
HAL Id: tel-01286086
https://theses.hal.science/tel-01286086v1

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the abstract domain of polyhedra :
constraints-only representation and formal proof

Alexis Fouilhé

To cite this version:
Alexis Fouilhé. Revisiting the abstract domain of polyhedra : constraints-only representation and
formal proof. Computational Geometry [cs.CG]. Université Grenoble Alpes, 2015. English. �NNT :
2015GREAM045�. �tel-01286086�

https://theses.hal.science/tel-01286086v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : informatique

Arrêté ministérial : 7 août 2006

Présentée par

Alexis Fouilhé

Thèse dirigée par David Monniaux
et coencadrée par Michaël Périn

préparée au sein du laboratoire VERIMAG

et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Le domaine abstrait
des polyèdres revisité :
représentation par contraintes
et preuve formelle
Revisiting the abstract domain of polyhedra:
constraints-only representation
and formal proof

Thèse soutenue publiquement le 16 octobre 2015,
devant le jury composé de :

Pr. Paul Feautrier
ÉNS de Lyon, Président

Pr. Andy King
University of Kent, Rapporteur

Pr. Enea Zaffanella
Università degli Studi di Parma, Rapporteur

Pr. Sandrine Blazy
Université de Rennes 1, Examinatrice

Dr. Chantal Keller
Université Paris-Sud, Examinatrice

Dr. David Monniaux
CNRS, Directeur de thèse

Dr. Michaël Périn
Université Joseph Fourier, Co-Encadrant de thèse

1

Contents

Contents 2

Introduction 5

Summary in French . 14

I An abstract domain of polyhedra with
a formal soundness proof 15

1 Efficient result verification 17

1.1 What needs to be proved? . 17
1.2 Convex polyhedra and their representations 21

1.2.1 Geometrical view . 21
1.2.2 Constraints and generators 21
1.2.3 Which representation should be used? 23

1.3 Designing the proof . 24
1.3.1 Proof approaches . 25
1.3.2 Farkas’s lemma . 26
1.3.3 Choosing constraint representation 27

1.4 The core abstract domain . 28
1.4.1 Axiomatising . 29
1.4.2 The extractor . 30
1.4.3 The communication protocol 31

1.5 Modular proof formalisation . 33
1.5.1 The guard operator . 34
1.5.2 Assignment . 35
1.5.3 Framing constrained variables 35
1.5.4 Assignment with buffered renaming 37

1.6 Formalising external code . 38
1.6.1 The pitfalls of a naive axiomatisation 38
1.6.2 A simple theory of impure computations 39
1.6.3 Backward reasoning on impure computations 41

1.7 Completing the picture . 42
1.7.1 Improvement on prior work 42
1.7.2 The oracle . 43

Summary in French . 43

2

2 Proving inclusions with linear programming 45

2.1 Inclusion as a maximisation problem 45
2.2 Inclusion as a minimisation problem 47
2.3 Linear problems and duality . 49
2.4 Interior point methods . 51
2.5 The simplex algorithm . 52
2.6 A linear program solver . 59

2.6.1 From optimisation to satisfiability 59
2.6.2 Problem representation 60
2.6.3 Overview of the algorithm 61
2.6.4 Extracting witnesses . 62

2.7 Wrapping up . 63
Summary in French . 63

3 Computing on polyhedra represented as constraints 65

3.1 Representing polyhedra as constraints 65
3.1.1 Separating equalities from inequalities 67
3.1.2 Invariants of the representation of equalities 67
3.1.3 Invariants of the representation of inequalities 68
3.1.4 Interaction between minimisation and verification 70

3.2 Generating witnesses on the fly 71
3.2.1 Inclusion test . 71
3.2.2 Intersection . 72
3.2.3 Projection . 74
3.2.4 Assignment . 78
3.2.5 Convex hull . 79

3.3 Highlights and other features of VPL 82
Summary in French . 82

4 Implementing and evaluating performance 84

4.1 Implementation size . 84
4.2 Building programs and proofs with Coq 84
4.3 The subtleties of performance evaluation 85
4.4 The experimental setting . 86
4.5 Evaluation results and interpretation 90
4.6 VPL: simple, verified and efficient 93
Summary in French . 93

II Improving projection using
parametric linear programming 95

5 Parametric linear programming 97

5.1 Parametric linear problems . 97
5.2 Solutions to parametric linear problems 98
5.3 The parametric simplex algorithm 101

5.3.1 The impact of parametricity 102
5.3.2 The algorithm . 103

5.4 Wrapping up . 105
Summary in French . 105

3

6 Defining projection as a parametric linear problem 106

6.1 A polyhedron as a parametric linear problem 107
6.1.1 The starting point . 108
6.1.2 Redundancy . 110
6.1.3 Unbounded polyhedra . 113
6.1.4 Fully dimensional regions 114

6.2 From a polyhedron to its projection 115
6.3 Starting from positive linear combinations 117

6.3.1 The starting point . 117
6.3.2 From cone to polytope . 119

6.4 Duality of the two encodings . 122
6.5 Two models for projection . 125
Summary in French . 126

7 Towards a new solver 127

7.1 The problem with the standard algorithm 127
7.2 The method . 128
7.3 Recent work . 131

7.3.1 Instantiating solver . 132
7.3.2 Local exploration . 132

7.4 The idea which we start from . 133
7.5 Further directions . 136
Summary in French . 137

Behind and ahead 139

Summary in French . 142

Bibliography 143

Index 147

4

The validation of safety-critical software, such as fly-by-wire systems in air-
crafts, revolves around testing and manual code review. Besides functional re-
quirements, such as a fly-by-wire system preserving the stability of the aircraft,
safety-critical executable code must verify more technical safety properties. For
example, it must never divide numbers by zero, or try to access memory lo-
cations which don’t exist. Formal methods provide tools to check that these
properties are verified. However, in today’s validation process of safety-critical
software, these tools can’t replace testing for the same reason the assembly code
produced by a compiler is manually checked to match its source code: the tools
are complex pieces of software. They are implemented by human beings and
might have bugs. This thesis reports on work aiming at making the result of
formal method tools more trustworthy.

Trust. Our focus will be on abstract interpreters [16]. These are sound code
analysis tools, which means that they consider all possible executions of the
program they analyse. They check that none of these executions can violate
the required safety properties. For state-of-the-art abstract interpreters, such
as Astrée [7], the mathematical proof that, if the analyser doesn’t report
possible violations, then no execution of the analysed program can violate safety
properties, exists on paper. The distance between this proof and the actual code
of the analyser can’t be measured, which presents a problem of trust.

In order to bridge the gap between proof and implementation, we will use a
proof assistant, called Coq [50]. A proof assistant—this isn’t specific to Coq—
combines

• a language for writing programs,

• a language for expressing properties they should verify and

• a language for proving that programs indeed verify the properties.

The key benefit is that the proof assistant checks that the proofs are consistent.

The Compcert compiler. One of the most successful undertakings using
machine-checked proofs is the Compcert compiler [40] which compiles most
of the ISO C99 programming language to efficient code for PowerPC, ARM

and x86 processors. It comes with a proof that the compiler preserves the
semantics of the source program, which guarantees that the behaviour of the
compiled program is one of the possible behaviours of the source program.

One step further: Verasco. This guarantee only holds as long as the source
program doesn’t behave in a way which is undefined by the C standard. Un-
defined behaviours include divisions by zero and out-of-bounds array accesses
and their absence can be checked by an abstract interpreter. My work is part of
project Verasco [37], which aims at building an abstract interpreter and writ-
ing its soundness proof using Coq. The resulting tool, Verasco, can discharge
the assumption made in Compcert proof that the behaviour of the source pro-
gram is always well-defined. My work within Verasco focuses on capturing
relations between the numerical variables of a program.

5

1 Module M.
2 Inductive list (A : Type) : Type :=
3 nil : list A | cons : A → list A → list A.
4
5 Arguments nil {A}.
6 Arguments cons {A} a l’.
7 Infix "::" := cons (at level 60, right associativity).
8
9 Fixpoint app {A : Type} (l m : list A) {struct l} : list A :=

10 match l with

11 | nil ⇒ m
12 | a :: l’ ⇒ a :: app l’ m
13 end.
14
15 Lemma app_nil : ∀ (A : Type) (l : list A), app l nil = l.
16 Proof.
17 intros A l.
18 induction l as [|a l’ ih].
19 − reflexivity.
20 − simpl.
21 rewrite ih.
22 reflexivity.
23 Qed.
24 End M.
25
26 Extraction M.

Listing 1 – an example of Coq code

Using a proof assistant

Before we see the main ideas behind the static analysis performed by Verasco,
I’ll try to give a flavour of what proof assistants do, through two example code
fragments. The first fragment is written in the Coq input language and is shown
on listing 1. The second fragment is the Ocaml code equivalent to listing 1
and is shown on listing 2. It is generated by Coq extraction mechanism, which
strips all the proof-related parts of a Coq development so as to build a usual
Ocaml program. We will refer to it in order to shed light on Coq constructs.

An example of Coq code

The Coq code of module M shown on listing 1, illustrates the three activities
which using a proof assistant consists in.

Programs. Coq features a purely functional language for writing programs.
Our example defines a data type list of polymorphic lists, on line 2, and a
function app operating on this type, on line 9, which appends a list to another.
The extracted list and app, on lines 3 and 13 of listing 2, should convince you
that these definitions are mostly straightforward.

6

1 module M =
2 struct
3 type ’a list =
4 | Coq_nil
5 | Coq_cons of ’a * ’a list
6
7 (∗∗ val list_rec : ’a2 → (’a1 → ’a1 list → ’a2 → ’a2) → ’a1 list → ’a2 ∗∗)
8 let rec list_rec f f0 = function

9 | Coq_nil → f
10 | Coq_cons (y, l0) → f0 y l0 (list_rec f f0 l0)
11
12 (∗∗ val app : ’a1 list → ’a1 list → ’a1 list ∗∗)
13 let rec app l m =
14 match l with

15 | Coq_nil → m
16 | Coq_cons (a, l’) → Coq_cons (a, (app l’ m))
17 end

Listing 2 – the Ocaml code extracted from listing 1

Specifications. Then comes what we usually do on paper. Lemma app_nil,
on line 15, states one specification which function app is supposed to meet:
appending the empty list to a list l yields list l. Note that there is no corre-
sponding definition to app_nil in the extracted code of listing 2. Removing the
proof-related material is precisely the reason the extractor exists.

Proofs. The fragment between lines 16 and 23 is the proof that specifica-
tion app_nil is met. A Coq proof is built using tactics. Each tactic represents a
step of reasoning. Understanding a proof often requires replaying within Coq,
in order to see how each step transforms the proof goal. I’ll only detail a few
tactics here. More details can be found in Coq reference manual [50]. The main
step in the proof of lemma app_nil is induction l [|a l’ ih], on line 18. It states
“We now perform an induction on the structure of list l”. Naming instructions
for each of the two cases—they are introduced by a dash—of the induction
are given within square brackets. The base case, on line 19, assumes that the
list l is nil. The inductive case, on line 20, assumes that the list l is of the
form a :: l’. The induction hypothesis, ih, assumes that app l’ nil = l’. Another
example of a tactic is rewrite ih, on line 21. It is used for the inductive case,
where we need to prove a :: app l’ nil = a :: l’. The induction hypothesis ih is
used to rewrite app l’ nil on the left-hand side, into l’.

Realistic Coq

Besides the general principle of a proof assistant, the code fragments on listings 1
and 2 show some features of a realistic Coq development.

{struct l}. Every function defined in Coq must terminate and you need to
explain why when Coq isn’t convinced. In our example, function app operates

7

by deconstructing list l: each recursive call applies to the tail of the list, which
eventually becomes the empty list. Function app is said to perform a structural
descent on list l, written {struct l}.

Arguments nil {A}. Parametric polymorphism is a lot more powerful in Coq

than it is in Ocaml. As the number of parameters grow, writing them down
each time obfuscates the code. What’s more, Coq can often infer them from
the context. It is therefore possible to declare them as implicit. For exam-
ple, constructor nil of type list has type ∀ A, list A. The Arguments command
above declares that the type parameter A can be omitted. This permits to
write app l nil instead of app l (nil A). Similarly, {A : Type} declares an implicit
type parameter A in the definition of function app.

Infix "::" = cons. A Coq development is also made more readable using no-
tations, much like notations are introduced in mathematics. The one defined
here makes a :: l’ mean cons a l’. Notations in Coq are two-edged. They make
the code a lot more concise and convey the big picture to the newcomer more
easily. However, they can redefine most of the syntax of the language, which
makes detailed understanding a lot harder.

list_rec. The extracted code in listing 2 defines a function which doesn’t appear
in the Coq code: list_rec. It is a generalised folding function for type list.
Coq generates such a function automatically when an inductive data type is
defined: it is defined implicitly in Coq module M. Function list_rec is a form of
induction principle for type list, although it is beyond the scope of this overview
to explain how this relates to proofs being eliminated by the extractor. A
thorough explanation can be found in the book “Certified Programming with
Dependent Types” by Adam Chlipala [13].

Trusted computing base

Proof assistants such as Coq are among the tools which provide the highest
level of confidence in software. Trusting the result of a program written in
Coq along with its proof of correctness is reduced to trusting three well-defined
elements.

The specification. As with any specification, formal or written in prose,
you need to make sure that the Coq specification captures the informal idea
of correctness of the program. This may require some work. For example,
formalised semantics of the C programming language are part of Verasco

specification. Although the project reused the formalised semantics written
for the Compcert compiler, they had to be tested extensively against the C

standard in the early stages of the development of Compcert.

The proof assistant. Once we have good faith in the specification capturing
our intention, we should turn our attention to the proof assistant itself. Using
a proof assistant amounts to transferring one’s trust from the program being
developed—in our case, an abstract interpreter—to the proof assistant. Both
Compcert and Verasco use the Coq proof assistant. Coq is designed so

8

that all the proofs are checked by a single and well-defined component: a type-
checking kernel. This kernel is what you need to trust, keeping in mind that it
has been tested over several decades in a wide variety of settings.

The extractor. It is possible to execute a Coq program inside Coq. How-
ever, the execution environment provided by Coq is a closed world. For ex-
ample, Verasco couldn’t read a file containing the source program we wish
to analyse from within Coq. The program extractor generates a standalone
Ocaml program, equivalent to the Coq program but without the proofs, as we
saw on listing 2. The extract program can be linked with hand-written Ocaml

code and therefore interact with the rest of the world. As a side note, the gen-
erated Ocaml program needs to be compiled into a regular binary program,
which brings the Ocaml compiler among the trusted components.

Static analysis of computer programs

Now that we settled on what guarantees using Coq enables us to claim, we
may look further at what Verasco actually does. From a user perspective, it
analyses a C program, checking whether some of its executions may behave in
way which is specified as undefined by the C standard. “Absence of undefined
behaviours” makes an implicit specification, which can be enriched by adding
assert() statements to the program under analysis. If the analyser is able to find
that all the behaviours of the program are well defined and that no assertion
can be violated, then the analyser declares the program correct. An analyser
such as Verasco also has the following features.

• It is a static analyser: it analyses programs without a computer actually
running them.

• It is also a source code analyser: it takes C source code as input. Work
has been done to analyse binary programs [4], on the ground that all sorts
of errors may be introduced by the compiler. Our setting, which includes
the Compcert compiler, rids us of the concern.

• It is an automatic analyser: it requires no user input beyond the source
code of the input program.

• Last, it is a sound analyser: it is built on the theory of abstract interpre-
tation [16] and discovers properties of the program under analysis which
hold for all of its executions.

Under the hood, Verasco analyses a program by computing an overapprox-
imation of the reachable memory states after each of its instructions. Overap-
proximation is key to ensure soundness: the analyser is allowed to consider
memory states which can’t be reached by an actual execution, but it mustn’t
neglect a state which the program can be in. The latter would be an underap-
proximation. The analysis starts from an overapproximation of the reachable
memory states at the entry point, usually considering that nothing is known on
the contents of memory. From there, it performs a line-by-line exploration of
the source code, similarly to an actual execution, except that all of its possible
states are considered at once, hence the name “abstract interpretation”.

9

Abstract domains

Static analysis would be intractable without overapproximation. It is called
“abstraction”, capturing the idea that the analyser cannot keep track of all the
fine details of every execution of the program being analysed: it needs to infer
some sort of overview.

The most common abstractions capture information about the possible val-
ues of the numerical variables of a program. It would be very cumbersome and
memory hungry to keep this information as value sets. Consider for example
parameter x of function f in listing 3. Assuming no information is provided on
the calling context, it may take any value of type int, which has 232 possible
values. A more compact representation of the same information is the interval
[−231, 231 − 1], which is what analysers usually use. This representation has a
drawback, though. Consider the possible values of variable i in listing 3 when
the execution reaches the return statement on line 15. You will convince your-
self that the value of variable i is either 5 or 100, which an interval would record
as [5, 100]. While saying that the value of variable i is between 5 and 100 is
correct—in no execution of function f can variable i have a value outside of this
interval—, it is also an overapproximate statement.

In the theory of abstract interpretation, a type of abstraction, such as in-
tervals, combined with a set of operators to compute over abstractions of this
type, is called an “abstract domain”.

Example analysis

In order to make this discussion more concrete, we may now observe how the
abstract interpretation of function f on listing 3 proceeds, using the abstract
domain of intervals. We will overlook the fact that the numbers are machine
integers and just consider them mathematical integers in Z. The analysis de-
termines an interval for the possible value of each variable, that is a product of
intervals, after each instruction. The results are summarised in the comments
on listing 3. Right after the entry point of the function, all the analyser knows
is that there are two variables x and i and they may have any value. Line 5
through 10 are executed under the condition that the value of x is no more than
3. This information is used to restrict the subset of the reachable states to those
where i ∈]−∞, +∞[and x ∈]−∞, 3]. A guard such as x <= 3 in the program
code results in the analyser performing an intersection of the reachable states
before the guard with the states satisfying the guard. The assignment on line 5
determines the value of variable i in all of these executions.

Next in the program comes a loop. Loops are the major difficulty of static
analysis: they preserve a loop invariant which doesn’t appear explicitly in the
source code. Therefore, the analyser needs to be creative and infer an invariant
which can be expressed in the abstract domain. The loop of function f is bounded
trivially: it would be easy to unroll it entirely to find out that variable i has value
100 when the loop exits. However, unrolling would be slow on this example and
it is not possible in general. Instead, the analyser guesses a possible invariant
and checks whether it is inductive, meaning that it holds when the loop is entered
and, if it holds at the beginning of an iteration of the loop, then it also holds at
the beginning of the next interaction. If the guess of the analyser isn’t inductive,
a coarser guess is tried and checked for inductiveness, until the process stabilises:

10

1 int f(int x) {
2 int i;
3 /* x ∈]−∞, +∞[, i ∈]−∞, +∞[*/
4 if(x <= 3) { /* x ∈]−∞, 3], i ∈]−∞, +∞[*/
5 i = 1; /* x ∈]−∞, 3], i ∈ [1, 1] */
6 while(i <= 99) /* x ∈]−∞, 3], i ∈ [1, 100] */ {
7 /* x ∈]−∞, 3], i ∈ [1, 99] */
8 i = i + 1; /* x ∈]−∞, 3], i ∈ [2, 100] */
9 }

10 /* x ∈]−∞, 3], i ∈ [100, 100] */
11 } else { /* x ∈ [4, +∞[, i ∈]−∞, +∞[*/
12 i = 5; /* x ∈ [4, +∞[, i ∈ [5, 5] */
13 }
14 /* x ∈]−∞, +∞[, i ∈ [5, 100] */
15 return i;
16 }

Listing 3 – Program fragment illustrating abstract interpretation over intervals

the sequence of guesses is designed so that the analysis eventually stops. In the
worst case, the analyser considers that the possible values of all the variables lie
in interval]−∞, +∞[, which is trivially inductive, but makes a useless invariant.
It is called “top”.

In the example at hand, let the guess be i ∈ [1, 100], x ∈]−∞, 3]. It holds
initially, when the loop is entered: i = 1 and x ≤ 3. To check that it is preserved
by the loop, notice that the loop body is executed under the condition i ≤ 99.
This restricts the possible values of variable i in the same way an if statement
would. The assignment i = i + 1, on line 8, simply offsets the interval of possible
values by 1. At the end of the loop body, the interval for variable i is included in
that of the candidate invariant and variable x was left untouched. The candidate
invariant is thus inductive.

When the loop exits, the condition i ≤ 99 is false. The reachable states
after the loop are in the intersection of the loop invariant and the negated
condition i > 99, which is equivalent to i ≥ 100 for integers. It results that
x ∈]−∞, 3[and i ∈ [100, 100]. The else branch of the test on line 4 is executed
in the subset of the reachable states where x ∈ [4, +∞[.

What happens next introduces the last abstract domain operator: join.
When the analyser reaches the return statement on line 15, it has to consider
two possible scenarios. An execution path through function f comes from either
line 10 or line 12. This alternative can’t be represented in the abstract domain
without introducing a disjunction. The join operator of the domain of intervals
summarises what happened in both paths by computing the union of the inter-
vals for each variable. Without information on the calling context, the analysis
of function f infers that it returns an integer between 5 and 100.

Making guesses and widening

The example analysis we just followed skipped over the details of guessing a
candidate loop invariant. The accuracy of the guess has a big impact on the

11

precision of the properties discovered during the analysis, the worst case being
guessing no better than the trivial property top, which always holds. Using top
as a loop invariant in the analysis of function f yields “function f returns an
integer no smaller than 5”.

Making good guesses is inherently heuristic and is a research problem [1]
which I won’t cover here beyond the most common solution. The standard
approach, widening [15], is a kind of extrapolation based on the analysis of the
first few iterations of the loop under consideration. On the example above, the
usual widening operator of the abstract domain of intervals would go like this.

1. Upon entry, i ∈ [1, 1].

2. After at most one iteration, i ∈ [1, 2].

3. After at most two iterations, i ∈ [1, 3].

4. It seems that the upper bound increases each time, whereas the lower
bound remains stable. Let’s try i ∈ [1, +∞[.

5. Interval i ∈ [1, +∞[is an inductive invariant.

6. An extra iteration, with candidate i ∈ [1, +∞[, would recover i ∈ [1, 100].
This final step is called a narrowing iteration [15].

Polyhedra: a more precise numerical abstraction

Once the analyser has computed an abstraction of the reachable memory states
after each instruction, it uses these abstractions to check whether the behaviour
of the program under analysis is always well defined. The hoped-for case is that
it is. If it isn’t, the analyser warns the user: a bug in the program may have been
discovered. However, the analyser may find that the program under analysis
has undefined behaviours, but no actual execution of the program exhibits these
undefined behaviours. The warning is a false alarm: the program is correct, but
the analyser can’t infer strong enough invariants to check it. This situation
may originate from overapproximations performed during a join or a widening.
It may also be the case that the chosen abstract domain can’t represent the
necessary inductive invariant. Using a more precise abstraction may alleviate
the issue.

Consider function g of listing 4. If no information on the calling context
is supplied for parameters x and y, an abstract interpretation using intervals
won’t give any useful information on the return value of function g, although
you will convince yourself that x+2 ≤ g(x, y), irrespective of the values x and y
of parameters x and y. This can’t be deduced using intervals, because intervals
can’t capture relations between the value of variables. In function g, there is
nothing to learn on each variable independently.

The domain of intervals is but one numerical abstraction. Its operators
are very fast, but being a nonrelational abstraction often makes it imprecise.
The abstract domain of convex polyhedra [17] is designed to capture relations
between the variables of a program, as long as they don’t involve products
of variables. It can handle linear inequality or linear equality relations, such
as x + 2 ≤ y, which is enough for our needs for function g.

12

1 int g(int x, int y) {
2 if(x <= y) { /* x ≤ y */
3 y = y + 2; /* x + 2 ≤ y */
4 } else { /* y + 1 ≤ x */
5 y = x + 2; /* x + 2 = y */
6 }
7 /* x + 2 ≤ y */
8 return y;
9 }

Listing 4 – Program fragment illustrating abstract interpretation over polyhedra

The comments in listing 4 show what properties are inferred after each in-
struction. The assumption under which the else branch of the test is executed
is, strictly speaking, x > y. Given that variables x and y are integers, it can
be recast as x ≥ y + 1. The result of the analysis x + 2 ≤ g(x, y) follows
from relation x + 2 ≤ y being a correct overapproximation of the disjunc-
tion x + 2 ≤ y ∨ x + 2 = y.

Verasco: proving the soundness of an abstract interpreter

Coming back to Verasco after some context has been provided, a more precise
picture of the goal can be painted. We have just seen that checking safety prop-
erties in software can be delegated to static analysers, which are complex tools.
In a context of safety-critical systems, the trustworthiness of the analysis results
comes into question. Project Verasco aims at building an abstract interpreter
and writing the proof that it performs a sound analysis using the Coq proof
assistant. “Sound” means that all possible behaviours of the program being
analysed have been considered. In an attempt to reduce the proof effort, only
soundness is proved. Precision is sought through regular software engineering
techniques. The resulting analyser handles the same subset of the C program-
ming language as the Compcert compiler, that is all of C99 but unstructured
switch statements, variable-length arrays and setjump and longjump. It oper-
ates on one of Compcert intermediate representations, which occurs early in
the compilation process, and relies on the formalised semantics from Compcert

proof of semantics preservation.
Verasco isn’t the first attempt at formalising the soundness of an anal-

yser using Coq. David Pichardie pioneered [46] the formalisation in Coq of
abstract interpretation, with applications to a subset of the Java programming
language. Project Verasco, however, is the first project targeting a full-blown
programming language, such as C.

A high-level look at the architecture of Verasco reveals two major blocks:
the analysis engine and the abstract domains.

• Each abstract domain provides a set of operators and the proof that each
operator soundly overapproximates set operations on reachable states.

• The engine maps C instructions to domain operators. Its accompanying
proof builds on those of the abstract domain to ensure that all possible
executions of the program under analysis have been considered.

13

The collection of abstract domains in Verasco includes an abstract domain of
intervals, an abstract domain for handling memory operations and an abstract
domain of convex polyhedra. It also includes an abstract domain transformer
which builds an abstract domain over machine integers from an abstract domain
over mathematical integers in Z.

Building the domain of polyhedra with the necessary proofs in Coq has
been the focus of my work within project Verasco. It resulted in the Ver-

imag Polyhedra Library, shortened VPL. VPL is integrated into the Verasco

analyser [37] and is also available separately. The rest of the thesis covers the
challenges I faced while building VPL.

Summary in French

Un analyseur statique est un outil permettant de démontrer l’absence de certains
types d’erreurs dans les programmes. Un tel outil peut-être utilisé en rempla-
cement de tests. Quelle confiance accorder aux résultats de l’analyseur ? Il peut
avoir des bugs. Nous allons proposer une solution à ce problème basée sur la
preuve formelle à l’aide de l’assistant à la preuve Coq.

L’outil Coq combine trois éléments : un langage de programmation, un
langage de spécification et un langage de preuve. Une preuve démontre qu’un
programme satisfait une spécification. L’intérêt d’utiliser un assistant de preuve
réside dans le fait qu’il vérifie la bonne construction des preuves. En ce sens,
utiliser un assistant à la preuve revient à transférer sa confiance du programme
développé vers le composant de l’assistant qui valide les preuves. Coq est conçu
de façon à réduire la taille de ce composant.

L’analyse statique que nous allons considérer s’appelle «interprétation abs-
traite». Elle consiste à calculer une approximation de l’ensemble des états pos-
sibles d’un programme après chaque instruction. L’interprétation abstraite se
différencie principalement du test en ce qu’elle considère toutes les exécutions
possibles d’un programme, alors que le test n’en vérifie que quelques unes.

Décrire exactement l’ensemble des états d’un programme après une instruc-
tion donnée est théoriquement impossible : il est nécessaire d’avoir recours à
une approximation. Pour être correcte, une telle approximation doit inclure au
moins tous les états atteignables. Elle peut aussi inclure des états en pratique
inatteignables. Un type d’approximation, avec un ensemble d’opérateurs pour
le manipuler, est appelé un «domaine abstrait». Le domaine abstrait le plus
courant associe à chaque variable d’une programme l’intervalle de ses valeurs
possibles. Le domaine abstrait des intervalles ne peut pas représenter des rela-
tions entre les valeurs des variables.

Le domaine abstrait des polyèdres sert à représenter des ensembles d’états
atteignables d’un programme, en capturant les relations linéaires entre les va-
leurs possibles des variables.

Cette thèse présente la construction de VPL, un domaine abstrait de poly-
èdres, réalisé pour l’analyseur statique Verasco. Verasco est écrit et prouvé
correct à l’aide de Coq. La conception de VPL permet à la fois de remplir
les obligations de preuve imposées aux domaines abstraits par Verasco et
d’obtenir des performances raisonnables du domaine abstrait.

14

Part I

An abstract domain of

polyhedra

with a formal soundness

proof

15

The abstract domain of polyhedra was introduced by Patrick Cousot and
Nicolas Halwachs in 1978 [17]. It is designed to capture relations between vari-
ables during the analysis of a program, as opposed to the original domain of
intervals [15], which considers each variable separately. In more than three
decades, many refinements [51, 1, 2] have been published, enhancing both com-
putational efficiency and precision. In comparison, using proof assistants to
build an abstract domain with a formal proof of correctness is a recent under-
taking [6].

This first part reports on my contribution to bridging the performance gap
between formally proved abstract domains of polyhedra and their counterparts
built following traditional software engineering practices. My work on VPL

keeps the result verification approach based on witnesses, which was pioneered
by Frédéric Besson et al. [6]. However, it goes against the common practice of
using the double description of polyhedra, in favor of a constraints-only repre-
sentation.

16

Chapter 1

Efficient result verification

VPL guarantees that its results are correct using a small checker to verify, after
they are computed, that the results meet the desired properties. Although this
approach, called “result verification”, adds a small checking overhead to each
computation, it reduces the formal proof work to the simple checker. Before we
dive further into the specifics of polyhedra, let us consider the problem we need
to solve from some distance.

Verasco analyses an input C program using an abstract domain chosen by
the user from a set including, among others, intervals and convex polyhedra.
Choosing at run time which abstract domain to use is made possible by having
all abstract domains implement the same interface, which is reproduced on
listing 1.1. This interface is richer than interfaces commonly encountered in
mainstream programming languages, such as Ocaml or C++: all of the fields
ending with “_correct” on listing 1.1 are proof obligations. However, similarly
to mainstream programs, interfaces provide structure, both to the code of the
analyser and to its soundness proof.

1.1 What needs to be proved?

VPL implements interface ab_ideal_env. The name stands for “abstract domain
over ideal environments”, where an environment represents a memory state, in
the form of a function from variable names to values. In this context, “ideal”
means that variables have values from the set of integers Z. Real program
variables, however, have values from the set of machine integers, which fit in
either thirty two or sixty four bits. Verasco provides a domain transformer to
build an abstract domain over machine environments from a domain satisfying
interface ab_ideal_env.

The interface of abstract domains is defined as a type class [49], which is
similar to a module. The definition is parameterised by a type t, which is the
type of abstract values, such as the type of products of intervals or the type of
polyhedra.

The case of ⊥. Actually, most operators have t+⊥ as return type. The
abstract value ⊥ represents the infeasible, or unreachable, state. The return
value is “either an element of t or ⊥”. Distinguishing ⊥ syntactically allows

17

1 Class ab_ideal_env (t:Type) : Type := {
2 γ :> gamma_op t (var → Z);
3 id_top: t+⊥;
4
5 id_leb: t → t → bool;
6 id_join: t → t → t+⊥;
7 id_widen: t → t → t+⊥;
8
9 assume: iexpr var → bool → t → t+⊥;

10 assign: var → iexpr var → t → t+⊥;
11 forget: var → t → t+⊥;
12
13 id_top_correct: ∀ m, m ∈ γ id_top;
14 id_leb_correct: ∀ p1 p2 m,
15 id_leb p1 p2 = true → m ∈ γ p1 → m ∈ γ p2;
16 id_join_correct: ∀ p1 p2 m,
17 m ∈ γ p1 \/ m ∈ γ p2 → m ∈ γ (id_join p1 p2);
18 assume_correct: ∀ c m p b,
19 m ∈ γ p → (if b then 1 else 0) ∈ eval_iexpr m c → m ∈ γ (assume c b p);
20 assign_correct: ∀ x e m n p,
21 m ∈ γ p → n ∈ eval_iexpr m e → (upd m x n) ∈ γ (assign x e p);
22 forget_correct: ∀ x m n p,
23 m ∈ γ p → (upd m x n) ∈ γ (forget x p);
24 }.

Listing 1.1 – Coq interface of Verasco abstract domains

to detect unreachable code at no cost, that is without having to test explic-
itly abstract values for emptiness. Consider, for example, the code fragment
/*x ≥ 1 */ if(x <= 0) { y = 3; }. There are two correct ways to analyse it.

• The naive way consists in accumulating bounds. Right before the assign-
ment, the abstract value contains the information x ≥ 1 and x ≤ 0. There
is no value for variable x satisfying these bounds, but the abstract domain
hasn’t detected it. After the assignment, the abstract value contains the
information, x ≥ 1, x ≤ 0 and y = 3. Again there is no value for the vari-
ables x and y satisfying these conditions, but the abstract domain hasn’t
noticed.

• The alternative consists in minimising, that is drawing the most concise
conclusions from the available information. Right before the assignment,
the abstract value contains the information x ≥ 1 and x ≤ 0. The ab-
stract domain realises that the bounds are incompatible and rewrites the
conjunction as ⊥. The analyser then knows that it can skip the rest of
the block, since its entry point is unreachable.

The special value ⊥ only makes analysis faster. We won’t distinguish it in the
following. Since most of what we’ll cover is related to the abstract domain of
polyhedra, we’ll use letter p to name abstract values.

18

Concretization. The first component of interface ab_ideal_env relates type t
of abstract values to program states. In Verasco, a program state is repre-
sented by a function from variables to integers of type Z. Such a function has
type var → Z and can be thought as describing an infinite memory. Sets of
infinite memories relate to abstract values through a concretization function γ.
The set γ p contains all the memories which are abstracted by abstract value p.
Suppose we have a polyhedron p defined as x ≤ y, as we had in listing 4. Then,
any memory m, such that m x ≤ m y, belongs to the set γ p.

An abstract domain must provide a value id_top, which abstracts all states.
It is typically used as an abstraction of the initial state of the program under
analysis, capturing the fact that no assumption is made. This appears in the
proof obligation id_top_correct for id_top, on line 13. Next come the operators.

Inclusion test. Declared on line 5, the inclusion test is used to check that
the analysis of a loop has stabilised on an inductive invariant. We note p ⊑ p′

for id_leb p p’ = true, where p and p′ are abstract values. Spelt in conventional
mathematical notation, the proof obligation for id_leb, on line 14, is as follows.

p ⊑ p′ ⇒ ∀m ∈ γ p, m ∈ γ p′

Inclusion in the abstract domain must be compatible with set inclusion of sets
of concrete memory states.

Join operator. The join operator, line 6, overapproximates the disjunction
which appears after an if statement. The result of id_join p p’ is noted p ⊔ p′.
It comes with the following proof obligation, from line 16.

∀m, m ∈ γ p ∨ m ∈ γ p′ ⇒ m ∈ γ (p ⊔ p′)

Operator ⊔ is an overapproximation of disjunction.

Widening operator. When introducing abstract interpretation on an exam-
ple, we mentioned the need for some kind of extrapolation in order to discover
inductive invariants in loops, and we called this operation “widening”. It is
specific to each domain and appears on line 7. Widening is used for guessing
candidate invariants. These don’t need to be trusted, since the analyser checks
whether they are inductive. As a result, no proof obligation applies to the
widening operator.

Guard operator. The control flow of a program is based on conditions, most
commonly if statements, which must hold for the guarded instructions to be
executed. Filtering program states satisfying a guard is performed by the assume
operator, on line 9 of listing 1.1. The call assume c b p abstracts the program
states satisfying abstract value p where expression c evaluates to boolean b.
Expression c can be any side-effect-free expression from the C programming
language. Note that there is no boolean type in the C language. Boolean
expressions, such as x <= y, yield an integer value: 1 if the comparison evaluates
to “true” and 0 otherwise, as you can see in the proof obligation on line 18. The
proof obligation for the guard, noted ⊓, in the case where boolean b is true is
the following.

∀m, m ∈ γ p ∧ m ∈ γ c ⇒ m ∈ γ (p ⊓ c)

19

I abused notations in this formula: m ∈ γ c is the set of memory states making
expression c evaluate to “true”. The proof obligation shows that operator ⊓ is
an approximation of conjunction.

Assignment operator. A memory state is altered by variable assignments.
The result of assign x e p represents the effect of assignment x = e on abstract
value p. The corresponding proof obligation is found on line 20. Spelt with
usual mathematical notations, it reads as follows.

∀m ∈ γ p, m[x := eval(m, e)] ∈ γ (p[x := e])

Two program states are involved: state m before executing the assignment and
state m′ , m[x := eval(m, e)] resulting from the assignment. The latter as-
sociates to x the value of expression e evaluated in m and m y to any other
variable y. The proof obligation states that memory m′ belong to the memory
states abstracted by the result p[x := e] of assign x e p.

Projection operator. We haven’t encountered operator forget yet. Assume
variable x is local to a function f of the program under analysis. Keeping
information about variable x makes little sense, once the analysis of function f
is over. Only the effect of function f is interesting, that is its side effects and
return value. Therefore, the analyser forgets about variable x when it becomes
out of scope, but keeps the rest of the information it gathered. Variable x is
said to be “eliminated”. This operation is noted p\x, where p is an abstract
value. Line 22 gives the proof obligation.

∀m ∈ γ p, ∀n ∈ Z, m[x := n] ∈ γ (p\x)

It states that abstract value p doesn’t constrain the value of x. Operator forget
is also called “projection”: looking at abstract value p as a geometrical object
which has one dimension per variable, eliminating variable x is tantamount to
projecting abstract value p in a space of lower dimension, where variable x
has been removed. From this perspective, the proof obligation can be recast
equivalently as the following existential quantification.

∀m, (∃n ∈ Z, m[x := n] ∈ γ p)⇒ m ∈ γ (p\x)

Soundness versus precision. The formal proof of Verasco focuses on
soundness. It is possible to prove precision properties, as the result of the
operators of the usual domains are well-defined. However, in an attempt to
lower the proof effort, it doesn’t provide any guarantee on the precision of the
analysis. The downside of this choice is that an abstract domain where id_leb
always returns false and where all of the other operators return id_top trivially
meets the specification described in listing 1.1, even if such an abstract domain
wouldn’t be of any use.

All Verasco abstract domains meet the specification reproduced in list-
ing 1.1. We may now turn to how this is achieved for the abstract domain of
polyhedra.

20

x

y

x ≤ y

x

y

x ≤ y

x ≤ 1

Figure 1.1 – Convex polyhedron as the intersection of half-spaces

1.2 Convex polyhedra and their representations

The code fragment on listing 4 revealed that capturing relations between pro-
gram variables is sometimes necessary, in order to infer useful information. The
abstract domain of convex polyhedra can represent linear equality or inequal-
ity relations between variables, such as x ≤ y or x = y + 1. These are very
commonly encountered in programs.

1.2.1 Geometrical view

Convex polyhedra are used in static analysis for representing collections of reach-
able memory states. They are more commonly associated with the field of ge-
ometry and it is often useful to keep a geometrical view in mind.

Suppose that the program under analysis has n variables, or that the pro-
gram fragment under consideration has n live variables. Let me name them x1 to
xn. To each of these n variables, we associate one dimension of an n-dimensional
space: x1, x2, . . . , xn. Then, each point in this space represents a memory state:
the value of the ith coordinate of point m , [x1 7→ x1, . . . , xn 7→ xn] is the value
associated to the ith variable of the program.

Consider two program variables x1 and x2 mapped to dimensions x1 and x2 of
a two-dimensional space. Both x1 and x2 are rational numbers. Then, a guard,
such as x1 <= x2, defines a half-space, as illustrated on the left of figure 1.1.
The aforementioned guard is satisfied by all the points above the line x1 = x2.

If another guard, such as the bound x1 <= 1, were encountered in the pro-
gram fragment guarded by x1 <= x2, all the satisfying states would be in the
intersection of the two half-spaces, as shown on the right of figure 1.1.

1.2.2 Constraints and generators

The example of figure 1.1 describes a convex polyhedron as a conjunction of half-
spaces. There are actually two ways of defining a convex polyhedron: constraints
and generators. All the numbers mentioned in the following description, both
constants and variables, are rational numbers. We consider an n-dimensional
space, with dimensions x1 to xn, and note x , (x1, . . . , xn) a point in this space.
Let us call c(x) an affine function if it can be written in the following way.

c(x) = a0 +
n

∑

j=1

aj · xj

21

x

y

v , (1, 1)

r1 , (− 1
2 ,− 1

2)

r2 , (0, 1
2)

Figure 1.2 – The generators of a convex polyhedron

If a0 = 0, then we call c(x) a linear function.

Constraint representation

Suppose l affine functions c1(x) to cl(x). A convex polyhedron P is defined as
the following set of points.

P ,
{

x
∣

∣

∣

l
∧

i=1

ci(x) ≥ 0
}

Each conjunct ci(x) ≥ 0 is called an affine constraint. An abstract value p of
the abstract domain of polyhedra is a set of such affine constraints.

p ,
{

ci(x) ≥ 0, i ∈ {1, . . . , l}
}

It is a representation of all the points of set P defined above. Sets P and p are
two ways of looking at the same thing. They are related by the concretization
function of the abstract domain of polyhedra: P = γ p. Therefore, we can think
of set p as being the abstraction of the set P of memory states. We will use
upper case P for the set of states and lower case p for the set of constraints.

It is possible for a polyhedron to contain two constraints, such as x ≥ 0
and x ≤ 0. Their conjunction effectively states that x = 0. For reasons mainly
related to computational efficiency, it is desirable to set these equalities aside
in the definition of a polyhedron. Suppose k affine functions e1(x) to ek(x). A
polyhedron p can be defined as a pair a sets.

p ,
(

{

ci(x) ≥ 0, i ∈ {1, . . . , l}
}

,
{

ei(x) = 0, i ∈ {1, . . . , k}
}

)

The corresponding set of states P is defined in the following way.

P ,
{

x
∣

∣

∣

l
∧

i=1

ci(x) ≥ 0 ∧
k

∧

i=1

ei(x) = 0
}

Generator representation

Constraints appear naturally in source code and call for a constraint represen-
tation of polyhedra. However, a convex polyhedron can also be represented by

22

a set of generators, which is better suited for performing some operations, such
a projection. As the name implies, generators describe how to build the points
of the polyhedron. For example, for any point x of the polyhedron depicted on
figure 1.2, there exist λ1 ≥ 0 and λ2 ≥ 0 such that x = v+λ1 ·r1 +λ2 ·r2. Point v
is called a vertex and r1 and r2 are called rays. Suppose that polyhedron P has
l vertices and k rays. It can be defined in the following way.

P ,
{

l
∑

j=1

µj · vj +
k

∑

i=1

λi · ri

∣

∣

∣

l
∑

j=1

µj = 1 ∧
l

∧

j=1

µj ≥ 0 ∧
k

∧

i=1

λi ≥ 0
}

Each point of set P is built from a convex combination of its vertices and a
nonnegative linear combination of its rays. Similarly to the constraint represen-
tation, an equivalent polyhedron p can be defined as a pair of sets.

p ,
(

{v1, . . . , vl}, {r1, . . . , rk}
)

When a polyhedron has two rays r1 and r2 pointing to opposite directions, that
is when r1 = −k · r2 with k > 0, they can be merged into a line. The definition
of polyhedron P with m lines l1 to lm is altered in the following way.

P ,
{

l
∑

j=1

µj · vj +
k

∑

i=1

λi · ri +
m

∑

i=1

ai · li

∣

∣

∣

l
∑

j=1

µj = 1 ∧
l

∧

j=1

µj ≥ 0 ∧
k

∧

i=1

λi ≥ 0
}

The polyhedra which can be represented using the representations we have
just described are always convex. Therefore, I’ll just refer to them as “polyhe-
dra” from now on.

1.2.3 Which representation should be used?

The abstract domain operators transform polyhedra so that they abstract the
set of states reachable after each instruction. The complexity of the algorithms
used in these operators depends on the representation of the polyhedra. For
each operator, one choice of representation results in a very simple algorithm for
computing the result. In the following enumeration, p and p′ are two polyhedra.

inclusion test. To check whether p ⊑ p′, it is best to have p as generators
and p′ as constraints. Inclusion holds if all the generators of p satisfy the
constraints of p′.

join. The join p ⊔ p′ performs the convex hull of polyhedra p and p′. It is
easiest with generators: just compute the union of the sets of generators.

widening. The standard algorithm, which is described in Nicolas Halbwachs’s
PhD thesis [30] operates on constraint representation. Essentially, it drops
constraints whose constant term changes from one iteration to the next.

guard. With an affine guard c, which is a single-constraint polyhedron, com-
puting p ⊓ c is easiest when polyhedron p is in constraint representation.
Operator ⊓ computes the intersection of two polyhedra, by taking the
union of their constraint set.

23

6 (= 2 ∗ 3) constraints

x

y

z

8 (= 23) generators

Figure 1.3 – The two representations of the three-dimensional hypercube

assignment. The effect of assignment x := e, where e is an affine expression, is
computed by applying a linear transformation in generator representation.
With constraints, the assignment operator can be rephrased in terms of
the guard and projection operators, as we’ll see later in this chapter.

projection. Eliminating variable x from polyhedron p is easiest with genera-
tors. The result p\x is computed by dropping the x coordinate of all of
the generators.

Representation size

Another criterion for choosing between representation is their size. One repre-
sentation of a polyhedron can be exponentially bigger than the other, as illus-
trated on figure 1.3. The hypercube captures bounds on each variables, with no
relational information. In our static analysis setting, this is a common situation.
The size of the constraint representation of the hypercube is linear in the num-
ber of variables: each variable has one upper bound and one lower bound. The
size of the generator representation is exponential in the number of variables.
Similarly, there is a class of polyhedra with a linear number of generators and
exponential number of constraints, but it is much less likely encountered.

The state of the art: using both

The previous discussion naturally leads to consider using both representations.
This is what the original work by Patrick Cousot and Nicolas Halbwachs [17]
actually does. Nevertheless, using both representations comes at the cost of con-
verting between representations. Chernikova’s algorithm [12] solves this prob-
lem. Unfortunately, it is an expensive algorithm: the complexity of polyhedra
algorithmics is transferred from the operators to the conversion algorithm. This
being said, in the best case, conversions are amortised over several operator
calls. This happens when analysing nested guards, or when performing a join
after the local variables in each branch have been eliminated.

State-of-the-art implementations continue to follow this design. These imple-
mentations include PolyLib [52], NewPolka, from the Apron [33] collection
of abstract domains, and the Parma Polyhedra Library [3], called PPL in
the remainder of this text.

1.3 Designing the proof

Having reviewed how polyhedra are represented, we may go back to implement-
ing the specification presented in section 1.1, along with formalising the required
proofs.

24

operator

inputs

output

oracle

checker

inputs

(output, witness)

output

Error

Figure 1.4 – Two approaches to proving correctness in using Coq. The trusted
components are lightly shaded. The untrusted ones appear darker.

1.3.1 Proof approaches

There are two main approaches to proving the correctness of a function in Coq.
Figure 1.4 illustrates them.

• Either you prove that whatever result the function returns, it fulfills the
specification,

• or you write a checker which, for each result produced by the function,
verifies whether the result is correct. In this case, you only need to prove
that if the checker accepts a result, then the result is correct. The checker
may use a witness of correctness, which is provided by the function.

Ultimately, what matters is that results are trustworthy. Both methods meet
this goal. The first approach, proving the correctness of the implementation of
a function, is the most straightforward approach: the proof is done once and
afterwards, the function can be forever used and trusted. However, when the al-
gorithms used are complex, the proof may become hard and must be maintained
as the algorithm evolves. The alternative, called “result verification”, may be
a lot simpler in this situation. For example, the Compcert C compiler uses
this technique for register allocation, which can be cast as a graph colouring
problem. Proving that a checker accepts only properly coloured graphs is much
easier than proving the correctness of the colouring algorithm itself. Further-
more, the algorithm may be enhanced without affecting the proofs. However,
there are a few drawbacks to result verification.

• Each result needs to be checked at runtime. If checking is expensive,
this approach incurs a performance penalty. However, writing correctness
proofs in Coq is hard. One may choose to implement and prove correct
simple algorithms, instead of elaborate, and more efficient, algorithms.

• Checking results adds the possibility of a result being incorrect, which
must be dealt with in all the Coq development. This is the “Error”
output on figure 1.4.

Also note that a checker which always returns an error is correct, although
useless. This being said, verifying results means that no restrictions apply to
the function implementation. It can be implemented as an external Ocaml

25

oracle, to which most of the complexity is offloaded. This is beneficial for the
following reasons.

• Coq code cannot use machine arithmetic. Instead, it is limited to a for-
malisation of numbers as bit strings. For arithmetic intensive algorithms,
this becomes problematic for performance.

• All Coq functions must be shown to terminate for all inputs. For some
algorithms, such as the simplex algorithm which is widely used in the im-
plementation of the abstract domain of polyhedra, proving termination is
tricky. The burden of the termination requirement may be lifted by resort-
ing to fuel, which consists in bounding statically the number of recursive
calls by a very large number. When the algorithm exhausts its fuel, it
returns an error, which brings us back to handling errors throughout the
code.

Choosing result verification

The guiding goal for this work was to keep things as simple as possible. As
we will see in the next two chapters, the algorithms used for computing over
polyhedra are already complex enough. Adding the proof requirement to their
implementation would have made them even more complex.

For this reason, result verification was chosen for writing the soundness proof
of the abstract domain of polyhedra in Coq. This choice reduces the proof
burden and separates concerns between computing and proving. The arguments
required to prove the correctness of the operators of the abstract domain of
polyhedra make it convenient to offload much computation to an untrusted
oracle and keep only a small amount of code to be proved correct in Coq.

1.3.2 Farkas’s lemma

As we’ll see shortly, the proof obligation for all the operators of the abstract
domain, which we saw at the beginning of this chapter, can be recast as inclusion
properties, with the exception of the guard operator. Farkas’s lemma provides
us with a witness for inclusion, when dealing with polyhedra under constraint
representation.

Farkas’s lemma. A polyhedron P ,
{

x
∣

∣

∧l

i=1 ci(x) ≥ 0
}

is included in the

half-space C , {x | c(x) ≥ 0} if and only if there exists λ0 ≥ 0, . . . , λl ≥ 0 such

that c(x) = λ0 +
∑l

i=1 λi · ci(x).

In the context of result verification, only one part of the proof needs to
be written in Coq: if λ0, . . . , λl are provided such that the equality c(x) =
λ0 +

∑l
i=1 λi · ci(x) holds, then inclusion P ⊑ C holds. The proof relies on two

helper lemmas.

scaling. ∀a ≥ 0, ∀x, c(x) ≥ 0 ⇒ a · c(x) ≥ 0

addition. ∀x, c1(x) ≥ 0 ∧ c2(x) ≥ 0 ⇒ c1(x) + c2(x) ≥ 0

The linear combination is represented as the list of pairs (constraint identifier,
coefficient). The main proof is no more than an simple induction on this list,

26

with each step invoking the two lemmas above. If the coefficient is negative, or
if the identifier refers to a nonexisting constraint, an error is returned. With
the help of some proof automation, the proof of this half of Farkas’s lemma in
the Coq development of VPL is two lines long.

The guarantee that the linear combination always exists whenever inclusion
holds is the difficult part of the proof [18], but it isn’t required for proving the
checker correct. This half of Farkas’s lemma merely makes us confident that
building a complete inclusion test with result verification is possible. Further-
more, coefficients λ0, . . . , λl make a witness for inclusion. The result of each
operator can be verified by applying Farkas’s lemma.

inclusion test. This is a direct application of the lemma.

join. As we saw at the beginning of this chapter, the proof obligation for the
join operator is as follows.

∀m, m ∈ γ p ∨ m ∈ γ p′ ⇒ m ∈ γ (p ⊔ p′)

In order for ph , p ⊔ p′ to meet this specification, case analysis requires
proving that p ⊑ ph and p′ ⊑ ph. Providing a witness for each inclusion
allows a checker to verify that the result is correct.

guard. If I continue abusing notation γ, the proof obligation for the guard
operator as follows.

∀m, m ∈ γ p ∧ m ∈ γ c ⇒ m ∈ γ (p ⊓ c)

Let p′ , p ⊓ c(x) ≥ 0. Polyhedron p′ is correct if p ∪ {c(x) ≥ 0} ⊑ p′.
Providing, for each constraint of polyhedron p′, a witness of the form
λ0, . . . , λl, λc, where λ1, . . . , λl apply to the constraints of p and λc applies
to c(x) ≥ 0, suffices to verify correctness. Note that p ∪ {c(x) ≥ 0} is a
trivially correct result of p ⊓ c(x) ≥ 0, with an obvious inclusion witness.
However, an actual implementation of the guard operator minimises the
representation of the result, that is redundant constraints are removed and
equality constraints may be used for rewriting.

projection. Remember from the beginning of this chapter that the specifica-
tion of the projection operator is the following.

∀m ∈ γ p, ∀n ∈ Z, m[x := n] ∈ γ (p\x)

Polyhedron p′ , p\x is correct if x is not bounded by p′ and p ⊑ p′. The
former can be checked syntactically. The latter is an inclusion test.

A result similar to Farkas’s lemma holds for the generator representation.
Inclusion p ⊑ p′ is proved if all the vertices of p are points of p′ and if all the
rays of p are linear combinations with positive coefficients of the rays of p′.

1.3.3 Choosing constraint representation

I chose a constraint-only representation to build an abstract domain of polyhedra
along with its soundness proof. Let us review the motivations behind this choice.

27

oracle:

• operators
• witness generation

checker

requests

witnesses

Figure 1.5 – the architecture of the abstract domain

• To the best of my knowledge, there is no algorithm computing intersection
on generators. For constraint representation, the problematic operator is
join, but an algorithm has been published [5] which encodes the join of
two polyhedra represented by constraints as a projection.

• As the analysis of listing 4 shows, constraints appear naturally during
the abstract interpretation of a program. Even if there was a simple way
to convert the representation of a half-space from a single constraint to
generators, this would reduce the issue to computing the intersection of
two polyhedra represented by generators.

• Discovering bounds on variables during analysis is common and the poly-
hedron which represents the resulting product of intervals has an expo-
nential number of generators.

• Using two representations requires proving the correctness of the results of
Chernikova’s algorithm. There is no known way to the result checking ap-
proach. Furthermore, proving the algorithm correct is hard: forgetting one
generator results in an underapproximation, which is unsound. Therefore,
proving the correctness of the algorithm requires proving a completeness
result.

1.4 The core abstract domain

At this point, we have chosen to use the constraint representation of polyhedra
in order to formalize the soundness proof of the abstract domain. We have also
decided to build the proof using the result verification approach. Therefore, we
end up with the architecture pictured on figure 1.5 for the abstract domain. It
has two components: an untrusted oracle and a trusted checker.

The oracle. Most of the algorithmic complexity is delegated to an oracle. It is
written in the Ocaml programming language and the results it computes
don’t need to be trusted. However, it provides, along with its results,
inclusion witnesses in the form of nonnegative coefficients of linear com-
binations. These coefficients are used by the checker to apply Farkas’s
lemma in order to prove the correctness of the result.

The checker. The result checker is part of the Coq frontend of the abstract
domain, which we will detail in the next sections. It works by delegat-
ing computations on polyhedra to the oracle and by then checking the

28

1 Axiom t: Set.
2
3 Axiom freshId: t → positive.
4 Axiom top: t.
5 Axiom isEmpty: t → option witness.
6 Axiom isIncl: t → t → option witness.
7 Axiom guard: t → Cstr.t → option t * witness.
8 Axiom join: t → t → t * witness.
9 Axiom widen: t → t → t * Pol.t.

10 Axiom project: t → Var.t → t * witness.
11 Axiom rename: Var.t → Var.t * t → t.

Listing 1.2 – the axioms declaring the oracle in Coq

results. Checking relies on the witness which comes with a result in order
to apply Farkas’s lemma to prove the required inclusion property. The
result checker is written in Coq and comes with a proof that the results
it returns to the user of the abstract domain are sound. In other words,
it meets the specification from section 1.1.

Result verification is a common approach to building proofs. However, it
is put to practice in VPL in a slightly unusual way. In VPL, you may think
of the oracle and the checker as two independent entities which are able to
communicate. Each of them independently stores a current polyhedron, that
is the polyhedron which captures the reachable states at the program location
which the analyser is currently looking at. When the analyser calls an operator
of VPL frontend, the frontend calls one or several oracle operators. The oracle
operators update the oracle current polyhedron and send back witnesses to
the frontend. These witnesses can been seen as instructions for the frontend to
update its own current polyhedron so that it matches that of the oracle, thereby
restoring synchronisation. Once the frontend has updated its own polyhedron,
it returns it to the analyser as the operator result.

One interesting feature of this design is that the oracle has complete freedom
for how the operators of the abstract domain are implemented. It just needs to
provide the required inclusion witnesses. In particular, it would be possible for
the oracle to implement a restriction of the abstract domain of polyhedra. For
example, it could implement the octagon abstract domain [42], which restricts
the coefficients of variables in the constraints c(x) ≥ 0 to be either 1 or −1 and
limits the number of non-zero coefficients to be at most two. Another interest
of the design is that it allows the oracle to use different data structures from
the frontend. This is particularly beneficial for numbers, which are represented
as lists of bits in Coq: a more efficient representation is used in the oracle.

We will now describe how this high-level view of the design is actually im-
plemented, focusing on the communication between the oracle and the checker.

1.4.1 Axiomatising

As we noted above, the frontend is written in Coq, while the oracle is written
in Ocaml. In order to have the frontend interact with the oracle, the frontend

29

1 Definition project (pF, pO) x :=
2 let (pO’, w) := Oracle.project pO x in

3 let pF’ := projectUsing w pF x in

4 (pF’, pO’).

Listing 1.3 – the Coq definition of the projection operator

needs to have a name for it. External Ocaml code can be declared to Coq, so
that it can be referred to from a Coq program. These declarations are called
axioms, as they make Coq assume the existence of an external value or function
of a given type.

Listing 1.2 presents the axioms declaring the functions of the oracle to Coq.
Types Cstr.t, Pol.t and Var.t are the Coq types for constraints, polyhedra and
variables in the frontend. You can find an axiom for each operator of the
abstract domain: the default element top, on line 4, the inclusion test isIncl on
line 6, the guard, join, widening and projection operators on lines 7, 8, 9 and 10
respectively. The assignment operator is missing. As I mentioned before, it is
implemented in the frontend in terms of the guard and projection operators.
Simple variable renaming is also needed for assignment, which is the reason for
an extra axiom to appear on line 11. Note that renaming in the frontend doesn’t
involve the oracle, but the frontend needs to notify the oracle that a renaming
has been performed, in order to preserve synchronisation. Axiom isEmpty, on
line 5, is a special case of isIncl. It checks whether there exists at least one point
satisfying the constraints of a given polyhedron. Both isEmpty and isIncl have
return type option witness. Type transformer option adds a special value None
to type witness. When the polyhedron is empty, or when inclusion holds, the
oracle returns a witness. Otherwise, it returns the special value None.

In order to avoid communicating constraints between the frontend and the
oracle, unique identifiers are used to refer to them. The allocation of such
identifier is handled by the oracle. As a result, the frontend calls freshId when
it creates a new constraint.

Last, notice that opaque data types can be declared as axioms. Line 1 of
listing 1.2 declares the data type used by the oracle to represent polyhedra. It
is left opaque for Coq: a Coq program can only manipulate it through the
functions declared for the oracle.

Assuming that the axioms declared in listing 1.2 are in module Oracle, list-
ing 1.3 shows how the frontend can call the oracle. The operator taken as
example is the projection operator. It takes as input the variable x to elimi-
nate and the input polyhedron (pF, pO). The latter is a pair composed of the
frontend polyhedron pF and the oracle polyhedron pO. Next section provides
further details on this point. The important point for now is that pO is an
element of the opaque data type Oracle.t, on which Oracle.project can be called.
The returned values, the result polyhedron pO’ and the witness w, can then be
used like any other expression from Coq.

1.4.2 The extractor

Once a Coq function is defined, it can be evaluated from within Coq. This is the
most straightforward way to execute Coq code. However, axioms, such as those

30

1 let project (pF, pO) x =
2 let (pO’, w) = Oracle.project pO x in

3 let pF’ = projectUsing w pF x in

4 (pF’, pO’)

Listing 1.4 – the Ocaml extracted code for the projection operator

found on listing 1.2, only declare external functions to Coq. These declarations
don’t make the implementation of the axioms available. As a result, Coq code
which relies on axioms can’t be executed within Coq. Nevertheless, if there
is an Ocaml implementation of the axioms, the Coq code can be extracted
to Ocaml and, once linked with the implementation of the axioms, makes a
complete program.

We mentioned the extractor before: it generates an Ocaml program from
Coq code. The extractor removes the proof-related information from a Coq

development and performs some simplifications. During extraction, axioms are
translated to regular function calls.

Listing 1.4 contains the Ocaml code generated by the extractor for func-
tion project from listing 1.3. As you can see, keywords and some elements of
syntax differ between the Coq and Ocaml versions, but the structure remains
the same. Translation is obvious in this case since this code fragment doesn’t
contain any proof-related information. Once the code on listing 1.4 is compiled
and linked with module Oracle, you get an executable implementation of the
projection operator.

1.4.3 The communication protocol

Three VPL operators use a witness from the oracle and produce a polyhedron:
the guard, join and projection operators. Result verification leads naturally
to a pattern of algorithms for the frontend, which we illustrate for the projec-
tion operator, applied on polyhedron p and variable x. The oracle returns the
resulting polyhedron p′, with an inclusion witness Λi , (λi0, . . . , λil) for each
constraint c′

i(x) ≥ 0 of p′. We call Λ , (Λ1, . . . , Λl′) a witness for the whole
inclusion p ⊑ p′. For each c′

i(x) ≥ 0 of these constraints, the checker builds
affine constraint c′′

i (x) ≥ 0 using Λi.

c′′
i (x) = λi0 +

l
∑

j=1

λij · cj(x)

Then, it checks whether c′
i(x) ≥ 0 and c′′

i (x) ≥ 0 are syntactically equal. An
extra check is specific to the projection: verifying that x has a zero coefficient
in c′

i(x) ≥ 0.

Avoiding conversions. From the witness it gets from the oracle, the checker
builds a polyhedron p′′ and then should check whether p′ and p′′ are syntactically
equal. We realised that, checking syntactic equality is actually unnecessary.
Polyhedron p′′ can be used as a result of the projection operator, as it satisfies
the inclusion property, by construction. On top of sparing the equality check,

31

this approach removes the need for the oracle to communicate its result to the
frontend: the witnesses are sufficient. The amount of data conversion between
the oracle and the checker is therefore decreased. This remark applies to the
projection operator, as well as to the guard and join operators. As a result,
the operators follow a simpler pattern, illustrated for the projection operator on
listing 1.3.

Synchronisation between frontend and oracle. The high-level view of
two communicating components pictured on figure 1.5 is implemented as follows.
As I mentioned at the beginning of this section, the frontend and the oracle each
have their own data type for polyhedra. For the frontend, this is type Pol.t,
which is transparent to the frontend: it can access the details of a value of type
Pol.t. For the oracle, this is type Oracle.t, which is opaque to the frontend. A
VPL polyhedron is a pair (pF, pO), where pF is a frontend polyhedron and pO is
an oracle polyhedron. VPL maintains the invariant property that they represent
the same geometrical polyhedron.

We have seen that the frontend and the oracle communicate through function
calls. An operator of the abstract domain consists in calling the corresponding
operator of the oracle, thereby obtaining the oracle version pO’ of the resulting
polyhedron. The oracle also produces a witness w, from which the frontend
computes its version pF’ of the result of the operator, along with a proof that it is
correct. This restores the synchronisation between the frontend and oracle: pF’
and pO’ represent the same polyhedron and the pair (pF’, pO’) is the resulting
VPL polyhedron.

The impact of bugs. The previous discussion makes the assumption that
all goes well: witnesses are well-formed and yield a representation of the result
computed by the oracle. However, bugs might lurk in the oracle, leading to
incorrect results or erroneous witnesses. Two possible effects can be observed
by the user of the abstract domain.

• If a witness is well-formed but yields a result different from that of the
oracle, synchronisation is lost and the results built by the abstract domain
are likely to be wildly overapproximated, yet correct.

• If an ill-formed witness—it may refer to nonexistent constraints—is pro-
duced by the oracle, the checker will report a failure. In this case, the
result of the operator will be the always-correct default: top.

The frontend returns correct results in all cases: soundness bugs in the
oracle can only induce precision bugs of the abstract domain. These bugs are
uncovered using standard software engineering methods.

The witness language. The frontend builds correct-by-construction results
using witnesses provided by the oracle. The data type witness for witnesses
is given in listing 1.5. We will describe the design of the witnesses from the
ground up on the example of a projection p\x for which the oracle has produced
a witness Implies l.

In order to make the witnesses compact, the constraints of polyhedron p are
identified by positive numbers. The descriptions of linear combinations—the
type linComb—refer to constraints by their identifier.

32

1 Inductive witness :=
2 | Implies : list (positive * consWitness) → witness
3 | Empty : linComb → witness
4 | Bind : positive → consWitness → witness → witness.
5
6 Inductive consWitness :=
7 | Direct : linComb → consWitness
8 | SplitEq : linComb → linComb → consWitness
9 | JoinCons : linComb → linComb → consWitness.

Listing 1.5 – Coq definition of polyhedron build instructions

Data type consWitness describes the various ways to build one constraint
of p\x. The Direct construct is the standard application of Farkas’s lemma. For
efficiency reasons, an oracle may handle equality constraints specially, instead of
representing them as pairs of inequalities. Two applications of Farkas’s lemma
are necessary to build an equality c(x) = 0 from polyhedron p. One builds
c(x) ≥ 0 and the other builds −c(x) ≥ 0. The equality follows from their
conjunction and SplitEq construct was introduced to handle this case.

The join operator requires a special construct, JoinCons. For each con-
straint c(x) ≥ 0 of the result of p1 ⊔ p2, it must be shown that p1 ⊑ c(x) ≥ 0
and p2 ⊑ c(x) ≥ 0. To this end, a JoinCons witness contains one linear combi-
nation to build c1(x) ≥ 0 such that p1 ⊑ c1(x) ≥ 0 and another for c2(x) ≥ 0
such that p2 ⊑ c2(x) ≥ 0. The frontend checks whether c1(x) = c2(x). If they
are equal, they make a sound constraint of p1 ⊔ p2. Otherwise, the witness is
ill-formed.

Type witness also provides a construct to build ⊥, the polyhedron P = ∅.
It can be the result of a guard, when the guard code fragment is dead code
for example. An Empty l witness is used for this purpose, where the linear
combination l yields a trivially contradictory constraint, such as −1 ≥ 0.

Last, the Bind constructor of type witness was introduced to make witness
generation easier. It allows to introduce a temporary constraints. It could also
be used to factorise computations performed by the checker. This possibility
hasn’t been investigated yet, since the checker isn’t a performance bottleneck.

1.5 Modular proof formalisation

What the last section describes isn’t sufficient to meet the specification pre-
sented at the beginning of the chapter. The assignment operator is missing, for
example. The missing functionality is provided as functors, entirely in the Coq

frontend, building on what we have seen so far.

Functors in Coq. Coq provides modules to structure programs. These mod-
ules are similar to the modules found in Ocaml or the packages found in Java.
It is also possible to write module types. Modules of a given module type are
required to provide, or export, a number of functions, data types and lemmas
whose name and type are fixed by the module type. In other words, a module
type is an interface for modules to implement. Once the interface is fixed, code

33

the backend:
untrusted engine

• basic operators
• certificate generation

+ full set of operators

+ expressive conditions

low-level interface

requests

certificates

Figure 1.6 – the complete architecture of the abstract domain

using an implementation of the interface doesn’t need to know the details of
the implementation. A functor is similar to a function, except that it applies to
modules: it takes modules as parameters and returns another module of a give
module type.

The simplest functor of the abstract domain lifts an abstract domain where
variables have rational values to an abstract domain where they have integer
values. Dealing precisely with integers is more complex than dealing with ratio-
nals and requires the algorithms to be adapted. The functor only proves that
considering integer variables as rationals is a sound overapproximation. As a
result, most of the Coq development in VPL operates on rationals.

Keeping the proof manageable with functors. The complete architecture
of the abstract domain is depicted on figure 1.6 and makes heavy use of functors.
The shaded left-hand side is the Coq frontend. Each of the pictured layers
represents a functor. The untrusted oracle stands on the right-hand side. While
communication between the two is represented by arrows, remember that it
reduces to function calls in the extracted frontend code.

Each functor enriches a restricted abstract domain, while lifting the opera-
tors and the proofs as necessary. This modular decomposition makes the proofs
more manageable, as they only rely on well-defined interfaces, rather than on
implementation details. In turn, this, results in easier proof automation.

1.5.1 The guard operator

The guard operator from the specification in section 1.1 is also provided using
a functor. The fully-fledged guard operator takes side-effect-free C expressions,
while previous section discussed affine constraints c(x) ≥ 0. The functor en-
hances the guard operator p ⊓ f so that it handles an arbitrary propositional
formula as operand f , where atoms are affine constraints. The transformation
from the more expressive guards to the basic guards is performed by the frontend
through the following steps.

1. Negations are pushed toward the atoms using de Morgan’s laws on binary
operators. Double negations are eliminated. Negated comparisons are
complemented: atom ¬(c(x) ≥ 0) is rewritten c(x) < 0, for example.

2. Comparison 6= is rewritten as a disjunction of strict inequalities.

3. Disjunctions are overapproximated by joins.

34

4. The constraint c(x) > 0 on integers is rewritten as constraint c(x)+1 ≥ 0.
This increases precision of polyhedra computations, where all variables
are rationals.

For a guard p⊓f , this algorithm performs a number of polyhedra operations
that is linear in the number of operations in formula f . The functor which
provides this extended guard operator to an abstract domain featuring only a
basic one also contains the proof that the algorithm described above is sound.

1.5.2 Assignment

The oracle has an assignment operator, so that it is a complete Ocaml abstract
domain of polyhedra. However it doesn’t export it to the frontend. Instead,
support for assignment is built from the other operators.

Building an assignment operator. Suppose that we need to compute the
effect on polyhedron p of variable x being assigned the value of expression e,
that is p [x := e]. Without more information, it may well be that expression e
mentions variable x. In other words, it is possible that the new value of vari-
able x depends on its value before the assignment. In order to be able to refer
to both the old value and the new value of variable x, let us introduce a fresh
variable x′ to represent the new value of variable x. “Fresh” means that vari-
able x′ appears neither in the constraints of polyhedron p, nor in expression e.
Variable x still represents its value prior to the assignment.

The assignment is rewritten p [x′ := e]. Since variable x′ is fresh, this is
equivalent to the guard p ⊓ x′ = e. After the assignment, information on the
old value x isn’t relevant any more. Therefore, variable x is eliminated from
polyhedron p ⊓ x′ = e through projection, yielding (p ⊓ x′ = e)\x.

All of this is internal to the assignment operator. Outside of it, the new
value of variable x is called x. A renaming of x′ into x, noted p2 [x′/x], is
performed. This renaming is safe since x is fresh after the projection. The
assignment operator is thus defined in the following way.

p[x := e] ,
(

(p ⊓ x′ = e)\x
)

[x′/x]

Variable x′ is only auxiliary: it doesn’t appear in the resulting polyhedron.

The soundness proof. The soundness proof is trickier for the assignment
operator than for the other operators. The major difference is that the soundness
proof of the assignment operator refers to two memory states, the state before
the assignment and the state after, instead of one for the other operators. The
direct consequence, which appears above, is the need to generate fresh variables.

1.5.3 Framing constrained variables

Besides handling assignment, generating fresh variables has many applications
for program verification, such as handling local variables or parameter passing
during function inlining. However, the frontend of the abstract domain rep-
resents a polyhedron as the list of its constraints and the specifications don’t
provide any information about the set of variables it constrains. Loose specifi-
cations allow a modular management of fresh variables: the proofs of the core

35

abstract domain, which are described in section 1.4, aren’t complicated with
fresh variables handling. Support for framing the variables constrained by a
polyhedron is added through a functor.

In Verasco and, consequently, in VPL, variables are represented by posi-
tive integers. Framing the variables constrained by an abstract value p consists
in determining an integer β such that all the variables outside of the range [1, β]
aren’t constrained by p. In other words, it is safe to allocate fresh variables
above the bound β.

The framing functor, which I’ll refer to as P
f , enriches the data structure

representing polyhedra with the upper bound β on the constrained variables.
Invariant properties of this extended representation is expressed in the definition
of the concretization function γ, which links an abstract value to the set of
reachable states it represents.

A memory state is a function from variables to their value. Given a set of
variables F , I’ll write m ≡F m′ to mean that the two states m and m′ associate
the same value to each variable of set F .

m ≡F m′ , ∀x ∈ F, m x = m′ x

Then, we say that the set F frames a polyhedron p if the following property
holds.

∀m, ∀m′, m ≡F m′ ⇒ (m ∈ γ p⇔ m′ ∈ γ p)

The intuition behind this definition is that set F is a superset of the variables
constrained by polyhedron p. As a result, if a memory state m belongs to set
γ p, a memory state m′, which associates any value to variables outside of set F ,
but agrees with state m on the value of variables in set F , also belongs to set γ p.

Variable x is fresh when the set {x′ |x′ 6= x} frames p. We may now introduce
an operator frame(p) such that

{

x
∣

∣ x ∈ [1, frame(p)]
}

frames p. This operator
returns an upper bound β on the variables constrained by polyhedron p.

Operator frame is provided by functor P
f , which wraps each element p of

the underlying domain into a pair (p, β), such that β = frame(p). The core
operators of Pf are defined as follows. The definition of frame is extended to
constraints.

(p, β) ⊑f (p′, β′) , p ⊑ p′ ∧ β ≤ β′

(p, β) ⊔f (p′, β′) , (p ⊔ p′, max(β, β′))

(p, β) ⊓f c(x) ≥ 0 , (p ⊓ c(x) ≥ 0, max(β, frame(c)))

This intuitive definition of P
f doesn’t preserve the framing property. For

example, consider the definition of the join operator ⊔f above. Although the
following definition of ⊔ is contorted, it is correct according to the specification
of listing 1.1. However, it breaks the expected framing property.

p ⊔ p′ ,

{

x ≤ 0 if p = p′ = ⊥
top otherwise

If both polyhedra p and p′ are empty, then frame(p) = frame(p′) = 0. However,
frame(p ⊔ p′), with the definition of ⊔ above, is strictly positive and therefore
greater than max(frame(p), frame(p′)) = 0. One solution is to keep the defini-
tions given above, but change that of γf (p, β). Given a memory state m, we

36

impose that variables above β are free in p by quantifying over states m′ which
may associate any value to these variables.

m ∈ γf (p, β) , ∀m′, m′ ≡[1,β] m ⇒ m′ ∈ γ p

With framing available, introducing auxiliary fresh variables is easy and the
proof of freshness comes for free. By taking x′ as max(frame(e), frame(p)) + 1,
the assignment operator p[x := e] can be defined, like before, as follows.

p [x := e] , ((p ⊓ x′ = e) \x) [x′/x]

1.5.4 Assignment with buffered renaming

With functor P
f , each assignment results in one renaming, but we can do bet-

ter. The following solution performs a lower amortised number of renamings.
Like P

f , this alternative is also implemented as a functor, called P
b. Like Pf , the

soundness proof of Pb enforces invariant properties using an adequate definition
of the concretization function γ.

Functor P
b makes it possible to express relations between memory states in

the intermediary computations of the operators. This is achieved by duplicating
the set of variable names: each variable x can be represented as x@0 or x@1,
as a generalisation of the previous solution where variable x′ is the updated
version of variable x. One bit is appended, hence @0 and @1, to each variable x
and function γ imposes that exactly one of these representatives refers to an
actual variable. Its definition involves two auxiliary functions: σ and π. Func-
tion σ associates to each variable its current representative: σ(x) is either x@0
or x@1. Function π associates the actual variable x to both x@0 and x@1, that
is π(x@0) = π(x@1) = x. Therefore, the equality x′ = σ(π(x′)) holds only
when x′ is the current representative of variable x = π(x′).

m ∈ γb(p, σ) , ∀m′, m′ ≡{x′ | x′ = σ(π(x′))} (m ◦ π) ⇒ m′ ∈ γ p

In functor P
b, an assignment to variable x switches the representative of x,

instead of renaming the variable in the underlying polyhedron as functor P
f

does. Renamings from assignments are buffered until joins or inclusions, where
they may be performed so that the two operands associate the same represen-
tative to each variable. Furthermore, two successive renamings on the same
variable cancel out.

Functor Pb could be extended so as to buffer projections, which could then be
reordered to get smaller intermediate results, in terms of size of representation.
The decision of when to apply the delayed projections would be delegated to
the oracle. This extension is not implemented yet.

Assignment in VPL. Our modular treatments of assignment, both P
f and

P
b, depart from prior work by Frédéric Besson et al. [6]. In their work, all the

projections—including those who occur as part of the handling of assignments—
are systematically delayed until inclusion tests. In ours, they are performed
eagerly. Furthermore, our approach results in more manageable proofs, as the
troubles of having to deal with several memory states are isolated in functors.

37

1.6 Formalising external code

We have now covered the whole frontend and its accompanying soundness proof,
as formalised in Coq. The frontend builds on the declaration of the Ocaml

oracle as axioms. As we saw earlier, resorting to axioms prevents the frontend
from being executable within Coq: it must be extracted to Ocaml code. After
extraction, the frontend calls to the oracle appear as function calls.

1.6.1 The pitfalls of a naive axiomatisation

Extraction roughly consists in removing all the proof-related information from a
Coq development, as Ocaml type system is not powerful enough to represent it.
For example, it is possible in Coq to express that a function returns integers less
than five directly in its type; it would be of the form . . . → {x : Z | x < 5}. Such
a function is extracted to an Ocaml function returning integers, whose type
is of the form . . . → Z, where type Z is the extracted version of type Z. Given
this difference in expressivity, the axiomatisation of the oracle in Coq makes a
number of assumptions which are worth making explicit. We will review each
of these assumptions, consider the danger of overlooking it and then propose a
way to handle it.

In the following, underlined expressions are Ocaml expressions, while the
others are Coq expressions. Let f be an external function of Ocaml type
A→ B. It is declared to Coq as a function f of type A→ B and the extractor
is instructed to replace calls to f with calls to f. Types A and B must be
the extracted versions of A and B; the Ocaml compiler will report an error
otherwise.

Inconsistency. An axiom such as failwith below introduces inconsistency as
it returns a value of any type B from a string, thereby proving that type B is
not empty.

Axiom failwith: ∀ B, string → B.

In particular, failwith False "" gives a value of type False. However, type False
is defined as Inductive False : Prop :=.. It is a property, hence “Prop”, which
can’t be satified: it has no constructor and, consequently, no Coq expression
has type False. The pitfall of inconsistency is avoided by providing an imple-
mentation in Coq of axioms. While the resulting code is never executed, it
proves that there exists Coq expressions of the type of the axiom.

Implicit axioms. If B is a precise type, such as {x: Z | x < 5}, it may be
extracted into a strictly more general Ocaml type, such as Z in the example
above. This introduces the implicit requirement on f that its results are lower
than 5, which the Ocaml type checker cannot ensure. This shortcoming can
be avoided by manually checking that all the Coq types involved in axioms
are identical to their Ocaml extraction. This is the case of the axiomatisation
found on listing 1.2.

Memory corruption. The oracle described in chapters 3 and 4 uses the
GMP [26] C library to represent rational numbers. A bug in GMP or its Ocaml

frontend, ZArith [43], may corrupt arbitrary memory locations. Although

38

there is no shield against this problem as long as the C library is linked to the
extracted Coq code, it seems unlikely that such a bug breaks soundness silently.

Implicit purity. The semantics of → are different in Coq and in Ocaml.
In Coq, f is implicitly a pure function: hence it is possible to prove that
∀ x : A, f x = f x. On the contrary, f in Ocaml may use imperative features
to create an implicit state such that, for a given x two distinct calls f x give
different results. In other words, axiomatising f as Axiom f : A → B in Coq

introduces an implicit functional requirement on function f: it should be obser-
vationally pure. This means that f may have an implicit state, but it needs to
remain hidden, as would be the case when using it for memoization for example.
One of the contributions of this thesis is a method for handling the situation
where there is no guarantee about the purity of the axiomatised Ocaml func-
tions. It is the topic of the following subsection.

1.6.2 A simple theory of impure computations

The soundness proofs of the abstract domain of polyhedra in Verasco don’t
rely on the purity of oracle functions, as is common in result verification set-
tings. However, proofs being independent of the functional purity of the axioms
implementation is usually left as a meta argument, on paper. Meanwhile, it may
be difficult to ensure that an Ocaml program has no observable side effects.
This is especially true if it calls C code, like the oracle described in chapters 3
and 4 does. The following text introduces the may-return monad: a proposal
to make Coq check that, indeed, the soundness proofs don’t rely on the func-
tional purity of oracle functions. This theory is inspired by simulable monads,
introduced by Guillaume Claret et al. [14], without the concept of prophecy: we
aren’t interested in generating the oracle.

The intuition. Suppose there is an Ocaml function f : A → B of the oracle,
which we need to make available to Coq code. Types A and B aren’t underlined
as previously: we make sure that the Coq type is identical to the extracted
Ocaml type. To declare function f, we introduce an axiom: Axiom f : A → ?B.
The return type ?B stands for function f returning computations yielding a value
of type B. Getting a value from a computation ?B occurs through relation
of Coq type ?B → B → Prop. This relation gives its name to our theory:
k a means computation k may return value a. Both type transformer ? and
relation are introduced as axioms: reasoning within the monad can’t rely on
their particular implementation.

Axiom impure : Type → Type.
Axiom may_return : ∀ A : Type, ? A → A → Prop.
Notation "? A" := (impure A) (at level 80).
Notation "A B" := (may_return A B) (at level 85).

Using this axiomatisation, it is possible to prove that ∀ x, f x = f x. How-
ever, f x now has type ?B: it refers to a computation and says nothing about
the value returned by the computation. Furthermore a value a returned by
computation ?B relates to it through relation , instead of the usual Leibniz
equality =. As a result, ?B a can’t be used for rewriting f x as a. The lemma
capturing the functional purity of f is f_pure below.

39

Lemma f_pure : ∀ x a b, (f x a) → (f x b) → a = b.

Without further information on the implementation of type transformer ? and
relation , it is impossible to prove.

The definition. Impure computations are Coq computations which may use
external computations in Ocaml. As we saw, for any Coq type A, we assume
a type ?A, denoting impure computations returning values of type A. Type
transformer ? is equipped with a monad:

• Operator bind : ?A → (A → ?B) → ?B encodes the Ocaml construct
let x = k in k’ as bind k (fun x ⇒ k’).

• Operator unit : A → ?A lifts a pure computation as an impure one.

• Relation ≡ : ?A → ?A → Prop represents equivalence of semantics be-
tween Ocaml computations.

Again, all of these are introduced as axioms: reasoning with the monad relies
on the types of theses expressions. Operator bind is associative and admits unit

as neutral element. Relation A, introduced above, is compatible with ≡A and
satisfies the following additional axioms.

• unit a1 a2 ⇒ a1 =a2

• bind k1 k2 b ⇒ ∃a, k1 a ∧ k2 a b

Using the monad. The theory of may-return monads is a very abstract ax-
iomatisation of impurity: it doesn’t provide any information about side effects
of impure computations. However, this is sufficient for our needs in VPL, as the
frontend only uses results of oracle functions. The monad is an effective solution
to supporting impure oracle functions: it prevents reasoning on them as if they
were pure functions. The key point for this to work is that the frontend doesn’t
depend on a particular implementation of the monad. For this reason, its im-
plementation is left opaque throughout the frontend. Another way to express
the same thing is: the whole frontend is parameterised by an implementation
of the monad.

Since the may-return monad is used in the components of the frontend upon
which everything else is built, it contaminates most of the functions and, ulti-
mately, the interface of the abstract domain. For example, the inclusion test
operator has type t → t → ?bool, instead of type t → t → bool required by Ve-

rasco abstract domain interface. The issue here is that the rest of Verasco

doesn’t use the monad, as is apparent in the interface of abstract domains shown
at the beginning of the chapter, on listing 1.1. In order to bridge the gap, the
may-return monad is instanciated as the last step of building the abstract do-
main. Given that the monad serves no other purpose than restricting proofs, it
can be implemented by the trivial monad, as shown on figure 1.7.

Extraction of impure computations The may-return monad is useful to
control Coq assumptions that would otherwise be left implicit. However, it is
of no other practical interest and is removed at extraction time by providing the
trivial implementation given on figure 1.7. The extractor inlines these definitions
so that the monad has no runtime overhead.

40

?A , A k ≡ k′ , k = k′ k a , k = a

unit a , a bind k k′ , k′k

Figure 1.7 – a trivial implementation of the may-return monad

1.6.3 Backward reasoning on impure computations

Using a monad in Coq is usually considered a source of pain in the proofs.
This is probably the reason for which the implicit purity requirement on Ocaml

functions declared to Coq as axioms is usually swept under the rug. It turns
out that proof automation can deal with most of the proof overhead induced by
the monad. The monad was introduced after having completed a first version
of the abstract domain. The proofs didn’t require much change.

The automation machinery is implemented as an Ltac tactic, which imple-
ments a weakest liberal precondition calculus for the may-return monad. It is
based on an operator wlp and a number of accompanying lemmas, all defined in
Coq.

Definition wlp : ?A → (A → Prop) → Prop :=
fun k P ⇒ ∀ a, (k a) → P a.

Property wlp k P states that any result returned by computation k satisfies prop-
erty P. The tactic proceeds on wlp goals by repeatedly applying the following
decomposition rules.

Decompose unit
P a

wlp (unit a) P

Decompose bind
wlp k1 λa.

(

wlp (k2 a) P
)

wlp (bind k1 k2) P

Each of these rules deconstructs what appears under the line into what appears
above it. In the Coq code, they appear as lemmas with an accompanying proof.
Let me illustrate how the tactic proceeds on a simple example. Suppose we have
a Coq function g, which first calls an external f returning a natural number of
N and then increments its result.

g x , bind (f x) λn.(unit n+1)

The property “g returns only nonzero naturals” is expressed as follows.

∀x, wlp (g x) λn.n 6=0

Unfolding the definition of function g yields the following.

∀x, wlp
(

bind (f x) λn.(unit n+1)
)

λn.n 6=0

We apply rule Decompose Bind, with k1 = f x and k2 = λn.(unit n+1).

∀x, wlp (f x) λa.
(

wlp
(

(λn.(unit n+1)) a
)

(λn.n 6=0)
)

41

Simplifying using β-reduction, we get the goal below.

∀x, wlp (f x) λa.
(

wlp (unit a+1) (λn.n 6=0)
)

Now, we can apply rule Decompose unit, β-reducing λa.(λn.n 6=0 (a+1)).

∀x, wlp (f x) λa.(a + 1 6= 0)

Unfolding the definition of wlp yields the final goal, which follows from a being
a natural number.

∀x, ∀a, f x a → a + 1 6= 0

There are a few more decomposition rules which pattern-match over some
usual types: booleans, the option type, product types, etc.. When no decom-
position applies, the tactic applies the following rule.

Cut & Unfold
wlp k P1 ∀a, k a ∧ P1 a ⇒ P2 a

wlp k P2

More precisely, the tactic tries to discharge the left premise wlp k P1 using
existing lemmas. If it fails, the definition of wlp is simply unfolded. If it suc-
ceeds, the goal is replaced using the right premise: the definition of wlp and an
hypothesis P1 a is added.

In the frontend of the abstract domain, this tactic automates most of the
bureaucratic reasoning on first-order impure computations. For higher-order
impure computations, such as invoking a list iterator, some manual handling is
needed.

1.7 Completing the picture

We have now seen how I designed the result-verifying frontend of an abstract
domain of polyhedra and its soundness proof. Parts of this work was done in
collaboration with Sylvain Boulmé and was reported in a paper [23].

1.7.1 Improvement on prior work

All of this builds on prior work from Frédéric Besson et al. [6]. The work
reported in this chapter improves on it in several ways.

• It deals with the assumption of functional purity made when external
Ocaml functions are introduced as axioms. The resulting theory adds
little to the proof effort and has zero runtime impact once the Coq code
is extracted to Ocaml code.

• The soundness proof is made more modular through the use of functors.
These functors enforce that individual proof fragments rely only on logical
specifications, rather than implementation details. The overall proof is
more modular as a result.

• Prior work buffered projections as much as possible, thereby adding many
intermediate variables to the polyhedra. This exacerbates the scalabil-
ity problems of the abstract domain of polyhedra. The abstract domain
described here performs the projections eagerly.

42

• The abstract domain described here is part of a static analyser, Verasco,
which handles most of the C programming language. As a result, it han-
dles the full set of domain operators and supports complex guards.

1.7.2 The oracle

The proving part being dealt with, we still need a witness-generating oracle.
There were essentially three options.

Prior art. The original work [6] relied on an off-the-shelf abstract domain
of polyhedra: NewPolka, which is part of the Apron [33] collection of ab-
stract domains. Since NewPolka doesn’t generate inclusions witnesses, these
were recovered using an off-the-shelf linear programming solver [27]. Besides
introducing redundant computations, this approach would have set plumbing
challenges for making a lot of different tools—written in different languages—
cooperate together and link with the already complex Verasco infrastructure.

Instrument. Another option would have been instrumenting an existing ab-
stract domain, such as NewPolka, to make it generate witnesses. However
existing implementations use the double description of polyhedra. There is no
obvious way of extracting witnesses based on constraints from computations on
generators.

Start from scratch. I made the choice of starting from scratch and write an
oracle based on constraint representation only. I couldn’t find any convincing
evidence that using double representation results in more efficient implementa-
tions, so this oracle would be a double challenge: use only constraint represen-
tation and generate witnesses.

Summary in French

Un domaine abstrait est correct s’il surapproxime correctement les opérations
sur les ensembles d’états. Par exemple, l’opérateur «join» approxime l’union des
ensembles d’états atteignables dans chacune des alternatives d’un test. Puisqu’il
s’agit d’ensembles d’états, la surapproximation se traduit par une relation d’in-
clusion : l’ensemble d’états P est correctement surapproximé par l’ensemble
d’états P ′ si l’ensemble P est inclu dans l’ensemble P ′. Ce chapitre se focalise
sur l’aspect preuve de VPL.

Pour démontrer la correction des opérateurs du domaine abstrait des po-
lyèdres, il est nécessaire de s’intéresser à la façon dont les polyèdres sont re-
présentés. Il existe deux représentations des polyèdres : la représentation par
contraintes et la représentation par générateurs. Un cube, par exemple, peut
être représenté par l’ensemble de ses faces, les contraintes, ou par l’ensemble
de ses sommets, les générateurs. Chaque opérateur du domaine abstrait s’ex-
prime plus simplement dans l’une ou l’autre de ces représentations. En revanche,

43

la conversion d’une représentation vers l’autre est coûteuse en temps d’exécu-
tion. La plupart des implémentations existantes du domaine abstrait des poly-
èdres utilisent les deux représentations. VPL n’utilise que la représentation par
contraintes.

Le résultat de chaque opérateur est correct s’il vérifie une certaine relation
d’inclusion. Par exemple, l’opérateur «join» surapproxime l’union de deux po-
lyèdres P et P ′. Son résultat Pj est correct si P est inclu dans Pj et P ′ est
inclu dans Pj . Le lemme de Farkas permet de prouver des inclusions de poly-
èdres représentés par contraintes : si le polyèdre P est inclu dans le polyèdre Pj ,
chacune des contraintes de Pj peut s’exprimer comme un combinaison linéaire à
coefficients positifs des contraintes de P . Ces coefficients permettent de mettre
en œuvre efficacement une vérification de résultats a posteriori. Pour chaque
opérateur, un oracle calcule le résultat et construit un témoin d’inclusion conte-
nant les coefficients qui permettent d’appliquer le lemme de Farkas pour prouver
l’inclusion. VPL est ainsi scindé en deux composants : l’oracle et un vérificateur
de résultats.

La vérification de résultats à partir de coefficients de combinaisons linéaires
de contraintes apparaît déjà dans un article de Frédéric Besson et al. publié en
2007. Mon travail raffine le leur de plusieurs façons.

D’après le lemme de Farkas, si un polyèdre P est inclu dans un autre poly-
èdre Pj , il est possible de construire les contraintes de Pj en combinant celles
de P . Autrement dit, étant donnés les contraintes de P et les coefficients des
combinaisons linéaires, il est possible de construire Pj . Plutôt que vérifier a
posteriori la correction des résultats, nous pouvons construire directement des
résultats corrects. Cela permet d’une part de réduire la quantité d’information
que l’oracle doit communiquer au vérificateur et d’autre part de simplifier le
travail de ce dernier.

Le vérificateur interagit avec l’oracle seulement pour un sous-ensemble des
opérateurs du domaine abstrait, créant ainsi un petit noyau simple à l’interface
rudimentaire. Par exemple, l’opérateur d’affectation n’apparaît pas dans cette
interface, mais peut être construit à partir de l’intersection et de la projection.
Un ensemble de foncteurs étend ce noyau pour construire un domaine abstrait
complet. Cette décomposition, où chaque opérateur est ajouté par l’application
d’un foncteur, simplifie le travail de preuve en masquant les implémentations
par des interfaces opaques.

L’oracle de VPL est écrit en Ocaml, alors que le vérificateur est écrit en
Coq. Pour que le vérificateur puisse interagir avec l’oracle, il est nécessaire que
les fonctions de ce dernier soit déclaré à Coq, par le biais d’axiomes. La sé-
mantique des fonctions Ocaml est différente de celle de Coq : en Ocaml, les
fonctions peuvent avoir des effets de bord, alors que les fonctions Coq sont des
fonctions mathématiques. Axiomatiser une fonction Ocaml comme une fonc-
tion Coq, comme c’est le cas habituellement, permet de construire des preuves
fausses lorsque celles-ci dépendent de la pureté fonctionnelle de la fonction
Ocaml. Ce n’est généralement pas le cas, si bien que le problème est ignoré
la plupart du temps. Le développement Coq de VPL apporte des garanties
supplémentaires en proposant une axiomatisation de l’oracle qui empêche les
preuves Coq de dépendre de sa pureté.

44

Chapter 2

Proving inclusions

with linear programming

Previous chapter covered the design of VPL, an abstract domain of polyhedra
built for the static analyser Verasco. Meeting the interface of abstract do-
mains in Verasco requires proving in Coq the soundness of each operator of
the domain. We established that result verification was a reasonable approach
to reaching this goal. Indeed, all the proof obligations boil down to inclu-
sion properties and Farkas’s lemma provides an efficient method for checking
these inclusions through witnesses. On the assumption that we had a witness-
producing oracle, we saw how the domain and its accompanying proofs could
be built in Coq.

We will now start fulfilling the assumption of a witness-producing oracle.
The primary ingredient for doing so is testing the inclusion of a polyhedron P
in the half-space defined by a constraint c(x) ≥ 0. It can be done by leveraging
tools from the field of linear programming, which addresses the problem of
optimising linear functions over convex sets defined by affine constraints, that
is to say over convex polyhedra.

Before reviewing how, let me make the inclusion problem more precise. We
consider an n-dimensional space, where a point x has coordinates (x1, . . . , xn).
Polyhedron P and function c(x) in constraint c(x) ≥ 0 are defined as follows,
all numbers being rationals.

P ,
{

x
∣

∣

∣

l
∧

i=1

ci(x) ≥ 0
}

and c(x) , a0 +
n

∑

i=1

ai · xi

2.1 Inclusion as a maximisation problem

Constraint c(x) ≥ 0 can equivalently be written
∑n

i=1−ai · xi ≤ a0. Written
in this way, it can be thought of as a bound a0 in the direction given by vec-
tor (−a1, . . . ,−an). In other words, equation

∑n
i=1−ai ·xi = a0 defines a hyper-

plane with normal vector (−a1, . . . ,−an). Its position varies with constant a0,
as figure 2.1 illustrates for normal vector (1, 1). Constraints on this figure are
drawn as line segments—the hyperplanes—and the described half-space lies on
the shaded side.

45

x1 + x2 ≤ 3

x1 + x2 ≤ 2

x1 + x2 ≤ 1

x1

x2

Figure 2.1 – influence of the constant term in the
∑n

i=1−ai · xi ≤ a0 writing

With this in mind, expressing the inclusion test P ⊑
(

∑n
i=1−ai · xi ≤ a0

)

as a maximisation problem is straightforward. Every point x ∈ P yields a
hyperplane

∑n

i=1−ai ·xi = a0, where constant a0 varies with the chosen point x.
We are going to make the hyperplane slide along vector (−a1, . . . ,−an), going as
far as possible. That is to say, we are going to move point x within polyhedron P
so as to increase the value of constant a0 as much as possible. This is captured
by the following maximisation problem.

max
x∈P

n
∑

i=1

−ai · xi

Suppose now that we found the maximum to be a value a0, reached at point x
of P , that is a0 =

∑n

i=1−ai · xi. The following fact follows immediately from
the definition of a maximum.

∀x ∈ P,
n

∑

i=1

−ai · x ≤ a0

All the points of polyhedron P satisfy the constraint
∑n

i=1−ai ·x ≤ a0. Equiva-
lently, the constraint set p of polyhedron P implies constraint

∑n

i=1−ai ·x ≤ a0.
Deciding whether P ⊑

(
∑n

i=1−ai · xi ≤ a0

)

is now equivalent to testing
whether a0 ≤ a0. Indeed, if a0 ≤ a0, then we have the following.

∀x ∈ P,

n
∑

i=1

−ai · x ≤ a0 ≤ a0

We reach the conclusion.

∀x ∈ P,
n

∑

i=1

−ai · x ≤ a0

Conversely, if a0 < a0, we know that polyhedron P isn’t included in the half-
space defined by constraint c(x) ≥ 0, since we found a point x of polyhedron P
outside of the half-space. The two cases are illustrated on figures 2.2a and 2.2b.

Expressing an inclusion test as a maximisation problem allows us to decide
whether inclusion holds, provided we know how to solve the maximisation prob-
lem. However, neither the solution point x nor the maximum a0 give us much
information for building the inclusion witness we need in order to apply Farkas’s
lemma.

46

x1 + x2 ≤ 3
x1 + x2 ≤ 2

x

x1 ≤ 1

x2 ≤ 1

x1

x2

(a) P , {(x1, x2) | x1 ≤ 1 ∧ x2 ≤ 1} is
included in the half-space x1 + x2 ≤ 3.

x1 + x2 ≤ 3

x1 + x2 ≤ 4

x

x1 ≤ 2

x2 ≤ 2

x1

x2

(b) P , {(x1, x2) | x1 ≤ 2 ∧ x2 ≤ 2} isn’t
included in the half-space x1 + x2 ≤ 3.

Figure 2.2 – testing inclusion with a maximisation problem

2.2 Inclusion as a minimisation problem

The maximisation approach fails to provide us with inclusion witnesses, that is
to say linear combinations, with nonnegative coefficients, of the constraints of
polyhedron p. The second approach to testing inclusion which we will consider
now explicitely tries to build these linear combinations.

Consider figure 2.3. It pictures constraint c(x) ≥ 0, with c(x) , 7− x1 − x2

and polyhedron p.

p , {4− x1
c1

≥ 0, 4− x2
c2

≥ 0, 14− 2 · x1 − 3 · x2
c3

≥ 0}

This time, our starting point is nonnegative linear combinations of constraints of
polyhedron p. Let λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 be the coefficients of constraints c1,
c2 and c3, respectively. We are looking for constraints c′(x) ≥ 0, with c′(x) ,
a′

0+a′
1·x1+a′

2·x2, which are implied by the constraints of p, that is p ⊑ c′(x) ≥ 0.
We will prove that p ⊑ c(x) ≥ 0 if we are able to build constraint c′(x) ≥ 0
so that it implies constraint c(x) ≥ 0. For now, we know from Farkas’s lemma,
c′(x) must be of the following form.

c′(x) = λ1 · c1(x) + λ2 · c2(x) + λ3 · c3(x)

Now, unfolding the definition of constraints ci gives the following.

a′
0 + a′

1 · x1 + a′
2 · x2 = λ1 · (4− x1) + λ2 · (4− x2) + λ3 · (14− 2 · x1 − 3 · x2)

Refactorising for variables xi gives this equality.

a′
0+a′

1·x1+a′
2·x2 = (4·λ1+4·λ2+14·λ3)+(−1·λ1−2·λ3)·x1+(−1·λ2−3·λ3)·x2

Identifiying the terms associated to each variable x1 and x2 and the constant,
we obtain the following three equalities.

a′
0 , 4 · λ1 + 4 · λ2 + 14 · λ3

a′
1 , −1 · λ1 +−2 · λ3

a′
2 , −1 · λ2 +−3 · λ3

47

x1

x2

c1 : 4− x2 ≥ 0

c2 : 4− x1 ≥ 0

c3 : 14− 2 · x1 − 3 · x2 ≥ 0

7− x1 − x2 ≥ 0
1 · c1 + 1 · c2 : 8− x1 − x2 ≥ 0

1
3 · c2 + 1

3 · c3 : 6− x1 − x2 ≥ 0

x

Figure 2.3 – proving inclusion using linear combinations

Going back to our goal of testing whether p ⊑ c(x) ≥ 0, we know from
Farkas’s lemma that there must exist λ0 ≥ 0, such that c′(x) + λ0 = c(x) =
7 − x1 − x2, if inclusion holds. This constrains the coefficients a′

1 and a′
2 of

variables x1 and x2 in constraint c′(x) ≥ 0, yielding the following system of
equations.

a′
1 = −1 · λ1 + 0 · λ2 +−2 · λ3 = −1

a′
2 = 0 · λ1 +−1 · λ2 +−3 · λ3 = −1

There are two main solutions to this system, illustrated on figure 2.3, the
others being convex combinations of them. Each of these two solutions yields a
constant term a′

0 = 4 · λ1 + 4 · λ2 + 14 · λ3.

• λ1 = 1, λ2 = 1 and λ3 = 0 give a′
0 = 8

• λ1 = 0, λ2 = 1
3 and λ3 = 1

3 give a′
0 = 6

The second of these two solutions yields a smaller constant term, thereby
making a stronger constraint c′(x) = 6 − x1 − x2 ≥ 0. Constraint c′(x) ≥ 0
defines a half-space included in half-space c(x) ≥ 0, since c(x) = 1 + c′(x). I
will call “syntactic inclusion” such an inclusion, which is proven by exhibiting a
coefficient λ0, such that c(x) = λ0 +c′(x). Overall, we built constraint c′(x) ≥ 0
such that p ⊑ c′(x) ≥ 0 and we just saw that c′(x) ≥ 0 ⊑ c(x) ≥ 0. These
inclusions prove p ⊑ c(x) ≥ 0.

Let us now generalise from this example. Suppose the polyhedron p is made
of l constraints, c1(x) ≥ 0, . . . , cl(x) ≥ 0. Each of these constraints ci(x) ≥ 0 is
of the following form.

ai0 + ai1 · x1 + · · ·+ aln · xn ≥ 0

Constraint c(x) ≥ 0 is defined in a similar way.

a0 + a1 · x1 + · · ·+ an · xn ≥ 0

We associate coefficient λi ≥ 0 to constraint ci(x) ≥ 0, for all i ∈ {1, . . . , l}.
Deciding whether inclusion p ⊑ c(x) ≥ 0 holds results from solving the following

48

minimisation problem and comparing the result with the constant term a0 of
constraint c(x) ≥ 0.

min
l

∑

i=1

ai0 · λi over the set
{

(λ1, . . . , λl)
∣

∣

∣

n
∧

j=1

l
∑

i=1

aij · λi = ai ∧
l

∧

i=1

λi ≥ 0
}

This minimisation problem gathers all the elements which we have consid-
ered so far. We are verifying an inclusion by trying to apply Farkas’s lemma.
To this end, we are trying to express constraint c(x) ≥ 0 as a nonnegative linear
combinations of the constraints of polyhedron p, whose coefficients λ1, . . . , λl we
are looking for. This has three immediate consequences. The first is that coeffi-
cients λ1, . . . , λn are the unknowns of our problem. Next, constraint c′(x) ≥ 0,
which results from the linear combination, should be parallel to constraint
c(x) ≥ 0. The constraints of the minimisation problem enforce this by hav-
ing constraint c′(x) ≥ 0 associate the same coefficients as constraint c(x) ≥ 0 to
all the variables x1, . . . , xn.

Last, we should turn our attention to the constant term of constraint c′(x) ≥
0. By construction of c′(x) = a′

0 +
∑n

i=1 a′
i ·xn, we know that a′

0 =
∑l

i=1 λi ·ai0.
In order to prove the inclusion, we need to have c(x) = λ0 + c′(x), with λ0 ≥ 0,
so that we have the following inclusion chain.

p ⊑ c′(x) ≥ 0 ⊑ c(x) ≥ 0

To this end, the minimisation problem minimises the constant term a′
0 of con-

straint c′(x) ≥ 0. Once the optimal a′
0 is found, we have λ0 = a0 − a′

0. If λ0 is
nonnegative, then inclusion holds.

From this expression of the inclusion test, it is easy to extract an inclusion
witness. Indeed, optimal a′

0 is reached for some point in the space of the λi’s.
The coordinates of this point describe the linear combination of the constraints
of polyhedron p yielding constraint c′(x) ≥ 0.

2.3 Linear problems and duality

It is worth noticing that the maximisation approach to deciding inclusion, on the
example illustrated on figure 2.3, would have given point x of coordinates (4, 2).
At point x, the function to be maximised, x1 + x2, has value 6. We would have
concluded that polyhedron p implies the bound x1+x2 ≤ 6 in the direction (1, 1).
This constraint is equivalent to 6 − x1 − x2 ≥ 0, which we found using the
minimisation approach. The two methods yielding the same solution isn’t a
coincidence: it is an instance of duality in linear problems, which we will now
explore.

Matrix notations. Linear optimisation problems consist in a linear function,
called the objective function, to be optimised on a polyhedron defined by a set
of affine constraints. These sets of affine constraints will be easier to visualise in
a more concise notation that what we used so far. Suppose that polyhedron p is
made of l constraints ci(x) ≥ 0, with i ∈ {1, . . . , l} and ci(x) , ai0+

∑n

j=1 aij ·xj .

49

We write p in matrix notation in the following way.

p ,

a10

. . .
al0

 +

a11 . . . a1n

.
al1 . . . aln

 ·

x1

. .
xn

 ≥ 0

We then write p , b + A ·x ≥ 0, with b , (a10, . . . , al0)T , x , (x1, . . . , xn)T and
matrix A defined as follows.

A ,

a11 . . . a1n

.
al1 . . . aln

We may also write similarly to the alternative writing
∑n

j=1−aij · xj ≤ ai0 of
constraint ai0 +

∑n

j=1 aij · xj ≥ 0.

p , −A · x ≤ b

Dual problems. We expressed testing whether p ⊑ c(x) ≥ 0, with polyhe-
dron p , b + A · x ≥ 0 and constraint c(x) , a0 + a · x, both as a maximisation
problem and as a minimisation problem.

max−a · x under constraints −A · x ≤ b

min b · λ under constraints AT · λ = a with λi ≥ 0, i ∈ {1, . . . , l}

These two linear problems are call dual problems. The right-hand side of
one is the vector of coefficients of the objective function of the other and the
rows of the constraint matrix of one are the columns of the constraint matrix
of the other.

Duality theorems. Duality is captured by two theorems: the weak duality
theorem and the strong duality theorem. Both of them relate feasible solutions of
the primal and dual linear problems. A feasible solution is an assignment of the
variables of a linear problem, either x1, . . . , xn or λ1, . . . , λl, which satisfies all
the constraints. An optimal feasible solution is a feasible solution for which the
maximum, or minimum, of the objective function is reached. The minimisation
problem is called primal and the maximisation problem is called dual. However,
I will avoid these terms as they can be confusing: the dual of the primal is the
dual, but the dual of the dual is the primal. The statement of both of the
following theorems is taken from the book “Linear Programming 2: Theories
and Extensions” by George B. Dantzig and Mukund N. Thapa [18]. The proofs
of these theorems appear in the second chapter of the book.

Weak duality theorem. If λ is any solution to the primal problem and if x
is any solution to the dual problem then −a · x ≤ b · λ.

Strong duality theorem. If the primal problem has a feasible solution and the
dual problem has a feasible solution, then there exist optimal feasible solutions λ∗

and x∗ to the primal and dual problems such that −a · x∗ = b · λ∗.

50

x1

x2

8− x1 − x2 ≥ 0

6− x1 − x2 ≥ 0

4− x1 − x2 ≥ 0
5− x1 − x2 ≥ 0

x∗

Figure 2.4 – reaching the optimum from below or from above

Figure 2.4 reproduces polyhedron p , {4− x1 ≥ 0, 4− x2 ≥ 0, 14− 2 · x1 −
3 · x2 ≥ 0} illustrated on figure 2.3. Maximisation of objective function x1 + x2

could try point (0, 4), yielding objective value 4, then try point (1, 4), and reach
objective value 5, before reaching the optimal x∗ , (4, 2) and optimal objective
value 6. The corresponding constraints, 4 − x1 − x2 ≥ 0, 5 − x1 − x2 ≥ 0 and
6 − x1 − x2 ≥ 0, are drawn on figure 2.4. On the other hand, minimisation of
function 4 ·λ1 +4 ·λ2 +14 ·λ3 could try point (1, 1, 0), yielding objective value 8,
before reaching the optimal (0, 1

3 , 1
3) and optimal value 6. The corresponding

constraints, 8− x1 − x2 ≥ 0 and 6− x1 − x2 ≥ 0, are drawn on figure 2.4.
The strong duality theorem states that the two optima are equal. The weak

duality theorem states that maximisation reaches the optimum from below,
while minimisation reaches from above. In other words, maximisation works
inside polyhedron p: all the bounds it finds are reached by at least one point of
polyhedron p. Minimisation works outside of polyhedron p: the bounds it finds
are satisfied by all the points of polyhedron p.

2.4 Interior point methods

We have reduced our inclusion-based proof obligations to linear problems. Now,
we should have a look on how to solve them. There are two main categories of
solving algorithms for linear problems.

• the simplex algorithm and its variants

• interior point methods

Interior point methods originate from the work of Narendra Karmarkar [38]
who published an algorithm for solving linear problem in polynomial time, as
opposed to the exponential time worst-case complexity of simplex-based meth-
ods. Although it is an interesting theoretical contribution, this new algorithm
is less efficient than the simplex algorithm, whose practical complexity on ac-
tual problems is polynomial. Later work on interior point methods made them
competitive with the simplex algorithm, but neither seem clearly better than
the other.

51

All the work described afterwards in this thesis uses the simplex algorithm.
Therefore, I won’t cover much of interior point methods, besides my motivations
for favouring simplex-based methods.

• As their name implies, interior point methods move in the interior of
the exploration space defined by the constraints, excluding the boundary.
Since the optimum is always reached on the boundary of the exploration
space, the interior point must be moved close enough to the optimum and
some post-processing has to recover the exact value.

• Interior point methods involve nonlinear and transcendental functions,
such as logarithm. These functions don’t behave nicely with exact com-
puter representation of numbers as rationals. On the other hand, using
floating point numbers brings in a number of extra concerns of their own,
mostly related to their finite precision and to rounding.

• The simplex algorithm relies on simpler mathematics and has been used
successfully on many occasions. Initially, the goal of my work wasn’t
advancing the state of the art of linear programming: I chose the simpler
alternative.

• The simplex algorithm is simple enough to be implemented by non-experts,
while implementing interior point methods is better left to specialists.
Given that extracting witnesses from the solution of linear problems might
have required instrumenting the linear problem solver, chosing one that I
could implement seemed more appropriate.

2.5 The simplex algorithm

The simplex algorithm is the original method for solving linear problems. It was
introduced in the 1950s by George B. Dantzig and is described in many books in
various ways. The variant described below is one of the simplest: minimising a
linear objective function under equality constraints, with nonnegative variables.

min c · λ under constraints

l
∑

j=1

aij · λj = bi, i ∈ {1, . . . , n}, with λj ≥ 0 (2.1)

This is exactly what is needed to solve the minimisation problem we have
seen before for testing an inclusion. The description is intended to lay the ba-
sic ideas behind the algorithm, with just enough theory to convince you that
everything works as expected. When they aren’t provided, the proofs of the
lemmas can be found in the book “Linear Programming 2: Theory and Exten-
sions” [18]. Note that a very similar method can solve maximisation problems
and it is based on the same concepts. More information can be found in the
book referred to above.

The set of feasible solutions. The minimisation problem consists in finding
which point of a set minimises the objective function. This set, in our setting,

52

is the intersection of positive orthant
{

(λ1, . . . , λl)
∣

∣ ∀j ∈ {1, . . . , l}, λj ≥ 0
}

,
with the set of points (λ1, . . . , λl) satifying equality constraints of the problem
∑l

j=1 aij · λj = bi, i ∈ {1, . . . , n}. We will sometimes write the ith equality
ai · λ = bi. Every point λ in that set is a feasible solution of the linear problem.
The set of feasible solutions has one main property.

Lemma 1. The set of points corresponding to feasible solutions of the linear
programming problem constitutes a convex set.

As we’ll see when discussing the actual minimisation procedure, this prop-
erty guarantees that a local optimisation strategy actually leads to the global
optimum we are looking for.

Basic feasible solutions. The simplex algorithm explores the set of vertices,
also called “extreme points”, of the set of feasibles solutions.

Definition. Any point λ in a convex set C that is not a convex combination
of two other distinct points in C is by definition a vertex, or extreme point, of
the convex set.

Considering only vertices reduces the set of candidate optimal points to a
finite set. This is correct by the following lemma.

Lemma 2. If the minimum z∗ of objective function c · λ is finite, then there
exists a vertex λ of the set of feasible solutions such that c · λ = z∗.

Each step of the optimisation performed by the simplex algorithm starts
from a vertex of the set of feasible solutions and moves to a neighbouring vertex
in such a way that the value of the objective function decreases. At each move,
the linear problem is rewritten so that the current vertex appears syntactically
in the problem. The rewritten form is called “canonical form”. It is canonical
to the extent that it is entirely determined by the current vertex.

Suppose that the equality constraints of our minimisation problem 2.1 are
linearly independent. The canonical form is built by choosing n variables and
defining them in terms of the l − n others. These n variables are called “de-
pendent variables” or “basic variables”. We choose, without loss of generality,
λ1, . . . , λn as dependent variables. The set of dependent variables is called “the
basis”. Furthermore, we introduce a new variable z = c · λ, whose value is that
of the objective function. Leaving the nonnegativity constraints implicit, linear
problem 2.1 is transformed by Gaussian elimination. The resulting system of
equations is equivalent to the initial problem and is called the “dictionnary”.

min z = z +
l

∑

j=n+1

c′
j · λj

λ1 = b′
1 +

l
∑

j=n+1

a′
1j · λj

...

λn = b′
n +

l
∑

j=n+1

a′
nj · λj

(2.2)

53

Note that a constant term z now appears in the definition of variable z, due to
the definition of variables λ1, . . . , λn having constants b′

1, . . . , b′
n, which are prop-

agated by the substitutions. The basic solution determines the current vertex,
which the algorithm starts from in order to continue minimising. The basic solu-
tion consists in setting variables λn+1, . . . , λl to 0 and choosing for z, λ1, . . . , λn

the value implied by their definitions: z, b′
1, . . . , b′

n. Furthermore, if the value of
all the dependent variables is nonnegative, the basic solution is feasible.

The problem of finding an initial set of dependent variables so that the
the initial basic solution is feasible can be solved by the simplex algorithm on
an auxiliary problem, which has an obvious initial feasible solution, and will
be discussed further in this chapter. For now, we’ll assume we have a basic
solution which is feasible. A basic solution is fully determined by the choice of
basis, that is the choice of the dependent variables. The two following lemmas
highlight the connection between bases and vertices.

Lemma 3. A basic feasible solution to linear problem 2.2 corresponds to an
extreme point in the convex set of feasible solutions to the linear problem.

Lemma 4. Each extreme point corresponds to one or more bases. If one of
the basic feasible solutions is nondegenerate an extreme point corresponds to it
uniquely.

Degeneracy. Lemma 4 asserts the one-to-one correspondance between ex-
treme points and bases, under the assumption of nondegeneracy. Degeneracy
is the name given to the situation where at least one dependent variable λi

has value 0 in the basic solution: the corresponding b′
i is 0. Under degen-

eracy, it is possible to swap the dependent variable λi with an independent
variable λi′ , i′ ∈ {n + 1, . . . , l} in the basis without affecting the basic solution.
Therefore, the choice of basis describing the current vertex isn’t unique. The
implications of degeneracy will be clear when we will look at how the simplex
algorithm iterates.

To be complete, there is another type of degeneracy, called “dual degener-
acy”, where several distinct vertices yield the same objective value. However,
dual degeneracy doesn’t impact the variant of the simplex algorithm we describe
here. The problematic degeneracy, where several bases describe the same vertex,
is called “primal degeneracy”. Unless otherwise stated, this is the degeneracy I
refer to in the following.

Decreasing the objective value. Consider the definition of the objective
value in the minimisation problem in canonical form 2.2.

z = z +
l

∑

j=n+1

c′
j · λj

The basic solution sets all the independent variables, or nonbasic variables, to
0, which cancels term

∑l
j=n+1 c′

j ·λj and yields z as the current objective value.
This value may be decreased by adjusting the value of one of the independent
variables λj . Since they must stay nonnegative and their value in the basic
solution is 0, our only possibility is to increase their value. To choose the
value of which variable to increase, we may have look at the partial derivative

54

of the objective function with respect to each variable λj : it is equal to c′
j .

Variables λj for which c′
j < 0 are good candidates: if variable λj has negative

coefficient c′
j and its value is increased from 0 to δj > 0. The value of the

objective function becomes z = z + c′
j · δj < z. Which of these candidate

to choose is an implementation choice and is called the “pivoting rule”. The
following lemma states that following a direction in which the partial derivative
is negative is safe.

Lemma 5. Any solution to a linear programming problem that is a local mini-
mum solution is also a global minimum solution.

Once we select independent variable λj for increase, we must make sure that
the increase doesn’t violate the equality constraints of the dictionnary. Each of
them sets a bound on the increase. If we call δj ≥ 0 the increase of variable λj ,
the definition of dependent variable λi becomes the following.

λi = b′
i + a′

ij · δj

The value of variable λi can be adjusted so as to compensate the increase.
Thanks to how the problem was rewritten, such an adjustement doesn’t have
any effect on the other variables. However, variable λi should stay nonnegative.
Therefore, we have the following.

0 ≤ b′
i + a′

ij · δj

This yields the following bound on δj .

−a′
ij · δj ≤ b′

i

Since the basic solution is feasible, b′
i ≥ 0. This leads to three situations.

a′
ij > 0 In this case, the definition of variable λi sets no bound on the growth of

variable λj . The value of variable λi can be increased as much as needed.

a′
ij = 0 Changing the value of variable λj doesn’t affect the value of variable λi.

Constraint λi = b′
i + a′

ij · δj sets no bound on the growth of variable λj .

a′
ij < 0 The growth of variable λj is bounded above: δj ≤

b′

i

−aij
.

If no definition in the dictionary bounds the growth δj , the minimum of the
problem is unbounded: the value of the objective function is arbitrarily small.
Otherwise, the growth must satisfy all the bounds set on it. Suppose that the

definition of dependent variable λi sets the lowest of these bounds: δj =
b′

i

−aij
.

Pivoting. Once the new value δj of independent variable λj has been chosen,
the value of the dependent variable λi becomes 0 and the value of the objective
function decreases to z+c′

j ·δj . In order to continue the minimisation in the same
way, the dictionary must be rewritten so that the new current vertex becomes
the basic solution. This operation is called a “pivot”: variable λj enters the basis

55

and variable λi leaves the basis. The pivot consists in rewriting the definition
of variable λi = b′

i +
∑l

j=n+1 a′
ij · λj as a definition of variable λj .

λj =
b′

i

−aij

+
−1
−aij

· λi +
l

∑

j=n+1
j 6=j

a′
ij

−aij

· λj

This definition of variable λj can then be substituted in the other entries of the
dictionary, thereby completing the pivot. This rewrite has made the new vertex
syntactically obvious: the new constant term z′ of the objective function has
been updated as expected.

z′ = z + c′
j · δj

Example minimisation. Suppose we have the following problem in canonical
form, with the nonnegativity constraints left implicit.

z = −λ3 + λ4

λ1 = 2 + 3 · λ3 + λ4

λ2 = 1 +−λ3 + 2 · λ4

(2.3)

The variables of the problem are λ1, λ2, λ3 and λ4. Variables λ1 and λ2 are
dependent variables. Variable z was introduced to capture the value of the
objective function. The basic solution is z = 0, λ1 = 2, λ2 = 1, λ3 = 0 and
λ4 = 0, which I’ll concisely write (0, 2, 1, 0, 0). We want to minimise the value
of variable z.

In the definition of variable z, variable λ3 has a negative coefficient: −1. If
the value of variable λ3 increases by δ3, the value of variable z will decrease by δ3.
The definition of variable λ1 doesn’t bound the growth of variable λ3: increasing
the value of variable λ3 only makes variable λ1 more positive. However, the
definition of variable λ2 bounds the definition of variable λ3 to 1: given that
λ4 = 0, this is the maximal value that λ3 can take which preserves λ2 ≥ 0.
Setting variable λ3 to 1 leads to a new feasible point: (−1, 5, 0, 1, 0).

Now comes the pivot. The definition of variable λ2 is rewritten so that it
defines variable λ3.

λ3 = 1 +−λ2 + 2 · λ4

This new definition is now substituted for variable λ3 in every entry of the
dictionary.

z = −(1 +−λ2 + 2 · λ4) + λ4

λ1 = 2 + 3 · (1 +−λ2 + 2 · λ4) + λ4

λ3 = 1 +−λ2 + 2 · λ4

(2.4)

In turn, this yields the following problem.

z = −1 + λ2 +−λ4

λ1 = 5 +−3 · λ2 + 7 · λ4

λ3 = 1 +−λ2 + 2 · λ4

(2.5)

56

The basic solution is now apparent syntactically, as highlighted in equation 2.5.
Going further in the minimisation, we would try to increase the value of vari-
able λ4, as it has a negative coefficient in the objective function. Its coefficient in
the definition of both dependent variables is positive, implying that the growth
of variable λ4 is unbounded. Therefore, the minimum of function −λ3 + λ4 is
unbounded.

Necessity of pivoting. The pivoting step rewrites the problem into an equiv-
alent problem. The new problem makes the current basic solution appear in the
syntax of the definitions. It may be tempting to decorrelate the basic solution
from the system of constraints, so as to save part of the computation time spent
pivoting. However, doing so breaks all of the syntactic criteria used by the
simplex algorithm to take decisions. In the previous example, suppose that we
keep the problem under the form given in equation 2.3, and that we keep track
of having moved from point (0, 2, 1, 0, 0) to point (−1, 5, 0, 1, 0) separately.

In order to continue minimising, we need to choose the value of which variable
we are going to increase. Increasing the value of variable λ3 isn’t possible any
more. We are left with the possibility of increasing variable λ4, although it has a
positive coefficient. Doing so results in the value of variable z being decreasing,
as we observed in the example. However, the decrease doesn’t result directly
from the increase of variable λ4, but rather from the fact that variable λ3 has
to grow twice as fast as variable λ4 to keep the equation λ2 = 1 + −λ3 + 2 · λ4

satisfied.
The canonical form of the linear problems removes dependencies between

constraints. The effect of a change on a given constraint can be found by
examining only this constraint.

Cycling and termination. Termination of the simplex algorithm is straight-
forward for a nondegenerate problem, that is when the constant term of the
definitions of dependent variables is never zero. Indeed, nontermination could
have two causes.

1. The optimisation takes infinitely many steps to converge to the minimum.

2. The optimisation cycles among of subset of dependent variables choices.

Without cycling, an infinity of steps is impossible, as there is a finite number
of ways to choose dependent variables. Without degeneracy, cycling is impos-
sible as well, since each iteration strictly decreases the objective value and the
choice of dependent variables uniquely determines the value of the objective
value.

When the problem is degenerate, the value of the objective doesn’t necessar-
ily decrease strictly at each iteration any more. Cycling is possible among the
different bases describing a single vertex, thereby yielding the same objective
value. There are two approaches to dealing with degeneracy.

• The simplest approach is to removing degeneracy by introducing pertur-
bations in the system. These perturbations are usually kept symbolic [35]
by introducing a new infinitesimal quantity ǫi in the constant of each con-
straint and imposing an order among the ǫi’s, so that constants can be
compared lexicographically. This has the effect of increasing the size of
the problem, thereby making all pivots more computationally expensive.

57

• The other approach to dealing with degeneracy is to choose the variables
for the pivot such that cycling is prevented. The best-known pivoting rule
is Bland’s rule [8]. It consists in ordering the variables and, when given a
choice, pick the lowest variable.

Although it guarantees termination, Bland’s rule leads to a large number
of iterations during the optimisation. For this reason, a more efficient pivoting
rule is usually used. Since the more efficient rule doesn’t necessarily guarantee
termination, it is customary to use it for the first N iterations, where N is
implementation-defined, before resorting to Bland’s rule to ensure termination.
An example of more efficient pivoting rule is the steepest descent rule. When
several variables may be increased to decrease the objective value, the steepest
descent rule picks the one with the most negative coefficient in the objective
function.

The algorithm. We have now covered all of the ingredients of the simplex
algorithm. Starting from a minimisation problem in canonical form, where the
basic solution is feasible, the algorithm proceeds as follows.

1. Choose a nonbasic variable λj which has a negative coefficient in the ob-
jective function, that is the definition of variable z. Variable λj will enter
the basis.

2. If there is no such variable, the algorithm terminates: the optimal value
of the objective function is the value of variable z in the basic solution.

3. Otherwise, find the dependent variable λi whose definition sets the small-
est upper bound on the growth of variable λj . Variable λi will leave the
basis.

4. If no definition bounds the growth of variable λj , the objective function
isn’t bounded below by the constraint. The algorithm terminates with −∞
as the minimum.

5. Otherwise, pivot on λi and λj .

6. Go back to step 1.

The initial feasible basis. The algorithm which we have just outlined starts
from a problem in canonical form, where the basic solution is feasible. Rewriting
a minimisation problem so that it is in canonical form is easy: all that is needed
is selecting a subset of the problem variables and performing a Gaussian elim-
ination. However, there is no guarantee that the corresponding basic solution
is feasible: the constant term of one or several entries in the dictionary may be
negative. Since the basic solution sets the independent variables to zero and
the dependent variables to the value of the constant in their definition, negative
constants violate the nonnegativity constraints on the variables.

The simplex algorithm can also be used to find an initial basis such that the
corresponding basic solution is feasible. The idea for doing so is to build an
intermediate problem

• which has a trivial initial basis with a feasible basic solution and

58

• whose optimal is reached for a basis which has a feasible basic solution in
the original problem.

Suppose our original problem is the following.

min c · λ under constraints

l
∑

j=1

aij · λj = bi, i ∈ {1, . . . , n}, with λj ≥ 0

We introduce a new variables αi ≥ 0 for each constraint. If constant bi is
negative, the constraint is rewritten as αi = −bi +

∑l

j=1 aij · λj . Otherwise, it

is rewritten as αi = bi +
∑l

j=1−aij ·λj . The intermediate problem is completed
by changing the objective function to z = min

∑n

i=1 αi.
This intermediate problem has an obvious initial basis α1, . . . , αn. The cor-

responding basic solution is feasible: we arranged for the constant term of each
definition to be nonnegative. All that is left to do in order to get a problem in
canonical form is to substitute variables α1, . . . , αn in the objective function.

Running the simplex algorithm on the intermediate problem may yield one
of two results.

• If z = 0, the optimal basic solution is a basic solution to the initial prob-
lem.

• If z > 0, then the original problem doesn’t have any feasible solution, as
there is no solution to the intermediate problem where only the variables
λ1, . . . , λl are nonzero.

The optimal value can’t be negative as it is a sum of nonnegative variables.

2.6 A linear program solver

We have now covered the basics of linear programming—that is linear problems
and associated solving algorithms—and their use for proving that a polyhe-
dron P is included in the half-space defined by a constraint c(x) ≥ 0. The
abstract domain of polyhedra in Verasco uses a variant of the simplex algo-
rithm. However, starting by explaining the basic algorithm let me highlight the
crucial points without worrying about the subtleties of refinements.

2.6.1 From optimisation to satisfiability

If we go back and have a look at figure 2.2b on page 47, which illustrates
that polyhedron p , {x1 ≤ 2, x2 ≤ 2} isn’t included in the half-space defined
by constraint x1 + x2 ≤ 3, we may realize that point x isn’t the only point
proving that p 6⊑ x1 + x2 ≤ 3. Any point in the triangle whose vertices are
points (1, 2), (2, 1) and (2, 2), excluding those which lie on the line segment
between points (1, 2) and (2, 1), disproves the inclusion as well. The real question
which we answered using maximisation is the following. Is there a point x′ ∈ P
such that x 6∈ {(x1, x2) | x1 + x2 ≤ 3}?

Optimisation doesn’t appear to be a required ingredient for answering it.
Indeed, this question is equivalent to that of satisfiability of the following for-
mula [6].

x1 ≤ 2 ∧ x2 ≤ 2 ∧ ¬(x1 + x2 ≤ 3)

59

This formula can then be simplified.

x1 ≤ 2 ∧ x2 ≤ 2 ∧ x1 + x2 > 3

More generally, testing the inclusion p ⊑
∑n

i=1 ai·xi ≤ b is equivalent to checking
the unsatisfiability of the following formula.

p ∧
n

∑

i=1

ai · xi > b (2.6)

A similar transformation exists for the minimisation problem. Indeed, it suf-
fices to exhibit a linear combination which yields a constant smaller or equal to
constant b: finding the smallest possible constant isn’t necessary. Moving from
optimisation to satisfiability opens the possibility to leverage the work done
by the very active satisfiability modulo theory community. In particular, the
solver of linear problems which I built for the abstract domain of polyhedra in
Verasco is heavily based on the work which Leonardo de Moura and Bruno
Dutertre [20] did to optimise the simplex algorithm for handling linear arith-
metic in SMT solvers. Their variant of the simplex algorithm has a number of
distinguishing features.

• There is no restriction on the sign of the variables and they can have both
a lower bound and an upper bound.

• While the standard simplex algorithm encodes inequality a ≤ b as equal-
ity a + s = b with a nonnegative slack variable s, inequalities are handled
without introducing extra variables.

• Inequalities can be strict.

• The bounds on the variables can be changed dynamically in a simple way.

• A presimplication, taking advantage of the fact that only satisfiability
matters, speeds the solving up.

As we’ll see shortly, all of these features make it possible to reason in the
space of the variables bound by the polyhedra, similarly to the maximisation
problem we saw at the beginning of this chapter. One resulting benefit is the
similarity between the representation of polyhedra and the problem representa-
tion in the solver.

2.6.2 Problem representation

Bruno Dutertre and Leonardo de Moura’s algorithm splits the linear problem to
solve into three components: bounds on variables, the current value of variables
and a dictionary, which defines a subset of the variables by equations. Variables
are either problem variables or auxiliary variables. An auxiliary variable is
introduced for each constraint where two or more variables appear. For example,
constraint x1 +x2 > 3 above would be represented by an entry in the dictionary
y1 = x1 + x2 and a bound y1 > 3, where y1 is a fresh auxiliary variable. No
auxiliary variable needs to be introduced for a simple constraint such as x1 ≤ 2.
It is directly used as a bound. As in the standard simplex algorithm, the set of

60

variables is split in dependent, or basic, and independent, or nonbasic, variables.
The initial dependent variables are the auxiliary variables. The initial value of
independent variables is either 0 or the value of one of its bounds if the bounds
forbid value 0.

2.6.3 Overview of the algorithm

Since the interest is satisfiability, there is no distinguished objective function
to guide the pivoting choices. Rather, the algorithm minimises the extent to
which the current assignment is unsatisfiable. The algorithm maintains the
invariant property that the independent variables have a current value which is
within their bounds. The value of the dependent variables is fixed accordingly
and may be outside of the bounds. A step of the algorithm starts with finding
a dependent variable—it may be an auxiliary variable or not—whose value is
outside of its bounds. Suppose it found y1.

y1 = x1 + x2

Suppose further that the current assignment is y1 = 0, x1 = 0 and x2 = 0 and
that the bounds on variables are y1 > 3, x1 ≤ 2 and x2 ≤ 2.

Then, the algorithm looks for an independent variable xj whose value could
be moved within its bounds, so as to reduce the distance from the current value
of variable xi to its bound. In our example, dependent variable y1 needs to
increase. Variable x1 has a positive coefficient: increasing its value would result
in the value of variable y1 to increase.

Then, the value of y1 is moved so that it satisfies its closest bound and the
value of variable x1 is moved so as to compensate the move. This also illustrates
the handling of strict inequalities: a symbolic positive ǫ is used.

y1 = 3 + ǫ, x1 = 3 + ǫ, x2 = 0

A pivot on variables y1 and x1 is then performed.

x1 = y1 +−x2

Variable y1 now has a value within its bounds. The value of variable x1 is
now outside of its bounds. Since it is now a dependent variable, the invariant
property on independent variables being within their bounds is preserved.

The next iteration of the algorithm selects dependent variable x1, whose
value 3 + ǫ violates its upper bound 2. The value of variable y1 can’t decrease
without violating its bound. However, variable x2 can increase to make vari-
able x1 decrease.

x1 = 2, y1 = 3 + ǫ, x2 = 1 +−ǫ

A pivot is performed.
x2 = y1 +−x1

The algorithm terminates: the value of all the variables is within its bounds.
Each iteration decreases the overall distance of the variables to their bounds,
which guarantees termination.

61

Stopping criteria. The algorithm may have one of two outcomes.

• No dependent variable xi is outside of its bounds. In this case, a satisfying
assignment has been found. In our problem of interest, this means that
inclusion doesn’t hold.

• No independent variable xj can be found which could compensate, at
least partially, the move of variable xi within its bounds. This situation
is called a “conflict” and results from the unsatisfiability of the original
formula 2.6. This is the interesting case: inclusion holds.

2.6.4 Extracting witnesses

When inclusion holds, we face the same problem as when we considered max-
imisation: how can a witness be extracted from a conflict? Assume that, in
order to test whether inclusion p ⊑

∑n
i=1 ai · xi ≤ b holds, we check whether

the following formula is unsatisfiable.

p ∧
n

∑

i=1

ai · xi > b

The solver associates a variable yc to constraint
∑n

i=1 ai · xi > b: variable yc is
defined by equality yc =

∑n
i=1 ai · xi and has a bound yy > b. Remark that, if

there is a single i ∈ {1, . . . , n} such that ai is different from 0, then yc , xi.
Assume further that the algorithm terminates because of a conflict in the

following entry of the dictionary.

xi =
n′

∑

j=1

aij · xj

We are going to assume that polyhedron p isn’t empty and, therefore, that the
conflict involves variable yc. Since the coefficient of variable yc is nonzero, the
conflict line can be rewritten.

yc =
n′

∑

j=1

a′
ij · xj

The constraints of polyhedron p imply a bound bc on the right-hand side of this
equality. Variable yc has a bound yc > b from constraint

∑n

i=1 ai ·xi > b. There
being a conflict implies that the bound yc > b, is incompatible with bound b of
the right-hand side. For example, we might have b ≥ bc in the following.

b < yc =
n

∑

j=1

a′
ij · xj ≤ bc

The linear combination of the constraints of polyhedron p, which yields the
bound yc ≤ bc, is simply read from the right-hand side

∑n

j=1 a′
ij · xj of the

equality above. This result builds on the following remarks.

• Each constraint of the input problem has a variable associated to it, in a
similar way to variable yc is associated to input constraint

∑n

i=1 ai ·xi > b.

62

• The variables which appear in the conflict are necessarily associated to an
input constraint. Indeed, only these variables have an explicit bound, by
construction of the problem. If a variable with no explicit bound appeared
in the equality above, its value could be adjusted as needed and there
wouldn’t be any conflict.

The upper bound on variable yc implied by the constraints of polyhedron p is
incompatible with the lower bound yc > b. The linear combination of the con-
straints of p yielding the upper bound appear by substituting for each variable xj

on the conflict line, the input constraint it is associated with. If variable xj has
a positive coefficient aij , then the constraint which gives variable xj its upper
bound should be used. If coefficient aij is negative, the constraint which gives
the lower bound should be used instead.

This discussion should shed light on why variable yc is necessarily involved in
the conflict if polyhedron p is nonempty. If variable yc doesn’t appear in conflict
xi =

∑n′

j=1 aij · xj , the bounds defined by polyhedron p are incompatible with
each other, implying that polyhedron p is empty.

Instrumenting data structures. Bruno Dutertre and Leonardo de Moura’s
algorithm doesn’t directly support the extraction of witnesses we have just seen.
Some instrumentation of the working data structures of the algorithm is neces-
sary. The basic idea is to associate a unique identifier to each input constraint
and attach that identifier to its corresponding bound on a variable. Extra care
is needed for bounds on problem variables such as constraint 2 ·x1 ≤ 3, which is
represented as bound x1 ≤

3
2 in the working data. While the two are equivalent,

a witness coefficient λ1 applying to constraint x1 ≤
3
2 should be divided by two

before applying it to constraint 2 · x1 ≤ 3.

2.7 Wrapping up

This chapter bridged the gap between the necessity of proving inclusion prop-
erties and algorithms which effectively compute witnesses of the inclusion prop-
erties, when they hold. These algorithms belong to the field of linear program-
ming, of which we have covered the basics with their theoretical justification.
In practice, we use a variant of the simplex algorithm originally targeting satis-
fiability modulo theory solving [20]. We skimmed through the main features of
this algorithm, just enough to show how witnesses are extracted from the final
state of the algorithm.

I should stress that this chapter mostly covers background and state-of-the-
art material, which will serve as a basis for the rest of the thesis. My contribution
described in this chapter is the extraction of inclusion witnesses from a solver
conflict.

Summary in French

La correction des résultats des opérateurs de VPL s’exprime comme des pro-
priétés d’inclusion.

63

Le domaine de la programmation linéaire fournit des algorithmes pour tes-
ter l’inclusion de polyèdres, notamment l’algorithme du simplexe. Ce chapitre
présente ces outils, en gardant à l’esprit la nécessité de générer des témoins. Il
y a deux façons de déterminer si un polyèdre P est inclu dans le demi-espace
décrit par la contrainte linéaire a.x ≤ b.

La première méthode consiste à chercher le point x̄ du polyèdre P qui maxi-
mise a.x. Si a.x̄ ≤ b, alors tous les points de P satisfont la contrainte : le
polyèdre P est inclu dans le demi-espace.

L’autre méthode est directement inspirée du lemme de Farkas : il s’agit de
trouver la contrainte a.x ≤ b̄, résultant d’une combinaison linéaire à coefficients
positifs des contraintes de P , qui minimise b̄. Si b̄ ≤ b, alors il y a inclusion.

Ces deux méthodes permettent d’arriver au même résultat : a.x̄ = b̄. Le
problème linéaire de maximisation et le problème linéaire de minimisation sont
appelés «duaux».

La partie Coq de VPL dépend de la capacité de l’oracle à produire des
témoins d’inclusion sous la forme de coefficients qui permettent d’appliquer le
lemme de Farkas. Le problème de minimisation ci-dessus est posé en termes des
coefficients du témoin : il s’agit de l’approche la plus directe. Néanmoins, il est
possible grâce à une instrumentation simple d’extraire un témoin de la solution
du problème de maximisation. Cela permet d’utiliser pour VPL une variante
de l’algorithme du simplexe conçue pour les besoins des outils de satisfaisabilité
modulo théorie, qui a l’avantage de permettre une résolution incrémentale des
problèmes linéaires.

64

Chapter 3

Computing on polyhedra

represented as constraints

We started from the goal of building an abstract domain of polyhedra for the
Verasco static analyser. This abstract domain, VPL, should have its sound-
ness proof written using the Coq proof assistant. We chose a result verification
approach to the proof: an external oracle performs the computations and pro-
vides inclusion witnesses so that its results can be checked. Consequently, it
is not required to trust the result provided by the oracle upfront. Then, we
saw how to check whether one polyhedron is included in another, and how to
extract a witness if the inclusion holds, using linear programming. This would
be enough for building a state of the art witness-providing oracle [6]: compute
results with a readily available abstract domain, such as NewPolka, and com-
pute witnesses with a readily available linear problem solver, such as the GNU
Linear Programming Kit [27]. However, this method adds the significant over-
head of solving many linear problems after each operator to the already costly
abstract domain of polyhedra.

The oracle I built for VPL integrates witness generation with result compu-
tation, in order to achieve better performance. VPL oracle, which is external
to Coq, is written in the Ocaml programming language. The resulting domain
compares well in performance with state-of-the-art domains NewPolka and
PPL and provides result verification as a bonus. The oracle is itself a complete
abstract domain which can be used independently of the result-verifying Coq

frontend.
VPL being competitive results mostly from the design of the oracle. It has

two distinguishing features, which this chapter elaborates on.

• It operates only on the constraint representation of polyhedra.

• It generates witness on the fly from intermediate results.

3.1 Representing polyhedra as constraints

In a performance-sensitive program, data structures are key. Therefore, the or-
ganisation and invariant properties of the constraint representation of polyhedra
in VPL will be our starting point. We’ll proceed from the bottom up.

65

Numbers representation. The basic entities that VPL deals with are num-
bers. VPL polyhedra bound rational variables and constraint have rational
coefficients. These coefficients can grow so as to overflow native integer repre-
sentation during an analysis. Working around this shortcoming requires using
an arithmetic library for arbitrarily large numbers. This has a serious impact
on overall performance. The oracle uses the ZArith [43] Ocaml frontend to
the GNU Multiple Precision Arithmetic Library, GMP [26]. ZArith tries to
lower the cost of using GMP by using native integers as long as they don’t
overflow. This design draws on insights from the satisfiability modulo theory
solving community [11]: in most cases, extended precision is not used, hence
the great importance of an arithmetic library that operates on machine words
as much as possible, without allocating extended precision numbers.

Constraints. Capturing linear relations between program variables with poly-
hedra generally leads to sparse systems [47]: each relation involves only a few
program variables. VPL oracle stores constraints as radix trees, where the path
from the root to a node identifies the variable whose coefficient is stored at
that node. This offers a middle ground between dense representation, as used
by other widely-used implementation of the abstract domain of polyhedra and
sparse representation which makes random access costly as sparsity diminishes.
I borrowed the idea from previous work by Frédéric Besson et al. [6].

Polyhedra. VPL oracle represents polyhedra as sets of constraints only. The
salient choice I made while designing the corresponding data structures is: the
representation of polyhedra is always minimised. We’ll see shortly what this
choice encompasses; for now, you may think of it as redundancy in the constraint
set being removed eagerly. The main motivation is to make the behaviour of
VPL predictable: the computational cost of the operators depends only on
the geometry of their inputs, without interference from a state resulting from
previous computations.

What I mean by “state” is best illustrated on the performance profiles pre-
sented in the next chapter. These profiles compare VPL to NewPolka and
PPL. Both NewPolka and PPL use the double representation of polyhedra.
However, they differ in how they maintain these representations. NewPolka

performs the conversions eagerly: both representations are always available.
PPL performs the conversions lazily: it maintains one as long as possible and
switches to the other when requested by an operator. The performance profiles
seem to indicate that PPL has an extremely efficient convex hull operator: it
is six times faster than that of NewPolka. In fact, PPL merely delays the
work: all of its other operators are slower than those of NewPolka. When
considering the total time spent by the execution in each domain over a whole
analysis, the two perform comparably. Maintaining minimised representation
of polyhedra amounts to performing work eagerly. It makes both the code and
the analysis of its performance simpler.

Canonical empty polyhedron. An immediate consequence of minimising
representations is that the empty polyhedron ⊥, that is the polyhedron which
has no point in it, is represented in a canonical way. If t is the type of collections
of constraints, the data type for polyhedra can effectively be spelt as t +⊥. A

66

polyhedron is either the empty polyhedron ⊥, or a collection of constraints
which are satisfied by at least one point. In other words, there is no constraint
representation of ⊥ in VPL.

3.1.1 Separating equalities from inequalities

When a polyhedron p isn’t empty, its set of constraints is split into two: the
set pE of its equality constraints and the set pI of its inequality constraints.
Keeping equality constraints separate has two main benefits: dimension reduc-
tion and cheaper projection.

Dimension reduction. Each equality can be regarded as a definition of one
of the variables which appear in it, in a similar fashion to the construction of the
dictionary presented in the previous chapter. In turn, the defined variables can
be substituted by their definition in the other constraints, both equalities and
inequalities. The dimension of the system of inequalities, which is the costlier
to operate on, is thereby decreased.

Cheaper projection. Computing the projection of a polyhedron represented
as constraints onto a subset of its dimensions involves the very costly Fourier-
Motzkin elimination [18] of the corresponding variables. This elimination can be
bypassed for the variables which appear in equality constraints. For those, the
equality is turned into a definition and elimination is performed by substitution.

3.1.2 Invariants of the representation of equalities

Following the minimisation choice, the system of equalities of a polyhedron
has no redundancy: no equality is a linear combination, with coefficients of
arbitrary sign, of the others. Furthermore, it is rewritten to be in row echelon
form, similarly to what the first step of Gaussian elimination does. Suppose we
have the following system.

x1 + x2 + x3 + x4 = 1

x1 + 2 · x2 + 5 · x4 = 2

x2 + x3 = 0

It doesn’t make the polyhedron ⊥, as it has at least one solution: x1 = 3
4 ,

x2 = x3 = 0 and x4 = 1
4 . In order to rewrite it in row echelon form, we start

by picking one variable to be defined by the first equality, say variable x1. The
equality becomes x1 = 1− x2 − x3 − x4. We substitute variable x1 in equalities
which follow the first one. In this case, this is the rest of the system.

x1 = 1− x2 − x3 − x4

x2 +−x3 + 4 · x4 = 1

x2 + x3 = 0

We now pick another variable in the second equality, say variable x2. We rewrite
the equality x2 = 1+x3−4 ·x4 and substitute variable x2 in the equalities which

67

follow the second one, namely the last one.

x1 = 1− x2 − x3 − x4

x2 = 1 + x3 − 4 · x4

2 · x3 − 4 · x4 = −1

We pick variable x3 for the last equality. There is no equality remaining where
substitution should be performed.

x1 = 1− x2 − x3 − x4

x2 = 1 + x3 − 4 · x4

x3 = −
1

2
+ 2 · x4

This procedure illustrates the reason I am talking about minimisation, as op-
posed to building a canonical form: the result depends on the choice of variable
at each step and the order in which the equality constraints appear.

Maintaining minimality. When adding a new equality to a system in row
echelon form, maintaining the minimised form is easy. The equality is rewritten
by substituting all the defined variables, x1, x2 and x3 in our example. It results
in one of three cases.

Contradiction. The result of the substitutions is a trivially contradictory
equality, such as 0 = 1. In this case, the addition of the equality has
made the polyhedron empty.

Redundancy. The result is a trivial equality, such as 1 = 1. It is implied by
the others and can be discarded without losing any information.

New definition. One of the variables remaining in the rewritten equality is
chosen to be defined. The new definition is simply appended to system pE ,
which perserves the row echelon form.

Using the row echelon form, instead of a dictionary similar to that maintained
by the simplex algorithm, avoids the second phase of Gaussian elimination,
which builds the reduced row echelon form. This saves some computation at
the expense of enforcing an ordering on the equalities.

3.1.3 Invariants of the representation of inequalities

The set of inequalities pI of a VPL polyhedron p also satisfies invariant prop-
erties related to minimality.

Full and decreased dimensionality. To start with, the variables defined
in the set of equalities pE are always substituted in the constraints of set pI .
What’s more, there is no constraint c(x) ≥ 0 implied by the constraints of set pI ,
such that constraint c(x) ≤ 0 is also implied. The conjunction of these two facts
implies that the system of inequalities of a polyhedron

• always has full dimension: there are no implicit equalities, and

68

• always mentions the lowest possible number of variables.

Full dimensionality is a prerequisite for some of the linear programming
algorithms discussed in the second part of this thesis. When it isn’t a prerequi-
site, full dimensionality simplifies implementation and makes algorithms whose
complexity depends on the number of variables more efficient. As mentioned
before, projection is one of them. Inclusion testing is another. Suppose we need
to test inclusion p ⊑ c(x) ≥ 0. Constraint c(x) ≥ 0 is first rewritten using the
equalities of pE , yielding constraint c′(x) ≥ 0. The linear solver described in
the previous chapter then checks whether pI ∧ c′(x) < 0 is satisfiable: there is
no need to provide it with the equalities pE.

Syntactic redundancy. Full dimensionality has another benefit: it gives the
inequality constraints an almost-canonical representation, up to a positive scal-
ing factor. A constraint c(x) ≥ 0 can be arbitrarily rewritten as λ · c(x) ≥ 0,
with λ > 0. However, how the equalities of the polyhedron are used to rewrite
it is fixed by the choice of defined variables.

This property allows for a cheap syntactic criterion for testing whether in-
clusion p ⊑ c(x) ≥ 0 holds. Once constraint c(x) ≥ 0 is rewritten using equal-
ities pE , yielding constraint c′(x) ≥ 0, inclusion is proved if there exists a
constraint ci(x) ≥ 0 from the set pI such that c′(x) − a · ci(x) ≥ 0, with a > 0.
This is essentially saying that constraint 2 · x ≤ 2 implies constraint x ≤ 3. Re-
dundant constraints found using the syntactic criterion just described are called
syntactic redundancies.

Against canonicity. Enforcing a canonical representation of inequality con-
straints is tempting, as it would reduce syntactic redundancy elimination to a
simple equality test. A possible implementation consists in selecting an order for
variables and forcing the first nonzero coefficient of each constraint to be either 1
or −1. The problem with this approach is that it may scale the other coefficients
of the constraints to large values, at the risk of overflowing machine representa-
tion. There is no risk for the correctness of the computations, since VPL uses
arbitrary precision numbers [26]. However, arithmetic is cheaper when numbers
fit in the machine representation. For this reason, canonicity isn’t enforced,
but factors common to all the coefficients of variables in a given constraint are
removed: constraint 4 · x1 + 6 · x2 + 3 ≥ 0 is rewritten 2 · x1 + 3 · x2 + 3

2 ≥ 0.

Factorising work during minimisation. Once syntactic redundancies are
removed, the minimisation procedure tests, for each constraint ci(x) ≥ 0 of the
set pI , whether it is implied by the other constraints of set pI , that is whether
inclusion pI \{ci(x) ≥ 0} ⊑ ci(x) ≥ 0 holds. If it does, then constraint ci(x) ≥ 0
is redundant and can be removed. Although this is a costly operation, the
specifics of the VPL linear problem solver help keeping it efficient.

As we saw in the previous chapter, the linear solver in VPL splits constraint
ai0+

∑n

j=1 aij ·xj ≥ 0 into the definition of an auxiliary variable yi =
∑n

j=1 aij ·xj

and a bound on this variable yi ≥ −ai0. Also recall that the algorithm then
preserves the invariant that the value of all the variables used in the definitions
stays within their bounds, while the value of the dependent variables may not.
Now, remember that the solver tests inclusion p ⊑ ci(x) ≥ 0 by testing the sat-
isfiability of the conjuction p ∧ ci(x) < 0. Furthermore, note that transforming

69

constraint ci(x) ≥ 0 into constraint ci(x) < 0 only changes the bound on the
internal variable yi associated to it. If we make sure that variable yi is a depen-
dent variable, we can make the change without rebuilding the linear problem
from scratch. This leads naturally to the following approach.

• Build the linear satisfiability problem for constraints pI ,
∧l

i=1 ci(x) ≥ 0.
Note that this step introduces an auxiliary variable per constraint.

• Solve the problem. If it is infeasible, we know that ⊥ is the result of the
minimisation. Otherwise, we have found a point x which satisfies all the
constraints.

• For each constraint ci(x) ≥ 0, perform the following steps.

– Make sure that the corresponding auxiliary variable yi is a defined
variable. If it is not, pivot to make it so.

– Change the bound on variable yi from yi ≥ −ai0 to yi < −ai0.

– Solve the new problem. Note here that only variable yi is out of its
bounds. If the new problem is unsatisfiable, then constraint ci(x) ≥ 0
is redundant.

The test for each constraint starts from the same solved problem resulting from
the second step. Since VPL is written in the functional subset of Ocaml the
copying involved is transparent.

This way of performing minimisation saves considerable duplication of ini-
tialisation work. However, the theoretical benefit is hard to evaluate since the
number of pivoting steps required to solve the new problem for each constraint
heavily depends on both the geometry of the input polyhedron and the solution
point we start from.

3.1.4 Interaction between minimisation and verification

Now that we have spelt out how polyhedra are represented by the oracle of VPL,
it may be worth taking a step back and consider how this affects the frontend
and the proofs which we have discussed in chapter 1. The frontend represents a
polyhedron as the set of its constraints, without making any further assumption,
such as emptiness or minimality. We argued that the main interest of using a
result verification approach lies in the loose coupling between the frontend and
the oracle. To back this claim, we showed that hardly more than the coefficents
of linear combinations of constraints need to be transferred between the two.
The “hardly” in the previous sentence is due to operators which introduce new
constraints, such as the intersection p ⊓ c(x) ≥ 0. Constraint c(x) ≥ 0 needs to
be transfered to the oracle.

Whether the linear combinations specify a minimised representation of the
resulting polyhedron is entirely irrelevant to the soundness of the result. Sound-
ness follows from each resulting constraint verifying a specific inclusion prop-
erty. However, minimisation has an impact on the computational efficiency of
the whole analyser. Obviously, it spares useless computations on the redundant
constraints. It also detects as soon as possible whether the execution path under
consideration by the analyser is infeasible and can therefore be ignored.

70

Overall, the engineering impact of minimising representations only affects
the oracle. It comes for free in the frontend when the witnesses provided by the
oracle describe a minimised polyhedron.

3.2 Generating witnesses on the fly

The oracle is responsible for computing the results of the abstract domain op-
erators and for providing the frontend with witnesses of the soundness of these
results. These two aspects have been dealt with separately in preceeding at-
tempts [6] to prove the correctness of an abstract domain of polyhedra using a
proof assistant. One of my contributions with VPL resides in showing that the
witnesses can be extracted with a low overhead from the working data of the
operators of the domain.

3.2.1 Inclusion test

Previous chapter already gave most of the information about how to build a
witness for the inclusion p ⊑ c(x) ≥ 0, once the linear solver declared that
p ∧ c(x) < 0 is unsatisfiable. Two minor pieces are still missing, however: the
handling of equalities and the syntactic test.

Constraint c(x) ≥ 0 is rewritten as constraint c′(x) ≥ 0 using the set of
equalities pE ,

{

ei(x) = 0
∣

∣ i ∈ {1, . . . , k}
}

to substitute a subset of the vari-
ables.

c′(x) , c(x) +

k
∑

i=1

λi · ei(x) = c(x) + ΛE · pE

Note that ΛE applies to equalities: there is no sign restriction for its coeffi-
cients. Suppose now that constraint c′(x) ≥ 0 is then implied by the set of
inequalities pI ,

{

ci(x) ≥ 0
∣

∣ i ∈ {1, . . . , l}
}

.

c′(x) = λ′
0 +

l
∑

i=1

λ′
i · ci(x) with ∀i ∈ {1, . . . , l}, λ′

i ≥ 0

Although it leaves coefficient λ′
0 implicit, we rewrite this equality as follows.

c′(x) = ΛI · pI

The inclusion witness for constraint c(x) ≥ 0 is then rebuilt.

c(x) = ΛI · pI +−ΛE · pE = Λ · p

Again, negating coefficients ΛE isn’t an issue since they apply to equality con-
straints. Deciding the inclusion pI ⊑ c(x) ≥ 0 based on the syntactic criterion
presented before is no more than a special case where only one coefficient λ′

i,
i ∈ {1, . . . , l} is nonzero.

If the inclusion we are testing had been p ⊑ e(x) = 0, the answer would
have followed from the initial rewriting.

e′(x) , e(x) + ΛE · pE

71

If the result e′(x) is syntactically 0, then inclusion holds and −ΛE makes an
inclusion witness.

e(x) = −ΛE · pE

If e(x) is different from 0, then inclusion doesn’t hold. Note that testing whether
inclusion pI ⊑ e′(x) = 0 is useless, since we maintain the invariant property
that there is no implicit equality in the set pI .

3.2.2 Intersection

Intersection of polyhedron p with a new constraint c can be trivially imple-
mented by appending the new constraint to the constraints already constituting
the involved polyhedron. However, doing so doesn’t yield a minimised represen-
tation of the result. The intersection operator in VPL starts by testing whether
p ⊑ c. If the added constraint is found to be implied by the input polyhedron,
polyhedron p is returned unaffected. The witness for inclusion p ∪ {c} ⊑ p is
obvious to build. If polyhedron p doesn’t imply the new constraint, the next
step depends on constraint c being an equality or an inequality.

Nonredundant equality, c , e(x) = 0. We wish to compute the result
of intersection p ⊓ e(x) = 0 and we kept the rewritten constraint e′(x) =
e(x) + ΛE · pE from the inclusion test. The new equality e′(x) = 0 is added
to the set pE as described when we discussed minimality, yielding the set p′

E .
Next, the variable defined by equality e′(x) = 0 is substituted in the set pI .
The resulting set p′

I isn’t minimised and, more importantly, it may now contain
implicit equalities.

Looking for implicit equalities. VPL looks for implicit equalities in a set
of inequalities p′

I in the simplest way possible. For each constraint ci(x) ≥ 0,
it checks whether p′

I ⊑ ci(x) ≤ 0. If one inclusion holds, the new equality
ci(x) = 0 is added to the set p′

E. Rewriting and implicit equality search is
started over. Note that, when testing all the inclusions, work can be factorised
in a similar fashion to what we saw when removing redundancy from a set of
inequalities with no implicit equality.

Once all the implicit equalities have been discovered, added to the set of
equalities, and after rewritings have been performed, the transformed set of
inequalities is minimised as explained in previous section.

Nonredundant inequality, c , c(x) ≥ 0. We wish to compute the result of
intersection p ⊓ c(x) ≥ 0 and we kept the rewritten constraint c′(x) = c(x) +
ΛE · pE from the inclusion test p ⊑ c(x) ≥ 0. We may now look for implicit
equalities in the set pI ∪ {c′(x) ≥ 0}. However, since the set pI has no implicit
equality, if there is an implicit equality in set pI ∪ {c′(x) ≥ 0}, it must be that
pI ⊑ c′(x) ≤ 0. If that inclusion doesn’t hold, the search stops.

Otherwise, we just found implicit equality c′(x) = 0. Even if only one new
inequality constraint is added, there may be others. Suppose that the set pI

equals to {x ≤ y, y ≤ z} and that we add constraint z ≤ x. Two implicit
equalities are introduced: x = z and y = z.

72

Again, once implicit equalities have been discovered, added to the set of
equalities, and after rewritings have been performed, the transformed set of
inequalities is minimized.

Generating a witness. In theory, generating a witness for intersection is very
easy. Most of what we did is rewriting inequality constraints using equalities.
We know what coefficients were used since we explicitely computed them. In
theory, all that is needed is to remember these coefficients and the constraints
they apply to. This is made manageable by the constraints being uniquely
identified by an integer, for the purpose of communicating with the frontend.

However, there are two details to pay some attention to. First, some equal-
ities e(x) = 0 have once been implicit and a witness for both e(x) ≤ 0 and
e(x) ≥ 0 should be kept. This is the rationale behind the SplitEq witness con-
structor from chapter 1, which you may recall has the following type.

SplitEq : linComb → linComb → consWitness

The other detail is the sign of the coefficients applying to equalities, as illustrated
in the case of the inclusion test above.

Now, consider the following worst-case scenario for intersection p⊓ c(x) ≥ 0.
I will use pI1, pI2, . . . instead of p′

I , p′′
I ,

1. The starting point is pI0 , pI ∪ {c(x) ≥ 0}.

2. Constraint c(x) ≥ 0 is rewritten using pE , yielding pI1 , pI ∪{c′(x) ≥ 0}.

3. An implicit equality c′(x) = 0 is found and added to the set pE , which
becomes pE1 , pE ∪ {c′(x) = 0}.

4. Equality c′(x) = 0 is used to rewrite the set pI1, yielding pI2.

5. Inequality set pI2 is minimised, yielding the final set pI3.

Introducing binding. One way to generate a witness in this situation is to
compose a sequence of witnesses. If the example above, let us define a number
of intermediate polyhedra: p0 , (pI0, pE), p1 , (pI1, pE), p2 , (pI1, pE1),
p3 , (pI2, pE1) and p4 , (pI3, pE1). Suppose now that the intersection operator
provides four witnesses: Λ for p0 ⊑ p1, Λ′ for p1 ⊑ p2, Λ′′ for p2 ⊑ p3 and Λ′′′

for p3 ⊑ p4. This is equivalent to saying that p1 = Λ ·p0, p2 = Λ′ ·p1, p3 = Λ′′ ·p2

and p4 = Λ′′′ · p3. Therefore, p4 = Λ′′′ · Λ′′ · Λ′ · Λ · p0.
Given that a number of constraints are left untouched at each step—for

example, set pI3 is a subset of set pI2, meaning that witness Λ′′′ is a part
of witness Λ′′—I introduced a finer grain mechanism than composition of full
witnesses. It appears as witness constructor Bind on listing 1.5 on page 33.
A witness Bind i Λi Λ′ introduces an intermediate constraint ci, which is the
result of linear combination Λi of input constraints or previously introduced
intermediate constraints. The newly introduced constraint ci can be used like
any other constraint in the remainder Λ′ of the witness. The effect of the Bind
above can be understood as follows when applied on polyhedron p.

let ci := Λi· p in Λ′·(p ∪ {ci})

73

1 +−x1 +−x2 ≥ 0 3 +−2 · x1 ≥ 0 3 · x1 +−x3 ≥ 0

(1 +−x1 +−x2 ≥ 0
∗3

, 3 · x1 +−x3 ≥ 0
∗1

) (3 +−2 · x1 ≥ 0
∗3

, 3 · x1 +−x3 ≥ 0
∗2

)

3 +−3 · x2 + −x3 ≥ 0 9 +−2 · x3 ≥ 0

Figure 3.1 – Fourier-Motzkin elimination of variable x1

Binding makes generating a witness for the result of an intersection easier.
It is however not an ideal solution. The numbering of the bound constraints
needs to be managed explicitly, which makes it error-prone and fragile since
nothing prevents the witness generator from binding a given identifier to several
constraints.

3.2.3 Projection

In constraint representation, the projection of an n-dimensional polyhedron p,
whose dimensions are x1, . . . , xn, on a subset of its dimensions, say x1, . . . , xm

with m < n, is usually performed using repeated Fourier-Motzkin elimina-
tions [25]. I used a refinement of this approach, originally published by Andy
King and Axel Simon [47].

Eliminating one variable xi

As a first approximation, we will consider that all the constraints of polyhedron p
are inequalities. In order to eliminate variable xi from polyhedron p, Fourier-
Motzkin elimination partitions the inequalities of polyhedron p into three sets.

• E0
xi

contains the constraints where the coefficient of variable xi is zero,
meaning that variable xi doesn’t appear in these constraints.

• E+
xi

contains those having a strictly positive coefficient for variable xi.

• E−
xi

contains those whose coefficient for variable xi is strictly negative.

From these three sets, the result p\xi of the projection is defined as follows.

p\xi , E0
xi
∪

(

map elimxi
(E+

xi
× E−

xi
)
)

The constraints of polyhedron p where variable xi doesn’t appear, that is the
set E0

xi
, end up directly in the result. Then, the algorithm builds all possible

pairs of constraints such that one has a positive coefficient for variable xi and
the other has a negative coefficient for it. This is the set E+

xi
× E−

xi
, which

is then transformed by function map. Function map applies function elimxi

on each element of the set E+
xi
× E−

xi
. Function elimxi

, when applied to two
constraints c+(x) ≥ 0 and c−(x) ≥ 0, builds the linear combination λ+ · c+(x)+
λ− ·c−(x), such that variable xi doesn’t appear in the result. The whole process
is illustrated on figure 3.1.

74

Eliminating several variables

When several variables need to be eliminated, Fourier-Motzkin elimination re-
moves them one by one, but does not enforce an elimination order. In practice,
the order has a big impact on the representation size of the intermediate poly-
hedra. A common heuristic [47] for choosing an order of the projections consists
in, at each step, choosing the variable which results in the smallest growth of
the number of constraints.

The variation ∆xi
in the number of constraints after the Fourier-Motzkin

elimination of a single variable xi is the following.

∆xi
, |E+

xi
| · |E−

xi
| − (|E+

xi
|+ |E−

xi
|)

The left-hand side of the substraction is the number of pairs in set E+
xi
× E−

xi
,

each of which yields a constraint in the result. The right-hand side of the
substraction is the number of constraints of the input polyhedron which are
combined by the algorithm and therefore don’t appear in the result. At each
step, the heuristic chooses the variable xi from the remaining variables which
has the lowest ∆xi

.

Using equality constraints

As we have seen already, each equality constraint can be used as a definition for
a variable. The variable can them be substituted so as to reduce the dimension
of the system of inequalities of the polyhedron. The same idea can be applied
to eliminate a variable xi. If variable xi appears in an equality constraint,
this equality is used as a definition for variable xi and it is substituted in the
rest of the polyhedron. The definition is then discarded. An elimination by
substitution reduces the size of the representation of the affected polyhedron by
one constraint. Therefore, when performing multiple eliminations, those which
can be performed by substitution are carried out first.

Redundancy elimination

Fourier-Motzkin elimination can generate a lot of redundant constraints, which
make the representation size of the result unwieldy. In the worst case, the
l constraints of input polyhedron p split evenly into E+

xi
and E−

xi
, and thus,

after one elimination, one gets l2/4 constraints. This yields an upper bound
of l2n

/4n constraints where n is the number of eliminated variables. Yet, the
number of nonredundant constraints can only grow in single exponential [45].
As a result, most generated constraints are likely to be redundant.

To avoid the overwhelming growth of the number of constraints, a represen-
tation minimisation is performed after each variable elimination. Minimising
the result of a projection is simpler than minimising that of an intersection,
since no implicit equality can be introduced. Once the initial eliminations by
substitution have been performed, all the work focuses on the system of inequal-
ities. Its minimisation occurs in two steps: syntactic redundancy elimination
first, and simplex-based elimination next.

75

Kohler’s criterion

The work [47] which the projection operator of VPL is based on used another
redundancy elimination technique prior to resorting to the costly simplex-based
method. That technique applies a result from David Kohler [39] which states
that, when you eliminate n variables from a polyhedron p, resulting in polyhe-
dron p′, each nonredundant constraint of polyhedron p′ is a linear combination
of at most n + 1 constraints of p.

It turns out that this criterion is incompatible with performing a minimisa-
tion after each elimination step, as the following example shows. Suppose we
start with the following constraint system.

−x1 +−x2 + x3 ≤ 0 (1)

2 · x1 + x2 + x4 ≤ 0 (2)

2 · x1 + x2 +−x4 ≤ 0 (3)

−x1 + x2 +−x4 ≤ 0 (4)

−x1 + x2 + x4 ≤ 0 (5)

Now, we eliminate variable x2, recording where each constraint comes from.

−2 · x1 + x3 + x4 ≤ 0 (6) = (1) + (5)

−2 · x1 + x3 +−x4 ≤ 0 (7) = (1) + (4)

x1 + x3 +−x4 ≤ 0 (8) = (1) + (3)

x1 + x3 + x4 ≤ 0 (9) = (1) + (2)

Next, we eliminate variable x1 in a similar way.

3 · x3 +−x4 ≤ 0 (10) = (6) + 2 · (8)

x3 +−x4 ≤ 0 (11) =
1

3
· (6) +

2

3
· (9)

x3 + x4 ≤ 0 (12) =
1

3
· (7) +

2

3
· (9)

3 · x3 + x4 ≤ 0 (13) = (7) + 2 · (9)

Constraints (10) and (13) are implied by constraints (11) and (12).

• (10) = 2 · (11) + (12)

• (13) = (11) + 2 · (12)

Unfolding the linear combinations so that they refer to the original constraints,
the system now is as follows.

x3 +−x4 ≤ 0 (11) = (1) +
2

3
· (3) +

1

3
· (4)

x3 + x4 ≤ 0 (12) = (1) +
2

3
· (2) +

1

3
· (5)

Last, we eliminate variable x4.

x3 ≤ 0 (14) =
1

2
· (11) +

1

2
· (12)

76

If we unfold the linear combination, we find the following.

(14) = (1) +
1

3
· (2) +

1

3
· (3) +

1

6
· (4) +

1

6
· (5)

Three variables have been eliminated and constraint x3 ≤ 0 is the linear combi-
nation of five input constraints. Constraint x3 ≤ 0 is obviously nonredundant.
However, by Kohler’s criterion, it should be deemed so, as it is the linear com-
bination of five constraints and we have eliminated three variables. Had we not
removed redundant constraints (10), we would have produced constraint x3 ≤ 0
from 1

4
· (10) + 1

4
· (12). Unfolding, we find the following, on which Kolher’s

criterion doesn’t apply.

x3 ≤ 0
1

4
· (10) +

1

4
· (12) = (1) +

1

6
· (2) +

1

2
· (3) +

1

3
· (5)

This example shows that Kolher’s criterion is incompatible with removing re-
dundant constraints after each variable elimination. Therefore, how to leverage
Kohler’s criterion in an efficient projection implementation remains unclear.

Witness generation

Generating an inclusion witness p ⊑ p\xi for the elimination of variable xi from
polyhedron p is illustrated on figure 3.1, on page 74. There, the coefficients of
the linear combinations yielding the resulting constraints are given below each
pair of input constraints. The example of the left pair is reproduced below.

3 · (1 +−x1 +−x2) + 1 · (3 · x1 +−x3) = 3 +−3 · x2 +−x3

The coefficients, 3 and 1, are explicitely computed by function elimxi
in order

to compute the result of the elimination. All it takes to build a witness is to
keep them along with the resulting constraint.

VPL builds witnesses for the result of multiple eliminations by annotating
each constraint ci(x) ≥ 0 of the input polyhedron p with its witness, forming a
pair

(

ci(x) ≥ 0, 1 ·(i)
)

. The functions operating on constraints are lifted so that
they operate on pairs. Function mult, which multiplies a constraint ci(x) ≥ 0
by a positive constant a, becomes function multw below.

mult a ci(x) ≥ 0 , a · ci(x) ≥ 0

multw a
(

ci(x) ≥ 0, λi

)

,
(

a · ci(x) ≥ 0, a · λi

)

Function add, which adds two constraints ci(x) ≥ 0 and cj(x) ≥ 0, becomes
function addw below.

add ci(x) ≥ 0 cj(x) ≥ 0 , ci(x) + cj(x) ≥ 0

addw
(

ci(x) ≥ 0, λi

) (

cj(x) ≥ 0, λj

)

,
(

ci(x) + cj(x) ≥ 0, λi + λj

)

No further adjustment than this small change is required to generate witnesses
for projection results.

77

3.2.4 Assignment

We saw in chapter 1 that VPL handles assignment entirely in the frontend,
through a functor. However, an earlier version used a witness-generating as-
signment operator from the oracle, which we will discuss now. Additionally,
the following discussion supports the claim that the oracle itself is a complete
Ocaml abstract domain of polyhedra, which can be used independently of the
Coq part of VPL. Although we overlooked the fact until now, assignment comes
in two flavors: invertible and non-invertible.

Invertible assignment

An assignment p′ = p[xi := e] is invertible if it is possible to compute back
polyhedron p from polyhedron p′. This is the case when the assigned-to vari-
able xi appears in expression e. Suppose the assignment under consideration
is p′ = p[xi := xi + 1]. It can be inverted as p = p′[xi := xi − 1]. Note that
we’re assuming that expression e is linear here: assignment xi := x2

i can’t be
inverted, although variable xi appears on both sides.

In the invertible case, the assignment operator is defined as described before,
an intersection, a projection and a renaming.

p[xi := e] ,
(

(p ⊓ x′
i = e)\xi

)

[x′
i/xi]

The corresponding witness is actually a pair of witnesses: one for the intersection
and one for the projection.

Non-invertible assignment

It is safe to assume that all assignments are invertible: we aren’t interested in
actually inverting them. However, non-invertible assignment can be handled
more efficiently. An assignment p′ = p[xi := e] is non-invertible when the
assigned-to variable xi doesn’t appear in expression e. For example, x1 := 5
and x1 := 2 · x2 are non-invertible assignments. There is no relation between
the value of variable xi before and after the assignement and, therefore, there is
no need to introduce a fresh variable to be able to refer to the two at the same
time.

The non-invertible assignment operator is defined as follows.

p[xi := e] , p\xi ⊓ xi = e

Variable xi as it is before the assignment isn’t needed any more: it is eliminated
first. The result of the elimination is then intersected with xi = e.

Non-invertible assignment is faster for two reasons. First, there is no need
to perform a renaming. Then, computing the intersection is trivial: variable xi

doesn’t appear in p\xi. Equality xi = e is rewritten using the set pE of equalities
of polyhedron p and then used to define variable xi. Since variable xi doesn’t
appear in the inequalities of polyhedron p, no rewriting or minimisation needs
to be performed.

The witness for a non-invertible assignment is also a pair of witnesses: one
for the projection and one for the intersection. Also note that the selection
between invertible and non-invertible assignment is performed automatically by
VPL in an encapsulating assignment operator.

78

P1 P2

Figure 3.2 – disjunction and convex hull of polyhedra

3.2.5 Convex hull

The join operator of the abstract domain of polyhedra approximates the dis-
junction P ′ ∨ P ′′ by the convex hull P ′ ⊔ P ′′. Figure 3.2 illustrates the need
for overapproximating: the disjunction of polyhedra P1 and P2, that is to say
their union, is the whole shaded area. However, this area isn’t convex: it can’t
be represented by a conjunction of linear constraints. Instead, the union of
polyhedra P1 and P2 is overapproximated by the convex hull of the two poly-
hedra, which adds the two areas delimited by the dashed lines. Computing
a convex hull is very simple when generator representation is used. For con-
straint representation, this is the problematic operator. Florence Benoy, Andy
King and Fred Mesnard published a method for reducing the convex hull to
a projection [5], thereby providing an algorithm for computing convex hulls in
constraints-only representation.

The convex hull P , P ′ ⊔ P ′′ is the smallest polyhedron containing all line
segments joining points of polyhedron P ′ and points of polyhedon P ′′. In other
words, a point x ∈ P is a convex combination of a point x′ ∈ P ′ , b′ +A′ ·x′ ≥ 0
and a point x′′ ∈ P ′′ , b′′ + A′′ · x′′ ≥ 0.

x = α′ · x′ + α′′ · x′′, with α′ ≥ 0, α′′ ≥ 0 and α′ + α′′ = 1

Adding the constraints on points x′ and x′′, the points of the convex hull satisfy
the following set pH of constraints.

pH ,

b′ + A′ · x′ ≥ 0

b′′ + A′′ · x′′ ≥ 0

x = α′ · x′ + α′′ · x′′

α′ + α′′ = 1

α′ ≥ 0

α′′ ≥ 0

Then, the constraints p of convex hull result from the following projection.

p , pH\{x
′, x′′, α′, α′′}

The set of variables is triplicated. The original dimensions x are those of the
result. The constraints of operand p′ bound variables in the x′ space and the
constraints of operand p′′ bound variables in the x′′ space. If n is the original
number of variables, the problem above builds a constraint system bounding 3 ·
n + 2 variables and eliminates 2 · n + 2 of them: x′, x′′, α′ and α′′.

However, the projection problem we have just seen can’t be solved using the
projection operator for polyhedon: constraint x = α′ · x′ + α′′ · x′′ is nonlinear.

79

x1

x2

p′ , {x = 0,
y = 1} p′′ , {y = x}

(a) convex hull
x1

x2

p
′ ⊔

p
′′ =
{y
≥

x,
y
≤

x
+

1}

(b) p′ ⊔ p′′

Figure 3.3 – The convex hull of p′ and p′′ can’t be represented as constraints.

In order to solve this issue, a change of variables is performed.

y′ , α′ · x′

y′′ , α′′ · x′′

The set of constraints b′ +A′ ·x′ ≥ 0 is multiplied by α′ and the set of constraints
b′′ + A′ · x′′ ≥ 0 is multiplied by α′′. Introducing the new variables y′ and y′′

leads to the following definition for pH , which is now a polyhedron.

pH ,

b′ · α′ + A′ · y′ ≥ 0

b′′ · α′′ + A′′ · y′′ ≥ 0

x = y′ + y′′

α′ + α′′ = 1

α′ ≥ 0

α′′ ≥ 0

Closure of the convex hull

Polyhedron pH\{x′, x′′, α′, α′′} actually isn’t the convex hull of polyhedra p′

and p′′. This fine point is best illustrated on a example, which I take from the
original publication on this method [5].

Consider polyhedra p′ , {x = 0, y = 1} and p′′ , {y = x} shown on
figure 3.3(a). Both are closed sets and are represented using closed linear con-
straints, that is there is no strict inequality. Their convex hull is represented
as the shaded area on figure 3.3. It includes point (0,1), but it excludes the
half-line {y = x + 1, x > 0}. The convex hull of polyhedra p′ and p′′ can’t be
represented using linear constraints.

In such a case, the join operator of the abstract domain of polyhedra com-
putes the closure of the convex hull. On our example, p′ ⊔ p′′ = {y ≥ x, y ≤
x + 1}, as shown on figure 3.3(b).

Extracting witnesses

Knowing how to compute a convex hull using projections, we may have a look
at how witnesses for a convex hull can be built from witnesses of projections.
Polyhedron p , pH\{x′, x′′, α′, α′′} is a sound result of the join p′ ⊔ p′′ if both

80

inclusions p′ ⊑ p and p′′ ⊑ p hold. The projection operator provides us with a
witness Λ for the inclusion pH ⊑ p, such that p = Λ ·pH . The equality p = Λ ·pH

is true for any value of variables x, x′, x′′, α′ and α′′ satisfying the constraints
of polyhedron pH . Let us choose the following values: α′ = 1, α′′ = 0, y′′ = 0
and call σ the substitution [α′/1, α′′/0, y′′/0]. Polyhedron (pH)σ is as follows.

(pH)σ ,

(b′ · α′ + A′ · y′ ≥ 0)σ

(b′′ · α′′ + A′′ · y′′ ≥ 0)σ

(x = y′ + y′′)σ

(α′ + α′′ = 1)σ

(α′ ≥ 0)σ

(α′′ ≥ 0)σ

=

b′ + A′ · y′ ≥ 0

0 ≥ 0

x = y′

1 = 1

1 ≥ 0

0 ≥ 0

We may now note that, substituting variable y′ by variable x, as they are equal,
and removing the trivial constraints, we obtain the constraints of polyhedron p′.
Let us note this equivalence (pH)σ ≈ p′. Note now that the variables for which
we chose a value don’t appear in polyhedron p. Therefore, we have the following.

p = (p)σ = Λ · (pH)σ ≈ Λ · p′

In a similar way, we may choose values α′ = 0, α′′ = 1, y′ = 0 and obtain p =
Λ · p′′

H , where the constraints of p′′
H are the constraints of p′′ with some extra

trivial constraints.
Let us now consider on constraint ci(x) ≥ 0 of polyhedron p, under the light

of the preceeding construction. We wish to obtain two witnesses Λ′
i and Λ′′

i for
the two inclusions p′ ⊑ ci(x) ≥ 0 and p′′ ⊑ ci(x) ≥ 0. Focusing on the first
inclusion, we can decompose witness Λi for inclusion (pH)σ ⊑ ci(x) ≥ 0 into
three subsets of coefficients.

(b′ · α′ + A′ · y′ ≥ 0)σ

(b′′ · α′′ + A′′ · y′′ ≥ 0)σ

(x = y′ + y′′)σ

(α′ + α′′ = 1)σ

(α′ ≥ 0)σ

(α′′ ≥ 0)σ

Λi1

Λi2

Λi3

• Let Λi1 be the subset of the coefficients of Λi applying to the constraints
of polyhedron p′ set in the x′ space: b′ · α′ + A′ · y′ ≥ 0.

• Let Λi2 be the subset of the coefficients of Λi applying to the constraints
of polyhedron p′′ set in the x′′ space: b′′ · α′′ + A′′ · y′′ ≥ 0.

• Let Λi3 be the coefficients of Λi applying to the constraints x = y′ + y′′,
α′ + α′′ = 1, α′ ≥ 0 and α′′ ≥ 0.

Fragment Λi1 applies to the constraints of p′. Fragment Λi2 applies to con-
straints 0 ≥ 0 and can therefore be disregarded. Fragment Λi3 applies to trivial
constraints, only constraint 1 ≥ 0 has a nonzero contribution to Λi · (pH)σ. We

81

refer to its coefficient as λ0. From these observation, equality ci(x) ≥ 0 =
Λi · (pH)σ can be rewritten as follows.

ci(x) ≥ 0 = Λi1 · p
′ + λ0 · (1 ≥ 0)

This effectively shows that fragment Λi1 is a witness for inclusion p′ ⊑ ci(x) ≥ 0.
By a similar reasoning, fragment Λi2 is a witness for inclusion p′′ ⊑ ci(x) ≥ 0.
In the end, witnesses for the convex hull are simply extracted from the witness
resulting from the projection pH\{x′, x′′, α′, α′′}.

3.3 Highlights and other features of VPL

The work covered in this chapter was carried out with Michaël Périn and David
Monniaux and is described in a paper [24]. The main novelty introduced by
VPL oracle is the generation of inclusion witnesses on the fly. We have shown
that it takes little instrumentation and little extra computation to gather the
necessary information. This makes the witness reconstruction step of prior work
by Frédéric Besson et al. unnecessary.

Another contribution of my work is the realisation that Kohler’s criterion
for detecting some redundant constraints during projection is actually incom-
patible with minimising intermediate elimination results. This is rather unfor-
tunate: VPL benchmark suite has over fifteen thousand projection problems
and Kohler’s criterion caused a single incorrect result.

The operators we have covered in this chapter are the standard abstract
domain operators. However, VPL includes some extra operators for the user’s
convenience. Examples include support for parallel assignment and an opera-
tor for retrieving the lower and upper bounds of an arbitrary linear expression.
Other people have contributed to VPL a linearisation method to soundly ap-
proximate nonlinear relations between program variables [9].

Summary in French

Tout comme la partie Coq de VPL, l’oracle est construit à partir de polyèdres
représentés par contraintes. Ce choix est motivé par la recherche de simplicité
et comme expérience à contrepied des implémentations matures du domaine
abstrait des polyèdres, qui utilisent les deux représentations.

Les bonnes performances de VPL sont en partie dues à des choix de struc-
tures de données et des invariants associés. Le choix principal consiste à main-
tenir une représentation minimisée en permanence. La minimisation consiste
à séparer les contraintes d’égalités des contraintes d’inégalités et éliminer les
redondances dans chacun de ces sous-ensembles. Ainsi, aucune des contraintes
d’un polyèdre ne peut être obtenue par combinaison linéaire d’autres contraintes
du polyèdre. De plus, il n’y a aucune égalité implicite parmi les inégalités. Ces
choix de représentation n’ont aucun impact sur la partie Coq de VPL, celui-ci
ne dépendant pas de la minimalité des polyèdres qu’il construit.

Ce que nous avons décrit jusqu’à maintenant est suffisant pour construire
un domaine abstrait complet, dans lequel l’oracle fait appel à l’algorithme du

82

simplexe après l’exécution de chaque opérateur pour construire le témoin. Les
travaux inittiaux de Frédéric Besson et al. reposent sur cette approche. VPL

améliore cet aspect de leur travail en montrant qu’une instrumentation légère
de chaque opérateur permet d’extraire des témoins de ses données de travail.
Par exemple, l’opérateur qui élimine une variable x d’un polyèdre P construit
toutes les contraintes qui résultent de la combinaison linéaire à coefficients po-
sitifs de contraintes de P et qui donnent un coefficient nul pour x. Il suffit de
conserver les coefficients utilisés par l’opérateur pour construire le témoin. Le
surcoût en temps d’exécution résultant de la preuve formelle de VPL s’en trouve
drastiquement réduit.

83

Chapter 4

Implementing and

evaluating performance

VPL was built as part of project Verasco and is integrated to its collection of
abstract domains [37]. Although this fact makes Verasco a complete analyser
capable of using VPL as an abstract domain of polyhedra, it should be stressed
that Verasco is above all a proof of concept for building the soundness proof of
a static analyser using Coq. As a result, it suffers from scalability problems [37],
even when using more efficient abstract domains, such as that of intervals. Using
polyhedra makes the problem more severe, which lead me to consider another
route for evaluating the performance of VPL.

4.1 Implementation size

VPL is made of six thousand lines of Ocaml and twelve thousand lines of Coq.
Lines are counted using the standard Unix tool wc: the counts include both
comments and blank lines. I made this choice since, if these have been inserted
in a code file, it probably serves the good understanding of the code. In addi-
tion to the actual VPL code, I wrote an extensive test suite constituted of over
one thousand and five hundred test cases, spanning over seven thousand and
five hundred lines of Ocaml code. These tests are designed to help develop-
ment and maintenance of the code by catching regressions. Finally, evaluating
the performance of VPL required writing some glue C code in order to make
VPL communicate with other abstract domains of polyhedra. This glue code
represents two thousand lines.

VPL oracle comes with a thorough documentation. The text is found in the
Ocaml interface files of the oracle and can be extracted using the Ocamldoc

tool. The Coq frontend isn’t documented beyond its Verasco interface.

4.2 Building programs and proofs with Coq

The Coq frontend described in chapter 1 is the result of a major rewriting of
the simple checker which I wrote initially. The design of the two versions differs
in the weight they assigned to the two fundamental concerns ruling a Coq

84

development: building a program and building a proof. The initial version—let
me call it version 1—puts the emphasis on building a program. The rewrite,
which I’ll call version 2, puts the emphasis on building a proof.

Program first. Version 1 was designed similarly to how an equivalent Ocaml

program would be: each module would capture a concept, often with a main
data structure. The functions in each module were decomposed so as to make
the proof simple. In most cases, each function had a single accompanying cor-
rectness lemma, which followed its definition immediately.

The proofs were manual: no use was made of the automation features pro-
vided by Coq. On occasions, proofs broke the encapsulation provided by mod-
ules and depended on implementation details. As a result, changes in the algo-
rithms and the data structures often required fixing details in the proofs.

Balancing these shortcomings, the core frontend was small, four thousand
lines of Coq code, and easy to navigate.

Proof first. Version 2 was written in collaboration with Sylvain Boulmé. It is
designed so as to make the proofs simpler and less brittle. It is built with func-
tors, which make the proofs more modular. Indeed, a functor can be applied to
any module which satisfies a given interface: it can’t depend on implementation
specifics. It builds on explicit logical interfaces. Version 2 also introduced proof
automation to the frontend: proofs became shorter and more robust to change
in implementation details.

While version 2 brought many benefits to the proof side of the frontend, the
program is now harder to understand. Its code is scattered in functors and the
abstract domain is defined by a sequence of nested functor applications.

Adding to this, the code size of the core of the frontend nearly doubled.
“Core” here designates the subset of version 2 which is equivalent in functionality
to version 1. The functor which provides an advanced guard operator, the
framing functor and the functor which buffers renamings were added after the
fact.

Lessons learnt. With the benefit of hindsight, the advanced proof architec-
ture of version 2 is probably an overkill. The reason is mainly that VPL frontend
is conceptually simple, both as a program and as a proof. Should more elaborate
features be added to VPL, such as variable packing or disjunctive invariants,
the weaknesses of version 1 would probably become painfully apparent. Fur-
thermore, working on version 2 was a good way to learn about advanced proof
construction methods, without the extra burden of a complex application.

4.3 The subtleties of performance evaluation

As I mentioned in the introduction to this chapter, drawing conclusions on the
performance of VPL from the observation of how it performs when used by
Verasco isn’t satisfactory. Verasco isn’t really tuned to exploit an abstract
domain of polyhedra: it relies heavily on extracting value intervals from the
abstract domain, which are a costly operation to perform on polyhedra. Still,
I wished to compare experimentally VPL with mature implementations of the
abstract domain of polyhedra, such as NewPolka and PPL. I also wished to

85

measure the cost of the inclusion checker: when it replays witnesses, it computes
using an encoding of numbers as lists of bits, which I expected to be inefficient.

Performance comparison is a complex issue for a variety of reasons. The
most obvious follows for abstract domains being only components of a bigger
piece of software. Their performance varies a lot depending on their use case.
Theoretical complexity doesn’t really help either: all the algorithms have a very
bad worst-case complexity which is rarely encountered in practice. As David
Monniaux points out [44], randomly-generated polyhedra don’t give a faithful
evaluation: I needed a more realistic approach.

The ideal setting would have been to have an analyser designed to benefit
from the abstract domain of polyhedra and capable of using VPL and other
implementations, through a common interface. My wish was partially fulfilled
by the existing Pagai analyser, written by Julien Henry, David Monniaux and
Matthieu Moy [31]. Pagai uses the Apron [33] collection of abstract domains,
meaning that it can use either NewPolka or PPL. I still had to solve the
programming language problem: VPL is written in Ocaml, while NewPolka

is written in the C programming language and Pagai and PPL use C++.
I first tried to extract traces of domain operator calls from the analysis of

programs by Pagai, in simple abstraction interpretation mode, and then to
replay them offline with each of the abstract domains I included in the compar-
ison: for each call, the polyhedra operands were built and then, the operator
was called. Preliminary experiments exhibited very bad performance for New-

Polka. This uncovered the issue of state for abstract domains which use the
double representation of polyhedra. Depending on which representation is avail-
able, a conversion needs to be performed prior to executing the actual operator.
The cost of this conversion is then amortised over several operators. Offline re-
play deprived double description-based domains from the possibility to amortise
conversions. Since VPL uses only always-minimised constraint representation,
the performance of its operators is independent of such factors.

4.4 The experimental setting

In order to make sure that the operators of NewPolka and PPL are called
on polyhedra which are in a realistic state, measurements of their performance
was done during the analysis. My experimental setup is pictured on figure 4.1.
It is composed of two programs: Pagai and a comparing program which I
wrote in Ocaml. They communicate through a pipe. For a given benchmark
C program, Pagai runs as usual, but each of its calls to an operator of the
abstract domain, NewPolka or PPL, is intercepted. The execution time of
the operator is measured and then a description of the problem, its result and
the time measurement is sent to the comparator. The comparator rebuilds
the operands and replays the operator using VPL functions. It measures the
execution time of the VPL operator and then checks the result against the result
it received. Once Pagai has finished the analysis, the comparator outputs the
result of the comparison. The comparison was done for the following operations:
assignment, convex hull, inclusion test and intersection. It was performed on a
recent laptop, under the GNU/Linux operating system.

86

Pagai

Apron

NewPolka PPL

wrapper

main program

timing

pipe

problems, results,
time measurements

VPL

main program

comparator

timing

C program

analysis results

comparison results

Figure 4.1 – experimental setup

87

Measuring time. In this setting, the overhead of the clock_gettime system
call, which is used to perform the measurement, is sufficiently small for the tim-
ing of individual calls to yield meaningful results. This fact makes the measure-
ment practically insensitive to variations due to the operating system. What’s
more, the measurements are made insensitive to the scheduling performed by
the operating system by measuring the process execution time, rather than the
real time elapsed during the execution of an operator. During the replay by
VPL, measurements exclude the time needed to build the operands.

Checking results. The result of each of evaluated operators is a well-defined
geometrical object. For every logged call, the results from NewPolka, PPL

and VPL were checked for equality, through double inclusion. The witnesses
generated by VPL were then systematically replayed by the frontend, so as to
check that they yield the appropriate constraints. Furthermore, polyhedra have
a minimal constraints representation, up to the variable choices in the substi-
tutions of equalities. It was systematically checked whether VPL, NewPolka

and PPL computed the same number of equalities and inequalities. In all the
cases we tried, the tests of correctness and precision passed. It should be noted
that PPL doesn’t systematically minimise representations: its results often have
redundant constraints. This is due to the lazy-by-default implementation of the
operators of PPL. Since support for the eager version of the operators has been
deprecated in and is being removed from PPL (see [10], § A Note on the Im-
plementation of the Operators), we couldn’t configure the library to have the
same behavior as NewPolka.

Logging and measuring time online. While we elected to measure the
execution time of NewPolka and PPL operators online, that is to say during
the analysis by Pagai, one of primary goals was to modify neither Pagai nor
Apron. A solution came from the wrapping functionality of the GNU linker ld.
It makes possible to intercept calls to a shared library and execute an arbitrary
function instead. In our setting, this function performs two tasks.

1. First, it calls Apron to perform the expected computation on unmodified
operands. The time it takes is measured and recorded.

2. Then, it generates a text description of the operands, the result and the
execution time and sends it to the comparator over a pipe. The compara-
tor parses the description and replays the operator using VPL.

Benefits of the approach. I tried to give a feeling for how delicate a fair
performance comparison is for abstract domains of polyhedra. The solution we
have just outlined addresses all of the issues we raised.

First, it compares the operators of the domains on problems extracted from
real analyses. The conclusion which we will draw from the evaluation will apply
to realistic use cases. Then, the behaviour of abstract domains which use the
double representation of polyhedra is very dependent on which representation
is available when a given operator is called. Measuring the execution time of
these domains in their original context, during the execution of the analyser,
guarantees faithful information. On the other hand, VPL represents polyhedra
as constraints only and minimises their representation eagerly. Its performance

88

doesn’t depend on past calls. Therefore, replaying out of context doesn’t make
a difference.

Shortcomings. Despite its careful design, the method we have just described
suffers from a number of shortcomings. Some of them may bias the outcome in
favor of VPL, others may bias the outcome in favor of the domains we compare
against.

• Pagai is tuned to use NewPolka. As such, some of the decisions behind
the design of Pagai were guided by some trade-offs made by the authors of
NewPolka. The most significant of these trade-offs is the use of a dense
representation of vectors, which explicitly stores coefficients with value
zero. This becomes costly when the constraint systems are very sparse.
As a result, Pagai limits the number of variables it stores in the abstract
values, which wouldn’t be necessary for VPL, since it uses a semi-sparse
representation.

• Next, the size of the vectors used to represent constraints in VPL depends
logarithmically on the number of variables in the whole program under
analysis. Our experimental setting only gives us access to a subset of
the variables, namely the ones which are bounded by the polyhedra from
NewPolka. In the event that this dependency to the global number
of variables were a problem, the size of vectors in VPL could be made
dependent only on the number of variables constrained by the polyhedron,
through an environment similar to that of Apron.

• Then, we record the execution time of spent in the functions of the Apron

shared library, which encapsulates both NewPolka and PPL. The ben-
efit of accessing both transparently comes at the cost of a small overhead
at runtime, due to the traversal of the Apron frontend.

• Last, it should be noted that the result of domain operators used by Pagai

to continue the analysis aren’t those of VPL but those of NewPolka or
PPL. We make sure that the results of VPL are equivalent to the results
of either NewPolka or PPL, but not syntactically equal. However, this
shouldn’t change anything to the analysis.

Benchmark programs. All but one of the programs on which I ran Pagai in
order to obtain benchmark problems are taken from Pagai benchmark suite. It
is itself extracted from a benchmark suite for worst-case execution time analysis.
More precisely, I used the following programs.

• bf: the Blowfish cryptographic cipher

• bz2: the bzip2 compression algorithm

• dbz2: the bzip2 decompress algorithm

• jpg: an implementation of the jpeg codec

• re: the regular expression engine of GNU awk

• foo: a hand-crafted program leading to polyhedra with many constraints,
large coefficients and few equalities

89

prog. N P V C
bf 0.2 0.4 0.1 0.1
bz2 1.6 2.8 0.7 1.2
dbz2 32.3 35.6 2.1 3.6
jpg 1.2 1.8 0.5 0.8
re 1.1 1.3 0.5 0.7
foo 0.2 0.2 0.9 0.9

(a) inclusion test

prog. N P V
bf 10.7 13.4 1.2
bz2 52.3 61.1 7.9
dbz2 1687 1815 28.3
jpg 39.7 51.0 6.0
re 37.3 47.2 3.3
foo 6.7 7.1 5.5

(b) intersection

prog. N P V C
bf 3.2 1.2 2.7 2.8
bz2 23.5 11.5 66.8 68.7
dbz2 1393 231.9 532.8 535.3
jpg 28.2 7.5 24.0 24.9
re 20.2 8.4 17.9 19.2
foo 4.2 0.6 941.8 943.7

(c) convex hull

prog. N P V
bf 3.7 11.4 0.5
bz2 14.6 54.1 2.9
dbz2 1618 4182 83.8
jpg 23.7 68.3 3.8
re 5.7 17.2 0.7
foo 9.2 14.8 8.5

(d) assignment

Table 4.1 – execution time in milliseconds: aggregation by program

4.5 Evaluation results and interpretation

Tables 4.1 and 4.2 show two views of the timing measurements recorded during
the performance evaluation of VPL.

• Table 4.1 shows, for each of the evaluated operators, the time spent exe-
cuting the operator during the analysis of each benchmark program.

• Table 4.2 shows the time spent executing each operator on problems of
various sizes, summed over all the benchmark programs. This view informs
about the typical distribution of problem sizes.

Reading the tables. All the time measurements reported on both tables are
expressed in milliseconds. The column headers use the following single letter
abbreviations to refer to the abstract domains.

N designates NewPolka.

P designates PPL.

V designates the oracle in VPL.

C designates VPL, including the frontend building the Coq polyhedron from
the witness.

90

NewPolka and PPL were used in their default configuration. VPL has no
configuration settings. Trivial problems, that are problems of size 0 and 1,
weren’t taken into account in the figures shown on table 4.1. The motivation
for filtering is many of these problems are encountered during a run of Pagai.
On these problems, PPL and NewPolka suffer from being called through the
Apron frontend. I think the comparison is made fairer by this choice. Note
that the second column of table 4.2, typeset in italics, doesn’t contain time
measurements, but counts of problems.

Problem size. I call “problem size” the total number of constraints in the
inputs. Suppose we wish to compute the convex hull of two polyhedra p1 and p2.
If polyhedron p1 has n1 constraints, mixing equality and inequality constraints,
and if polyhedron p2 has n2 constraints, the computation of their convex hull
is a problem of size n1 + n2. For an intersection p1 ⊓ c(x) ≥ 0, the size of the
problem is n1 + 1. This definition of “problem size” is convenient, as associates
a single number to each problem. It is also reasonable since the behaviour of all
of the operators mostly depends on the number of constraints involved.

Interpreting the results

The results presented in tables 4.1 and 4.2 show that VPL is efficient on small
problems. Yet, the performance gap between VPL and the other implemen-
tations closes on bigger problems. This is especially true for the convex hull,
which is the costliest operation on constraint representation. At least part of
the difference in efficiency on small problems can be explained by the general-
ity Apron provides: it provides a unified interface to several abstract domains
at the expense of an extra abstraction layer. The induced overhead is more
significant on small problems.

More generally, the use of ZArith in VPL is likely to lower the cost of
arithmetic when compared to NewPolka and PPL, which use GMP directly.
Indeed, ZArith uses native machine numbers as long as computations don’t
overflow, at which time it switches to GMP numbers. Program foo suggests
this has an impact on performance: the analysis creates constraints with big
coefficients, likely to overflow native number representation and the performance
of the three domains is similar, except in the case of the convex hull. However,
precise measurement of the effect of using ZArith would be a hard task.

Last, table 4.2 seems to show that problems are most often of rather small
size. This certainly accounts for the big numbers obtained on the dbz2 bench-
mark, which is the largest of the benchmark programs. As a result, the effect
of better performance on small problems is amplified when there are many of
them. However, this observation may be an artifact of using Pagai, or of using
it configured to perform simple abstract interpretation.

Overall, these results seem promising for a constraints-only implementa-
tion of the abstract domain of polyhedra. They also argue in favor of using
a higher-level language than C or C++ for implementing abstract domains:
VPL achieves competitive performance in spite of being written in Ocaml.
Some progress still needs to be made on the convex hull side. It is also in-
teresting to notice the performance differences between NewPolka and PPL.
Over all the operators, the performance of the two is similar, but there are big

91

size n N P V
0–1 1482 7.2 6.5 0.6
2–5 1881 9.7 12.8 1.6
6–10 673 9.7 10.6 1.3
11–15 277 3.3 4.2 0.5
16–20 111 5.8 7.0 1.0
21–25 52 4.0 3.9 0.3
26–30 17 4.0 3.4 0.1
31+ 4 0 0 0

(a) inclusion test

size n N P V
0–1 11458 1389 1933 35.0
2–5 4094 1752 1740 30.9
6–10 322 52.3 158.6 18.4
11–15 156 27.4 91.4 8.8
16–20 6 1.3 4.8 0.6

(b) intersection

size n N P V
0–1 3354 687.9 167.5 7.0
2–5 3373 679.7 141.0 57.1
6–10 1092 434.1 68.4 133.7
11–15 354 119.5 22.8 131.2
16–20 135 68.8 16.8 1050
21–25 65 37.9 9.2 106.4
26–30 14 6.4 1.9 50.1
31+ 7 3.5 0.9 27.8

(c) convex hull

size n N P V
0–1 539 33.8 47.5 1.1
2–5 667 601.8 1176 6.6
6–10 381 385.4 519.7 14.3
11–15 58 20.9 87.4 10.7
16–20 64 78.3 247.6 5.2
21–25 480 537.4 2111 39.2
26–30 30 59.5 81.7 15.2
31+ 16 13.1 77.9 11.6

(d) assignment

Table 4.2 – execution time in milliseconds: aggregation by problem size

92

variations when considering each operator in isolation. At least part of them
can be explained by the eagerness of NewPolka and the laziness of PPL.

Verification overhead. The difference between column V and column C on
table 4.1 corresponds to the time spent checking witnesses by the frontend. It
includes the translation of witnesses from Ocaml to Coq number representa-
tions and the reconstruction of the result from the witness. The two ends of
the performance spectrum are presented: the inclusion test, which is the fastest
operator, and the convex hull operator, which is the slowest.

The overhead of verification is small for the inclusion test and negligible
for the convex hull. It is relatively greater for the inclusion test than for the
convex hull, because the former is much cheaper to compute. More precisely:
computing the convex hull of two polyhedra involves testing many inclusions
when minimising, as we saw in the previous chapter.

4.6 VPL: simple, verified and efficient

This chapter discussed how I designed an experiment in order to compare the
runtime performance of VPL with that of existing implementations of the ab-
stract domain of polyhedra. Making the comparison fair proved harder than
expected. The design of the method I ended up with benefited from useful feed-
back from one of the authors of Apron and NewPolka, Bertrand Jeannet. It
was published, with some tweaks, in the paper [24] which reports on the oracle.

The result of the experimental evaluation of VPL are very encouraging: it
compares favorably with state-of-the-art implementations, even if these don’t
generate witnesses for further validation of their results. Besides result verifica-
tion, this result is encouraging since VPL represents polyhedra as constraints
only, which departs from established practice. The results presented above are
insufficient to claim that the double representation of polyhedra is unnecessary
for performance, yet they invite further inquiry.

As expected, however, computing convex hulls on constraint representation
is very expensive. The second part of this thesis investigates possible remedies
to this situation.

Summary in French

Nous avons maintenant décrit l’ensemble de VPL. La prochaine étape consiste
à évaluer expérimentalement ses performances. L’évaluation réalisée compare le
temps d’exécution des opérateurs de VPL à ceux d’autres implémentations du
domaine abstrait des polyèdres : NewPolka et la Parma Polyhedra Library
(PPL). La performance des opérateurs du domaine abstrait dépend fortement
des polyèdres sur lesquels ils s’exécutent. Plutôt que de générer aléatoirement des
polyèdres, l’évaluation expérimentale de VPL se base sur le rejeu de séquences
d’appels au domaine abstrait par l’analyseur statique Pagai. Ce dernier utilise
la collection de domaines abstraits Apron, dans laquelle figurent NewPolka

et PPL. Les résultats de l’évaluation sont encourageants : VPL a globalement

93

des performances comparables à NewPolka et PPL sur un ensemble de bench-
marks issus d’une collection destinée à l’analyse de temps d’exécution dans le
pire cas. Ces résultats ne sont pas suffisants pour conclure qu’une conception ba-
sée sur la double réprésentation n’est pas nécessaire. En revanche, ils démontrent
qu’une conception basée sur la représentation par contraintes est une alterna-
tive à considérer. Néanmoins, les performances de l’opérateur «join» de VPL se
dégradent très vite lorsque le nombre de contraintes des polyèdres augmente.

94

Part II

Improving projection using

parametric linear

programming

95

Besides VPL being reasonably efficient, the main conclusion of the per-
formance evaluation presented at the end of the first part is that join is the
costliest operator of VPL. In the abstract domain of polyhedra, operator join
performs the convex hull of two polyhedra. In turn, computing the convex hull
of polyhedra can be recast as a projection problem [5]. When polyhedra are
represented as sets of linear constraints, projection is implemented by a refine-
ment of Fourier-Motzkin elimination [47]. However, it is tempting to look at
Fourier-Motzkin elimination as very naive algorithm for performing projection.
It builds every constraint possibly resulting from the linear combination of two
input constraints and then removes those which are redundant, which is to say
most of them. Refinements on Fourier-Motzkin elimination make redundancy
detection cheaper, but they don’t address the root problem of redundant con-
straints being generated in the first place.

Another weakness of Fourier-Motzkin elimination is that it can’t project
more than one variable at a time. Eliminating n variables is performed in
n steps, each of which resulting in a intermediate result which has usually more
constraints than both the input polyhedron and the final result.

An interesting line of work addresses the projection problem from a totally
different angle. Indeed, it starts from observing that polyhedral projection can
be encoded as a parametric linear problem [36]. This introduces a parametric
variant of linear programming, in which either the coefficients of the objective
functions, or the constant terms of problem constraints, are affine functions of
parameters [28]. The result of a parametric linear problem is a function from
values of the parameters to the optimal of the objective function for these values
of the parameters. This new approach addresses the concerns mentioned above
on Fourier-Motzkin elimination.

• The parametric linear problem describes the geometry of the projected
polyhedron. Using a suitable exploration algorithm, the solution yields a
minimised representation of the projected polyhedron.

• An arbitrary number of variables can be eliminated at once. As an ex-
treme case, it is possible to eliminate no variable at all. In that case, the
algorithm minimises the representation of the input polyhedron.

Although promising, the idea in its current state suffers from a number of is-
sues. As we will show, the standard algorithm [22] for solving parametric lin-
ear problems performs poorly. Several new solving algorithms have been pub-
lished [35, 32] and try to exploit the specifics of the parametric linear problems
which encode projections. However, their experimental validation is still lim-
ited and no working implementation is publicly available. After providing some
background on parametric linear programming, we’ll peer into several possible
encodings of projection as parametric linear problems and outline their specific
characteristics in order to build a better solving algorithm.

96

Chapter 5

Parametric linear

programming

The encoding of projection as a parametric linear problem is quite technical
and relies on the specific shape of the solution to parametric problems. In an
attempt at making it easier to digest, this chapter provides some background
information on both parametric linear problems and the standard algorithm for
solving them: the parametric simplex algorithm [22].

5.1 Parametric linear problems

Parametric linear problems have a very similar shape to linear problems, which
are described in the first part of this thesis. However, they are more general, in
that they capture the value of the optimal value of the objective function as a
function of parameters. Parameters and variables don’t have the same status in
a parametric linear problem. Parameters are used to describe a family of related
linear problems, which can be solved more efficiently all at once than one by
one, especially if there are infinitely many of them. Therefore, the solution to
a parametric linear problem is a function taking values for the parameters and
yielding the optimal objective value of the linear problem obtained by substi-
tuting the values for the parameters. From the perspective of a user, who uses
such a function as a black box, the value of the parameters is a user’s choice
and the function fiddles as necessary with the value of the variables so that the
objective function reaches its optimal value.

Parameters may appear either in the coefficients of objective function, or in
the constant right-hand side of the constraints, but not both [28].

Parametric objective function. The objective function of a usual linear
problem is a linear expression of the following form.

min
l

∑

i=1

ci · λi

97

The coefficients ci are constants and the λi are the variables of the problem. The
objective function is made parametric by defining each coefficient ci as follows.

ci(x) = ci0 +

m
∑

j=1

cij · xj

Each coefficient ci becomes an affine function of parameters x1, . . . , xm. The
objective function is therefore rewritten.

min
l

∑

i=1

ci(x) · λi

When the objective function is parametric, the constraints of the parametric
linear problem have the same shape as those of a regular linear problem.

Parametric right-hand side. Each constraint of a linear problem is, at least
in the variant we saw, an affine equality.

l
∑

i=1

aki · λi = bk

The constant right-hand side bk of such a constraint is made parametric by
redefining it as follows.

bk(x) = bk0 +

m
∑

j=1

bkj · xj

It is now an affine function of parameters x1, . . . , xm. The constraint above is
therefore rewritten as follows.

l
∑

i=1

aki · λi = bk(x)

When the constraints of the problem have a parametric right-hand side, the
objective function has the same shape as that of a regular linear problem.

5.2 Solutions to parametric linear problems

Figure 5.1 illustrates a parametric linear problem, where the parameters x1

and x2 are in the coefficients of the objective function and may have arbitrary
sign. The problem has two nonnegative variables λ1 and λ2, which are con-
strained to values inside triangle ABC.

You will rightfully note that triangle ABC must be built using inequality
constraints, while I mentioned only equality constraints. An inequality con-
straint, such as λ1 + λ2 ≤ 3, can be systematically turned into an equality
constraint by introducing a new nonnegative variable s1 and by rewriting the
constraint λ1 +λ2 +s1 = 3. Variables such as s1 measure some form of distance
between point (λ1, λ2) and the boundary of the halfspace λ1 + λ2 ≤ 3. They
are called slack variables.

98

o

A B

C

•

RA RB

RC

c

b a

x

xmin

λ1, x1

λ2, x2

Figure 5.1 – an example of parametric objective function

With that made clear, let us go back to the example on figure 5.1. The
parametric objective function is very simple: x1 ·λ1 +x2 ·λ2. With this objective
function, the space of parameters x1 and x2 is superimposed on the space of
variables λ1 and λ2. Indeed, choosing a value for parameters x1 and x2 specifies
a direction x , (x1, x2) in space of variables in which optimisation should be
performed. It is not necessarily the case: the objective function (x1 + x2) · λ1 +
0 ·λ2 can only describe directions along the λ1 axis. Also note that the image of
direction x rotating around point o on figure 5.1 should be taken with a grain
of salt: it would be accurate if we imposed ||x|| = 1. Without this nonlinear
constraint on the parameters, the parameter space spans all the directions in
the variable space, with many equivalent directions, such as x = (1, 1) and
x = (2, 2).

Furthermore, note that, if we perform a minimisation, optimising in a given
direction x will make us move opposite to that direction, as min x = −max−x.
For example, suppose we wish to minimise function−0.5·λ1+0.4·λ2 in our exam-
ple. This corresponds to optimising in direction xmin on figure 5.1. Minimising
actually makes us look for a point as far in the opposite direction as possible.
Point A = (−3, 0) yields an objective value of 1.5, whereas point B = (3, 0)
yields the optimal objective value −1.5. Therefore, minimisation moves in di-
rection labeled x on figure 5.1. For the purpose of illustration, we’ll consider
maximisation problems, so that we move in the direction of optimisation.

Solving a parametric linear problem amounts to considering all possible opti-
misation directions and finding which vertex is going to yield the optimal value
for the objective function. For example, optimising in all directions between
(oa) = (1, 1) and (oc) = (−1, 0) will end up in vertex B. More precisely, for the
set of parameter values RB = {(x1, x2) |x1 ≥ 0 ∧ x1−x2 ≥ 0}, the optimal will
be reached in point B = (3, 0) and the objective value will be x1 ·3+x2 ·0. Simi-
larly, all the directions in the setRC = {(x1, x2) | −x1+x2 ≥ 0∧ x1+x2 ≥ 0} will
have the optimal reached in vertex C = (0, 3), with objective value x1 ·0+x2 ·3.
Last, the directions in set RA = {(x1, x2) | −x1 +−x2 ≥ 0 ∧ −x1 ≥ 0} will have
the optimal reached in vertex A = (−3, 0), with objective value x1 · (−3)+x2 ·0.

Considering vertices

An alternative way to look at this builds on the fact that optimal values of
objective functions are reached at vertices on the polyhedron described by the

99

constraints. When the objective function is parametric, the vertex yielding the
optimal depends on the choice of values for the parameters. In our example,
there are three vertices: A, B and C. Evaluating the objective function x1 ·
λ1 + x2 · λ2 at each of vertex gives the following three linear functions of the
parameters.

x1 · (−3) for vertex A = (−3, 0)

x1 · 3 for vertex B = (3, 0)

x2 · 3 for vertex C = (0, 3)

Since we are maximising the objective function and we know that the optimal
is reached in one of these three points, the objective function can be recast in
the following way.

max(−3 · x1, 3 · x1, 3 · x2)

The solution of the parametric problem remains unchanged: when (x1, x2) are
chosen in set RA, the first operand is the maximum. When they are chosen in
set RB, the second is maximum, and similarly for the third. When the objective
function is minimised, the minimum should be taken instead of the maximum.

Shape of the solution

Each set of directions Ri, where i ∈ {A, B, C}, is a polyhedron and is called a
“region”. These regions partition the space of parameters: RA∪ RB∪ RC = R

2.
In each of the regions, the value of the objective function is an affine expression
depending on the parameters. In the example above, the solution function
f(x1, x2) can be defined as follows.

f(x1, x2) =

−3 · x1 if (x1, x2) ∈ RA

3 · x1 if (x1, x2) ∈ RB

3 · x2 if (x1, x2) ∈ RC

(5.1)

The solution function f has the following properties.

• Function f is piece-wise affine. This is apparent in the definition above:
for all values of the parameters belonging to region RA, the optimum
is reached at point A. The expression of the optimal for the region is
therefore the following.

x1 · (−3) + x2 · 0

More generally, for all choices of parameters within a regionR, the optimal
is reached at the same point λ. Therefore, the expression of the optimal
is the following, where λ is fixed and the ci(x) are affine functions of the
parameters.

l
∑

i=1

ci(x) · λi

• Function f is continuous. When two regions share a frontier, as regionsRB

and RC share frontier x1−x2 = 0, they yield the same objective value for
directions lying on the frontier. In our example, for directions of the set
RB ∩ RC = {(x1, x2) |x1 + −x2 = 0 ∧ x1 ≥ 0}, we have 3 · x1 = 3 · x2.

100

Constraint x1 ≥ 0 appears so as to restrict possible values of (x1, x2)
to the half-line pictured on figure 5.1. Equivalently, I could have chosen
x1 + x2 ≥ 0.

• Function f is convex for parametric maximisation problems and concave
for parametric minimisation problems. Both follow from similar remarks.
Let me detail the minimisation case. Function f being concave means
that, if you take two choices of values x and x′ for parameters, the optimal
value f(x′′) associated to a convex combination x′′ , α · x + (1 − α) · x′,
with α ∈ [0, 1], of points x and x′ will be greater than the same convex
combination of the optimal values associated to points x and x′.

α · f(x) + (1− α) · f(x′) ≤ f
(

α · x + (1− α) · x′
)

with α ∈ [0, 1]

Concavity follows from function f implementing the minimum of a set
of functions. Suppose that, depending on the choice of parameters, two
vertices λ and λ′ can yield the optimal of the objective function c(x) · λ.
From the definition of a minimum, we have the following.

min
(

λ · c(x), λ′ · c(x)
)

≤ λ · c(x)

This still holds when both sides are multiplied by a nonnegative number.

α ·min
(

λ · c(x), λ′ · c(x)
)

≤ α · λ · c(x)

Such inequalities can be summed and instantiated.

α ·min
(

λ · c(x), λ · c′(x)
)

+

(1 − α) ·min
(

λ · c(x′), λ′ · c′(x′)
)

≤

α · λ · c(x) + (1− α) · λ · c(x′)

Objective function c(x) being linear, the right-hand side can be factorised
as λ · c

(

α · x + (1 − α) · x′
)

. A similar reasoning on function λ′ · c(x) ≥ 0
finish the proof of concavity.

5.3 The parametric simplex algorithm

Now that we saw what a parametric linear problem is and what its solution
looks like, we may have a look at algorithms which actually build the solution.
The standard algorithms [28] are extensions to the simplex algorithm, which we
already covered. There being two flavours of parametricity, in the coefficient of
the objective function or in the constant term of the constraints, naturally leads
to two solving algorithms. They build on the same idea and, therefore, I will
describe only one: the algorithm for parameters in the objective function. A
description of the other can be found in a paper by Paul Feautrier [22], which
came with an implementation: Pip [21], which is still maintained today.

I chose the parametric objective variant since this is the one I implemented
in collaboration with Alexandre Maréchal, him for extending his work [9] on
linearisation and me for experimenting with projection. Some details on the
experimentation are given in chapter 7

101

x1 + x2?

x1?

. . .

< 0

x2?

. . .

< 0

≥ 0

< 0

x2 + 1?

. . .

< 0

. . .

≥ 0

≥ 0

Figure 5.2 – the tree structure of the parametric simplex exploration

5.3.1 The impact of parametricity

We saw in chapter 2 that each step of the simplex algorithm consists in look-
ing for negative coefficients in the current expression of the objective function.
Among the variables which have a negative coefficients, the pivoting rule selects
which enters the basis, which is the set of dependent variables. Let’s call λi the
chosen variable. Next, the coefficients of entering variable λi in each dependent
variable definition of the dictionary is considered so as to determine which of
them restricts the most the growth of variable λi. The process leads to the
choice of the dependent variable λj which will leave the basis.

When parameters appear in the coefficients of the objective function, it is no
longer obvious to determine their sign, as they aren’t constants any more, but
functions. How do you know whether parametric coefficient x1 + x2 is negative
or nonnegative? If you don’t: both cases need to be considered. This is the main
idea behind the parametric simplex algorithm. Each time, the algorithm needs
to find the sign of a parametric coefficient and it doesn’t know it, it creates a
branching in the optimisation. On one branch, it considers that the coefficient
is negative. On the other branch, it considers that it is nonnegative. Each
branch is then explored, which may involve further branchings. This gives a
tree structure to the exploration, as illustrated on figure 5.2. Note that earlier
choices sometimes makes one alternative of a later choice impossible. In the
exploration shown on figure 5.2, once the algorithm chose x1 + x2 < 0 and
x1 ≥ 0, it must choose x2 < 0, since there is no (x1, x2) such that x1 + x2 < 0,
x1 ≥ 0 and x2 ≥ 0.

The context. In order to make consistent choices along a branch and therefore
to realise that some sign alternatives shouldn’t be considered, the choices need
to be recorded and collected in a context. This context captures the conjunction
of the sign choices: in the left-most branch of figure 5.2, the algorithm chose
that x1 + x2 is negative and that x1 is negative. The context is propagated and
updated with further choices down each branch.

All of the sign choices accumulated in the context are affine constraints,
which split the parameter space into two. More precisely, each constraint splits
the space on which the current branch focuses into two, as illustrated on fig-
ure 5.3. This recursive splitting makes a partition of the parameter space into

102

R 1

<
0
←

x 1
+

x 2

≥
0
→
R 2

R21
<0
← x1

≥0
→ R22

R
1

1
≥

0
←

x
2

+
1

<
0
→
R

1
2

x1

x2

Figure 5.3 – search space splitting

regions: the search illustrated on figure 5.2 first splits the space R
2 into two:

R1 and R2, such that R1∪ R2 = R
2. One branch then subdivides subspace R1

into R11 and R12, such that R11 ∪ R12 = R1, etc..

Deciding signs. Context C is the intersection of sign choices, each of which
is an affine constraint: it is therefore a polyhedron. Given a context C, testing
the sign of a parametric coefficient c(x) consists in testing C ⊑ c(x) < 0 and
C ⊑ c(x) ≥ 0. If both are true, context C must be the empty polyhedron. If
both are false, both cases need to be considered. Otherwise, the sign of the
parametric coefficient is determined by context C.

Besides context. The end of a branch is reached when the value of the
objective function can’t be improved on any more: the context implies that all
the parametric coefficients of the objective function are nonnegative, much like
the stopping criterion of standard simplex algorithm.

Once it is past the choice of variable entering the basis, the algorithm oper-
ates just the same as the simplex algorithm.

5.3.2 The algorithm

With the preceeding context, the algorithm should now be straightforward. It
starts from a linear problem with a parametric objective function and an initial
context C, which may or may not set initial constraints on the parameters.
In the latter case, all the parameter space must be explored. The problem is
transformed to be in canonical form in the same way as it is performed prior to
the simplex algorithm. Then, the algorithm operates as follows.

1. Choose a variable λi which parametric coefficient in the objective function
may be negative in the current context.

2. If there is no such variable, the end of the branch is reached and the
algorithm returns the parametric value of the objective function.

103

3. If the context implies that variable λi may also be nonnegative, branching
happens. On one branch, extend the context C with ci(x) ≥ 0 and perform
a recursive call, which goes back to step 1. On the other branch, extend
the context C with ci(x) < 0 and move to step 4 below.

4. Find the dependent variable λj which limits the most the growth of vari-
able λi. If the biggest limitation is given by several variables, choose one
according to the pivoting rule. This step is done exactly as in the simplex
algorithm: it doesn’t involve the parameters.

5. If no dependent variable bounds the growth of variable λi, then end of the
branch is reached and the algorithm returns +∞.

6. Perform a pivot with variables λi and λj and go back to step 1.

The result tree is built from the return values of the recursive calls. Fur-
thermore, although the outline above sweeps it under the rug, some amount of
copying happens for the recursive calls: both the context and the problem are
transformed independently by each branch. A straightforward implementation
would pass copies of the data at each recursive call.

Equation 5.1, on page 100, shows an alternative presentation of the result of
the parametric simplex algorithm. It is essentially the collection of the leaves
of the exploration tree: each region Ri is the conjunction of all the sign choices
performed along a branch. In other words, the region is equal to the final context
of the branch.

Pivoting rules

Most of the theory we discussed about the simplex algorithm carries over to
its parametric variant. In particular, on a degenerate problem, the paramet-
ric simplex algorithm may cycle among several possible choices of dependent
variables which all describe the same point in the space of variables. Bland’s
rule [8] remedies to the situation in the same way as it provides a solution for
the simplex algorithm, with the same performance concerns. In the context of
the parametric simplex algorithm, Bland’s rule would translate as follows: given
an order on the variables, pick the smallest variable which the current context
doesn’t imply to be nonnegative. One can think of several other pivoting rules,
which proved to be more efficient than Bland’s rule.

• If there is a variable which the context implies to be negative, choose it.
This rule has the benefit of avoiding unnecessary branching.

• The problem with the above rule is that it requires testing for negativ-
ity all of the parametric coefficients of the objective function. Since each
test involves solving a nonparametric linear problem, the benefit of not
branching may be outweighed by the cost of performing many sign tests.
A cheaper rule consists in checking if the parametric objective function has
some negative constant coefficients, such as (0 · x1 + 0 · x2 + −3) · λ5 and
choosing the corresponding variable. If there is no such constant coeffi-
cient, then use Bland’s rule which picks the first variable whose coefficient
may be negative.

104

Note that these rules don’t guarantee termination. However, we can use the
same trick as for the simplex algorithm: use an efficient pivoting rule for a
bounded number of steps and switch to Bland’s rule afterwards to ensure ter-
mination.

5.4 Wrapping up

This chapter introduced the basics of parametric linear programming. Paramet-
ric linear problems can be of two types: parametric objective function or para-
metric right-hand side of constraints. Although each type requires an adapted
variant of the simplex algorithm, the solution to the two has the same shape: a
function from parameters to objective value. The parametric simplex algorithm
builds the implementation of such a function by splitting the parameter space
into regions. For all choices of parameter values in one region, the optimal of
the objective function is reached at the same vertex of the space of variables.
It results that each region is associated an affine expression of the parameters,
which yields the objective value.

With this background in mind, next chapter presents how parametric linear
problem can be leveraged to compute the result of polyhedral projections.

Summary in French

L’évaluation expérimentale de VPL a montré la mauvaise performance de l’opé-
rateur «join» du domaine abstrait. Pour la représentation par contraintes des
polyèdres, cet opérateur est implémenté par une projection. La deuxième partie
de la thèse consiste à étudier une approche de la projection basé sur la pro-
grammation linéaire paramétrique, comme alternative à l’algorithme habituel
de projection, l’élimination de Fourier-Motzkin. La programmation linéaire pa-
ramétrique est une variante de la programmation linéaire dans laquelle l’objectif
à optimiser est une fonction linéaire d’un ensemble de paramètres. L’algorithme
de résolution est basé sur l’algorithme du simplexe. La solution d’un problème
linéaire paramétrique est une fonction des paramètres vers la valeur optimale
de l’objectif paramétrique. Cette fonction partionne l’espace des paramètres en
régions. Dans chaque région, la valeur de la solution est une fonction affine
des paramètres. Comme la programmation linéaire ordinaire, la variante pa-
ramétrique s’exprime comme une maximisation ou comme une minimisation,
chacune étant duale de l’autre.

105

Chapter 6

Defining projection as a

parametric linear problem

The main idea behind using parametric linear programming to solve projection
problems on polyhedra is twofold.

1. The first step consists in describing the geometry of the result polyhedron
as a parametric linear problem.

2. From that, the solving algorithm reconstructs a minimised constraint rep-
resentation of the polyhedron.

The approach was introduced by Colin Jones et al. [36] and further elaborated
on by Jacob Howe and Andy King [32]. It has three main advantages compared
to Fourier-Motzkin elimination and its refinements.

• It focuses on the geometry of the polyhedra: the algorithm explores it
independently of the details of the input constraints, which may or may
not have redundancies. As a result, the output is an already minimised
constraint representation of the result.

• The focus on geometry enables the elimination of several variables at a
time. It is also possible to recover a minimised constraint representation
of the input polyhedron by eliminating no variable at all.

• The solving algorithm explores the space looking for the boundaries set
by the projected polyhedron. This exploration can be directed or stopped
as needed, so that approximations can be obtained without extra cost.
This contrasts with Fourier-Motzkin elimination, where all the variable
eliminations need to be performed before getting output constraints.

The present chapter describes two formulations of projection as a parametric
linear problem. One has parameters on the right-hand side of constraints, while
the other has parameters in the objective function. I built the former in an
attempt to capture the intuition of the latter, which is somewhat more abstract.
As a result, I’ll introduce my work prior to covering the state of the art. At
the end of the day, both approaches highlight different aspects of the projection
problem and its encoding as a parametric linear problem.

106

6.1 A polyhedron as a parametric linear

problem

The first approach to encoding projection as a parametric linear problem builds
on a slight change in point of view on the definition of a linear constraint. Instead
of regarding ci(x) ≥ 0 as a constraint defining a half space, that is to say as set
{x | ci(x) ≥ 0}, we are going to focus on function ci(x) , ai0+

∑n
j=1 aij ·xj . More

precisely, we would like to consider the distance of a point x to the hyperplane
ci(x) = 0. Let me define the distance in the following way.

di(x) ,
ci(x)

||(ai1, . . . , ain)||2
=

ci(x)
√

∑n
j=1 a2

ij

Actually, the distance of point x to hyperplane ci(x) = 0 is |di(x)|. Removing of
the absolute value gives di(x) a nice property: when a point x satisfies constraint
ci(x) ≥ 0, then di(x) ≥ 0, otherwise di(x) < 0. This essentially makes di(x)
a particular choice of scaling of ci(x): it just happens that di(x) is normalised
with ||.||2. As a result, the following equality trivially holds.

{

x
∣

∣ di(x) ≥ 0
}

=
{

x
∣

∣ ci(x) ≥ 0
}

From a polyhedron p , {c1(x) ≥ 0, . . . , cl(x) ≥ 0}, we can build l functions
d1(x), . . . , dl(x) and define a function f(x) in the following way.

f(x) , min di(x), i ∈ {1, . . . , l}

To each point x, function f associates the distance of x to the constraint it is
the closest to. It can serve as an alternative representation of polyhedron P .

P =
{

x
∣

∣

∣

l
∧

i=1

ci(x) ≥ 0
}

=
{

x
∣

∣ f(x) ≥ 0
}

Before we deal with projection, we are going to elaborate on this representation
of a polyhedron, by recasting it as an equivalent parametric problem as follows.

f(x) = max y under constraints y ≤ di(x), i ∈ {1, . . . , l}

The driving motivation is to have the solution to this parametric solver have
the following shape, where constraints d1(x) ≥ 0, . . . , dk(x) ≥ 0 are the nonre-
dundant constraints of polyhedron p.

f(x) =

d1(x) if x ∈ R1

...

dk(x) if x ∈ Rk

Throughout this chapter, we will make the simplifying assumption that polyhe-
dron p doesn’t have any implicit equality: it is fully dimensional. Furthermore,
none of the constraints of polyhedron p is strict.

107

c3(x) ≥ 0

c2(x) ≥ 0
c 1

(x
) ≥

0

c1
(x

) =
c3

(x
)

Ah

R2

c2(x) = c3(x)

Bh

R1

c 1
(x

)
=

c 2
(x

)

Ch

R3

A

B

C

n

x1

x2

Figure 6.1 – function f on a triangle

6.1.1 The starting point

A major problem in the definition of function f is that it imposes the constraints
ci(x) ≥ 0 to be normalised in di(x) ≥ 0, using ||.||2 and the value of ||.||2 isn’t
necessarily a rational number. We’re going to need another normalisation. For
now, we won’t use any and see how far we can get with the resulting variant of
function f , which I’ll call fp.

fp(x) = max y under constraints y ≤ ci(x), i ∈ {1, . . . , l}

Note that we still have P = {x | fp(x) ≥ 0}.
Essentially, function fp above builds a map of the space: it divides it in

regions, each associated to a constraint ci(x) ≥ 0. The value of function fp for
all the points of a given region is given by the same ci(x). For example, consider
figure 6.1. The triangle ABC is made of three constraints, with the following
definitions.

c1(x) = 10 · x1 +−10 · x2

c2(x) = 20 +−2 · x1 +−2 · x2

c3(x) = 5 · x2

All the points on the line passing through points A and Ah are as far from
constraint c1(x) ≥ 0 as they are from constraint c3(x) ≥ 0. Similarly, points on
the line (BBh) are equally far from constraints c3(x) ≥ 0 and c2(x) ≥ 0. The
same holds for line (CCh) and constraints c2(x) ≥ 0 and c1(x) ≥ 0.

∀x ∈ (AAh), c1(x) = c3(x)

∀x ∈ (BBh), c3(x) = c3(x)

∀x ∈ (CCh), c2(x) = c1(x)

108

Bh

B c2(x) = c3(x)

Ah

A

c1(x) = c3(x) Ch

C
c1(x) = c2(x)

x

Figure 6.2 – zoom on figure 6.1 in the event point n doesn’t exist

These three lines, (AAh), (BBh) and (CCh), intersect at point n, at which
c1(n) = c2(n) = c3(n). Note that, in a triangle, such a point n always exists,
irrespective of the scaling factor applied to each of the three constraints. To
understand why, consider point x on figure 6.2, which zooms on a variant of
figure 6.1 where the three lines (AAh), (BBh) and (CCh) don’t intersect in one
point. At point x, we have the following contradiction.

c1(x) < c3(x) < c2(x) < c1(x)

Let us go back to figure 6.1. From point n, the plane can be partitioned into
three regions R1, R2 and R3, as represented on the figure. These regions are
polyhedra and have the following properties with respect to function fp.

∀x ∈ R1, fp(x) = c1(x)

∀x ∈ R2, fp(x) = c2(x)

∀x ∈ R3, fp(x) = c3(x)

The previous discussion leads naturally to the following solution to the para-
metric problem.

f(x) =

c1(x) if x ∈ R1

c2(x) if x ∈ R2

c3(x) if x ∈ R3

Furthermore, we can build a constraint representation of polyhedron P from the
definition of function fp above: all that is needed is discarding the information
pertaining to the regions and gathering the ci(x)’s. This process doesn’t forget
any nonredundant constraint. To see why, let us suppose that nonredundant
constraint ci(x) ≥ 0 doesn’t appear in the recovered constraint representation.
Now, consider any point x ∈ P such that ci(x) = 0. Since the constraint is
nonredundant, there must exist such a point. If constraint ci(x) ≥ 0 doesn’t
appear in the constraints recovered from the definition of function fp, there
must be a constraint ci′(x) ≥ 0 of polyhedron p such that ci′(x) < ci(x). Since
ci(x) = 0, we have ci′(x) < 0, which violates the assumption that point x
is in polyhedron P . Therefore, we can recover from function fp at least the
nonredundant constraints of polyhedron p. However, as we will see in a moment,
recovering a constraint representation from function fp may not filter redundant
constraints.

109

A B

C

n

c3(x) ≥ 0

c2(x) ≥ 0
c 1

(x
) ≥

0

c4(x) ≥ 0

c1
(x

) =
c3

(x
)

c2(x) = c3(x)
c 1

(x
)

=
c 2

(x
)

c
2 (x

)
=

c
4 (x

)

x

x1

x2

Figure 6.3 – function f with a redundant constraint

6.1.2 Redundancy

Short of additional details, the discussion of function fp applies only to the
restricted case of the triangle. Furthermore, it builds on the optimistic scenario
in which there is no redundant constraint. Consider figure 6.3, which is very
similar to figure 6.1, but has a new and redundant constraint c4(x) ≥ 0.

c4(x) = 9 +−
3

2
· x2

This new constraint being redundant, p ∪ {c4(x) ≥ 0} is the same polyhedron
as p, with a different constraint representation. Therefore, it seems reasonable
to expect the solution to the parametric problem defining function fp to be
unaffected by this additional constraint. This is not the case: a new region
appears in the result.

There are now too many constraints to draw all the ci(x) = cj(x) lines,
which are the frontiers of the regions. Therefore, figure 6.3 only shows those
which already appear on figure 6.1 and the line c2(x) = c4(x). Furthermore,
figure 6.3 pictures a point x, which would have been in region R2 on figure 6.1.
According to the frontiers, we have the following.

c4(x) < c2(x) < c3(x) < c1(x)

As a result, function fp evaluated at point x gives value c4(x). The same holds
for all the points in the small triangle made by the frontiers around point x.

The issue is better illustrated on the following simpler example, with only
one parameter x1. Figure 6.4 represents three constraints 1

2 · x1 ≥
1
2 , 2 · x1 ≥ 4

and x1 ≤ 4 in an unusual manner: it plots them as functions c1(x1) = − 1
2 + 1

2 ·x1,
c2(x1) = −4 + 2 ·x1 and c3(x1) = 4 +−x1. If we were to build a function fp for
the polyhedron p = { 1

2 · x1 ≥
1
2 ∧ 2 · x1 ≥ 4 ∧ x1 ≤ 4}, it would be as follows.

fp(x1) =

c2(x1) if x ∈ R2

c1(x1) if x ∈ R1

c3(x1) if x ∈ R3

110

R2R1 R3
x1

ci(x1)

c1(x1) = − 1
2 + 1

2 .x1

c2(x1) = −4 + 2 · x1

c3(x1) = 4 +−x1

Figure 6.4 – the impact of scaling

Constraint c1(x1) ≥ 0 appears in the definition of function fp, although it is
redundant in polyhedron p. The following lemma captures the issue.

Lemma 6. For each nonempty polyhedron whose representation contains a re-
dundant constraint, a scaling exists which makes that constraint appear in the
map built using function fp.

Proof. Let P = {x | c1(x) ≥ 0 ∧ · · · ∧ cl(x) ≥ 0}. Suppose that constraint
c1(x) ≥ 0 is redundant: there are λ0 ≥ 0 and λi ≥ 0, i ∈ {2, . . . , l} such that,

∀x, λ0 +

l
∑

i=2

λi · ci(x) = c1(x)

We wish to prove that there are scaling factors λ′
i > 0, i ∈ {1, . . . , l} such that

∃x ∈ P, λ′
1 · c1(x) < λ′

i · ci(x), ∀i ∈ {2, . . . , l}

This is trivially true for any x in the interior of P , that is as long as all the
ci(x) are strictly positive. Since we made the assumption at the beginning of
the section that the polyhedra we are dealing with have full dimension, there
exists such an interior point.

Had we kept the normalisation, using ||.||2, of the input constraints, this
problem wouldn’t have arisen. In order to avoid redundant constraints appear-
ing in the result of the parametric linear problem, we are going to introduce a
new normalisation, which builds on a point n in the interior of polyhedron P .

For now, let us restrict ourselves to the polytopes. Point n is used to trans-
form the space, so that point n appears to be at distance 1 from all the input
constraints. For each input constraint ci(x) ≥ 0 of input polyhedron p, a func-
tion d′

i(x) is defined as follows.

d′
i(x) =

ci(x)

ci(n)

Point n being an interior point is key: if it is on the boundary of polyhedron p,
meaning that there is a constraint ci(n) = 0, then constraint i can’t be scaled so
as to reach λi · ci(n) = 1, with λi > 0. However, note that choosing distance 1
is arbitrary here: any strictly positive number would have the same effect.

The main effect of using point n to scale the constraints is to have all the
regions meet in point n: since d′

i(n) = 1 for all i, point n is at the frontier of

111

R2 R3
x1

ci(x1)

c1(x1) = − 1
2 + 1

2 · x1

c2(x1) = −2 + 1 · x1

c3(x1) = 4 +−x1

n

Figure 6.5 – scaling with central point n

all the regions. For this reason, let me call point n the “central point”. If we go
back to the example on figure 6.4 and choose point x, at which c1(x) = c3(x),
as the central point, we find ourselves in the situation depicted on figure 6.5.
Note that regionR1 has disappeared: there is always at least one nonredundant
constraint below redundant constraint c1(x1) ≥ 0.

The assumption that polyhedron p is a polytope, that is a bounded polyhe-
dron, makes it possible to prove the following lemma.

Lemma 7. If polyhedron P , {x | c1(x) ≥ 0, . . . , cl(x) ≥ 0} is a polytope and if
there exists an interior point n of polytope P such that ∀i ∈ {1, . . . , l}, ci(n) = 1,
then function fp(x) = mini∈{1,...,l} ci(x) is always smaller than or equal to 1.

Proof. Any point x ∈ P is on a line segment between point n and a point x′

on the boundary of P . Point x′ being on the boundary of polytope P means
that there is at least one i ∈ {1, . . . , l} such that ci(x

′) = 0. Since ci(n) = 1
and ∃α ∈ [0, 1], x = α · x′ + (1− α) · n, it must be that ci(x) ∈ [0, 1]. From the
definition of function f , we know that f(x) ≤ ci(x) ≤ 1.

For any point x 6∈ P , we know by definition of polytope P that f(x) < 0.

This lemma leads us to the major gain of introducing point n.

Lemma 8. Assuming that there is an interior point n ∈ P , with P a nonempty
polytope, such that ci(n) = 1 for all i, function fp can be built from nonredundant
constraints only.

Proof. Assume that c1(x) ≥ 0 is a redundant constraint of polytope p.

∃λ0 ≥ 0, λi ≥ 0, i ∈ {2, . . . , l}, ∀x, λ0 +

l
∑

i=2

λi · ci(x) = c1(x)

We want to prove that ∀x, ∃i ∈ {2, . . . , l}, ci(x) ≤ c1(x). Let us assume, by
contradiction, that there is a point x such that, c1(x) < ci(x), ∀i ∈ {2, . . . , l}.
From λi ≥ 0, we derive

λ0 +

l
∑

i=2

λi · c1(x) < λ0 +

l
∑

i=2

λi · ci(x) = c1(x)

From evaluating ∀x, λ0 +
∑l

i=2 λi · ci(x) = c1(x) in n, we obtain the equality
λ0 +

∑l

i=2 λi = 1. Rewriting
∑l

i=2 λi · c1(x) as c1(x) ·
∑l

i=2 λi and substituting
1 − λ0 for

∑l
i=2 λi, we get λ0 + (1 − λ0) · c1(x) < c1(x). Simplifying yields

λ0 < λ0 · c1(x). Now, either λ0 = 0 or 1 < c1(x). The former yields the
contradiction 0 < 0 and the latter is in contradiction with lemma 7.

112

R2 R1
x1

ci(x1)

c1(x1) = − 1
2 + 1

2 · x1

c2(x1) = −2 + 1 · x1

n

Figure 6.6 – scaling with point n in a unbounded polyhedron

6.1.3 Unbounded polyhedra

We have shown that it is possible to build function fp from the nonredun-
dant constraints of polyhedron p, using an interior point n to force a partic-
ular scaling. This trick, however, only works when p is a polytope. Essen-
tially, unboundedness invalidates lemma 7 which, in turn, invalidates lemma 8.
That is to say that unboundedness isn’t a problem by itself. It is a problem
in that it causes function fp to have a value strictly greater than 1 for some
points. Figure 6.6 illustrates this point. It pictures the function fp associ-
ated to polyhedron p = {c1(x1) ≥ 0, c2(x1) ≥ 0}, with c1(x1) = −1 + x1 and
c2(x2) = −2 + x1. The central point n is chosen at x1 = 3. As a result, c1(x1)
is scaled to − 1

2 + 1
2 · x1, so that c1(n) = 1. Note that, constraint c1(x1) ≥ 0

is redundant with respect to c2(x1) ≥ 0, yet the solution fp to the parametric
linear problem max y under constraints y ≤ ci(x1) is as follows.

fp(x1) =

{

c1(x1) if x1 < 3

c2(x1) if x1 ≥ 3

This example shows that redundant constraints can still be found in function fp

when the corresponding polyhedron is unbounded. However, c1(x) < c2(x) only
when fp(x) > 1.

One remedy consists in introducing redundancy in a controlled way, by
means of the trivially redundant constraint 1 ≥ 0, which can be added to any
polyhedron without changing the set of points it describes. Consider now how
it affects the construction of function fp from a polyhedron p.

f≤1
p (x1) = max y under constraints

y ≤ c1(x1)

y ≤ c2(x1)

y ≤ 1

This doesn’t change anything for bounded polyhedra, when constraints are nor-
malised with respect to a central: lemma 7 shows that fp ≤ 1 anyway. For
unbounded polyhedra, the redundant constraint forces fp ≤ 1, thereby making
lemma 8 applicable again. However, this also introduces redundancy in the con-
straints extracted from function fp. Function fp for the polyhedron on figure 6.6
was as follows.

fp(x1) =

{

c2(x1) if x ∈ R2

c1(x1) if x ∈ R1

113

R2 R1
x1

ci(x1)

c1(x1) = − 1
2 + 1

2 · x1

c2(x1) = −2 + 1 · x1

n

cr(x) = 1

Figure 6.7 – scaling with point n in a unbounded polyhedron augmented by
1 ≥ 0

Introducing redundant constraint 1 ≥ 0 alters it as pictured on figure 6.7.

f≤1
p (x1) =

{

c2(x1) if x ∈ R2

1 if x ∈ R1

The crucial difference between functions fp and f≤1
p is that c1(x1) ≥ 0 being

redundant may be hard to find out—on more complex examples, solving a linear
program may be required—whereas redundancy is limited to exactly 1 ≥ 0 in
the case of f≤1

p and is therefore trivial to spot.

6.1.4 Fully dimensional regions

There is one last thing we have overlooked so far and which appears in the
phrasing of lemma 8. Lemma 8 states that function f≤1

p , hence the solution to
the parametric problem, can be built from nonredundant constraints. Indeed,
consider function f ′

p below.

f ′
p(x1) =

c2(x1) if x ∈ R2\{n}

c1(x1) if x = n

1 if x ∈ R1\{n}

Functions f≤1
p and f ′

p are extensionally equal: ∀x1, f≤1
p (x1) = f ′

p(x1). How-
ever, when we gather a constraint representation from function f ′

p, redundant
constraint c1(x1) ≥ 0 appears, whereas it wouldn’t appear if we were to use
function f≤1

p . The problem disappears when the regions are forced to have full
dimension: the region corresponding to constraint c1(x1) reduces to a single
point, which has dimension 0, in 1-dimensional problem.

A simple way to enforce regions being of full dimension is to make them open,
that is described by strict constraints. The missing values on the boundary of
regions can be inferred by continuity of function f≤1

p .

114

6.2 From a polyhedron to its projection

So far, we have seen how to encode a polyhedron p = {c1(x) ≥ 0, . . . , cl(x) ≥ 0}
as a parametric linear problem, in the form of function f≤1

p .

f≤1
p (x) = max y under the constraints

y ≤ ci(x), ∀i ∈ {1, . . . , l}

y ≤ 1

From the solution to this parametric linear problem, a minimised constraint
representation of polyhedron {c1(x) ≥ 0, . . . , cl(x) ≥ 0} can be extracted. Let
us see how this can be used to project variables. We’ll start from a polyhedron P .

P =
{

(x1, . . . , xm)
∣

∣

l
∧

i=1

ci(x1, . . . , xm) ≥ 0
}

In order to keep the notations simple, we assume that trivial constraint 1 ≥ 0 is
one of the ci(x) ≥ 0. Accordingly, we’ll write fp instead of f≤1

p . Furthermore, we
assume that the constraints have already been scaled with respect to a central
point n, that is to say there exists a point n in the interior of polyhedron P
such that ci(n) = 1, ∀i ∈ {1, . . . , l}.

We want to project polyhedron P on a subset of its dimensions x1, . . . , xk

with k < m. Let us call P̃ the result. From the definition of the projection, we
have the following expression for polyhedron P̃ .

P̃ =
{

(x1, . . . , xk)
∣

∣∃xk+1, . . . , xm,

l
∧

i=1

ci(x1, . . . , xm) ≥ 0
}

Now, let us add function fp to the mix.

fp(x1, . . . , xm) = max y ∈
{

y
∣

∣∀i ∈ {1, . . . , l}, y ≤ ci(x1, . . . , xm)
}

The definition of polyhedron P becomes the following.

P =
{

(x1, . . . , xm)
∣

∣ fp(x1, . . . , xm) ≥ 0
}

Applying the definition of the projection to this new definition of polyhedron P ,
we get the following expression.

P̃ =
{

(x1, . . . , xk)
∣

∣∃xk+1, . . . , xm, fp(x1, . . . , xm) ≥ 0
}

Alternatively, we may push the existential quantification inside function fp,
yielding a new function f̃p.

f̃p(x1, . . . , xk) = max y

with y ∈
{

y
∣

∣∃xk+1, . . . , xm, ∀i ∈ {1, . . . , l}, y ≤ ci(x1, . . . , xm)
}

Now, we use function f̃p to define a new polyhedron.

Pf̃ =
{

(x1, . . . , xk)
∣

∣ f̃p(x1, . . . , xk) ≥ 0
}

Last, we prove that P̃ = Pf̃ , through mutual inclusion.

115

Pf̃ ⊆ P̃ . Suppose we have a point (x1, . . . , xk) ∈ Pf̃ , that is f̃p(x1, . . . , xk) ≥ 0.
Function f̃p is defined as a maximum. We call xk+1, . . . , xm the value of
existentially quantified variables xk+1, . . . , xm for which the maximum is
reached in f̃p(x1, . . . , xk). Instantiating xk+1, . . . , xm with xk+1, . . . , xm in
the definition of P̃ yields fp(x1, . . . , xm) ≥ 0, from which (x1, . . . , xk) ∈ P̃

P̃ ⊆ Pf̃ . Suppose (x1, . . . , xk) ∈ P̃ , meaning that there are xk+1, . . . , xm such
that fp(x1, . . . , xm) ≥ 0. Instantiating xk+1, . . . , xm in the definition of
P̃ ′, we exhibit one point where y ≥ 0. This provides a nonnegative lower
bound on the value of f̃p(x1, . . . , xm), which is thus nonnegative. This
implies that (x1, . . . , xk) ∈ Pf̃

Final parametric linear problem

Gathering all the elements discussed so far, we may now build a paramet-
ric linear problem, the result of which describes the result of the projection
p\{xk+1, . . . , xm}. The problem statement given below considers the following
definition for each constraint ci(x) ≥ 0 of polyhedron p.

ci(x) , ai0 +
m

∑

j=1

aij · xj

A central point n is chosen for scaling the ci(x)’s so that they have value 1 when
evaluated at point n.

ci(x)

ci(n)
=

ai0

ci(n)
+

m
∑

j=1

aij

ci(n)
· xj

The variables xk+1, . . . , xm, which are existentially quantified in the definition
of polyhedron Pf̃ above, appear on the left-hand side of each constraints. The
other variables, x1, . . . , xk appear on the right-hand side.

max y under the constraints

ci(n) · y +

m
∑

j=k+1

−aij · xj ≤ ai0 +

k
∑

j=1

aij · xj , ∀i ∈ {1, . . . , l}

y ≤ 1

(6.1)

The problem stated in equation 6.1 is a parametric linear problem, with param-
eters on the right-hand side of the constraints. Its variables are y, xk+1, . . . , xm

and its parameters are x1, . . . , xk.
This presentation of how projection can be encoded as a parametric linear

problem is, as far as I know, new. It helps understanding the geometry of
the parametric linear problem and the reason for which it yields a minimised
constraint representation of the projected polyhedron. The key element is the
central point, where all the regions meet. With some amount of tweaking,
Paul Feautrier’s Pip solver [21] could be used to solve problems of this form.
Tweaking is required since Pip handles only nonnegative parameters, while they
are unconstrained in our setting, and finds a lexicographic minimum, instead of
minimising a function.

116

6.3 Starting from positive linear combinations

The state-of-the-art approach [36, 32] to encoding projection as a parametric
linear problem builds on an idea closer to Fourier-Motkzin elimination. It puts
more emphasis on the resulting constraints being linear combinations of input
constraints, at the expense of obscuring the geometrical view of the problem.
In the end, presenting both gives two views, which complement each other.
We will now present this second approach, before showing how the two are
related. It may also be worth mentioning that, due to historical reasons and
ongoing collaborations, the following approach is the one I implemented and
experimented with.

6.3.1 The starting point

Let p = {c1(x) ≥ 0, . . . , cl(x) ≥ 0} be a polyhedron. As before, we assume that
none of the constraints of polyhedron p is strict and that there are no implicit
equality constraints. Let us now consider the set pΛ of constraints implied by
the constraints of polyhedron p.

pΛ =
{

l
∑

i=1

λi ·
(

ci(x) ≥ 0
)

∣

∣

∣ ∀i ∈ {1, . . . , l}, λi ≥ 0
}

The set pΛ is a polyhedral cone.

Definition. A cone C is a set such that, if c ∈ C, then λ · c ∈ C, λ ≥ 0.
Furthermore, if c ∈ C and c′ ∈ C, then c + c′ ∈ C.

An alternative way to define polyhedron P = {x |
∧l

i=1 ci(x) ≥ 0} is to say
that it is the set of points which satisfy all the constraints of set pΛ.

P =
{

x′
∣

∣ ∀ c(x) ≥ 0 ∈ pΛ, c(x′) ≥ 0
}

P =
{

x′
∣

∣

∣ ∀λi ≥ 0,
(

l
∑

i=1

λi · ci(x)
)

≥ 0
}

Note that this definition is useful for building proofs, but useless for algorithms
computing over polyhedra. Similarly to a polyhedron, a cone has a set of gen-
erators, which are the elements from which all the other elements can be built
by scaling and addition. The generators of cone pΛ are the nonredundant con-
straints of polyhedron p. Therefore an minimised representation of polyhedron p
can be obtained by computing the generators of cone pΛ.

To be precise, the elements of cone pΛ are vectors. A vector (ai0, ai1, . . . , aim)
of cone pΛ represents constraint ai0+

∑m

j=1 aij ·xj ≥ 0. The definition of cone pΛ

is therefore more exactly stated as follows.

pΛ =
{

l
∑

i=1

λi · (ai0, . . . , aim)
∣

∣

∣ ∀i ∈ {1, . . . , l}, λi ≥ 0
}

Note that there is a dualisation going on here: each element of cone pΛ is a
constraint over points in the x space.

117

Loosening constraints

The set pΛ doesn’t actually contain all the constraints implied by polyhedron p.
Suppose that polyhedron p is defined as {3 + x1 ≥ 0}. The set pΛ as defined
above contains only constraints of the form λ·3+λ·x1 ≥ 0, with λ ≥ 0. However,
constraint 4 + x1 ≥ 0, which is implied by polyhedron {3 + x1 ≥ 0}, doesn’t
appear in set pΛ. What’s missing in the definition of set pΛ is the coefficient λ0,
which appears in the statement of Farkas’s lemma in chapter 2 for loosening
the constant term of a constraint. Adding it results in the following updated
definition for set pΛ.

pΛ =
{

λ0 · (1 ≥ 0) +

l
∑

i=1

λi ·
(

ci(x) ≥ 0
)

∣

∣

∣ ∀i ∈ {0, . . . , l}, λi ≥ 0
}

Or more rigorously,

pΛ =
{

λ0 · (1, 0, . . . , 0) +
l

∑

i=1

λi · (ai0, . . . , aim)
∣

∣

∣
∀i ∈ {0, . . . , l}, λi ≥ 0

}

Note that this is tantamount to adding the trivial constraint 1 ≥ 0 to the
constraints of polyhedron p. In order to make the formula more concise, we will
assume that constraint 1 ≥ 0 is one of the constraints ci(x) ≥ 0 in the following.

Expressing projection

Before going further down the road of finding the generators of a polyhedral
cone, let us restore the focus on projection. Fourier-Motzkin elimination per-
forms linear combinations of constraints in order to build constraints which
have a zero coefficient for the eliminated variables. We can do the same to
the cone pΛ: focus on the linear combinations which cancel the coefficients of
the variables xk+1, . . . , xm we wish to eliminate. This leads to building a new
set p̃Λ.

p̃Λ =
{

l
∑

i=1

λi · (ai0, . . . , aim)
∣

∣

∣

∀j ∈ {k + 1, . . . , m},
l

∑

i=1

λi · aij = 0, with λi ≥ 0, ∀i ∈ {1, . . . , l}
}

The jth equality constraint in the definition of set p̃Λ states that the linear
combination should yield a zero coefficient for variable xj . Note that, like set pΛ,
set p̃Λ is a cone. Finding the generators of cone p̃Λ will give us a nonredundant
representation of polyhedron p\{xk+1, . . . , xm}.

Finding the generators of cone p̃Λ

Finding the generators of a polyhedral cone is a well-studied problem, whose so-
lution dates back to Chernikova’s algorithm [12]. However, our setting prevents
us from applying these results: we don’t start from a constraint representation
of the cone, seeking its generator representation. Rather, our cone is defined

118

as a restriction of another cone, pΛ. In this situation, Chernikova’s algorithm
behaves in exactly the same way as Fourier-Motzkin elimination.

Instead, the idea we use for finding the generators of cone p̃Λ is very similar
to that of function fp, which we explored before: for each point x of space, we
consider the constraint of cone p̃Λ closest to point x. Let function gp capture
this idea.

gp(x) = min ci(x) ∈ p̃Λ

As before for function fp, each nonredundant constraint c′
i(x) ≥ 0 of the pro-

jected polyhedron will give the value of function gp for all points x in a region
each. Solving the parametric linear problem associated to function gp will yield
a definition of the following form.

gp(x) =

c′
1(x) if x ∈ R1

...

c′
l′(x) if x ∈ Rl′

The actual parametric linear problem is the following.

min

l
∑

i=1

λi · ci(x) under the constraints

l
∑

i=1

aij · λi = 0, ∀j ∈ {k + 1, . . . , m}

λi ≥ 0, ∀i ∈ {1, . . . , l}

In this parametric problem, the variables are λ1, . . . , λl and the parameters are
x1, . . . , xm. The parameters appear in the objective function. Note that the set
of parameters can be reduced to x1, . . . , xk as the constraints impose that the
coefficient of parameters xk+1, . . . , xm is always zero. The problem can therefore
be rewritten as follows.

min

l
∑

i=1

λi ·
(

ai0 +

k
∑

j=1

aij · xj

)

under the constraints

l
∑

i=1

aij · λi = 0, ∀j ∈ {k + 1, . . . , m}

λi ≥ 0, ∀i ∈ {1, . . . , l}

(6.2)

6.3.2 From cone to polytope

Although the parametric problem in equation 6.2 captures the intuition well, it
is not an entirely adequate formulation of projection. This becomes apparent
when you try to instantiate the parameters.

Consider a point x satisfying the constraints of polyhedron p: that is to say
∀i ∈ {1, . . . , l}, ci(x) ≥ 0. From Farkas’s lemma, point x satisfies any constraint
built from nonnegative linear combinations of the constraints of polyhedron p. It
follows that the minimum value of the linear problem obtained by instantiating
the parameters in problem 6.2 with point x is nonnegative. Taking λi = 0, ∀i

119

1 +−x1 ≥ 0

2 + x1 ≥ 0

1 ≥ 0
~n

h

pΛ

(a) finding the supporting hyperplane

1 +−x1 ≥ 0

2 + x1 ≥ 0

1 ≥ 0
~n sΛ

pΛ

(b) shifting to get the slice

Figure 6.8 – slicing the cone

actually yields the optimal: 0. It follows that function gp is uniformly 0 for all
points x satisfying the constraints of polyhedron p.

Again, the problem comes from the possibility of scaling the constraints.
Given a constraint ci(x) ≥ 0 and a point x such that ci(x) > 0, the positive
scaling λi which minimises the number λi · ci(x) goes to 0. Function gp being
uniformly zero on polyhedron p also appears by looking at equation 6.2. From
chapter 2, we know that the objective value is built from linear combinations of
the constant term of the constraints of a linear problem. Since these constant
terms are all zero in the parametric linear problem in equation 6.2: their linear
combinations will only yield objective values of zero.

Going back to the cone structure of set p̃Λ sheds a new light on the issue.
Consider constraint ci(x) ≥ 0 ∈ p̃Λ. It follows from the definition of a cone,
that λi · ci(x) ≥ 0 ∈ p̃Λ for any λi > 0. All these constraints describe the same
half-space.

∀λi > 0, {x | ci(x) ≥ 0} = {x |λi · ci(x) ≥ 0}

Selecting one instance of each of these families of constraints will make it possible
to make distance comparisons. Which instance is irrelevant. Similarly to what
we had before, the issue is that of normalising the constraints. The solution
which is adopted in the state of the art [36, 32] is to build a slice of the cone p̃Λ.

A slice s̃Λ of cone p̃Λ is a polytope such that the following property holds.

∀ci(x) ≥ 0 ∈ p̃Λ, ∃λi > 0, λi ·
(

ci(x) ≥ 0
)

∈ s̃Λ

In other words, slice s̃Λ selects a unique representative of each set of equivalent
constraints {λi · ci(x) ≥ 0 |λi > 0}.

Computing a slice s̃Λ of cone p̃Λ

Slice s̃Λ is built from a hyperplane supporting cone p̃Λ and then shifted so as to
intersect all the families of constraints described above. A hyperplane support-
ing the cone p̃Λ is a hyperplane going through the origin (0, . . . , 0) of the cone
and having all of the points of cone p̃Λ on one side. Building such a hyperplane
directly is made tricky by the fact that we don’t have an explicit expression of
the generators of cone p̃Λ. However, cone p̃Λ is a subcone of cone pΛ, of which
we have the generators, or a superset of thereof if the representation of polyhe-
dron p isn’t minimised. Making sure that all the generators of cone pΛ lie on
one side of the supporting hyperplane guarantees that all the points generated
from them will also lie on one side of it. In order to do so, the normal vector

120

(n0, . . . , nm) to the hyperplane h is chosen so that its dot product with all the
generators of cone pΛ is positive, as illustrated on figure 6.8a. We are looking
for vector (n0, . . . , nm) which satisfies the following condition.

(ai0, . . . , aim) · (n0, . . . , nm) > 0, ∀ ai0 +

l
∑

i=1

aij · xj ≥ 0 ∈ p

Once vector n = (n0, . . . , nm) is determined, a constraint represented by a
vector (a0, . . . , am) belongs to the supporting hyperplane of normal vector n if
the following condition holds.

m
∑

j=0

nj · aj = 0

Shifting the hyperplane so that it slices the cone pΛ, as illustrated on figure 6.8b,
results in the following expression.

m
∑

j=0

nj · aj = b with b > 0

Any positive value fits for constant b. In the following, I will use b = 1, but
that choice is arbitrary. The final step of the construction of slice s̃Λ consists in
inserting it in equation 6.2. Doing so requires undoing temporarily a shortcut
we have taken when building equation 6.2, which can be recast equivalently as
follows.

min a0 +

k
∑

j=1

aj · xj under the constraints

aj = 0, ∀j ∈ {k + 1, . . . , m}

aj =

l
∑

i=1

aij · λi, ∀j ∈ {0, . . . , m}

λi ≥ 0, ∀i ∈ {1, . . . , l}

(6.3)

This is still a linear problem with a parametric objective function. The param-
eters are x1, . . . , xk. The variables are λ1, . . . , λl and a newly introduced set
of variables a0, . . . , am. Problem 6.3 explicits that we are interested in vectors
(a0, . . . , am), which must be nonnegative linear combinations of the constraints
of the input polyhedron p and which must not constrain the dimensions to be
eliminated. Problem 6.2 is problem 6.3, where variables aj have been eliminated
using the equations which define them. We may now add the equation of the

121

1 + x1 ≥ 0

−1 +−x1 ≥ 0

1 ≥ 0

Figure 6.9 – an implicit equality means no supporting hyperplane

slicing hyperplane to problem 6.3, yielding the following updated problem.

min a0 +

k
∑

j=1

aj · xj under the constraints

m
∑

j=0

nj · aj = 1

aj = 0, ∀j ∈ {k + 1, . . . , m}

aj =
l

∑

i=1

aij · λi, ∀j ∈ {0, . . . , m}

λi ≥ 0, ∀i ∈ {1, . . . , l}

Replacing variables aj by their definitions, we get the following final problem.

min

l
∑

i=1

λi ·
(

ai0 +
k

∑

j=1

aij · xj

)

under the constraints

l
∑

i=1

(

m
∑

j=0

nj · aij

)

· λi = 1

l
∑

i=1

aij · λi = 0, ∀j ∈ {k + 1, . . . , m}

λi ≥ 0, ∀i ∈ {1, . . . , l}

(6.4)

The full dimensionality assumption

At the beginning of this section, I made the assumption that the polyhedra
we’re dealing with have no implicit equality in their constraint set. Figure 6.9
illustrates the motivation behind the assumption. It depicts the cone pΛ built
from polyhedron {1 + x1 ≥ 0, −1 + −x1 ≥ 0}, which is more intuitively writ-
ten −1 ≤ x1 ≤ −1, or even x1 = −1. It would be impossible to find a vector ~n
whose dot product with each vector (−1,−1), (0, 1) and (1, 1) is strictly positive.

6.4 Duality of the two encodings

So far in this chapter, we have seen two ways of encoding a projection problem
as a parametric linear problem. The approach presented in section 6.2 features

122

a maximisation problem with a parametric right-hand side, while the approach
presented in section 6.3 uses a minimisation problem with a parametric objective
function. The two provide complementary views on the same object and empha-
sise different aspects of the problem. For example, normalisation with a central
point is perhaps more intuitive than normalisation with a slicing hyperplane.

The two encodings are actually dual, which I’ll try to show by first exhibit-
ing the similarities between them. The most obvious similarity resides in the
introduction of the trivial constraint 1 ≥ 0.

Slicing is finding an interior point

Another, less obvious, similarity shows between the central point and the slic-
ing hyperplane. Both are used in order to normalise the constraints. The
analogy goes deeper than that, though. Given a polyhedron p = {c1(x) ≥
0, . . . , cl(x) ≥ 0}, where each ci(x) is defined as ai0 +

∑m

j=1 aij · xj , the normal
vector (n0, . . . , nm) to the slicing hyperplane satisfies the following constraints.

(ai0, ai1, . . . , aim) · (n0, . . . , nm) > 0, ∀i ∈ {1, . . . , l} (6.5)

Remember that we added the trivial constraint 1 ≥ 0 to the constraints of
polyhedron p. This results on the following constraint on the normal vector.

(1, 0, . . . , 0) · (n0, . . . , nm) > 0

This constraint simplifies in n0 > 0. Now, if we find a vector (n0, . . . , nm)
satisfying the constraints in equation 6.5, we can build another vector n′.

n′ , (1,
n1

n0
, . . . ,

nm

n0
)

Since n0 > 0, this new vector n′ also satisfies the constraints in equation 6.5.
Furthermore, equation 6.5 can be spelt in a more concise manner, with vector
n′ = (n′

0, . . . , n′
m).

m
∑

j=0

aij · n
′
j = ai0 +

m
∑

j=1

aij · n
′
j = ci(n

′
1, . . . , n′

m) > 0, ∀i ∈ {1, . . . , l}

It becomes apparent that vector n′, without its first coefficient 1, is a point
in the interior of polyhedron p. With that remark in mind, the constraint of
equation 6.4 where vector n appears is changed as follows.

l
∑

i=1

ci(n
′
1, . . . , n′

m) · λi = 1

On top of being used to achieve the same end, the slicing hyperplane of sec-
tion 6.3 and the central point of section 6.2 are actually the same object.

Matrix representation

The last point I am going to make will be more obvious with equations 6.1
and 6.4 recast in matrix format, on tables 6.1 and 6.2, respectively. Each of
these tables has three groups of lines and three groups of columns, separated

123

xk+1 . . . xm y x1 . . . xk

0 . . . 0 1 a0 a1 . . . ak

λ1 −a1(k+1) . . . −a1m c1(n) a10 a11 . . . a1k

...
...

...
...

...
...

...
λl −al(k+1) . . . −alm cl(n) al0 al1 . . . alk

λ0 0 . . . 0 1 1 0 . . . 0

Table 6.1 – Equation 6.1 as a matrix

λ1 . . . λl λ0

a10 . . . al0 1 a0

x1 a11 . . . al1 0 a1

...
...

...
...

...
xk a1k . . . alk 0 ak

xk+1 a1(k+1) . . . al(k+1) 0 0
...

...
...

...
...

xm a1m . . . alm 0 0
ci(n) c1(n) . . . cl(n) 1 1

Table 6.2 – Equation 6.4 as a matrix (∀i ∈ {0, . . . , l}, λi ≥ 0)

by solid lines. The first group of lines is made of only one line. This line tells
which variable or parameter is associated with each column. The second group
of lines is the objective function. In table 6.2, the coefficients of the objective
function have parameters. Each line gives the coefficients of the parameter
given in the first column. For example, variable λ1 has parametric coefficient
a10 + a11 · x1 + · · · + a1k · xk. The third group of lines gives the coefficients
of the constraints of the parametric problem. The first column provides some
information about which coefficients these are. For example, the line starting
with λ1 of table 6.1 records the coefficients of constraint y ≤ c1(x). The trivial
constraint 1 ≥ 0 is associated to λ0.

Of the three groups of columns, the first is merely informational: it states
which variable or parameter the coefficients of the line apply to. The second
group of columns gives the linear part of the constraints, which apply to the
variables of the problem. The last group of columns gives the right-hand side
of the constraints. On table 6.1, the second and third groups are separated by
an implicit ≤ sign. On table 6.2, the second and third groups are separated by
an implicit = sign.

Now, let me recall a few key facts.

• The problem on table 6.1 is a maximisation problem. Its constraints are
inequalities and its variables are unrestricted in sign.

• The problem on table 6.2 is a minimisation problem. Its constraints are
equality constraints and its variables are nonnegative.

• The parametric objective function of table 6.2 is the parametric right-hand
side of table 6.1.

124

• The constraints forcing the coefficients of variables xk+1 to xm to 0 in
problem 6.2 can be negated without changing the problem. With this
change, the matrix of the coefficients of variables of one problem is the
transposed matrix of the coefficients of variables of the other.

• The two parametric linear problems solve the same problem: they give
the same solution.

These two problems are in fact the dual of one another.

6.5 Two models for projection

Through this chapter, we covered two ways of expressing as a parametric linear
problem the projection of a polyhedron on a subset of its dimensions. One is a
minimisation problem with parameters in the objective function. It comes from
previous work by Colin Jones et al. [36] and Jacob Howe and Andy King [32].
To the best of my knowledge, the other expression of projection as a parametric
linear problem is new. It was designed in an attempt to convey more of the
global picture of the encoding of projection as a parametric linear problem.
In the end, it highlighted the geometry of the regions in the solution—they
all meet in a central point—and provided a new explanation to the resulting
constraint set being minimised. This second approach results in a maximisation
problem, with parameters in the constant term of the constraints. Previous
section showed that the two approaches are linked by the duality theorem of
linear programming.

Witness generation

The main motivation for this exploratory work is to build a better projection
operator for VPL, which brings in the necessity of generating inclusion wit-
nesses for the results produced by the operator. The original work [36] solves
this concern in a straightforward manner. Indeed, the parametric problem is
stated in terms of linear combination coefficients λi. In its solution, each re-
gion corresponds to a point in the space of λi’s, where the optimal is reached
for all parameter values in the region. This point exactly describes the linear
combination of input constraints yielding the constraint associated to the region.

The situation is slightly less obvious in the encoding I proposed, where the
variables of the maximisation problem are the variables constrained by the input
polyhedron. However, witness extraction follows from a simple remark, similar
to the one I made for extracting witnesses from the linear solver in VPL. The
constraints of the parametric problem are inequality constraints. As such, a
variable is going to be introduced during the initialisation of the parametric
linear solver, which will uniquely identify each constraint. Depending on how
the solver is implemented, this variable will either be an auxiliary variable, as
in VPL solver, or a slack variable, as I described in previous chapter. When
the optimal is reached in a region, the coefficients of these new variables in
the definition of the objective function will give the coefficient of the input
constraints yielding the constraint of the projected polyhedron associated with
the region. In textbooks [18], this observation that the dual solution can be
found in the coefficients of the objective function when the optimal is reached
is called “complementary slackness”.

125

From theory to practice

Now that we explored the theory for a new constraints-based projection oper-
ator, we may have a look at implementing it. As I mentioned earlier in this
chapter, the maximisation problem can be solved with Pip, with some amount
of extra encoding related to parameters being nonnegative in Pip and Pip com-
puting a lexicographic minimum instead of optimising a function. However,
historical reasons lead me to implement the other approach. First and fore-
most, the maximisation encoding wasn’t available when this work started. I
also collaborated with Jacob Howe and Andy King [32], who use a different
approach for solving the minimisation problem. The experimental validation
of the ideas presented in this chapter is still ongoing and the progress that has
been made so far is reported in the next chapter.

Summary in French

Colin Jones a proposé dans sa thèse, publiée en 2005, un encodage de la pro-
jection d’un polyèdre par un problème linéaire paramétrique. J’en introduis une
vision alternative, basée sur une nouvelle représentation des polyèdres. Un po-
lyèdre est vu comme une function définie sur l’espace des variables contraintes
par le polyèdre. Cette fonction est positive ou nulle pour les points du poly-
èdre et négative à l’extérieur. La projection d’un polyèdre est ensuite présentée
comme la quantification existentielle des variables à éliminer. Cette quantifica-
tion s’exprime naturellement sous la forme d’un problème linéaire paramétrique
dont la solution est le polyèdre projeté représenté par une fonction de la forme
décrite ci-dessus. La projection proposée par Colin Jones et la mienne sont
duales l’une de l’autre. Elles offrent deux perspectives complémentaires pour
comprendre la projection par programmation linéaire paramétrique.

126

Chapter 7

Towards a new solver

In the second part so far, we have introduced parametric linear programming
and shown how it could be used to compute projections of polyhedra. This last
chapter puts these ideas to practice. It turns out that the standard algorithm for
solving parametric linear problems, namely the parametric simplex algorithm,
performs poorly on projection benchmark problems. This observation triggered
further research for a more efficient solving algorithm, drawing on insights from
the automatic control community. The work reported below happens in collab-
oration with Alexandre Maréchal and is still ongoing. I report it nonetheless,
with two main motivations.

• Some of the directions we are considering seem yet unexplored in state-
of-the-art work.

• Our investigation method is pragmatic: the goal is to build a new pro-
jection operator for VPL, which is more efficient than Fourier-Motzkin
elimination on projection problems encountered during the static analysis
of programs.

7.1 The problem with the standard algorithm

Figure 7.1 illustrates the main issue of the parametric simplex algorithm on
the example polyhedron ABC, which we used in chapter 5. Remember that

o

A B

C

RA RB

RC R′
C

c

b a

λ1

λ2

Figure 7.1 – four regions instead of three

127

A B

C

RA RB

RC

R′
A R′

B

c

b a

λ1

λ2

Figure 7.2 – not splitting on frontiers

each branching decision taken by the algorithm splits the current subspace to
be explored into two. Therefore, the optimal splitting into three regions RA,
RB and RC , of polyhedron ABC, shown on figure 5.1 on page 99, can’t be the
result of the parametric simplex algorithm.

Figure 7.1 shows one suboptimal splitting, which the parametric simplex
algorithm can produce. The algorithm first splits along frontier (Cc). On one
branch, it then splits along [ob), while it splits along [oa) on the other. This
yields four regions RA, RB, RC and R′

C , instead of the expected three. Of
these four, RC and R′

C have the same expression for the value of the objective
function.

Oversplitting doesn’t prevent the solution function to a parametric linear
problem from being correct: it merely creates duplicates in the constraints built
from each optimal expression. A simple postprocessing can get rid of these
duplicates. However, oversplitting also duplicates the costlier computations
that lead to duplicate optimal expressions at the end of branches. To put it
differently, the problem with oversplitting is that it makes the exploration tree
bigger, resulting in more pivots and more sign tests. These operations are costly
and become a performance problem.

To make things worse, it is not true in general that all the parametric coef-
ficients, which appear in the objective function, are frontiers of a region. Fig-
ure 7.2 illustrates the case where the initial splitting is not performed along
a frontier: the result contains five regions instead of the optimal three. You
should bear in mind that these are rather simple situations on a simple two-
dimensional problem. With more dimensions, the phenomenon of oversplitting
is amplified.

Despite the performance problems encountered during solving, the para-
metric linear problem approach to projection remains interesting. Indeed, it
captures the geometry of polyhedra, from which a nonredundant constraint
representation can be built. It also allows to eliminate several variables at once,
which Fourier-Motzkin elimination can’t handle. These benefits naturally lead
us to look for a more efficient solving algorithm.

7.2 The method

Overall, our problem is a very concrete one: finding a more efficient projection
algorithm than Fourier-Motzkin elimination. This goal was set as a result of

128

the performance evaluation of VPL and, more precisely, that of its convex hull
operator. This evaluation is reported in chapter 4 and will serve as a base line
to test new ideas against.

In order to focus on the core of the problem, we will restrict ourselves to
solving a simplified problem: the elimination of any number of variables from
a polyhedron which is of full dimension. There are no equalities, implicit or
explicit. This simplification is still realistic for the use case of VPL: this is
exactly the setting in which the projection operator on inequality constraints
is called. In the context of VPL, we could also assume that the input polyhe-
dron has a nonredundant representation, but we haven’t found any use for this
hypothesis yet. As a last simplifying assumption, we assume that there are no
strict inequality constraints.

Our approach being driven by experimental data forces us to actually have
a working implementation of the methods we are designing. While this takes
some time, this also helps pruning research directions early.

Benchmark suite

The suite of benchmark problems, which we used for comparing ideas, is com-
posed of all the convex hull problems gathered during the performance analy-
sis of VPL. For each of these problems, the projections which would be per-
formed by substitution using equalities were performed using VPL. The result-
ing benchmark problem is the projection of the remaining variables from the
minimised intermediate result.

In total, the benchmark suite is composed of 15 882 projection problems,
collected from abstract domain calls performed during the static analysis of
programs using Pagai [31].

Comparison setup

The benchmark suite is stored in text format in a file. I wrote a small program
which parses the file and runs each projection problem twice.

• First, the projection is performed using Fourier-Motzking elimination as
it is implemented in VPL.

• Then, it is performed by the candidate projection method.

Each problem results in a pair of time measurements. Given the order of mag-
nitude of the execution time difference between the two methods, a sum of the
time spent by each method on the complete benchmark suite is a sufficient com-
parison metric. This being said, we checked the distribution of execution times
over the suite so as to make sure that most of the execution time wasn’t spent
on a handful problems.

Besides timing, the driving program checks that the result provided by the
experimental method is the same as the result provided by VPL. Results are
considered the same when two criteria are met.

• The two sets of constraints represent the same set of points.

• They have the same number of constraints. Since the result provided by
VPL are always minimised, this criterion ensures that the result provided
by the experimental method is minimised as well.

129

Base line

All the time measurements reported below were carried out on a recent laptop,
under the GNU/Linux operating system. By itself, each value isn’t particularly
relevant. Instead, they should be compared to one another. The base line
which we want to improve on is the computation time of the implementation
of Fourier-Motzkin elimination in VPL. It takes 3.7 seconds to compute all the
projections of our benchmark suite.

Pip: a state-of-the-art solver

Paul Feautrier wrote and made publicly available [21] a solver for parametric
linear problems, called Pip. It is still maintained today and we considered using
it. The major obstacle is that Pip solves parametric problems with parameters
in the right-hand side of the constraints. At the time we started investigating,
the new encoding of projection with parameters in the right-hand side—the one
we saw at the beginning of the previous chapter—didn’t exist and we failed
to dualise the encoding as minimisation otherwise. Then, Pip restricts both
variables and parameters to be nonnegative, while we needed parameters of
arbitrary sign. While it is possible to encode arbitrary sign parameters using
nonnegative parameters, as explained in Pip user manual, we felt that nesting
encodings would obfuscate our observations. In the end, all these elements lead
us to implement our own solver.

Regions of full dimension

To be entirely precise, our solver implements a slight variation of the paramet-
ric simplex algorithm. The deviation comes from the need for regions of full
dimension in order to guarantee the absence of redundant constraints in the
polyhedron derived from the solution to parametric linear problem. It would be
inefficient to look for implicit equalities in each context, once the whole solution
tree has been built. Instead, the sign choices added to the context are system-
atically strictened: nonnegativity choices are turned into positivity choices. As
a result, the polyhedron describing the context is open, which guarantees that
it has full dimension when it is nonempty.

Initial analysis

Our initial experiment was to compare with the parametric simplex algorithm,
which is described in chapter 5. We implemented in Ocaml the variant of the
algorithm which has parameters in the objective function and used it to solve
projection encoded as a parametric minimisation problem. Chapter 5 describes
three pivoting rules.

• The first is the parametric equivalent to Bland’s rule. It chooses the first
variable whose coefficient in the objective function may be negative. With
this rule, our solver takes 101 seconds to compute all the projections in
the suite.

• The second rule tries to delay branching by looking for coefficients in the
objective function, which are necessarily negative according to the context.

130

With this rule, our solver takes 79 seconds to compute all the projections
in the suite.

• The last rule is a compromise between the two. It looks from constant
negative coefficients in the objective function. If there aren’t any, it resorts
to Bland’s rule. With this rule, our solver takes 101 seconds to compute
all the projections. This result seems to indicate the constant coefficients
aren’t common at all.

As the figures above show, our initial attempt at improving the performance
of projection leaves a lot of room for improvement: it is over twenty times
slower than Fourier-Motzkin elimination. Gathering some extra statistics on
the execution gives us an interesting insight on possible causes of this poor
performance.

Over the whole benchmark suite, Fourier-Motzkin elimination generates
243 393 constraints, only 45 683 of which are nonredundant. In the mean time,
the parametric simplex algorithm with Bland’s pivoting rule generates 234 516
regions which, once duplicate constraints are removed, yield 45 683 constraints
as well. With the pivoting rule that looks for coefficients which are always nega-
tive in the context, 193 378 regions are generated. Two things can be concluded
from these numbers.

• For each generated constraint, redundant or not, Fourier-Motzkin elimi-
nation solves at most one linear problem, when the constraint isn’t syn-
tactically redundant. On the other side, each region in the result of the
parametric simplex algorithm is the result of potentially many sign tests
and branches and each sign test involves solving one or two linear prob-
lems. However, there are approximately as many regions as constraints
generated by Fourier-Motzkin elimination, making a good candidate ex-
planation for the performance difference.

• When we compare the two pivoting rules, we find that the number of re-
gions resulting from the most efficient rule is about 80% of that resulting
from Bland’s rule. At the same time, the execution time of the former
is about 80% of that of the latter. This points to the oversplitting phe-
nomenon described above being a major cause of the poor performance.

More evidence of oversplitting being a problem is found by examining the
time spent performing sign tests for each pivoting rule: 64 seconds for the
branch-delaying one, 83 seconds for Bland’s. This accounts for nearly all the
execution time difference between the two pivoting rules. As a result from these
observations, we tried to design an algorithm which doesn’t subdivide optimal
regions.

7.3 Recent work

Hunting for improvement directions lead us to survey existing work in the area
of solving parametric linear problems. We found two major tracks, both of
which focus on problems with parametric objectives.

131

7.3.1 Instantiating solver

Andy King and Jacob Howe laid the basis of a solving technique for parametric
linear problems based on parameter instantiation [32]. I am collaborating with
them to design the actual algorithm and implement it. This is another track of
work in progress, which I won’t detail beyond the basic principle.

The idea is to disregard finding regions in the space of parameters. Instead
of keeping the parameters symbolic, as the parametric simplex algorithm does,
the solving algorithm instantiates them with concrete values. Doing so, it enu-
merates the vertices of the polytope s̃Λ described in the previous chapter.

Moving from one vertex to another requires adjusting the value of the pa-
rameters. The strategy essentially relies on the continuity of the solution to the
parametric linear problem: when the value of the parameters are chosen on the
frontier between two neighbouring regions, the vertices associated to the two
regions yield the same objective value.

These ideas seem promising, but there are still a number of corner cases
which need to be properly understood before a correct algorithm can emerge.

7.3.2 Local exploration

Another line of work emerges from Colin Jones’s work [34]. Specific details
are found in a subsequent paper that he wrote with Jan Maciejowski and Eric
Kerrigan [35]. We will build on two main ideas:

• building regions from the coefficients of the objective function and

• local exploration by crossing frontiers.

Building regions from the objective function

The parametric simplex algorithm reaches the end of an exploration branch
when the context it built implies that all the coefficients of the objective function
are nonnegative. If we call c1(x), . . . , cl(x) these coefficients, the largest context
which implies that the optimal is reached is the following.

c1(x) ≥ 0 ∧ . . . ∧ cl(x) ≥ 0

Note that “largest” here refers to the context seen as a polyhedron: no other
context implies that the optimal is reached and includes the one given above.
From this observation, it has been proved [35] that the polyhedron defined by
nonnegativity constraints on the coefficients of the objective function gives the
whole region for which the objective value is optimal.

However this holds only on nondegenerate problems. Indeed, when a problem
is degenerate, several choices of dependent variables describe the same optimal
point in space. To each of these choices, corresponds a way of writing the
objective function. Each of these ways yields a region fragment and their union
gives the whole region. The authors avoid this problem by resorting to symbolic
perturbations of the system, which introduce a small overhead at each pivot.

In any case, the region read from the objective function doesn’t have a
minimised constraint representation. Redundancy needs to be removed in order
to find the true frontiers of the region. A “true” frontier in this context is a
nonredundant constraint of a region.

132

Crossing frontiers

Once the frontiers of a region are known, it becomes tempting to look at what
lies on the other side of each of them. From the fact that the regions partition
the space of parameters, we know that there is another region on the other side
of each frontier. Exploring the space using this idea reduces solving a parametric
linear problem to exploring a graph whose nodes are the regions and whose edges
are frontiers between them. Given a region, i.e. a node, one can cross one of its
frontiers, i.e. edges, and compute a point in a neighbouring region. This point
can then be used to reach the optimal vertex corresponding to the neighbouring
region and, then, to recover the whole region from the objective function.

This idea lead Colin Jones et al. to a new solving algorithm. However, this
algorithm relies fundamentally on the ability to find the true frontiers of the
regions. As a result, the constraint representation of each region needs to be
minimised. This is a costly operation which may hinder the performance of the
whole algorithm. Unfortunately, its experimental validation, as reported in the
paper, seems limited and no implementation is publicly available.

7.4 The idea which we start from

Our next experiment builds on two ideas:

• recovering the region from the objective function and

• finding a point in a region.

More precisely, under the assumption that we could get a point in each region
for free, would we be able to build a more efficient projection operator than
VPL Fourier-Motzkin elimination?

It is reasonable to expect so. Suppose we are given a point x in a region R
and that we are trying to reconstruct region R and, more importantly, the
corresponding parametric objective value. In the encoding of projection as a
linear problem with a parametric objective function, point x can be used for
testing the sign of parametric coefficients. If the parametric objective function is
∑l

i=1 ci(x) ·λi, we may as well optimise the nonparametric function
∑l

i=1 ci(x) ·
λi. This will lead us to the vertex λ of the search space which is optimal for
the choice of parameters x and is therefore optimal for all region R. What’s left
to do is recovering the parametric coefficients of the objective function and the
parametric objective value at the optimal. This could be achieved by solving the
linear problem with nonparametric objective function

∑l

i=1 ci(x) · λi and then
pivoting in the original, parametric, problem so as to make λ the basic solution.
Instead, we chose to keep the parametric objective function throughout the
optimisation. Then, when the solving algorithm needs to know the sign of a
parametric coefficient c′

i(x), the sign of c′
i(x) is used. In essence, we get the

benefit of instantiating the parameters with point x—the sign tests are very
cheap—and the benefit of keeping the objective function parametric: the region
and parametric objective value can be recovered at the end of the optimisation.
This is a form of parameter instantiation similar to that performed by Andy
King and Jacob Howe.

Under the assumption that we can obtain a point in each region at no com-
putational cost, we are essentially solving one nonparametric linear problem for

133

each region in the result, that is to say for each nonredundant constraint in
the projected polyhedron. In comparison, Fourier-Motzkin elimination solves a
linear problem for each constraint it generates, provided it could not prove it
redundant by syntactic inclusion. Therefore, assuming we have a point in each
region should yield a more efficient projection operator. If it were the case, we
would be left with the problem of finding a point in each region at little cost.
Our initial attempt used an SMT solver to find a point in unexplored regions.

Finding a point in the unexplored space

As we mentioned several times already, each region in the solution of a para-
metric linear problem is a polyhedron. Furthermore, at any given point of the
exploration, the subspace which has already been explored is given by the dis-
junction of all the regions which have already been discovered. Suppose for
example that the solver already discovered two regions R1 and R2. Then a
point x is in the subspace which has already been explored if it satisfies the
following condition.

x ∈ R1 ∨ x ∈ R2

If R1 = {c1(x) ≥ 0, . . . , cl(x) ≥ 0} and R2 = {c′
1(x) ≥ 0, . . . , c′

l′(x) ≥ 0}, then
this is equivalent to saying that point x satisfies the following formula.

(

c1(x) ≥ 0 ∧ . . . ∧ cl(x) ≥ 0
)

∨
(

c′
1(x) ≥ 0 ∧ . . . ∧ c′

l′(x) ≥ 0
)

(7.1)

Formula 7.1 is a satisfiability modulo theory (SMT) formula. Its complement
describes the points which are in the yet-unexplored subspace of the parameter
space. It is also an SMT formula, which is given below with negation pushed to
individual constraints using de Morgan’s laws.

(

c1(x) < 0 ∨ . . . ∨ cl(x) < 0
)

∧
(

c′
1(x) < 0 ∨ . . . ∨ c′

l′(x) < 0
)

(7.2)

We may now use an SMT solver, such as Z3 [19], to find a point in the unexplored
subspace, that is to say find a satisfying assignment for formula 7.2. When the
SMT solver concludes that the formula above is unsatisfiable, the whole space
has been covered and the algorithm terminates.

Reaching the end of a branch

After optimisation for the value of parameters x finishes, the objective value
gives a nonredundant constraint of the result and the corresponding region
is built from the coefficients of the objective function. The resulting region
∧l′′

i=1 c′′
i (x) ≥ 0 is then removed from the subspace left to explore, by conjoin-

ing formula 7.2 with the complement of the region
∨l′′

i=1 c′′
i (x) < 0. Note that

the algorithm currently doesn’t pay special attention to whether the optimal is
degenerate: a region is always built from the available coefficients. As we’ll see
below, this results in more regions than actual constraints.

Algorithm outline

Overall, the algorithm for our experiment is as follows.

1. Use an SMT solver to find a point in the space of parameters which doesn’t
belong to an already-explored region.

134

2. Use this point to determine the sign of the coefficients of the objective
function when optimising.

3. Save the optimal objective value.

4. Extract the region from the optimal objective function and remove it from
the space left to explore.

5. Go back to step 1.

Evaluation

The solver uses Z3 for solving SMT formulas. When run on the benchmark suite,
it generates only 66 075 regions, which make 45 683 constraints, once duplicates
are removed. The gap between the two numbers is accounted for by the new
solver not handling degenerate problems in a special way: when a given optimal
is degenerate, the coefficients of the objective function don’t give the whole
region. This being said, much fewer duplicates are generated than when using
the parametric simplex algorithm.

The solver takes 72 seconds to complete, which is a small improvement on
the previous one, but that was not the point of this experiment. In order to
draw conclusions from this experiment, the time spent in the SMT solver needs
to be subtracted from the total time. A total of 38 seconds out of the total
72 seconds are spent in the SMT solver. Some more time is spent minimising
the constraint representation of regions, as keeping all the constraints makes
the SMT formula grow a lot. In total, 12 more seconds are spent minimising
regions. We consider this time as part of the point selection step.

Finally, we can estimate to 72 − 38 − 12 = 22 seconds the time required
to recover all the regions from a point in each of them. These results are
unexpected: if the cost of finding a point in each region is removed, the solver
spends 22 seconds to run over the benchmark suite, as opposed to 3.7 seconds
for VPL projection operator.

We still need to diagnose precisely this difference between our expectations
and the actual results. Here are a few hypotheses. First, the implementation
of the projection operator in VPL was profiled and reasonably optimised. In
contrast, the experimental solver supports ongoing research and is patched and
refactored frequently, yielding a suboptimal design. There may also be a more
fundamental reason for the poor performance we observed: the experimental
solver doesn’t benefit from locality. Finding a new region starts with finding a
point which is outside of all the discovered regions. The corresponding query
to the SMT solver describes such points in general, without bias towards point
closed to the already-explored subspace, which may be cheaper to reach. The
issue can be illustrated on figure 7.3, which represents a polytope where each
vertex is optimal for a region. Suppose vertex λ4 is the first vertex reached
during exploration, using a first point x4. Assume now that the SMT solver
gives point x2 for the next step and that the optimal vertex corresponding to
point x2 is vertex λ2. The optimisation will reach vertex λ2 through a sequence
of pivots, for example λ4 → λ5 → λ6 → λ1 → λ2. If the next point given by
the SMT solver x6, for which vertex λ6 is optimal, the exploration process will
go back to vertices it has already visited without paying attention. As a result,
we suspect that picking a point in the next region which is close to the vertex

135

λ1

λ2 λ3

λ4

λ5λ6

•

• •

•

••

•

Figure 7.3 – vertex exploration order

corresponding to the region we just found will help. Of course, these are just
hypotheses, which need to be checked before further progress can be made.

7.5 Further directions

So far, we experimented with ideas published by others and these experiments
brought interesting remarks. However, our setting, projection for static analysis,
has a number of characteristics which could be exploited in order to build an
efficient solver.

Central point. The encoding of projection as a parametric linear problem
is such that all the regions meet in the central point. This fact seems related
to Jacob Howe and Andy King’s choice of a parametric objective function for
their parameter-instantiating solver [32]. Their objective function is designed
so that it can describe all the possible directions in the polytope in which the
variables lie. I have concerns about this working without the star-like shape of
the regions. How this central point can be exploited still remains unclear.

Cheaper frontier detection. The proposal of Colin Jones et al. [35] for find-
ing points in neighbouring regions builds on the idea of having a minimised rep-
resentation of each region. Minimisation is performed just like the minimisation
of a polyhedron, which is costly. However, given that the set of regions partition
the parameter space, the complement of one frontier of a region is necessarily a
frontier of another region. Furthermore, the regions have full dimension. Com-
bined with the input constraints being normalised using an interior point, this
forces a canonical representation for frontiers. Whether the complement of a
candidate frontier has already been encountered can therefore be tested using
cheaper comparisons.

Discarding regions. Further down the road of reducing the computations
performed on regions, we may remark that they are no more than an inter-
mediate result in our computation: they are of no interest in the construction
of the result of projection. What is really of interest is the set of affine forms
which give the value to solution function of the parametric linear problem. Ja-
cob Howe and Andy King’s approach [32] bypasses computing regions entirely
by instantiating the parameters of the problem. Even without going this far, a
redundant, or partially minimised, region representation may be sufficient for
our needs.

136

Converging threads. Building on these ideas, the next step towards building
an efficient solver needs to consider the following remaining questions.

• How can we get points inside unexplored regions at little cost? The idea of
crossing frontiers from Colin Jones et al. seems promising, provided that
the full minimisation of regions can be bypassed.

• What is the stopping criterion? A graph exploration algorithm based on
the idea of Colin Jones et al. needs to consider all the vertices, that is to
say that every frontier needs to be crossed. This is very costly in terms of
computations.

The approach we have been following for the yet-unfinished design of a new
projection operator has shed an interesting light on the concurrent work of
different research groups. The ideas on all sides seem related but emerging
from different research communities. We put a significant effort in bridging the
terminology gap and in exhibiting similarities. We hope to contribute to making
the various lines of work converge.

Summary in French

Une fois l’objectif clarifié, nous pouvons nous intéresser à sa réalisation.
Sur la collection de cas d’étude tirée de l’évaluation expérimentale de VPL,

la résolution des projections par l’algorithme du simplexe paramétrique est très
lente. L’analyse du profil d’exécution de l’algorithme indique que chacune des
régions qui constituent la fonction solution est découverte par fragments. Le
temps d’exécution de l’algorithme du simplexe paramétrique dépend du nombre
de fragments, qui apparaissent en très grand nombre par rapport au nombre de
régions.

J’ai essayé de résoudre ce problème en concevant un algorithme qui ne frag-
mente pas les régions. Cet algorithme s’inspire de nouvelles façons de résoudre
les problèmes linéaires paramétriques encodant des projections, proposées ré-
cemment par plusieurs groupes de chercheurs. Mon premier essai repose sur
le fait que les régions sont des polyèdres qui partitionnent l’espace et qu’il est
possible de construire une région complète à partir d’un fragment découvert
par l’algorithme du simplexe paramétrique. À la limite, un point constitue un
fragment d’une région. L’idée est de chercher un point dans la partie encore non-
explorée de l’espace des paramètres, de construire la région correspondante. La
région ainsi construite est ajoutée à l’espace déjà exploré et l’algorithme cherche
un nouveau point. L’espace non-exploré est le complémentaire d’une union de
polyèdre : il est décrit par une formule de satisfaisabilité modulo théorie. Un
nouveau point qui satisfait cette formule est trouvé à l’aide d’un outil tel que
Z3.

Bien que cette nouvelle approche soit plus efficace que l’algorithme du sim-
plexe paramétrique, l’opérateur de projection de VPL basé sur l’élimination de
Fourier-Motzkin demeure un ordre de grandeur plus efficace. Une piste d’amélio-
ration sur l’idée d’exploration par des points consiste à chercher de nouveaux
points au voisinnage de la région nouvellement découverte, de façon à accéler le

137

reconstruction de la région suivante. Par manque de temps, ce nouvel essai est
encore travail en cours.

138

Behind and ahead

The overarching theme is the construction of VPL, an abstract domain of poly-
hedra with a proof of correctness written using the Coq proof assistant.

Modular proof of correctness. My work pushed the result verification ap-
proach to guaranteeing correctness to a limit. It builds on a frontend written in
Coq and an Ocaml oracle. They have independent representations of polyhe-
dra and synchronise through a limited amount of communication. The frontend
itself relies on a reduced set of operators from the oracle and builds the whole
domain using functors, which make the proof easier to maintain. The resulting
domain exhibited only a low execution overhead related to proofs.

Witness extraction. For most part, this achievement results from inclusion
witnesses being extracted on the fly by the oracle, from the working data of
the domain operators. It represents a significant improvement over the state of
the art [6], where witnesses are computed after the fact using a linear solver,
which duplicates some of the work. In contrast, the approach I proposed relies
on simple bookkeeping.

External code. When a trusted Coq program relies on external Ocaml

code, this code must be declared to Coq as axioms. The axioms may introduce
implicit assumptions on the behaviour of the Ocaml code, which are worth
scrutinising. In particular, Ocaml functions may not be observationally pure—
they can have side effects—and their straightforward axiomatisation in Coq

may allow proving falsities. In collaboration with Sylvain Boulmé, I proposed
a simple formalisation of side-effecting Ocaml functions, which adds little to
the proof burden and guarantees that the resulting proof doesn’t rely on the
functional purity of the Ocaml code. This work resulted in the may-return
monad.

Constraint representation. VPL performs competitively with state-of-the-
art implementations of the abstract domain of polyhedra, while providing extra
guarantees on the results. The result is made significant by the choice of a
constraints-only representation for polyhedra, thereby departing from the com-
mon practice of using both constraints and generators. From a performance
point of view, going constraints-only proved to be a reasonable choice and al-
lowed to keep the implementation of VPL simple.

139

Projection as a parametric linear problem. As expected, computing con-
vex hulls is the major performance sink of VPL. The later part of my work was
devoted to building a more efficient projection operator, on which the convex
hull operator is based. The basis of this work is the expression of polyhedral pro-
jection as a parametric linear problem. My contribution to this line of work is
proposing a new understanding by encoding projection in a dual way to existing
work.

Designing a new parametric linear solver. All proposals of polyhedral
projection using parametric linear programming suffer from a lack of experi-
mental validation, especially on static analysis problems. This is a particu-
larly salient issue, because my preliminary evaluation using the standard solving
algorithm—the parametric simplex algorithm—shows poor performance. I re-
ported on a joint effort with Alexandre Maréchal to evaluate systematically the
ideas proposed towards building a new solver. Building a more efficient projec-
tion operator than that of VPL, which is based on Fourier-Motzkin elimination,
is still a goal to achieve.

David Kohler’s criterion. A last, minor, contribution of my work consists
in remarking that David Kohler’s criterion for removing some redundant con-
straints during the Fourier-Motzkin elimination of several variables is actually
incompatible with eager minimisation of intermediate results. Since the latter
is commonly performed in implementations of Fourier-Motzkin elimination, this
observation raises the question of how to exploit David Kohler’s criterion in a
sound manner.

Publications

The work reported in the first part of this thesis resulted in three publications.

SAS’ 13 “Efficient certificate generation for the abstract domain of polyhedra”,
with Michaël Périn and David Monniaux

TYPES’ 14 “Modular and lightweight certification of polyhedral abstract do-
mains”, extended abstract, with Sylvain Boulmé

VSTTE’ 14 “Certifying frontend for (sub)polyhedral abstract domains” with
Sylvain Boulmé

The first paper describes mainly the overall architecture of VPL and the design
of the oracle. The two other publications cover the design of the Coq frontend.

Tools

Besides writing papers, I implemented tools to support my work. The most
mature of them, VPL, is integrated to the collection of abstract domains in the
Verasco analyser.

• VPL is an abstract domain of polyhedra which comes with a soundness
proof and is built using the Coq proof assistant. It has two components:
a witness-checking frontend and an Ocaml oracle. The frontend was writ-
ten in collaboration with Sylvain Boulmé. The oracle itself is a complete

140

abstract domain written in Ocaml, which can be used independently in
analysers.

• I also wrote, in collaboration with Alexandre Maréchal, a solver for para-
metric linear problems, with parameters in the objective function. It was
initially based on the parametric simplex algorithm and evolves as we
evaluate new ideas both from the published prior art and our own.

• Last, I implemented a parameter-instantiating parametric linear solver
from the ideas of a paper by Jacob Howe and Andy King [32]. This was
done in collaboration with the authors and is still ongoing work.

Further directions

There is still progress to be made in the area of projection using parametric
linear programming. As the conclusion of chapter 7 points out, many ideas,
from several groups of researchers, have been published recently. They all seem
to converge: time may be ripe to give the final stroke.

On a more pessimistic note, one could note that Fourier-Motzkin elimina-
tion is the simplest algorithm for eliminating variables in polyhedra. Yet, our
elaborate attempts at designing a more efficient algorithm aren’t competitive,
by a large margin. It would be interesting to find out theoretical justifications
of projection as parametric linear problem being an inferior approach.

Taking one step back, integrating VPL as an abstract domain in the Ve-

rasco analyser has revealed a number of performance issues in the combination
of the two. Part of the problem seems related to Verasco repeatedly asking
VPL for the value range of expressions, which is costly for the abstract domain
of polyhedra, since it requires solving two linear problems each time. These
repeated requests come from the way in which machine arithmetic is handled.
VPL itself has no support for it: it relies on a functor in Verasco which re-
peatedly checks whether the value interval of each variable lies within the range
of machine integers. Several approaches to fixing this performance issue may be
considered. The most straightforward is adding machine arithmetic support to
VPL, following the work of Axel Simon and Andy King [48]. Another approach
may be considered, in the spirit of the work of Arie Gurfinkel et al. [29]: invari-
ants found with abstractions over integers could be used as a help for inferring
sound invariants over machine integers.

Longer-term ideas

Two longer-term directions emerge from the work I reported in this thesis. They
should be regarded more as potential research programs, rather than immediate
projects.

Selective enabling. Polyhedra are a computationally expensive abstraction
which hardly scales. As a result, many restrictions of polyhedra, such as oc-
tagons [42] or subpolyhedra [41], have been introduced. An alternative approach
may be worth investigating: limiting their use in scope. Instead of having the
domain active throughout the analysis, it may be interesting to turn it on for
portions of the code where the extra precision is necessary, when the analyser
fails to prove an assertion with a less precise domain for example. Limiting the

141

use of polyhedra may also take the form of using the anytime approximation
characteristic of projection as a parametric problem: solving it for only an in-
teresting subset of the parameter space may save significant computation effort.
Buffering calls to operators so that they may be reordered follows a similar
spirit. In all cases, the abstract domain would require a closer cooperation from
the analyser, the details of which make an interesting topic.

Linear programming Coq tool box. Implementing and designing algo-
rithms from the field of linear programming proved to be surprisingly tricky.
Many, rarely encountered, corner cases compromise the correctness of either
algorithm or code. The delicate use of David Kohler’s criterion is but one ex-
ample. One way to address this issue may be to build a tool box in Coq to help
reason on the topic. It may come as a formalisation of the core concepts with an
accompanying collection of lemmas. Although, it wouldn’t make designing eas-
ier, it would help uncovering hidden assumptions and easily overlooked corner
cases in promising ideas.

Summary in French

La construction de VPL est le thème principal de mon travail. VPL est un
domaine abstrait de polyèdres dont une preuve de correction est écrite à l’aide
de l’assistant à la preuve Coq. La preuve est construite suivant le principe
de la vérification de résultats. Cette architecture permet de décorréler l’implé-
mentation des opérateurs de la preuve de leur correction. La preuve elle-même
est découpée en un ensemble de foncteurs, chacun ajoutant un opérateur à
un squelette simple. Vérifier en Coq des résultats calculés par un programme
Ocaml nécessite une communication entre les deux environnements. Ce lien est
réalisé à l’aide d’axiomes. Une de mes contributions, réalisée en collaboration
avec Sylvain Boulmé, est une théorie Coq simple qui permet de se protéger
des contradictions que peuvent introduire de l’ajout de nouveaux axiomes dans
Coq. Une autre contribution est de montrer qu’il est réaliste de n’utiliser que la
représentation par contraintes des polyèdres. En effet, les performances de VPL

sont comparables aux implémentations existantes, bien que VPL soit le seul
domaine dont les résultats sont formellement prouvés corrects. Ce faible coût
de la preuve découle d’une nouvelle façon de construire les témoins d’inclusion,
en les extrayant des données de travail des opérateurs du domaine. L’opérateur
«join» est le plus coûteux de VPL. Il est construit à partir de l’opérateur de
projection, pour laquelle de nouveaux algorithmes ont récemment été propo-
sés. Mon travail propose une nouvelle explication des fondements théoriques de
ces algorithmes. Il se conclut sur une évaluation expérimentale en cours de ces
nouvelles idées.

Mon travail a fait l’objet de deux articles publiés dans des conférences in-
ternationales et d’un exposé présenté dans un workshop. J’ai développé deux
outils : le domaine abstrait VPL et un outil de résolution de problèmes linéaires
paramétriques.

142

Bibliography

[1] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening oper-
ators for convex polyhedra. Science of Computer Programming, 58, 2005.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex
polyhedra and the double description method. Formal Aspects of Comput-
ing, 17, 2005.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2), 2008.

[4] G. Balakrishnan, T. W. Reps, D. Melski, and T. Teitelbaum. Wysinwyx:
What you see is not what you execute. In Verified Software: Theories,
Tools and Experiments, 2005.

[5] F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear
solver. Theory and Practice of Logic Programming, 5(1–2), 2005.

[6] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for
relational program analysis. Technical Report RR-6333, INRIA, 2007.

[7] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In Programming Language Design and Implementation, 2003.

[8] R. G. Bland. New finite pivoting rules for the simplex method. Mathematics
of Operations Research, 2, 1977.

[9] S. Boulmé and A. Maréchal. Refinement to certify abstract interpretations,
illustrated on linearization for polyhedra. In Interactive Theorem Proving,
2015.

[10] Bugseng. The Parma Polyhedra Library, 1.0 edition, 2012.

[11] D. Caminha Barbosa de Oliveira and D. Monniaux. Experiments on the
feasibility of using a floating-point simplex in an SMT solver. In Workshop
on Practical Aspects of Automated Reasoning, 2012.

[12] N. V. Chernikova. Algorithm for discovering the set of all the solutions
of a linear programming problem. USSR Computational Mathematics and
Mathematical Physics, 1968.

143

[13] A. Chlipala. Certified Programming with Dependent Types. MIT Press,
2013.

[14] G. Claret, L. D. C. Gonzalez Huesca, Y. Régis-Gianas, and B. Ziliani.
Lightweight proof by reflection using a posteriori simulation of effectful
computation. In Interactive Theorem Proving, 2013.

[15] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In International Symposium on Programming, 1976.

[16] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Principles of Programming Languages, 1977.

[17] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Principles of Programming Languages,
1978.

[18] G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and
Extensions. Springer, 1997.

[19] L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[20] B. Dutertre and L. de Moura. Integrating simplex with dpll(t). Technical
report, SRI International, 2006.

[21] P. Feautrier. PIP/PipLib. http://piplib.org.

[22] P. Feautrier. Parametric integer programming. RAIRO Recherche Opéra-
tionnelle, 22, 1988.

[23] A. Fouilhé and S. Boulmé. A certifying frontend for (sub)polyhedral ab-
stract domains. In Verified Software: Theories, Tools and Experiments,
2014.

[24] A. Fouilhé, D. Monniaux, and M. Périn. Efficient certificate generation for
the abstract domain of polyhedra. In Static Analysis Symposium, 2013.

[25] J. Fourier. Histoire de l’académie, partie mathématique. In Mémoire de
l’Académie des sciences de l’Institut de France. Imprimerie Royale (Paris),
1827.

[26] Free Software Foundation. The GNU Multiple Precision Arithmetic Library,
5.0 edition, 2012.

[27] Free Software Foundation. The GNU Linear Programming Kit, 4.55 edition,
2014.

[28] T. Gal and J. Nedoma. Multiparametric linear programming. Management
Science, 18, 1972.

[29] A. Gurfinkel, A. Belov, and J. Marques-Silva. Synthetizing safe bit-precise
invariants. In Tools and Algorithms for the Construction and Analysis of
Systems, 2014.

144

[30] N. Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. PhD thesis, Université scientifique et
médicale de Grenoble, 1979. In French.

[31] J. Henry, D. Monniaux, and M. Moy. PAGAI: a path sensitive static anal-
yser. In Tools for Automatic Program Analysis, 2012.

[32] J. Howe and A. King. Polyhedral analysis using parametric objectives. In
Static Analysis Symposium, 2012.

[33] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In Computer-aided Verification, 2009.

[34] C. N. Jones. Polyhedral tools for control. PhD thesis, University of Cam-
bridge, 2005.

[35] C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski. Lexicographic pertur-
bation for multiparametric linear programming with applications to control.
Automatica, 2007.

[36] C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski. On polyhedral pro-
jection and parametric programming. Journal of Optimization Theory and
Applications, 138, 2008.

[37] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-
verified C static analyzer. In Principles of Programming Languages, 2015.

[38] N. Karmarkar. A new polynomial time algorithm for linear programming.
Combinatorica, 4, 1984.

[39] D. A. Kohler. Projections of convex polyhedral sets. PhD thesis, University
of California, Berkeley, 1967.

[40] X. Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7), 2009.

[41] F. Logozzo and V. Laviron. SubPolyhedra: a (more) scalable approach
to infer linear inequalities. In Verification, Model Checking and Abstract
Interpretation, 2009.

[42] A. Miné. The octagon abstract domain. In Workshop on Analysis, Slicing,
and Transformation, 2001.

[43] A. Miné and X. Leroy. ZArith. http://forge.ocamlcore.org/projects/zarith.

[44] D. Monniaux. On using floating-point computations to help an exact linear
arithmetic decision procedure. In Computer-aided Verification, 2009.

[45] D. Monniaux. Quantifier elimination by lazy model enumeration. In
Computer-aided verification, 2010.

[46] D. Pichardie. Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. PhD thesis, Université Rennes 1, 2005. In
French.

145

[47] A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Static
Analysis Symposium, 2005.

[48] A. Simon and A. King. Taming the wrapping of integer arithmetic. In
Static Analysis Symposium, 2007.

[49] M. Sozeau and N. Oury. First-Class Type Classes. In Theorem Proving in
Higher Order Logics, 2008.

[50] The Coq Development Team. The Coq proof assistant reference manual.
INRIA, 8.4 edition, 2012.

[51] H. L. Verge. A note on Chernikova’s algorithm. Technical report, INRIA,
1992.

[52] D. Wilde. PolyLib. http://icps.u-strasbg.fr/polylib.

146

Index

⊥, 18, 65
Astrée, 6
Compcert, 6
Coq, 7
Coq notation, 9
Pagai, 84
Verasco, 6
VPL, 15, 64

abstract domain, 11
abstract interpretation, 10
abstract value, 18
affine constraint, 23
affine function, 22
assertion, 10
assignment, 21, 36, 77
axiom, 31
axiomatisation, 39

basic solution, 53
basic variable, 53
basis, 53
benchmark, 87
Bind, 34
binding, 72
branching, 99
buffered renaming, 38
bugs, 33

canonical form, 53, 67
canonicity, 68
central point, 108, 132
checker, 29
closure, 79
complementary slackness, 122
concavity, 97
concretization, 20
cone, 114
conflict, 62
constraint representation, 23

constraints, 65
context, 99
convex combination, 23
convex hull, 78
cycling, 57

data structure, 64
degeneracy, 54
dependent variable, 53
dictionnary, 53
disjunction, 78
distance, 104
domain interface, 18
double description, 25
dual degeneracy, 54
dual problems, 50
duality, 50

echelon form, 66
elimination, 21
environment, 18
evaluation, 82
existential quantification, 21
experimental protocol, 84
experiments, 82
extractor, 9, 31
extreme point, 53

false alarm, 13
Farkas’s lemma, 27
feasible solution, 50, 53
Fourier-Motzkin elimination, 73
frame, 37
free variable, 37
fresh variable, 36
frontend, 29
frontier, 97, 107
fuel, 27
full dimension, 67
function concavity, 97

147

function convexity, 97
functor, 34

Gaussian elimination, 66
generator, 114
generator representation, 23
geometry, 22
guard, 11, 20, 35

hypercube, 24
hyperplane, 45

implementation, 82
implicit argument, 9
implicit axioms, 39
implicit equality, 67
implicit purity, 40
inclusion test, 20
inconsistency, 39
inductive invariant, 11
initial basis, 58
interior point, 51, 108
intersection, 11
intervals, 11
invertible assignment, 77

join operator, 20

Kohler’s criterion, 75, 81

linear function, 23
linear programming, 45
linearisation, 81
lines, 23
logging, 86
loops, 11

machine arithmetic, 18
matrix notation, 50
maximisation, 45
may-return monad, 40
memory corruption, 39
memory state, 20
minimisation, 18, 47

narrowing, 13
non-invertible assignment, 77
normalisation, 104, 105, 108, 116

objective function, 49
optimal, 50

oracle, 26, 29, 64
oversplitting, 123

parameters, 94
parametric linear problem, 93
partition, 97, 99, 105
performance, 82
pivot, 56
pivoting rule, 54
polyhedra, 13, 17, 22
polyhedral cone, 114
polytope, 109
primal, 50
primal degeneracy, 54
problem size, 89
product of intervals, 11
projection operator, 21
proof assistant, 7, 9
proof automation, 42
publications, 135
purity, 40

radix tree, 65
random, 84
rational number, 65
rays, 23
reachable state, 10
region, 97, 105
relational abstraction, 13, 17
renaming, 31
result verification, 18, 26
row echelon form, 66

satisfiability, 59
simplex algorithm, 58
slack variable, 60, 95
slice, 116
SMT, 59
SMT solver, 130
soundness, 10, 14
specification, 8, 9
state, 65, 84
steepest descent, 58
substitution, 66
supporting hyperplane, 117
syntactic inclusion, 48
syntactic redundancy, 68

tactic, 8
time, 84

148

tools, 135
top, 11
trust, 6, 9
type class, 18

undefined behaviour, 10
union, 78
unreachable code, 18
unsatisfiability, 62

Verasco, 14
vertex, 23, 53

weakest liberal precondition, 42
widening, 11, 12, 20
witness, 26, 27, 33
witness composition, 72
witness extraction, 49, 76
wrapping, 86

149

150

Abstract

The work reported in this thesis revisits in two ways the abstract domain of
polyhedra used for static analysis of programs. First, strong guarantees are
provided on the soundness of the operations on polyhedra, by using of the Coq

proof assistant to check the soundness proofs. The means used to ensure cor-
rectness don’t hinder the performance of the resulting Verimag Polyhedra

Library (VPL). It is built on the principle of result verification: computations
are performed by an untrusted oracle and their results are verified by a checker
whose correctness is proved in Coq. In order to make verification cheap, the
oracle computes soundness witnesses along with the results. The other distin-
guishing feature of VPL is that it relies only on the constraint representation
of polyhedra, as opposed to the common practice of using both constraints and
generators. Despite this unusual choice, VPL turns out to be a competitive
abstract domain of polyhedra, performance-wise.

As expected, the join operator of VPL, which performs the convex hull
of two polyhedra, is the costliest operator. Since it builds on the projection
operator, this thesis also investigates a new approach to performing projections,
based on parametric linear programming. A new understanding of projection
encoded as a parametric linear problem is presented. The thesis closes on a
progress report in the design of a new solving algorithm, tailored to the specifics
of the encoding so as to achieve good performance.

Résumé

Cette thèse revisite de deux manières le domaine abstrait des polyèdres utilisé
pour l’analyse statique de programmes. D’abord, elle montre comment utiliser
l’assistant à la preuve Coq pour apporter des garanties sur la correction des
opérations sur les polyèdres sans compromettre l’efficacité de l’outil VPL issu de
ces travaux. L’outil est fondé sur le principe de la vérification de résultats : un
oracle, auquel on ne fait pas confiance, fait les calculs, puis les résultats sont véri-
fiés par un validateur dont la correction est prouvée avec Coq. De plus, l’oracle
fournit des témoins de la correction des résultats afin d’accélérer la vérification.
L’autre caractéristique de VPL est l’utilsation de la seule représentation par
contraintes des polyèdres, par opposition à l’approche habituelle qui consiste à
utiliser à la fois des contraintes et des générateurs. Malgré ce choix inhabituel,
les performances de VPL s’avèrent compétitives.

Comme on pouvait le prévoir, l’opérateur join, qui calcule l’enveloppe con-
vexe de deux polyèdres, est le plus coûteux. Puisqu’il nécessite un grand nombre
de projections, cette thèse explore plusieurs nouvelles approches de l’opérateur
de projection, basées sur la programmation linéaire paramétrique. Elle propose
une sythèse des variantes et des combinaisons possibles. La thèse se termine sur
les éléments clés d’un nouvel algorithme de résolution tirant parti des spécificités
de l’encodage afin d’obtenir de bonnes performances.

	Contents
	Introduction
	Summary in French

	I An abstract domain of polyhedra with a formal soundness proof
	Efficient result verification
	What needs to be proved?
	Convex polyhedra and their representations
	Geometrical view
	Constraints and generators
	Which representation should be used?

	Designing the proof
	Proof approaches
	Farkas's lemma
	Choosing constraint representation

	The core abstract domain
	Axiomatising
	The extractor
	The communication protocol

	Modular proof formalisation
	The guard operator
	Assignment
	Framing constrained variables
	Assignment with buffered renaming

	Formalising external code
	The pitfalls of a naive axiomatisation
	A simple theory of impure computations
	Backward reasoning on impure computations

	Completing the picture
	Improvement on prior work
	The oracle

	Summary in French

	Proving inclusions with linear programming
	Inclusion as a maximisation problem
	Inclusion as a minimisation problem
	Linear problems and duality
	Interior point methods
	The simplex algorithm
	A linear program solver
	From optimisation to satisfiability
	Problem representation
	Overview of the algorithm
	Extracting witnesses

	Wrapping up
	Summary in French

	Computing on polyhedra represented as constraints
	Representing polyhedra as constraints
	Separating equalities from inequalities
	Invariants of the representation of equalities
	Invariants of the representation of inequalities
	Interaction between minimisation and verification

	Generating witnesses on the fly
	Inclusion test
	Intersection
	Projection
	Assignment
	Convex hull

	Highlights and other features of VPL
	Summary in French

	Implementing and evaluating performance
	Implementation size
	Building programs and proofs with Coq
	The subtleties of performance evaluation
	The experimental setting
	Evaluation results and interpretation
	VPL: simple, verified and efficient
	Summary in French

	II Improving projection using parametric linear programming
	Parametric linear programming
	Parametric linear problems
	Solutions to parametric linear problems
	The parametric simplex algorithm
	The impact of parametricity
	The algorithm

	Wrapping up
	Summary in French

	Defining projection as a parametric linear problem
	A polyhedron as a parametric linear problem
	The starting point
	Redundancy
	Unbounded polyhedra
	Fully dimensional regions

	From a polyhedron to its projection
	Starting from positive linear combinations
	The starting point
	From cone to polytope

	Duality of the two encodings
	Two models for projection
	Summary in French

	Towards a new solver
	The problem with the standard algorithm
	The method
	Recent work
	Instantiating solver
	Local exploration

	The idea which we start from
	Further directions
	Summary in French

	Behind and ahead
	Summary in French

	Bibliography
	Index

