new notions of parallelism in order to provide a geometric formulation of the
Eisenhart-Lichnerowicz Theorem.
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4.1 General setup

Let (M , g, ξ) be a gravitational wave (cf. Definition 2.1.1) with g ∈ Γ
(
∨2 T ∗M

)
a covari-

ant metric and ξ ∈ Γ (TM ) the wave vector field 1. The wave covector field associated to
ξ will be denoted ψ ≡ g (ξ) ∈ Ω1 (M ). By definition, ξ is hypersurface-orthogonal so that
the kernel of the 1-form ψ induces an involutive distribution D = {Dx}, with Dx ≡ Ker ψx.
The integral submanifolds of the distribution D are called wavefront worldvolumes and, due
to the involutivity of D, constitute a foliation of M .

We now define an integral curve γx : R →M : λ 7→ γx (λ) of the wave vector field as the
unique solution to the differential equation 2

dγx (λ)

dλ
= ξγx(λ)

with λ ∈ R and initial condition γx (0) = x. Since ξ is assumed to be complete, its integral
curves exist for all values of the parameter λ and, consequently, the flow

ϕξ : M × R→M : (x, λ) 7→ γx (λ)

is global and therefore induces a well-defined right-action of the additive Lie group (R,+)

on M . Integral curves Ix = {γx (λ) ∈M |λ ∈ R} for x ∈ M are therefore orbits of the
(R,+)-action ϕξ through x.

The Platonic screen is then defined as the orbit space of the action ϕξ i.e. the set M̄ ≡
M /R = {Ix |x ∈M } of all integral curves on M . The following Proposition gives sufficient
conditions for the Platonic screen to be a smooth manifold:

Proposition 4.1.1. The Platonic screen of a gravitational wave whose wave vector ξ in-
duces a free and proper action via its flow ϕξ is a smooth manifold.

Proof: This Proposition is a direct application of the quotient manifold Theorem
(A.6.2).

In the following, we will place ourselves in the conditions of application of Proposition
4.1.1. The quotient manifold Theorem ensures furthermore that the projection map onto
orbits of ϕξ, denoted π : M → M̄ : x 7→ Ix is a submersion and therefore defines the

1. In the following, the wave vector field ξ will be assumed to be affine geodesic, cf. Proposition 2.1.4.
2. This differential equation can be alternatively formulated as γx∗D0 = ξ, with Ds = ∂

∂t
|t=s.
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principal fiber bundle:

R� _

��
M

π
��

M̄

(4.1.1)

whose fibers are the integral curves Ix. The vertical subspace Vx ∈ TxM at a point x ∈M

is therefore spanned by ξx, i.e. Vx = Span ξx, so that π∗ξ = 0 where π∗ : TM → TM̄

designates the pushforward of the map π.

According to Proposition A.6.7, the principal bundle M can be made trivial, so that
M is in fact isomorphic to M̄ × R. The triviality of M ensures the existence of global
cross sections (cf. Proposition A.6.6) which are in one-to-one correspondence with screen
worldvolumes.

Tangent spaces

This Section aims at characterising the tangent spaces of the Platonic screen M̄ . We start
by introducing the equivalence relation ∼ and then prove two Propositions relating TM̄

and T ∗M̄ to TM / ∼ and Ann ξ respectively:

Definition 4.1.2 (Equivalence relation ∼). At each point x ∈ M , two vectors Xx, Yx ∈
TxM are said equivalent by ∼ (i.e. Xx ∼x Yx) if and only if the following Proposition
holds

∃α ∈ R/Xx = Yx + α ξx.

The equivalence classes are denoted X̄x and the set of equivalence classes is the quotient set
denoted TxM / ∼x. We denote P the projection map P : TxM → TxM / ∼x: Xx 7→ X̄x.

Proposition 4.1.3. For all x ∈ M , there exists a canonical isomorphism Tπ(x)M̄ '
TxM / ∼x.

Proof: One starts by noting that Xx ∼x Yx if and only if π∗ (Xx) = π∗ (Yx) due
to the fact that ξ is vertical. Thus, Proposition A.1.3 ensures that there exists a
unique continuous map g : TxM / ∼x→ Tπ(x)M̄ such that π∗ = g ◦ P . Furthermore,
π being a submersion implies that π∗ is surjective, therefore g is surjective. Plus,
P being a projection, is also surjective. Let us prove that g is also injective. If
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g is not injective, then ∃ X̄1
x, X̄

2
x ∈ TxM / ∼x such that X̄1

x 6= X̄2
x and g

(
X̄1
x

)
=

g
(
X̄2
x

)
. Since P is surjective, we have g

(
P
(
X1
x

))
= g

(
P
(
X2
x

))
with X1

x, X
2
x ∈

TxM . Therefore, π∗
(
X1
x

)
= π∗

(
X2
x

)
which implies X1

x ∼x X2
x and then P

(
X1
x

)
=

P
(
X2
x

)
and X̄1

x = X̄2
x which leads to a contradiction, therefore g is injective. Being

surjective and injective, g is bijective. We now show that g is linear. Let X̄1
x, X̄

2
x ∈

TxM / ∼x and λ ∈ R, g
(
λX̄1

x + X̄2
x

)
= g

(
λP
(
X1
x

)
+ P

(
X2
x

))
with X1

x, X
2
x ∈ TxM

and where we have used the fact that P is surjective. Now the linearity of P implies
g
(
λX̄1

x + X̄2
x

)
= g

(
P
(
λX1

x +X2
x

))
= π∗

(
λX1

x +X2
x

)
and using the linearity of

π∗ leads to g
(
λX̄1

x + X̄2
x

)
= λπ∗

(
X1
x

)
+ π∗

(
X2
x

)
= λg

(
P
(
X1
x

))
+ g

(
P
(
X2
x

))
=

λg
(
X̄1
x

)
+ g

(
X̄2
x

)
, therefore g is linear. The linear bijective map g then defines a

canonical isomorphism between Tπ(x)M̄ and TxM / ∼x, ∀x ∈M .

Proposition 4.1.4. The pullback π∗ defines a canonical isomorphism between T ∗π(x)M̄ and
Ann ξx the annihilator of Span ξx in T ∗xM , i.e. π∗ : T ∗π(x)M̄ → Ann ξx is an isomorphism,
∀x ∈M .

Proof: The vector spaces T ∗π(x)M̄ and Ann ξx have same (finite) dimension, and
are therefore isomorphic. The pullback π∗ : T ∗π(x)M̄ → T ∗xM maps elements of
T ∗π(x)M̄ to elements of Ann ξx, as can be seen by computing, for ψ̄π(x) ∈ T ∗π(x)M̄ ,
π∗
(
ψ̄π(x)

)
(ξx) = ψ̄π(x) (π∗ (ξx)) = 0, ∀ψ̄π(p) ∈ T ∗π(x)M̄ . Therefore Im (π∗) ⊂ Ann ξx.

Furthermore, π∗ : T ∗π(x)M̄ → Ann ξx being injective (cf. Proposition A.2.10) is also
bijective, as follows from the fact that T ∗π(x)M̄ and Ann ξx are isomorphic. Finally,
the linearity of π∗ implies that π∗ : T ∗π(x)M̄ → Ann ξx is an isomorphism.

The following three Sections intend to make use of the previous characterisation of tangent
spaces of M̄ in order to discriminate among the fields living on the gravitational wave
(M , g, ξ) those admitting a well-defined projection on the Platonic screen M̄ .

Projection of a function

Definition 4.1.5 (ξ-invariant function). A function f ∈ C∞ (M ) on the gravitational
wave M is said ξ-invariant if it satisfies the relation Lξf = 0.

Definition 4.1.6 (Lift of a function). Let f̄ ∈ C∞
(
M̄
)
be a function on the Platonic

screen M̄ . The function f̄ defines uniquely a function f ≡ f̄ ◦ π ∈ C∞ (M ) on the
gravitational wave M , called the lift of f̄ .

Proposition 4.1.7. There is a bijective correspondence between ξ-invariant functions on
the gravitational wave M and functions on the Platonic screen M̄ .
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Proof: Let f̄ ∈ C∞
(
M̄
)
be a function on the Platonic screen M̄ . The lifted function

f ≡ f̄ ◦ π ∈ C∞ (M ) is ξ-invariant since Lξf = ξ [f ] = ξ
[
f̄ ◦ π

]
= (π∗ξ)

[
f̄
]
◦ π = 0

where relation (A.2.4) and the verticality of ξ have been used.
Conversely, any ξ-invariant function f ∈ C∞ (M ) induces a well-defined function

f̄ ≡ f ◦ σ on the Platonic screen, with σ : M̄ →M a section. The equivariance of
f guarantees that f̄ is independent of the choice of section.

Projection of a vector field

Definition 4.1.8 (Projectable and ξ-invariant vector fields). Let (M , g, ξ) be a gravi-
tational wave. The vector field X ∈ Γ (TM ) on M is said projectable (respectively ξ-
invariant) if it satisfies LξX = fξ, for some function f ∈ C∞ (M ) (resp. LξX = 0).

Proposition 4.1.9. If X and Y ∈ Γ (TM ) are two projectable (resp. ξ-invariant) vector
fields on M , then their Lie bracket [X,Y ] ∈ Γ (TM ) is projectable (resp. ξ-invariant).

Proof: Let f, g ∈ C∞ (M ) be two functions of M satisfying respectively [ξ,X] = fξ

and [ξ, Y ] = gξ. Using Jacobi identity, one writes:

[[X,Y ] , ξ] = − [[ξ,X] , Y ]− [[Y, ξ] , X]

= −f [ξ, Y ] + Y [f ] ξ + g [ξ,X]−X [g] ξ

= − (X [g]− Y [f ]) ξ

so that [X,Y ] is projectable. The ξ-invariant case follows straightforwardly by
putting f = g = 0.

Definition 4.1.10 ((ξ-invariant)-Lift). Let X̄ ∈ Γ
(
TM̄

)
be a vector field on the Platonic

screen M̄ . A vector field X ∈ Γ (TM ) satisfying the conditions:

– X is projectable (resp. ξ-invariant)
– π∗X = X̄

is called a lift (resp. ξ-invariant lift) of X̄ in M .

Proposition 4.1.11. Let X̄ ∈ Γ
(
TM̄

)
be a vector field on the Platonic screen M̄ . Let

X and X ′ ∈ Γ (TM ) be two lifts (resp. ξ-invariant lifts) of X̄ in M . Then, there exists a
(resp. ξ-invariant) function f ∈ C∞ (M ) such that X ′ = X + fξ.
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Proof: Since X and X ′ project onto the same vector field X̄, they must differ by a
vertical vector field i.e. there exists a function f ∈ C∞ (M ) such that X ′ = X+fξ.
In the case of two ξ-invariant lifts, the supplementary condition [ξ,X ′] = [ξ,X] = 0

imposes Lξf = 0.

Proposition 4.1.12. Let X̄ and Ȳ ∈ Γ
(
TM̄

)
be two vector fields on the Platonic screen

M̄ and let X ∈ Γ (TM ) (resp. Y ∈ Γ (TM )) designates a lift of X̄ (resp. Ȳ ). The
following equality stands:

π∗ [X,Y ] =
[
X̄, Ȳ

]
where [·, ·] designates the Lie bracket.

Proof: Proposition 4.1.9 ensures that the Lie bracket [X,Y ] is projectable, so that
the vector field π∗ [X,Y ] ∈ Γ

(
TM̄

)
is well-defined. Since the pushforward operation

commutes with the Lie bracket, one obtains π∗ [X,Y ] = [π∗X,π∗Y ] =
[
X̄, Ȳ

]
.

Lemma 4.1.13. Let (M , g, ξ) be a gravitational wave with Platonic screen M̄ . Let X̄ ∈
Γ
(
TM̄

)
be a vector field and f̄ ∈ C∞

(
M̄
)
be a function on M̄ . Let X ∈ Γ (TM ) be a

lift of X̄. Then the vector field fX ∈ Γ (TM ) is a lift of f̄ X̄, where f ∈ C∞ (M ) is the
lift of f̄ on M (cf. Proposition 4.1.7). Furthermore, if X is ξ-invariant, so is fX.

Proof: We need to prove that π∗ (fX) = f̄ X̄. Introducing a function ḡ ∈ C∞
(
M̄
)

and using eq.(A.2.4) leads to (π∗ (fX)) [g] ◦ π = fX [g ◦ π]. Straightforward manip-
ulations lead to:

(π∗ (fX)) [ḡ] ◦ π = fX [ḡ ◦ π]

= f · (π∗X) [ḡ] ◦ π

=
(
f̄ ◦ π

)
X̄ [ḡ] ◦ π

=
(
f̄ X̄ [ḡ]

)
◦ π.

This expression stand for all functions ḡ, so that π∗ (fX) = f̄ X̄. The function
f ≡ f̄ ◦ π is ξ-invariant by construction, so that fX is ξ-invariant if X is.

Projection of a 1-form

From Proposition 4.1.4, it follows that a necessary condition in order for a 1-form α ∈
Ω1 (M ) to project onto a well-defined 1-form ᾱ ∈ Ω1

(
M̄
)
is to satisfy α (ξ) = 0. Now, in
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the same fashion that integral curves may be defined as paths obtained by fixing a point
x ∈ M and acting with ϕξ, i.e. γx (λ) = ϕξ (x, λ), we can also choose to fix an element
λ ∈ R and define the application Lλ : M → M : x 7→ Lλ (x) ≡ ϕξ (λ, x) = γx (λ). The
regularity of the action ϕξ on each orbit ensures that Lλ maps bijectively each fiber Ix
into itself. Since we only consider smooth functions, Lλ : Ix → Ix is a diffeomorphism.
Let us denote π∗Lλ(x) the pullback π

∗
Lλ(x) : T ∗π(x)M̄ → Ann ξLλ(x) which assigns to a 1-form

ᾱπ(x) ∈ T ∗π(x)M̄ a 1-form αLλ(x) ∈ Ann ξLλ(x) at every point of the orbit Ix. Explicitly, the
1-forms pulled back from ᾱπ(x) at x and Lλ (x) read αx ≡ π∗xᾱπ(x) and αLλ(x) ≡ π∗Lλ(x)ᾱπ(x).
Acting on αLλ(x) with L∗λ, we have:

L∗λαLλ(x) = L∗λ ◦ π∗Lλ(x)ᾱπ(x)

=
(
πLλ(x) ◦ Lλ

)∗
ᾱπ(x)

= π∗xᾱπ(x)

= αx

where the composition law of pullbacks has been used. A necessary condition for the
projection of a 1-form α ∈ Ω1 (M ) onto ᾱ ∈ Ω1

(
M̄
)
to be well-defined is then that

L∗λαLλ(x) = αx, ∀x ∈ M , λ ∈ R. This condition is equivalent to Lξα = 0 which can be
written more explicitly as

ξ [α (X)]− α ([ξ,X]) = 0, ∀X ∈ Γ (TM ) . (4.1.2)

We sum up the preceding results in the Proposition:

Proposition 4.1.14. A 1-form α ∈ Ω1 (M ) defined on the gravitational wave M admits a
projection ᾱ ∈ Ω1

(
M̄
)
on the Platonic screen M̄ if and only if the two following conditions

are satisfied:

1. α ∈ Ann ξ, i.e. α (ξ) = 0,

2. Lξα = 0.

The projected 1-form ᾱ ∈ Ω1
(
M̄
)
is then defined as the 1-form satisfying the relation

π∗ᾱ = α. The 1-form α is said to be projectable on M̄ .

Proposition 4.1.15. Let (M , g, ξ) be a Platonic wave and X ∈ Γ (TM ) a vector field on
M . The 1-form dual to X, denoted α ≡ g (X) ∈ Ω1 (M ), is projectable if and only if:

– X is orthogonal to the wave vector field i.e. g (X, ξ) = 0

– X is ξ-invariant.

Proof: The dual 1-form α must satisfy the conditions of Proposition 4.1.14:
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1. α (ξ) = g (X, ξ) = 0,

2. Lξα = Lξ (g (X)) = (Lξg) (X) + g ([ξ,X]) = g ([ξ,X]) = 0

so that the vector field X must be orthogonal to ξ and ξ-invariant. Note that we
used the Killing property of the wave vector field of Platonic waves.

Proposition 4.1.16. Let (M , g, ξ) be a gravitational wave. The wave vector field ξ is
affine geodesic if and only if Lξψ = 0. Equivalently, ξ is affine geodesic if and only if
dψ (ξ) = 0.

Proof: Using the metric compatibility of the Levi-Civita connection ∇, one can write
ξ [g (ξ,X)] = g (∇ξξ,X) + g (ξ,∇ξX) so that ξ [ψ (X)] = g (∇ξξ,X) + ψ (∇ξX).
Reexpressing the second term on the right-hand side using the torsionfree condition
leads to g (∇ξξ,X) = ξ [ψ (X)] − ψ (∇Xξ) − ψ ([ξ,X]). Note that, according to the
metric compatibility of ∇, one has X [g (ξ, ξ)] = 2g (∇Xξ, ξ) = 2ψ (∇Xξ) = 0, so
that our expression becomes g (∇ξξ,X) = ξ [ψ (X)]− ψ ([ξ,X]) ≡ (Lξψ) (X), ∀X ∈
Γ (TM ). The second equivalence is obtained using Cartan’s formula (Lξψ) (X) =

dψ (ξ,X) +X [ψ (ξ)] = dψ (ξ,X).

Using Proposition 4.1.14, we can reformulate Lemma 2.1.6 as follows:

Proposition 4.1.17. The wave covector field of a gravitational wave ψ ≡ g (ξ) induces a
well-defined absolute clock ψ̄ ∈ Ω1

(
M̄
)
on the Platonic screen defined by π∗ψ̄ = ψ.

Proof: Condition 1 is immediate from the definition of ψ and the fact that ξ is null
while condition 2 is ensured by Proposition 4.1.16.

Proposition 4.1.18. The absolute clock ψ̄ induces an involutive distribution on M̄ .

Proof: Let X ∈ TM be a vector field belonging to the kernel of ψ i.e. ψ (X) = 0.
By definition of the absolute clock ψ̄, we have π∗ψ̄ (X) = ψ̄ (π∗X) = 0, therefore
π∗X ∈ Ker ψ̄. The map π : M → M̄ being a submersion, π∗ is surjective so that
any element Ȳ ∈ TM̄ can be written as Ȳ = π∗Y with Y ∈ TM . According to the
precedent calculation, we see that any X̄ ∈ Ker ψ̄ is the image of a vector field X ∈
Ker ψ, therefore the restriction of the pushforward π∗ : Ker ψ → Ker ψ̄ is surjective.

Moreover, ψ defines an involutive distribution M → Ker ψ, so that for any couple
of vector fields X,Y ∈ Ker ψ, we have [X,Y ] ∈ Ker ψ. Therefore, ψ ([X,Y ]) =

π∗ψ̄ ([X,Y ]) = ψ̄ (π∗ [X,Y ]) = ψ̄ ([π∗X,π∗Y ]) = 0, showing that X̄, Ȳ ∈ Ker ψ̄
implies

[
X̄, Ȳ

]
∈ Ker ψ̄ and ψ̄ then defines an involutive distribution on M̄ .
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Proposition 4.1.19. Let (M , g, ξ) be a Platonic wave. The absolute clock ψ̄ ∈ Ω1
(
M̄
)

induced by the wave covector field ψ ∈ Ω1 (M ) is closed if and only if (M , g, ξ) is a
Bargmann-Eisenhart wave.

Proof: Starting from the definition of the absolute clock as ψ ≡ π∗ψ̄ and acting
on both sides with the exterior derivative gives dψ = d

(
π∗ψ̄

)
= π∗

(
dψ̄
)
, where

we used that the exterior derivative commutes with the pullback. Now, imposing
dψ̄ = 0 leads to dψ = 0 so the wave covector field must be closed. By definition
of the exterior derivative of 1-form, the following equality stands for all vector fields
X,Y ∈ Γ (TM ): X [ψ (Y )] − Y [ψ (X)] − ψ ([X,Y ]) = 0. Making the wave vector
field appear and using the metric compatibility of the Levi-Civita connection leads
to:

X [g (ξ, Y )]− Y [g (ξ,X)]− g (ξ, [X,Y ]) = 0

g (∇Xξ, Y ) + g (ξ,∇XY )− g (∇Y ξ,X)− g (ξ,∇YX)− g (ξ, [X,Y ]) = 0

Using the torsionfree condition allows to simplify the previous expression as: g (∇Xξ, Y )−
g (∇Y ξ,X) = 0. Furthermore, since (M , g, ξ) is a Platonic wave, the wave vec-
tor field is Killing and then satisfies g (∇Xξ, Y ) + g (∇Y ξ,X) = 0, according to
Proposition A.9.9. Putting these two equalities together leads to g (∇Xξ, Y ) = 0

∀X,Y ∈ Γ (TM ), so that ξ is parallel with respect to ∇ and (M , g, ξ) is thus a
Bargmann-Eisenhart wave.

4.2 Aristotelian structure embedded in a Kundt wave

According to Proposition 4.1.18, the most general Leibnizian structure that can be induced
from the metric structure of a gravitational wave is an Aristotelian structure, since the
absolute clock ψ̄ ∈ Ω1

(
M̄
)
obtained by projecting the wave covector field ψ ∈ Ω1 (M )

necessarily satisfies the Frobenius Criterion. In this Section, we show that Kundt waves
are the most general class of gravitational waves allowing such a projection.

Notation 4.2.1. We retain the terminology of Section 3.2 and refer to a vector field
X̄ ∈ Ker ψ̄ as a spacelike vector field. On the other hand, a vector field X ∈ Ker ψ, thus
satisfying ψ (X) = g (ξ,X) = 0, will be referred to as ξ-orthogonal. Note that any lift
of a spacelike vector field is ξ-orthogonal while any projectable ξ-orthogonal vector field
projects onto a spacelike vector field on the Platonic screen.

105



4.2. ARISTOTELIAN STRUCTURE EMBEDDED IN A KUNDT WAVE

Proposition 4.1.14 set out the necessary and sufficient conditions a 1-form on a gravitational
wave must satisfy in order to admit a well-defined projection on the Platonic screen. These
conditions generalise straightforwardly to a covariant bilinear form, so that the following
Proposition holds

Proposition 4.2.2. A covariant bilinear form g ∈ Γ
(
∨2 T ∗M

)
defined on the gravitational

wave M admits a projection ḡ ∈ Γ
(
∨2 T ∗M̄

)
on the Platonic screen M̄ if and only if the

two following conditions are satisfied:

1. ξ ∈ Rad g, i.e. g (ξ) = 0,

2. Lξg = 0.

If such conditions are met, the projection ḡ is defined as π∗ḡ = g, where π∗ denotes the
generalised pullback (cf. Definition A.2.7). However, a dramatic consequence of Propo-
sition 4.2.2 is that it prevents the possibility to define a covariant metric on the Platonic
screen by projecting a (pseudo)-Riemannian metric, since only degenerate covariant met-
rics are projectable. In order to circumvent this drawback, we are led to define a degenerate
relativistic metric 3 as follows:

Definition 4.2.3 (Relativistic spatial metric). Let (M , g, ξ) be a gravitational wave. The
relativistic spatial metric γ ∈ Γ

(
∨2 Ker ψ

)
is defined as the restriction of the covariant

metric g ∈ Γ
(
∨2 TM

)
to ξ-orthogonal vector fields i.e.

γ (X,Y ) ≡ g (X,Y ) (4.2.3)

where X,Y ∈ Ker ψ.

Acting on ξ-orthogonal vector fields, the metric γ endows the wavefront worldvolumes (i.e.
the integral submanifolds of the distribution induced by the kernel of ψ) with a notion of
distance. It should be noted that γ is degenerate, as can be seen from γ (ξ,X) = g (ξ,X) =

ψ (X) 0, where we used that both ξ and X are ξ-orthogonal, so that ξ ∈ Rad γ. In fact,
since Rad g = ∅, we have Rad γ = Span ξ. 4

Proposition 4.2.4. Let (M , g, ξ) be a gravitational wave. The relativistic spatial metric
γ ∈ Γ

(
∨2 Ker ψ

)
admits a projection on the absolute spaces of the Platonic screen M̄ if

and only if (M , g, ξ) is a Kundt wave. The metric γ then projects onto a positive-definite
metric γ̄ ∈ Γ

(
∨2 Ker ψ̄

)
.

3. Strictly speaking, γ is not a metric since γx at a point x ∈M is not defined on the whole of TxM .
We will however keep this denomination and once again understand the term “metric” in a broader sense
than the usual.

4. In the language of [77], γ is thus a Carrollian metric.
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Proof: According to Proposition 4.2.2, the relativistic spatial metric γ ∈ Γ
(
∨2 Ker ψ

)
is projectable if and only if the two following properties are satisfied:

1. ξ ∈ Rad γ,

2. Lξγ = 0.

The first property has already been shown to hold for a generic gravitational wave.
As for the second, it is equivalent to Lξg (X,Y ) = 0 for all X,Y ∈ Ker ψ, which will
be shown below to hold if and only if (M , g, ξ) is a Kundt wave (cf. Proposition 2 of
Lemma 4.4.12). Now, assuming that (M , g, ξ) is a Kundt wave, γ is projectable and
there exists a unique covariant metric γ̄ ∈ Γ

(
∨2 Ker ψ̄

)
such that π∗γ̄ = γ, where

π∗ stands for the generalised pullback (cf. Definition A.2.7). Explicitly, the action
of γ̄ on two spacelike vector fields X̄, Ȳ ∈ Ker ψ̄ is given by:

γ̄
(
X̄, Ȳ

)
◦ π = γ (X,Y ) (4.2.4)

where X and Y ∈ Ker ψ are arbitrary lifts of X̄ and Ȳ respectively. Note that
X and Y are necessarily ξ-orthogonal since X̄ and Ȳ are assumed to be spacelike.
Furthermore, the property ξ ∈ Rad γ ensures that γ̄

(
X̄, Ȳ

)
is independent on the

choice of lifts X and Y . Finally, the fact that γ is positive semi-definite ensures the
positive definiteness of γ̄.

Comparing the results obtained with Definitions 3.2.1 and 3.2.15 of Lebnizian and Aris-
totelian structures, respectively, we can sum up Propositions 4.1.17, 4.1.18 and 4.2.4 as:

Proposition 4.2.5. A gravitational wave induces an Aristotelian structure on its Platonic
screen if and only if it is a Kundt wave.

Focusing on the class of Platonic waves, the embedding of nonrelativistic metric structures
can be summarised in the following Table (cf. Propositions 4.1.17, 4.1.18, 4.1.19 and 4.2.5):

Gravitational wave Induced metric structure

Platonic wave (M , g, ξ) Aristotelian structure
(
M̄ , ψ̄, h̄

)

Bargmann-Eisenhart wave (M , g, ξ) Augustinian structure
(
M̄ , ψ̄, h̄

)
Table 4.1: Embedding of nonrelativistic metric structures inside Platonic waves
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Now, the nonrelativistic spatial metric γ̄ ∈ Γ
(
∨2 Ker ψ̄

)
can be used in order to define a

degenerate contravariant metric h̄ ∈ Γ
(
∨2 TM̄

)
(cf. Proposition 3.2.3). However, one can

wonder if the nonrelativistic contravariant metric h̄ cannot be obtained directly from the
projection of a relativistic contravariant metric on M . To answer this question, we will
need the following Proposition which straightforwardly extends the projectability condition
of a vector field (cf. Proposition 4.1.8):

Proposition 4.2.6. A contravariant bilinear form h ∈ Γ
(
∨2 TM

)
defined on the gravita-

tional wave M admits a projection h̄ ∈ Γ
(
∨2 TM̄

)
on the Platonic screen M̄ if and only

if there exists a vector field X ∈ Γ (TM ) such that

Lξh = X ∨ ξ. (4.2.5)

This condition can be equivalently expressed as

(Lξh) (α, β) = 0, ∀α, β ∈ Ann ξ. (4.2.6)

We conclude this Section by showing that the inverse metric g−1 ∈ Γ
(
∨2 TM

)
of a gravita-

tional wave is projectable if and only if (M , g, ξ) is a Kundt wave. The proof will make use
of the Brinkmann coordinates introduced in Section 2.1.2. Let α and β ∈ Ann ξ be two 1-
forms on M annihilating ξ. In Brinkmann coordinates, this condition reads αu = βu = 0,
so that condition (4.2.6) reads Lξg−1 (α, β) = ∂ug

tt αt βt + ∂ug
ti αt βi + ∂ug

ij αi βj = 0.
The two first terms vanish for a generic gravitational wave (cf. eq. (2.1.2)), so that, in
Brinkmann coordinates, the consistency condition reads ∂ugij = 0. This condition singles
out the class of Kundt waves (cf. Proposition 2.2.16) so that the inverse metric g−1 of
a gravitational wave projects well onto the Platonic screen if and only if it is a Kundt
wave. It can furthermore be shown that the metric h̄ defined is degenerate and that
Rad h̄ = Span ψ̄, by computing h̄

(
ψ̄, ᾱ

)
= g−1

(
π∗ψ̄, π∗ᾱ

)
= g−1 (ψ, π∗ᾱ) = π∗ᾱ (ξ) = 0

where we used the definition of ψ as g (ξ) and the fact that the pullback π∗ maps 1-forms
of M̄ into elements of Ann ξ. Therefore, h̄

(
ψ̄, ᾱ

)
vanishes ∀ ᾱ ∈ Ω1

(
M̄
)
, which implies

ψ̄ ∈ Rad h̄. Since Ker (π∗) = Rad g−1 = ∅, one gets Span ψ̄ = Rad h̄.

4.3 Ehresmann connections on a gravitational wave

The previous Section has described how the (nondegenerate) metric structure of a
Kundt wave projects onto a (degenerate) Aristotelian structure on the Platonic screen.
The next logical step is then to investigate how a notion of parallelism (provided by the
Levi-Civita connection) on a gravitational wave can be lowered downto the Platonic screen.
As we will see, such an endeavour can only be achieved for a restricted class of gravitational
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waves, namely Platonic waves. This constitutes the subject of the next Section. In the
meantime, we discuss a few additional notions revolving around the concept of relativis-
tic field of observers, aiming to draw connections with the nonrelativistic avatars of these
concepts, whose importance in nonrelativistic physics has been emphasised in Chapter 3.
In the process, we introduce Bargmann bases (cf. Definition 4.3.9) which will be encoun-
tered again in Section 6.3 and also investigate the link between observers and Ehresmann
connections on the principal bundle (4.1.1).

Definition 4.3.1 ((Light-like) Relativistic field of observers). A relativistic field of ob-
servers is a vector field N ∈ Γ (TM ) such that ψ (N) = 1. The space of all relativistic

fields of observers on M is denoted FO (M ). We denote
N
A the 1-form dual to N via the

metric g. If N satisfies the additional condition that
N
A (N) ≡ g (N,N) = 0, then N is

called a relativistic field of light-like observers.

Proposition 4.3.2. Let N ∈ FO (M ) be a projectable relativistic field of observers. Then
its projection N̄ ∈ Γ

(
TM̄

)
on the Platonic screen is a field of observers.

Proof: The proof is obtained straightforwardly by recalling that the wave covector
field ψ projects onto the absolute clock ψ̄ so that π∗ψ̄ = ψ. Inserting this relation
inside the condition ψ (N) = 1 leads to

(
π∗ψ̄

)
(N) = ψ̄ (π∗N) ◦ π = ψ̄

(
N̄
)
◦ π = 1.

Definition 4.3.3 (Spacelike projection of vector fields). Let N ∈ FO (M ) be a relativistic

field of light-like observers. The field of endomorphisms PN : Γ (TM ) → Ker ψ ∩ Ker
N
A

defined as

PN (X) = X − ψ (X)N −
N
A (X) ξ (4.3.7)

where X is any vector field, is called the spacelike projector of vector fields along N .

Note that Ker PN = Span {ξ,N}.

The transpose of PN , denoted P̄N : Γ (TM ) → Ann N ∩ Ann ξ, can also be defined as
P̄N (α) (X) = α

(
PN (X)

)
, where α ∈ Ω1 (M ) and X ∈ Γ (TM ). The explicit form of P̄N

is then given by

P̄N (α) = α− α (N)ψ − α (ξ)
N
A (4.3.8)

and Ker P̄N = Span
{
ψ,

N
A

}
.
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Lemma 4.3.4. Let N ∈ FO (M ) be a projectable relativistic field of light-like observers
and X ∈ Γ (TM ) a projectable vector field. The following diagram commutes

X

π∗

��

PN // PN (X)

π∗
��

X̄
P N̄// P N̄

(
X̄
)

with
– N̄ ∈ Γ

(
TM̄

)
the field of observers obtained by projection of N on the Platonic screen

– X̄ ∈ Γ
(
TM̄

)
the projection of X on the Platonic screen

– PN : Γ (TM ) → Ker ψ ∩ Ker
N
A the field of endomorphisms defined by eq.(4.3.7)

associated to N
– P N̄ : Γ

(
TM̄

)
→ Ker ψ̄ the field of endomorphisms defined by eq.(3.2.7) associated

to N̄ .

Proof: The proof is straightforwardly derived by projecting (4.3.7)

π∗
(
PN (X)

)
= π∗

(
X − ψ (X)N −

N
A (X) ξ

)
= X̄ − ψ̄

(
X̄
)
N̄

= P N̄
(
X̄
)

where Lemma 4.1.13 has been used.

Note that a similar statement can be made regarding the transpose P̄N whose projection
coincides with the transpose P̄ N̄ .

Definition 4.3.5 (Relativistic covariant transverse metric). Let (M , g, ξ) be a gravitational
wave and N ∈ FO (M ) a relativistic field of light-like observers on M . The transverse
metric

N
γ ∈ Γ

(
∨2 T ∗M

)
is defined by its action on vector fields X,Y ∈ Γ (TM) as

N
γ (X,Y ) = g

(
PN (X) , PN (Y )

)
(4.3.9)

where PN stands for the spacelike projector associated to N (cf. Definition 4.3.3).

Explicitly, the relativistic transverse metric reads Nγ ≡ g − ψ ⊗
N
A−

N
A⊗ ψ.

Proposition 4.3.6. Let (M , g, ξ) be a Kundt wave. The relativistic transverse metric
N
γ ∈ Γ

(
∨2 T ∗M

)
associated to the projectable relativistic field of observers N ∈ FO (M )
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is projectable. Its projection is the transverse metric
N̄
γ ∈ Γ

(
∨2 T ∗M̄

)
associated to the

projection N̄ ∈ FO
(
M̄
)
of N .

Proof: In order to be projectable, the relativistic transverse metric Nγ must satisfy the
two following properties (cf. Proposition 4.2.2):Lξ

N
γ = 0

N
γ (ξ,X) = 0, ∀X ∈ Γ (TM )

(4.3.10)

The second condition is straightforward from the fact that ξ ∈ Ker PN while the first
property can be seen to follow from Lξg (V,W ) = 0 for all vector fields V,W ∈ Ker ψ
(cf. Proposition 2 of Lemma 4.4.12 below). In particular, since PN (Z) ∈ Ker ψ,
∀Z ∈ Γ (TM ), one can choose V = PN (X) and W = PN (Y ), so that:

ξ
[
g
(
PN (X) , PN (Y )

)]
= g

([
ξ, PN (X)

]
, PN (Y )

)
+ g

(
PN (X) ,

[
ξ, PN (Y )

])
.

Now, expanding PN ([ξ,X]) as

PN ([ξ,X]) = [ξ,X]− ψ ([ξ,X])N −
N
A ([ξ,X]) ξ

= [ξ,X]− ξ [ψ (X)]N + dψ (ξ,X)N − ξ
[
N
A (X)

]
ξ + d

N
A (ξ,X) ξ

= [ξ,X]− [ξ, ψ (X)N ] + ψ (X) [ξ,N ]−
[
ξ,
N
A (X) ξ

]
+

N
A (X) [ξ, ξ] +

N
F (ξ,X) ξ

=
[
ξ, PN (X)

]
+ fψ (X) ξ +

N
F (ξ,X) ξ

where in the first step we used the definition of the exterior derivative of a 1-form; in
the second step, the term dψ (ξ,X)N is seen to vanish by application of Proposition

4.1.16 (ξ being assumed to be affine geodesic) and we introduced the 2-form
N
F ≡

d
N
A ∈ Ω2 (M ); in the third step, one made use of the projectability of N , so that

there exists a function f ∈ C∞ (M ) satisfying [ξ,N ] = fξ.
Since PN ([ξ,X]) and

[
ξ, PN (X)

]
only differs by terms along the wave vector field ξ,

we get g
([
ξ, PN (X)

]
, PN (Y )

)
= g

(
PN ([ξ,X]) , PN (Y )

)
, since PN (Y ) ∈ Ker ψ.

Repeating the operation with X and Y in reverse order allows to write

ξ
[
N
γ (X,Y )

]
=

N
γ ([ξ,X] , Y ) +

N
γ (X, [ξ, Y ]) , i.e. Lξ

N
γ = 0.

Now, since γ is projectable, there exists a unique covariant metric N̄
γ ∈ Γ

(
∨2 T ∗M̄

)
such that π∗N̄γ =

N
γ , where π∗ stands for the generalised pullback (cf. Definition
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A.2.7). Explicitly, the action of N̄γ on two vector fields X̄, Ȳ ∈ Γ
(
TM̄

)
is given by:

N̄
γ
(
X̄, Ȳ

)
◦ π =

N
γ (X,Y )

where X and Y ∈ Γ (TM ) are arbitrary lifts of X̄ and Ȳ respectively. Note that
N̄
γ
(
X̄, Ȳ

)
is independent on the choice of lifts X and Y , since ξ ∈ Rad N

γ .
Finally, one needs to make contact with Definition 3.2.11 for a nonrelativistic trans-
verse metric on M̄ . This is done by remarking that Nγ (X,Y ) = γ

(
PN (X) , PN (Y )

)
,

with γ ∈ Γ
(
∨2 Ker ψ

)
defined by eq.(4.2.3). Explicitly,

N̄
γ
(
X̄, Ȳ

)
◦ π = γ

(
PN (X) , PN (Y )

)
= γ̄

(
π∗
(
PN (X)

)
, π∗

(
PN (Y )

))
◦ π

= γ̄
(
P N̄

(
X̄
)
, P N̄

(
Ȳ
))
◦ π

where Lemma 4.3.4 has been used along with eq.(4.2.4). The last line thus reproduces

eq.(4.3.9) so that N̄γ is the nonrelativistic transverse metric associated to the field of
observers N̄ .

Definition 4.3.7 (Relativistic contravariant transverse metric). Let (M , g, ξ) be a grav-
itational wave and N ∈ FO (M ) a relativistic field of light-like observers on M . The

contravariant transverse metric
N
h ∈ Γ

(
∨2 TM

)
is defined by its action on 1-forms α, β ∈

Γ (T ∗M) as

N
h (α, β) = g−1

(
P̄N (α) , P̄N (β)

)
(4.3.11)

where P̄N stands for the transpose of the spacelike projector associated to N .

Explicitly, the form of
N
h is given by

N
h ≡ g−1 −N ⊗ ξ − ξ ⊗N .

Proposition 4.3.8. Let (M , g, ξ) be a Kundt wave. The relativistic contravariant trans-

verse metric
N
h ∈ Γ

(
∨2 TM

)
associated to the relativistic field of observers N ∈ FO (M )

is projectable, its projection being the contravariant metric h̄ ∈ Γ
(
∨2 TM̄

)
.

Proof: In order for
N
h to be projectable, there must exist a vector field X ∈ Γ (TM )

such that Lξ
N
h = X ∨ ξ (cf. Proposition 4.2.6). Using the explicit expression of

N
h,

one obtains Lξ
N
h = Lξg−1−Lξξ∨N − ξ∨LξN . Since g−1 is projectable, there exists

a vector field Y ∈ Γ (TM ) such that Lξg−1 = Y ∨ ξ, so that Lξ
N
h = (Y − LξN) ∨ ξ,
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and
N
h is therefore projectable. Furthermore, since g−1 and

N
h differ only by terms of

the form X ∨ ξ, their projections coincide, i.e. π∗
N
h = π∗g

−1 = h̄.

Definition 4.3.9 (Bargmann basis). Let (M , g, ξ) be a gravitational wave. A Bargmann
basis of the tangent space TxM at a point x ∈M is an ordered basis Bx = {ξx, Nx, e1x, . . . , edx}
with ξx the wave vector at the point x ∈M , Nx the tangent vector of a light-like relativistic

observer and {e1x, . . . , edx} a basis of Ker ψx ∩Ker
N
Ax (where

N
Ax ≡ gx (Nx) is the 1-form

dual to Nx) which is orthonormal with respect to gx.

Explicitly, the basis Bx = {ξx, Nx, e1x, . . . , edx} must satisfy the conditions:

1. gx (ξx, Nx) = 1

2. gx (ξx, eix) = 0 , ∀ i ∈ {1, . . . , d}

3. gx (Nx, Nx) = 0

4. gx (Nx, eix) = 0 ,∀ i ∈ {1, . . . , d}

5. gx (eix, ejx) = δij , ∀ i, j ∈ 1, . . . , d.

A basis of T ∗xM dual to Bx = {ξx, Nx, eix} is given by B∗x ≡
{
N
Ax, ψx, θ

i
x

}
, where the d

one-forms θix satisfy the requirement: θix (ejx) = δij .

The denomination Bargmann basis in Definition 4.3.9 is justified by the following Propo-
sition :

Proposition 4.3.10 (cf. [24]). At each point x ∈ M , the set of endomorphisms of
TxM mapping each Bargmann basis into another one forms a group isomorphic to the
homogeneous Galilei group Gal0 in the d + 2-dimensional faithful representation inherited
from that of the Bargmann group 5.

Proof: Let us denote by T : TxM → TxM one of the endomorphisms considered.
Since T maps bases into bases, it must be a vector space isomorphism so that it can
be represented by an element of GL (TxM ). Taking into account that ξx is preserved
by T , we have the following invertible matrix

T ≡


1 0 0

d a b

f c R

 (4.3.12)

5. See Section II.A of [24] for more details.
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where a, d ∈ R, b, f, c ∈ Rd and R ∈ GL
(
Rd
)
. Let Bx = {ξx, Nx, eix} be a

Bargmann basis of TxM , the basis T (Bx) = {ξ′x, N ′x, e′ix} reads (dropping the index
x for notational simplicity):

T


ξ

N

ei

 =


1 0 0

d a b

f c R




ξ

N

ei

 =


ξ

dξ + aN + biei

fjξ + cjN + Ri
jei

 . (4.3.13)

Requiring that T (Bx) is a Bargmann basis (Conditions 1-5 following Definition 4.3.9)
imposes that T satisfy:

1. gx (ξx, Nx) = 1⇒ a = 1

2. gx (ξx, eix) = 0 ,∀ i ∈ {1, . . . , d} ⇒ ci = 0

3. gx (Nx, Nx) = 0⇒ d = −1
2b

Tb

4. gx (Nx, eix) = 0 , ∀ i ∈ {1, . . . , d} ⇒ f = −bTR

5. gx (eix, ejx) = δij ,∀ i, j ∈ {1, . . . , d} ⇒ R ∈ O (d).

The set of matrices representing the set of isomorphisms T is then of the form

T =


1 0 0

−1
2b

Tb 1 b

−bTR 0 R

 (4.3.14)

with b ∈ Rd and R ∈ O (d). This set of matrices form a subgroup of GL
(
R1,d+1

)
isomorphic to the homogeneous Galilei group Gal0. The homogeneous Galilei group
therefore acts regularly on the space of Bargmann basis via the group action:

{ξ,N, ei}
h7→
{
ξ,N + biei −

1

2
bTi b

iξ,Rj
iej − bTj R

j
iξ

}
. (4.3.15)

Both Definition 4.3.9 and Proposition 4.3.10 can be generalised in a straightforward way
from the tangent space at a point of M to the tangent bundle of M . A Bargmann basis
of TM is then defined as the ordered set of fields B = {ξ,N, e1, . . . , en} with N a field of

observers and {e1, . . . , en} a basis of Ker ψ ∩ Ker
N
A (where

N
A ≡ g (N) is the 1-form dual

to N), orthonormal with respect to the metric g. Two Bargmann bases {ξ′, N ′, e′i} and
{ξ,N, ei} are mapped via a local transformation where R : M → O (d) now parameterise
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a local spatial rotation and bi : M → Rd a local null rotation. Explicitly, one has:N ′ = N + biei − 1
2b

T
i b

iξ

e′i = Rj
iej − bTj R

j
iξ

where the first expression is a relativistic Milne boost (cf. Proposition 4.3.14 below).

The appearance of the nonrelativistic homogeneous Galilei group can seem peculiar, given
that we work in a purely relativistic context. To reformulate the previous result, Propo-
sition 4.3.10 showed that the group permuting the light-cone bases of a Lorentzian space-
time while preserving one of the light-like direction is the homogeneous Galilei group, in
its Bargmann representation. The origin of this fact can be traced back to the “light-like”
embedding of the Bargmann group inside the Poincaré group (cf. [140, 55, 141, 142, 57]).

Bargmann bases can be used in order to reinterpret some of the notions previously intro-

duced. As such, if we let B = {ξ,N, ei} be a Bargmann with dual basis B∗ =

{
N
A,ψ, θi

}
,

the following relations hold 

PN (X) = θi (X) ei

P̄N (α) = α (ei) θ
i

N
γ = θi ∨ θj δij
N
h = ei ∨ ej δij

(4.3.16)

with X ∈ Γ (TM ) and α ∈ Ω1 (M ).

Proposition 4.3.11. Let (M , g, ξ) be a Platonic wave and N ∈ FO (M ) be a ξ-invariant

relativistic field of observers. Then the dual 1-form
N
A ≡ g (N) ∈ Ω1 (M ) is an Ehresmann

connection for the fiber bundle R � � // M
π // M̄ .

Proof: According to the Definition A.7.1, the dual 1-form
N
A must satisfy the two

following criteria:

1.
N
A (ξ) = 1 (Action on vertical vectors)

2. Lξ
N
A = 0 (Equivariance).

Criterion 1 directly follows from the fact thatN ∈ FO (M ) so that ψ (N) =
N
A (ξ) = 1

(note than 1 is the generator of the Abelian Lie algebra R). As for criterion 2, one
starts from the fact Lξg = 0, so that ξ [g (Y, Z)] = g ([ξ, Y ] , Z)+g (Y, [ξ, Z]), ∀Y, Z ∈
Γ (TM ). In particular, ξ [g (N,Z)] = g ([ξ,N ] , Z)+g (N, [ξ, Z]), ∀Z ∈ Γ (TM ). The
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second term on the right-hand side vanishes according to the hypothesis LξN = 0 so

that the equality becomes ξ
[
N
A (Z)

]
=

N
A ([ξ, Z]) ∀Z ∈ Γ (TM ) i.e. Lξ

N
A = 0.

Proposition 4.3.11 shows how relativistic fields of observers preserved by the null direction
ξ induce a notion of horizontality on the fiber bundle R � � // M

π // M̄ . The subbundle

of horizontal vector fields with respect to the connection
N
A will be denoted as

N
H (TM ).

Light-like field of observers preserved by the null direction ξ can be seen as horizontal
vector fields with respect to their dual Ehresmann connection. This further justifies the
use of light-like fields of observers on M as lifts of fields of observers on the Platonic screen.

Definition 4.3.12 (Horizontal projection). Let X ∈ Γ (TM ) be a vector field on M . The

field of endomorphisms P̃N : Γ (TM )→
N
H (TM ) defined as P̃N (X) = X −

N
A (X) ξ, with

X ∈ Γ (TM ), is called horizontal projection of vector fields with respect to the connection
N
A.

Proposition 4.3.13. Let X̄ ∈ Γ
(
TM̄

)
be a vector field on M̄ and X ∈ Γ (TM ) the

horizontal lift of X̄ with respect to the Ehresmann connection
N
A ∈ Ω1 (M ). Then X is a

ξ-invariant vector field on M .

Proof: Being a lift, the vector field X is necessarily projectable, i.e. there exists a

function λ ∈ C∞ (M ) such that [ξ,X] = λξ. Using the equivariance of
N
A, one writes

ξ

[
N
A (X)

]
=

N
A ([ξ,X]). The left-hand side vanishes since X is horizontal while the

right-hand side reads
N
A ([ξ,X]) =

N
A (λξ) = λ

N
A (ξ) = λ = 0, hence X is ξ-invariant.

Proposition 4.3.14 (Relativistic Milne boost). Let N and N ′ be two relativistic fields of
light-like observers. There exists a 1-form χ ∈ Ω1 (M ) such that

N ′ = N +
N
h (χ)− 1

2

N
h (χ, χ) ξ. (4.3.17)

The relativistic fields of light-like observers N and N ′ are said to be related by a relativistic
Milne boost parameterised by the 1-form χ.

The choice of terminology although non-standard, can be justified by the obvious fol-
lowing fact:

Proposition 4.3.15. Let (M , g, ξ) be a gravitational wave and N ′, N ∈ FO (M ) be two
relativistic fields of light-like observers related by a relativistic Milne boost parameterised by
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the projectable 1-form χ ∈ Ω1 (M ). Then the vector fields N̄ ′ and N̄ ∈ Γ
(
TM̄

)
obtained

by projection on the Platonic screen of N ′ and N , respectively, are two nonrelativistic fields
of observers related by a Milne boost parameterised by the 1-form χ̄ ∈ Ω1

(
M̄
)
defined as

π∗χ̄ ≡ χ.

Under a relativistic Milne boost parameterised by the 1-form χ, the following quantities
transform as:

•
N
A→

N
A+ χ−

(
χ (N) + 1

2

N
h (χ, χ)

)
ψ − χ (ξ)

N
A

• N
γ → N

γ − ψ ⊗ χ− χ⊗ ψ + 2

(
χ (N) + 1

2

N
h (χ, χ)

)
ψ ⊗ ψ + χ (ξ)

(
N
A⊗ ψ + ψ ⊗

N
A

)
•
N
h →

N
h −

N
h (χ)⊗ ξ − ξ ⊗

N
h (χ) + h (χ, χ) ξ ⊗ ξ

The principal objects introduced so far are summarised in the following Table:

Symbol Type Definition Algebraic Properties

Primary objects on M

g Γ
(
∨2 T ∗M

)
Rad g = 0

ξ Γ (TM ) g (ξ, ξ) = 0

N Γ (TM ) g (N,N) = 0, g (ξ,N) = 1

Secondary objects on M

ψ Ω1 (M ) ψ ≡ g (ξ) ψ (ξ) = 0, ψ (N) = 1

N
A Ω1 (M )

N
A ≡ g (N)

N
A (N) = 0,

N
A (ξ) = 1

N
h Γ

(
∨2 TM

) N
h ≡ g−1 − 2N ∨ ξ Rad

N
h = Span

{
ψ,

N
A

}
N
γ Γ

(
∨2 T ∗M

) N
γ ≡ g − 2ψ ∨

N
A Rad N

γ = Span {ξ,N}

Induced objects on M̄

h̄ Γ
(
∨2 TM̄

)
h̄ ≡ π∗g−1

N
γ̄
(
h̄ (ᾱ) , X̄

)
= ᾱ

(
X̄
)
− ψ̄

(
X̄
)
ᾱ
(
N̄
)
,

∀X ∈ Γ
(
TM̄

)
and ᾱ ∈ Ω1

(
M̄
)N

γ̄ Γ
(
∨2 T ∗M̄

)
π∗

N
γ̄ ≡ N

γ

ψ̄ Ω1
(
M̄
)

π∗ψ̄ = ψ h̄
(
ψ̄
)

= 0

N̄ Γ
(
TM̄

)
N̄ ≡ π∗N

N
γ̄
(
N̄
)

= 0, ψ̄
(
N̄
)

= 1
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4.4 Projection of a Koszul connection

Having seen how nonrelativistic metric structures can be embedded inside Kundt waves,
the next logical step consists in investigating how a notion of parallelism on a gravitational
wave can be lowered downto its Platonic screen. Such a procedure is well-known in the
case where the gravitational wave is a Bargmann-Eisenhart wave and the induced Koszul
connection is then Newtonian (cf. [24]). In this Section, we review this construction of
Duval et al. and then investigate potential generalisations to Platonic waves. We will
focus on torsionfree connections, so that the ambient parallelism will be furnished by the
Levi-Civita connection.

To formulate things in a concrete fashion, one is seeking for a prescription in order to
define on the Platonic screen M̄ a Koszul connection ∇̄ : Γ

(
TM̄

)
×Γ

(
TM̄

)
→ Γ

(
TM̄

)
:

X̄ × Ȳ 7→ ∇̄X̄ Ȳ where X̄ and Ȳ are two nonrelativistic vector fields. The most natural
way in order to define such a nonrelativistic Koszul connection on M̄ from the Levi-Civita
connection ∇ consists in first lifting the vector fields

(
X̄, Ȳ

)
on M , then performing the

Levi-Civita parallelism on the gravitational wave and finally projecting the obtained vector
field back downto the Platonic screen M̄ . The nonrelativistic Koszul connection is then
defined by making the following diagram commute:

(X,Y )

π∗
��

∇ // ∇XY

π∗
��(

X̄, Ȳ
) ∇̄ // ∇̄X̄ Ȳ .

(4.4.18)

Of course, several conditions must be met in order for ∇̄ to be well defined:

1. The ambient vector field ∇XY ∈ Γ (TM ) must be projectable.

2. The nonrelativistic vector field ∇̄X̄ Ȳ must be independent of the choice of represen-
tatives X and Y .

3. The defined derivative operator ∇̄ : Γ
(
TM̄

)
×Γ

(
TM̄

)
→ Γ

(
TM̄

)
must satisfy the

axioms of a Koszul connection.

We now focus on Bargmann-Eisenhart waves and review the construction of [24] by spelling
out all the details in order to prepare the subsequent generalisation.

4.4.1 Newtonian connection embedded in a Bargmann-Eisenhart wave

As far as Bargmann-Eisenhart waves are concerned, Condition 1 is insured for any
couple of projectable vector fields, as expressed in the following Lemma:
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Lemma 4.4.1. Let (M , g, ξ) be a Bargmann-Eisenhart wave with associated Levi-Civita
connection ∇. Let X,Y ∈ Γ (TM ) be two projectable vector fields. Then the vector field
∇XY ∈ Γ (TM ) is projectable.

Proof: Since (M , g, ξ) is assumed to be a Bargmann-Eisenhart wave, its wave vector
field ξ ∈ Γ (TM ) is parallel with respect to the Levi-Civita connection ∇. In partic-
ular, ξ ∈ Γ (TM ) is Killing with respect to the metric g and then preserves the Levi-
Civita connection∇ (cf. Proposition A.9.10) so that [ξ,∇XY ] = ∇[ξ,X]Y +∇X [ξ, Y ],
∀X,Y ∈ Γ (TM ) (cf. Definition A.9.7). Furthermore, assuming that Y and Z are
projectable, by Definition 4.1.8, there exist two functions f, g ∈ C∞ (M ) such that
[ξ,X] = fξ and [ξ, Y ] = gξ. Substituting, one obtains [ξ,∇XY ] = ∇fξY +∇X (gξ) =

f∇ξY +X [g] ξ+ g∇Xξ. The last term vanishes since ξ is parallel while the torsion-
free condition allows to express the first term as f∇ξY = f∇Y ξ + f [ξ, Y ] = fgξ.
Finally, the expression for [ξ,∇XY ] reads [ξ,∇XY ] = (fg +X [g]) ξ, so that ∇XY
is seen to be projectable.

Having established that the vector field ∇XY admits a projection on the Platonic screen,
we now investigate how this projected vector field depends on the choice of lift. Indeed, the
following Lemma establishes its independence on the choice of representative lifts (Condi-
tion 2):

Lemma 4.4.2. Let (M , g, ξ) be a Bargmann-Eisenhart wave with associated Levi-Civita
connection ∇. Let X̄ and Ȳ ∈ Γ

(
TM̄

)
be two vector fields on the Platonic screen M̄

and X,Y ∈ Γ (TM ) be two arbitrary lifts for X̄ and Ȳ , respectively. The vector field
∇̄X̄ Ȳ ≡ π∗ (∇XY ) ∈ Γ

(
TM̄

)
is independent of the choice of lifts X and Y .

Proof: According to Proposition 4.1.11, two lifts X and X ′ of a vector field X̄ differ
by X ′ − X = fξ, with f ∈ C∞ (M ) a function on M . This leads to ∇X′Y =

∇XY + f∇ξY . Since ∇ is torsionfree by hypothesis, it satisfies in particular ∇ξY −
∇Y ξ− [ξ, Y ] = 0, ∀Y ∈ Γ (TM ). The second term vanishes while the third term can
be rewritten as [ξ, Y ] = gξ, with g ∈ C∞ (M ), since Y is projectable, being a lift. In
the end, one obtains ∇X′Y = ∇XY + fgξ, so that π∗ (∇X′Y ) = π∗ (∇XY + fgξ) =

π∗ (∇XY ) and ∇̄X̄ Ȳ is thus independent of the choice of lift for X̄.
Similarly, two lifts Y and Y ′ of Ȳ differ by Y ′ ≡ Y + lξ, with l ∈ C∞ (M ) so that

one can compute ∇XY ′ = ∇XY + Y [l] ξ + l∇Xξ = ∇XY + Y [l] ξ since ξ is paral-
lelised by ∇. Applying π∗ on both sides leads to π∗ (∇XY ′) = π∗ (∇XY + Y [l] ξ) =

π∗ (∇XY ), so that ∇̄X̄ Ȳ does not depend on the choice of lift for Ȳ .

Lemmas 4.4.1 and 4.4.2 together ensure that, in the case where the gravitational wave is
a Bargmann-Eisenhart wave, the derivative operator ∇̄ : Γ

(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
,
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obtained by making Diagram 4.4.18 commute, is well-defined. We now verify that it is a
Koszul connection (Condition 3):

Proposition 4.4.3. Let (M , g, ξ) be a Bargmann-Eisenhart wave with associated Levi-
Civita connection ∇. The derivative operator ∇̄ : Γ

(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
defined

by commutation of the following diagram

(X,Y )

π∗
��

∇ // ∇XY

π∗
��(

X̄, Ȳ
) ∇̄ // ∇̄X̄ Ȳ .

where X and Y are arbitrary lifts of the vector fields X̄ and Ȳ , respectively, is a well-defined
Koszul connection on the Platonic screen M̄ .

Proof: We start by recalling the axioms of a Koszul connection, when acting on vector
fields (cf. Definition A.9.1) :

1. ∇̄X̄
(
Ȳ + Z̄

)
= ∇̄X̄ Ȳ + ∇̄X̄ Z̄

2. ∇̄X̄+Ȳ Z̄ = ∇̄X̄ Z̄ + ∇̄Ȳ Z̄

3. ∇̄f̄ X̄ Ȳ = f̄∇̄X̄ Ȳ

4. ∇̄X̄
(
f̄ Ȳ
)

= X̄
[
f̄
]
Ȳ + f̄∇̄X̄ Ȳ .

with X̄, Ȳ and Z̄ ∈ Γ
(
TM̄

)
and f ∈ C∞

(
M̄
)
. Axioms 1 and 2 are straightfor-

wardly established from the linearity of ∇, π∗ and the lift of a vector field. As for
Axiom 3, one makes use of the lift f ∈ C∞ (M ) of a function f̄ (cf. Definition
4.1.6) to write: ∇̄f̄ X̄ Ȳ = π∗ (∇fXY ) = π∗ (f∇XY ) = f̄∇̄X̄ Ȳ . Finally, writing
∇̄X̄

(
f̄ Ȳ
)

= π∗ (∇XfY ) = π∗ (X [f ]Y + f∇XY ) = X̄
[
f̄
]
Ȳ + f̄∇̄X̄ Ȳ , where one

used that X [f ] is ξ-invariant for X a projectable vector field and f a ξ-invariant
function (Lξ (X [f ]) = LξX [f ] +X [Lξf ] = gξ [f ] = 0, where g ∈ C∞ (M ) is defined
as [ξ,X] = gξ) ensures that Axiom 4 is satisfied.

Proposition 4.4.4. The curvature operator for the Levi-Civita connection of a Bargmann-
Eisenhart wave induces the curvature operator for the connection ∇̄ as:

R̄
(
X̄, Ȳ ; Z̄

)
= π∗ (R (X,Y ;Z)) (4.4.19)

where X,Y and Z ∈ Γ (TM ) are the respective lifts of the vector fields X̄, Ȳ and Z̄ ∈
Γ
(
TM̄

)
.

120



4.4. PROJECTION OF A KOSZUL CONNECTION

Proof: The curvature operator associated to the Levi-Civita connection ∇ acts on a
vector field Z ∈ Γ (TM ) as

R (X,Y ;Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

with X,Y two vector fields of M . We first check that the vector field R (X,Y ;Z) ∈
Γ (TM ) is projectable whenever X,Y and Z are projectable. Proposition 4.4.1
ensures that ∇Y Z is projectable, whenever Y, Z are projectable. By iterating the
reasoning, one concludes that ∇X∇Y Z (and similarly ∇Y∇XZ) is also projectable.
Moreover, the projectability of ∇[X,Y ]Z is ensured by Proposition 4.1.9 together
with Proposition 4.4.1, so that R (X,Y ;Z) is projectable and its projection on the
Platonic screen is straightforwardly given by:

π∗ (R (X,Y ;Z)) = π∗ (∇X∇Y Z)− π∗ (∇Y∇XZ)− π∗
(
∇[X,Y ]Z

)
= ∇̄X̄ (π∗ (∇Y Z))− ∇̄Ȳ (π∗ (∇XZ))− ∇̄[X̄,Ȳ ] (π∗Z)

= ∇̄X̄∇̄Ȳ Z̄ − ∇̄Ȳ ∇̄X̄ Z̄ − ∇̄[X̄,Ȳ ]Z̄.

Before characterising further the induced Koszul connection ∇̄ on M̄ (namely as a Galilean
then Newtonian connection), we establish the two following technical Lemmas:

Lemma 4.4.5. Let (M , g, ξ) be a Bargmann-Eisenhart wave with Levi-Civita connection
∇. The 1-form ∇Xα ∈ Ω1 (M ) is projectable whenever X ∈ Γ (TM ) and α ∈ Ω1 (M ) are
projectable.

Proof: Recall, by Definition 4.1.8, that there exists a function f ∈ C∞ (M ) such that
[ξ,X] = fξ. Similarly, Definition 4.1.14 ensures that α (ξ) = 0 and Lξα = 0. We
now need to verify that ∇Xα satisfy these two same conditions.
The first condition ((∇Xα) (ξ) = 0) is seen to be met using expression (A.9.12) in
order to compute (∇Xα) (ξ) = X [α (ξ)] − α (∇Xξ). Both terms vanish as can be
seen using that α is projectable and that ∇ parallelises ξ.
The second condition to be satisfied in order for∇Xα to be projectable is Lξ (∇Xα) =

0. The Lie derivative of ∇Xα can be decomposed as Lξ (∇Xα) = (Lξ∇)X α +

∇[ξ,X]α +∇X (Lξα). The first term on the right-hand side vanishes due to the fact
that the wave vector field is ∇-preserving, being Killing. The last term vanishes
as well since α is projectable. The second term can be modified using that X is
projectable, as ∇[ξ,X]α = f∇ξα. We thus need to show that the 1-form ∇ξα vanishes
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identically. Acting on a vector field Y ∈ Γ (TM ):

(∇ξα) (Y ) = ξ [α (Y )]− α (∇ξY )

= ξ [α (Y )]− α (∇Y ξ + [ξ, Y ])

= ξ [α (Y )]− α ([ξ, Y ])

= (Lξα) (Y )

= 0

where one used respectively: in the first line expression (A.9.12), in the second line
the torsionfree condition, in the third line the fact that ξ is parallelised by ∇, in the
fourth line expression (4.1.2) and in the fifth line the fact that α is projectable.

Lemma 4.4.6. The following diagram commutes:

ᾱ
π∗ //

∇̄X̄
��

α

∇X
��

∇̄X̄ ᾱ
π∗ // ∇Xα

with
– ᾱ ∈ Ω1

(
M̄
)
a 1-form on the Platonic screen

– α ∈ Ω1 (M ) the pullback of ᾱ by the projection π
– X̄ ∈ Γ

(
TM̄

)
a vector field on the Platonic screen

– X ∈ Γ (TM ) a lift of X̄ on M .

Proof: Since X and α are both projectable (being a lift and the pullback of a 1-form
on M̄ , respectively), Proposition 4.4.5 ensures that ∇Xα is projectable, so that there
exists a 1-form β̄ ∈ Ω1

(
M̄
)
such that π∗β̄ = ∇Xα. In order to show that β̄ = ∇̄X̄ ᾱ,

we let the pointwise 1-form (∇Xα)x acts on a vector Yx ∈ TxM , with x ∈M , and
perform the straightforward manipulation (the following expressions are all pointwise
but we dropped the point indices for notational simplicity):

(∇Xα) (Y ) = X [α (Y )]− α (∇XY )

= X [(π∗ᾱ) (Y )]− (π∗ᾱ) (∇XY )

= X [ᾱ (π∗Y )]− ᾱ (π∗∇XY )

= (π∗X) [ᾱ (π∗Y )]− ᾱ
(
∇̄X̄ (π∗Y )

)
=

(
X̄ [ᾱ (π∗Y )]− ᾱ

(
∇̄X̄ (π∗Y )

) )
=

(
∇̄X̄ ᾱ

)
(π∗Y )

= π∗
(
∇̄X̄ ᾱ

)
(Y )
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where in the first and sixth line equality (A.9.12) has been used as well as expression
(A.2.5) in the third and seventh line.

Proposition 4.4.7. The induced Koszul connection ∇̄ is torsionfree and compatible with
the nonrelativistic metric h̄ and the absolute clock ψ̄.

Proof: We first check that ∇̄ is torsionfree and then its compatibility with the metric
structure

(
ψ̄, h̄

)
. These features will be seen to descend in a straightforward fashion

from the properties of the Levi-Civita connection on M . Indeed, the torsionfree
condition enjoyed by ∇ is passed straightforwardly on ∇̄. Explicitly, this condition
reads: ∇XY −∇YX − [X,Y ] = 0, for all X,Y ∈ Γ (TM ). Assuming that X and Y
are projectable and acting with π∗ on both sides leads to

π∗ (∇XY )− π∗ (∇YX)− π∗ [X,Y ] = 0

∇̄X̄ Ȳ − ∇̄Ȳ X̄ −
[
X̄, Ȳ

]
= 0

with X̄ ≡ π∗X and Ȳ ≡ π∗Y . Proposition 4.1.12 has been used to modify the third
term.

In order to prove the compatibility of ∇̄ with the contravariant nonrelativistic
metric h̄ (cf. Section 4.2), we start from the metric compatibility of ∇, expressed
as X

[
g−1 (α, β)

]
= g−1 (∇Xα, β) + g−1 (α,∇Xβ), with X ∈ Γ (TM ) and α, β ∈

Ω1 (M ). One now makes the assumption that X is a lift for the vector field X̄ ∈
Γ
(
TM̄

)
while α and β are assumed to be projectable. Hence, there exist two 1-

forms ᾱ, β̄ ∈ Ω1
(
M̄
)
on the Platonic screen such that π∗ᾱ = α and π∗β̄ = β. Now,

according to Lemma 4.4.6, the 1-form ∇Xα can be expressed as ∇Xα = π∗
(
∇̄X̄ ᾱ

)
,

and similarly ∇Xβ = π∗
(
∇̄X̄ β̄

)
.

By definition of h̄ as the generalised pushforward of g−1, the identity

h̄ (ω̄1, ω̄2) ◦ π = g−1 (ω1, ω2)

holds for all projectable 1-forms ω1, ω2 ∈ Ω1 (M ) with respective projections ω̄1, ω̄2 ∈
Ω1
(
M̄
)
. We now make use of this identity in order to modify the expression for the

metric compatibility condition of ∇ as follows:

X
[
g−1 (α, β)

]
= g−1 (∇Xα, β) + g−1 (α,∇Xβ)

X
[
h̄
(
ᾱ, β̄

)
◦ π
]

= h̄
(
∇̄X̄ ᾱ, β̄

)
◦ π + h̄

(
ᾱ, ∇̄X̄ β̄

)
◦ π

X̄
[
h̄
(
ᾱ, β̄

)]
◦ π = h̄

(
∇̄X̄ ᾱ, β̄

)
◦ π + h̄

(
ᾱ, ∇̄X̄ β̄

)
◦ π

X̄
[
h̄
(
ᾱ, β̄

)]
= h̄

(
∇̄X̄ ᾱ, β̄

)
+ h̄

(
ᾱ, ∇̄X̄ β̄

)
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where in the last step, the surjectivity of π has been used.
Regarding the compatibility of ∇̄ with ψ̄, we first establish the following Lemma:
Lemma 4.4.8. The wave covector field ψ ≡ g (ξ) ∈ Ω1 (M ) of a Bargmann-Eisenhart
wave (M , g, ξ) is preserved by the Levi-Civita connection ∇.

Proof: By definition, the wave covector field ψ will be preserved by∇ if and only
if X [ψ (Y )] = ψ (∇XY ), ∀X,Y ∈ Γ (TM ). Using the metric compatibility of
∇ (cf. Proposition A.9.4), one writes X [ψ (Y )] = X [g (ξ, Y )] = g (∇Xξ, Y ) +

g (ξ,∇XY ) = ψ (∇XY ), since ξ is parallelised by ∇.

The previous Lemma thus establishes the compatibility of ∇ with the wave covector
field ψ, expressed as X [ψ (Y )] = ψ (∇XY ), where X and Y ∈ Γ (TM ) are now
assumed to be lifts of the vector fields X̄ and Ȳ ∈ Γ

(
TM̄

)
, respectively. Using the

expression of the absolute clock ψ̄ (cf. Definition 4.1.17) and manipulating leads to:

X
[
π∗ψ̄ (Y )

]
= π∗ψ̄ (∇XY )

X
[
ψ̄ (π∗Y ) ◦ π

]
= ψ̄ (π∗∇XY ) ◦ π

X̄
[
ψ̄
(
Ȳ
)]
◦ π = ψ̄

(
∇̄X̄ Ȳ

)
◦ π

X̄
[
ψ̄
(
Ȳ
)]

= ψ̄
(
∇̄X̄ Ȳ

)
.

where expression (A.2.6) has been used in the first step, along with the surjectivity
of π in the last step.

The nonrelativistic Koszul connection induced on the Platonic screen of a Bargmann-
Eisenhart wave is then a torsionfree Galilean connection. Consistency with Proposition
3.2.20 requires the nonrelativistic metric structure embedded in a Bargmann-Eisenhart
wave to be Augustinian (i.e. with closed absolute clock ψ̄). Indeed, it has been shown in
Proposition 4.1.19 that the metric structure induced by a Platonic wave is Augustinian if
and only if the wave belongs to the Bargmann-Eisenhart class. A direct consequence of this
result, together with Proposition 3.2.20 is the following fact: the torsionfree nonrelativistic
Koszul connection induced on the Platonic screen of a proper Platonic wave (i.e. not a
Bargmann-Eisenhart wave ) cannot be Galilean. We then foresee that Platonic waves must
induce new notions of parallelism on their Platonic screen.

We conclude this Section by the following Proposition:

Proposition 4.4.9. The induced Koszul connection on M̄ satisfies the Duval-Künzle con-
dition.

Proof: One starts from the symmetry relation of the Levi-Civita curvature A.9.18 i.e.
R (X,Y ;Z,W ) = R (Z,W ;X,Y ) with X,Y, Z,W ∈ Γ (TM ) four vector fields. The
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1-forms dual to W and Y are denoted α and β ∈ Ω1 (M ), respectively, so that the
symmetry relation can be equivalently expressed as

α
(
R
(
X, g−1 (β) ;Z

))
= β

(
R
(
Z, g−1 (α) ;X

))
. (4.4.20)

We make the assumption that X and Z are projectable vector fields with π∗X ≡ X̄
and π∗Z ≡ Z̄. We suppose furthermore that α and β are projectable 1-forms, with
α ≡ π∗ᾱ and β ≡ π∗β̄, respectively (equivalently, Y and W can be assumed to be
orthogonal to the wave vector field ξ and ξ-invariant, cf. Proposition 4.1.15). Using
these equalities as well as Proposition 4.4.4, the curvature symmetry relation (4.4.20)
can be expressed as:

ᾱ
(
R̄
(
X̄, π∗

(
g−1β

)
; Z̄
))
◦ π = β̄

(
R̄
(
Z̄, π∗

(
g−1 (α) ; X̄

)))
◦ π.

We now prove the following technical Lemma:

Lemma 4.4.10. Let (M , g, ξ) be a Platonic wave and ω̄ ∈ Ω1
(
M̄
)
be a 1-form

on the Platonic screen and denote ω ≡ π∗ω̄ its pullback by the projection π on the
Platonic wave M . The following relation holds:

π∗
(
g−1 (ω)

)
= h̄ (ω̄) . (4.4.21)

Proof: Proposition 4.1.15 guarantees that the vector field g−1 (ω) is ξ-invariant,
so that the left-hand side of expression (4.4.21) is well-defined. One intro-
duces a 1-form χ̄ ∈ Ω1

(
M̄
)
and writes χ̄

(
π∗
(
g−1 (ω)

))
◦ π = π∗χ̄

(
g−1 (ω)

)
=

χ
(
g−1 (ω)

)
= g−1 (χ, ω), where χ ≡ π∗χ̄. By definition of h̄, this leads to

χ̄
(
π∗
(
g−1 (ω)

))
◦ π = g−1 (π∗χ̄, π∗ω̄) =

(
π∗g
−1
)

(χ̄, ω̄) ◦ π = h̄ (χ̄, ω̄) ◦ π =

χ̄
(
h̄ (ω̄)

)
◦ π, ∀χ̄ ∈ Ω1

(
M̄
)
and the expected relation is then seen to hold.

Our symmetry relation now takes the form

ᾱ
(
R̄
(
X̄, h̄

(
β̄
)

; Z̄
))
◦ π = β̄

(
R̄
(
Z̄, h̄ (ᾱ) ; X̄

))
◦ π

which, thanks to the surjectivity of π, guarantees that expression 3.2.33 holds.

We sum up this Section and gather Propositions 4.4.3, 4.4.7 and 4.4.9 in the following
important Theorem:

Theorem 4.4.11 (Duval et al. [24]). The Platonic screen of a Bargmann-Eisenhart wave
is a Newtonian manifold.
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This Theorem can be formulated in components by expressing the Christoffel symbols for
the Levi-Civita connection of a Bargmann-Eisenhart wave (cf. eq.(3.1.1))

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν)

in terms of objects admitting a well-defined projection on the Platonic screen. We recall
from Section 4.2 that this is not the case of the contravariant metric g which must be
reexpressed using an arbitrary (projectable) relativistic field of light-like observers N ∈
FO (M ) as:

gµν =
N
γµν + ψµ

N
Aν + ψν

N
Aµ (4.4.22)

where
N
A ≡ g (N) ∈ Ω1 (M ) is the dual 1-form associated to N . The Christoffel symbols

take then the form:

Γλµν = ξλ∂(µ

N
Aν) +Nλ∂(µψν) +

1

2
gλρ
[
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

]
+ gλρψ(µ

N
F ν)ρ

+gλρ
N
Aµ∂[νψρ] + gλρ

N
Aν∂[µψρ] (4.4.23)

with
N
F ≡ d

N
A ∈ Ω2 (M ) the gravitational field strength, or curvature, associated to

N
A. The

first term, being along the wave vector field ξ, is annihilated by projection while the two
terms appearing in the second line vanish due to the closedness of the wave covector field
of a Bargmann-Eisenhart wave (cf. Proposition 4.1.19). All the remaining terms project
well on the Platonic screen so that the Christoffel symbols of a Bargmann-Eisenhart wave
project downto the components of a Newtonian connection (cf. eq.(3.2.20)):

Γ̄λµν = N̄λ∂(µψ̄ν) +
1

2
h̄λρ

[
∂µ

N̄
γ̄ρν + ∂ν

N̄
γ̄ρµ − ∂ρ

N̄
γ̄µν

]
+ h̄λρψ̄(µ

N̄

F̄ ν)ρ (4.4.24)

where 

N̄ ≡ π∗N

h̄ ≡ π∗g−1

π∗ψ̄ ≡ ψ

π∗
N̄
γ̄ ≡ N

γ

π∗
N̄

F̄ ≡
N
F
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and the closedness of ψ̄ and
N̄

F̄ follow from that of ψ and
N
F , respectively. Note that the

1-form
N
A dual to N does not project on the Platonic screen (since

N
A (ξ) = 1). However,

introducing a section σ : Ū ⊂ M̄ →M (with Ū an open subset of M̄ ) allows to define the

1-form
N̄
A ∈ Ω1

(
Ū
)
as

N̄
A ≡ σ∗

N
A. WheneverN is ξ-invariant,

N
A is an Ehresmann connection

and
N̄
A a gauge connection on Ū . Under a change of section,

N̄
A changes as

N̄
A →

N̄
A + df

where one recognises the Maxwell gauge-transformation of Section 3.2.2. Furthermore, one
can make use of a choice of section in order to define a Lagrangian metric ḡ ∈ Γ

(
∨2 T ∗M̄

)
as ḡ ≡ σ∗g. Eq.(4.4.22) then accounts for the expression ḡ =

N̄
γ + 2ψ̄ ∨

N̄
A (cf. Table 3.1).

Note that the above construction is independent of the choice of relativistic field of light-
like observers N . Indeed, it can be checked that the coefficients (4.4.23) and (4.4.24) are
respectively invariant under a relativistic and nonrelativistic Milne boost.

4.4.2 Kundt connection on the absolute spaces

Before generalising the results of the precedent Section to Platonic waves (cf. Section
4.4.3), we devote the present Section to the investigation of the notion of parallelism induced
by Kundt waves on their absolute spaces. Concretely, we provide a proof of Proposition
4.4.16 which asserts that the Levi-Civita connection of a Kundt wave (M , g, ξ) projects
onto the absolute spaces of the Platonic screen M̄ as the Levi-Civita connection associated
to the spatial metric γ̄. We start with a technical Lemma before showing that the three
consistency conditions below Diagram 4.4.18 are satisfied when restricting to spatial vector
fields on M̄ .

Lemma 4.4.12. Let (M , g, ξ) be a gravitational wave with Levi-Civita connection ∇ and
let X,Y ∈ Γ (TM ) be a pair of ξ-orthogonal vector fields. The following Propositions hold
if and only if (M , g, ξ) is a Kundt wave:

1. g (∇Xξ, Y ) = 0

2. (Lξg) (X,Y ) = 0

Now, letting (M , g, ξ) be a Kundt wave:

3. The vector field ∇XY ∈ Γ (TM ) is ξ-orthogonal.

4. The vector field ∇Xξ ∈ Γ (TM ) is colinear to the wave vector field ξ.

5. If X is projectable, then the vector field ∇ξX ∈ Γ (TM ) is colinear to the wave vector
field ξ.

6. If the 1-form α ∈ Ω1 (M ) is the lift of a 1-form ᾱ ∈ Ω1
(
M̄
)
, then (∇Xα) (ξ) = 0.
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Proof:

1. Kundt waves are defined, among gravitational waves, by the vanishing of their
three optical scalars (cf. Section 2.2.4), which can be expressed as(

∇PN (V )ψ
) (
PN (W )

)
= 0 (4.4.25)

for all vector fields V,W ∈ Γ (TM ) and for all observer N ∈ FO (M ) (cf.
Definition 4.3.3 of the spacelike projection operator PN ). Restricting to ξ-
orthogonal vector fields, the 1-form ∇PN (X)ψ ∈ Ω1 (M ) develops as

∇PN (X)ψ = ∇Xψ −
N
A (X)∇ξψ

where the second term vanishes since ξ is affine geodesic (cf. Proposition 2.1.4).
Now, one is able to reformulate eq.(4.4.25) for ξ-orthogonal vector fields as:(

∇PN (X)ψ
) (
PN (Y )

)
= 0 ⇔ (∇Xψ)

(
PN (Y )

)
= 0

⇔ (∇Xψ) (Y )−
N
A (Y ) (∇Xψ) (ξ) = 0

⇔ g (∇Xξ, Y ) = 0

where the second term on the second line vanishes since ξ is null.

2. Symmetrising the previously established identity inX and Y leads to the Killing
equation of Proposition A.9.9, so that ξ is Killing when acting on ξ-orthogonal
vector fields. Furthermore, the antisymmetric part

1

2
[g (∇Xξ, Y )− g (∇Y ξ,X)] = dψ (X,Y )

vanishes whenever X,Y ∈ Ker ψ (since ψ satisfies the Frobenius Criterion,
dψ = α ∧ ψ for some 1-form α ∈ Ω1 (M ) due to ) so that Lξ (X,Y ) = 0 ⇒
g (∇Xξ, Y ) = 0. Proposition 1 then ensures that the equivalence stands if and
only if (M , g, ξ) is a Kundt wave.

3. The metric compatibility of ∇ allows to write X [g (ξ, Y )] = g (∇Xξ, Y ) +

g (ξ,∇XY ). The left-hand side vanishes since Y is assumed to be ξ-orthogonal
while the first term of the right-hand side cancels due to Proposition 1 of the
present Lemma. The only term remaining is g (ξ,∇XY ) = 0, so that ∇XY is
ξ-orthogonal.
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4. Using again the metric compatibility of ∇, one writes

X [g (ξ,∇Xξ)] = g (∇Xξ,∇Xξ) + g (ξ,∇X∇Xξ) . (4.4.26)

Since the vector fields X and ξ are both ξ-orthogonal, Proposition 3 ensures
that ∇Xξ is ξ-orthogonal, so that the left-hand side of eq.(4.4.26) vanishes.
Furthermore, X and ∇Xξ being ξ-orthogonal, the vector field ∇X∇Xξ is also
ξ-orthogonal so that the second term of the right-hand side cancels. The vector
field ∇Xξ is then seen to be null and ξ-orthogonal, so that it is colinear to ξ.

5. The torsionfree condition of ∇ allows to write ∇Xξ −∇ξX − [X, ξ] = 0. Using
Proposition 4 and the fact that X is projectable (so that there exists a function
f ∈ C∞ (M ) such that [ξ,X] = fξ) ensures that ∇ξX is along ξ.

6. Using expression (A.9.12) allows to write

(∇Xα) (ξ) = X [α (ξ)]− α (∇Xξ)

= X [π∗ᾱ (ξ)]− π∗α (∇Xξ)

= X [α (π∗ξ) ◦ π]− α (π∗∇Xξ) ◦ π

= 0

where in the last step Proposition 4 has been used.

Lemma 4.4.13. Let (M , g, ξ) be a Kundt wave with Levi-Civita connection ∇ and let
X,Y ∈ Γ (TM ) be a pair of projectable ξ-orthogonal vector fields. Then the vector field
∇XY ∈ Γ (TM ) is projectable.

Proof: According to Proposition 2 of Lemma 4.4.12, the wave vector field ξ is Killing
when acting on ξ-orthogonal vector fields so that it is also ∇-preserving, by Propo-
sition A.9.10 i.e.

[ξ,∇XY ] = ∇[ξ,X]Y +∇X [ξ, Y ] . (4.4.27)

Since X and Y are assumed to be projectable, there exist two functions f, l ∈
C∞ (M ) such that [ξ,X] = fξ and [ξ, Y ] = lξ, so that eq.(4.4.27) can be refor-
mulated as: [ξ,∇XY ] = ∇fξY + ∇X (lξ) where both terms on the right-hand side
can be seen to be along ξ, using Propositions 5 and 4 of Lemma 4.4.12, respectively.
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Lemma 4.4.14. Let (M , g, ξ) be a Kundt wave with Levi-Civita connection ∇ and X̄, Ȳ ∈
Ker ψ̄ two spacelike vector fields on the Platonic screen M̄ . The vector field π∗ (∇XY ) ∈
Γ
(
TM̄

)
with X,Y ∈ Γ (TM ) two lifts of X̄ and Ȳ , respectively, is independent of the

choice of lifts X and Y .

Proof: Since X̄ and Ȳ are assumed to be spacelike vector fields, their respective lifts
X and Y are necessarily ξ-orthogonal, so that Proposition 6 of Lemma 4.4.12 ensures
that ∇XY is projectable and the vector field π∗ (∇XY ) is then well-defined.
According to Proposition 4.1.11, two lifts X and X ′ of the vector field X̄ ∈ Γ

(
TM̄

)
differ by X ′ − X = fξ, with f ∈ C∞ (M ) a function on M . Inserting into ∇X′Y
leads to the equality ∇X′Y = ∇XY + f∇ξY where the second term on the right-
hand side is guaranteed to be along ξ by Proposition 5 of Lemma 4.4.12, so that
π∗∇X′Y = π∗∇XY .
Similarly, two lifts Y and Y ′ of Ȳ differ by Y ′ ≡ Y + lξ, with l ∈ C∞ (M ) so
that one can compute ∇XY ′ = ∇XY + Y [l] ξ + l∇Xξ where the third term on the
right-hand side is colinear to the wave vector field ξ according to Proposition 4 of
Lemma 4.4.12. Applying π∗ on both sides leads to π∗ (∇XY ′) = π∗∇XY , so that the
projection π∗∇XY is independent of the choice of lift for X̄ and Ȳ .

We conclude from the previous Lemma that the Kundt Levi-Civita connection projects well
(i.e. without the need of additional prescription) on the absolute spaces of the Platonic
screen M̄ . The following Proposition ensures furthermore that the induced derivative
operator is a Koszul connection:

Lemma 4.4.15. Let (M , g, ξ) be a Kundt wave with associated Levi-Civita connection ∇.
The derivative operator ∇̄ : Γ

(
Ker ψ̄

)
× Γ

(
Ker ψ̄

)
→ Γ

(
Ker ψ̄

)
defined by commutation

of the following diagram

(X,Y )

π∗
��

∇ // ∇XY

π∗
��(

X̄, Ȳ
) ∇̄ // ∇̄X̄ Ȳ .

where X and Y are arbitrary lifts of the spacelike vector fields X̄ and Ȳ , respectively, is a
well-defined Koszul connection on the absolute spaces of the Platonic screen.

Proof: We start by recalling the axioms of a Koszul connection, when acting on vector
fields (cf. Definition A.9.1) :

1. ∇̄X̄
(
Ȳ + Z̄

)
= ∇̄X̄ Ȳ + ∇̄X̄ Z̄

130



4.4. PROJECTION OF A KOSZUL CONNECTION

2. ∇̄X̄+Ȳ Z̄ = ∇̄X̄ Z̄ + ∇̄Ȳ Z̄

3. ∇̄f̄ X̄ Ȳ = f̄∇̄X̄ Ȳ

4. ∇̄X̄
(
f̄ Ȳ
)

= X̄
[
f̄
]
Ȳ + f̄∇̄X̄ Ȳ

with X̄, Ȳ and Z̄ ∈ Γ
(
Ker ψ̄

)
and f ∈ C∞

(
M̄
)
. Note that, since Ker ψ̄ is a

subbundle of the tangent bundle TM̄ , X̄, Ȳ ∈ Ker ψ̄ ⇒ fX̄ + gȲ ∈ Ker ψ̄ for all
functions f, g ∈ C∞

(
M̄
)
. Axioms 1 and 2 are then straightforwardly established

from the linearity of ∇, π∗ and the lift of a vector field. As for Axiom 3, one
makes use of the lift f ∈ C∞ (M ) of a function f̄ (cf. Definition 4.1.6) in order to
write: ∇̄f̄ X̄ Ȳ = π∗ (∇fXY ) = π∗ (f∇XY ) = f̄∇̄X̄ Ȳ . Finally, writing ∇̄X̄

(
f̄ Ȳ
)

=

π∗ (∇XfY ) = π∗ (X [f ]Y + f∇XY ) = X̄
[
f̄
]
Ȳ + f̄∇̄X̄ Ȳ , where one used that X [f ]

is ξ-invariant forX projectable and f ξ-invariant (Lξ (X [f ]) = (LξX) [f ]+X [Lξf ] =

lξ [f ] = 0, where [ξ,X] = lξ), ensures that Axiom 4 is satisfied.

Proposition 4.4.16. Let (M , g, ξ) be a Kundt wave with associated Levi-Civita connection
∇. The Koszul connection ∇̄ : Γ

(
Ker ψ̄

)
× Γ

(
Ker ψ̄

)
→ Γ

(
Ker ψ̄

)
defined (cf. Proposi-

tion 4.4.15) on the absolute spaces of the Platonic screen M̄ is the Levi-Civita connection
associated to the Riemannian relativistic spatial metric γ̄ ∈ Γ

(
∨2 T ∗M̄

)
(cf. Definition

4.2.3).

Proof: Our starting point is the Koszul formula for the Levi-Civita connection asso-
ciated to the relativistic metric g ∈ Γ

(
∨2 T ∗M

)
:

g (∇XY,Z) =
1

2

(
X [g (Y, Z)] + Y [g (X,Z)]− Z [g (X,Y )]

+ g ([X,Y ] , Z)− g ([X,Z] , Y )− g ([Y,Z] , X)
)
.

We now make the assumption that X,Y and Z ∈ Γ (TM ) are projectable and
ξ-orthogonal. From Proposition 3 of Lemma 4.4.12, one concludes that ∇XY is ξ-
orthogonal while Lemma 4.4.14 ensures that it is projectable. By Proposition 4.4.15,
we then have π∗ (∇XY ) = ∇̄X̄ Ȳ , where X̄ ≡ π∗X ∈ Ker ψ̄ and Ȳ ≡ π∗Y ∈ Ker ψ̄
are the respective projection of X and Y on the Platonic screen M̄ . Furthermore,
the Lie bracket [X,Y ] is ξ-orthogonal whenever X and Y are ξ-orthogonal, due to the
involutivity of the distribution Ker ψ. Furthermore, [X,Y ] is projectable according
to Proposition 4.1.9 and satisfies furthermore π∗ [X,Y ] =

[
X̄, Ȳ

]
(cf. Proposition

4.1.12). Now, using these different results as well as Definition 4.2.3, one can refor-
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mulate the previous Koszul formula as:

γ̄
(
∇̄X̄ Ȳ , Z̄

)
◦ π =

1

2

(
X̄
[
γ̄
(
Ȳ , Z̄

)]
◦ π + Ȳ

[
γ̄
(
X̄, Z̄

)]
◦ π − Z̄

[
γ̄
(
X̄, Ȳ

)]
◦ π

+ γ̄
([
X̄, Ȳ

]
, Z̄
)
◦ π − γ̄

([
X̄, Z̄

]
, Ȳ
)
◦ π − γ̄

([
Ȳ , Z̄

]
, X̄
)
◦ π
)

We conclude from the previous expression that ∇̄ is the Levi-Civita connection for
the spatial metric γ̄ ∈ Γ

(
∨2 Ker ψ̄

)
.

4.4.3 Koszul connections induced by a Platonic wave

Section 4.4.1 has emphasised several interesting features regarding the embedding of a
Koszul connection inside a Bargmann-Eisenhart wave. The first of these features was
embodied in Lemma 4.4.1 which asserts that the vector field obtained by parallely trans-
porting (by the means of the Levi-Civita derivative ∇ of the Bargmann-Eisenhart wave)
a projectable vector field along another projectable vector field is itself projectable. The
proof of this Lemma made crucial use of the fact that ∇ parallelises the wave vector field
ξ (the defining characteristic of Bargmann-Eisenhart waves) and, indeed the Lemma does
not apply to more general gravitational waves, at least not with the same amount of gen-
erality. However, we will show further (cf. Lemma 4.4.17) that for the class of Platonic
waves, it is possible to mimic Lemma 4.4.1 by restricting the class of projectable vector
fields to the one of ξ-invariant vector fields. From now on, we will thus restrict our analysis
to ξ-invariant lifts.

The second essential feature encountered in Section 4.4.1 was that the vector field
∇̄X̄ Ȳ ∈ Γ

(
TM̄

)
defined by commutation of Diagram 4.4.18 is independent of the choice

of representative lifts X,Y ∈ Γ (TM ) (cf. Lemma 4.4.2). This result is important since it
essentially guarantees the uniqueness of the induced derivative operator ∇̄ on the Platonic
screen (at least as defined by Diagram 4.4.18). As is turns out, this property is lost
when dealing with Platonic waves (even when restricting to ξ-invariant lifts), as will be
made manifest in Lemma 4.4.20. Consequently, the definition of a Koszul connection ∇̄
on the Platonic screen from the Levi-Civita connection of a Platonic wave requires an
additional prescription in order to fix the arbitrariness in the choice of (ξ-invariant) lifts.
This non-uniqueness of ∇̄ in the Platonic case constitutes the main point of discrepancy
with Bargmann-Eisenhart waves, since different prescriptions will lead to different Koszul
connections. We will propose two examples of prescription and discuss the respective
properties of the induced Koszul connections.

Finally, the induced derivative operator ∇̄ has been shown to be a well-defined tor-
sionfree Koszul connection (cf. Proposition 4.4.3), before being further characterised as
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Galilean (cf. Proposition 4.4.7) and then Newtonian (cf. Proposition 4.4.9). We com-
mented earlier on the fact that, among Platonic waves, only Bargmann-Eisenhart waves
can induce torsionfree Galilean connections so that the various Koszul connections induced
by Platonic waves must correspond to different notions of parallelism. We will focus on
prescriptions allowing to recover the ones introduced in Section 3.2.3.

Lemma 4.4.17. Let (M , g, ξ) be a Platonic wave with associated Levi-Civita connection ∇.
Let X,Y ∈ Γ (TM ) be two ξ-invariant vector fields. Then the vector field ∇XY ∈ Γ (TM )

is ξ-invariant.

Proof: The Killing property enjoyed by the wave vector field ξ ∈ Γ (TM ) of a Platonic
wave ensures that ξ is ∇-preserving (cf. Proposition A.9.10) so that

[ξ,∇XY ] = ∇[ξ,X]Y +∇X [ξ, Y ] , ∀X,Y ∈ Γ (TM ) (4.4.28)

(cf. Definition A.9.7). Assuming that X and Y are ξ-invariant, the equivariance of
∇XY is straightforward from eq. (4.4.28).

The proof of Lemma 4.4.17 makes crucial use of the Killing property of the wave vector
field ξ (the defining characteristic of Platonic waves) so that this result cannot be naïvely
extended to more general classes of gravitational wave. In particular, no similar result seems
to be available for Kundt waves. This suggests that Kundt waves, although allowing the
embedding of a metric structure (more precisely an Aristotelian structure, cf. Proposition
4.2.5), fail to induce a notion of parallelism on the whole Platonic screen.

We now establish the following technical Lemma and its Corollary:

Lemma 4.4.18. Let (M , g, ξ) be a Platonic wave and X ∈ Γ (TM ) a ξ-invariant vector
field. Then the following equality holds

π∗ (∇Xξ) =
1

2
h̄
(
dψ̄
(
X̄
))

(4.4.29)

where

– X̄ ∈ Γ
(
TM̄

)
is the projection of the vector field X on the Platonic screen (X̄ ≡ π∗X)

– h̄ ∈ Γ
(
∨2 TM̄

)
is the nonrelativistic contravariant metric on the Platonic screen

defined by projection of the contravariant metric g−1 ∈ Γ
(
∨2 TM

)
(h̄ ≡ π∗g−1)

– ψ̄ ∈ Ω1
(
M̄
)
is the nonrelativistic absolute clock defined by projection of the wave

covector field ψ ∈ Ω1 (M ) (π∗ψ̄ ≡ ψ).
Denoting Ω ∈ C∞ (M ) the conformal factor relating the Platonic wave (M , g, ξ) to a
Bargmann-Eisenhart wave, the 2-form dψ takes the form dψ = d ln Ω∧ψ, so that expression
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(4.4.29) becomes

π∗ (∇Xξ) = −1

2
h̄ (d ln Ω) ψ̄

(
X̄
)
. (4.4.30)

Proof: Note first that Lemma 4.4.17 ensures the equivariance of ∇Xξ (X and ξ being
ξ-invariant) so that the projection π∗ (∇Xξ) is well-defined. Let α ∈ Ω1 (M ) be
a projectable 1-form with projection ᾱ ∈ Ω1

(
M̄
)
, so that π∗ᾱ ≡ α and denote

Y ∈ Γ (TM ) the vector field dual to α i.e. Y ≡ g−1 (α). The vector field Y is
ξ-invariant, due to the projectability of α and the Killing property of ξ. Equality
(A.9.19) allows to write: dψ (X,Y ) = g (∇Xξ, Y ) − g (∇Y ξ,X). The torsionfree
condition as well as the equivariance of Y ensures that ∇Y ξ = ∇ξY , so that the
previous expression can be restated after staightforward manipulations, as:

dψ (X,Y ) = g (∇Xξ, Y )− g (∇ξY,X)

dψ
(
X, g−1 (α)

)
= g

(
∇Xξ, g−1 (α)

)
− g

(
∇ξ
(
g−1 (α)

)
, X
)

α
(
g−1 (dψ (X))

)
= α (∇Xξ)− (∇ξα) (X) .

where dψ (Z) ∈ Ω1 (M ) stands for dψ (Z, ·) with Z ∈ Γ (TM ). Note that the metric
compatibility of g−1 has been used in order to reformulate the second term on the
right-hand side. Now, this term, using eq.(A.9.12), can be expressed as: (∇ξα) (X) =

ξ [α (X)]− α (∇ξX), where the first term vanishes due to the equivariance of α and
X. Plugging back into the previous expression gives:

α
(
g−1 (dψ (X))

)
= α (∇Xξ) + α (∇ξX)

α
(
g−1 (dψ (X))

)
= 2α (∇Xξ) .

Since all the terms involved admit a well-defined projection on the Platonic screen,
the following relation holds: ᾱ

(
h̄
(
dψ̄
(
X̄
)))

= 2ᾱ (π∗ (∇Xξ)). Since this relation
holds for all ᾱ ∈ Ω1

(
M̄
)
, one concludes: π∗ (∇Xξ) = 1

2 h̄
(
dψ̄
(
X̄
))
.

Corollary 4.4.19. Let (M , g, ξ) be a proper Platonic wave and X ∈ Γ (TM ) a ξ-invariant
vector field on M . The vector field ∇Xξ ∈ Γ (TM ) is colinear with the wave vector field ξ
if and only if X is ξ-orthogonal (cf. Notation 4.2.1).

Proof: The ξ-invariant vector field ∇Xξ is colinear with ξ if and only if π∗ (∇Xξ) = 0.
From eq.(4.4.30), this implies that the vector field h̄ (d ln Ω) ψ̄

(
X̄
)
must vanish. For

a proper Platonic wave (i.e. not a Bargmann-Eisenhart wave), this is the case if and
only if ψ̄

(
X̄
)

= 0, so that X̄ is spacelike, hence X is ξ-orthogonal.
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The previous Lemma is instrumental in order to establish the following result, which
measures the dependence of π∗ (∇XY ) on the choice of representative lifts X,Y (compare
with Lemma 4.4.2 in the Bargmann-Eisenhart case):

Lemma 4.4.20. Let (M , g, ξ) be a Platonic wave and
(
X̄, Ȳ

)
∈ Γ

(
TM̄

)
× Γ

(
TM̄

)
be

a couple of vector fields on the Platonic screen. Moreover, let (X ′, Y ′) and (X,Y ) ∈
Γ (TM )× Γ (TM ) be two couples of ξ-invariant lifts of

(
X̄, Ȳ

)
related byX ′ = X + fξ

Y ′ = Y + lξ
(4.4.31)

where f, l ∈ C∞ (M ) are two ξ-invariant functions on M . Then the following equality
holds

π∗
(
∇X′Y ′

)
= π∗ (∇XY )− 1

2
h̄ (d ln Ω)

(
l̄ ψ̄
(
X̄
)

+ f̄ ψ̄
(
Ȳ
))

(4.4.32)

where
– X̄ ∈ Γ

(
TM̄

)
(resp. Ȳ ∈ Γ

(
TM̄

)
) is the projection of the vector fields X ′ and X

(resp. Y ′ and Y ) on the Platonic screen (X̄ ≡ π∗X
′ = π∗X and Ȳ ≡ π∗Y

′ = π∗Y ,
respectively)

– h̄ ∈ Γ
(
∨2 TM̄

)
is the nonrelativistic contravariant metric on the Platonic screen

defined by projection of the contravariant metric g−1 ∈ Γ
(
∨2 TM

)
(h̄ ≡ π∗g−1)

– ψ̄ ∈ Ω1
(
M̄
)
is the nonrelativistic absolute clock defined by projection of the wave

covector field ψ ∈ Ω1 (M ) (π∗ψ̄ ≡ ψ).
– f̄ ∈ C∞

(
M̄
)
(resp. l̄ ∈ C∞

(
M̄
)
) is the projection of f (resp. l) on the Platonic

screen (f ≡ f̄ ◦ π and l ≡ l̄ ◦ π, respectively)

Proof: Note that Proposition 4.1.11 guarantees the existence of two ξ-invariant func-
tions f, l ∈ C∞ (M ) such that eq.(4.4.31) holds. The vector field ∇X′Y ′ ∈ Γ (TM )

can then be expanded as:

∇X′Y ′ = ∇X+fξ (Y + lξ)

= = ∇XY +X [l] ξ + l∇Xξ + f∇ξY + fξ [l] ξ + fl∇ξξ

where the two last term on the right-hand side are seen to vanish, using the equiv-
ariance of l and that ξ is affine geodesic. The fourth term on the right-hand side can
be reformulated as f∇Y ξ using the fact that ∇ is torsionfree and the equivariance
of Y . Now, projecting on the Platonic screen:

π∗
(
∇X′Y ′

)
= π∗ (∇XY ) + l̄ π∗ (∇Xξ) + f̄ π∗ (∇Y ξ)
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where f̄ , l̄ ∈ C∞
(
M̄
)
are the projections of f and l, respectively (cf. Proposition

4.1.7). Now, Lemma 4.4.18 provides us with the equality (4.4.30) which can be used
to reformulate the previous expression as:

π∗
(
∇X′Y ′

)
= π∗ (∇XY )− 1

2
l̄ h̄ (d ln Ω) ψ̄

(
X̄
)
− 1

2
f̄ h̄ (d ln Ω) ψ̄

(
Ȳ
)

= π∗ (∇XY )− 1

2
h̄ (d ln Ω)

(
l̄ ψ̄
(
X̄
)

+ f̄ ψ̄
(
Ȳ
))
.

As foreshadowed, Lemma 4.4.20 fails to reproduce Lemma 4.4.2 in the Platonic case, even
when restricted to ξ-invariant lifts. In consequence, the projection of the Levi-Civita con-
nection on the Platonic screen depends on the choice of lifts, so that one needs an additional
prescription in order to induce a well-defined derivative operator on M̄ . We will propose
two examples of prescription allowing to induce a well-defined Koszul connection on the
Platonic screen of a Platonic wave. The first one will make use of a notion of horizontality

on the principal bundle in the guise of an Ehresmann connection
N
A, allowing to recover the

nonrelativistic Horizontal connection defined in Section 3.2.3. The second prescription (cf.
Section 4.4.5 ) will make contact with the notion of nonrelativistic Platonic connection and
will provide the tools necessary to a geometric understanding of the Eisenhart-Lichnerowicz
lift.

4.4.4 Horizontal lift

Proposition 4.4.21. Let M be a Platonic wave and
N
A ∈ Ω1 (M ) an Ehresmann con-

nection on M . The derivative operator
N̄
∇ : Γ

(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
defined by

commutation of the following diagram

(X,Y )

π∗

��

∇ // ∇XY

π∗
��(

X̄, Ȳ
) N̄
∇ // N̄∇X̄ Ȳ .

where X and Y ∈ Γ (TM ) are the horizontal lifts with respect to the Ehresmann connection
N
A of the vector fields X̄ and Ȳ ∈ Γ

(
TM̄

)
, respectively, is a well-defined Koszul connection

on the Platonic screen M̄ .

Proof: First note that Proposition 4.3.13 ensures that X and Y are ξ-invariant, so
that ∇XY is ξ-invariant (cf. Lemma 4.4.17). The equivariance of ∇XY , together
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with the uniqueness of the horizontal lift, ensures that the projection π∗ (∇XY ) is

well-defined. That the derivative operator
N̄
∇ thus defined satisfies the Axioms of a

Koszul connection (cf. Definition A.9.1) can be proved mirroring the steps followed
in the proof of Proposition 4.4.3.

The nonrelativistic Koszul connection
N̄
∇ will soon be given the interpretation of a Horizon-

tal connection on the Platonic screen M̄ . Before that, we prove the two following technical
Lemmas:

Lemma 4.4.22. Let (M , g, ξ) be a Platonic wave and
N
A ∈ Ω1 (M ) an Ehresmann con-

nection on M . The Koszul connection defined in Proposition 4.4.21 acts on 1-forms as:(
N̄
∇X̄ ᾱ

)(
Ȳ
)
◦ π = (∇Xα) (Y ) (4.4.33)

with
– ᾱ ∈ Ω1

(
M̄
)
a 1-form on the Platonic screen

– α ∈ Ω1 (M ) the pullback of ᾱ by the projection π
– X̄, Ȳ ∈ Γ

(
TM̄

)
two vector fields on the Platonic screen

– X,Y ∈ Γ (TM ) the respective horizontal lifts of X̄ and Ȳ with respect to
N
A.

Proof: Equality (4.4.33) is straightforwardly established starting from expression (A.9.12)
for the Levi-Civita connection associated to g and manipulating using formulas of
Section A.2:

(∇Xα) (Y ) = X [α (Y )]− α (∇XY )

= X [π∗ᾱ (Y )]− π∗ᾱ (∇XY )

= X
[
ᾱ
(
Ȳ
)
◦ π
]
− ᾱ (π∗ (∇XY )) ◦ π

= X̄
[
ᾱ
(
Ȳ
)]
◦ π − ᾱ

(
N̄
∇X̄ Ȳ

)
◦ π

=

(
N̄
∇X̄ ᾱ

)(
Ȳ
)
◦ π.

Lemma 4.4.23. Let (M , g, ξ) be a Platonic wave and
N
A ∈ Ω1 (M ) an Ehresmann con-

nection on M . Furthermore, let ᾱ ∈ Ω1
(
M̄
)
be a 1-form on the Platonic screen M̄ .

The horizontal lift of the vector field h̄ (ᾱ) ∈ Γ
(
TM̄

)
is given by

N
h (α) ∈ Γ (TM ), with
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α ∈ Ω1 (M ) the lift of ᾱ on M and where the contravariant metric
N
h ∈ Γ

(
∨2 TM

)
is

defined as
N
h ≡ g−1 −N ⊗ ξ − ξ ⊗N , with N ≡ g−1

(
N
A

)
.

Proof: We first prove that
N
h (α) is ξ-invariant. This is easily seen by writing

Lξ
(
N
h (α)

)
=

(
Lξ

N
h

)
(α) +

N
h (Lξα) = 0

where the respective equivariance of g,
N
A, N and ξ has been used. The projection

of
N
h (α) is then well-defined and we have π∗

(
N
h (α)

)
= h̄ (ᾱ). The horizontality of

N
h (α) is now shown as follows:

N
A

(
N
h (α)

)
=

N
h

(
N
A,α

)
= g−1

(
N
A,α

)
−

N
A (N)α (ξ)−

N
A (ξ)α (N)

= α (N)− α (N) = 0

where we used that N and ξ are respectively a horizontal and a fundamental vector
field.

Proposition 4.4.24. Let (M , g, ξ) be a Platonic wave and
N
A ∈ Ω1 (M ) an Ehresmann

connection on M . The Koszul connection
N̄
∇ defined in Proposition 4.4.21 is a Horizontal

connection. (cf. Definition 3.2.46).

Proof: Let X̄, Ȳ ∈ Γ
(
TM̄

)
be two vector fields on the Platonic screen M̄ and desig-

nate X,Y ∈ Γ (TM ) their respective horizontal lifts with respect to the Ehresmann

connection
N
A. We start by showing that

N̄
∇ is torsion-free and then that the Axioms

1-3 of Proposition 3.2.45 are satisfied:

– The torsionfree condition satisfied by the Levi-Civita connection associated to
the Platonic metric g allows to write: ∇XY −∇YX − [X,Y ] = 0. Projecting
on M̄ , one obtains the relation π∗ (∇XY )− π∗ (∇YX)− π∗ [X,Y ] = 0. Using
Definition 3.2.46 and Proposition 4.1.12 leads to

N̄
∇X̄ Ȳ −

N̄
∇Ȳ X̄ −

[
X̄, Ȳ

]
= 0.

– Axiom 1: Platonic waves are characterised by the existence of a Killing wave

138



4.4. PROJECTION OF A KOSZUL CONNECTION

vector field so that one is allowed to write (cf. Proposition A.9.9):

g (∇Xξ, Y ) + g (X,∇Y ξ) = 0.

The compatibility of ∇ with g ensures that (∇Xψ) (Y ) + (∇Y ψ) (X) = 0.
Projecting on the Platonic screen and using Lemma 4.4.22 leads to(

N̄
∇X̄ ψ̄

)(
Ȳ
)

+

(
N̄
∇Ȳ ψ̄

)(
X̄
)

= 0

so that the absolute clock ψ̄ ∈ Ω1
(
M̄
)
is a conservor (cf. Definition 3.2.42).

– Axiom 2: We start from the compatibility condition of the Platonic Levi-Civita
connection with the contravariant metric g−1 expressed as:

X
[
g−1 (α, β)

]
= g−1 (∇Xα, β) + g−1 (α,∇Xβ) = 0

where α, β ∈ Ω1 (M ) are chosen to be two projectable 1-forms on M with

respective projections ᾱ, β̄ ∈ Ω1
(
M̄
)
. Replacing g−1 by g−1 =

N
h+2N ∨ξ, one

obtains:

X

[
N
h (α, β)

]
=

N
h (∇Xα, β) +

N
h (α,∇Xβ)

+ (∇Xα) (ξ)β (N) + (∇Xβ) (ξ)α (N) (4.4.34)

where one used that α (ξ) = β (ξ) = 0. We now make the additional hypothesis
that ᾱ, β̄ ∈ Ann N̄ . Consequently, α (N) = β (N) = 0, so that

X

[
N
h (α, β)

]
=

N
h (∇Xα, β) +

N
h (α,∇Xβ) .

Making use of Lemmas 4.4.22 and 4.4.23 allows to write

N
h (∇Xα, β) = (∇Xα)

(
N
h (β)

)
=

(
N̄
∇X̄ ᾱ

)(
h̄
(
β̄
))
◦ π = h̄

(
N̄
∇X̄ ᾱ, β̄

)
◦ π.

so that expression (4.4.34) projects as:

X̄
[
h̄
(
ᾱ, β̄

)]
= h̄

(
N̄
∇X̄ ᾱ, β̄

)
+ h̄

(
ᾱ,

N̄
∇X̄ β̄

)

which ensures that Axiom 2 of Proposition 3.2.45 is satisfied.
– Axiom 3: We start again from eq.(4.4.34) and make the hypothesis that X is
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ξ-orthogonal. Now, Proposition 6 of Lemma 4.4.12 ensures that (∇Xα) (ξ) =

(∇Xβ) (ξ) = 0. Following the same steps as in the proof of Axiom 2 guarantees
that Axiom 3 of Proposition 3.2.45 holds.

4.4.5 Orthogonal lift

Definition 4.4.25 (Orthogonal lift). Let (M , g, ξ) be a Platonic wave and
(
X̄, Ȳ

)
∈

Γ
(
TM̄

)
× Γ

(
TM̄

)
be a couple of vector fields on the Platonic screen M̄ such that X̄

and Ȳ are not both spacelike. The couple of vector fields (X,Y ) ∈ Γ (TM ) × Γ (TM ) on
M is said to be an orthogonal lift of (X,Y ) if X and Y satisfy the conditions:

– X and Y are ξ-invariant
– π∗X = X̄ and π∗Y = Ȳ

– g (X,Y ) = 0.

Lemma 4.4.26. Let (M , g, ξ) be a Platonic wave . To any couple
(
X̄, Ȳ

)
∈ Γ

(
TM̄

)
×

Γ
(
TM̄

)
of vector fields on the Platonic screen M̄ such that X̄ and Ȳ are not both spacelike

corresponds a class [(X,Y )] of orthogonal lifts of (X,Y ).

Proof: Let X ′, X ∈ Γ (TM ) (resp. Y ′, Y ∈ Γ (TM )) be two ξ-invariant lifts of X̄
(resp. of Ȳ ). By Proposition 4.1.11, there exists a ξ-invariant function f ∈ C∞ (M )

(resp. l ∈ C∞ (M )) such that X ′ = X + fξ (resp. Y ′ = Y + lξ). Imposing
g (X ′, Y ′) = 0 yields g (X,Y ) + lψ (X) + fψ (Y ) = 0. By hypothesis, X̄ and Ȳ

are not both spacelike. Assuming that X̄ is not spacelike, then ψ (X) 6= 0 and the
previous equation can always be solved for l.

According to the proof of Lemma 4.4.26, if the couples (X ′, Y ′) and (X,Y ) belong to the
class of orthogonal lifts for the couple

(
X̄, Ȳ

)
, then there exist two ξ-invariant functions

f, l ∈ C∞ (M ) such that: 
X ′ = X + fξ

Y ′ = Y + lξ

lψ (X) + fψ (Y ) = 0.

(4.4.35)

Lemma 4.4.27. Let (M , g, ξ) be a Platonic wave and
(
X̄, Ȳ

)
∈ Γ

(
TM̄

)
× Γ

(
TM̄

)
be a

couple of vector fields on the Platonic screen M̄ such that X̄ and Ȳ are not both spacelike.
Let (X ′, Y ′) and (X,Y ) be two orthogonal lifts for the couple

(
X̄, Ȳ

)
. Then

π∗
(
∇X′Y ′

)
= π∗ (∇XY ) . (4.4.36)
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Proof: The proof is obtained straightforwardly by inserting the (projection of the)
third equality of (4.4.35) into eq.(4.4.32).

As hinted in the proof of Lemma 4.4.27, imposing the lifts of two nonrelativistic vector
fields to be orthogonal is the most minimal prescription ensuring that the Levi-Civita
parallel transport projects well (i.e. independently of the remaining arbitrariness), since
eq.(4.4.35) provides just the restriction needed in order for eq.(4.4.36) to hold. The notion
of orthogonal lift is natural in this respect as it leaves room for a certain amount of freedom,
as embodied in eq.(4.4.35), in contradistinction e.g. , with the horizontal prescription which
fixed uniquely the choice of lifts.

In order to be exhaustive, one needs an additional prescription concerning the lifts of
two spacelike vector fields

(
X̄, Ȳ

)
, since the orthogonal lift is inapplicable in this specific

case. A natural option consists in taking advantage of the affine character of the space
of timelike vector fields. The spacelike vector field X̄ is thus envisaged as a sum of two
timelike vector fields X̄ = X̄1 + X̄2, with X̄1, X̄2 ∈ Γ

(
TM̄

)
, so that the orthogonal lifts

of
(
X̄1, Ȳ

)
and

(
X̄2, Ȳ

)
are well-defined. The following Definition and Lemma provide a

more precise formalisation of this line of reasoning:

Definition 4.4.28 (Orthogonal operator). Let (M , g, ξ) be a Platonic wave with Levi-
Civita connection ∇ and Platonic screen M̄ . Let X̄ and Ȳ ∈ Γ

(
TM̄

)
be two vector fields

on M̄ . The orthogonal operator ∇̄ : Γ
(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
is defined as:

• X̄ and Ȳ are not both spacelike: ∇̄X̄ Ȳ ≡ π∗ (∇XY ), with (X,Y ) ∈ Γ (TM )×Γ (TM )

an orthogonal lift of
(
X̄, Ȳ

)
• X̄ and Ȳ are both spacelike: ∇̄X̄ Ȳ ≡ ∇̄X̄1

Ȳ +∇X̄2
Ȳ whereX̄1 = 1

2

(
X̄ + N̄

)
X̄2 = 1

2

(
X̄ − N̄

) (4.4.37)

with N̄ ∈ Γ
(
TM̄

)
an arbitrary timelike vector field.

Since X̄1 and X̄2 are timelike, the definition of ∇̄X̄1
Ȳ (resp. ∇̄X̄2

Ȳ ) falls within the ambit
of the first item, and is then computed by taking the orthogonal lift of

(
X̄1, Ȳ

)
, (resp.(

X̄2, Ȳ
)
).

Lemma 4.4.29. Let (M , g, ξ) be a Platonic wave and
(
X̄, Ȳ

)
∈ Γ

(
TM̄

)
× Γ

(
TM̄

)
be a

couple of spacelike vector fields on the Platonic screen M̄ . The Platonic screen is endowed
with the orthogonal operator (cf. Definition 4.4.28) ∇̄ : Γ

(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
.

The following relation holds:

∇̄X̄ Ȳ = π∗ (∇XY ) +
1

2
h̄ (d ln Ω) γ̄

(
X̄, Ȳ

)
(4.4.38)
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with

– X ∈ Γ (TM ) an arbitrary lift of X̄
– Y ∈ Γ (TM ) an arbitrary lift of Ȳ
– Ω ∈ C∞ (M ) the conformal factor relating the Platonic wave (M , g, ξ) to a Bargmann-
Eisenhart wave

– γ̄ ∈ Γ
(
∨2 Ker ψ̄

)
the covariant spatial metric on the absolute spaces

– h̄ ∈ Γ
(
∨2 TM̄

)
the contravariant metric on the Platonic screen.

Proof: According to Definition 4.4.28, since X̄ and Ȳ are both spacelike, one needs
to introduce the vector fieldsX̄1 = 1

2

(
X̄ + N̄

)
X̄2 = 1

2

(
X̄ − N̄

)
where N̄ ∈ Γ

(
TM̄

)
is a timelike vector field on M̄ .

Let us denote (X1, Y1) an orthogonal lift for the couple
(
X̄1, Ȳ

)
. The orthogonality

condition g (X1, Y1) = 0 fixes uniquely the lift Y1 ∈ Γ (TM ), since Ȳ is spacelike.
Proceeding similarly and denoting (X2, Y2) an orthogonal lift for the couple

(
X̄2, Ȳ

)
,

the orthogonality condition g (X2, Y2) = 0 determines Y2 uniquely. A priori, Y1 6= Y2

but these two lifts of Ȳ must satisfy Y2 = Y1 + fξ for some ξ-invariant function
f ∈ C∞ (M ). Denoting X ≡ X1 +X2 and using both orthogonality condition allows
to write:

g (X2, Y2) = g (X2, Y1 + fξ)

= g (X2, Y1) + fψ (X2)

= g (X,Y1)− g (X1, Y1) + fψ (X2) ,

so that g (X,Y1) + fψ (X2) = 0, which projects as

γ̄
(
X̄, Ȳ

)
+ f̄ ψ̄

(
X̄2

)
= 0, (4.4.39)

where f̄ denotes the projection of f on the Platonic screen.
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Now, the definition of ∇̄X̄ Ȳ can be expressed as :

∇̄X̄ Ȳ = ∇̄X̄1
Ȳ +∇X̄2

Ȳ

= π∗ (∇X1Y1 +∇X2Y2)

= π∗ (∇X1Y1 +∇X2 (Y1 + fξ))

= π∗ (∇X1Y1 +∇X2Y1 +X2 [f ] ξ + f∇X2ξ)

= π∗ (∇XY1) + π∗ (f∇X2ξ) .

Using eq.(4.4.30) allows to reformulate the second term on the right-hand side as
π∗ (f∇X2ξ) = −1

2 f̄ h̄ (d ln Ω) ψ̄
(
X̄2

)
= 1

2 h̄ (d ln Ω) γ̄
(
X̄, Ȳ

)
, where eq.(4.4.39) has

been used. Note that the term π∗ (∇XY1) does not depend on the choice of lifts X
and Y1, in virtue of Lemma 4.4.14.

Two main conclusions can be drawn from Lemma 4.4.29:
• For X̄ and Ȳ both spacelike, ∇̄X̄ Ȳ is independent of the choice of N̄ , with ∇̄ the

orthogonal operator and N̄ ∈ Γ
(
TM̄

)
the timelike vector field appearing in the

second item of Definition 4.4.28. This ensures that the definition of the orthogonal
operator is consistent for spacelike vector fields.
• Proposition 4.4.16 established that the Levi-Civita connection of Kundt waves projects

well on the absolute spaces of their associated Platonic screen as the Levi-Civita
connection for the spatial metric γ̄. In view of eq.(4.4.29), one concludes that the or-
thogonal operator does not generically agree with the spatial Levi-Civita connection
on absolute spaces.

Proposition 4.4.30. Let (M , g, ξ) be a Platonic wave with Platonic screen M̄ . The
orthogonal operator ∇̄ : Γ

(
TM̄

)
× Γ

(
TM̄

)
→ Γ

(
TM̄

)
is a Koszul connection.

Proof: We first prove the linearity axioms

∇̄X̄
(
Ȳ + Z̄

)
= ∇̄X̄ Ȳ + ∇̄X̄ Z̄ (4.4.40)

∇̄Ȳ+Z̄X̄ = ∇̄Ȳ X̄ + ∇̄Z̄X̄. (4.4.41)

by making use of the two following Lemmas, which distinguish according to whether
the vector field X̄ is timelike or spacelike:
Lemma 4.4.31. Let X̄, Ȳ and Z̄ ∈ Γ

(
TM̄

)
three vector fields on M̄ such that X̄

is timelike. Then the linearity conditions (4.4.40)-(4.4.41) hold.

Proof: We start from the linearity of the Levi-Civita connection ∇ of a Platonic
wave: ∇X (Y + Z) = ∇XY +∇XZ where X ∈ Γ (TM ) is assumed to be a lift
of X̄. Now, imposing (X,Y ) to be an orthogonal lift for the couple

(
X̄, Ȳ

)
fixes
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the lift Y in terms ofX, via the orthogonality condition g (X,Y ) = 0. Similarly,
(X,Z) is assumed to be an orthogonal lift for

(
X̄, Z̄

)
which determines uniquely

the lift Z in terms of X. By linearity of the metric, the couple (X,Y + Z)

is automatically an orthogonal lift for
(
X̄, Ȳ + Z̄

)
. Consequently, projecting

∇X (Y + Z) = ∇XY +∇XZ leads straightforwardly to the linearity condition
(4.4.40). The linearity condition (4.4.41) can be proved along similar lines.

Lemma 4.4.32. Let X̄, Ȳ and Z̄ ∈ Γ
(
TM̄

)
three vector fields on M̄ such that X̄

is spacelike. Then the linearity conditions (4.4.40)-(4.4.41) hold.

Proof: Since X̄ is assumed to be spacelike, it can be written as X̄ ≡ X̄1 + X̄2

where X̄1, X̄2 ∈ Γ
(
TM̄

)
are timelike vector fields on M̄ defined as:X̄1 = 1

2

(
X̄ + N̄

)
X̄2 = 1

2

(
X̄ − N̄

)
with N̄ ∈ Γ

(
TM̄

)
an arbitrary timelike vector field. This decomposition al-

lows to write ∇̄X̄
(
Ȳ + Z̄

)
= ∇̄X̄1

(
Ȳ + Z̄

)
+ ∇̄X̄2

(
Ȳ + Z̄

)
. Whenever Ȳ + Z̄

is timelike, the previous equality follows from eq.(4.4.41) when X̄ is time-
like, as proved in Lemma 4.4.31. However, when X̄ is timelike, the previous
equality is just the definition of the orthogonal operator acting on two space-
like vector fields. Since X̄1 and X̄2 are both timelike, eq.(4.4.40) of Lemma
4.4.31 can be used in order distribute the previous relation as: ∇̄X̄

(
Ȳ + Z̄

)
=

∇̄X̄1
Ȳ + ∇̄X̄1

Z̄ + ∇̄X̄2
Ȳ + ∇̄X̄2

Z̄. Now, one can factorise as ∇̄X̄
(
Ȳ + Z̄

)
=

∇̄X̄1+X̄2
Ȳ +∇̄X̄1+X̄2

Z̄, using either eq.(4.4.41) of Lemma 4.4.31 when Ȳ (resp.
Z̄) is timelike or the definition of ∇̄X̄ Ȳ (resp. ∇̄X̄ Z̄) whenever Ȳ (resp. Z̄) is
spacelike. By definition of X̄, this amounts to eq.(4.4.40) when X̄ is spacelike.
The proof of eq.(4.4.41) in the spacelike case can be performed similarly.

Regarding, the third and fourth axioms, we first consider the case when X̄ and
Ȳ are not both spacelike. One first notices that (X,Y ) is an orthogonal lift for
the couple

(
X̄, Ȳ

)
if and only if (fX, Y ) is an orthogonal lift for

(
f̄ X̄, Ȳ

)
, with

f̄ ∈ C∞
(
M̄
)
, X̄, Ȳ ∈ Γ

(
TM̄

)
and f ∈ C∞ (M ) the lift of f̄ . This property is

straightforwardly seen from Lemma 4.1.13 and the bilinearity of g. Regarding the
third axiom, we start from ∇̄f̄ X̄ Ȳ = π∗ (∇fXY ), with (X,Y ) an orthogonal lift for
the couple

(
X̄, Ȳ

)
. Using that the Levi-Civita connection ∇ satisfy the third axiom,

one obtains: ∇̄f̄ X̄ Ȳ = π∗ (f∇XY ) = f̄∇̄X̄ Ȳ , where we used that (X,Y ) is an
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orthogonal lift for
(
X̄, Ȳ

)
. The proof of the fouth axiom is equally straightforward:

∇̄X̄ f̄ Ȳ = π∗ (∇XfY )

= π∗ (X [f ]Y + f∇XY )

= X̄
[
f̄
]
Ȳ + f̄∇̄X̄ Ȳ .

Lastly, when X̄ and Ȳ are both spacelike, Lemma 4.4.29 ensures that ∇̄X̄ Ȳ =

π∗ (∇XY ) + 1
2 h̄ (d ln Ω) γ̄

(
X̄, Ȳ

)
, so that:

∇̄f̄ X̄ Ȳ = π∗ (∇fXY ) +
1

2
h̄ (d ln Ω) γ̄

(
f̄ X̄, Ȳ

)
= π∗ (f∇XY ) +

1

2
f̄ h̄ (d ln Ω) γ̄

(
X̄, Ȳ

)
= f̄

[
π∗ (∇XY ) +

1

2
h̄ (d ln Ω) γ̄

(
X̄, Ȳ

)]
= f̄∇̄X̄ Ȳ

and

∇̄X̄
(
f̄ Ȳ
)

= π∗ (∇X (fY )) +
1

2
h̄ (d ln Ω) γ̄

(
X̄, f̄ Ȳ

)
= π∗ (X [f ]Y + f∇XY ) +

1

2
h̄ (d ln Ω) γ̄

(
X̄, f̄ Ȳ

)
= X̄

[
f̄
]
Ȳ + f̄

[
π∗ (∇XY ) +

1

2
h̄ (d ln Ω) γ̄

(
X̄, Ȳ

)]
= X̄

[
f̄
]
Ȳ + f̄∇X̄ Ȳ .

Proposition 4.4.33. Let (M , g, ξ) be a Platonic wave with Platonic screen M̄ . The or-
thogonal connection ∇̄ is a Platonic connection for the Aristotelian structure A

(
M̄ , ψ̄, h̄

)
induced by (M , g, ξ) . If we denote (M , ĝ, ξ) the Bargmann-Eisenhart wave conformally
related to the Platonic wave (M , g, ξ) and ¯̂∇ the Newtonian connection induced by ĝ on
M̄ , then ∇̄ and ¯̂∇ are conformally related.

Proof: First we note that the Aristotelian structure A
(
M̄ , ψ̄, h̄

)
induced by (M , g, ξ)

must be conformally related (in the sense of Definition 3.2.50) to the Augustinian
structure S

(
M ,

¯̂
ψ,

¯̂
h
)
. Let ¯̂∇ denote the Newtonian connection obtained by pro-

jection on the Platonic screen M̄ of the Levi-Civita connection ∇̂ associated to the
Bargmann-Eisenhart wave (M , ĝ, ξ), so that N

(
M ,

¯̂
ψ,

¯̂
h,

¯̂∇
)
is a Newtonian man-

ifold. The orthogonal Koszul connection on M̄ originating from ∇ will be denoted
∇̄.
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Now, denoting Ω ∈ C∞ (M ) the conformal factor relating g and ĝ (i.e. g = Ω ĝ),
the Christoffel symbols Γλµν and Γ̂λµν associated to g and ĝ, respectively are related
according to relation (3.1.2) as

Γλµν = Γ̂λµν +
1

2

(
δλµ∂ν ln Ω + δλν∂µ ln Ω− gλρgµν ∂ρ ln Ω

)
. (4.4.42)

Letting X, X̂ ∈ Γ (TM ) be two ξ-invariant vector fields on M satisfying X = Ω−1X̂,
their respective projections X̄ and ¯̂

X on M̄ satisfy the relation X̄ = Ω̄−1 ¯̂
X, where

Ω̄ ∈ C∞
(
M̄
)
is the projection of the (ξ-invariant by definition) function Ω. Equation

(4.4.42) allows to compute the relation

∇XX = Ω−2∇̂X̂X̂ −
1

2
g−1 (d ln Ω) g (X,X) .

Projecting onto M̄ , one obtains

π∗ (∇XX) = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X − 1

2
h̄
(
d ln Ω̄

)
g (X,X) . (4.4.43)

where the term g (X,X) is intended here as the projection of the ξ-invariant function
g (X,X) on M̄ . In order to make contact with the orthogonal Koszul connection ∇̄,
we need to discriminate between the two following cases:
• X is ξ-orthogonal:

Since X is ξ-orthogonal, the vector field X̄ is spacelike. Definition 4.2.3 and
Proposition 4.2.4 thus ensure that g (X,X) projects onto γ̄

(
X̄, X̄

)
, so that

π∗ (∇XX) = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X − 1

2
h̄
(
d ln Ω̄

)
γ̄
(
X̄, X̄

)
.

On the other hand, Lemma 4.4.29 ensures that

π∗ (∇XX) = ∇̄X̄X̄ −
1

2
h̄ (d ln Ω) γ̄

(
X̄, X̄

)
Substracting these last two relations leads to

∇̄X̄X̄ = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X. (4.4.44)

• X is not ξ-orthogonal:

Since X is not ξ-orthogonal, it can be chosen to be null with respect to the
metric g, i.e. g (X,X) = 0, so that the last term of eq.(4.4.43) vanishes. Now,
since X is null, the couple (X,X) is an orthogonal lift for the timelike vector
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field X̄ and eq.(4.4.43) becomes

∇̄X̄X̄ = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X. (4.4.45)

Equations (4.4.44) and (4.4.45) together ensure that the following assertion holds

∀X̄, ¯̂
X ∈ Γ

(
TM̄

)
/ X̄ = Ω̄−1 ¯̂

X, ∇̄X̄X̄ = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X.

According to Proposition 3.2.52, ∇̄ is then a Platonic connection conformally related
to the Newtonian connection ¯̂∇.

Generalising the Orthogonal lift

We continue our investigation of orthogonal lifts by discussing an extension thereof that will
be proved useful in order to grasp the geometric origin of the scalar potential shift occuring
in the Eisenhart-Lichnerowicz lift for relativistic non-null geodesics. Considering two vector
fields X̄ and Ȳ on the Platonic screen M̄ of a Platonic wave (M , g, ξ) , this extension is
obtained by substituting in Definition 4.4.25 the orthogonal condition g (X,Y ) = 0 with

g (X,Y ) = −M2ψ (X)ψ (Y ) (4.4.46)

where ψ is the wave covector field on M and M a fixed constant. We are then led to
define:

Definition 4.4.34 (Generalised Orthogonal lift). Let (M , g, ξ) be a Platonic wave and(
X̄, Ȳ

)
∈ Γ

(
TM̄

)
× Γ

(
TM̄

)
be a couple of vector fields on the Platonic screen M̄ such

that X̄ and Ȳ are not both spacelike. The couple of vector fields (X,Y ) ∈ Γ (TM )×Γ (TM )

on M is said to be a generalised orthogonal lift of (X,Y ) if X and Y satisfy the conditions:
– X and Y are ξ-invariant
– π∗X = X̄ and π∗Y = Ȳ

– g (X,Y ) = −M2ψ (X)ψ (Y ).
with M a fixed constant.

It can be checked that this substitution does not affect the validity of Lemmas 4.4.26 6,
and 4.4.27. Defining a generalised orthogonal operator by adapting Definition 4.4.28, in
can be checked that Lemma 4.4.29 as well as Proposition 4.4.33 still hold, so that this new
prescription can be used in order to induce a Koszul connection on M . The only sensible
difference appears in Proposition 4.4.33, which gets modified into:

6. Notably, equalities (4.4.35) still hold.
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Proposition 4.4.35. Let (M , g, ξ) be a Platonic wave with Platonic screen M̄ . Denote
(M , ĝ, ξ) the Bargmann-Eisenhart wave conformally related to (M , g, ξ) and S

(
M ,

¯̂
ψ,

¯̂
h
)

the Augustinian structure induced by (M , ĝ, ξ). Furthemore, let ¯̂∇ be the Newtonian con-

nection induced by ĝ on M̄ and denote

[
¯̂
N,

¯̂
N
A

]
the equivalence class characterising the

Newtonian connection ¯̂∇. Then the two following Propositions hold:
– The generalised orthogonal connection ∇̄ is a Platonic connection for the Aristotelian
structure A

(
M̄ , ψ̄, h̄

)
induced by (M , g, ξ) .

– The Platonic connection ∇̄ is conformally related to the Newtonian connection com-

patible with S and characterised by the equivalence class

[
¯̂
N,

¯̂
N
A− M2

2 Ω̄
¯̂
ψ

]
.

Proof: The proof is mainly identical to the one of Proposition 4.4.33, except for the
case where X is not ξ-orthogonal, which gets modified as follows:

– X is not ξ-orthogonal:

SinceX is not ξ-orthogonal, it can be chosen to be satisfy g (X,X) = −M2ψ (X)ψ (X),
so that (X,X) is a generalised orthogonal lift for the timelike vector field X̄.
Eq.(4.4.43) then becomes

∇̄X̄X̄ = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X +

M2

2
h̄
(
d ln Ω̄

)
ψ̄
(
X̄
)
ψ̄
(
X̄
)

= Ω̄−2

(
¯̂∇ ¯̂
X

¯̂
X +

M2

2
¯̂
h
(
dΩ̄
) ¯̂
ψ
(

¯̂
X
)

¯̂
ψ
(

¯̂
X
))

. (4.4.47)

Since ¯̂∇ is characterised by the equivalence class

[
¯̂
N,

¯̂
N
A

]
the term between

brackets can be written in holonomic coordinates as

¯̂
X
[

¯̂
Xλ
]

+

(
¯̂
Γλµν +

M2

2
¯̂
hλρ∂ρ Ω̄

¯̂
ψµ

¯̂
ψν

)
¯̂
Xµ ¯̂

Xν (4.4.48)

where

¯̂
Γλµν =

¯̂
Nλ∂(µ

¯̂
ψν) +

1

2
¯̂
hλρ

[
∂µ

¯̂
N
γρν + ∂ν

¯̂
N
γρµ − ∂ρ

¯̂
N
γµν

]
+

¯̂
hλρ

¯̂
ψ(µ

¯̂
N
F ν)ρ (4.4.49)

and
¯̂
N
Fµν ≡ 2∂[µ

¯̂
N
Aν]. Now, performing the substitution

¯̂
N
Aµ →

¯̂
N
Aµ − M2

2 Ω̄ψµ,
the coefficients (4.4.49) shift as

¯̂
Γλµν →

¯̂
Γλµν +

M2

2
¯̂
hλρ∂ρ Ω̄

¯̂
ψµ

¯̂
ψν .

148



4.4. PROJECTION OF A KOSZUL CONNECTION

The terms between brackets in expression (4.4.48) takes then the interpetation
of the coefficients of a Newtonian connection ¯̃∇ preserving the Augustinian

structure S
(
M ,

¯̂
ψ,

¯̂
h
)
and characterised by the equivalence class

[
¯̂
N,

¯̂
N
A− M2

2 Ω̄
¯̂
ψ

]
.

Equation (4.4.47) takes then the form

∇̄X̄X̄ = Ω̄−2 ¯̃∇ ¯̂
X

¯̂
X

for X̄ timelike. A similar expression can be obtained when X̄ is spacelike from
eq.(4.4.44), since the supplementary term then vanishes.
This line of reasoning ensures that the following assertion holds

∀X̄, ¯̂
X ∈ Γ

(
TM̄

)
/ X̄ = Ω̄−1 ¯̂

X, ∇̄X̄X̄ = Ω̄−2 ˜̄∇ ¯̂
X

¯̂
X.

According to Proposition 3.2.52, ∇̄ is then a Platonic connection conformally
related to the Newtonian connection ˜̄∇ characterised by the equivalence class[

¯̂
N,

¯̂
N
A− M2

2 Ω̄
¯̂
ψ

]
.

Geometrising the Eisenhart-Lichnerowicz lift

The precedent Sections armed us with the necessary tools in order to take an informed look
on the results of Section 1.4 and thus gain a more geometric understanding of the Eisenhart-
Lichnerowicz lift. We start by emphasising that the Eisenhart-Lichnerowicz lift is bifid in
nature, in the sense that it treats in a radically different way the ξ-orthogonal vector fields
from the others. This was already appreciated at the level of the equations of motion for the
ambient Lagrangian and was confirmed regarding parallelism projection in the last Sections.
Before being more concrete, let us dissipate a slight ambiguity in the terminology between
relativistic and nonrelativistic normalisation conditions. Let (M , g, ξ) be a Platonic wave
and X ∈ Γ (TM ) be a projectable vector field. We denote by X̄ ∈ Γ

(
TM̄

)
the projection

of X on the Platonic screen. The relativistic affine geodesic normalisation condition reads
g (X,X) = −M2 where the constant M2 is the squared mass of the relativistic particle.
According to the sign of g (X,X), the relativistic vector field X will be qualified by the
epithet 

g (X,X) = −M2 < 0 : timelike

g (X,X) = −M2 = 0 : null

g (X,X) = −M2 > 0 : spacelike.
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4.4. PROJECTION OF A KOSZUL CONNECTION

Indeed, these relativistic denominations should not be confused with their nonrelativistic
meanings as ψ̄

(
X̄
)
6= 0 : timelike

ψ̄
(
X̄
)

= 0 : spacelike.
(4.4.50)

Now, since we will be dealing with conformally related structures, we introduce some last
piece of terminology regarding nonrelativistic parameterisation. Let A

(
M̄ , ψ̄, γ̄

)
be an

Aristotelian structure conformally related to the Augustinian structure S
(
M̄ ,

¯̂
ψ, ¯̂γ

)
, so

that ψ̄ = Ω̄
¯̂
ψ. A vector field X̄ will be saidproper time parameterised if ψ̄

(
X̄
)

= 1

absolute time parameterised if ¯̂
ψ
(
X̄
)

= 1.

We now consider a relativistic vector field X ∈ Γ (TM ) which is affine geodesic param-
eterised, i.e. g (X,X) = −M2 and investigate the two following cases:

• X is ξ-orthogonal (ψ (X) = m = 0):

Since X ∈ Ker ψ, the normalisation condition takes the form γ (X,X) = −M2,
where γ ∈ Γ

(
∨2 Ker ψ

)
is the relativistic spatial metric (cf. Definition 4.2.3). Since

γ is positive semi-definite, the normalisation condition prevents X to be timelike.
We thus distinguish between the two cases:
– M2 = 0:

The normalisation condition thus reads γ (X,X) = 0, so that X ∼ ξ. This case
does not fall under the ambient scheme (since the projection of ξ on the Platonic
screen vanishes) but rather describes the graviton worldlines (ξ has indeed been
shown to be affine geodesic in Proposition 2.1.4).

– M2 < 0:

This case has the nice feature to realise both meanings of the denomination “space-
like” (since M2 < 0 and ψ̄

(
X̄
)

= 0). From an ambient viewpoint, since ψ is a
conservor (cf. Definition 3.2.42), the quantity ψ (X) = m is conserved along
geodesics with respect to the Platonic Levi-Civita connection ∇. We conclude
from this fact that any geodesic whose tangent vector lies in the wavefront world-
volume Wt at one point stays entirely in the hypersurface Wt (the wavefront world-
volumes can then be said to be totally geodesic submanifolds of M in this precise
sense, although they are not Riemannian spaces). From a nonrelativistic point
of view, we know from Section 4.4.2 that, since X is ξ-orthogonal , the geodesic

150



4.4. PROJECTION OF A KOSZUL CONNECTION

equation ∇XX = 0 admits a well-defined projection on the absolute spaces Σt of

the Platonic screen M̄ as
γ̄

∇X̄X̄ = 0, where
γ̄

∇ stands for the Levi-Civita connec-
tion associated to the spatial metric γ̄ ∈ Γ

(
∨2 Ker ψ̄

)
obtained by projection of γ

on the Platonic screen. We noted earlier (in Corollary 3.2.44), that the absolute
spaces are totally geodesic submanifolds of M̄ in the same sense that the wavefront
worldvolumes are with respect to M . 7

• X is not ξ-orthogonal (ψ (X) = m 6= 0):

Since X is not ξ-orthogonal, we can assume without loss of generality that it is a
relativistic field of observers X ∈ FO (M ), i.e. ψ (X) = m = 1. We now make the
further distinction between the null and non-null cases:

– M2 = 0:

Whenever the relativistic vector field X is null (so that X is a relativistic field
of light-like observers), the affine geodesic normalisation condition takes the form
g (X,X) = 0. In the light of the preceding Sections, one can reinterpret the
normalisation condition as the orthogonal lift prescription of Definition 4.4.34.
According to Proposition 4.4.33, the relativistic affine geodesic equation ∇XX = 0

admits a well defined projection on the Platonic screen as π∗ (∇XX) = ∇̄X̄X̄ = 0,
where ∇̄ is the Platonic connection on M̄ induced by the Platonic Levi-Civita
connection ∇ via the orthogonal prescription. Proposition 4.4.33 further ensures
that the Platonic connection ∇̄ is conformally related (in the sense of Proposition
3.2.51) to the Newtonian connection ¯̂∇ inherited from the Bargmann-Eisenhart
wave (M , ĝ, ξ) conformally related to the Platonic wave (M , g, ξ) via the conformal
factor Ω. This ensures that the following relation holds

∇̄X̄X̄ = Ω̄−2 ¯̂∇ ¯̂
X

¯̂
X = 0

with ¯̂
X = Ω̄ X̄ and where Ω̄ ∈ C∞

(
M̄
)
designates the projection of the confor-

mal factor on M̄ . Using the terminology introduced earlier, we can say that X̄ is
proper time parameterised while ¯̂

X is absolute time parameterised. Summing up,
the affine geodesic equation with respect to the Platonic Levi-Civita connection ∇
for relativistic field of light-like observers projects onto the affine geodesic equation
with respect to the Newtonian connection ¯̂∇ for absolute time parameterised non-
relativistic field of observers. This constitutes a reinterpretation in terms of parallel
transport of the dynamical equations (1.4.20)-(1.4.21) with M2 = 0. Note that
in this case, the nonrelativistic conformal factor Ω̄ does not appear in eq.(1.4.20)-

7. Note however that the situation is reversed in the sense that absolute spaces are Riemannian sub-
manifolds embedded in the non-Riemannian manifold M̄
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(1.4.21), as it should since null relativistic geodesics do not feel the relativistic
conformal factor Ω.

– M2 6= 0:

In the non-null case, since X is chosen to be a relativistic field of observers, the
relativistic affine geodesic normalisation condition can be rewritten in a bilinear
form for X as

g (X,X) = −M2ψ (X)ψ (X) (4.4.51)

where one recognises the generalised orthogonal lift prescription of Definition 4.4.34.
Making use of Proposition 4.4.35, we can again rewrite the affine geodesic equation
∇XX = 0 as π∗ (∇XX) = ∇̄′

X̄
X̄ = 0, where ∇̄′ is the Platonic connection on M̄

induced by the Platonic Levi-Civita connection ∇ via the (generalised) orthogonal
prescription. As showed in Proposition 4.4.35, the Platonic connection ∇̄′ is not
conformally related to the Newtonian connection ¯̂∇ induced by the Bargmann-
Eisenhart wave (M , ĝ, ξ). Rather, ∇̄′ is conformally related to a different Newto-
nian connection ¯̂∇′. Picking a nonrelativistic field of observers N̄ ∈ FO

(
M̄
)
, the

gravitational potential 1-form
¯̂
N
A′ characterising ¯̂∇′ differs from the one character-

ising ¯̂∇, denoted
¯̂
N
A, by

¯̂
N
A′ =

¯̂
N
A− M2

2 Ω̄
¯̂
ψ, where ¯̂

ψ ∈ Ω1
(
M̄
)
is the closed absolute

clock induced by the Bargmann-Eisenhart wave (M , ĝ, ξ) on M̄ . Since
¯̂
N
A′ and

¯̂
N
A

differs by the 1-form ¯̂
ψ, they share the same Coriolis 1-form Āi ≡

N
A (ei) but differ

in their gravitational scalar potentials Ū ≡ −
N
A (N). Now, similarly to the null

case, the relation

∇̄X̄X̄ = Ω̄−2 ¯̂∇′¯̂
X

¯̂
X

holds where ¯̂
X is absolute time parameterised. Writing the affine geodesic equation

for ¯̂
X with respect to ¯̂∇′ in Brinkmann coordinates leads to eq.(1.4.20)-(1.4.21)

where the gravitational scalar potential Ū [for the Newtonian connection inherited
from (M , ĝ, ξ)] is shifted to the effective gravitational scalar potential

V̄ = Ū +
M2

2
Ω̄.
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Embedding nonrelativistic structures
inside a Cartan geometry
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Chapter 5

Cartan geometry

5.1 Klein geometry

As mentioned in the introduction, the nineteenth century has witnessed a conceptual
revolution in the field of geometry with the independent discovery by Gauss, Bolyai and
Lobachevsky of the Hyperbolic geometry in the plane. This first occurrence of a non-
Euclidean geometry has then been followed, in a few decades, by the emergence of a
number of new geometries such as Elliptic geometry, Affine geometry, Möbius geometry,
Projective geometry, etc. In 1872, F. Klein published a pamphlet [143], in connection with
his appointment to a chair in Erlangen (his manifesto is hence referred to as the Erlangen
Programm, cf. [144] for historical details), whose input to the field of non-Euclidean
geometries is twofold:

1. It proposed to subsum these different geometries to the study of Projective geometry
as an unifying framework

2. It emphasised the role played by the underlying symmetry groups in the classification
and relation between these different geometries.

We will focus in the present Chapter on the second of Klein’s seminal propositions and on
the subsequent generalisation by E. Cartan. Our presentation will rely heavily on the book
[58] (cf. also [145, 146, 147, 148] for a mathematical viewpoint and [59, 60, 149, 150, 151]
for a physical one).

One of the great insight of Klein was indeed the realisation that on each of the mentioned
geometries, with space M , there was a group G acting transitively (cf. Definition A.4.10),
as illustrated by the two following examples:
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5.1. KLEIN GEOMETRY

Example 5.1.1 (Euclidean Plane).
Considering the Euclidean plane M = R2, the group G = ISO (2,R) defined as

ISO (2) =


1 0

v R (θ)


 with R (θ) ≡

cos (θ) − sin (θ)

sin (θ) cos (θ)

 ∈ SO (2,R) and v ≡

v1

v2

 ∈M

acts transitively on M as

x 7→

1 0

v R (θ)

 · x = R (θ)x+ v, where x =

x1

x2

 ∈M .

Furthermore, the stabiliser (or isotropy group, cf. Definition A.4.6) of the origin of R2 is
given by

H = SO (2,R) ≡


1 0

0 R (θ)

 , θ ∈ R

 .

Example 5.1.2 (Hyperbolic Plane).
In this case, M can be chosen to be the Poincaré half-plane H2 ≡ {z = x+ iy ∈ C / y > 0},

on which the group G = SL (2,R) ≡

A =

a b

c d

 ,detA = 1

 acts transitively accord-

ing to

z 7→

a b

c d

 · z =
az + b

cz + d
.

The isotropy group of the point i ∈ H2 is given by SO (2,R) ≡

A =

a b

c d

 ,detA = 1, AAT = 1

.

This crucial observation of Klein allowed him to study a given geometry by shifting the
emphasis from the space M to the group G. The following line of reasoning provides a
precise way in which this can be achieved.

Let M be a manifold on which the Lie group G acts via the left-action (G,M ) → M :

(g, x) 7→ g · x. The group G is assumed to act transitively, i.e. M is a homogeneous
manifold (cf. Definition A.4.13). Let us particularise a point x ∈ M as “the origin” and
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denote Hx ⊂ G the isotropy group (or stabiliser) of x. This choice of an origin defines a
map πx : G→M as

πx (g) = g · x with g ∈ G.

Proposition 5.1.3. The map πx : G→M is onto.

Proof: Applying the transitivity condition of the action of G on M to the origin x
leads to ∀y ∈M , ∃ g ∈ G/g · x = y, i.e. every point y ∈M possesses an antecedent
by the map πx, so that πx is onto.

Note that πx is not generically one-to-one, since two elements g and g′ of G differing by
an element of the stabiliser of x (i.e. g′ = gh, with h ∈ Hx) have the same image by πx:

πx
(
g′
)

= g′ · x = gh · x = g · x = πx (g) .

Proposition 5.1.4. Let y ∈ M and g0 ∈ G such that πx (g0) = y. Then the set of
antecedents of y by πx is the coset g0Hx ≡ {g0h/h ∈ Hx}, i.e.

π−1
x (y) = g0Hx.

Proof: We first establish the sufficiency and then the necessity:

=⇒:

Assuming g′ ∈ π−1
x (y), one gets g′ · x = y. Furthermore, by definition of g0, the

following relation stands: g0 · x = y, so that g′ · x = g0 · x. Acting with g−1
0 on both

sides leads to g−1
0 g′ ·x = x and g−1

0 g′ is hence seen to belong to Hx. Explicitly, there
exists an element h ∈ Hx such that g−1

0 g′ = h, i.e. g′ = g0h, which by Definition
A.4.15, means that g′ belongs to the coset g0Hx. We conclude that g′ ∈ π−1

x (y)

implies g′ ∈ g0Hx.

⇐=:

If g′ ∈ g0Hx, then there exists an element h ∈ Hx such that g′ = g0h. Applying the
map πx to this identity leads to πx (g′) = πx (g0h) = g0h · x = g0 · x = y so one is led
to the conclusion that g′ ∈ g0Hx implies g′ ∈ π−1

x (y).

From Proposition 5.1.4, one concludes that

Proposition 5.1.5. The map ρx : M → G/Hx defined by

ρx (y) = π−1
x (y) , y ∈M

157



5.1. KLEIN GEOMETRY

is a G-space isomorphism.

Proof: We start by showing that ρx is bijective. Let gHx ∈ G/Hx be a coset, then
gHx admits necessarily the antecedent y ≡ πx (g), so that ρx is surjective. Now,
let y, y′ ∈ M and g, g′ ∈ G such that πx (g) = y and πx (g′) = y′. Assuming
ρx (y) = ρx (y′) leads to gHx = g′Hx which is equivalent to g′ = gh, for some
h ∈ Hx, according to Proposition A.4.16. Hence, y′ = πx (g′) = πx (gh) = πx (g) = y

and ρx is therefore injective.
Since ρx is a bijective map, all is left to do is to show the equivariance of ρx, i.e.
that ρx satisfies ρx (g · y) = g ρx (y), ∀y ∈ M and ∀g ∈ G (cf. Definition A.4.4).
This is easily shown using the definition of ρx. Letting g0 ∈ G satisfy πx (g0) = y,
one gets ρx (g · y) = π−1

x (g · y) = g g0Hx = g ρx (y), where the associativity of the
G-action has been used.

The existence of the G-space isomorphism ρx : M → G/Hx justifies Klein’s viewpoint,
according to which the study of a homogeneous manifold M boils down to the study
of the set of (left) lateral classes G/Hx, where x is an arbitrary point of M . Going
back to our previous Examples, the Euclidean Plane can then be identified with the coset
R2 = ISO (2,R) /SO (2,R) while the Hyperbolic Plane reads H2 = SL (2,R) /SO (2,R). 1

In the following, the term Klein geometry will either designate a pair (G,H) (where G is a
Lie group and H ⊂ G a closed subgroup) or the space M = G/H. 2 Now, it can be shown

1. In the light of this result, the first of Klein’s propositions, namely to subsum the study of Euclidean
and non-Euclidean geometries (leaving aside Riemannian geometry) to the study of Projective geometry,
can be understood using group-theoretical arguments. For instance, the structure group of the Euclidean
Geometry is a subgroup of the affine group (which acts transitively on the space of Affine Geometry)
being itself a subgroup of the group of projective transformations of Rd (the structure group of Projective
Geometry). Therefore, the previous group hierarchy induces the following hierarchy of geometries:

Projective Geometry⋃
Affine Geometry⋃

Euclidean Geometry.

Going upward, one gains generality while going downward, one gets more structure. Hence, Euclidean
space is more structured (e.g. angles and distance makes sense) than Projective Geometry in which such
notions have no equivalent.

2. From now on, we drop the origin subscript for notational simplicity.
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(cf. [58] §4.2) that the projection map π : G→ G/H defines a H-principal bundle:

H� _

��
G

π
��

G/H

(5.1.1)

Notationwise, one designates by Lg : G→ G : g′ 7→ gg′ and Rg : G→ G : g′ 7→ g′g the left
and right actions of G on itself. The Lie algebras associated to the groups G and H will
be denoted g and h, respectively.

Definition 5.1.6 (Maurer-Cartan form). The Maurer-Cartan 1-form ω ∈ Ω (G) ⊗ g is
a 1-form on G taking values in the Lie algebra g and defined as the field of linear maps
ωg : TgG→ TeG ' g acting as

ωg (vg) =
(
Lg−1

)
∗ vg, with vg ∈ TgG. (5.1.2)

It can be checked that the Maurer-Cartan 1-form satisfies the three following properties

1. ωg : TgG→ g is an isomorphism.

2. ω is right-equivariant by right-translation in G, i.e.

ωgg′
(
Rg′∗Xg

)
= Ad

(
g′−1

)
ωg (Xg) , ∀ g, g′ ∈ G and ∀Xg ∈ TgG

where Ad : G→ g is the adjoint representation of G on its Lie algebra g (cf. Defini-
tion A.5.5).

3. ωg
(
X]
g

)
= X, ∀X ∈ g with X] ∈ Γ (TG) the fundamental vector field associated to

the Lie algebra element X (cf. Definition A.5.10).

Anticipating the next Section, we note that these three properties will constitute the back-
bone of the generalisation of the Maurer-Cartan 1-form to Cartan’s connections. In ad-
dition to these three properties, the Maurer-Cartan 1-form satisfies an additional crucial
relation, known as the structural equation, which reads as

dω +
1

2
[ω, ω] = 0 (5.1.3)

where [·, ·] : g× g→ g stands for the bracket of the Lie algebra g.

We will refer to the couple (g, h) as an infinitesimal Klein pair. Note that h is a Lie
subalgebra of g, but is not generically an ideal, so that the quotient g/h does not generically
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inherits a structure of Lie algebra. The projection of an element of g to g/h is denoted
pr : g→ g/h. Note that one can make use of the quotient projection in order to define an
adjoint action Adg/h : H → End (g/h) of H on the quotient vector space g/h by making
the following diagram commute:

g

pr
��

Ad // g

pr
��

g/h
Adg/h // g/h

(5.1.4)

where Ad : H → End (g) stands for the adjoint action of the subgroup H onto the Lie
algebra g (cf. Definition A.5.5).

Equipped with this representation, one is then able to construct generalised adjoint actions
on the whole vector space of multilinear maps on g/h, denoted

⊗
g/h ⊗

⊗
(g/h)∗. A

typical example consists in defining an adjoint action on the dual vector space (g/h)∗ as
the transpose (cf. Definition A.1.6) of the adjoint action on g/h. This representation is
referred in the literature as the contragredient adjoint representation and will be denoted
Ādg/h : H → End (g/h)∗. The definition makes use of the original adjoint action as follows:

(
Ādg/h (h) a

)
(x) = a

(
Adg/h

(
h−1

)
x
)

(5.1.5)

with x ∈ g/h and a ∈ (g/h)∗. This construction can be easily generalised in order to
define representations acting on higher-order vector spaces. Since this work deals with
metric structures, we will be interested in defining an adjoint representation on the space
of (contravariant and covariant) bilinear forms. The required construction is summarised in
the following table with x, y ∈ g/h ; a, b ∈ (g/h)∗ ; (·, ·)−1 ∈ ∨2 g/h and (·, ·) ∈ ∨2 (g/h)∗:

Symbol Action Definition

Adg/h H → End (g/h) cf. Diagram 5.1.4

Ādg/h H → End ((g/h)∗) Ādg/h (h) a (x) = a
(
Adg/h

(
h−1

)
x
)

Ãdg/h H → End
(
∨2 g/h

)
Ãdg/h (h) (a, b)−1 =

(
Ādg/h

(
h−1

)
a, Ādg/h

(
h−1

)
b
)−1

¯̃Adg/h H → End
(
∨2 (g/h)∗

) ¯̃Adg/h (h) (x, y) =
(
Adg/h

(
h−1

)
x,Adg/h

(
h−1

)
y
)

Table 5.1: Adjoint representations

Of special interest for the rest of this work will be elements of
⊗

g/h⊗
⊗

(g/h)∗ that are
adjoint invariant, i.e. invariant under the generalised adjoint action (denoted for notational
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simplicity as Adg/h : H →
⊗

g/h ⊗
⊗

(g/h)∗). An element λ ∈
⊗

g/h ⊗
⊗

(g/h)∗ will
then be said adjoint invariant if it satisfies Adg/h (h)λ = λ, ∀h ∈ H.

Example 5.1.7 (Killing form).

The Killing form 3 of a Lie group G is a symmetric bilinear form acting on the Lie algebra g

of G, i.e. K ∈ ∨2 g, which is invariant under the adjoint action Ad : G→ g. Whenever G
is semisimple, the Killing form is nondegenerate and can then be used in order to define a
distinguished element C of the universal envelopping algebra U (g), known as the quadratic
Casimir element. The element C lies in the center of U (g), i.e. C commutes with all the
generators of g. Alternatively, the quadratic Casimir can be interpreted as defining an
Ad-invariant nondegenerate bilinear form on g∗ which obviously coincides with the inverse
of the Killing form K−1 ∈ ∨2 g∗.
Among the kinematical groups (cf. Appendix B.1) we will be interested in, the only
semisimple groups are the (Anti)-de Sitter groups whose Lie algebra can be decomposed 4

as g = h ⊕ p with h ≡ Span Jµν a Lie subalgebra and p ≡ Span Pµ a vector space.
The associated Killing form when expressed in this basis, reads K (X,Y ) = XµY νδµν +
Λ
2X

µνY αβδµαδνβ (the elements X,Y ∈ g admits the decomposition X ≡ XµPµ +XµνJµν

and Y ≡ Y µPµ + Y µνJµν). The (Anti)-de Sitter quadratic Casimir element is expressed
as C = PµP

µ∗ + Λ
2 JµνJ

µν∗ where Λ stands for the cosmological constant and Pµ∗, Jµν∗

are the generators of the dual space g∗ associated respectively to Pµ, Jµν via the (inverse)
Killing form K−1.
Since the (Anti)-de Sitter is semisimple and symmetric (cf. Section 5.3), the restriction of
the inverse Killing form to the vector space p, denoted (·, ·)−1

p ∈ ∨2 p is nondegenerate and
invariant under the projected adjoint action on contravariant bilinear forms on g/h ∼ p

denoted Ãdg/h : H → End
(
∨2 g/h

)
(cf. Diagram 5.1.4 and Table 5.1).

Interestingly, even in cases where G is non-semisimple, quadratic elements belonging to the
center of U (g) can be found so that one is still able to define (degenerate) Ad-invariant
bilinear forms on g∗ and thus (possibly degenerate) Adg/h-invariant bilinear forms on g/h∗.
This is best exemplified by the Poincaré algebra poin for which the element C ∈ U (poin),
defined as C ≡ PµPµ∗ (where {Pµ} are generators of poin and {Pµ∗} the associated canon-
ical dual basis), belongs to the center of U (poin). C in turn defines a nondegenerate
contravariant bilinear form (·, ·)−1

p ∈ ∨2 p, where p ≡ Span Pµ, acting as (a, b) = aµaνδ
µν ,

where a ≡ aµPµ∗ and b ≡ bµPµ∗.

A related notion that will be proved useful for our purpose is the concept of confor-
mal adjoint invariance. An element of λ ∈

⊗
g/h ⊗

⊗
(g/h)∗ will be be said confor-

3. The Killing form is sometimes referred to as the Cartan-Killing form in order to stress the importance
of the contribution of Elie Cartan to the notion.

4. This is an H-module decomposition so that the (Anti)-de Sitter algebra is reductive (cf. Section
5.3).
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mally invariant under the action Adg/h if there exists a function f : H → R such that
Adg/h (h)λ = f (h)λ.

Example 5.1.8 (Conformal bilinear form).

Example 5.1.7 provided a nondegenerate contravariant bilinear form (·, ·)−1
p ∈ ∨2 p acting

on the vector space p ≡ Span Pµ of the (Anti)-de Sitter and Poincaré algebras, which
was argued to be Adg/h-invariant. Considering now the Weyl group G (whose Lie algebra
also possesses p as a subvector space) with homogeneous subgroup H, the bilinear form
(·, ·)−1

p transforms according to Adg/h (h) (·, ·)−1
p = λ2 (·, ·)−1

p where h ≡ λR ∈ H, λ ∈ R
and R ∈ O (d). Thus, (·, ·)−1

p is conformally invariant under the action Adg/h of the
homogeneous Weyl group.

5.2 Cartan geometry

Klein’s conceptual input left a scission in the field of geometry, with on one side what
we will call Klein geometries, and on the other side Riemannian geometry. Indeed, while
some of Klein geometries are Riemannian (e.g. Euclidean Plane), the vast majority is
not (for instance, the notion of distance makes no sense in affine geometry). On the
other hand, Riemannian geometries of non-constant curvature are not Kleinian. In the
early 1920’s, E.Cartan managed to reconcile these apparently incompatible theories by
performing a common generalisation of Klein’s and Riemann’s theories. The content of
this generalisation was neatly summarised by Cartan himself in the following quote (as
cited in [58]):

In the wake of the movement of ideas which followed the general theory of rel-
ativity, I was led to introduce the notion of new geometries, more general than
Riemannian geometry, and playing with respect to the different Klein geometries
the same role as the Riemannian geometries play with respect to Euclidean space.
The vast synthesis that I realised in this way depends of course on the ideas of
Klein formulated in his celebrated Erlangen program while at the same time go-
ing far beyond it since it includes Riemannian geometry, which had formed a
completely isolated branch of geometry, within the compass of a very general
scheme in which the notion of group plays a fundamental role.

– E.Cartan, in Selecta Jubilé Scientifique (1939)

In the preface of [58] (cf. also [60]), Sharpe provides a useful pictorial description of
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Cartan’s approach, emphasising the twofold character of his generalisation:

Euclidean geometry

Generalise symmetry group

��

Allow curvature // Riemannian geometry

Generalise tangent space geometry

��
Klein geometry

Allow curvature
// Cartan geometry

Cartan geometries can thus be seen as curved Klein geometries, or equivalently as a non-
Euclidean analog of Riemannian geometries. As we will comment extensively in the follow-
ing, the beauty of the Cartanian approach lies in the deep relation these (curved, nonho-
mogeneous) geometries maintain with Lie groups, relation inherited from the homogeneous
space modeling them.

The present Section is intended as an introduction to Cartan geometries. As an attempt to
lighten the formal character of the exposition, we will pepper throughout the Section some
applications to (pseudo)-Riemannian geometry, considered as a Cartan-Poincaré geometry.
This series of examples will sketch a general procedure of which we will make use in the
next Chapter in order to study nonrelativistic geometries.

Roughly speaking, a Cartan geometry can be defined as a principal H-bundle generalising
the H-bundle of Diagram 5.1.1 endowed with a 1-form ω ∈ Ω1 (P ) ⊗ g generalising the
Maurer-Cartan 1-form ω ∈ Ω1 (G) ⊗ g. More precisely, the formal definition of a Cartan
geometry (P, ω) with P a principal bundle and ω a Cartan connection can be stated as:

Definition 5.2.1 (Cartan geometry, cf. [58] Definition §5.3.1). A Cartan geometry C =

(P, ω) modeled on the infinitesimal Klein pair (g, h) with structure group H (and h the Lie
algebra associated to H) consists of:

1. a smooth manifold M called the base

2. a principal right H-bundle P over M with projection π : P →M

3. a g-valued 1-form ω on P satisfying the following conditions:

(a) for each point p ∈ P , the linear map ωp : TpP → g is an isomorphism

(b) (Rh)∗ ω = Ad
(
h−1

)
ω , ∀h ∈ H

(c) ω
(
X]
)

= X, ∀X ∈ h where X] ∈ V P designates the fundamental vector field
associated to the Lie algebra element X.

Several comments are in order. First, one observes that the Maurer-Cartan 1-form ω ∈
Ω1 (G)⊗ g for the principal bundle defined by Diagram 5.1.1 satisfies the defining Axioms
of a Cartan connection, so that (G,ω) qualifies as a Cartan geometry. Indeed, (G,ω) is
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the model geometry of which the Cartanian setup makes use in order to locally describe
(P, ω).

Furthermore, one notes that the Axiom (a) imposes restrictions on the dimension of the
base space (i.e. dim M = dim G/H) which have no equivalent in the case of Ehresmann
connections. This is needed in order to locally model the base space M by the Klein
geometry G/H. An other important consequence of Axiom (a) is the fact that Ker ω = 0,
so that generically, a Cartan geometry does not involve a notion of horizontality 5. However,
we will see that such a notion exists for a particular class of Cartan geometries (dubbed
reductive geometries, cf. Section 5.3), allowing the definition of a Koszul connection on
the base space.

Curvature & Torsion

The following Definitions and Propositions hold for a Cartan geometry C = (P, ω) modeled
on (g, h) with structure group H.

Definition 5.2.2 (Curvature). The g-valued 2-form on P given by Ω = dω + 1
2 [ω, ω] is

called curvature.

Comparison with the structural equation (5.1.3) reveals that the curvature Ω quantifies the
local obstruction to P being isomorphic to the structure group G. Another nice feature
of the Cartanian approach consists in further motivating the notion of torsion which is
unified with the notion of curvature. This feature has the merit to add naturalness to the
torsionfree condition.

Definition 5.2.3 (Torsion). The g/h-valued 2-form T defined by

TP × TP
T

11Ω // g
pr // g/h

is called torsion.

Proposition 5.2.4 (cf. [58] Corollary §5.3.10). The curvature 2-form Ω (X,Y ) vanishes
whenever X or Y is vertical.

Proposition 5.2.5 (Bianchi identity, cf. [58] Lemma §5.3.30). The following identity
holds:

dΩ = [Ω, ω] . (5.2.6)

5. Recall, that, in an Ehresmann geometry, the horizontal distribution is precisely defined by Hp =
Ker ωp, with p ∈ P .
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Proposition 5.2.6. Let f : P → P be the map defined as f (p) = Rψ(p)p with ψ : P → H

a map. The following relations hold:

f∗ω = Ad
(
ψ−1

)
ω + ψ∗ωH (5.2.7)

f∗Ω = Ad
(
ψ−1

)
Ω (5.2.8)

with ωH ∈ Ω1 (H)⊗ h the Maurer-Cartan 1-form on the subgroup H.

Proof: cf. the proof of Theorem §5.3.5 and Lemma §5.3.9 in [58].

Corollary 5.2.7. The curvature 2-form transforms under the right-action as

R∗hΩ = Ad
(
h−1

)
Ω.

Proposition 5.2.8. The vector space spanned by the values of the curvature 2-form is an
H-submodule of g.

Proof: Let V be the vector space spanned by values of Ω and let v ∈ V . Then,
there exist Xp, Yp ∈ TpP such that v = Ωp (Xp, Yp). Then we have Ad

(
h−1

)
v =

Ad
(
h−1

)
Ωp (Xp, Yp) = R∗hΩph (Xp, Yp) = Ωph (Rh∗Xp, Rh∗Yp) ∈ V , so that V is

stable by the adjoint action.

Isomorphisms

The following Theorem provides a concrete meaning to the idea of locally modeling the
base space M by the model space G/H. The isomorphism thus defined will be ubiquitous
in the rest of this work.

Theorem 5.2.9 (cf. [58] Theorem §5.3.15). For each point p ∈ P with π (p) = x, there is
a canonical linear isomorphism ϕp : TxM → g/h defined by

TpP
ωp //

π∗

��

g

pr
��

TxM
ϕp

≈
// g/h.

(5.2.9)

Explicitly, the action of ϕp on Xπ(p) ∈ Tπ(p)M reads ϕp
(
Xπ(p)

)
= pr

(
ωp

(
X̃p

))
, where

X̃p ∈ TpP is a lift of Xπ(p), i.e. a vector field on P such that π∗X̃p = Xπ(p). The
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isomorphism ϕp acting on Xπ(p) ∈ Tπ(p)M is canonical in the sense that it is independent
of the choice of lift X̃p. Indeed two lifts differ by a vertical part X̃ ′p − X̃p ∈ Vp which is
projected out by the action of pr : g→ g/h.

However, the isomorphism ϕ does depend on the point p ∈ P and passing from p to
ph = Rhp, ϕ transforms as ϕph = Adg/h

(
h−1

)
ϕp while its inverse ϕ−1 transforms as

ϕ−1
ph = ϕ−1

p Adg/h (h). These transformation properties follow readily from the equivariance
of the Cartan connection ω.

In Section 5.1, the adjoint representation Adg/h : H → End (g/h) was used in order to
generate various representations of the type Adg/h : H →

⊗
g/h ⊗

⊗
(g/h)∗. In the very

same spirit, the isomorphism ϕp : Tπ(p)M → g/h can serve as a building block in order to
construct isomorphisms between elements of

⊗
Tπ(p)M⊗

⊗
T ∗π(p)M and

⊗
g/h⊗

⊗
(g/h)∗.

Despite vectors (Xπ(p) ∈ Tπ(p)M ), we will focus on linear forms (απ(p) ∈ T ∗π(p)M ) as well
as on contravariant and covariant bilinear forms (g−1

π(p) ∈ ∨
2 Tπ(p)M and gπ(p) ∨2 T ∗π(p)M ).

The next Proposition makes explicit the construction of a bijective correspondence between
linear forms on Tπ(p)M and g/h.

Proposition 5.2.10. The transpose ϕ̄p : T ∗π(p)M → (g/h)∗ of the isomorphism ϕp :

Tπ(p)M → g/h defined as

ϕ̄p
(
απ(p)

)
x = απ(p)

(
ϕ−1
p (x)

)
where απ(p) ∈ T ∗π(p)M and x ∈ g/h, is an isomorphism. Passing from p ∈ P to ph = Rhp,
ϕ̄ transforms as ϕ̄ph = Ādg/h

(
h−1

)
ϕ̄p where Ādg/h : H → End (g/h)∗ is the adjoint

contragredient representation. Its inverse ϕ̄−1 transforms as ϕ̄−1
ph = ϕ̄−1

p Ādg/h (h).

Proof: The fact that ϕ̄ is an isomorphism is obvious from its definition. Regarding
its transformation law, one has:

ϕ̄ph
(
απ(p)

)
(x) = απ(p)

(
ϕ−1
ph (x)

)
= απ(p)

(
ϕ−1
p

(
Adg/h (h) (x)

))
= ϕ̄p

(
απ(p)

) (
Adg/h (h) (x)

)
= Ādg/h

(
h−1

) (
ϕ̄p
(
απ(p)

))
(x)

with απ(p) ∈ T ∗π(p)M and x ∈ g/h, so that ϕ̄ph
(
απ(p)

)
= Ādg/h

(
h−1

) (
ϕ̄p
(
απ(p)

))
.

The transformation law for ϕ̄−1 follows readily.
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The two next Propositions follow a very similar line of reasoning in order to construct
isomorphisms between bilinear forms on Tπ(p)M and g/h.

Proposition 5.2.11. The map ϕ̃p : ∨2 Tπ(p)M → ∨2 g/h defined as

ϕ̃p

(
g−1
π(p)

)
(a, b) = g−1

π(p)

(
ϕ̄−1
p (a) , ϕ̄−1

p (b)
)

(5.2.10)

where g−1
π(p) ∈ ∨

2 Tπ(p)M and a, b ∈ (g/h)∗ is an isomorphism. Passing from p ∈ P to ph =

Rhp, ϕ̃ transforms as ϕ̃ph = Ãdg/h
(
h−1

)
ϕ̃p where Ãdg/h : H → End

(
∨2 g/h

)
is the adjoint

bilinear contravariant representation. Its inverse ϕ̃−1 transforms as ϕ̃−1
ph = ϕ̃−1

p Ãdg/h (h).

Proposition 5.2.12. The map ¯̃ϕp : ∨2 T ∗π(p)M → ∨2 (g/h)∗ defined as

¯̃ϕp
(
gπ(p)

)
(x, y) = gπ(p)

(
ϕ−1
p (x) , ϕ−1

p (y)
)

(5.2.11)

where gπ(p) ∈ ∨2 T ∗π(p)M and x, y ∈ g/h is an isomorphism. Passing from p ∈ P to

ph = Rhp, ¯̃ϕ transforms as ¯̃ϕph = ¯̃Adg/h
(
h−1

)
¯̃ϕp where ¯̃Adg/h : H → End

(
∨2 (g/h)∗

)
is the adjoint bilinear covariant representation. Its inverse ¯̃ϕ−1 transforms as ¯̃ϕ−1

ph =

¯̃ϕ−1
p

¯̃Adg/h (h).

The different isomorphisms precedently introduced are summarised in Table 5.2.

Tensor Action Definition

Vector
Xπ(p) ∈ Tπ(p)M

ϕp : Tπ(p)M → g/h cf. Theorem 5.2.9

1-form
απ(p) ∈ T ∗π(p)M

ϕ̄p : T ∗π(p)M → (g/h)∗ ϕ̄p
(
απ(p)

)
x = απ(p)

(
ϕ−1
p (x)

)
∀x ∈ g/h

Contravariant
bilinear form

g−1
π(p) ∈ ∨

2 Tπ(p)M

ϕ̃p : ∨2 Tπ(p)M → ∨2 g/h
ϕ̃p

(
g−1
π(p)

)
(a, b) = g−1

π(p)

(
ϕ̄−1
p (a) , ϕ̄−1

p (b)
)

∀ a, b ∈ (g/h)∗

Covariant
bilinear form

gπ(p) ∈ ∨2 T ∗π(p)M

¯̃ϕp : ∨2 T ∗π(p)M → ∨2 (g/h)∗
¯̃ϕp
(
gπ(p)

)
(x, y) = gπ(p)

(
ϕ−1
p (x) , ϕ−1

p (y)
)

∀x, y ∈ g/h

Table 5.2: Summary of the different isomorphisms ϕ

An important application of the preceding bijective maps ϕ consists in the construction
of an isomorphism Ψ : Γ (E) → T (V, ρ) defining a bijective correspondence between

167



5.2. CARTAN GEOMETRY

sections f ∈ Γ (E) of the associated vector bundle E = P ×H (V, ρ) (cf. Definition A.6.11)
and tensors of type T (V, ρ) on P (cf. Definition A.6.9).

Proposition 5.2.13 (cf. [58] Corollary §5.3.16). There is a bijective correspondence
between vector fields on M and tensors of type

(
g/h,Adg/h

)
given by the isomorphism

Ψ : Γ (TM )→ T
(
g/h,Adg/h

)
: X 7→ fX as Ψ (X) (p) ≡ fX (p) = ϕp

(
Xπ(p)

)
.

That the functions fX transforms as fX (ph) = Adg/h
(
h−1

)
fX (p) follows readily from the

transformation law of ϕp.

In a similar fashion, one can define a bijection between 1-forms on M and tensors of type(
(g/h)∗ , Ādg/h

)
as follows:

Proposition 5.2.14. There is a bijective correspondence between 1-form fields on M and
tensors of type

(
(g/h)∗ , Ādg/h

)
given by the isomorphism Ψ̄ : Ω1 (M )→ T

(
(g/h)∗ , Ādg/h

)
:

α 7→ f̄α as Ψ̄ (α) (p) ≡ f̄α (p) = ϕ̄p
(
απ(p)

)
.

Section Tensor type Isomorphism

Vector field
X ∈ Γ (TM )

T
(
g/h,Adg/h

)
Ψ (X) (p) = ϕp

(
Xπ(p)

)
1-form field
α ∈ Ω1 (M )

T
(
(g/h)∗ , Ādg/h

)
Ψ̄ (α) (p) = ϕ̄p

(
απ(p)

)
Contravariant
bilinear form

g−1 ∈ Γ
(
∨2 TM

) T
(
∨2 g/h, Ãdg/h

)
Ψ̃
(
g−1
)

(p) = ϕ̃p

(
g−1
π(p)

)

Covariant
bilinear form

g ∈ Γ
(
∨2 T ∗M

) T
(
∨2 (g/h)∗ , ¯̃Adg/h

)
¯̃Ψ (g) (p) = ¯̃ϕp

(
gπ(p)

)

Table 5.3: Summary of the different isomorphisms Ψ

Example 5.2.15 (Pseudo-Riemannian geometry).

A (pseudo)-Riemannian geometry (or Lorentzian structure, cf. Definition 3.1.2) consists
in a manifold M endowed with a pseudo-Riemannian metric g ∈ Γ

(
∨2 T ∗M

)
, i.e. a field

g : M → ∨2 T ∗M ; g : x 7→ gx of nondegenerate bilinear forms gx ∈ ∨2 T ∗xM of signature
(−,+, . . . ,+).
As mentioned in Example 5.1.7, the Poincaré group is endowed with an Adg/h-invariant
nondegenerate bilinear form (·, ·)p : ∨2 p→ R acting on the vector space p ≡ Span Pµ of the
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Poincaré algebra. According to Proposition A.6.10, since (·, ·)p is Adg/h-invariant, it induces
a well-defined (constant) tensor on P of type

(
∨2 p∗, ¯̃Adg/h

)
. Acting on this constant tensor

with ¯̃Ψ−1 : T
(
∨2 p∗, ¯̃Adg/h

)
→ Γ

(
∨2 T ∗M

)
yields a nondegenerate covariant metric g ∈

Γ
(
∨2 T ∗M

)
. Explicitly, at the point x ∈ M the bilinear form gx : TxM ∨ TxM → R

acts as gx (Xx, Yx) ≡ ¯̃ϕ−1
p (·, ·)p (Xx, Yx) = (ϕp (Xx) , ϕp (Yx))p with π (p) = x and Xx,

Yx ∈ TxM . The invariance of (·, ·)p is required in order for gx to be independent of
the choice of representative p ∈ π−1 (x) (recall that ϕph (Xx) = Adg/h

(
h−1

)
ϕp (Xx)).

A Cartan-Poincaré geometry then induces a canonical nondegenerate metric on its base
manifold so that it defines a pseudo-Riemannian geometry. A converse statement can be
formulated (cf. Theorem §6.3.5. of [58]) as follows: there is a unique torsion-free Cartan-
Poincaré geometry associated to a given pseudo-Riemannian geometry. This is an example
of application for Cartan’s method of equivalence (cf. [148]) which means to establish
a correspondence between specified geometric features and particular Cartan geometries.
The next example will provide yet another example of equivalence.

Example 5.2.15 again insists upon the fact that Adg/h-invariant structures on the vector
space g/h ∼ p possess a favored status in the Cartanian approach. However, this does
not mean that one must discard structures that are not Adg/h-invariant altogether. The
following example explicits how functions of P taking values in p which are not tensorial
(i.e. do not satisfy the equivariant requirement) can be put in correspondence with fields
on M provided a section σ : M → P is given.

Example 5.2.16 (Conformal geometry).

A conformal geometry is here to be understood as a manifold endowed with a conformal
class of metrics (cf. Definition 3.1.8). Such a conformal structure comes out naturally in
Cartan-Weyl geometries, i.e. Cartan geometries modeled on the Klein pair (Weyl,Weyl0)

where Weyl and Weyl0 designate the Weyl and homogeneous Weyl group, respectively. For
that purpose, one is naturally led to make use of the conformal bilinear form of Example
5.1.8 denoted (·, ·)p. Since (·, ·)p is a constant element of ∨2 p∗ which is not adjoint invariant,
Proposition A.6.10 provides (·, ·)p to define a tensor on P , since it does not satisfy the equiv-

ariant requirement. Consequently, isomorphism ¯̃Ψ−1 : T
(
∨2 p∗, ¯̃Adg/h

)
→ Γ

(
∨2 T ∗M

)
is

inapplicable in this case so that (·, ·)p does not induce a canonical metric structure on the

base space M . by defining
p
gx (Xx, Yx) ≡ ¯̃ϕ−1

p (·, ·)p (Xx, Yx) = (ϕp (Xx) , ϕp (Yx))p with
π (p) = x and Xx, Yx ∈ TxM . The superscript p acts as a reminder of the fact that
p
gx depends on the choice of the representative p ∈ π−1 (x). Explicitly, under a change

p→ Rhp,
p
gx transforms as

ph
g x = ¯̃ϕ−1

ph (·, ·)p = ¯̃ϕ−1
p

¯̃Adg/h (h) (·, ·)p = λ−2 ¯̃ϕ−1
p (·, ·)p = λ−2pgx,

where h ≡ λR ∈ Weyl0, λ ∈ R and R ∈ O (d). The bilinear form induced at the point x
by (·, ·)p is then scaled by a conformal constant factor under a change of representative p.
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In order to generalise the pointwise case, one needs to perform a choice of representative
p ∈ π−1 (x) at each point of the base manifold x ∈M , i.e. one needs a particular section
σ : M → P (cf. Definition A.6.3), so that σ

gx ≡ ¯̃ϕ−1
σ(x) (·, ·)p. A change of section σ → σ′

is carried out by making use of a map h : M → Weyl0, such that σ′ (x) = Rh(x)σ (x)

(cf. Section 5.4). Decomposing the map h as h (x) = λ (x)R (x), where λ : M → R and
R : M → O (d), the metric σ

g defined as the field x 7→ σ
gx, ∀x ∈ M transforms under a

change of section as σ′
g = λ−2 (x)

σ
g. A Cartan-Weyl geometry endowed with a conformal

bilinear form (·, ·)p then defines an equivalence class of metrics G ≡ [g], in which two met-
rics g and g′ differ by a conformal map λ. The gift of a section σ : M → P singles out a
representative of this conformal class while two conformally equivalent metrics are related
by a change of section. Looking again, as in Example 5.2.15, for a converse statement, one
realises that an additional structure is necessary in order to draw an equivalence with a
torsion-free Cartan-Weyl geometry. Namely, one is led to introduce a Weyl structure, i.e.
a conformal class of metrics G on M supplemented with a map F : G → Ω1 (M ) satisfying
F
(
eλg
)

= F (g) − dλ, ∀ λ : M → R and g ∈ G. A Weyl structure can then be seen as
an equivalence class [(g, ω)] with g ∈ Γ (T ∗M ) ∨ Γ (T ∗M ) and ω ∈ Ω1 (M ) in which two
couples (g, ω) and (g′, ω′) are said equivalent if they satisfy the Eichtransformation:

g′ = eλg

ω′ = ω − dλ

with λ ∈ C∞ (M ). Such a 1-form ω can be defined as the part of the gauge-connection
(cf. Section 5.4) taking values in dilatations. A Cartan-Weyl geometry then determines a
canonical Weyl structure on M and conversely, there is a unique torsion-free Cartan-Weyl
geometry giving rise to a particular Weyl structure (cf. Theorem §7.3.14 of [58]).

5.3 Reductive Cartan geometry

Let g be a Lie algebra and h a Lie subalgebra of g. The Cartan geometry C = (P, ω)

modeled on (g, h) is said reductive if g can be decomposed as a direct sum g = h⊕ p with
p an H-module 6. The following commutation relations

[h, h] ⊂ h

[p, h] ⊂ p

come from the fact that h and p are H-modules.

6. Obviously, h is also an H-module.
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As such, any form taking values in g can be decomposed into h and p components. In
particular, the Cartan connection can be written as ω = ωh + ωp:

h

TP

ωh

77oooooooooooooo

ωp

''PPPPPPPPPPPPPP
ω // g

prh

@@��������

prp

��>>>>>>>

p.

The equivariance property of the Cartan connection as well as the fact that h and p are
H-modules ensure that ∀h ∈ H:

ωh (Rh∗X) = Ad
(
h−1

)
ωh (X)

ωp (Rh∗X) = Ad
(
h−1

)
ωp (X) .

The curvature 2-form can also be decomposed along h and p parts as:

Ωh (X,Y ) = dωh (X,Y ) +
[
ωh (X) , ωh (Y )

]
+ prh ([ωp (X) , ωp (Y )]) (5.3.12)

Ωp (X,Y ) = dωp (X,Y ) +
[
ωh (X) , ωp (Y )

]
+
[
ωp (X) , ωh (Y )

]
(5.3.13)

+prp ([ωp (X) , ωp (Y )]) .

As p ' g/h, the p-part of the reductive curvature will be called torsion.

N.B: In the symmetric cases, which we will mostly be interested in, we have [p, p] ⊂ h and
then the curvature decomposes as:

Ωh (X,Y ) = dωh (X,Y ) +
[
ωh (X) , ωh (Y )

]
+ [ωp (X) , ωp (Y )] (5.3.14)

Ωp (X,Y ) = dωp (X,Y ) +
[
ωh (X) , ωp (Y )

]
+
[
ωp (X) , ωh (Y )

]
. (5.3.15)

In such cases, the Bianchi identity (cf. Proposition 5.2.5) of a torsionfree Cartan geometry
(i.e. Ωp = 0) can be decomposed into its p and h parts as:

[
Ωh, ωp

]
= 0 :First Bianchi identity

dΩh =
[
Ωh, ωh

]
:Second Bianchi identity

(5.3.16)

As Sharpe puts it, reductive Cartan geometries posses a much richer structure that non
reductive ones as they allow a notion of horizontality, which makes them closer to Ehres-
mann geometries. Before discussing the Horizontal distribution induced by a reductive
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Cartan connection, we review some properties of the (canonical) vertical distribution.

Definition 5.3.1 (Vertical distribution). We define the vertical distribution as V = {Vp}
with Vp = Ker (πp∗) = {Xp ∈ TpP/πp∗ (Xp) = 0}. At each point p ∈ P , the vectors
belonging to Vp are called vertical.

Proposition 5.3.2. The vertical distribution can be alternatively defined as V = Ker (ωp).

Proof: In the reductive case, the following shortcut can be taken in the Diagram
(5.2.9):

TpP
ωp
p

!!CCCCCCCCC
π∗

��
TxM

ϕp

≈
// p

(5.3.17)

and therefore ωp
p = ϕp ◦ π∗. As ϕp is an isomorphism, we then have Ker (ωp) =

Ker (π∗).

Proposition 5.3.3. The vertical distribution is involutive.

Proof: Using expression (5.3.13), with ωp (X) = ωp (Y ) = 0 as well as Proposition
5.2.4 ensures dωp (X,Y ) = 0 for all vertical vector fields X,Y and then V = Ker (ωp)

is involutive according to Proposition A.3.5.

Definition 5.3.4 (Horizontal distribution). We define the horizontal distribution H : P →
TP : p 7→ Hp as Hp = Ker

(
ωh
p

)
=
{
Xp ∈ TpP/ωh

p (Xp) = 0
}
. The vectors in it are

therefore called horizontal vectors.

Proposition 5.3.5. The horizontal distribution is involutive iff ∀X,Y ∈ H, we have
Ωh (X,Y ) = prh ([ωp (X) , ωp (Y )]).

Proof: The Proposition follows readily from expression (5.3.12) and Proposition A.3.5.

Proposition 5.3.6. The following properties hold:

1. The horizontal distribution is equivariant, i.e. Hph = Rh∗Hp, ∀p ∈ P and ∀h ∈ H.

2. The map π∗ : Hp → Tπ(p)M is an isomorphism.
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Proof: The proof of 1. follows readily from the equivariance of ωh while 2. is imme-
diate from the Diagram 5.3.17, recalling that ωp

p furnishes an isomorphism between
Hp and p.

Definition 5.3.7 (Horizontal lift). Let X ∈ Γ (TM ) be a vector field on M . The horizontal
lift X̃ ∈ Γ (TP ) of X is the unique vector field on P satisfying:

1. π∗X̃ = X

2. ωh
(
X̃
)

= 0.

The existence and uniqueness of X̃ come from the fact that π∗ : Hp → Tπ(p)M is an
isomorphism.

Definition 5.3.8 (Projectable vector field). A vector field X̃ ∈ Γ (TP ) is said projectable
if X̃ph −Rh∗X̃p ∈ Vph, ∀p ∈ P and ∀h ∈ H.

Proposition 5.3.9. A projectable vector field admits a well-defined projection on the base
space as X ≡ π∗X̃ ∈ Γ (TM ).

Proof: Let us show that π∗X̃ is a well-defined vector field on M . The map π : P →M

being surjective, π∗X̃ assigns a vector at each point m ∈ M . However, being not
injective, the assignment at a pointm coming from two distinct points p, p′ ∈ π−1 (m)

could differ. Explicitly, ∀m ∈M , one needs π∗X̃p = π∗X̃p′ , ∀p, p′ ∈ π−1 (m). Since
p and p′ belongs to the same fiber, there exists h ∈ H such that p′ = Rhp ≡ ph.
Using the projectability condition gives π∗X̃p′ = π∗X̃ph = π∗(R̃h∗X̃p + Vph) = π∗X̃p

and X ≡ π∗X̃ is then a well-defined vector field on M .

Definition 5.3.10 (Equivariant vector field). A vector field X̃ ∈ Γ (TP ) is said equivariant
if the following relation holds: X̃ph = Rh∗X̃p, ∀p ∈ P and ∀h ∈ H.

Proposition 5.3.11. A horizontal lift is equivariant.

Proof: Let X̃p be the horizontal lift of the vector Xπ(p). We have π∗
(
Rh∗X̃p

)
=

(π ◦Rh)∗

(
X̃p

)
= π∗

(
X̃p

)
= Xπ(p) and ωh

ph

(
Rh∗X̃p

)
= Ad

(
h−1

)
ωh
p

(
X̃p

)
= 0 so

that Rh∗X̃p is the horizontal lift of the vector Xπ(p) at ph and the uniqueness of the
horizontal lift ensures X̃ph = Rh∗X̃p.

Proposition 5.3.12. Let X,Y ∈ Γ (TM ) be two vector fields on M and denote X̃, Ỹ ∈
Γ (TP ) their respective horizontal lifts. The horizontal part of

[
X̃, Ỹ

]
is the horizontal lift

of [X,Y ].
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Proof: The vector field
[
X̃, Ỹ

]H
is by definition horizontal and furthermore satisfies

π∗

([
X̃, Ỹ

]H)
= π∗

([
X̃, Ỹ

])
=
[
π∗X̃, π∗Ỹ

]
= [X,Y ], it is therefore the horizontal

lift of [X,Y ].

Cartan Koszul connection

As mentioned earlier, reductive Cartan geometries have the nice feature to allow the defi-
nition of a notion of parallelism on the base space.

Definition 5.3.13 (Cartan derivative). Let X ∈ Γ (TM ) be a vector field of the base space
M and denote X̃ ∈ Γ (TP ) its horizontal lift. Let f ∈ Γ (E) be a section of E = P×H(V, ρ),
the vector bundle associated to P whose sections are in one-to-one correspondence with
tensors of type T (V, ρ) via the isomorphism Ψ (cf. Section A.6). The Cartan derivative
of f along X is defined as ∇X : Γ (E)→ Γ (E) : ∇Xf = Ψ−1

(
X̃ [Ψ (f)]

)
.

Proposition 5.3.14. The Cartan derivative is a Koszul connection.

Proof: cf. Proposition §5.3.48 of [58].

Proposition 5.3.15. Let λ ∈
⊗

p ⊗
⊗

p∗ be an Adg/h-invariant element of the vector
space of multilinear maps on p. Then the section f ∈ Γ (E) of the associated bundle
E = P ×Adg/h

⊗
p ⊗

⊗
p∗ defined as f ≡ Ψ−1 (λ) is parallelised by the Cartan Koszul

connection.

Proof: The element λ being Adg/h-invariant, Proposition A.6.10 ensures that the func-
tion P →

⊗
p ⊗

⊗
p∗; p 7→ λ is a tensor of type

(⊗
p⊗

⊗
p∗,Adg/h

)
, so that the

isomorphism Ψ−1 : T
(⊗

p⊗
⊗

p∗,Adg/h
)
maps λ into a section f ∈ Γ (E). Fur-

thermore, if one lets X ∈ Γ (TM ) be a vector field on M , then, according to Defini-
tion 5.3.13, one gets the expression ∇Xf = Ψ−1

(
X̃ [Ψ (f)]

)
where X̃ ∈ Γ (TP )

stands for the horizontal lift of X. Replacing Ψ (f) by its expression leads to
∇Xf = Ψ−1

(
X̃ [λ]

)
= 0, so that f is parallel transported by the Cartan Koszul

connection ∇.

The following important Corollary follows in a straightforward way from the previous
Proposition by considering Adg/h-invariant bilinear forms on p.

Corollary 5.3.16. Any Cartan metric is compatible with the Cartan Koszul connection.
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Example 5.3.17 (Levi-Civita connection).

Example 5.2.15 pointed out the relation between Cartan geometries modeled on Poincaré
and pseudo-Riemannian geometries. The preceding discussion allows to go further by
endowing the base manifold of a Cartan-Poincaré geometry with a canonical Koszul con-
nection compatible with the metric structure. In the case where the Cartan geometry is
torsion-free, the Cartan derivative coincides with the Levi-Civita connection associated
with the Cartan metric.

Proposition 5.3.18. The Koszul torsion associated to the Cartan derivative is linked to
the Cartan torsion via

Ψ (T (X,Y )) = Ωp
(
X̃, Ỹ

)
− prp ([ωp (X) , ωp (Y )])

with X,Y ∈ Γ (TM ) and where X̃, Ỹ ∈ Γ (TP ) are the horizontal lifts of X and Y respec-
tively. The isomorphism Ψ : Γ (TM )→ T

(
g/h,Adg/h

)
is defined in Corollary 5.2.13.

Proof: Starting from equation (A.9.13) and applying Ψ on both sides, one gets Ψ (T (X,Y )) =

X̃ [fY ] − Ỹ [fX ] − f[X,Y ] where fX (p) = ϕp (Xx) (cf. Corollary 5.2.13). Using Di-

agram (5.3.17), one gets fX (p) = ωp
p

(
X̃p

)
, so that Ψ (T (X,Y )) = X̃

[
ωp
(
Ỹ
)]
−

Ỹ
[
ωp
(
X̃
)]
− ωp

([
X̃, Ỹ

])
and then Ψ (T (X,Y )) = dωp

(
X̃, Ỹ

)
. Using expression

(5.3.13) and the fact that ωh
(
X̃
)

= ωh
(
Ỹ
)

= 0 concludes the proof.

Proposition 5.3.19. The Koszul curvature associated to the Cartan derivative vanishes
if and only if the horizontal distribution is involutive.

Proof: One applies the isomorphism Ψ on both sides of the identity defining R and
manipulates as in Proposition 5.3.18 :

Ψ (R (X,Y ; f)) = Ψ (∇X∇Y f)−Ψ (∇Y∇Xf)−Ψ
(
∇[X,Y ]f

)
= X̃ [Ψ (∇Y f)]− Ỹ [Ψ (∇Xf)]− ˜[X,Y ] [Ψ (f)]

= X̃
[
Ỹ [Ψ (f)]

]
− Ỹ

[
X̃ [Ψ (f)]

]
−
[
X̃, Ỹ

]H
[Ψ (f)]

=
[
X̃, Ỹ

]
[Ψ (f)]−

[
X̃, Ỹ

]H
[Ψ (f)]

=
[
X̃, Ỹ

]V
[Ψ (f)]

where in the second step, Proposition 5.3.12 has been used. As one sees, R measures
the failure of the involutivity of the horizontal distribution and so vanishes if and
only if the horizontal distribution is involutive. For a relation to the h-valued part
of the Cartan curvature, cf. Proposition 5.3.5.
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Automorphisms of a Cartan geometry

Definition 5.3.20 (ω-constant vector field). The vector field X ∈ Γ (TP ) defined on the
principal bundle P is said to be ω-constant if there exists an element x ∈ g such that
ωp (Xp) = x, ∀p ∈ P .

Proposition 5.3.21. Let X ∈ Γ (TP ) be a ω-constant vector field such that ω (X) = x

with x ∈ g, and Y ∈ Γ (TP ). The following relation holds:

LXω (Y ) = [ω (Y ) , x] + Ω (X,Y ) .

Whenever the vector field X is fundamental, we have LXω (Y ) = [ω (Y ) , x].

Proof: Using Cartan’s magic formula LXω = diXω + iXdω (where i denotes the
interior product) and acting on a vector field Y ∈ Γ (TP ), we obtain:

LXω (Y ) = d (ω (X)) (Y ) + dω (X,Y )

= dω (X,Y )

= Ω (X,Y )− [ω (X) , ω (Y )]

= [ω (Y ) , x] + Ω (X,Y )

where in the first and third steps the constancy of X has been used. Whenever X is
fundamental, Proposition 5.2.4 imposes Ω (X,Y ) = 0 so that LXω (Y ) = [ω (Y ) , x].

Proposition 5.3.22. Let g′ ⊂ g be a Lie subalgebra of g and D = {Dp} a distribution
defined on P as Dp = {Xp ∈ TpP/ωp (Xp) ∈ g′}. The distribution D is involutive if and
only if Ω (X,Y ) ∈ g′ for all X,Y ∈ D.

Proof: According to Definition A.3.4, D is involutive if and only if ω (X) ∈ g′, ω (Y ) ∈
g′ ⇒ ω ([X,Y ]) ∈ g′. Manipulating,

ω ([X,Y ]) = X [ω (Y )]− Y [ω (X)]− dω (X,Y )

= X [ω (Y )]− Y [ω (X)] +
1

2
[ω (X) , ω (Y )]− Ω (X,Y )

one sees that all the terms on the right-hand side but the last take value in g′.
Therefore, ω ([X,Y ]) ∈ g′ if and only if Ω (X,Y ) ∈ g′ for X,Y ∈ D.
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Definition 5.3.23 (Automorphism of a Cartan geometry). An automorphism of the Car-
tan geometry (P, ω) is a bundle automorphism of P which preserves ω, i.e. φ∗ω = ω.

Proposition 5.3.24. Every equivariant vector field of P induces a bundle automorphism
of P .

Proof: Let X ∈ Γ (TP ) be a horizontal vector field of P with associated flow denoted
by ΦX : R × P → P . One introduces the path σp : R → P defined by σp (λ) =

Φξ (λ, p). The vector field X is tangent to σp so that X = σ∗Dt. Introducing the
path κ : R → P defined as κ (λ) = Rh (σp (λ)) for some group element h ∈ H, one
gets κ∗Dt = Rh∗σp∗Dt = Rh∗X = X where in the last step, Proposition 5.3.11 was
used. The vector field X is then tangent to the path κ which can then be expressed as
κ (λ) = ΦX (λ,Rh (p)). Denoting φλ : P → P the map defined as φλ (p) = ΦX (λ, p),
one obtains Rh (φλ (p)) = φλ (Rh (p)) so that the actions of φλ and Rh commute
∀λ ∈ R and h ∈ H.

5.4 Gauge version of Cartan geometry

We now introduce the base versions of the principal notions discussed in the preceding
Section. This will allow us to make contact with the index notation, perhaps more common
in the physics literature. The transition from bundle objects to their alter ego on the base
is performed using sections. As we will see, a change of sections will be associated to gauge
transformations of the base objects.

We will again consider a Cartan geometry C = (P, ω) modeled on (g, h) with base M . One
starts by defining a gauge connection as:

Definition 5.4.1 (Cartan gauge connection). Let
U
σ : U → P be a section defined on the

open subset U ⊂M . The 1-form
U
θ ∈ Ω1 (U)⊗ g defined by

U
θ =

U
σ∗ω is said to be a Cartan

gauge connection on U compatible with C. The pair
(
U,

U
θ

)
is called a Cartan gauge.

Proposition 5.4.2. Let
U
σ : U → P and

V
σ : V → P be two sections with U ∩ V 6= ∅. Let

h : M → H be the map defined by

P
Rh // P

M

V
σ

>>||||||||U
σ

``BBBBBBBB
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The Cartan gauge connections
U
θ and

V
θ associated to

U
σ and

V
σ respectively, satisfy on U ∩V ,

the following compatibility relation:

V
θ = Ad

(
h−1

) U
θ + h∗ωH (5.4.18)

with ωH ∈ Ω1 (H)⊗ h the Maurer-Cartan 1-form on the subgroup H.

Proof: Introducing the map ψ : P → H as

P
ψ // H

M
h

==||||||||U
σ

``BBBBBBBB

and denoting f the map f : P → P : p 7→ Rψ(p)p, one sees that the two sections Uσ

and V
σ are related via V

σ = f ◦Uσ. Therefore, using relation (5.2.7) in Proposition 5.2.6,

one gets
V
θ =

V
σ∗ω =

U
σ∗f∗ω =

U
σ∗
(
Ad
(
ψ−1

) U
θ + ψ∗ωH

)
= Ad

(
h−1

) U
θ + h∗ωH .

Such a change of section is called a gauge transformation and will be denoted
U
θ ⇒h

V
θ . In

the reductive case where g = h⊕ p is an H-module decomposition, one obtains

θpV = Ad
(
h−1

)
θpU (5.4.19)

θhV = Ad
(
h−1

)
θhU + h∗ωH . (5.4.20)

Proposition 5.4.3. The base version of the connection curvature is the curvature of the
base version of the connection, i.e.

ΘU ≡
U

σ∗Ω = d
U
θ +

1

2

[
U
θ,
U
θ

]
(5.4.21)

with Ω the curvature of ω and
U
θ =

U
σ∗ω.

Proof: The proof is straightforward from direct calculation.

Proposition 5.4.4. The base curvature transforms under a gauge transformation
U
θ ⇒h

V
θ

as:

ΘV = Ad
(
h−1

)
ΘU . (5.4.22)
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Proof: The setup is identical to the proof of Proposition 5.4.2 so that one can make

use of the relation (5.2.8) : ΘV =
V
σ∗Ω =

U
σ∗f∗Ω =

U
σ∗
(
Ad
(
ψ−1

)
Ω
)

= Ad
(
h−1

)
ΘU .

Definition 5.4.5 (Gauge expression of a tensor). Let Φ : P → V be a tensor of type (V, ρ)

and (U, θ) a gauge corresponding to the section σ : M → P , then the map φ : U → V

defined as φ ≡ Φ ◦σ is called the expression of the tensor Φ in the gauge (U, θ). We denote
U
T (V, ρ) the set of expressions of tensors of type (V, ρ) living on the open set U ∈M .

Proposition 5.4.6. Let
U
φ : U → V be the expression of a tensor Φ of type (V, ρ) in the

gauge
(
U,

U
θ

)
. Under a gauge transformation

U
θ ⇒h

V
θ parameterised by h : U ∩ V → H, φ

transforms as
V
φ = ρ

(
h−1

) U
φ, where

V
φ stands for the expression of Φ in the gauge

(
V,

V
θ

)
.

Proof: Let U
σ : U → P and V

σ : V → P be the respective sections associated to the

gauges
(
U,

U
θ

)
and

(
V,

V
θ

)
. One has

V
φ = Φ ◦ Vσ = Φ ◦ Rh ◦

U
σ = ρ

(
h−1

)
Φ ◦ Uσ =

ρ
(
h−1

) U
φ.

For example, one can introduce the gauge expression of the canonical isomorphism Ψ :

Γ (E) → T (V, ρ) defining a bijective correspondence between sections f ∈ Γ (E) of the
associated vector bundle E = P ×H (V, ρ) and tensors of type T (V, ρ) on P as defined in
Corollary 5.2.13 and Proposition 5.2.14.

Definition 5.4.7 (Base version of the isomorphism Ψ). Let
(
U,

U
θ

)
be a gauge correspond-

ing to the section
U
σ : M → P . We denote by

U
Υ : Γ (E)→

U
T (V, ρ) the gauge expression of

Ψ : Γ (E)→ T (V, ρ) defined by
U
Υ (f) ≡ Ψ (f) ◦ Uσ where f ∈ Γ (E) is a section of E.

Under a gauge transformation
U
θ ⇒h

V
θ ,

U
Υ (f) and its inverse transform according to

V
Υ (f) = ρ

(
h−1

) U
Υ (f)

V
Υ−1 (φ) =

U
Υ−1 (ρ (h)φ) .

Proposition 5.4.8. Let (P, ω) be a reductive Cartan geometry modeled on the reductive

infinitesimal Klein pair (g, h) with g = h⊕p and
(
U,

U
θ

)
the Cartan gauge associated to the

section σ : M → P . Then the isomorphism
U
Υ : Γ (TM ) →

U
T
(
g/h,Adg/h

)
when acting

on a vector field X ∈ Γ (TM ) can be expressed as
U
Υ (X) =

U

θp (X).
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Proof: Starting from Definition 5.4.7 for
U
Υ and acting on a vector field X ∈ Γ (TM )

leads to
U
Υ (X) (x) = Ψ (X) (σ (x)) = ϕσ(x) (Xx), where the expression of Ψ as defined

in Corollary 5.2.13 has been used. Moreover, as represented on the Diagram 5.3.17,
for all p ∈ P such that π (p) = x, the isomorphism ϕp : TxM → g/h can be
expressed in the reductive case as ϕp (Xx) = ωp

p (Xp) where Xp ∈ TpP designates
any (i.e. not necessarily horizontal) lift of Xx ∈ TxM . In particular, one can

choose the lift Xp = σ∗Xx, so that the expression for
U
Υ (X) (x) becomes

U
Υ (X) (x) =

ωp
σ(x) (σ∗Xx) =

U

θpx (Xx).

Example 5.4.9 (Poincaré algebra).

Let (P, ω) be a reductive Cartan-Poincaré geometry modeled on the reductive infinitesimal
Klein pair (poin, lor), where poin and lor designate the Poincaré and Lorentz algebras,
respectively. The Poincaré algebra can be decomposed, as a vector space, into poin =

lor ⊕ p, where p = Span Pa is the Adg/h (SO (d, 1))-invariant module corresponding to
translations, where SO (d, 1) stands for the Lorentz group. Let (U, θ) designate the Cartan
gauge associated to the section σ : M → P . The part of the connection taking values
into the H-module p is denoted θp ∈ Ω1 (M ) ⊗ p and can be decomposed on a basis of
p as θp = θaPa, where θa ∈ Ω1 (M ) is a set of d + 1 1-forms on M . The set θa, with
a = 0 . . . d is often called “coframe” in the physics literature. According to Proposition

5.4.8 the isomorphism Υ : Γ (TM ) →
U
T
(
g/h,Adg/h

)
, introduced in Definition 5.4.7,

acts on a vector field X ∈ Γ (TM ) as Υ (X) = θa (X)Pa. Now the inverse isomorphism

Υ−1 :
U
T
(
g/h,Adg/h

)
→ Γ (TM ) can be expressed as Υ−1 (φ) = eaP

a∗ (φ), with φ ∈
U
T
(
g/h,Adg/h

)
a tensor on g/h ' p and ea ∈ Γ (TM ) a set of d+1 vector fields, sometimes

referred to as the “frame”.

The inverse isomorphism Υ−1 :
U
T
(
g/h,Adg/h

)
→ Γ (TM ) can now be used to define the

isomorphism Ῡ : Ω1 (M )→
U
T
(
(g/h)∗ , Ādg/h

)
mapping bijectively 1-form fields on M to

tensors taking values into the dual vector space p∗ ' (g/h)∗ and transforming according to
the contragredient representation Ādg/h : H → End ((g/h)∗) defined in 5.1. Given a 1-form

field α ∈ Ω1 (M ) and a tensor φ ∈
U
T
(
g/h,Adg/h

)
on g/h, the isomorphism Ῡ is defined

as Ῡ (α)φ = α
(
Υ−1 (φ)

)
and can then be expressed using the precedently introduced

basis decomposition as Ῡ (α) = α (ea)P
a∗. Accordingly, the inverse isomorphism Ῡ−1 :

U
T
(
(g/h)∗ , Ādg/h

)
→ Ω1 (M ) acts on φ̄ ∈

U
T
(
(g/h)∗ , Ādg/h

)
as Ῡ−1

(
φ̄
)

(X) = φ̄ (Υ (X)),
with X ∈ Γ (TM ), so that Ῡ−1 can be expressed as Ῡ−1

(
φ̄
)

= θa (X) φ̄ (Pa).

According to their definitions, the frame ea ≡ Υ−1 (Pa) and coframe θa ≡ Ῡ−1 (P a∗) have to
satisfy the following relations: θa (eb) = θa

(
Υ−1 (Pb)

)
= Ῡ (θa) (Pb) = P a∗ (Pb) = δab . Sim-
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ilarly, if we let X ∈ Γ (TM ) be a vector field on M , the consistency relation Υ−1 (Υ (X)) =

X imposes the following equality: Υ−1 (Υ (X)) = Υ−1 (θa (X)Pa) = θa (X) ea = X. Ex-
pressing the frame and coframe in an holonomic basis as ea ≡ eµa∂µ and θa ≡ θaµdx

µ these
two consistency relations read θaµe

µ
b = δab

θaνe
µ
a = δµν

(5.4.23)

so that frame and coframe are seen to be inverse.

Proposition 5.4.10. Let (U, θ) be a gauge for a reductive Cartan geometry (P, ω) modeled
on the infinitesimal Klein pair (g, h), X ∈ Γ (TU) a vector field on U and f ∈ Γ (E) a
section of the associated vector bundle E = P ×H (V, ρ). The expression in the gauge (U, θ)

of the Koszul connection ∇X : Γ (E)→ Γ (E) reads:

∇Xf = Υ−1
{
X [Υ (f)]− ρ∗

(
θh (X)

)
Υ (f)

}
(5.4.24)

where Υ : Γ (E) →
U
T (V, ρ) is the isomorphism defined in 5.4.7, θh designates the part

of the gauge connection taking values in the homogeneous Lie subalgebra h and ρ∗ : h →
End (V ) is the derivative at the identity of the representation ρ : H → Gl (V ).

Proof: cf. [58] Proposition §5.3.49.

Example 5.4.11 (Poincaré Koszul connection).

Let us carry on with our study of the Cartan-Poincaré geometry initiated in Example
5.4.9 by applying the preceding expression to a vector field Y ≡ Y µ∂µ ∈ Γ (TU). The

isomorphism Υ maps Y to a
U
T
(
g/h,Adg/h

)
tensor with Adg/h : H → End (g/h) the adjoint

representation on g/h while ρ∗ stands 7 for the pushforward of Adg/h denoted adg/h : h →
End (g/h). Furthermore, the h-part of the gauge connection is expressed on the canonical
basis of h = Span Jab as θh ≡ ωabJab where ωab ∈ Ω1 (U) is a set of d(d−1)

2 1-form fields on
U antisymmmetric in (a, b). The set ωab is often reffered to as the “spin-connection” in the
physics literature.

Applying formula 5.4.24 leads then to the familiar expression:

∇XY = Xµ
(
∂µY

a + ωaµ bY
b
)
ea,

with Y a ≡ Y µθaµ. Making contact with the expression of the Koszul connection in an
holonomic basis ∇XY ≡ Xµ

(
∂µY

λ + ΓλµνY
ν
)
∂λ leads to the following relation between

7. We choose the normalisation: ρ∗ = − i
2
adg/h.
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coefficients Γλµν and the spin-connection:

∂µθ
a
ν + ωaµ b θ

b
ν − Γλµν θ

a
λ = 0. (5.4.25)

This expression is sometimes referred to as the “first vielbein postulate” (cf. e.g. [10] §1.4)
although this term seems somewhat improper since it is derived as a direct consequence
of the definition for the coefficients Γλµν . One can make use of this expression in order to
express the the coefficients Γλµν in terms of the (co)-frame and spin connection in the gauge
(U, θ):

Γλµν = eλa ∂µθ
a
ν + ωaµ b e

λ
a θ

b
ν . (5.4.26)

By definition of Γλµν , the obtained expression is gauge invariant. In the case of a torsion-free
geometry, the Christoffel symbols are symmetric in (µ, ν), so that eλa ∂[µθ

a
ν]+ω

a
[µ b e

λ
a θ

b
ν] = 0.

Solving this constraint allows to express the spin connection ωab solely in terms of the frame
and coframe as :

ωabµ = eν[a ∂[µθ
b]
ν] − e

ρ[a eσb] ∂ρθ
c
σ θcµ.

Plugging back into equation (5.4.26) and manipulating a bit gives the, manifeslty gauge-
invariant, expression (3.1.1) of the Christoffel symbols for the Levi-Civita connection:

Γλµν =
1

2
gλρ [∂µgρν + ∂νgρµ − ∂ρgµν ] .

Example 5.4.12 (Weyl Koszul connection).

We here follow the same steps as in Example 5.4.11 in the case of a Cartan-Weyl geometry.
Choosing the canonical basis for the homogeneous Weyl subalgebra as h = Span Jab, D, one
decomposes the homogeneous part of the gauge connection as θh = ωabJab + ωD. Besides
the spin-connection ωab, the homogeneous Weyl gauge-connection contains an additional 1-
form ω ∈ Ω1 (U) corresponding to dilatations. The Weyl Koszul connection then takes the
form ∇XY = Xµ

(
∂µY

a + ωaµ bY
b + 1

2ωµY
a
)
ea, where X,Y ∈ Γ (TM ) and Y a ≡ Y µθaµ.

The “first vielbein postulate” differs then from the Poincaré case as:

Γλµν = eλa

[
∂µθ

a
ν + ωaµ b θ

b
ν +

1

2
ωµθ

a
ν

]
. (5.4.27)

The torsion-free requirement again allows to solve the spin-connection in terms of the
(co)-frame, with the difference that ωab also picks up a dependence in ω, which is not
constrained by the torsion-free condition. The explicit expression for the torsion-free spin
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connection reads:

ωabµ = eν[a ∂[µθ
b]
ν] − e

ρ[a eσb] ∂ρθ
c
σ θcµ +

1

2

[
eν[a ω[µθ

b]
ν] − e

ρ[a eσb] ωρθ
c
σ θcµ

]
which, once plugged back into (5.4.27) leads to the expression (3.1.4) for Christoffel symbols

Γλµν =
1

2
gλρ [∂µgρν + ∂νgρµ − ∂ρgµν ] +

1

2

[
δλµων + δλνωµ − gλρgµν ωρ

]
.

It has been noted (cf. 3.1) that this expression is invariant under an Eichtransformation

g′ = eλg and ω′ = ω − dλ (5.4.28)

parameterised by the function λ ∈ C∞ (M ). This invariance can be understood in the
present formalism as the gauge-invariance of the Cartan Koszul connection (i.e. invariance
under a change of sections Uσ ⇒h

V
σ). An Eichtransformation is just a particular case of a

gauge-transformation in a Cartan-Weyl geometry when the gauge-defining map h : M → H

takes values only in the dilatation part of the Weyl homogeneous group.

The integrable case (cf. Definition 3.1.10) can be recovered by supplementing the
torsion-free condition with the requirement that the part of the gauge-curvature taking
values in the dilatation vanishes, i.e. ΩD = dω = 0.

Proposition 5.4.13 (Relation between curvature tensor and gauge curvature).

σ
Υ (R (X,Y ; f)) = ρ∗

(
Θh (X,Y )

) σ
Υ (f) (5.4.29)

Example 5.4.14 (Riemann tensor and Bianchi identities). On the one hand, one can
decompose the gauge curvature of a torsionfree Cartan-Poincaré geometry on the canonical
basis h = Span Jab as:

Θh (X,Y ) ≡ Rab (X,Y ) Jab = RabµνX
µY νJab.

On the other hand, the curvature tensor for the Cartan Koszul connection (i.e. the Rie-
mann tensor) can be expressed in an holonomic basis as:

Rλρµν = Rabµνθbρe
λ
a .

Then, equality (5.4.29) imposes the following identification:

Rλρµν = Rabµνe
λ
aθbρ

where ea and θa are the gauge frame and coframe, respectively.
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The previous expression can be used in order to reexpress the Bianchi identities (cf.
eqs.(5.3.16)) for a torsionfree Cartan-Poincaré geometry in the familiar form as:

First Bianchi identity: [
Θh, θp

]
= 0[

RabJab, θ
cPc

]
= 0

Rab ∧ θb = 0

Rλ[ρµν] = 0.

Second Bianchi identity:

dΘh =
[
Θh, ωh

]
d
(
RabJab

)
=

[
RabJab, ω

cdJcd

]
dRab = Rac ∧ ωcb −Rb c ∧ ωca

∇[αR
λρ
µν] = 0.

184



Chapter 6

Cartan viewpoint on nonrelativistic
manifolds

Eπειδη τo ειδεναι και τo επιστασθαι συµβαινει πε%ι πασας τας µεθoδoυς,
ων εισιν α%χαι η αιτια η στικεια, εκ τoυ ταυτα γνω%ιξειν: τoτε γα%

oιoµετα γιγνωσκειν εκαστoν, oταν τα αιτια γωρισωµεν τα π%ωτα και

τας α%χας τας πρωτας και µεχρι των στoιχειων. ∆ηλoν oτι και της περι

ϕυσεoς επιστηµης πει%ατεoν διo%ισασθαι πρωτoν τα πε%ι τας α%χας.

In all disciplines in which there is systematic knowledge of things with prin-
ciples, causes, or elements, it arises from a grasp of those: we think we have
knowledge of a thing when we have found its primary causes and principles, and
followed it back to its elements. Clearly, then, systematic knowledge of nature
must start with an attempt to settle questions about principles.

– Aristotle, Physics Book I, Chapter 1, 184a 10-21

As mentioned in the introduction of this manuscript, the ambition of the present Chapter
is to reinterpret Newton-Cartan structures as “Cartan-Newton” geometries, i.e. Cartan
geometries modeled on nonrelativistic groups (Galilei or its central extension). Chapter 4
already imparted some naturality to nonrelativistic structures by reviewing their embed-
ding inside gravitational waves. The present Chapter aims to forge ahead by showing how
these nonrelativistic structures can be derived from first principles using Cartan’s approach
to differential geometry, as reviewed in Chapter 5. In this context, nonrelativistic geome-
tries appear as natural as their relativistic cousins, differing only by the choice of structural
Klein geometries (or model space). This Chapter should be primarily understood as pre-
liminary work i.e. we wish here to make the case that Cartan geometries constitute a
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useful formalism regarding the description of nonrelativistic theories of gravitation (as well
as their embedding inside relativistic manifolds) by reinterpreting some classic results in
this formalism and hence, hopefully, pave the way to subsequent generalisations.

6.1 Galilean manifolds as Cartan-Galilei geometries

As a gentle start, we present how a Cartan-Galilei geometry (i.e. a Cartan geometry
modeled on the pair (Gal,Gal0) where Gal designates the Galilei group while Gal0 stands
for the homogeneous Galilei group) induces on its base space M a structure of Galilean
manifold.

Let (P, ω) be a Cartan geometry modeled on the infinitesimal Klein pair (gal, gal0)

where gal designates the Galilei algebra (cf. commutation relations (B.2.6)-(B.2.9)) and
gal0 is the homogeneous Lie subalgebra. Being reductive, the Lie algebra gal admits the
Ad (Gal0)-module decomposition as : gal = gal0 ⊕ p. We choose a basis for gal such that
gal0 = Span {Ki, Jij} and p = Span {H,Pi} while the dual canonical basis decomposes as
gal0

∗ = Span
{
Ki∗, J ij∗

}
and p∗ = Span

{
H∗, P i∗

}
. The principal Gal0-bundle P over the

manifold M

Gal0� _

��
P

π

��
M

(6.1.1)

is endowed with a Cartan connection ω taking values in gal.
Our aim is now to make use of the Cartan setup in order to lower natural objects living
on the Klein model space Gal/Gal0 downto nonrelativistic structures living on the base
manifold M . The previous Section emphasised the naturalness of Adg/h-invariant struc-
tures in this type of construction, so that one starts by investigating Adg/h (Gal0)-invariant
elements of

⊗
p ⊗

⊗
p∗. Representation theory of the Galilei group (cf. Section B.2.3)

singles out the two following elements

• H∗ ∈ p∗

• (·, ·)−1
p ≡ δijPi ∨ Pj ∈ ∨2 p

as the only Adg/h-invariant elements of
⊗p p⊗

⊗q p∗, with p+ q ≤ 2.

Some comments are in order: the contravariant bilinear form (·, ·)−1
p is seen to be degen-

erate with radical spanned by the linear form H∗. One is then dealing with a degen-

186



6.1. GALILEAN MANIFOLDS AS CARTAN-GALILEI GEOMETRIES

erate metric structure on p, to be contrasted with the full rank bilinear form emerging
from the representation theory of the Poincaré group (cf. Example 5.1.7). The ne-
cessity to consider degenerate metric structures in nonrelativistic physics can then be
traced back to the lack of Adg/h (Gal0)-invariant bilinear form on p or its dual. How-
ever, applying Proposition A.1.5, one can forge a “spacelike” bilinear form acting on
Span Pi = Ker H∗ which is non-degenerate. This Adg/h-invariant bilinear form reads
explicitly: (·, ·){Pi} ≡ δijP

i∗ ∨ P j∗ ∈ ∨2 Span P i∗.

According to Proposition A.6.10, the Adg/h (Gal0)-invariant p-metric structure
(
H∗, (·, ·)−1

p

)
defines tensors on P of the type T

(
p∗, Ādg/h

)
and T

(
∨2 p, Ãdg/h

)
, respectively, which in

turn can be lowered downto M using the isomorphism Ψ−1 : T (V, ρ) → Γ (E) (cf. Def-
inition 5.2.13 as well as Table 5.3). Explicitly, one constructs the 1-form ψ ∈ Ω1 (M ) as
ψ ≡ Ψ̄−1 (H∗) and the contravariant metric h ∈ Γ

(
∨2 TM

)
as h ≡ Ψ̃−1

(
(·, ·)−1

p

)
. The fact

that Ψ̄ is an isomorphism guarantees that ψ never vanishes while Rad
(

(·, ·)−1
p

)
= Span H∗

ensures that Rad (hx) = Span ψx at each point x ∈M . We sum up this Section with the
Proposition:

Proposition 6.1.1. A Cartan-Galilei geometry induces a Leibnizian structure L (M , ψ, h)

whose degenerate metric structure (ψ, h) on the base space M is the natural counterpart of
the metric structure

(
H∗, (·, ·)−1

p

)
on the Klein-Galilei geometry.

This Proposition can be seen as the analogue in the Cartan formalism of Theorem 3 in [18]
where Leibnizian structures were described as G-structures for the homogeneous Galilei
group Gal0.

We now show how the canonical basis for the “translation” module p = Span {H,Pi}
induces a (non-canonical) Galilean basis (cf. Definition 3.2.13 and Proposition 3.2.14) on
the base space M . The proposed construction makes use of the isomorphism ϕp : TxM →
p (with π (p) = x) defined in Proposition 5.2.9 which precisely establishes a bijective
correspondence between the vector spaces p and TxM and so can be used in order to
import the canonical basis of p downto the tangent space of M at x.

Proposition 6.1.2. The tangent space at each point x ∈M of the base space is endowed
with a non-canonical Galilean basis imported from the canonical basis for the module p.

Proof: Our aim is to show how the isomorphism ϕp : TxM → p (where p ∈ π−1 (x)

is arbitrary) maps the canonical basis {H,Pi} onto a Galilean basis of the tangent
space at x ∈ M , which is non-canonical due to the arbitrariness of p. One is then
led to define the vector Np

x ∈ TxM as Np
x ≡ ϕ−1

p (H) as well as the set of d vectors
epix ∈ TxM , with i = 1, . . . , d as epix ≡ ϕ

−1
p (Pi). That fact that ϕp is an isomorphism

ensures that
{
Np
x , e

p
ix

}
is indeed a basis of TxM .
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Now, in order for this induced basis to be Galilean, it has to satisfy Conditions 1-3
from Definition 3.2.13. That this is the case is easily shown, recalling the pointwise
definition of the absolute clock and rulers, in the Cartanian setup, as ψx ≡ ϕ̄−1

p (H∗)

and γx ≡ ¯̃ϕ−1
p

(
δijP

i∗ ∨ P j∗
)
, respectively. Conditions 1-3 are then seen to be satis-

fied as follows:

1. ψx (Nx) = ψx
(
ϕ−1
p (H)

)
= (ϕ̄p (ψx)) (H) = H∗ (H) = 1.

2. ψx (eix) = ψx
(
ϕ−1
p (Pi)

)
= (ϕ̄p (ψx)) (Pi) = H∗ (Pi) = 0.

3. γx (eix , ejx) = γx
(
ϕ−1
p (Pi) , ϕ

−1
p (Pj)

)
= ( ¯̃ϕpγx) (Pi, Pj) =

(
δklP

k∗ ∨ P l∗
)

(Pi, Pj) =

δij .

As emphasised in the previous Proposition, the basis Bp
x ≡

{
Np
x , e

p
ix

}
is not canonically

defined in the sense that it depends on the choice of representative point p ∈ π−1 (x), hence
the superscript p. Switching the representative from p to ph ≡ Rhp, with

h ≡

1 b

0 R

 ∈ Gal0, (6.1.2)

where b ∈ Rd and R ∈ O (d), leads yet to a different Galilean basis spanned by the vectors:N
ph
x ≡ ϕ−1

ph (H) = ϕ−1
p

(
Adg/h (h)H

)
= ϕ−1

p

(
H + biPi

)
= Np

x + biepix
ephix ≡ ϕ

−1
ph (Pi) = ϕ−1

p

(
Adg/h (h)Pi

)
= ϕ−1

p

(
Rj

iPj

)
= Rj

ie
p
jx
.

(6.1.3)

One recognises the group action (3.2.14) of the homogeneous Galilei group Gal0 on the space
of Galilean bases. Furthermore, the regularity of the right-action on each fiber π−1 (x) of
the principal bundle P (or equivalently the regularity of Adg/h : Gal0 → End (p)) ensures
that the homogeneous Galilei group acts regularly on the space of Galilean bases, See
Proposition 3.2.14.

From expressions (6.1.3), one concludes that the non-canonical character of the basis Bp
x ≡{

Np
x , e

p
ix

}
can be traced back to the non-invariance of the basis {H,Pi} under the adjoint

action Adg/h. This intimate relationship between Adg/h-invariance and canonicality will be
a recurrent feature of our present approach.

The previous setup can be easily applied to the construction of a (again, non-canonical)
basis of T ∗xM starting from the canonical basis

{
H∗, P i∗

}
and making use of the isomor-

phism ϕ̄p : T ∗xM → p∗ (cf. Proposition 5.2.10).

The base counterpart of H∗ is, unsurprisingly, the absolute clock ψx whose canonicality
is ensured by the Ādg/h-invariance of H∗ while the d linear forms P i∗ define a set of d
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1-forms on T ∗xM as θipx ≡ ϕ̄−1
p

(
P i∗
)
. It is then easy to check that the basis B∗x =

{
ψx, θ

ip
x

}
thus constructed is dual to the basis Bp

x ≡
{
Np
x , e

p
ix

}
, since, in addition to the relations

ψx (Np
x) = 1, ψx

(
epix
)

= 0, one gets:θi
p

x (Np
x) = ϕ̄−1

p

(
P i∗
)

(Np
x) = P i∗ (ϕp (Np

x)) = P i∗ (H) = 0

θi
p

x

(
epjx

)
= ϕ̄−1

p

(
P i∗
) (
epjx

)
= P i∗

(
ϕp

(
epjx

))
= P i∗ (Pj) = δij .

(6.1.4)

It will again be instructive to know how this basis transforms under a change of represen-
tative p→ ph:ψx ≡ ϕ̄

−1
ph (H∗) = ϕ̄−1

p

(
Ādg/h (h)H∗

)
= ϕ̄−1

p (H∗) = ψx

θi
p

x ≡ ϕ̄−1
ph

(
P i∗
)

= ϕ̄−1
p

(
Ādg/h (h)P i∗

)
= ϕ−1

p

(
−RT i

jb
jH∗ + RT i

jP
j∗
)

= −RT i
jb

jψx + RT i
jθ
jp
x .

The generalisation from the pointwise case to the field case necessitates a prescription
to assign to each point x ∈M a specific point p ∈ π−1 (x) i.e. a choice of section σ : U ⊂
M → P , where U is an open set of M (cf. Example 5.2.16). Let

σ
Υ−1 : C∞ (U ) ⊗ p →

Γ (TU ) designate the (section dependent) map between functions on U taking values in p

and vector fields on U defined as
σ
Υ−1 (φ) (x) = ϕ−1

σ(x) (φ (x)), with φ ∈ C∞ (U )⊗p. Let us

emphasise that the vector field
σ
Υ−1 (φ) ∈ Γ (TU ) generically depends on the section σ and

transforms under a change of section σ ⇒h σ
′ parameterised by the map h : U ∩V → Gal0

as:
σ′

Υ−1 (φ) =
σ
Υ−1

(
Adg/h (h)φ

)
. The map

σ
Υ−1 can be generalised in the usual way in

order to map functions of U taking values in
⊗

p ⊗
⊗

p∗ and fields on U . Equipped

with this map, one defines the vector fields
σ
N and σ

ei ∈ Γ (TU ) as
σ
N ≡

σ
Υ−1 (H) and

σ
ei ≡

σ
Υ−1 (Pi). The canonical basis {H,Pi} of p is then mapped into a non-canonical

(i.e. section dependent) Galilean basis {
σ
N,

σ
ei} of Γ (TU ). A basis of Ω1 (U ) can be

constructed in a similar fashion, making use of the map
σ

Ῡ−1 : C∞ (U ) ⊗ p∗ → Ω1 (U )

defined as
σ

Ῡ−1 (α) (X) = α

(
σ
Υ (X)

)
, with α : U → p∗ and X ∈ Γ (TU ). The 1-form

σ

Ῡ−1 (H∗) is invariant under a change of section, due to the Ādg/h (Gal)-invariance of H∗,
and coincides then with the absolute clock ψ. As for the spacelike coframe 1-form, it

is defined as
σ
θi ≡

σ

Ῡ−1
(
P i∗
)
so that the non-canonical basis for Ω1 (U ) reads {ψ,

σ
θi}.

This basis is by construction the dual basis to {
σ
N,

σ
ei}. Given an arbitrary vector field

X ∈ Γ (TU ), the following consistency relation must be satisfied:

σ
Υ−1

(
σ
Υ (X)

)
= X. (6.1.5)
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The left-hand side can be expressed as follows:

σ
Υ−1

(
σ
Υ (X)

)
=

σ
Υ−1

(
ψ (X)H +

σ
θi (X)Pi

)
(6.1.6)

=

(
σ
NH∗ +

σ
ejP

j∗
)(

ψ (X)H +
σ
θi (X)Pi

)
(6.1.7)

= ψ (X)
σ
N +

σ
θi (X)

σ
ei. (6.1.8)

Requiring
σ
Υ−1

(
σ
Υ (X)

)
= X then imposes ψ (X)

σ
N +

σ
θi (X)

σ
ei = X, ∀X ∈ Γ (TU ).

Expressing this condition in components together with the duality between spacelike frame
and coframe leads to: 

σ
θiµ

σ
eµj = δij

σ
θiν

σ
eµi = δµν −

σ
Nµψν .

(6.1.9)

The second expression illustrates the degenerate character of the Galilei frame (compare
with the Poincaré case in eq. (5.4.23)).

Under a change of section parameterised by the map h : U ∩ V → Gal0 defined as

h =

1 b

0 R

 (6.1.10)

where R : U ∩ V → O (d) parameterise the local rotations and bi : U ∩ V → Rd

the local Galilean boosts, the vector field
σ
N transforms as

σ′

N =
σ
Υ−1

(
Adg/h (h)H

)
=

σ
Υ−1

(
H + biPi

)
=

σ
N+bi

σ
ei while the spacelike frame σei varies according to

σ′
e i =

σ
Υ−1

(
Adg/h (h)Pi

)
=

σ
Υ−1

(
Rj

i Pj

)
= Rj

i

σ
ej . The spacelike frame field σ

ei can be used in order to express the

contravariant bilinear form h as h ≡ Ψ̃−1
(
δijPi ∨ Pj

)
=

σ
Υ−1

(
δijPi ∨ Pj

)
= δij

σ
ei
σ
ej which

is indeed invariant under a change of section due to the orthogonality of R.

This expression for the Leibnizian metric h is useful in order to reformulate the transfor-

mation law of
σ
N under a change of section as

σ′

N =
σ
N + bi

σ
ei =

σ
N + hµν

σ
θiνbi =

σ
N + h (χ),

where the 1-form χ ∈ Ω1 (U ∩ V ) is defined 1 as χ ≡
σ
θibi. A change of section in the

principal bundle Gal0 ↪−→ P −→ U ∩ V parameterised by the local Galilean boost

1. Remember that the 1-form χ can always be chosen to be “spacelike” in the sense that χ = P̄N (χ)
for some field of observers N (cf. the discussion following Proposition 3.2.10).
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bi : U ∩ V → Rd takes then the nonrelativistic interpretation of a Milne boost parame-

terised by the 1-form χ ≡
σ
θibi.

The spacelike coframe 1-form
σ
θi ≡

σ
Υ−1

(
P i∗
)
transforms as

σ′

θ i =
σ
Υ−1

(
−RT i

jb
jH∗ + RT i

jP
j∗
)

=

−RT i
jb

jψ + RT i
j

σ
θi. The spacelike coframe can be used in order to define the covariant

bilinear form σ
γ ∈ Γ

(
∨2 T ∗M

)
as σ

γ ≡
σ
θi
σ
θjδij , which is nothing but the base version of

the bilinear form δijP
i∗ ∨ P j∗ ∈ p∗ ∨ p∗, i.e. σ

γ ≡
σ
¯̃Υ−1

(
δijP

i∗ ∨ P j∗
)
. In nonrelativistic

physics, the bilinear form σ
γ takes the interpretation of the transverse metric to

σ
N (cf.

Definition 3.2.11). Under a gauge transformation, σγ is modified as:

σ′
γ =

σ′

Υ−1
(
δijP

i∗ ∨ P j∗
)

=
σ
Υ−1

(
¯̃Adg/h (h)

(
δijP

i∗ ∨ P j∗
))

=
σ
Υ−1

(
δijP

i∗ ∨ P j∗ − 2δijbiH∗ ∨ P j∗ + δijbibjH∗ ∨ H∗
)

= δij
σ
θi
σ
θj − 2bTi ψ ∨

σ
θi + b2ψ ∨ ψ

=
σ
γ − 2χ ∨ ψ + h (χ, χ)ψ ∨ ψ

which is seen to match expression (3.2.10) of the transformation of the transverse metric

under a Milne boost parameterised by the 1-form χ ≡
σ
θibi.

All the algebraic (in the sense of non-differential i.e. without notion of parallelism) con-
cepts and relations of standard nonrelativistic physics are then seen to be recast in the
Cartanian formulation as arising naturally from group-theoretical considerations. The
principal objects discussed previously are summed up in the following table:
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p Γ (TM ) Adg/h-invariance p∗ Ω1 (M ) Ādg/h-invariance

H
σ
N × H∗ ψ 3

Pi
σ
ei × P i∗

σ

θi ×

∨2 p Γ
(
∨2 TM

)
Ãdg/h-invariance ∨2 p∗ Γ

(
∨2 T ∗M

) ¯̃Adg/h-invariance

δijPi ∨ Pj h 3 δijP
i∗ ∨ P j∗ σ

γ ×

∨2 Span Pi Γ
(
∨2 Ker ψ

)
Ãdg/h-invariance ∨2 Span P i∗ Γ

(
∨2 (Ker ψ)∗

) ¯̃Adg/h-invariance

δijPi ∨ Pj γ−1 3 δijP
i∗ ∨ P j∗ γ 3

Progressing towards richer structures, we now investigate how a notion of parallelism
comes into play in this setup.

According to Propositions 5.3.13 and 5.3.14, a reductive Cartan-Galilei geometry pos-
sesses a well-defined Koszul connection ∇X : Γ (E)→ Γ (E) with X ∈ Γ (TM ) and where
E = P ×Gal0 (V, ρ) is the vector bundle associated to P whose sections f ∈ Γ (E) are in
one-to-one correspondence with tensors of type T (V, ρ) via the isomorphism Ψ (cf. Sec-
tion A.6). Explicitly, ∇X is defined by Ψ (∇Xf) = X̃ [Ψ (f)] with X̃ the horizontal lift of
X and f ∈ Γ (E).

The base manifold M is then endowed with a notion of parallelism, in the guise of the
Cartan Koszul connection ∇. The natural question arises to determine which objects
among the ones previously defined are preserved by ∇. This problem is in fact made
trivial by making use of Proposition 5.3.15 which asserts that objects built from constant
Adg/h-invariant elements of

⊗
p⊗

⊗
p∗ are parallelised by ∇. In particular, the absolute

clock ψ and rulers γ (or h) belonging to the Leibnizian structure of Proposition 6.1.1 are
deductibly seen to be preserved by ∇.

The following Proposition follows straightforwardly:

Proposition 6.1.3. The base space of a Cartan-Galilei geometry is a Galilean manifold.
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By mirroring Example 5.4.11, one is able to obtain an expression for the Cartan Galilei
Koszul connection. We start by decomposing the part of the Cartan Galilei gauge con-
nection (in the gauge (θ, U)) taking values in the homogeneous Galilei algebra gal0 =

Span {Ki, Jij} as θh ≡ ωiKi + ωijJij , where ωi ∈ Ω1 (U) is a set of d 1-form fields on
U while ωij ∈ Ω1 (U) are d(d−1)

2 1-form fields on U antisymmmetric in (i, j). These two
sets of 1-forms will be referred to as temporal and spatial spin-connections, respectively.
Using the gauge expression for the Cartan Koszul connection (5.4.24) (with normalisation
ρ∗ = − i

2adg/h), one obtains the following decomposition on the Galilean basis associated
to the chosen gauge (dropping the superscript U for the sake of readibility):

∇XY = X [ψ (Y )]N +

(
X
[
θi (Y )

]
+

1

2
ωi (X)ψ (Y ) + ωij (X) θj (Y )

)
ei

where X,Y are arbitrary vector fields. Making contact with the expression of the Koszul
connection in an holonomic basis ∇XY ≡ Xµ

(
∂µY

λ + ΓλµνY
ν
)
∂λ leads to the Galilei

version of the “first vielbein postulate”:

Γλµν = Nλ∂µψν + eλi

(
∂µθ

i
ν + ωiµ jθ

j
ν +

1

2
ωiµψν

)
. (6.1.11)

We now focus on the torsionfree case i.e. when the Christoffel symbols (6.1.11) are sym-
metric, yielding the two constraints:

∂[µψν] = 0

∂[µθ
i
ν] + ωij [µθ

j
ν] +

1

2
ωi[µψν] = 0.

The first torsionfree constraint imposes that the absolute clock ψ is closed. This was
expected in light of Proposition 3.2.20 which implies that only Augustinian structures (cf.
Definition 3.2.16) can be supplemented with a compatible torsionfree Koszul connection.
The second constraint can be solved in order to express the spatial spin-connection ωij in
terms of the frames and the temporal spin-connection as:

ωijµ = eν[i ∂[µθ
j]
ν] − e

ρ[i eσj] ∂ρθ
k
σ θkµ −

1

2
ψµe

ν[iωj]ν (6.1.12)

Following [86], we can express the temporal spin-connection as

ωkρ = ψρN
µeνk

N
Fµν + eνk

N
F ρν − 2θiρN

λ∂[λθγ]ie
γ
k + 2Nλ∂[ρθλ]k (6.1.13)

where the 2-form
N
F ∈ Ω2 (M ) defined as

N
Fµν = ωi[µθν]i encodes the part of the temporal

spin-connection that cannot be resolved in terms of the frames and coframes using the
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torsionfree conditions. This is the Cartanian analogue of the non-uniqueness of torsionfree
Galilean connections preserving a given Augustinian structure.

Plugging back expressions (6.1.12) and (6.1.13) into the first vielbein postulate (6.1.11)
gives the coefficients (3.2.20) for a torsionfree Galilean connection:

Γλµν = Nλ∂(µψν) +
1

2
hλρ

[
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

]
+ hλρψ(µ

N
F ν)ρ. (6.1.14)

We conclude this Section by displaying the relation between the Galilei gauge curvature and
the Riemann tensor for ∇. We first decompose the gauge curvature Θgal0 ∈ Ω2 (M )⊗ gal0

on the basis gal0 = Span {Ki, Jij} as Θgal0 ≡ RijJij +RiKi. Now, eq.(5.4.29) ensures that

Rλρµν = Rijµνθjρe
λ
i −Riµνψρeλi (6.1.15)

where Rλρµν are the components of the Riemann tensor associated to the Cartan Koszul
connection ∇ in holonomic coordinates.

At this point, one may wonder if there is a way to proceed further by making our base
space a Newtonian manifold. The answer is yes but one needs additional Cartan-structure
in order to manage it. Namely, one needs to embed the Cartan-Galilei geometry into a
Cartan-Bargmann geometry. This will provide us with the additional structure necessary to
impose the Duval-Künzle condition (cf. Definition 3.2.28) and thus to define a Newtonian
manifold.

6.2 Cartan-Bargmann geometry and the Duval-Künzle con-
dition

Newtonian manifolds have been defined in Section 3.2 as Galilean manifolds satisfying an
extra condition on the curvature of the Koszul connection, the Duval-Künzle condition
3.2.28. The naturalness of this condition has been emphasised in Section 4.4.1 in the
ambient framework by reviewing the work [24] in which this condition was shown to orig-
inate from a (trivial) symmetry relation enjoyed by the Riemann tensor associated to the
Levi-Civita of the embedding Bargmann-Eisenhart wave. In the present Section, we aim
at providing a purely nonrelativistic justification for the Duval-Künzle condition in the
Cartan formalism, by embedding a Cartan-Galilei geometry inside a Cartan-Bargmann
geometry. It is indeed hard to overstate the relevance of the Bargmann group (the only
non-trivial central extension of the Galilei group (in dimension d ≥ 4)) when the geometris-
ing of nonrelativistic physics is concerned, as has been emphasised in the seminal works
[53, 152, 24]. Notably, in the work [53], Newtonian connections have been characterised
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using the Bargmann algebra, in the formalism of affine connections (in the sense of §III.3
of [153]). Our aim in this Section is to reinterpret this important result in the context of
Cartan geometries, in which the Duval-Künzle condition will be seen to naturally emerge
as an involutivity condition, providing a slightly different take on its purely nonrelativistic
interpretation.

Before introducing the geometrical setup, let us briefly display the main group-theoretical
protagonists at hand in the present construction. The Bargmann algebra bar can be ex-
pressed as the semi-direct sum bar = (o (d)⊕ R) A hd where hd stands for the Heisenberg al-
gebra hd = Span {Pi,Ki,M}, with non-trivial commutation relation [Pi,Kj ] = iδijM . The
Bargmann algebra is thus seen to supplement the Galilei algebra gal = (o (d)⊕ R) A R2d

with the “mass operator” M , belonging to the center of bar, i.e. [M,X] = 0, ∀X ∈ bar.

The (inhomogeneous) Bargmann group can be represented as the group of matrices (cf.
[154, 24]): 

1 f e c

0 1 0 0

0 −1
2b

Tb 1 b

0 −bTR 0 R


with 

R ∈ O (d) : Orthogonal transformations

b ∈ Rd : Galilean boosts

c ∈ Rd : Spatial translations

e ∈ R : Temporal translations

f ∈ R : Vertical translation.

From this representation, one concludes that the stabiliser of a point is given by the direct
product Gal0 × R, where Gal0 ≡ O (d) n Rd is the homogeneous Galilei group (cf. the
matrix representation (3.2.13)) and R stands for the mass operator. At the algebra level,
this induces a decomposition of the Bargmann Lie algebra, contemplated as a vector space,
between “homogeneous” and space and time “translations” parts as bar = (gal0 ⊕ R) ⊕ p,
where gal0 ⊕ R = Span {Jij ,Ki,M} is the Lie subalgebra associated to the homogeneous
subgroup Gal0 × R while the vector space p is spanned by the translation operators: p =

Span {Pi, H}.
At this point, it is important to notice that this vector space decomposition is not reductive
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since the translation vector space p is not an Adg/h (Gal0 × R)-module. This fact is easily
understood at the Lie algebra level, since [Pi,Kj ] ∈ Span M /∈ p, so that the vector space
p is not stable by the adjoint action adg/h (gal0 ⊕ R). The geometric consequences of this
fact will be appreciated soon.

We now define a Cartan-Bargmann geometry (P, ω) modeled on the infinitesimal Klein
pair (bar, gal0 ⊕ R) with P a (Gal0 × R)-bundle:

Gal0 × R� _

��
P

π

��
M .

Let Ω ∈ Ω2 (P ) ⊗ bar denote the curvature 2-form associated to the Cartan connection
ω ∈ Ω1 (P ) ⊗ bar. We will make the assumption that the Cartan-Bargmann geometry
(P, ω) is torsionfree (i.e. Ω takes values in the homogeneous Lie subalgebra gal0 ⊕ R =

Span {Jij ,Ki,M}) as is natural in order to yield a torsionfree Koszul connection on the
base manifold M (cf. Proposition 5.3.18).

Comparing with the Cartan-Galilei geometry described by Diagram 6.1.1, it must be noted
that the base manifold has same dimension in these two geometries. This is clear, con-
sidering that the extra mass operator has been added to the homogeneous part of the
Lie algebra, so that the dimension of the quotient remains unchanged. Now, according
to the previous discussion, one can conclude that the Cartan-Bargmann geometry thus
defined is not reductive, since the Klein geometry (bar, gal0 ⊕ R) is not. An obvious conse-
quence is the fact that the Cartan-Bargmann geometry (P, ω) does not induce a canonical
Koszul connection on the base space M . This is clearly dissatisfactory since our aim is
to endow the base space M with a Newtonian connection inherited from the Cartan ge-
ometry. However, since the infinitesimal Klein pair (gal, gal0) is reductive (cf. Section
6.1), the possibility remains to perform a reduction of the structure group (cf. Definition
A.8.6) from Gal0 × R to Gal0 in order to yield a reductive Cartan geometry, namely a
Cartan-Galilei geometry. We thus suppose the existence of a ρ-imbedding i : P̄ → P with
ρ : Gal0 → Gal0 × R the inclusion homorphism. The ρ-imbedding i is supposed to satisfy
the conditions of Definition A.8.6, so that the subbundle P̄ is a Gal0-bundle on M with
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projection π̄ : P̄ →M defined as π̄ ≡ π ◦ i:

Gal0� _

��

� � ρ // Gal0 × R� _

��
P̄

� � i //

π̄

��

P

π
yysssssssssss

M

(6.2.16)

In order for Gal0 ↪→ P̄ → M to be a Cartan-Galilei geometry, the subbunde P̄ must be
endowed with a Cartan-Galilei connection ω̄ ∈ Ω1

(
P̄
)
× gal. A natural candidate for such

a connection is the pullback of the Cartan-Bargmann connection ω ∈ Ω1 (P )× bar by the
imbedding i : P̄ → P , i.e. ω̄ ≡ i∗ω. Obviously, in order for ω̄ to take values in the Galilei
algebra gal, consistency imposes that

(
i∗ωi(p̄)

) (
X̄p̄

)
∈ gal ∀ X̄p̄ ∈ Tp̄P̄ so that

ωi(p̄)
(
i∗X̄p̄

)
∈ gal, ∀ X̄p̄ ∈ Tp̄P̄ . (6.2.17)

Defining the co-rank 1 distribution D (cf. Definition A.3.1) as the collection D = {Dp} of
co-rank 1 subspaces Dp ⊂ TpP where

Dp ≡ ω−1
p (gal) = {Xp ∈ TpP/ωp (Xp) ∈ gal} , (6.2.18)

condition (6.2.17) can be reformulated as i∗
(
T(p̄)P̄

)
∈ Di(p̄), ∀p̄ ∈ P̄ . Since T P̄ and Dp

have the same dimension and i∗ : T P̄ → TP is injective, then

i∗
(
T(p̄)P̄

)
= Di(p̄), ∀p̄ ∈ P̄

and P̄ is thus an integral manifold for the distribution D, cf. Definition A.3.3. The
existence of such an integral manifold is guaranteed if the distribution D is integrable,
hence involutive, by the means of Frobenius Theorem (cf. Theorem A.3.7).

The framework regarding the reduction of a Cartan geometry to an integral submanifold
for a given involutive distribution is provided by the following Proposition:

Proposition 6.2.1. Let (P, ω) be a Cartan geometry over M modeled on the infinitesimal
Klein pair (g, h) admitting the vector space decomposition g = h⊕p. We let P̄ be a reduced
H̄-subbundle of P with H̄ ⊂ H, so that the map i : P̄ ↪→ P is a ε-imbedding with ε : H̄ ↪→ H
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an injective Lie group homomorphism:

H̄
� � ε //

� _

��

H� _

��
P̄

π̄

��

� � i // P

π
~~||||||||

M

Let ḡ ⊂ g be the Lie subalgebra of g defined as the direct sum ḡ = h̄⊕ p, where h̄ is the Lie
algebra of the subgroup H̄. Let furthermore D be an involutive distribution on P defined
as the collection D = {Dp} where Dp ⊂ TpP defined by Dp ≡ ω−1

p (ḡ). Suppose that P is
an integral manifold for the distribution D. Then the 1-form ω̄ ∈ Ω1

(
P̄
)
⊗ ḡ defined as

ω̄ ≡ i∗ω is a Cartan connection on P̄ , and ω is then said to be reducible to ω̄ on i
(
P̄
)
.

Moreover, if we denote
– X̂ ∈ Γ (TP ) (resp. ˆ̄X ∈ Γ

(
T P̄
)
) the horizontal lift on P (resp. P̄ ) of the vector field

X ∈ Γ (TM )

– ϕp : Tπ(p)M → p (resp. ϕ̄p̄ : Tπ̄(p̄)M → p) the canonical isomorphism between the
tangent space at M and the vector space of transvections p

– Ψ : Γ (TM ) → T (V, ρ) (resp. Ψ̄ : Γ (TM ) → T̄ (V, ρ)) the canonical isomorphism
between vector fields on M and tensors of type T (V, ρ) on P (resp. T̄ (V, ρ) on P̄ ).

then the following relations hold:

1. i∗ ˆ̄Xp̄ = X̂i(p̄)

2. ϕ̄p̄
(
Xπ̄(p̄)

)
= ϕi(p̄)

(
Xπ◦i(p̄)

)
3. Ψ̄ (X) = Ψ (X) ◦ i

4. ˆ̄X
[
Ψ̄ (Y )

]
= X̂ [Ψ (Y )] ◦ i

∀X,Y ∈ Γ (TM ).

In the reductive case i.e. when g (resp. ḡ) admits the Ad (H)-module (resp. Ad
(
H̄
)
-

module) decomposition g = h⊕ p (resp. ḡ = h̄⊕ p), one can define ∇ : Γ (TM )→ Γ (TM )

(resp. ∇̄ : Γ (TM ) → Γ (TM )) the Cartan Koszul connection induced by (P, ω) (resp.(
P̄ , ω̄

)
).

Then, one has:

5. ∇̄XY = ∇XY , ∀X,Y ∈ Γ (TM ).

Proof: In order for ω̄ to be a Cartan connection, it must satisfy the axioms of Defi-
nition 5.2.1:
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(a) Since the map i is an imbedding i∗ : Tp̄P̄ → Ti(p̄)P is injective. Furthermore,
since P̄ is an integral submanifold for D, the vector spaces Tp̄P̄ and Di(p̄) have
same dimension so that i∗ : Tp̄P̄ → Di(p̄) is an isomorphism. Since, by definition
of D, ωi(p̄) : Di(p̄) → ḡ is an isomorphism, then, by composition, ω̄ : Tp̄P̄ → ḡ is
an isomorphism.

(b) Denoting Rh : P → P (resp. R̄h̄ : P̄ → P̄ ) with h ∈ H (resp. h̄ ∈ H̄) the group
action of H on P (resp. H̄ on P̄ ), the equivariance of ω with respect to H̄ reads
R∗
ε(h̄)

ω = Ad
(
ε
(
h̄
)−1
)
ω with h̄ ∈ H̄. Applying i∗ on both sides and acting on

a vector field X̄ ∈ Γ
(
T P̄
)
, one obtains:(

i∗R∗
ε(h̄)ω

) (
X̄
)

= Ad
(
ε
(
h̄
)−1
)
i∗ω

(
X̄
)

ω
(
Rε(h̄)∗i∗X̄

)
= Ād

(
h̄−1

)
ω̄
(
X̄
)

ω
(
i∗Rh̄∗X̄

)
= Ād

(
h̄−1

)
ω̄
(
X̄
)

R∗h̄ω̄
(
X̄
)

= Ād
(
h̄−1

)
ω̄
(
X̄
)

where Ād ≡ Ad ◦ ε is the adjoint action of H̄ on h̄. In the second step, the fact
that i is a bundle homomorphism (i.e. i

(
R̄h̄p̄

)
= Rε(h̄)i (p̄), with p̄ ∈ P̄ ) has

been used.

(c) Let X̄] and X] be the fundamental vector fields associated to the element X̄ ∈ h̄

respectively on P̄ and P . Let us first show that X]
i(p̄) = i∗X̄

]
p̄:

i∗X̄
]
p̄ (f) = X̄]

p̄ (f ◦ i)

=
d

dt

∣∣∣∣
t=0

f ◦ i
(
R̄
(
p̄, exp

(
tX̄
)))

=
d

dt

∣∣∣∣
t=0

f
(
R
(
i (p̄) , ε

(
exp

(
tX̄
))))

= X]
i(p̄) (f)

with f ∈ C∞ (P ). Therefore ω̄
(
X̄]
)

= i∗ω
(
X̄]
)

= ω
(
i∗X̄

]
)

= ω
(
X]
)

= X̄.

We now establish relations 1-5:

1. Since ωh
(
i∗

ˆ̄X
)

= i∗ωh
(

ˆ̄X
)

= ω̄h
(

ˆ̄X
)

= 0 and π∗ ◦ i∗ ˆ̄X = π̄∗
ˆ̄X = X, then

i∗
ˆ̄X coincides with X̂ on i

(
P̄
)
, i.e. ˆ̄X and X̂ are i-related (in the sense of

Definition A.2.2).

2. We have ϕ̄p̄
(
Xπ̄(p̄)

)
= ω̄p

p̄

(
ˆ̄Xp̄

)
= i∗ωp

i(p̄)

(
ˆ̄Xp̄

)
= ωp

i(p̄)

(
X̂i(p̄)

)
= ϕi(p̄)

(
Xπ◦i(p̄)

)
.

3. We only give the proof for vector fields, as it generalises easily to other ten-
sors. Let Y ∈ Γ (TM ) be a vector field. Then, from relation 2, one obtains
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Ψ̄ (Y ) (p̄) ≡ ϕ̄p̄
(
Yπ̄(p̄)

)
= ϕi(p̄)

(
Yπ◦i(p̄)

)
= Ψ (Y ) ◦ i (p̄).

4. From relation 1, 3 and Proposition A.2.3, one obtains straightforwardly ˆ̄X
[
Ψ̄ (Y )

]
=

ˆ̄X [Ψ (Y ) ◦ i] = X̂ [Ψ (Y )] ◦ i.

5. Starting from the definition of the Cartan derivative and using relations 3 and
4 leads to Ψ̄

(
∇̄XY

)
= ˆ̄X

[
Ψ̄ (Y )

]
= X̂ [Ψ (Y )] ◦ i = Ψ (∇XY ) ◦ i = Ψ̄ (∇XY ).

Recalling that Ψ̄ is an isomorphism concludes the proof.

Applying Proposition 6.2.1 to the case at hand ensures that the 1-form ω̄ ≡ i∗ω ∈ Ω1
(
P̄
)
⊗ḡ

is a Cartan-Galilei connection for the bundle H̄ ↪→ P̄ →M , so that
(
P̄ , ω̄

)
is a well-defined

Cartan-Galilei geometry embedded into the Cartan-Bargmann geometry (P, ω).

We now investigate the consequences of the involutivity of the distribution D. Accord-
ing to Proposition 5.3.22, the distribution D is involutive on P if and only if, for all p ∈ P ,
the curvature 2-form satisfies Ωp (Xp, Yp) ∈ gal, ∀Xp, Yp ∈ TpP . In order to get things
more concrete, we perform the following expansion of the torsionfree Cartan-Bargmann
connection and curvature on the canonical basis for bar and gal0 ⊕ R, respectively:

ω = ψH + θiPi + ωijJij + ωiKi +AM

Ω = RijJij +RiKi +RMM

where ψ, θi, ωij , ωi and A are (sets of) 1-forms on P and Rij , Ri, RM (sets of) 2-forms on
P . The involutivity condition can then be restated by imposing that the curvature 2-form
does not take value in the mass part M of the Bargmann algebra, i.e.

RM = 0. (6.2.19)

We are now looking to make contact between the involutivity condition (6.2.19) and the
Duval-Künzle condition (cf. Section 4 of [86] for an analogous computation). In order
to do this, we compute the “mass”-part of the (second) Bianchi identity (cf. eq.(5.3.16))
which reads:

dRM − 1

2
Ri ∧ θi = 0

so that we have the following implication:

D is involutive ⇒ Ri ∧ θi = 0.

The proposition on the right-hand side descends also to the “boost”-part R̄i ∈ Ω2
(
P̄
)
(as

can be seen straightforwardly by application of the pullback i∗) so that the involutivity
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of D implies R̄i ∧ θ̄i = 0. Choosing a gauge
(
U , θ̄

)
with U ⊂ M an open subset of

M and θ̄ ∈ Ω1 (M ) ⊗ bar the gauge-connection associated to the section σ̄ : U → P̄ ,
one can make use of eq.(6.1.15) in order to reexpress the gauge expression of the boost
curvature R̄i ∈ Ω1 (M ) (conserving the same symbol for bundle objects and their gauge
avatars for notational simplicity) as R̄i = R̄i 0 = RλρN

ρθiλ where R̄i 0 ∈ Ω2 (M ) stands
for the spatio-temporal part of the curvature Rλρ ∈ Ω2 (M ) for the Cartan-Galilei Koszul
connection ∇̄ as expressed in the Galilei basis defined by the gauge

(
U , θ̄

)
(cf. Section

6.1). Consequently, the gauge expression of the involutivity condition:

R̄i 0 ∧ θ̄i = 0 (6.2.20)

is just the Duval-Künzle condition in the formulation of Proposition 3.2.29.

We sum up this Section by the following Proposition:

Proposition 6.2.2 ([53, 86]). The base space of a Cartan-Galilei geometry embedded in a
torsionfree Cartan-Bargmann geometry is a Newtonian manifold.

where the invoked notion of embedding is to be understand in the sense of Proposition
6.2.1.

6.3 Bargmann-Eisenhart waves as reductive Cartan-Bargmann
geometries

The two previous Sections advocated the relevance of the Cartanian approach regarding the
study of intrinsically nonrelativistic structures and manifolds by emphasising their group-
theoretical origins. In the present Section, we pursue this leitmotif with the aim to shed
some light on certain features regarding the ambient formalism, as developed in Chapter 4.
This reformulation of known results will make crucial use of the Bargmann group, whose
pertinence as regards the definition of Newtonian manifolds has been highlighted in the
last Section. This is only natural in view of the heuristic discussion of Section 3.2.2 where
Newtonian manifolds were argued to provide the best hint for the existence of an additional
light-like direction.

We thus again consider a Cartan-Bargmann geometry, but with a key difference as com-
pared with the construction of Section 6.2. Indeed, the mass element M of the Bargmann
algebra was there considered as part as the “homogeneous”-part h of the Lie algebra bar,
as was natural since the stabiliser of a point is Gal0 ×R. Compared to a Galilei geometry
(cf. Section 6.1), this choice presented the advantage to preserve the dimension of the
base manifold, as it should to describe a nonrelativistic manifold. However, a drawback of
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this approach lied in the fact that the Cartan-Bargmann geometry thus defined was not
reductive.

In contradistinction with the previous case, the model Klein geometry of the present
construction is chosen to be (bar, gal0), with bar the Bargmann algebra and gal0 the
homogeneous Galilei algebra. It can be checked that this Klein geometry is reductive
and as such admits the following Ad (Gal0)-module decomposition: bar = gal0 ⊕ p where
p = Span {H,Pi,M}. The generatorM has thus migrated from the homogeneous part h to
the translation part p which results in [Pi,Kj ] = iδijM ⊂ p, so that p is an ad (h)-module.

Now, let (P, ω) be a Cartan-Bargmann geometry modeled on the infinitesimal Klein
pair (bar, gal0), so that P is a Gal0-bundle with base manifold M and associated projection
π : P →M :

Gal0� _

��
P

π

��
M

where the manifold P is endowed with a Cartan connection ω ∈ Ω1 (M )⊗bar taking values
in the Bargmann algebra.

Similarly to the analysis of Section 6.1, we will characterise the base manifold M

by investigating Adg/h (Gal0)-invariant elements of
⊗

p ⊗
⊗

p∗ and then build up their
corresponding structures on M . Using the representation theory of the Bargmann group
(cf. Section B.2.3), one can single out the following elements
• M ∈ p

• H∗ ∈ p∗

• (·, ·)p∗ ≡ 2M∗ ∨H∗ + δijP
i∗ ∨ P j∗ ∈ ∨2 p∗

• (·, ·)p ≡ 2M ∨H + δijPi ∨ Pj ∈ ∨2 p

as the only Adg/h (Gal0)-invariant elements of
⊗p p ⊗

⊗q p∗, with p + q ≤ 2. Comparing
these invariant elements to the ones derived in the Galilean case, one notices that the pres-
ence of the central mass element M allowed the construction of a nondegenerate covariant
bilinear form (·, ·)p∗ ∈ ∨2 p∗, along with its contravariant inverse. This nondegenerate met-
ric structure ensures that we are dealing with a Riemannian geometry, in contradistinction
with the nonrelativistic metric structure emerging from the non-extended Galilean group.
For future use, we introduce also the two non-invariant bilinear forms on p:
• (·, ·)⊥p∗ ≡ δijP i∗ ∨ P j∗ ∈ ∨2 p∗

• (·, ·)⊥p ≡ δijPi ∨ Pj ∈ ∨2 p.
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Now, mirroring the procedure outlined in Chapter 5 and employed in Section 6.1, we first
make use of Proposition A.6.10 in order to convert these Adg/h (Gal0)-invariant elements
into tensors on P and then lower these tensors downto canonical fields on M using the
isomorphism Ψ−1 : T (V, ρ) → Γ (E) (cf. Definition 5.2.13 and Table 5.3). These are
summarised in the following Table:

Symbol Type Root Type Definition

ξ Γ (TM ) M p ξ ≡ Ψ−1 (M)

ψ Ω1 (M ) H∗ p∗ ψ ≡ Ψ̄−1 (H∗)

g Γ
(
∨2 TM

)
(·, ·)p∗ ∨2 p∗ g ≡ ¯̃Ψ−1 (·, ·)p∗

Table 6.1: Canonical fields induced on the base space of a reductive Cartan-Bargmann
geometry

Several interesting properties regarding these canonical fields can be deduced from their
Lie algebra ascendants. First of all, the vector field ξ ∈ Γ (TM ) can be seen to be null with
respect to the metric g, as a consequence of the “light-like” character of M with respect to
(·, ·)p∗ :

g (ξ, ξ) = (Ψ (ξ) ,Ψ (ξ))p∗ = (M,M)p∗ = 0. (6.3.21)

Secondly, inspection of the form of the metric (·, ·)p∗ reveals that the elements M and H∗

enjoy a dual relation, as displayed by the relation (M, ·)p∗ = H∗. This dual relation passes
on ξ and ψ as:

g (ξ,X) = (Ψ (ξ) ,Ψ (X))p∗ = (M,Ψ (X))p∗ = H∗ (Ψ (X)) = ψ (X) , ∀X ∈ Γ (TM )

so that ψ = g (ξ).

We now make use of the fact that the Klein geometry modeling our Cartan geome-
try is reductive in order to induce a Cartan-Koszul connection ∇ on the base space (cf.
Propositions 5.3.13 and 5.3.14). According to Proposition 5.3.15, the Cartan-Koszul con-
nection ∇ has the nice property to preserve the fields on M which originate from constant
Adg/h-invariant elements of

⊗
p⊗

⊗
p∗. In particular, the nondegenerate metric g is thus

preserved by ∇. Making the further assumption that our Cartan-Bargmann geometry is
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torsionfree, one concludes from Theorem 3.1.5 that ∇ is the Levi-Civita connection as-
sociated to the (pseudo)-Riemannian metric g endowing M . The same line of reasoning
ensures that both ξ and ψ are parallelised by ∇. The base space M thus admits a null
and parallel vector field, so that the following Proposition holds:

Proposition 6.3.1 (cf. [24]). The base manifold of a Cartan-Bargmann geometry modeled
on the infinitesimal Klein pair (bar, gal0) is a Bargmann-Eisenhart wave.

In the light of the previous Proposition, the vector field ξ takes the interpretation of
the wave vector field of M (similarly, ψ is understood as the wave covector field). The
study of the properties regarding Adg/h (Gal0)-invariant elements of

⊗
p⊗

⊗
p∗ is seen to

be sufficient in order to characterise the base manifold as a Bargmann-Eisenhart wave.

Beyond the identification between Adg/h (Gal0)-invariant elements of
⊗

p⊗
⊗

p∗ and
canonical fields on M , the Cartanian approach has been seen to provide non-invariant
elements of

⊗
p ⊗

⊗
p∗ with the interpretation of gauge-dependent fields living on the

base space, whose transformation law under a change of section is inherited from the
Adg/h (Gal0) transformation law of the associated tensors on

⊗
p ⊗

⊗
p∗. Such an iden-

tification necessitates the introduction of a section σ : U ⊂ M → P , with U an open

set of M . We let again
σ
Υ−1 : C∞ (U ) ⊗ p → Γ (TU ) designate the (section depen-

dent) map between functions on U taking values in p and vector fields on U defined as
σ
Υ−1 (φ) (x) = ϕ−1

σ(x) (φ (x)), with φ ∈ C∞ (U )⊗ p.

In addition to the canonically defined fields of Table 6.1, the map
σ
Υ−1 allows the

definition of the following (gauge-dependent) fields:

Symbol Type Root Type Definition

N Γ (TM ) H p N ≡
σ
Υ−1 (H)

N
e i Γ (TM ) Pi p

N
e i ≡

σ
Υ−1 (Pi)

N
A Ω1 (M ) M∗ p∗

N
A ≡

σ

Ῡ−1 (M∗)

N
θ i Ω1 (M ) P i∗ p∗

N
θ i ≡

σ

Ῡ−1
(
P i∗
)

Table 6.2: Gauge-dependent fields induced on the base space of a reductive Cartan-
Bargmann geometry
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Symbol Type Root Type Definition

N
γ Γ

(
∨2 T ∗M

)
(·, ·)⊥p∗ ∨2 p∗

N
γ ≡

σ
Υ−1 (·, ·)⊥p∗

N
h Γ

(
∨2 TM

)
(·, ·)⊥p ∨2 p

N
h ≡

σ
Υ−1 (·, ·)⊥p

Table 6.3: Gauge-dependent metrics

Again, using the structure of the Lie algebra bar (more specifically the module p) allows to
further characterise these gauge-dependent fields and thus to make contact with the related
notions introduced in Section 4.3. The following Proposition fits into this framework:

Proposition 6.3.2. The base space of a reductive Cartan-Bargmann geometry is endowed
with a non-canonical Bargmann basis imported from the canonical basis for the module p.

Proof: We start by showing that the vector field N is a relativistic field of light-like
observers, i.e. that it satisfies the relations g (N,N) = 0, ψ (N) = 1. Both these
relations can be deduced in a straightforward way as follows:

• g (N,N) =

(
σ
Υ (N) ,

σ
Υ (N)

)
p∗

= (H,H)p∗ = 0

• ψ (N) = H∗
(
σ
Υ (N)

)
= H∗ (H) = 1.

Note that the vector field N and the 1-form
N
A are dual with respect to the metric g:

g (N,X) =

(
σ
Υ (H) ,

σ
Υ (X)

)
p∗

=

(
H,

σ
Υ (X)

)
p∗

=
N
A (X) , ∀X ∈ Γ (TM )

so that
N
A = g (N). Secondly, it can be shown that the set of vector fields Ne i, with

i ∈ {1, . . . , d} form a basis of the subbundle Ker ψ ∩ Ker
N
A which is orthonormal

with respect to g. That the vector fields Ne i belong to Ker ψ ∩Ker
N
A follows from:

• ψ
(
N
e i

)
= H∗

(
σ
Υ
(
N
e i

))
= H∗ (Pi) = 0

•
N
A
(
N
e i

)
= M∗

(
σ
Υ
(
N
e i

))
= M∗ (Pi) = 0

while the fact they form a basis is ensured by the fact that the elements Pi form a
basis of Ker H∗ ∩Ker M∗. Moreover, this basis is orthonormal with respect to g, as
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the following computation shows:

g
(
N
e i,

N
e j

)
=

(
σ
Υ
(
N
e i

)
,
σ
Υ
(
N
e j

))
p∗

= (Pi, Pj)p∗ = δij .

This concludes the proof of the fact that B ≡
{
ξ,N,

N
ei

}
is a Bargmann basis of the

tangent bundle TM . Accordingly, B∗ ≡
{
N
A,ψ,

N
θ i
}

is a (dual) Bargmann basis of

T ∗M .

As was noted in Proposition 4.3.10, at each point x ∈ M the set of endomorphisms of
TxM mapping each Bargmann basis into another one forms a group isomorphic to the
homogeneous Galilei group Gal0, in the d+ 2-dimensional faithful representation inherited
from that of the Bargmann group. That this is the case is clear in the present formalism,
since a change of basis takes now the interpretation of a gauge-transformation i.e. a change
of section σ h⇒ σ′, where h : U ∩V → Gal0 is a function taking values in the homogeneous
Galilei group. Moreover, the right-action Rh being regular on the fibers of P ensures that
the homogeneous Galilei group acts regularly on the space of Bargmann basis (again in the
representation (6.2.16)).

We now compute the explicit transformation ofN under a change of section h : U ∩V →
Gal0, with h given by

h =


1 0 0

−1
2b

Tb 1 b

−bTR 0 R

 (6.3.22)

with R : M → O (d) and bi : M → Rd. We will make use of the transformation law
σ′

Υ−1 (φ) =
σ
Υ−1

(
Adg/h (h)φ

)
, with φ ∈ C∞ (U ) ⊗ p. Focusing on the relativistic field of

light-like observers N , we compute:

N ′ ≡
σ′

Υ−1 (H) =
σ
Υ−1

(
Adg/h (h)H

)
=

σ
Υ−1

(
H + biPi −

1

2
bTbM

)
= N + bi

N
e i −

1

2
bTb ξ.

Under a change of gauge parameterised by the function h given in eq.(6.3.22), the relativis-
tic field of light-like observersN is thus mapped to the relativistic field of light-like observers
N ′ via a relativistic Milne boost parameterised by the 1-form χ ≡ biei (cf. Proposition
4.3.14). For the sake of exhaustivity, the following Table compiles the transformation laws
enjoyed by the fields of Table 6.2:
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Field Root Adg/h (h)-transformation Gauge-transformation

N H Adg/h (h)H = H + biPi − 1
2b

TbM N ′ = N + bi
N
e i − 1

2b
Tb ξ

N
e i Pi Adg/h (h)Pi = Rj

iPj − bTj R
j
iM

N ′
e i = Rj

i

N
e j − bTj R

j
iξ

N
A M∗ Ādg/h (h)M∗ = M∗ − 1

2b
TbH∗ + bTi P i∗

N ′

A =
N
A− 1

2b
Tbψ + bTi

N
θ i

N
θ i P i∗ Ādg/h (h)P i∗ = RT i

jP
j∗ −RT i

jb
jH∗

N ′

θ i = RT i
j

N
θ
j

−RT i
jb

jψ

Table 6.4: Gauge transformations

Lemma 6.3.3. Let us denote ξ̂ ∈ Γ (TP ) the horizontal lift of the wave vector field. The
vector field

[
ξ̂, X̂

]
∈ Γ (TP ) is horizontal for every horizontal vector field X̂ ∈ HP .

Proof: Since the wave vector field ξ is parallelised by ∇, the Koszul curvature as-
sociated to ∇ satisfies R (Y, Z; ξ) = 0, ∀Y,Z ∈ Γ (TM ). Using the symmetry
relation (A.9.18), one concludes that ∀X,Y, Z ∈ Γ (TM ), 0 = R (Y, Z; ξ,X) =

R (ξ,X;Y,Z) = g (R (ξ,X;Y ) , Z). Since the Cartan metric g ∈ Γ
(
∨2 T ∗M

)
is non-

degenerate, this implies R (ξ,X;Y ) = 0, ∀Y,Z ∈ Γ (TM ). Using Proposition 5.3.19

leads to
[
ξ̂, X̂

]V
= 0, ∀X ∈ Γ (TM ), where X̂ ∈ Γ (TP ) is the horizontal lift of X

and the exponent V designates the vertical part of the vector field.
Given a horizontal vector field Ŷ ∈ HP , it is always possible at each point p ∈ P

to find a base vector field Y ∈ Γ (TM ) such that π∗Ŷp = Yπ(p) i.e. any horizontal
vector field can be locally interpreted as the horizontal lift of a base vector field.

The local character of the Lie bracket then ensures that
[
ξ̂, Ŷ

]V
= 0 holds for any

horizontal vector field Ŷ ∈ HP .

Lemma 6.3.4. The horizontal lift of the wave vector field is an infinitesimal automorphism
of ω, i.e. Lξ̂ω = 0.

Proof: Since ξ̂ is by construction an ω-constant vector field (cf. Definition 5.3.20),
Proposition 5.3.21 ensures that ∀Z ∈ Γ (TP ), Lξ̂ω (Z) = [ω (Z) ,M ] + Ω

(
ξ̂, Z

)
=

Ωh
(
ξ̂, ZH

)
where we used that the geometry is torsion-free (Ωp = 0) as well as the

horizontality of the curvature (cf. Proposition 5.2.4). Now, applying relation (5.3.14)
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leads to Lξ̂ω (Z) = dωh
(
ξ̂, ZH

)
= ξ̂

[
ωh
(
ZH
)]
− ZH

[
ωh
(
ξ̂
)]
− ωh

([
ξ̂, ZH

])
. On

the right-hand side, the first term vanishes due to the horizontality of ZH while the
second term is null since ξ̂ is ω-constant. Finally, Lemma 6.3.3 ensures that the third
term vanishes, so that Lξ̂ω (Z) = 0, ∀Z ∈ Γ (TP ).

Proposition 6.3.5. Let (P, ω) be a reductive Cartan-Bargmann geometry with (U , θ) a
gauge associated to the section σ : M → P . Furthermore, let x ∈ p a vector on p. Then

the vector field X ≡
σ
Υ−1 (x) ∈ Γ (TM ) satisfies LξX = 0.

Proof: Let Y ∈ Γ (TM ) be a vector field on M . Applying Lemma 6.3.4 on the vector
field Ŷ ≡ σ∗Y ∈ Γ (TP ) leads to

(
Lξ̂ω

)(
Ŷ
)

= dω
(
ξ̂, Ŷ

)
= dθ (ξ, Y ) = (Lξθ) (Y ) =

0, so that Lξθ = 0. Now, comparing Lξ (θ (X)) = (Lξθ) (X) + θ (LξX) = θ (LξX)

with Lξ (θ (X)) = Lξx = 0 leads to θ (LξX) = 0, hence LξX = 0.

The previous Proposition generalises straightforwardly to any field of M originating from
an element of

⊗
p ⊗

⊗
p∗. In the language of Chapter 5, such a field is thus called ξ-

invariant. In particular, the vector fields composing the non-canonical Bargmann basis
B =

{
ξ,N,

N
ei

}
defined in Proposition 6.3.2 are ξ-invariant and thus admit a well-defined

projection on the Platonic screen. The projection of the wave vector field ξ vanishes so

that π∗B =

{
N̄ ,

N̄
ei

}
. It can be checked that π∗B is a Galilean basis on the Platonic

screen M̄ . Accordingly, if we denote B∗ ≡
{
N
A,ψ,

N
θ i
}
, the equivariance of ψ and

N
θ i in

addition to the relations ψ (ξ) =
N
θ i (ξ) = 0 ensures that the dual Bargmann basis projects

onto the dual Galilean basis

{
ψ̄,

N̄
θ i

}
. The relation

N
A (ξ) = 1 prevents

N
A to project onto

M . However, this relation along with its equivariance ensures that it is a well-defined
Ehresmann connection on the (R,+)-principal bundle R ↪→M → M̄ .

6.4 The ambient approach revisited

We conclude this Chapter by investigating how the ambient formalism takes shape in the
Cartanian framework. This will be achieved by precising the link between the reductive and
non-reductive versions of Cartan-Bargmann geometries. Again, we let Gal0 ↪→ P → M

be a torsionfree Cartan-Bargmann geometry modeled on the infinitesimal reductive Klein
pair (bar, gal0). The right-action of Gal0 on P is denoted R : P × Gal0 → P , so that the
base space M is the quotient of P by the right-action R. Proposition 6.3.1 ensures that
M is a Bargmann-Eisenhart wave while the origin of the wave vector field ξ can be traced
back to the “mass” generator of the Gal0-module p.
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Similarly to the construction performed in Section 4.1, one can define the right action
of (R,+) on M , denoted ϕξ : M × R → M , as the flow generated by the wave vector
field 2. Quotienting the base manifold M with the right-action ϕξ yields a (R,+)-principal
bundle whose base space is the Platonic screen M̄ of the Bargmann-Eisenhart wave M .

Gal0� _
R

��
P

π

��
M̄ Mπ̄

oo R? _ϕξ
oo

(6.4.23)

Let us denote ξ̂ ∈ Γ (TP ) the horizontal lift of the wave vector field with respect
to the (reductive) Cartan-Bargmann connection ω ∈ Ω1 (P ) ⊗ bar. Similarly to its base
counterpart, ξ̂ defines a right-action of (R,+) on P , denoted ϕ̂ξ : P×R→ P . The manifold
P is then endowed with the two right-actions R and ϕ̂ξ. The equivariance of ξ ensures
that its flow is a bundle isomorphism (cf. Proposition 5.3.24), so that ϕ̂ξ and R commute
(roughly speaking, ϕ̂ξ is “horizontal” while R is “vertical”). These two right-actions on P
can thus be combined to form the right action R on P for the direct product Gal0 × R
acting as R : P × (Gal0 × R) → P : (p, (h, λ)) 7→ Rh (ϕ̂ξ (p, λ)). The group operation
of the direct product Gal0 × R reads explicitly (h1, λ1) . (h2, λ2) = (h1h2, λ1 + λ2), where
h1, h2 ∈ Gal0 and λ1, λ2 ∈ R. The fact that ϕ̂ξ is a bundle automorphism ensures that R

preserves the previous group operation, i.e. R(h2,λ2)R(h1,λ1)p = R(h1h2,λ1+λ2)p, ∀ p ∈ P .

The crucial point of the reasoning lies in the reinterpretation of the horizontal vector
field ξ̂ in the principal bundle Gal0

R
↪→ P → M , as a fundamental vector field for the

principal bundle Gal0 × R R
↪→ P → M̄ , where the Platonic screen M̄ is reinterpreted as

the quotient manifold of P by the right-action R.

This reinterpretation can be reformulated more pictorially by the commuting of the fol-
lowing diagram:

Gal0
� � //

� p

R !!DDDDDDDD Gal0 × R
L l

R
zzuuuuuuuuuu

P

}}zzzzzzzz
π

$$IIIIIIIIII

M̄ M
π̄oo R? _

ϕξoo

2. As in Section 4.1, ξ is assumed to be complete and to define a free and proper right-action ϕξ on M .
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The Lie algebra counterpart of this substitution clearly consists in the trading of the “mass”
generator M from the “transvection part” p to the “homogeneous” part h of the Bargmann
algebra bar. As noted earlier, the price to be paid is that the new Lie algebra is not
reductive.

In order for the picture to be complete, it remains to be proved that ω is also a Cartan-
Bargmann connection for the bundle Gal0 × R ↪→ P → M̄ .

Proposition 6.4.1. The 1-form ω ∈ Ω1 (P ) ⊗ bar is a Cartan connection for the bundle
Gal0 × R ↪→ P → M̄ .

Proof: Since ω is a connection for the bundle Gal0 ↪→ P → M , by Definition 5.2.1,
the following properties hold:

(a) for each point p ∈ P , the linear map ωp : TpP → bar is an isomorphism

(b) (Rh)∗ ω = Ad
(
h−1

)
ω , ∀h ∈ Gal0 where Ad : Gal0 → End (bar) stands for the

adjoint action of Gal0 on bar

(c) ω
(
X]
)

= X, ∀X ∈ gal0 where X] ∈ V P designates the fundamental vector
field associated to the Lie algebra element X.

One should now verify that ω satisfies the same Axioms for the bundle
Gal0 × R ↪→ P → M̄ :

(a’) The condition is identical to (a).

(b’) One would like to establish the relation R∗(h,λ)ω = Ad
(
h−1

)
ω, with h ∈ Gal0

and λ ∈ R. Using R(h,λ) = Rh ◦ ϕ̂ξ (λ), we get

R∗(h,λ)ω = ϕ̂ξ (λ)∗R∗hω = Ad
(
h−1

)
ϕ̂ξ (λ)∗ ω = Ad

(
h−1

)
ω

where we used that ϕ̂ξ (λ) preserves ω (cf. Lemma 6.3.4).

(c’) This Axiom is straightforward from it (c) and ω
(
ξ̂
)

= M .

Proposition 6.4.1 then ensures that Gal0 × R ↪→ P → M̄ is a non-reductive Cartan-
Bargmann geometry. Furthermore, the torsion-free condition imposed on Gal0 ↪→ P →M

ensures in particular the vanishing of the part of the curvature 2-form Ω taking values in
the mass operator M . Recalling the construction of Section 6.2, the torsion-free condition
thus guarantees the involutivity of the distribution D defined in eq.(6.2.18), so that a reduc-
tive Cartan-Galilei geometry can be embedded inside the non-reductive Cartan-Bargmann
geometry.

The sub-text which underlies the present line of reasoning is similar to the one argued in
Section 3.2.2 and can be summarised by saying that a sound geometric understanding blurs
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the distinction between nonrelativistic structures and the gravitational waves embedding
them.
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Appendix A

Mathematical background

In this Appendix, some preliminary, text-book level, material is introduced. Its ambition
is by no means to provide a detailed account of the subjects covered but rather to compile
some definitions and results which will reveal useful in the rest of this work.

A.1 Vector spaces

In the following, we let V and W be two vector spaces and U be a subspace of V :

Definition A.1.1 (Annihilator). The annihilator of U in V ∗, denoted by Ann U , is the set
of linear forms α ∈ V ∗ which vanish on U , i.e. Ann U ≡ {α ∈ V ∗ /α(u) = 0 ,∀u ∈ U}.

Definition A.1.2 (Radical). The radical of a bilinear form g ∈ ∨2 V ∗ is the subspace of
V defined as Rad g ≡ {v ∈ V / g (v, w) = 0, ∀w ∈ V }.

Proposition A.1.3. Let ∼ be an equivalence relation on V . We denote V/ ∼ the quotient
space of V by ∼ and π the quotient map π : V → V/ ∼. If g : V → W is a continuous
map such that a ∼ b implies g(a) = g(b) for all a and b in V , then there exists a unique
continuous map f : V/ ∼→W such that g = f ◦π. We say that g descends to the quotient.

Proposition A.1.4. The quotient V/U is also a vector space and there exists a natural
isomorphism between (V/U)∗ and Ann U the annihilator of U in V ∗ i.e. (V/U)∗ ' Ann U .

Proposition A.1.5. Let g ∈ ∨2 V ∗ be a degenerate bilinear form with radical Rad g. Let
us denote by Q the quotient space Q ≡ V/Rad g, with quotient map π : V → Q. The
bilinear map ḡ ∈ ∨2Q∗ defined as

ḡ (v̄, w̄) = g (v, w) (A.1.1)
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with v̄, w̄ ∈ Q and v ∈ π−1 (v̄), w ∈ π−1 (w̄) is a well-defined nondegenerate bilinear form
acting on Q.

Definition A.1.6 (Transpose of a linear map). Let f : V → W be a linear map. The
transpose of f , denoted f̄ is the linear map f̄ : W ∗ → V ∗ defined by its action on X ∈ V
and α ∈W ∗ as

f̄ (α) (X) = α (f (X)) . (A.1.2)

A.2 Maps

Definition A.2.1 (Pushforward of tangent vectors). Let ϕ : M → N be a smooth map.
The (pointwise)-pushforward of ϕ at m ∈M is the map ϕ∗ : TmM → Tϕ(m)N defined by

(ϕ∗Xm) [f ] = Xm [f ◦ ϕ] . (A.2.3)

with Xm ∈ TmM and f ∈ C∞ (N ).

So, given a vector field X ∈ Γ (TM ), for each point m ∈M , one obtains a vector ϕ∗Xm ∈
Tϕ(m)N . However, in the general case, this does not yield a vector field on N i.e. the
pushforward does not map vector fields of M to vector fields of N . Two problems can
occur:

– If ϕ is not surjective, one cannot define a vector at the points n ∈ N r ϕ (M ).
– If ϕ is not injective, there may be more than one vectors defined at the same point

of ϕ (M ).
The following Definition and Proposition give a precise meaning to the notion of vector
fields related by pushforward, as well as an equivalent, in this case, of equation (A.2.3).

Definition A.2.2 (Related vector fields). Let ϕ : M → N be a smooth function and
X ∈ Γ (TM ) be a vector field on M . If a vector field Y ∈ Γ (TN ) on N satisfies ϕm∗Xm =

Yϕ(m) ∀m ∈M , then X and Y are said to be ϕ-related.

Proposition A.2.3. Let ϕ : M → N be a smooth function. The vector fields X ∈ Γ (TM )

and Y ∈ Γ (TN ) are ϕ-related if and only if

X [f ◦ ϕ] = Y [f ] ◦ ϕ (A.2.4)

for all f ∈ C∞ (N).

By means of the pushforward, each smooth map yields a linear map between tangent
vector spaces. Dualizing leads to a linear map between cotangent vector spaces called the
pullback:
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Definition A.2.4 (Pullback). Let ϕ : M → N be a smooth map. The (pointwise)-pullback
of ϕ at m ∈M is the map ϕ∗ : T ∗ϕ(m)N → T ∗mM defined by

ϕ∗ωϕ(m) (Xm) = ωϕ(m) (ϕ∗Xm) (A.2.5)

with ωϕ(m) ∈ T ∗ϕ(m)N and Xm ∈ TmM .

Contrarily to the pushforward case, there is no ambiguity when passing from pointwise-
pullback to the pullback of covector fields, so that the pullback always maps covector fields
to covector fields:

Proposition A.2.5. Given a smooth map ϕ : M → N and a covector field ω ∈ Ω1 (N ),
the pullback of ω by ϕ defined as (ϕ∗ω)m = ϕ∗ωϕ(m) is a covector field.

For covector fields, expression A.2.5 becomes:

(ϕ∗ω) (X) = ω (ϕ∗X) ◦ ϕ. (A.2.6)

Proposition A.2.6. Let f : M → N , g : N → P and h : M → P be smooth functions,
with

h = g ◦ f. (A.2.7)

The pushforward and pullbacks of the composite function h are given respectively by:

h∗ = g∗ ◦ f∗
h∗ = f∗ ◦ g∗.

Pushforward and pullback can be generalised to arbitrary tensors as follows:

Definition A.2.7 (Generalisation of pushforward and pullback to arbitrary tensors). Sup-
pose ϕ : M → N is a diffeomorphism. For any pair of nonnegative integers k, l, there are
smooth isomorphisms ϕ∗ : Γ

(
T (k,l)M

)
→ Γ

(
T (k,l)N

)
and ϕ∗ : Γ

(
T (k,l)N

)
→ Γ

(
T (k,l)M

)
satisfying:

ϕ∗S
(
X1, . . . , Xk, ω

1, . . . , ωl
)

= S
(
ϕ−1

∗X1, . . . , ϕ
−1
∗Xk, ϕ

∗ω1, . . . , ϕ∗ωl
)

ϕ∗T
(
Y1, . . . , Yk, χ

1, . . . , χl
)

= T
(
ϕ∗Y1, . . . , ϕ∗Yk, ϕ

−1∗χ1, . . . , ϕ−1∗χl
)

with X1, . . . , Xk ∈ Γ (TN ), Y1, . . . , Yk ∈ Γ (TM ), ω1, . . . , ωl ∈ Ω1 (N ), χ1, . . . , χl ∈
Ω1 (M ), S ∈ Γ

(
T (k,l)M

)
and T ∈ Γ

(
T (k,l)N

)
.
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We conclude this Section by defining

Definition A.2.8 (Submersion). A smooth map π : M → N is called a submersion if the
pushforward π∗ : TmM → Ti(m)N is surjective at each point.

Definition A.2.9 (Immersion). A smooth map i : M → N is called an immersion if the
pushforward i∗ : TmM → Ti(m)N is injective at each point.

Proposition A.2.10. Let f : M → N be a submersion, then the pullback f∗ : T ∗M →
T ∗N is injective at each point.

A.3 Distributions

Definition A.3.1 (Distribution). A distribution of rank r on M is a collection D = {Dx}
of r-dimensional subspaces Dx ⊂ TxM , one for each x ∈M .

In the language of vector bundles (cf. Section A.6), a distribution can be thought of as
subbundle of the tangent bundle.

Notation A.3.2. Let X ∈ Γ (TM ) be a vector field on M and D = {Dx} a distribution
on M , the notation X ∈ D stands for Xx ∈ Dx, ∀x ∈M .

Definition A.3.3 (Integral manifold). Let i : M ′ → M be an immersion of M ′ in M .
Suppose D is a distribution on M . Then M ′ is called an integral manifold of D if for any
x′ ∈M ′ we have (i∗)x′(Tx′M

′) = Di(x′).

Definition A.3.4 (Involutive distribution). A distribution D on M is said involutive if
for all vector fields X,Y ∈ Γ (TM ) such that X,Y ∈ D, one has [X,Y ] ∈ D where [·, ·]
stands for the Lie bracket of vector fields.

From now on, we will focus on the case where the subspaces Dx ∈ TxM are hypersurfaces
of codimension 1.

Proposition A.3.5 (Frobenius Criterion). For the special case of a distribution D defined
as the kernel of a 1-form α ∈ Ω1 (M ) i.e. Dx = Ker αx = {Xx ∈ TxM /αx (Xx) = 0},
D is involutive if and only if α (X) = α (Y ) = 0 ⇒ dα (X,Y ) = 0. Equivalently, D is
involutive if and only if α ∧ dα = 0.

Proof: According to Definition A.3.4, the distribution D is involutive if ∀X,Y ∈
Γ (TM ) such that α (X) = α (Y ) = 0 we have α ([X,Y ]) = 0. According to the
definition of the exterior derivative of a 1-form, we have dα (X,Y ) = X [α (Y )] −
Y [α (X)]− α ([X,Y ]) = −α ([X,Y ]) and thus dα (X,Y ) must vanish for X,Y ∈ D.
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Definition A.3.6 (Maximal integral submanifold). Let D be a distribution on a manifold
M of dimension n defined as the kernel of a 1-form α ∈ Ω1 (M ) and i : M ′ →M be an
immersion of M ′ in M such that M ′ is an integral manifold of M . M ′ is said maximal
if Ker i∗ = Span α and M ′ is then of dimension n− 1.

Theorem A.3.7 (Frobenius Theorem). A distribution D on M is integrable, if and only
if, it is involutive. Moreover, through every point x ∈M there passes a unique maximal in-
tegral manifold of D and every other integral manifold containing x is an open submanifold
of the maximal one.

A.4 Group action

Definition A.4.1 (Left action). A left action of a Lie group G on a manifold M is a
mapping Φ : G×M →M : (g,m) 7→ Φ (g,m) ≡ g ·m such that :

– Φ is associative: ∀g, h ∈ G, and m ∈M , g · (h ·m) = (gh) ·m.
– e ·m = m, ∀m ∈M with e the identity element of G.

Definition A.4.2 (Right action). A right action of a Lie group G on a manifold M is a
mapping ρ : M ×G→M : (m, g) 7→ ρ (m, g) ≡ m · g such that :

– ρ is associative: ∀g, h ∈ G, and m ∈M , (m · g) · h = m · (gh).
– m · e = m, ∀m ∈M with e the identity element of G.

Definition A.4.3 (G-space). Let S be a non-empty set and G a Lie group. Then S is
called a G-space if it is equipped with an action of G on S.

Definition A.4.4 (G-space isomorphism). Let S1 and S2 be two G-spaces with G-actions
Φ1 : G × S1 → S1 : (g, x1) 7→ g · x1 and Φ2 : G × S2 → S2 : (g, x2) 7→ g • x2 respectively.
The sets S1 and S2 are said G-space isomorphic if there exists a bijective map f : S1 → S2

such that f (g · x1) = g • f (x1) for all x1 ∈ S1 and g ∈ G. The map f is then called a
G-space isomorphism.

Definition A.4.5 (Orbit). The set G ·m = {Φ (g,m) ∈M | g ∈ G} is called the orbit of
the G-action Φ through m.

Definition A.4.6 (Isotropy group). The set Gm = {g ∈ G |Φ (g,m) = m} is the isotropy
group at m.

Definition A.4.7 (Orbit space). The set M /G ≡ {G ·m |m ∈M } of all G-orbits on M

is called the orbit space of the action Φ.

Definition A.4.8 (Effective action). An action Φ : G×M →M is said effective if and
only if ∀g 6= e ∈ G, ∃m ∈M |Φ (g,m) 6= m.
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Definition A.4.9 (Free action). An action Φ is said free if and only if ∀m ∈ M ,
Φ (g,m) = m implies g = e. In other words, the isotropy groups of a free action at each
point of m contain only the identity element of G.

Note that a free action is necessarily effective.

Definition A.4.10 (Transitive action). An action Φ : G×N → N will be said transitive
on N ⊂M if and only if for any m1,m2 ∈ N , ∃ g ∈ G |Φ (g,m1) = m2.

Proposition A.4.11. The action Φ is transitive inside each orbit G ·m.

Proof: Given an orbit G · m, the action will be said transitive if for any couple
ϕ (g1,m), ϕ (g2,m) ∈ G ·m, there exists g ∈ G such that ϕ (g1,m) = ϕ (g, ϕ (g2,m)).
The associativity property ensures that ϕ (g, ϕ (g2,m)) = ϕ (gg2,m) and then g =

g1g
−1
2 .

Definition A.4.12 (Regular action). A transitive and free action is said regular. For any
two m1,m2 ∈M , there exists precisely one g ∈ G such that g.m1 = m2.

Definition A.4.13 (Homogeneous manifold). If Φ is transitive globally on M , then every
point of M belong to the same orbit and M is said homogeneous. The orbit space then
reduces to one point.

Definition A.4.14 (Proper manifold). A G-action Φ acting on a smooth manifold M is
proper if and only if the map Ξ : G×M →M ×M : (g,m) 7→ (m,Φ (g,m)) is proper i.e.
for every compact set K ⊂M ×M , the inverse image Ξ−1 (K) is compact.

Definition A.4.15 (Coset space). Let G be a Lie group and H ⊂ G a Lie subgroup. A
coset, or left lateral class, gH is defined as gH = {gh / h ∈ H}. We denote by G/H the
coset space of all lateral classes gH i.e. G/H = {gH / g ∈ G}.

Proposition A.4.16. Let G be a Lie group and H ⊂ G a Lie subgroup. Furthermore, let
g, g′ ∈ G. The cosets gH and g′H are equal if and only if g−1g ∈ H.

Proof: We want to prove the equivalence

g−1g′ ∈ H ⇔ g′H = gH

which can be restated as

∃h ∈ H/g′ = gh⇔ ∀h′ ∈ H,∃h ∈ H/g′h′ = gh.
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We first establish the sufficiency and then the necessity:

=⇒:

Since g′ = gh one immediatly obtains g′H = ghH = gH.

⇐=:

Choosing h′ = e, ∃h/g′ = gh.

A.5 Lie groups

Let G be a Lie group.

Definition A.5.1 (Left translation). To each element g ∈ G corresponds a left translation
map defined as the map Lg : G→ G : h 7→ gh.

Definition A.5.2 (Left-invariant vector fields). A vector field v ∈ Γ (TG) is left-invariant
if Lg∗vh = vgh.

Proposition A.5.3. There is a one-to-one correspondence between the set of left-invariant
vector fields and the set of vectors tangent to G at e.

Proposition A.5.4. The set of left-invariant vector fields is closed under the Lie bracket
operation.

According to Theorem A.5.3, the space of left-invariant vector fields on a Lie group G is a
vector space. Besides, it is endowed with a bracket and then defines a Lie algebra denoted
g. Elements of g are then in one-to-one correspondence with elements of TeG and there is a
canonical isomorphism φ : TeG 7→ g. One should be careful that altough the isomorphism
φ preserves the vector space structure of g, it does not preserve the Lie algebra bracket.

Definition A.5.5 (Adjoint representation). The adjoint representation is a representation
of a Lie group G on its Lie algebra g. Consider the map LgRg−1 : G 7→ G : h 7→ ghg−1

and its associated pushforward
(
LgRg−1

)
∗ : ThG 7→ Tghg−1G. At h = e,

(
LgRg−1

)
∗

∣∣
e

:

TeG 7→ TeG. Using the isomorphism φ : TeG 7→ g, it defines an application from g to g

Ad (g) = φ ◦
(
LgRg−1

)
∗

∣∣
e
◦ φ−1 : g 7→ g. Furthermore, the map Ad : g 7→ Ad (g) is a

representation.

Definition A.5.6 (One-parameter subgroup). Let G be a Lie group. A curve γ : R 7→ G

is called a one-parameter subgroup of G if it satisfies the condition γ (t) γ (s) = γ (t+ s).
It then defines an abelian subgroup of G.

Proposition A.5.7. There is a one-to-one correspondence between a one-parameter sub-
group of a Lie group G and a left-invariant vector field on G.
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Definition A.5.8 (Exponential map). Let G be a Lie group and V ∈ TeG. The exponential
map exp : TeG 7→ G is defined by expV ≡ γV (1) where γV is the one-parameter subgroup
of G generated by the left-invariant vector field XV |g = Lg∗V .

Proposition A.5.9. Given V ∈ TeG, t ∈ R, the exponential map satisfies exp (tV ) =

γV (t).

Definition A.5.10 (Fundamental vector field). Let G be a Lie group with associated
Lie algebra g. Let M be a smooth manifold endowed with a smooth action Φ : G ×
M 7→ M . For X ∈ g, we define the fundamental vector field X] on M as X]

p (f) =
d
dt

∣∣
t=0

f (Φ (exp (tX) , p)), for f ∈ C∞ (M ). The map σ : g 7→ Γ (TM ) : X 7→ X] is a Lie
algebra homomorphism, i.e.

[
X], Y ]

]
= [X,Y ]] for X,Y ∈ g. If G acts effectively on M ,

then σ is an isomorphism. If G acts freely on M , then for each non-zero X ∈ g, σ (X)

never vanishes on M .
For future applications, we consider the case where Φ is the right action R : P × G 7→ P

of a Lie group G acting on a principal fiber bundle P . The action of X]
p on a function

f ∈ C∞ (P ) reads X]
p (f) = d

dt

∣∣
t=0

f (R (p, exp (tX))).

Proposition A.5.11. Let π : M →M be a diffeomorphism. If a vector field X generates
a flow ϕt : M →M , the vector field π∗X generates the flow φt ≡ π ◦ ϕt ◦ π−1.

Proposition A.5.12. Let X] be the fundamental vector field corresponding to the Lie al-
gebra element X ∈ g. For each a ∈ G, Ra∗X] is the fundamental vector field corresponding
to the Lie algebra element Ad

(
a−1
)
X ∈ g, i.e. σ

(
Ad
(
a−1
)
X
)

= Ra∗X
].

A.6 Fiber bundle

A (differentiable) fiber bundle (E, π,M , F,G) consists of the following elements:

1. A differentiable manifold E called the total space.

2. A differentiable manifold M called the base space.

3. A differentiable manifold F called the fiber (or typical fiber).

4. A surjection π : E →M called the projection. The inverse image π−1(p) = Fp ∼= F

is called the fiber at p.

5. A Lie group G called the structure group, which acts on F on the left.

6. A set of open covering {Ui} of M with a diffeomorphism φi : Ui×F → π−1(Ui) such
that π ◦ φi(p, f) = p. The map φi is called the local trivialisation since φ−1

i maps
π−1(Ui) onto the direct product Ui × F .
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7. If we write φi(p, f) = φi,p(f), the map φi,p : F → Fp is a diffeomorphism. On
Ui ∩ Uj 6= ∅, we require that tij(p) ≡ φ−1

i,p ◦ φj,p : F → F be an element of G. Then
φi and φj are related by a smooth map tij : Ui ∩ Uj → G as

φj(p, f) = φi(p, tij(p)f). (A.6.8)

The maps tij are called the transition functions.

Definition A.6.1 (Principal bundle). A principal bundle has a fiber F which is identical
to the structure group G. A principal bundle P π−→ M is also denoted by P (M , G) and
is often called a G-bundle over M . In addition to the usual left action of G on the fiber,
we can define a right action of G on F as follows: Let φi : Ui × F 7→ π−1 (Ui) be the
local trivialisation given by φ−1 (u) = (p, gi), where u ∈ π−1 (Ui) and p = π (u). The right
action R : P ×G 7→ P is defined by

ua ≡ R (u, a) = φi (p, gia) (A.6.9)

∀a ∈ G and u ∈ π−1 (p). The right action of G on P is free and proper and is furthermore
fiber preserving and transitive on each fiber.

Theorem A.6.2 (Quotient manifold Theorem). Let M be a smooth manifold on which
acts the G-action Φ. If Φ is free and proper, then the orbit space M /G has a unique smooth
manifold structure such that the projection map π : M → M /G = M̄ : m 7→ G ·m is a
smooth submersion and defines a principal fiber bundle with structure group G. A fiber of π
is a G-orbit in M and is then diffeomorphic to the structure group G with diffeomorphism
G ·m→ G : Φ (g,m) 7→ g.

Definition A.6.3 (Local section). A fiber bundle admits a local section if for every m̄ ∈ M̄

there exists an open neighborhood Ūi of m and a smooth mapping σi : Ūi ⊆ M̄ → π−1
(
Ūi
)

such that π ◦ σi = idŪi.

Definition A.6.4 (Local trivialisation). A local trivialisation is a set of open covering{
Ūi
}
of M̄ with a diffeomorphism φi : Ūi ×G→ π−1

(
Ūi
)
such that π ◦ φi (ū, g) = ū.

Proposition A.6.5. Given a local section
({
Ūi
}
, σi
)
, the mapping φσi : Ūi × G →

π−1
(
Ūi
)

: (ū, g) 7→ Φ (g, σi (ū)) defines a local trivialisation of the fibration π. In this
local trivialisation, the section σi (ū) is expressed as σi (ū) = φσi (ū, e).

Proof: Since we quotiented the manifold M by the action of Φ, the map Φ : G ×
π−1 (ū) → π−1 (ū) preserves the fiber π−1 (ū) ∀ū ∈ Ūi such that π ◦ φσi = idŪi .
Besides, the action of Φ inside a fiber is regular, being both transitive and free and
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then φσi is an isomorphism. Since we only consider smooth functions, it is also a
diffeomorphism.

Proposition A.6.6. A principal bundle is trivial if and only if it admits a global cross
section.

Proof: Since local cross sections are in one-to-one correspondence with local triviali-
sations, the existence of a global cross section is a necessary and sufficient condition
for the existence of a global trivialisation i.e. the principal bundle is trivial.

Proposition A.6.7. A principal bundle with structure group (Rn,+) can be made trivial.

Proof: See Proposition 16.14.5 of [155].

Theorem A.6.8 (Immersed submanifolds). Immersed submanifolds are precisely the im-
ages of injective immersions.

Associated bundle

Definition A.6.9 (Tensor). Let V be a vector space and ρ : H → GL (V ) a representation.
We call a tensor of type (V, ρ) a map f : P → V transforming under the right action Rh

on P as: Rhf = ρ
(
h−1

)
f . The set of tensors of type (V, ρ) is denoted T (V, ρ).

Proposition A.6.10. Let V be a vector space and ρ : H → GL (V ) a representation on
V . Furthermore, let λ be an element of V and define the constant function on the principal
bundle P taking values in V as f : P → V , f (p) = λ, ∀p ∈ P . Then, the function f is a
tensor of type (V, ρ) if and only if λ is ρ-invariant.

Proof: According to Definition A.6.9, the necessary and sufficient condition for f to
be a tensor of type (V, ρ) is for f to satisfy the condition f (ph) = ρ

(
h−1

)
f (p),

∀p ∈ P and ∀h ∈ H. Replacing f by its expression leads to ρ
(
h−1

)
λ = λ, ∀h ∈ H,

so that λ must be ρ-invariant.

Definition A.6.11 (Associated bundle). Let P →M be a principal bundle with structure
group H and F a manifold on which H acts on the left through the action ρ : H ×F → F .
Using the right-action R : P × H → P of H on P , we can define the right-action R̃ :

(P × F,H) → P × F of H on the product manifold P × F as follows: an element h ∈ H
maps (p, ξ) 7→

(
Rhp, ρ

(
h−1

)
ξ
)
. The quotient space of P ×F by this right action is denoted

E = P ×H F and is called the associated bundle of P with standard fiber F .
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The mapping P×F →M which maps (p, ξ) into π (p) induces a mapping πE : E →M

called the projection of E onto M . We denote Φ the natural projection map Φ : P×F → E

which sends (p, ξ) ∈ P ×F to the associated equivalence class denoted Φ (p, ξ) ∈ π−1
E (x) ⊂

E, where π (p) = x.

P × F Φ //

pr

��

E

πE
��

P
π // M

Each point p ∈ P can then be seen as a bijective map p : F → π−1
E (x) : ξ 7→ Φ (p, ξ), where

again π (p) = x. We have the following relation:

Φ (Rhp, ξ) = Φ (p, ρ (h) ξ) (A.6.10)

with h ∈ H, p ∈ P and ξ ∈ F which comes from the fact that the elements (Rhp, ξ) and
R̃h−1 (Rhp, ξ) = (p, ρ (h) ξ) are by definition in the same equivalence class. This property
is useful in order to prove the following Proposition:

Proposition A.6.12. The space of functions T (F, ρ) is isomorphic to the space of sections
on E.

Proof: We consider the following commuting diagram:

P
f //

π

��

F

p

��
M

σ // E.

We show first that the gift of a section σ : M → E induces a function f ∈ T (F, ρ).
The map p : F → π−1

E (x) being inversible, we define the function f : P → F as
f (p) = p−1 (σ (π (p))). Using the following Lemma:
Lemma A.6.13. (Rhp)

−1 (e) = ρ
(
h−1

)
p−1 (e) with e ∈ E.

which follows readily from relation (A.6.10), we have f (Rhp) = (Rhp)
−1 (σ (π (Rhp))) =

(Rhp)
−1 (σ (π (p))) = (Rhp)

−1 (p (f (p))) = ρ
(
h−1

)
f (p) so that f ∈ T (F, ρ).

Conversely, one can define a section σ : M → E starting from a function
f ∈ T (F, ρ) as σ (x) = p (f (p)) with p ∈ P such that π (p) = x. We start by
showing that this definition is independent of the choice of p. Starting from a dif-
ferent representative p′, there exists an element h ∈ H such that p′ = Rhp and we
have: p′ (f (p′)) = Rhp (f (Rhp)) = Rhp

(
ρ
(
h−1

)
f (p)

)
= p (f (p)). Secondly, we
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check that σ is indeed a section i.e. that πE ◦ σ = Id (M ). This is done as follows:
πE (σ (x)) = πE (p (f (p))) = π (p) = x.

A.7 Connections

Definition A.7.1 (Ehresmann connection). Let P be a principal bundle over the base
M with fiber F ' G. The associated algebra of the Lie group G is denoted g and we call
R : P×G 7→ P the right action of G on P , which is free and proper. The right action, being
free, defines an isomorphism between elements of g and fundamental vector fields on P via
the map σ : g → Γ (TP ) : X 7→ X] where the action of X] on a function f ∈ F (P ) reads
X]
p (f) = d

dt

∣∣
t=0

f (R (p, exp (tX))). Being free, the action R is also effective therefore the
vector field σ (X) never vanishes on P for each non-zero X ∈ g. The dim (G)-dimensional
vector subspace VpP ⊂ TpP spanned by all X]

p is called vertical subspace and is isomorphic
to g via σ.

Proposition A.7.2. V P = Ker (π∗).

Proof: For any f ∈ C∞ (M ) and X ∈ g, we have:

π∗X
] (f) = X] (f ◦ π)

=
d

dλ
[f ◦ π (R (p, exp (λX)))]

∣∣∣∣
λ=0

=
d

dλ
(f ◦ π (p))

∣∣∣∣
λ=0

= 0

where π (R (g, p)) = π (p) was used.

So V P ⊂ Ker (π∗). According to the rank-nullity Theorem, dim(Imπ∗)+dim(Ker π∗) =

dimTP . Using, dimTP = dimG + dimM and that π is a submersion, therefore
dim(Imπ∗) = dimM , we obtain that dim(Ker π∗) = dimG = dimV P . Therefore,
V P = Ker(π∗).

The supplementary of V P in TP , called horizontal space is not uniquely defined.

Definition A.7.3 (Ehresmann connection). An Ehresmann connection is the gift of an
equivariant distribution of horizontal spaces:

TP = V P ⊕HP (A.7.11)

such that Hpg = Rg∗Hp.
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Proposition A.7.4. π∗ is an isomorphism between Hp and Tπ(p)M .

Proof: Hp and Tπ(p)M share the same dimension and are therefore isomorphic. Plus,
π∗ : Hp ⊂ TpP → Tπ(p)M is surjective (π being a submersion) and then is an
isomorphism.

The preceding Definition of an Ehresmann connection is equivalent to the gift of a 1-form
ωp ∈ T ∗Pp ⊗ g such that Ker ωp = Hp and ωp

(
X]
p

)
= X with X]

p ∈ Vp and X ∈ g that is,
ωp acting on VpP is the inverse isomorphism of σp : g→ VpP .

Proposition A.7.5. The 1-form ω is equivariant, i.e. ωR(p,g) (Rg∗ (Xp)) = Ad
(
g−1
)
ωp (Xp),

∀Xp ∈ TpP .

Proof: We decompose Xp in vertical and horizontal parts as Xp = v]p + hp, with
v]p ∈ Vp and hp ∈ Hp. According to Proposition A.5.12, a fundamental vector field is
equivariant, i.e. Rg∗v

]
p = σR(p,g)

(
Ad
(
g−1
)
v
)
. Applying ωR(p,g):

ωR(p,g)

(
Rg∗v

]
p

)
= ωR(p,g)

(
σR(p,g)

(
Ad
(
g−1
)
v
))

= Ad
(
g−1
)
v

ωR(p,g)

(
Rg∗v

]
p

)
= Ad

(
g−1
)
ωp

(
v]p

)
.

therefore the Proposition is satisfied for vertical vectors.

For the horizontal part, according to the equivariance of Hp, Rg∗hp ∈ HR(p,g),
therefore ωR(p,g) (Rg∗hp) = 0 = ωp (hp).

A.8 Homomorphisms

Definition A.8.1 (Group homomorphism). A group homomorphism is a map ρ : G→ H

between two groups G and H such that, ∀g1, g2 ∈ G, the relation ρ (g1g2) = ρ (g1) ρ (g2)

holds.

Definition A.8.2 (Lie group homomorphism). A Lie group homomorphism is a map
ρ : G → H between two Lie groups G and H such that ρ is both a group homomorphism
and a smooth map.

Definition A.8.3 (Homomorphism of principal bundles). Let P1 and P2 be two principal
bundles over a manifold M and we denote by G1 and G2 their respective structure groups.
Let ρ : G1 → G2 be a Lie group homomorphism. We will call the differentiable map
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f : P1 → P2 a ρ-homomorphism between P1 and P2 if f is G1-equivariant i.e. f (p1g) =

f (p1) ρ (g), ∀p1 ∈ P1 and g ∈ G1. If P1 = P2, the equivariant map f : P → P is called a
bundle automorphism of P .

Proposition A.8.4. Let f : P1 → P2 be a ρ-homomorphism between P1 and P2, with bases
M1 and M2 respectively. There is a canonical map φ : M1 →M2.

Proof: Let us denote R1, R2 the two right-actions and σ : M1 → P1 a section. Let us
show that the map φ : M1 →M2 : x 7→ π2 ◦ f ◦ σ (x) is independent of the choice of
section, by introducing the section σ′ : M1 → P1 defined as σ (x) = R1 (σ′ (x) , h (x))

with h : P1 → H a map. We then have

φ (x) = π2 ◦ f ◦ σ (x)

= π2 ◦ f ◦R1

(
σ′ (x) , h (x)

)
= π2 ◦R2

(
f
(
σ′ (x)

)
, ρ (h (x))

)
= π2 ◦ f ◦ σ′ (x) .

Definition A.8.5 (Imbedding). A ρ-homomorphism f : P1 → P2 of principal bundles
such that

1. f : P1 → P2 is an injective immersion

2. ρ : G1 → G2 is injective

is called an imbedding.

The canonical map φ : M1 →M2 is then also an injective immersion.

Definition A.8.6 (Reduction of structure group). A ρ-imbedding f : P1 → P2 between
two principal bundles with bases M1 and M2 and structure groups G1 and G2 will be called
a reduction of structure group if

1. G1 is a subgroup of G2 and ρ : G1 → G2 is the inclusion homomorphism

2. M1 = M2 and the canonical map φ : M1 →M2 is the identity transformation.

The homomorphism f is then called a reduction of structure group from the G2-bundle P2

to the G1-bundle P1 and P1 is said a reduced subbundle of P2.

Definition A.8.7 (Reduction induced by a distribution). Let P be a principal bundle and
D : P → TP an involutive distribution on P . Assume futhermore that P admits a reduction
to a subbundle P ′. We say that the reduction P → P ′ is induced by the distribution D if
P ′ is a maximal integral manifold of the distribution D.
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A.9 Koszul connection

Definition A.9.1 (Koszul connection ). Let X,Y ∈ Γ (TM ) be vector fields on M , f, g ∈
Γ (E) be sections of E and k : M → R a function on M . The derivative operator ∇X :

Γ (E)→ Γ (E) is said to be a Koszul connection if it satisfies the following properties:

1. ∇X (f + g) = ∇Xf +∇Xg

2. ∇X+Y f = ∇Xf +∇Y f

3. ∇kXf = k∇Xf

4. ∇X (kf) = X [k] f + k∇Xf .

Remark: The action of a Koszul connection ∇ on any type of sections of E can be obtained
from the action of ∇ on vector fields. For example, the action of ∇ on 1-forms can be
written as:

(∇Xα) (Y ) = X [α (Y )]− α (∇XY ) (A.9.12)

where X,Y ∈ Γ (TM ) and α ∈ Ω1 (M ).

Definition A.9.2 (Koszul torsion). Given a Koszul connection ∇X : Γ (E) → Γ (E), the
Koszul torsion is the 2-form on M with values in Γ (TM ) defined as:

T (X,Y ) = ∇XY −∇YX − [X,Y ] (A.9.13)

where X,Y ∈ Γ (TM ).

Definition A.9.3 (Koszul curvature). The curvature of a Koszul connection ∇X : Γ (E)→
Γ (E) is the 2-form on M with values in End (Γ (E)) satisfying

R (X,Y ; f) = ∇X∇Y f −∇Y∇Xf −∇[X,Y ]f (A.9.14)

with X,Y ∈ Γ (TM ) and f ∈ Γ (E).

Definition A.9.4 (Metric compatibility). A Koszul connection ∇ is said compatible with
the metric 〈· , · 〉 : TM × TM → R if ∀X,Y, Z ∈ Γ (TM ), we have:

X [〈Y,Z〉] = 〈∇XY, Z〉+ 〈Y,∇XZ〉 .

Proposition A.9.5 (Symmetry relations of the Koszul curvature). Let ∇ be a Koszul con-
nection and denote T and R its torsion and curvature, respectively. Let 〈·, ·〉 : Γ

(
∨2 T ∗M

)
→

Γ (TM ) be a covariant metric on M . One assumes that ∇ is torsion-free and compatible
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with the metric 〈·, ·〉. Then, the curvature tensor satisfies the following symmetry relations:

R (X,Y ;Z,W ) = −R (Y,X;Z,W ) (A.9.15)

R (X,Y ;Z) +R (Y,Z;X) +R (Z,X;Y ) = 0 (A.9.16)

R (X,Y ;Z,W ) = −R (X,Y ;W,Z) (A.9.17)

R (X,Y ;Z,W ) = R (Z,W ;X,Y ) (A.9.18)

∀X,Y, Z,W ∈ Γ (TM ), where R (X,Y ;Z,W ) ≡ 〈R (X,Y ;Z) ,W 〉.

Proposition A.9.6 (Levi-Civita connection). Let 〈·, ·〉 : Γ
(
∨2 T ∗M

)
→ Γ (TM ) be a

maximal rank covariant metric on M . There is a unique torsion-free Koszul connection ∇
compatible with 〈·, ·〉, called the Levi-Civita connection.

Definition A.9.7 (∇-preserving vector field). Let ∇ be a Koszul connection and X ∈
Γ (TM ) a vector field. X is called a ∇-preserving vector field if LX∇ = 0 i.e. if
[X,∇Y Z] = ∇[X,Y ]Z +∇Y [X,Z], ∀Y,Z ∈ Γ (TM ).

Definition A.9.8 (Killing vector field). Let 〈·, ·〉 : Γ
(
∨2 T ∗M

)
→ Γ (TM ) be a covariant

metric on M and X ∈ Γ (TM ) a vector field satisfying LX 〈·, ·〉 = 0 i.e. X [〈Y,Z〉] =

〈[X,Y ] , Z〉 + 〈Y, [X,Z]〉, ∀Y, Z ∈ Γ (TM ). Then X is called a Killing vector field of the
metric 〈·, ·〉.

Proposition A.9.9. Let 〈·, ·〉 : Γ
(
∨2 T ∗M

)
→ Γ (TM ) be a maximal rank covariant

metric on M and denote ∇ its Levi-Civita connection. A vector field X is a Killing vector
field for 〈·, ·〉 if and only if 〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0.

Proposition A.9.10. Let 〈·, ·〉 : Γ
(
∨2 T ∗M

)
→ Γ (TM ) be a maximal rank covariant

metric on M and denote ∇ its Levi-Civita connection. A vector field X is a Killing vector
field for 〈·, ·〉 if and only if it is ∇-preserving.

Definition A.9.11 (Geodesic vector field). Let ∇ be a Koszul connection and X ∈ Γ (TM )

a vector field. The vector field X is said geodesic if it satisfies ∇XX = κX with κ ∈
C∞ (M ). It is said affine geodesic if ∇XX = 0.

Definition A.9.12 (Recurrent tensor). A tensor T ∈ Γ (E) is said recurrent for the Koszul
connection ∇ if it satisfies the relation ∇XT = ω (X) T for some 1-form ω ∈ Ω1 (M ) called
the recurrence 1-form.

Proposition A.9.13. Let 〈·, ·〉 : Γ
(
∨2 T ∗M

)
→ Γ (TM ) be a nondegenerate covari-

ant metric on M and denote ∇ its associated Levi-Civita connection. Furthermore, let
ξ,X, Y ∈ Γ (TM ) be three vector fields on M and denote ψ ∈ Ω1 (M ) the 1-form dual to
ξ: ψ ≡ g (ξ). The following relation holds:

dψ (X,Y ) = g (∇Xξ, Y )− g (∇Y ξ,X) . (A.9.19)
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Appendix B

Relativistic and Nonrelativistic Lie
algebras

B.1 Kinematical algebras

In a seminal paper [75], Bacry and Levy-Leblond classified the various possible kinemat-
ical Lie algebras i.e. the Lie algebras encoding the infinitesimal kinematical symmetries
of any free particle. Each of these symmetries takes its origin in a physical property of
spacetime:

Physical requirement Generator Transformation Dimension

Spacetime homogeneity
H Time translation 1

Pi Spatial translations d

Space isotropy Jij Spatial rotations d(d−1)
2

Relativity principle Ki Inertial boosts d

Bacry and Levy-Leblond showed that under the following assumptions:

1. Space is isotropic i.e. infinitesimal generators transform under rotations as the

(a) scalar representation for H:

[H,J ] = 0
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(b) vector representation for P,K:

[P, J ] ∼ P

[K,J ] ∼ K

(c) adjoint representation for J :

[J, J ] ∼ J

2. Space and time reversal operators Π and T are automorphisms of the kinematical
Lie algebra

there exists a limited set of possible kinematical Lie algebras 1:

1. (anti)-de Sitter

2. Poincaré

3. Galilei

4. Newton-Hooke

5. Carroll

Interestingly, the authors also showed that all of these Lie algebras can be derived from
the (anti)-de Sitter algebra via a İnönü-Wigner contraction (cf. [156], See also [157] for an
historical account).

B.2 Adjoint representations for relativistic and nonrelativis-
tic groups

B.2.1 Poincaré group

Poincaré algebra :

[Pµ, Jρσ] = i (ηµσPρ − ηµρPσ) (B.2.1)

[Jµν , Jρσ] = i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJµρ) (B.2.2)

• x ∈ p ; x = xiPi

• Adg/h (h) (x) = Ri
jx
jPi

1. We omit of the classification the “static” Lie algebra describing an infinite mass particle and for which
all the commutators which do not imply J vanish as well as other Lie algebras isomorphic to the one stated
below with P ↔ K.
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• a ∈ p∗ ; a = aiP
i∗

• Ādg/h (h) (a) = ajRT j
iP

i∗

• g−1 ∈ ∨2 p ; g−1 = gijPi ∨ Pj
• Ãdg/h (h)

(
g−1
)

= gijRk
iR

l
jPk ∨ Pl

• g ∈ ∨2 p∗ ; g = gijP
i∗ ∨ P j∗

• ¯̃Adg/h (h) (g) = gijRT i
kR

T j
lP

k∗ ∨ P l∗

Examples:

• Ãdg/h (h) δijPi ∨ Pj = δijPi ∨ Pj
• ¯̃Adg/h (h) δijP

i∗ ∨ P j∗ = δijP
i∗ ∨ P j∗

B.2.2 Weyl group

Weyl algebra :

[Pµ, Jρσ] = i (ηµσPρ − ηµρPσ) (B.2.3)

[Jµν , Jρσ] = i (ηµρJνσ − ηνρJµσ − ηµσJνρ + ηνσJµρ) (B.2.4)

[D,Pµ] = −iPµ (B.2.5)

• x ∈ p ; x = xiPi

• Adg/h (h) (x) = λRi
jx
jPi

• a ∈ p∗ ; a = aiP
i∗

• Ādg/h (h) (a) = ajλ
−1RT j

iP
i∗

• g−1 ∈ ∨2 p ; g−1 = gijPi ∨ Pj
• Ãdg/h (h)

(
g−1
)

= λ2gijRk
iR

l
jPk ∨ Pl

• g ∈ ∨2 p∗ ; g = gijP
i∗ ∨ P j∗

• ¯̃Adg/h (h) (g) = λ−2gijRT i
kR

T j
lP

k∗ ∨ P l∗

Examples:

• Ãdg/h (h) δijPi ∨ Pj = λ2δijPi ∨ Pj
• ¯̃Adg/h (h) δijP

i∗ ∨ P j∗ = λ−2δijP
i∗ ∨ P j∗
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B.2.3 Galilei group

Galilei algebra :

[H,Ki] = iPi (B.2.6)

[Pi, Jjk] = i (δikPj − δijPk) (B.2.7)

[Ki, Jjk] = i (δikKj − δijKk) (B.2.8)

[Jij , Jkl] = i (δikJjl − δjkJil − δilJjk + δjlJik) (B.2.9)

• x ∈ p ; x = x0H + xiPi

• Adg/h (h) (x) =

R b

0 1


xi
x0

 = x0H +
(
Ri
jx
j + bix0

)
Pi

• a ∈ p∗ ; a = a0H
∗ + aiP

i∗

• Ādg/h (h) (a) =

(
ai a0

)RT −RTb

0 1

 =
(
a0 − aiRT i

jb
j
)
H∗ + ajRT j

iP
i∗

• g−1 ∈ ∨2 p ; g−1 =

gij g0i

g0j g00


• Ãdg/h (h)

(
g−1
)

=

R b

0 1


gij g0i

g0j g00


R 0

b 1


=

gijRl
jR

k
i + g0iRk

ib
l + g0iRl

ib
k + g00bkbl g0iRk

i + g00bk

g0iRl
i + g00bl g00


• g ∈ ∨2 p∗ ; g =

gij g0i

g0j g00


• ¯̃Adg/h (h) (g) =

 RT 0

−RTb 1


gij g0i

g0j g00


RT −RTb

0 1


=

 gijRT i
kR

T j
l g0iRT i

k − gijRT i
kR

T j
lb
l

g0iRT i
l − gijRT i

lR
T j
kb

k g00 − 2g0iRT i
jb

j + gijRT i
kb

kRT j
lb
l


Examples:

• Adg/h (h) (H) = H + biPi
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• Ādg/h (h) (H∗) = H∗

• Ãdg/h (h)

δij 0

0 0

 =

δkl 0

0 0


• ¯̃Adg/h (h)

δij 0

0 0

 =

 δkl −δklbl

−δklbk δklbkbl



B.2.4 Bargmann group

Bargmann Algebra :

[H,Ki] = iPi (B.2.10)

[Pi, Jjk] = i (δikPj − δijPk) (B.2.11)

[Pi,Kj ] = iδijM (B.2.12)

[Ki, Jjk] = i (δikKj − δijKk) (B.2.13)

[Jij , Jkl] = i (δikJjl − δjkJil − δilJjk + δjlJik) (B.2.14)

• x ∈ p ; x = x0H + xiPi + xMM

• Adg/h (h) (x) =


R b 0

0 1 0

−bTR −1
2b

Tb 1




xi

x0

xM


= x0H +

(
Ri
jx
j + bix0

)
Pi +

(
xM − bTkR

k
jx
j − 1

2b
T
k b

kx0
)
M

• a ∈ p∗ ; a = a0H
∗ + aiP

i∗ + aMM
∗

• Ādg/h (h) (a) = (ai, a0, aM )


RT −RTb 0

0 1 0

bT −1
2b

Tb 1


=
(
a0 − aiRT i

jb
j − 1

2b
TbaM

)
H∗ +

(
ajRT j

i + aMbTi
)
P i∗ + aMM

∗

Examples:

• Adg/h (h) (H) = H + biPi − 1
2b

TbM
• Adg/h (h) (M) = M

• Ādg/h (h) (H∗) = H∗

• Ādg/h (h) (M∗) = M∗ − bTkR
k
jP

j∗ − 1
2b

TbH∗
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• Ãdg/h (h)


δij 0 0

0 0 1

0 1 0

 =


δkl 0 0

0 0 1

0 1 0
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Notations and Conventions

– TxM : Tangent space at the point x ∈M

– T ∗xM : Dual tangent space at the point x ∈M

– TM : Tangent bundle of M

– T ∗M : Dual tangent bundle of M

– Γ (TM ): Space of vector fields on M

– Ωp (M ): Space of p-forms on M

– Γ
(
∨2 TM

)
: Space of fields of contravariant symmetric bilinear forms on M

– Γ
(
∨2 T ∗M

)
: Space of fields of covariant symmetric bilinear forms on M

– Xx ∈ TxM : Vector field X ∈ Γ (TM ) evaluated at the point x ∈M

– Ker ψ: Subbundle of TM spanned by vector fields in Γ (TM ) annihiliated by the
1-form ψ ∈ Ω1 (M )

– Ann N : Subbundle of T ∗M spanned by 1-forms in Ω1 (M ) annihilating the vector
field N ∈ Γ (TM )

– FO (M ): Space of fields of observers on M

– End (V ): Space of linear maps on the vector space V
–
⊗
V ⊗

⊗
V ∗: Space of multilinear maps on the vector space V

– g (X) ≡ g (X, ·) ∈ Ω1 (M ), with g ∈ Γ
(
∨2 T ∗M

)
and X ∈ Γ (TM )

– Φ(µν) ≡ 1
2 (Φµν + Φνµ): Symmetrisation with weight one

– Φ[µν] ≡ 1
2 (Φµν − Φνµ): Anti-Symmetrisation with weight one
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Glossary of structures
Leibnizian structure L (M , ψ, h) cf. Definition 3.2.1 (resp. 3.2.2)

• Spacetime manifold M endowed with :
– Absolute clock ψ ∈ Ω1 (M )

– Absolute rulers h ∈ Γ
(
∨2 TM

)
with Rad h = Span ψ (resp. γ ∈ Γ

(
∨2 Ker ψ

)
)

Aristotelian structure A (M , ψ, h) cf. Definition 3.2.15

• Leibnizian structure with ψ ∧ dψ = 0

Augustinian structure S (M , ψ, h) cf. Definition 3.2.16

• Leibnizian structure with dψ = 0

Lagrangian structure L (M , ψ, [g]) cf. Definition 3.2.40

• Leibnizian structure endowed with a Lagrangian class of metrics [g]

Galilean manifold G (M , ψ, h,∇) cf. Definition 3.2.18 (resp. 3.2.19)

• Leibnizian structure supplemented with a Koszul connection ∇ satisfying the
compatibility conditions

– ∇ψ = 0

– ∇h = 0 (resp. ∇γ = 0)

Newtonian manifold N (M , ψ, h,∇) cf. Definition 3.2.33

• Augustinian structure supplemented with a compatible torsionfree Koszul connection
∇ satisfying the Duval-Künzle condition (cf. Definition 3.2.28)

Horizontal manifold H (M , ψ, h,∇) cf. Definition 3.2.46

• Aristotelian structure supplemented with a torsionfree Koszul connection on M

satisfying Axioms 1-3 of Proposition 3.2.45

Platonic manifold P (M , ψ, h,∇) cf. Definition 3.2.49

• Aristotelian structure supplemented with a torsionfree Koszul connection ∇ whose
coefficients are given by (3.2.63)
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Résumé :
Bien qu’ayant vu le jour dans un cadre dit relativiste avec l’avènement de la théorie de

la relativité générale, le lien intime existant entre géométrie de l’espace-temps d’une part,
et gravitation d’autre part, peut se voir étendu aux théories dites nonrelativistes, l’exemple
paradigmatique en étant la reformulation géométrique de la gravitation Newtonienne ini-
tiée par E. Cartan. De tels espace-temps nonrelativistes diffèrent structurellement de leurs
homologues relativistes, ces disparités étant le plus naturellement expliquées en réinterpré-
tant ces premiers comme réduction dimensionnelle d’espace-temps relativistes privilégiés.

L’ambition de cette thèse est double :

Dans une première partie, nous nous intéressons à une généralisation de la classe
d’espace-temps relativistes permettant le formalisme ambiant, étudions leur interpréta-
tion géométrique ainsi que la classe élargie de structures nonrelativistes pouvant y être
plongées.

La seconde partie de ce manuscrit concerne le point de vue, informé par la théorie des
groupes, que porte E. Cartan sur la géométrie différentielle et plus précisément l’éclairage
que projettent les géométries de Cartan sur les structures nonrelativistes, à la fois dans
leur définition intrinsèque et dans leur relation avec des structures relativistes au travers
du formalisme ambiant.

Mots clés :
Symétries Nonrelativistes, Eisenhart Lift, Gravitation de Newton-Cartan, Réduction Di-
mensionnelle, Formalisme Ambiant, Géométrie de Cartan.

Abstract :
With the advent of general relativity, the profound interaction between the geometry

of spacetime and gravitational phenomena became a truism of modern physics. However,
the intimate relationship between spacetime geometry and gravitation is by no means
restricted to relativistic physics but can in fact be successfully applied to nonrelativistic
physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity.
This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures
whose discrepancies in comparison with their relativistic peers are better understood when
embedded inside specific classes of relativistic gravitational waves.

The ambition of this Doctoral Thesis is twofold:

In a first part, we discuss a generalisation of the class of gravitational waves allowing
the embedding of nonrelativistic features, explore their geometric properties and the new
nonrelativistic structures emerging from this study.

In a second part, we advocate how the group-theoretically oriented approach of Cartan
to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic
and ambient fashion.

Keywords :
Nonrelativistic Symmetries, Eisenhart Lift, Newton-Cartan Gravity, Dimensional Reduc-
tion, Ambient Formalism, Cartan Geometry.


