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Gaussian kernel least-mean-square: design, analysis and applications

Abstract: The main objective of this thesis is to derive and analyze the Gaussian kernel

least-mean-square (LMS) algorithm within three frameworks involving single and multi-

ple kernels, real-valued and complex-valued, non-cooperative and cooperative distributed

learning over networks. This work focuses on the stochastic behavior analysis of these

kernel LMS algorithms in the mean and mean-square error sense. All the analyses are

validated by numerical simulations.

First, we review the basic LMS algorithm, reproducing kernel Hilbert space (RKHS),

framework and state-of-the-art kernel adaptive filtering algorithms.

Then, we study the convergence behavior of the Gaussian kernel LMS in the case where

the statistics of the elements of the so-called dictionary only partially match the statistics

of the input data. The theoretical analysis highlights the need for updating the dictionary

in an online way, by eliminating obsolete elements and adding appropriate candidates. In

order to automatically adjust the dictionary to the instantaneous stochastic properties of

the input data, we introduced a modified kernel LMS algorithm based on forward-backward

splitting to deal with ℓ1-norm regularization. The stability of the proposed algorithm is

then discussed.

After a review of two families of multikernel LMS algorithms, we focus on the con-

vergence behavior of the multiple-input multikernel LMS algorithm. More generally, the

characteristics of multikernel LMS algorithms are analyzed theoretically and confirmed by

simulation results.

Next, the augmented complex kernel LMS algorithm is introduced based on the frame-

work of complex multikernel adaptive filtering. Then, we analyze the convergence behavior

of algorithm in the mean-square error sense.

Finally, in order to cope with the distributed estimation problems over networks, we

derive functional diffusion strategies in RKHS. The proposed nonlinear diffusion adaptation

with kernel LMS performs better than the non-cooperative kernel LMS algorithm. The

stability of the algorithm in the mean sense is analyzed.

Keywords: convergence analysis, kernel least-mean-square, Gaussian kernel, multikernel,

complex kernel, diffusion adaptation in RKHS





Kernel LMS à noyau Gaussien: conception, analyse et applications à
divers contextes

Résumé: L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme

kernel-LMS à noyau Gaussien dans trois cadres différents: celui des noyaux uniques et

multiples, à valeurs réelles et à valeurs complexes, dans un contexte d’apprentissage dis-

tributé et coopératif dans les réseaux de capteurs. Plus précisement, ce travail s’intéresse

à l’analyse du comportement en moyenne et en erreur quadratique de cas différents types

d’algorithmes LMS à noyau. Les modèles analytiques de convergence obtenus sont validés

par des simulations numérique.

Tout d’abord, nous introduisons l’algorithme LMS, les espaces de Hilbert à noyau re-

produisants, ainsi que les algorithmes de filtrage adaptatif à noyau existants.

Puis, nous étudions analytiquement le comportement de l’algorithme LMS à noyau

Gaussien dans le cas où les statistiques des éléments du dictionnaire ne répondent que par-

tiellement aux statistiques des données d’entrée. L’analyse théorique souligne la nécessité

de mettre à jour le dictionnaire d’une manière en ligne, en éliminant les éléments obsolètes

et en ajoutant les candidats appropriés. Afin d’adapter automatiquement le dictionnaire

aux propriétés instantanées des données d’entrée, nous introduisons ensuite un algorithme

LMS modifié à noyau basé sur une approche proximale. La stabilité de l’algorithme est

également discutée.

Ensuite, nous introduisons deux types d’algorithmes LMS à noyaux multiples. Nous

nous concentrons en particulier sur l’analyse de convergence de l’un d’eux. Puis, plus

généralement, les caractéristiques des deux algorithmes LMS à noyaux multiples sont

analysées théoriquement et confirmées par les simulations.

A la suite de cela, l’algorithme LMS à noyau complexe augmenté est présenté et ses

performances analysées.

Enfin, dans un but d’estimation distribuée dans les réseaux de capteurs, nous proposons

des stratégies de diffusion fonctionnelles dans les espaces de Hilbert à noyau reproduisant.

La stabilité de cas l’algorithmes est étudiée.

Mots clés: analyse de convergence, kernel least-mean-square, noyau Gaussien, noyaux

multiples, noyaux complexes, algorithmes de diffusion distributés, espaces de Hilbert à

noyau reproduisant
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Chapter 1

Introduction

Contents
1.1 Thesis context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

Learning is the activity or experience of acquiring new, or being taught and modifying,

existing knowledge, skills, behaviors, or preferences and may involve synthesizing different

types of information. With the advancement of human civilization, the ability to learn

is possessed not only by human beings and animals but also by some artificial machines.

Machine learning explores the construction and study of computer algorithms that improve

automatically through experiences of learning from and making decision on data, and

has been playing key role in artificial intelligence research. Depending on the context,

machine learning tasks can be typically categorized into three fields as follows [Russell 1995,

Bershad 2008, Duda 2012, Sutton 1998]: i) Supervised learning: The algorithm is trained

to learn an underlying function that describes the relationship between inputs and desired

outputs referred to as the training data. ii) Unsupervised learning: When outputs are

not labelled, the unsupervised learning algorithm attempts to discover the hidden patterns

in a stream of input. iii) Reinforcement learning: In reinforcement learning the agent is

rewarded for good responses and punished for bad ones to sequentially form a strategy for

operating in its problem space. These three machine learning categories have been widely

employed to address a very broad range of problems in scientific and industrial fields.

According to the way in which the training data are generated and how they are pro-

vided, the learning models can be classified into batch (or offline) learning in which all the

data have been collected at the beginning of learning, and online learning in which the

learning algorithm gives an estimate of the output after receiving one sample of data at a

time, before given the true value. In other words, online learning methods often update

their current hypothesis in response to each new observation while their qualities of learn-

ing are evaluated by the total amount of estimated errors. Batch learning algorithms can

generally present high-quality answer but require longer time and more resources. With the

advent of streaming data sources, learning in some applications must often be performed to

give medium-quality answer in real time, typically without a chance to revisit past entries.

Therefore, learning in an online manner makes more sense in the era of data deluge.
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1.1 Thesis context

Nowadays complex practical applications require more expressive hypothesis spaces than

the limited computational capability of linear learning algorithms. Kernel representations

offer an alternative solution that implicitly performs a nonlinear mapping from original in-

put space into a high or infinite dimensional feature space to enhance the ability of existing

linear learning algorithms dealing with nonlinear problems. Kernel methods offer power-

ful nonparametric modeling tools that have been successfully applied in support vector

machines (SVM) [Scholkopf 2001], kernel principal component analysis [Schölkopf 1997],

kernel ridge regression [Rosipal 2002, Cawley 2004], etc. This dissertation lies at the in-

tersection of machine learning, in particular with kernel-based methods from supervised

learning, and statistical signal processing that deals with the problem of finding a predic-

tive function based on data.

Filtering is a fundamental statistical signal processing operation whose objective is to

map the input signal to a desired output signal, in order to facilitate the extraction of de-

sired information contained in the input signal. When dealing with signals whose statistical

properties are unknown, or dynamic and depend on time, adaptive filters that automati-

cally change their characteristics by adjusting some free parameters and structure are able

to address these problems efficiently. The rationale of adaptive filters is to perform online

updating of their parameters through a rather simple algorithm using the successively avail-

able information. Although the theory of adaptive filtering has been extensively studied for

more than half century and has reached a relatively mature stage, and most of the research

interests turned to seek specific implementations in diverse fields, this topic has been re-

cently revitalized by the stimulation of novel requirements of nonlinear adaptive filtering

with the development of theory of reproducing kernel Hilbert spaces (RKHS). During the

last decade, adaptive filtering in RKHS has attracted substantial research interests due

to its solid mathematical foundations, universal nonparametric modeling capacity, modest

computational cost, etc.

Based on the principle of kernel representations, several state-of-the-art linear adap-

tive filters have been revisited to provide powerful kernel adaptive filtering algorithms

operating in RKHS [Sayed 2003, Haykin 1991]. Typical kernel adaptive filtering algo-

rithms include the kernel recursive least-squares algorithm (KRLS), which was initially

proposed in [Engel 2004]. It can be viewed as a kernelized RLS algorithm, and is charac-

terized by a fast convergence speed at the expense of a quadratic computational complex-

ity. The sliding-window KRLS and extended KRLS algorithms were successively derived

in [Steven 2006, Liu 2009b] to improve the tracking ability of the KRLS algorithm. The

KRLS tracker algorithm was introduced in [Steven 2012], with ability to forget the past

information using forgetting strategies. This allows the algorithm to track non-stationary

input signals based on the idea of the exponentially-weighted KRLS algorithm [Liu 2010].

Next, a quantized KRLS algorithm (QKRLS) whose input space is quantized into smaller

regions, was presented in [Chen 2013a]. The kernel affine projection (KAP) algorithm and,

as a particular case, the kernel normalized least-mean-square (KNLMS) algorithm, were

independently introduced in [Honeine 2007, Richard 2009, Slavakis 2008, Liu 2008b]. In

addition, the kernel LMS (KLMS) algorithm as de facto standard was proposed and im-
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proved in [Richard 2005, Liu 2008a, Chen 2012b]. It has attracted more attention because

of its simplicity, superior tracking ability, robustness and linear computational complexity.

Accordingly, this dissertation focuses on the analysis of the convergence behavior of KLMS

algorithm.

An interesting alternative using projection-based methods in RKHS was also intro-

duced in [Theodoridis 2011], leading to algorithms such as the sliding window general-

ized KAP algorithm [Slavakis 2008], the kernel adaptive projection subgradient method

(KAPSM) [Slavakis 2013], and several interesting applications [Slavakis 2012]. A novel al-

gorithm consisting of projection-along-subspace, selective update, and parallel projection,

was recently developed to accelerate the convergence/tracking speed while reducing the

computational complexity without serious degradation of performance [Takizawa 2015].

More recently, the nonlinear kernel Kalman filter was presented to improve tracking and

prediction performance in [Zhu 2014]. Particle filtering based on kernel state-space model

parametrized by reproducing kernel functions was proposed in [Tobar 2014b, Tobar 2015].

This unsupervised algorithm that performs inference on both parameters and hidden state

through sequential Monte Carlo methods, was illustrated to outperform deterministic kernel

adaptive filtering (KAF) algorithms.

In order to address the problem of kernel selection, multikernel learning has

been extensively studied in the literature for classification and regression [Bach 2004,

Sonnenburg 2006, Rakotomamonjy 2008, Kloft 2009, Martins 2011, Gonen 2011]. It has

been shown that multikernel learning methods can enhance performance over monok-

ernel methods since more flexibility and degree of freedom are provided by using mul-

tiple monokernels to handle nonlinearities. Investigations on multikernel learning have

focused almost exclusively on batch processing, and only few efforts have been directed

toward online processing. Multikernel LMS (MKLMS) algorithm was introduced inde-

pendently in [Yukawa 2012, Yukawa 2013] and [Tobar 2012c, Tobar 2014a]. These works

also proposed acceptance/rejection stages for kernel-based model selection in an online

way. In [Tobar 2012c, Tobar 2014a], model selection is performed with novelty crite-

rion. In [Yukawa 2012, Yukawa 2013], this step is accomplished with block ℓ1-norm cri-

teria. A variant of MKLMS algorithm with distinct dictionaries and different thresholds

for model sparsification criterion was presented to further explore new degrees of free-

dom in [Ishida 2013]. The combination of the outputs of several monokernel LMS algo-

rithms with different parameter settings was introduced to achieve improved performance

in [Pokharel 2013, Gao 2014b].

All the kernel adaptive filtering algorithms mentioned above deal with real-valued

data. Kernel-based adaptive filtering algorithms for complex data have also attracted

attentions since they inherently ensure phase information processing [Bouboulis 2011,

Bouboulis 2012]. This is of significance for applications in communication, radar, sonar,

etc. A complexified kernel LMS algorithm and pure complex kernel LMS algorithm were in-

troduced in [Bouboulis 2011]. Inspired by the linear augmented complex LMS (ACLMS) al-

gorithm presented in [Mandic 2009, Kung 2009], its nonlinear counterpart augmented com-

plex kernel normalized LMS (ACKNLMS) was described in [Bouboulis 2012, Tobar 2012a].

These works show that ACKNLMS algorithm can provide significantly improved perfor-

mance compared with complex-valued algorithms, particularly for non-circular complex
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data. As a recent trend in adaptive filtering with kernels, the quaternion KLMS algo-

rithm was introduced as an extension of complex-valued KLMS algorithm in [Tobar 2013,

Tobar 2014c, Ogunfunmi 2015, Paul 2015]. Finally, 2m-dimensional Cayley-Dickson num-

ber system with m ∈ Z+, was established for a translation of hypercomplex-valued linear

system to real vector-valued data model [Mizoguchi 2013]. Through the algebraic transla-

tion the KAPSM was extended to possess the ability of processing hypercomplex number

data in [Mizoguchi 2014].

Kernel adaptive filtering has recently become an appealing tool in many practical fields,

including biomedical engineering [Camps-Valls 2007], remote sensing [Camps-Valls 2009,

Chen 2013b, Chen 2014b, Dobigeon 2014], wind forecasting [Kuh 2009, Tobar 2012b] and

automatic control [Xu 2007, Nguyen-Tuong 2012], to cite a few. In order to choose the

appropriate algorithm along with its parameter set up subject to prescribed requirement

of performance, theoretical performance and stability of algorithms are required to be

thoroughly analyzed and investigated for both the transition and the steady-state stages.

1.2 Motivation

The main objective of this Ph.D. thesis is to derive theoretical models that characterize the

convergence behavior of KLMS algorithm with Gaussian kernel under various assumptions

and frameworks such as sliding window or pre-tuned dictionary, single kernel and multiple

sub-kernels, real and complex kernels. The objective of this thesis is also to design novel

kernel-based nonlinear filters such as distributed KLMS with diffusion strategies. Firstly,

analytical models for convergence can be used to predict the behavior of each algorithm and

used for designing kernel adaptive filters. Secondly, it becomes possible to accurately com-

pare the performance of identical KLMS-type algorithms with different parameter settings

such as step-size, kernel bandwidth, dictionary size. Finally, in order to meet various spe-

cific factors including rate of convergence, misadjustment, steady-state error performance,

etc., theoretical analyses are powerful tools for practitioners to set KLMS parameters be-

forehand and offer a sufficient stability conditions. The substantial difficulties encountered

in the theoretical convergence analysis of KLMS are now listed.

• The kernelized input sequence, instead of tap-input data of LMS algorithm, is no

longer Gaussian-distributed.

• The dictionary has to be carefully deliberated as stochastic or preassigned as a part

of filter parameters setting.

• There are challenges in dealing with the fourth-order moments.

• The impossibility of using the Gaussian moment-factoring theorem makes the con-

vergence analysis of KLMS mathematically difficult.
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1.3 Contributions

After a detailed study of the theoretical convergence behavior of KLMS algorithm in several

situations, the main contributions of this thesis are the following:

1. Study of the convergence analysis of KLMS algorithm with single real-valued Gaussian

kernel in the case where the statistics of the dictionary elements only partially match

the statistics of the input data. This theoretical analysis highlights the need for

updating the elements of dictionary in an online way. Stability analysis in the mean

of KLMS with ℓ1-norm regularization.

2. Theoretical analysis of the convergence behavior of multiple-input multikernel LMS

algorithm in the mean and mean-square sense.

3. Analysis of the convergence behavior of the augmented complex Gaussian KLMS

algorithm, proposed from the framework of complex multikernel adaptive filtering.

4. Derivation of distributed diffusion strategies in reproducing kernel Hilbert spaces over

networks.

Several scientific publications were presented during the preparation of this dissertation:

Journal articles and International conference proceedings

1. Wei Gao, Jie Chen, Cédric Richard and Jianguo Huang. “Online dictionary learning

for kernel LMS”. IEEE Transactions on Signal Processing, vol. 62, no. 11, pages

2765–2777, June 2014.

2. Wei Gao, Jie Chen, Cédric Richard, Jose-Carlos M. Bermudez and Jianguo Huang.

“Convergence analysis of the augmented complex KLMS algorithm with pre-tuned

dictionary”. IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), pp. 2006–2010, April 2015.

3. Wei Gao, Jie Chen, Cédric Richard and Jianguo Huang. “Diffusion adaptation over

networks with kernel least-mean-square”. IEEE International Workshop on Computa-

tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–4, December

2015.

4. Wei Gao, Cédric Richard, Jose-Carlos M. Bermudez and Jianguo Huang. “Convex

combination of kernel adaptive filters”. IEEE International Workshop on Machine

Learning for Signal Processing (MLSP), pp. 1–5, September 2014.

5. Jie Chen, Wei Gao, Cédric Richard and Jose-Carlos M. Bermudez. “Convergence

analysis of kernel LMS algorithm with pre-tuned dictionary”. IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 7243–7247,

May 2014.
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6. Wei Gao, Jie Chen, Cédric Richard, Jianguo Huang and Rémi Flamary. “Kernel

LMS algorithm with forward-backward splitting for dictionary learning”. IEEE In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.

5735–5739, May 2013.

7. Jianguo Huang, Wei Gao and Cédric Richard. “Multi-channel differencing adaptive

noise cancellation based on kernel-based normalized least-mean-square algorithm”.

MTS/IEEE International Conference on OCEANS, pp.1–5, May 2012.

1.4 Organization of the thesis

The rest of this dissertation is organized as follows:

• Chapter 2 introduces linear adaptive filtering, in particular, the analysis of LMS algo-

rithm. This chapter also includes a brief introduction to RKHS and their properties to

be used in the following chapters. Existing kernel adaptive algorithms are presented

at the end of Chapter 2.

• Chapter 3 justifies the necessity of updating kernel dictionary in an online way

through the theoretical analysis of kernel LMS algorithm. Forward-backward splitting

method is proposed to address this issue.

• Chapter 4 deals with the multikernel adaptive filtering, which is very attractive due

to extra freedom degrees and flexibility. Special attention is given to the analysis of

the multiple-input multikernel LMS.

• In Chapter 5, the basic principles of two families of complex monokernel LMS algo-

rithms are reviewed. Then, augmented complex kernel LMS algorithm is introduced

and analyzed.

• Chapter 6 addresses the topic of diffusion adaptation over networks for nonlinear dis-

tributed estimation. Simulation results show that the proposed cooperative strategy

performs better than the non-cooperative usual monokernel LMS.

• Finally, a conclusion and possible future works are presented in Chapter 7.
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Linear and kernel adaptive filtering:

a general overview
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2.1 Introduction

The goal of this chapter is to briefly present the theoretical background materials of kernel

adaptive filtering to make the understanding of the next chapters easier. This chapter

consists of three main parts. In the first part, we review classic linear adaptive filtering

algorithms in particular the LMS algorithm. The classical framework for analyzing of

LMS convergence behavior is stated as an universal roadmap for ubiquitous analyses of

KLMS-type algorithms in the sequel. The second part presents a brief introduction to

the mathematical preliminaries for kernel-based learning algorithms. A brief overview of

sparsification criteria for online dictionary learning and kernel adaptive filtering algorithms

proposed is provided in the third part.
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2.2 Linear adaptive filtering

2.2.1 Overview of linear adaptive filters

The aim of supervised linear adaptive filters is to automatically extract the information or

identify the model from the noisy measurements of linear unknown system relying on error-

correction criterion. The block diagram of a linear adaptive filter is shown in Figure 2.1.

Distinct learning criteria result in different types of adaptive filters equipped with built-

in mechanism of update. Commonly used adaptive filtering algorithms are summarized

in the Table 2.1. These adaptive filtering algorithms have been successfully applied to

address four basic problems including systems identification, inverse modeling, prediction

and interference canceling [Haykin 1991]. The factors characterizing the performance of

an adaptive filter include steady-state performance, transient behavior, tracking ability,

robustness, etc.

+

−

dn

en

d̂n

Adaptive control

Transversal filter
αnmodel

P

algorithm

un

Figure 2.1: Block diagram of linear adaptive filter.

The well known least-mean-square (LMS) algorithm devised by Widrow and Hoff in

1959 [Widrow 1985] is an important member of the family of stochastic gradient-based

algorithms, which iterate the weight of transversal filter in the direction of the negative

gradient of the squared amplitude of the instantenous error signal with respect to each

weight coefficient. By avoiding matrix inversion, LMS algorithm is simple and robust

compared to other linear adaptive filtering algorithms. Consequently, it is considered as

a benchmark when comparing the performance of different algorithms. It inspired kernel

least-mean-square (KLMS) algorithm, and plays an important role in this dissertation. The

next subsections briefly review basic but important principles and provide a convergence

analysis of the LMS algorithm.

2.2.2 Wiener filter

Let the available input signal at time instant n be denoted by un = [un, un−1, . . . , un−L+1]
⊤

with L the number of adjustable parameters in the model. This input signal is fed simul-

taneously into the system and model. The system output dn is referred to as the desired
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Table 2.1: Linear adaptive filtering algorithms.
Algorithms Criteria Recursions

LMS E{(dn −α⊤un)
2} αn+1 = αn + η enun

NLMS E{(dn −α⊤un)
2} αn+1 = αn +

η
ǫ+‖un‖2

enun, ǫ > 0

sign-error LMS E{|dn −α⊤un|} αn+1 = αn + η sign{en}un
Leaky-LMS E{(dn−α⊤un)

2}+λ‖α‖2 αn+1 = (1− ηλ)αn + η enun, λ > 0

LMF E{(dn −α⊤un)
4} αn+1 = αn + η en|en|2un

APA 1
2‖αn+1 −αn‖2 αn+1 = αn + ηUn(ǫI +U⊤

nUn)
−1en

s.t. dn = U⊤
nαn+1 with Un = [un,un−1, . . . ,un−p]

RLS
∑N

n=1(dn −α⊤un)
2 αn+1 = αn + P n unen

P n = λ−1
[

P n−1 − Pn−1unu
⊤
nPn−1

λ+u⊤
nPn−1un

]

, 0 ≪λ< 1

response or reference signal for linear adaptive filter to adjust the model parameters

dn = α⊤un + zn (2.1)

with α = [α1, α2, . . . , αL]
⊤ the weight vector. The input-desired data pairs {un, dn}Nn=1

are assumed to be zero-mean stationary. The sequence zn accounts for measurement noise

and modeling error.

Consider the block diagram in Figure 2.2 built around a linear filter that aims at

minimizing the mean-square error criterion

J(α) = E
{

(

dn −α⊤un
)2
}

(2.2)

whose solution α satisfies the Wiener-Hopf equations

Ruuα = pud (2.3)

where Ruu = E{unu⊤
n } is the autocorrelation matrix of un, and pud = E{dnun} represents

the cross-correlation vector between un and dn. Assuming matrix Ruu is nonsingular, the

optimal weight vector can be computed as

αopt = R−1
uu pud. (2.4)

This optimal solution is the so-called Wiener solution. Substituting the optimum weight

vector αopt into the mean-square-error (MSE) function (2.2), the corresponding minimum

MSE is given by:

Jmin = E
{

d2n
}

− p⊤
udR

−1
uu pud. (2.5)

An important property of the Wiener filter can be deduced if we analyze the gradient of the

error surface at the optimal solution. Note that Wiener filter requires a priori information

on the statistics of the input data, and is inadequate especially when dealing with intrinsic

nonstationary signals in real-world applications.
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+
−

dn

end̂n = α>un

P

un

d̂n

Figure 2.2: Block diagram of statistical filtering problem.

2.2.3 Least-mean-square algorithm

Let the mean-squared error or cost function J(αn) at time instant n be

J(αn) = E
{

e2n
}

(2.6)

where the estimation error en is denoted by

en = dn −α⊤
nun. (2.7)

Instead of solving the Wiener-Hopf equations, the steep-descent method can be applied to

minimize the cost function defined in (2.6), and iteratively calculate the weight vector by

using a simple recursive relation

αn+1 = αn +
1

2
η [−∇J(αn)] (2.8)

where η > 0 is the step-size parameter or weighting constant. The factor 1
2 is used for

convenience. The gradient vector ∇J(αn) at time instant n can be computed as follows:

∇J(αn) =

[

∂J(αn)

αn,1
,
∂J(αn)

αn,2
, . . . ,

∂J(αn)

αn,L

]⊤

= −2pud + 2Ruuαn.

(2.9)

Accordingly, the simple recursive update of weight vector αn+1 can be written as

αn+1 = αn + η (pud −Ruuαn) . (2.10)

In order to get a practical adaptive filtering algorithm, the intuitively simplest strategy is

to consider the instantaneous estimates of Ruu and pud defined by, respectively,

R̂uu = un u
⊤
n (2.11)

and

p̂ud = dn un. (2.12)

Correspondingly, the instantaneous gradient vector is given by

∇̂J(αn) = −2 p̂ud + 2 R̂uuαn. (2.13)
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Substituting the estimate of (2.9) into the steep-descent algorithm (2.10), we obtain the

recursive equation

αn+1 = αn + ηun

(

dn −α⊤
nun

)

. (2.14)

Equivalently, the well known LMS algorithm is written more frequently as

αn+1 = αn + η enun (2.15)

with the instantaneous error denoted by en = dn−α⊤
nun. The computational requirement

of the LMS algorithm for L-order filter are only 2(L+ 1) multiplications and 2L additions

per iteration. In order to reduce the sensitivity of standard LMS to the magnitude of input

signal, the normalized LMS (NLMS) algorithm was proposed by introducing a time-varying

step-size that is inversely proportional to variance of the input, namely,

αn+1 = αn +
η

ǫ+ ‖un‖2
enun (2.16)

with ǫ > 0 a regularization parameter to avoid singularity. In the next subsection, we

briefly review the main steps of an analysis of LMS convergence behavior.

2.2.4 LMS convergence analysis

Convergence analysis of the LMS algorithm is based on two criteria:

• Convergence in the mean of the weight vector αn, that is,

lim
n→∞

E{αn} = αopt. (2.17)

• Convergence in the mean-square sense of the weight-error vector vn = αn − αopt,

that is,

lim
n→∞

E{Jms(αn)} = Jms(∞). (2.18)

These two criteria allow us to determine two necessary conditions for convergence of LMS in

the mean and the mean square sense, respectively. To make the convergence analysis of the

LMS algorithm mathematically tractable, it is necessary to introduce some fundamental

independence assumptions (IA) consisting of

1. The input data {un}Nn=1 are statistically independent vectors.

2. The input vector un is statistically independent of all previous samples of the desired

signal {d1, d2, . . . , dn−1}.

3. The desired response dn is only dependent on un, but statistically independent of all

its previous samples.
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2.2.4.1 Mean weight vector behavior

Subtracting the optimal weight vector αopt from both sides of equation (2.14) and using

the definition of vn, we obtain

vn+1 =
(

I − ηunu
⊤
n

)

vn + η eopt(n)un (2.19)

where eopt(n) = dn − α⊤
optun using Wiener solution. Taking the expected value of both

sides of equation (2.19) and using the IA assumptions, which states that vn and Ruu are

independent, yields

E {vn+1} =
(

I − ηRuu

)

E {vn} . (2.20)

Then the following theorem on the convergence behavior of αn can be stated as follows:

Theorem 2.2.1 The weight vector of the LMS algorithm converges to the Wiener solution

as n tends to infinity, namely, limn→∞E{αn} = αopt, if and only if the step-size satisfied

0 < η <
2

eigmax{Ruu}
. (2.21)

Under this condition, we say that the LMS algorithm is convergent in the mean.

2.2.4.2 Mean-square-error behavior

We shall now derive a recursive equation on the correlation matrix of the weight-error

vector vn defined by:

Kn = E{vnv⊤
n }. (2.22)

Post-multiplying equation (2.19) by its transpose, and taking the expected value, yields

(See [Haykin 1991] for detailed procedures)

Kn+1 = Kn − η (RuuKn +KnRuu) + η2Ruutrace{RuuKn}
+ η2RuuKnRuu + η2JminRuu

= (I − ηRuu)Kn(I − ηRuu) + η2Ruutrace{RuuKn}+ η2JminRuu.

(2.23)

Consequently, the above recursive update equation for Kn provides us a tool for evaluating

the transient behavior of the MSE of LMS algorithm

Jms(αn) = E
{

(dn −α⊤
nun)

2
}

= Jmin + trace{RuuKn}.
(2.24)

The difference between the MSE Jms(αn) and minimum MSE Jmin is the second term on

right hand side of (2.24). It is defined as the excess MSE (EMSE) denoted by:

Jex(n) = Jms(αn)− Jmin

= trace{RuuKn}.
(2.25)
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The transient EMSE Jex(n) can be calculated by using the recursive relation (2.23). Ob-

serve that the mean-square estimation error of LMS algorithm is determined by two com-

ponents: the minimum MSE Jmin and the EMSE Jex(n). When time n → ∞ the steady-

state EMSE Jex(n) can be expressed in terms of the eigenvalues λℓ of correlation matrix

Ruu [Haykin 1991]

Jex(∞) = Jmin

∑L
ℓ=1 ηλℓ/(2− ηλℓ)

1−∑L
ℓ=1 ηλℓ/(2− ηλℓ)

. (2.26)

2.3 Preliminaries on kernel-based methods

In this section, we provide some insights into the fundamental concepts and properties

characterizing kernel functions instead of fully rigorous presentation with necessary proofs.

Most of the material presented here can also be found with more details in several papers

and textbooks [Aronszajn 1950, Schölkopf 2000, Shawe-Taylor 2004, Slavakis 2013].

2.3.1 Definition of kernel

Following the development of SVM, the kernel-based methods attracted considerable at-

tention in the machine learning community. In order to study kernel adaptive filtering, we

need first to introduce necessary definition related to kernels and some useful properties.

Definition 2.3.1 (Kernel function) Let U ⊂ R
n be a nonempty set. For all u,u′ ∈ U a

kernel is a function κ defined as

κ : U × U −→ R

(u,u′) 7−→ κ(u,u′).
(2.27)

The kernel function generally returns a real number characterizing the similarity of two

inputs u and u′. If given a non-unit norm kernel κ(u,u′) that corresponds to the feature

mapping φ, its normalized kernel κ̄(u,u′) can be expressed as

κ̄(u,u′) =

〈

φ(u)

‖φ(u)‖ ,
φ(u′)

‖φ(u′)‖

〉

=
κ(u,u′)

√

κ(u,u)κ(u′,u′)
. (2.28)

The concept of kernel function gives rise to the Gram matrix defined as follows:

Definition 2.3.2 (Gram matrix) Given a kernel function κ : U × U → R and input data

{un}Mn=1, the (M ×M) matrix K with arbitrary entry

Kij = κ(ui,uj) for i, j = 1, ...,M (2.29)

is called the Gram matrix or kernel matrix with respect to u1, . . . ,uM .

The Gram matrix, which contains information on inner products between training data is

significant in all kernel-based algorithms. It can also be viewed as an interface between the

input data and the learning algorithms. Additionally in matrix analysis literature, positive

definite matrix is defined as:
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Definition 2.3.3 (Positive definite matrix) A real symmetric (M×M) matrix K satisfying

M
∑

i=1

M
∑

j=1

cicj Kij ≥ 0 (2.30)

for all ci ∈ R is said to be positive definite.

As the term positive definite matrix already defined, we will straightforwardly introduce

the positive definite property in the context of kernel theory.

Definition 2.3.4 (Positive-definite kernel) A kernel function κ(u,u′) on U × U is called

a positive-definite kernel if

1. it is symmetric: κ(u,u′) = κ(u′,u);

2. the Gram matrix is positive definite:

α⊤Kα =
n
∑

i=1

n
∑

j=1

αiαj κ(ui,uj) ≥ 0 (2.31)

with any vector α = [α1, . . . , αn]
⊤ ∈ R

n and set {ui}i=1,...,n. It is strictly positive-

definite only if, for α = 0

α⊤Kα =
n
∑

i=1

n
∑

j=1

αiαj κ(ui,uj) = 0. (2.32)

Positive-definite (PD) kernels can be regarded as generalized dot products. Indeed, any dot

product is a PD kernel. However, linearity in the arguments, which is a standard property

of dot products, does not carry over to general kernels. Another property of dot products,

the Cauchy-Schwarz inequality, does have a natural generalization: if κ is a PD kernel, and

u1,u2 ∈ U , then

|κ(u1,u2)|2 ≤ κ(u1,u1)κ(u2,u2). (2.33)

It can be shown that if κ is a complex PD kernel, its real part is a real-valued PD kernel.

From now on, we only focus on positive-definite kernels, and simply refer to them as kernels.

Definition 2.3.4 ensures that the Gram matrix is symmetric positive definite.

Definition 2.3.5 (Reproducing kernel or Mercer kernel [Mercer 1909]) A reproducing ker-

nel over the set U is a continuous, symmetric, positive-definite function κ : U × U → R,

possessing the so-called producing property:

f(u) = 〈f, κ(·,u)〉H, for all f ∈ H,u ∈ U , (2.34)

in particular κ(u,u′) = 〈κ(·,u), κ(·,u′)〉H.

It is well known now that the above two kernel definitions, either as a positive-definite

kernel, or as a reproducing kernel, are equivalent. Furthermore, it was proved that there is

a one to one correspondence between the space of positive-definite kernels and the space of

reproducing kernel Hilbert spaces.
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2.3.2 Reproducing kernel Hilbert spaces (RKHS)

A vector space U over the real field R is an inner product space if there exists a real-

valued symmetric bilinear map, i.e., inner or dot product 〈·, ·〉, that satisfies 〈u,u〉 ≥ 0.

Furthermore, we will say the inner product is strict if 〈u,u〉 = 0 if and only if u = 0.

Although an inner product space is sometimes referred to as a Hilbert space, its formal

definition still requires additional properties of completeness and separability, as well as

the infinite dimension.

Definition 2.3.6 (Hilbert space [Shawe-Taylor 2004]) A Hilbert space H is an inner prod-

uct space with the additional properties that it is separable and complete. Completeness

refers to the property that every Cauchy sequence {hn}n≥1 of elements of H converges to

an element h ∈ H, where a Cauchy sequence is a sequence satisfying the property that

sup
m>n

‖hn − hm‖ → 0, as n→ ∞. (2.35)

A space H is separable if for any ǫ > 0 there is a finite set of elements h1, . . . , hN of H such

that for all h ∈ H
min
n

‖h− hn‖ < ǫ. (2.36)

The reason for the importance of completeness and separability properties is that they

ensure that the feature space is a complete, separable inner product space.

Definition 2.3.7 (Reproducing kernel Hilbert space [Aronszajn 1950]) Consider a linear

space H of real-valued functions, f defined on a set U . Suppose that in H we can define an

inner product 〈·, ·〉H with corresponding norm ‖·‖H and that H is complete with respect to

that norm, i.e., H is a Hilbert space. We call H a reproducing kernel Hilbert space, if there

exists a function κ: U × U → R with the following properties:

1. For every u ∈ U , κ(·,u) belongs to H (or equivalently κ spans H, i.e. H =

span{κ(·,u), u ∈ U}, where the overline denotes the closure of a set).

2. κ has the reproducing property.

Moreover, κ is a positive-definite kernel and the mapping ψ: U → H, with ψ(u) = κ(·,u),
for all u ∈ U is called the feature map of H. It can be found that the RKHS uniquely

determines κ. The RKHS sometimes roughly equivalent to a space of functions with an

inner product, has already been shown to play an important role in kernel-based methods.

Linear processing successfully performed in RKHS H by mapping the data into a higher

dimensional or possibly infinite feature space, has been proven to be a very powerful tool

to address nonlinear problems in original space.

Theorem 2.3.8 (Riesz representation [Riesz 1907]) Let H be a general Hilbert space and

let H∗ denote its dual space. Every elements Φ of H∗ can be uniquely expressed in the form:

Φ(f) = 〈f, φ〉H, (2.37)

for some φ ∈ H. Moreover, ‖Φ‖H∗ = ‖φ‖H.
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According to the Riesz representation, we have that for every u ∈ U , there exists an unique

element κ(·,u) ∈ H, such that for every f ∈ H, f(u) = 〈f, κ(·,u)〉H. As a consequence,

replacing f by κ(·,u′) we immediately have κ(u′,u) = 〈κ(·,u′), κ(·,u)〉.
The following popular theorem establishes that a RKHS may have infinite dimension,

however, the solution of any regularized regression optimization problem lies in the span

of n particular kernels.

Theorem 2.3.9 (Representer theorem [Schölkopf 2000]) Suppose we are given a nonempty

set U , a positive-definite real-valued kernel κ on U × U , a training set {ui, di}i=1,...,n ∈
U × R, a strictly monotonically increasing real-valued function g on [0,∞], an arbitrary

cost function L: (U × R
2)n → R ∪ {∞}, and a class of functions

F =

{

f ∈ R
U
∣

∣f(·) =
∞
∑

i=1

αi κ(·,xi), αi ∈ R,xi ∈ U , ‖f‖ <∞
}

(2.38)

where ‖·‖ is the norm in the RKHS H associated with κ,

∥

∥

∥

∥

∥

∞
∑

i=1

αiκ(·,xi)
∥

∥

∥

∥

∥

2

=

∞
∑

i,j=1

αiαj κ(xi,xj). (2.39)

Then any f ∈ F minimizing the regularized risk functional

L
(

(u1, d1, f(u1)), . . . , (un, dn, f(un))
)

+ g(‖f‖) (2.40)

admits a representation of the form f(·) = ∑n
i=1 αi κ(·,ui).

The significance of the Representer theorem is that it demonstrates that a whole range of

learning algorithms have optimal solutions that can be expressed as an expansion in terms

of kernel evaluation of the training examples.

Theorem 2.3.10 (Moore [Moore 1916]) For any reproducing kernel κ over the set U , there

exists an unique Hilbert space of function on H for which κ is a reproducing kernel.

Notice that Moore theorem establishes a one-to-one correspondence between RKHS on a

set and positive definite function on the set.

Proposition 2.3.11 (Kernel trick [Scholkopf 2001]) Given an algorithm which is formu-

lated in terms of a positive kernel κ̃, one can construct an alternative algorithm by replacing

κ̃ by another kernel κ.

The best known application of the kernel trick is in the case where κ̃ and κ are the common

dot product in the input domain and the selected kernel function, respectively. Since the

structure of the algorithm remains exactly the same, the nonlinearity is then obtained at no

computational cost. The operation that transforms linear algorithms into their nonlinear

counterparts using kernel is often called kernelization. The kernel trick is not limited to

the classical case. Hence, κ̃ and κ can both be nonlinear kernels corresponding to different

RKHS, namely, different nonlinearities.



2.3. Preliminaries on kernel-based methods 17

Kernel-based methods are a powerful nonparametric modeling tool, whose essence is

transforming the data in lower dimensional input space into a high or infinite dimensional

feature space via a reproducing kernel such that the inner product operation can be com-

puted efficiently through the kernel evaluations. In the machine learning literature, it has

been proven that most linear learning algorithms can be applied to naturally solve non-

linear problems within high-dimensional RKHS using the kernel trick. In Figure 2.3, a

two-dimensional nonlinear regression problem boils down to the three-dimensional linear

regression problem preprocessed by a nonlinear map ψ : [u1, u2]
⊤ → [u21, u

2
2,
√
2u1u2]

⊤.

u1

u2 ψ(·)

0

0

v3

v1

v2

Figure 2.3: Example of nonlinear regression problem solved in a feature space with the

linear method.

2.3.3 Examples of kernel

The kernel function replacing the inner product of two feature vectors commonly corre-

sponding to two inputs, is an attractive computational shortcut to create complicated

feature spaces. In practical approaches directly choosing or defining a kernel function is

equivalent to implicitly defining a feature space in which the constructed algorithms are

performed. Next we shall introduce two widely-used types of basic positive kernel functions.

2.3.3.1 Radial basis function kernels

Radial basis function (RBF) kernels are kernels that can be written in the form

κ(u,u′) = f
(

d(u,u′)
)

(2.41)

where d is a metric on U , and f(·) is a function on R+. The metric is usually defined as

the dot product, that is, d = ‖u− u′‖ =
√

〈u− u′,u− u′〉. In this case, RBF kernels are

translation invariant, κ(u,u′) = κ(u + u0,u
′ + u0) for all u0 ∈ U . In addition, the RBF

kernels have the property of unitary invariance, κ(u,u′) = κ(Tu,Tu′) if T⊤ = T−1 is a

rotation matrix. Some typical examples of RBF kernel functions include:
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• Gaussian kernel is defined as

κ(u,u′) = exp

(

−‖u− u′‖2
2ξ2

)

(2.42)

which is sometimes presented as

κ(u,u′) = exp
(

−ζ‖u− u′‖2
)

(2.43)

where ξ is the kernel bandwidth that specifies the precise shape of the kernel function.

By (2.42) and (2.43), the parameter ζ is clearly equal to 1/2ξ2.

• Locally Gaussian kernel is defined as

κ(u,u′) = max

(

0, 1− ‖u− u′‖
6ξ2

)r

exp

(

−‖u− u′‖2
2ξ2

)

(2.44)

with parameter r > 0.

Theorem 2.3.12 Suppose that u1,u2, . . . ,un ∈ U are distinct input data. The Gram

matrix Rκκ built with the Gaussian kernel has full rank [Micchelli 1986].

In other words, the transformed points ψ(u1), ψ(u2), . . . , ψ(un) are linearly indepen-

dent and span an n-dimensional subspace of H.

• Exponential kernel is defined as

κ(u,u′) = exp

(

−‖u− u′‖
2ξ2

)

. (2.45)

Alternatively, it could also be written as

κ(u,u′) = exp
(

−ζ‖u− u′‖
)

. (2.46)

Observe that the exponential kernel is closely related to the Gaussian kernel function

except of the square of the ℓ2-norm.

• The Laplacian Kernel is defined as

κ(u,u′) = exp

(‖u− u′‖
ξ

)

(2.47)

which is completely equivalent to the exponential kernel, neglecting of being less

sensitive to the changes in the parameter ξ.

Because the adjustable kernel bandwidth plays a major role in the performance of kernel-

based methods, it needs to be carefully tuned to the particular problem. Hence, the selec-

tion of kernel bandwidth is a key point of research for kernel adaptive filters with the RBF

kernel.
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2.3.3.2 Projective basis function kernels

Projective basis function (PBF) kernels are of the form:

κ(u,u′) = g
(

αu⊤u′ + c
)

(2.48)

where g(·) is a general transfer function, and optional constant c ≥ 0. Examples of PBF

kernels determined by different classes of transfer function g(·) are listed as follows:

• The inhomogeneous polynomial kernel is a non-stationary kernel, which is defined as

κ(u,u′) =
(

αu⊤u′ + c
)p

(2.49)

with the polynomial degree p ∈ N.

• When p = 1 we obtain the simplest linear kernel, which is expressed as

κ(u,u′) = αu⊤u′ + c (2.50)

where α is an adjustable slope. Kernel learning algorithms using a linear kernel are

degenerated into their non-kernel or linear counterparts, which is beneficial to the

consideration of the mixture of linear and nonlinear scenarios.

• If neglecting the constant c, the inhomogeneous polynomial kernel reduces to the

homogenous polynomial kernel, which means that

κ(u,u′) =
(

αu⊤u′
)p
. (2.51)

• Cosine kernel is defined as

κ(u,u′) =
u⊤u′

‖u‖‖u′‖ . (2.52)

• Correlation kernel is defined as

κ(u,u′) = exp

(

u⊤u′

‖u‖‖u′‖ − c

)

. (2.53)

• Hyperbolic tangent kernel is also known as the sigmoid kernel and as the multilayer

perceptron (MLP) kernel, which is defined as

κ(u,u′) = tanh
(

αu⊤u′ + c
)

. (2.54)

The sigmoid kernel function comes from the neural networks field, where the bipolar

sigmoid function is often used as an activation function for artificial neurons. Thus

this kernel is widely used in support vector machines due to its origin from neural

network theory.
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2.3.4 Kernel construction

In this last subsection, we describe some well-known basic kernel functions. Since de-

signing a suitable kernel function for an input space is much more straightforward than

manipulating the complex feature space, we will discuss the ways of how to construct more

complicated and useful kernels by combining simpler ones.

Let κ1 and κ2 be symmetric and positive-definite kernels over U × U , U ⊆ R
n, f(·) a

real-valued function on U , φ : U → R
N with κ3 a kernel over R

N × R
N , and a (n × n)

dimensional symmetric positive semi-definite matrix G. Then the following functions are

valid kernels:

1. κ(u,u′) = c1 κ1(u,u
′) + c2 κ2(u,u

′) for c1, c2 ≥ 0.

Proof. Suppose that we have c1 κ1(u,u
′) = 〈√c1φ1(u),

√
c1φ1(u

′)〉 and

c2 κ2(u,u
′) = 〈√c2φ2(u),

√
c2φ2(u

′)〉, then:

κ(u,u′) = c1 κ1(u,u
′) + c2 κ2(u,u

′)

=
〈√

c1φ1(u),
√
c1φ1(u

′)
〉

+
〈√

c2φ2(u),
√
c2φ2(u

′)
〉

=
〈

[
√
c1φ1(u)

√
c2φ2(u

′)], [
√
c1φ1(u)

√
c2φ2(u

′)]
〉

.

(2.55)

We can see that the function κ(u,u′) can be expressed as an inner product. �

The construction of kernel functions by summing several basic kernels is a simple and

effective modeling method within a wide variety of contexts. Kernels κ1 and κ2 can

be of different types, allowing us to model the input data as a sum of independent

functions representing the different types of structure such as linear kernel, periodic

kernel, Gaussian kernel, etc.

2. κ(u,u′) = κ1(u,u
′)κ2(u,u

′).

Proof. Note that the Gram matrix K for κ is the Hadamard product of K1 and

K2, namely, K = K1 ⊙ K2. Suppose that K1 and K2 are covariance matrices of

[x1, . . . , xn]
⊤ and [y1, . . . , yn]

⊤, respectively. Then matrix K is simply the covariance

matrix of [x1y1, . . . , xnyn]
⊤, implying that it is symmetric and positive-definite. �

Multiplying two positive-definite kernels always results in another positive-definite

kernel function. Furthermore, the properties of constructed kernel are determined by

the used kernels as in the additivity case.

3. κ(u,u′) = f(u)f(u′), for a real-valued function f : U → R.

Proof. We can rearrange the bilinear form as follows:

n
∑

i=1

n
∑

j=1

cicj K =
n
∑

i=1

n
∑

j=1

cicj f(u)f(u
′)

=

n
∑

i=1

ci f(u)

n
∑

j=1

cj f(u
′)

=
∥

∥

n
∑

i=1

ci f(u)
∥

∥

2 ≥ 0

(2.56)
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are required. �

4. κ(u,u′) = κ3
(

φ(u), φ(u′)
)

, where φ: U → R
N .

Proof. Since κ3 is a kernel function, the matrix obtained by restricting κ3 to the

points φ(u1), . . . , φ(un) is positive semi-definite as required. �

5. κ(u,u′) = g
(

κ1(u,u
′)
)

, where g(·) is a polynomial with positive coefficients.

Proof. Since each polynomial term is a product of kernels with a positive

coefficient, the proof follows by applying 1 and 2. �

In order to capture the structure of input data, one can manipulate different types and any

number of individual single kernels together using the above mentioned rules to create the

required kernel function.

2.4 The existing kernel adaptive filtering algorithms

Functional characterization of an unknown system usually begins by observing the response

of that system to input signals. Information obtained from such observations can then be

used to derive a model. As illustrated by the block diagram in Figure 2.4, the goal of

system identification is to use pairs (un, dn) of inputs and noisy outputs to derive a func-

tion that maps an arbitrary system input un into an appropriate output d̂n. Dynamic

system identification has played a crucial role in the development of techniques for station-

ary and non-stationary signal processing. Adaptive algorithms use an error signal en to

adjust the model coefficients αn, in an online way, in order to minimize a given objective

function. Most existing approaches focus on linear models due to their inherent simplicity

from points of view of concept and implementation. However, there are many practical

situations, e.g., in communications and biomedical engineering, where the nonlinear pro-

cessing of signals is needed. Unlike linear systems which can be uniquely identified by

their impulse response, nonlinear systems can be characterized by representations ranging

from higher-order statistics, e.g., [Nam 1994, Nikias 1993], to series expansion methods,

e.g., [Schetzen 1980, Wiener 1958]. Polynomial filters, usually called Volterra series based

filters [Mathews 2000], and neural networks [Haykin 1999] have been extensively studied

over the years. Volterra filters are attractive because their output can be expressed as a

linear combination of nonlinear functions of the input signal, which simplifies the design of

gradient-based and recursive least squares adaptive algorithms. Nevertheless, the consid-

erable number of parameters to estimate, which goes up exponentially as the order of the

nonlinearity increases is a severe drawback. Neural networks are proven to be universal ap-

proximators under suitable conditions [Kolmogorov 1957]. It is, however, well known that

algorithms used for neural network training suffer from problems such as being trapped

into local minima, slow convergence and great computational requirements.

Recently, the adaptive filtering in RKHS has become an appealing tool in many fields.

This framework for nonlinear system identification consists of mapping the original input
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Nonlinear system

Adaptive algorithm

un

ψ(un)

αn

zn

en
U → H

dn

κ!,n d̂n

+

+

+

−

X

X

Figure 2.4: Kernel-based adaptive system identification.

data un into a RKHS H, and applying a linear adaptive filtering technique to the resulting

functional data. The block diagram presented in Figure 2.4 presents the basic principles

of this strategy. The input space U is a compact of Rq, κ : U × U → R is a reproducing

kernel as listed in previous section, and (H, 〈·, ·〉H) is the induced RKHS with its inner

product. The additive noise zn is assumed to be white and zero-mean, with variance σ2z .

Considering the least-squares approach, given N input vectors un and desired outputs dn,

the identification problem consists of determining the optimum function ψopt(·) in H that

solves the problem

ψopt = argmin
ψ∈H

{
J(ψ) =

N∑

i=1

(di − ψ(ui))
2 + γ Ω(‖ψ‖)

}
(2.57)

with Ω(·) a real-valued monotonic regularizer on R+ and γ a positive regularization con-

stant. By virtue of the Representer theorem [Schölkopf 2000], the function ψ(·) can

be written as a kernel expansion in terms of available training data, namely, ψ(·) =∑N
j=1 αj κ(·,uj). Therefore, the above optimization problem becomes

αopt = argmin
α∈RN



J(α) =

N∑

j=1

(dj −α⊤κj)
2 + γ Ω(α)



 (2.58)

where κj is the (N × 1) vector with the i-th entry κ(ui,uj). Online processing of time

series data raises the question of how to process an increasing amount N of observations

as new data is collected. Indeed, an undesirable characteristic of problem (2.57)–(2.58) is

that the order of the filters grows linearly with the number of input data. This dramat-

ically increases the computational burden and memory requirement of nonlinear system

identification methods. To overcome this drawback, several authors have focused on the

finite-order models of the form

ψ(·) =
M∑

m=1

αm κ(·,uωm). (2.59)
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Definition 2.4.1 (Dictionary) The set of support vectors denoted by D = {κ(·,uωm)}Mm=1

is called the dictionary, which has to be learnt from input data.

The dimension of the dictionary M is analogous to the order of linear transversal filters.

The subscript ωm allows us to clearly distinguish dictionary elements (or support vectors)

uωm , . . . ,uωM
from ordinary input data un. Online identification of kernel-based models

generally relies on a two-step process at each iteration: a model order control step that

updates the dictionary, and a weight parameters update step. This two-step process is the

essence of most adaptive filtering techniques with kernels [Liu 2010].

2.4.1 Sparsification criteria

In general the observed data are not equally informative, for instance, in SVM only the

data that are close to the boundary are important relative to the others. Moreover, the

same data may convey a different amount of information depending on the sequence of

handling by the learning system. Intuitively, the subsequent data become redundant to

learning system after processing sufficient samples from the same source. Hence a subset

of data must be selected for efficient training and sparse representation especially in a

sequential learning setting. In addition, the most important point is that online finite-

order model (2.59) needs to be controlled by some sparsification rule. In the following, we

shall recall several well-known sparsification criteria of dictionary commonly used in kernel

adaptive filtering.

2.4.1.1 Novelty criterion (NC)

The novelty criterion is a simple way to examine whether the newly arrived data is informa-

tive enough to be added into the online dictionary [Platt 1991]. The two types of measures

for latest data candidate must simultaneously meet the conditions: i) the distance to all

the elements in dictionary is larger than the given threshold δω; ii) the prediction error is

greater than another preset threshold δe; summarized as follows:

min
uωm∈D

‖uωm − un‖ ≥ δω;

‖dn − d̂n‖ ≥ δe.
(2.60)

Otherwise, the new data un should be rejected.

2.4.1.2 Approximate linear dependency (ALD)

The ALD sparsification criterion was proposed in [Engel 2004]. When the input data pair

is available, the ALD criterion may be expressed as

min
∀w∈RM

∥∥h⊤
nw − κ(·,un)

∥∥ ≤ δa (2.61)

with kernel evaluation vector hn = [κ(·,uω1), . . . , κ(·,uωM
)]⊤, the coefficients vector w and

the threshold δa. The arbitrary entry of Gram matrix K using the elements in dictionary
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is written as Kij = κ(uωi
,uωj

) with 1 ≤ i, j ≤ M . Assuming that the Gram matrix K is

inevitable, the optimal coefficient vector can be calculated as

wopt = K−1hn. (2.62)

By replacing w in (2.61) with wopt, the ALD criterion can be reformulated as

hnK
−1hn − κ(un,un) ≤ δa. (2.63)

The above condition indicates that if the input data is approximately linear dependent with

respect to the current dictionary, it turns out to be redundant and will be not accepted. The

computational complexity of the ALD criterion is quadratic O(M2) at each time instant n

using matrix inversion lemma, relative to the length of online dictionary M .

2.4.1.3 Coherence sparsification (CS)

Coherence is a fundamental parameter to characterize a dictionary in linear sparse approx-

imation problems. Within the context of the KAF, it is defined as [Richard 2009]

δ = max
i 6=j

|κ(uωi
,uωj

)| (2.64)

where κ is an unit-norm kernel. Coherence criterion suggests inserting the candidate input

κ(·,un) into the dictionary provided that its coherence remains below a given threshold δ0

max
m=1,...,M

|κ(un,uωm)| ≤ δ0, (2.65)

where δ0 is a parameter in [0, 1[ determining both the level of sparsity and the coherence

of the dictionary. Moreover, it was proven that the dimension of the dictionary gener-

ated by the CS criterion remains finite or upper bounded as n goes infinite for any input

sequence [Richard 2009].

All the above-mentioned criteria use different learning strategies to decide, at each

time instant n, whether κ(·,un) deserves to be inserted into the dictionary or not. Other

well-known criteria include the surprise criterion [Liu 2009a], closed-ball sparsification cri-

terion [Slavakis 2013], presence-based sparsification criterion [Tobar 2014a], etc., but they

are not detailed now for brevity. Without loss of generality, we focus on the CS criterion

for the kernel adaptive filtering algorithms presented in this dissertation due to its simplic-

ity and effectiveness. However, any other dictionary update criterion could be considered

among of the above-mentioned ones without too much effort.

2.4.2 Kernel affine projection algorithm

There is no unique and omnipotent solution to all kinds of nonlinear adaptive filtering

problems as in linear situations. We also have a “kit of tools" including of a variety of

kernel adaptive filtering algorithms inspired by classical linear adaptive filters, each of

which accordingly offers superior features and inevitable defects of its own.

Affine projection algorithm determines a projection of the solution vector α that solves

an under-determined least-squares problem. At each time step n, only the p most recent
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inputs {un, . . . ,un−p+1} and observations {dn, . . . , dn−p+1} are used. Let Hn be the matrix

whose (i, j)-th entry is κ(un−i+1,uωj
), and dn is the column vector whose i-th element is

dn−i+1. The kernel affine projection problem at time instant n can be formulated as

min
α

‖α−αn−1‖2 subject to dn = Hnα. (2.66)

In other words, αn is obtained by projecting αn−1 onto the intersection of the p manifolds

Ai defined as

Ai = {α : κn−i+1α− dn−i+1 = 0}, for i = 1, . . . , p (2.67)

with κn−i+1 = [κ(un−i+1,uω1), . . . , κ(un−i+1,uωM
)]⊤. When the new data un is available,

there are two possible situations according to the coherence sparsification criterion in the

following.

• Rejection case: maxm=1,...,M |κ(un,uωm)| > δ0
In this case κ(·,un) can be reasonably well represented by the kernel functions already

in the dictionary. Thus, it does not need to be inserted into the dictionary. The

solution to (2.66) can be obtained by minimizing the Lagrangian function

J(α, λ) = ‖α−αn−1‖2 + λ⊤(dn −Hnα) (2.68)

where λ is the vector of Lagrange multipliers. Differencing this equation with respect

to α and λ, and setting the derivatives to zero, we get

2(αn −αn−1) = H⊤
nλ (2.69)

Hnαn = dn. (2.70)

Assuming HnH
⊤
n to be nonsingular, these equations lead to λ = 2(HnH

⊤
n )

−1(dn −
Hnαn−1). Substituting this into (2.69), we obtain a recursive update equation for α

αn = αn−1 + ηH⊤
n (ǫI +HnH

⊤
n )

−1(dn −Hnαn−1) (2.71)

where η and ǫ are the step-size parameter and the regularization factor, respectively.

• Acceptance case: maxm=1,...,M |κ(un,uωm)| ≤ δ0
In this case, κ(·,un) cannot be approximated by the kernel functions already in the

dictionary. Then, it will be included into the dictionary and denoted by κ(·,uωM+1).

The order M of (2.59) is increased by one, and Hn is updated to p-by-(M+1) matrix.

To accommodate the new element in αn, the problem (2.66) is reformulated as

min
α

‖α−αn−1‖2 + α2
M+1 subject to dn = Hnα. (2.72)

Note that the (M + 1)-th element αM+1 is incorporated to the objective function as

a regularizing term. In view of (2.71), we have the following recursion:

αn =

[
αn−1

0

]
+ ηH⊤

n (ǫI +HnH
⊤
n )

−1

(
dn −Hn

[
αn−1

0

])
. (2.73)

In summary, we call the set of recursions (2.71) and (2.73) the kernel affine projection

(KAP) algorithm. Next, we explore the idea of using instantaneous approximations for the

gradient vectors.
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2.4.3 Kernel normalized least-mean-square algorithm

Now consider the case p = 1. At each time step n, the algorithm described earlier then

enforces dn = h⊤
nαn where hn is the column vector whose the m-th entry is κ(un,uωm).

The recursive equations (2.72) and (2.73) of KAP algorithm reduce to

• Rejection case: maxm=1,...,M |κ(un,uωm)| > δ0

αn = αn−1 +
η

ǫ+ ‖hn‖2
(dn − h⊤

nαn−1)hn (2.74)

with hn = [κ(un,uω1), . . . , κ(un,uωM
)]⊤.

• Acceptance case: maxm=1,...,M |κ(un,uωm)| ≤ δ0

αn =

[
αn−1

0

]
+

η

ǫ+ ‖hn‖2
(
dn − h⊤

n

[
hn−1

0

])
κn (2.75)

with hn = [κ(un,uω1), . . . , κ(un,uωM+1)]
⊤.

These recursions are referred to as kernel normalized least-mean-square (KNLMS) algo-

rithm. Straightforwardly deleting the normalized terms in the denominator, or based on

the framework of LMS algorithm from (2.10) to (2.14), we are able to obtain the well-known

kernel least-mean-square (KLMS) algorithm under the CS criterion described as follows:

• Rejection case: maxm=1,...,M |κ(un,uωm)| > δ0

αn = αn−1 + η en κω,n (2.76)

with the estimation error en = dn−κ⊤
ω,nαn−1 and the kernelized input vector κω,n =

[κ(un,uω1), . . . , κ(un,uωM
)]⊤.

• Acceptance case: maxm=1,...,M |κ(un,uωm)| ≤ δ0

αn =

[
αn−1

0

]
+ η

(
dn − κ⊤

ω,n

[
αn−1

0

])
κω,n (2.77)

with the kernelized input vector κω,n = [κ(un,uω1), . . . , κ(un,uωM+1)]
⊤.

It needs to be emphasized that the KLMS algorithm is the starting point for theoretical

analysis of kernel adaptive filtering throughout this thesis.

2.4.4 Kernel recursive least-square algorithm

The optimization problem of the kernel recursive least-square (KRLS) algorithm can be

formulated as [Honeine 2007]:

min
α

‖dn −Hnα‖2 + ǫα⊤Knα (2.78)
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where Kn is the (M × M) Gram matrix of the elements in online dictionary, and Hn

is an (n ×M) matrix with (i, j)-th entry κ(ui,uωj
). At time step n the solution of the

problem (2.78) is

αn = P nH
⊤
ndn (2.79)

with P n = (HnH
⊤
n + ǫKn)

−1. Upon the arrival of new input un, there are also two cases

for updating equations of KRLS algorithm using coherence sparsification criterion in the

following.

• Rejection case: maxm=1,...,M |κ(un,uωm)| > δ0

αn = αn−1 +
P n−1κω,n

1 + κ⊤
ω,nP n−1κω,n

(dn − κ⊤
ω,nαn−1) (2.80)

where

P n = P n−1 −
P n−1κω,nκ

⊤
ω,nP n−1

1 + κ⊤
ω,nP n−1κω,n

(2.81)

with the kernelized input vector κω,n = [κ(un,uω1), . . . , κ(un,uωM
)]⊤.

• Acceptance case: maxm=1,...,M |κ(un,uωm)| ≤ δ0

Firstly, the dimension of dictionary becomes M + 1. Then, the coefficients vector

αn−1 and matrix P n−1 are computed according to (2.80) and (2.81) to obtain α̃n

and P̃ n, respectively. The final αn and P n are given by

αn =

[
α̃n

0

]
+

dn − κ⊤
ω,nαn−1

1− κ⊤
ω,nP̃ nκω,n

[
P nκω,n

1/κ(un,un)

]
(2.82)

where

P n =

[
P̃ n 0n−1

0
⊤
n−1 0

]
+

1

1− κ⊤
ω,nP nκω,n

[ −P̃ nκω,n

1/κk(un,un)

]
(2.83)

×
[
− (P̃ nκω,n)

⊤ 1/κk(un,un)
]
.

The KLMS algorithm converges more slowly than the KRLS algorithm. It however

has the advantages of excellent tracking ability and less computational cost relative to

the KRLS algorithm. The KAP algorithm has intermediate characteristics between the

KRLS and KLMS algorithms in terms of convergence speed, computational complexity

and tracking ability.

2.5 Conclusion

This chapter presented some basic aspects of kernel adaptive filtering. We firstly reviewed

the classic linear adaptive filtering framework with special emphasis on the LMS algo-

rithm and its theoretical convergence analysis; in the mean of weight vector and in the

mean-square sense of weight-error vector. Secondly, we introduced the basic concept and

construction of kernel function, which is crucial for kernel-based methods. In addition,
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the definition and properties of RKHS involved in kernel adaptive filtering were presented.

Thirdly, a brief introduction to sparsification criteria for online dictionary learning, and sev-

eral types of existing kernel-based adaptive filtering algorithms including KAP, KNLMS,

KLMS and KRLS algorithms, were also presented.

In next chapter, we will discuss the stochastic convergence behavior of monokernel LMS

algorithm.
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3.1 Introduction

Monokernel adaptive filters have been extensively studied over the last decade, and their

performances have been investigated experimentally and theoretically on a variety of real-

valued nonlinear system identification problems. On the one hand, a very detailed anal-

ysis of the stochastic behavior of the KLMS algorithm with single Gaussian kernel was

reported in [Parreira 2012], and a closed-form condition for convergence was recently in-

troduced in [Richard 2012]. On the other hand, the QKLMS algorithm with ℓ1-norm

regularization was introduced in [Chen 2012a]. It uses ℓ1-norm in order to sparsify the

parameter vector α in the kernel expansion (2.59) thereby remedying the defect of redun-

dancy of online dictionary. A subgradient approach was considered to accomplish this task,
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which contrasts with the more efficient forward-backward splitting algorithm recommended

in [Yukawa 2012, Gao 2013].

Except for the above-mentioned works [Yukawa 2012, Chen 2012a], most of the existing

strategies for dictionary update are only able to incorporate new elements into the dictio-

nary, and to possibly forget the old ones using a forgetting factor. This means that they

cannot automatically discard the obsolete kernel functions, which may be a severe drawback

within the context of a time-varying environment. Recently, sparsity-promoting regular-

ization was considered within the context of distributed linear adaptive filtering. All these

works propose to use, either the ℓ1-norm of the vector of filter coefficients as a regulariza-

tion term, or some other related regularizers to limit the bias relative to the unconstrained

solution. The optimization procedures consist of subgradient descent [Chen 2009], projec-

tion onto the ℓ1-ball [Slavakis 2010], or online forward-backward splitting [Murakami 2010].

Surprisingly, this idea was little used in the context of kernel-based adaptive filtering. To

the best of our knowledge, only [Yukawa 2012] uses projection for least-squares minimiza-

tion with weighted block ℓ1-norm regularization, within the context of multi-kernel adaptive

filtering. There is no theoretical work that analyzes the necessity of updating the dictionary

in a time-varying environment.

Signal reconstruction from a redundant dictionary has been extensively addressed dur-

ing the last decade [Candès 2011], both theoretically and experimentally. In order to repre-

sent a signal with a minimum number of elements of a dictionary, an efficient approach is to

incorporate a sparsity-inducing regularization term such as an ℓ1-norm one in order to select

the most informative patterns. On the other hand, a classical result of adaptive filtering

theory says that, as the length of LMS adaptive filters increases, their mean-square estima-

tion error increases and their convergence speed decreases [Haykin 1991]. This intuitively

suggests to discard obsolete dictionary elements of monokernel LMS adaptive filters in or-

der to improve their performance in non-stationary environments. To check this property

formally, we shall now analyze the behavior of the KLMS algorithm with single Gaussian

kernel depicted in [Parreira 2012] in the case where a given proportion of the dictionary

elements has distinct stochastic properties from the input samples. No theoretical work has

been carried out so far to address this issue. This analytical model will allow us to formally

justify the need for updating the dictionary in an online way. It is interesting to note that

the generalization presented hereafter was made possible by radically reformulating, and

finally simplifying, the mathematical derivation given in [Parreira 2012]. Both models are,

however, strictly equivalent in the stationary case, and useful to the theoretical analysis of

the multikernel LMS algorithm in next chapter.

In this chapter, we present an analytical study of the convergence behavior of the

Gaussian monokernel LMS algorithm in the case where the statistics of the dictionary

elements only partially match the statistics of the input data. This analysis highlights the

need for updating the dictionary in an online way, by discarding the obsolete elements and

adding appropriate ones. Thus, we introduce a monokernel LMS algorithm with ℓ1-norm

regularization in order to automatically perform this task. The stability of this method is

analyzed and, finally, its effectiveness is tested with the simulation experiments.
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3.1.1 Monokernel LMS algorithms

Several versions of the monokernel LMS algorithm or KLMS algorithm for short in this

chapter, whose block diagram is depicted in Figure 3.1, have been proposed in the literature.

The two most significant versions consist of considering the problem (2.57) and performing

gradient descent on the function ψ(·) in H, or considering the problem (2.58) and performing

gradient descent on the parameter vector α, respectively. The former strategy is considered

in [Liu 2008a, Chen 2012b] for instance, while the latter is applied in [Richard 2009]. Both

need the use of an extra mechanism for controlling the order M of the kernel expansion

(2.59) at each time instant n. We shall now recall such a model order selection stage, before

briefly introducing the parameter update stage we recommend.

P

P+

+

+
−

zn

dn

en
d̂n

un

αn

LMS

κω,n

Nonlinear system

U × U ! H

Figure 3.1: Monokernel LMS adaptive filtering.

3.1.1.1 Dictionary update

Recall that the CS criterion described in previous chapter suggests inserting the candi-

date input κ(·,un) into the dictionary provided that its coherence remains below a given

threshold δ0

max
m=1,...,M

|κ(un,uωm)| ≤ δ0. (3.1)

Note that the quantization criterion introduced in [Chen 2012b] consists of comparing

minm=1,...,M ‖un − uωm‖2 with a certain threshold, where ‖ ·‖2 denotes the ℓ2-norm. It

is thus equivalent to the original CS criterion in the case of radial kernels such as the

Gaussian one considered hereafter.1

1Radial kernels are defined as κ(ui,uj) = f(‖ui −uj‖22) with f ∈ C∞ a completely monotonic function

on R+, i.e., the k-th derivative of f satisfies (−1)kf (k)(r) ≥ 0 for all r ∈ R
∗

+, k ≥ 0. See [Cucker 2001].

Decreasing of f on R+ ensures the equivalence between the coherence criterion and the quantization crite-

rion.
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3.1.1.2 Filter parameter update

At iteration n, upon the arrival of new data (un, dn), one of the following alternatives

holds. If κ(·,un) does not satisfy the coherence rule (3.1), the dictionary remains unaltered.

On the other hand, if condition (3.1) is met, the kernel function κ(·,un) is inserted into

the dictionary where it is then denoted by κ(·,uωM+1). The least-mean-square algorithm

applied to the parametric form (2.58) leads to the KLMS algorithm with single Gaussian

kernel function as presented in Chapter 2. For simplicity, note that we have voluntarily

omitted the regularization term in (2.58), that is, γ = 0.

• Rejection case: maxm=1,...,M |κ(un,uωm)| > δ0

αn+1 = αn + η en κω,n (3.2)

with η the step-size parameter. The estimation error is en = dn − κ⊤
ω,nαn with

κω,n = [κ(un,uω1), · · · , κ(un,uωM
)]⊤.

• Acceptance case: maxm=1,...,M |κ(un,uωm)| ≤ δ0

αn+1 =

[
αn

0

]
+ η en κω,n (3.3)

with the kernelized input vector κω,n = [κ(un,uω1), · · · , κ(un,uωM+1)]
⊤.

The CS criterion guarantees that the dictionary dimension is finite for any input sequence

{un}∞n=1 due to the compactness of the input space U [Richard 2009, proposition 2].

3.2 Mean square error analysis

Consider the nonlinear system identification problem shown in Figure 3.1, and

the finite-order model (2.59) based on the Gaussian kernel function κ(ui,uj) =

exp
(
−‖ui − uj‖22/2ξ2

)
. The order M of the model (2.59) or, equivalently, the size M

of the dictionary D, is assumed known and fixed throughout the analysis. The nonlinear

system input data un ∈ R
q×1 are supposed to be zero-mean, independent, and identically

distributed Gaussian vectors. We consider that the entries of un can be correlated, and we

denote by Ruu = E{unu⊤
n } the autocorrelation matrix of the input data. It is assumed

that the input data un or the transformed inputs by kernel ψ(un) are locally or temporally

stationary in the environment needed to be analyzed. The estimated system output is given

by

d̂n = α⊤
n κω,n (3.4)

with αn = [α1(n), . . . , αM (n)]⊤. The corresponding estimation error is defined as

en = dn − d̂n. (3.5)

Squaring both sides of (3.5) and taking the expected value leads to the MSE

Jms(n) = E{e2n} = E{d2n} − 2p⊤
κdαn +α⊤

n Rκκαn (3.6)
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where Rκκ = E{κω,nκ⊤
ω,n} is the correlation matrix of the kernelized input κω,n, and

pκd = E{dn κω,n} is the cross-correlation vector between κω,n and dn. It has already been

proved that Rκκ is positive definite [Parreira 2012] if the input data un are independent

and identically distributed Gaussian vectors, and, as a consequence, the dictionary elements

uωi
and uωj

are statistically independent for i 6= j. Thus, the optimum weight vector is

given by

αopt = R−1
κκ pκd (3.7)

and the corresponding minimum MSE is

Jmin = E{d2n} − p⊤
κdR

−1
κκ pκd. (3.8)

Note that expressions (3.7) and (3.8) are the well-known Wiener solution and minimum

MSE, [Sayed 2003, Haykin 1991], respectively, where the input signal vector has been re-

placed by the kernelized input vector.

In order to determine αopt, we shall now calculate the correlation matrix Rκκ using

the statistical properties of the input un and the kernel definition. Let us introduce the

following notations

‖un − uωi
‖22 + ‖un − uωj

‖22 = y⊤
3 Q3 y3 (3.9)

with

y3 =
(
u⊤
n u⊤

ωi
u⊤
ωj

)⊤
(3.10)

and

Q3 =




2I −I −I

−I I O

−I O I


 (3.11)

where I is the (q×q) identity matrix, and O is the (q×q) null matrix. From [Omura 1965,

p. 100], we know that the moment generating function of a quadratic form z = y⊤Qy,

where y is a zero-mean Gaussian vector with covariance Ry, is given by

ψz(s) = E{esz} =
[
det{I − 2sQRy}

]−1/2
. (3.12)

Making s = −1/(2ξ2) in equation (3.12), we find that the (i, j)-th element of Rκκ is given

by

[Rκκ]ij =

{
rmd =

[
det
{
I3 +Q3R3(i, j)/ξ

2
} ]−1/2

, i = j

rod =
[
det
{
I3 +Q3R3(i, j)/ξ

2
} ]−1/2

, i 6= j
(3.13)

with 1 ≤ i, j ≤M , and rmd and rod are the main-diagonal and off-diagonal entries of Rκκ,

respectively. In equation (3.13), Rp is the (pq × pq) correlation matrix of vector yp (see

expression (3.14) for an illustration of this notation with p = 3), Ip is the (pq×pq) identity

matrix, and det{·} denotes the determinant of a matrix. The two cases (i = j) and (i 6= j)

correspond to different forms of the (3q × 3q) matrix R3(i, j), given by

R3(i, j) =




Ruu O O

O RD(i, i) RD(i, j)

O RD(i, j) RD(j, j)


 (3.14)
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where RD(i, j) = E{uωi
u⊤
ωj
} is the intercorrelation matrix of the dictionary elements.

Compared with [Parreira 2012], the formulations (3.13)–(3.14), and other reformulations

pointed out in the following, allow to address more general problems by making the analyses

tractable. In particular, in order to evaluate the effects of a mismatch between the input

data and the dictionary elements, we shall now consider the case where that they do not

necessarily share the same statistical properties. This situation will occur in a time-varying

environment with most of the existing dictionary update strategies. Indeed, they are only

able to incorporate new elements into the dictionary, and cannot automatically discard

obsolete ones. In [Yukawa 2012, Chen 2012a, Gao 2013], it is suggested to use a sparsity-

promoting ℓ1-norm regularization term to allow minor contributors in the kernel dictionary

to be automatically discarded, both without theoretical results. However, on the one hand,

the algorithm [Yukawa 2012] was proposed in the multi-kernel context. On the other hand,

the algorithm [Chen 2012a] uses a subgradient approach and has quadratic computational

complexity in M .

We shall now suppose that the first L dictionary elements {uωm ∈ R
q : 1 ≤ m ≤ L}

have the same autocorrelation matrix Ruu as the input un, whereas the other (M − L)

elements {uωm ∈ R
q : L < m ≤ M} have a distinct autocorrelation matrix denoted by

R̃uu. In this case, RD(i, j) in equation (3.14) is given by

RD(i, j) =





Ruu, 1 ≤ i = j ≤ L

R̃uu, L < i = j ≤M

O, 1 ≤ i 6= j ≤M

(3.15)

which allows to calculate the correlation matrix Rκκ of the kernelized input via equation

(3.13). Note that RD(i, j) in equation (3.14) reduces to δij Ruu, with δij = 1 if (i = j),

otherwise 0, in the case (L =M) considered in [Parreira 2012].

3.3 Transient behavior analysis

We shall now analyze the transient behavior of the algorithm. We shall successively focus

on the convergence of the weight vector in the mean sense, i.e., E{αn}, and of the mean

square error Jms(n) defined in (3.6).

3.3.1 Mean weight behavior

The weight update equation of KLMS algorithm is given by

αn+1 = αn + η en κω,n. (3.16)

By defining the weight error vector vn = αn − αopt and subtracting αopt from both side

of (3.16), leads to the weight error vector update equation

vn+1 = vn + η en κω,n. (3.17)

From (3.4) and (3.5), and the definition of vn, the error equation is given by

en = dn − κ⊤
ω,n vn − κ⊤

ω,nαopt (3.18)
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and the optimal estimation error is

eon = dn − κ⊤
ω,nαopt. (3.19)

Substituting (3.18) into (3.17) yields

vn+1 = vn + η dn κω,n − η κ⊤
ω,n vn κω,n − η κ⊤

ω,nαopt κω,n. (3.20)

Simplifying assumptions are required in order to make the study of the stochastic be-

havior of κω,n mathematically feasible. The so-called modified independence assumption

(MIA) suggests that κω,nκ
⊤
ω,n is statistically independent of vn. It is justified in detail

in [Minkoff 2001], and shown to be less restrictive than the independence assumption

[Sayed 2003]. We also assume that the finite-order model provides a close enough ap-

proximation to the infinite-order model with minimum MSE, so that E{eon} ≈ 0. Taking

the expected value of both sides of equation (3.20) and using these two assumptions yields

E{vn+1} = (I − ηRκκ)E{vn}. (3.21)

This expression corresponds to the LMS mean weight behavior for the kernelized input

vector κω,n.

3.3.2 Mean square error behavior

Using equation (3.18) and the MIA, the second-order moments of the weights are related

to the MSE through [Sayed 2003]

Jms(n) = Jmin + trace{RκκCv(n)} (3.22)

where Cv(n) = E{vnv⊤
n } is the autocorrelation matrix of the weight error vector vn,

Jmin = E{eon2} denotes the minimum MSE, and trace{RκκCv(n)} is the excess MSE

(EMSE). The analysis of the MSE behavior (3.22) requires a model for Cv(n), which is

highly affected by the kernelization of the input signal un. An analytical model for the

behavior of Cv(n) was derived in [Parreira 2012]. Using simplifying assumptions derived

from the MIA, it reduces to the following recursion

Cv(n+ 1) ≈ Cv(n)− η [RκκCv(n) +Cv(n)Rκκ] + η2 T (n) + η2RκκJmin (3.23a)

with

T (n) = E{κω,n κ⊤
ω,n vn v

⊤
n κω,n κ

⊤
ω,n}. (3.23b)

The evaluation of expectation (3.23b) is an important step in the analysis. It leads to

extensive calculus if proceeding as in [Parreira 2012] because, as κω,n is a nonlinear trans-

formation of a quadratic function of the Gaussian input vector un, it is neither zero-mean

nor Gaussian. In this chapter, we provide an equivalent approach that greatly simplifies the

calculation. This allows us to consider the general case where there is possibly a mismatch

between the statistics of the input data un and the dictionary elements. Using the MIA to

determine the (i, j)-th element of T (n) in equation (3.23b) yields

[T (n)]ij ≈
M∑

ℓ=1

M∑

p=1

E{κω,n(i)κω,n(j)κω,n(ℓ)κω,n(p)} · [Cv(n)]ℓp (3.24)
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where κω,n(i) = κ(un,uωi
). This expression can be written as

[T (n)]ij ≈ trace{K(i, j)Cv(n)} (3.25)

where the (ℓ, p)-th entry of K(i, j) is given by [K(i, j)]ℓ,p = E{esz}, with s = −1/(2ξ2)

and

z = ‖un − uωi
‖22 + ‖un − uωj

‖22 + ‖un − uωℓ
‖22 + ‖un − uωp‖22. (3.26)

Using expression (3.12) leads us to

[K(i, j)]ℓ,p =
[
det{I5 +Q5R5(i, j, ℓ, p)/ξ

2}
]−1/2

(3.27)

with

Q5 =




4I −I −I −I −I

−I I O O O

−I O I O O

−I O O I O

−I O O O I



, (3.28)

and

R5(i, j, ℓ, p) =




Ruu O O O O

O RD(i, i) RD(i, j) RD(i, ℓ) RD(i, p)

O RD(i, j) RD(j, j) RD(j, ℓ) RD(j, p)

O RD(i, ℓ) RD(j, ℓ) RD(ℓ, ℓ) RD(ℓ, p)

O RD(i, p) RD(j, p) RD(ℓ, p) RD(p, p)



, (3.29)

which uses the same block definition as in (3.15). Again, note that RD(i, j) in the above

equation reduces to δij Ruu in the regular case (L = M) considered in [Parreira 2012].

This expression concludes the calculation.

3.4 Steady-state behavior

We shall now determine the steady-state of the recursion (3.23a). Observing that it only

involves linear operations on the entries of Cv(n), we can rewrite this equation in a vectorial

form in order to simplify the derivations. Let vec{·} denote the operator that stacks the

columns of a matrix on top of each other. Vectorizing the matrices Cv(n) and Rκκ by

cv(n) = vec{Cv(n)} and rκκ = vec{Rκκ}, it can be verified that (3.23a) can be rewritten

as

cv(n+ 1) = Gcv(n) + η2Jmin rκκ (3.30)

with

G = I − η(G1 +G2) + η2G3. (3.31)

Matrix G is found by the use of the following definitions:

• I is the identity matrix of dimension M2 ×M2.
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• G1 is involved in the product Cv(n)Rκκ, and is given by G1 = I ⊗Rκκ. It is thus

a block-diagonal matrix, with Rκκ on its diagonal, where ⊗ denotes the Kronecker

tensor product.

• G2 is involved in the product RκκCv(n), and can be written as Rκκ ⊗ I.

• G3 is involved in the matrix T (n) defined as in equation (3.25), namely,

[G3]i+(j−1)M,ℓ+(p−1)M = [K(i, j)]ℓ,p (3.32)

with 1 ≤ i, j, ℓ, p ≤M .

Note that G1 to G3 are symmetric matrices, which implies that G is also symmetric.

Assuming convergence, the closed-formed solution of the recursion (3.30) is given by

cv(n) = Gn
[
cv(0)− cv(∞)

]
+ cv(∞) (3.33)

where cv(∞) denotes the vector cv(n) in steady-state, which is given by

cv(∞) = η2 Jmin (I −G)−1 rκκ. (3.34)

From equation (3.22), the steady-state MSE is finally given by

Jms(∞) = Jmin + trace{RκκCv(∞)} (3.35)

where Jex(∞) = trace{RκκCv(∞)} is the steady-state EMSE.

3.5 Simulation results and discussion

In this section, we present simulation examples to illustrate the accuracy of the derived

model, and to study the properties of the algorithm in the case where the statistics of the

dictionary elements partially match the statistics of the input data. This first experiment

provides the motivation for deriving the online dictionary learning algorithm described

subsequently, which can automatically discard the obsolete elements and add appropriate

ones.

Two examples with abrupt variance changes in the input signal are presented hereafter.

In each situation, the size of the dictionary was fixed beforehand, and the entries of the

dictionary elements were i.i.d. randomly generated from a zero-mean Gaussian distribution.

Each time series was divided into two subsequences. For the first one, the variance of this

distribution was set as equal to the variance of the input signal. For the second one, it was

abruptly set to a smaller or larger value in order to simulate a dictionary misadjustment.

All the parameters were chosen within reasonable ranges collected from the literature.

Notation: In Tables 3.1 and 3.2, dictionary settings are compactly expressed as Di =

{Mi@σi} ∪ {M ′
i@σ

′
i}. This has to be interpreted as: Dictionary Di is composed of Mi

vectors with entries i.i.d. randomly generated from a zero-mean Gaussian distribution

with standard deviation σi, and M ′
i vectors with entries i.i.d. randomly generated from a

zero-mean Gaussian distribution with standard deviation σ′i.
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3.5.1 Example 1

Consider the problem studied in [Parreira 2012, Narendra 1990, Mandic 2004], for which



yn =

yn−1

1 + y2n−1

+ u3n−1

dn = yn + zn

(3.36)

where the output signal yn was corrupted by a zero-mean i.i.d. Gaussian noise zn with

variance σ2z = 10−4. The input sequence un was i.i.d. randomly generated from a zero-

mean Gaussian distribution with two possible standard deviations, σu = 0.35 or 0.15, to

simulate an abrupt change between two subsequences. The overall length of the input

sequence was 4 × 104. Distinct dictionaries, denoted by D1 and D2, were used for each

subsequence. The Gaussian kernel bandwidth ξ was set to 0.02, and the KLMS step-size η

was set to 0.01. Two situations were investigated. For the first one, the standard deviation

of the input signal was changed from 0.35 to 0.15 at time instant n = 2× 104. Conversely,

in the second one, it was changed from 0.15 to 0.35.

Table 3.1 presents the simulation conditions, and the experimental results based on 200

Monte Carlo runs. The convergence iteration number nǫ was determined in order to satisfy

‖cv(∞)− cv(nǫ)‖2 ≤ 10−3. (3.37)

Note that Jmin, Jms(∞), Jex(∞) and nǫ concern convergence in the second subsequence,

with the dictionary D2. The learning curves are depicted in Figures 3.2 and 3.3.

Table 3.1: Summary of simulation results for Example 1.
ξ η σu D1 D2 Jmin Jms(∞) Jex(∞) nǫ

[dB] [dB] [dB]

{10@0.35} -22.04 -22.03 -49.33 32032

0.02 0.01 0.35 → 0.15 {10@0.35} {10@0.15} -22.50 -22.49 -47.25 26538

{10@0.15} ∪ {10@0.35} -21.90 -21.87 -44.71 30889

{10@0.15} -10.98 -10.97 -38.26 32509

0.02 0.01 0.15 → 0.35 {10@0.15} {10@0.35} -11.20 -11.19 -39.64 36061

{10@0.15} ∪ {10@0.35} -11.01 -10.99 -35.81 31614

3.5.2 Example 2

Consider the nonlinear dynamic system studied in [Parreira 2012, Vörös 2003] where the

input signal was a sequence of statistically independent vectors

un = [u1(n) u2(n)]
⊤ (3.38)

with correlated samples satisfying u1(n) = 0.5u2(n)+vu(n). The second component of un,

and vu(n), were i.i.d. zero-mean Gaussian sequences with standard deviation both equal

to
√
0.0656, or to

√
0.0156, during the two subsequences of input data. We considered the

linear system with memory defined by

yn = a⊤ un − 0.2 yn−1 + 0.35 yn−2 (3.39)
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Figure 3.2: Learning curves for Example 1 where σu : 0.35 → 0.15 and D1 = {10@0.35}.
See the first row of Table 3.1.
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Figure 3.3: Learning curves for Example 1 where σu : 0.15 → 0.35 and D1 = {10@0.15}.
See the second row of Table 3.1.
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where a = [1 0.5]⊤ and a nonlinear Wiener function

ϕ(yn) =





yn

3[0.1 + 0.9 y2n]
1/2

for yn ≥ 0

−y2n[1− exp(0.7yn)]

3
for yn < 0

(3.40)

dn = ϕ(yn) + zn (3.41)

where dn is the output signal. It was corrupted by a zero-mean i.i.d. Gaussian noise zn
with variance σ2z = 10−6. The initial condition y1 = 0 was considered. The bandwidth ξ of

the Gaussian kernel was set to 0.05, and the step-size η of the KLMS was set to 0.05. The

length of each input sequence was 4× 104. As in Example 1, two changes were considered.

For the first one, the standard deviation of u2(n) and vu(n) was changed from
√
0.0656

to
√
0.0156 at time instant n = 1 × 104. Conversely, for the second one, it was changed

from
√
0.0156 to

√
0.0656.

Table 3.2 presents the results based on 200 Monte Carlo runs. Note that Jmin, Jms(∞),

Jex(∞) and nǫ concern convergence in the second subsequence, with dictionary D2. The

learning curves are depicted in Figures 3.4 and 3.5.

Table 3.2: Summary of simulation results for Example 2.
ξ η σu2

, σvu D1 D2 Jmin Jms(∞) Jex(∞) nǫ

[dB] [dB] [dB]

{15@
√
0.0656} -20.28 -20.25 -42.04 15519

0.05 0.05
√
0.0656 →

√
0.0156 {15@

√
0.0656} {15@

√
0.0156} -20.27 -20.20 -37.96 12117

{15@
√
0.0156} ∪ {15@

√
0.0656} -20.47 -20.37 -36.68 14731

{15@
√
0.0156} -16.40 -16.37 -38.12 15858

0.05 0.05
√
0.0156 →

√
0.0656 {15@

√
0.0156} {15@

√
0.0656} -16.57 -16.55 -40.39 19269

{15@
√
0.0156} ∪ {15@

√
0.0656} -16.61 -16.57 -36.21 16123

3.5.3 Discussion

We shall now discuss the simulation results. It is important to recognize the significance of

the mean-square estimation errors provided by the model, which perfectly match the aver-

aged Monte Carlo simulation results. The model separates the contribution of the minimum

MSE and EMSE, and makes comparisons possible. The simulation results clearly show that

adjusting the dictionary to the input signal has a positive effect on the performance when

a change in the statistics is detected. This can be done by adding new elements to the

existing dictionary, while at the same time possibly discarding the obsolete elements. Con-

sidering a completely new dictionary led us to the lowest MSE Jms(∞) and minimum MSE

Jmin in Example 1. Adding new elements to the existing dictionary provided the lowest

MSE Jms(∞) and minimum MSE Jmin in Example 2. This strategy can however have a

negative effect on the convergence behavior of the algorithm.

3.6 KLMS algorithm with forward-backward splitting

We shall now introduce a KLMS-type algorithm based on forward-backward splitting, which

can automatically update the dictionary in an online way by discarding the obsolete and
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Figure 3.4: Learning curves for Example 2 with σu2 , σvu :
√
0.0656 →

√
0.0156 and D1 =

{15@
√
0.0656}. See the first row of Table 3.2.
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Figure 3.5: Learning curves for Example 2 with σu2 , σvu :
√
0.0156 →

√
0.0656 and D1 =

{15@
√
0.0156}. See the second row of Table 3.2.
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invalid elements and adding appropriate ones.

3.6.1 Forward-backward splitting method in a nutshell

Consider first the following optimization problem [Bauschke 2011]

α∗ = argmin
α∈RN

{
Q(α) = J(α) + λΩ(α)

}
(3.42)

where J(·) is a convex empirical loss function with Lipschitz continuous gradient and Lips-

chitz constant 1/η0. Function Ω(·) is a convex, continuous, but not necessarily differentiable

regularizer, and λ is a positive regularization constant. This problem has been extensively

studied in the literature, and can be solved with forward-backward splitting [Beck 2009].

In a nutshell, this approach consists of minimizing the following quadratic approximation

of Q(α) at a given point αn, in an iterative way,

Qη(α,αn) = J(αn) +∇J(αn)
⊤(α−αn) +

1

2η
‖α−αn‖22 + λΩ(α) (3.43)

since Q(α) ≤ Qη(α,αn) for any η ≤ η0. Simple algebra shows that the function Qη(α,αn)

admits a unique minimizer, denoted by αn+1, given by

αn+1 = argmin
α∈RN

{
λΩ(α) +

1

2η
‖α− α̂n‖22

}
(3.44)

with α̂n = αn − η∇J(αn). It is interesting to note that α̂n can be interpreted as an

intermediate gradient descent step on the cost function J(·). Problem (3.44) is called

the proximity operator for the regularizer Ω(·), and is denoted by ProxληΩ(·)(·). While

this method can be considered as a two-step optimization procedure, it is equivalent to

a subgradient descent with the advantage of promoting exact sparsity at each iteration.

The convergence of the optimization procedure (3.44) to a global minimum is ensured

if 1/η is a Lipschitz constant of the gradient ∇J(α). See [Bauschke 2011]. In the case

J(α) = 1
2‖d−Kα‖22 considered in (2.58), where K is a (N ×N) matrix, a well-established

condition ensuring the convergence of αn+1 to a minimizer of problem (3.42) is to require

that [Beck 2009]

0 < η < 2/eigmax{K⊤K} (3.45)

where eigmax{·} is the maximum eigenvalue. A companion bound will be derived hereafter

for the stochastic gradient descent algorithm.

Forward-backward splitting is an efficient method for minimizing convex cost functions

with sparse regularization. It was originally derived for offline learning but a generaliza-

tion of this algorithm for stochastic optimization, the so-called FOBOS, was proposed in

[Duchi 2009]. It consists of using a stochastic approximation for ∇J at each iteration. This

online approach can be easily coupled with the KLMS algorithm but, for convenience of

presentation, we shall now describe the offline setup based on problem (2.58) represented

as follows:

α∗ = argmin
α∈RN



J(α) =

N∑

j=1

(dj −α⊤κj)
2 + γ Ω(α)



 . (3.46)
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3.6.2 Application to KLMS algorithm

In order to automatically discard the irrelevant elements from the current dictionary D, let

us consider the minimization problem (2.58) with the sparsity-promoting convex regular-

ization function Ω(·)

α∗ = argmin
α∈RN

{
Q(α) = ‖d−Kα‖22 + λΩ(α)

}
(3.47)

where K is the (N × N) Gram matrix with (i, j)-th entry κ(ui,uj). Problem (3.47) is

of the form (3.42), and can be solved with the forward-backward splitting method. Two

regularization terms are considered.

Firstly, we suggest the use of the well-known ℓ1-norm function defined as Ω1(α) =∑
m |α(m)|. This regularization function is often used for sparse regression and its proximity

operator is separable. Its m-th entry can be expressed as [Bauschke 2011]

(
Proxλη‖·‖1(α)

)
(m) = sign

{
α(m)

}
max

{
|α(m)| − λη, 0

}
. (3.48)

It is called the soft thresholding operator. One major drawback is that it promotes biased

prediction.

Secondly, we consider an adaptive ℓ1-norm function of the form Ωa(α) =
∑

mwm|α(m)|
where the {wm}m is a set of weights to be dynamically adjusted. The proximity operator

for this regularization function is defined by

(
ProxληΩa(·)(α)

)
(m) = sign

{
α(m)

}
max

{
|α(m)| − λη wm, 0

}
. (3.49)

This regularization function has been proven to be more consistent than the usual ℓ1-norm

[Zou 2006], and tends to reduce the bias induced by the latter. Weights are usually chosen

as wm = 1/(|αopt(m)|+ ǫα), where αopt is the least-square solution of the problem (2.58),

and ǫα a small constant to prevent the denominator from vanishing [Candès 2008]. Since

αopt is not available in our online case, we chose wm = 1/(|αn−1(m)|+ǫα) at each iteration

n. This technique, also referred to as reweighted least-square, is performed at each iteration

of the stochastic optimization process. Note that a similar regularization term was used in

[Chen 2009] in order to approximate the ℓ0-norm.

The pseudocode for KLMS algorithm with sparsity-promoting regularization, called

FOBOS-KLMS, is provided in Algorithm 1. It can be noticed that the proximity operator

is applied after the gradient descent step. The trivial dictionary elements associated with

null coefficients in vector αn are eliminated. On the one hand, this approach reduces

to the generic KLMS algorithm in the case λ = 0. On the other hand, FOBOS-KLMS

appears to be the mono-kernel counterpart of the dictionary-refinement technique proposed

in [Yukawa 2012] in the multi-kernel adaptive filtering context. The stability of this method

is analyzed in the next subsection, which is an additional contribution of this chapter.

3.6.3 Stability in the mean

We shall now discuss the stability in the mean sense of the FOBOS-KLMS algorithm. We

observe that the KLMS algorithm with the sparsity inducing regularization can be written
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Algorithm 1 FOBOS-KLMS

1: Initialization

Select the step-size η, and the parameters of the kernel;

Insert κ(·,u1) into the dictionary, α1 = 0.

2: for n = 1, 2, · · · , do

3: if maxm=1,...,M |κ(un,uωm)| > δ0
Compute κω,n and αn using equation (3.2);

4: elseif maxm=1,...,M |κ(un,uωm)| ≤ δ0
Incorporate κ(·,un) into the dictionary;

Compute κω,n and αn using equation (3.3);

5: end if

6: αn = ProxληΩ(·)(αn) using (3.48) or (3.49);

7: Remove κ(·,uωm) from the dictionary if αn(m) = 0.

8: The solution is given as

ψ(un) =
∑M

m=1 αmκ(un,uωm).

9: end for

as

αn = αn−1 + η en κω,n − fn−1 (3.50)

with

fn−1(m) =

{
λη sign

(
α̂n−1(m)

)
if |α̂n−1(m)| ≥ λη

α̂n−1(m) otherwise
(3.51)

where α̂n = αn−1 + η en κω,n. The function sign(α) is defined by

sign(α) =

{
α/|α| α 6= 0;

0 otherwise.
(3.52)

Up to a variable change in λ, the general form (3.50)–(3.51) remains the same with the

regularization function (3.49). Note that the sequence |fn−1(m)| is bounded, by λη for the

operator (3.48), and by λη/ǫα for the operator (3.49).

Theorem 3.6.1 Assume MIA holds. For any initial condition α0, the KLMS algorithm

with sparsity promoting regularization (3.48) and (3.49) asymptotically converge in the

mean sense if the step-size η is chosen to satisfy

0 < η < 2/eigmax{Rκκ} (3.53)

where Rκκ = E{κω,nκ⊤
ω,n} is the (M ×M) correlation matrix of the kernelized input κω,n,

and eigmax{Rκκ} is the maximum eigenvalue of Rκκ.

Proof. To prove this theorem, we observe that the recursion (3.17) for the weight error

vector vn becomes

vn = vn−1 − η κω,n(κ
⊤
ω,n vn−1 + eon)− fn−1. (3.54)
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Taking the expected value of both sides, and using the same assumptions as for (3.21),

leads to

E{vn} = (I − ηRκκ)
nE{v0}+

n−1∑

i=0

(I − ηRκκ)
iE{fn−i−1} (3.55)

with v0 the initial condition. To prove the convergence of E{vn}, we have to show that

both terms on the r.h.s. converge as n goes to infinity. The first term converges to zero if

we can ensure that ν , ‖I − ηRκκ‖2 < 1, where ‖·‖2 denotes the 2-norm (spectral norm).

We can easily check that this condition is met for any step-size η satisfying the condition

(3.53) since

ν = max
m=1,...,M

∣∣1− η eigm{Rκκ}
∣∣ (3.56)

where eigm{Rκκ} is the m-th eigenvalue of Rκκ. Let us show now that condition (3.53)

also implies that the second term on the r.h.s. of equation (3.55) asymptotically converges

to a finite value, thus leading to the overall convergence of this recursion. First it has been

noticed that the sequence |fn−1(m)| is bounded. Thus, each term of this series is bounded

because

‖(I − ηRκκ)
iE{fn−i−1}‖2 ≤ ‖(I − ηRκκ)

i‖2E
{
‖fn−i−1‖2

}

≤
√
M νi fmax

(3.57)

where fmax = λη or λη/ǫα, depending if one uses the regularization function (3.48) or

(3.49). Condition (3.53) implies that ν < 1 and, as a consequence,

n−1∑

i=0

‖
(
I − ηRκκ

)i
E
{
fn−i−1

}
‖2 ≤

√
M fmax

1− ν
. (3.58)

The second term on the r.h.s. of equation (3.55) is an absolutely convergent series. This

implies that it is a convergent series. �

Because the two terms of equation (3.55) are convergent series, we finally conclude that

E{vn} converges to a steady-state value if condition (3.53) is satisfied. Before concluding

this section, it should be noticed that it was shown in [Parreira 2012] that

eigmax{Rκκ} = rmd + (M − 1) rod. (3.59)

Parameters rmd and rod are given by expression (3.13) in the case of a possibly partially

matching dictionary.

3.7 Simulation results of proposed algorithm

We shall now illustrate the good performance of the FOBOS-KLMS algorithm with the

two examples considered in this subection. Experimental settings were unchanged, and the

results were averaged over 200 Monte Carlo runs. The coherence threshold δ0 in Algorithm

1 was set to 0.01.

One can observe in Figures 3.7 and 3.9 that the size of the dictionary designed by

the KLMS with coherence criterion dramatically increases when the variance of the input
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signal increases. In this case, this increased dynamic forces the algorithm to pave the input

space U with additional dictionary elements. In Figures 3.6 and 3.8, the algorithm does not

face this problem since the variance of the input signal abruptly decreases. The dictionary

update with new elements is suddenly stopped. Again, these two scenarios clearly show the

need for dynamically updating the dictionary by adding or discarding elements. Figures 3.6

to 3.9 clearly illustrate the merits of the FOBOS-KLMS algorithm with the regularizations

(3.48) and (3.49). Both principles efficiently control the structure of the dictionary as a

function of instantaneous characteristics of the input signal. They significantly reduce the

order of the KLMS filter without affecting their performances.
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Figure 3.6: Learning curves for Example 1 where σu : 0.35 → 0.15.
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Figure 3.7: Learning curves for Example 1 where σu : 0.15 → 0.35.
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Figure 3.8: Learning curves for Example 2 with σu2 , σvu :
√
0.0656 →

√
0.0156.
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Figure 3.9: Learning curves for Example 2 with σu2 , σvu :
√
0.0156 →

√
0.0656.

3.8 Conclusion

In this chapter, we presented an analytical study of the convergence behavior of the Gaus-

sian KLMS algorithm in the case where the statistics of the dictionary elements only par-

tially match the statistics of the input data. This allowed us to theoretically emphasize the

need for updating the dictionary in an online way, by discarding the obsolete elements and

adding appropriate ones. With the theoretical justification we then proposed the so-called

FOBOS-KLMS algorithm, based on forward-backward splitting to deal with ℓ1-norm reg-

ularization, in order to automatically adapt the dictionary to the instantaneous statistical

characteristics of the input signal. Finally, the stability in the mean of this method was

discussed, and a condition on the step-size for convergence was derived. The merits of

FOBOS-KLMS were illustrated by simulation examples.
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4.1 Introduction

During the last decade, multikernel learning has been extensively studied in the litera-

ture for classification and regression [Bach 2004, Sonnenburg 2006, Rakotomamonjy 2008,

Kloft 2009, Martins 2011, Gonen 2011]. This strategy aims at learning simultaneously a

predictor and its kernel in supervised learning settings. Multikernel learning methods have

been shown to result in improved performance over single-kernel learning methods since

they offer more flexibility to handle nonlinearities. Investigations on multikernel learning

have focused almost exclusively on batch processing, and only few efforts have been di-

rected toward online processing. It is only recently that this framework has been applied

to kernel adaptive filtering. Several strategies were proposed in the literature, mostly of

KLMS type. In a first category are the methods based on a convex combination of kernels

with fixed coefficients. The kernelized data are then fed into a LMS filter. Flexibility is
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provided by the kernel definition, which nevertheless does not vary over time. As it is no

more than a simple monokernel LMS algorithm, we shall refer to it as the single-input

multikernel LMS (SI-MKLMS) algorithm for short in the sequel. As practitioners may be

interested in more flexible models in some situations, in a second category are the KLMS

methods based on a linear combination of kernels that adapt over time. We shall refer

to the approaches as multi-input multikernel LMS (MI-MKLMS) algorithms, which were

introduced independently in [Yukawa 2012, Yukawa 2013] and [Tobar 2012c, Tobar 2014a].

These works also propose acceptance/rejection stages for kernel-based model selection in

an online way. In [Tobar 2012c, Tobar 2014a], model selection is performed with novelty

criterion.

Surprisingly, no theoretical analysis of MKLMS algorithm has already been proposed

until now in the literature. The aim of this chapter is to provide such results when these

algorithms operate with a linear combination of Gaussian kernels with different bandwidth

parameters. This chapter is organized as follows. First, two distinct types of MKLMS

algorithms are introduced in brief. Next, we present a theoretical analysis of the transient

and steady-state behavior of the MI-MKLMS algorithm, in the mean and mean-square

sense. Then we evaluate the accuracy of these analytical models by numerical simulations,

and we compare with the performances of SI-MKLMS and MI-MKLMS. Finally, we provide

some concluding remarks.

4.2 Multikernel LMS algorithms

In this section, we shall introduce two possible principles underlying the so-called multik-

ernel LMS algorithms.

4.2.1 Single-input multikernel LMS algorithm

In some scenarios, practitioners may be interested in more flexible models than the monok-

ernel adaptive filtering model (2.59). A convenient approach is then to consider that the

kernel κ is actually a convex combination of kernels
∑K

k=1 βk κk, that is, with βk ≥ 0 and∑K
k=1 βk = 1. The kernels κk can simply be usual kernels, such as Gaussian kernels, with

different parameter settings. This is the rationale of the so-called SI-MKLMS presented in

Figure 4.1, which is indeed a standard monokernel LMS that combines metric features from

distinct RKHS for possibly more accurate or robust results. This should not be confused

with the multiple kernel learning problem introduced in next subsection. This problem was

introduced in [Lanckriet 2004] for classification, and widely studied since this pioneering

work. With the SI-MKLMS algorithm, coefficients βk are assumed to be fixed beforehand.

Let us start to describe the functional framework adopted for SI-MKLMS. Let {κk}Kk=1

be the family of candidate kernels κk : U×U → R, and let Hk be the RKHS with sub-kernel

κk. Then, the sum of sub-kernels κ =
∑K

k=1 βk κk with βk ≥ 0 is also a reproducing kernel.

The corresponding RKHS, denoted by HSI, contains the functions ϕ =
∑K

k=1 βk ϕk with



4.2. Multikernel LMS algorithms 53

ϕk ∈ Hk. The norm in HSI is defined as [Aronszajn 1950]

‖ϕ‖HSI
= min

βk
{|β1| ‖ϕ1‖H1 + . . .+ |βK | ‖ϕK‖HK

for all ϕ = β1ϕ1 + . . .+ βKϕK , ϕk ∈ Hk}
(4.1)

If HSI is the direct sum of spaces Hk, that is
⋂K
k=1Hk = ∅, then norm (4.1) reduces to

‖ϕ‖HSI
=
∑K

k=1 |βk| ‖ϕk‖Hk
. The counterpart of the finite-order model (2.59) in HSI is

given by

ψ(·) =
M∑

m=1

K∑

k=1

αm βk κk(·,uωm) (4.2)

with ψk(·) =
∑M

m=1 αm κk(·,uωm), ω = {κ(·, uωm)}Mm=1 the dictionary and {αm}Mm=1 the

filter coefficients to be estimated using monokernel LMS algorithm. We can write equation

(4.2) at time instant n as

ψ(un) =
M∑

m=1

K∑

k=1

αm(n)βk κk(un,uωm)

= α⊤
nκ

SI
ω,n

(4.3)

with

αn = [α1(n), . . . , αM (n)]⊤ (4.4)

and

κSI
ω,n =

[
K∑

k=1

βk κk(un,uω1), . . . ,
K∑

k=1

βk κk(un,uωM
)

]⊤
. (4.5)

The kernelized input vector κSI
ω,n contains the input vector un mapped into Hk by each

kernel κk. The block diagram of SI-MKLMS algorithm is depicted in Figure 4.1.
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Figure 4.1: Single-input multikernel LMS algorithm.
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From Figure 4.1, note that SI-MKLMS algorithm is a generalized standard monokernel

LMS method, whose update rule is given by

αn+1 = αn + η en κ
SI
ω,n. (4.6)

As monokernel LMS, the algorithm needs a Rejection/Acceptance stage at each time

instant to update the dictionary. The CS criterion for single kernel can be extended to

operate with multikernel algorithms as follows:

max
m=1,...,M

|κ̄(un,uωm)| ≤ δ0 (4.7)

or

max
m=1,...,M

∣∣∣∣∣∣

∑K
k=1 κk(un,uωm)√∑K

k=1 κk(un,un)
√∑K

k=1 κk(uωm ,uωm)

∣∣∣∣∣∣
≤ δ0. (4.8)

4.2.2 Multi-input multikernel LMS algorithm

Another convenient approach is to linearly combine multiple monokernel models in some

optimal least-squares sense, and to enable these models to adapt over time. This strategy

was introduced in [Yukawa 2012, Yukawa 2013] and [Tobar 2012c, Tobar 2014a]. The au-

thors in [Tobar 2014a] introduced an interesting functional framework based on the concept

of vector-valued RKHS to support this strategy. Similarly, let {κk}Kk=1 be the family of

candidate kernels κk : U × U → R, and let Hk be the RKHS with kernel κk. Kernels κk
can simply be usual kernels, such as Gaussian kernels, with different parameter settings.

Consider the multidimensional mapping

Φ : U −→ M
u 7−→ Φ(u) = (ϕ1(u), . . . , ϕK(u))⊤

(4.9)

with ϕk ∈ Hk, and the inner product in M defined as follows: 〈Φ,Φ′〉M =
∑K

k=1〈ϕk, ϕ′
k〉Hk

.

The space M of vector-valued functions endowed with the inner product 〈·,·〉M is a Hilbert

space as (Hk, 〈·,·〉Hk
) is a Hilbert space for all k. We can define the vector-valued representer

of evaluation

Φ(u) = [Φ(·),κM(·,u)]
=
(
〈ϕ1, κ1(·,u)〉H1 , . . . , 〈ϕK , κK(·,u)〉HK

)⊤ (4.10)

where [·,·] denotes the entrywise inner product, and κM(·,u) =
(
κ1(·,u), . . . , κK(·,u)

)⊤
.

This yields the following reproducing property

κM(u,u′) = [κM(·,u),κM(·,u′)]. (4.11)

Let Ψ(u) be a function in M, and let ψ(u) =
∑K

k=1 ψk(u) denote the scalar-valued function

that sums the entries of the vector-valued function Ψ(u), that is, ψ(u) = 1
⊤Ψ(u) where 1



4.2. Multikernel LMS algorithms 55

is a column vector of ones. The MKLMS algorithm aims at estimating a multidimensional

function Ψ in M that minimizes the regularized least-square error

min
Ψ∈M

J(Ψ) =
1

K

N∑

n=1

‖dn −Ψ(un)‖22 + µ‖Ψ‖2M

=
1

K

N∑

n=1

K∑

k=1

[dn − ψk(un)]
2 + µ

K∑

k=1

‖ψk‖2Hk

(4.12)

with µ a nonnegative regularization constant, and dn = dn1. Let us recall that the direc-

tional Fréchet derivative of J , in the direction γ ∈ M and at the point Ψ ∈ M, is defined

as

∂γJ(Ψ) = lim
ε→0

J(Ψ + εγ)− J(Ψ)

ε
. (4.13)

The gradient ∇J(Ψ) of J at the point Ψ, if it exists, satisfies

∂γJ(Ψ) = 〈∇J(Ψ), γ〉M (4.14)

for all γ ∈ M. Consider the functions T1(Ψ) = Ψ(u), given u ∈ U , and T2(Ψ) = ‖Ψ‖M
from M to R. Using definition (4.14), it can be shown that

∇T1(Ψ) = κM(·,u) ∇T2(Ψ) = 2Ψ (4.15)

Using these expressions to calculate the gradient of the cost function (4.12), and equating

it to zero, yields

Ψ(·) =
[
N∑

n=1

αn,1 κ1(·,un), . . . ,
N∑

n=1

αn,K κK(·,un)
]⊤

(4.16)

where each αk = [α1,k, . . . , αN,k]
⊤ is the unique solution of the linear system (4.17), that

is, by substituting (4.16) into (4.12) and equating to 0 the derivatives of the resulting cost

with respect to αk

(Kk + µI)αk = d (4.17)

where Kk is the Gram matrix with (i, j)-th entry denoted by κk(ui,uj), I is the identity

matrix, and d = [d1, . . . , dN ]
⊤. Finally, the optimal function ψ(u) =

∑K
k=1 ψk(u) is given

by

ψ(·) =
N∑

n=1

K∑

k=1

αn,k κk(·,un). (4.18)

Using the generalized CS criterion defined by (4.7) for controlling model order, the finite-

order model considered with MI-MKLMS algorithm is given by

ψ(·) =
M∑

m=1

K∑

k=1

αm,k κk(·,uωm). (4.19)
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The estimate of MI-MKLMS algorithm at time instant n can be written as

ψ(un) =
M∑

m=1

K∑

k=1

αm,k(n)κk(un,uωm)

= α⊤
nκ

MI
ω,n

(4.20)

where the weight vector and the multi-kernelized input vector are denoted by

αn = vec
{
α1(n), . . . ,αK(n)

}
(4.21)

κMI
ω,n = vec

{
κ(1)
ω,n, . . . ,κ

(K)
ω,n

}
(4.22)

with αk = [α1,k(n), . . . , αM,k(n)]
⊤ and κ

(k)
ω,n = [κk(un,uω1), . . . , κk(un,uωM

)]⊤. In these

expressions, operator vec{·} stacks all its arguments on top of each other. The structure

of MI-MKLMS algorithm is shown in Figure 4.2. Therefore, the recursive update of weight

vector is given by

αn+1 = αn + η en κ
MI
ω,n. (4.23)

Lemma 4.2.1 The Wiener solution does not allow for the estimation of MI-MKLMS

algorithm to be factorized into being exactly equal to the sub-kernel solution of SI-MKLMS

algorithm, when the sub-kernel are selected from the disjoint RKHS {Hk}Kk=1, that is

K∑

k=1

M∑

m=1

αm,k κk(·,uωm) 6=
M∑

m=1

αm

(
K∑

k=1

βk κk(·,uωm)

)

. (4.24)

The proof is referred to [Tobar 2012c]. Obviously, Lemma 4.2.1 presents another significant

discrimination between the two so-called multi-kernel algorithms from the perspective of

mathematical equivalence of estimation functional.

The SI-MKLMS algorithm can be regarded as a sub-case for MI-MKLMS, which con-

siders a more general setting. In addition, the convergence analysis of the SI-MKLMS

can be resorted to our analysis of single Gaussian KLMS with fixed-dictionary derived

in [Chen 2014a]. Therefore, in this thesis, the analysis of the convergence behavior of mul-

tikernel LMS will only be considered in the case of MI-MKLMS in the following. The

convergence behavior of SI-MKLMS will however be compared with MI-MKLMS one in

the experiment section. It needs to be pointed out that the multiple sub-kernel functions

in the analysis are assumed to be Gaussian kernel functions with distinct bandwidths.

4.2.3 Optimal solution

Consider the mean-square error criterion

E{e2n} =

∫

Ω

∫

S
e2n dρS(u,d |ω) dρΩ (4.25)

where ρS and ρΩ are Borel probability measures on S = U ×R and on the dictionary space

Ω, respectively. Except with assumptions such as in [Parreira 2012], where the authors con-

sider that the dictionary elements are governed by the same probability density function as
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Nonlinear system
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Figure 4.2: Multiple-input multikernel LMS algorithm.

the input data, the distribution of dictionary elements ω generated by a dictionary learning

method cannot usually be expressed in closed form. In this chapter, as introduced for the

first time in [Chen 2014a], we consider the dictionary as a part of the filter parameters to

be set. This pave the way for future works on dictionary design techniques driven by filter

performance. Our objective here is to characterize both transient and steady-state of the

mean-square error conditioned on ω, that is,

ES{e2n |ω} =

∫

S
e2n dρS(u,d |ω). (4.26)

We shall use the subscript ω for quantities conditioned on the dictionary, and S for expec-

tations with respect to input data distribution.

We shall now derive the optimal solution of the MSE problem with the multikernel

model (4.20). Given the dictionary ω = {κ1(·, uωm), . . . , κK(·, uωm)}Mm=1 and the multi-

kernelized input vector κω,n defined by (4.22), the estimated system output shown in

Figure 4.2 is defined as

d̂n = α⊤κω,n. (4.27)

The estimation error at time instant n is given by

eω,n = dn − d̂n. (4.28)

Squaring both sides of this equation, and taking the expected value, leads to the MSE

criterion

JMSE(α) = E{e2ω,n} = E{d2n} − 2p⊤
κdα+α⊤Rκκα (4.29)

where

Rκκ = E{κω,n κ⊤
ω,n|ω}

= E{vec{κ1, . . . ,κK} vec{κ1, . . . ,κK}⊤|ω}
(4.30)



58 Chapter 4. Multikernel adaptive filtering algorithm

is the correlation matrix of the multi-kernelized input given by ω, and

pκd = E{dn κω,n|ω} (4.31)

is the cross-correlation vector between κω,n and dn. Assuming that Rκκ is positive definite,

the optimum weight vector is given by

αopt,ω = argmin
α
JMSE(α) = R−1

κκ pκd (4.32)

and the minimum MSE is

Jmin = E{d2n} − p⊤
κdR

−1
κκ pκd. (4.33)

These are the well-known expressions of the Wiener solution and minimum MSE, where

the usual input signal vector is replaced by the multi-kernelized input.

4.3 Convergence behavior analysis of MI-MKLMS algorithm

4.3.1 Preliminaries and assumptions

We shall now derive the convergence model and stability conditions for the MI-MKLMS

algorithm, given ω. Input data un are assumed to be zero-mean mean Gaussian random

vectors with autocorrelation matrix Ruu = E{unu⊤
n }. Let vω,n be the weight-error vector

defined as

vω,n = αn −αopt,ω. (4.34)

Before starting to derive the model, let us recall the following result on the moment

generating function of any quadratic form of a Gaussian vector. Let y = [y1, . . . , yq]
⊤ be a

random vector following Gaussian distribution with zero-mean and covariance matrix

E{y} = 0 and Ryy = E{y y⊤}. (4.35)

Let the random variable τ be the quadratic form of y defined as

τ = y⊤Hy + b⊤y (4.36)

with vector b ∈ R
q. The moment generating function of τ is given by [Omura 1965]

Ψτ (s) = |I − 2sHRyy|−
1
2 · exp

(
s2

2
b⊤Ryy(I − 2sHRyy)

−1b

)
. (4.37)

This result will be very useful to determine the expected values in the sequel. Simplifying

assumptions are required in order to make the study of the stochastic behavior of vω,n

mathematically trackable. The following statistical assumption is required in the analysis:

Assumption 1 κω,n κ
⊤
ω,n is independent of vω,n.

This assumption, called modified independence assumption (MIA), is justified in details

in [Minkoff 2001]. It was successfully employed in several adaptive filter analyses, and

was shown in [Minkoff 2001] to be less restrictive than the independence assumption (IA)

[Sayed 2003]. It is named here for further reference conditioned MIA (CMIA) to distinguish

from the MIA used in [Parreira 2012], since these variables are conditioned on ω.
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4.3.2 Mean weight error analysis

Substituting (4.34) and (4.27) into (4.28), the estimation error eω,n can be expressed as

eω,n = dn − κ⊤
ω,n vω,n − κ⊤

ω,nαopt,ω (4.38)

and the optimal estimation error is

eopt,ω = dn − κ⊤
ω,nαopt,ω. (4.39)

Then replacing (4.38) into (4.23) and using the definition of vω,n, we obtain the following

the weight-error vector recursive equation

vω,n+1 = vω,n + η dn κω,n − η κ⊤
ω,n vω,n κω,n − η κ⊤

ω,nαopt,ω κω,n. (4.40)

Taking expected values of both sides of (4.40), using CMIA and (4.32), lead to the mean

weight error model

E{vω,n+1} = (I − ηRκκ)E{vω,n}. (4.41)

Let us evaluate the correlation matrix of kernelized inputs of MI-MKLMS. We introduce

first some definitions:

î = ī+ (i− 1)M ;

ĵ = j̄ + (j − 1)M ;
(4.42)

with 1 ≤ i, j ≤ K and 1 ≤ ī, j̄ ≤M , then we have 1 ≤ î, ĵ ≤ KM . Moreover, let us define

ξq =





ξ1, 1 ≤ q̄ + (q − 1)M ≤M ;
...

ξK , 1 + (K − 1)M ≤ q̄ + (q − 1)M ≤ KM ;

(4.43)

with 1 ≤ q̄ ≤ M and 1 ≤ q ≤ K. Consequently, the kernel bandwidths ξi and ξj used in

the analysis can be determined by (4.43). The entries of the correlation matrix Rκκ are

given by

[Rκκ ]̂i,ĵ = [Rκκ ]̄i+(i−1)M, j̄+(j−1)M

= Eu

{
exp

(
−
ξ2j ‖un − uω

î
‖2 + ξ2i ‖un − uω

ĵ
‖2

2ε2

)}

= exp

(

− 1

2ε2
[ξ2j ‖uωî

‖2 + ξ2i ‖uωĵ
‖2]
)

· Eu

{

exp

(

− 1

2ε2
[ǫ2‖un‖2 − 2(ξ2juωî

+ ξ2i uωĵ
)⊤un]

)}

(4.44)

with ε = ξi ξj and ǫ = (ξ2i + ξ2j )
1
2 . Let us introduce the notations

ûω
îĵ
= ξ2j uωî

+ ξ2i uωĵ
;

‖ûω
îĵ
‖(2) = ξ2j ‖uωî

‖2 + ξ2i ‖uωĵ
‖2.

(4.45)
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Comparing the second term on the RHS of (4.44) with (4.36), we can obtain H = ǫ2I,

b = −2(ξ2juωī
+ ξ2i uωj̄

) and s = −1/2ε2. Then we get

[Rκκ ]̂i,ĵ = [Rκκ ]̄i+(i−1)M, j̄+(j−1)M

= exp

(
− 1

2ε2
‖ûω

îĵ
‖(2)
)
|I + (ǫ/ε)2Ruu|−

1
2 · exp

(
− 1

2ε4
ûω

îĵ
Ruu(I + (ε/ǫ)2R−1

uu)
−1ûω

îĵ

)
.

(4.46)

In order to express this formula in a more compact manner, we use the identity (I +

A−1)−1 = A(A+ I)−1 with Ruu(I + (ǫ/ε)2Ruu)
−1. Equation (4.46) can be rewritten as

[Rκκ ]̂i,ĵ = [Rκκ ]̄i+(i−1)M, j̄+(j−1)M

= |I + (ǫ/ε)2Ruu|−
1
2 · exp

(
− 1

2ε2ǫ2

[
ǫ2‖ûω

îĵ
‖(2) − ‖ûω

îĵ
‖2
(I+(ε/ǫ)2R−1

uu
)−1

])
.

(4.47)

Theorem 4.3.1 (Stability in the mean) Assume CMIA holds. Then, for any initial condi-

tion, given a dictionary ω, the MI-MKLMS algorithm with Gaussian kernels (4.23) asymp-

totically converges in the mean if the step-size is chosen to satisfy

0 < η <
2

eigmax(Rκκ)
(4.48)

where eigmax(·) denotes the maximum eigenvalue of the matrix. The entries of Rκκ are

given by (4.44).

Proof. Using the unitary similarity transformation, the correlation matrix of multi-

kernelized input vector Rκκ can be expressed as

Rκκ = QΛQ⊤ (4.49)

where Λ = Diag(λ1, · · · , λM ) is a diagonal matrix comprising all positive and real eigenval-

ues of the correlation matrix Rκκ, and Q is the matrix of the corresponding eigenvectors

associated with the eigenvalues. Premultiplying both sides of (4.41) by Q⊤ and using the

matrix property Q⊤ = Q−1, yields

Q⊤E{vω,n+1} = (I − ηΛ)Q⊤E{vω,n}. (4.50)

We define a new set of coordinates v′
ω,n+1 = Q⊤E{vω,n+1}, which represents the projec-

tion of the vector E{vω,n+1} onto the eigenvectors of Rκκ. Then equation (4.41) can be

rewritten as

v′
ω,n+1 = (I − ηΛ)v′

ω,n. (4.51)

We thus have v′ω,n+1(m) = (1 − ηλm)v
′
ω,n(m), m = 1, . . . ,KM . As v′ω,n+1(m) =

(1− ηλm)
nv′ω,0(m), (4.51) converges to zeros if |1− ηλm| < 1 for all m. This leads to the

condition of stability in the mean (4.48). �
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4.3.3 Mean squared error analysis

Using (4.38) and the CMIA, the second-order moments of the weights are related to the

MSE through [Sayed 2003]

JMSE(n) = Jmin + trace
{
RκκCv,ω(n)

}
(4.52)

where Cv,ω(n) = E{vω,n v⊤
ω,n} is the autocorrelation matrix of vω,n and Jmin = E{e2opt,ω}

the minimum MSE given by (4.33). The second term on the RHS of (4.52) is the excess

MSE (EMSE), denoted by JEMSE(n). The study of the MSE behavior (4.52) requires a

model for Cv,ω(n), which highly depends on the transformation of the input signal un

imposed by the multiple kernels. An analytical model for the behavior of Cv,ω(n) was

derived in [Parreira 2012]. It is assumed that the finite-order model provides a close enough

approximation to the infinite-order model with minimum MSE, so that E{e2opt,ω} ≈ 0. Post-

multiplying (4.40) by its transpose, taking the expected value, and using the simplifying

assumptions, we obtain the following recursion

Cv,ω(n+1) ≈ Cv,ω(n)−η
(
RκκCv,ω(n)+Cv,ω(n)Rκκ

)
+η2 T ω(n)+η

2Rκκ Jmin (4.53a)

with

T ω(n) = E
{
κω,n κ

⊤
ω,n vω,n v

⊤
ω,n κω,n κ

⊤
ω,n

}
. (4.53b)

Evaluating (4.53b) is a challenging step in the analysis. As κω,n is a nonlinear transfor-

mation of a quadratic function of the Gaussian input vector un, it is neither zero-mean nor

Gaussian. In [Parreira 2012], for independent Gaussian-distributed dictionary elements,

this leads to extensive calculations of up to eighth-order moments of un. In Chapter 3,

we have provided a greatly simplified alternative to this. However, both situations do not

match the framework developed in this chapter, since the dictionary elements are now con-

sidered as preassigned a priori. The expectation of matrix T ω(n) for MI-MKLMS is derived

as follows:

As the previous definitions in (4.42), we introduce the following notations

ℓ̂ = ℓ̄+ (ℓ− 1)M ;

p̂ = p̄+ (p− 1)M ;
(4.54)

where 1 ≤ ℓ̄, p̄ ≤ M and 1 ≤ ℓ, p ≤ K, following 1 ≤ ℓ̂, p̂ ≤ KM . Using the CMIA to

determine the (̂i, ĵ)-th element of T ω(n) in (4.53b) yields

[T ω(n)]̂i,ĵ ≈
KM∑

ℓ̂=1

KM∑

p̂=1

Eu

{
κω,̂i(n)κω,ĵ(n)κω,ℓ̂(n)κω,p̂(n)

}
· [Cv,ω(n)]ℓ̂,p̂ (4.55)

where

κω,q̂(n) = κ(un,uωq̂
)

= κ(un,uωq̄+(q−1)M
).

(4.56)
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In matrix form, (4.55) can be rewritten as

[T ω(n)]̂i,ĵ ≈ trace
{
K̂ω (̂i, ĵ)Cv,ω(n)

}
. (4.57)

The (ℓ̂, p̂)-th entry of K̂ω (̂i, ĵ) is given by

[K̂ω (̂i, ĵ)]ℓ̂,p̂ = Eu

{
κ(un,uω

î
) · κ(un,uω

ĵ
) · κ(un,uω

ℓ̂
) · κ(un,uωp̂

)
}

= Eu

{
exp

(
−
ε21‖un − uω

î
‖2 + ε22‖un − uω

ĵ
‖2 + ε23‖un − uω

ℓ̂
‖2 + ε24‖un − uωp̂

‖2

2ǫ20

)}

= exp

(

− 1

2ε20
‖ûω

îĵℓ̂p̂
‖(2)
)

· Eu

{

exp

(

− 1

2ε20
[ǫ20‖un‖2 − 2 û⊤

ω
îĵℓ̂p̂

un]

)}

(4.58)

where

ûω
îĵℓ̂p̂

= ε21 uωî
+ ε22 uωĵ

+ ε23 uωℓ̂
+ ε24 uωp̂

‖ûω
îĵℓ̂p̂

‖(2) = ε21 ‖uωî
‖2 + ε22 ‖uωĵ

‖2 + ε23 ‖uωℓ̂
‖2 + ε24 ‖uωp̂

‖2
(4.59)

with the notations of ε0, ε1, ε2, ε3, ε4 and ǫ0 defined as

ε0 = ξi ξj ξℓ ξp;

ε1 = ξj ξℓ ξp;

ε2 = ξi ξℓ ξp;

ε3 = ξi ξj ξp;

ε4 = ξi ξj ξℓ;

ǫ0 =

(

4
∑

t=1

ε2t

)

1
2

.

(4.60)

Now setting H = ǫ20I, b = −2 ūωīj̄ℓ̄p̄
and s = −1/2ε20 according to the moment generating

function (4.36), (4.58) can be reformulated as

[K̂ω (̂i, ĵ)]ℓ̂,p̂ = |I + (ǫ0/ε0)
2Ruu|−

1
2 · exp

(

− 1

2ε20ǫ
2
0

[

ǫ20‖ûωîĵℓ̂p̂
‖(2) − ‖ûω

îĵℓ̂p̂
‖2
(I+(ε0/ǫ0)2R

−1
uu

)−1

]

)

.

(4.61)

4.3.4 Steady-state behavior

Once matrix K̂ω is obtained from (4.61), [T ω(n)]i,j can be computed with these known

elements of K̂ω, and Cv,ω(n). With these expressions, we complete the calculation of the

second order model of the MI-MKLMS algorithm.

In order to facilitate the determination of the steady state of (4.53a), observing that it

only involves linear operations on the elements of Cv,ω(n), we now transform it into the

form of product of matrix and vector as

cv,ω(n+ 1) = Gω cv,ω(n) + η2Jmin rκ,ω (4.62)
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with

Gω = I − η (Gω,1 +Gω,2) + η2Gω,3 (4.63)

where vectors cv,ω(n) and rκ,ω are the lexicographic representations of matrix Cv,ω(n) and

Rκκ, respectively. The entries of Gω are defined as:

• I is the identity matrix with the dimension (K2M2 ×K2M2).

• The matrix Gω,1 corresponds to the product Cv,ω(n)Rκκ. It is a block matrix with

Rκκ along its diagonal, that is,

Gω,1 = IKM×KM ⊗Rκκ (4.64)

where operator ⊗ is Kronecker product.

• The matrix Gω,2 corresponds to the product RκκCv,ω(n). It can be written as

Gω,2 = Rκκ ⊗ IKM×KM . (4.65)

• Any entry of Gω,3 can be determined by

[Gω,3 ]̂i+(ĵ−1)KM,ℓ̂+(p̂−1)KM = [K̂ω (̂i, ĵ)]ℓ̂,p̂ (4.66)

with 1 ≤ î, ĵ, ℓ̂, p̂ ≤ KM .

Note that Gω,1 to Gω,3 are all symmetric matrices, hence, Gω is also symmetric. As-

suming convergence, the closed-form solution of (4.62) can be written as [Luenberger 1979]

cv,ω(n) = Gn
ω

[
cv,ω(0)− cv,ω(∞)

]
+ cv,ω(∞) (4.67)

where cv,ω(∞) denotes the vector cv,ω(n) in steady-state by taking the limit n → ∞,

yielding

cv,ω(∞) = η2 Jmin (I −Gω)
−1 rκ,ω

= η2Jmin [η(Gω,1 +Gω,2)− η2Gω,3]
−1 rκ,ω.

(4.68)

From (4.52), the steady-state MSE is given by

JMSE(∞) = Jmin + trace {RκκCv,ω(∞)} (4.69)

where JEMSE(∞) = trace {RκκCv,ω(∞)} is the steady-state EMSE of the MI-MKLMS

algorithm.

Theorem 4.3.2 (Mean-square stability) Assume CMIA holds. For any initial condition,

given a dictionary ω, the second-order weight-error vector recursion (4.62) of the MI-

MKLMS algorithm is mean-square stable if, and only if, the matrix Gω is stable. If the

step size is sufficiently small so that the approximation:

Gω ≈ R⊤
κκ ⊗Rκκ. (4.70)

holds, the mean-square stability is ensured by the stability of Rκκ.
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4.4 Simulation results and discussion

In this section, we consider two problems of nonlinear system identification already pre-

sented in Chapter 3 to validate the analytical models of the two so-called MKLMS algo-

rithms. Without loss of generality, the total number of sub-kernels K was set to 2, and all

the simulation results were averaged over 200 Monte Carlo runs. The nonnegative mixing

parameters [β1, β2] of the SI-MKLMS algorithm were set to [0.5, 0.5] in all cases.

4.4.1 Example 1

Consider the input sequence

un = ρ un−1 + σu
√
1− ρ2wn (4.71)

with wn an i.i.d. noise signal driven by standard normal distribution. The input sequence

un were zero-mean i.i.d. Gaussian noise with standard deviation σu = 0.5, and ρ was set

to 0.5. The nonlinear system was defined as follows:

{
yn = 0.5un − 0.3un−1

dn = yn − 1.25 y2n + 0.25 y3n + zn
(4.72)

where the output signal dn was corrupted by a zero-mean white Gaussian noise zn with

standard deviation σz = 0.1. At each time instant n, the measured input data and reference

signal were un = [un, un−1]
⊤ and dn, respectively. The twenty-five dictionary elements

were randomly pre-selected by the CS criterion with threshold δ0 = 0.01 and ξ = 0.2. The

simulation conditions and the results of SI-MKLMS algorithm and MI-MKLMS algorithm

are listed in Table 4.1 and Table 4.2. Figures 4.3 and 4.4 show that the model predictions of

SI-MKLMS and MI-MKLMS consistently agree with Monte Carlo simulations in transient

and steady-state stages.

Table 4.1: Summary of simulation results of the SI-MKLMS algorithm for Example 1.
Algorithm M η ξ Jmin Jms(∞) JEMSE(∞)

[dB] [dB] [dB]

KLMS
25 0.1

0.2 -15.46 -15.41 -34.92

0.25 -17.52 -17.44 -35.03

SI-MKLMS [0.2; 0.25] -16.69 -16.62 -35.18

4.4.2 Example 2

As a second design example, we considered the nonlinear dynamic fund-flow control problem

studied in [Vörös 2003] where the input signal was a sequence of statistically independent

vectors generated by (4.71) with σu = 0.25 and ρ = 0.5. Consider a linear system with

memory defined by

xn = a⊤ un − 0.2xn−1 + 0.35xn−2 (4.73)
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Table 4.2: Summary of simulation results of MI-MKLMS for Example 1.
Algorithm M η ξ Jmin JMSE(∞) JEMSE(∞)

[dB] [dB] [dB]

KLMS
25 0.1

0.2 -15.46 -15.41 -34.92

0.25 -17.52 -17.44 -35.03

MI-MKLMS [0.2; 0.25] -19.02 -18.90 -34.28

KLMS
25 0.1

0.2 -15.48 -15.43 -34.94

0.4 -19.76 -19.56 -33.07

MI-MKLMS [0.2; 0.4] -19.81 -19.56 -32.09
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Figure 4.3: Learning curves of SI-MKLMS algorithm for Example 1 (ξ1 = 0.2, ξ2 = 0.25).

where a = [1 0.5]⊤ and a nonlinear Wiener function

y(n) =





xn

3[0.1 + 0.9x2n]
1/2

for xn ≥ 0

−x2n[1− exp(0.7xn)]

3
for xn < 0,

(4.74)

dn = yn + zn (4.75)

where dn is the output signal, corrupted by a zero-mean white Gaussian noise zn with

variance σz = 0.01. The initial condition y1 = 0 was considered in this example. The

forty-six dictionary elements were randomly generated by the CS criterion with threshold

δ0 = 1 × 10−4 and ξ = 0.05. The simulation conditions and the results of SI-MKLMS

algorithm and MI-MKLMS algorithm are listed in Table 4.3 and Table 4.4. The accuracy

and effectiveness of theoretical models are illustrated in Figures 4.5 and 4.6.

4.4.3 Discussion

From the comparisons of simulation results, we can provide the following conclusions:



66 Chapter 4. Multikernel adaptive filtering algorithm

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

Single kernel Monte Carlo MSE
Multi-kernel Monte Carlo MSE
Theoretical MSE
Minimum MSE
Steady-State MSE

ξ2 = 0.25

ξ1 = 0.2

[ξ1, ξ2] = [0.2, 0.25]

(a) Simulated and theoretical MSE curves.

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-35

-30

-25

-20

-15

-10

-5
Theoretical MSE
EMSE
Minimum MSE
Steady-State MSE
Steady-State EMSE

ξ1 = 0.2 ξ1 = 0.25

ξ1 = 0.25

ξ1 = 0.2

[ξ1, ξ2] = [0.2, 0.25]

(b) Theoretical MSE and EMSE curves.

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-22

-20

-18

-16

-14

-12

-10

Single kernel Monte Carlo MSE
Multi-kernel Monte Carlo MSE
Theoretical MSE
Minimum MSE
Steady-State MSE

ξ1 = 0.2
[ξ1, ξ2] = [0.2, 0.4]

ξ2 = 0.4

(c) Simulated and theoretical MSE curves.

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-35

-30

-25

-20

-15

-10

-5
Theoretical MSE
EMSE
Minimum MSE
Steady-State MSE
Steady-State EMSE

ξ2 = 0.4

ξ1 = 0.2

ξ1 = 0.2

ξ1 = 0.4
[ξ1, ξ2] = [0.2, 0.4]

[ξ1, ξ2] = [0.2, 0.4]

(d) Theoretical MSE and EMSE curves.

Figure 4.4: Learning curves of MI-MKLMS algorithm for Example 1 (ξ1 = 0.2, ξ2 = 0.25

for (a) and (b); ξ1 = 0.2, ξ2 = 0.4 for (c) and (d)).

Table 4.3: Summary of simulation results of SI-MKLMS for Example 2.
Algorithm M η ξ Jmin JMSE(∞) JEMSE(∞)

[dB] [dB] [dB]

KLMS
46 0.05

0.05 -19.02 -19.01 -44.17

0.085 -24.58 -24.54 -45.11

SI-MKLMS [0.05; 0.085] -22.46 -22.44 -45.27

1. The predictions of two multi-kernel analysis models perfectly match the Monte Carlo

simulations as shown in Figures 4.3 to 4.6. When the total number of sub-kernels K

is set 1, it is evident that both multi-kernel LMS algorithms reduce to the monokernel

LMS algorithm. In other words, the monokernel LMS algorithm is a special case of
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Table 4.4: Summary of simulation results of MI-MKLMS for Example 2.
Algorithm M η ξ Jmin JMSE(∞) JEMSE(∞)

[dB] [dB] [dB]

KLMS
46 0.05

0.05 -19.03 -19.01 -44.18

0.085 -24.53 -24.49 -45.06

MI-MKLMS [0.05; 0.085] -26.39 -26.33 -45.59

KLMS
46 0.05

0.05 -19.02 -19.00 -44.17

0.15 -28.65 -28.53 -44.19

MI-MKLMS [0.05; 0.15] -28.71 -28.58 -43.77

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-28

-26

-24

-22

-20

-18

-16

-14

-12

Single kernel Monte Carlo MSE
Multi-kernel Monte Carlo MSE
Theoretical MSE
Minimum MSE
Steady-State MSE

ξ1 = 0.05

[ξ1, ξ2] = [0.05, 0.085]
ξ2 = 0.085

(a) Simulated and theoretical MSE curves.

Iteration n ×10
4

0 1 2 3 4 5

M
S
E
(d
B
)

-45

-40

-35

-30

-25

-20

-15

Theoretical MSE
EMSE
Minimum MSE
Steady-State MSE
Steady-State EMSE

ξ2 = 0.085

ξ1 = 0.05

[ξ1, ξ2] = [0.05, 0.085]

ξ2 = 0.085

[ξ1, ξ2] = [0.05, 0.085]
ξ1 = 0.05

(b) Theoretical MSE and EMSE curves.

Figure 4.5: Learning curves of SI-MKLMS algorithm for Example 2 (ξ1 = 0.05, ξ2 = 0.085).

the MKLMS algorithms.

2. SI-MKLMS algorithm allows to combine the capability of sub-kernels into an inte-

grated single kernel. Hence, it is possible to trade off the convergence speed and

MSE of monokernel LMS algorithm by tuning the weight coefficients βk, which can

be optimized by gradient descent method at each iteration [Rakotomamonjy 2008,

Chen 2013c]. Therefore, the SI-MKLMS is for instance appropriate in case of lack of

prior statistical information on input data.

3. When the bandwidths of sub-kernels uniformly cover the interval between minimum

and maximum bandwidth of single Gaussian kernel [ξmin ξmax], the performance of

MI-MKLMS algorithm are superior to SI-MKLMS and corresponding monokernel

LMS, because of its faster convergence speed and lower MSE as shown in Figures 4.4

and 4.6. It is an effective and feasible method that cascading more sub-kernels, i.e.,

increasing the number K to cover the larger range of required bandwidth. Neverthe-

less, this increases the computational cost.
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Figure 4.6: Learning curves of MI-MKLMS algorithm for Example 2 (ξ1 = 0.05, ξ2 = 0.085

for (a) and (b); ξ1 = 0.05, ξ2 = 0.15 for (c) and (d)).

4.5 Conclusion

In this chapter we presented the two of multi-kernel LMS schemes and discussed their

characteristics. Then we analyzed the convergence behavior of the MI-MKLMS algorithm

with pre-tuned dictionary. Finally, numerical simulations validated the accuracy of the

theoretical models of the MI-MKLMS. We further compared the performance of SI-MKLMS

and MI-MKLMS algorithms.
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5.1 Introduction

Kernel-based adaptive filtering algorithms for complex data have recently attracted atten-

tion since they ensure phase processing. This is of importance for applications in com-

munication, radar, sonar, etc. The concept and properties of Wirtinger’s calculus was

formally introduced to calculate the gradients of the non-holomorphic cost function defined

in general complex RKHS [Bouboulis 2010]. Afterwards, two schemes of complexified real

kernel LMS and pure complex kernel LMS were proposed in [Bouboulis 2011]. A direct

extension of the derivations in [Parreira 2012] was proposed in [Thomas 2013] to analyze

the convergence behavior of complex KLMS algorithm (CKLMS). The augmented complex

LMS (ACLMS) algorithm was presented in [Mandic 2009, Kung 2009], and its nonlinear

counterpart augmented normalized complex KLMS (ANCKLMS) approach was described

in [Bouboulis 2012] and [Tobar 2012a]. These works show that the augmented complex-

valued algorithms provide significantly improved performance compared with the usual

complex-valued algorithms.
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The aim of this chapter is to study the convergence behavior of the augmented complex

Gaussian KLMS algorithm. First, we present two complex monokernel adaptive filtering

algorithms: complexified real kernel LMS and pure complex kernel LMS. Then, some def-

initions and a general framework are introduced for pure complex multikernel adaptive

filtering algorithms. This framework relies on multikernel adaptive filters that has previ-

ously been derived for use with real-valued data in [Yukawa 2012, Tobar 2014a, Gao 2014a,

Pokharel 2013]. Next, we derive models for the convergence behavior in the mean and

mean-square sense of the ACKLMS algorithm with complex Gaussian kernels. Finally, the

accuracy of these models is checked with simulation results.

5.2 Complex monokernel adaptive filtering algorithms

In this section, we shall briefly introduce two existing complex monokernel adaptive algo-

rithms.

5.2.1 Complexified kernel LMS algorithm

Consider the complex input/output sequence {(u(n), d(n))}Nn=1 with u(n) ∈ U and d(n) ∈
C, where U is a compact of CL. The complex input vector can be expressed in the form

u(n) =
√

1− ρ2 ure(n) + iρuim(n)

= uI(n) + iuQ(n)
(5.1)

where the subscripts I and Q denote “in-phase" and “quadrature" components, and i =√
−1. The sequence ure(n) (resp., uim(n)) is supposed to be zero-mean, independent, and

identically distributed according to a real-valued Gaussian distribution. The entries of each

input vector ure(n) (resp., uim(n)) can, however, be correlated. In addition, the sequences

ure(n) and uim(n) are assumed to be independent. This implies that E{u(n − i)uH(n −
j)} = 0 for i 6= j, where the operator (·)H denotes Hermitian transpose. The circularity

of input data is controlled by parameter ρ. Setting the parameter ρ =
√
2/2 results in a

circular input, while ρ approaching to 0 or 1 leads to a highly non-circular input.

The essence of the so-called complexified kernel LMS is actually the generalized real

mono-kernel LMS approach applied stacking the real-valued input vectors uI(n) and

uQ(n) as

ũ(n) =
[
u⊤
I (n) u⊤

Q(n)
]⊤ ∈ R

2L×1. (5.2)

The block diagram of the complexified kernel LMS algorithm is depicted in Figure 5.1.

The additive noise z(n) is assumed to be white and zero-mean, with variance σ2z . Let the

input space U2 be a compact of R
2L, κR : U2 × U2 → H2 be a real-valued reproducing

kernel, and
(
H2, 〈·, ·〉

)
H2 be the induced real RKHS with its inner product. The real valued

kernel function can be chosen, e.g., as the Gaussian kernel defined in Chapter 2

κR(ũ, ṽ) = exp

(
−‖ũ− ṽ‖22

2ξ2

)
(5.3)

with ũ, ṽ ∈ R
2L, and ξ the kernel bandwidth.
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At iteration n, upon the arrival of new complex data pair {u(n), d(n)}, one of the

following alternatives holds based on the CS criterion. If κ(·,u(n)) does not satisfy the

CS rule, the dictionary remains unchanged. On the other hand, if the condition (3.1) is

met, the input u(n) is added to the dictionary where it is then denoted by κ(·,u(ωM+1)).

Transforming the complex data into real-valued data and applying monokernel LMS, we

obtain the complexified kernel LMS algorithm described as follows [Bouboulis 2011]

• Rejection case: maxm=1,··· ,M

∣∣κR(ũ(n), ũ(ωm))
∣∣ > δ0

α(n+ 1) = α(n) + η e(n)κR(ωn) (5.4)

• Acceptance case: maxm=1,··· ,M

∣∣κR(ũ(n), ũ(ωm))
∣∣ ≤ δ0

α(n+ 1) =

[
α(n)

0

]
+ η e(n)κR(ωn) (5.5)

where η is a positive step-size, and e(n) = d̃(n) − α⊤(n)κR(ωn) is the estimation

error with

κR(ωn) =
[
κR(ũ(n), ũ(ω1)), · · · , κR(ũ(n), ũ(ωM ))

]⊤
. (5.6)

The estimated output at iteration n is given by

d̂(n) =
M∑

m=1

αm(n) κR(ũ(n), ũ(ωm)). (5.7)

U2
× U2

! H2
P

P+

+

+
−

z(n)

d(n)

e(n)
d̂(n)

u(n)

α(n)

KLMS

κR(!n)

Nonlinear system

Figure 5.1: Block diagram of complexified kernel LMS algorithm.

5.2.2 Pure complex kernel LMS algorithm

Let κC : U×U → C be a complex reproducing kernel. We denote by (H, 〈·, ·〉H) the induced

complex RKHS. Complex reproducing kernels include in particular the Szego kernel, the
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Bergman kernel, and the pure complex Gaussian kernel. The latter is the extension of

the Gaussian kernel for complex arguments. The pure complex Gaussian kernel is defined

as [Steinwart 2006]

κC(u,v) = exp

(
−
∑L

ℓ=1 (uℓ − v∗ℓ )
2

2ξ2

)

(5.8)

with uℓ and vℓ the ℓ-th entries of u,v ∈ C
L. The parameter ξ > 0 is the kernel bandwidth

and (·)∗ denotes the conjugate operator. The conjugate of kernel κC(u,v) is defined by

κ⋆C(u,v) = exp

(

−
∑L

ℓ=1 (vℓ − u∗ℓ )
2

2ξ2

)

. (5.9)

Note that (·)⋆ is defined on kernels and should not be confounded with the complex conju-

gate (·)∗. We shall focus on the above complex Gaussian kernel in the sequel.

Calculating the gradient ∇αJ(α) enables to formulate steep-descent algorithms. For

detailed procedures and formulations, please refer to [Bouboulis 2011]. According to the

basic scheme of conventional complex LMS we can obtain the nonlinear pure complex kernel

LMS algorithm:

• Rejection case: maxm=1,··· ,M

∣

∣κC(u(n),u(ωm))
∣

∣ > δ0

α(n+ 1) = α(n) + η e∗(n)κC(ωn) (5.10)

• Acceptance case: maxm=1,··· ,M

∣

∣κC(u(n),u(ωm))
∣

∣ ≤ δ0

α(n+ 1) =

[

α(n)

0

]

+ η e∗(n)κC(ωn) (5.11)

where e(n) = d(n)−αH(n)κC(ωn) is the estimation error and

κC(ωn) =
[

κC(u(n),u(ω1)), · · · , κC(u(n),u(ωM ))
]⊤

. (5.12)

The estimated output at iteration n is given by

d̂(n) =
M
∑

m=1

α∗
m(n) κC(u(n),u(ωm)). (5.13)

The basic principles of pure complex kernel LMS algorithm were illustrated in Figure 5.2.

We shall show in the next section that pure complex kernel LMS algorithm is a particular

case of the augmented complex kernel LMS algorithm.

5.3 Complex multikernel adaptive filtering

5.3.1 The framework

Let {κC,k}Kk=1 be the family of candidate complex kernels, and Hk the RKHS defined by

each κC,k. Consider the space H of multidimensional mappings

Φ : C −→ C
K

u 7−→ Φ(u) = col
{

ϕ1(u), . . . , ϕK(u)
} (5.14)
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Figure 5.2: Block diagram of pure complex kernel LMS algorithm.

with ϕk ∈ Hk and col{·} the operator that stacks its arguments on top of each other. Let

〈·, ·〉H be the inner product in H defined as

〈Φ,Φ′〉H =
∑K

k=1〈ϕk, ϕ′
k〉Hk

. (5.15)

The space H equipped with the inner product 〈·, ·〉H is a Hilbert space as (Hk, 〈·, ·〉Hk
) is

a complex Hilbert space for all k. We can then define the vector-valued representer of

evaluation κH(·,u) such that

Φ(u) = [Φ,κH(·,u)] (5.16)

with κH(·,u) = col{κC,1(·,u), . . . , κC,K(·,u)} and [·, ·] the entrywise inner product. This

yields the following reproducing property

κH(u,v) = [κH(·,u),κH(·,v)]. (5.17)

Let Ψ = col{ψ1, . . . , ψK} be a vector-valued function in space H, and let ψ =
∑K

k=1 ψk
with ψk ∈ Hk be the scalar-valued function that sums the entries of Ψ, namely, ψ = 1

⊤
KΨ

with 1K the all-one column vector of length K.

Given an input-output sequence {(d(n),u(n))}Nn=1, we aim at estimating a multidimen-

sional function Ψ in H that minimizes the regularized least-square error

min
Ψ∈H

J(Ψ) =

N∑

n=1

∣∣d(n)− 1
⊤
KΨ(u(n))

∣∣2 + λ‖1⊤KΨ‖2H (5.18)

with λ ≥ 0 a regularization constant. By virtue of the generalized multidimensional repre-

senter theorem, the optimum function Ψ can be written as

Ψ(·) = col
{ N∑

n=1

α∗
n,k κC,k(·,u(n))

}K
k=1

. (5.19)
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For simplicity, without loss of generality, we shall omit the regularization term in prob-

lem (5.18), which can be reformulated as

min
α
J(α) =

N∑

n=1

∣∣d(n)−
K∑

k=1

αH
k κC,k(n)

∣∣2 (5.20)

where α = col{α1, . . . ,αK} with αk = (α1,k, . . . , αN,k)
⊤ is the unknown weight vector, and

κC,k(n) is the N × 1 kernelized input vector with j-th entry κC,k(u(j),u(n)). Calculating

the directional derivative of J(α) with respect to α by Wirtinger’s calculus yields

∂αk
J(α) = −2

N∑

n=1

e∗(n)κC,k(·,u(n)). (5.21)

where e(n) = d(n)−∑K
k=1α

H
k κC,k(n). Approximating (5.21) by its instantaneous estimate

∂αk
J(α) ≈ −2 e∗(n)κC,k(·,u(n)), we obtain the stochastic gradient descent algorithm:

α(n+ 1) = α(n) + η e∗(n)κH(n) =
n∑

i=1

η e∗(i)κH(i) (5.22)

with κH(n) = col{κC,k(n)}Kk=1 the complex kernelized input vector, and e(n) = d(n) −
αH(n)κH(n) the estimation error. Finally, the optimal function is of the form

ψ(·) =
N∑

n=1

K∑

k=1

α∗
n,k κC,k(·,u(n)). (5.23)

5.3.2 Augmented complex kernel least-mean-squared algorithm

In order to overcome the problem of the increasing amount n of observations in an online

context, a fixed-size model is usually adopted:

ψ(·) =
M∑

m=1

K∑

k=1

α∗
m,k κC,k(·,u(ωm)) (5.24)

where ω , {κH(·,u(ωm))}Mm=1 is the so-called dictionary, and M its length. Limiting

the number of monokernel filters to K = 2, and setting the two kernels to (5.8)– (5.9), the

augmented complex kernel least-mean-squared (ACKLMS) algorithm based on model (5.24)

is given by (See [Bouboulis 2012] for an introduction to ACKLMS):

d̂(n) =

M∑

m=1

[
α∗
1,m(n)κC

(
u(n),u(ωm)

)
+ α∗

2,m(n)κ
⋆
C

(
u(n),u(ωm)

)]

= αH(n)κH,ω(n).

(5.25)

The block diagram of ACKLMS algorithm is depicted in Figure 5.3. The ACKLMS al-

gorithm can be viewed as a complex Gaussian bi-kernel case of the complex multikernel

algorithm [Bouboulis 2012, Tobar 2012a]. It can be expected that the ACKLMS algorithm

outperforms the existing CKLMS algorithms due to the flexibility of complex multi-kernels.
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Figure 5.3: Block diagram of ACKLMS algorithm.

5.4 Stochastic behavior analysis of ACKLMS algorithm

We shall now study the transient and steady-state of the mean-square error conditionally

to dictionary ω of the complex Gaussian bi-kernel LMS algorithm, that is,

E
{
|e(n)|2 |ω

}
=

∫

U×C

|e(n)|2 dρ(u(n), d(n) |ω) (5.26)

with e(n) = d(n) − d̂(n) and ρ a Borel probability measure. We shall use the subscript ω

for quantities conditioned on dictionary ω. Given ω, the estimation error at time instant

n is given by

eω(n) = d(n)− d̂ω(n) (5.27)

with d̂ω(n) = d̂(n)|ω. Multiplying eω(n) by its conjugate and taking the expected value

yields the MSE

Jms = E{|d(n)|2} − 2Re
(
pHκd,ωαω(n)

)
+αH

ω (n)Rκκαω(n) (5.28)

with Rκκ = E
{
κH,ω(n)κ

H
H,ω(n)|ω

}
the correlation matrix of input data, and pκd,ω =

E {κH,ω(n)d
∗(n)|ω} the cross-correlation vector between κH,ω(n) and d(n). As Rκκ is

positive definite, the optimum weight vector is given by

αopt,ω = argmin
αω

Jms(αω) = R−1
κκ pκd,ω (5.29)

and the minimum MSE is

Jmin = E
{
|d(n)|2

}
− pHκd,ωR

−1
κκ pκd,ω. (5.30)
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5.4.1 Mean weight error analysis

The weight update of the ACKLMS algorithm is given by

αω(n+ 1) = αω(n) + η e∗ω(n)κH,ω(n). (5.31)

Let vω(n) be the weight error vector defined as

vω(n) = αω(n)−αopt,ω. (5.32)

The weight error vector update equation is then given by

vω(n+ 1) = vω(n) + η e∗ω(n)κH,ω(n). (5.33)

The error (5.27) is consequently rewritten as

eω(n) = d(n)− κHH,ω(n)vω(n)− κHH,ω(n)αopt,ω. (5.34)

Substituting (5.34) into (5.33) yields

vω(n+ 1) = vω(n) + η
[
d∗(n)κH,ω(n)− κHH,ω(n)vω(n)κH,ω(n)− κHH,ω(n)αopt,ωκH,ω(n)

]
.

(5.35)

Taking the expected value of (5.35), using the CMIA hypothesis introduced in the previous

chapter, and (5.29), we get the mean weight error model:

E {vω(n+ 1)} = (I − ηRκκ)E {vω(n)} . (5.36)

The (i, j)-th entry of matrix Rκκ is given by

[Rκκ]i,j = E
{
κH
(
u(n),u(ωi)

) [
κH
(
u(n),u(ωj)

)]∗ }
(5.37)

with the complex Gaussian bi-kernel κH
(
u(n),u(ωm)

)
given by

κH
(
u(n),u(ωm)

)
=

{
κC
(
u(n),u(ωm)

)
, 1 ≤ m ≤ M ;

κ⋆
C

(
u(n),u(ωm)

)
, M + 1 ≤ m ≤ 2M.

Let us define a new vector that separates the real and imaginary parts of u(n) such that

ũ(n) = col{uI(n),uQ(n)} ∈ R
2L. With the Gaussian kernels (5.8)–(5.9), the expected

value of (5.37) can be obtained by making use of the moment generating function. We can

obtain

[Rκκ]i,j =
∣∣I +

2

ξ2
H(i, j)Rũ

∣∣− 1
2 · exp

(
− 1

2ξ2
[
∑

s={i,j}‖uI(ωs)‖2 −
∑

s={i,j}‖uQ(ωs)‖2]
)

× exp

(
1i

ξ2
[δi u

⊤
I (ωi)uQ(ωi)− δj u

⊤
I (ωj)uQ(ωj)]

)
· exp

(
1

2ξ4
b⊤Rũ(I +

2

ξ2
H(i, j)Rũ)

−1 b

)

(5.38)

where δm is the indicator function

δm =

{
1, 1 ≤ m ≤ M

−1, M + 1 ≤ m ≤ 2M
(5.39)
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and Rũ = E{ũ(n) ũ⊤(n)}. The definition of H(i, j) in (5.38) depends on the index i and

j as follows:

H(i, j) =

(
I O

O −I

)
, 1 ≤ i, j ≤M and M + 1 ≤ i, j ≤ 2M

H(i, j) =

(
I 1i I

1i I −I

)
, 1 ≤ i ≤M and M + 1 ≤ j ≤ 2M

H(i, j) =

(
I −1i I

−1i I −I

)
, 1 ≤ j ≤M and M + 1 ≤ i ≤ 2M

Vector b in (5.38) is given by

b =




−
∑

s={i,j}

uI(ωs) + 1i [δi uQ(ωi)− δj uQ(ωj)]

−
∑

s={i,j}

uQ(ωs) + 1i [−δi uI(ωi) + δj uI(ωj)]


 . (5.40)

Equation (5.36) leads to the following theorem:

Theorem 5.4.1 (Stability in the mean) Assume the CMIA holds. Then, for any initial

condition, given a dictionary ω, the Gaussian ACKLMS algorithm (5.31) asymptotically

converges in mean if the step size is chosen to satisfy

0 < η < 2/eigmax(Rκκ) (5.41)

where eigmax(·) denotes the maximum eigenvalue of its matrix argument. The entries of

Rκκ are given by (5.38).

5.4.2 Mean-square error analysis

Using (5.34) and CMIA, MSE is related to the second-order moment of the weight vector

by [Parreira 2012]

Jms(n) = Jmin + trace
{
RκκCω(n)

}
(5.42)

where Cω(n) = E
{
vω(n)v

H
ω (n)

}
is the autocorrelation matrix of the weight error vector

vω(n), and Jmin is the minimum MSE given by (5.30). The analysis of the MSE behav-

ior (5.42) requires a recursive model for Cω(n). Post-multiplying (5.35) by its Hermitian

conjugate, taking the expected value, and using CMIA, we get the following recursion for

sufficiently small step sizes

Cω(n+ 1) ≈ Cω(n)− η [RκκCω(n) +Cω(n)Rκκ] + η2 T ω(n) + η2RκκJmin (5.43)

with

T ω(n) = E
{
κH,ω(n)κ

H
H,ω(n)vω(n)v

H
ω (n)κH,ω(n)κ

H
H,ω(n)

}
. (5.44)
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Evaluating (5.44) is a significant step in the analysis since κH,ω(n) is a nonlinear trans-

formation of a quadratic form of u(n). Using CMIA to determine the (i, j)-th element of

T ω(n) in (5.44) yields

[T ω(n)]i,j ≈
M∑

ℓ=1

M∑

p=1

E
{
κH
(
u(n),u(ωi)

) [
κH
(
u(n),u(ωj)

)]∗

× κH
(
u(n),u(ωℓ)

) [
κH
(
u(n),u(ωp)

)]∗ } · [Cω(n)]ℓ,p. (5.45)

This expression can be written as

[T ω(n)]i,j ≈ trace
{
Kω(i, j)Cω(n)

}
(5.46)

where the (ℓ, p)-th entry of the matrix Kω(i, j) is given by

[Kω(i, j)]ℓ,p = E
{
κH
(
u(n),u(ωi)

)
[κH
(
u(n),u(ωj)

)
]∗κH

(
u(n),u(ωℓ)

)
[κH
(
u(n),u(ωp)

)
]∗
}
.

(5.47)

Similarly, we also rewrite (5.47) in terms of vector ũ(n) and use the moment generating

function. This leads to (5.48) and (5.49):

[Kω(i, j)]ℓ,p =
∣∣I +

2

ξ2
L(i, j)Rũ

∣∣− 1
2 · exp

(
1

2ξ4
f⊤Rũ

(
I +

2

ξ2
L(i, j)Rũ

)−1
f

)

× exp

(
1i

ξ2
[δi u

⊤
I (ωi)uQ(ωi)− δj u

⊤
I (ωj)uQ(ωj) + δℓ u

⊤
I (ωℓ)uQ(ωℓ)− δp u

⊤
I (ωp)uQ(ωp)]

)

× exp

(
− 1

2ξ2
(∑

s={i,j,ℓ,p}‖uI(ωs)‖2 −
∑

s={i,j,ℓ,p}‖uQ(ωs)‖2
))

(5.48)

where

f =

(
−
∑

s={i,j,ℓ,p}uI(ωs) + 1i [δi uQ(ωi)− δj uQ(ωj) + δℓ uQ(ωℓ)− δp uQ(ωp)]

−
∑

s={i,j,ℓ,p}uQ(ωs) + 1i [−δi uI(ωi) + δj uI(ωj)− δℓ uI(ωℓ) + δp uI(ωp)]

)

.

(5.49)

The definition of L(i, j) in (5.48) depends on i and j as follows:

L(i, j) =

(

2I O

O −2I

)











































1 ≤ i, j, ℓ, p ≤ M

1 ≤ i, j ≤ M ; M + 1 ≤ ℓ, p ≤ 2M

1 ≤ ℓ, p ≤ M ; M + 1 ≤ i, j ≤ 2M

1 ≤ i, ℓ ≤ M ; M + 1 ≤ j, p ≤ 2M

1 ≤ j, p ≤ M ; M + 1 ≤ i, ℓ ≤ 2M

M + 1 ≤ i, j, ℓ, p ≤ 2M

(5.50a)

L(i, j) =

(

2I 1i I

1i I −2I

)























1 ≤ j ≤ M ; M + 1 ≤ i, ℓ, p ≤ 2M

1 ≤ ℓ ≤ M ; M + 1 ≤ i, j, p ≤ 2M

1 ≤ j, ℓ, p ≤ M ; M + 1 ≤ i ≤ 2M

1 ≤ i, j, ℓ ≤ M ; M + 1 ≤ p ≤ 2M

(5.50b)
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L(i, j) =

(
2I −1i I

−1i I −2I

)





1 ≤ i ≤M ; M + 1 ≤ j, ℓ, p ≤ 2M

1 ≤ p ≤M ; M + 1 ≤ i, j, ℓ ≤ 2M

1 ≤ i, ℓ, p ≤M ; M + 1 ≤ j ≤ 2M

1 ≤ i, j, p ≤M ; M + 1 ≤ ℓ ≤ 2M

(5.50c)

L(i, j) =

(
2I 2i I

2i I −2I

)
1 ≤ j, ℓ ≤M ; M + 1 ≤ i, p ≤ 2M (5.50d)

L(i, j) =

(
2I −2i I

−2i I −2I

)
1 ≤ i, p ≤M ; M + 1 ≤ j, ℓ ≤ 2M (5.50e)

5.4.3 Steady-state behavior

In order to determine the steady-state of recursion (5.43), we rewrite it in a lexicographic

form. Let vec {·} denote the operator that stacks the columns of a matrix on top of each

other. Vectorizing Cω(n) and Rκκ by cω(n) = vec {Cω(n)} and rκ,ω = vec {Rκκ}, we can

rewrite (5.43) as follows

cω(n) = Gω cω(n) + η2 Jmin rκ,ω (5.51)

with Gω = I − η (Gω,1 +Gω,2) + η2Gω,3. The universal matrix Gω is found by the use of

the following definitions:

• I is the identity matrix of dimension 4M2 × 4M2;

• Gω,1 = I ⊗Rκκ, where ⊗ denotes the Kronecker product;

• Gω,2 = Rκκ ⊗ I;

• Gω,3 is given by [Gω,3]i+2(j−1)M,ℓ+2(p−1)M = [Kω(i, j)]ℓ,p with 1 ≤ i, j, ℓ, p ≤ 2M .

Assuming convergence, the closed-formed solution of the recursion (5.51) in steady-state is

given by

cω(∞) = η2 Jmin(I −Gω)
−1rκ,ω. (5.52)

From equation (5.42), the steady-state MSE is finally given by

Jms(∞) = Jmin + trace {RκκCω(∞)} (5.53)

where the second term on the right side is the steady-state EMSE JEMSE,ω(∞) =

trace {RκκCω(∞)}.

5.5 Simulation results and discussion

This section provides an example of complex nonlinear system identification to check the

accuracy of the convergence models of the ACKLMS algorithm. We considered the complex

valued input sequence

u(n) = ρ0 u(n− 1) + σu

√
1− ρ20w(n) (5.54)
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with w(n) =
√
1− ρ2wre(n) + i ρwim(n). Parameter ρ was set to 0.1 corresponding to

highly non-circular, and the random variables wre(n) and wim(n) were distributed according

zero-mean i.i.d. Gaussian distributions with standard deviation σw = 1. Both parameters

ρ0 and σu were set to 0.5. The nonlinear complex system to be identified was
{
y(n) = (0.5− 0.1i)u(n)− (0.3− 0.2i)u(n− 1)

d(n) = y(n) + (1.25− 1i) y2(n) + (0.35− 0.2i) y3(n) + z(n)

where z(n) is a complex additive zero-mean Gaussian noise with standard deviation

σz = 0.1. At each time n, ACKLMS algorithm was updated with input vector u(n) =

[u(n), u(n− 1)]⊤ and the reference signal d(n). The correlation matrix Rũ is thus given by

Rũ = σ2u




(1− ρ2) (1− ρ2)ρ0 0 0

(1− ρ2)ρ0 (1− ρ2) 0 0

0 0 ρ2 ρ2ρ0
0 0 ρ2ρ0 ρ2


 . (5.55)

The pure complex Gaussian bandwidth ξ and the step-size η were set to 0.55 and 0.1, re-

spectively. We used the CS criterion with threshold δ0 = 0.3 to construct a fixed dictionary
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(b) Steady-state results.

Figure 5.4: Simulation results of ACKLMS algorithm (ρ = 0.1, ξ = 0.55, η = 0.1 and

M = 12).

of length M = 12. All simulation curves were obtained by averaging over 200 Monte Carlo

runs. It is shown in Figure 5.4 that the theoretical curves consistently agree with the Monte

Carlo simulations in both transient and steady-state.

5.6 Conclusion

Complex kernel-based adaptive algorithms have been recently introduced for complex-

valued nonlinear system identification. These algorithms are built upon the same frame-

work as complex linear adaptive filtering techniques and Wirtinger’s calculus in complex
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reproducing kernel Hilbert spaces. This chapter introduced two types of complex monok-

ernel LMS algorithm and the ACKLMS algorithm based on the framework of complex

multi-kernel. Then we derived a theoretical model of convergence for the ACKLMS al-

gorithm with pre-tuned dictionary. The simulation results demonstrated the effectiveness

and accuracy of our model.
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6.1 Introduction

Distributed learning over networks allows a set of interconnected agents to perform pre-

assigned tasks such as detection and estimation from streaming data. Potential ap-

plications include, for instance, natural phenomena and infrastructure monitoring, etc.

Due to energy constraints, limited communication capabilities and large scale networks,

signal processing strategies have moved from centralized solutions with a fusion cen-

ter [Nguyen 2005] to decentralized cooperative solutions with in-network sensor data pro-

cessing. For online parameter estimation, a variety of distributed strategies have been pro-

posed. These include incremental strategies [Lopes 2007b], consensus strategies [Kar 2009]

and diffusion strategies [Lopes 2007a]. Although the energy cost of communications tends

to be minimum, incremental strategies are problematic for large scale applications as

they operate on a cyclic path that runs across the nodes, which makes them sensi-

tive to link failures. With diffusion modes of cooperation, the agents cooperate with

each other through local interactions that consist of exchanging raw data and local es-

timates. Both of the mentioned cooperation modes over networks are depicted in Fig-

ure 6.1. Diffusion strategies are attractive because they are scalable, robust, and en-

able continuous adaptation and learning. Moreover, they have shown to have superior
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stability properties and performance [Sayed 2013b, Sayed 2013a] than consensus strate-

gies [Xiao 2004, Kar 2009, Srivastava 2011].

3
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2

1
3

4

5

6

2

1

Incremental Diffusion

Figure 6.1: Cooperation models over networks.

Decentralized detection and estimation have often been considered with parametric

models, in which the statistics of observations are assumed known. Such assumptions are

usually motivated by prior application-specific domain knowledge. Robust nonparametric

methods are however desirable when few prior information is available. To address such

situations, nonparametric methods based on kernel functions were primarily considered

for decentralized detection and estimation over networks [Guestrin 2004, Nguyen 2005].

The successive orthogonal projection (SOP) algorithm was derived to address distributed

learning problems over networks with kernel-based models [Predd 2005, Predd 2006]. An

incremental kernel-based strategy was introduced in [Honeine 2009]. Finally, a linear com-

bination of Gaussian functions was considered in [Bergamo 2012] for estimating scalar fields

with diffusion networks.

In this chapter, we introduce functional diffusion strategies in reproducing kernel Hilbert

spaces with distributed KLMS algorithm. This chapter is organized as follows. In Sec-

tion 6.2, we introduce some basic principles on online learning with the KLMS algorithm

again. In Section 6.3, a functional framework for diffusion adaption over networks is de-

rived. In Section 6.4, we present some illustrative simulation results.

6.2 The kernel least-mean-square algorithm

In order to introduce the kernel least-mean-square algorithm into distributed networks

setting, we firstly recall the derivation of KLMS algorithm in detail. Let H be a Hilbert

space of functions ψ from a subspace U of RL to R. Assume that H is a reproducing kernel

Hilbert space (RKHS), that is, there exists a map κ : U × U → R such that:

∀u ∈ U , κ(u, ·) ∈ H (6.1a)

∀ψ ∈ H, ψ(u) = 〈ψ, κ(u, ·)〉H (6.1b)

Consider the kernel least-squares problem. Given pairs of input vectors and desired outputs

{
(
ui, d(i)

)
}i, which satisfy the model

d(i) = ψopt(ui) + v(i) (6.2)
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where v(i) is a zero-mean white noise with power σ2v , the problem is to estimate ψopt such

that:

ψopt = arg min
ψ∈H

J(ψ) with J(ψ) = E{|d(i)− ψ(ui)|2}. (6.3)

Calculating the Fréchet derivative of J(ψ) with respect to ψ we find:

∇J(ψ) = −2E{[d(i)− ψ(ui)]κ(·,ui)}. (6.4)

The desired function ψopt satisfies the normal equation:

E{ψopt(ui)κ(·,ui)} = E{d(i)κ(·,ui)}. (6.5)

It is seen from (6.3) that:

J(ψ) = σ2d − 2〈E{d(i)κ(·,ui)}, ψ〉H + E{ψ2(ui)}
= σ2d − 2〈E{ψopt(ui)κ(·,ui)}, ψ〉H + E{ψ2(ui)}
= σ2d − 2E{〈ψopt(ui), ψ(ui)〉H}+ E{ψ2(ui)}

(6.6)

where σ2d denotes E{d2(i)}. The first and the third equalities follow from (6.1b). The second

equality follows from (6.5). We see that J(ψopt) = σ2d − E{[ψopt(ui)]
2}. A completion-of-

squares argument finally shows that J(ψ) can be expressed as

J(ψ) = J(ψopt) + E{[ψ(ui)− ψopt(ui)]
2}. (6.7)

We shall use this expression in the sequel, where J(ψopt) and Jmin will interchangeably

denote the minimum cost value of J(ψ).

The optimal implementation (6.5) for determining ψopt requires knowledge of the data

moments. This information is usually unavailable. Stochastic-gradient methods are popular

adaptive learning algorithms obtained from gradient-descent implementations by replacing

the required derivatives by some suitable approximations. One of the simplest approxima-

tions for ∇J(ψ) consists of replacing the random variables in (6.3) by the observations at

iteration i, namely,

−∇J(ψ) ≈ [d(i)− ψ(ui)]κ(·,ui). (6.8)

The corresponding steepest-descent recursion is widely known as the kernel least-mean-

squares (KLMS) algorithm [Richard 2009]:

ψi = ψi−1 + µ [d(i)− ψi−1(ui)]κ(·,ui) (6.9)

where µ is a small positive step-size. Despite its computational simplicity, the main draw-

back of KLMS is that an increasing number of kernel functions κ(·,ui) is involved in the

estimation process as new data ui are collected. To overcome this limitation, finite-size

models of the form

ψ =

M∑

j=1

αj κ( · ,uωj
) (6.10)

and sparsity-promoting strategies are usually considered in the literature [Richard 2009],

where D = {κ(·,uωj
)}j is a dictionary learnt from the input data {κ(·,ui)}i. Then, KLMS
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reduces to a two-alternative choice procedure at each instant i: (Acceptance case) a dic-

tionary learning stage that inserts κ(·,ui) into Di−1 if some given sparsification rule, such

as the coherence rule below, is satisfied; (Rejection case) Otherwise, an adaptation step to

update the vector α of parameters αj .

• Rejection case: maxj=1,...,card(Di−1) |κ(ui,uωj
)| ≤ δ0

αi =

[
αi−1

0

]
+ µ ei κi

Di = Di−1 ∪ {κ(·,ui)}
(6.11)

• Acceptance case: maxj=1,...,card(Di−1) |κ(ui,uωj
)| > δ0

αi = αi−1 + µ ei κi

Di = Di−1

(6.12)

where κi = [κ(ui,uω1), . . . , κ(ui,uωcard(Di−1)
)]⊤ is the kernelized input, and δ0 is the thresh-

old of CS criterion in [0, 1). In [Richard 2009], it is shown that the dictionary learning step

converges to a dictionary D of finite size, say M , and the algorithm above reduces to (6.12)

after a finite number of iterations.

6.3 Diffusion adaptation with KLMS algorithm

Consider a collection of N agents interested in estimating the same function ψopt of H from

data realizations
(
uk,i, dk(i)

)
, which satisfy a model of the form

dk(i) = ψopt(uk,i) + vk(i) (6.13)

where vk(i) is a zero-mean white noise with power σ2v,k. To recover this unknown function

ψopt, our strategy is to optimize the following global cost function in a distributed manner:

J(ψ) =
N∑

k=1

E{|dk(i)− ψ(uk,i)|2}. (6.14)

Assume that the set of neighbors connected with the ℓ-th agent is fixed and denoted by

Nℓ. We can express J(ψ) as follows:

J(ψ) =
N∑

ℓ=1

J loc
ℓ (ψ) (6.15)

with

J loc
ℓ (ψ) =

∑

k∈Nℓ

ckℓE{|dk(i)− ψ(uk,i)|2} (6.16)

where {ckℓ} is a set of nonnegative coefficients, freely chosen by the designer, that satisfy:

ckℓ = 0 if k /∈ Nℓ and
N∑

ℓ=1

ckℓ = 1. (6.17)
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We collect the coefficients {ckℓ} into an N × N matrix C, which is right stochastic since

each row of C adds up to one.

Consider the local cost function J loc
ℓ (ψ) at each node ℓ. It follows from (6.7) that:

J loc
ℓ (ψ) = J loc

ℓ,min +
∑

k∈Nℓ

ckℓE{|ψ(uk,i)− ψopt(uk,i)|2} (6.18)

where J loc
ℓ,min = J loc

ℓ (ψopt). Substituting (6.18) into (6.15), and dropping the term that does

not depend on ψ, we obtain the following alternative global cost function:

J(ψ) = J loc
n (ψ) +

∑

ℓ6=n

∑

k∈Nℓ

ckℓE{|ψ(uk,i)− ψopt(uk,i)|2}. (6.19)

In this expression, the minimizer ψopt in the correction term that relates the global cost

function to the local cost function at every node n is not known since the nodes wish to

estimate it. This issue is addressed in the sequel. Likewise, not all information needed

to compute the expected value are available to node n since it can only have access to

information from its neighbors. We thus introduce the modified local cost function at

node n:

Jn(ψ) = J loc
n (ψ) +

∑

ℓ∈Nn\{n}

∑

k∈Nℓ

ckℓE{|ψ(uk,i)− ψopt(uk,i)|2}. (6.20)

The probability density functions required to calculate the expected values may not be

available because often nodes can only observe realizations uk,i. To address this issue, note

that:

E{|ψ(uk,i)− ψopt(uk,i)|2} =

∫
|ψ(uk,i)− ψopt(uk,i)|2 dP (uk,i)

≤ ‖ψ − ψopt‖2H
∫
κ(uk,i,uk,i) dP (uk,i)

≤M‖ψ − ψopt‖2H

(6.21)

where P is a probability measure. The first and the second inequality follow from the

Cauchy-Schwarz inequality and the boundedness of the kernel κ, respectively. We suggest

to replace the second term on the RHS of (6.20) by the following upper-bound:
∑

k∈Nℓ

ckℓE{|ψ(uk,i)− ψopt(uk,i)|2} ≤ bℓn‖ψ − ψopt‖2H (6.22)

where bℓn is some nonnegative coefficient. The modified cost function (6.20) is then relaxed

as follows:

J ′
n(ψ) = J loc

n (ψ) +
∑

ℓ∈Nn\{n}

bℓn‖ψ − ψopt‖2H. (6.23)

With the exception of ψopt, the cost (6.23) at node n relies solely on information available

to this node from its neighborhood.

Node n can compute successive steepest-descent iterations to minimize J ′
n(ψ). Let

ψn,i−1 be the estimate for ψopt by node n at time i − 1. The update from ψn,i−1 to ψn,i
can be performed as:

ψn,i = ψn,i−1 − µn∇J ′
n(ψn,i−1), ψn,−1 = initial guess (6.24)
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where µn is a small positive step-size at node n. Computing the Fréchet derivative of (6.23),

and dropping the expectation operator from the definition of J loc
n (ψ) to use instantaneous

approximations instead, we get:

ψn,i = ψn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)− ψn,i−1(uℓ,i)]κ(·,uℓ,i)

+ µn
∑

ℓ∈Nn\{n}

bℓn(ψopt − ψℓ,i−1).
(6.25)

Among other possible forms, we can implement (6.25) in two successive steps involving

each one a correction term as follows:

ϕn,i = ψn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)− ψn,i−1(uℓ,i)]κ(·,uℓ,i−1) (6.26a)

ψn,i = ϕn,i + µn
∑

ℓ∈Nn\{n}

bℓn(ψopt − ψn,i−1) (6.26b)

First, in (6.26b), neither node n nor its neighbors know the optimum function ψopt. Each

node ℓ can however use its local intermediate estimate ϕℓ,i as an approximation. Second,

ψn,i−1 in (6.26b) can be advantageously replaced by ϕn,i since it is obtained by incorporating

information from the neighbors in (6.26a). Step (6.26b) then becomes:

ψn,i =


1− µn

∑

ℓ∈Nn\{n}

bℓn


ϕn,i + µn

∑

ℓ∈Nn

bℓn ϕℓ,i. (6.27)

We introduce the following weighting coefficients:

ann = 1− µn
∑

ℓ∈Nn\{n}

bℓn

aℓn = µn bℓn, ℓ ∈ Nn \ {n}
aℓn = 0, ℓ /∈ Nn

(6.28)

and collect these coefficients into a (N ×N) matrix A. For sufficiently small step-sizes µn,

observe that the coefficients {aℓn} are nonnegative and each column of A adds up to one.

Just like the coefficients {cℓn}, the coefficients {aℓn} can be freely chosen by the designer

provided that A is left stochastic.

6.3.1 Functional adapt-then-Combine diffusion strategy

Substituting the so-called coefficients {aℓn} into (6.27), we arrive at the following diffusion

strategy:

ϕn,i = ψn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)− ψn,i−1(uℓ,i)]κ(·,uℓ,i)

ψn,i =
∑

ℓ∈Nn

aℓn ϕℓ,i
(6.29)

These are the functional adapt-then-combine (FATC) diffusion algorithm, whose scheme is

plotted in the Figure 6.2.
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Figure 6.2: The scheme of FATC diffusion algorithm.

6.3.2 Functional Combine-then-adapt diffusion strategy

Similarly, returning to (6.25) and considering the second correction first, we get the alter-

native diffusion strategy:

ϕn,i−1 =
∑

ℓ∈Nn

aℓn ψℓ,i−1

ψn,i = ϕn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)− ϕn,i−1(uℓ,i)]κ(·,uℓ,i)
(6.30)

Correspondingly, the above strategy is called the functional combine-then-adapt (FCTA)

diffusion. The scheme of FCTA diffusion algorithm is given in the Figure 6.3.
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Figure 6.3: The scheme of FCTA diffusion algorithm.

6.3.3 Implementation

Online processing of time series data raises the question of how to process an increasing

amount of observations uℓ,i as new data is collected at each node. Indeed, as the KLMS

algorithm (6.9), an undesirable characteristic of FATC and FCTA algorithms (6.29)–(6.30)
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is that the number of terms in ϕn,i and ψn,i grows linearly with the number of input

data. This dramatically increases the computational burden and memory requirement.

To overcome this barrier, in this chapter, we shall consider as a prior that nodes share a

dictionary D of finite size M . We leave this sharing processing, which should be based on

the coherence rule, for future work.

Then, we can write the estimated inference function of ϕn,i and ψn,i in (6.29)–(6.30) as:

{
ϕn,i = β⊤

n,i κn,i

ψn,i = α⊤
n,i κn,i

(6.31)

with the kernelized input vector κn,i = [κ(un,i,uω1), . . . , κ(un,i,uωM
)]⊤, the weight

vector αn,i = [αn,i(1), . . . , αn,i(M)]⊤ and the intermediate weight vector βn,i =

[βn,i(1), . . . , βn,i(M)]⊤. As a consequence, the FATC strategy can be expressed as follows:

βn,i = αn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)−α⊤
n,i−1κℓ,i]κℓ,i

αn,i =
∑

ℓ∈Nn

aℓn βℓ,i
(6.32)

We obtain the KLMS-FATC algorithm. Similarly, the KLMS algorithm with FCTA strategy

is given by:

βn,i−1 =
∑

ℓ∈Nn

aℓnαℓ,i−1

αn,i = βn,i−1 + µn
∑

ℓ∈Nn

cℓn [dℓ(i)− β⊤
n,i−1κℓ,i]κℓ,i

(6.33)

6.3.4 Stability of functional diffusion strategy in the mean

In order to make the study of the weight estimate of functional diffusion strategy in mean

sense trackable, assume a simple case that all the nodes use an identical M -dimension

dictionary D = [uω1 , . . . ,uωM
]⊤ preassigned a prior.

Without loss of generality, we only consider the parametric support vector diffusion

structure of FATC strategy (6.32). The non-negative real coefficients aℓn, cℓn are the (ℓ, n)-

th entries of a left-stochastic matrices A and right-stochastic C, that is,

A⊤
1N = 1N , C⊤

1N = 1N (6.34)

and satisfy

a1,ℓn = 0, cℓn = 0 if ℓ /∈ Nn. (6.35)

Let us define the network MSE by averaging errors over N nodes:

1

N

N∑

k=1

E{|dk(i)− ψ(uk,i)|2}. (6.36)
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Let us introduceN×1 block optimum weight vector, block weight estimate and intermediate

weight estimate vectors, whose individual entries are of size M × 1 each:

αopt = col{αopt,1, . . . ,αopt,N}; (6.37)

αn = col{α1,i, . . . ,αN,i}; (6.38)

βn = col{β1,i, . . . ,βN,i}. (6.39)

The weight error vector for each node n at iteration i is defined by vn,i = αn,i−αopt. The

weight error vector vn,i are also stacked on top of each other to get the block weight error

vector defined as follow:

vi = col{v1,i, . . . ,vN,i}. (6.40)

Assumption 2 κℓ,iκ
⊤
ℓ,i is independent of vn,i.

This assumption, called modified independence assumption (MIA), is justified in detail in

[Minkoff 2001]. It has been successfully employed in several adaptive filter analyses, and

has been shown in [Minkoff 2001] to be less restrictive than the well known independence

assumption (IA) [Sayed 2008]. It is called here for further reference conditioned MIA, or

CMIA, to distinguish it from the MIA used in [Parreira 2012].

The estimation error in the second step (6.32) of diffusion KLMS can be rewritten as

dℓ(i)−α⊤
n,i−1κℓ,i = dℓ(i)− κ⊤

ℓ,ivn,i − κ⊤
ℓ,iαopt. (6.41)

Subtracting optimum weight vector αopt,n from both sides of the equation (6.32), and using

the above expression, yields

βn,i−1−αopt,n =
(
IM−µn

∑

ℓ∈Nn

cℓn κℓ,iκ
⊤
ℓ,i

)
vn,i−1+µn

∑

ℓ∈Nn

cℓn [dℓ(i)−κ⊤
ℓ,iαopt]κℓ,i (6.42)

which can be expressed in block-based form:

βi−1 −αopt =
(
IMN −MH i

)
vi−1 +MC

⊤si−1 (6.43)

with C = C⊗IM . In (6.43) the (N ×N) block diagonal matrices, whose individual entries

are of size M ×M , are defined as

M = Diag
{
µ1IM , . . . , µNIM

}
, (6.44)

H i = Diag
{ ∑

ℓ∈N1

cℓ1 κℓ,iκ
⊤
ℓ,i, . . . ,

∑

ℓ∈NN

cℓN κℓ,iκ
⊤
ℓ,i

}
(6.45)

and the NM × 1 block column vector is defined as

si−1 = col
{
[dn(i)− κ⊤

n,iαopt]κn,i
}N
n=1

. (6.46)

Defining A = A⊗ IM , the combination step (6.32) leads to

αi = A
⊤βi. (6.47)
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Subtracting αopt from both sides of (6.47) and using (6.43), the stochastic recursion for vi
can be written as compact form

vi = A
⊤
(
IMN −MH i

)
vi−1 +A

⊤
MC

⊤si−1. (6.48)

We assume that the finite-order model provides a close enough approximation to the

infinite-order model with minimum MSE, so that E{dℓ(i) − κ⊤
ℓ,iαopt} = 0. Taking the

expectation of both sides, and using CMIA assumption, we can obtain the mean weight

error model

E{vi} = A
⊤
(
IMN −MH

)
E{vi−1}, i ≥ 0 (6.49)

where H is the expected matrix of H i, namely

H = E{H i} = Diag{R1, . . . ,RN} (6.50)

with Rn =
∑

ℓ∈Nn
cℓnRκκ,ℓ. Note that Rκκ,n is the correlation matrix of kernelized input,

whose each entries were given in [Chen 2014a]. Likewise, the mean weight error model of

support parameter-vector formulation of FCTA strategy can be also obtained

E{vi} =
(
IMN −MH

)
A

⊤E{vi−1}, i ≥ 0. (6.51)

Theorem 6.3.1 (Stability in the mean) Based on the problem of (6.3), select a right

stochastic matrix C and left stochastic matrix A. Assume CMIA holds. When the kernel

adaptive diffusion algorithms (6.32) and (6.33) across the network asymptotically converge

in the mean if the step-size parameters µn are chosen to satisfy

µn <
2

eigmax(Rn)
(6.52)

where eigmax(·) denotes the maximum eigenvalue of the matrix.

Observe that the the mean stability condition (6.52) does not depend on the specific

combination matrix A. Only the combination matrix C influences the condition on the

step-size through the neighborhood covariance matrices {Rn}.

6.4 Simulation results and discussion

In this section, we address two identification problems with the FATC and FCTA diffusion

strategies over distributed networks. The dictionaries Dn are fixed. These experiments

will illustrate the effectiveness of the proposed algorithms with a fixed dictionary. All the

learning curves were obtained by averaging over 200 Monte Carlo runs.

6.4.1 Example 1

We consider N = 10 sensors randomly deployed at 101× 101 square grid. The topology of

the network is depicted in Figure 6.4(a). Each node k observes the desired output {dk(i)}
given by {

vk,i = 1.1 exp(−|vk,i|) + uk,i

dk(i) = v2k,i
(6.53)
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where uk,i is the input signal. All input and output data pairs at 101×101 square grid were

generated from the initial condition vk,0 = 0.5. The input uk,i was sampled from a zero-

mean Gaussian distribution with standard deviation 0.25. The system output dk(i) was

corrupted by an additive zero-mean white Gaussian noise with standard deviation σz,k = 3.

The Laplacian kernel κ(ui,uj) = exp(−‖ui−uj‖2/ξ) with kernel bandwidth ξ = 0.35 was

considered. For all nodes, the step-sizes µk were set to 0.01, and the threshold of the CS

criterion δ0 was set to 0.3. A dictionary with 6 elements was then obtained [Richard 2009].

The coefficient cℓn of matrix C was set to |Nn|−1 for all n ∈ Nℓ. The combination matrix

A simply averaged the estimates from the neighbors, namely, aℓn = |Nn|−1 for ℓ ∈ Nn.

The MSE learning curves in Figure 6.4(b) show that cooperative KLMS-FCTA and

KLMS-FATC strategies perform better than the non-cooperative KLMS strategy. In addi-

tion, observe that the KLMS-FCTA and KLMS-FATC learning curves are almost identical.
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Figure 6.4: Experiment 1.
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6.4.2 Example 2

As in Example 1, consider a network consisting of N = 10 nodes with the topology shown

in Figure 6.5(a). The input signal at each node k and time instant i was a sequence of

statistically independently vector [Vörös 2003] defined as:

uk,i =
[
uk,i(1) uk,i(2)

]⊤
(6.54)

with correlated samples satisfying uk,i(1) = 0.5uk,i(2) + vk,i. The second entry of uk,i and

vk,i were i.i.d. Gaussian samples with variance both equal to 0.035. We considered the

linear system with memory defined by

yk,i = a⊤uk,i − 0.2 yk,i−1 + 0.35 yk,i−2

yk,0 = 0, yk,−1 = 0
(6.55)

where a = [1 0.5]⊤ and the nonlinear Wiener function

ϕ(yk,i) =





yk,i

3[0.1 + 0.9 y2k,i]
1/2

for yk,i ≥ 0

−y2k,i[1− exp(0.7yk,i)]

3
for yk,i < 0

(6.56)

dk(i) = ϕ(yk,i) + zk,i. (6.57)

The output signal dk(i) was corrupted by a zero-mean i.i.d. Gaussian noise zk,i with

variance σ2zk = 0.09. The initial condition yk,1 = 0 was considered. The bandwidth ξ of

the Gaussian kernel κ(ui,uj) = exp(−‖ui − uj‖22/2ξ2) was set to 0.15, and the step-size

µk were set to 0.05. The entries cℓn of C were set to |Nn|−1 for all n ∈ Nℓ. The threshold

of the coherence criterion δ0 was set to 0.3, which led to a 17-elements dictionary that was

fixed during all the experiment. The combination matrix A simply averaged the estimates

from the neighbors, namely, aℓn = |Nn|−1 for ℓ ∈ Nn. Again, the cooperative KLMS-FCTA

and KLMS-FATC diffusion algorithms led to better performances than the non-cooperative

KLMS algorithm.

6.5 Conclusion

Distributed learning over networks has become an active topic of research in the last decade.

Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex

natural phenomena or infrastructure. Most of works have studied distributed estimation

methods of linear regression models. However, there are many important applications that

deal with nonlinear parametric models to be fitted, in a collaborative manner, over the area

covered by a network. In this chapter, we derived functional counterparts of the adapt-

then-combine and combine-then-adapt diffusion strategies in RKHS to address dynamic

field inference problems. These diffusion strategies with KLMS algorithm allow to perform

online learning of nonlinear fitting models. Their efficiency was illustrated with simulation

results.
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7.1 Thesis summary

This thesis presented the use of KLMS algorithm in different contexts and, in each case, an

analysis of its convergence behavior in the mean and mean-square-error sense. KLMS algo-

rithms, with their simplicity and robustness, allow us to consider them as a benchmark of

performance for KAF. Although various kernel adaptive filters with distinct features were

continuously proposed in the literature, it is obviously insufficient to only develop KAF al-

gorithms for possible practical applications without completely exploring their performance.

Accordingly, we investigated the theoretical performance of real-valued monokernel LMS

algorithm in nonstationary environment, real-valued multikernel LMS algorithm, complex

multikernel LMS algorithm and diffusion adaption over networks with KLMS algorithm.

This thesis thus provides a theoretical tool to analyze, design and compare the performance

of KAF algorithms with different characteristics within the framework of KLMS algorithms.

In Chapter 2, we started by recalling some basic concepts of classic linear adaptive

filtering, especially the milestones for convergence analysis of LMS algorithm. In order

to understand the basic principles of kernel-based methods thoroughly, the concepts and

properties of RKHS and kernel function were provided. Then, we introduced the necessary

sparsification criteria for online dictionary learning with KAF. Finally, three existing kernel

adaptive filtering algorithms were presented, including KAP algorithm, KNLMS algorithm

and KRLS algorithm.

Most of the existing strategies for dictionary update are only able to incorporate new

candidates into dictionaries. In other words, the obsolete and invalid kernel functions can-

not be automatically eliminated from the dictionary in an online way, which may degrade

the performance of KAF particularly in a nonstationary environment. In Chapter 3, we

studied the convergence behavior of the Gaussian monokernel LMS in the case where the

statistics of the elements of dictionary only partially match the statistics of the time-varying

input data. The theoretical analysis emphasized the necessity of updating the dictionary

in an online way, by simultaneously discarding the obsolete elements and including the ap-

propriate ones. We proposed the KLMS algorithm with ℓ1-norm regularization to achieve
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the task of updating dictionary in real-time. The stability of the FOBOS-KLMS-Ω in the

mean was also provided to guarantee its effectiveness in online processing.

Following the theoretical studies of monokernel algorithms dealing with the nonsta-

tionary input signals in Chapter 3, we firstly introduced two types of single-input and

multiple-input multikernel LMS algorithms with more degrees of freedom, which generally

leads to improved performance over monokernel methods. In fact the SI-MKLMS offers

much more flexibility and still is a particular case of mono-kernel LMS algorithm. Then we

focused on deriving the analytical model of stochastic convergence behavior of MI-MKLMS

algorithm. Finally, the simulation results not only demonstrated the accuracy of our the-

oretical analysis, but also the respective characteristics of SI-MKLMS and MI-MKLMS

algorithms.

As complex data are able to intrinsically preserve the phase information, the complex

KAF was investigated in Chapter 5. After providing the preliminaries of complex kernel

function and RKHS, two complex monokernel adaptive filtering algorithms were presented.

Then, ACKLMS algorithm for non-circular input was proposed as a basic tool for complex

multikernel adaptive filtering. In order to investigate the stochastic behavior of ACKLMS

algorithm, we conducted its mean weight error analysis and mean-square error analysis.

The numerical experiments validated our theoretical analyses.

Within the framework of distributed learning over sensor networks, Chapter 6 consid-

ered nonlinear diffusion adaptation in RKHS. By combining the basic monokernel LMS

algorithm with two well known diffusion strategies, we developed FATC/FCTA algorithms

and their parametric vector expressions. Moreover, we discussed the stability of proposed

algorithms in the mean sense. The numerical results showed that the performances of co-

operative FCTA and FATC diffusion algorithms outperformed the non-cooperative KLMS.

7.2 Perspectives

In this thesis, we introduced theoretical analyses of KLMS algorithms in different contexts,

in an systematic and comprehensive way. However, there are still some interesting problems

to be further studied. We will consider them as further research possibilities summarized

below.

• Gaussian kernel function is extensively used with most of the kernel-based methods.

The kernel bandwidth ξ directly determines the sharpness of Gaussian function fitting

the objective function, which finally influences the performance of KAF algorithms.

However, how to realize the adaptive adjustment of the Gaussian kernel bandwidth

in an online manner is of particular interest and an open problem until now. That

is to say that the online mode selection of KAF is a very challenging and interesting

problem for practical implementations in case of lack of prior statistical information,

and thus should not be bypassed in future works.

• Distributed signal processing on sensor networks is a promising research trend with

the development of wireless sensor technologies and various of actual demands such

as monitoring complex environment, nonlinear target tracking, etc. In chapter 6, we
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made an attempt to combine the KLMS algorithm with diffusion adaptation strate-

gies. We will address the problem of dictionary learning at each node to circumvent

the drawbacks of KLMS. The convergence of FCTA and FATC algorithms in mean

and MSE sense shall be analyzed in detail with this setting.

• The Cayley-Dickson hypercomplex number system and its algebraic properties were

established as the standard extension of real, complex, quaternion, octonion and

sedenion, etc. as mentioned in Chapter 1. Meanwhile, the m-dimensional (m =

2n, n ∈ Z+) C-D hypercomplex valued KLMS algorithm was proposed based on the

algebraic translation. However, there is no corresponding theoretical analysis of C-

D hypercomplex valued KLMS algorithm. Although an analysis of KLMS in C-D

hypercomplex domain intuitively seems to be extremely complicated, once it will be

available, it will be viewed as an ultimate universal analysis ranging from the simplest

real-valued to 2m-dimensional hypercomplex valued.

• In light of the development of analysis of LMS algorithm, it is also a challenging

possibility of analyzing the stochastic convergence behavior of the kernel least mean

fourth (KLMF) algorithm in future work.

• Last but not least, we shall consider how all the derived analytical models are able

to be applied for specific design of kernel adaptive filters dedicated to real implemen-

tations such as nonlinear acoustic echo cancellation, nonlinear channel identification

system, etc.
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