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Chapter 1

(zeneral introduction

1.1 Motivation and previous work

This thesis has been done in the context of the French ANR (Agence Nationale de Recherche) spon-
sored project HAMECMOPSYS (Hamiltonian Methods for the Control of Multi domain Distributed
Parameter Systems), reference code ANR-11-BS03-0002. The aim of this project is to use the intrinsic
properties of physical systems through the port Hamiltonian framework to develop new tools and new
theoretical results for the analysis and the control of a large class of complex dynamical systems. The
project focuses more specifically on distributed parameter systems through the extension of the port
Hamiltonian framework to infinite dimensional systems [78].

As soon as complexity and distribution in space are taken into account during the modeling step,
a major concern arising from these approaches is the large scale or infinite dimension nature of the
resulting state space. Hence, for control purposes, an important problem is the preservation of the
intrinsic structure and passivity property of the original model during the reduction/approximation
process. This subject is the core of this thesis.

The port Hamiltonian approach is based on some energetic considerations and is well-adapted
for the modeling and the control of mechanical, electro-mechanical, multi-physical systems as well
as network systems [19, 79, 78, 53, 32, 17]. It is strongly linked to the passivity properties of the
considered systems. These passivity properties are very useful for control design [8, 82, 83| and the
proposed reduction schemes have then to preserve these properties.

The passivity preserving reduction schemes have been studied for both finite and infinite dimen-
sional systems in many references in the last decade. In the finite dimensional case, the positive real
balancing methods have been introduced in [25, 3] for positive real (passive) systems. It has been
extended to infinite dimensional systems in [29]. The authors in [38] proposed a passivity preserving
reduction method with finite frequency for finite dimensional passive systems. Several other researches
tried to insure passivity and structure of the reduced order model. On the one hand, in the finite
dimensional case, the Krylov subspaces and moment matching methods have been used to reduce port
Hamiltonian systems preserving their passivity [63, 62, 64]. In [26, 27] is discussed the interpolation
based model reduction of port Hamiltonian systems. From a geometry point of view, Effort and Flow
constraint methods have been proposed in [65]. However, from the balanced reduction point of view,

the lossless port Hamiltonian systems cannot be reduced by balancing method [76]. The positive
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real balancing method is introduced in [61] for dissipative port Hamiltonian systems. The Lyapunov
balanced method for non linear port Hamiltonian systems has been proposed in [21]. On the other
hand, the passivity and Hamiltonian structure preserving approximations of infinite dimensional port
Hamiltonian systems have been derived on the basis of the spatial discretization called mixed finite
elements method [24, 5, 33], and pseudo-spectral method [52] from the geometry point of view. The
Petrov-Galerkin approximation proposed in [34] is concerned with input and output considerations.

Another characteristic of network or multi-physical systems is that the interconnection of sub-
systems may lead to algebraic constraints. This usually leads to a system of differential algebraic
equations (DAE) or an implicit port Hamiltonian system [16, 19]. For instance, in this thesis, a
complex micro mechanical manipulator called nanotweezers [7] used for the manipulation of DNA
bundles will be formulated as a port Hamiltonian system by interconnecting two mechanical systems.
Another example can be found in [10] where a simplified airplane wing model is described through a
mechanical beam coupled with a fluid tank. More generally descriptor state space systems (also called
singular systems/generalized state-space systems) are associated with differential algebraic equations
(DAE) systems and have attracted much attention in the last decades [15, 18]. This framework will
be used to deal with implicit port Hamiltonian systems arising for example from the interconnection
of mechanical subsystems. Moreover balanced reduction schemes proposed for example in [74, 69] will
be adapted to implicit port Hamiltonian system.

The above model reduction methods all deal with open loop dissipative systems. When control

design is concerned, three different approaches can be applied:

e Design a low order controller directly based on the high dimensional system,;

e Reduce the high dimensional system by a lower order numerical approximation, then design the

controller based on this approximation;

e Apply a model reduction procedure, two cases are considered at the same time: the system and

the controller.

The first scheme is always difficult to achieve, so we shall concentrate on the last two methods. The
second method have been widely studied for port Hamiltonian systems. Nevertheless it is based on the
aforementioned open loop approaches and then on the fact that the open loop system is passive. As
a consequence it cannot be applied in case of undamped or weakly damped systems. It is the case for
example with hyperbolic systems. Indeed in this case nothing can be used to distinguish some states
from the others. As a consequence we shall move to the third approach that consists in designing at
the same time the controller and the reduction scheme. The balanced reduction method associated
with the LQG control problem is suitable to attain this objective.

In control theory, the Linear-Quadratic-Gaussian (LQG) control problem is one of the most fun-
damental optimal control problems. It concerns uncertain linear systems disturbed by additive white
Gaussian noise, having incomplete state information (i.e. not all the state variables are measured and
available for feedback) and undergoing control subject to quadratic costs. The solution to the control
problem is unique and leads to a linear dynamic feedback that is easy to compute and to implement.
Generally speaking, LQG controller is neither stable nor passive. Hence the Hamiltonian structure
and passivity properties are not usually preserved in closed loop when LQG control is applied to port
Hamiltonian systems. On one hand, a first attempt to preserve these properties in closed loop has

been done for finite dimensional positive real linear system in [40, §].
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On the other hand, the balanced reduction method associated with the LQG control problem,
called LQG balanced method, has been firstly introduced in [36]. This reduction method is perfectly
suitable for low order controller design in finite dimension and has been extended to infinite dimen-
sional systems in [12]. However LQG balanced method is not passive preserving in general.

The aim of this doctoral Thesis is:

e To study the reduction of implicit port Hamiltonian systems by using the descriptor system

framework.

e To study the LQG based method for passive preserving model reduction of closed loop port

Hamiltonian system in both finite and infinite dimensional case.

1.2 Organization and contribution of this thesis

This thesis is divided into three chapters. Chapter 2 is devoted to the reduction of the implicit port
Hamiltonian systems. The aim of this chapter is to motivate the reduction of network of interconnected
systems through physical algebraic constraints. This chapter starts with an introduction on port
Hamiltonian systems. A descriptor representation of implicit port Hamiltonian systems, called port
Hamiltonian descriptor system is then proposed. This port Hamiltonian descriptor formulation and
its balanced realization are used to reduce the implicit port Hamiltonian systems.

In Chapter 3 we consider the passivity and structure preserving reduction of closed loop port
Hamiltonian systems. More precisely we are interested in the Hamiltonian structure and passivity
preserving low order controller design for port Hamiltonian systems, i.e., a low order feedback such
that the closed loop system is still a port Hamiltonian system. This is done from the closed loop
point of view motivated by the design of reduced order controllers. Hence Chapter 3 may be read
independently of Chapter 2. We then define a passive LQG control problem and we suggest a reduction
scheme that preserves the Hamiltonian structure in closed loop. The chapter ends with a discussion
on the estimation associated to the reduction method.

Chapter 4 proposes to generalize the aforementioned closed loop reduction method to infinite
dimensional port Hamiltonian systems.

The thesis ends with some concluding remarks and perspectives of future work in Chapter 5.

The main contributions of this thesis are:

e Chapter 2: We use the descriptor state space framework to reformulate the DAE representation
of port Hamiltonian systems, called port Hamiltonian descriptor systems. It shows that the
port Hamiltonian descriptor systems conserve a Dirac structure. The balanced realization of
descriptor systems is used to choose a suitable coordinate system such that the state variables
can be separated from the input-output point of view. The Effort and Flow constraint methods
are used to reduce the port Hamiltonian descriptor system such that passivity and structure are

preserved. At last, we apply this reduction method to a nanotweezers model.

e Chapter 3: The closed loop reduction of finite dimensional port Hamiltonian systems. It
is proved that LQG controllers can be passive and have a port Hamiltonian realization if the
weighting matrices of the associated LQG control problem are chosen in a certain way. These

conditions are characterized for port Hamiltonian systems in two different ways to get two



CHAPTER 1. GENERAL INTRODUCTION

structure preserving dynamical LQG state feedbacks. These two structure preserving LQG con-
trollers are also equivalent to the control of port Hamiltonian systems by interconnection. One
of these LQG control problems can not allow us to define a reduction balanced coordinate since
the product of the two solutions of the Riccati equations is equal to the identity. Fortunately
the other one allows us to define a balanced realization for the reduction. Then we propose to
use the Effort constraint method to reduce the LQG balanced port Hamiltonian system and to

derive the reduced order controller.

Chapter 4: The closed loop reduction of infinite dimensional port Hamiltonian system. First,
we suggest a passive and structure preserving LQG state feedback control design method by a
specific choice of the weighting operators. Next we use this passive LQG problem to define a
balanced realization. This balanced realization is used to approximate the infinite dimensional
port Hamiltonian system by using a Petrov-Galerkin projection method. At last the low order
LQG controller can be obtained by using the approximated system and the passive LQG control
design. The methods suggested in this chapter can be regarded as the generalization of the

method proposed in Chapter 3 from the finite to the infinite dimensional case.



Chapter 2

Port Hamiltonian systems in

descriptor form for balanced reduction

2.1 Introduction

In the last decade, a powerful network modeling frame for the compositional modeling of finite and
infinite dimensional physical systems called port Hamiltonian systems has been developed for electri-
cal, mechanical, electro-mechanical and hydraulic systems which are based on the principle of energy
balance equations [19, 78, 17, 42, 46, 32]. In network models the system is considered as the inter-
connection of energy storing elements via basic physical interconnection laws (e.g. Newtons third law
or Kirchhoff’s low) together with energy dissipating elements. Port Hamiltonian systems are passive
if the total energy ( Hamiltonian) is bounded from below. However the port Hamiltonian modeling of
complex networks or multi-physics systems or stemming from the discretization of infinite dimensional
port Hamiltonian system may lead to high-order systems. For the purpose of the control of these sys-
tems, there might hence appear the need for model reduction. Furthermore, in view of keeping the
structural properties of the system such as passivity or the interpretation as a network model for
the purpose for instance of applying passivity-based control, one may require that the reduced-order
model retain the passivity and port Hamiltonian structure.

In recent years, different passivity preserving reduction methods have been widely studied by many
researchers. The positive balanced methods have been used for the passivity preserving reductions in
[2, 3, 69, 25], the interpolation methods have been proposed in [20, 71], and the researcher in [38] have
proposed a passivity preserving method which deals with the finite frequency H., performance of the
error system. For finite dimensional port Hamiltonian systems, some reduction methods have also
been proposed. The moment matching methods have been proposed in [64, 63]. In [65], the author
proposed a reduction approach from the geometric point of view. Also a reduction method of port
Hamiltonian systems based on interpolation method has been suggested in [26].

However in the network models or multi-physics systems, the physical algebraic constraint equa-
tions often appear in the interconnection relations between the sub-systems. This may lead to a
system of differential algebraic equations (DAE) representation of port Hamiltonian systems or im-

plicit port Hamiltonian system [16, 19] often associated with a Lagrangian multiplier (corresponding
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to a so-called mized representation of Dirac structures). Of course one may eliminate the algebraic
constraints, but often this is not advantageous as thereby the sparsity of the system is decreased
and the interpretation of the model as interconnection of submodels is lost. Therefore this chapter
will treat the model reduction of implicit Port Hamiltonian systems, however preserving their DAE
representation thereby conserving expression of the physical constraints in the reduced systems

We shall use here the frame of descriptor systems (also called singular systems/generalized state-
space systems) theory which is an important part in the general field of control systems theory,
and has attracted much attention in the last decades [15, 18]. Descriptor systems appear in many
fields, such as electrical networks, mechanical systems, and so on. It is a natural way to present the
differential algebraic systems which have been made lots contributions in system analysis, control
design as well as model reduction. By using some coordinate transformations, the descriptor systems
can be represented in the Weierstrass canonical form which separates the system into a slow response
part and a fast one [73, 15]. Particularly in model reduction of descriptor systems, there have been
major efforts searching in balanced method by T. Stykel [74, 69]. The descriptor systems theory
provides us some useful tools to analyze the DAE representation. Hence, we shall use these tools to
reduce the constrained port Hamiltonian systems with preserving the Hamiltonian structure as well
as the physical constraints in the reduced systems.

The two main contributions of this chapter are given as: a novel representation of port Hamiltonian
system so called port Hamiltonian descriptor system and a reduction scheme for this port Hamiltonian
descriptor system. This novel descriptor representations is obtained by eliminating the Lagrangian
multiplier but still conserving the expression of the physical constraints. This allows us to use the
descriptor system theory to analyze the port Hamiltonian systems. Hence we shall suggest a reduction
scheme by balanced realization of descriptor system and a geometric reduction method to reduce the
port Hamiltonian descriptor systems and preserve the passivity and Hamiltonian structure. A micro

mechanical system is used to illustrate the effectiveness of the proposed reduction method.

2.1.1 Organization of the chapter

This chapter is organized as follow. In Section 2.2, we recall the basics of port Hamiltonian systems
and Dirac structure which are used in the following sections. Section 2.3 derives a port Hamiltonian
descriptor system from the linear constrained port Hamiltonian system and its Weierstrass canonical
form is obtained. In Section 2.4 the Lyapunov balanced realization of port Hamiltonian descriptor is
defined, furthermore a structure preserving reduction procedure is suggested for this balanced system.
In Section 2.5, some numerical simulation results are given by applying the proposed method to a
micro mechanical actuator model established in FEMTO-ST. Finally the conclusion of this chapter is

given in Section 2.6.

2.1.2 Main contributions of the chapter
The main contributions of this chapter are the following.

e In Section 2.3, a class of linear port Hamiltonian system with constraints are defined by the
descriptor system is given, namely port Hamiltonian descriptor system. The linear constrained
port Hamiltonian system is derived from the constrained Dirac structure which can represent

every Dirac structure with some transformation. We show how to get a descriptor form port
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Hamiltonian system and its Weierstrass canonical form from constrained representation with

some coordinate transformations which is different from the ones given in [45, 16].

e A geometric reduction scheme is given in Section 2.4 for structure preserving of port Hamiltonian
descriptor system defined in last section. Firstly we define the Lyapunov balanced realization
of port Hamiltonian descriptor system through the controllability and observability Gramians.
Then we use the geometric reduction methods so called Flow and Effort constrained methods to
reduce the balanced system as well as preserve the Hamiltonian structure. During the reduction

scheme, the constraint of the port Hamiltonian system is always conserved.

e In Section 2.5, we apply all the previously proposed concepts to a complex micro mechanical
manipulator, called nanotweezer, and developed at the FEMTO-ST laboratory in Besangon
(France). The comparison of Bode diagram between the full order system and reduced order
system is given. Furthermore the relative H., errors between the full order system and reduced

order systems are computed for different orders.

2.2 Dirac structure and port Hamiltonian systems

In this section we shall recall the definition of the port Hamiltonian system. The port Hamiltonian
system can be written as a coordinate-free representation through a Dirac structure as in the Figure

2.1 by D. The definition of Dirac structure is given as follows:

Definition 2.1. (Dirac structure [11]) Let F be a linear space with a dual space £ := F*, and a
duality product denoted as (e | f) € R, with f € F and e € £. In vector notation we simply write
the duality product as (e | f) = el f. We call F the space of flow variables, and & = F* the space of

effort variables. Define on F x £ the following indefinite bilinear form

< (f1,e1), (fo,e2) >=(e1 | f2) + (e2 | f1),

A subspace D C F x £ is a constant Dirac structure if D = D+, where D+ is the orthogonal
complement of D with respect to the indefinite bilinear form < - | - >.

Every Dirac structure D C F x &€ can be represented in kernel representation as
D={(f,e)e Fx&|Ff+ Fe=0} (2.1)
for linear maps F': F — V and E : £ — V satisfying

EF*+FE*=0

(2.2)
rank(F | F) = dimF

where V is a linear space with the same dimension as F, and where F* : V* — F* and E* : V* —

F** = F are the adjoint maps of F' and FE, respectively.

It follows from (2.2) that D can be also written in image representation as

D={(fe) e FxE|f=E*N\e=FA\\eV} (2.3)
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Figure 2.1: Dirac structure

The port Hamiltonian system is defined as follows. We start with a Dirac structure on a space

involves all the flow and effort variables:
DCFx xEx X FrxEr X Fp xXEp.

The space Fx xXEx is the space of flow and effort variables corresponding to the energy-storing elements
(fz,€z). The space Fr x Eg is defined as the flow and effort variables space of the resistive elements
(fr.er). And the external ports (or sources ports) variables (f,,e,) defined on space Fp x Ep. Basic
property of a Dirac structure is power-conservation, it means that the total power associated with the

ports variables defined as above is zero, at the ports of the Dirac structure.

The vector of all the flow and effort variables is given as:

(fzaea:afRaeRyfpyep) €D (2.4)

with
foe € Fx, ez €Ex, frR € FRr, er €&R, fp € Fp, ¢y € Ep.

The constitutive relation of the energy-storing elements is defined by the internal ports (fy,e,) as
follows. We introduce the total energy of the energy-storing elements, the Hamiltonian H : X — R
with the state variables vector x = (21, 22, . .. xn)T so called energy variables. Hence the Hamiltonian
is denoted by H(x). We take the variable space X = Fx. The flow variables of energy-storing elements
are defined as the rate & of the energy variables. Furthermore the effort variables of energy-storing

elements are given by the co-energy variable %—I; as follows:

OH
=, . = 2.5
fo=—b  e= (25)
One can imply the balance equation immediately:
d OH
—H(x) = (= |1)=—elf, 2.6
CH() = (5| ) =~ f (26)

It means that the increase of the total energy H(z) equals to the power —el f,.

Remark 2.1. In the linear case, the Hamiltonian, total energy H (z) can be represented by the quadratic

form:
H(x) = %xTQa? (2.7)
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with the matrix Q = QT > 0 so called energy matrix.

The constitutive relation of the resistive elements is defined as follows.

fr=—v(er) (2.8)

with some function ¢ satisfying
eboler) > 0forall ep # 0 (2.9)

Remark 2.2. In the linear case, the resistive elements are given by:

fr = —Depr with D = DT >0 (2.10)

It can be interpreted as the power is always dissipated by the resistive elements.

Now we introduce the definition of port Hamiltonian system as follows:

Definition 2.2. (Port Hamiltonian systems) Consider the port variables given in figure 2.1 con-
strained by the Dirac structure defined in Definition 2.1, the Hamiltonian H : X — R with the
constitutive relations of energy storage ports (2.5), and the resistive relation fp = —p(er) as in (2.8).

Then the dynamics (2.4) of the resulting port Hamiltonian system is given as

... OH
(-0, 5 O~ (en(0).en(0) (0. c4(0)) € D (2.11)
From the power-conservation property of Dirac structures, (2.6) and (2.8) that
D @) = ~chlen) + el f, < L f (212)
5 11(2) = —erpler) +ep fp < e fp. .

thus showing that the port Hamiltonian system is passive if the Hamiltonian H is bounded from

below.

An important special case of port Hamiltonian systems as defined above is the class of input-
state-output port Hamiltonian systems, where there are no algebraic constraints on the state space
variables, and the flow and effort variables of resistive, external ports are split into conjugated input-
output pairs. Input-state-output port Hamiltonian systems are defined as dynamical systems of the

following form

T = J% + gu + grer
y = g7 (2.13)
fr = 9n%E

where (u,y) are the input-output pairs corresponding to the external ports (fp,e,). It should be
noted that y”u equals the power corresponding to the external port. Here J = —J7 is a skew-
symmetric matrix. The linear resistive ports (fr,er) respect the resistive relation (2.10), i.e. fgr =

—Dep with D = DT > 0 and gg represents the input matrix corresponding to the resistive port.
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2.3 Linear constrained port Hamiltonian system and its de-

scriptor form

In this section we shall consider constrained linear port Hamiltonian systems and transform them into
descriptor form [15]. We begin by recalling the definition of constrained port Hamiltonian systems.
Next, we consider the port Hamiltonian systems with constraints which are a particular representation
of implicit port Hamiltonian systems defined on Dirac structures [19, 45, 16] which makes explicitly
appear constraint equations as well as the associated Lagrangian multipliers. In order to keep the
constraint of this type of port Hamiltonian systems, we transform it to the descriptor form so called
port Hamiltonian descriptor system and furthermore to a canonical Weierstrass form. It should
be noted that we use a similar coordinate transformation as [45, 16] but without computing the

Lagrangian multipliers.

2.3.1 Constrained port Hamiltonian systems

Before introducing the constrained port Hamiltonian systems, we first introduce an alternative rep-
resentation of Dirac structures called the constrained Dirac structure representation. Every Dirac

structure D C F x £ can be represented as
D={(fie) e FxE|f=Je+G\ GTe=0}, (2.14)

for a skew-symmetric mapping J : £ — F and a linear mapping G such that InG = {f | (f,0) € D}.
Furthermore, kerJ = {e | (0,¢e) € D}. The proof that (2.14) defines a Dirac structure is given in [19].

From the Dirac structure defined in (2.14), any linear port Hamiltonian systems can be represented

locally so called linear constrained port Hamiltonian systems as follows:

T = JQx+ g\ + gu+ grer
0 = 47
gCTQ“T (2.15)
y = g Qx
fr = gkQuz

where z € R" is the state vector, A € R¥ is the vector of Lagrangian multipliers, H (z) = %xTQa: is the

Hamiltonian function, @ € R™*" is a positive definite matrix (i.e. @ = QT > 0) which will be called
energy matrix (as an allusion to models of physical systems), J € R"*" is the skew-symmetric Poisson
structure matrix, (i.e. J = —J7), the matrices g. € R"** and g € R"*™ and gr € R"*™= describe
the input relations of the control ports and the resistive ports respectively. This constrained Port
Hamiltonian system will be completed with a linear resistive relation between the port variables (eg,
fr) such as eg = —Dfg, with D € R™EX™R heing a symmetric positive matrix (i.e. D = DT > 0).

In this way one obtains a dissipative linear Port Hamiltonian system with constraints. Note that
the vector A € R* of Lagrangian multipliers is associated with the constraints given by the second
equation of (2.15) and that in a mechanical context g.\ may be interpreted as the constraint force

associated with constraints in [80].
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2.3.2 Elimination of the Lagrangian multipliers

In this section we propose at first to reduce the system by eliminating the Lagrange multipliers.

Therefore we define the following coordinate transformation

s
z = [ (6T g0) g7 1 r =Mz

where s is a R(" %)X matrix such that
sge =0 and rank(s)=n—k

Note that this coordinate transformation is inspired from [80]) and differs by the multiplication by
(9T g.)~'. If, which is often the case in network models, the matrix (g7 g.) is sparse then the inverse
may be computed efficiently. Else, it is preferable to use the transformation in [80]; the results of this

paper remain then unchanged when replacing the matrix I, by the matrix (g7 g.).

In the new coordinates the system (2.15) becomes

i = JQz+4gcA+gu+ grer
0 = glQz
e (2.16)
y = g Qz
fR = QRQZ

with: J = MJMT = —-J7, Q=M"TQM~' >0, g.= Mg., g = Mg, gr = Mgg. Note that

S 0
gc:Mgc: _ 9e =
l (929¢) g ] l Iy 1

which implies that, decomposing the state vector as follows: z = [zq, ZQ]T, z1 € R % and 2z, € R¥,

the system can be written as

Z _ Ji o Ji2 Q11 Q12 21
29 Jo1 Joo Qa1 Q2 22
T O I o ]eR (2.17)
1y, g2 IR,
Qu Q12 21
0 = I _ _ 2.18
o o o [@] (219
_ - Qi Qu2 z1 919
o= LG a3
_ 7 Qu Q2 21 590
o= Lo ]| g 82 ]2

decomposing the energy matrix into blocks accordingly with the decomposition of the state vector



12 CHAPTER 2. PHS IN DESCRIPTOR FORM FOR REDUCTION
into vectors of size (n — k) and k
Qun Qa2

One may observe by considering the first line of (2.17), that Z; is independent of A\ and that the

0= l Qu Q2 1 (2.21)

constraint equations (2.18) reduces to

Q2121 + Q2222 = %Z =0 (2.22)
with H(z) = $27Qxz.

Since Q is positive definite, Qo9 is invertible and then one eliminate the z, component of the state
vector and obtain an explicit port Hamiltonian system. The second line of (2.17) may be used to
compute, if needed, the Lagrangian multipliers, A can be computed by A\ = 25 — JoQz — §ou — Gr,€R
[80].

However we shall not follow this route which might lead to cumbersome calculations and destroying
the sparsity of the system’s matrices. In the sequel we shall eliminate the Lagrangian multiplier but
retain the full state z € R™ with the constraint (2.22) and treat it as a descriptor system. The
procedure is the same as suggested in [16, p.66] for implicit Hamiltonian systems but detailed for

systems with ports and expressed in the coordinates z adapted to the constraints.

2.3.3 Descriptor form of the port Hamiltonian system with constraints

In this section, we shall reformulate the constrained port Hamiltonian system in a generalized state

space representation so called descriptor system [73, 15].

2.3.3.1 Descriptor systems and its Weierstrass canonical form

First of all we recall descriptor system in the linear case. Consider a linear time-invariant continuous-
time system
Si(t) = Ax(t)+ Bu(t), z(0)=2a0,
y(t) = Cu(b),
where S, A € R"*" B € R**™ (C € RP*" x(t) € R" is the state vector, u(t) € R™ is the input,

y(t) € RP is the output and 20 is the initial value. The number of state variables n is called the order

(2.23)

of system (2.23). If the rank of matrix S is equal to the order of the system, i.e. rank.S = n, then the
system can be written as a standard state space system. Otherwise, i.e. rankS = ¢ < n, the system
(2.23) is a descriptor system or generalized state space system or singular system in some references
[15, 18].

We assume that the pencil AS — A is regular, i.e. there exist A € C such thatdet(AS — A) # 0.
In this case AS — A can be reduced to the Weierstrass canonical form [78]. There exist nonsingular
matrices W and T such that

I O
0

Ay 0

T, A=W
Iy,

S=w l T (2.24)

where I, is the identity matrix of order n, A is the Jordan block corresponding to the finite eigenvalues
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of AS — A, N is nilpotent with dimension (k x k) and corresponds to the eigenvalue at infinity. The
index of nilpotency of N, denoted by v, is called the index of the pencil AS — A. In the special case

where N is a null matrix, i.e. N =0, then v = 1.

2.3.3.2 Constrained port Hamiltonian system in descriptor form

In this part, we will show that the constrained port Hamiltonian system can be reformulated in a
descriptor form defined in (2.23).

Consider the port Hamiltonian system written in the new coordinates (2.17-2.20), we shall elim-
inate the second line of equation (2.17) and combine the first line of equation (2.17) with equation
(2.18). Doing so we eliminate the Lagrangian multiplier A\, and the system will be written in the

following descriptor form (2.23).

I O Z1 _ Jii Jio Qi Q12 21
0 0 Z9 0 I Qa1 Q2 29
+ 901 u+ gg1 ] R
Qn Qu ][ = (22)
_ T T
o= L] gn o2 ]
_ T T Qu Qu 21
fR [ I I, ] [ QZl QQZ Z2

Note that with the assumption that @ is positive definite, the constraint (2.22) is of index 1 and
hence the diagonal block multiplying 25 is 0 with nilpotency index 1.
Now let us prove that the descriptor system (2.25) is a port Hamiltonian system defined with

respect to a Dirac structure according to [81, 19, 16].

By taking the following notations f, = —%, e, = Qz, y = fp, u = ep, the system can be formulated
as: B B
In.x 0 0 0 I Jii Ji2 1 gr, €z
0 0 0 0 . 0 I 0 0 .
fo | - “ | =9 (2.26)
0 0 —-IL, 0 Ip gt gt o o ep
0 0 0 —In, fr §£1 §£2 0 0 eRr
F E

where F, E € R(ntm+mp)x(ntm+mp)

Proposition 2.1. Define the vector of flow variables:

fT = (fZ7fp7fR)T

and the vector of effort variables

T::(

T
e €s,€p, €R)

in the bond space F x £ = RN x RN, where N = n+ m + mpg, and the structure matrices F and E
as in (2.26). Then the linear subspace D of F x &€ defined by:

D={feF,ecl|Ff+ FEe=0} (2.27)
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is a Dirac structure.

Proof. The proof is given in two steps.
First, we have to show that FET + EFT = 0 and then that rank[F|E] = n +m + mg.

From equation (2.26) and the expressions of F' and F one can compute:

Jho 0 a1 gr
0 0 0 0
FET = - (2.28)
-1 0 0 0
—ggl 0 0 0
Since J is a skew-symmetric matrix, that is J{; = —Jj1, the matrix FE” is skew-symmetric, hence

the condition FET 4+ EFT = 0 is verified.

One can define a sub-matrix of [F'|E] by the first, third and fourth columns of the matrix F, and
the second column of the matrix E. This sub-matrix is of rank n + m + mp, consequently the rank
of the matrix [F|E] is n +m + mg. O

As a conclusion the system (2.25) defines a port Hamiltonian system with respect to the Dirac
structure D in (2.26) and generated by the Hamiltonian function H(z) = $27Qz. In the sequel we

shall call this system a port Hamiltonian descriptor system.

Now we shall transform the port Hamiltonian descriptor system (2.25) together with the resistive
relation eg = —D fgr, where D € R™EX™E ig a symmetric positive matrix to the state space descrip-
tor system (2.23). However as only the dynamics #; is retained in the descriptor formulation, the

dissipative relation is restricted to e = —D fr. The dissipative matrix D can be reformulated as

= | 9r. v o 1_ | D Do

The system (2.25) can be written under its descriptor form:

Sz

EQz+

§1u
0 (2.29)

y = 7'Qz

with the energy matrix ) € R™*" defined in (2.21) , g € R™*™ and

Iiox O g
g — k : g1 :Sg
0 0 0

i jllf-Dll j127D12 _ Ell E12
0 I 0o I

] (2.30)

For an easy interpretation as a descriptor system (2.23), we shall also use the following notations
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defining input matrix B, the output matrix C' as well as the state matrix A

_ | 9. _TA_ | -7 -1 Qu Q2
B - 1) C - - — _
0 ¢ [91 % } [Qm Q22
A = EQ-= Ell@ll:" E12Q21 Eu@uj- E15Qa:
Q21 Q22
Qa1 Qo

where a = E11Q11 + E12Q21 and 8 = E11Q12 + E12Qa0.

2.3.3.3 Canonical form for port Hamiltonian descriptor system

As a complement we shall give the transformation of the descriptor dissipative port Hamiltonian
system (2.29) into the canonical Weierstrass form where the state matrix takes a canonical form

(2.24) by the following proposition.

Proposition 2.2. Considering the equivalence transformation defined by a (right) transform corre-
sponding to the change of coordinates z = RZ and the left transform defined by the matriz L as a

(left) multiplier or combination matrix with

L:

)

Infkr _BQ521 R= Infkr 0
-1 ) - 1A T
0 L2 Q22 QQI L2

here Ly is an invertible triangular matriz corresponding to the Cholesky factorization of Qoo

Qo2 = Ly LT, (2.31)

the port Hamiltonian descriptor system (2.29) is equivalent to the following descriptor Hamiltonian

system:
Sz = EQz+ gollu (2.39)
y = 9'Qz
where - - -
S=28; E[JHDM 01; Q[QS 0] (2.33)
0 1, 0 I

Qs = Q11 — Q12Q521Q21 is the Schur complement of the matriz Q and
g" =g 9 QuLy" +7i L]

The descriptor port Hamiltonian system (2.82) is a canonical Weierstrass form of the system (2.29).

Proof. One can see the matrix S in the system (2.29) is already in the diagonal-bloc form and the



16 CHAPTER 2. PHS IN DESCRIPTOR FORM FOR REDUCTION

matrix A is under the form as
_ E110 E2Q EnQ E50
A=EQ = 11Q11_+ 12Q21 11lejL 12022 _ _05 _6
Q21 Q22 Q21 Q22
where a = E11Q11 + E12Q21 and f = E11Q12 + E12Q22. To obtain the Weierstrass canonical form
(2.32), we carry out the following two steps.

Firstly, we shall transform the matrix A to the diagonal-bloc form. To get this, we can use the

Schur complement. Recall that the matrix Qg9 is invertible, we introduce two matrix:

0 I,

I_k 0
~Q3 Qa1 I
such that the matrix

A=LAR =

a—BQymQan 0
0 Qa2

is in the diagonal-bloc form.

Secondly, we shall transform the sub-matrix Qa2 of matrix A to an identity matrix without touching
the other parts of matrix A. Because the sub-matrix Qo is symmetric positive definite, thus there
exists a Cholesky factorization:

Q22 = LoL3
where Lo, Eg are the triangular invertible matrices and their diagonal elements are the eigenvalues of

the matrix Q2, then we can get:
Ly Quly " =1y

So we can define two matrices as:

- I, 0 - I, _ 0
L= S and R= S
0 L, 0 L;
such that:
A=LA

After these two steps, we can get
A=LAR=LLARR
Then we have:

In—k _BQQ_;

L=LL= b and R=RR=| """ "
0 L, —Q3 Q21 L,

Toi 0 ]

Now we consider a change of state variables z = RZ and premultiply L at the two sides of the
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system (2.29}), the system becomes:

S2 A2+ B
{ : e b (2.34)
Y Cz
where S = LSR, A= LAR, B=LB,C =CR, E=LER™T, Q = RTQR. We have
In_i O - F11(Q11 — Q12055 Q 0
& ISR — k ) i- 11(Q11 — Q12Q55 Q21) 7
0 0 0 I
g1 A A ~ 1A A e
B=LB= E C= { 97 (Qu1 — Q12Q55 Q1) g1 Qu2Ly " + 91 Ly } :
Finally the port Hamiltonian descriptor system (2.29) can be written in the form as
Lok 0[] 4 A0 % B
0o ollu| T o nllnl|Tol"
2 F . (2.35)
~ ~ Z1
Yy = [ g O ] .
22
with the following notations
Ay = J(@u — oG5t Gar): By =
1 11(@11 Q12Q22 Q21), 1 = 915 (2.36)

Cr =31 (Qu — Q1205 Q21);  Co=gf QuaLy ™ + g3 Lo.
We can say this is the Weierstrass canonical form of the port Hamiltonian descriptor system (2.29). [

Remark 2.3. By the proof of the proposition 2.2, we can see that the pencil \S — A is regular if the

sub-matrix Qo9 is invertible.

Remark 2.4. In the Weierstrass canonical form of the port Hamiltonian descriptor system (2.32), the
linear constrained port Hamiltonian system is separated to the continuous and impulse subsystems

corresponding [15] to the state variables Z; and 2y respectively.

2.4 Geometric model reduction of dissipative descriptor PHS

In this section we suggest a procedure for a structure preserving reduction of the constrained port
Hamiltonian system (2.15) using the procedure to compute a balanced realization of descriptor systems
suggested in [74] and then instead of reduction by truncation, adapt the flow constraint method
suggested in [65] for the effective calculation of a reduced port Hamiltonian system in descriptor form
(2.25).

2.4.1 Controllability and observability

Before starting the reduction procedure, we shall recall the controllability and observability of de-

scriptor systems [15, 74].
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Definition 2.3. Descriptor system (2.23) with the triplet (S, A, B) are called controllable on the
reachable set (R-controllable) if

rank [AS — A, B] =n, forall finite A\ € C. (2.37)
Descriptor system (2.23) with the triplet (S, A, B) are called impulse controllable (I-controllable) if
rank [S, AKg, B] =n, where the columnsof K¢ spanker S. (2.38)

Descriptor system (2.23) with the triplet (S, A, B) are called completely controllable (C-controllable)
if (2.37) holds and
rank [S, B] = n. (2.39)

Observability is a dual property of controllability.

Definition 2.4. Descriptor system (2.23) with the triplet (S, A, B) are called observability on the
reachable set (R-observability) if

rank =mn, forall finite A € C. (2.40)

[/\S—A

Descriptor system (2.23) with the triplet (S, A, B) are called impulse observability (I-observability) if

S

rank | KZ;A | =n, wherethe columnsof Kgr spanker ST, (2.41)

C

Descriptor system (2.23) with the triplet (S, A, B) are called completely observability (C-observability)
if (2.40) holds and

rank

S
o 1 =n. (2.42)

Let us now characterize the observability and controllability properties of the system according
to the Definition 2.3 and 2.4. Observe by inspection of the Weierstrass canonical form (2.32) of port

Hamiltonian descriptor system, that it is not Completely controllable as

9 H =n—k<n.
0

] and the system (2.32) is Impulse controllable since

S,

rank

N 0
Next we can compute that K = kerS = [ 7
k

rank S’, A

It is R-controllable if and only if

rank (A, — (J11 — D11) Qs, 1Qs] = n.
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In the sequel, for the sake of simplicity we shall assume that the system (2.32) is R-controllable.
Concerning the observability, it is seen immediately that the system is Impulse observable as

S

rank | K'TA | =n

C

by choosing the left kernel of S as K = [ 0 I ]

The Complete observability condition rank = n is equivalent with rank (gf@lgL; Ty gt Lg) =

Q) Uy

k. The R-observability condition
AS — A
C

=N

rank [

reduces to the same condition as R-controllability.
Note that as by hypothesis the matrix Q, is positive definite, then the assumption of controllability
of the proper subsystem implies also the observability using the port conjugated variable defined by

the output matrix C. = g{ Q, [81], hence the system is also R-observable and R-minimal.

2.4.2 Balanced realization

In this part, we shall discuss the balanced realization of the port Hamiltonian descriptor system.
Because the system (2.33) has already been reformulated by the Weierstrass canonical form, in the
sequel we consider only the impulse part of this system corresponding to state variables 2. Thus we

introduce the proper controllability and observability Gramians as the following form,

Glc 0 Glo 0
c — 5 o — 2.4
9 [ 0 o] 9 [ 0 0] (243)

where G, € R("=F)*x(=k) and Gy, € R("=F)*(n=k) gatisfy the standard continuous time Lyapunov
equations:
AGie + GrAl = =B B

R . i 2.44
A{Glo + G141 = *Cchl ( )

Because /11 = (jn — Dn) (Qn — Q12Q2_21Q21), Bl = g1 and C = QITQS, and by taking the notations
of equation (2.32), the equations become:

ElleGlc + GICQEEE = _glg,{ (2 45)

QzEﬂGlo + GloElle = _nglgins
Remark 2.5. In the following results, we consider only the continuous part of this system, thus proper
controllability and observability Gramians are called as controllability and observability Gramians for
short.

Generally speaking, the product of controllability and observability Gramians G,.G,, is not invari-
ant. However from [74], the matrix product QpCSTngS is coordinate invariant. As the matrix S in

the system (2.33) has already been reformulated by the Weierstrass canonical form, i.e.
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S = [ In- 0 ] , (2.46)

hence we define the Hankel singular values of (2.33) as follows

Definition 2.5. The square roots of the eigenvalues of the matrix G1.G1, denoted by ¢; are called the
Hankel singular values of port Hamiltonian descriptor system (2.33), and the Hankel singular values

are ordered decreasingly, i.e.

Si = VAi(G1cG1o), withgp > > ... >, 1, >0 (2.47)

For the reduction objective, we shall introduce the balanced realization of port Hamiltonian de-

scriptor system (2.33):

Definition 2.6. The descriptor system is balanced if and only if:
Gi. =G, =% with X =diag(¢1,62,...,n—k) (2.48)

where G, and G, are computed by Lyapunov equations (2.45), ¢; are the Hankel singular values.

Because the system (2.32) is R-controllable and R-observable, thus G, and G, are symmetric
and positive definite, and there exists the following Cholesky factorization:

Gi. = RyRY

P

Gro =L} L, (2.49)

where the matrices RZ, L, ¢ R(=k)x(n=k) are upper triangular Cholesky factors.
Let
LyR, =U,SV,], (2.50)

be singular value decomposition of L,R,, where Up,V, are orthogonal (VpTUp = I(n—k)). Consider

the matrices :

LTy, x>-1/2 Wy 0
Wy=| »°° = bt (2.51)
0 I 0 I
and
R,V,."1/2 ¢ Ty, O
T,=| PP —| " (2.52)

Then (T,)TW,, = I, and we can transform the coordinate by
Z= Tbxb7 (253)

and premultiply by matrix W, on the two sides of the system, we obtain a balanced system from
the system (2.32) with these new matrices: Ej = WZTETb_T = WbTE'Wb, Qp = TbTQTb > 0 and
gl = gTTb—T — iTW,.

Then the balanced system can also be written as the same port-Hamiltonian descriptor with
(2.32) and (2.33) in which the sub-matrices of the balanced system are J, = Wﬁqubl = —J,:‘F,
Dy = WbJIDHWbl = DbT >0, Qp = TZEQTM > (. The balanced system can be written as follows:
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Spiy = E B
{ b L vQvry + Byu (2.54)

y = giQums

The matrices of system (2.54) are given by

. -2yl o Loy 0 R,V,5712 0 Ly 0

Sy = WI'ST, = PP k PP - k
0 I 0 0 0 I 0 0
_ . »-\2uTL, o Eyn 0 L'y, x=12 ¢ E, 0

By =WIEW, = PP . por ="
0 I 0 I 0 I 0 Iy
- SY2VIRD 0 s 0 RV, 0 0

Qv =TI QT, = vt @ A _ | @n

0 Ik 0 Ik 0 Ik 0 Ik

. »-12pT 0 g
S Nk

0 Iy,

g

e - - LTu,x-12 o
ng=gTTbT=gTWb=[§1T §1TQ12L2T+§2TL2} " I =[ng1 gZ;}

Then the balanced system can be written as:

0 0 i 0 1 0 I 0
o o (2.5%)
_ T T by Thy
L)@ [
By taking f, = —a%, ey = Qpxp, fp =¥, €p = u, fr = —Deg the balanced system can be reformulated
as the following structure:
Infk O 0 O fwbl Jb O gb1 gRbl ewbl
0 0 O 0 - 0 I 0 0 ©
fouo | 4 . o | _ g (2.56)
0 0 —I, 0 fp 9p, b, O 0 ep
0O 0 O —Ipy fr gﬁb 0 0 0 €R
Fy Ey

with F., E, € R(ntm)x(n+m)

Proposition 2.3. Define the flow variables be = (fxb,fp,fR)T and the effort variables ebT =
(€xyspser)T in the bond space FxE = Rvtmama)x(ntmimp) y Rntmtmp)x(ntm+mnr) - the structure

matrices:

I’I’L—k: 0 O 0 Jb 0 gb] gRb
0 0 0 0 0 1 0 0
F, = . By=| ., (2.57)
0 0 —In 0 9, G, O 0O
0 0 0 —In, 9k, 0 0 0
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then the subspace of F x £ defined by:
D= {fb e F,ep € S‘beb + Epep, = 0} (258)

is a Dirac structure.

Proof. The proof is given in two steps.
First, we have to show that F,E] + E,Fl’ = 0 and then that rank[Fy|E}] = n + m + mg.

From equation (2.26) and the expressions of F}, and Ej, one can compute:

T T
Jy 0 9, 9g,
0 0 0
RE] = (2.59)
—g, 0 O 0
—gr, 0 O 0
Since J is a skew-symmetric matrix, that is JZ? = —Jp, the matrix FbEg is skew-symmetric, hence

the condition F,E} + E,F}l' = 0 is verified.
One can define a sub-matrix of [Fy|FEp] by the first, third and fourth columns of the matrix Fy,

and the second column of the matrix E,. This sub-matrix is

Lo O 0 0
0 Iy, 0 0
gg; —I, 0

0 0 0 —In,

with rank n +m + mpg, consequently the rank of the matrix [Fy|E}] is n +m + mpg. O

2.4.3 Reduction by the flow and effort constraints methods

In this section we shall reduce the initial system of order n to a system of order » < n by using the
flow constraint method proposed by [65] instead of the truncation method proposed by [74]. Using
the flow constraint method, ensures the conservation of the port Hamiltonian structure of the reduced
system.

The idea of the reduction by flow and effort constraint is to “cut” the interconnection

. oH
Tph2 = _fmb27 57{,2 = €zb2 (2-60)

between the energy storage corresponding to the xpo and the Dirac structure, in such a way that
no energy is transferred. Hence the exchange of energy between the energy storage and the other
system elements through the Dirac structure happens only via port associated with xp1, 51 being the
reduced order state vector as shown in Figure (2.2).

The energy flow through the interconnection (2.60) is set equal to zero by making both products

o \7T
(8%2) g = — (xp2)” fapz =0 (2.61)

This can be done in the two following canonical way:
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Figure 2.2: Flow/effort constraints model reduction scheme

e Flow variables constraint:

Egp2 =0, and  fu2 =0 (2.62)

e Effort variables constraint: 8H
=0, and ez =0 (2.63)

Oy

We recall the Dirac structure associated with the balanced descriptor Hamiltonian system is given in
the last section (2.56):

I, 0 0 0 fﬂcbn Joiy Joe 0 G 9Ry, Cayyy
0 In—k—r 0 0 f111,12 Jbgl Jb22 O gb12 gRbQ €$512
0 0 0 0 0 Jau, + 0 0 I 0 0 €z, =0
0 0 0 —1I, 0 fo 9, 9, 9, 0 0 ep
0 0 0 0 —Imp fr g£b1 ggbz 0 0 0 eRr
(2.64)
fmbu Cxy,
where f,, = fggb12 =1y and e,, = €x, | = Qprp. The variables we want to reduce are f$b12
fIb2 ewb2
and ez, .

In the following, we shall use the flow constraint method to reduce the port Hamiltonian descriptor

systems.

2.4.3.1 Flow constraint method for port Hamiltonian descriptor systems

In order to apply the flow constraint method of [65], we impose a constraint on the flow variables as

follows:
fxblz =0
Then
I
$(l;11 fi’bu
_ fbe
fgcb2 = My (2.65)
f Ty
3 Ir

fr
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where M; € Rrtmimexrthimime g defined as follows:

I, 0 xk Orxm Orxcmp
On—t—rxr On—k—rxk On—k—rxm On—k—rxmg
My = O I, Ok xcm Ok scmp (2.66)
Omxr 0m><k Im OmeR
Omer Omek Omem ImR

Let define a matrix LS € R(r+ktmtmp)x(ntm+mr) qch that:

Iby,
Jb22
! 0 =0 with rank(L')=7+k+m+mg
T
9o,

T
9Rys

Then if .J,, is invertible, one can define:

~Jy,dyt 0 00

ba2

0 I, O 0

—1
—g%lQJb22 0O I, O

T -1
IRy, O 0 Iy

o o o &~

By premultiplying (2.64) by L/ and considering equation (2.65), one can define the reduced ma-
trices F}. and F,.:

F, = LIFM;
I. 0 0
oo o0 0 (2.67)
|10 0 ~L, 0
00 0 —In,
E. = L/EM;
Jr, 0 3
oo 0 (2.68)
A
gt o0 —ut ¢
where :
Joe = Josy = Tora i s = Goyy — Jors Iy G
B=0ry — Joradyr G V=G0, Ty Gbra (2.69)
=05, Ty IR0 ¢ =9k Sry IRe:
F,, B, € Rrtktmxrtk+m are square matrices where v = —+7 and ¢ = —(¢7.

These reduced matrices define a reduced Dirac structure as stated in the following proposition.
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Proposition 2.4. Define the flow variables

frT = (fzb117fwbz7fp7fR)T

and the effort variables

T

. T
€r = (ezbu ) Cayy s Eps €Rr)

in the bond space F x €& = RN» x RN" with N, = (r+k+m+mg), and the structure matrices F,
and E, defined in (2.67) and (2.68) respectively. The linear subspace D of F x £ defined by:

D={fr € F.e, €E|F, fr + Eye, = 0} (2.70)
is a Dirac structure.

Proof. To prove this proposition, we consider the following two conditions:
Firstly, we prove that F,«E,T + ETF;F =0:

I, 0 0 0 JI0 o B
BT 00 0 0 0 In g, O
0o 0 -1, 0 o 0 'yT —
00 0 —Ip, gt o0 ut (T
0 oo B (2.71)
- 0 0 0 0
-’ 0 "
8T 0 -t (T

Since Jy_, v and ¢ are skew-symmetric, the matrix F,.E! is skew-symmetric, then the condition
F.Er + E,FT =0 is verified.

Second we prove that rank[F,|E,] = r + k + m + mp: A sub-matrix of [F,|E,] is defined by the
first, third and fourth columns of the matrix F,., and the second column of the matrix FE,., so this

sub-matrix is:

I, 0
0 I
0 —I, 0 0
0 0 —Ip, O

This sub-matrix is of rank r+k+m-+mpg, consequently the rank of the matrix [F,.|E,] is r+k++m+mpg.
The proof is similar to the one of Proposition (2.1).

Hence the proposition 2.4 is proved. O
To obtain the Hamiltonian of the reduced system, we use the relation f, = —2, e, = Qpxp, i.€.
exbll an lefz 0 Thyy
ew512 = szl szz O mblz (272)
e% 0 0 Ik Thy

Since the flow variables f;, = are constrained, i.e. @p,, = 0 it implies zy,, = constant. By choosing



26 CHAPTER 2. PHS IN DESCRIPTOR FORM FOR REDUCTION

Tp,, = 0 one can get the effort variables e;, = Qb,, T, €x,, = Tp,.- The reduced energy matrix @,

_ Qb 0
o -

is then given by:

and the Hamiltonian of the reduced system is H, = %szrxT. One can formulate the reduced Dirac

structure in an explicit descriptor Hamiltonian system.

2.4.3.2 Effort constraint method for port Hamiltonian descriptor systems

We impose a constraint on the effort variables as follows:

€x,, =0
Then
emhll
0 ezbu
€, | =M. | “ (2.74)
€p
€p
er
€R
where M, € Rrtmtmexrtktmtme i defined as follows:
I’r O'rxk 0r><m OerR
Onfkfrxr Onfkfrxk Onfkfrxm OnfkermR
Me = kar Ik kam kamR (2'75)
Omxr Omxk Im OmeR
OmRXr OmRXk OmRXm ImR
Let us define a matrix L¢ € R(rtktmtmg)x(ntmtmnr) gych that:
0
I pr
Le 0 =0 with rank(LY) =7+ k+m +mpg.
0
0
We can define the simplest L€ as:
I, 0 0 O 0
0 0 I 0 0
Le = i (2.76)
0 0 0 I, 0
0 0 0 ILn,

By premultiplying (2.64) by L€ and considering equation (2.74), one can define the reduced ma-
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trices F;Y and E}:

F¢ = L°FM,
I. 0 0 0
00 0 0 (2.77)

E° = L°EM,
Jbu 0 gb11 9Ry
O I, 0 0 (2.78)

9oy 9, O 0
g£b1 0 0 0

Fe, B¢ € Rrktmxrtktm are gquare matrices.

These reduced matrices define a reduced Dirac structure as stated in the following proposition.

Proposition 2.5. Define the flow variables

f;«T = (fzbuafzbzafpafR)T

and the effort variables
T ._ T
€, = (ewbu ) ewbz » €p,s BR)

in the bond space F x & = RNt x RN* with N, = (r + k +m + mg), and the structure matrices F¢
and E¢ defined in (2.77) and (2.78) respectively. The linear subspace D of F x £ defined by:

’D:{ff€f76$€€|Fffr+Erer:O} (279)
is a Dirac structure.

Proof. To prove this proposition, we consider the following two conditions:

Firstly, we prove that FEST + ECFT = 0:

(1. 0 0 0 o 0 Gy YRy
FET - 00 0 0 0 In g, O
0 0 —I, O g, 0 0 0
T
| 0 TO 0 _I’NLR gRbl 0 0 0 (280)
Jb11 0 b1 YRy
B 0 0 0 0
gt 0 0 0
_—ggbl 0 O 0

Since Jp,, is skew-symmetric, the matrix F¢EST is skew-symmetric, then the condition F¢ET +
E¢FT = 0 is verified.
Second we prove that rank[F¢|ES] = r + k 4+ m + mpg: A sub-matrix of [F¢|E¢] is defined by the

first, third and fourth columns of the matrix F¢, and the second column of the matrix E¢

<, so this



28 CHAPTER 2. PHS IN DESCRIPTOR FORM FOR REDUCTION

sub-matrix is:

I, 0 0 0
0 0 0 I
0 —-I, 0 0
0 0 —In, O

This sub-matrix is of rank r + k + m + mpg, consequently the rank of the matrix [F¢|E¢] is r + k +

+m + mpg. The proof is similar to the one of Proposition (2.1).

Hence the proposition 2.5 is proved. O]
To obtain the Hamiltonian of the effort constraint reduced system, we use the relation f, = —a,
ep = Qpxyp, i-€.
€y, Qb Qb 0O Lpy,
€ryy | = | @bar @by 0 Ty, (2.81)
63%2 0 O Ik ijz

Since the effort variables e,,,, are constrained, i.e. Qpy, by, + @by ®h,, = 0, and the matrix Q,, is

invertible, thus one can compute that

Ty, = = Qs Qb Ty - (2.82)

Hence by using the relation ey, = Qp,,Zb,, + @by, Tp,,, We can get the reduced effort variables as

shlz) -
ezbz 0 Ik' Lpy

where Qs = Qp,, — lesz_zinzl is the Schur complement of matrix @i Qo )
Qbyy Qboy
The reduced Hamiltonian is
1 s 0
HE = —xt @ Z, (2.84)
2 0 Iy

We can formulate the reduced Dirac structure in an explicit descriptor Hamiltonian system.

2.5 Application to nano-tweezer

We use the Nano-tweezers established in FEMTO-ST [7] to illustrate the effectiveness of the proposed
method. The nano-tweezers are modeled as a Timoshenko beam, and its infinite dimensional Hamil-
tonian formula can be find in [42, 43, 41]. The Timoshenko beam has been discretized by a mixed
finite elements method [66, 24, 33, 5].

2.5.1 Application representation

In this section, we shall apply the proposed model reduction method to a Port Hamiltonian model
of the nano-tweezers of the FEMTO-ST laboratory [7]. Consider the simplified model of a silicon

nano-tweezers used for DNA manipulation given in Figure (2.3). The tweezers is made up with a
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flexible arm that can be modeled as a Timoshenko beam clamped to a transverse suspension system.
The trapped DNA bundle is approximated by a spring/damper-mass-spring/damper system attached
at the tip of Timoshenko beam.

DNA bundle

Flexible arm of tweezer
(Timoshenko beam)

Suspension

Figure 2.3: Suspension-nano-tweezers-DNA

The Timoshenko beam model may be expressed as an infinite dimensional Port Hamiltonian system
[37]:

T 01 0 0 Kaxq 0 0 0 -1 Kxq
oo | |1 000, 32 000 O e
Gl zs | |00 0 1]|%| Elzs 000 0 Elzs (2.85)
T4 0010 774 100 0 774
Py Py

The matrices P, and P,y define the skew-symmetric differential operator of order 1 acting on the

state space X = Lo(a;b;R*). The energy of the beam is expressed in terms of the energy variables,

1 [° 1
H:f/ (K22 4+ ~2% + EIz? +
2Ja P

1
I—J;Z)dz (2.86)

P

where the state (energy) variables are: the shear displacement x1, the transverse momentum distribu-
tion xo, the angular displacement s and the angular momentum distribution 4. The coefficients p,
I,, E, I and K are the mass per unit length, the rotary moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear modulus respectively.
Using the mixed finite element semi-discretization method suggested in [24], one obtains a finite

dimensional explicit Port Hamiltonian system such as:

i = (J-R)ZZ + Bu

ToH
B ox

(2.87)

where J = —J7, R = RT > 0, H is the Hamiltonian function. According to [41, 66| the discretization

of the Timoshenko beam model, leads to the following structure matrices:
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i 0 M 0 0 0 00 -2 9 0 0 B 0
3'32_MT000+000 g—i+32000
iy 0o 0 0 M 0 00 o 0 0 0 B
iy 0 0 MT o0 T 0 0 ooy 0 B, 0 0
= Py Py i
0 BY 0 o0 5
- o 0 o0 BY 5=
Y BI 0 o o ||
00 Bl 0 SE
(2.88)
where the sub-matrices are:
-1 1 0 0
0 -1 1 "
M= with M e RV*V (2.89)
. . . . 1
0 0 0 -1
® = diag(3,---,8) with @& e RV*V (2.90)
0 ~1
Bl = ON—2 and B2 = ON_2 (291)
1 0

where [ is the distance to the infinitesimal section.

The inputs and outputs of the system are the velocities in translation v and rotation w as well as

the forces F' and torques T at the boundaries a and b:

T
1 U2 U3 U4}

u=[v(®) wb) Fla) TMT [

K T (2.92)
F) T0) —v@) —w(@) | =[w » w w|

Sl

—

y:

The DNA bundle and the suspension system can be modeled as two simple finite dimensional port
Hamiltonian systems like (2.87). The matrices of DNA bundle are defined as follows:

(Jo — Rp) %22 + gy,

dﬂb

0p
W = QZ,T%;’ + Spup

(2.93)

uy

U2

Uy
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where the sub-matrices are:

0 1 7 0
Jh=—=J=| 0 0 1|, RR=Rl=1| 0 0
-1 -1 0 0 0 fy (2.94)
1 1
ng — fi 0 0 , Sy = f1 0
0 0 fo 0 fo
With the energy of the DNA bundle is given as:
1 1
H, =5 (kl(ﬁﬁcz —z01)? + kol + M(pc2)2> (2.95)

where M is the mass of DNA bundle, z.; and z.s are the relative positions of point b and mass M
and pey = Mo is its momentum. ki, ko, f1 and f5 represent the constants of the springs and the
viscous dampers of the DNA bundle respectively. fy is the rotation damper of the DNA bundle in

point b. The suspension system is also modeled as system (2.87), in which the matrices are given as:

0 1 0 0
Ja:[—101’Ra:[0f]’g‘?:[l o} (2.96)

with the energy of the suspension system is given as:

_ 1 2 1 2
Ho = 5 (kay + YA (Pa)?) (2.97)

where x, is the relative position of point a, My is the mass of point a, p, = Msi, is its momentum, k

and f represent the constant of the springs and the viscous damper of suspension system respectively.

The interconnection relations of the tweezers arm and the suspension system are:

Uy =y3 and uz = —y, (2.98)

U Y1
=1, and wu,=—

Since the arm of the tweezers is clamped to the suspension system, we consider the additional con-

where

straint:
ys = w(a) =0 (2.99)

With the above interconnections, one can express the total system with the constraint as (2.15) where

the dissipation port is closed and the total energy of the system H; = H + H, + H,,.

# = (Jo— R)SE + Bu+ Beu,

y = BT9E (2.100)
— — T OE,
0=y = B RER

T
where the variables are x; = | = v, v, ] , and
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L Length 5150um

l Width 150pum

e Thickness 50pum

E Young’s modulus 190Gpa

I  Area moment of inertia 1.4 x 10~'"m?*
G Shear modulus 80G Pa

p Mass density 2330KG/m?

Table 2.1: The parameters of tweezers arm [7]

Hankel singular values
10 T T T T

-5 1 1 1 1

| | | | | |
0 20 40 60 80 100 120 140 160 180 200

Figure 2.4: Hankel singular values of the nano-tweezers

The sub-matrices are defined as:

3 0 0 0
J G G 0 0 0 B o o
Jio=|-GT J, 0 |, Re=|0 R, 0 |,Gi=]| N ;
. 0 0 0
-cr o J, 0 0 R,
- 0 0 0
O 0 Bl Bl
Bl 0 B-
B g 0 0
O 0 fl
Goy = ,B=| 0 2 0o |,B.=| 0
0 0 fo
0 0 0 0
0 0
0 0 0 | 0

The system (2.100) has the same form as the system (2.15) except the dissipation port is closed. So
one can use the proposed reduction method to reduce the order of the system.

We have chosen the order of the discrete Timoshenko beam model ny = 200, the orders of the
DNA bundle and the suspension system are np = 3 and ng = 2 respectively. The total system order

is n = 205. The parameters of tweezers arm are given in table (2.1).

2.5.2 Simulation results

Firstly, we shall show the Hankel singular values of the given system as in Figure (2.4).
Figure (2.5) gives the relative H., norms of the input/output systems for the dimensions of the
reduced order models r from 0 to 190 by using the flow constraint, effort constraint and truncation

methods respectively. We can observe that the reduced order systems by using the classic truncation



2.6. CONCLUSION 33

Relative H_ errors

0
10" S epro—o—0—0—o—o—o
‘Maagen i ®

=3 = apg W =g “""'--x..
3 hahls ST TR
= -5
=10
(.'IJ =——@== Flow constraint method
(4] ===3%==: Truncation method
- ==4== Effort constraint method

10—10 i I L |

0 150 200

100
The orders of reduced systems

Figure 2.5: Relative H, norm errors

Reduced order system by H,, norm
Balanced truncation method || 5.0052 x 10~%
Flow constraint method 0.08656
Effort constraint method 0.09006

Table 2.2: H., norm errors for r = 100

method have the better performance in H,, norm errors than the flow or effort constraint method.
However we should always remain that the flow/effort constraint methods can preserve the passivity
and Hamiltonian structure of the system, but the classic truncation method can’t. Furthermore, we
can see the errors evaluate as the Hankel singular values in Figure (2.4).

We will show in the following some simulation results for the reduced system given in order 100 by
different methods. In the table 2.2, we shall compare the H,, norm of the error systems obtained by
using the balanced truncation method, flow and effort constraint method. It shows the same result
as in Figure (2.5) .

In the Figure (2.6), we show the H., norm errors between the full order system and the reduced
order systems (r = 100) which are obtained by the different methods, flow, effort constraint methods
and balanced truncation method. One can observe that in the low frequency, the flow and effort
methods have better performance than the balanced truncation method, specially by using the flow
constraint method, while in the high frequency, the balanced truncation method does a better job
than the others.

Figure (2.7) gives the comparative bode plots of discretized systems with 200 or 100 elements,
and the reduced system with 100 states which is reduced from the discretized system with 200 ele-
ments. It shows the intrinsic advantage of our proposed reduction scheme comparing to size equivalent

discretization method.

2.6 Conclusion

In this chapter, we have derived a reduction method for linear constrained port Hamiltonian systems
which preserves the passivity and the geometric (Hamiltonian) structure of the original system. The
linear constrained port Hamiltonian system is first transformed into a descriptor form, called in the
sequel, port Hamiltonian descriptor system, by using a coordinate transformation and the elimination
of the Lagrangian multiplier. This procedure is similar to the geometric reduction of constrained

systems proposed in [16], but differs from this work as it preserves the algebraic constraints not
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Error plot between full order system and reduced order systems

Flow constraint method
-------- Effort constraint method
---------- Balanced truncation method

Figure 2.6: H,, norm errors between the full order system and the reduced order systems obtained
by different methods

Bode Diagram

—Reduced to 100 states from 200 elements
160/ - - Discretized with 200 elements
---Discretized with 100 elements

140

n
1=
P —
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=]
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o
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Frequency (rad/s)

Figure 2.7: Bode diagram of discretized systems with 200 or 100 elements and the reduced system
with 100 states from 200 elements
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involving the Lagrangian multipliers.

This port Hamiltonian descriptor representation allows us to combine the tools for the system’s
analysis of descriptor systems with the structure properties of port Hamiltonian systems. Thus the
port Hamiltonian representation of the Weierstrass canonical form of the port Hamiltonian descriptor
system has been introduced. This canonical form allows to split the descriptor system into two parts,
one associated with slow dynamics and the other one associated with fast dynamics while retaining the
port Hamiltonian structure of the system. The balanced port Hamiltonian realization is derived, and
the reduction scheme using flow or effort constraint method is used to provide a geometric reduction
scheme that preserves the passivity and the Hamiltonian structure of the original system.

Finally the reduction procedure has been illustrated on the example of a micro mechanical manip-
ulator (nano-tweezers) under development for the manipulation of DNA bundles in order to illustrate
the effectiveness of the proposed method by numerical simulation. We show the errors between the
full order system and the reduced order system by the relative H., norm. The results show that
the Effort and Flow constraint method leads to errors of higher H,, norm than with the use of the
truncation method, but with the proposed approach the passivity and structure of the original system
are conserved. At last we show that the balanced structure preserving reduction method provides a

better approximation in the high frequency than the spatial discretization method.
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Chapter 3

Modified LQG method for the
structure preserving reduction of port

Hamiltonian systems

3.1 Introduction

The port Hamiltonian systems are fundamentally a structured representation for dynamical systems
where the energetic properties (energy exchanges, dissipation and accumulation) are explicitly coded.
Tt induces naturally some geometric properties (Dirac structures, Casimir invariants) and a passivity
of the system. Thus it seems interesting to develop a reduction method which aims to preserve
the structure and the passivity of the original port Hamiltonian systems.The passivity and structure
preserving reduction methods of port Hamiltonian systems have been proposed by using different
methods. We can first cite the positive real balancing method proposed in [2, 61] which is formulated
as a balancing of two positive real “gramians” given as a solution of two Riccati equations. We
have also the moment matching method defined as a projection on the Kylov subspaces [63, 84, 64].
Furthermore, the moment matching based reduction method using interpolation points has been
proposed in [27, 26] which reduces the port Hamiltonian system by using the projection based method
which allows to interpolate the transfer function at a fixed frequency. From the geometric point of
view, in [65] the authors introduce the effort and flow constraint methods which consists to force either
a flow variable or effort variable to zero. All these methods consider the open loop system for the
reduction. However the open loop based reduction schemes do not apply to a conservative (lossless)
port Hamiltonian systems since there is no possible balancing of state space variables in the sense of
input-output contributions. This can be also viewed as an undamped systems where all the poles are
on the imaginary axis.

In this chapter we consider a closed loop based reduction of finite dimensional port Hamiltonian
systems. This closed loop based reduction by using balancing method has been firstly proposed in
[36] by E. A. Jonckheere and L. M. Silverman in 1983 named LQG balanced method associated with
the LQG control problem. This model reduction aims to reduce at same time model of the system

and the LQG controller. It consists in balancing the LQG “Gramians” which are the solutions of the

37
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optimal control Riccati equation and the optimal filter Riccati equation. The balancing leads to a
new basis for the state space where the realization of the model is said to be balanced and where
vector of the state variables is sorted according to their importance in the closed loop systems. In
the balanced realization the LQG Gramians are then equal and diagonal where the diagonal elements
are called singular values. This singular values are positive constants, state invariant and sorted in
decreasing order. Then the classic truncation method can be used to reduce the system and we get a
reduced model and LQG controller which stabilizes the full order system.

The LQG balancing for lossless port Hamiltonian systems was studied by A. van der Schaft in [76]
and he shows that the LQG balancing method cannot be used for reducing the lossless port Hamil-
tonian systems since the product of the solutions of the two Riccati equations are equal to identity.
That means that all the state variables are equivalent for the control design and no possible separation
of the states variables. From the other side, the LQG controller or the reduced LQG controller are
unfortunately neither stable nor passive in general case. It can be stable if the weighting matrices
and covariance matrices of the optimal control and filtering problem are under certain conditions [31].
However we can’t guarantee the passivity and the Hamiltonian structure in the closed loop systems.

The passive LQG control design method for the linear positive real (passive) systems have been
introduced by R. Lozano-Leal and S. M. Joshi in [40]. In this LQG control design, the authors have
considered covariance matrices of the optimal filtering problem which depend on the weighting matri-
ces of the optimal control problem. From the other hand, it is well known that the port Hamiltonian
systems are suited for passivity based control (PBC) [57], or methods like Interconnection and Damp-
ing Assignment Passivity Based Control (IDA-PBC) which aims to shape the energy and to assign
a new interconnection and damping structure for the system in closed loop [59, 77]. Because the
LQG controller is in general not passive, no Hamiltonian structure is guaranteed for the closed loop
systems.

In this chapter we develop closed loop passive preserving LQG reduction method for finite dimen-
sional port Hamiltonian systems. We develop first an extended version of the passive LQG control
design given in R. Lozano-Leal and S. M. Joshi in [40] but which still be useless for balancing. We
develop then a passivity preserving LQG control design method where the vector of state variables is
separable and make then possible to write a balanced realization and to reduce the model. Next, we
will give a conditions under which the LQG controller can be written in port Hamiltonian form. This
have the advantage to formulate the controller as a control interconnection.

The considered control problem in this chapter is the stabilization of a port Hamiltonian using a
passive and reduced LQG controller. We shall take a non-standard and linked weighting matrices for
the LQG optimal control and filtering problem which is different from the one presented in [36].

Since the classic truncation based reduction method can’t preserve the structure and the passivity
of port Hamiltonian systems during the reduction, we use the geometric effort constrained reduction
method to derive a reduced port Hamiltonian model from the balanced realization of the original full

state model.

3.1.1 Organization of the chapter

This chapter is organized as follows. In Section 3.2, we recall the LQG control problem for LTI

(Linear Time-Invariant) systems and the passive LQG control design method for linear positive real
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systems. Based on this passive LQG control design method, we will suggest a passive LQG controller
which is equivalent to the control by interconnection of port Hamiltonian systems. However, this LQG
problem can’t allow us to reduce the model because all the state variables have the same importance
in the control point of view. Furthermore, a novel passive LQG problem will be suggested which
is also equivalent to the control of port Hamiltonian systems by interconnection and permit us to
reduce the port Hamiltonian systems. In Section 3.3, we will derive a reduction scheme by the
LQG balanced realization defined in the last section and the effort constraint method in order to
preserve the structure and passivity of the system. In Section 3.4, we will give a characterization
of the error of the proposed reduction method. In Section 3.5, we give a summary of the proposed
methods using some illustration schemes. In Section 3.6, some numerical simulation results are given
by applying the proposed methods to a classic mechanical mass-spring-damper system in order to

show the effectiveness of the proposed methods. Finally, we give conclusion in Section 3.7.

3.1.2 Main contributions of the chapter
The main contributions of this chapter are the following.

e In Section 3.2, a new passive LQG control problem is suggested to the port Hamiltonian systems
in Theorem 3.2 by inspiring the positive real LQG control design of the positive real system. We
show that this new passive LQG control is equivalent to the control of port Hamiltonian systems
by interconnection. However, it turns out this LQG problem can’t allow us to reduce the system
because all the singular values are equal to one and the state variables are not splittable from

this LQG control problem point of view.

e Since the first passive LQG control does not allow us to reduce the port Hamiltonian system, we
suggest a novel passive LQG control problem from the conjugated inputs outputs point of view
in Theorem 3.3. We show that in this passive LQG problem, if the weighting matrices of optimal
control and the covariance matrices of filtering problems are related by some conditions, then
the LQG control of port Hamiltonian system is passive and the solutions of control and filtering
Riccati equations are related through the energy matrix @ of the port Hamiltonian system.
Contrariwise to the work in [4], we propose the dynamical LQG control which is equivalent to
control by interconnection of two port Hamiltonian systems for the model reduction objective

of the closed loop system.

e The second passive LQG control problem proposed by Theorem 3.3 can define a balanced re-
alization of the port Hamiltonian system given in Definition 3.4. This implies that the state
variables can be separated by their importance in the control design point of view, meanwhile

we can reduce the port Hamiltonian system that is written in the balanced realization.

3.2 Passive LQG control design for port Hamiltonian systems

In this section, firstly we recall briefly the LQG control design method for LTI (Linear Time-Invariant)
systems and recall under which conditions such a controller is positive real when the control system
is itself positive real [8, Chap. 6]. Secondly, we suggest two design methods for the LQG controller

[85] which are equivalent to a control by interconnection of two PHS [60]. However differ from the
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interconnection control given in [60, 58], these proposed LQG controllers are the dynamical states feed-
back. Then we will discuss their suitability for the structure preserving reduction of port Hamiltonian

systems.

3.2.1 Reminders of LQG control for LTI systems and positive real (passive)

systems

In this section we shall recall the LQG control for LTI systems as given by the standard reference [2]
and we apply this controller design method to the positive (passive) real systems then we recall how

to design the passive LQG controller for positive real systems.

3.2.1.1 LQG control for LTT systems

First consider the following LTI dynamic system:

(3.1)

t = Ax+Bu+v
y = Cr+w

where x € R™ represents the state variables of the system, u the vector of control inputs and y
the vector of outputs. Both additive white Gaussian system’s noise v and additive white Gaussian
measurement noise w affect the system.

We recall that the LQG control problem for LTI system (3.1) is simply the combination of a
Kalman filter, i.e. a linear quadratic estimator (LQE) with a linear quadratic regulator (LQR) as

show in Figure (3.1).

u 1 w v

Kalman K

Y
y : Filter . U SYStem >

LQG Controller

Figure 3.1: LQG controller design

The separation principle guarantees that the estimation and control can be designed and computed
independently.

First we can design the Kalman filter to estimate the state variables of the system containing the
noises. The additive Gaussian system’s and measurement noises are assumed to be independent white

Gaussian processes with the two covariance matrices Q,, R,

Elw
El

T] = R,6 E[U UT] = Q.0,

w
wvl] =0

where § is the Dirac delta function and

R,=RT>0 and Q,=QT>0.
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If the pair (A, Q%ﬂ) is stabilizable and the pair (A, C') detectable, thus the linear quadratic estimator
is given by
&= A+ Bu+ F(y — C#) (3.2)

with
F =P;CTR,! (3.3)

where Py is the unique solution of the filter Riccati equation CARE:
APf#*PfAT*PfCTR:UlCPf#*QU =0 (3.4)

with Py = P} > 0.

Second we design a linear quadratic regulator which minimizes the cost function

T
Jo= lim E / (2T Qx + u” Ru)dt (3.5)
T—o0 0

where @ and R are two weighting matrices with Q=QT >0and R=RT > 0. If the pair (A, B) is
stabilizable and the pair (A4, Q'/2) detectable, thus the optimal control is given as

u=—Kz& (3.6)

with
K =R 'BTP, (3.7)

where P, is the unique solution of control Riccati equation (CARE):
ATP,+ P.A—P.BR'BTP.+Q =0 (3.8)

with P. = PT > 0.
By using the two steps and from the separation principle, one can design a dynamic controller

so-called LQG controller and its dynamic can be presented as:

i o= (A _ BR-BTP, — PfOTR;lc) &+ P;CT R, (39)
ye = R 'BTP.i '
with u. =y and u = —y, .

3.2.1.2 LQG balanced realization and truncation reduction

We will recall in this part the LQG balanced realization proposed in [36]. We call it standard LQG
balanced realization to avoid confusing with the other proposed LQG balanced realization in the next
section.
This LQG balanced realization is related with LQG problem with the following choice of weighting
and covariance matrices: ~
Q=Cc?'C, Q,=BBT,

3.10
R=R, =1 ( )
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Then the filter Riccati equation and the control Riccati equation become:

AP} + P;AT — P;CTCP} + BB =0 (3.11)

and
ATP: + PSA—PSBBTPS +CTC =0 (3.12)

The Standard LQG balanced realization is defined by the following Definition.

Definition 3.1. The LTI (3.1) admits a standard LQG balanced realization if the Gramians P} and
P? of the Standard LQG problem are equal and diagonal:

P2 =P; =% =diag(pi, p3, -+, i) (3.13)

where, denoting by \; (P) the i-th eigenvalue of a matrix P,

ps =\ JNi(PsPg) and pi§ > i3 > - > s > 0 (3.14)

with p; called the standard LQG singular values.

Because the Gramians Py and P, of the standard LQG problem in (3.11) and (3.12) are positive,

then there exists the following Cholesky factorization:
P.=R,R], P;=L]L, (3.15)

where the matrices RZ, L, € R" are upper triangular Cholesky factors.
Let
LyR, = U,sV,] (3.16)

be the singular value decomposition of L,R,, where U, V,, are orthogonal. Thus we can define the
transformation matrices as

W, = LTU,S"V2 Ty, = R,V,5 /2 (3.17)

and (Tb)T Wy = I,,. We can transform the coordinate by
z = Tyzy (3.18)

and premultiply by matrix W, on the two sides of the system (3.1), we obtain a standard LQG

balanced realization of the port Hamiltonian system which is denoted as follows

(3.19)

Ty, = Apzy+ Byu
y = Cpayp

where Ab = WbTATb, Bb = WbTB Ob = CTb.
Since the standard LQG singular values of the balanced realization are in the decreasing order,
we can eliminate some of the state variables, which correspond to the smaller parts of standard LQG

singular values and less important for the LQG control design, by using the truncation method. Let
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partition the corresponding matrices as follows:

A A B
ap= | B = | L G= O O | (3.20)
Apo1 Ao By
Definition 3.2. [2, Def 7.8]The system
Ty = Ay + Buiu (3.21)
y = Cuiap

is the reduced order system obtained from (3.19) by balanced truncation.

It is well known that the standard LQG truncation method can’t preserve the passivity of the
passive systems. Moreover, in the case of port Hamiltonian systems, the truncation method can’t
preserve the structure of the systems [61]. Hence we shall consider other reduction methods instead

of the truncation method to preserve the passivity and the structure of the port Hamiltonian systems.

3.2.1.3 Passive LQG control design of Positive real (passive) system

It is well-known that LQG controller given as (3.9) are in general neither stable nor passive [31]. In
this part, we shall briefly recall how to design a passive LQG controller for positive real systems [8].
Consider a minimal realization of positive real system expressed by LTI system (3.1) with holding the

following equations:
A+ AT =-Qa<0 (3.22)

and
B=C"T. (3.23)

The above conditions are equivalent to the Positive Real (Kalman-Yakubovich-Popov) lemma [1, 8,
Lemma 3.1]. The LQG controller for the system (3.1), such that (3.22) and (3.23) hold, is given by

{ i = (A=BR'BTP.— PiBR.'B") i+ PBR, u, (3.24)

ye = R 'BTP:
where Py = PfT > 0, P. = PT > 0 are the solutions of the filter Riccati equation (3.4) and control
Riccati equation (3.8) respectively.

Theorem 3.1. [8, Chap. 3] Consider the Positive real system defined by (3.1), (3.22) and (3.23)
and the LQG controller of the form (8.24) through (3.4) and (3.8). If Q, R, Q., Ry are such that:

Q,=Qa+BR'B" (3.25)
Ry =R (3.26)

and
Q-BR'B"2Qp>0 (3.27)

then the controller is positive real.

This above result states that, if the weighting matrices for the optimal regulator and the filter
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satisfy the relations (3.25), (3.26) and (3.27), the resulting LQG controller is positive real (passive).
However, it should be noted that this controller would not be optimal with respect to some actual
noise covariance matrices. The noise covariance matrix is used herein simply as controller design
parameters and has no statistical meaning. It may also be noted that the positivity condition (3.27)
is not particularly restrictive as it amounts to choose a positive matrix (Qp and define the weighting
matrix of the LQR performance index as Q = BR!'BT + @ p which is equivalent to introducing an

additional term y” R~'y to an arbitrary quadratic state weight.

3.2.2 LQG control applied to port Hamiltonian systems

In this section, we shall consider the LQG problem for port Hamiltonian systems and study how to
design a passive LQG type controller for this class of systems. Therefore let us consider a class of
linear port Hamiltonian system (PHS) [8, Chap. 6] with some system’s and measurement noises in
order to be able to correspond to a LQG problem .

Definition 3.3. A linear dissipative port Hamiltonian system (PHS) with state variable z € R™,
input variable u € R™, output variable y € R™ and additive system’s measurement noises v, w is

defined as follows:

T = (J-R)Qr+Bu-+v
( - )Q (3.28)
y = B'Qr+w
where J = —J7 € R"*" is the skew-symmetric structure matrix, R = RT € R"*" is the symmetric

semi-positive definite dissipation matrix and Q = Q7 € R™*" is the symmetric and positive definite
energy matrix and B € R™ "™ is the input matrix. The system’s and measurement noises v, w are

assumed to be independent white Gaussian processes with the two covariance matrices @, R

FE [w wT] =R,0 FE [’U UT] = 0,
E [w UT] =0

with ¢ is the Dirac delta function and
Ry,=RL >0 and Q,=QI >0

The LQG control problem consists in finding a control which minimizes the following cost function:

T
Jo= lim E / (2T Qx + uT Ru)dt (3.29)
T—o00 0

where Q and R are two weighting matrices with Q = Q7 > 0 and R = RT > 0.

The solution of this problem may be decomposed into the two following steps applied to the PHS
(3.28).

e First step: If the pair ((J ~R)Q,Qy 2) is stabilizable and the pair ((J — R)Q, BTQ) de-

tectable, one can estimate the state x by the classic Kalman filter equation, i.e.

&= (J — R)Q# + Bu+ F(y — BTQz#) (3.30)
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with
F = P;QBR," (3.31)

where Py is the unique solution of the filter Riccati equation
(J - R)QP; + P;Q(J — R)T — PyQBR,'BTQP; + Q, =0 (3.32)
with Py = Pf > 0.

e Second step: If the pair ((J — R)Q, B) is stabilizable and the pair ((J — R)Q, Q'/?) detectable,
the optimal control is:
w=—K# (3.33)

with
K=R'BTP, (3.34)

where P, is the unique solution of control Riccati equation:
Q(J - R)TP.+P.(J-RQ-P.BR'B"P.+Q =0 (3.35)

with P, = PT > 0.

Remark 3.1. Following [49], we call Py and P, the LQG Gramians of the port Hamiltonian system
(3.28).

The LQG controller may be expressed as the feedback interconnection of the system (3.28) with the

dynamical controller:

{ & = [(J-R)Q—-BK - FBTQi + Fu, (3.36)

Ye = K%

As the matrix @ is assumed to be invertible, using the expressions (3.31) and (3.34) and defining the

matrix
R.=R+BR'BTP.Q"' + P;QBR,'B”, (3.37)

the controller may be written in the form:

(3.38)

& = (J-R.)Qi+ PfQBR; u,.
ye = (RT'BTP.Q7)Qi

In this expression, the state matrix of the controller is decomposed into the product (J — R.)Q
with the energy matrix @ of the port Hamiltonian system (3.28), the skew symmetric matrix J and
R, the matrix defined by (3.37). Without other assumption, this matrix has no positivity property
nor symmetry. Furthermore the input and output matrices are not conjugated with respect to the

energy.

3.2.3 Minimizes the energy dissipation LQG control design

In this part we shall write conditions on the LQG problem such that the controller (3.38) has a port

Hamiltonian realization. Since the port Hamiltonian systems are naturally positive real, inspired
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by the positive real LQG controller design method of Theorem 3.1, we derive a passive LQG type

controller design of port Hamiltonian which can be summarized in the following theorem.

Theorem 3.2. Consider the LQG problem with the following choice of the weighting matrices:

Q. =2R+ BR,'B" (3.39)
R=R,=RL>0 (3.40)

and
Q=QQ,Q=0Q" >0 (3.41)

then the LQG controller is passive and the closed loop system can be written as the feedback inter-
connection of the port Hamiltonian system (3.28) with the port Hamiltonian realization of the LQG

controller.

Proof. Consider the filtering Riccati equation (3.32), we factorize Py from the two sides of equation,
S0:
P (J-RQ+Q(J—R)TP;' —QBR,'BTQ+ P;'QuP; ' =0 (3.42)

then we subtract this equation by equation (3.35), and by using the conditions (3.40) and (3.41) in

the proposition (3.2), we obtain:

(Pe— PN (J—R)Q+Q(J — R)T(P. — P} )

—P.BR,'B"P.+ QBR,'B"Q + QQ.,Q — P;'Q,P; ' =0 (843)

As a consequence the LQG Gramians depend on the energy matrix Q:
Pr=Q7 ' and P.=Q (3.44)

The LQG controller (3.38) obtained with this solution may be written:
{ i = (7 - RC)@ + BR;'u, (3.45)

ye = R'BTQz
with the added dissipation matrix

R.=R+BR'BT + BR'B”, (3.46)

which, using (3.40) and the symmetry of R,, is immediately seen to be symmetric, positive definite
R. = RT > 0. Using (3.40) it may also be seen that R'BT = R BT and the output y. is the power
conjugated of the input w, .

As consequence, the LQG control with the weighting matrices conditions in the proposition (3.2),

may be equivalently written as a control by interconnection of port Hamiltonian systems. O

The above theorem gives us a passive LQG controller design method, and the closed loop system
with this controller can be represented as interconnection control of port Hamiltonian system if the

weighting matrices for the regulator and the filters are chosen in a certain manner. However, as the
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positive real LQG controller design, the noise covariance matrices are used herein merely as controller
design parameters and have no statistical meaning.

Let us write the cost function in terms of the weighting matrices Q,, and Q of the theorem 3.2

J. = lim E[f, ("Q(2R + BRy'B)Qx + u” Ru)d]
T=oo =0 _ (3.47)
= lim B[f; (22"QRQx +y" R,'y + u” Ru)dt]
T—o00
Hence the optimization problem may be interpreted as the minimization of the sum of dissipation of
the energy of the port Hamiltonian system with the norm and the dissipation on the input and output

variables with respect to the weighting matrices R, ! and R respectively.

Remark 3.2. If we consider a lossless port Hamiltonian system, i.e. R =0, and R = R,, = I. Then
the weighting matrices become @, = BB’ and Q = QQvQ = QBBTQ, and the LQG problem of
Theorem 3.2 becomes the standard LQG problem [36]. In this case, one recovers the result of [76]
that the product of the LQG Gramians is equal to the identity.

However in view of the balanced reduction of the port Hamiltonian system, the LQG problem

suggested in Theorem 3.2, is not useful as the product of the LQG Gramians is
PyP. =1

and does not allow to split the state space coordinates into two subsets associated with small or big
singular values. So for the objective of balanced reduction, we should consider another LQG problem
which can be used to design a passive LQG controller and meanwhile allow to split the state space
coordinates, i.e. PrP. # I.

3.2.4 Q-conjugated LQG control design

In this part, we suggest another passive LQG controller design method which is also equivalent to
control by interconnection of port Hamiltonian systems. Let recall the LQG controller (3.38) in quasi-
Hamiltonian form because that the inputs and outputs are not conjugated generally, thus we shall
introduce a special choice of covariance matrices and weighting matrices such that the inputs and

outputs are conjugated, the main result is given in the following theorem.

Theorem 3.3 (Q-conjugated LQG control design). Denote the LQG Gramians Py, solution of the
filter Riccati equation (8.32) and P., solution of the control Riccati equation (3.85). Consider the
LQG problem with the following relation between the covariance matriz R, of the output noise and
the weighting matriz R of the cost functional (3.29)

Ry, = R. (3.48)

and the covariance matriz Q, of the state noise and the weighting matriz Q of the cost functional
(8.29) are related by
Qu=Q '2QJ"P. +2P.JQ +Q)Q* (3.49)

Then
P.Q = QPFr, (3.50)
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is a choice allowing to satisfy the two Riccati equations (3.32) and (3.35).

Furthermore, assuming that the port Hamiltonian system is stable, then the control Riccati equation
(3.35) and the filter Riccati equation (3.82) admit a unique solution, the LQG controller is passive and
the closed loop system can be written as the feedback interconnection of the port Hamiltonian system
(3.28) with the port Hamiltonian realization of the LQG controller.

Proof. Assume @ is invertible since it is symmetric and positive definite. The filter Riccati equation

(3.32) can be written as:

Q(J - R)QP;Q+QP;Q(J - R)"Q — QP;QBR,'BTQPrQ + QQ.Q =0 . (3.51)

By using the condition (3.49), the above equation becomes

Q(J = R)QP;Q+QP;Q(J — R)TQ — QPsQBR,' BTQP;Q +2QJ"P. +2P.JQ + Q =0
(3.52)
Then subtracting the equation (3.52) to the control Riccati equation (3.35) and considering condition
(3.48)

R, =R, (3.53)
we can get
QJ (QPsQ — P.) + (QP;Q — P.) J'Q — (QP;Q — P.) BR,' B" (P. — QP;Q) = 0 (3.54)
Finally one possible choice is
P.Q™ ' =QP;. (3.55)

One can check that this choice allows to satisfy the two Riccati equation (3.32) and (3.35).

Using the Hautus criterion, the detectability condition is given as follows:

J—R)Q — A
Rank l ( )Q ] =n for Re(A) >0 (3.56)
the stabilizability Hautus criterion becomes

Rank [ (J - R)Q - QY |=n for Re(A)>0 (3.57)

It is obvious that for asymptotically stable port Hamiltonian system, these conditions are met for any
matrix @ and Q, and both filter and control Riccati equations admit a unique solution.

Finally, we will show that the LQG controller is passive and it can be considered as a controller of
port Hamiltonian system by interconnection. Firstly by using the condition (3.50) and the condition
(3.48), the output of controller (3.38) becomes:

Ye = (RilBTPchl)Qxc

Sy = (R,'BTQP)Qu. (359

which means that the output of the controller (3.38) y.. is port-conjugated to the input u.. Secondly, if
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we take the condition (3.50) and the condition (3.48), one can easily check that the matrix R, defined
in equation (3.37) is symmetric by computing RY — R. = 0. Our controller (3.38) is designed by LQG
method, it is well known that the closed loop system by this type of controller is stable. Consequently
by Chetaev’s theorem [48, Thm 2.5], all the eigenvalues of the closed loop system must be in the left
of the complex plane. Then the LQG controller is also stable and the eigenvalues of this controller are
negative, thus matrix R, is positive definite since the eigenvalues of the controller are the eigenvalues
of matrix R,. O

The Theorem 3.3 gives us another passive LQG controller design method which is also equivalent
to the control by interconnection of port Hamiltonian systems. We shall call the LQG problem defined
by this theorem the Q-conjugated LQG problem since the two LQG Gramians P, and Py are related
by the energy matrix Q.

It should be noticed that the parameters Q. , Ry, Q and R are related. That means that on one
hand we can firstly choose the optimal control criterion, i.e. the weighting matrices Q and R , then
the filtering problem is fixed, since we compute the covariance matrices @, and R,,, according to the
theorem. On the other hand, we can firstly concentrate on the noises of the given system, i.e. the

covariance matrices @, and R,,, we can obtain the weighting matrix @ and R.

Remark 3.3. If we choose the observation problem first, i.e. the covariance matrices @), and R,, are
given, then we can resolve the filter Riccati equation (3.32) to get the unique positive defined solution

Py, then the weighting matrices can be computed as
R =R, (3.59)

and
Q=Q (2JQP; +2P;QJ" + Q.) Q. (3.60)

This means that the LQR control problem criterion are used just for passive LQG controller design

parameters and may be not the optimal control problem as we desire.

Remark 3.4. The other advantage of this LQG control design method is by using the specific choice
of weighting and covariance matrices (3.49) and (3.48), the two solutions of FARE (3.32) and CARE
(3.35) are related by

P.Q ' =QP;. (3.61)

This means that we just need to resolve one Riccati equation instead of two Riccati equations. For

the numerical example, this method will be more effective than the other LQG methods.

Furthermore in this passive LQG controller design method problem, the product of the LQG

Gramians is:
PrPe = PrQPrQ # 1.

Because the product of the LQG Gramians is not equal to identity, the importance of the state
variables for the control design in the Q-conjugated sense is different. This property allows us to find
a balanced base in which we can separate the state variables to two parts. One part is more important
for Q-conjugated LQG control design and other part is less important. Because of this point, we can

reduce the system which we shall discuss in the next section.
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3.3 Q-conjugated LQG balanced reduction of PHS with pre-

serving the structure and passivity

In the last section, the Q-conjugated LQG control design method has been proposed. The LQG
controller obtained by this method is also a port Hamiltonian system such that the passivity and the
Hamiltonian structure are guaranteed in the closed loop system. However, this LQG controller has
the same dimension as the system itself. In order to derive the lower order LQG controllers, we will
consider a Q-conjugated LQG balanced reduction for open loop port Hamiltonian systems, then the
low order LQG controller can be designed by the reduced order systems.

To get the reduced order system, we will consider the following steps. In the first step, we shall
use the Q-conjugated LQG method in order to derive a balanced realization of the open loop port
Hamiltonian system (3.28), called Q-conjugated LQG balanced realization. This balanced realization
is defined in a specific coordinate system such that the state variables of the open loop port Hamilto-
nian system can be separated into two parts. One part is more important for the control design and
another part is less important. In the second step, we will use the Effort constraint method to reduce
the Q-conjugated LQG balanced realization in order to derive the reduced order port Hamiltonian

system.

3.3.1 Balanced realization associated with the Q-conjugated LQG problem

Inspired the standard LQG balanced realization in Definition 3.1, we can define a Q-conjugated LQG

balanced realization as follows:

Definition 3.4. The port Hamiltonian system (3.28) admits a Q-conjugated LQG balanced realization
if the Gramians PP and P of the Q-conjugated LQG problem of Theorem 3.3, are diagonal:

where, denoting by A; (P) the i-th eigenvalue of a matrix P,

pi = \JNi(PEPP) and piy > pp > -+ > piy, > 0 (3.63)

and PP and Pf are the solutions of the Riccati equations of the balanced realization.

In this novel balanced system, the @Q-conjugated L QG singular values p; are in the decrease order.
This means in the sense of closed loop performance of this Q-conjugated LQG problem, that the

importance of the state variables in novel balanced coordinate is different.

Remark 3.5. Following the Theorem 3.3, we have P, = QFP(), then
P.P; = QP;QPs.

Hence it is sufficient to diagonalize the matrix QP for the derivation of the Q-conjugated balanced

realization.

This balanced realization can be got by the transformation matrices Wj and Ty, defined as (3.17).
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We first transform the coordinate by
xr = TbZL'b (364)

and then premultiply by matrix W, on the two sides of the first equation of system (3.28), we obtain

a Q-conjugated LQG balanced realization of the port Hamiltonian system which is denoted as follows

3.65
y B Qpxp + wy (3.65)

{ iy = (Jy— Ry)Quxs + Byu -+ vy

where J, = WbTJWb., Ry = WgRWb, Qp = TbTQTb , By, = WbTB, vy = WbTv and w, = w.
The Gramian of the balanced realization (3.65) 3 is given by diagonalizing the Gramians Py and
P, of the Q-conjugated LQG problem with the transformation matrices W, and T, are given as:

PP = PP =T P.T, = W/ PsW, = 5. (3.66)

In the Q-conjugated LQG balanced coordinate system, the state variables are related to the Q-
conjugated LQG singular values for the closed loop performance. It means that the state variables
with the larger singular value play the more important role in the Q-conjugated LQG controller design.

Hence this coordinate system can be used to reduce the system, it will be discussed in the next part.

3.3.2 Reduction by the Effort constraint method

In this sub-section we shall use the Q-conjugated balanced realization in order to reduce the system.
The classical balanced reduction method is the truncation method. However, such method does not
preserve the Hamiltonian structure and the passivity of the port Hamiltonian system [61]. Hence
we shall use a geometric reduction method so-called Effort constraint method suggested in [65] to
reduce the system. This method has the advantage of preserving the port Hamiltonian structure and
thereby also the passivity properties. However we shall in the sequel adapt this method to explicit port
Hamiltonian systems, as, in the original work, it is based on the definition of implicit port Hamiltonian
systems [81, 19] defined with respect to a Dirac structure (Defined in Chapter 2). The implicit port

Hamiltonian systems are defined as follows:

Definition 3.5. [19] An implicit linear dissipative port Hamiltonian system (PHS) with state variable
x € R™, port variables (fp, ep) € R™ x R™ , dissipation port variables (fgr, eg) € R™%? x R™" with

respect to the Dirac structure (2.1) is defined as follows

@ Qx
Fl f, |+E| ¢ | =0
fr er
completed with the dissipative closure relation ez = —R fr with R = RT € R"*" being positive.

Now assume that the Q-conjugated LQG singular values (3.63) are split into two sets (u;) >

(#4i)i=y+1.. . and have the objective to reduce the system in such a way to retain only the states

i=1,..,r

associated with the first r singular values. By using the flow and effort variables f, = —ip, e, = Qpxp,

splitting these vectors according to the two sets of singular values (e.g. ] = (:z:le, szz) € R"xR"™7)
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the resistive relations R, = grbRgZ;,, er = —]:ZfR, and port variables v = e, and y = f,, where
foren € R™, fp,e, € R™, fr,er € R™7, the Q-conjugated balanced realization (3.65) may be expressed
as an implicit port Hamiltonian system with the following parametrization:

I, 0 0 0
Iy
P 0 0 0
0 0 —1I, 0
0 0 0 I,
o1 Jei2 Bpi gor1
J J, B -
E— b21 b22 b2 Gor2

BL BL 0 0
Qg;l gg;z 0 0

By using the effort constraint method [65], the reduced model is obtained by imposing the constraint

€b2:0

Following [65] it can be shown that the reduced system with state variable xp1, can then be again

expressed as an implicit port Hamiltonian system with respect to the Dirac structure defined by the
reduced matrices F, and E,

F.=L°FM,=| 0 —I, 0 (3.67)

Jir Buyr gor1
E.=L°EM, = Ble 0 0 (3.68)
ngrl 0 0

where the matrix M, € R("tmtmr)x(r+m+mr) s defined as:

Ir Orxm OerR
M, = O(n—r)xr O(n—r)xm O(n—r)XmR (369)
Omxr Im Omme
O'HLRXT' OmRX'"L I'VVLR
and the projector matrix L¢ € R(rtmtmr)x(ntm+mn) jg oiven by:
I, 0 O 0
=10 0 I, 0 (3.70)
0 0 0 In,

and generated by the energy matrix (), which is the Schur complement Qs = Qp11 — leng_Qéngl.

It appears that this reduced port Hamiltonian system is actually again an explicit port Hamiltonian
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system of the form:

(3.71)

Ty = (J11 — R11)Qsxp1 + Bniu
Yy = B}ﬂstbl

By using the reduced system (3.71) and Theorem 3.3, one can design a reduced order controller
for the system in order to stabilize the full order system [36]. The error estimation between the full
order port Hamiltonian system (3.28) and the reduced order port Hamiltonian system (3.71) should
be considered, but there are two difficulties: the first one is that we use a modified LQG balanced
realization and the second one is that we use the effort constraint method instead of the classic
truncation method to reduce the system. The error estimation will be suggested in the next section
(Section 3.4).

To show the effectiveness of the proposed model and controller reduction method, we shall illustrate

the method on a mass-spring-damper system in Section 3.6.

3.4 Error estimation

In this sub section, we shall discuss how to characterize the error of the Q-conjugated balanced method
associate with the effort constraint method. The error estimation is related to the two following parts.

Firstly the effort constraint method, and secondly the Q-conjugated balanced realization.

3.4.1 Error estimation of the effort constraint method

To determinate the error of effort constraint method, we will first discuss the reduction error estimation
on the balanced coordinate associated with controllability and observability gramians which are the
unique solutions of two Lyapunov equations.

Consider the Lyapunov balanced realization of port Hamiltonian system as

&y, = (Jp — Rp)Qvay + Byu
s (3.72)
y = BlQuz

associated with the following controllability and observability Lyapunov equations:

AX+SAT + BB =0

3.73
AbTE + XA, + QbBngQb =0 ( )

where A, = F,Qy, ¥ = diag (01,09,...,0,) with 01 > 09 > ... >0, > 0.
We use the effort constraint method to reduce the balanced port Hamiltonian system (3.72) while
preserving the Hamiltonian structure (More details was presented in Section 2.4 and Section 3.3).

The reduced port Hamiltonian system is given as

(3.74)

T = ImQsr+ Biu
Yy = B?stl

with Qs = Qp11 — leng_ngngl is the Schur complement of Q.
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In the literature, an error bound is given for the case of truncated based reduction method used for
the Lyapunov balanced realization. This error is expressed as twice the sum of the truncated singular
values.

In order to characterize the error bound of the effort constraint method, we will relate the reduced
order system (3.74) to a reduced order system obtained by using truncation method from the input

output equivalent point of view. We will show this relation in the following Lemma.

Lemma 3.1. Consider the Lyapunov balanced realization of port Hamiltonian system (3.72):

y, = (Jp — Rp)Qvay + Byu
T (3.75)
y = BfQux

and its representation in the new coordinates

i = Fi+B
{ v S (3.76)
y = Bz
where F = SF,ST, B =SBy, and & = Sz, with
1
: 0 S 0
s=| ¢ 1 ] = l H (3.77)
Qs Qr21 Qg So1 S22
is the a decomposition of Q, such
Qy=5"S. (3.78)
Then the effort constraint reduced system (3.72):
t1 = F11Qs B
xl 1T1Q S (3.79)
y = Bl Qszb

with Qs = Qp11 — lesz_;Qngl, and the reduced system of (3.76) by using truncation method

{ i‘l = F‘Hi‘l +B1u (3 80)

y = Bl
. 1
are input-output equivalent by coordinate change T1 = Q2 xp.

Proof. We can easily check Q, = ST'S by compute by that

Bl [ A s8)
0 QEQQ Qb_ngbﬂ ngz

Consider the state matrix F of the truncation reduced order system in block form as

F= (3.82)

1 1
Q: Fb11Q§T * ]

* *
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and input matrix

1
- 2B
B s bl (3.83)
*
The reduced order system by using truncation method is
. 1 ir 1
T = QiFnQé T+ Q5 Bhu
~ ~”
Fq By
it (3.84)
Yy = Bging T
——
BT
1
By using the coordinate change T = Q2 xp1, the above system becomes as
T = K Tp1 + Bpiu
b1 anQs b1 b1 (3.85)
y = Bb1stb1

As consequence the truncation reduced system (3.80) is input-output equivalent to the effort constraint
reduced system (3.74). O

From the Lemma 3.1, one can change the error estimation of reduced order system (3.74) obtained

by using the effort constraint method to the truncation reduced one (3.80) such as
IG(s) = G7 (s) II=Il G (s) = GT (s) |l (3.86)
where the G (s) is the transfer function of full order system:
G (s) = BIQy (s — F,Qy) ' By = BT (31 - F) B, (3.87)
G¥E (s) is the transfer function of reduced order system by using the Effort constraint method:
GP (s) = BLQs (sI — Fy11Q,) " By, (3.88)
and GT (s) is the transfer function of truncation reduced order system:

~ ~ -1 .
GT (s) = BT <31 - F11> Bi. (3.89)

To characterize the error bound and simplify the demonstration, we first introduce the following

notation for system (3.76):

A A

A21 A22

B,

B,

and B=B =

(3.90)

Then the transfer function of system (3.76) and the reduced system (3.80) can be written as follows:

G(s)=B" (sI—A)'B (3.91)
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and
GF (s) = BT (sI — Ayy) "' By. (3.92)

respectively. Controllability and observability Lyapunov equations associated to system of (3.91) are:

AP, + P,AT + BBT =0

. 3.93
ATPf—‘rPfA—‘rBBT:O ( )

The solutions P, and P; can be related to the Hankel matrix ¥ by coordinate change matrix S (given
in (3.77)) as follows:

P.=8xsT
(3.94)
Pf =5 Tygs!
Let us introduce the following notations:
¢(S) = (SI—All)_l
= sl — Ay — A A

¥ (s) s 22 — A210(s) A1z (3.95)
B (S) = A ¢ (S) B1 + By
C(s) = Bl¢(s)Aw+B]

Proposition 3.1. Consider the port Hamiltonian system (3.72) with its transfer function G (s) and
its reduced order system by using the effort constraint method (3.74) with its transfer function GE (s),
then

|G (s) = GE (s)||. < M2 ([L+ 97" (jw) L* (jw)] - [M + 9~ (jw) M* (jw)]) (3.96)

with
L = 5555582 + 59151 [S3; + S11¢™ (jw) AJ ] (3.97)

and
M = 553'5585" [I — 82157 ¢ (jw) Ar2] . (3.98)

and where A\t means the mazimal frequency eigenvalues of G (s) — GE (s) .

Proof. From the Lemma 3.1, The reduced order system (3.74) and the truncation reduced system
(3.80) are input output equivalent. Then the error estimation of the effort constraint method can be

computed by using the well known error bound of the truncation method such as:
G(s) =Gy (s) =G (s) = Gy (s) (3.99)

By using the same procedure used for truncation method used in [86, Sec 2.3] and with the notations

given in (3.95), we can obtain:
G (s) =G, (s)=C(s)p~" (s) B (s) (3.100)

computing this quantity on the imaginary axis to get the maximal singular value of the frequency

response of the error transfer function

5 [G (jw) = Gy (jw)] = Al [ (jw) B (juw) B* (jw) ¥~ (jw) C* (juw) C (jw)] (3.101)
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with
B(jw) B* (jw) = A21¢(jw) B1BT ¢* (jw) A, + Az ¢ (jw) BiBS (3.102)
+ByB{ ¢* (jw) A3y + BBy
and _ _
C* (jw) C (jw) = Al¢* (jw) BiBY ¢ (jw) A1z + ATy¢" (jw) B1 BT (3.103)
+ByB ¢ (jw) A1z + B2 By
We denote that T = S~! as
T 0
_ 11 (3.104)
Toy T

with Qb_l =TT7T. Then the Gramian matrices P, and Py can be written under the block form

P [ St 0 1 0 St SH
‘ | S21 Sz 0 X 0 8
_ S11215T S11315% (3.105)
521215,{1 52121551 + 522225'%12
[ plt pr2
~ | p2 pz
P = TTST
B Th T 1 0 AT
0 TL 0 X Tor Too
TR + TES Ty TS0 Th (3.106)
I T35 T T35, s,
Pll P12
_ f f
| PR
Then the controllability Lyapunov equation of system (3.76) is
A A Pll P12 Pll P12 AT AT B
s 21 poo 21 p22 ron ! [BlT BQT}:O (3.107)
Ag1 Az ) VA Afy A Ba

We can write it in terms of partitioned form as follows

Ap PR+ A P2+ PRAT + P12AT, + BiBT =0
A P2 4+ A P2 + PR AT 4+ P2 AT, + BB =0

(3.108)
Api PN 4 Agy P2 4 PLAT, 4 P2AT, 4 BBT — 0
A1 P12+ Ago P22 + PR AT + P22AT, + BoBT =0
and the observability Lyapunov equation of system (3.76) can be written in the same way
AT PP+ AL PP + P AL + PP A + BB =0
AT PP? + AT, PP + Pj Ay + Pl Agy + BB =0 (3.100)

Aglp}l + A%;P?l + Pf21A11 + P]%2A12 =+ BQB%1 =0
A PP 4 AQo PP + P7 Aoy + P2 Agy + BBy =0
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Now we can compute B (jw) B* (jw) by equations (3.108). The result is given as follows

B (jw) B (jw) = [P2* + An¢(jw) P2] " (jw) + ¢ (jw) [PZ* + P¢" (jw) Az, ] (3.110)
We can also compute C* (jw) C (jw) by equations (3.109). The result is given as follows

C* (jw) C (jw) = [PF* + ATo0" (jw) PF*] v (jw) + ¢" (jw) [PF* + Pf'é(jw) Aro] (3.111)
Hence we can get

¢! (jw) B (jw) B* (jw) =" (jw) C* (jw) C (jw)
= [(PZ+PX¢"(jw)Af) + 7" (jw) (P2 + A2 (jw) P2) ¢* (jw)] (3.112)
(PP + PPo(jw)Arn ) + 9 (w) (PP + ALas" () PI2) v (juw)|

We use the equations (3.105) and (3.106) to relate the above equation with the singular values. Then

we can obtain

P~ (jw) B (jw) B* (jw) ¢~ (jw) C* (jw) C (jw) (3.113)
= [L+9¢7" (jw) L* (jw)] - [M + ¢ (jw) M*3 (jw)]
with
L = 55555805 + 8215159, [I + S5, S116* (jw) A3;] (3.114)
and
M = 85,' %585, [I — S21577" ¢ (jw) Ara] (3.115)

Finally we obtain the following result

1G (5) = Gy (5)]| o, < 7 [G (jw) — Gy (jw)] = Mo [0 (jw) B (jw) B* (jw) ¥~ (jw) C* (jw) C (jw)]
= Adax ([L+ 971 (jw) L* (jw)] - [M + ¢~ (jw) M*9 (jw)])

(3.116)

O

From the Proposition 3.1 we can see that the error of the effort constraint based reduction method
is completely different from the one obtained using truncation method, where the error depends
only on Y5. The error of the effort constraint method depends at the same time on Y, and Xj.
Hence the computing of the upper error bound (maximal value over w of the error) for the effort
constraint method is still an open problem. Moreover, the equation (3.112) is only the error bound
on the Lyapunov balanced coordinate. In the next sub section we will discuss how to relate the

Q-conjugated balanced coordinate to the Lyapunov balanced one.

3.4.2 Error estimation on the Q-conjugated balanced coordinate

In order to determinate the error on the Q-conjugated balanced coordinate, we shall first recall the
error estimation of the standard LQG method.

Consider the system:

(3.117)

t = Ax+ Bu
y = Cz
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and its transfer function
A B

CE =1

=C(sI-A)'B (3.118)

The standard LQG problem is associated with the two following Riccati equations:

e Control Riccati equation

ATP.+P.A+C"C -~ P.BBTP.=0 (3.119)
e Filtering Riccati equation

APy + PsA" + BBT — P,CTCP; =0 (3.120)

where P. = PT > 0 and P; = PfT > 0. The feedback gain is K = BT P, and the filter gain is
F=P;C.

The idea of the error estimation of reduction associated with the above standard LQG problem is
to find the relation of this standard LQG reduction with the Lyapunov balanced reduction method.
This relation is found by the normalized right coprime factorization of transfer function (3.118) G (s)

which is given as:

- A— BK B
M (S) Ach Brcf
N( ) = K 1 = o P (3.121)
S C 0 ref ref
where ~ ~
M(s)=Clsl = Anes) "B N(s)=K[s] - Aney) ' B+1 (3.122)
G(s)=N(s) M~ (s) '
The Lyapunov equations of the right coprime factorization system (3.121) are given as:
AperM + MAT BB . =0
Cf + ’I‘C_f + Cf ’I‘Cf (3123)

AL P+ PAycy+ClLCrep =0

with M and P, the symmetric positive definite matrices, are the unique solutions of the Lyapunov
equations. The relations between the solutions of Riccati equation Py and P. and the solutions of

Lyapunov equations M and P are given by the following Lemma:

M
Lemma 3.2. [/7] The controllablity and observability Gramians of [ & ((8)) ] , M and P respectively,
S
are given by
M = (I+PP)'P
(L4 Ppbe) By (3.124)
P = P,

where P., Py are the unique positive definite solutions to CARE (3.119) and FARE (8.120) respec-
tively.
Then following this Lemma, we can find the relation between the LQG singular values and the

Hankel singular values of the right coprime factorization system (3.121). The LQG singular values

are
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and the Hankel singular values are

o; = AP (3.126)
where \; (H) are the eigenvalues of the matrix H. From Lemma 3.2, we can get
Y ((1 + PPt PfPC)
B APy P.) (3.127)
T RN R
= 11;?
then
2
;= L 3.128
7=\ T (3.128)
It is well known that the error bound of Lyaounov balanced reduction is
|G=GP P <2 o (3.129)
i=r+1
Then the error bound of standard LQG balanced reduction can be presented as:
[feRreiatt Ry ——— (3.130)
= i:;ﬂ V1t MZ

Now we will discuss how to get the error bound of the Q-conjugated LQG balanced reduction. Let

recall the two Riccati equations associated with the Q-conjugated LQG problem:
AP; + P AT — P;CTR,'CPy 4+ Q, =0 (3.131)

and
ATP,+ P.A-P.BR'BTP,+Q =0 (3.132)

with A = (J — R)Q, C = BTQ. We will find a new system for which observability Lyapunov equation
is equivalent to CARE (3.132) of port Hamiltonian system which have the same solution, i.e. P = P,:

- T - - ~
[A - BR_lBTPC} P+ P{A —BR'BTP| + P.BR'BTP.+ O =0 (3.133)

cre,

AT Ap

Then the new system can be written as:

A—-BR'BTP. B,

RY?BTP,
0L/

3.134
b, (3134

This new system looks like the right coprime factorization system (3.121) but the output matrix

is different, so we call it right coprime factorization like system. And its controllability Lyapunov
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equation is written as

~ - T
A BR*lBTPC} M+ M [A - BR*lBTPC] + B,BT =0 (3.135)

n

By using the observability Lyapunov equation (3.133) of right coprime factorization like system
and the CARE (3.132) of port Hamiltonian system, we can find the relation of the two solutions
P = P.. But how to find the relation between the solutions of the FARE (3.131) and the controllability
Lyapunov equation (3.135) Py and M is still a difficulty.

We shall consider another way to get a coprime factorization like system for relating the solutions

of Lyapunov and Riccati equations.

Proposition 3.2. Consider the port Hamiltonian system:

& = (J—R)Qz+ Bu (3.136)
y = B"Qz '
associated with the Q-conjugated LQG problem and two Riccati equations:
(J = R)QP; + PyQ(J — R)T — PyQBR,'BTQP; + Q, =0 (3.137)
QWJ-RTP.+P.(J-RQ—P.BR'BTP.+Q =0
with a specific choice Q = QBR,'BTQ and a new system
r = AnZ+ Buu (3.138)
== Cnli' .
associated with the controllability and observability Lyapunov equations:
AL P+ PAy +CECh =0 (3.139)
ApiM + MAL, + B, BT, =0 '
with ~
Ay =A—-BR'BTP,— LP., B, =K'?
2p, (3.140)
Cn1 = O1/2
and
L=J'QP;+ P;QJ (3.141)
K=Q,— (I+PiP) " PiP.L(I+ P.P;)" — (I + P;P.)" ' LP.P; (I + P.Py)"" '
Then the solutions of Riccati equations and Lyapunov equations are related by:
P=P
(3.142)

M= P;(I+P.P;)""

Proof. First we recall the Q-conjugated LQG controller is obtained under the following conditions:
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R=R,
Qu=Q ' [20/7P. +2P.JQ +Q| Q!
Pchl = pr

The third condition shows that @, and Q are related. In practice we can fix one weighting matrix

and calculate the second one using this condition.

Let us consider the specific Q-conjugated LQG controller where we fix Q:
Q=CTR,;'C =QBR,;'BTQ, C=B"Q (3.143)
with this specific choice of Q, @, can be expressed as follows:

Q. =BR'BT +2(JTQP; + P;QJ) (3.144)

L

Thus the Riccati equations are rewritten as:

APy + Py AT — P,CTRIOP; = —Q, (3.145)
ATP,+ P.A- P.BR'BTP., = —CTR,'C (3.146)

We replace the expression of —CT R 1 taken from the filtering Riccati equation (3.145) in the control
Riccati equation (3.146):

APy + Py AT + P;ATP.P; + P;P.AP; — P;P.BR™'B"P.P; = -Q, (3.147)

<= (I + P;P.) AP; + P; A" (I + P.P;) — P;P.BR"'BTP.P; = —Q, (3.148)

The control Riccati equation can be written as:

- T .
[A —BR'BTP,—LP,| P. +P.|A—-BR'BTP, — LPC}
A£1 ~ Anl (3149)
+P.BR'BTP. +2P.LP.+ QBR,'BTQ =0
CF i Cn1

or

- T ~
[A ~BR'BTP, - LPC] P+ P. [A _ BR'BTP, - LPC] + P.QuP. + QBR.'BTQ =0 (3.150)

AT Anl C",I;l Cnl

nl

which is equivalent to the following Lyapunov equation:
AT P. 4+ P. Ay +CLC =0 (3.151)

where R
Ay =A—BR'BTpP. - LP.
2p, [ 2p. ] (3.152)

Cnl =

R11D/2BTQ Q1/2
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Inspired the demonstration of standard LQG balanced reduction in [47], we consider the following

equality:

_(I+Pch)Qv(I+PcPf) = _Q'u_PchQv_QvPcPf_PchQvPcPf
— —Q,- PP, [BR”BT + QL} - [BR*BT +2L] PPy (3.153)
_P,P, [Bé—lBT n 2L} PPy

Then we replace @, by its expression from the filter Riccati equation (3.145):

—(I+PsP.)Q, (I + P.Py) (I + PyP.) APy + Py AT (I+ PoPy) = PyP.BR™' BT PP
—P;P, [BR'BT +2L] - {BR‘lBT + QL] P.P;
—P¢P. |BR™'BT +2L| P.P;
= (I + Pch) APf + PfAT (I + PcPf)

~(I+PgP) (BR'B"P. + LP,) P;

Py (P.BR™'B + P.L) (I + P.Py) = PP.L — LP.P
= (I +P;P.) [A _BR'BTP, — LPC} Py

~ T
+P; [A= BRTBTP.~ LP.] (I+ P.Py)
—P;P,L — LP,P;

(3.154)
Finally we get:
Ap1 Py (I+P.Pp) "+ (I+ PP PpAn
M M
_ _ 3.155
+Q, — (I + P;P.) " PP.L(I + P.P;)”" ( )
— (I + P;P.) " LP.P; (I + P.P;)™" =0
If we take
K=Q,— (I+P;P.) ' PsP.L(I + P.P;)"" — (I + P;P.)” ' LP.P; (I + P.P;)"" (3.156)
then we can get a new system as
An Bn
! ! (3.157)
Onl Dnl
with ~
Ay =A—BR'BTP,— LP., B, =K!/?
2p, (3.158)
and associate the controllability and observability Lyapunov equations:
AT\P+ PA, +CLChi =0 (3.150)

A M+ MAL + B,1BL, =0

Then the solutions of the Riccati equations of port Hamiltonian system F. and P; have the
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following relation between the solutions of the Lyapunov equations of the system (3.157):

P=P,

1 (3.160)
M = Py (I+ PcPf)

The Proposition 3.2 gives us the same relation (3.160) of the Riccati and Lyapunov equation
solutions for the Q-conjugated LQG balanced reduction as the standard LQG balanced reduction.
Since in standard LQG balanced method, we use the relation between the Lyapunov equations of
right coprime factorization and the Riccati equations of the system itself because the equivalence of
the transfer functions. But the problem here is that how to find the relation of the reduction between

the port Hamiltonian system and the the new system (3.157).

For the standard LQG problem, the transfer function of right coprime factorization is the same as
the system itself. Hence the error bound of the standard LQG balanced reduction can be characterized
by the Lyapounov balanced reduction of the right coprime factorization. However, it is to difficult to
find the relation between the transfer function of the new system (3.138) given in the Proposition 3.2

and the port Hamiltonian system:.

As a summary, to characterize the error of the passive preserving Q-conjugated LQG balanced
reduction method, still has two difficulties. First, it is difficult to compute the upper error bound of
the Effort constraint method even by using the Lyapunov balanced reduction method. Secondly, to
characterize the error on the Q-conjugated balanced coordinate is still a very difficult problem. These

problems will be considered in a future work.

3.5 Summary of proposed methods

In this section, we shall give a summary and comparison between the proposed structure preserving
LQG method with the standard LQG method from the control design and closed loop reduction points

of view respectively.

In Figure 3.2 the different LQG methods for control design are illustrated. On the left, we use the
standard LQG method where the weighting matrices are Q = QBBT(Q and R = I, the covariance
matrices are @, = BBT and R, = I. This method can not preserve the Hamiltonian structure
in the closed loop system. The Q-conjugated LQG method and Minimize dissipation energy LQG
method (Min-energy LQG), in which the weighting and covariance matrices are under the condition
of Theorem 3.3 and Theorem 3.2 are presented in middle and right part of the figure, respectively.

These two methods can preserve the Hamiltonian structure for the closed loop systems.
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Standard LQG Q-conjugated LQG Min-energy LQG

ZOLH CS EOL CQ ZOL‘H
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Figure 3.2: Full order closed loop systems by using different LQG methods

In Figure 3.3, we show the reduction schemes of the closed loop systems by using the NO structure

preserving (Standard) and the structure preserving (Q-conjugated) LQG method.
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Figure 3.3: Reduced order closed loop systems by using different LQG methods

3.6 Illustration on the mass-spring-damper system

In this section, we consider the benchmark example of a mass-spring-damper system treated in [65]
which can be interpreted as the spatially discretized model of a robotic flexible link of a robots or
as a multi-mass system for vibration absorbers. We first compare the open loop performances of
the full order system with the different reduced one obtained by the different reduction methods on
Q-conjugated balanced coordinate and standard LQG balanced coordinate respectively. Secondly the

performances of the closed loop systems shall be compared by using the different controllers.
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Figure 3.4: Mass-spring-damper system

The mass-spring-damper system represented on Figure 3.4 may be formulated as a port Hamilto-
nian system (3.28). The state variable 2 € R*V contains the displacement d and the momentum p
variables of the N masses, the input of system is the force F' on the mass m; and its dual output is

its velocity.

T = [dla P1, d2a P2, d3a P3yccc s de PN]T (3161)
u=F (3.162)
y=u (3.163)

The physical parameters of this system are: the masses m; = 2, the elasticity coefficients of the spring
k; = 4, the friction coefficients ¢; = 0.1. Denoting «; = k; +k;—1, 8; = —k; and ; = %, the structure
matrix J € R2VX2N the dissipation matrix R € R2V>*2N | the energy matrix Q € R?V*2V and the

input matrix B € R?V are given as

[ To -1 00 0 0] ]
1 0 0 0 _0 0_
[0 0 :
0 0 '
J = . - ; (3.164)
. . 0 0
_0 0_
0 0 0 0 0 -1
i 0 O_ 0 O 1 0 l
R=diag[0 ¢; 0 c2 0 ¢z -+ 0 cn] (3.165)
(a1 0 B 0 0 - .. 0 0]
0 m 0 0 0 " . .0
i 0 a 0 By .o T 0
0 0 0 7 0
0 0 0 .0
Q=" Pz (3.166)
' 0 0 0 0 0
0 an_1 0 Bn-1 0
0 0 0 YN-1 0 0
0 0 fBn-1 0 an 0
0 0 0 0 0 0 ]
T

B:[O 10 --- 0 (3.167)
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In the numerical simulation, we choose N = 20, it means that the system state is z € R0,

Before proceeding to the reduction of the system, let us compare the singular values obtained from
the standard LQG balancing and the positive real as well as the Q-conjugated balancing in Figure
3.5 . The singular values (depicted in green in Figure 3.5) obtained by the LQG balancing method of
proposition 3.2 which minimizes a dissipation rate, are all equal to 1. This is in accordance with the
fact that product of the LQG Gramians obtained from Theorem 3.2 is equal to the identity. Secondly,
one may observe that the singular values (depicted by red circles in Figure 3.5) obtained by the Q-
conjugated LQG balancing have a much bigger decay rate than the ones obtained with standard LQG
balancing method (depicted by blue circles in Figure 3.5). Because we can choose a more important
weighting matrix for the optimal control. In the standard LQG method, the optimal control weighting
matrix of states equal to CC7T, but in the Q-conjugated LQG method, we choose the states weighting
matrix of the optimal control is equal to Q = 5CCT. That is why the singular values obtained by the
Q-conjugated LQG balancing have a much bigger decay rate. It should be noted that in Q-conjugated
LQG balancing method, the choices of weighting matrices and covariance matrices are related. In this
numerical simulation, we fix the optimal control weighting matrices, thus the covariance matrices are

also fixed for getting a passive LQG controller by Theorem 3.3.

LQG singular values
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Figure 3.5: Singular values associated with different LQG problems

3.6.1 Comparisons of open loop systems

Next we shall compare in Table 3.1 and 3.2 the relative errors between the Q-conjugated LQG balanced

coordinate and the standard LQG balanced coordinate by using Effort constraint method in H., norm

(%) and Hs norm (%) respectively. We recall that the error bound of LQG balanced
oo 2

method is given as

(3.168)

G =Gl —
1;1 ]‘+luz
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[ Order of the approximation | 4 [ 6 [ 8 [ 10 [ 12 | 14 [ 16 [ 18 |
Q-conjugated LQG 19.76 [ 14.76 [ 10.85 [ 7.93 | 5.27 | 5.92 | 4.51 | 2.50
Standard LQG 7.68 | 2.69 | 2.02 | 2.54 | 2.57 | 2.07 | 1.53 | 1.93

Table 3.1: Relative H, errors of the different balanced realizations using the effort constraint reduc-
tion method

| Order of the approximation [ 4 | 6 | 8 [ 10 | 12 [ 14 [ 16 [ 18 |

Q-conjugated LQG 4.08 | 3.47 | 3.04 | 2.69 | 2.32 | 2.41 | 2.16 | 1.95
Standard LQG 274 | 169 | 1.38 | 1.46 | 1.45 | 1.33 | 1.19 | 1.15

Table 3.2: Relative Hj errors of the different balanced realizations using the effort constraint reduction
method

One can observe that compared with standard LQG method, the reduced order systems by using
Q-conjugated LQG balanced reduction method have bigger H,, or H> error. Because the singular
values given by Q-conjugated balanced method are bigger than the standard LQG method shown in
Figure 3.5. But we should always remind that the controller designed by Q-conjugated method is
passive and the closed loop system is also a port Hamiltonian system.

We shall compare the errors of reduced order systems by Effort constraint method and Truncation
method on the same coordinate—Q-conjugated balanced realization. The errors will be shown by

relative H,, and Hs norms on Table 3.3 and 3.4 respectively.

[ Order of the approximation | 4 [ 6 [ 8 [ 10 [ 12 | 14 [ 16 [ 18 |
Effort constraint method 19.76 | 14.76 | 10.85 | 7.93 | 5.27 | 5.92 | 4.51 | 2.50
Truncation method 1.64 2.12 801 | 7.52 | 7.03 | 6.49 | 1.98 | 1.64

Table 3.3: Relative H,, errors of the different reduction methods on the Q-conjugated balanced
realization

| Order of the approximation [ 4 | 6 | 8 [ 10 | 12 [ 14 [ 16 [ 18 |
Effort constraint method 4.08 | 3.47 | 3.04 | 2.69 | 2.32 | 2.41 | 2.16 | 1.95
Truncation method Inf Inf Inf Inf Inf Inf Inf Inf

Table 3.4: Relative Hs errors of the different methods on the Q-conjugated balanced realization

We can see that the reduced order systems obtained by effort constraint method have the larger
H . errors than the reduced ones by truncation method. However the truncation method can preserve
neither the Hamiltonian structure nor the passivity of the port Hamiltonian system. Sometimes, the
truncation method may even loose the stability of the system as it may be seen in the Table 3.4, where
the Hy errors of reduced order systems obtained by using truncation method are infinite, that means
the reduced systems obtained by using truncation method are unstable. Hence using the Q-conjugated
balanced coordinate, the truncation method looses not only the passivity but also the stability of the
system.

Next, we shall compare the open loop reduction performances in a reduced order given by Bode

diagrams. Here we consider the reduced order is r = 20.
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Reduction on Q-conjugated LQG balanced coordinate Errors of Q-conjugated LQG balanced methods
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Figure 3.6: Bode diagrams by Effort constraint method and truncation method on Q-conjugated LQG
balanced coordinate (Left) and their errors (Right)

In Figure 3.6 we compare the reduced order systems by Effort constraint method (the red curve)
and truncation method (the green curve) on the Q-conjugated LQG balanced realization with the
full order system (the black curve). We can see that the Effort constraint method preserves a better
performance in the high frequencies and the truncation method has the better performance in the low
frequencies which is the similar results as given in [61]. The errors of those reduction methods do not

exceed the error bound given by equation (3.168).

Reduction on standrad LQG balanced coordinate Errors by the standard LQG balanced methods
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Figure 3.7: Bode diagrams by Effort constraint method and truncation method on Standard LQG
balanced coordinate (Left) and their errors (Right)

Figure 3.7 is given the Bode diagrams of reduced order systems obtained by Effort constraint
method (the blue curve) and truncation method (the green curvre) respectively on the Standard
LQG balanced realization with the full order system (the blue curve). One can see that the two
errors don’t exceed the error bound defined by equation (3.168), and the two reduced order systems
have almost the same performances at high frequencies, however the reduced system given by Effort
constraint method has very bad performances in the low frequency and the truncation method have a
better performance. But we should always remind that the Effort constraint method always preserves
the Hamiltonian structure and passivity of the port Hamiltonian system and the truncation method

doesn’t, and in this case the truncation method, the reduced order system loses the stability of the
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port Hamiltonian system.
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Figure 3.8: Bode diagrams by using the Effort constraint method on the different balanced coordinates
(Left) and their errors (Right)

As said before, the Effort constraint method can preserve the Hamiltonian structure and the
passivity of the port Hamiltonian system. The we compare the reduced order systems obtained by
Effort constraint method on the Q-conjugated LQG balanced coordinate (the red curve) and on the
standard LQG balanced coordinate (the blue curve) respectively in Figure 3.8 with the full order
system (the blue curve). We can see that the reduced order system on the standard LQG balanced
coordinate has the better performance which we can also find in Tables 3.1 and 3.2. In the next

subsection, we will discuss the closed loop behaviors of the different methods.

3.6.2 Comparisons of closed loop systems

Step Response

—— Standard LQG controller
- - Minimizes dissipation energy LQG controller
---Open loop system

Amplitude

| | I | |
100 120 140 160 180 200
Time (seconds)

Figure 3.9: Comparison of the standard LQG controller and modified LQG controller minimizing
dissipation energy
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In Figure 3.9, we are comparing the step responses of the closed loop system stabilized by the con-
trollers by the minimizes the dissipation energy LQG method (the green curve) and standard LQG
method (the blue curve) with open loop system (the black curve) respectively. The step responses
have almost the same performance. But it should be noted that the closed loop system with the
Minimizes dissipation energy LQG method is also a port Hamiltonian system, i.e. we preserve the
Hamiltonian structure in the closed loop system. However, the Hamiltonian structure is lost in the

closed loop system with the standard LQG controller.
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Figure 3.10: Comparison of the closed loop systems with standard LQG controller and Q-conjugated
LQG controller

In Figure 3.10, we compare closed loop system stabilized by Q-conjugated LQG controller (the
red curve) and standard LQG controller (the blue curve) with the open loop system (the black curve)
respectively. We can see the closed loop system with Q-conjugated LQG controller has the much
better performance. And it should be reminded that the closed loop system with Q-conjugated LQG
controller is still a port Hamiltonian system and also the choice of the weighting matrices or covariance

matrices is free, i.e. we can define the optimal control or the filter problem as we want.
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Figure 3.11: Comparison of the closed loop systems with Q-conjugated full order and reduced order
controllers

Because the Q-conjugated LQG method does not only allow us to design a passive Hamiltonian
controller, but also allows us to reduce the system and its controller. Thus in Figure 3.11, we show
the step responses of closed loop systems with the full order Q-conjugated LQG controller (the blue
curve) and reduced order Q-conjugated controller (the red curve) respectively. The reduced order is
chosen as r = 20, since we can see in Figure 3.5, the first 20 Q-conjugated LQG singular values are
much bigger than the other ones, it means that the first 20 state variables are more important than
the others. It is also why we can find the closed loop system with the full order and reduced order

Q-conjugated LQG controllers have almost the same performance.

3.7 Conclusion

In this chapter, we have suggested two passive LQG controller design methods for port Hamiltonian
systems. Furthermore one of these method allows us to reduce the port Hamiltonian system and its
passive LQG controller.

We firstly propose a passive LQG control design method for port Hamiltonian system by inspiring
from the positive real LQG control design method of positive real system proposed in [8]. This passive
LQG method is interpreted as a controller which minimizes the dissipated energy LQG method because
it considers the sum of dissipation of the energy of the port Hamiltonian system with the norm of
the input and output variables with the weighting matrices. And the covariance matrices have no
statistic meaning and are only considered as the controller design parameters. However, this passive
LQG control design method doesn’t allow us to reduce the port Hamiltonian system because all the
singular values are equal to one, we can’t separate the state variables.

Thus the second passive LQG method Q-conjugated LQG method was proposed. In this passive
LQG control method, the LQG Gramians were related in order to get a port Hamiltonian formulation
of LQG controller. Hence, the optimal control problem and optimal filtering problem are related in
this Q-conjugated LQG method, if the optimal control problem is given, then the covariance matrices

of optimal filtering problem are just the control design parameters and have no statistic meaning.
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In contrast, if the covariance matrices are given, i.e. there are the real noises perturbing the state
variables and output, the weighting matrices of optimal control problem are related to those noise
and should be considered as the control design parameters. Furthermore, Q-conjugated LQG method
allow us to reduce the port Hamiltonian systems since the singular values are generally different, it
means the state variables have the different importance in the closed loop behavior. Then we define
a new LQG balanced realization based on the Q-conjugated LQG method and the effort constraint
method is used to get reduced order system with preserving the Hamiltonian structure and passivity
of port Hamiltonian system. The reduced order system can be used to design the low order LQG
controller with the proposed LQG method.

Finally we have used a classical mechanical mass-spring-damper system to illustrate the effective-
ness of the proposed method. The errors between the full order system and reduced order systems
obtained by different methods on the standard LQG balanced and Q-conjugated LQG balanced co-
ordinates are shown by the relative H,, norm and Hs norm. The reduced order systems obtained
by Q-conjugated LQG method have bigger relative error than the ones obtained by standard LQG
method however we should always remember that the Q-conjugated LQG method can preserve the
passivity and Hamiltonian structure of the system but the standard LQG can’t. Furthermore the
closed loop performances of the different LQG controllers are shown by the step responses at next and
we find the one by using Q-conjugated LQG controller has better performance than standard LQG
method. And the reduced order Q-conjugated LQG controller has almost the same performance as

the full order one in the closed loop systems.
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Chapter 4

Hamiltonian LQG method for
structure preserving reduction of
infinite dimensional port Hamiltonian

system

4.1 Introduction

In this chapter we consider the model reduction and the control of infinite dimensional systems driven
by linear PDEs. As in the case of large scale systems there exists an extensive literature on this
topic. Nevertheless as soon as passivity is concerned, the reduction and control schemes have to
preserve the original passivity properties of the system. For example a passivity preserving reduction
scheme based on positive real balanced truncation has been proposed in [29]. The passivity and
(Hamiltonian) structure preserving approximation of infinite dimensional port Hamiltonian systems
has been derived on the basis of the spatial discretization [24, 5, 33] through mixed finite elements
method, using a pseudo-spectral approximation [52] and a Petrov-Galerkin approximation [34] for the
open-loop systems. The main drawback of such methods is that they cannot be applied on a large
class of distributed parameter systems i.e. the power preserving systems (hyperbolic systems), for
which the poles are all located on the imaginary axis. In this case all the state variables have the same
weight and the aforementioned reduction technics fail in providing a model suitable for control design
purposes. This is particularly true in the infinite dimensional setting. Even if such approach has been
considered for the reduction of large scale finite dimensional systems (cf last chapter and [85]) it has
been hardly considered in the infinite dimensional case. As it was the case in the previous chapter
the reduction we use is mainly based on LQG control and balanced realization and truncation.

In the infinite dimensional case, the model reduction of (open loop) linear systems by using the
balanced method has been widely studied in literature. The balanced realization and truncation
method for infinite dimensional system has been firstly introduced by [54, 22, 23] in the last century.

In recent years, this method has been generalized to the systems with nuclear Hankel operators [13]

75
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and the error of approximation evaluated in [30, 68, 28]. The nuclear Hankel operators have summable
sequence of Hankel singular values, i. e. the singular values converge to zero and their sum is bounded.
This property will be used to separate the state spaces since in the balanced realization, the state
operator can be regarded as infinite matrix. The truncation method of finite dimensional system is
then naturally generalized to the infinite dimensional case.

With the same idea in mind, the LQG balanced method has been generalized to the infinite
dimensional linear systems associated with two operator Riccati equations by [12]. These primary
works have been generalized to discrete-time and continuous-time infinite dimensional linear systems
in [56, 55]. In [9, 70] the authors have compared the LQG balanced method to the balanced method for
the controller design objective. The simulation results in those papers show that the results obtained
from LQG balanced method are better than the one obtained using balanced method.

In [6], a robust reduced order controllers designed by LQG balanced method has been proposed.
The authors have shown that the LQG balanced method can be used to design not only the LQG type
control defined as in [36, 12] but also other reduced order controllers associated with the modified
Riccati equations. A difficult point of infinite dimensional LQG balanced method is how to solve the
operator Riccati equations. In the literature, most of the authors use a discretization method like
finite elements method to approximate the system for solving the operator Riccati equation. It has
been shown in [51, 50] from the graph topology point of view, that under some conditions the solutions
of the finite dimensional Riccati equations converge to the solutions of the operator Riccati equations,
and that the finite dimensional controller converges to the infinite dimensional one. However, the
use of standard LQG balanced method defined in [12] even for infinite dimensional port Hamiltonian
systems, does not preserve the passivity properties in open loop nor in closed loop because the LQG
control design is not a passive control design method in general.

Hence this chapter aims to find a passive reduced order LQG controller design method for infinite
dimensional port Hamiltonian (IDPHS) with distributed control in the domain and no boundary
energy exchange. This approach is also used to develop a LQG based model reduction with closed-loop
considerations [9, 6, 12]. We shall first derive the conditions under which a LQG controller is passive
and equivalent to a control by interconnection of two port Hamiltonian systems [60, 58, 44]. From
this LQG approach we shall define a balanced basis in which the LQG Hankel operator is nuclear
with summable singular values. The reduction procedure will use the Petrov-Galerkin approximation

[34] preserving both the port Hamiltonian structure and the passivity of the system.

4.1.1 Organization of this chapter

This chapter is organized as follows. First in Section 4.2, we recall some important definitions and
theorems of infinite dimensional balanced and LQG balanced methods. In Section 4.3, we introduce
a class of infinite dimensional passive systems which can be represented in the port Hamiltonian
framework. In Section 4.4 we apply the LQG method to this infinite dimensional port Hamiltonian
system and then propose a LQG controller which is passive and equivalent to the control of the port
Hamiltonian system by interconnection. In the next section (Section 4.5) we use this LQG problem in
order to derive a reduction scheme that preserves the port Hamiltonian structure. In the last section
we illustrate and compare the full order LQG controllers and reduced order LQG controller on the

example of Timoshenko beam.



4.2. REMINDERS OF BALANCED METHODS FOR INFINITE DIMENSIONAL SYSTEM 77

4.1.2 Main contributions of this chapter
The main contributions of this chapter are the following.

e In Section 4.4, a novel passive LQG control design method for infinite dimensional port Hamil-
tonian systems is proposed. More precisely Theorem 4.4 generalizes the passive LQG control
design method proposed for finite dimensional port Hamiltonian systems in the previous chap-
ter. We show this novel passive LQG control design method is equivalent to the control of
infinite dimensional port Hamiltonian systems by interconnection. However, the LQG controller

designed by this method still has an infinite dimension.

e In Section 4.5, Theorem 4.5 used the proposed passive LQG design method to define a balanced
realization by a specific choice of the weighting operators acting on the state. The nuclearity
of the LQG Hankel operator is proven and used to separate the state space as explained in the

introduction of this chapter.

e Because the state space of the infinite dimensional port Hamiltonian system can be separated
to one finite dimensional part and one infinite dimensional residue of finite sum, we propose
in Theorem 4.6 a finite dimensional approximation of the port Hamiltonian system by using a

Petrov-Galerkin projection method.

e In Section 4.6, we shall apply the proposed approximation scheme to a Timoshenko beam model.
The reduced finite dimensional controller performances will be discussed and we will compare

the reduced order controller with high order controller.

4.2 Reminders of balanced methods for infinite dimensional lin-

ear system

This sub section is devoted to the balanced realization of bounded well-posed linear systems with

nuclear Hankel operator and finite dimensional input and output spaces.

4.2.1 Infinite dimensional linear system with nuclear Hankel operator

We consider in this chapter infinite dimensional systems of the form:
& = Az + Bu (4.1)

where z(t, z) is the state space defined on a real Hilbert space, A a linear differential operator
with domain D(A) and B a linear (bounded) input mapping. We are interested in this work to the
existence and the properties of the solutions of (4.1). For that purpose we use the semigroup theory
and more generally the functional analysis [14, 72, 75| to derive our results. A semigroup A (t),-,
defined on a Hilbert space is an operator that generalizes the e'* operator used to derive the solutions
of linear finite dimensional systems to the infinite dimensional ones. In a first instance we recall some

important definitions and properties of semigroups.

Definition 4.1 (Strongly continuous semigroup (Cp-semigroup) [14]). Let X be a Hilbert space.

2 (t),~, is called a strongly continuous semigroup (Co-semigroup for short) if the following holds:
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1. For all ¢t > 0, 2((¢) is a bounded linear operator on X, i.e., 2 (t) € L (X);
2. A(0)=1I;
3. At +s) =2(t)A(s) for all t,s > 0;

4. For all o € X, we have that || (t) zo — zo|| y converges to zero, when t | 0, i.e., t — () is

strongly continuous at zero.

Definition 4.2 (Generator [14]). The operator A: D (A) C X — X defined by

D(A) = {xeXl}igli(Ql(t)x—x) GX}, szltiig%(ﬂ(t)x—x), (4.2)

is called the generator of the semigroup 2A;>¢.

The set of all the bounded linear operators from X to Y is denoted by £ (X;Y") where X and YV
are the Hilbert spaces. If X =Y, then we normally write £ (X) instead of £ (X;X).

We called X the state space, and its elements states. The easiest example of a strongly continuous
semigroup is the exponential of a matrix. That is, let A be an n xn matrix, the matrix-valued function
2 (t) = e defines a strongly continuous semigroup on the Hilbert space R™.

We introduce the two following notations. The kernel (null-space) and range of the operator
A€ L(X,Y) is denote as:

KerA={z € X | Az = 0}, RanA = {Az |z € X}. (4.3)
Definition 4.3 (Dissipative operator [75]). The operator A : D (A) — X is called dissipative if
Re (Az,z) <0 forall ze€ D(A). (4.4)

Definition 4.4 (Maximal dissipative operator [75]). A dissipative operator A : D (A) — X is called

maximal dissipative (m-dissipative) if
1. Ran (s — A) = X for all s € Cy;

2. D (A) is dense.

Definition 4.5 (Contraction semigroup [75]). A strongly continuous semigroup A (t),~, on X is

called a contraction semigroup if
I20(t)]| <1 forall ¢>0. (4.5)

Theorem 4.1. [75] If A is the generator of a contraction semigroup on X, then A is m-dissipative.

An example of the above definitions can be found in Section 4.6. A mechanical Timoshenko beam

model will be used to illustrate these operators.
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Definition 4.6 (Compact operator |75]). Let X and Y be Hilbert spaces, An operator T' € L (X,Y)
is called compact if there exists a sequence (7)) in £ (X,Y) such that

dimRan T}, < oo, lim7T, =1T. (4.6)

A compact operator T' € L (X,Y) acting between two Hilbert spaces X and Y is known to admit

a singular value decomposition

Ty = Z On (T, Un) x Un (4.7)
n=1

for some nonincreasing null sequence of (0,,),y in Ry and orthonormal systems (uy,), oy in X and
(Un)pen in Y [67, p. 203]. The numbers o, are called singular values and (u,,,v,) is called a Schmidt

pair associated to o,,.

Definition 4.7 (Nuclear operator [13]). A compact operator is nuclear if

oo

D (0n)pen < 0 (4.8)

i=n
where (07,),,cy are the singular values in decreasing order with ¢; is the space of summable sequences.

If the compact operator T € L (X,Y) is nuclear, a singular value decomposition of 7' can also be

written as,

T =VSU* (4.9)

where U* is the adjoint of the operator U. The operators X € L (f2), U € L({3;X), V € L ({2;Y)
defined by

by (xn)neN = (Jnxn)neN (4.10)

and . N
U(@n)pen =3 Tntin,  V (@n)pey = D Tnln- (4.11)

n=0 n=0

Now we denote the input, state and output spaces by ¢/, X, Y which are Hilbert spaces. In the

following we consider the infinite dimensional linear system defined in [68, 72] of the form:

{x = Az + Bu (4.12)

y = Czx+7Du

where A : D(A) C X — X is a generator of a bounded strongly continuous semigroup 2l on X,
BeL(U;X),C:D(C)— Y is linear with D(C) C X, D € L(U; ).

Let input and output spaces & and ) be finite dimensional Hilbert spaces and the state space X
an arbitrary Hilbert space. The four linear operators 2,25, €, © are

=~

A: X - X B: LPR;U) — X
z(0) = (1), () = 2 2A(=7) Bu(r)dr,
¢: X = L2(Ry;)) D: L2 (R;U) — L? (R;Y)
x = OA() x, (~)b—>Cf;OOQ[(—T)Bu(T)dTJrDu(),

IS

(4.13)

S
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with state space X, input and output spaces U and Y such that (2, B, €, D) forms a stable well-posed
linear system in the sense of [72, Definition 2.2.1] if it satisfies the conditions of Definition ??. If
(A, B, ¢, D) defines the well-posed linear systems via (4.13), then the quadruple (A, B,C, D) is called
the generators of (21,95, D).

Definition 4.8 (Hankel operator, Gramians [68, Definition 2.2]). For a bounded well-posed linear
system (2(,8,¢, D) on (U, X,))

L H=€BelL(L?(R_;U);L?(Ry;Y)) is called the Hankel operator,
2. P=9BB" € L(X) is called the controllability Gramian,
3. Q =¢*"C e L(X) is called the observability Gramian.

Remark 4.1. The nuclearity of the Hankel operator gives rise to the existence of its singular value
decomposition, that is,
H=VIU", (4.14)

with diagonal operator ¥ € L ({3) as in (4.10). The elements of the nonincreasing sequence (0y,),, .y €

{1 are called Hankel singular values.

4.2.2 Balanced realization of infinite dimensional linear systems

We now introduce the balanced realization of well-posed linear systems. As in the finite dimensional

case, this involves that both Gramians are equal to some diagonal operator 3.

Definition 4.9 (Balanced systems [68, Definition 4.1]). A bounded well-posed linear system (2,8, ¢, D)
on (U, X,Y) is called balanced if X = /5 and there exists a positive and nonincreasing sequence (0y,),, ¢y
such that the Gramians P and @ are both equal to the diagonal operator ¥ € £(¢2) defined in (4.10).
In other words

P=B8B%"=Q=¢¢=3% (4.15)
Remark 4.2. The sequence (0,), oy in the above definition consists indeed of the Hankel singular
values of the system.

Let S € £L(Xs;X) and L € L(X; X) be two operators, Xg and X, are two Hilbert spaces such
that the controllability and observability Gramians satisfy

P=98B*=LL" and Q=¢"¢=255". (4.16)
Then the Hankel operator is given by
H=S5"L (4.17)

and it is nuclear [68, Thm 5.1]. The singular value decomposition of Hankel operator can be written
as
S*L=VXU* (4.18)

Next we show that we can get the infinite dimensional balanced realization of the system by using

the singular decomposition of the nuclear Hankel operator in the following theorem.
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Theorem 4.2. [68, Theorem 5.5] Let consider the system (4.12) with the nuclear Hankel operator.
With S € L(Xg;X) and L € L(X1;X) as in (4.16) and the notations given in (4.10), (4.11), let
(4.18) be the singular value decomposition of the operator S*L € L (Xp;Xg). Then the balanced

realization is derived from the following mappings

T:=%N"12V*S* C X — (s,

4.19
T+ =LUS Y2 Cly— X (4.19)
and leads to:
L B
Ty Apxy + Byu (4.20)
y = Cpxp+ Du

where Ay, = TAT T2y, Byu = TBu and Cyxy, = CT Ty, with xp € ls.

Thus system can be reduced using the truncation of its balanced realization (4.20) leading to a

finite dimensional system as stated in Theorem 4.3.

Theorem 4.3. [68, Theorem 5.6] Let (Ay, By, Cp, D) be the operators of the balanced realization of
the infinite dimensional linear system (4.12) and the canonical unit vector e; = (01,02, ) € ly for

all i € N. The finite dimensional truncated balanced realization of this system is given by

.r = A'r‘ T Br
T Ty + Dru (4.21)
y = Crz,.+Du
where the matrices
a1 - Qlr by
A, = : : eCr*", B, = : € LU;C)
(4.22)
Arq e Ay br
C,. = [ 6 - ¢ | €EL(CTY)
are defined from
Q;j = <Abej,€i>g2 e C
bi = <Bb, €i>£2 c L (Z/[, (C) (423)

cj = Cbej e Yy
An immediate consequence of this is that a truncated balanced system can indeed be obtained

by truncating the operator (Ayp, By, Cp, D) of a balanced realization of the infinite dimensional linear
system (4.12).

4.2.3 LQG balanced realization of infinite dimensional linear systems

Let now discuss the balanced truncation of port Hamiltonian systems. if the infinite dimensional port
Hamiltonian system is lossless hyperbolic case, i.e. the system has not dissipation, its eigenvalues
are on the imaginary axis. Once this system has been written in its balanced realization, every state
variable of the system has the same importance. In other words, all the singular values are the
same and equal to one [76]. Hence we can’t separate the state space of the infinite dimensional port

Hamiltonian systems by using the balanced truncation defined in Theorem 4.3. It points out the



82 CHAPTER 4. INFINITE DIMENSIONAL HAMILTONIAN LQG METHOD

interest of using some considerations before reduction. For that purpose let recall the LQG balancing

for infinite dimensional linear system (4.12) [12, 55] associated with the following Riccati equations:

(A*PS + PPA—PPBB*PY +C*C)z = 0, Yz e D(A) (4.24)
(AP} + PP A* — PPC*CP} + BB* )z = 0, Vo € D (A") (4.25)

These two Riccati equations correspond to the optimal control problem with the cost functional

Too =5 [l + (4.26)
0
and its dual filter problem. We assume the system (4.12) is stabilizable and detectable, i.e. the
operators Ap, = A — BB*P, and Ap, = A — P;C*C generate two exponentially stable semigroups on
state space.
The LQG balanced realization is based on the operators P? and Pf who are the unique, self

adjoint and nonnegative definite solutions of the control and filter Riccati equations (4.24), (4.25)

respectively.

Definition 4.10 (LQG balanced realization [12, Definition 4.5]). The infinite dimensional linear
system (4.12) is called LQG balanced if there exist two self adjoint, nonnegative solutions P., Py to

its control and filter Riccati equations such that
P =P =4 (4.27)
where A is a diagonal operator.

To reduce the system (4.12) using truncation based on the nuclearity of the operator defined in
Theorems 4.2 and 4.3, one has to use the relationship between the exponentially stabilizable and

detectable state linear system and their normalized right-coprime factorization defined as
C 0
3| Aps, B, ,
< " [B*Pf [ID

Lemma 4.1. [12, Lemma 4.6] If system ¥ (A,B,C,D) (4.12) is an exponentially stabilizable and

detectable system with finite rank input and output operators, its normalized right coprime factor

C 0
system X (.Apcs, B, [ gps |’ [ 7 1) s an exponentially stable linear system with nuclear Hankel

operator. And furthermore, the solutions of the Riccati equations (4.24), (4.25) P2, Pf and PfPf

are nuclear operators. The eigenvalues of PCSP]zq are positive and they are system invariant.

given as follows.

The above lemma, carries the finite dimensional LQG balanced reduction to the infinite dimensional
one. That is the eigenvalues of ,/PCSPJ*? are positive and they are system invariant. Hence control

and filter Riccati equations of the LQG balanced realization are satisfied for

PY =P} = A= diag(on)nen € L(l2) (4.28)
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where (0,,)nen are the eigenvalues of /PCSPf.

Hence we can use the truncation method defined in (4.3) on the LQG balanced realization since
the operators of the LQG balanced realization have infinite matrix representation on ¢ space.

Furthermore, the port Hamiltonian systems are passive which is an important property for control
design. So in the reduction method, we aim to preserve the passive and Hamiltonian structure of
the system. However, if we use the truncation method defined in Theorem 4.3 to reduce the infinite
dimensional port Hamiltonian systems, the passivity can not be preserved for the reduced system. So
we shall consider a novel balanced realization which can take the closed loop structure of the systems
into account. We shall also propose a new passive and structure preserving approximation scheme for

this novel balanced realization of infinite dimensional port Hamiltonian systems.

4.3 A class of infinite dimensional port Hamiltonian system

In this section we consider the class of linear infinite-dimensional dissipative systems [34] defined as

follows:

Definition 4.11. A linear infinite-dimensional system of the form:

{g'c(t) = MQu(t) + Buf(t) (4.29)

y(t) = B*Qux(t)
is called a linear infinite-dimensional dissipative port-Hamiltonian system (IDPHS) if it satisfies
e z(t) € X, X is a Hilbert space with inner product (-,-)y and norm | - ||%;

e M : D(M) C X, the domain of the operator M is a densely definite maximal dissipative

(m-dissipative) linear operator;

e Q: X — X is a bounded linear operator that is self-adjoint (Q* = Q) and coercive ((Qh,h)x >
al|h||% Vh € X with o > 0);

e The input operator B : C? — X is bounded and {0} # Im (B) C X.
e The inputs v and outputs y have the same dimension.

The operator M@ is dissipative with respect to the inner product (g,h)o = (g, Qh)x, g,h € X.
In addition, Ran(Al — M Q) = X is satisfied for some \ € Cp, because M is m-dissipative and Q is
bijective. Hence MQ is m-dissipative and therefore generates a contraction Cy-semigroup [39, Thm.
1.2.3].

The total energy of the system is defined through the Hamiltonian (Energy storage equation) as

1

H(x(t)) = 5 (Qu(t), x(t)) x (4.30)

o |

Then the power balance equation of the system is given by

(Qa(t), 2(t)) x

(@(t), Q*x(8) . (430

LH(x(t) = &(Qu(t),i(t))
_ 1

N|— D~

xt
xt
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Due to the relation Q* = Q, we have
Re (Qi(t), a(t)) y = Re ((t), Qu(t)) x = Re (Qu(t), (1)) - (4.32)

Thus by taking the equation (4.29) into account, one get

LH(z(t)) = Re(Qz(t),#(t))y (4.33)
= Re(Qx(t), MQu(t) + Bu(t)) y
and
(Qu(t), Bu(t)) x = (B Qa(t), ult))e, = y™ (t)uld). (4.34)

Considering the m-dissipativity of M we have that Re (Qux(t), MQux(t)) y < 0 and then from (4.33)

and (4.34), we have:
d

S H @) < y" ()u(t) (4.35)
The Hamiltonian H (x(t)) represents the total energy stored in the system (4.29) and from the physical
point view, we can interpret that the variation of total energy dH (x(t))/dt is lower than or equal to
the power y” (t)u(t) fed into the system. Therefore, the system does not contain any internal sources.
If we consider that H admits a lower bound, due to this property, the infinite dimensional system

(4.29) can be regarded as passive [77].

Assumption 1. Through out this chapter, we suppose the domain of operator M equals to the domain
of M*, i.e.,
D(M*) = D(M) (4.36)

By using Assumption 1, system (4.29) can be written as:

{mo= (7 = R)Qu(t) + Bul(t) (4.37)
y(t) = B*Qa(t)
where

J = %(M—M*) and R:—%(/\/H—M*) (4.38)

with D(J) = D(R) = D(M) C X. Hence the system (4.29) can be regarded as an infinite dimensional
port Hamiltonian system (IDPHS) defined in [78]. Here the operator J = —J* € L (X) is a skew-
adjoint differential operator which present the energy exchange in the domain, and the operator
R = R* € L(X) is a semi positive definite self-adjoint differential operator which represents the
energy dissipation in the domain.

It should be noted that the input mapping B € L (CP; X) is bounded and {0} # ImB C X, it
means that there are not energy exchanges at the boundary of the spatial domain for this class of port
Hamiltonian systems. In other words, this class of systems is closed, and is controlled in the spatial
domain and not at the boundary. This is excluded from the work [78] which presents a large class of
boundary controlled infinite dimensional port Hamiltonian systems, i.e., where the boundary control
and input operators B are unbounded. This class of systems is not considered in this chapter, it shall
be studied in future works.

In the next sections we shall discuss how to reduce this class of port Hamiltonian systems by taking



4.4. PASSIVE LQG CONTROL DESIGN OF INFINITE DIMENSIONAL PHS 85

its closed loop behavior into account. Indeed, as it has been previously met it is difficult to separate
the state space of the open loop system when the port Hamiltonian system is lossless or with little

energy loss.

4.4 Passive LQG control design of infinite dimensional PHS

In the finite dimensional case, the passive LQG control design has been proposed for positive real
system in [8]. In the precedent chapter, we have introduced a passive LQG control design method for
the finite dimensional port Hamiltonian system which is equivalent to the control by interconnection
[85].

In this section, we shall consider the LQG control design of infinite dimensional port Hamiltonian
systems and formulate it as a port Hamiltonian control by interconnection [60, 58]. It shall be noted
that the LQG controller has the same dimension as the system itself, i.e., the controller is still infinite

dimensional.

4.4.1 LQG control of infinite dimensional port Hamiltonian systems

To apply the LQG method, let us first make the following assumption about the stabilizability and
the detectability of the IDPHS (4.37).

Assumption 2. The IDPHS (4.37) with the m-dissipative operator MQ is exponentially stabilizable,
i.e., there exists an operator K € L(X,CP) such that MQ—BK generates an exponentially stable semi-
group. We also consider that it is exponentially detectable, i.e., there exists an operator F € L(CP, X)

such that the operator MQ — F'B*Q generates an exponentially stable semi-group.
The LQG control problem of IDPHS (4.37) is considered as follows:

Problem 4.1 (LQG control problem). Let Q,Q, € £(X) be self-adjoint positive definite operators,
R,R, € L£(CP) also be self-adjoint strictly positive definite operators and z € D(M) = D(M*).
Then state feedback gain K = f{_lB*Pc with P. the unique positive-definite solution to the operator
Riccati equation:

(QM*PC + P.MO— P.BR 'B*P. + Q) =0 (4.39)

-1
and MQ — BR B*P, generates an exponentially stable semi-group. The filter gain is F' = PfBR;l
where Py is the unique positive definite solution to

(MQP; + PyQM* — P;QBR,'B*QP; +Q,)z =0 (4.40)

and MQ — Py QBR;lB*Q generates an exponentially stable semi-group.
The control design problem remains to solve the Riccati equation (4.39) and (4.40) in order to

minimize the control cost function:

Jeo = /OOO <x, Qx>X + <u, Ru>(cp dt (4.41)

and the estimation error:

e(t) = (t) — 2. (t). (4.42)
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where z. is the estimation of the state variables and also the state variables of the dynamical LQG

controller.

As a consequence the dynamic controller associated with the LQG control problem (4.1) can be

written as:

P (MQ — BR 'B*P. — P;OBR;'B* Q) o+ P OBR; u,

V', (4.43)
Ye = R B*P.x.

The closed loop system with the above LQG controller is stable but not in general passive, because
the Hamiltonian structure is lost in the closed loop formulation. We should discuss how to reformulate

a passive LQG controller in order to preserve the passivity and Hamiltonian structures in closed loop.

4.4.2 LQG formulation of control by interconnection

We first reformulate the above LQG controller under a quasi- Hamiltonian form by choosing the energy

operator of the controller equal to Q. This leads to:

P (/\/l _BR 'BPO! - PfQBR;lze*) Qu. + P;OBR u.
= (J - R.) Qx.+ P;OBR u. (4.44)
ye = R BP.Q7'Qx,

with
R.=R+BR 'B'P.Q"' + P;OBR,'B* (4.45)

In this expression the state operator is decomposed into the product (J — R.)Q with the energy
operator Q defined in (4.37). However the operator R, = R + Bf{_ll’)’*PcQ*1 + P;OBR,,'B* is in
general neither self-adjoint nor positive.

Next we shall derive the conditions on the LQG control Problem 4.1 such that the controller (4.44)

has a port Hamiltonian realization, which are summarized in the following theorem.

Theorem 4.4 (Hamiltonian LQG method). Consider the LQG problem with the following relation
between the operator R and R,,:
R=R,. (4.46)

If the weighting operators Q and Q, are related by:
Q,2=0Q! (QQJ*PC +2P.JQ+ Q) 0 'z with z € X (4.47)

then the operator equations (4.39) and (4.40) admit a unique solution, P. and P. respectively. These
two solutions are related by:
o 'p. = P;Q (4.48)

Furthermore the LQG controller is passive called Hamiltonian LQG controller and the closed loop
system can be written as the feedback interconnection of the IDPHS (4.29) with the port Hamiltonian
realization of the LQG regulator.
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Proof. By using condition (4.48) and Q is invertible as it is coercive, positive definite, the filter Riccati

equation (4.40) is equivalent to:
(MP.Q7 '+ Q 'P.M* — Q'P.BR,'B*P.O™" +Q,) 2 = 0. (4.49)

With condition (4.46) and factorizing Q' from the two sides of left of this equation (4.49) this
equation becomes:

(QMP. + PM*Q — P.BR,'B*P. + QQ,Q) z =0 (4.50)

Subtracting the equation (4.50) by the control Ricatti equation (4.39) leads to:
[QMP. + P.MQ+Q — (QMP, + M2+ 0Q,Q)] 2 = 0
because D (M*) = D(M) and Mz = (J — R) z, so:

QM — M) Pt (M= M) Q+ Q- 0Q,Q] =0
©0Q,Qx = (207°P. +2P.7Q+ Q) 2

Q being invertible, then:
Q=9 (2QJ*PC +2P.JQ+ Q) Q7 'z with z; € X

Hence, the equation (4.47) is verified.

By using Assumption 2, the IDPHS (4.37) is exponentially stabilisable and exponentially de-
tectable, this assumption is met for any operator Q and Q, and both filter and control Riccati

equations admit a unique solution.

We now show that the LQG controller is passive and it can be considered as a controller of the
IDPHS by interconnection. First by using conditions (4.48) and (4.46), the controller output (4.44)

becomes:
v = (R'BRQ)Qm

(4.51)
sy = (R,'B*QPy) Qx.

which means that the output mapping of controller (4.44) y. is the power conjugate of its input
mapping .

Secondly, if we consider conditions (4.48) and (4.46), one can easily check that the operator R.
defined in equation (4.45)

R.=R+BR 'BP.0"'+ 0 'P.OBR B (4.52)

is self-adjoint, i.e.,
Re=TR:. (4.53)

Furthermore the operator

M.Q = (M _BR 'B'P.O"!— Q‘lPCBR_lB*> o)

_ 7RO (4.54)
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generates an exponentially stable semi-group and the operator Q being bijective, the operator R, is
positive definite.
As a consequence, the LQG controller has a port Hamiltonian realization, then the closed loop

system can be regraded as the interconnection of two infinite dimensional port Hamiltonian systems.
O

Remark 4.3. The choice of the control design parameters Q,, or Q is free by using the Theorem 4.4,
but the two parameters are related by (4.47). That means that on one hand we can firstly choose the
weighting operator Q and then compute the co-variance operator Q, as Theorem 4.4. On the other
hand we can define the co-variance operator Q,, and derive the weight operator Q. However, the
parameters Q,, R,, and Q, R depend on each others. If we choose the optimal control problem first,
i.e., weighting operators Q and R, then the co-variance operators Q, and R, are just the control
design parameters and have no statistic meaning in the filter design problem. On the other hand, if
we consider the filter design problem first, then the weighting operators Q and R have no sense in
the optimal control problem.

Theorem 4.4 gives us a passive LQG control design method and we call it Hamiltonian LQG
method because this passive LQG controller is obtained in a port Hamiltonian realization. The closed
loop system by using Hamiltonian LQG controller can be regarded as the control by interconnection
of two port Hamiltonian systems. Hence the structure and passivity are conserved in the closed loop

system.

In the next section, we will discuss the passivity and structure preserving reduction for the closed

loop port Hamiltonian system through the Hamiltonian LQG method.

4.5 Hamiltonian LQG reduction of infinite dimensional PHS
with preserving the passivity

In this section, we define a LQG balanced realization for the IDPHS (4.37) by using its Hamiltonian
LQG formula of Theorem 4.4 and find an approximation of this LQG balanced IDPHS. To do so, we

should discuss the product of the Hamiltonian LQG Gramians given as:
P;P. = PyQP;Q

that is different from the identity. It allows us to find a balanced transformation in order to truncate
the state space in a meaningful way with respect to closed loop performance. Before studying the
reduction procedure, we define the balanced realization of the IDPHS (4.29) through its Hamiltonian
LQG form.

4.5.1 Hamiltonian LQG balanced realization of IDPHS

Before defining the Hamiltonian LQG Balanced realization, we introduce the Hamiltonian LQG Han-
kel operator of IDPHS (4.37).

Definition 4.12. Consider two operators S € L(X,; X) and L € £(X; X) where Xg and X, are
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Hilbert spaces such that the Hamiltonian LQG Gramians satisfy
P, =55 and Py = LL* (4.55)
Then
Hrge =S"L € L(X) (4.56)
is called an Hamiltonian LQG Hankel operator of IDPHS (4.37).

Next we shall discuss the nuclearity of the Hamiltonian Gramians Py, P. and the Hamiltonian
LQG Hankel operator Hrga-

Lemma 4.2. If we chose the weighting operator Q as
Q =+%C*"C =~?0BB*Q, VyeR. (4.57)

Then P, and Py, the two solutions to the operator Riccati equations (4.39) and (4.40) of the LQG
control problem 4.1 associated with Theorem 4.4, are nuclear. Furthermore, The Hamiltonian LQG

Hankel operator Hroc is also nuclear.

Proof. To prove the nuclearity of the solution P, of Riccati equation (4.39), we consider the Lyapunov

equation of the closed loop system:

[(MQ—BR 'B*P.)* L, + L, (MQ — BR_'B*P.)
Mz, Meo (4.58)
YPBR BP.+Qlz=0

with z € D(M). By developing this Lyapunov equation, we can get:

(OM*Ly+ L,MQ — P.BR 'B*L, — L,BR_'B*P, + P.BR 'B*P, + Q)2 =0

(4.59)
with z € D(M) Then
L, =P, (4.60)
and (4.59) is equivalent to the Riccati equation (4.39).
The closed loop system is formulated as
Mo B
(4.61)

DCO

~1/2
l R8P,

with M., = MQ — BR_IB*PC, and B, D,, are the input and feedthrough operators of this closed
loop system. If we can prove L, is nuclear, then P. = L, is also nuclear.

The solution of Lyapunov equation (4.58), L, is the observability Gramian of the system (4.61).
By using the Theorem of [13, Thm 3.1], if the following conditions

1. The operator M., is a generator of a exponentially stable Cy semi-group;
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2. The system (4.61) has a finite rank output space

hold, then P. = L, is nuclear.
From Assumption 2, the operator M., is the generator of an exponentially stable Cp-semigroup,

thus the first condition holds. To satisfy the second condition, we can define the weighting operator:

Q =+%0BB*Q (4.62)
with v € R.Then we get
Q' =B Q € L(X,CP). (4.63)
The operator
R’B*P, € £(X,CP). (4.64)

Hence the output operator of system (4.61)

~1/2
Cco = [ Q

y € L(X,C?) (4.65)
R’B*P,

maps from the state space X to a finite rank space C??, i.e., the system (4.61) has a finite rank output
space, the second condition holds too. As a consequence the LQG Gramian P, is nuclear. Similarly

we can prove that Py = QF.Q and Hamiltonian LQG Hankel operator Hpgg are also nuclear . [

Following Lemma 4.2, the Hamiltonian LQG Hankel operator Hrge is nuclear. We can then
define the balanced realization with respect to the Hamiltonian LQG Gramians Py and P, of the
LQG control problem 4.1 associated with Theorem 4.4.

Definition 4.13. The IDPHS is called Hamiltonian LQG balanced if X = {5 and there exists a
positive and non-increasing sequence (o, )nen such that the Hamiltonian LQG Gramians Py and P,

are both equal to the diagonal operator:
Y= diag(on)neN S 5(52) (466)

In other words:
Pr=PFP. =% (4.67)

As we discussed in Lemma 4.2, the Hamiltonian LQG Hankel operator Hpgq = S*L € L£(X) is

nuclear with S| L € £(X) and admits a singular value decomposition:
S*L =VXU~* (4.68)

where
X= dia‘g(an)neN S £(£2)

with the positive sequence of Hamiltonian LQG Hankel singular values (o0,). And V,U € L({3; X)

are isometrics onto their ranges, i.e.,

V'V =1 UU=L (4.69)
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We define the transformation operators :

T:=X712V*8* € X s £y
2 (4.70)

T+ = LUS Y2 Clyrs X,

Theorem 4.5. Suppose that the IDPHS (4.29) and the transformation operators T and T defined

in (4.70), then a balanced realization from (4.29) is given as

tp(t) = M, t Byul(t
p(1) :,beb( ) + Byu(t) (471)
y(t) = ByQump(t)
with
My =TMT* Q,=T"*QT*" B,=TB (4.72)
The state space of the balanced IDPHS is xy, € {5.
Proof. The two solutions of Riccati equations have the following decomposition:
P, =55 and Py = LL". (4.73)
We compute
TP;T* =2~V 2V*S*LL*SVn~1/2, (4.74)
with the SVD of Hamiltonian LQG Hankel operator:
S*L=VXU~, (4.75)
then
TP/T* =X. (4.76)
We can compute
TTP.T™ =% (4.77)

in the same way. As a consequence, we get the Hamiltonian LQG Gramians of the system (4.71) as
follows:
TPT* =T "P.TT™ =%, (4.78)

The system (4.71) is the Hamiltonian LQG balanced realization of the IDPHS (4.29). O

By using the above proposition, the original IDPHS is reformulated into its Hamiltonian LQG
balanced realization (4.71). This balanced realization is defined on an /5 space, and the state variables
are separated and arranged in decreasing order according to their importance in the closed-loop system
defined from the Hamiltonian LQG singular values. In other words, the state variables associated with
large singular values are more important for the Hamiltonian LQG control design than the other ones.
Hence from the closed loop point of view, this balanced realization gives us the good choice of state

space to reduce the IDPHS. This reduction method is derived in the next sub-section.
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4.5.2 Approximation of IDPHS

From the Proposition 4.5 and the transformation operators defined by (4.70), we introduced the
Hamiltonian LQG balanced realization of IDPHS (4.29) as system (4.71). To reduce this balanced
system, we can of course use the truncation method given in Theorem 4.3. However, the passivity and
Hamiltonian structure are not preserved with this finite dimensional approximation scheme. Hence,
we should consider another approximation scheme to preserve the passivity and Hamiltonian structure

during the reduction procedure.

To do so, we use the Petrov-Galerkin projection method [34] to get a finite dimensional ap-
proximation of the balanced system (4.71). We consider the decomposition of the state variables
x(t) = x,(t) + z,.(t) with z(t) € X, 2,(t) € V and z,.(t) € W+, where V = span{vy,--- ,v,} and
W = span{wy,--- ,w,} with v; in the state operator domain (v; € D(MQ) in system (4.29)) and
w; € X the n-dimensional subspaces of X, and W+ the orthogonal complement of W. This decom-
position exists and is unique if V N W+ = {0} . The linear operators V : C" + X and W : X + C"
defined by:

n <h’ w1 >X
Va=> via; Wh= : (4.79)
= <hv wn>X
for all « € C*, h € X are such that V. N W+ = {0}. This property can be easily verified by
using det(WV) # 0 where WY € C"*™. Thus one can use the internal direct sum decomposition
X =V @ W+ if the choices of W and V are such that det(WWV) # 0. In order to determine a finite-
dimensional model that describes the dynamics of x,, it is advantageous to introduce the projection
P : X — V of X onto V along W+, yielding the relation x,(t) = PX(¢). This projection can be
expressed as P = V(WV)~1W and satisfies P = P2. Its range and null space satisfy:

RanP =V; KerP =W+

To preserve the passivity of the port Hamiltonian system (4.29) by using the Petrov-Galerkin projec-
tion method, a special choice of operator V and W is given in [34]. In this method, the authors did
not give the choice of vectors v;.

Inspired from this method we shall introduce a choice of vectors v; which defines the projection

operator ¥V and W to preserve the passivity and Hamiltonian structure through the balanced reduction
of (4.71):

Theorem 4.6. Define V : C" — {5 by
Vz = Zvizi Vz; € C", ieN (4.80)
i=1

with v; = (8;1,0:2,-++) € L2 is the canonical unit vector. Consider the special choice VW = V*Qy.

Then a structure preserving approzimation of the infinite-dimensional DPHS is a linear DPHS:

{ . @nen + Buu (4.81)

y = B.Qnrn
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with
M, =V*QuMQyY Qn = (V*QpV) !

(4.82)
B, =V*QuBy

Proof. First we can show that
P=vWy)~'w = p?
is a projection.
Next we choose xp ~ Vz, and premultiply (4.71) by the operator W = V*Q,. The finite-

dimensional approximation becomes

{ V*QuVin = V*QuMyQpVz, + V*QuByult) (4.83)

We choose z,, = V*QyVz,. The matrix M,, can be separated in two parts. One part is skew symmetric

and the other part is symmetric positive definite because
M, + M, <0

and ) )
Jp = i(M" — M) and R,, = _i(M" + M) (4.84)

Remark 4.4. In this projection method, the operator V is used to separate the state space X, and
the special choice of W = V*@Q;, can make sure that the finite dimensional approximation still has the

port Hamiltonian structure and preserves the passivity.

By using the finite dimensional PHS (4.81) and the LQG control Problem 4.1 associated with
Theorem 4.4, one can then design a finite dimensional controller in order to stabilize the IDSHP
(4.37).

4.6 Application to the control of a Timoshenko Beam

In this section, we consider a 1-dimensional Timoshenko Beam model with damping in the spatial

coordinate z € [0, 1] under a port Hamiltonian framework [35, 43] as follows:

T = MQx+ Bu(t)

4.85
_ BOs (4.85)

with the operators:

(4.86)

Yo ©

z

\
=

Tp
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Distributed torques
/ T Free at side 1
Clamped §K—| %
at side 0 24
Z

Figure 4.1: Example: Clamped Timoshenko beam

K 0 0 0
0 0 5 0 0 (4.87)
0o 0 EI 0 '
1
0 0 0 i,
The energy of the beam is expressed in terms of the energy variables:
I 2, 1 5 2, 1 5
H=- | (Kei+ —25+ Elz5 + —x3)dz (4.88)
2 a P IP

where x7 is the shear displacement, x5 is the transverse momentum distribution, x3 is the angular
displacement and x4 is the angular momentum distribution. The coefficients p, I,,, F, I and K are the
mass per length unit, the rotary moment of inertia of a cross section, the elasticity Young’s modulus
of elasticity, the moment of inertia of a cross section, and the shear modulus respectively, and the
state space X = Lo(0;1;R*). The beam is clamped at the extremity z = 0, and free at z = 1 as
shown in Figure 4.1, L.e., J22(0,t) = I—lpx4(0,t) =0Vt>0and Kr(1,t) = Elzz(1,t) = 0 Vt > 0,
The domain of the operator M is

D(M) = {x € Hl(O, 1,Rn) |$2(0,t) = 1174(0,t) = O,I’l(l,t) = xg(l,t) =0 ,Vt > 0} cX (489)

then one can easy check that the domain of the adjoint operator M™* is the same as M.

The operator Q is self-adjoint and coercive. We consider that the beam is actuated by a distributed
torque by (z)uq (t) on the small interval I, = [0,0.1], with by (z) = 1 for z € I, and by (z) = 0 elsewhere,
and also by another distributed torque ba(z)uz(t) on the small interval I, = [0.9, 1], with by(z) =1
for z € I, and by(z) = 0 elsewhere. As output, we consider the angular velocities mean value

Y1 = fol bl(z)limdz and y3 = fol bg(z)%mdz. As a consequence the input operator is:
P 3

0 0
0 0
B— (4.90)
0 0
bi(z) ba(z)
where B : C? — X. The output is the conjugated to this input, i.e.,
y = B"Qux. (4.91)

We can easily verify that the scalar inner product

Re{Mz,2) <0 Vz € D(M) (4.92)
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Singular values
3.5 T

X singular values
3% 1
X

2.5 N

1.5

Figure 4.2: LQG singular values

The operator M is dissipative, and M generates a C semi-group. Furthermore there exists a 0 <
Ao € p(M) such that Ran(A\g] — M) = X [14, Lemma 2.1.11], then M is m-dissipative. It is a

generator of a contraction semigroup.

As a consequence, the system (4.85) satisfies all the same conditions as system (4.37), then one

can get the reduced system by using Theorem 4.4.

All the numerical parameters of the Timoshenko beam have been selected equal to one in the
simulations. To solve the operator Riccati equation and for the reduced controller design, we use the
mixed-finite element method [24, 5] to discretize the Timoshenko beam. The beam has been divided

in 40 infinitesimal subsections, hence the system has 160 state variables.

Firstly, we use the proposed Theorem (4.4) to design the controller and reduce the system by
taking the weighting operator Q = QBB*Q. Figure (4.2) shows the LQG singular values. One can
observe that the first four singular values are larger than the others (there is 0.8 difference between
4th and 5th singular values). That means that the first four states of the balanced system play the
most important role in the closed loop system. As consequence we reduce the balanced system to

order 4 using Theorem 4.6, then we design a reduced order controller on this reduced system.

We get two closed loop systems by interconnecting the full order controller (z. € R1%, the black
curve) and reduced order controller (z.,. € R?*, the red solid curve) with the open loop system (The
blue curve). Figure 4.3 shows the step response of the open loop system, the closed loop systems with
full order controller and reduced order controller respectively. The inputs are a torque on the clamped
side of the beam and the output is the angular velocity of the free side of the beam. One can observe
that the closed loop systems with full order and reduced order have almost the same performances
but have a little gap (the difference is less than 0.01) in the overshoot peaks as shown in the sub
Figure 4.3 that is due to the fact that the reduced controller have only an order 4. It means that

even if we conserved the most important state variables in the reduced system, but we still lost some
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Step reponse
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Figure 4.3: Compare the step response of low order open loop systems (160) with its closed loop
systems by using full order controller (160) and reduced order controller (4)

information for the control design.

In Figure 4.4 we show the poles location of the two closed loop systems. The blue one are the poles
of the open loop system. We can see that these poles are very near to the imaginary axis because the
system have small dissipation. The four poles on the left of the closed loop system with the reduced
order controller (red) are not far away from the ones of the closed loop system with the full order
controller (black), especially the ones equal to —26.

Next we will show the reduced order controller is also efficient for the even higher order system. To
do so we discretize the Timoshenko beam with 80 infinitesimal subsections, that means there are 320
state variables (high order system), which is much more close to the infinite dimensional Timoshenko
beam.

Figure 4.5 is a comparison of the high order (z € R32°, black curve) and low order (z € R0 blue
solid curve) open loop system. We can observe in the figure, the step responses of the low order open
loop system and the high order open loop system are almost the same and no much different.

In Figure 4.6, we show that the full order LQG controller (z. € R0 | black curve) and the reduced
order controller (z, € R*, red solid curve) designed on the low order system are also stabilize the high
order system and have almost same performances. We call the full order LQG controller but its states
variables is z. € R'60 but not as the same order as the high order system z € R320 because the
controller is designed from low order system (2 € R'5Y). The reduced order controller is also obtained
by the reduced order system which is the approximation of the low order system.

Even the performance of the two different closed loop systems are almost the same, however the
step responses have a small gap between the overshoot peaks (less than 0.01). The reason is the same
as the low order closed loop systems. We conserve just 4 order in the reduced controller, that means
that some information is lost during the reduction procedure.

We show in Figure 4.7 the poles location of the high order closed loop systems by interconnecting
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The poles of low order open and closed loop systems
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Figure 4.4: Compare the poles of low order open loop systems (z € R*%?) with its closed loop systems
by using full order controller (z. € R*®®) and reduced order controller (.. € R*)
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Figure 4.5: Compare the step response of low order open loop system (160) with high order one (320)
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Figure 4.6: Compare the step response of High order open loop systems (320) with its closed loop
systems by using full order controller (160) and reduced order controller (4)

the full order (z. € R black ones) controller and reduced order (z.,. € R%, red ones) respectively
(The blue ones are the poles of open loop system). As shown in the low order systems, on the left
side, the four poles of the two different closed loop systems are near to each other, especially the ones
in the left side. Because the reduced order system conserve the first four important state variables in
the control design point of view, thus the reduced order controller has almost the same performance

as the full order one.

4.7 Conclusion

In this chapter, we have suggested a passive LQG control design method for IDPHS called Hamilto-
nian LQG method. Furthermore based on this control design method, a passivity and Hamiltonian
structure preserving reduction method for IDPHS has been proposed.

By taking the special choice of the weighting operators of optimal control problem and filter design
problem, the Hamiltonian LQG method gives us a passive LQG controller for IDPHS and moreover
it is a Hamiltonian structure preserving LQG controller design method. In the other words, the
Hamiltonian structure is preserved in the closed loop system since the Hamiltonian LQG controller
itself is also a port Hamiltonian system, and the closed loop system can be regarded as the control by
interconnection of two port Hamiltonian systems. The choices of the weighting operators are special
but not unique. We can choose the optimal control problem or the filter (observer) design problem as
we want, but the parameters for two problems are related. because the choice of these parameters has
to make sure the LQG controller to be passive and has the port Hamiltonian realization. In the other
words, if we define the optimal control problem, it means the optimal control weighting operators Q

and R are decided, thus the observer design weighting operators Q, and R,, are also fixed which may
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Figure 4.7: Compare the poles of High order open loop systems (320) with its closed loop systems by
using full order controller (160) and reduced order controller (4)

be not the optimal observer design weighting operators but only the controller design parameters.

However, the passive LQG controller obtained by using the Hamiltonian LQG method is still
infinite dimensional as the system itself. Hence we suggested a reduction-then-design scheme to get a
finite dimensional controller for the IDPHS. Then we take a special choice of the weighting operator
Q. the Hamiltonian LQG method allows us to define a balanced realization in which the sum of
Hamiltonian LQG singular values is less infinity and in the decreasing order because the LQG Hankel
operator is nuclear. That means the state variables related to the bigger Hamiltonian LQG singular
values are more important for the control design. This balanced realization gives us a choice to
separate the state variables from the closed loop point of view.

To approximate the Hamiltonian LQG balanced realization, we suggested to use the Petrov-
Galerkin projection method with the projection operator V to separate the state space and a special
choice of operator W = V*Q to conserve the Hamiltonian structure and passivity of the IDPHS. By
using this method, we can get a finite dimensional port Hamiltonian approximation of IDPHS and we
design the finite dimensional passive LQG controller by this finite dimensional approximation.

In the last part, the proposed approximation scheme is illustrated by the Timoshenko beam on
the port Hamiltonian framework. The control of this Timoshenko beam is on the domain and no
energy exchange on the boundary. To apply our method, we first discretize our IDPHS by mixed
finite elements method [24, 5], because how to solve the operator Riccati equations is still a open
problem and rarely trade in the literature. We compared the reduced order controller (z.. € R*)
and the full order controller by using the step responses and the poles placements. The simulation
results are satisfactory and the two controllers have not so much difference. Furthermore, we applied
this reduced order controller to an higher order system which can be consider closer to the infinite
dimensional system. The results are also satisfactory, The closed loop system by using the reduced

order controller have almost the same performance as the one use the full order controller.
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Chapter 5

Conclusion

5.1 General conclusion

This thesis deals with passivity and structure preserving model reduction of port Hamiltonian systems
with different perspectives.

In chapter 2, a passivity preserving reduction method has been proposed for the reduction of im-
plicit port Hamiltonian systems. The implicit port Hamiltonian systems stem from physical algebraic
constraints arising from network modeling and interconnection. These systems have been redefined
under the descriptor state space framework, called port Hamiltonian descriptor systems, by using a
coordinate transformation and the elimination of the Lagrangian multipliers. This descriptor realiza-
tion preserves the Dirac structure. This representation then allows to combine tools for the descriptor
system’s analysis and Dirac structures which define the port Hamiltonian systems. In this context
Weierstrass canonical form is used to separate the slow and fast dynamics. It is then possible to put
the system under a balanced form by using the controllability and observability Lyapunov equations.
This balanced realization allows to choose which part of state variables has to be conserved in the
reduced system through the Hankel singular values decomposition. Instead of traditional truncation
method, the effort and flow constraint methods have been applied to reduce the balanced port Hamil-
tonian descriptor system in order to preserve both its passivity and its geometric structure. This
model reduction method has been proposed to reduce implicit port Hamiltonian systems from the
input/output point of view. The main advantage of this method is that not only the passivity and
geometric structure are preserved, but also the fast response of the sub-systems. At last, a micro
mechanical manipulator (nano-tweezers) under development for the manipulation of DNA bundles
has been used to illustrate the proposed model reduction method. It is shown with this example that
the method preserves the structure and the passivity of the original system. This is a great advantage
with respect to truncation methods and size equivalent spatial discretization methods (in the high
frequencies).

Chapter 3 is concerned with passivity and structure preserving LQG design and closed loop reduc-
tion of port Hamiltonian systems. First it is shown that up to some assumptions on the constitutive
matrices LQG controller can be recast under passive port Hamiltonian formulation in Theorem 3.2.
The closed loop system can then be regarded as the control by interconnection of the two systems

and the passivity and Hamiltonian structure of the systems are preserved in the closed loop. From

101
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this reformulation it appears that the only control design parameter is the covariance matrices that
have no more statistical meaning. An important issue of such formulation is that the product of the
two solutions of the LQG associated Riccati equations is equal to identity, i.e. this LQG method
cannot be used to define a balanced realization suitable for model reduction i.e., all the state variables
have the same importance for control design. Another passive LQG control design method, called
Q-conjugated LQG control method, has been proposed in Theorem 3.3 to overcome this drawback. It
remains to link the cost weighting matrices to the covariance matrices. In this case the resulting closed
loop system can also be regarded as a control by interconnection and the passivity and Hamiltonian
structure are preserved in closed loop. One advantage of this formulation is that one can freely choose
the weighting matrices or the covariance matrices of the control problem. Moreover the product of
the solutions of the two associated Riccati equations will not be equal to one allowing to reduce the

system.

As a consequence this Q-conjugated LQG control design method allows to define a closed loop
LQG balanced realization in which the state variables are separated, since the LQG singular values are
in the decreasing order in this LQG coordinates. Effort constraint method is then used to reduce this
LQG balanced realization with preserving the passivity and geometric structure of the original system.
The reduced order controller is then derived from this reduction step. It has a port Hamiltonian form
and its passivity and geometric structure are preserved in the closed loop systems. Those proposed
methods have been illustrated with the control of a mass-spring-damper system. It shows that in
closed loop the Q-conjugated full order and reduced order controllers lead to better results than the

standard one and also preserve the passivity and the geometric structure.

In chapter 4, the passive LQG method, called Hamiltonian LQG method, has been considered
for the control design and the approximation of infinite dimensional port Hamiltonian systems with
control within the spatial domain (bounded input mapping). The port Hamiltonian formulation of the
infinite dimensional passive LQG control problem has been proposed in Theorem 4.3. As in the finite
dimensional case, it implies some conditions in the choice of the weighting and covariance operators.
Once again this control design can be interpreted as the control by interconnection. However the
resulting passive LQG controller has the same dimensions as the system itself, i.e. it is infinite
dimensional. Hence to get the finite dimensional controller, one has to proceed to model reduction

(in closed loop in order to deal with weakly or undamped systems).

It is shown that the port Hamiltonian LQG formulation associated with a specific choice of the
weighting and covariance operators, leads to a nuclear LQG Hankel operator (defined as the square
root of the product of the solutions of the Riccati equations) . From this property the system is put
under balanced realization by an appropriate change of variables. The state space of this balanced
realization is a ¢y space. The LQG Hankel singular values are in the decreasing order and converge
to zero. This property allows us to separate the state space and to reduce the system using a Petrov-
Galerkin projection method. The finite dimensional (low order) LQG controller is derived from this
approximation. Finally, the proposed approximation scheme has been illustrated on the control of a
Timoshenko beam. The mixed finite elements method is used to discretize the system and to solve the
operator Riccati equations. The simulation results shows that the low order LQG controller derived
using this approximation scheme can perfectly stabilize the infinite dimensional system as well as the

infinite dimensional Hamiltonian LQG controller.
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5.2 Future research

There are several perspectives for this work. The most significant are listed below:
e In the finite dimensional case:

— the error estimation of Q-conjugated LQG reduction method is still an open problem.
Differently from the standard LQG method, the optimal control problem and optimal
filtering problem are related in Q-conjugated LQG method, it is then very difficult to

compute the error of estimation.

— in this work we have considered a closed loop balanced reduction method for linear port
Hamiltonian systems. It would be interesting to study the non linear closed loop reduction.
Indeed the open loop balanced reduction method has been generalized to non linear port

Hamiltonian systems in [21] and its extension to closed loop reduction remains challenging.
e In the infinite dimensional case:

— the main difficulty of the method proposed in this thesis is the resolution of the operator
Riccati equations. It has been done by using a finite approximation of the considered
operators but the effects of such a scheme remains to be studied. From a theoretical point

of view it is a major concern to deal with.

— as in the finite dimensional case the estimation of the error due to the approximation has

to be characterized in the future.

— only input control within the domain with bounded operators has been considered. All the
proposed result still have to be generalized to boundary control, with all the theoretical
difficulties associated with the use of unbounded operators. These perspectives shall be

considered in the future research.
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