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ANALYSE NUMÉRIQUE ET SIMULATIONS DE PROBLÈMES COUPLÉS POUR LE
SYSTÈME CARDIOVASCULAIRE

Résumé : Dans cette thèse, nous proposons l’analyse numérique et le développement
d’algorithmes partitionnés pour coupler l’écoulement du sang dans différents comparti-
ments cardiovasculaires (3D-3D, 3D-0D).

Dans une première partie, un problème couplé fluide-fluide est introduit. Sur l’interface
qui sépare les domaines, des conditions aux limites de type Robin-Robin dérivées de la
formulation d’interface de Nitsche sont considérées. Nous proposons différents schémas
explicites dont la stabilité est analysée dans la norme de l’énergie. Des simulations numé-
riques illustrent le potentiel des méthodes présentées.

La deuxième partie propose des applications cardiovasculaires plus réalistes. Tout
d’abord, un modèle d’ordre réduit pour les valves cardiaques est décrit. Sans traiter l’inter-
action fluide-structure avec le sang, les valves sont remplacées par des surfaces agissant
comme des résistances immergées dans le fluide. Des simulations numériques montrent
l’efficacité et la robustesse de ce modèle.

Pour finir, une formulation ALE est utilisée pour la résolution d’un modèle fluide sur un
domaine mobile. Nous montrons qu’en ajoutant un terme consistent, une inégalité d’éner-
gie stable peut être obtenue sans considérer aucune hypothèse de Loi de Conservation
Géométrique. Le travail se termine avec des simulations numériques sur la dynamique du
sang dans le ventricule gauche, couplé avec l’écoulement du sang dans l’aorte.

Mots-clés : Interaction fluide-fluide, méthodes d’interface de Nitsche, couplage explicite,
conditions Robin-Robin, formulation de pression statique et totale, modèle RIS de valves,
maillages fissurés, formulation ALE, stabilisation fluide en domaines mobiles.





NUMERICAL ANALYSIS AND SIMULATIONS OF COUPLED PROBLEMS FOR THE
CARDIOVASCULAR SYSTEM

Abstract: In this thesis we present the numerical analysis and the development of parti-
tioned algorithms in order to couple the blood dynamics in different cardiovascular compart-
ments (3D-3D, 3D-0D).

In the first part a fluid-fluid coupled problem is introduced. On the interface between the
domains Robin-Robin boundary conditions, derived from the Nitsche’s interface formulation,
are considered. We suggest different staggered explicit schemes whose stability is analyzed
in the energy norm. Extensive numerical experiments illustrate the accuracy of the methods
presented.

The second part deals with more realistic cardiovascular applications. First a reduced
order model for the heart valves is described. Without dealing with fluid-structure interaction
with the blood flow, the valves are replaced by immersed surfaces acting as resistances on
the fluid. Numerical simulations show the efficiency and the robustness of this model in the
framework of a fluid-fluid interaction scheme.

In the end, an ALE formulation is used to solve a fluid model in a moving domain. We
show that adding a suitable consistent term, a stable energy inequality can be obtained
without considering any Geometric Conservation Laws. The work ends with numerical sim-
ulations on blood dynamics in the left ventricle coupled with the blood flowing in the aorta.

Keywords: Fluid-fluid interaction, Nitsche’s interface method, explicit coupling scheme,
Robin-Robin conditions, static and total pressure formulations, RIS valve model, fissured
meshes, ALE formulation, fluid stabilization in moving domains.
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INTRODUCTION





I may never find all the answers,
... I may never prove

What I know to be true,
But I know that I still have to try.

"The Spirit Carries On" by Dream Theater.





CHAPTER 1
Thesis background and physiological

overview

In this chapter, the general framework of the thesis is introduced. Our aim is to simulate and
study, by coupling appropriate models and solvers, the behavior of the cardiovascular system start-
ing from the blood that flows in it. First we give an overview on the current topic of research on
cardiovascular problems (e.g. fluid-structure, electro-mechanics of the heart, 1D/0D model). Then
we summarize the rest of the thesis by discussing the main results of each chapter. Finally we pro-
vide the basis of the physiology, structure and properties of the blood in the cardiovascular system.
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1.1 Thesis general context

The goal of this thesis is to provide efficient and robust numerical methods to couple
different cardiovascular compartments. This means to have the most realistic and physio-
logical results with the less computationally expensive effort. The mid-term objective of this
work is to study the multi-physics aspect arising in the cardiovascular system.
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This PhD thesis is the result of the most relevant works I have accomplished in the REO
project at Inria Paris-Rocquencourt.

1.1.1 Motivations

As more and more people switch to healthier lifestyles and with the progress of anti-
hypertensives treatments, mortality from cardiovascular diseases has gone down in a num-
ber of countries. Yet despite this encouraging trend, diseases of the heart and arteries re-
main the number one killers at the global level. In cardiovascular diseases a unique cause
is not detected. Various factors are well-known that increase the risk to develop the disease
and manage the organism to become ill.

Heart attacks and strokes are major, but preventable, killers worldwide and the primary
threat to human life in developed countries. They are mainly caused by a blockage of the
blood from flowing to the heart or brain. Aortic aneurysm and dissection, i.e. dilatation and
rupture of the aorta, damage of the heart valves in particular valve stenosis and regurgita-
tion, also afflict thousands of people.

According the World Health Organization1, over 80% of cardiovascular disease deaths
take place in low and middle income countries and occur almost equally in men and women.
General cardiovascular diseases have major human costs as well as economic costs. The
cost for the health care systems of the European Union, for example, is just under e196
billion a year including direct health care costs, productivity losses and informal care of
people [NTLF+12]. Ensuring that all people have a rapid access to appropriate treatment
is essential to reducing disability and costs. A more careful knowledge of the structure of
heart and its arteries is also an affordable method to prevent cardiovascular diseases.

For many centuries this has been the central objective of the studies of physicians and
scientists from the arab Avicenna (980 - 1037) and Averroes (1126 - 1198) to Leonardo da
Vinci (1452-1519), who represented very accurately the anatomy of the heart muscle (Fig-
ure 1.1). The physician and epidemiologist Giovanni Maria Lancisi (1654 - 1720) detailed
the symptoms of heart failure, aneurysms, atherosclerosis.

Nowadays, clinicians use simple measurements such as heart rate, blood pressure or
the electrocardiogram to diagnose cardiovascular pathologies. Subsequently, researchers
have developed and are improving mathematical modeling techniques to help clinicians to
interpret this kind of observations in a rational and systematic manner.

As the research in this direction is impressively improving, the comprehension and the
modeling of the heart and the interplay between its principal functions still remains a chal-
lenging task. The resolution of coupled problems in a clinical environment is one of the
primary objective, in part because of the prohibitive computational cost of the methods cur-
rently available. Coupling different physical compartments (fluid-solid, fluid 3D - fluid 1D, 0D
- fluid 3D, etc.) raises many mathematical and numerical difficulties that are still the topics
of active research.

It is generally admitted that the state-of-the-art commercial solvers are not yet able to
solve large coupled problems, like fluid-solid interaction (FSI), in a time compatible with the

1http://www.who.int/mediacentre/factsheets/fs317/en/

http://www.who.int/mediacentre/factsheets/fs317/en/


1.1. Thesis general context 7

Figure 1.1: Detailed analysis of the structure of the heart by Leonardo da Vinci.

clinical practice. Progress is therefore needed in this respect. The main motivation is to solve
the coupled problem without requiring too many expensive sub-iterations. The challenge
in term of software development is to imagine a solution that would be versatile enough
to couple together an arbitrary number of independent components of the cardiovascular
system, with different coupling strategies, different physics or different representations of
the same physics.

1.1.2 Multiphysics modeling of the cardiovascular system

A significant number of complex physical phenomena takes place in the heart [NNN+11],
which is actually a treasure for modeling and objective of active research (Figure 1.2).

The mathematical analysis of biological phenomena that take place in the heart in-
volves several areas of study: fluid mechanics, tissue mechanics, electrophysiology, suitable
boundary conditions. To obtain a complete simulation of the heart, a deep analysis of these
phenomena is necessary as well as a study of their impact on each other. The literature on
this subject is abundant.

We can cite for example the pioneering work of [Pes77, WHS+02, WSKH04] on mod-
eling the flow of blood through the heart with fluid-structure coupling. Complex fluid-
structure interaction methods for the blood flow in general have been developed, e.g.
[Ber12, CDFQ11, FGG07] where incompressible Navier-Stokes equations are coupled with
the mechanical equations governing the dynamics of structure.

Another interesting and challenging area of study is the modeling of the heart valves.
Different kind of models can be adopted to simulate the valve behavior. The simplest is
the lumped parameter method, that reduces the valve behavior to the resolution of alge-
braic or differential equations [DZL07, JL06, KS06, SMCCS08, SSG+04, TW89]. Important
progress have been realized in the simulations of the interaction between the blood fluid
and the structure of the valves [AGPT09, LDSB10, MYWD07, SB09, HPSB03], however
this type of problems still remains very challenging. A new approach has been recently pro-
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Figure 10 Arterial tree, propagation of the pressure wave
during late systole. Positioning of 1D network purely visual.

Table 1 Parameter values used in the numerical simulations.

gepi Force on the epicardium (peak) 4.7 N
Es Young modulus of pseudo-structure 0.7 MPa
⌫s Poisson ratio of pseudo-structure 0.4
⇢s Density of elastic pseudo-structure 1.2 g/cm3

pLA Left atrial pressure 1–2 kPa
pVE Venous pressure 0.66 kPa
RMV Mitral valve resistance 1 Pa·s/cm3

⇢f Density of blood 1.04 g/cm3

⌫f Dynamic viscosity of blood 0.035 g·s/cm
�ref Reference pressure at aortic valve 10 kPa

Heart rate 75 bpm
Simulation time 4.8 s

ulating the pre- and post-surgical conditions of a patholog-
ical heart and its effect on the cardiac output. Key ingre-
dients included (i) a scalable parallel library for solving
the 3D FSI system for the left ventricle and the 1D hy-
perbolic system for flow in compliant arteries, and (ii) a
general and robust coupling framework for heterogeneous
models into one large geometrical multiscale model. While
1D and lumped parameter models are usually sufficient to
simulate the principal features of blood flow in the human
cardiovascular system, in areas where the geometry of the
vessels has a strong effect on the flow it is necessary to
use fully 3D models with fluid-structure interaction effects.
One also has to provide a method for coupling together di-
mensionally heterogeneous models.

Our multiscale model reached a physiological pressure
level in 3-4 heartbeats, demonstrating that even an ideal-
ized left ventricle is able to produce realistic flow patterns
and simulate some basic principles of blood flow in the
major arteries. In the future we aim to assimilate patient-
specific ventricle data and explore the effects of ventricu-
lar surgery on the cardiac output (cf. also [21]). To achieve
this goal it is necessary to further refine the models being
used and to eventually consider a full closed-loop circu-
lation model. Therefore, the geometrical multiscale mod-
elling and coupling framework must be implemented in a
way that is highly modular and extensible. The coupling
of constituent models should be robust and efficient and
the number of nonlinear iterations taken at each time step
should not grow exceedingly as the size of the multiscale
model grows. We have presented results that indicate the
proposed framework satisfies these requirements. The final
goal is to provide a toolbox of models that can be used by
medical professionals with modest training in numerical
methods and no experience in C++ programming for ex-
perimentation and development of new multiscale models
for investigating specific clinical applications in the treat-
ment of cardiovascular disease.

Acknowledgements

M. Astorino, S. Deparis, and A.C.I. Malossi acknowl-
edge the European Research Council Advanced Grant
“Mathcard, Mathematical Modelling and Simulation of the
Cardiovascular System”, Project ERC-2008-AdG 227058.
S. Deparis and T. Lassila acknowledge the support of the
FP7 project VPH2 (Virtual Pathological Heart of the Vir-
tual Physiological Human). We thank J. Bonnemain of
CHUV/EPFL for his input on the physiological condi-
tions of the circulatory system. All of the numerical re-
sults presented in this paper have been computed using the
open-source LifeV library (www.lifev.org). LifeV is the
joint collaboration between four institutions: École Poly-
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Figure 2.8: Depolarization and repolarization of the ventricles during a cardiac cycle.
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Figure 1.2: Multiphysics aspect of the cardiovascular system: heart fluid dynamics (image
form [Ast10]), valve models (image form [dSGB08]), 1D/0D arterial models (image form
[LMAD11]), FSI in the aorta (image form [Ber12]), electrophysiology (image form [Col14]),
mechanics of the heart (image form [Imp13])

posed in [AHSG12] based on the resistive immersed surface (RIS) method, in which the
valve surface acts as a resistance in the fluid.

Regarding cardiac mechanics, we can mention the work of [Hun75, Pes82] to whom we
owe the first major contributions. More recently, various electro-mechanical heart models
have been proposed, e.g. [CFG+09, GK10, NP04, Moi08]. In these studies, the constitutive
law of the material is decomposed into a passive portion (visco-elastic properties of the
myocardium) and an active portion (reactive with electrical activation).

First electrophysiology cellular models appear in the early 50s with the work of Hodgkin
and Huxley [HH52a, HH52b], offering the first modeling of the action potential for the giant
axon. This work will then be applied to the cardiac electrophysiology by Noble [Nob62] and
many models of increasingly complexity follow. In cardiac electrophysiology several models
which represent the evolution of the potential in the membrane have been developed. For
example we cite [GK09] where the governing equations of electrophysiology are derived
from the classical FitzHugh-Nagumo model [Fit61, NAY62, AP96].

The therapeutic procedures on patients suffering from cardiovascular or arterial dis-
ease requires sometimes the simulation of the entire closed-loop system, i.e. heart-aorta-
arteries-peripheral circulation-veins. For this purpose many 3D-1D coupled models for blood
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flow have been proposed in the literature, e.g. [BFU07, BPUF09, FGNQ01, OPK+00]. While,
3D-0D coupling [BCF13, MXA+12, VC06, WLW09] is a classical strategies to account for
the neglected part of the cardiovascular system when 3D simulations are performed.

1.1.3 Personal contributions

The results presented in this work have been achieved by using, improving or developing
different tools. In particular the following pieces of software have been largely employed:

• The 2D test cases are solved with the partial differential equations solver FreeFem++
[Hec12], written in a C++ idiom language. Specific C++ routines have been written in
order to read the FreeFem results in suitable post-processing softwares.

• The finite element solver FELiScE (Finite Elements for Life Sciences and Engineering2)
was used for the calculations. This is a C++ code based on the PETSc library for
parallel scientific computing3. This code involves several students, engineers and re-
searchers in a collaboration between the Inria team-projects REO and M∃DISIM. My
personal contributions concerns the implementation of different functions, method and
subroutines, to solve the models discussed in this work. In particular, all the functions
employed for the resolution of the fluid-fluid models were implemented. The routines
to fusion together the degrees of freedom of two different geometries and the spe-
cific class for the RIS valve model were coded. In addition, the ALE formulation was
improved.

• The coupling between the two fluids codes, to perform fluid-fluid interaction, was done
using a master code CVGraph (Cardio Vascular Graph) written in C++. This coupling
code was started at the beginning of this thesis, and it allows to couple different solvers
by message passing based on MPI, PVM and text-file protocols. We use the mas-
ter/slave code to handle the communications between two fluid models implemented
with FELiScE.

• A wide number of meshes has been processed by using the softwares 3-Matic (Ma-
terialise, Leuven, Belgium) [Mat13], Gmsh [GR09], MEDIT [Fre01] and other Inria
routines. All geometries employed in this work are the result of several student’s
adaptation in different periods. All of them have been personally re-arranged, cut and
smoothed with an accurate and painstaking work to obtain the simulations presented
in this thesis. The realistic meshes used in Chapter 4 and Chapter 6 have been ac-
quired by Zygote Media Group [Zyg11], they were obtained from the post-processing
of highly resolved computer tomography data.

• For post-processing EnSight (CEI software) was employed by mean of Python inter-
preter [EnS06]. The open source software for scientific visualization ParaView4 has

2http://felisce.gforge.inria.fr
3http://www.mcs.anl.gov/petsc/.
4http://www.paraview.org/.

http://felisce.gforge.inria.fr
http://www.mcs.anl.gov/petsc/
http://www.paraview.org/
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been employed to extract the domains images. MATLAB was used to process the
numerical data resulting from the simulations and to trace the different curves.

• An active participation to the development of several numerical schemes and their
mathematical analysis, is the origin and the crucial point that drive all the numerical
simulations of this thesis.

1.2 Thesis outline

We propose with this thesis, to analyze and simulate, by mean of the appropriate mod-
els, the cardiac hemodynamics that arises from the left atrium to the descending aorta
(Figure 1.3).

(a) Front view (b) Left side view

Figure 1.3: Cardiac hemodaynamics modeling studied in this thesis.

This work is essentially divided in two parts. The first one consists of 2 chapters, the
second one has 3 chapters. Every chapter consists of

- An abstract summarizing the main ideas presented in the chapter.

- A table of content of the sections in which the chapter is divided.

- An introduction to the topics discussed in the chapter.

- Final remarks ending the chapter.

- The Bibliography of the chapter.
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1.2.1 Part I: Fluid-Fluid interaction problem

The first part of this thesis deals with the numerical approximation of a fluid-fluid coupled
problem which seems a model problem of a multi-compartment modeling of the cardiovas-
cular system.

Chapter 2: Explicit coupling schemes for a fluid-fluid interaction problem We
propose a new approach to the loosely coupled time-marching of a fluid-fluid interaction
problems involving the incompressible Navier-Stokes equations. The time splitting schemes
introduced in this chapter is derived from a space semi-discrete formulation based on
Nitsche’s interface method [Han05, BHS03]. This approach extends the loosely coupled
schemes introduced in [BF09, BF14] for FSI problems to fluid-fluid interaction problems.

The method relies on a specific explicit Robin-Robin treatment of the coupling condition
on the interface Σ:




σ(un1 , p

n
1 )n1 +

γµ

h
un1 =

γµ

h
un−1

2 − σ(un−1
2 , pn−1

2 )n2, on Σ,

σ(un2 , p
n
2 )n2 +

γµ

h
un2 =

γµ

h
un1 + σ(un−1

2 , pn−1
2 )n2, on Σ,

(1.1)

combined with a weakly consistent interface pressure stabilization in time:

S(pn2,h, q2,h)
def
=
γ0h

γµ

∫

Σ
(pn2,h − pn−1

2,h )q2,h. (1.2)

Three different explicit formulations are proposed:

1. Algorithm 2.3 (on page 45), static pressure formulation: the formulation is consistent
with the original coupled problem but the energy stability cannot a priori be guaranteed
(Proposition 2.2).

2. Algorithm 2.4 (on page 50), static pressure formulation with skew-symmetric treatment
of the convection: the energy stability can be recovered but it is not consistent with
the original coupled problem.

3. Algorithm 2.6 (on page 52), total pressure formulation: consistent with the original
coupled problem and an a priori energy estimate guaranties the stability of the splitting
(Proposition 2.3).

Chapter 3: Numerical examples of fluid-fluid interaction problem in hemodynam-
ics In this chapter we discuss the numerical simulations of the methods presented in
Chapter 2.

We first perform 2D numerical tests, in order to shown the instabilities of a standard
explicit Dirichlet-Neumann coupled scheme and to fix the Nitsche’s method parameters.
Then, with 3D numerical tests we observe that
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1. Algorithm 2.3: even if the energy stability cannot a priori be guaranteed for the stan-
dard static pressure formulation, extensive numerical evidence has shown that the
scheme is robust and accurate, with respect to a fully implicit method.

2. Algorithm 2.4: the numerical results have confirmed the poor accuracy of this scheme
since it is not consistent with the original coupled problem.

3. Algorithm 2.6: the comparison with fully coupled solutions have shown that the method
gives satisfactory results, in agreement with the energy estimate guaranteeing the
stability of the splitting.

1.2.2 Part II: Toward cardiac hemodynamics

The second part of the thesis is mainly devoted to the numerical simulations of the car-
diovascular system. By making use of the loosely coupled scheme presented in the first
part, we obtain some results on the ventricle-valves-aorta coupled fluids problem. From a
clinical standpoint the pathologies arising in the cardiovascular system have not a unique
cause. The origin of a malfunctioning of the ventricle, valves or aorta can be strictly cor-
related. To best of our knowledge in literature, only few models couple these 3 aspects at
same time.

Chapter 4: Fluid-fluid interaction problem and RIS model. Application to the aor-
tic valve In this chapter we discuss the fluid-fluid problem in two cardiovascular compart-
ments, in which one of them is represented by the valve. This is a prototype for left ventricle
hemodynamics we discuss in Chapter 6.

A reduced model for heart valves, recently developed in [AHSG12], is integrated in the
fluid problem. In this approach, the mechanics of valves is not considered. Instead, valves
are replaced by immersed surfaces acting as resistances on the fluid which mimics the
behavior of a real valve. The mathematical formulation is based on the model proposed in
[FGM08] to deal with immersed stents. The geometry of the resistive surface is defined as
the real three-dimensional valve geometry in its fully closed and fully open configuration. To
capture the pressure jump across the immersed surface, a fissured mesh is introduced in
the geometry (Section 4.3.1).

We have performed two kinds of numerical experiments:

1. A template of the aorta (Section 4.3.2), has been used to test the two-fluid coupled
model with the RIS valve model. With respect to the simulations presented in Chapter
3, the aortic root domain without closed valve configuration, has been replaced by a
fissured domain with closed and open valve configuration, while the aortic arc mesh
is kept unchanged.

2. A realistic aorta (Section 4.3.3), whose geometry was obtained from medical images,
is employed to investigate two stenotic valve cases. This pathological case is directly
included in the mathematical model simply putting non-zero resistance on the stenotic
leaflet during all the cardiac cycle, while keeping the same valve geometry with respect
to the normal case.
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Chapter 5: An energy stable time-marching scheme for fluid flows in moving do-
mains This chapter is mainly focused on the energy stability of non-linear fluid model
when it is solved in moving domains, through the so called Arbitrary Eulerian Lagrangian
(ALE) formulation (Section 5.3). The new difficulty comes from those integrals, which are
integrated over the moving domain at a given time-step.

In the same spirit of the Temam’s trick, we show that, adding a weak consistent term
((5.26) on page 131)

1

δt

(∫

Ωn

un · v −
∫

Ωn−1

un · v
)
−
∫

Ωn

(un · v)(∇ ·wn−1) = O(δt),

we can get a stable energy inequality without any Geometric Conservation Laws (GCL)
(see [EGP09, TL79]), that were so far necessary to establish an energy balance for the fluid
equations on a moving domain (see e.g. [FN99, TM01]).

A numerical test concludes the chapter. In this example the ALE non-stabilized formula-
tion (Algorithm 5.1) is compared with the ALE stabilized formulation (Algorithm 5.2).

Chapter 6: Numerical examples in cardiac hemodynamics This chapter deals with
the preliminary numerical simulations of the blood dynamics in the left ventricle coupled with
the blood flow in the aorta via a staggered explicit algorithm. The simulations are performed
taking into account the following elements

1. A fluid-fluid staggered scheme is used to couple the blood dynamics in the left ventricle
with the blood dynamics in the aorta (Chapter 2 and Chapter 3).

2. RIS valve models account for both mitral and aortic valve (Chapter 4).

3. The stabilized ALE formulation for fluid flow in moving domain is used to model ventri-
cle contraction (Chapter 5).

4. External displacements derived from an electro-mechanical simulation of the heart
[SMCCS08, Imp13] are imposed on the ventricle wall.

5. Windkessel models are used in the outlets in order to take into account the neglected
part of the cardiovascular system.

Chapter 7: Obtained results and perspectives This thesis is completed by conclud-
ing remarks. A list of conclusions and perspectives by chapter is discussed.
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1.3 Anatomy and physiology of the cardiovascular system

In this section we provide to the reader with the essentially vocabulary and references
concerning the main aspect of the cardiovascular system.

Although the cardiovascular system is essentially a network of vessels powered by a
“pump”, the heart, the complex anatomy and physiology that make it able to successfully
keep a person alive is truly amazing. Add to that the influence of a variety of physical and
chemical factors and we have a really complicated system of structures and events that
need to operate correctly and efficiently to maintain its own internal stability. To understand
how the heart accomplishes its important task, it is first necessary to consider the relation-
ship between the structure and function of its components. The complexity of the cardio-
vascular system is just sketched here and for a more careful analysis we refer to a relevant
bibliography, for example [Fun97, Kla11, TD12, Thi08a, Thi08b].

1.3.1 The circulatory loop

The cardiovascular system consists of the heart and vessels allowing blood circulation,
that transport oxygen, nutrients, hormones, and cellular waste products throughout the body
(Figure 1.4).

Oxigenated blood

De-oxigenated blood

Capillaries

Right lung

Systemic circulation

Pulmonary circulation

Right pulmonary
artery

Left pulmonary
artery

Left lung

Left pulmonary
vein

Trachea

Oxygen

Right pulmonary
vein

Venules
Arterioles

Figure 1.4: Schematic view of the closed circulation of blood. Image adapted from [Bio12].
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There are two primary circulatory loops in the human body (e.g. see [Tay12]):

• Pulmonary circulation, transporting de-oxygenated blood from the right side of the
heart to the lungs, where blood picks up oxygen and returns to the left side of the
heart.

• Systemic circulation, carrying highly oxygenated blood from the left side of the heart
to all of the tissues of the body. It removes wastes from body tissues and returns
de-oxygenated blood to the right side of the heart.

Blood vessels are the body’s highways that allow blood to flow quickly and efficiently from
the heart to every region of the body and back again. There are three major types of vessels:

• Arteries, large vessels transporting blood away from the heart. They face high levels
of blood pressure as they carry blood pushed from the heart under great forces.

• Capillaries, the smallest vessels, connecting the arterioles (small arteries) to the
venules (small veins). They exchange gases, nutrients, and waste products with tissue
cells.

• Veins, the large return vessels of the body, they transport the blood back to the heart.
They are subjected to very low blood pressures.

1.3.2 The structure of the human heart

The heart is a muscular organ, body’s hardest working organ, relatively small, about the
size of a person’s closed fist, that functions as the body’s circulatory pump. It rests on the
diaphragm between the lungs and extends from the sternum to the vertebral column. About
two-thirds of the mass of the heart lies to the left of the body’s mid-line.

The interior of the heart is divided into four compartments called chambers, or cavities
(Figure 1.5). The two superior chambers are called right atrium and left atrium. The two
inferior chambers are the left ventricle and the right ventricle. The right and left atria and
ventricular chambers are separated by a septal wall or septum.

The external part of the heart is covered by a thin-membrane sac, the pericardium. Three
layers surround the wall of the heart: epicardium, myocardium and endocardium. (Figure
1.6)

The heart consists of conducting tissue, blood vessels and extracellular media, but most
of it is made up by cardiac muscle tissue. This is slightly different from the normal skeletal
muscle tissue since it is striated but not under voluntary conscious control. The myocardium
possesses a hierarchical micro-structure of

- Myocytes, cylindrical contractile cells, containing

- Sarcomeres micro-anatomical units, composed of

- myosin, thick filaments proteins,

- actin, thin filaments proteins.
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Left atrium: thin walled, low pressure
chamber, receives oxygenated blood
from the pulmonary circuit via the
right and left pulmonary veins.

Left atrium: thick walled chamber,
approximately three times thicker
than the right ventricle. It
receives blood from the left
atrium. When the chamber is
filling with blood, the Mitral
valve is open and ventricular
and atrial pressures are equal.
When the mitral valve closes
and contraction begins, pressure
is generated to let blood moves
forward, out the Aortic valve
and into the aorta.

Right ventricle: thick walled
chamber. It receives blood
from the right atrium when
the Tricuspid valve is open. In
this state the chamber is resting, ventricular and atrial pressures
are equal. When the tricuspid valve closes and the contraction begins,
pressure increases leading the Pulmonary valve opening. The blood is
pumped to the lungs via pulmonary arteries, and there is then oxygenated.

Right atrium: thin walled, low pressure
chamber, it receives de-oxygenated
blood from the body by the
superior and inferior vena
cava. Home of the Sinoatrial
node, the pacemaker of
the heart.

Figure 1.5: Main components of the human heart and characteristics of its chambers. Front
view. Heart image taken from [O’C12].

Chemical and physical interactions between actin and myosin cause the sarcomere
length to shorten, and therefore the myocyte to contract during the process of excitation-
contraction.

1.3.3 Heart electro-physiology

The electrical impulse triggers the heart to beat. Between the interior and the exterior
of a cardiac cell there holds a voltage difference, called transmembrane potential and its
transient alteration is defined action potential.
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Pericardium surrounds and protects
the heart, yet allowing for sufficient
freedom of movement for vigorous
and rapid contraction.

Endocardium (endo = within), the
innermost layer composed by flat
cells and connective tissue. It
provides a smooth lining for the
inside of the heart and covers
the heart valve. It is continuous
with the layers of the large blood
vessels in the rest of the
cardiovascular system.

Myocardium (myo = muscle),
the middle layer, is the cardiac
muscle tissue, and is responsible for
its pumping action.

Epicardium (epi = on top), the outermost layer,
composed by flattened cells connective tissue
that imparts a smooth, slippery texture to the
surface of the heart.

Figure 1.6: Layers stratification and dimension of the heart in an adult healthy man. Front
view with a section. Image modified from [Imp13].

The changes in membrane potential during different phases are brought by changes in
the movement of ions Ca2+, Na+ and K+ across the membrane, through ion channels that
open and close at different times (see [KS09] for more details). Without electrical stimuli, the
transmembrane potential is negative, the cells are called to be polarized, due to the poor
concentration of sodium and calcium ions in the cell. When the electrical stimuli arrive to the
cell, the ion channels in the membrane open so that the transfer of sodium inwards the cell
occurs. This is called depolarization, where the transmembrane potential becomes positive,
leading to the contraction of the cardiac cells.

The electrical activity of the heart is summarized in Figure 1.7, with the Electrocardio-
gram (ECG) traces, called waves (P, QRS, T). The depolarization occurs throughout atria
and thereafter the ventricles.

1.3.4 The cardiac valves

At the exit of each heart cavity, a valve prevents the back-flow of the blood into the
corresponding chamber, see Figure 1.8.
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Figure 1.7: Electrical activity of the heart and ECG trace. Heart images taken from [Bio07].
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Tricuspid valve regulates
blood flow between the
right atrium and the
right ventricle. It is
composed of three
leaflets.

Mitral valve lets oxygen-rich
blood to pass from the left
atrium into the left
ventricle. It consists of
two thin cups attached
to the atrioventricular ring.

Pulmonary valve controls blood
flow from the right ventricle
into the pulmonary trunk, which
carries blood to the lungs to pick
up oxygen. It is located at the
outlet of the right ventricle.

Aortic valve regulates the
amount of blood from the
left ventricle into the aorta,
where it is delivered to the
body. It consists of three
semilunar cusps.

Figure 1.8: The four heart valves sketched in an isovolumic phase. Top view. Image modified
from [Net94].

There are four valves: two ventriculo-arterial valves, the tricuspid and mitral - or bicuspid
- valve and two atrio-ventricular valves, the aortic and pulmonary valves - both also termed
semilunar valves. Biological attachments in both ventricles, chordae tendinae, prevent the
atrio-ventricular valve to prolapse during their closures (see for example [IBHL13] for a
general review).

1.3.5 The aorta

The aorta is the first and largest artery leaving the left side of the heart. It starts at
the opening of the left ventricle, from which blood is pumped out of the heart through the
aortic valve. In an adult, it is approximately 30 − 40 cm long and has an average diameter
of 2.5− 3.5 cm (see [HKRB+02, Mic12] for measurements). The wall of this artery is 2 mm

thick, giving it the strength and elasticity needed to receive blood at high pressure from the
heart.

The elasticity of the aorta is of great importance because it helps to propel blood forward.
As the heart pumps blood, the walls of the aorta stretch. When the heart relaxes, the aortic
valve stops blood flowing, and as the aorta shrinks back, blood is pushed forward through
the body5.

The aorta subdivides in two parts: thoracic and abdominal aorta. The thoracic aorta
loops up and then curls behind the heart to descend through the thorax (Figure 1.9). The
first branches, right and left coronaries, come off the sinus of Valsalva, three anatomic
dilatations of aortic root, in which the valve is located. These arteries supply the heart in

5This phenomenon is known also as the Windkessel effect.
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oxygenated blood, hence they are extremely important and their blockage may cause an
infarct.
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Figure 1.9: Position in the human body, main parts and branches of the thoracic aorta.
Images modified from [Wik12].

The subsequent part is called the ascending aorta, the loop is the arch of the aorta,
and it divides to become the brachiocephalic artery (that supplies of blood the right arm,
the neck and the head), the left common carotid (suppling the head and the neck) and left
subclavian arteries (suppling the left arm).

The aorta becomes abdominal as it reaches the appropriate region. Having emerged
through the diaphragm, the aorta divides into numerous branches to supply blood to the
surrounding organs as liver, stomach, spleen, intestines and kidneys. Finally the aorta splits
into the left and right common iliac arteries, that mainly provide blood to the legs.

1.3.6 The cardiac cycle

The heart beat is a two-stage pumping action over a period of about 0.8 s, the longer
period is called diastole, the shorter is the systole. More precisely, it consists of four main
phases6: isovolumic (or isovolumetric) relaxation, ventricular filling, isovolumic (or isovolu-
metric) contraction and systolic ejection (Figure 1.10).

In between the filling and the isovolumic contraction, the atrial systole occurs, i.e. atria
contract reversing a small quantity of blood in the ventricles.

A common representation of the cardiac cycle is the (left) ventricular pressure-volume
loop (e.g. [Fun97]). The contraction and expansion of the volume in the heart produce an

6Some authors divide the cardiac cycle into seven phases: isovolumic relaxation and contraction, rapid and
slow filling, rapid and slow ejection and atrial contraction (e.g. [Thi08a]).
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Filling (w 0.5 s) begins when the aortic and pulmonary
valves are closed. The blood flows from the atria to
the ventricles, leading to the passive filling of the
ventricular cavities. The contraction of the atria
finishes the filling of the ventricles.

Isovolumic contraction
(w 0.05 s) starts when
the atrioventricular
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Figure 1.10: The principal phases of a cardiac cycle. Heart images modified from [Bio07].
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increase and a reduction of the pressure that generate a closed curve. Figure 1.11 sketches
out the theoretical course of the cardiac cycle in terms of pressure and volume change in
the left ventricle. Several relevant hemodynamic parameters such as stroke volume, cardiac
output, ejection fraction, myocardial contractility, etc. can be determined from this loop.

In Figure 1.12, the different phases of a cardiac cycle are represented by mean of the
main cardiac indicators related to left atrium and ventricle activity. Clearly a similar cycle
acts symmetrically also for the right atrium and ventricle.
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Part I

FLUID-FLUID INTERACTION PROBLEM





Your head will collapse
If there’s nothing in it

And you’ll ask yourself
Where is my mind?

"Where Is My Mind?" by Pixies.





CHAPTER 2
Explicit coupling schemes for a fluid-fluid

interaction problem

In this chapter we propose a new approach to the loosely coupled time-marching of a fluid-fluid
interaction problems involving the incompressible Navier-Stokes equations. The methods combine
a specific explicit Robin-Robin treatment of the interface coupling with a weakly consistent interface
pressure stabilization in time. A priori energy estimates guaranteeing stability of the splitting are
obtained for a total pressure formulation of the coupled problem.

This chapter is part of:
Miguel Fernández, Jean-Frederic Gerbeau, Saverio Smaldone. Explicit coupling
schemes for a fluid-fluid interaction problem arising in hemodynamics, published in
SIAM Journal on Scientific Computing, 2014 [FGS14].

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Coupled fluid-fluid problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Dirichlet-Neumann coupling scheme . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Implicit interface treatment . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Explicit interface treatment . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Space discretization with Nitsche’s interface method . . . . . . . . . . . . . 38

2.4.1 Monolithic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Partitioned formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Time-discretization: fully discrete formulations of the Nitsche’s interface
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Implicit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.2 Explicit coupling: a static pressure formulation . . . . . . . . . . . . . . 44

2.5.3 Explicit coupling: a stable but inconsistent formulation . . . . . . . . . . 49

2.5.4 Explicit coupling: a total pressure formulation . . . . . . . . . . . . . . . 51

2.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



34

2.1 Introduction

Global and local features in hemodynamics are generally described by coupling dimen-
sionally heterogeneous models of blood flow. In this geometrical multiscale paradigm, the
three-dimensional (3D) Navier-Stokes equations are usually coupled with one-dimensional
(1D) and/or zero-dimensional (0D) models that account for the parts before and after the 3D
compartment (see, e.g., [BFU07, FGNQ01, QV03]). In this work, we are interested in cou-
pling 3D compartments. Indeed, in some of them, it may be sufficient to consider a standard
Navier-Stokes solver. But it is sometimes necessary to develop ad-hoc software to handle
complex configurations. For instance, if a detailed modeling of blood flow in the left ventricle
is sought for, the 3D model must incorporate additional features, such as the deformation of
the cardiac cavity and the opening-closing dynamics of the aortic valves, which requires a
very specific solver. Another example is provided by the simulation of endo-vascular devices
(e.g., stents, coils) or vascular pathologies (e.g., aortic dissection, atherosclerotic plaques
development, vascular wall remodeling) that may also require the development of specific
software. In this context, it may be of practical interest to couple different 3D codes. The
motivation of this work is therefore the partitioning of the 3D fluid computational domain into
several complementary non-overlapping subdomains, in which these additional modeling
features may take place. As an alternative to standard domain decomposition approaches,
we propose to advance in time the system via specific explicit coupling (or loosely coupled)
strategies that allow the uncoupled time-stepping of the sub-compartments.

As a preliminary step in this direction, in this work we focus on the case of two sub-
compartments described by the incompressible Navier-Stokes equations. The two sub-
problems are coupled, across their shared (artificial) interface, by standard kinematic/kinetic
conditions, viz., continuity of velocity and stress. We address the uncoupled time-marching
of the two sub-compartments via explicit coupling schemes. Note that this approach clearly
differs from [MBDA11, BDM13], where partitioned iterative procedures acting on aver-
aged/integrated interface quantities are proposed.

To this purpose, a major difficulty that has to be faced is related to the artificial energy
transfers (unbalance of static and/or dynamic pressure power) induced by the interface
time-splitting, which can lead to numerical instabilities. For instance, if a standard Dirichlet-
Neumann scheme is foreseen (see [GK08]), the splitting introduces an unbalance of static
powers across the interface. Relaxation of the kinematic constraint improves the situation,
but with the payoff of an uncontrolled dynamic pressure power across the interface. This
issue does not appear in fluid-fluid interaction models based on rigid-lid conditions, com-
monly used in oceanography modeling (see, e.g., [BK06, CHL09, CHL12, M7̈9]), for which
the normal velocity component vanishes on the interface.

In this work, the unbalanced static pressure power is controlled via a specific explicit
Robin-Robin treatment of the interface coupling (based on Nitsche’s interface method) and
a weakly consistent interface pressure stabilization in time. Basically, this approach extends
the loosely coupled schemes introduced in [BF09, BF14] for FSI problems to fluid-fluid inter-
action problems. We also show that the second source of instabilities (unbalanced dynamic
pressure power) can be treated, in a natural way, by applying this method to a total pressure
formulation of the Navier-Stokes equations.
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Outline This chapter is organized as follows. In the next section, the incompressible
Navier-Stokes equations are split into two sub-problems coupled across an artificial inter-
face. The time discretization of the standard Dirichlet-Neumann approach is discussed
in Section 2.3. A Nitsche’s space semi-discrete formulation of this fluid-fluid interaction
problem is presented in Section 2.4. Section 2.5 is devoted to the time-dicretization. We
present different implicit (Paragraph 2.5.1) and explicit coupling strategies, in the static
(Paragraph 2.5.2 and 2.5.3) and total pressure formulations (Paragraph 2.5.4), and state
their corresponding discrete energy balances.

2.2 Coupled fluid-fluid problem

Let Ω ⊂ Rd, d = 2, 3 be a bounded fixed domain and a fluid modeled by the incompress-
ible Navier-Stokes equations. The velocity u : Ω×R+ → Rd and the pressure p : Ω×R+ → R
satisfy:





ρ∂tu + ρu · ∇u−∇ · σ(u, p) = 0, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,

(2.1)

with the initial conditions u(0) = u0. The term σ(u, p) = −pI + 2µε(u), where ε(u) = (∇u +

∇Tu)/2, is the fluid stress tensor, and ρ and µ stand for the fluid density and the dynamic
viscosity respectively. For the sake of the analysis, homogeneous Dirichlet conditions are
enforced on the whole boundary ∂Ω. More realistic boundary conditions are considered in
the numerical experiments of Section 3.3 of Chapter 3.

Problem (2.1) can be partitioned into two sub-problems defined in two non-overlapping
sub-domains, Ω1 ⊂ Rd and Ω2 ⊂ Rd, with Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The two sub-
domains are separated by an interface Σ

def
= ∂Ω1 ∩ ∂Ω2, and Γ1

def
= ∂Ω1\Σ, Γ2

def
= ∂Ω2\Σ

(Figure 2.1).

n2

n1

⌃⌦1

⌦2�1

�2

Figure 2.1: Geometrical description of the fluid domains.

The new formulation of the problem reads: find the velocity u1 : Ω1 × R+ → Rd and the
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pressure p1 : Ω1 × R+ → R such that




ρ∂tu1 + ρu1 · ∇u1 −∇ · σ(u1, p1) = 0, in Ω1,

∇ · u1 = 0, in Ω1,

u1 = 0, on Γ1,

(2.2)

find the velocity u2 : Ω2 × R+ → Rd and the pressure p2 : Ω2 × R+ → R, such that




ρ∂tu2 + ρ(u2 · ∇)u2 −∇ · σ(u2, p2) = 0, in Ω2,

∇ · u2 = 0, in Ω2,

u2 = 0, on Γ2.

(2.3)

The solutions in the two sub-domains are coupled through the usual kinematic and kinetic
conditions

{
u1 = u2, on Σ,

σ(u2, p2)n2 = −σ(u1, p1)n1, on Σ,
(2.4)

with n1, n2 the outward-pointing unit normal vectors on ∂Ω1 and ∂Ω2 respectively.

2.3 Dirichlet-Neumann coupling scheme

To fix the ideas we consider the time semi-discretized formulation of the previous
models. A backward Euler scheme is used and the non-linear terms are linearized with
a standard semi-implicit approach. The time derivatives in (2.1)-(2.3) are replaced by
∂δtx

n def
= (xn − xn−1)/δt, where δt

def
= T/N denotes the step size, the interval of interest

is (0, T ), N ∈ N+ is a given integer and xn ≈ x(nδt) with 0 ≤ n ≤ N .
The fluid model (2.1) is discretized as:





ρ∂δtu
n + ρun−1 · ∇un −∇ · σ(un, pn) = 0, in Ω,

∇ · un = 0, in Ω,

un = 0, on ∂Ω

(2.5)

Hence, the corresponding coupled problem discretized in time results, for the first fluid
model





ρ∂δtu
n
1 + ρun−1

1 · ∇un1 −∇ · σ(un1 , p
n
1 ) = 0, in Ω1,

∇ · un1 = 0, in Ω1,

un1 = 0, on Γ1,

(2.6)

likewise, for the second fluid model we have




ρ∂δtu
n
2 + ρun−1

2 · ∇un2 −∇ · σ(un2 , p
n
2 ) = 0, in Ω2,

∇ · un2 = 0, in Ω2,

un2 = 0, on Γ2.

(2.7)
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The time discretization of the transmission conditions on Σ determines the implicit or explicit
character of the coupling scheme.

2.3.1 Implicit interface treatment

The scheme is called implicit or strongly coupled scheme if (2.4) is enforced exactly at
each time-step. The transmission condition on Σ are discretized as follow:

{
un1 = un2 , on Σ,

σ(un2 , p
n
2 )n2 = −σ(un1 , p

n
1 )n1, on Σ.

(2.8)

Such transmission conditions amount to solve the monolithic problem (2.5), obtained by the
time-discretization of (2.1). It is summarized in Algorithm 2.1.

ALGORITHM 2.1 (Monolithic fluid problem: static pressure formulation)

1. Advance in time fluid problem (2.1) in the whole domain Ω;

2. Go to next time-step.

The payoff of this scheme is that the Algorithm 2.1 yields a highly coupled system at
each time-step.

2.3.2 Explicit interface treatment

The schemes whose coupling conditions are explicitly treated are called weakly or
loosely coupled schemes. The following discretization on Σ is considered:

{
un1 = un−1

2 , on Σ,

σ(un2 , p
n
2 )n2 = −σ(un1 , p

n
1 )n1, on Σ.

(2.9)

Note the explicit treatment of the interface terms in (2.9), since the fluid 1 and fluid 2
velocities do not match at interface, indeed we have un1 = un−1

2 6= un2 on Σ. This uncoupled
scheme is summarized in Algorithm 2.2.

ALGORITHM 2.2 (Explicit Dirichlet-Neumann fluid-fluid model)

1. Advance in time fluid problem (2.6) in sub-domain Ω1 with the Dirichlet condition
(2.9)1;

2. Advance in time fluid problem (2.7) in sub-domain Ω2 with the Neumann condition
(2.9)2;

3. Go to next time-step.

This procedure is particularly appealing in terms of computational cost, since allow
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a sequential computation of (un1 , p
n
1 ) and (un2 , p

n
2 ), but this kind of coupling generates

pressure instabilities at interface that can not be controlled. An example is reported in
Section 3.2.1 in the next chapter. Similar instability also arise using Dirichlet-Neumann
explicit scheme in fluid-structure interaction problems, in which the pressure instabilities
are generated by the so called add-mass effect (see [CGN05, FWR07]), when fluid and
solid density are comparable.

In the next sections we propose alternative splitting schemes with enhanced stability
property.

2.4 Space discretization with Nitsche’s interface method

The time splitting schemes introduced in the following sections are derived from a space
semi-discrete formulation of (2.2)-(2.4) based on Nitsche’s interface method (see, e.g.,
[Han05, BHS03]). In other words, conforming finite element approximations are used in
each sub-system, which do not match at the interface, and the interface coupling (2.4) is
enforced in a consistent fashion à la Nitsche. A salient feature of this approach, compared
to a standard conforming finite element approximation, is that the artificial interface power,
generated by the time splitting of the interface coupling, can be controlled directly by the
consistent numerical dissipation of interface Nitsche’s method (see [BF09, BF14]).

Nitsche’s method, originally proposed to weakly enforce Dirichlet boundary conditions
in elliptic problems (see [Nit71]), has been extended to a number of interface problems
arising in computational mechanics (see, e.g., [Han05] for a review), including domain de-
composition [BHS03], Stokes-Darcy coupling [BH07], elliptic-hyperbolic problems [BZ06],
fluid-structure interaction [HH03, HHS04, BF09, BF14] and, more recently, interface prob-
lems with unfitted meshes (see, e.g., [HHL03, MLLR14, BF13]).

2.4.1 Monolithic formulation

Let be {T1,h}0≤h≤1 and {T2,h}0≤h≤1 two families of regular finite element triangulation
for Ω1 and Ω2 respectively, with typical diameter h. Let Wi,h × Qi,h denote an inf-sup
stable, conforming finite element approximations of [H1(Ωi)]

d × L2(Ωi) for i = 1, 2. Let
V1,h = W1,h ∩ [H1

Γ1
(Ω1)]d and V2,h = W2,h ∩ [H1

Γ2
(Ω2)]d, where H1

γ(Ωi) denotes the space of
H1(Ωi)−functions vanishing on a part γ of ∂Ωi.

The considered space semi-discrete formulation of problem (2.2)-(2.4) reads: for all
t > 0, find (u1,h, p1,h, u2,h, p2,h) ∈ W1,h × Q1,h × W2,h × Q2,h satisfying the essential
boundary conditions and such that

A1[u1,h; (u1,h, p1,h), (v1,h, q1,h)] +A2[u2,h; (u2,h, p2,h), (v2,h, q2,h)]

+C1[u1,h; (u1,h,u2,h),v1,h] + C2[(u2,h,u1,h); (u2,h,u1,h),v2,h]

+
γµ

h

∫

Σ
(u2,h − u1,h) · (v2,h − v1,h)−

∫

Σ
σ(u2,h, p2,h)n2 · (v2,h − v1,h)

−
∫

Σ
(u2,h − u1,h) · n2q2,h = 0, (2.10)
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for all (v1,h, q1,h, v2,h, q2,h) ∈ V1,h ×Q1,h × V2,h ×Q2,h, where

A1[u1,h; (u1,h, p1,h), (v1,h, q1,h)]
def
= ρ

∫

Ω1

∂tu1,h · v1,h +

∫

Ω1

2µε(u1,h) : ε(v1,h)

−
∫

Ω1

p1,h∇ · v1,h +

∫

Ω1

q1,h∇ · u1,h

+ρ

∫

Ω1

(u1,h · ∇u1,h) · v1,h, (2.11)

A2[u2,h; (u2,h, p2,h), (v2,h, q2,h)]
def
= ρ

∫

Ω2

∂tu2,h · v2,h +

∫

Ω2

2µε(u2,h) : ε(v2,h)

−
∫

Ω2

p2,h∇ · v2,h +

∫

Ω2

q2,h∇ · u2,h

+ρ

∫

Ω2

(u2,h · ∇u2,h) · v2,h, (2.12)

and the two terms C1 and C2 are defined by:

C1[u; (w, z),v]
def
=

ρ

2

∫

Ω1

(∇ · u)w · v +
ρ

2

∫

Σ
u · n1(z−w) · v, (2.13)

C2[(u, ξ); (w, z),v]
def
=

ρ

2

∫

Ω2

(∇ · u)w · v − ρ

2

∫

Σ
(u · n2)(w · v)

+
ρ

2

∫

Σ
(ξ · n2)(z · v). (2.14)

The first integral in (2.13) and (2.14) is nothing but the standard Temam’s trick (see, e.g.,
[Tem68, Tem79]). The remaining interface terms are also strongly consistent terms, which
are introduced to handle the convective energy contributions related to the discontinuous
nature of the discrete solution on the interface.

The last three interface terms of (2.10) enforce the interface conditions (2.4) weakly, in
a strongly consistent fashion, à la Nitsche. The interface stress term −

∫
Σ σ(u2,h, p2,h)n2 ·

(v2,h − v1,h) results from the integration by parts in each subdomain and the application
of the relation (2.4)2. The remaining contributions, γµ

h

∫
Σ(u2,h − u1,h) · (v2,h − v1,h) and

−
∫

Σ(u2,h−u1,h) ·n2q2,h, are strongly consistent stabilization terms (thanks to (2.4)1) which
guarantee the stability of the resulting formulation. The dimensionless parameter γ > 0 is
chosen to ensure coercivity (see Lemma 2.1).

REMARK 2.1
The sixth term in (2.10), involving the stress tensor on the interface, is computed with the
Fluid 2 variables. It could be replaced by

−
∫

Σ
σ(u1,h, p1,h)n1(v1,h − v2,h),

i.e. computed with Fluid 1 variables, without compromising the stability of the method. In
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this case the seventh term (2.10) would be
∫

Ω1

q1,h∇ · u1,h = −
∫

Σ
(u1,h − u2,h) · n1q1,h.

We could also consider a convex combination of both.

REMARK 2.2
This monolithic scheme is very similar to Discontinuous Galerkin formulations (see for ex-
ample [GRW05] or the monography [DPE11, chap. 6]). The main contribution of this chapter
is the partitioned schemes proposed below. For the sake of completeness, the stability anal-
ysis of the monolithic formulation is reminded in the next section.

2.4.1.1 Stability analysis

The following lemma shows the stability in the energy norm of the semi-discrete problem
(2.10). It makes use of the standard local inverse trace inequality (see [Tho06] e.g.): for all
K ∈ {Th}h>0,

||uh||2∂K ≤ CTh−1||uh||2K ∀ uh ∈Wh, (2.15)

where || · ||K denotes the L2(K)-norm.

LEMMA 2.1
Let (u1,h, p1,h,u2,h, p2,h) be solution of (2.10). If

γ > 2CT , (2.16)

where CT > 0 is defined in (2.15), the following estimate holds

ρ

2

(
||u1,h(t)||2Ω1

+ ||u2,h(t)||2Ω2

)
+

3µ

4

∫ t

0

(
||ε(u1,h)||2Ω1

+ ||ε(u2,h)||2Ω2

)

+
3γµ

4h

∫ t

0
||u2,h − u1,h||2Σ ≤

ρ

2
(||u1,h(0)||2Ω1

+ ||u2,h(0)||2Ω2
).

Proof. Taking (v1,h, q1,h,v2,h, q2,h) = (u1,h, p1,h,u2,h, p2,h) in A1 and A2 yields

A1[u1,h; (u1,h, p1,h), (u1,h, p1,h)] =
ρ

2

d

dt
||u1,h||2Ω1

+ 2µ||ε(u1,h)||2Ω1

−ρ
2

∫

Ω1

(∇ · u1,h)|u1,h|2 +
ρ

2

∫

Σ
(u1,h · n1)|u1,h|2

(2.17)
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A2[u2,h; (u2,h, p2,h), (u2,h, p2,h)] =
ρ

2

d

dt
||u2,h||2Ω2

+ 2µ||ε(u2,h)||2Ω2

−ρ
2

∫

Ω2

(∇ · u2,h)|u2,h|2 +
ρ

2

∫

Σ
(u2,h · n2)|u2,h|2.

(2.18)

In addition, for the terms C1 and C2 we have

C1[u1,h; (u1,h,u2,h),u1,h] =
ρ

2

∫

Ω1

(∇ · u1,h)|u1,h|2

+
ρ

2

∫

Σ
(u1,h · n1)(u2,h · u1,h − |u1,h|2), (2.19)

C2[(u2,h,u1,h); (u2,h,u1,h),u2,h] =
ρ

2

∫

Ω2

(∇ · u2,h)|u2,h|2

−ρ
2

∫

Σ
(u2,h · n2)|u2,h|2 +

ρ

2

∫

Σ
(u1,h · n2)(u1,h · u2,h).

(2.20)

Hence by inserting (2.17)–(2.20) into (2.10) we get the following energy equality

ρ

2

d

dt
(||u1,h||2Ω1

+ ||u2,h||2Ω2
) + 2µ

(
||ε(u1,h)||2Ω1

+ ||ε(u2,h)||2Ω2

)

+
γµ

h
||u2,h − u1,h||2Σ = 2µ

∫

Σ
ε(u2,h)n2 · (u2,h − u1,h). (2.21)

The right-hand side of (2.21) is first treated with the Young’s inequality and with the local
inverse trace inequality (2.15):

2µ

∫

Σ
ε(u2,h)n2 · (u2,h − u1,h) ≤ 4µCT

γ
||ε(u2,h)||2Ω2

+
µγ

4h
||u2,h − u1,h||2Σ.

Using this inequality in (2.21) and integrating over (0, t), it gives:

ρ

2

(
||u1,h(t)||2Ω1

+ ||u2,h(t)||2Ω2

)
+ 2µ

∫ t

0
||ε(u1,h)||2Ω1

+ 2µ

(
1− 2CT

γ

)∫ t

0
||ε(u2,h)||2Ω2

+
3γµ

4h

∫ t

0
||u2,h − u1,h||2Σ ≤

ρ

2
(||u1,h(0)||2Ω1

+ ||u2,h(0)||2Ω2
).

The last result, with condition (2.16), completes the proof.

2.4.2 Partitioned formulation

Our goal is to devise an algorithm that yields separate solutions in domain Ω1 and Ω2

via suitable transmission conditions on the interface Σ. Taking first (v2,h, q2,h) = (0, 0) and
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then (v1,h, q1,h) = (0, 0), the monolithic formulation (2.10) can be split in two coupled sub-
problems:

1. Fluid sub-problem 1: Given (u2,h, p2,h) ∈ W2,h × Q2,h, find (u1,h, p1,h) ∈ W1,h × Q1,h

such that

A1[u1,h; (u1,h, p1,h), (v1,h, q1,h)] + C1[u1,h; (u1,h,u2,h),v1,h]

+
γµ

h

∫

Σ
(u1,h − u2,h) · v1,h +

∫

Σ
σ(u2,h, p2,h)n2 · v1,h = 0

for all (v1,h, p1,h) ∈ V1,h ×Q1,h.

2. Fluid sub-problem 2: Given (u1,h, p1,h) ∈ W1,h × Q1,h, find (u2,h, p2,h) ∈ W2,h × Q2,h

such that

A2[u2,h; (u2,h, p2,h), (v2,h, q2,h)] + C2[(u2,h,u1,h); (u2,h,u1,h),v2,h]

+
γµ

h

∫

Σ
(u2,h − u1,h) · v2,h −

∫

Σ
σ(u2,h, p2,h)n2 · v2,h

−
∫

Σ
(u2,h − u1,h) · n2q2,h = 0

for all (v2,h, p2,h) ∈W2,h ×Q2,h.

Note that, as in the standard Nitsche’s method, all the interface terms are evaluated using
face-wise integration. This partitioned formulation is the basis of the staggered algorithms
presented in the next section.

Monolithic methods are, by construction, less modular than partitioned approaches and
do not allow the use of legacy software. Partitioned methods, on the contrary, facilitate the
reuse of existing code. Moreover, because of their inherent modularity, new models and
numerical schemes can be introduced while keeping everything else the same.

2.5 Time-discretization: fully discrete formulations of the
Nitsche’s interface method

The present section is devoted to the time discretization of formulation (2.10). With the
same notation introduced in Section 2.3 on page 36, i.e. backward Euler scheme and semi-
implicit approach for the non-linear terms, the two discrete counterparts of operators A1 and
A2 are defined by:

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)]

def
= ρ

∫

Ω1

∂δtu
n
1,h · v1,h + 2µ

∫

Ω1

ε(un1,h) : ε(v1,h)

−
∫

Ω1

pn1,h∇ · v1,h +

∫

Ω1

q1,h∇ · un1,h

+ρ

∫

Ω1

(un−1
1,h · ∇un1,h) · v1,h, (2.22)
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A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)]

def
= ρ

∫

Ω2

∂δtu
n
2,hv2,h + 2µ

∫

Ω2

ε(un2,h) : ε(v2,h)

−
∫

Ω2

pn2,h∇ · v2,h +

∫

Ω2

q2,h∇ · un2,h

+ρ

∫

Ω2

(un−1
2,h · ∇un2,h) · v2,h. (2.23)

2.5.1 Implicit coupling

Before addressing the case of a staggered time-stepping, we start with the study of a
monolithic scheme where the two sub-problems are solved simultaneously at each time
instant tn: find (un1,h, p

n
1,h,u

n
2,h, p

n
2,h) ∈ W1,h × Q1,h × W2,h × Q2,h satisfying the essential

boundary conditions and such that

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] +A2,δt[u

n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)] +

+C1[un−1
1,h ; (un1,h,u

n
2,h),v1,h] + C2[(un−1

2,h ,u
n−1
1,h ); (un2,h,u

n
1,h),v1,h]

+
γµ

h

∫

Σ
(un2,h − un1,h) · (v2,h − v1,h)−

∫

Σ
σ(un2,h, p

n
2,h)n2 · (v2,h − v1,h)

−
∫

Σ
(un2,h − un1,h) · n2q2,h = 0, (2.24)

for all (v1,h, q1,h,v2,h, q2,h) ∈ V1,h ×Q1,h × V2,h ×Q2,h.

For the sake of conciseness, the strain rate tensors at time tn are denoted by εm1,h
def
=

ε(um1,h) and εm2,h
def
= ε(um2,h) and the following quantities are introduced:

En
def
=

ρ

2

(
||un1,h||2Ω1

+ ||un2,h||2Ω2

)
+

3γµ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ

+
2µ

3
δt

n∑

m=1

||εm1,h||2Ω1
+

2µ

3
δt

n∑

m=1

||εm2,h||2Ω2
, (2.25)

E0 def
=

ρ

2

(
||u0

1,h||2Ω1
+ ||u0

2,h||2Ω2

)
. (2.26)

The next proposition shows that this monolithic algorithm is stable without any condition
on the discretization steps.

PROPOSITION 2.1
Let (un1,h, p

n
1,h,u

n
2 , p

n
2 ) be the solution of the monolithic scheme (2.24). If

γ ≥ 2CT , (2.27)

where CT > 0 is the constant of the inverse inequality (2.15), then

En ≤ E0.
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Proof. The proof follows the same steps as the proof of Lemma 2.1. Choosing (v1,h, q1,h,
v2,h, q2,h) = (un1,h, p

n
1,h, un2,h, p

n
2,h) in (2.24), the interface terms resulting from the integration

by parts of the advection in (2.22) and (2.23) cancel with interface stabilization terms (2.13)
and (2.14). Then summing over 1 ≤ m ≤ n and multiplying by δt, we obtain:

ρ

2

n∑

m=1

(
||um1,h||2Ω1

− ||um−1
1,h ||2Ω1

)
+
ρ

2

n∑

m=1

||um1,h − um−1
1,h ||2Ω1

+ 2µδt

n∑

m=1

||εm1,h||2Ω1

+
ρ

2

n∑

m=1

(
||um2,h||2Ω2

− ||um−1
2,h ||2Ω2

)
+
ρ

2

n∑

m=1

||um2,h − um−1
2,h ||2Ω2

+ 2µδt
n∑

m=1

||εm2,h||2Ω2

+
γµ

h
δt

n∑

m=1

||um2,h − um1,h||2Σ

≤ 4µCT
γ

δt

n∑

m=1

||εm2,h||2Ω2
+
µγ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ,

which can be reformulated as

ρ

2

(
||un1,h||2Ω1

+ ||un2,h||2Ω2

)
+ 2µδt

n∑

m=1

||εm1,h||2Ω1

+2µ

(
1− 2CT

γ

)
δt

n∑

m=1

||εm2,h||2Ω2
+

3γµ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ

≤ −ρ
2
δt

(
n∑

m=1

||um1,h − um−1
1,h ||2Ω1

+
n∑

m=1

||um2,h − um−1
2,h ||2Ω2

)

+
ρ

2
(||u0

1,h||2Ω1
+ ||u0

2,h||2Ω2
),

The last result, under the condition (2.27), completes the proof .

2.5.2 Explicit coupling: a static pressure formulation

The monolithic scheme (2.24) involves the simultaneous computation of (un1,h, p
n
1,h) and

(un2,h, p
n
2,h). In this section, a first staggered scheme (Algorithm 2.3) is proposed to solve

problem (2.10). This method generalizes the explicit coupling schemes introduced in [BF09,
BF14] for incompressible fluid-structure interaction.

As shown in Proposition 2.2, we are not able to prove its stability. We nevertheless
present it because it allows us to introduce the main ideas that will be useful in the next
section. In addition, this scheme was stable in most of the numerical simulations where it
was tested (see Section 3.3.3 on page 68 in Chapter 3).
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ALGORITHM 2.3 (Staggered scheme with static pressure)

1. Find (un1,h, pn1,h) ∈W1,h ×Q1,h satisfying the essential boundary conditions and
such that

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] + C1[un−1

1,h ; (un1,h,u
n−1
2,h ),v1,h]

+
γµ

h

∫

Σ
(un1,h − un−1

2,h ) · v1,h +

∫

Σ
σ(un−1

2,h , p
n−1
2,h ) · n2v1,h = 0, (2.28)

for all (v1,h, q1,h) ∈ V1,h ×Q1,h.

2. Find (un2,h, pn2,h) ∈W2,h ×Q2,h satisfying the essential boundary conditions and
such that

A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)] + C2[(un−1

2,h ,u
n−1
1,h ); (un2,h,u

n
1,h),v2,h]

+
γµ

h

∫

Σ
(un2,h − un1,h) · v2,h −

∫

Σ
σ(un−1

2,h , p
n−1
2,h )n2 · v2,h

−
∫

Σ
(un2,h − un1,h) · n2q2,h + S(pn2,h, q2,h) = 0 (2.29)

for all (v2,h, q2,h) ∈ V2,h ×Q2,h.

3. Go to next time-step.

This scheme only yields one solution of each sub-problem at each time step. The terms
involving the two forms A1,δt and A2,δt take the same expressions (2.22) and (2.23) as
in the monolithic scheme. The differences between the two algorithms only lie in the in-
terface terms. First, the stabilization term C1[un−1

1,h ; (un1,h,u
n
2,h),v1,h] of the monolithic algo-

rithm (2.24) is replaced by C1[un−1
1,h ; (un1,h,u

n−1
2,h ),v1,h] in order to uncouple the two sub-

problems. Second, the weakly consistent term

S(pn2,h, q2,h)
def
=
γ0h

γµ

∫

Σ
(pn2,h − pn−1

2,h )q2,h, (2.30)

is added in sub-domain Ω2 in order to control spurious pressure fluctuations which appear
at the interface because of the explicit coupling between the two sub-domains. The dimen-
sionless parameter γ0 > 0 will be fixed to ensure the energy stability of the method.

It is interesting to note that this scheme, obtained from Nitsche’s penalty formulation,
can be seen as an explicit Robin-Robin scheme associated with the following boundary
conditions:




σ(un1 , p

n
1 )n1 +

γµ

h
un1 =

γµ

h
un−1

2 − σ(un−1
2 , pn−1

2 )n2, on Σ,

σ(un2 , p
n
2 )n2 +

γµ

h
un2 =

γµ

h
un1 + σ(un−1

2 , pn−1
2 )n2, on Σ.

(2.31)
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We attempt to prove the stability in the energy norm of the explicit formulation (2.28)-
(2.29). Although the result is not conclusive, it is useful since it pinpoints the difficulty that will
be addressed in Algorithm 2.6. In addition, most of the arguments of the proof are reusable
for the stability analysis of Algorithm 2.6.

PROPOSITION 2.2
Let (un1,h, p

n
1,h,u

n
2,h, p

n
2,h) be the solution of the staggered scheme (2.28)-(2.29). Under the

conditions:

γ0 > 4, (2.32a)

γδt ≤ CΣh, (2.32b)

γ ≥ 4CT , (2.32c)

where CT > 0 is the constant of the inverse inequality (2.15) and CΣ > 0 is given, the
following estimate holds:

En +
γµ

2h
δt||un2,h||2Σ +

γ0h

2γµ
δt||pn2,h||2Σ ≤ 3E0 +

3CΣµ

2
||u0

2,h||2Σ

+
3γ0h

2γµ
δt||p0

2,h||2Σ + 24δt||ε0
2,h||2Ω2

+
3

2
ρδt

n∑

m=1

∫

Σ
um−1

1,h · n1u
m
1,h · (um2,h − um−1

2,h ).

(2.33)

Proof. Let be (v1,h, q1,h,v2,h, q2,h) = (un1,h, p
n
1,h,u

n
2,h, p

n
2,h), the two forms A1,δt and A2,δt give

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (un1,h, p

n
1,h)] =

ρ

2δt

(
||un1,h||2Ω1

− ||un−1
1,h ||2Ω1

+ ||un1,h − un−1
1,h ||2Ω1

)

+2µ||εn1,h||2Ω1
− ρ

2

∫

Ω1

(∇ · un−1
1,h )|un1,h|2

+
ρ

2

∫

Σ
(un−1

1,h · n1)|un1,h|2,

A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h), (un2,h, p

n
2,h)] =

ρ

2δt

(
||un2,h||2Ω2

− ||un−1
2,h ||2Ω2

+ ||un2,h − un−1
2,h ||2Ω2

)

+2µ||εn2,h||2Ω2
− ρ

2

∫

Ω2

(∇ · un−1
2,h )|un2,h|2

+
ρ

2

∫

Σ
(un−1

2,h · n2)|un2,h|2.
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Similarly, for the terms C1 and C2 we get

C1[un−1
1,h ; (un1,h,u

n−1
2,h ),un1,h] =

ρ

2

∫

Ω1

(∇ · un−1
1,h )|un1,h|2 −

ρ

2

∫

Σ
(un−1

1,h · n1)|un1,h|2

+
ρ

2

∫

Σ
(un−1

1,h · n1)(un−1
2,h · un1,h),

C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),un2,h] =

ρ

2

∫

Ω2

(∇ · un−1
2,h )|un2,h|2 −

ρ

2

∫

Σ
(un−1

2,h · n2)|un2,h|2

+
ρ

2

∫

Σ
(un−1

1,h · n2)(un1,h · un2,h).

By inserting these expressions into (2.28)-(2.29), summing over 1 ≤ m ≤ n and multiplying
by δt, we obtain

ρ

2

n∑

m=1

(
||um1,h||2Ω1

− ||um−1
1,h ||2Ω1

)
+
ρ

2

n∑

m=1

||um1,h − um−1
1,h ||2Ω1

+ 2µδt

n∑

m=1

||εm1,h||2Ω1

+
ρ

2

n∑

m=1

(
||um2,h||2Ω2

− ||um−1
2,h ||2Ω2

)
+
ρ

2

n∑

m=1

||um2,h − um−1
2,h ||2Ω2

+ 2µδt
n∑

m=1

||εm2,h||2Ω2

+
ρ

2
δt

n∑

m=1

∫

Σ
um−1

1,h · n1u
m
1,h · (um−1

2,h − um2,h)

= δt
n∑

m=1

∫

Σ
(pm2,h − pm−1

2,h )n2 · (um2,h − um1,h)− γ0h

γµ
δt

n∑

m=1

∫

Σ
(pm2,h − pm−1

2,h )pm2,h

︸ ︷︷ ︸
T1

− γµ
h
δt

n∑

m=1

∫

Σ
(um2,h − um1,h) · um2,h +

γµ

h
δt

n∑

m=1

∫

Σ
(um−1

2,h − um1,h) · um1,h
︸ ︷︷ ︸

T2

+ 2µδt

n∑

m=1

∫

Σ
εm−1

2,h n2 · (um2,h − um1,h)

︸ ︷︷ ︸
T3

. (2.34)

We now proceed by adapting the arguments reported in [BF09]. Term T1 involves the pres-
sure fluctuations at the interface. Applying Young’s inequality, it can be written as

T1 ≤ 2h

γµ
δt

n∑

m=1

||pm2,h − pm−1
2,h ||2Σ +

γµ

8h
δt

n∑

m=1

||um2,h − um1,h||2Σ

−1

2

γ0h

γµ
δt||pn2,h||2Σ +

1

2

γ0h

γµ
δt||p0

2,h||2Σ −
γ0h

γµ

δt

2

n∑

m=1

||pm2,h − pm−1
2,h ||2Σ

=
γµ

8h
δt

n∑

m=1

||um2,h − um1,h||2Σ −
1

2

γ0h

γµ
δt||pn2,h||2Σ +

1

2

γ0h

γµ
δt||p0

2,h||2Σ
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+
h

2γµ
(4− γ0) δt

n∑

m=1

||pm2,h − pm−1
2,h ||2Σ

the last term being negative (assumption of (2.32a)), it will be removed from the upper
bound.

Term T2 concerns the velocity fluctuations at the interface. Adding and subtracting um2,h
in the second integral of T2, we have

T2 = −γµ
h
δt

n∑

m=1

∫

Σ
(um2,h − um1,h) · um2,h +

γµ

h
δt

n∑

m=1

∫

Σ
(um−1

2,h − um2,h) · um1,h

+
γµ

h
δt

n∑

m=1

∫

Σ
(um2,h − um1,h) · um1,h

= −γµ
h
δt

n∑

m=1

||um2,h − um1,h||2Σ −
γµ

h
δt

n∑

m=1

∫

Σ
(um2,h − um−1

2,h ) · um1,h.

Adding and subtracting um2,h in the second term of this relation, we obtain

−γµ
h
δt

n∑

m=1

∫

Σ
(um2,h − um−1

2,h ) · um1,h

= −γµ
h
δt

n∑

m=1

[∫

Σ
(um2,h − um−1

2,h ) · um2,h −
∫

Σ
(um2,h − um−1

2,h ) · (um2,h − um1,h)

]

= −γµ
h
δt

n∑

m=1

[∫

Σ

|um2,h|2
2
−
|um−1

2,h |2
2

+
|um2,h − um−1

2,h |2
2

−
∫

Σ
(um2,h − um−1

2,h ) · (um2,h − um1,h)

]

≤ −γµ
2h
δt

n∑

m=1

[
||um2,h||2Σ − ||um−1

2,h ||2Σ − ||um2,h − um1,h||2Σ
]
.

Using assumption (2.32b) we finally get

T2 ≤ −
γµ

2h
δt

n∑

m=1

||um2,h − um1,h||2Σ −
γµ

2h
δt||un2,h||2Σ +

µCΣ

2
||u0

2,h||2Σ.

Applying Young’s inequality and the local trace inequality (2.15), the term T3 can be
bounded as follows:

T3 ≤ 8µCT
γ

δt

n∑

m=1

||εm−1
2,h ||2Ω2

+
γµ

8h
δt

n∑

m=1

||um2,h − um1,h||2Σ

=
8µCT
γ

δt
n−1∑

m=1

||εm2,h||2Ω2
+

8µCT
γ

δt||ε0
2,h||2Ω2

+
γµ

8h
δt

n∑

m=1

||um2,h − um1,h||2Σ.
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Inserting T1, T2 and T3 in (2.34), we have:

ρ

2

(
||un1,h||2Ω1

+ ||un2,h||2Ω2

)
+
γµ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ + 2µδt
n∑

m=1

||εm1,h||2Ω1

+2µ

(
1− 4CT

γ

)
δt

n∑

m=1

||εm2,h||2Ω2
+
γµ

2h
δt||un2,h||2Σ +

1

2

γ0h

γµ
δt||pn2,h||2Σ

≤ ρ

2

(
||u0

1,h||2Ω1
+ ||u0

2,h||2Ω2

)
+
µCΣ

2
||u0

2,h||2Σ +
1

2

γ0h

γµ
δt||p0

2,h||2Σ +
8µCT
γ

δt||ε0
2,h||2Ω2

+
ρ

2
δt

n∑

m=1

∫

Σ
um−1

1,h · n1u
m
1,h · (um2,h − um−1

2,h ).

Finally under the condition (2.32c) the assertion is proved.

REMARK 2.3
Another option could be to consider

C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n−1
2,h ),v2,h]

in (2.29), i.e. un−1
2,h instead un1,h or alternatively replace both (2.28) and (2.29) by

C1[un−1
1,h ; (un1,h,u

n−1
1,h ),v1,h] and C2[(un−1

2,h ,u
n−1
1,h ); (un2,h,u

n−1
1,h ),v2,h],

i.e. un−1
1,h in place of un−1

2,h in the first term, and un−1
1,h instead un1,h in the second term. The

formulations remain consistent, but a non-bounded term still appears in the energy balance.

2.5.3 Explicit coupling: a stable but inconsistent formulation

Energy stability can be guaranteed if, instead of C1[un−1
1,h ; (un1,h,u

n−1
2,h ),v1,h] and

C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),v2,h] in Algorithm 2.3, we consider the following alternative

terms:

c1(un−1
1,h ; un1,h,v1,h)

def
= −ρ

2

∫

Σ
(un−1

1,h · n1)(un1,h · v1,h), (2.35)

c2(un−1
2,h ; un2,h,v2,h)

def
= −ρ

2

∫

Σ
(un−1

2,h · n2)(un2,h · v2,h). (2.36)

The corresponding staggered scheme is presented in Algorithm 2.4.
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ALGORITHM 2.4 (Staggered scheme with static pressure: inconsistent
formulation)

1. Find (un1,h, pn1,h) ∈W1,h ×Q1,h such that

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h)(v1,h, q1,h)] + c1(un−1

1,h ; un1,h,v1,h)

+
γµ

h

∫

Σ
(un1,h − un−1

2,h ) · v1,h +

∫

Σ
σ(un−1

2,h , p
n−1
2,h )n2 · v1,h = 0

for all (v1,h, q1,h) ∈ V1,h ×Q1,h.

2. Find (un2,h, pn2,h) ∈W2,h ×Q2,h such that

A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h)(v2,h, q1,h)] + c2(un−1

2,h ; un2,h,v2,h)

+
γµ

h

∫

Σ
(un2,h − un1,h) · v2,h −

∫

Σ
σ(un−1

2,h , p
n−1
2,h )n2 · v2,h

−
∫

Σ
(un2,h − un1,h) · n2q2,h + S(pn2,h, q2,h) = 0

for all (v2,h, q2,h) ∈ V2,h ×Q2,h.

3. Go to next time-step.

Note that this amounts to consider the skew-symmetric formulation of the convective
term in each sub-domain, namely, for i = 1, 2

1

2

∫

Ωi

ui · ∇ui · vi −
1

2

∫

Ωi

ui · ∇vi · ui. (2.37)

Indeed, using integration by parts we have

1

2

∫

Ωi

ui · ∇ui · vi −
1

2

∫

Ωi

ui · ∇vi · ui =

∫

Ωi

ui · ∇ui · vi −
1

2

∫

Σ
(ui · ni)(ui · vi). (2.38)

A straightforward adaptation of Proposition 2.2 hence shows that Algorithm 2.4 is energy
stable.

The skew-symmetrized form (2.37) is commonly used in the staggered time-marching
of fluid-fluid interaction models based on rigid-lid coupling condition conditions (see, e.g.,
[CHL12] and the references therein), for which ui · ni = 0 on Σ. The expression (2.37) is
thus consistent, since the interface term in the right-hand side of (2.38) vanishes. Clearly,
this does not hold for the coupled problem (2.2)-(2.4) and, therefore, Algorithm 2.4 involves
an inconsistent treatment of (2.4). In fact, the following (inconsistent) Robin-Robin splitting
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is enforced




σ(un1 , p
n
1 )n1 −

1

2
(un−1

1 · n1)un1 +
γµ

h
un1 =

γµ

h
un−1

2 − σ(un−1
2 , pn−1

2 )n2, on Σ,

σ(un2 , p
n
2 )n2 −

1

2
(un−1

2 · n2)un2 +
γµ

h
un2 =

γµ

h
un1 + σ(un−1

2 , pn−1
2 )n2, on Σ.

(2.39)

The numerical experiments reported in Section 3.3.3 in Chapter 3 confirm the expected
poor accuracy of this method.

2.5.4 Explicit coupling: a total pressure formulation

We propose in this Section a provably stable staggered algorithm. The difficulty to estab-
lish the stability of Algorithm 2.3 came from the last term of (2.33) which resulted from the
integration by parts of the advection. To get rid of this term, we suggest to use a formulation
for which the advection cancels in the energy equation without any integration by parts. This

can be achieved by introducing the total pressure π def
= p + ρ

|u2|
2

and by reformulating the
Navier-Stokes equation as:





ρ∂tu + ρu · ∇u− ρ(∇u)Tu−∇ · σ(u, π) = 0, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω.

(2.40)

This formulation was in particular discussed in [HRT96, Page 337]. It simply results from
the relation:

−∇ · σ(u, p) = −ρ
2
∇|u|2 −∇ · σ(u, π) = −ρ(∇u)Tu−∇ · σ(u, π).

Note that the pressure unknown is now the total pressure π. This is not the case of the
curl u × u formulation used in many works to enforce the total pressure in the boundary
conditions, but which keeps the static pressure p as unknown (see, e.g., [BCMP88, FMN07,
LMN+09, PZVP12, VV05]).

Using the same time discretization of Section 2.3, the monolithic scheme of the above
model is reported in Algorithm 2.5

ALGORITHM 2.5 (Monolithic fluid problem: total pressure formulation)

1. Advance in time fluid problem (2.40) in the whole domain Ω;

2. Go to next time-step.

While, the partitioned formulation of the problem (2.40) reads:
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find the velocity u1 : Ω1 × R+ → Rd and the pressure π1 : Ω1 × R+ → R such that




ρ∂tu1 + ρu1 · ∇u1 − ρ(∇u1)Tu1 −∇ · σ(u1, π1) = 0, in Ω1,

∇ · u1 = 0, in Ω1,

u1 = 0, on Γ1,

(2.41)

find the velocity u2 : Ω2 × R+ → Rd and the pressure π2 : Ω2 × R+ → R, such that




ρ∂tu2 + ρu2 · ∇u2 − ρ(∇u2)Tu2 −∇ · σ(u2, π2) = 0, in Ω2,

∇ · u2 = 0, in Ω2,

u2 = 0, on Γ2.

(2.42)

The solutions in the two sub-domains are coupled through the kinematic and kinetic condi-
tions: {

u1 = u2, on Σ,

σ(u2, π2)n2 = −σ(u1, π1)n1, on Σ,
(2.43)

with n1, n2 the outward-pointing unit normal vectors on ∂Ω1 and ∂Ω2 respectively. The new
staggered scheme, based on Nitsche’s formulation, is presented in Algorithm 2.6.

ALGORITHM 2.6 (Staggered scheme with total pressure)

1. Find (un1,h, πn1,h) ∈W1,h ×Q1,h satisfying the essential boundary conditions and
such that

Aπ1,δt[u
n−1
1,h ; (un1,h, π

n
1,h), (v1,h, q1,h)] +

γµ

h

∫

Σ
(un1,h − un−1

2,h ) · v1,h

+

∫

Σ
σ(un−1

2,h , π
n−1
2,h )n2 · v1,h = 0, (2.44)

for all (v1,h, q1,h) ∈ V1,h ×Q1,h.

2. Find (un2,h, πn2,h) ∈W2,h ×Q2,h satisfying the essential boundary conditions and
such that

Aπ2,δt[u
n−1
2,h ; (un2,h, π

n
2,h), (v2,h, q2,h)] + S(πn2,h, q2,h)

+
γµ

h

∫

Σ
(un2,h − un1,h) · v2,h −

∫

Σ
σ(un−1

2,h , π
n−1
2,h )n2 · v2,h

−
∫

Σ
(un2,h − un1,h) · n2q2,h = 0, (2.45)

for all (v2,h, q2,h) ∈ V2,h ×Q2,h.

3. Go to next time-step.
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The variational formulation derived from (2.41)-(2.43) naturally leads to replace the two
forms A1,δt and A2,δt used in the Algorithm 2.3 by the new forms Aπ1,δt and Aπ2,δt defined by

Aπ1,δt[u
n−1
1,h ; (un1,h, π

n
1,h), (v1,h, q1,h)]

def
=ρ

∫

Ω1

∂δtu
n
1,h · v1,h + 2µ

∫

Ω1

ε(un1,h) : ε(v1,h)

−
∫

Ω1

πn1,h∇ · v1,h +

∫

Ω1

q1,h∇ · un1,h

+ ρ

∫

Ω1

(un1,h∇un−1
1,h · v1,h − v1,h∇un−1

1,h · un1,h),

(2.46)

Aπ2,δt[u
n−1
2,h ; (un2,h, π

n
2,h), (v2,h, q2,h)]

def
=ρ

∫

Ω2

∂δtu
n
2,hv2,h + 2µ

∫

Ω2

ε(un2,h) : ε(v2,h)

−
∫

Ω2

πn2,h∇ · v2,h +

∫

Ω2

q2,h∇ · un2,h

+ ρ

∫

Ω2

(un2,h∇un−1
2,h · v2,h − v2,h∇un−1

2,h · un2,h).

(2.47)

Note that with this new formulation, the last integral in (2.11) and (2.12) (Temam’s trick)
is no longer necessary. As with the previous formulation, the pressure fluctuation at the
interface are controlled by the term

S(πn2,h, q2,h)
def
=
γ0h

γµ

∫

Σ
(πn2,h − πn−1

2,h )q2,h, (2.48)

in sub-domain 2. Again, the two sub-problems can be seen as coupled through the Robin-
Robin transmission conditions:




σ(un1 , π

n
1 )n1 +

γµ

h
un1 =

γµ

h
un−1

2 − σ(un−1
2 , πn−1

2 )n2, on Σ,

σ(un2 , π
n
2 )n2 +

γµ

h
un2 =

γµ

h
un1 + σ(un−1

2 , πn−1
2 )n2, on Σ.

(2.49)

These are similar to (2.31), but the static pressure has been replaced by the total pressure.

REMARK 2.4
The total pressure formulation can be obviously used in the implicit case: find
(un1,h, π

n
1,h,u

n
2,h, π

n
2,h) ∈ W1,h × Q1,h × W2,h × Q2,h satisfying the essential boundary con-

ditions and such that

Aπ1,δt[u
n−1
1,h ; (un1,h, π

n
1,h), (v1,h, q1,h)] +Aπ2,δt[u

n−1
2,h ; (un2,h, π

n
2,h), (v2,h, q2,h)] +

+
γµ

h

∫

Σ
(un2,h − un1,h) · (v2,h − v1,h)−

∫

Σ
σ(un2,h, π

n
2,h)n2 · (v2,h − v1,h)

−
∫

Σ
(un2,h − un1,h)n2q2,h = 0,
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for all (v1,h, q1,h,v2,h, q2,h) ∈ V1,h × Q1,h × V2,h × Q2,h. The proof of the stability analysis is
performed in the same way as in Proposition 2.1, with the total pressure variable πi,h instead
of pi,h, i = 1, 2 but without the interface stabilization terms (2.13) and (2.14).

REMARK 2.5
If the proposed splitting schemes were used within a fluid-structure interaction framework,
the fluid stress on the fluid-solid interface could not be directly obtained as the residual of
the fluid variational formulation. Instead, this interface load should be explicitly computed
via face-wise integration.

The next proposition shows that Algorithm 2.6 is conditionally stable in the energy norm.

PROPOSITION 2.3
Let (un1,h, π

n
1,h,u

n
2,h, π

n
2,h) be the solution of (2.44)-(2.45). With same the conditions (2.32a)-

(2.32c), i.e.:

γ0 > 4, (2.50a)

γδt ≤ CΣh, (2.50b)

γ ≥ 4CT , (2.50c)

where CT > 0 is the constant of the inverse inequality (2.15) and CΣ > 0 is given, the
following estimate holds:

En +
γµ

2h
δt||un2,h||2Σ +

1

2

γ0h

γµ
δt||πn2,h||2Ω2

≤ 3E0 +
3

2
CΣµ||u0

2,h||2Σ

+
3

2

γ0h

γµ
δt||π0

2,h||2Σ + 24δt||ε0
2,h||2Ω2

where En, n ≥ 1, and E0 are defined in (2.25) and (2.26).

Proof. Taking (v1,h, q1,h,v2,h, q2,h) = (un1,h, π
n
1,h,u

n
2,h, π

n
2,h), the terms related to advection

in (2.46) and (2.47) cancel each others. Therefore, multiplying for δt and summing over
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1 ≤ m ≤ n, the system (2.44)-(2.45) can be written as

ρ

2

n∑

m=1

(
||um1,h||2Ω1

− ||um−1
1,h ||2Ω1

)
+
ρ

2

n∑

m=1

||um1,h − um−1
1,h ||2Ω1

+ 2µδt

n∑

m=1

||εm1,h||2Ω1

+
ρ

2

n∑

m=1

(
||um2,h||2Ω2

− ||um−1
2,h ||2Ω2

)
+
ρ

2

n∑

m=1

||um2,h − um−1
2,h ||2Ω2

+ 2µδt
n∑

m=1

||εm2,h||2Ω2

= δt
n∑

m=1

∫

Σ
(πm2,h − πm−1

2,h )n2 · (um2,h − um1,h)− γ0h

γµ
δt

n∑

m=1

∫

Σ
(πm2,h − πm−1

2,h )πm2,h

︸ ︷︷ ︸
T1

− γµ
h
δt

n∑

m=1

∫

Σ
(um2,h − um1,h) · um2,h +

γµ

h
δt

n∑

m=1

∫

Σ
(um−1

2,h − um1,h) · um1,h
︸ ︷︷ ︸

T2

+ 2µδt
n∑

m=1

∫

Σ
εm−1

2,h n2 · (um2,h − um1,h)

︸ ︷︷ ︸
T3

. (2.51)

The terms in the right-hand side are bounded mutatis mutandis as in the proof of Proposi-
tion 2.2:

T1 ≤ γµ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ −
1

2

γ0h

γµ
||πn2,h||2Σ +

1

2

γ0h

γµ
||π0

2,h||2Σ

T2 ≤ −γµ
2h
δt

n∑

m=1

||um2,h − um1,h||2Σ −
γµ

2h
δt||un2,h||2Σ +

µCΣ

2
||u0

2,h||2Σ,

T3 ≤ 4µCT
γ

δt
n∑

m=1

||εm2,h||2Ω2
+
γµ

4h
δt

n∑

m=1

||um2,h − um1,h||2Σ.

Inserting T1, T2 and T3 in (2.51) and then under the conditions (2.50c) the assertion is
proved.

2.6 Final remarks

In this Chapter we have discussed several loosely coupled strategies for fluid-fluid in-
teraction problems coupling the incompressible Navier-Stokes equations through standard
kinematic/kinetic interface conditions. The main ingredients of the methods considered are:

1. an explicit Robin-Robin treatment of the interface coupling, (2.31), (2.39) and (2.49),
and a suitable weakly consistent artificial compressibility on the interface, (2.30) and
(2.48);
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2. a specific formulation of the convective terms: static pressure (standard and skew-
symmetric) and total pressure formulations.

The first controls the artificial power generated by the kinematic/kinetic splitting on the inter-
face, while the second governs the unbalanced dynamic pressure power across the inter-
face.

Energy stability cannot a priori be guaranteed for the standard static pressure formula-
tion Algorithm 2.3, but it can be recovered with a static pressure formulation and a skew-
symmetric treatment of the convection (Algorithm 2.4). Unfortunately, this formulation is not
consistent with the original coupled problem due to its non-confirming character across the
interface. For the total pressure formulation, an a priori energy estimate guaranteeing the
stability of the splitting (Algorithm 2.6) has been derived.

In the next chapter we illustrate the performance of the methods introduced in the pre-
vious sections, via numerical experiment applied to an idealized geometry of a thoracic
aorta.
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CHAPTER 3

Numerical examples of fluid-fluid interaction
problem in hemodynamics

Here we illustrate the numerical results of the methods presented in the previous chapter. Nu-
merical tests are carried out first to show the instability related to the explicit Dirichlet-Neumann
scheme. Then we investigate the parameters sensibility to the proposed explicit coupling scheme.
The performance of these methods is illustrated on several numerical experiments related to simu-
lation of blood flow in an idealized geometry of an aorta, in which the aortic root and the aortic arch
represent the two fluids domains. To consider the neglected part of the circulatory system, three ele-
ments Windkessel models are linked in the outlets. A comparison between the monolithic solutions,
with static and total pressure formulation, ends this study.

This chapter is part of:
Miguel Fernández, Jean-Frederic Gerbeau, Saverio Smaldone. Explicit coupling
schemes for a fluid-fluid interaction problem arising in hemodynamics, published in
SIAM Journal on Scientific Computing, 2014 [FGS14].
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3.1 Introduction

In this chapter, we present several numerical experiments of the blood dynamics in an
idealized aorta in order to illustrate the accuracy and performance of the schemes proposed
in Chapter 2.

Our computational domains consist of the aortic root and the aortic arch. In the aortic
root, only open valve leaflets are included, with no valve model. A more accurate study,
including a valve model is lead in Chapter 4, where we discuss the case of the fluid-fluid
interaction problem with a reduced order model for the aortic valve and its applications to
stenotic cases.

The coronary arteries attached to the aortic sinus, here are not considered as outlets,
even if they play a key-role in heart function and in the study of the heart failure (e.g.
[CPS+11, KVCC+10, SPH01]). In general the resistance in the coronaries increases during
systole, when the heart muscle contracts, and decreases during diastole, when the heart
muscle relaxes.

In each outlets of the aortic arch, a (0D) three-elements Windkessel model is placed
(e.g. [BCF13, MXA+12, VC06, WLW09]), to take into account the blood pressure generated
by the neglected part of the cardiovascular system.

The hemodynamics applications of the coupled fluids problem is preceded by 2D nu-
merical tests. One regards the instability of the explicit Dirichlet-Neumann scheme (Section
2.3 on page 36) and the second one analyses the influence of the stabilization parameters
γ and γ0, introduced with the Nitsche’s interface method (Section 2.4 on page 38).

For comparison purposes, in all the 2D and 3D numerical examples, the following error
indicators will be used:

εxi :=
||xi − xref ||L2(Γ)

||xref ||L2(Γ)
, εx :=

||x1 − x2||L2(Σ)

||xref ||L2(Σ)
. (3.1)

The first indicator measures the relative error on a part of the boundary Γ ⊂ ∂Ωi for the
physical quantity xi (defined in Ωi), i = 1, 2. The second indicator gives the relative interface
drop of the variable x across the interface Σ. The subscript ref indicates a quantity from the
reference solution, obtained by solving Algorithm 2.1 and Algorithm 2.5 in the whole domain
Ω with a standard conforming finite element method.

Outline This chapter is organized as follows. Two classes of numerical experiments
are discussed. The first one, in Section 3.2, is about 2D test cases that show the implicit
and explicit treatment of the Dirichlet-Neumann coupling conditions and analyze the impact
of the stabilization parameters derived by Nitsche’s method. The second type of numeri-
cal simulations are 3D examples of hemodynamics application to the aorta, Section 3.3. In
particular the definition of the domains and the boundary conditions are reported in Sec-
tion 3.3.1. In Section 3.3.2 we discuss in brief the techniques and the solvers we use to
implement the partitioned algorithm for the fluid-fluid model. In Section 3.3.3 and 3.3.4 the
numerical simulation of the algorithm presented in the previous chapter are reported. The
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last Section 3.3.6 concerns the comparison between the static and the total pressure for-
mulation of the reference models.

3.2 Two-dimensional test cases

In this section we carry out two numerical tests in a 2D domain. The first one in order to
investigate the instability of the Dirichlet-Neumann coupled problem, the second one to fix
Nitsche’s method parameters.

For all tests, the convective non-linear terms are neglected, hence we consider two
coupled 2D Stokes problems in a rectangular domain [0, 3]× [0, 3]∪ [3, 6]× [0, 3], with space
units in cm. A constant velocity (400, 0)T cm/s is imposed on the left boundary and zero
traction on the right boundary. A no-slip condition is enforced on the upper and lower sides
of the domain (Figure 3.1).

�(u2, p2) · n = 0u1 = (400, 0)T cm/s

u1 = (0, 0)T cm/s

u1 = (0, 0)T cm/s

u2 = (0, 0)T cm/s

u2 = (0, 0)T cm/s

n1

n2

⌦1 = [0, 3] ⇥ [0, 3] ⌦2 = [3, 6] ⇥ [0, 3]

Figure 3.1: Geometrical description and boundary conditions for the 2D test cases.

The density ρ = 1.06 g/cm3 and the dynamic viscosity µ = 0.04 poise are those typically
encountered in blood flow simulations. The spatial discretization is based on P1/P1 stabi-
lized finite elements. The time-step is τ = 10−4 s, in a interval of 5.0 · 10−2 s, and the space
step is h = 0.05 cm. All the numerical computations have been performed in FreeFem++
(see [Hec12]).

3.2.1 Implicit versus explicit Dirichlet-Neumann coupling conditions

Here the monolithic scheme reported in Algorithm 2.1 is compared with the Algo-
rithm 2.2, whose kinetic/kinematic coupling conditions are explicitly treated.

Figure 3.2 compares the mean velocity and the mean pressure all over the domain
obtained for the two algorithms. Notice the not stable behavior for velocity and pressure
obtained with the explicit Dirichlet-Neumann coupled problem, Algorithm 2.2, due to the
unbalance static powers across the interface.
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Figure 3.2: Algorithm 2.1 (Monolithic) vs Algorithm 2.2 (Dirichlet-Neumann): mean velocity
(left) and mean pressure (right).

3.2.2 Impact of the stabilization parameters

We investigate now, the impact of the stabilization parameters γ and γ0 on the accuracy
of Algorithm 2.3.

We consider a two coupled 2D Stokes problems in the rectangular domain shown in
Figure 3.1, with the same boundary condition described in the previous section. Note that in
this case, only the interface pressure stabilization (2.30) is considered, since the convective
non-linear terms are neglected. The tests are run with γ0 = 0, 1, 9, 16 and γ = 25, 250, 2500,
5000.
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Figure 3.3: Outlet velocity errors εu2 (left) and interface pressure drop errors εp (right).

γ
25 250 2500 5000

γ0

0 X X X X
1 0.5987 0.2859 0.0873 0.0570
9 0.7091 0.5554 0.2675 0.1980

16 0.6485 0.5973 0.3310 0.2546

(a) Outlet velocity errors εu2 .

γ
25 250 2500 5000

γ0

0 X X X X
1 0.0453 0.0384 0.0953 0.1946
9 0.0633 0.1036 0.1568 0.2643
16 0.0474 0.1034 0.1725 0.2796

(b) Interface pressure drop errors εp.

Table 3.1: Stabilization parameters errors.

In Figure 3.3, the relative error on the outlet velocity and on the pressure drop at the
interface are plotted. These results suggest that the optimal choice of the parameters is
γ = 2500 and γ0 = 1, which gives a good compromise between the velocity and pressure
errors (in particular εu2 = 0.0873 and εp = 0.0953). The values for γ0 = 0 are not reported
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in Figure 3.3 since the corresponding numerical solution is unstable. This highlights the
importance of the interface pressure stabilization (2.30).

The last 2D-test is performed in the same rectangular domain with the two optimal values
of γ and γ0 but neglecting the last term of (2.29), i.e. the consistent term that control the
pressure contribution of the stress on the interface. In this case the outlet velocity error
becomes εu2 = 0.1319 and the interface pressure drop error is now εp = 0.1082. Even if
the result remains stable, without considering this term an increasing of the errors can be
noticed.

3.3 Three-dimensional aortic blood flow simulations

3.3.1 Domains and boundary condition

The computational domain is the 3D idealized geometry reported in Figure 3.4 (left),
including the aortic root, with the valve, and the aortic arch. The two-domain partitioning
is shown in Figure 3.4 (middle). This geometrical splitting is motivated by the fact that, in
order to describe the blood dynamics through the valve, different modeling options can be
incorporated within the aortic root Ω1 (see, e.g., [AHSG12, dSGB08]). Here, for simplicity,
the aortic valve is frozen in its open configuration (Figure 3.5). No-slip boundary conditions
are imposed on the three leaflets of the valve.
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Figure 3.4: Reference domain (left), sub-domains definition (middle) and inflow waveform
(right).

A sinusoidal waveform, see Figure 3.4 (right), is imposed on the inlet boundary Γin, this
one has a diameter of 2 cm. The systolic phase, corresponding to the first half of the cardiac
cycle, delivers a maximum flux of about 235 cm3/s. In the second half (diastolic phase), the
inlet flow is set to zero. The resulting cardiac output is approximatively 4.5 dm3/min and the
heart rate is about 85 beats per minute.
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Figure 3.5: Position in the sinus of the aortic root and mesh of the aortic valve in the open
configuration.

The outlets Γ1, Γ2 and Γ3 correspond to the brachiocephalic artery, left common carotid
and subclavian artery, respectively1. The outlet Γout is located in the descending aorta.
The neglected portions of the circulation are taken into account by (explicitly) imposing
the natural boundary condition σn = −Ppn on each outlet. The proximal pressure Pp is
described by a (0D) three-element Windkessel model (see, e.g., [BCF13, MXA+12, VC06,
WLW09]) given by the ODE:

CRd
dPp
dt

+ Pp = Q(Rd +Rp) + CRpRd
dQ

dt
, (3.2)

obtained through analogies with electrical circuits (see Figure 3.6), where Q stands for
the outlet flow rate, Rp and Rd denote the proximal and distal resistances and C is the
capacitance representing the compliance of the blood vessels. The Windkessel parameters
are reported in Table 3.2.

C

Rp RdQ(t)

�j

Pp(t)

Figure 3.6: Electric circuit modeling the Windkessel effect.

Γ1 Γ2 Γ3 Γout
Rp (dyn · s · cm−5) 0.05×104 0.19×104 0.075×104 0.015×104

Rd (dyn · s · cm−5) 0.85×104 3.22×104 1.25×104 0.25×104

C (cm5 · dyn−1) 0.95×10−4 0.25×10−4 0.64×10−4 3.17×10−4

Table 3.2: Windkessel parameters for idealized aorta test cases.

1See also Figure 1.9 on page 20 for some details
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For simplicity, the left and right coronaries, located in the aortic sinus, are closed. The
physical parameters for blood are chosen as ρ = 1.06 g/cm3 and µ = 0.04 poise.

The space discretization is based on P1/P1 finite elements, stabilized with the
SUPG/PSPG method (e.g. [Tez92, TO00]). The stabilization parameters are γ = 2500 and
γ0 = 1. For comparison purposes, the reference solution has been generated by solving
Algorithm 2.1 and Algorithm 2.5. The meshes of Ω, Ω1 and Ω2 are, respectively, made of
177 651, 53 960 and 126 200 tetrahedra. Six cardiac cycles have been simulated, using a
time-step length of τ = 10−3s.

3.3.2 Master-slaves approach for two fluids coupled problem

Every compartment is supposed to be implemented as an independent software com-
ponent, a master code, called CVGraph, takes care of the communications between the two
compartments (Figure 3.7). This code has been started with the beginning of this thesis
and is written in C++ language. The message passing between master and slaves solvers
is done using MPI protocol.

The coupling is a two-way type: each compartment influences the other one at every
time step. The coupling is a “Gauss-Seidel type”, by analogy with the well-known method
for the linear systems, i.e. the two solvers exchange their data simultaneously. Since we
deal with loosely coupled schemes, the exchanges are done only once per time step.

Fluid 1 Solver

Master Code

Fluid 2 Solver

un
1 un

1

(un�1
2 , pn�1

2 ) (un�1
2 , pn�1

2 )

Figure 3.7: Master-Slaves approach for fluid-fluid coupled model.

Both the two fluid models are solved using the finite element solver FELiScE2. The con-
nections between the two solvers are governed by the Robin-Robin conditions (e.g. (2.31)).
In a generic time instant tn, the velocity computed at interface by the Fluid 1 solver is sent,
through the master code, to the Fluid 2 solver. The solution of this one computed on the
interface is sent to the master code, who update time and send back it to the first solver to
compute the solution in a new time step.

2http://felisce.gforge.inria.fr

http://felisce.gforge.inria.fr
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The two solvers are supposed to be calibrated with the same time step or alternatively,
the master code should take care of an interpolation in time as well. The interface mesh in
the two domain is conform and the solution is imposed in each node of the interface.

3.3.3 Static pressure formulations

In this paragraph the results obtained with Algorithms 2.3 and Algorithms 2.4 are com-
pared with the reference solution, obtained by solving (2.5) with a standard conforming finite
element method. Its time-advancing scheme is summarized in Algorithm 2.1.

Figure 3.8 displays the snapshots of the velocity magnitude during the third cardiac cycle
at two time instants in the systole, t = 1.575 s and t = 1.662 s. While Figure 3.9 displays
two time instants in the diastole, t = 1.750 s and t = 1.925 s. The images depict the velocity
profile, in a range of 0.0 cm/s and 150.0 cm/s. The solution obtained with Algorithm 2.3
is close to the reference solution (Algorithm 2.1) on the interface and on the outlets. Note
that even if we were not able to prove its energy stability (Proposition 2.2), the simulation
is stable in this test case. Algorithm 2.4 yields a mass leak on the interface and has very
poor results at the outlets. This is due to the non-consistent terms (2.35) and (2.36). This
behavior is more visible at high velocity, i.e., in the systole phase.

Figures 3.10a and 3.10b show the interface flow rate and pressure in Ω1 and Ω2, ob-
tained with Algorithms 2.3 and 2.4, respectively. The results provided by Algorithm 2.3 are
clearly more accurate than those obtained with Algorithm 2.4. This can also be inferred from
the error indicators reported in Table 3.3.

εf1 0.0048 εp1 0.0135

εf2 0.0123 εp2 0.0140

εf 0.0153 εp 0.0013

(a) Algorithm 2.3.

εf1 0.0048 εp1 0.1864

εf2 0.1058 εp2 0.1866

εf 0.1054 εp 0.0012

(b) Algorithm 2.4 .

Table 3.3: Interface relative errors: flow εf1 , εf2 and pressure εp1 , εp2 . Interface drop errors:
flow εf and pressure εp.

The same behavior is observed for the flow rate and the pressure at the outlets. Figures
3.11a and 3.11b and Figures 3.12a and 3.12b compare the reference solution obtained
from Algorithm 2.1, with the results obtained with the staggered algorithms in the three top
arteries and the descending aorta. As shown by Table 3.4, the flow rate and pressure errors
obtained with Algorithm 2.3 are between 1% and 5%, whereas with Algorithm 2.4 we get a
20% error.

REMARK 3.1
The results obtained with Algorithm 2.1 and with Algorithm 2.3 present spurious back flow
phenomenon that does not impact the performance of the presented method. The reversal
flow can be controlled using some of the techniques reported in the literature (e.g.[BGH+09,
MBH+11, BC14]).
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1.0e + 025.0e + 01

Velocity (cm/s)

0.0e + 00 1.5e + 02

t = 1.575 s

(a) (b) (c)

(c)(b)(a)

t = 1.662 s

Figure 3.8: Static pressure formulation. Snapshots of the velocity magnitude at two time
instants in systole obtained with: (a) Algorithm 2.3; (b) Algorithm 2.1; (c) Algorithm 2.4.

Γ1 Γ2 Γ3 Γout

εf2 0.0589 0.0596 0.0488 0.0411

εp2 0.0115 0.0121 0.0111 0.0122

(a) Algorithm 2.3.

Γ1 Γ2 Γ3 Γout

εf2 0.2171 0.2237 0.2003 0.2185

εp2 0.1822 0.1843 0.1797 0.1828

(b) Algorithm 2.4

Table 3.4: Outputs flow εf2 and pressure εp2 errors.
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t = 1.750 s

1.0e + 025.0e + 01

Velocity (cm/s)

0.0e + 00 1.5e + 02

(a) (b) (c)

(c)(b)(a)

t = 1.925 s

Figure 3.9: Static pressure formulation. Snapshots of the velocity magnitude at two time
instants in diastole obtained with: (a) Algorithm 2.3; (b) Algorithm 2.1; (c) Algorithm 2.4.
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Figure 3.10: Interface flows and pressures.

3.3.4 Total pressure formulation

The results obtained with Algorithm 2.6 are presented in this paragraph. Figure 3.13
shows snapshots taken at two time instants in the systole and two time instant in the diastole
in the third cardiac cycle, for the explicit algorithm with the total pressure and the reference
solution obtained by the discretization of (2.40), using a standard conforming finite element
method. Its time-advancing scheme is reported in Algorithm 2.5. Note the good agreement
of the results on the interface and at the outlets.

εf1 0.0053 επ1 0.0321

εf2 0.0266 επ2 0.0415

εf 0.0286 επ 0.0113

Table 3.5: Interface relative errors: flow εf1 , εf2 and total pressure επ1 , επ2 . Interface drop
errors: flow εf and total pressure επ.

Γ1 Γ2 Γ3 Γout

εf2 0.0853 0.0926 0.0714 0.0670

επ2 0.0295 0.0311 0.0276 0.0284

Table 3.6: Algorithm 2.6: Outlet flow εf2 and total pressure επ2 errors.
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Figure 3.11: Algorithm 2.1 vs. Algorithm 2.3 Outputs.
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Figure 3.12: Algorithm 2.1 vs. Algorithm 2.4 Outputs.
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(a) (b) (b)

t = 1.750 s

(b)(a)

t = 1.952 s

(b)(a)

(a)

1.0e + 025.0e + 01
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t = 1.575 s t = 1.662 s

Figure 3.13: Total pressure formulation. Snapshots of the velocity magnitude at two time
instants in systole (top) and two time instant in diastole (bottom) obtained with: (a) Algo-
rithm 2.5 and (b) Algorithm 2.6.
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Figure 3.14: Algorithm 2.5 vs Algorithm 2.6: interface flows (left) and total pressures (right).
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Figure 3.15: Algorithm 2.6 Outputs.
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Figure 3.14 depicts the flow rate, on the left, and the pressure, on the right, for Fluid 1
and the Fluid 2, compared with the reference solution on the interface. Except very slight
differences for Fluid 2 in the peak of the systole and at the beginning of the diastole, the flow
rate and the pressure drop between the two fluids are around 2.28% and 1.33% respectively
(Table 3.5).

The same behavior can be observed for the flow rate and the pressure at the outlets
(Figure 3.15a and 3.15b). Discrepancies still arise at the maximum of the systoles and at
the beginning of the diastoles. The errors in these cases remain between 6% and 9% for the
flow rate and around 3% for the pressure (Table 3.6).

In our implementation, and for this specific test case (with an unbalanced number of
degrees of freedom in the two sub-domains), the staggered solutions were typically 30%
faster than the monolithic ones.

3.3.5 Inverted sub-problems and three sub-domains test cases

As additional tests, the staggered Algorithm 2.3 is tested in the physical configuration
described in Section 3.3.3 but with two different repartitions of the sub-domains. The first
one is obtained inverting the two sub-problems, i.e the Fluid 1 (2.28) is solved in the aortic
arch and and the Fluid 2 (2.29) is solved in the aortic root. In the second test case the
domain Ω is split in three non-overlapping sub-domains, the Fluid 1 is solved in the aortic
arch, and the Fluid 2 in the aortic root and in the descending aorta. These two new tests are
compared with the two-domain test case of Section 3.3.3. The velocity magnitude is shown
in two instants of time in systole (Figure 3.16) and two instants of time during diastole
(Figure 3.17).

The three numerical examples are in very good agreement. This is confirmed if we look
at Figure 3.18a and Figure 3.18b, in which the flow and pressure course in the outlets are
compared. The flow and pressure errors in the outlets are reported in Table 3.7.

Inverted sub-problems
Γa Γb Γc Γout

εf2 0.0707 0.0729 0.0583 0.0583

εp2 0.0237 0.0248 0.0230 0.0240

Three sub-domains
Γa Γb Γc Γout

εf2 0.0875 0.0940 0.0777 0.0838

εp2 0.0279 0.0317 0.0276 0.0318

Table 3.7: Outlet flow εf2 and static pressure εp2 errors.

With respect to εf2 and εp2 of Algorithm 2.3 presented in Table 3.4, a slight increasing of
the errors can be observed. As expected the error increases with the number of the domain
partitions.
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Figure 3.16: Static pressure formulation. Snapshot of the velocity magnitude at two time
instants in systole obtained with Algorithm 2.3 in two non-overlapping sub-domains (a), with
inverted sub-problems (b) and in three non-overlapping sub-domains (c).
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t = 1.750 s
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Figure 3.17: Static pressure formulation. Snapshot of the velocity magnitude at two time
instants in diastole obtained with Algorithm 2.3 in two non-overlapping sub-domains (a),
with inverted sub-problems (b) and in three non-overlapping sub-domains (c).
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Figure 3.18: Algorithm 2.3, inverted sub-problems and three sub-domains outlets
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3.3.6 Static pressure versus total pressure formulation

We conclude the numerical examples of the present chapter with the comparison be-
tween the two reference models. The first one is obtained discretizing the static pressure
problem (2.1) (page 35 of Chapter 2), and the second one obtained from the discretization
of the total pressure problem (2.40) (page 51 of Chapter 2). Both models are discretized
with standard finite element method and computed in the one-piece domain shown in Fig-
ure 3.4 (left). Their time-advancing scheme are reported in Algorithm 2.1 and Algorithm 2.5,
respectively.

Figure 3.19 shows the velocity vectors for the two reference models in two time instants
of systole and two of diastole. Note the velocity vectors in the outputs during diastole. The
total pressure formulation presents the intersection of the vectors caused by the kinetic
energy in the pressure variable (see [HRT96]).

This feature is more visible in Figure 3.20 where the velocity patterns of the two reference
models are plotted in the four outlets. During the diastole the total pressure formulation
presents higher velocities respect the static pressure formulation. During the systole the
velocity magnitude is similar in the three top arteries. In Γout, the descending aorta, back-
flow effects appear with the static pressure reference model while they can be controlled if
we use the total pressure formulation.

The total pressure formulation is commonly used to stabilize back-flow phenomena
when present in the outlets, for this reason the curl u × u formulation is generally pre-
ferred because it changes the static pressure variable only on the outlets and not in all the
domain, on this topic see for example the already cited works [BCMP88, FMN07, LMN+09,
PZVP12, VV05]. The formulation used in this work, also said "Bernoulli pressure" formula-
tion from the well known principle, is applied to obtain an energy estimation, as we did in
the fluid-fluid model presented in Section 2.5.4 on page 51.

3.4 Final remarks

In this chapter we have discussed the numerical simulations of the methods presented
in Chapter 2.

With the first 2D numerical test, we have shown the instability generated by an explicit
Dirichelet-Neumann coupled scheme. The second 2D numerical test highlights the impor-
tance of the interface pressure stabilization (2.30), introduced in Paragraph 2.5.2, governed
by the parameter γ0: the numerical solutions corresponding to γ0 = 0 are unstable, for any
values of the parameters γ.

For the non-linear 3D numerical tests the parameters are choses as γ = 2500 and γ0 =

1. The first one is within the range predicted by the stability condition (2.32c) and (2.50c),
for the static and total pressure case, respectively. For the pressure penalty parameter γ0,
the numerical tests showed that the stability condition (2.32a) and (2.50a) overestimates its
critical value. In practice, we can take a lower value without compromising stability.

After having shown the numerical simulation of the several explicit scheme presented in
Chapter 2, we can conclude that
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t = 1.662 st = 1.575 s

1.0e + 025.0e + 01

Velocity (cm/s)

0.0e + 00 1.5e + 02
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t = 1.750 s
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t = 1.952 s

(b)(a)

(a)

Figure 3.19: Reference solutions. Snapshot of the velocity vectors at two time instants in
systole (top) and two time instant in diastole (bottom), obtained with: (a) Algorithm 2.1 (static
pressure formulation) and (b) Algorithm 2.5 (Total pressure formulation).

• Algorithm 2.3 (on page 45 in Paragraph 2.5.2): even if the energy stability can-
not a priori be guaranteed for the standard static pressure formulation, extensive
numerical evidence has shown that the scheme is robust and accurate, with re-
spect to a fully implicit method. In addition, if in the Algorithm 2.3 the two terms
C1[un−1

1,h ; (un1,h,u
n−1
2,h ),v1,h] and C2[(un−1

2,h ,u
n−1
1,h ); (un2,h,u

n
1,h),v2,h] are not considered,

the energy stability remains not verified and the numerical simulations have shown
that in this case the accuracy of the method is not changed (see Table 3.8 for the
interface errors and Table 3.3a on page 68 for comparisons).

• Algorithm 2.4 (on page 50 in Paragraph 2.5.3): the numerical results have confirmed
the poor accuracy of this scheme since it is not consistent with the original coupled
problem.
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Figure 3.20: Reference solutions. Outlets maximum velocity obtained with Algorithm 2.1
(static pressure formulation) and Algorithm 2.5 (total pressure formulation).

εf1 0.0048 εp1 0.0146

εf2 0.0138 εp2 0.0152

εf 0.0168 εp 0.0015

Algorithm 2.3 without C1 and C2.

Table 3.8: Interface relative errors: flow εf1 , εf2 and pressure εp1 , εp2 . Interface drop errors:
flow εf and pressure εp.

• Algorithm 2.6 (on page 52 in Paragraph 2.5.3): the comparison with fully coupled
solutions have shown that the method gives satisfactory results, in agreement with
the energy estimate guaranteeing the stability of the splitting.

The staggered algorithms are not symmetric from the point of view of the boundary
conditions. The overall accuracy of the schemes is not expected to be perturbed since the
ordering of the sub-problems does not change the numerical dissipation of the scheme.
Nevertheless, a test case has been discussed in Section 3.3.5. In this experiment, we com-
pared the results of Algorithm 2.3 presented in Section 3.3.3 with the results obtained by
inverting the two sub-problems, i.e the Fluid 1 is solved in the aortic arch and and the Fluid
2 is solved in the aortic root. For this test case, in spite of strong geometrical asymmetry,
swapping the two sub-problems gave almost the same result with a slight increase of the
errors.
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We have considered Algorithm 2.3, which has the best accuracy among the schemes
presented, in a computational domain partitioned in three non-overlapping sub-domains
(Section 3.3.5). The results have shown that the error is slightly larger in this case. In fact,
although not addressed, the overall convergence rate of the schemes is not expected to be
affected by the number of sub-domains. But the constant of the error (and hence accuracy)
would actually depend on this and becomes more visible for a relatively large number of
sub-domains.

In the end in paragraph 3.3.6 we have shown how a total pressure formulation in the
hemodynamics study can generate non-physiological results caused by the velocity in the
outlets. For this reason, in the following study we use Algorithm 2.3 rather than Algo-
rithm 2.4.

In the Chapters which follow, we will show that the domain representing the aortic root
could be replaced by a fluid model of the heart, based on a different code. In this config-
uration, the weak coupling strategy proposed and the master-slave approach presented in
Section 3.3.2 would be particularly appealing.
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Part II

TOWARD CARDIAC HEMODYNAMICS





My charade is the event of the season,
And if I claim to be a wise man,

Well, it surely means that I don’t know.
... There’ll be peace when you are done.

"Carry On My Wayward Son" by Kansas.





CHAPTER 4
Fluid-fluid interaction problem and RIS

model. Application to the aortic valve

We present in this chapter the numerical simulations obtained by coupling the blood dynamics in
the arch of the aorta and the blood flow in the aortic root in which a reduced order model describes
the valve behavior. Without dealing with the fluid-structure interaction between the blood flow and the
valve leaflets, the valve is replaced by immersed surfaces acting as resistance on the fluid. The re-
sistive immersed surfaces (RIS) introduce additional dissipative terms in the momentum equation of
the Navier-Stokes model. This approach represents a compromise between lumped parameters and
multiphysics models. Numerical simulations are performed in two geometries of aorta, one idealized
the other obtained from medical imaging.
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4.1 Introduction

The study of the heart valves is a research topic which is receiving great attention (e.g.
[NWY06, NKI+13, RFS+12, WM07]), owing to their complex mechanism and to the interest
in their damage assessment. Valves geometry, functioning and interactions with the blood
flow make the numerical simulations very challenging.

The aortic valve is the most representative for the numerical simulation of heart valves.
The mechanism of the aortic valve occurs at high pressures, and it has the important task to
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let the blood flow directly into the aorta and to prevent back-flow to the heart. Three semilu-
nar leaflets compose the aortic valve. Behind them, three anatomic dilatations generate the
Valsalva sinus in which the two coronary arteries, left and right, supply the heart with blood1.

One of the main reasons that motivates numerical simulations of the aortic valve is a
better comprehension of their potential malfunctioning (e.g. [KS06b, MKR+13, VCA+10,
WM08]). Valve surgery reparation has a seminal interest in the medical community. In this
direction, mechanic-artificial aortic valve has been studied [HNP+06, SB09, TCBV09]. In
addition numerical simulations can be non-invasive techniques for the evaluation of a valve
damage (e.g. [CdSG+05, GD06, GPD+00, GPL+04, vL09]). In [vL09] simulations obtained
from a 3D FSI model of the aortic valve were used to compare different clinical indexes for
various stenotic geometries. Another diagnostic parameter has been proposed in [GPD+00]
based on the amount of the loss of energy caused by a stenosis on the overall hemodynam-
ics. Among the aortic valve diseases, valve stenosis and valve regurgitation are the most
common. In valve stenosis the resistance to forward flow is increased whereas in regurgita-
tion the closed valves are leaking, leading blood flow back from the aorta to the ventricles.
Regurgitation from a computational point of view can be more difficult to retrieve, since it
impacts the left ventricular cavity performance [RKM+99].

Different kind of models can be adopted to simulate heart valve. The simplest is the
lumped parameter method, that reduces the valve behavior to the resolution of algebraic
or differential equations [DZL07, JL06, KS06a, SMCCS08, SSG+04, TW89]. Despite the
important progress realized in the simulations of the interaction between the blood fluid and
the structure of the valves (e.g. [AGPT09, HPSB03, vLABvdV05, LDSB10]), this type of
problems still remains very challenging. A new approach has been recently proposed in
[AHSG12, Ast10] based on the resistive immersed surface (RIS) method, in which the valve
surface acts as a resistance in the fluid.

In the framework of coupling different cardiovascular compartments with their own
solver, the fluid-structure method can be computationally expensive and the standard
lumped parameters approach can perturb too much the flow owing to unphysical bound-
ary conditions. Hence, we consider the RIS model to describe the heart valve as resistance
components only in two positions, in the fully open and fully closed. Discontinuity pres-
sures are considered in order to capture the pressure jump on the immersed surfaces (see
[FGM08]).

In this chapter we discuss the fluid-fluid problem in two cardiovascular compartments,
in which one of them is represented by the valve region. This is a prototype for left ventricle
hemodynamics we will discuss in the next chapters. Here we present some examples to test
and motivate the coupling of the blood dynamics in the left ventricle and including reduced
order valves model with the blood flow in the aorta.

The main contribution of this chapter is the implementation of this method in the parallel
solver FELiScE2 and the set up of numerical experiments physiologically relevant.

1Section 1.3 for some details and references.
2http://felisce.gforge.inria.fr

http://felisce.gforge.inria.fr
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Outline This chapter is organized as follows. Section 4.2 deals with the mathematical
model while Section 4.3 presents the numerical experiments. In details, paragraph 4.2.1 and
4.2.2 present the mathematical description of the RIS valve model and its integration in the
explicit fluid-fluid interaction problem. The geometry of the valve and the inlet conditions for
the numerical simulations are presented in 4.3.1. Two test cases, idealized and realistic, are
shown in paragraph 4.3.2 and 4.3.3. Paragraph 4.3.4 ends the discussion with the derivation
of the principal medical indexes applied to the RIS stenotic valve model.

4.2 A reduced order model for heart valves

We present in this section the RIS model [FGM08] applied to the heart valves. The pre-
sentation of the model is largely inspired from the work proposed in [AHSG12] and [Ast10,
Chapter 7]. We integrate this model into our fluid-fluid problem studied in the previous part.

4.2.1 RIS valve model and the space discretization

The main ingredients of the RIS model studied in the present chapter are essentially
twofold. The first one is to consider the valve only in two configurations, the completely
closed and the completely opened configuration. The second ingredient is to introduce an
additional dissipative term in the momentum equation of the fluid model.

Let So ⊂ Rd−1 and Sc ⊂ Rd−1 be two co-dimensional surfaces representing respectively
the open and closed valve configuration, the resulting computational domain is then Ω =

Ωf ∪ Sc ∪ So, with the fluid domain Ωf ⊂ Rd, d = 2, 3, and ∂Ω is the boundary of the entire
domain. The immersed surfaces Si subdivides the fluid domain Ω in two sub-domains Ω+

and Ω− (Figure 4.1).
Denoting by ∂Ω the artery wall, the incompressible Navier-Stokes equations (2.1), now

reads: find the velocity u : Ω× R+ → Rd and the pressure p : Ω× R+ → R satisfying




ρ∂tu + ρu · ∇u−∇ · σ(u, p) +
∑

i=o,c

RiuδSi = 0, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,

(4.1)

with the initial conditions u(0) = u0 and appropriate boundary conditions at the inlet and the
outlet. The term σ(u, p) = −pI+2µε(u), with ε(u) = (∇u+∇Tu)/2, is the fluid stress tensor.
While ρ is the fluid density and µ is the dynamic viscosity, both assumed to be constant. For
each surface Si, we denote by δSi , the Dirac measure and by Ri, the associated resistance,
representing the dissipation due to the presence of the immersed surface.

The space discretization is based on the conforming stabilized finite element method
proposed in [FGM08]. We define {Th}0≤h≤1 a family of triangulation of Ω, with diameter h,
conforming with the immersed surfaces Si.

We consider equal order approximations for the velocity and the pressure. Both veloc-
ity and pressure approximations will be continuous at inter-element boundaries, except for
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Figure 4.1: Sketch of the domain Ω with the immersed surfaces Sc and So.

the pressure that will be discontinuous on the faces of the immersed surfaces (see Sec-
tion 4.3.1). Hence the space Wh defines an inf-sup stable and conforming finite element
approximations of [H1(Ω)]d while the space Q defines inf-sup stable and conforming finite
element approximations of the L2-functions continuous in Ω+ and Ω− and discontinuous
over Si. While the space Qh will denote a finite element approximations of L2(Ω).

Then we denote by Vh = Wh ∩ [H1
Γ(Ω)]d, with H1

Γ(Ω) the space of H1(Ω)−functions
vanishing on ∂Ω. The space discretization of (4.1) reads: for all t > 0, find (uh, ph) ∈ Vh×Qh
such that

A[uh; (uh, ph), (vh, qh)] +
∑

i={o,c}
Ri

∫

Si
uh · vh = 0, (4.2)

for all (vh, qh) ∈ Vh ×Qh. The form A[uh; (uh, ph), (vh, qh)] has the expression

A[uh; (uh, ph), (vh, qh)]
def
= ρ

∫

Ω
∂tuh · vh +

∫

Ω
2µε(uh) : ε(vh)

−
∫

Ω
ph∇ · vh +

∫

Ω
qh∇ · uh + ρ

∫

Ω
uh · ∇uh · vh.

The extra terms on the momentum equation preserve the continuity of the velocity u on
the immersed surfaces and induce jumps of the normal stresses when Ri 6= 0. In other
terms, (4.2) is the variational formulation obtained providing the incompressible Navier-
Stokes equations (2.1) of further boundary conditions on the immersed surfaces Si

{
JuK = 0, on Si,

Jσ(u, p) · nK = −Riu, on Si,
(4.3)
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where the quantity J·K correspond to the jump between the distal (+) and proximal (-) side of
each immersed surfaces. Then we have

JuK def
= u+ − u−, Jσ(u, p) · nK def

= σ(u+, p+) · n+ + σ(u−, p−) · n−

with n+ and n− the outgoing normals on Si, with i = {o, c}.

REMARK 4.1
Note that (4.1) can be equivalently reformulated on two connected sub-domains, where the
domain Ω = Ω+ ∪ (So ∪Sc)∪Ω− with Ω+ ∩Ω− = ∅. On each sub-domain the Navier-Stokes
problem (2.1) is solved with the conditions on the immersed surfaces So and Sc represented
by the (4.3) (see [Ast10, FGM08]).

The key-role of this model is played by the resistances on the immersed surfaces. For
each immersed surface, Ri can be interpreted as penalization parameter that regulates the
opening and the closing of the valve. Indeed when Ri is large, the value u = 0 is enforced
on Si and when Ri is zero, no dissipative term is added, thus the surface is invisible to
the flow and there is no pressure drop across it. If Ri assumes non-zero small values, the
surface acts as a porous medium [CFGM11].

The magnitude of the resistance mimics the behavior of a real valve and in our case it
varies according the following conditions:

• The valve closes if Q < 0, i.e. Rc 6= 0 and Ro = 0. Indeed, the valve is open as long
as a positive flow occurs in the direction of the valves opening. Therefore the closure
of the valve happens when a flow reversal acts on the immersed surface.

• The valve opens if ∆p = p− − p+ > 0, i.e. Rc = 0 and Ro 6= 0. Indeed the valve is
closed until the ventricular pressure, i.e the mean pressure on the proximal surface (-),
is less than the aortic pressure, i.e. the mean pressure in the distal surface (+). The
valve opens when the ventricular pressure overtakes the aortic pressure, i.e. when
the valve is subjected to a positive pressure difference.

The same physiological conditions for opening/closure is used in [FLTV06] and applied
to a 0D model of the valve in lumped parameter model of the heart integrated in a 1D
description of the arterial network.

REMARK 4.2
Not that the previous conditions cannot be commuted. In other terms, the evaluation of a
positive flow could not be considered as test condition for the opening of the valves, since at
this point the flow across the valve is zero, and only after the valve opening it will be positive.
On the other hand, the information on the pressure across the valve could not be used to
establish the valve closure, because when the valve is open the pressure difference would
always be zero across the surface representing the closed valve.
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4.2.2 Explicit fluid-fluid problem and time discretization of RIS model

In this section we discuss the time discretization of the RIS valve model in the framework
of the fluid-fluid coupled problem.

Problem (4.1) can be partitioned into two sub-problems defined in two non-connected
sub-domains, Ω1 ⊂ Rd and Ω2 ⊂ Rd. The two sub-domains are separated by an interface
Σ

def
= ∂Ω1 ∩ ∂Ω2. In addition the immersed surface splits a domain in two connected sub-

domains Ω− and Ω+, the proximal and the distal one. Thus the fluid domain with the fluid-
fluid model and the RIS valve model results

Ω = Ω1 ∪ Ω2

= [Ω+
1 ∪ (So ∪ Sc) ∪ Ω−1 ] ∪ Ω2,

with Ω1 ∩ Ω2 = ∅ and Ω+
1 ∩ Ω−1 = ∅ (Figure 4.2).

⌦1
⌦+

1

⌦�
1

Sc

So

⌦2

⌃

ascending aorta

heart

n1

n2

Figure 4.2: Sketch of the sub-domains Ω1 and Ω2 with the immersed surfaces Sc and So.

The resulting explicit scheme, summarized in Algorithm 4.1, is based on Algorithm 2.3,
page 45.
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ALGORITHM 4.1 (Staggered scheme 2.3 with RIS model)

1. Find (un1,h, pn1,h) ∈W1,h ×Q1,h satisfying the essential boundary conditions and
such that

A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] + C1[un−1

1,h ; (un1,h,u
n−1
2,h ),v1,h]

+
γµ

h

∫

Σ
(un1,h − un−1

2,h ) · v1,h +

∫

Σ
σ(un−1

2,h , p
n−1
2,h ) · n2v1,h

+
∑

i=o,c

Rni

∫

Si
un1 · v1 = 0, (4.4)

for all (v1,h, p1,h) ∈ V1,h ×Q1,h. With the resistances

Rnc = Roff(1− δnc ) +Ronδ
n
c and Rno = Ron(1− δnc ) +Roffδ

n
c ; (4.5)

2. Find (un2,h, pn2,h) ∈W2,h ×Q2,h satisfying the essential boundary conditions and
such that

A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)] + S(pn2,h, q2,h)

+C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),v2,h] +

γµ

h

∫

Σ
(un2,h − un1,h) · v2,h

−
∫

Σ
σ(un−1

2,h , p
n−1
2,h ) · n2v2,h −

∫

Σ
(un2,h − un1,h) · n2q2,h = 0 (4.6)

for all (v2,h, p2,h) ∈ V2,h ×Q2,h.

3. Go to next time-step.

The two forms A1,δt[u
n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] and A2,δt[u

n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)]

have the expression as in (2.22) and (2.23), likewise the terms C1[un−1
1,h ; (un1,h,u

n−1
2,h ),v1,h]

and C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),v2,h] are defined in (2.13) and (2.14), and the pressure

stabilization term S(pn2,h, q2,h) has the form (2.30).
The evolution in time of the resistance magnitude is settled by mean of two values,

Ron and Roff , that activate or deactivate the resistances on the valve surfaces. The value
of Ron is large, and it is chosen to guarantee a negligible flow across the active surfaces,
the choice in our numerical experiments is 1 × 106. The value of Roff , set to 0, makes the
surfaces invisible to the flow. The switching between the activate or deactivate resistances is
achieved by mean of the logical variable δnc , which assumes value 1 when the valve closes,
0 when the valve opens, i.e.

δnc =

{
1 if Qn < 0, on Sc, (valve has to close),
0 if ∆pn > 0, on Sc, (valve has to open).

(4.7)

The resistances actually depend on the pressure and velocity computed at the current
time step, i.e. Rni = Ri(u

n, pn). This makes the previous algorithm highly non-linear. In order
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to linearize the previous algorithm, a re-computation of the Fluid problem 1 is in order when
the value of the resistances changes. In other words, after the (4.4) is solved, the valves
status is checked, i.e.

Closed valve status
{

∆pn > 0 Not admissible.
∆pn < 0 Admissible.

Open valve status
{
Qn < 0 Not admissible.
Qn > 0 Admissible.

(4.8)

This means that if the pressure difference is positive but the valve is still closed, the status of
the valve is not admissible and the fluid problem should be re-computed with the new valve
status. In the same way, if the flow is negative and the valve is still open, a re-computation
of the fluid 1 should be in order. The method is represented by the following flow chart.

compute Fluid problem 1 (4.4)

check
fissure

status (4.8)

update
resistances

(4.5) via
(4.7)

is the status
admissible?

compute Fluid problem 2 (4.6)

go to next time step

no

yes

The re-computation of the Fluid model 1 is not at each time step but only when the valve
status changes, and in a cardiac cycle this happens only twice, i.e. the re-computation of
the equation (4.4) occurs only twice.

REMARK 4.3
Another option to linearize Algorithm 4.1 is to evaluate the resistances at previous time step,
i.e. Rn−1

i = Ri(u
n−1, pn−1). This introduces a delay in the valve opening and closure, i.e.

the valve closes only after the flow is already negative and the valve opens only after the
ventricular pressure is greater than aortic pressure.
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4.3 Numerical example RIS - FFI model

We present in this section the numerical simulations associated to the previous section.
Two numerical experiments are suggested. The first case corresponds to an idealized situ-
ation, i.e. we use a simplified geometry of the aorta. In the second case the aortic geometry
was obtained from medical imaging.

4.3.1 Fissured valve geometry and boundary conditions

As previously explained, the valve behavior is described only by two configurations, open
and closed (Figure 4.3). Both configurations are represented by two surfaces fixed in space,
obtained from 3D FSI simulations ([SAG10]).

Figure 4.3: Aortic valve domains: position in the aortic root (left), mesh for open configura-
tion (middle) and mesh for closed configuration (right).

During the implementation of the RIS model, we have faced two main difficulties. The
first one is related to the geometry and the second one arises with the choice of the inlet
conditions.

Fissured valve geometry The standard space-continuous finite element approxima-
tions of the pressure cannot capture accurately the jump of stresses across the surfaces.
This would produce a smearing of the stresses across the interface, which leads to inaccu-
rate results, especially during the closed valve phases. In order to capture a discontinuity
of the pressure, while keeping the velocity variable continuous, a crack is introduced in the
geometry. The open and closed surfaces are duplicated splitting the mesh into two distinct
parts. This introduce a fissure in the computational domain. The continuity of the velocity
across the fissure is obtained by fusing together its degrees of freedom. In other words, if we
consider a node of the fissure in the proximal surface and the associated node in the distal
surface, the same degree of freedom is considered for the velocity. A similar technique could
be used for example to simulate boundary conditions of a mathematical torus, in which the
computational domain is only represented by a square and the torus is construct by pasting
the opposite sides. The velocity variable “see” the mesh as one piece while the pressure
variable is computed in two distinct parts (Figure 4.4).
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(a) The mesh view by velocity variable. (b) The mesh view by pressure variable.

Figure 4.4: Fissured computational domain.

Inlet conditions The second crucial point is related to the inlet conditions. A flow
boundary condition, i.e. Dirichlet condition, is usually imposed to improve the robustness
of the numerical simulations. We consider a fluid domain like that one in Paragraph 3.3.1,
page 65, which roughly speaking is a straight tube in which one side is the inlet and the
other side is the closed valve surface. For this domain, such condition is appropriate during
the opening/closing of the valve but are inadequate when the valve is closed.

The fluid incompressibility constraint, makes inlet Dirichlet conditions difficult to handle:
when the valve is closed, the flow imposed on Γin must be zero. This makes necessary to
know a priori when the valve should be closed. Indeed if the flow imposed on the inlet is
positive, the valve opens and if the flow is negative, instabilities could appear.

As the Dirichlet conditions are inappropriate during the closed valve state, we possibly
can use Neumann inlet conditions. The prescription of Neumann-type boundary conditions,
both at the inlet and at the outlet by mean of Windkessel model, may be difficult to retrieve
physiological values of velocity and pressure at open valve states. The prescription of these
boundary conditions is extremely delicate because of the fluid dynamics instabilities that
could develop at the inlet or outlet of the fluid domain.

These considerations have motivated the switching between Dirichlet/Neumann condi-
tions at each opening/closure of the valve, made for the RIS model in [AHSG12] and for the
mechanical closure of an artificial heart valve in [HNP+06]. The same approach is used for
the numerical simulations of this chapter. In Figure 4.5, the input conditions in the princi-
pal cardiac phases are reported (see Paragraph 1.3.6 on page 20 for further physiological
details). In our example the cardiac cycle lasts for 0.775 s, giving an heart rate of about
77 beats per minute. When the valve is open, during the ejection phase (0.0 − 0.21 s), a
plug-flow as Dirichlet boundary condition is imposed on Γin. The flow reaches a maximum
value of 235 cc/s. During the isovolumic relaxation (0.21− 0.27 s), filling (0.27− 0.72 s) and
isovolumic contraction (0.72 − 0.775 s) - i.e. the three cases where the valve is closed -
the flow condition switches with a pressure condition. We define it by a function describing
the pressure behavior in the left ventricle. Note that, in order to easily switch from Dirichlet
to Neumann and from Neumann to Dirichlet, the flow boundary condition is imposed by
penalization, i.e.

1

ε
u + σ(u, p)n =

1

ε
uin − pinn, on Γin. (4.9)

The previous expression can be seen as a Robin boundary condition on Γin in which the
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Figure 4.5: Input condition for RIS valve model. Dirichlet on flow with open valve configura-
tion, Neumann on pressure with closed valve configuration.

coefficient ε varies according to the closure and the opening of the valve. It reaches large
values when the valve is closed, e.g. 1 × 10+30, and small values when the valve is open,
e.g. 1 × 10−30. For the sake of simplicity, the velocity imposed to obtain inflow condition
during ejection is taken as a sinusoidal function and the pressure pin as polynomial function
during the other phases. More complex and realistic curves for pressure and flow could be
considered as well but for the purpose of this chapter this choice is appropriate.

Parameters definitions The physical parameters used in the two following tests are
those typical of newtonian blood flows, ρ = 1.06 g/cm3 for the density and µ = 0.04 poise for
the dynamic viscosity. The left and right coronaries, in the aortic sinus, are closed, while the
Windkessel equation (3.2), page 66, is solved in the remaining outlets. With respect to the
simulations discussed in the previous chapter, some of the Windkessel parameters were
adapted to obtain more physiological results. Their values are reported in Table 4.1.

Γa Γb Γc Γout
Rp (dyn · s · cm−5) 0.005×104 0.19×104 0.075×104 0.015×104

Rd (dyn · s · cm−5) 0.92×104 3.27×104 1.32×104 0.32×104

C (cm5 · dyn−1) 0.95×10−4 0.25×10−4 0.64×10−4 9.00×10−4

Table 4.1: Windkessel parameters for aorta geometry with RIS valve model.

The space of discretization is based on P1/P1 finite elements, stabilized with the SUPG
method. The stabilization parameters deriving from Nitsche’s method are still γ = 2500 and
γ0 = 1, fixed with the 2D test case in Section 3.2.2, on page 64. The global simulation time
is 8 seconds with a time step τ = 10−3 s, i.e. a total of 10 cardiac cycles. All cardiac cycles
present the same characteristics, except the first one, in which the solution is perturbed by
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initial conditions. We show in the next paragraphs the results concerning the two last cardiac
cycles. All test cases are obtained solving the coupled model summarized in Algorithm 4.1
and using the master/slave approach presented in Paragraph 3.3.2, on page 67.

We can now suggest two numerical tests. The first test case, performed in the idealized
aorta geometry, allows us to validate the RIS model. In the second test case, we use a more
realistic aorta to perform numerical examples of stenotic valves.

4.3.2 Idealized aorta test case: validation of the model

We have performed the first simulation in the same aorta geometry adopted for the
explicit algorithm test cases. It is described in Section 3.3.1, the geometry used is shown in
the middle of Figure 3.4 on page 65. We further add to the aortic root geometry the closed
valve position and we have fissured the mesh to let the pressure jump.

Velocity magnitude and pressure distribution Figure 4.6 shows six snapshots ob-
tained solving Algorithm 4.1, on page 97. The first five snapshots are taken in the ninth
cardiac cycle and the last one belongs to the tenth cardiac cycle. For each time instant, the
velocity magnitude is shown with together the elevated surface representing the pressure
distribution in the longitudinal mid plane of the aorta.

The two snapshots on the top of the figure, depict two time instants during the ejection,
when the valve is open, i.e. Rc = 0 and Ro 6= 0. The first shown time instant, t = 6.306 s,
occurs during the maximum inflow condition and the second snapshot, at t = 6.410 s,
is the last time instant in which the valve is open. Afterward the flow becomes negative,
the resistance Rc becomes different from zero and the valve closes. During this two time
instants, Dirichlet inflow conditions are imposed.

The two following time instants, t = 6.420 s and t = 6.448 s, in the middle of the figure,
are taken during the isovolumic relaxation. In the second one in particular the pressure in
the aorta reaches its maximum value at closed valve, in other words it is in the point of the
so-called dicrotic notch. Notice the jump in the pressure distribution given on the immersed
surface by the resistive valve model. Neumann pressure conditions are prescribed at the
inlet.

In the last two snapshots in the bottom of the figure, t = 6.970 s and t = 7.028 s, the
isovolumic contraction and a new ejection phase are reported. In the first one, the ventricular
pressure is increasing. Neumann inlet condition are still imposed. In the second one the
ventricular pressure has passed the aortic pressure, the inlet condition is switched into
Dirichlet condition and a new cardiac cycle has begun.

Proximal and distal curves In Figure 4.7 the two curves are the pressure in the prox-
imal side of the valve surface, simulating the left ventricular pressure, and the pressure
computed on the distal side of the closed valve surface, representing the aortic pressure
over a complete cardiac cycle. The dotted lines delimit the isovolumic phases, the continu-
ous lines, the ejection and filling. When the valve is open (OV), in the ejection phase, the two
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t = 6.306 s

t = 6.420 s t = 6.448 s

t = 6.970 s t = 7.028 s

t = 6.410 s

Velocity (cm/s)

0.0e + 00 1.25e + 026.25e + 01 1.875e + 02

Pressure (mmHg)

0.0e + 00 3.125e + 01 6.25e + 01 9.375e + 01 1.25e + 022.5e + 02

Figure 4.6: Velocity magnitude (left of each snapshot) and pressure distribution (right of
each snapshot) of Algorithm 4.1, in the idealized aorta, during the ninth and tenth cardiac
cycle.
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pressures are equal. When the valve is closed (CV) during the other phases, a pressure dif-
ference appears. After the aortic valve closes, the smooth downward slope of the pressure
waveform is interrupted by a very brief upward movement. This slight rising, caused by the
sudden closure of the valve, is named dicrotic notch. Even if this is a complex phenomenon,
whose origin is reason of discussion in the medical community, it is interesting to observe
that the used model can reproduce the dicrotic wave by mean of the valve dynamics.

Figure 4.8 depicts the inlet and the outlet pressures during the opening and the closing
of the valve. Notice the physiological increase of the outlet pressure with respect to the inlet
pressure, before the valve closes. The dicrotic notch is faded out and a smoother slope
takes place, since the effect of the valve closure is less powerful.
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Figure 4.7: Pressure on the proximal and
distal side of the closed valve surface.
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Figure 4.8: Comparison between pressure
in the inlet Γin and outlet Γout.

4.3.3 Realistic aorta test case: application to stenotic valves

In this section, the test cases concern the numerical simulation of the blood dynam-
ics, when the aortic valve presents stenotic leaflets. Here we recall the example tested in
[AHSG12], and we extended it for two different stenotic configurations.

Realistic geometry and boundary conditions A new aorta geometry, more realistic,
is used to simulate this aortic valve disease. The aortic root includes the same valve mesh,
closed and open configurations, used for the previous test cases (Figure 4.3). The geometry
of the aortic arch has been acquired from the Zygote Media Group [Zyg11] and it is part of
a complete heart mesh, including ventricle, atria, valves and the aorta. We refer to the next
chapter, Section 6.3.1 for more details about this mesh. The aortic root, the domain Ω1, is a
mesh of 58

.
151 tetrahedra and the aortic arch, the domain Ω2, has 123

.
939 tetrahedra. The

interface Σ has 264 nodes.
Three different configurations of the valves are tested. In the first one, all the leaflets

opens normally, in the second one we suppose that one of the leaflets does not open and
the last configuration has two of the three leaflets that do not open (Figure 4.9).

From a computational viewpoint the stenotic leaflets correspond to impose a constant
resistance Rc 6= 0 on a part of the closed valve surfaces and Ro = 0 on the corresponding
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Figure 4.9: Aortic root and aortic arch sub-domain for normal (a), one stenotic leaflet (b)
and two stenotic leaflets (c). Open and closed configurations.

open valve surfaces, during all the cardiac cycles of the entire simulation. The conditions
reproduced here are rather extreme if we consider their medical aspect, since we suppose
that one and two leaflets do not open at all. Clearly more realistic stenotic valve geometries,
obtained from medical images, can be used as well.

REMARK 4.4
In the same way, we can impose throughout the entire simulation a constant resistance
Ro 6= 0 on one or two open leaflets, and Rc = 0 on the corresponding closed leaflets.
With such a choice, the so-called aortic regurgitation can be investigated, i.e. the reverse
flow direction during ventricular diastole, from the aorta into the left ventricle. Again, this
correspond to extreme conditions, and including the complete ventricular fluid mechanics,
the results would be more precise.

The physical parameters adopted for the numerical simulations are the same of the
previous example, as well as the inlet Dirichlet/Neumann conditions (Figure 4.5). The pa-
rameters used for the Windkessel models are the same reported in Table 4.1.

In the main outlet Γout, in the descending aorta, back-flow may introduce instabili-
ties particularly at diastole. Back-flow is a physiologic phenomenon arising commonly in
both healthy and diseased cardiovascular system. To avoid instabilities the stabilization of
[MBH+11], originally proposed by [BGH+09], is added to the weak formulation of the model
used for all three cases. It has the form

β

∫

Γ
(un−1 · n)(un · v), with β =

{
0 if un−1 · n ≥ 0 on Γ,
1
2 if un−1 · n < 0 on Γ,

(4.10)
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where Γ = Γout, with a semi-implicit approach assumed for time discretization.

Velocity vectors and pressure distribution Figures 4.10-4.13 show the velocity vec-
tors and the elevated surface of the pressure distribution in the longitudinal mid plane of the
aortic root and part of the aortic arch. These results are presented for the normal and the
stenotic valve configurations, in the two last cardiac cycles of the simulation.

Figure 4.10, displays the snapshot in the middle of the systole of the ninth cardiac cy-
cle. Notice the two-stenotic leaflet case (c), in the vena contracta, i.e. the cross-sectional
area where the flow jet is minimal, the velocity magnitude increases up to 600 cm/s. The
narrowing of the valve opening is remarkable also in the great increasing of the pressure
distribution.

Figures 4.11 and 4.12, are two time instants taken during the closed valve phases. The
first one, at t = 6.695 s, in the middle of the filling and the second one, at t = 6.970 s, during
the isovolumic contraction. Note that the three test cases present similar velocity magnitude
and equal pressure distribution.

Figure 4.13 shows the velocity vectors and the pressure distribution at t = 7.028 s, a
time instant in the ejection of the tenth cardiac cycle, before the peak of the inflow condition.
We can see that, the case of one stenotic leaflet (b) has qualitatively the same behavior
of the normal test case (a), since the flow across the valve is still weak. On the contrary,
the two-stenotic-leaflets case (c) already shows a considerable increasing in the velocity
magnitude and in the pressure distribution.

Proximal and distal pressure curves The difference between the three cases can be
better estimated in Figure 4.14, in which the pressure jumps are illustrated. All curves are
computed on the proximal and distal surfaces of the closed valve. The results of the ninth
and tenth cardiac cycle are plotted.

In 4.14a-4.14c, the curves of the ventricular and aortic pressure, i.e. proximal and distal
pressures, are compared for each test case. The pressures are equals in the open valve
configurations, while a pressure difference appears during the closed valve status.

In Figure 4.14d the proximal pressure, i.e. the ventricular pressure, of the normal case
is compared with the proximal pressure of the two stenotic cases. The stenotic pressures
differ from the normal case in the open valve status (OV), while they are the same during
the closed valve configurations, as we could expect. Similarly, 4.14e compares the distal
pressure, i.e. the aortic pressure, of the normal and stenotic leaflets configurations. Slight
differences appear in the closed valve status of the second stenotic test with respect to the
two other test cases.

Figure 4.15 corresponds to the flow pattern and the pressure course of all the test cases,
in the three top arteries and in the descending aorta. The flow could not be a complete
indicator of the stenosis behavior, while with the pressure curves we can see the different
impacts when the RIS model is applied to a stenotic example.
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(a) (b) (c)

(a) (b) (c)

Pressure (mmHg)

2.0e + 021.0e + 025.0e + 010.0e + 00 1.5e + 02

Velocity (cm/s)

1.0e + 02 2.0e + 02 3.0e + 020.0e + 00 6.0e + 02

Figure 4.10: Velocity vectors and pressure distribution for Normal (a), Stenotic 1 (b) and
Stenotic 2 (c) at t = 6.306 s (Ejection).
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(a) (b) (c)
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Pressure (mmHg)

2.0e + 021.0e + 025.0e + 010.0e + 00 1.5e + 02

Velocity (cm/s)

1.0e + 02 2.0e + 02 3.0e + 020.0e + 00 6.0e + 02

Figure 4.11: Velocity vectors and pressure distribution for Normal (a), Stenotic 1 (b) and
Stenotic 2 (c) at t = 6.695 s (Filling).
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Figure 4.12: Velocity vectors and pressure distribution for Normal (a), Stenotic 1 (b) and
Stenotic 2 (c) at t = 6.970 s (isovolumic Contraction).
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Figure 4.13: Velocity vectors and pressure distribution for Normal (a), Stenotic 1 (b) and
Stenotic 2 (c) at t = 7.028 s (Ejection).
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(a) Normal valve: proximal and distal pressure.
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(b) Stenotic 1 valve: proximal and distal pres-
sure.
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(c) Stenotic 2 valve: proximal and distal pres-
sure.
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(d) Proximal pressure: Normal, Stenotic 1, Stenotic 2.
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Figure 4.14: Pressure in the proximal and distal closed surfaces for normal, 1 stenotic leaflet
and 2 stenotic leaflets configuration.



112

6.2 6.975 7.75ï40

0

40

80

120

160

200

240

 

 

6.2 6.975 7.75ï25

ï15

ï5

5

15

25

35

45

 

 

6.2 6.975 7.75ï15

ï10

ï5

0

5

10

15

20

 

 

6.2 6.975 7.75ï40

ï25

ï10

5

20

35

50

65

 

 

F
lo

w
(c

c/
s)

Normal
Stenotic 1

Stenotic 2

OV CV OV CVCV OV CV OV CVCV

OV CV OV CVCV OV CV OV CVCV

F
lo

w
(c

c/
s)

F
lo

w
(c

c/
s)

F
lo

w
(c

c/
s)

Normal
Stenotic 1

Stenotic 2

Normal
Stenotic 1

Stenotic 2

Normal
Stenotic 1

Stenotic 2

Time (s) Time (s)

Time (s) Time (s)

(a) Flows.

6.2 6.975 7.7550

60

70

80

90

100

110

120

 

 

6.2 6.975 7.7550

60

70

80

90

100

110

120

 

 

6.2 6.975 7.7550

60

70

80

90

100

110

120

 

 

6.2 6.975 7.7550

60

70

80

90

100

110

120

 

 

Normal
Stenotic 1

Stenotic 2

P
re

ss
u
re

(m
m

H
g)

Time (s) Time (s)

Time (s) Time (s)

P
re

ss
u
re

(m
m

H
g
)

P
re

ss
u
re

(m
m

H
g
)

P
re

ss
u
re

(m
m

H
g)

OV CV OV CVCV OV CV OV CVCV

OV CV OV CVCV OV CV OV CVCV

Normal
Stenotic 1

Stenotic 2

Normal
Stenotic 1

Stenotic 2

Normal
Stenotic 1

Stenotic 2

(b) Pressures.

Figure 4.15: Two-fluid and RIS models: real geometry outlets.
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4.3.4 Clinical assessment of stenotic valve with RIS model

In order to asset the degree of a stenosis, clinicians have the use of standard indexes
based on blood velocity and pressure measurements, established from simplified fluid me-
chanics equations. The blood pressure on both sides of the aortic valve can be directly
obtained by catheterization. Doppler echocardiography, based on the ultra-sounds, can
evaluate the velocity of the blood flow. In general the second one is preferred since is a
non-invasive technique.

The most common manner to asset an aortic stenosis is to determine the net pressure
gradient, TPGnet = pLV − pA , between the left ventricle (LV) and the ascending aorta. If the
pressure is measured further down in the cross-sectional area where the flow jet is minimal,
i.e. in the vena contracta (VC), the maximum pressure gradient TPGmax = pLV − pV C is
obtained as well (see e.g. [CdSG+05, GD06]). This method are invasive, since the pressure
is computed by cathaterization. Using Doppler, the pressure gradient can be recovered
from the measure of the velocity between left ventricle and the vena contracta. Clinicians in
general assume that the ventricular velocity can be neglected, taking ρ ' 1000 kg/m3 and
the average in time of the velocity in m, the mean pressure gradient converted in mmHg, is
calculated as

TPG = 4ū2
V C
. (4.11)

However, the standard parameter used by clinicians for the assessment of aortic valve
stenosis severity is the so-called aortic valve Effective Orifice Area [GPL+04, GK06, vL09].
The EOA is defined as the minimal cross-sectional area of the flow jet. Using catheteriza-
tion, EOA is evaluated from the Gorlin equation [GG51] as EOAcath = Q/44.3

√
TPGmax,

where Q is the trans-valvular flow in mL/s and the value 44.3 is an empirical factor that
derived from the original equation proposed by Gorlin. Using Doppler, this value is obtained
from the application of the continuity equation between the left ventricle and the vena con-
tracta. Assuming that the values of the areas are not modified during systolic ejection, that
the section of the ventricle is circular and that velocity profiles are flat, EOA is expressed in
cm2 as

EOA =
ALV OT × ūLV OT

ūV C

, (4.12)

where ALV OT , measured in cm2, is the cross-sectional area at the left ventricle outflow track,
supposed to be constant through the systole. The two velocities ūLV OT and ūV C are respec-
tively the temporal averages of the velocity at the left ventricle and in the vena contracta.
The product ALV OT × ūLV OT is the so-called stroke volume, i.e. the volume of blood pumped
out from the ventricle in a heart beat. From the previous considerations, the EOA results
constant in time as well.

Table 4.2 indicates the grade of a stenosis for the two clinical indexes discussed above.
Mild and moderate in general ask for a constant medical monitoring of its progression. The
severe stenosis usually requires aortic valve replacement.

A third way to evaluate aortic stenosis is to consider the dissipation of the energy sup-
plied by the left ventricle work. In [GPD+00] the authors propose to derive the amount of
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mild moderate severe
TPG < 20 mmHg 20 mmHg − 50 mmHg > 50 mmHg

EOA > 1.5 cm2 1 cm2 − 1.5 cm2 < 1 cm2

Table 4.2: Classification of aortic stenosis severity by mean of TGP and EOA. Guideline of
America Heart Association [BHB+09, Table 3]

energy loss from non-invasive measurements, by the expression

EL = 4

(
Q

CEL

)2

, (4.13)

where Q is the mean trans-valvular flow, in mL. The term CEL is the coefficient energy loss,
expressed in cm2 and defined by the relation

CEL =
EOA×Aa
Aa − EOA

, (4.14)

where Aa, in cm2, indicates the cross-sectional area of the ascending aorta, supposed by
always constant. This coefficient can be easily obtained by Doppler and describes a more
physical quantity directly linked to the damage caused by the stenosis on the heart work.

To evaluate the severity of the stenosis induced with the RIS valve model, we have
derived the three clinical indexes explained above. The mean velocity ūLV OT is computed
on Γin and the velocity ūV C is computed in a cross-sectional surface next to the open valve
mesh configuration. The two time-average velocities, are computed over the systole phase
of the last cardiac cycle. We have identified ALV OT as Γin, it has an area of 2.5635 cm2.
The area of the ascending aorta Aa is 4.00834 cm2 and we suppose corresponding to the
interface Σ. The mean trans-valvular flow according to [CdSG+05, GPD+00] is computed
as Q = uV C ×EOA. Table 4.3 reports the time-averaged velocities and the values obtained
by (4.11)-(4.14), for the two stenotic test cases presented in the Paragraph 4.3.3.

1 Stenotic leaflet 2 Stenotic leaflets
ūLV OT 1.2811 m 1.1745 m

ūV C 2.1830 m 4.0922 m

TPG 19.0401 mmHg 66.9330 mmHg

EOA 1.5044 cm2 0.7357 cm2

CEL 2.4084 cm2 0.9011 cm2

EL 136.3605 mmHg 301.0632 mmHg

Table 4.3: Main clinical indexes for stenosis evaluation in an aortic valve described with a
RIS model.

The mean velocity computed in the LVOT, upstream the valve, is slightly lower for the
second stenotic case. On the vena contracta (VC), downstream the valve, the mean velocity
is obviously greater for the second stenotic case as consequence of the bigger narrowing of
the valve orifice. According both TPG and EOA, the first case corresponds to a mild aortic
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stenosis. Whereas with the second RIS stenotic valve model, we were able to simulate a
severe aortic stenosis. The coefficient of energy loss increase with the increasing of the
stenosis severity, i.e. with the decreasing of the EOA, keeping aortic section area constant.
As a consequence the second test case presents a greater loss of energy, as we could
expect.

4.4 Final remarks

In this chapter we have illustrated some numerical examples of the fluid-fluid model in
the ascending aorta with the reduced model for the heart valves presented in [AHSG12].
Within this approach, the aortic valve is modeled by an immersed surface acting as a resis-
tance on the fluid.

The pressure jump across the valve was obtained with the same approach used in
[FGM08] to model a stent for a cerebral aneurysm. We introduce a fissured mesh and we
paste together the degrees of freedom of the velocity while the pressures degrees of free-
dom have been kept separate in the proximal and distal valve label. This means to provide
the solver of a geometry in which in pre-processing phase the valve labels where doubled.
An alternative is to provide a geometry with a non-fissured mesh and then duplicate the
degree of freedom of the pressure inside the solver.

The opening or the closure of the valve, i.e. the value of the resistance, is based on very
simple fluid dynamics principles. In normal conditions, we choose to set the opening of the
valve when ∆p > α with α = 0 and the closure when Q < β with β = 0. However, we can set
α and β different from zero to model particular pathologies, such as late or early opening
and closure of the valve.

The computation of the resistance make the model non-linear, because the value of
the resistance depends on the flow and the pressure at current time step. To linearize the
problem two approaches can be used for the evaluation the resistances Ri

• Rni = Ri(u
n, pn), i = o, c, the resistance is updated with the valve status at current

time step. This method as the advantage to "predict" the valve status and to change it
if not correct, but implies a re-computation of the fluid equation at least two times in a
cardiac cycle.

• Rn−1
i = Ri(u

n−1, pn−1), i = o, c, the resistance is updated according the valve status
at previous time step. This technique does not need a re-computation of the fluid
equation, but produces a delay of δt in the opening/closure of the valve.

We have adopted in this chapter the first approach and we have performed two kinds of
numerical experiments

1. The template of the aorta, has been used to test the two-fluid coupled model with
the RIS valve model. With respect to the simulations presented in Chapter 3, the
aortic root domain without closed valve configuration, has been replaced by a fis-
sured domain with closed and open valve configuration, while the aortic arch mesh is
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kept unchanged. The staggered algorithm applied is obtained with the explicit coupled
scheme with the static pressure and unbalance energy estimation (Algorithm 2.3 on
pag. 45). The presence of a resistive immersed surface does not impact the perfor-
mances of the fluid-fluid model. This is confirmed by the flow and pressure errors on
the interface reported in the Table 4.4.

εf1 0.0073 εp1 0.0185

εf2 0.0180 εp2 0.0198

εf 0.0246 εp 0.0064

Algorithm 4.1

Table 4.4: Interface relative errors: flow εf1 , εf2 and pressure εp1 , εp2 . Interface drop errors:
flow εf and pressure εp.

The errors are computed with respect to the reference solution obtained solving (4.1)
with a standard finite element discretization of the model in the one-piece domain. The
expressions of the errors indicators has been defined in (3.1) on page 62.

2. The realistic aorta, whose geometry has been obtained from medical images, was
employed to investigate two stenotic valve cases. The RIS model allows a certain
flexibility in reproducing also pathological states of the valves. Pathologies, such as
regurgitation or stenosis, can be included in the mathematical model simply putting
non-zero resistance Ri on the stenotic leaflet, while keeping the same valve geometry
with respect to the normal case. This is the choice we have adopted for the examples
of Paragraph 4.3.3. An other option could be to consider the pathology directly in the
computational geometry, i.e. providing a valve mesh presenting a particular configu-
ration, taken for example from a patient specific model. In this direction an example
is reported in [AHSG12], here the RIS model is applied to a patient-specific geometry
derived from a computed tomography data set.

In the end we have illustrated how the RIS valve model can reproduce some of the main
clinical indexes to recover a valve stenosis. According to clinical evaluation, our examples
reproduce a mild and a severe stenosis. This shows how the RIS valve model can be ap-
pealing from a computational point of view, particularly for our coupled problems, as well as
under a clinical point of view.

In the next chapter we extend the fluid-fluid approach to couple the left ventricle with the
aorta. The RIS model for the aortic and mitral valve are considered as well.
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CHAPTER 5
An energy stable time-marching scheme for

fluid flows in moving domains

This chapter of the thesis is devoted to the numerical stability of a time discretization scheme
for fluids in moving domains, through the so called ALE (Arbitrary Eulerian Lagrangian) formulation.
The difficulty comes from those integrals, which are integrated over the moving domain at a given
time-step. We show that adding a suitable consistent term we can get a stable energy inequality
without fulfilling any Geometric Conservation Laws, that were so far necessary to establish an energy
balance for the fluid equations on a moving domain.
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5.1 Introduction

The ultimate goal of this thesis is to present some numerical examples of cardiac hemo-
dynamics, generated by the left ventricle contraction. To reach this aim we present here the
mathematical model of fluid problem in moving domains.

Indeed, despite the assumption of fixed domain made in previous chapters, the blood
dynamics is in general a phenomenon occurring in computational domains that moves in
time. In hemodynamics the Arbitrary Lagrangian-Eulerian (ALE) formulation is commonly
used for fluid-solid interaction problems in particular for numerical simulations in compliant
arteries (e.g. [Ber12, FQV09] and references therein).
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The ALE formulations is a popular technique which facilitates the time discretization
of partial differential equations on moving domains [DHPRF04, HLZ81]. In the arbitrary
Lagrangian-Eulerian description, the computational domain is neither fixed (Eulerian frame-
work), nor governed by the fluid motion (Lagrangian framework), but its dynamics is driven
by the movement of the boundary/interface. Inside the domain the movement can be given
by any smooth lift of the movement of interface, this determines its arbitrary definition.

Within this approach, the unsteady Navier-Stokes equations, are expressed with respect
to a reference fixed configuration and a so-called ALE map associates at each time t a point
in the current computational domain to a point in the reference domain. The most obvious
influence of an ALE formulation in flow problems is that the convective term must account
for the mesh motion which can increase or decrease the convection effects.

A major difficulty that has to be faced is the fact that a numerical time-discretization
scheme for fixed domains does not necessary preserve stability and cannot be translated
to moving domains.

In problems with moving domains, some properties can be lost by discretization. To
ensure these properties after discretization, several works suggest to consider the so-
called Geometric Conservation Law (GCL) (see [EGP09, TL79] for a review). The GCL
is usually necessary to establish an energy balance for the original fluid equations on a
moving domain (see [FN99, TM01]). The notion of GCL has been much investigated in
the framework of the finite differences (e.g. [TL79, ZRTC93]) and finite volume method
(see e.g. [GF00, LF96, ZRTC93]). In the framework of finite element methods we cite
[BG04, FN99, FN04] where the unconditional stability is guaranteed through the fulfillment
of a GCL condition.

In this chapter we present the fluid equations expressed with the ALE formalism and we
derive its discrete energy balance. We shall see that for a backward Euler scheme, a simple
correction, inspired by the “Temam’s trick” [Tem68, Tem79] , allows us to recover the energy
inequality without requiring any Geometric Conservation Laws.

Outline This chapter is organized as follows. In next section we provide the reader with
the essential vocabulary of the continuum mechanics (Paragraph 5.2.1) and we present
the ALE formalism (Paragraph 5.2.2). The fluid problems in a moving domain described
via the ALE map is presented in Section 5.3. Section 5.4 deals with the space and time
discretization of the fluid problem in a moving domain (Paragraph 5.4.1) and its energy
balance (Paragraph 5.4.2). The chapter ends with some numerical tests (Paragraph 5.5).

5.2 Fundamentals of continuum mechanics

In this section we provide some basic notions about the mathematical modeling of the
continuum media. For a more detailed exposition about this topic we refer to [FFGQ09,
Gur81].
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5.2.1 Lagrangian and Eulerian formalism

Let Ω̂ be a domain, i.e. a bounded, open and simply connected subset of R3, with
smooth boundary, filled by a continuum medium. The domain Ω̂ is called the reference (or
not-deformed) configuration of the medium under consideration (fluid or solid). In general,
Ω̂ can be the position of the continuum medium in a certain instant t. Any change in time
of the configuration of the continuum body is the result of a motion defined by a non-linear
mapping (Figure 5.11).

ϕ̂ : Ω̂× R+ −→ Ω(t) (5.1)

(x̂, t) 7−→ x = ϕ̂(x̂, t).

The point x = ϕ̂(x̂, t) ≡ ϕ̂t(x̂) represents the position of the material particle identified by
x̂, while Ω(t)

def
= ϕ̂t(Ω̂) denotes the current (or deformed) configuration at time t ≥ 0.

'̂(·, t)

⌦(t)
def
= '̂(⌦̂, t)

x = '̂(x̂, t)

⌦̂

x̂

Figure 5.1: Deformation of a continuum medium.

For any fixed time t̄ ≥ 0, ϕ̂t̄(x̂) ≡ ϕ̂(x̂, t̄) defines a deformation of the continuum body.
In other words, a motion is one-parameter family of deformations, the parameter t being the
time. In addition we can define the displacement of a material particle x̂ as the vector field

d̂ : Ω̂× R+ −→ R3

(5.2)

(x̂, t) 7−→ d̂(x̂, t)
def
= ϕ̂t(x̂)− x̂.

Assuming that ϕ̂t ∈ C1(Ω̂), we can define the time-dependent deformation gradient as
F̂ (x̂, t)

def
= ∇

x̂
ϕ̂(x̂, t), where the symbol ∇

x̂
indicates the gradient with respect to the x̂ =

(x̂1, x̂2, x̂3) coordinates. The deformation gradient is a second order tensor field F̂ : Ω̂ ×
R+ −→ R3 × R3, F̂ij = ∂xi

∂x̂j
, with i, j = 1, 2, 3. We also assume that its determinant Ĵ def

=

det[F̂ (x̂, t)], called the Jacobian of the deformation, is everywhere strictly positive. This
means that the mapping is orientation preserving.

All physical quantities can be defined alternatively on the reference Ω̂ or on the current
configuration Ω(t), the choice being a matter of convenience. In order to solve the differential

1The images of two domains are taken from a simulation of [Imp13].
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equations governing the motion of a continuum medium (fluid or solid) we need to identify
the appropriate computational domain where the equations have to be solved and provide
suitable boundary conditions. We thus define the two configurations

• Lagrangian when we adopt (x̂, t) as independent variables, we focus on the material
particle x̂ and its evolution. This coordinate system is usually said material.
This configuration is typically adopted to describe the evolution of a solid, whose dis-
placements are often relatively small. The computational domain is thus taken to be
Ω̂.

• Eulerian we observe what happens at a given point x in the physical space, we refer
to the (x, t) pair as independent variables. This second coordinate system is instead
termed spatial.
This configuration is preferred to describe the evolution of fluids since the displace-
ments are extremely large and usually irrelevant. The motion of the fluid is observed
in a control volume, normally chosen as a fixed, open bounded set Ω ⊂ R3 such that
Ω ⊂ Ω(t), for all times t.

In the following, we adopt the usual convention to denote with the superscript ·̂ a La-
grangian field. For the rest of configurations the superscript is not used.

5.2.2 The ALE formalism

In many cases of practical interest in hemodynamics, such as blood flowing in a compli-
ant artery, the computational domain for the fluid cannot be fixed in time, as it has to follow
the displacements of the fluid-wall interface. The Eulerian configuration is not convenient.
Yet, the Lagrangian frame is not of help here, since certainly we do not wish to follow the
evolution of the blood particles as they circulate along the whole cardiovascular system.

We usually wish to compute the flow field in a domain confined in the area of interest,
yet following the movement of the wall interface. It is then necessary to introduce another,
intermediate, frame of reference, i.e. an Arbitrary Lagrangian Eulerian (ALE). In this frame
the computational domain, is not fixed, because of the moving boundary, and is not neces-
sarily a material sub-domain, since its evolution is not governed by the fluid motion, but the
computational domain has to follow the motion of the boundary (Figure 5.2).

The ALE description is based on the introduction of an appropriate mapping Â from a
reference fixed configuration Ω̂ (e.g. Ω̂ = Ω(0)) to the current moving domain Ω(t)

Â : Ω̂× R+ −→ Ω(t) (5.3)

(x̂, t) 7−→ x = Â(x̂, t)

such that Ω(t) = Â(Ω̂, t) for all t ≥ 0.
In the ALE formulation we have then the interplay of (at least) two motions: the one

of the medium under consideration and that of the computational domain. The former is
governed by physical laws, the latter is rather arbitrary, provided that the given law for the
domain boundary movement be respected. The ALE map Ât(x̂) ≡ Â(x̂, t) represents the
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Figure 5.2: Blood flow in a compliant artery is a typical example of a continuum medium
whose evolution is described by an ALE map Ât.

deformation of the domain at any time t ≥ 0, we can define then the corresponding domain
velocity as

ŵ
def
=
∂Â(x̂, t)

∂t
, ∀x̂ ∈ Ω̂. (5.4)

For any given function f̂ : Ω̂ → Rd , d = 1, 2, 3 defined in the ALE reference domain Ω̂,
we can write its Eulerian description as f(x, t) = f̂(Â−1

t (x), t), ∀x ∈ Ω(t), t > 0. In what
follows, we use the Eulerian representation of the ALE domain velocity, i.e.

w(x, t) = ŵ(Â−1
t (x), t), ∀x ∈ Ω(t), t > 0. (5.5)

In order to use an ALE formulation, we need to introduce the corresponding ALE time-
derivative of an Eulerian (scalar or vector) field f : Ω(t)→ Rd, d = 1, 2, 3, as

∂f

∂t

∣∣∣∣
Â

=
∂f

∂t

∣∣∣
x̂

+ w · ∇f, (5.6)

derived by the application of the chain rule for the composition of functions, we refer to
[FFGQ09, Proposition 3.3, page 87] for the proof. The transport term w · ∇f accounts for
the variation of f caused by the motion of the computational domain.

We can also define the Jacobian of the ALE deformation as

ĴÂ
def
= det[∇x̂Â(x̂, t)]. (5.7)

The quantity |ĴÂ|dx̂ can be seen as the infinitesimal volume after the ALE deformation of
the reference infinitesimal volume. More precisely we have

∫

Ât(Ω̂)
dx =

∫

Ω̂
|ĴÂ|dx̂. (5.8)

It is thus natural to assume that ĴÂ > 0, in order to preserve the orientation. In addition, it
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can be proved that [FFGQ09]
∂tĴÂ = ĴÂ∇ ·w, (5.9)

obtained recasting the so-called Euler expansion formula to the ALE mapping.

5.3 The fluid problem in the ALE formalism

When a fluid problem is stated in a moving domain, it is convenient to describe its evo-
lution with an ALE map (5.3).

Let Ω(t) ⊂ R3 be a bounded time-dependent control volume described by an ALE map-
ping (5.3), i.e. Ω(t)

def
= Ât(Ω̂). The reference domain Ω̂ being, for example, the control

volume at initial time, e.g. Ω̂ ≡ Ω(0) (Figure 5.3). Let n denote the unit outward normal on
the boundary ∂Ω(t) = ΓD ∪ ΓN ∪ Σ(t). The velocity of the fluid domain w is given by (5.5).
For the sake of simplicity, the inlet and outlet surfaces ΓD and ΓN are assumed to be fixed,
i.e. w = 0 on ΓD ∪ ΓN and Σ(t) denotes the current configuration of the moving interface.

b⌃ ⌃(t)

b�N �D

n
n̂b�D

�N

b⌦ ⌦(t)

bAt

Figure 5.3: Motion of the computational fluid domain via the ALE map Ât.

The incompressible Navier-Stokes equations in the ALE formulation reads as follows.
Find the velocity u : Ω(t) × R+ → Rd and the pressure p : Ω(t) × R+ → R of the fluid
satisfying





ρ∂tu|Â + ρ(u−w) · ∇u−∇ · σ(u, p) = 0, in Ω(t),

∇ · u = 0, in Ω(t),

u = uD, on ΓD,

σ(u, p)n = 0, on ΓN ,

u = w, on Σ(t),

(5.10)

with the initial conditions u(0) = u0. The time derivative ∂tu|Â is the ALE derivative defined
in (5.6). The term σ(u, p) = −pI + 2µε(u), where ε(u) = (∇u +∇Tu)/2, is the fluid stress
tensor. While ρ and µ stand for the fluid density and the dynamic viscosity respectively, both
assumed to be constant.
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REMARK 5.1
The analysis that follows holds also by assuming that u · n = w · n with n outgoing normal
vector on Σ(t). This means that the fluid can slip along the interface.

In order to get an energy equality of the above problem, we multiply the (5.10)1 by u and
integrating over Ω(t), we get

ρ

∫

Ω(t)

∂

∂t

∣∣∣
Â

( |u|2
2

)

︸ ︷︷ ︸
T1

+

∫

Ω(t)
ρ(u−w) · ∇u · u

︸ ︷︷ ︸
T2

+

∫

Ω(t)
∇ · σ(u, p) · u

︸ ︷︷ ︸
T3

= 0. (5.11)

With the use of the property (5.8), the first term can be reformulated as

T1 =

∫

Ω̂
ρ
∂

∂t

∣∣∣
Â

( |û|2
2

)
ĴÂ =

ρ

2

d

dt

∫

Ω̂
|û|2ĴÂ −

ρ

2

∫

Ω̂
|û|2∂tĴÂ

=
ρ

2

d

dt

∫

Ω(t)
|u|2 − ρ

2

∫

Ω(t)
|u|2∇ ·w,

and the last one was obtained by mean of (5.9) and (5.8). Thus, integrating the second
term of (5.11) by parts, knowing that w = 0 on ΓD ∪ ΓN and using the boundary condition
u · n = w · n on Σ(t), we get

T2 =
ρ

2

∫

Σ
(u−w) · n|u|2 +

ρ

2

∫

Ω(t)
|u|2(∇ ·w) +

ρ

2

∫

ΓN∪ΓD

(u · n)|u|2

=
ρ

2

∫

Ω(t)
|u|2∇ ·w +

ρ

2

∫

ΓD∪ΓN

u · n|u|2.

In the end, integrating the term T3 by parts, we obtain

T3 = 2µ

∫

Ω(t)
|ε(u)|2 +

∫

Σ∪ΓD

σ(u, p)n · u.

Inserting T1, T2 and T3 in (5.11) we obtain the following energy

ρ

2

d

dt

∫

Ω(t)
|u|2 + 2µ

∫

Ω(t)
|ε(u)|2 +

ρ

2

∫

ΓD∪ΓN

u · n|u|2 = −
∫

Σ∪ΓD

σ(u, p)n · u. (5.12)

After discretization it is possible that some properties can be lost. In the following sec-
tion we present the time-space fully discretization of the problem (5.10) and we discuss its
energy balance.



128

5.4 An energy stable time-marching scheme for fluid flows in
moving domains

5.4.1 Variational formulation and discretization of the fluid problem

Problem (5.10) can be reformulated in a weak form using appropriate test functions,
performing integrations by parts and taking into account the boundary conditions. Let v̂ :

Ω̂→ Rd and q̂ : Ω̂→ Rd be two time-independent smooth functions, such that v̂ ∈ [H1(Ω̂)]d

and q̂ ∈ L2(Ω̂). Hence for the ALE fluid problem, we consider as test functions their Eulerian
counterparts defined in the two functional spaces

X def
= {v : Ω(t)→ Rd, v = v̂(Â−1

t (x))}, ∀v̂ ∈ [H1(Ω̂)]d, (5.13)

and
M def

= {q : Ω(t)→ Rd, q = q̂(Â−1
t (x))}, ∀q̂ ∈ L2(Ω̂), (5.14)

and we denote by Xγ the space of the functions in X vanishing on a part γ of the boundary
∂Ω(t). Notice that, in contrast to test functions on fixed domains, these functions are time-
dependent. However, since v̂ and q̂ are independent of t, their Eulerian counterparts have
zero ALE time-derivative, i.e. ∂tv|Â = 0 and ∂tq|Â = 0.

Then the variational formulation of the ALE fluid problem can be obtained by multiplying
the fluid equation (5.10) by (v, q) ∈ XΓD∪Σ ×M, then integrating by parts and taking into
account the boundary conditions, we get

ρ

∫

Ω(t)

∂u

∂t

∣∣∣
Â

· v + ρ

∫

Ω(t)
(u−w) · ∇u · v + 2µ

∫

Ω(t)
ε(u) : ε(v)

−
∫

Ω(t)
p∇ · v +

∫

Ω(t)
q∇ · u = 0. (5.15)

With a change of variable and using the propriety ∂tv|Â = 0, we can rewrite the first integral
of the previous formulation as

ρ

∫

Ω(t)

∂u

∂t

∣∣∣
Â

· v = ρ

∫

Ω̂
ĴÂ

(
∂û

∂t
· v̂
)

= ρ
d

dt

∫

Ω̂
ĴÂ (û · v̂)− ρ

∫

Ω̂
ĴÂ(û · v̂)∇̂ ·w

= ρ
d

dt

∫

Ω(t)
u · v − ρ

∫

Ω(t)
(u · v)∇ ·w. (5.16)

Owing these remarks we can now present the space discretization of the previous vari-
ational formulation. Let {Th(t)}0≤h≤1, for every t > 0, be a suitable family of triangulations
of the domain Ω(t), with typical diameter h. Let Xh × Mh denote an inf-sup stable and
conforming finite element approximation of the spaces X ×M and Vh = Xh ∩ XΓD∪Σ. The
variational formulation of (5.10) reads:
For all t ∈ R+, find (uh, ph) ∈ Xh ×Mh satisfying the essential boundary conditions and
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such that
AÂ[uh; (uh, ph), (vh, qh)] = 0, (5.17)

for all (vh, qh) ∈ Vh ×Mh and we use the shorthand notation

AÂ[uh; (uh, ph), (vh, qh)]
def
= ρ

d

dt

∫

Ω(t)
uh · vh + ρ

∫

Ω(t)
(uh −wh) · ∇uh · vh

−ρ
∫

Ω(t)
(uh · vh)∇ ·wh + 2µ

∫

Ω(t)
ε(uh) : ε(vh)

−
∫

Ω(t)
ph∇ · vh +

∫

Ω(t)
qh∇ · uh. (5.18)

We can now present the time discretization of the problem (5.17). A semi-implicit
Euler scheme is used. Let denote δt

def
= T/N the time step size, the interval of interest is

(0, T ), N ∈ N+ is a given integer and xn ≈ x(nδt) with 0 ≤ n ≤ N . The time-space fully
discretization problem (5.10) is summarized in the following algorithm.

ALGORITHM 5.1 (Standard ALE formulation)

1. Find (unh, pnh) ∈ Xh ×Mh satisfying unh = wn
h on Σn and unh = un

D
on ΓD, such that

AÂ,δt[u
n−1
h ; (unh, p

n
h), (vh, qh)] = 0, (5.19)

for all (vh, ph) ∈ Vh ×Mh.

2. Go to next time-step.

The expression AÂ,δt[u
n−1
h ; (unh, p

n
h), (vh, qh)] appearing in (5.19) is given by

AÂ,δt[u
n−1
h ; (unh, p

n
h), (vh, qh)]

def
=

ρ

δt

(∫

Ωn

unh · vh −
∫

Ωn−1

un−1
h · vh

)

+ ρ

∫

Ωn

(un−1
h −wn−1

h ) · ∇unh · vh

− ρ
∫

Ωn

(unh · vh)∇ ·wn−1
h + 2µ

∫

Ωn

ε(unh) : ε(vh)

−
∫

Ωn

pnh∇ · vh +

∫

Ωn

qh∇ · unh +
ρ

2

∫

Ωn

(unh · vh)(∇ · un−1
h ).

(5.20)

The last integral in (5.20) is nothing but the standard Temam’s trick [Tem68, Tem79].

REMARK 5.2
An alternative scheme can be obtained from the direct discretization of (5.18), without a
change of variable. But the technique we present in what follows does not apply to this
scheme.
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5.4.2 Energy equality of a fluid problem in moving domain

In what follows we will use the quantity (the interior power)

En
Â

def
=

ρ

2δt

(
||unh||2Ωn − ||un−1

h ||2Ωn−1 + ||unh − un−1
h ||2Ωn−1

)
+ 2µ||ε(unh)||2Ωn . (5.21)

A first attempt to derive an energy equation for (5.19) brings to the following result.

PROPOSITION 5.1
Let Lhunh denote any discrete lifting of unh from ∂Ωn to Ωn such that Lhunh = unh on ΓD∪Σ and
Lhunh = 0 otherwise. Let (unh, p

n
h) be solution of Algorithm 5.1. Then we have the following

energy balance

En
Â

+
ρ

2

[
1

δt

(∫

Ωn

|unh|2 −
∫

Ωn−1

|unh|2
)
−
∫

Ωn

|unh|2∇ ·wn−1
h

]
+
ρ

2

∫

ΓN∪ΓD

(un−1
h · n)|unh|2

= AÂ,δt[u
n−1
h ; (unh, p

n
h), (Lhunh, 0)], (5.22)

with En
Â

as in (5.21).

Proof. Let’s take in (5.19) vh = unh − Lhunh ∈ Vh and qh = pnh, we have

ρ

δt

(∫

Ωn

|unh|2 −
∫

Ωn−1

un−1
h unh

)

+ ρ

(∫

Ωn

(un−1
h · ∇unh) · unh −

∫

Ωn

(wn−1
h · ∇unh) · unh

)

− ρ
∫

Ωn

|unh|2∇ ·wn−1
h + 2µ

∫

Ωn

|ε(unh)|2

+
ρ

2

∫

Ωn

|unh|2(∇ · un−1
h )−AÂ,δt[u

n−1
h ; (unh, p

n
h), (Lhunh, 0)] = 0. (5.23)

The second integral in the previous expression can be decomposed as

−
∫

Ωn−1

un−1
h unh = −1

2

∫

Ωn−1

|unh|2 −
1

2

∫

Ωn−1

|un−1
h |2 +

1

2

∫

Ωn−1

|unh − un−1
h |2. (5.24)

Then, we integrate by parts the third and forth integrals of (5.23). Since ΓD and ΓN are
fixed, i.e. wn−1

h = 0, we have

ρ

(∫

Ωn

(un−1
h · ∇unh) · unh −

∫

Ωn

(wn−1
h · ∇unh) · unh

)
=

− ρ

2

∫

Ωn

|unh|2(∇ · un−1
h ) +

ρ

2

∫

Σn

(un−1
h · n)|unh|2 +

ρ

2

∫

Ωn

|unh|2(∇ ·wn−1
h )− ρ

2

∫

Σn

(wn−1
h · n)|unh|2

+
ρ

2

∫

ΓN∪ΓD

(un−1
h · n)|unh|2. (5.25)

Using the property un−1
h ·n−wn−1

h ·n = 0 the boundary terms on Σn of the previous relation
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cancel. Inserting the (5.24) and (5.25) in (5.23) we obtain

ρ

δt

(∫

Ωn

|unh|2 −
1

2

∫

Ωn−1

|unh|2 −
1

2

∫

Ωn−1

|un−1
h |2

)

+
ρ

2δt

∫

Ωn−1

|unh − un−1
h |2 − ρ

2

∫

Ωn

|unh|2∇ ·wn−1
h

+ 2µ

∫

Ωn

|ε(unh)|2 +
ρ

2

∫

ΓN

(un−1
h · n)|unh|2 −AÂ,δt[u

n−1
h ; (unh, p

n
h), (Lhunh, 0)] = 0,

which proves the assertion.

The term AÂ,δt[u
n−1
h ; (unh, p

n
h), (Lhunh, 0)] corresponds to the discrete counterpart (varia-

tional residual) of the term
∫

Σ∪ΓD

σ(unh, p
n
h)n · unh, that this the stress power generated on

the Dirichlet boundaries (see equation (5.12)).
The expression (5.22) introduce an artificial power in the energy equation which can led

to numerical instability.
In order to control the energy, the idea is to add to (5.19) the following consistent term

Bδt[u
n
h,vh]

def
= −ρ

2

[
1

δt

(∫

Ωn

unh · vh −
∫

Ωn−1

unh · vh
)
−
∫

Ωn

(unh · vh)∇ ·wn−1
h

]
. (5.26)

The resulting new scheme is summarized in the Algorithm 5.2.

ALGORITHM 5.2 (New ALE formulation)

1. Find (unh, pnh) ∈ Xh ×Mh satisfying unh = wn
h on Σn and unh = un

D
on ΓD, such that

AÂ,δt[u
n−1
h ; (unh, p

n
h), (vh, qh)] +Bδt[u

n
h,vh] = 0 (5.27)

for all (vh, ph) ∈ Vh ×Mh.

2. Go to next time-step.

The form AÂ,δt[u
n−1
h ; (unh, p

n
h), (vh, qh)] has the same expression as in (5.20). The new

ALE formulation (5.27) can be re-written in a more compact form summing the integrals of
(5.20) and (5.26), i.e.

ρ

δt

[
1

2

(∫

Ωn

unh · vh +

∫

Ωn−1

unh · vh
)
−
∫

Ωn−1

un−1
h · vh

]
+ ρ

∫

Ωn

(un−1
h −wn−1

h ) · ∇unh · vh

− ρ

2

∫

Ωn

(unh · vh)∇ ·wn−1
h + 2µ

∫

Ωn

ε(unh) : ε(vh)

−
∫

Ωn

pnh∇ · vh +

∫

Ωn

qh∇ · unh +
ρ

2

∫

Ωn

(unh · vh)(∇ · un−1
h ) = 0. (5.28)

To get an heuristic explanation of the term (5.26), let us assume that the motion of the
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domain is not yet discretized. Multiplying the equation (5.9) by ûn · v and integrating over
[tn−1, tn]× Ω̂, we get

0 =

∫ tn

tn−1

∫

Ω̂
(ûn · v)

[
∂tĴÂ − ĴÂ∇ ·w(t)

]

=

∫

Ω(tn)
un · v −

∫

Ω(tn−1)
un · v −

∫ tn

tn−1

∫

Ω(t)
(un · v)∇ ·w(t)

=

∫

Ω(tn)
un · v −

∫

Ω(tn−1)
un · v − δt

∫

Ω(tn)
(un · v)∇ ·w(tn) +O(δt2),

which shows that

1

δt

(∫

Ωn

un · v −
∫

Ωn−1

un · v
)
−
∫

Ωn

(un · v)(∇ ·wn−1) = O(δt).

The (5.26) that has been added to (5.27) in order to get an energy inequality is therefore
consistent. It is important to remark that this correction term is weakly consistent, but not
strongly consistent, in contrast with the usual Temam’s trick. This is not a surprise since
(5.26) involves a time discretization by finite difference, which is not strongly consistent,
even on a fixed domain.

From (5.27), we have the desired result:

PROPOSITION 5.2
Let Lhunh denote any discrete lifting of unh from ∂Ωn to Ωn such that Lhunh = unh on ΓD∪Σ and
Lhunh = 0 otherwise. Let (unh, p

n
h) be solution of Algorithm 5.1. Then we have the following

energy balance

En
Â

+
ρ

2

∫

ΓN∪ΓD

(un−1
h · n)|unh|2 = AÂ,δt[u

n−1
h ; (unh, p

n
h), (Lhunh, 0)] +Bδt[u

n
h,Lhunh], (5.29)

having En
Â

as in (5.21).

Proof. Taking vh = unh − Lhunh ∈ Vh and qh = pnh in (5.28) we have

ρ

δt

[
1

2

(∫

Ωn

|unh|2 +

∫

Ωn−1

|unh|2
)
−
∫

Ωn−1

un−1
h · unh

]
+ ρ

∫

Ωn

(un−1
h −wn−1

h ) · ∇unh · unh

− ρ

2

∫

Ωn

|unh|2∇ ·wn−1
h + 2µ

∫

Ωn

|ε(unh)|2 +
ρ

2

∫

Ωn

|unh|2(∇ · un−1
h )

= AÂ,δt[u
n−1
h ; (unh, p

n
h), (Lhunh, 0)] +Bδt[u

n
h,Lhunh].

If we decompose now the third integral as in (5.24) and we integrate the forth integral by
part as in (5.25), we obtain

ρ

δt

(
1

2

∫

Ωn

|unh|2 −
1

2

∫

Ωn−1

|un−1
h |2

)
+

ρ

2δt

∫

Ωn−1

|unh − un−1
h |2 + 2µ

∫

Ωn

|ε(unh)|2

+
ρ

2

∫

ΓN

(un−1
h · n)|unh|2 = AÂ,δt[u

n−1
h ; (unh, p

n
h), (Lhunh, 0)] +Bδt[u

n
h,Lhunh]
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which is the (5.29).

REMARK 5.3
Note that if the system is isolated (u = 0 on ΓD ∪Σ), the right-hand side of (5.29) vanishes
and then we have an energy estimate.

To the best of our knowledge this is the first stability result of an ALE scheme in finite
element that does not rely on any GCL assumption. It is therefore more general that the
result in literature (e.g. [FN99, TM01]) since it does not make strong assumption on the
mesh displacement.

5.5 Numerical example

Domain and boundary conditions We consider in this section an adaptation of the
large displacement 3D-balloon-type example proposed in [FMV13, KFW06], i.e a curved
fluid domain surrounded by two interfaces (see Figure 5.4).
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and Algorithm 3 (⌧ = 10�3).

deformation obtained with Algorithm 3 (r = 1) are reported in Figure 12. An stable solution
involving periodic self-excited oscillations of large amplitude is observed.

Figure 13 reports the interface mid-point displacement magnitudes obtained with Algorithm 3
(r = 0 and r = 1) and the implicit coupling scheme. The poor accuracy of the explicit coupling
scheme with r = 0 is striking. On the contrary, the solution obtained with r = 1 is practically
indistinguishable from the one provided by the implicit coupling scheme. This enhanced accuracy,
with respect to the results reported in Section 6.2, can be explained by the fact that increasing the
solid density reduces the impact of the kinematic perturbation in (30). Numerical investigations
(not reported here) showed that, for this set of discretization parameters, Algorithm 3 with r = 2
is unstable and that smaller time-steps are needed for stability.

6.4 Damped structural instability
We consider an adaptation of the balloon-type fluid-structure example proposed in [23]. A curved
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fluid domain is surrounded by two structures with different stiffness (see Figure 14). Both
structures are fixed on their extremities. A parabolic velocity profile is prescribed on the left and
right inflow boundaries, with maximal magnitudes 10 and 10.2, respectively (to avoid perfect
symmetry). All the units are given in the SI system. Zero velocity is enforced on the remaining
fluid boundaries. The fluid-structure system is modeled by the coupled problem (47)-(49). The
fluid is loaded with the volume force f = (0,�1)T. The fluid physical parameters are given by
⇢f = 1.0 and µ = 9, while for the top and bottom (undamped) structures we have ⇢s = 500,
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A given displacement is imposed on Σ, while ΓD is assumed to be fixed, i.e. w = 0. Note
that with respect to (5.10) we have ΓN = ∅. A parabolic velocity profile is prescribed both
on the left and right inflow boundaries, with maximal magnitudes 10 cm/s and 10.2 cm/s,
respectively, to avoid perfect symmetry. Zero velocity is enforced on the remaining fluid
boundaries. The fluid physical parameters are given by ρ = 1.0 g/cm3 and µ = 9 poise.
The fluid is loaded with the volume force f = (0,−10)T dyne/cm2. The fluid equations are
discretized in space using continuous P1/P1 finite elements stabilized with a PSPG method.
A time-step of t = 0.005 s is employed for both simulations.

Displacement and velocity magnitude Figure 5.5 shows the fluid velocity magnitude
snapshots and the domain deformations in two time instants, t = 1.5 s and t = 3.3 s,
obtained with Algorithm 5.1 and Algorithm 5.2. Notice that the results presents the same
behavior for both Algorithms employed.
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Figure 5.5: Velocity and displacement obtained with Algorithm 5.1 (a) and Algorithm 5.2 (b).

Energy study In order to evaluate the impact of the ALE stabilization term (5.26) on
the overall stability of the proposed example, we compute the different terms involved in the
energy quantity of Algorithm 5.1 and Algorithm 5.2 (Figure 5.6). For the system shown in
Figure 5.4, first we compute the physical power

E1
def
=

ρ

2δt

(
||unh||2Ωn − ||un−1

h ||2Ωn−1

)
+ 2µ||ε(unh)||2Ωn

−
∫

Σ∪ΓD

σ(unh, p
n
h)n · unh +

ρ

2

∫

ΓD

un−1
D
|un

D
|2. (5.30)

We see in Figure 5.6a that the physical energy is indeed dissipated.

To understand the reason for this stability - in spite of the moving domain - we now plot
in Figure 5.6b the energy

E2
def
= En

Â
−
∫

Σ∪ΓD

σ(unh, p
n
h)n · unh +

ρ

2

∫

ΓD

un−1
D
|un

D
|2, (5.31)

where the En
Â

is given by (5.21). This shows a partial explanation for the stability, which is
due to the artificial dissipation introduced by the Euler scheme.
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The last figure, Figure 5.6c, shows the energy

E3
def
=En

Â
−
∫

Σ∪ΓD

σ(unh, p
n
h)n · unh +

ρ

2

∫

ΓD

un−1
D
|un

D
|2 +

h2

µ

∫

Ωn

|∇pnh|2, (5.32)

where En
Â

has the form (5.21). With this new plot, it is clear that the PSPG dissipation dom-
inates and it is the responsible for the overall stability. Figure 5.6c shows that the standard
ALE scheme could be unstable in absence of artificial dissipation. Whereas, with the pro-
posed new ALE scheme, the energy is controlled even in absence of artificial dissipation.
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Figure 5.6: Energies obtained with standard ALE formulation (Algorithm 5.1) vs new ALE
formulation (Algorithm 5.2).

5.6 Final remarks

In this chapter we have discussed a technique to get an energy stability for a fluid prob-
lem in a moving domain. An ALE formalism has been adopted to account for the dynamic



136

mesh. Our main contribution is to have proposed the first ALE scheme that can be proved
to be stable in the energy norm without special assumption on the mesh movement (in
particular without Geometric Conservation Law).

A numerical example - the 3D baloon-type with with large displacements - has been
performed. The first observation is that the consistent terms added for the stability did not
affect significantly the results obtained with a standard scheme. This effect is due to the
Euler and PSPG artificial dissipation as confirmed by plotting the two energies (5.30) and
(5.31) (Figure 5.6a and 5.6b). Indeed, we decreased significantly time and space discretiza-
tion step, i.e the artificial dissipation produced by the Euler scheme and PSPG, the artificial
power of the standard ALE could destabilize the simulation, whereas the new ALE scheme
guarantees the stability.
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CHAPTER 6
Numerical examples in cardiac

hemodynamics

The goal of this chapter is to simulate the blood dynamics within the left ventricle and the tho-
racic aorta. The contraction/relaxation dynamics of the myocardium are modeled through a given
displacement obtained from a electro-mechanical model of the heart. This displacement is imposed
on the ALE Navier-Stokes model in the left ventricle. The mechanics of the mitral and aortic valve are
simulated introducing fissured surfaces in which RIS models are applied. The dynamics of the blood
in the ventricle is coupled with the blood flow in the aorta with a fluid-fluid staggered scheme. In the
outlets, 0D-Winkessel models are employed to account for the discarded part of the cardiovascular
system.
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6.1 Introduction

The numerical simulations of the blood flow in the heart is a problem of outstanding
difficulty, due to the multi-physics aspect involved [NNN+11]. One of the objectives of this
thesis is to address the hemodynamics in the left ventricle coupled to the hemodynamics
in the aorta, using our 3D-3D coupling algorithm. This interaction is relevant from a clinical
perspective since pathologies of the aorta and pathologies of the myocardium can have a
mutual influence. In this chapter, we present some preliminary results, close to physiological
conditions.

Different kinds of approaches can drive numerical simulations of fluid dynamics in
the heart (see [KNZ11] and reference therein). In the immersed boundary method,
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[MP00, VCMP08], the immersed solid is accounted for in the surrounding fluid by adding
body forces to the governing fluid equations. Body forces are distributed on all nodes of the
fluid mesh via a discrete Dirac measure.

Another approach consists of solving the structure in a conventional Lagrangian frame-
work and to couple it to the fluid with an FSI algorithm [COS05, WHS+02, WSKH04]. This
type of method is the one who resolves the complex properties of the cardiac structure and
the delicate interaction of fluid and structure. With this approach, it is possible to model
the total heart function by integrating cardiac anatomy, electrical activation, mechanics,
metabolism and fluid mechanics together.

A third way is to consider only the fluid dynamics of the heart, without solving the cou-
pled fluid-structure problem, either by imposing wall displacements [DPB05, NWY06], for
example obtained from another computation, or using the moving geometry obtained from
medical imaging [CMN14, SMR+09]. Even if this method has some limitations – electrical
activation and other physiological properties cannot be included, Lagrangian movements is
difficult to obtain from medical imaging – it may lead to realistic simulations without requiring
the solution of a difficult FSI problem.

In most of the existing works, the influence of valves has been simulated using boundary
conditions with lumped parameter models. To the best of our knowledge, only Peskin’s
group performed numerical simulations of the fluid-structure in the heart with flexible valves
[GHMP07], but without coupling the left ventricle and the aorta.

In this chapter, we present our first numerical simulations of the ventricle-valves-aorta
system. Due to the complexity of a coupled fluid-structure interaction method, as first step in
this direction, we simulate the left ventricle dynamics by an imposed external displacement
obtained from a mechanical simulation. Here, the hemodynamics in the ventricle is coupled
with the hemodynamics in the aorta via our staggered explicit algorithm, investigated in
Chapters 2 and 3. The mitral and aortic valves are modeled with the RIS method, discussed
in Chapter 4. The stabilized ALE formulation analyzed in Chapter 5 is used to model the left
ventricle movement. All simulations are performed in a realistic aorta-heart geometry.

Outline This chapter is organized as follows. In the next section we present the cou-
pled problem between two fluids, one in a moving domain and described with an ALE
formalism and the second one in a fixed domain. Section 6.3 deals with some numeri-
cal simulations obtained in a realistic heart geometry (illustrated in Paragraph 6.3.1) whose
contraction is induced by displacements derived from a electro-mechanical simulation of the
heart (sketched in Paragraph 6.3.2). In Paragraph 6.3.4 we discuss the obtained results.

6.2 The fluid dynamics model: from the ventricle to the aorta

In this section we present the mathematical model adopted to simulate the blood flowing
from the left ventricle towards the aorta. The dynamics of the blood in the left ventricle
is modeled by Navier-Stokes equations in the ALE formalism. We consider two resistive
immersed surfaces models to account for the heart valves (see Chapter 4 for more details).
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The dynamics of the blood in the aorta is coupled with a fluid-fluid interaction problem (see
Chapter 2 for more details).

Two interfaces are present in the following model. The interface between the two do-
mains in which we enforce the coupled fluid-fluid transmission conditions (see (2.31) on
page 45) and the interface represented by the ventricle wall were the realistic displacements
are imposed. In what follows the first one is denoted by ΣFFI , while the second interface is
indicated as ΣALE(t).

Let Ω1(t) ⊂ Rd be a moving domain and let be Si,j(t) ⊂ Rd−1 co-dimensional surfaces
representing the heart valves, where the subscript i = o, c stands for the open and closed
configuration, and j = m, a for mitral and aortic valves. The immersed surfaces are time-
dependent, as well. Hence the first computational sub-domain is Ω1(t)

def
= Ωf (t) ∪ [Sj,o(t) ∪

Sj,c(t)], where Ωf (t) is the blood fluid domain. The domain Ω1(t) is separated from a fixed

domain Ω2 by the interface ΣFFI , i.e. ΣFFI

def
= ∂Ω1(t) ∩ ∂Ω2, supposed to fixed. Then let

define Γ1(t)
def
= ∂Ω1(t)\[ΣFFI∪ΣALE(t)] and Γ2

def
= ∂Ω2\ΣFFI . The sketch of the computational

domains is shown in Figure 6.1.
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Figure 6.1: Sketch of the ventricle-valves-aorta domains.

If we combine the fluid-fluid model (2.2)-(2.4), with the fluid equation (4.1) for valves
model and the Navier-Stokes equation (5.10) in the ALE formalism, our problem reads now:
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Find the velocity u1 : Ω1(t)× R+ → Rd and the pressure p1 : Ω1(t)× R+ → R such that





ρ∂tu1|Â + ρ(u1 −w1) · ∇u1 −∇ · σ(u1, p1) +
∑

i,j

Ri,j(u1 −w1)δSi,j = 0, in Ω1(t),

∇ · u1 = 0, in Ω1(t),

u1 = 0, on Γ1(t),

(6.1)

and find the velocity u2 : Ω2 × R+ → Rd and the pressure p2 : Ω2 × R+ → R, such that




ρ∂tu2 + ρu2 · ∇u2 −∇ · σ(u2, p2) = 0, in Ω2,

∇ · u2 = 0, in Ω2,

u2 = 0, on Γ2.

(6.2)

The solutions in the two sub-domains are coupled through the usual kinematic and kinetic
conditions: {

u1 = u2, on ΣFFI ,

σ(u2, p2) · n2 = −σ(u1, p1) · n1, on ΣFFI ,
(6.3)

with n1, n2 the outward-pointing unit normal vectors on ∂Ω1(t) and ∂Ω2 respectively. The
velocity of the domain Ω1(t) is defined as w

def
= ∂tÂ(x̂, t), for all x̂ ∈ Ω̂1, the Lagrangian

counterpart of Ω1(t). For each surface Si,j(t), we denote by δSi,j , the Dirac measure and
by Ri,j , the associated resistance, representing the dissipation due to the presence of the
immersed surface. Note that the second fluid problem (6.2) is written in a total Eulerian
formalism.

REMARK 6.1
It’s worth noticing that with the ALE formulation (6.1), the valves move with the fluid mesh,
i.e Ri,j(u1 −w)δSi,j . The movement of the resistive surfaces Si,j(t) is not related to a phys-
ical velocity of the valves. Compared to the deformation of the heart, the deformation of the
resistive surfaces is relatively moderate and this approximation is reasonable in the frame-
work of this simplified model.

The time splitting and the space discretization are based on the Nitsche’s interface
method discussed in Chapter 2. The discretization of the Fluid sub-problem 1 has to ac-
count for the time-dependent moving domain and for the pressure discontinuity on the im-
mersed surfaces. Hence, both velocity and pressure approximations will be continuous at
inter-element boundaries, while the pressure will be discontinuous on the faces of the im-
mersed surfaces Si,j(t).

Let be {T1,h(t)}0≤h≤1 and {T2,h}0≤h≤1 two families of regular finite element triangulation
for Ω1(t) and Ω2 respectively, with diameter h. The triangulation {T1,h(t)}0≤h≤1 is conforming
on the immersed surfaces representing the valves.

Let X1,h denote an inf-sup stable, conforming finite element approximation of the spaces
(5.13) in Ω1(t). Then we denote with M1,h a finite element approximation of (5.14) dis-
continuous on the immersed surfaces, to let the pressure jump (we refer to [FGM08] for a
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detailed analysis on discontinuous pressure space). Let W2,h × Q2,h be an inf-sup stable
and conforming finite element approximation of [H1(Ω2)]d × L2(Ω2).

Then let be V1,h = X1,h ∩ XΓ, with Γ = ∂Ω1(t)\ΣFFI , where XΓ(Ω1(t)) is the space of
the X−functions vanishing on a part Γ of ∂Ω1(t). We define also the space V2,h = W2,h ∩
[H1

Γ2
(Ω2)]d, where H1

γ(Ω2) is the space of H1(Ω2)−functions vanishing on a part γ of ∂Ω2.

As regards the time discretization, a backward Euler scheme is used and the non-linear
terms are linearized with a standard semi-implicit approach. Let δt def

= T/N denote the time
step size, the interval of interest is (0, T ), N ∈ N+ is a given integer and xn ≈ x(nδt) with
0 ≤ n ≤ N . The resulting fully discretized explicit scheme is presented in Algorithm 6.1.

ALGORITHM 6.1 (Explicit staggered scheme with RIS model and ALE formulation)

1. Find (un1,h, pn1,h) ∈ X1,h ×M1,h satisfying the essential boundary conditions and
such that

A
1,Â,δt[u

n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] +B1,δt[u

n+1
1 ,v1,h]

+C1[un−1
1,h ; (un1,h,u

n−1
2,h ),v1,h] +

γµ

h

∫

Σ
(un1,h − un−1

2,h ) · v1,h

+

∫

Σ
σ(un−1

2,h , p
n−1
2,h ) · n2v1,h +

∑

i,j

Rni,j

∫

Si,j
(un1,h −wn

1,h) · v1,h = 0, (6.4)

for all (v1,h, q1,h) ∈ V1,h ×M1,h. With the resistances

Rnc,j = Roff,j(1−δnc,j)+Ron,jδ
n
c,j and Rno,j = Ron,j(1−δnc,j)+Roff,jδ

n
c,j , for j = m, a;

2. Find (un2,h, pn2,h) ∈W2,h ×Q2,h satisfying the essential boundary conditions and
such that

A2,δt[u
n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)] + S(pn2,h, q2,h)

+C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),v2,h] +

γµ

h

∫

Σ
(un2,h − un1,h) · v2,h

−
∫

Σ
σ(un−1

2,h , p
n−1
2,h ) · n2v2,h −

∫

Σ
(un2,h − un1,h) · n2q2,h = 0 (6.5)

for all (v2,h, p2,h) ∈ V2,h ×Q2,h.

3. Go to next time-step.
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In the sub-problem 1, the form A
1,Â,δt[u

n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)] is defined as

A
1,Â,δt[u

n−1
1,h ; (un1,h, p

n
1,h), (v1,h, q1,h)]

def
=

ρ

δt

(∫

Ωn

un1,h · v1,h −
∫

Ωn−1

un−1
1,h · v1,h

)

+ ρ

∫

Ωn

(un−1
1,h −wn

1,h) · ∇un1,h · v1,h

− ρ
∫

Ωn

(un1,h · v1,h)∇ ·wn
1,h + 2µ

∫

Ωn

ε(un1,h) : ε(v1,h)

−
∫

Ωn

pn1,h∇ · v1,h +

∫

Ωn

q1,h∇ · un1,h.

With respect to the form (5.20) of Chapter 5, the last integral, the Temam’s trick, is
now included in C1[un−1

1,h ; (un1,h,u
n−1
2,h ),v1,h] which has the expression (2.13). The term

B1,δt[u
n
1,h,v1,h] is the weakly consistent term (5.26), introduced in Chapter 5 to get

the energy equality in a moving domain. As regards the second fluid problem, the
form A2,δt[u

n−1
2,h ; (un2,h, p

n
2,h), (v2,h, q2,h)] has the same expression as in (2.23), and the

term C2[(un−1
2,h ,u

n−1
1,h ); (un2,h,u

n
1,h),v2,h] is defined in (2.14). The pressure stabilization term

S(pn2,h, q2,h) has the form (2.30).

6.3 Numerical simulations

In this section, first we discuss some aspects of the computational mesh and of the
imposed displacement. Then we present the heart-valves-aorta numerical simulations when
the contraction of the left ventricle is induced by imposed realistic displacements.

6.3.1 Towards a finite element mesh of a complete heart geometry

The numerical simulations presented in this chapter and in Section 4.3.3 of Chapter 4
have been performed employing finite element meshes, which are part of a complete heart
geometry. The original geometry of the heart has been acquired by Zygote Media Group
[Zyg11]. This geometry has been obtained from the post-processing of highly resolved CT
(Computer Tomography) data. A joint work of accurate re-modeling and re-meshing have
been performed by students of M∃DESIM and REO teams at Inria making use of the soft-
ware 3-Matic [Mat13] and Gmsh [GR09].

The heart mesh has the same dimension as for an adult healthy man. It has a realistic
spatial orientation and location in order to be matched with other physiological structures,
as lungs, bones or a thorax mesh.

The volumetric mesh of the two ventricles has been combined with the surface mesh of
the two atria. The volumes are constituted by tetrahedra and the surfaces by triangles. The
ventricles mesh has been used to perform biomechanical simulations of the heart and the
atria meshes are employed to obtain realistic electrocardiograms. The complete heart mesh
has allowed to take in consideration the field of the cardiac fibers on the entire geometry
and simulate the complete electrical activity of the heart.
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We aim to drive the analysis towards the coupling of the blood dynamics with the others
model performed with this geometry. In this perspective we have included the aorta and the
heart valves. The aorta present also a volumetric thick structure while the valves are just
thin surfaces. They were re-modeled and re-meshed in order to be adapted with the rest of
the geometry. A final geometry including ventricles, atria, valves and aorta is obtained and
illustrated in Figure 6.2. From this geometry we extract the computational mesh used for our
simulations. It is present in Section 6.3.3 and illustrated in Figure 6.4.

Left Ventricle

Right Ventricle

Aorta

Right atrium

Left atrium

Figure 6.2: Complete heart mesh: back view (left) and front view (right).

6.3.2 The electro-mechanical model of the heart

The imposed displacements employed in this chapter are the result of biomechanical
simulations in both the ventricular cavities of the heart geometry illustrated above. The sim-
ulations have been performed by the Inria team M∃DISIM. The reader can find an exhaustive
and detailed exposition of the model and the obtained numerical results in [SMCCS08] and
[Imp13, Chapter 1], here we sketch its guideline.

In the above mentioned works, the kinematic of the heart is described in a total La-
grangian formalism by the equation of the elastodynamics

ρ̂s∂
2
ttd̂s −∇x̂ · (F̂sΣ̂) = 0, in Ω̂s, (6.6)

where d̂s and ρ̂s are the displacement and the density of the solid. The term F̂s = ∇x̂ϕ̂s,t
is the deformation gradient of the solid and the symmetric tensor Σ̂ is called second Piola-
Kirkoff tensor. This is related to the displacement through an appropriate constitutive law
(see, e.g. [Tal94]) that take into account the nature of the material of the cardiac muscle.
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The second Piola-Kirckoff tensor is additively decomposed in two parts (see also on this
topics in [GK10, NP04]), i.e. Σ̂ = Σ̂pas + Σ̂act, with Σ̂act active and Σ̂pas passive stress-
strain. The first tensor is the purely mechanical part and is derived from an elastic potential.
This one has been chosen of exponential type and exhibits a transverse isotropic character,
i.e. the mechanical properties are the same along a plane.

The second tensor defined as Σ̂act = σ1D(u)f ⊗ f , is the strain drawn by the interplay
between the electrical excitation u and contraction forces. It indicates the active tissue re-
sponse along the direction f of the fibers composing the cardiac muscle. This active part of
the strain tensor is considered to be purely anisotropic, since its property depends on the
fibers direction. In this model the electrical excitation is considered as an external stimulus.

In each cavity, left and right ventricle, a two R-C block Windkessel model takes into
account for the neglected part of the cardiovascular system. The first block corresponds to
the arterial pressure while the second block to the distal pressure. The opening/closure of
the valve is dictated by an Ohm’s law-like that relates the blood flow and the pressure in
the ventricle, atrium, and arteries by mean of constant resistance coefficients. A mid-point
scheme is adopted for the time discretization of the tensors and other internal variables,
thus ensuring a correct energy balance of the complete discretized system (see [CTMS12,
Gon00]).

The simulations are performed for both right and left ventricle, but in Figure 6.3 we illus-
trate just the contraction of the left ventricle, which is that one used in our fluid simulations.
The physiological parameters follow the standard known values of an healthy heart. The
magnitude of the displacement and the ventricular volume over a cardiac cycle are depicted
as well. In this simulation an entire cardiac cycle fires for 0.8 s. Before the actual employment
of the displacements a linear interpolation in time has been performed in order to adapt the
results of the mechanical simulations into the fluid solver.

REMARK 6.2
We note that according to the electro-mechanical simulations, Figures 6.3b and 6.3c, the
cardiac cycle starts during the passive filling of the left ventricle, after the atria contraction.

6.3.3 Computational domain for fluid modeling and boundary conditions

Domain and displacement The computational domain for the fluid model is split in
two non-overlapping sub-domains as illustrated in Figure 6.4. With respect to the simula-
tions of the previous chapter, the ventricle domain has replaced the aortic root domain. The
aortic arch domain is unchanged.

Fissured surfaces are introduced in the domain Ω1(t) to catch the pressure jump across
the valves during closed status. Whereas the degrees of freedom of the velocity are
matched together to have continuity across the fissure, further details are given in Section
4.3.1, page 99. The mitral valve has been considered in its open and closed configurations
(Figure 6.5a) while the aortic valve only in the open configuration (Figure 6.5b).

The ventricular wall mesh is the interface ΣALE(t) between the fluid and the solid. In the
green parts of the domain, corresponding to the left atrium and the aortic root, the fluid
displacement d̂f is implicitly given in the mesh update step of the ALE problem by solving
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(a) Deformation of the left ventricle at t= 0.283 s.
Left side view.
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Figure 6.3: The electro-mechanical model of the heart. Courtesy of M∃DISIM team. Simu-
lations results from [Imp13].
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Figure 6.4: Computational fluid domain.

the harmonic extension problem




−∆d̂f = 0, in Ω̂1,

d̂f = 0, on Σ̂FFI ∪ Γ̂in,

d̂f = αd̂s, on Σ̂ALE ,

(6.7)

where d̂f (0) = d̂f ,0. The term d̂s is the displacement coming from the mechanical simulation
described in Paragraph 6.3.2 and imposed on the ALE interface, the red part on Figure 6.4.

As preliminary test to set up all the tools presented in the thesis, the displacement ap-
plied on the ventricle wall, d̂s has been scaled with a coefficient α = 0.2. This let to avoid
too strong distortions of the mesh. The extension problem (6.7) defines the displacement
filed in the fluid domain, compatible with the solid displacement at the fluid-solid interface
ΣALE(t). The (6.7) is arbitrary, others laws could be considered as well. Note that the exten-
sion problem is computed in the non-deformed configuration with a Lagrangian formalism.
It’s worth noticing that the unphysical choice of the scaling parameters α, is related to choice
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(a) Mitral valve: position in the left ventricle (right), open surface (middle) and closed surface.

(b) Aortic valve: position in the left ventricle (right) and closed surface (left).

Figure 6.5: Heart valves meshes.

of the harmonic extension which is known to give very distorted mesh for large boundary
displacement. We choose to fix the inlet Γin and we impose zero displacement in the fluid-
fluid interface as well, since the ΣFFI is coupled with the Ω2 which is a fixed domain. Notice
that as observed in the Remark 6.1, the extension problems is applied to all domain Ω̂1 even
included in the immersed resistive surfaces.

The coupling between the two domains is achieved via master/slave approach that han-
dles the communications between the two fluid solver. At each time step, the velocity and
the stress tensor is exchanged between the two fluid domains. We have introduced this
approach in Section 3.3.2, of the Chapter 3.

The fluid-solid interface ΣALE(t) is made by 3
.
019 nodes and The fluid-fluid interface

ΣFFI has 264 nodes. The domain Ω1(t) is made of 137
.
186 tetrahedral elements while Ω2

has 125
.
068 tetraedra.

Valves resistances and physical parameters In Chapter 4 the opening and closure
of the aortic valve was determined according activation/deactivation parameters with con-
stant value, i.e. Ron = 1 × 106 and Roff = 0. In this chapter the resistances vary according
to the following expressions. For the mitral valve we set
{
Ron,m = 1e04 + 1e06 · exp(− exp(−αm · (t− Tc,m))), δc,m = 1 (closed),
Roff ,m = 0 δc,m = 0 (open).

(6.8)
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and t is the time after the closing condition is started, i.e. when the flow though the mitral
valve is negative. In the same way for the aortic valves we let the resistances changing as

{
Ron,a = 1e05 + 1e06 · exp(− exp(−αa · (t− Tc,a))), δc,a = 1 (closed)
Roff ,a = 0, δc,a = 0 (open).

(6.9)

and t is the time after the closing condition is started, i.e. when the flow though the aortic
valve is negative. The logical variables δc,m and δc,a assume value 1 when a negative flow
acts on the immersed surface and value 0 when the valve is subjected to a positive pressure
difference (see (4.7) on pag. 97). The two time-constant Tc,m = 0.24 and Tc,a = 0.58 and
the two values αm = 40 and αa = 50, determining the slope of the Ron-curves, have been
fixed according the contraction of the ventricle. Their course over one cardiac cycle is dis-
played in Figure 6.6. This means that the valves close gradually owing an increasing of the
resistance when the closed configuration is in order. This is in contrast with the simulations
of Chapter 4 where a sudden closing has characterized the aortic valve. Note that we con-
sider a constant value for Roff . We can also express this parameter with a time-depending
decreasing function to simulate a slower opening of the valve.
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Figure 6.6: Course of the resistance activation parameters for closed valves status in the
ventricle-aorta test case.

The standard parameters of newtonian blood flow have been employed for the sim-
ulations which follow. The flow density is ρ = 1.06 g/cm3 and the dynamic viscosity is
µ = 0.04 poise. On the surface Γin representing a cut inside the left atrium, we impose a
constant pressure of Pin = 15

.
000 dyn/cm2 that is approximately 11.25mmHg. On the three

top arteries and in the descending aorta, the effects generated by the neglecting portion of
the cardiovascular system are modeled by the 0D-Windkessel model [VC06, WLW09]

CRd
dPp
dt

+ Pp = Q(Rd +Rp) + CRpRd
dQ

dt
.

In Table 6.1 we report the parameters defining the above ODE and employed for the simu-
lations of this chapter. Their dimensions are in cgs.
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Γa Γb Γc Γout
Rp (dyn · s · cm−5) 0.005×104 0.19×104 0.07×104 0.01×104

Rd (dyn · s · cm−5) 0.9×104 3.30×104 1.30×104 0.1×104

C (cm5 · dyn−1) 0.95×10−4 0.25×10−4 0.64×10−4 9.00×10−4

Table 6.1: Windkessel parameters used for aorta with imposed realistic displacement on
the ventricle wall.

We add the outflow stabilization term (4.10), on page 105, on all the outlets of the
domain Ω2 and on Γin as well. This term has been introduced in [BGH+09, MBH+11] to
avoid possible instability in the simulations caused by physiological back-flow phenomena.
The time step is 0.001 s, and 2 cardiac cycles were run.

6.3.4 Cardiac blood simulations with imposed displacements

Figures 6.7-6.11 illustrate the velocity streamlines and the elevated surface of the pres-
sure distribution in the longitudinal mid plane of the left ventricle and part of the aortic arch.
These results represent 8 time instants of the second cardiac cycle. In the first cardiac cycle
the solution is perturbed by the initial condition and is left out.

Figure 6.7 is a snapshot during the filling, when the mitral valve is open while the aortic
valve is closed. The pressure jumps appears between the left ventricle pressure and aortic
root.

Figures 6.8 represent two consecutive instants of time during the isovolumic contraction.
The mitral valve closes due to backflow and a pressure jumps appear on the immersed
surfaces between the left atrium and left ventricle as well.

As the pressure in the ventricle keeps growing, the aortic valves opens due to a positive
pressure difference, letting the blood flowing in the aorta. This is the case of the two time
instants during the ejection, illustrate in Figure 6.9.

In Figure 6.10 two snapshots during the isovolumic relaxation are shown. The left ven-
tricle is relaxing making the pressure to decrease. Due to the back-flow, the aortic valves
closes.

As the pressure in the ventricle keeps decreasing, the mitral valve opens due to a posi-
tive pressure difference, letting a new filling phase re-start. This is the snpashot reported in
Figure 6.11. Notice the good agreement of the solution along the fluid-fluid interface.

In the end, in Figure 6.12a the flow in the aorta is displayed. While Figure 6.12b illus-
trates the aortic pressure and the pressure in the left atrium and in the left ventricle. We can
remark the weak flow power due to the scaled displacement imposed in the ventricular wall.
Moreover the two isovolumic phases are smaller than the physiological one.

6.4 Final remarks

This chapter deals with the numerical simulations of the blood dynamics in the left ven-
tricle, where RIS models have been integrated for both aortic and mitral valves. This has
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(a) t = 900 s.

Figure 6.7: Velocity streamlines and pressure distribution (Filling).

been coupled via a staggered explicit scheme with the blood dynamics in the aorta, here
Windkessel models account for the neglected part of the cardiovascular system. From a
mathematical standpoint, an explicit fluid-fluid staggered scheme is considered and the sta-
bility of ALE formulation in Fluid problems 1 is reached adding a suitable weakly consistent
term (see Chapter 5)

To induce the contraction of the ventricular wall, we impose a scaled displacement com-
ing from an electro-mechanical simulation carried out in the same ventricular geometry. The
displacements are not calculated simultaneously with the fluid problem but they have been
a priori computed in a part of the geometry and for the rest an harmonic extension has been
employed. Hence, some issues arise:

1. The displacements have been scaled to avoid tetrahedra with negative measure.

2. Non-physiological fluid flow is generated in the left ventricle.

3. The Windkessel parameters has been sensitively increased to obtain satisfactory
pressures.

With the results presented in this chapter, some interesting considerations can be pointed
out:

1. The RIS method is a strong and robust method for heart valves. The resistance mag-
nitude can be easily handled to adapt the valve model to the particular problem.
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(b) t = 1011 s.

Figure 6.8: Velocity streamlines and pressure distribution (Isovolumic contraction).
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(b) t = 1210 s.

Figure 6.9: Velocity streamlines and pressure distribution (Ejection).
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Figure 6.10: Velocity streamlines and pressure distribution (Isovolumic relaxation).
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Figure 6.11: Velocity streamlines and pressure distribution (Filling).
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2. Two different RIS valve models can be easily managed.

3. The fluid-fluid coupled problem has shown a certain reliability in coupling more com-
plex fluid problem.

We plan to use the RIS model for the numerical simulations of cardiac fluid-structure
interaction problems where a precise description of the leaflet bio-mechanics is not required
and the fluid-fluid coupled problems is a good tool to take into account the blood dynamics in
the aorta. A fluid-structure interaction problem can be consider to model the blood dynamics
in the aorta, as well.

Although this topic is still controversial, it is likely the turbulence model has to be consid-
ered in the ventricle (see e.g. [CMN14]).

The final goal of heart modeling is to simulate the total heart function by integrating
cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together,
from a mathematical standpoint as well as in the computational framework. This will be the
natural continuation of this work.
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What, what was that you tried to say?
Everything in its right place.

"Everything In Its Right Place" by Radioahead.





CHAPTER 7
Obtained results and perspectives

The main findings and conclusions we have drawn from this work are given in this last chap-
ter. Innovative tools developed in this thesis bring to new questions and further objective. A list of
conclusions and perspectives by chapter is proposed.
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7.1 General conclusion

Many cardiovascular diseases are due to disorders which affect the heart functioning.
The mathematical problems that arise on this subject are numerous, this justifies a wide
literature on this field. In this thesis we tried to contribute to this vast project whose ultimate
aim is to produce simulations - with reasonable computing time and realistic results - that
can help physicians to understand the functioning of the cardiovascular system.

We hope with this thesis to have offered innovative results and relevant reflections in
order to shed light on the multiphysic problems arising in the cardiovascular system. This
interdisciplinarity represents a difficulty for this subject and it requires knowledge in different
areas.

This thesis has been the occasion to develop and use techniques or tools based on a
variety of mathematical theories. Some objective, pointed out in the introduction and in the
overall chapters of the thesis, have been achieved:

1. Models coupling: we have presented several fluid-fluid coupling strategies validated
by a large number of numerical experiments.

2. Solver coupling: a master/slaves code - started with the beginning of this thesis -
has been developed and used to perform all the simulations presented.
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3. Finite element solver: with this thesis we have widely contributed to a collaborative
code to solve different aspects of the cardiovascular system.

4. Geometry: several 2D/3D geometries have been managed and we have contributed
to create a finite element mesh of a complete heart.

5. Cardiovascular numerical simulations: exhaustive numerical experiments have
been performed to validate the numerical methods discussed and several numerical
simulation have been performed giving satisfactory results.

The topics dealt in this work has been gathered in two parts. The first one introduces the
fluid-fluid coupled problem and its numerical validation, the second one mainly deals with
numerical examples on cardiac hemodynamics. In the following we summarize the main
achieved results and the further perspective for each chapter.

7.2 Part I: Fluid-Fluid Interaction problem

7.2.1 Chapter 2 and Chapter 3

Conclusions This two chapters deal with several loosely coupled strategies for fluid-
fluid interaction problems coupling the incompressible Navier-Stokes equations. Basically,
this approach extends the loosely coupled schemes introduced in [BF09, BF13] for FSI
problems, based on the Nitsche’s interface method, to fluid-fluid interaction problems.

The methods rely on explicit Robin-Robin treatment of the interface coupling and on a
suitable weakly consistent artificial compressibility on the interface. A specific formulation
of the convective terms lead to different formulation: static pressure (standard and skew-
symmetric) and total pressure formulations.

The energy stability has been proved for each formulation. Energy stability cannot a
priori be guaranteed for the standard static pressure formulation (Algorithm 2.3 on page 45).
It can be recovered with a static pressure skew-symmetric formulation (Algorithm 2.4 on
page 50) and with the total pressure formulation (Algorithm 2.6 on page 52). Unfortunately,
the skew-symmetric formulation is not consistent with the original coupled problem. For
the total pressure formulation, an a priori energy estimate guaranteeing the stability of the
splitting (Algorithm 2.6) has been derived. Exhaustive numerical examples have shown the
accuracy of the proposed methods in an idealized aorta geometry.

The methods and the results presented in these chapters have generated the
manuscript [FGS14] submitted for publication in SIAM Journal on Scientific Computing in
2013.

Perspectives Additional numerical examples could be performed: for example numer-
ical simulations of a computational domain split in more than 3 sub-domains considering
also Algorithm 2.4 and Algorithm 2.6.

The current developments are aimed at blood flow modeling, a major concern is with the
extension to FSI problems. In such cases, there are additional boundary terms arising over
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the FSI interface. In this case we can use Algorithm 2.3, which is based on static pressure
and give very good results (even if we were not able to prove its stability). Otherwise, if
the total pressure formulation (Algorithm 2.6) is used in a FSI context, the load should be
explicitly computed via face-wise integration. In-deep analysis on this aspect can be pointed
out.

Code coupling has been an important motivation of this chapter and of this work. In the
simulations of Chapter 3 a computation saving of about 30% has been noticed when using
a staggered scheme, compared to a monolithic solution over one cardiac cycle. Further
analysis on this aspect should be in order.

7.3 Part II: Toward cardiac hemodynamics

7.3.1 Chapter 4

Conclusions A reduced model for heart valves, recently developed in [Ast10,
AHSG12], has been discussed in this chapter. It consists of modeling the valves by the 3D
shape of the open/closed configuration acting as resistance in the fluid. A new dissipative
term is added in the Navier-Stokes equations. The mechanics of the valve is therefore ne-
glected in favor of a simplified two-state representation, where the active configuration (open
or closed) evolves in time according to the local fluid dynamics conditions. At the discrete
level, a particular finite element formulation, originally proposed in [FGM08], is adopted to
accurately capture the pressure jump across the valve and to avoid unphysical results. The
discontinuity on the geometry is obtained introducing a fissure in the computational mesh.

In the framework of the cardiovascular compartments coupling, the RIS model is a pro-
totype for left ventricle hemodynamics discussed in the Chapter 6. Various experimental
tests have been performed to illustrate the efficiency and the flexibility of the RIS model in
the framework of the coupled fluid-fluid problem. In particular, we have presented numerical
simulation on an idealized aorta and on an aorta geometry derived from medical imaging.

Perspectives The valve resistances assume only two values, a great number (closed
status) or zero (open status). As done in Chapter 6 (see (6.9) and (6.8) on page 149), it can
be interesting carry out more numerical experiments with different values of the resistances.
For instance, we can use a time-increasing function for Ron - which closes the valve - and
time-decreasing function for Roff - which opens the valve.

Different values on the resistances can be also employed to simulate particular patho-
logical cases. In fact, the RIS valve model seems to allow a certain flexibility in reproducing
also pathological states of the valves. Pathologies such as stenosis or regurgitation can be
easily included either in the mathematical model or directly in the computational geometry.
In this chapter we use a great value of the resistance to simulate the stenotic leaflet, while
keeping the same valve geometry with respect to the normal case. In this perspective, it can
be interesting to present additional numerical examples in order to consider the pathology
directly in the computational geometry, i.e. providing a valve mesh from a patient specific
model.
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7.3.2 Chapter 5

Conclusions The goal of this chapter was to obtain a provably stable algorithm for
fluid flow in moving domain described with an ALE formalism. Without requesting any Ge-
ometric Conservation Law ([EGP09, FN99, TL79]), the stability is reached adding a weakly
consistent term, (5.26) on page 131, to the original discretized formulation. The stabilization
technique proposed is related to the particular time discretization adopted.

A numerical example with large displacements (Section 5.5) has been performed in
which the ALE non-stabilized and stabilized scheme (Algorithm 5.1 vs. Algorithm 5.2) are
compared. The consistent terms added for the stability did not affect significantly the results
obtained with a standard scheme. The stability of the standard ALE formulation, is due in
practice to the artificial dissipation introduced by the Euler scheme and the PSPG term
(Figure 5.6a and 5.6b on page 135). In fact, by decreasing the effect of these dissipations
(Figure 5.6c) , the new ALE formulation remains stable whereas the standard scheme could
be unstable.

Perspectives As first example we proved the importance to add the ALE stabilization
term (5.26). Further numerical examples remain to be performed.

7.3.3 Chapter 6

Conclusions This last chapter presents numerical simulations of the ventricle-valves-
aorta blood dynamics. A staggered explicit scheme, presented in Chapter 2, has been em-
ployed to couple the fluid model in the ventricle with the fluid model in the aorta. The ALE
stabilized formulation for moving domain, analyzed in Chapter 5, has been employed in
Fluid problem 1. RIS models, discussed in Chapter 4 have been integrated to simulate the
behavior of both aortic and mitral valves.

To induce the left ventricle contraction we use realistic displacement imposed on the ven-
tricular wall, coming from a electro-mechanical simulation carried out in the same ventricular
geometry. The displacements are not calculated simultaneously with the fluid problem but
they have been a priori computed in a part of the geometry and for the rest an harmonic
extension has been employed ((6.7) on page 148). Hence, a scale coefficient was needed
to avoid to much distortion of the mesh elements.

Perspectives The use of an imposed displacement joint to the harmonic extension has
shown its physiological limits in the numerical example illustrated. Analytical displacement
or a realistic displacement applied on all the boundary of Fluid 1, can generate more realistic
fluid flow in the aorta or in the ventricle. Further investigations on the parameters (e.g. valves
resistances, Windkessel parameters) can be performed as well.

It is interesting to couple more than 2 fluids in the example of this chapter. In other words
the fluid dynamics in the left ventricle can be coupled with the fluid dynamics in the aortic
root - with RIS valve model - and this last one coupled with the aortic arch blood flow.

The FSI problem in such example is the next step. In term of mathematical model and
software development, a next challenge can be to consider a FSI problem in the left ventricle
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in which the heart valves are accounted via RIS methods. By mean of suitable fluid-fluid
schemes, this can be coupled with an FSI problem in the aorta where Windkessel models
account for the discarded part of the cardiovascular system. All numerical examples can be
supported through an accurate mathematical analysis.
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