
HAL Id: tel-01288526
https://theses.hal.science/tel-01288526v1

Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low power architecture for fall detection system
Thi Khanh Hong Nguyen

To cite this version:
Thi Khanh Hong Nguyen. Low power architecture for fall detection system. Other. Université Nice
Sophia Antipolis, 2015. English. �NNT : 2015NICE4093�. �tel-01288526�

https://theses.hal.science/tel-01288526v1
https://hal.archives-ouvertes.fr

UNIVERSITE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

T H E S E

pour obtenir le titre de

Docteur en science

De l’Université Nice-Sophia Antipolis

Mention:

Présentée et soutenue par

Thi Khanh Hong NGUYEN

Low power architecture for Fall Detection System

Thèse dirigée par Cecile BELLEUDY et Van Tuan PHAM

Soutenue le 18 Novembre 2015

Jury:

Mme. Nathalie Julien Professeur à l’Université Rapporteur

de Bretagne Sud

M. Bertrand Granado Professeur à l’Université de Rapporteur

Pierre and Marie Curie

Mme. Cecile BELLEUDY Maitre de Conférences, HDR, Directrice
 Université Nice Sophia Antipolis

M. Van Tuan PHAM Associate Professeur, Co-directeur
 Université de Science et Technologie,

Université de Da Nang.
M. François Brémond Directeur de recherche de INRIA Examinateur

i

Contents

Abstract .. ix

Résumé .. xi

Acknowledgement ... xiii

Chapter 1. Introduction .. 1

1.1 The healthcare systems ... 2

1.1.1 The healthcare system based on sensors .. 2

1.1.2 The healthcare system based on audio ... 4

1.1.3 The healthcare system based on communication network 4

1.1.4 The healthcare system based on intelligent video surveillance 5

1.2 Fall Detection Approaches. .. 6

1.2.1 Classification Fall Detection Approach ... 6

1.2.2 Efficient Architecture for Fall Detection on heterogeneous platform 8

1.3 Research questions ... 11

1.4 Thesis contributions .. 12

1.5 Publications .. 14

1.5.1 International journal publication .. 14

1.5.2 International conference’s publication... 14

1.5.3 Other publications .. 15

1.6 Thesis Organization .. 15

Chapter 2. Fall Detection Algorithm .. 17

2.1 Overview of Fall Detection algorithm .. 17

2.1.1 Definition of falling event ... 17

2.1.2 Fall Detection algorithms .. 18

2.2 Proposed Fall Detection Algorithm .. 22

2.2.1 Object Segmentation .. 23

2.2.2 Object Enhancement .. 25

2.2.3 Object Feature Extraction .. 28

2.3 Recognition event ... 36

2.3.1 Threshold-based algorithm .. 36

ii

2.3.2 Neural Network algorithm ... 37

2.3.3 Hidden Markov Model algorithm. ... 39

2.4 Evaluation ... 40

2.4.1 DUT-HBU database ... 40

2.4.2 Performance measurement ... 44

2.4.3 Performance of the system based on Hidden Markov Model 51

2.4.5 Analysis of error recognition ... 54

2.5 General discussion .. 57

2.5.1 Performance under real-life conditions ... 58

2.5.2 Usability ... 58

2.6 Conclusion .. 58

Chapter 3. Power and Time Model Methodology for Fall Detection System 61

3.1 Power and energy consumption characterization and estimation in MPSoC 62

3.2 Power consumption modeling approaches ... 63

3.2.1 Low-level power consumption estimation techniques... 63

3.2.2 High-level power consumption estimation techniques .. 67

3.3 Execution time estimation approaches ... 73

3.3.1 Static timing estimation ... 73

3.3.2 Dynamic timing estimation .. 74

3.3.3 Timing estimation tools ... 75

3.4 Heterogeneous platform: Zynq7000 AP SoC platform .. 77

3.4.1 Motivation .. 77

3.4.2 Description of Zynq-7000 AP SoC .. 78

3.4.3 The Performance Monitor Unit (PMU) ... 79

3.5 Power/execution time models for video applications ... 81

3.5.1 Power estimation methodology for Fall Detection System 81

3.5.2 Power measurement ... 83

3.5.3 Execution time measurement ... 85

3.6 Proposed power model of the Fall Detection System on heterogeneous platform 86

3.6.1 Power models for processor ... 86

3.6.2 Power models for hardware ... 95

3.6.3 Power consumption models for heterogeneous architecture 97

iii

3.7 Execution time models for heterogeneous platform ... 97

3.7.1 Execution time models for processor .. 98

3.7.2 Times models for hardware acceleration (FPGA) ... 100

3.8 Conclusion .. 101

Chapter 4. Low Cost Architecture for Fall Detection System ... 103

4.1 High level synthesis tools based on C/C++ specification .. 104

4.1.1 CATAPULT .. 104

4.1.2 Program In Chip Out (PICO) tool’s ... 105

4.1.3 GAUT, SPARK tools ... 105

4.1.4 Vivado HLS tool .. 106

4.2 Low power techniques .. 108

4.3 Video applications and Fall Detection System implemented on various platforms 111

4.4 Overview of low cost architecture methodology .. 114

4.5 Software development and testing .. 116

4.5.1 Case study .. 116

4.5.2 Primary implementation and experiment results for the Fall Detection System

on software .. 117

4.5.3 Performance evaluation for the Fall Detection System 120

4.6 Hardware development and testing .. 124

4.7 Application of parallelism techniques .. 124

4.7.1 Intra-task parallelism technique ... 125

4.7.2. Inter-task parallelism technique .. 130

4.8 Design Space Exploration Architecture for Fall Detection System 131

4.8.1 Methodology .. 132

4.8.2 Model results ... 134

4.9. Conclusion ... 136

Chapter 5. Conclusions and perspectives ... 139

5.1 Conclusion .. 140

5.2 Perspectives .. 141

5.2.1 Improve the Fall Detection Algorithm .. 142

5.2.2 Power/execution time optimization ... 142

5.2.3 Camera network ... 143

iv

5.2.4 Solutions for combination of many equipments for the Fall Detection System 143

Appendix .. 145

Bibliography ... 147

v

Figures

Figure 1.1-A model of the healthcare system based on sensors stuck on human body [8]. 3
Figure 1.2-Welfare Techno House system [9].. 3
Figure 1.3-A circular microphone array used to automatically detects falling actions[6] 4
Figure 1.4-A possible communication pathways for a laboratory test [10] 5

Figure 1.5-A person is monitoring the healthcare camera in a hospital [12] 6
Figure 1.6-An outline of the different chapters, research questions and contributions in this

thesis ... 16

Figure 2.1-A typical fall while walking .. 19
Figure 2.2-Some typical types of non-fall action ... 19
Figure 2.3-Block diagram of Fall Detection System. ... 20
Figure 2.4-Detecting the fall by video analysis .. 20

Figure 2.5 (a) Estimated background; (b) Frame input; (c) Background Subtraction method;

(d) Adaptive GMM method ... 25
Figure 2.6-Structuring elements in Mathematical morphology ... 26

Figure 2.7-Example of Mathematical morphology operations[62]. ... 27
Figure 2.8-Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch,

[64] (d) Elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) Complete

object contour, (h) control points on object contour, (i) object silhouette. 29

Figure 2.9-Vertical angle .. 31
Figure 2.10-Ellipse model for fall action ... 32
Figure 2.11-Current angle of object... 33

Figure 2.12-Motion History Image. (a) MHI of slow action (b) MHI of fast action 33
Figure 2.13-The variable of coefficient of motion .. 34

Figure 2.14-Deviation of the angle (CTheta) .. 35
Figure 2.15-Eccentricity ... 36
Figure 2.16-The position of falling compared with angles of camera 40

Figure 2.17-Daily activities look like falling ... 43
Figure 2.18-Confusion matrix .. 44

Figure 2.19-Evaluating TPR and TNR of ALL three tests (FS1, SN1) 46

Figure 2.20-Evaluating TPR and TNR of ALL three tests (FS1, SN2) 48
Figure 2.21-Evaluating TPR and TNR of ALL three tests (FS2, SN1) 49
Figure 2.22-Evaluating TPR and TNR of ALL three tests (FS2, SN2) 50

Figure 2.23-Evaluating three tests for four different models ... 51
Figure 2.24-Statistical results following to Recall (RC) [%], Precision (PR) [%] and

Accuracy (Acc) ... 52
Figure 2.25-Recognition performance derived from .. 55
Figure 2.26-Extracted object under not good environment’s brightness 56

Figure 2.27-Object is obscured some parts of body ... 56
Figure 2.28-Many objects are moving at the same time .. 57
Figure 2.29-Comparison the five features of face fall and sitting action 59

Figure 3.1-(a) Experimental Setup for current measurement, (b) The simple current mirror.

DUT is the Device Under Test [116] .. 70
Figure 3.2-The Functional Methodology[121] ... 71

vi

Figure 3.3-Zynq-7000 All Programmable SoC Overview[144] ... 79
Figure 3.4-Functional Level Power Analysis Methodology [147] ... 82

Figure 3.5-Integrated Texas Instruments digital power controller on Zynq-7000 Ap SoC 83
Figure 3.6-Measurement environment for Zynq-7000 AP SoC platform 84
Figure 3.7-Power Measurement probes across jumper for Zynq-7000 AP SoC 85
Figure 3.8-Framework for extracting power models ... 87
Figure 3.9-Functional Blocks of Dual Core ARM Cortex A9 processor 89

Figure 3.10-Power models of Object Segmentation with 320x240 input images on SW 90
Figure 3.11-Power models of Mathematical Morphology with 640x480 input image on SW . 90
Figure 3.12-The power consumption and cache miss rate of Object Segmentation and

Mathematic Morphology with various resolutions ... 91
Figure 3.13-The power consumption and Instruction per Cycle (IPC) of Object Segmentation

and Mathematic Morphology with various resolutions .. 92
Figure 3.14-Execution time validation of Object Segmentation task 99

Figure 3.15-Execution time validation of Filter task (Mathematic Morphology) 99

Figure 4.1-Our low cost architecture design methodology for Fall Detection System 115
Figure 4.2-Comparison execution times at two image resolutions on one core 120

Figure 4.3-The results of Template Matching Algorithm with resolution_320x240 122

Figure 4.4-The performance comparison of two resolutions ... 123
Figure 4.5-Design Space Exploration for Fall Detection System .. 132
Figure 4.6-Architecture exploration for Fall Detection System... 135

vii

Tables

Table 2.1-Classifier of videos according to activities .. 41

Table 2.2-Glossary of action classification .. 42
Table 2.3-Performance of the Model 1 ... 46
Table 2.4-Performance of the Model 2 ... 47
Table 2.5-Performance of the Model 3 ... 48
Table 2.6-Performance of the Model 4 ... 49
Table 2.7-Classifier of videos according to activities .. 53

Table 3.1-Model parameters .. 87

Table 3.2-Power model of Object Segmentation and Filter task ... 89
Table 3.3-Maximum and average errors for power consumption model on processors 94
Table 3.4-The power consumption on FPGA ... 95
Table 3.5-Hardware resources and power consumption on different input image resolutions

 .. 96

Table 3.6-The validation of power consumption model on FPGA ... 97
Table 3.7-Estimation of Execution time on hardware for video applications 100

Table 4.1-Fall Detection System implements on different frequencies 118

Table 4.2-The Power/Energy of Fall Detection System on SW .. 119

Table 4.3-Classification of videos .. 121

Table 4.4-Confusion matrix .. 122
Table 4.5-The relationship between Accuracy performance with resolution and frame rate of

input video .. 123
Table 4.6-Summary the results on hardware ... 124
Table 4.7-Task regroups Architecture 2 with 320x240 resolutions 126

Table 4.8-The relationship of power and energy per frame at different frequencies 126
Table 4.9-Example of frequency for different frame rate ... 126

Table 4.10-Task regroups case 4 .. 127
Table 4.11-The estimation power/energy per frame at different frequencies (A4) 127
Table 4.12-Intra-task parallelism technique .. 128

Table 4.13-The inter-task technique with scheduling of five consecutive frames 130
Table 4.14-The relationship between energy and accuracy in different architectures 135
Table 4.15-The power/energy consumption and architectures based on inter-task technique

 .. 136

viii

ix

Abstract

Nowadays, fall detection is a major challenge in the public health care domain,

especially for the elderly living alone. Falls are the leading cause of injury deaths among

older adults, those aged 65 or older. Moreover, the lack of medical staff, who take care of

rehabilitants in hospital, is an urgent problem in the 21
st
 century. Therefore, the demand for

surveillance systems, especially for fall detection, has considerably increased within the

healthcare industry.

This thesis presents an exploration for a Fall Detection System based on camera under

an algorithmic and architectural point of view. The studied Fall Detection System is suitable

not only for the elderly living alone, but also for rehabilitants in hospitals. Our system is

composed of four modules: Object Segmentation, Filter, Feature Extraction and Recognition

and can give an urgent alarm for detecting different kinds of fall.

Firstly, different algorithms are proposed and studied for the modules which compose

the Fall Detection System like the Background Subtraction-Neural Network (BGS-NN), the

Background Subtraction-Template Matching (BGS-TM), the Background Subtraction-Hidden

Markov Model (BGS-HMM), and the Gaussian Mixture Model (GMM-HMM). In order to

evaluate the efficiency of these algorithms, a comparison is made on the accuracy (Acc),

precision (PR) and recall (RC) performance. This comparison leads to select the BGS/TM

which will be used for the remainder of this research work. This algorithm is simulated on

Matlab with 91.67% (RC), 100% (PR) and 95.65% (Acc) and implemented on ZYNQ

platform by using C++ and OpenCV. Furthermore, in order to evaluate the efficiency of our

Fall Detection System, a DUT-HBU database which is classified with different actions: fall,

non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides and cross) is

created and used for simulation, evaluation and implementation purposes.

Secondly, the aim is to define a methodology to explore low cost architectures for this

fall detection system. As we consider heterogeneous architecture, new power consumption

and execution time models for processor core and FPGA are defined according to the

different configurations of the target architecture (ZYNQ platform) and the features of the

applications like: core frequency, number of processor cores, image resolution. To validate

the accuracy of the proposed models, we also analyze the error rate of these models that show

that they don’t exceed 3.5%. The power consumption and execution time models are then

extended to hardware/software architectures according to the assignment of the Fall Detection

System tasks and have been coupled with an accuracy model to evaluate the performance of

this system. With these extended models, our approach targets to explore low cost architecture

x

by defining a suitable Design Space Exploration methodology. We also apply two techniques

for parallelization which are based on intra-task and inter-task static scheduling with the aim

to enhance the accuracy and the power consumption of this system. As example, first

execution on ARM Cortex A9 processor of ZYNQ platform achieves an accuracy of 62%

with energy per frame of 43mJ/f. When the parallel techniques based on hardware/software

architecture are applied, the frame rate of our system is considerably increased and the

accuracy rate reaches 98.3% with energy per frame of 29.5mJ/f.

xi

Résumé

De nos jours, la détection de chute est un défi majeur dans le domaine de la santé publique, en

particulier pour les personnes âgées vivant seules. Les chutes sont la principale cause de

décès, suite à des blessures, chez les personnes âgées de plus de 65 ans. Par ailleurs, le

manque de personnel médical, par exemple pour les patients en rééducation, dans les hôpitaux

ou les maisons de retraite, est un problème important mondial pour le 21ème siècle. Par

conséquent, le développement de systèmes de surveillance, en particulier pour la détection de

chute, devient une nécessité pour le secteur de la santé.

Le but de cette thèse est de concevoir un système de détection de chute basée sur une

surveillance par caméra et d’étudier à la fois les aspects algorithmiques et architecturaux.

Notre système de détection de chute est conçu non seulement pour les personnes âgées vivant

seules, mais aussi pour les personnes en réadaptation à l'hôpital ou placée en maison de

retraite. Notre système se compose de quatre modules: la segmentation d’objet, le filtrage,

l’extraction de caractéristiques et la reconnaissance qui permettent en plus de la détection de

chute d’identifier le type de ces chutes (avant, arrière, coté) dans le but de définir un niveau

d’alarme.

Dans un premier temps, différents algorithmes ont été étudiés pour réaliser les

traitements des modules qui composent notre système de détection de chute comme le

Background Subtraction-Neural Network (BGS-NN) ; le Background Subtraction-Template

Matching (BGS-TM) ; le Background Subtraction-Hidden Markov Model (BGS-HMM) ; et le

Gaussian Mixture Model (MGM-HMM). Afin d’évaluer l’efficacité de ces algorithmes, une

comparaison est effectuée sur les paramètres qui permettent d’évaluer la performance du

système soit: Accuracy (Acc), Precision (PR), Recall (RC). Le résultat de cette comparaison

nous a amené à sélectionner le BGS/TM qui sera utilisé dans la suite de ces travaux de

recherche. La simulation de cet algorithme sous Matlab a permis d’évaluer le RC à 91,67%,

le PR à 100% et l’ACC à 95,65%. Cet algorithme a aussi été testé après implémentation sur

une plateforme ZynQ en utilisant le langague C++ et OPENCV. De plus, afin de mieux

évaluer l’efficacité du système de détection de chute proposé, une base de donnée DTU-HBU

a été construite et classifiées selon les différentes actions: chute, non-chute (assis, couché,

rampant, etc.) selon trois angles de caméra (de face, de côtés et de biais).

Dans un second temps, l’objectif a été de définir une méthodologie permettant de

sélectionner les architectures à faible coût qui présenteraient les meilleures performances.

Comme nous considérons des architectures hétérogènes, un premier travail fut de définir des

modèles de consommation et du temps d’exécution pour différentes cibles technologiques,

xii

processeur et FPGA. A titre d’exemple, la plateforme ZYNQ a été considérée. Les différentes

configurations de cette plateforme ont été caractérisées pour les algorithmes de détection de

chute. En particulier, des paramètres comme la fréquence, le nombre de cœurs actifs, la

résolution de l’image ont été pris en compte. Pour valider la précision des modèles proposés,

des expérimentations ont été menées et l’erreur pour ces tests n’a pas excédé 3,5%. Ces

modèles ont ensuite été étendus à des architectures hétérogènes et complétés par un modèle de

l’Accuracy (ACC) qui permet d’évaluer la performance du système complet. Sur la base de

ces modèles, notre approche vise à explorer les architectures à faible coût par la définition

d’une méthodologie adaptée de DSE. Afin d’exploiter le parallélisme offert par la plateforme

ZYNQ, deux techniques d’ordonnancement statique (Intra tâche et inter tâche) ont été

utilisées dans le but de réduire la consommation d’énergie tout en possédant une performance

adaptée. Les résultats obtenus montrent qu’une première implémentation fournit un

ACC=62% avec une énergie par image de 43 mJ alors qu’après optimisation, l’ACC atteint

98,3% pour une énergie de 29,5 mJ.

xiii

Acknowledgement

I would like to express my deep and sincere gratitude to all those who have helped and

supported me the possibility to complete this thesis.

I am deeply indebted to my supervisor and principal academic advisor, Mme Cecile

BELLEUDY, who has always been amazingly thoughtful, enthusiasm and sharp. Her

constructive advice, belief and support, from research strategy and general approach to

detailed writing styles, have been invaluable. Mme Cecile BELLEUDY has given me trust,

especially in difficult moments, and certain freedom to develop a research topic.

My deepest gratitude also goes to Associate Professor Van Tuan PHAM that I am

truly passionate about, for his continual guidance on the first ideals for this research topic. I

sincere thank him to give me an opportunity to participate the co-research project between

University of Nice Sophia Antipolis and University of Danang under supporting of EMMA’s

program in ten months.

I would also like to thank my official referees, Professor N. Julien and Professor

Bertrand Granado, for their thoughtful and detailed review, constructive criticism and

excellent advice during the preparation of this thesis.

I wish to express my sincere thanks to Human Behaviour Understanding group in Da

nang University of Technology (HBU-DUT) for working together in developing the algorithm

of Fall Detection, the database called HBU-DUT and some achievements in simulation during

the first PhD’s year.

I warmly thank the members of the MCSOC group for their valuable advices on my

research methodology and contributions. Special thanks also go to Professor VERDIER

François, Mr PEGATOQUET Alain and Mr BILAVARN Sébastien.

During this time I have collaborated with many colleagues for whom I have great

regard, and I wish to extend my warmest thanks to all those who have helped me with my

work for all their help, support, interest and valuable hints. Special thanks also go to Professor

DAUVIGNAC Jean Yves, Professor AUGUIN Michel, Mme PROSILLICO Marie Hélène

and Mme GUYON Marie-France for all their administrative supports.

My deepest gratitude also goes to the board of principals at the College of

Technology, University of Danang. Futhermore, I want to thank all my colleagues of the

Electronic Department to share the teaching work for me during last 4 years. Thanks for all

http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=63
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=63
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=49
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=10
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=18
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=3
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=52
http://leat-ressource.unice.fr/ANNUAIRE/page_dyn.php?uid=29

xiv

Vietnamese friends support and share the difficult and unforgettable moments in research and

in my life.

I owe my loving thanks to my family for all their love and encouragement. Without

their encouragement and understanding it would have been impossible for me to begin,

continue and finish this work. Thanks for my little daughter giving me the most motivation to

finish this PhD. I love you all dearly.

This work was support by the Vietnam Ministry of Education and Training and the ten

months of Erasmus Mundus Mobility with Asia - EMMA in Exchange Doctoral Research

project.

1

Chapter 1. Introduction

Currently, accompanying with the development of society, e-health systems are

playing increasingly important roles in our lives. Among them, medical care and falling

accidents for the elderly seem to draw attention as important topics in healthcare and

human behaviour recognition domains. In addition, to efficiently monitor the situation of

patients, there is at least a medical staff (i.e. a doctor or a nurse) who presents next to

patients for hours. The extremely increasing demands on healthcare services have been,

thus, urging the development of new generation of surveillance systems. These novel

systems can be benefit from new advances in sensors, digital video processing, and

broadband access network infrastructures. Therefore, the health services today have been

dominated by high-tech devices as well as automatic systems which have greatly

facilitated the higher ability in convenience, fast response, and high reliability.

According to the statistics given in the international advisory conference on

innovation, training of health forces in the 21st century took place on 28/04/2011 in

Hanoi, Vietnam showed that there were only 0.5 doctors and/or 0.8 nurses per 1000

population. It means that according to the World Health Organization (WHO) Vietnam

should add about 80 thousand health forces to meet the general requirements [1]. That

was the general reality of the countries on over the world, including developing

countries. In addition, another study of the elderly from Vietnam Association of

Rheumatology, every year, every three people over 65 years old have at least one person

fell. The accident was the sixth most common causes of death for the elderly, in which

the incidence of falls was the majority [2]. In Vietnam, the proportion of people of 60

years and older increased from 6.7% in 1979 to 9.2% in 2006 [3]. Vietnamese life

expectancy at birth increased from 66 years in 1990 to 72 years in 2006 and the average

life expectancy of elderly Vietnamese is 73 years old [4].

The application of the intelligent video surveillance for taking care the elderly at

home or the rehabilitants in Vietnam’s hospital is proposed to find out the solutions for

this reality in Vietnam. Before more details of this approach are discussed, many

approaches applied in healthcare systems based intelligent surveillance (sensors, audio,

video, communication networks) as following sections will be reviewed. For this

intelligent video surveillance system, usually the performance is the main objective but

today the power consumption is also a critical parameter and more especially for

autonomous object. The challenge is to build some tools or some ways to evaluate the

performance, the recognition rate, and the power consumption at early step of the design.

2

These ways help in reducing the time-to-market for a quality product. In this thesis, a

new Fall Detection algorithm is proposed and a methodology is defined to design low

cost architectures.

1.1 The healthcare systems

With the rapid development of science and technology, surveillance systems are

developing quickly. Nowadays, these systems not only generally monitor but also enable

to analyse and process the captured data to activate an alarm when there are abnormal

actions. This feature is quite suitable for a healthcare system.

1.1.1 The healthcare system based on sensors

1.1.1.1 Sensors worn on human body

A sensor is an electronic device that easily detects events or changes from the external

environment, and then the received signals are transformed into an electrical or optical

signal to control other devices. There are many sensors such as micro switches, spirit

levels, accelerometers, and gyroscopes that are embedded in garments, or walking sticks

[5]. The sensor systems can be stuck at the area where needs to collect the surroundings

and then transmit to the central processor and finally process it for a specific purpose.

Sensor and its essential features have been implemented in industrial and in medical

equipment in particular. By capturing signals from sensors, doctors or healthcare

scientists have a chance to easily monitor or even remotely diagnosis while patients are

in hospital, clinic or even at home. The model of a healthcare system based on sensors is

depicted in Figure 1.1.

A sensor mounted on body generally divides into three main factors: wireless,

wire, and integrated in patients’ body [6]. There are specific sensors for each part of the

body and for each surveillance. Wearable embedded systems use sensors that can detect

changes in postures, activities or motions of the person wearing devices. A wearable

motion detection device using tri-axial accelerometer, which can detect and predict

events based on tri-axial acceleration of human upper trunk, was designed and realized,

[7]. With this method, the elderly who suffer from chronic diseases can be not only

monitored effectively, but the early symptoms of the disease are also found. Wearable

devices are simple and cheap; however, they might disturb the user’s normal life. In

addition, the issue of surveillance is that the elderly often forget to wear this equipment,

and it depends on the ability and willingness of the elderly.

3

Figure 1.1-A model of the healthcare system based on sensors stuck on human body [8].

1.1.1.2 Ambient sensors

Due to the adverse effects of the wearable devices, some ambience systems which are

not stuck directly on the human body are researched and applied recently. Welfare

Techno House in Japan is an excellent example for the ambience systems [9].

Figure 1.2-Welfare Techno House system [9]

In this system, automated electrocardiogram (ECG) measurements can be taken

while the subjects are in bed, in the bathtub, and on the toilet, without their awareness

and without using body surface electrodes. The sensors are installed in furniture and/or

sanitary goods and the subject needs to attach the sensor. The heart rate and body weight

can be obtained without any special measurement and the subject can receive daily

physiological parameters without any awareness and discomfort. It is useful for

understanding personal health status and daily activity information without the use of

4

invasive measurements. Some monitoring devices in the Welfare Techno House are

shown in Figure 1.2.

1.1.2 The healthcare system based on audio

The healthcare system based on sound includes circular microphone array located in a

room or relatively narrow and quiet space. When a sound is detected, the sound system

will automatically amplify the signal, then identify and classify whether it is sound

caused by the monitoring action or not [6]. However, this is the main limitation of this

kind of the sound system, because it is usually placed in daily life environment, it is

easily disturbed by surroundings noise, like falling objects or crying, etc. Furthermore,

the sound also depends on each patient, type of actions or the position. Therefore, this

system is not reliable enough to apply in the real life. A sound falling detection system

consisting of the circular microphone array is depicted in Figure 1.3 [6].

Figure 1.3-A circular microphone array used to automatically detects falling actions[6]

1.1.3 The healthcare system based on communication network

The care of patients now is involved in many different individuals, namely doctors,

nurses, patients and their families. All of them need to share patient information and

discuss their management. As a result, communication technologies are becoming a

significant role in supporting health services. However, it is generally accepted that there

is still a gap in applying communication technologies in healthcare systems, especially in

rural areas where voice-mail or electronic mail is still not available.

A communication system involves people, the messages they wish to convey, the

technologies that mediate conversations, and the organisational structures that define and

constrain the conversations that are allowed to occur [10]. A possible communication

pathway for a laboratory test, ordered by a general practitioner is shown in Figure 1.4.

There are significant organisational and communication challenges facing those

delivering healthcare in the community. The model of shared care often adopted means

that many different healthcare professionals may be involved in the management of an

5

individual patient. Even apparently simple activities such as ordering a laboratory test in

general practice, and receiving the report, can involve many individuals, and many

opportunities for inefficiency and errors.

 Figure 1.4. A possible communication pathways for a laboratory test [3].

Figure 1.4-A possible communication pathways for a laboratory test [10]

1.1.4 The healthcare system based on intelligent video surveillance

Ambience systems use sensors installed in the living environments that certainly does

not disturb the users. However, these kinds of sensor-based ambient systems normally

result in high false alarm rate. Several studies have been proposed recently to use vision-

based systems. Visual surveillance systems have been installed at many places in our

lives, for instance offices, factories, schools or buildings. They recorded visual as well as

any actions in the camera’s area. At present, a variety of cameras are adopted to obtain

the real-time situation for the elderly at home, and elderly abnormality is judged

according to the above situations.

According to abnormality types and credibility, the systems analyse, process,

and evaluate patients’ situation to make some correction measurements in advanced in

order to notify the guardian or those who concern. In today's modern life, intelligent

video surveillance for elderly people living alone is an important application in the field

of intelligent video surveillance. To reduce the workload of the remote monitoring staffs,

the scene images are pre-processed by using techniques like image processing, or data

mining, etc. After that, the captured scene images are transmitted by the internet or other

communication methods to the distant guardian, and then these signals are carefully

examined. By using intelligent video surveillance, people can effectively monitor their

family as well as their business and issue warnings via computers or gadgets as soon as

possible with many benefits. If there is any unusual events, user can take the warning to

6

others who are nearer to that area to prevent a bad outcome. An example of using

intelligent video surveillance in hospital is illustrated in Figure 1.5. In addition, Ming-

Liang Wang et al. [11] has proposed a video surveillance system using an omni-

directional charge-coupled device (CCD) camera which is adopted to provide a 360°

view angle of the indoor scene in a single image. The authors combined different

algorithms for robust human motion tracking such as motion history image (MHI),

Continuously Adaptive Mean Shift (CamShift) and optical flow in order to increase the

robustness of the surveillance and tracking system. And for the human activity

recognition, they use a calibrated one-to-one correspondence between the ground

locations and the omni-directional vision sensor (ODVS) images.

Figure 1.5-A person is monitoring the healthcare camera in a hospital [12]

1.2 Fall Detection Approaches.

1.2.1 Classification Fall Detection Approach

The biggest advantage of video surveillance is the ability of real time execution by using

standard computing platforms and low cost cameras. The methods have the capability to

deal with robustness, however, still leave a widen horizon for further research and

development. There are some different types of fall detection as follows[13]:

1.2.1.1 Spatiotemporal

Shape modelling using spatiotemporal features provides crucial information of human

activities, which is used to detect different events. Image analysis requires efficient and

accurate shape modelling methods [14]. Homa Foroughi et al. [15] proposed a novel

approach for human fall detection based on combination of integrated time motion images

and eigenspace technique. Integrated Time Motion Image (ITMI) is a type of spatio-temporal

7

database that includes motion and time of motion occurrence. Based on these observations,

they extracted some motion information from the video sequences. Although, this motion

information can be used directly in motion classification, they used eigenspace techniques for

feature. Finally a multilayer perceptron (MLP) Neural Network is used for precise

classification of motions and determination of a fall event.

1.2.1.2 Inactivity/change of shape

This algorithm bases on shape change analysis as well as inactivity detection. Vinay

Vishwakarma et al. presented an approach for human fall detection consists of two parts:

object detection and the use of a fall model. The authors used an adaptive background

subtraction method to detect a moving object and mark it with its minimum-bounding

box. The fall model uses a set of extracted features to analyze, detect and confirm a fall.

Then they implemented a two-state finite state machine (FSM) to continuously monitor

people and their activities [16].

1.2.1.3 Posture

The use of posture information contributes towards accurate fall detection. Different

body positions are used to calculate postures. Specific types of postures are identified and

localised in image sequences. Generally, model dependent methods obtain postures

relatively easy and are robust to occlusion to an extent after labelling the body parts. Rita

Cucchiaraour et al. proposed a human behaviour classification by the posture of the

monitored person and, consequently, detected corresponding events and alarmed

situations, like a fall. There are two phases in this project: firstly, posture classification

performed frame-by-frame. This classification exploits simple visual features. Secondly,

the obtained posture is further validated exploiting the information extracted by a

tracking module in order to take into account the reliability of the classification of the

first phase. This is motivated by the concept of “posture state” defined in a state-

transition graph that takes into account for the classification the reliability of the track

and acquired knowledge of the people’s average behaviour in changing their posture[17].

1.2.1.4 3D head position analysis

Head position analysis is based on head tracking that determines the occurrence of large

movement within the video sequences. Different state models are used to track the head

based on the magnitude of the movement. In 3D head motion analysis methods, the

principle of faster vertical motion than horizontal motion during a fall is applied. The

head is initially located and then the 3D head position is estimated using fiHead. The

idea of using appropriate thresholds to distinguish a fall from other actions is applied by

computing vertical and horizontal velocities of the head [18][19].

8

In this thesis, we propose algorithms for the Fall Detection System including

Object Segmentation, Object Enhancement, Feature Extraction and Recognition

modules. To understand the behaviour of human object inside the video, the five features

are calculated by the different positions of object performed frame by frame. The

postures of object which are classified in our DUT-HBU dataset: fall and non-fall

(bending, sitting, lying, creeping, etc.) are used for evaluation of this system. Our system

is evaluated in terms of the accuracy, recall and precision performance. We also compare

the performances among various algorithms such as BackGround Subtraction/Hidden

Markov Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-

HMM), BackGround Subtraction/Neural Network (BGS-NN), and BackGround

Subtraction/Template Matching (BGS-TM).

1.2.2 Efficient Architecture for Fall Detection on heterogeneous platform

Currently, the advanced co-design step can lead to many solutions, especially in video

processing: there are many ways of partitioning a system, and of writing the software

with the chosen hardware. It is now well-known that the software has a very considerable

impact on the final power consumption of a system. To find the best solution is a

complex task.

New System on Chips (SOCs) that combine processor cores and field-

programmable gate array (FPGA) architecture will help to build complex and performing

systems. Some examples of video processing on heterogeneous architecture are shown as

follows:

Eduardo Gudis, Pullan Lu et al. [20] have described an architecture framework

using heterogeneous hardware accelerators for embedded vision applications. They

presented a framework using an extensive library of pipelined real time vision hardware

accelerators and service-based software architecture. Their framework allows the

service-based software to take advantages of the hardware acceleration blocks available

and perform the remainder of the processing in software. Three applications - Video

stabilization (pre-processing), Moving Target Indication, and Contrast Normalization -

were implemented on two Xilinx Zynq platforms: (1) the Xilinx ZC702 evaluation board

with 7020-1part, and (2) a custom board with 7045-1 board.

Another video application applied OpenCV which is implemented on Zynq

platform is illustrated in [21]. Road sign recognition is an autonomous application in

driver assistance systems and road sign maintenance. This algorithm is presented using

the Xilinx Zynq-7020 chip on a Zedboard to scan 1920×1080 images taken by an ON

Semiconductor VITA-2000 sensor attached via the FPGA Mezzanine Card (FMC) slot.

The Programmable Logic section of the Zynq is used to perform essential image pre-

processing functions and colour based on filtering of the image. Software classifies the

shapes in the filtered image, and they used OpenCV's template matching function to

9

identify the signs from a database of United Kingdom road signs. The system was

designed in six weeks, and can process one frame in approximately 5 seconds. This is a

promising start for a real-time System on Chip based approach to the problem of road

sign recognition and also for using the Zynq platform for rapid deployment of these

types of applications.

In addition, the jpeg decoder, image rectification, Semi Global Matching

algorithm, and Stixel clustering are the applications which are accelerated on FPGA by

using Xilinx Zynq 7045. In [22] Gilliland. S et al. evaluated the performance of an

FPGA based embedded ARM processor system to implement signal processing for

ultrasonic imaging and non-destructive testing applications. FPGA based on embedded

processors possesses many advantages including a reduced overall development time,

increased performance, and the ability to perform hardware-software (HW/SW) co-

design. This study examined the execution performance of split spectrum processing,

chirplet signal decomposition, Wigner-Ville distributions and short time Fourier

transform implementations on two embedded processing platforms - a Xilinx Virtex-5

FPGA with embedded MicroBlaze processor and a Xilinx Zynq FPGA with embedded

ARM processor. Overall, the Xilinx Zynq FPGA significantly outperforms the Virtex-5

based system in software applications.

 Dobai and Sekanina [23] demonstrated evolutionary design of

switching image filters on the platform. The investigated implementations included

virtual reconfigurable circuits and the use of dynamic partial reconfiguration. The

achieved results demonstrated the advantages and disadvantages of the Zynq platform.

The observations intended to be useful for designers who would develop evolvable

hardware on this new platform. They presented the time required to evaluate one filter

candidate (individual), the time for a generation of filter candidates (4 individuals), the

number of generation per second and the relative acceleration in comparison ARM

processor (without the PL). First, the pure software-based approach was evaluated on the

ARM processor of the available Zynq device. Second, they compared the processor of

Zynq with a desktop processor (Intel i5). The code in language C was pre-ported to that

processor. According to this experiment, the Intel i5 processor was 5 and 6 times faster

than the ARM processor of the Zynq device. The third experiment was to determine the

magnitude of the FPGA-based acceleration of the filter evolution. The implementation

revealed that the operational frequency of the pure virtual reconfigurable circuits (VRC)

and hybrid VRC-DPR (dynamic partial reconfiguration) approach was 203.6 MHz and

265.3 MHz, respectively. The hybrid approach was able to evaluate the candidate filters

approximately by 30% faster. On the other hand, the VRC approach mutated the circuit

in negligible time and the hybrid approach required more time. The hybrid approach

changed the interconnections similarly to the pure VRC approach but the replacement of

the processor elements by dynamic partial reconfiguration (PEs by DPR) takes longer.

10

Monson et al. developed their application in High-Level Synthesis (HLS) for

FPGAs making it possible to “run” C code on FPGAs and thereby making modern

programming environments available to FPGA developers. In their research, C code for

a complex optical-flow algorithm was optimized for both a desktop PC and a FPGA-

based system, the Xilinx Zynq-7000, which is a device containing both a programmable

fabric and two ARM cores. They discussed how the code was optimized and restructured

to execute effectively on the programmable fabric and the ARM cores. The

resulting Zynq version of the C code was competitive with the desktop PC but only

consumed 1/7 as much energy.

In the other co-design Digital Signal Processor (DSP)/FPGA, Giuseppe Baruffa

et al [24] presented the architecture of a DSP/FPGA based hardware platform, which is

conceived to leverage programmable logic processing power for high

definition video processing. Their system was reconfigurable and scalable, since multiple

boards may be parallelized to speed-up the most demanding tasks. The application

frameworks, JPEG 2000 and H.264, both at high dimension (HD) and Super HD (SHD)

resolutions have been simulated and performed on the embedded processing cores. The

issues such as real-time, or near real-time encoding was viable, the modularity of the

architecture allowed parallelization and performance scalability were proposed in this

study. Cooperation of FPGA and DSP processing modules was required to fulfil the

proposed objectives. Performance results showed that real-time encoding and decoding

of HD and SHD video were possible by using a parallelized configuration.

In addition of co-design, Felix Büsching et al. [25] proposed an outdoor fall

detection system. The system consisted of an Android smartphone and an INGA wireless

sensor node. This node was equipped with an accelerometer, a gyroscope and a

barometric pressure sensor. However, only the accelerometer for the fall detection was

utilized. In the system, the smartphone was used as a counterpart. It was implemented for

the three different applications to:

a) send a text message with a predefined text to a predefined phone number;

b) all raw data which is transmitted to the smart phone and processed a fall

detection;

c) work as a standalone fall detection and alert system applying the same

algorithms as the second application. Nevertheless, this application only utilized the

acceleration sensor of the smartphone.

 The research works described below show that this kind of video application

needs heterogeneous architecture (Processor cores + FPGA) to meet a sufficient frame

rate. So in this thesis, we consider this type of architecture (Zynq platform) and we firstly

define the power and execution time models for different target circuit: processor core,

FPGA with the aim to evaluate the performance (recognition rate and energy) of the fall

detection system. Our models are determined based on the Functional Level Power

11

Analysis for the processor cores and related with hardware resources for FPGA. In order

to find architectures and suitable configuration which allow an acceptable fall

recognition rate, we propose a new methodology for exploring low cost architectures and

by applying parallelism techniques such as intra-task and inter-task static scheduling

based on hardware/software architecture for Fall Detection System.

1.3 Research questions

The problem landscape of implementing the video processing has many facets. Within

the limited framework of this thesis, all aspects of this research domain cannot be

addressed. We focus on the following questions:

1. How can we avoid transmitting the image to other remote systems for privacy

reason?

When the Fall Detection System works, all activities of a person are recorded and

processed. The video content will automatically be analysed and carried out by computer

or hardware device. If a falling is occurred, the system will immediately send a warning

of FALL or NON FALL to the remote monitoring center. It also provides the exact

cause of human falling and all input video are processed inside closed system.

2. How are the performances (accuracy, precision and recall) of this system?

Fall detection is a challenge in the public healthcare system, especially for the elderly,

and reliable surveillance is a necessity to mitigate the effects of falls. The technology and

products related to fall detection have always been in high demand within the security

and the health-care industries. An effective Fall Detection System is required to provide

urgent support and to significantly reduce the medical care costs associated with falls.

Therefore, we first should have a database with various kinds of human activities. In this

system, the DUT-HBU dataset [26] is used and all video data are compressed in .avi

format and captured by a single camera in a small room with the changeable conditions

such as brightness, objects, direction of camera, etc. In this database, the fall direction is

subdivided into three basic directions which are Direct fall, Cross fall, and Side fall. In

terms of non-fall videos, usual activities which can be misrecognized with fall action

such as lying, sitting, creeping, and bending are also classified into three mentioned

directions. Moreover, to evaluate the efficient and accuracy of a system, we analyse the

Precision (PR), Recall (RC) and Accuracy (Acc).

12

3. How does a video system meet the real-time processing?

Designing a real-time system requires a holistic approach that is considered many

aspects such as algorithms, architectures, and implementation methods of applications in

order to meet a specified deadline. The constraints on the considered video processing

are that the system must be able to maintain an average processing rate higher than the

required frame rate in order to get a sufficient accuracy for fall detection recognition rate.

This requires a deterministic and bounded execution time. In our system, we apply

parallelism techniques based on hardware/software architecture to improve the execution

time and by this way the performance of our system.

4. How is the “cost” of this system?

Fall detection systems based on cameras have proven to offer a promising solution which

is complementary to the wearable sensors. One advantage of visual-based fall detections

is they can be installed in-door and not required to be worn by any users. The cameras

can be wall- or ceiling-mounted, depending on the interests on orientation and field of

view of the frames to be captured. Besides, the recorded video allows more efficient use

of multiple events analysis and post verification. Moreover, cameras are increasingly

becoming a strong candidate for the choice of fall detection sensor due to the rapid drop

of camera costs. So far, different visual-based fall detection techniques have been

identified. Nevertheless, the development of such systems has been implemented as

software-based solutions on computers.

In addition, we want to design a standalone Fall Detection System corresponding

with the less energy consumption and the higher performance. Therefore, in our system,

we try to extract the power consumption and execution time models for processor cores

and FPGA to explore the low cost architectures which offer sufficient frame rate, low

power/energy consumption and an adequate accuracy rate based on Design Space

Exploration methodology. Some parallelism techniques are also applied to improve the

execution time and by the way the performance of Fall Detection System.

1.4 Thesis contributions

Most of video surveillance for fall detection researches includes two or three modules to

detect the behaviour of human object. They recognise the movement of object by

analysis of shape of object modeling in several frames or the different centroid of object

or by comparing with the available template, etc. Therefore, it is also necessary to

explore the algorithms which provide a high performance of recognition ability for a Fall

Detection System. In addition, the algorithms have usually been compared together by

simulating on Matlab and evaluated the reliable performance by a database. Besides,

several video applications such as object segmentation, video compression format

13

(H.264 or MPEG4), filter (sobel, canny, etc.), and recognition (using Neural Network,

Template Matching, etc.) have been studied on power/energy consumption

characterization and modeling at different levels for embedded video system. Many

methodologies have handled the low and high level models related to the processor,

memory or FPGAs. In this thesis, the first main contribution is to propose efficient

algorithms for the Fall Detection System which consists not only to signalize a fall but

also the type of this fall in order to determine the urgency of the situation. Comparing to

others fall detection, our system consists of 4 modules: Object Segmentation, Filter,

Feature Extraction and Recognition with an automatic alarm whenever FALL is

occurred. Then, in order to find out fall detection architectures which meet users and

application constraints, power consumption and execution time models are defined

taking into account architecture and application parameters. Thus, low cost architectures

for our system are explored by using the parallelism techniques to find out the

heterogeneous architectures which couple the energy consumption and fall detection

accuracy rate. To achieve this goal, we intend to pursue the methodology scheduled as

follows:

 (1) We determine recent algorithms which are applied on each module of Fall

Detection System and our system also give an urgent alarm for detecting

different kinds of fall. We make then various simulations to compare the

recognition rate performances among algorithms such as BackGround

Subtraction/Hidden Markov Model (BGS-HMM), Gaussian Mixture

Model/Hidden Markov Model (GMM-HMM), BackGround Subtraction/Neural

Network (BGS-NN) and BackGround Subtraction/Template Matching (BGS-

TM). In this thesis, in order to evaluate the efficiency of the Fall Detection

System, a DUT-HBU database which is classified with different actions: fall,

non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides and

cross) is created and used for simulation, evaluation and implementation

purposes. The testing databases are then regrouped into three different scenarios

types: well-matched (WM), medium-mismatched (MM) and highly-mismatched

(HM). We select the BGS/TM algorithm, which is sufficient for recognition

performance by using the well-matched test in this database, and is in order to

implementation purpose. Some factors which affect to the quality of recognition

in this system such as environment brightness, occlusion of object, many

movement objects appearing in a frame at the same time are also analysed.

 (2) In order to find out a suitable architecture for the proposed algorithm, power

consumption and execution time models are proposed for processor cores based

on Functional Level Power Analysis (FLPA) and FPGA related with the

hardware resources and then for heterogeneous architecture. Our video

application was implemented on processor cores (ARM Cortex A9 processor) of

ZYNQ Platform different configurations. TI USB Interface Adapter PMBus

14

associated with TI Fusion Digital Power Designer GUI are used to measure the

power consumption on processor cores. Some tasks of the application are also

synthesized, and characterized on FPGA by using Vivado 2012.4 tool. The curve

fitting of regression law is used to get the mathematic models for power

consumption and execution time which depend on algorithm and architecture

parameters, such as operating frequencies, number of cores, image resolution.

The error rate of these models is then evaluated and used for exploring the

architecture for the Fall Detection System.

(3) By extending the power consumption and execution time models, we propose

a Design Space Exploration methodology to define low cost architecture for Fall

Detection System. In this methodology, in order to explore heterogeneous architectures

for our system, two parallelism techniques intra-task and inter-task static scheduling are

applied. The low cost architectures are selected with the compromising of energy

consumption and accuracy rate performance of the Fall Detection System.

1.5 Publications

1.5.1 International journal publication

[1] Hong. Nguyen.T.K, Cecile. Belleudy and Tuan.V.Pham, “Performance and

Evaluation Sobel Edge Detection on Various Methodologies”, 2014 International

Conference on Advances in Electronics Engineering, 19-20 February, 2014.

This paper has been extended and published in International Journal of

Electronics and Electrical Engineering Vol. 2, No. 1, March, 2014.

[2] Hong Thi Khanh Nguyen, Cecile Belleudy and Pham Van Tuan “Fall Detection

Application on an ARM and FPGA Heterogeneous Computing Platform”

International Journal of Advanced Research in Electrical, Electronics and

Instrumentation Engineering, Vol.3, Issue 8, August, 2014.

1.5.2 International conference’s publication

[3] Hong. Nguyen.T.K, Cecile. Belleudy and Tuan.V.Pham, “Power Evaluation of

Sobel Filter on Xilinx Platform”, IEEE FTFC, 4-6 May, 2014, Monaco.

[4] Hong Thi Khanh Nguyen, Hassoon Fahama, Cecile. Belleudy and Tuan.V.Pham

“Low Power Architecture Exploration for Standalone Fall Detection System

Based on Computer Vision”, IEEE-EMS2014 European Modelling Symposium

2014, 21st – 23rd October, 2014, Pisa, Italy.

15

1.5.3 Other publications

[5] Hong. Nguyen. T. K, Cecile Belleudy and Tuan.V.Pham, “FPGA-based Object

Segmentation of Fall detection”, RUNSUD 2013, 23-24 April, 2013.

[6] Thi Khanh Hong Nguyen, Cecile. Belleudy and Tuan.V.Pham, “Low Power

Exploration Design Flow for Fall Detection System”, COLLOQUE NATIONAL

of GDR SoC-SiP, 11-13 juin 2014 in Paris.

[7] Hong Thi Khanh Nguyen, Cecile. Belleudy and Tuan.V.Pham,“Low cost

architecture for Fall Detection System”, e-PSP 2014, 27th November , 2014,

Biot, France.

1.6 Thesis Organization

This thesis is divided into 5 chapters. After the introduction in Chapter 1, we present the

Fall Detection approaches and analyse the comparison of the performance of these

approaches by their simulation on Matlab in Chapter 2. In Chapter 3 the extraction of the

execution time and power models based on Function Level Power Analysis for processor

cores and based on hardware resources for FPGA is discussed. And then the Design

Space Exploration methodology including two parallelism techniques (intra-task and

inter-task static scheduling) which is applied to explore low cost architectures for this

system based on heterogeneous architectures with different configurations is described in

Chapter 4. Finally, Chapter 5 contains the conclusions and proposals for the future works

of this work.

16

Figure 1.6-An outline of the different chapters, research questions and contributions in this thesis

Chapter 2
Fall Detection Algorithm

Chapter 3
Power & Time Model

Methodology for Fall

Detection System

Chapter 4
Low cost architecture for

Fall Detection System

Chapter 5
Conclusion and perspective

How can we keep not
transmitting the image to other

remoted systems for privacy

preservation reason?

How about the performance

(accuracy, precision and

recall) of this system?

Does this system meet the real

time processing?

How about the “cost” of this

system?

Contribution 1

Make some simulations to
compare the efficient of each

algorithm, and choose the

BGS/TM in Well-Match

condition

Contribution 2

Extract the execution time and

applications based on FLPA

for processor cores and based

on hardware resources for

FPGA.

Contribution 3

Evaluate the error rate of

power consumption, execution

time models.

Contribution 4

Propose Design Space

Exploration to define low cost

architecture explorations by
applying these models and

parallelism techniques.

17

Chapter 2. Fall Detection Algorithm

Nowadays, fall detection is a serious challenge in the public health care domain,

especially for the elderly living alone. There are some health care systems based on

sensors, audio, communication network and video processing. In our work, we develop a

Fall Detection System based on video processing. The Fall Detection System is

developed in two sides: algorithms and architectures. In this Chapter, we study and make

the simulations of algorithms used in the Fall Detection System.

In Section 2.1 of this chapter, the overview of Fall Detection System describes

the definition of a falling event and the Fall Detection approaches which are currently

used in recognition the postures or action of human object. The most important part is in

Section 2.2 where we propose studied algorithms for the Fall Detection System including

four modules: Object Segmentation, Object Enhancement, Feature Extraction and

Recognition. In order to understand the behaviour of human object in our system, some

recognition models are studied and illustrated more detail in Section 2.3. Moreover, the

DUT-HBU database which is classified with different actions: fall, non-fall (sitting,

lying, creeping, etc.) in different directions of camera (face, sides and cross) is used for

evaluation our system. The system is evaluated in terms of the accuracy, recall and

precision performance. Finally, the results on Matlab’s simulation in comparing the

performances among these algorithms such as BackGround Subtraction/Hidden Markov

Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-HMM),

BackGround Subtraction/Neural Network (BGS-NN), and BackGround

Subtraction/Template Matching (BGS-TM) are shown in Section 2.4. At the end of this

Chapter, we make the general discussion about parameters which impact on the quality

of recognition ability in the Fall Detection System.

2.1 Overview of Fall Detection algorithm

2.1.1 Definition of falling event

According to the World Health Organization (WHO), there is no any specific definition

of falls. In our work, falling accident is defined as "the loss of balance with involuntary

causes the body suddenly fell to the ground". Accidental falls are always dangerous for

children, adults, especially the elderly and cause serious consequences.

Sudden fall (or falls by accident) is often affected by the impact and the external

factors and by many different reasons, such as: slip and fall, walk and fall, fall from

18

heights, etc. Unexpected fall mainly for the elderly (or falls not by accident) may occur

by many reasons. When considering the characteristics of the falls, the following factors

are generally considered:

 Direction falls: front, sides, behind.

 Position of the body before and after the fall: lying, sitting, standing, kneeling,

and leaning.

 Speed of fall: rapidly or slowly falling down with wobbled knees.

 Active or react before falling: legs or arms raise high, head thrown back, head

peers ahead.

Daily actions are mistaken as falling like running, sit down, laying and etc.

These above mentioned factors are used to classify and build scenarios, various

situations of fall and then used to train and build the fall detection, evaluation and

development in our system.

There are four stages in the process of falls include [10]: pre-fall, fall phase

(main phase), after falling phase and recovery phase.

 In the pre-fall phase, people are doing the normal activities in daily (probably

occur with sudden movements like sitting or lying down quickly). Fall detection

system distinguishes this stage with the following phase.

 Fall phase includes sudden movement of the body to the ground, and ends with a

crash to the ground. The period of this phase is usually very short, 300-500 ms

[11], it is determined from 400-800 ms.

 In the after falling phase, the body is not a normal movement, still lying on the

ground.

 Recovery phase: the falling elderly can stand up by themselves or by the other

helps.

2.1.2 Fall Detection algorithms

Nowadays, fall detection is a major challenge in the public health care domain,

especially for the elderly living alone. In 2013, the Center for Disease Control and

Prevention
1
 (CDC) reported that rate of fall injuries for adults from 85 years old and

older was almost ten times than that for adults between 65 and 74 in the United State
2
.

This statistic also shows that falls are the primary reason of injury related to death for

seniors aged 65 and older. Along with the population explosion of the elderly in the

world, the demand for surveillance systems, especially for fall detection, has

considerably increased within the healthcare industry. Developing intelligent

surveillance systems take an important role, especially vision-based systems, which can

1
 http://www.cdc.gov/

2
 http://www.cdc.gov/injury/wisqars/pdf/leading_cause_of_nonfatal_injury_2012-a.pdf

19

automatically monitor and detect falls. It has been proved that the medical consequences

of a fall are highly contingent upon the response and rescue time. Thus, a highly-accurate

automatic Fall Detection System is an important part of the living environment for the

elderly to expedite and improve the medical care. In order to provide immediate medical

attention, and contribute to solve the lack of manpower in the health sector, many Fall

Detection Systems have been studied recently. Several studies have been proposed to use

vision-based systems. By using a single camera, Rougier et al. [27] propose an algorithm

based on a combination of motion history and human shape variation which provides

promising results on video sequence of daily activities and simulated falls. In order to

reduce the occlusion areas by cause of the irrelevant position of camera or movement of

object, several research works have developed to use multiple cameras [28]. Rougier and

his research group [29] present a new method to detect falls by analysing human shape

deformation during video sequences captured from four cameras. The shape matching

technique is used to track the person's silhouette along the video sequence. Auvinet et al.

[30] reconstruct 3-D volume of a person from eight cameras using calibration

information. If a big portion of the body volume is near the ground for a period of time

they recognise it as a fall.

Figure 2.1-A typical fall while walking

Figure 2.2-Some typical types of non-fall action

In most of the developed camera-based systems, the algorithms mainly carried

out in four phases as illustrated in Figure 2.3. Among them, Object Segmentation plays

an important role in ensuring system robustness. From the practical aspects, the system

should be able of dealing with lighting changes, movement through clutter areas,

unexpected objects overlapping in the visual field and objects being introduced or

20

removed from the scene. First, moving object is segmented from each frame of the input

video in the first module of the following diagram. An Object Enhancement is also used

to improve the impact of noise in order to get the better object for the next modules.

Afterwards, an ellipse model is built from the segmented object and used for extracting

five features. These features are applied for training by recognition models. From the

trained features, probability of each observed input data is calculated. By looking at the

output results from sequential frames stored in a buffer, a final decision is made. Figure

2.4 shows the process of fall detection by video.

Figure 2.3-Block diagram of Fall Detection System.

Figure 2.4-Detecting the fall by video analysis

2.1.2.1 Object Segmentation

Video signal including sequence of frames captured from the camera is put into Object

Segmentation module to extract objects from the background. The output of this module

is a stain, shape of the moving object. This is the first module in the Fall Detection

System, therefore, its accuracy makes a considerable impact to next processing modules.

Human objects are extracted from the background of an image by using the

Object Segmentation algorithms. The object is segmented based on the difference

between two consecutive frames in the time domain [31] or the type of removing

background from an image [32][33]. In recent years, Background Subtraction method

has become more popular and many thanks go to the development of optimization

techniques in estimating dynamic background [34]. Stauffer and Grimson [35] have done

Output

Info.

Input

video

Object

Enhancement

Object

Feature

Extraction

Object

Segmentation
Recognition

Event

21

the Gaussian mixture model which is very flexible and suitable for objects moving

slower than the background.

Because monitored objects continuously move up, so objects are tracked to set

the connection of objects via consecutive frames in the sequence images. To achieve

accurate detection, tracking objects have the ability to handle the causes which are

happened by segmented objects are not perfect and handle the occlusion by camera

angles. Cheng and Hwang present not only the partial adaptive sample called Kalman

algorithm [36] but also the combination of statistical data in order to detect multi-objects

[34] with high accuracy and reliability. Comaniciu et al. propose tracking method in

which the moving average values changed based on the centre of the image [37]. In this

method, human object is performed as the convolution of the object’s properties with the

central image are calculated the cost vie spatial. One of the biggest advantages of this

method is less computation complexity compared to other methods.

2.1.2.2 Object Enhancement

The Object Segmentation methods are sensitive to the changes of background. But in

reality, the background pattern is always affected by external factors such as intensity

light, wind shake or reasons due to the colour of some object’s part coincides with the

background. All these factors make the object (foreground) which is extracted from the

background not only is necessary moving object but also includes noises or the inner

object are not filled. Therefore, to ensure the provided object is the better quality for the

next modules of the system, the object needs to be purified by removing the silhouette,

the part of noise is not the object and blobbing the object model. One of the methods

used to filter object after object segmentation module is Mathematical Morphology

(MM) [38]. The other methods are Sobel Filter, Canny, Prewitt, etc.[39][40][41].

2.1.2.3 Object Feature Extraction

In order to understand the behaviour of extracted object, its features are calculated and

analysed. After having extracted object from the previous modules, the movement curves

which are bounded the object based on 2D/3D model are used to calculate the features of

object [42][43]. To estimate the posture of object based on video analysis faces to some

obstacles such as the depth of image, lots of object postures are continuously moving

from video and the free gradient of joints are rather high. There are a number of methods

that can solve this problem [44]. We can divide them into two categories either based on

the model (model-based) [45][46] or not dependent on model (model-free) [47][48].

The above methods reflect the change of human posture quite accurate.

However, the number of application research to automatically track the 3D human

posture is very limited. In [49], R. Holt et al. suggest a method for automatic estimation

22

of 3D human pose from the video signal in real time effectively. The method is of

analysis-via-synthesis splitting human body into several different sections. The human

body is segmented from the background, extracted the 2D features, tracked the 2D

features and reconstructed 3D posture. This method performs the minimization of

complexity computation and restores lost events or obscured part as shown in [50].

2.1.2.4 Recognition events

After obtaining the results of modeling the human body 2D/3D and motion curves

around each human body, human actions are recognised and understood their behaviour

from video sequences. Recently, there are some methods used in this module such as

Template Matching (TM) or Threshold-based, Neural Network (NN), Hidden Markov

Model (HMM), Dynamic Bayesian Network (DBN), etc. [51][52][53][54].

For Template Matching, the extracted features are compared directly to the

stored features (templates). These stored templates are extracted from the process of the

past experiences and learning [55]. The application of machine learning techniques in

identification of human behaviour is still facing many obstacles and very complicated.

This is due to the extreme diversity of the same action but made by different people or

even an action, but with a different angle and different duration. Furthermore, the

features are reliably coped with the changing spatial-temporal scales related to human

activity. These features must be separated by encapsulating in the unique properties of

the same action, but made by different people. After describing the feature of an action,

the next important issue is how to develop a method for identifying properties in the

space available. Recently, Artificial Neural Networks (ANN), Hidden Markov model

(HMM) and Dynamic Bayesian Network (DBN) are the most common methods to

modelise and classify human action sequences. However, the methods are ongoing to

verify which the most effective one is.

2.2 Proposed Fall Detection Algorithm

In our work, we propose an algorithm for elderly fall detection including four modules:

Object Segmentation, Object Enhancement, Feature Extraction and Recognition. Human

activities are captured in a video that is further analysed using image processing and an

embedded system to detect fall and generate an alarm of FALL or NON FALL. It also

provides the exact causes of human fall. To get more efficient in recognition and

classification of falls, the database with different kinds of falls is built, called HBU-

database. Different scenarios are considered when identifying different kinds of falls and

non-fall actions: falls from walking or standing, falls from sleeping or lying in the bed

and falls from sitting on a chair, etc. or non-fall events like walking, lying, creeping,

sitting and so on.

23

In following subsection, these algorithms in each module are described.

2.2.1 Object Segmentation

2.2.1.1 Background subtraction (BGS)

In our work, two main methods are used to deal with Object Segmentation. Object

Segmentation module is responsible for detecting and distinguishing between moving

objects and the rest of the frame which is also called background [56]. In this work, a

Background Subtraction method is applied to distinguish background and moving

objects. A pixel is marked as foreground if

 ii (2.1)

Where, is a “predefined” threshold. And the updated background is estimated as:

 iii)1(1 (2.2)

Where is kept small to prevent artificial “tails” forming behind moving objects. Here,

we use average of 3 consecutive frames instead of using the current frame I. And is

chosen 0.05 as in [57].

2.2.1.2 Gaussian mixture model (GMM)

In cases of movement through clutter areas, objects overlapping in the visual field,

shadows, lighting changes, and effects of moving elements of the scene, Background

Subtraction methods achieve less efficiency of output. An adaptive Gaussian mixture

model [58] is one of the solution to handle variations in lighting, moving clutter scene,

multiple moving objects and other arbitrary changes to the observed scene. In this work,

the values of a particular pixel over time are considered as a “pixel process”. The “pixel

process” is a time series of pixel values that was shown in equation 2.3 as follows:

 tkkyxt 1:),,(,..., 001 (2.3)

If each pixel results from a specific surface under particular lighting, a single

Gaussian is sufficient to model the pixel value while accounting for acquisition noise. If

only lighting changes over time, a single adaptive Gaussian per pixel will be sufficient.

In practice, multiple surfaces often appear in the view of a particular pixel and the

changeable lighting conditions. Thus, multiple adaptive Gaussians are necessary [35].

The recent history of each pixel, {X1… Xt}, is modeled by a mixture of K Gaussian

distributions. The probability of observing the current pixel value can be calculated by:

),,(,,, titittitp (2.4)

24

Where i,t is the weight parameter of the i
th
 Gaussian distribution; is the probability

density function of i
th
 Gaussian distribution. At each frame, the value of pixel at (x0, y0) is

Xt. A Gaussian distribution is a match if Xt is within 2.5 times of its standard deviations.

Each pixel can have at most one matching Gaussian from its mixture. From the labelling

of each Gaussian we have two following cases:

 a) In the first case: if pixels have a matching distribution, Gaussian is marked

as matched that will be updated by following equation:

 tktkti M ,1,,)1((2.5)

 ttt X 1)1((2.6)

)()()1(2

1

2

tt

T

tttt XX (2.7)

Where is the learning rate parameter and),|(kktX . For the other

unmatched Gaussian, only the weight of distribution is updated with equation 2.4.

b) In the second case: none Gaussian is marked as matched. Xt is assigned as a

foreground pixel and the least probable component is replaced by a distribution with the

current value as its mean, an initially high variance, and a low weight parameter.

Distributions having a high weight and low variance are precisely the

distributions that represented the background model. In order to find them, the K

distributions are ordered based on the fitness value tktk ,, / and the first S distributions

are used as a model of the background of the scene where S is estimated as

)(minarg
1

,

b

k

tkb TS (2.8)

Where T is the minimum fraction of the background model.

So as to remove noise and improve image’s quality from object’s binary image,

mathematical morphology methods such as dilation and erosion, opening and closing to

improving quality of segmented objects are applied. Figure 2.5 shows the result of object

segmentation.

As shown in Figure 2.5, the result derived from the GMM method is

significantly better than the BGS method. This is due to adaptability of the Gaussian

distributions and an automatic pixel-wise threshold (that is presented by two significant

parameters - , the learning rate and T, the minimum fraction of the background model).

Meanwhile, the BGS method is a simple Object Segmentation method based on a

predefine threshold.

25

2.2.2 Object Enhancement

There are some supporting methods to improve the quality of image from the object

binary image such as Morphology Mathematic (MM), Edge Detection Filter (Sobel,

Canny and Prewit Filter).

In the following subsection, we describe the two techniques used to improve the

quality of segmented object such as Mathematical Morphology and Sobel Edge

Detection.

2.2.2.1. Mathematical Morphology

The Object Enhancement module as Filter removes noise and improves image’s quality

from object’s binary image [56]. Mathematical Morphology (MM) is a mathematical

theory which is used to process, analyse the images and improve quality of segmented

objects [59]. It provides an alternative algorithm to image processing based on shape

concept stemmed from set theory [60], not on traditional mathematical modeling and

analysis. In the MM’s theory, images are treated as sets, and morphological

transformations which is derived from Minkowski addition and subtraction are defined to

extract features in images [61]. MM methods involving dilation and erosion, opening and

closing are used in our work.

Figure 2.5 (a) Estimated background; (b) Frame input;

(c) Background Subtraction method; (d) Adaptive GMM method

The morphologic operations work with two images: the original data is

processed and a structuring element. Each structuring element has a shape which can be

thought as a parameter to the operation. Two most common structuring elements are

26

connected to sets 4 and 8 as shown in Figure 2.6. To apply mathematical morphology,

digital images must be binary images in which pixels represent the object image encoded

by the pixel “1” and background encoded by the pixel “0”. Most fundamental

morphological operations are morphological dilation and morphological erosion.

Besides, we also have two compound operations named as opening and closing are

defined.

When the case of binary image is considered, A is the set of points representing

the binary one pixel of the original binary image and B is the set of points representing

binary one pixels of structuring element.

Dilation is an operation that enlarges the objects presented in a binary image.

Results of dilation are influenced both by the size and shape of a structuring element.

Dilation of a binary image A by binary structuring element B is defined as:

 (2.9)

Erosion is the opposite of dilation. This operation shrinks the objects in a binary

image. That is erosion operation causes object to lose its size. Erosion of a binary image

A by binary structuring element B is defined as:

 (2.10)

Figure 2.6-Structuring elements in Mathematical morphology

Opening is simply the erosion of A by a structuring element B followed by a

dilation of the output by the same structuring element. Opening of a binary image A by a

binary structuring element B is defined as:

 (2.11)

Closing of an image is also a combinational operation of erosion and dilation. It

differs from the opening operation in the sense of order of occurrence of erosion and

dilation operation. Closing of an image A by a structuring element B is defined as:

 (2.12)

Examples of four basic morphological operations namely dilation, erosion,

opening and closing are shown in Figure 2.7. These morphological operations are

27

changed relying on the structuring element. The objects are detected by the certain

structuring element to determine whether the structuring element fit or not with the edge

of the image. In each issue in this figure, the structuring elements are compared with

each pixel of the objects and then use one of four methods above to change the edge to

filter as the expected targets, like removing noise or cutting the unexpected edges.

Erosion is a transformation of shrinking, which decreases the grey-scale value of

the image, while dilation is a transformation of expanding, which increases the grey-

scale value of the image. But both of them are sensitive to the image edge whose grey-

scale value changes obviously. Erosion filters the inner image while dilation filters the

outer image. Opening is erosion followed by dilation and closing is dilation followed by

erosion. Opening generally smooths the contour of an image, and breaks narrow gaps.

Opposed to opening, closing tends to fuse narrow breaks, eliminates small holes, and

fills gaps in the contours. Therefore, morphological operation is used to detect image

edge, and at the same time, denoise the image.

Figure 2.7-Example of Mathematical morphology operations[62].

a, Dilation (green blocks are the ones added to the original).

b, Erosion (the green blocks are the ones that will disappear from the image).

c, Opening. d, Closing.

2.2.2.2 Sobel Edge Detection

Sobel edge detection algorithm is the most commonly used techniques in image

processing for edge detection [63]. Two types of Sobel operators, which are horizontal

and vertical, are used. The operator calculates the gradient of the image intensity at each

b

,

a

.,

c, d,

28

point, giving the direction of the largest possible increase from light to dark and the rate

of change in that direction. The Sobel kernels are given by

 (2.13)

In this case, the kernel Gx is sensitive to changes in the x direction, i.e. edges

that run vertically, or have a vertical component. Similarly, the kernel Gy is sensitive to

changes in y direction, i.e. edges that run horizontally, or have a horizontal component.

The two gradients computed at each pixel (Gx and Gy) by convolving with above two

kernels can be regarded as the x and y components of gradient vector. This vector is

oriented along the direction of change, normal to the direction in which the edge runs.

Gradient magnitude and direction are given by:

 (2.14)

An approximate magnitude is computed using:

 (2.15)

The angle of orientation of the edge (relative to the pixel grid) giving rise to the

spatial gradient is given by

 (2.16)

In our other work, we evaluate hardware resources and power consumption of

Sobel Edge Detection which is implemented with two studies: Xilinx system generator

(XSG) and Vivado_HLS tools. These tools both are very useful for developing computer

vision algorithms. The comparison the hardware resources and power consumption

among FPGA platforms (Zynq-7000 AP SoC, Spartan 3A DSP) are analysed.

2.2.3 Object Feature Extraction

Before extracting features of object to understand its behaviour, it is necessary to

modelise the shape of object, called body modeling step.

2.2.3.1 Body modeling

Objects are generally represented by their shapes and appearances. In this section, we

first describe the object’s shape representations for tracking and then address the joint

shape and appearance representations [64]:

 Points. The object is represented by a point, that is, the centroid (Figure 2.8(a))

[65] or by a set of points (Figure 2.8(b)) [66]. In general, the point representation

is suitable for tracking objects that occupy small regions in an image.

29

 Primitive geometric shapes. Object shape is represented by a rectangle, ellipse

(Figure 2.8(c), (d) [67], etc. Object motion for such representations is usually

modelled by translation, affine, or projective (homography) transformation.

Though primitive geometric shapes are more suitable for representing simple

rigid objects, they are also used for tracking non rigid objects.

 Object silhouette and contour. Contour representation defines the boundary of an

object (Figure 2.8(g), (h)). The region inside the contour is called the silhouette

of the object (see Figure 2.8(i)). Silhouette and contour representations are

suitable for tracking complex non rigid shapes [68].

Figure 2.8-Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, [64]

(d) Elliptical patch, (e) part-based multiple patches, (f) object skeleton,

(g) Complete object contour, (h) control points on object contour, (i) object silhouette.

 Articulated shape models. Articulated objects are composed of body parts that

are held together with joints. For example, the human body is an articulated

object with torso, legs, hands, head, and feet connected by joints. The

relationships among the parts are governed by kinematic motion models, for

example, joint angle, etc. In order to represent an articulated object, one can

model the constituent parts using cylinders or ellipses as shown in Figure 2.8(e).

 Skeletal models. Object skeleton is extracted by applying medial axis transform

to the object silhouette. This model is commonly used as a shape representation

for recognizing objects [69]. Skeleton representation is modelised both

articulated and rigid objects (see Figure 2.8(f)).

There are a lot of ways to represent the appearance features of objects. It is noted

that shape representations are also combined with the appearance representations [70] for

30

tracking. Some popular appearance representations in the context of object tracking are

presented as follows:

 Probability densities of object appearance. The probability density estimates of

the object appearance is either parametric, such as Gaussian and a mixture of

Gaussians [71] or nonparametric. The probability densities of object appearance

features (colour, texture) are computed from the image regions specified by the

shape models (interior region of an ellipse or a contour).

 Templates: are formed using simple geometric shapes or silhouettes [72]. An

advantage of a template is that it carries both spatial and appearance information.

Templates, however, only encode the object appearance generated from a single

view. Thus, they are only suitable for tracking objects whose poses do not vary

considerably during the course of tracking.

 Active appearance models are generated by simultaneously modelling the object

shape and appearance [73]. The object shape is generally defined by a set of

landmarks. Similar to the contour-based representation, the landmarks reside on

the object boundary or, alternatively, they can reside inside the object region. For

each landmark, an appearance vector is stored which is in the form of colour,

texture, or gradient magnitude. Active appearance models require a training

phase where both the shape and its associated appearance are learned from a set

of samples using, for instance, the principal component analysis.

 Multi-view appearance models. These models encode different views of an

object. One approach to represent the different object views is to generate a

subspace from the given views. Subspace approaches, for example, Principal

Component Analysis (PCA) and Independent Component Analysis (ICA), have

been used for both shape and appearance representation [74].

2.2.3.2 Body modeling based on ellipse model

Ellipse model is a very simple model describing the motion or the shape of the human

body. In this model, a single object is surrounded by an ellipse. Ellipse model

accompanying with fall action is shown in Figure 2.9. There are three important

parameters of the ellipse model that are defined as follows:

 Centroid of ellipse: In each frame, the centroid coordinate of ellipse O (Ox, Oy)

is an average of the all x coordinates and the all y coordinates of the white pixels.

WidthHeight

jiPj
x

i j

.

)],(.[
 (2.17)

WidthHeight

jiPi
y

i j

.

)],(.[
 (2.18)

31

Where, Height, Width are the height and width of the image frame.

i = 1: Height; j = 1: Width

P(i, j) is the binary value of current image frame which position pixel is at the (i,j);

In which P(i, j)= 0 if (i, j) image pixel is black and P(i, j)=1 if (i, j) image pixel is

white [26].

 Vertical angle of the object: The vertical angle of the object is the angle between

the major axis of ellipse and horizontal line.

Figure 2.9-Vertical angle

 The value of θ is determined as interval of

4

3
,

4

 . The goal of getting the

defined domain is to easier distinguish the fall of object being face fall or side

fall. The vertical angle θ is calculated by

2tan1

tan2
2tan

 (2.19)

If we move the axis to the centroid of ellipse and calculate the mean of pixels,

the vertical angle θ will be recalculated as following:

i j i j

i j

jiPyjiPx

jiPyx

),(.),(.

),(..2
arctan.

2

1
22

 (2.20)

Where, x = i - Ox and y = j - Oy (Ox, Oy: centroid of ellipse coordinate).

Figure 2.10 shows some examples of ellipse models which describe the duration

of fall action.

 Major and minor axis of the object: Major and minor axes are double distances

from O to O1(x1, y1) and O2(x2, y2), respectively, where:

Major axis

 X

32

* O1 is average of the all x coordinates and the all y coordinates of the white

pixels W(Wx, Wy) located in the limited angle so that
060ˆ hOW

* O2 is average of the all x coordinates and the all y coordinates of the white

pixels W(Wx, Wy) located in the limited angle so that
060)2/(ˆ hOW

Figure 2.10-Ellipse model for fall action

2.2.3.3 Object Feature Extraction

After modeling the human body with ellipse model, features from model are extracted to

identify the falls of object. There are many features that are used to recognize the fall

action from human with 2D ellipse model. In the context of our work, 5 features are used

to detect and classify falls comparing with the daily activities of object:

 Vertical angle θ (or Current Angle).

 Coefficient of motion (Cmotion).

 Deviation of the angle (CTheta).

 Eccentricity.

 Deviation of the centroid (CCentroid).

a) Current angle is vertical angle of the object. At the same camera angles the

object with various movement releases difference for the deviation angle of the object.

Instantaneous angle is vertical angle of the object in the frame, is also elliptical angle θ

calculated above [26]. Figure 2.11 shows that at the same camera angles, if the object is

walking, the vertical angle of object closes to 90
O

via horizontal, and if object is bending

or falling, the current angle of object will far from 90
O
.

33

Figure 2.11-Current angle of object

b) Coefficient of motion (Cmotion)

The brightness of a gray image has value in the interval [0, 255], in which the value of 0

is blackest and 255 is whitest. The speed of the object motion is determined by a gray

image in which the black pixels are background pixels, white pixels is the object

extracted from the current frame. At the same position over time, the gray pixels are the

white pixels of the previous image frame. Therefore, the gray frame is used to determine

speed of the object motions as known Motion History Image (MHI)[75] as shown in

Figure 2.12.

Figure 2.12-Motion History Image.

(a) MHI of slow action (b) MHI of fast action

The MHI or the Cmotion of object is determined by following equation

 (2.21)

In each MHI, Cmotion has value in a haft of interval [0, 1). Cmotion = 0 when the object

almost does not walk around. Cmotion comes to 1 when the object moves as quickly as

he/she does. Whenever the fall occurs, Cmotion has high values because the motion speed

WhitepixelGraypixel

Graypixel
CMotion

88.9022 78.590

(a

(b)

34

is rather high. As shown in Figure 2.13, during the period of fall in the red line Cmotion is

significantly higher value with 0.7 than the blue line of normal walking Cmotion is within

(0.5- 0.6). However with the different camera angle, Cmotion has different value. For the

face fall action Cmotion decreases lower than normal walking. Thus, to distinguish two

cases, other features are determined.

Walking

Cross fall

Face fall

Side fall

Figure 2.13-The variable of coefficient of motion

c) Deviation of the angle (CTheta)

Considering the frame at the moment t, CTheta is calculated based on the values of the

current frame of n frames from the frame (t - n + 1)
th
 to the frame t

th
 (with t ≤ n).

Standard deviation is a value which performs the degree of convergence or the histogram

of the database. If a database has small standard deviations, this means that the data

elements have a high level of similarity. In contrast, the data elements scatter in the space

of their value. In our work, CTheta is standard deviation of angles θ from 15 successive

frames. CTheta is usually higher when a fall occurs [26].

The current vertical angle changes slowly and the level of moving vertically of

the object is slow in the database. In this case, the standard deviation of the object

changes at low standard deviations or vice versa. Therefore, when moving normally, the

object is slightly changing in vertical angle, and thus the standard deviation value is

small. On the other hand, when a fall action happens, the standard deviation value is

suddenly high, as presented in Figure 2.14.

It is seen that in case of side falls and cross falls, the CTheta is much higher than

the non-fall actions and in light of direct falling actions. Figure 2.14 shows that CTheta is

slightly higher than walking, but smaller than side fall cases.

35

Walking

Cross fall

Face fall

Side fall

Figure 2.14-Deviation of the angle (CTheta)

d) Eccentricity

Eccentricity at current frame is computed as below:

 (2.22)

Where, e: eccentricity; a, b: semi-major and semi-minor axis of ellipse. e is smaller when

direct fall happens [76]. This is clearly seen in Figure 2.15.

e) Deviation of the centroid (CCentroid)

Considering the frame at the moment t, the system calculates CCentroid based on the values

of y-coordinate of the centroid of n frames from the frame (t - n + 1)
th
 to the frame t

th

(with t ≤ n). CCentroid is the standard deviation consisting of the y-coordinates of the

certain n frames. CCentroid is standard deviation of centroid coordinates from 15 successive

frames. CCentroid decreases rapidly when the fall occurs [26].

This feature distinguishes between fall actions and non-fall actions. When a fall

action occurs (red line), the CCentroid is high as the vertical change of the eccentricity is so

fast. In addition, when a non-fall action happens (blue line), the CCentroid is small as the

slowly vertical changes.

2

2

1
a

b
e

36

Walking

Cross fall

Face fall

Side fall

Figure 2.15-Eccentricity

2.3 Recognition event

In our work, three recognition algorithms are applied to realise the behaviour of object.

Firstly, it is Threshold-based algorithm. However, this method is not robust with many

different scenarios of our database. The second method is Neural Network algorithm.

This is more effectively than Threshold-based one, but it is too slow to apply our system

in case of online. Therefore, the third algorithm, Hidden Markov Model, is also used to

train and test on this system.

2.3.1 Threshold-based algorithm

Threshold-based algorithm is to set some hard thresholds to distinct whether an input

action is fall or non-fall. These thresholds are picked up from training process which is to

choose the relevant values for 5 main parameters in our system, namely CMotion, CTheta,

CCentroid, Theta and Eccentricity.

Based on the direction of falls and the type of falls, three models are built to

detect falling accidents [77]. The first model is direct fall. In this case CMotion, CTheta,

CCentroid are high but Theta is low. The second model is cross fall, in which CMotion, CTheta

is high, and Theta, CCentroid and Eccentricity get a medium value. In the last model, the

victim falls in the both side directions of the camera. Consequently Theta is almost

constant, CMotion is in average, Eccentricity is low while CCentroid is quite high. The

features are combined with each other depending on the fall models, the thresholds are

selected from the survey of training videos.

37

Although this algorithm offers a significantly fast method to train and test the fall

detection, there is still a drawback in system’s recognition ability. The hard thresholds is

not flexible, therefore it is difficult to have an exact decision in a complicated data.

2.3.2 Neural Network algorithm

Neural Network (NN) is the second method dealing with fall action’s recognition in this

study. The neural network is divided into three layers: the input layer, the hidden layer

and the output layer. Each layer in this order gives input to the next one [78]. The

threshold function of the units is modified to be a sigmoid function. The use of the

sigmoid function gives the extra information necessary for the network to implement the

back propagation training algorithm. Actually, the network utilised in this work is feed

forward neural network of which neurons are only connected foreword. Each layer of the

neural network contains connections to the next layer (for example, from the input to the

hidden layer), but there are no back connections. Back propagation which is a form of

supervised training describes how this type of neural network is trained. Back

propagation works by finding the squared error of the entire network, and then

calculating the error term for each of the output and hidden units by using the output

from the previous neuron layer. The weights of the entire network are then adjusted with

dependence on the error term and the given learning rate. Training continues on the

training set until the error function reaches a certain minimum. If the minimum is set too

high, the network might not be able to correctly classify a pattern. But if the minimum is

set too low, the network will have difficulties in classifying noisy patterns.

In the computer-based part of our work, the neural network’s initialization

follows 4 major steps: configuration, training algorithm selection, training optimization

and test [26].

2.3.2.1 Configuration

To detect person’s falling, a two-layer feedforward NN is initialized with a five-

dimension input vector which comprises five extracted features from the previous step

and a two-dimension output vector which represents for fall and non-fall decision. The

single hidden layer consists of nhu neurons (nhu-number of hidden unit) with weights

and biases. The activation function of the neurons in the hidden layer is the hyberbolic

tangent sigmoid function due to its desirable attributes. The number of hidden units nhu

was chosen to be variable, as the optimal value depends mainly on the complexity of the

problem. nhu was varied for each optimization step in a wide range to derive the best

value for a specific configuration. The output layer consists of two output neurons whose

activation transfer functions are again the hyperbolic tangent sigmoid function. The first

output signalizes the falling, and the second output presents non fall. And the first target

38

output is labelled with 1 for falling and 0 for non-falling. Biases and weights of all units

were initialized randomly.

2.3.2.2 Training algorithm selection

The optimization criterion is selected to be the minimization of the mean square error

(MSE) derived over the whole training set [79]. The maximum number of epochs is set

to quasi ∞, and the goal of training, which is asked to be a small MSE value, is set to

quasi zero. The training set is first split up into a training subset and a validation subset.

The training of the ANN only stops if the MSE derived from the validation subset could

not be reduced within 5 consequent training epochs. This method is considered to retain

generalization.

Two learning algorithms are considered: Scale Conjugate Gradient (SCG) [80]

and Resilient Backpropagation (RP) [81]. Because SCG algorithm is investigated due to

its common usage in pattern classification tasks and RP algorithm is fast convergence.

2.3.2.3 Training optimization

To optimize training process, there are three main steps involving selecting learning

algorithm, size of validation subset and number of hidden units.

 Firstly, two learning algorithms are considered: Scale Conjugate Gradient (SCG)

and Resilien Backpropagation (RP). The database is randomly split up into 20%

validation and 80% training subsets. From training process, the SCG algorithm is

selected as providing a better work, which means the MSE gets optimized within

a significantly smaller number of training epochs, where

.

 Secondly, to avoid overfitting the validation course is performed during the

training period. The database is divided into a training subset and a validation

subset (VS) in such a way that VS is large enough to have similar characteristics

to the training subset, otherwise the training algorithm will stop early. On the

other hand, the size of the validation subset should be kept as small as possible

to retain a large training subset. From the former step, the Scale Conjugate

Gradient (SCG) algorithm is used to train the neural network with hidden layers

is fixed at 10 with validation subsets of different relative size (5%, 10%, 15%,

20%, 25%, 30% and 35%).

 After the process, it is said that 20% validation set and 80% training set offer the

largest f-score and the smallest MSE. So this case is chosen as the appropriate

configuration. Eventually, the SCG algorithm and the 20%-validation-subset size

are implemented. We only changes the number of hidden layer in a wide range

of nhu = {10, 20, 30, 40, 50, 60} to the optimal configuration. At the end, the

39

configuration with nhu = 50 is optimal, due to f-score is the largest and MSE is

the smallest.

2.3.2.4 Test

After being trained by neural network, the neural network is used to test DUT-HBU

database described more detail in Appendix.

2.3.3 Hidden Markov Model algorithm.

The Hidden Markov Model (HMM) is a useful statistical tool for modelling generative

sequences that can be characterized by a basically process generating observable

sequences. HMM, which has recently been applied with particular success to speech

recognition, is a kind of stochastic state transit model [82]. Besides, dealing with variable

length feature vectors as fall and non-fall action is an advantage of HMM over other

machine learning methods. In this work, fall or non-fall state transition is analysed

through observation series O = {O1, O2,…,On} indirectly. The 5 state HMM expresses

fall process is denoted as and it can be demonstrated by arrays: ,, for

short.

For training process, λ is adjusted to get the conditional probability P(O|λ)

maximum. The Baum-Welch algorithm for unsupervised training is used for training

purpose [82]. This algorithm computes maximum likelihood estimates and posterior

mode estimates for the parameters of the HMM. This is updated weights through

recursion to get better model. In order to distinguish falling actions from the other non-

fall activities, two HMMs were built. The observation data of HMMs is code-words in

the codebook. The initial condition used for HMM training is 5 hidden states and

random values for initial state distribution (π), state transition matrix (A) and emission

matrix (B). Then the Baum-Welch algorithm is run until convergence condition is

satisfied. In this study, experimental results showed that the 5-state left-to-right hidden

Markov model provided the highest performance.

For testing process, this process in this proposed system is separated into two

following steps:

 Clustering: The Euclidean distance from each feature vector to each codeword in

the codebook is calculated. This feature vector is marked by codeword

coefficients that have the shortest distance to it.

 Decoding and decision making: A vector containing 15 coefficients is taken into

decoding process for both fall and non-fall models. After decoding, the system

compares the results of two models to make the decision to label “1” (if fall

model is more likelihood) or “0” (if non-fall model is more likelihood). Then the

40

label will be stored in a buffer length is 15. When the total number of “1” in this

buffer is greater than “predefined” threshold, the falling incident is detected.

2.4 Evaluation

2.4.1 DUT-HBU database

2.4.1.1 Database description (see more in Appendix)

Database name: DUT-HBU database (Danang University of Technology- Human

Behavior Understanding) of Electronic & Telecommunication Engineering Department,

Danang University of Technology, Danang, Vietnam.

In our database, there are 216 videos which are divided into 106 falling videos

and 110 non-fall videos as shown in Table 2.1. In our work, 113 videos are used for

training and the rest are used for testing purpose. Scenario of creating the database of

falling is based on direction of object with camera. Three falling directions (Figure 2.16)

are defined in this database as:

 Direct: object falls the same orientation with the direction of the camera.

 Cross: objects created the 30
o
-60

o
 angles with camera when the falling occurs.

 Side: object falls in a perpendicular direction to the camera.

In each direction of the falling action, these videos also include activities as follows:

- Slip: Objects are slipped and fallen backward.

- Stumble: Objects are fallen ahead, do not kneel but raise their hand.

- Faint: Objects are fallen ahead, kneel but do not raise their hand.

- Roll-fall: Objects are rolled down from high position when they are lying.

Figure 2.16-The position of falling compared with angles of camera

Besides the fall clips, non-fall videos are also classified by three directions above. These

videos consist of activities which are easily confused with falling action such as: lying,

sitting, creeping, and bending [83].

- Bending: Doing exercise or putting your arm down.

Side Cross Direct

41

- Creeping: Crawling to find something on the floor.

- Lying: Walking and lying on the floor.

- Sitting: Sitting on the chair or the floor.

Table 2.1-Classifier of videos according to activities

DATABASE
Training Testing

Sum Pure

data
Noisy

data
Test1 Test2 Test

Fall

Cross 4 18 4 4 8 34

Direct 4 19 4 6 9 38

Side 5 17 4 5 8 34

Non-fall

Bending

Cross 1 4 1 1 1 7

Direct 3 5 1 1 1 8

Side 1 3 1 2 2 8

Creeping

Cross 1 3 1 2 1 7

Direct 2 4 1 1 1 7

Side 1 4 1 1 1 7

Lying

Cross 1 3 1 1 2 7

Direct 3 5 1 1 0 7

Side 1 4 1 1 2 8

Sitting

Cross 0 2 0 1 2 5

Direct 3 6 1 1 1 9

Side 1 4 1 1 1 7

Others 0 12 0 0 11 23

Sum 31 113 23 29 51 216

From the classification in Table 4.1, we divide to analyse more detail the action cases as

presented in Table 4.2.

2.4.1.2 Training databases

Two training scenarios are implemented in this study:

 Scenario 1: Training with pure data.

Pure data consists of videos which have stable background. These videos are captured in

a small room under good brightness condition. The object is not obscured by furniture in

the room. Furthermore, our subjects wear natural clothing (as opposed to motion capture

suits that is often done for pure motion capture sessions). Training set in the Scenario 1 is

named as Scenario1 set. It contains 31 video clips of clear data with 13 falling clips and

18 non-fall clips.

42

Table 2.2-Glossary of action classification

Action Meaning

Fc (Fall Cross) Fall creates a cross direction with camera angles

Fd(Fall Direct) Fall creates the same orientation with the direction of the camera

Fs (Fall Side) Object falls in a perpendicular direction to the camera

Ncb (Non-Fall

Cross Bending)
Object bends in a cross direction with camera angles

Ndb (Non-Fall

Direct Bending)
Object bends in the same orientation with the direction

Nsb (Non-Fall side

Bending)
Object bends in a perpendicular direction to the camera

Ncc (Non-Fall

Cross Creeping)
Object creeps in a cross direction with camera angles

Ndc (Non-Fall

Direct Creeping)
Object creeps in the same orientation with the direction

Nsc (Non-Fall Side

Creeping)
Object creeps in a perpendicular direction to the camera

Ncl (Non-Fall

Cross Lying)
Object lies in bed or on a bench in a cross direction with camera

angles

Ndl (Non-Fall

Direct Lying)
Object lies in bed or on a bench in the same orientation with the

direction

Nsl (Non-Fall Side

Lying)
Object lies in bed or on a bench in a perpendicular direction to the

camera

Ncs (Non-Fall

Cross Sitting)
Object sits on a chair or on the floor in a cross direction with

camera angles

Nds (Non-Fall

Direct Sitting)
Object sits on a chair or on the floor in the same orientation with

the direction

Nss (Non-Fall Side

Sitting)
Object sits on a chair or on the floor in a perpendicular direction to

the camera

 Scenario 2: Training with noisy data.

The noisy data consists of videos that have activities or situations similar to the

ones of the Test2, and Test3 sets (which will be described later). Noise data is used for

enriching the training set and provided others cases for a better training. The training set

is named as Scenario2. It includes 31 clear data videos, 29 videos similar to the videos of

Test2 set and 51 videos similar to the ones of Test3 set. They have 54 falling video clips

and 59 non-fall video clips in the Scenario 2. The testing sets of scenario 1 are reused in

this scenario.

43

Figure 2.17-Daily activities look like falling

2.4.1.3 Testing databases

The training set consists of videos which have static backgrounds. They are captured in a

small room under good brightness condition. The object is not obscured by furniture in

the room. Furthermore, moving subjects wear natural clothing (as opposed to motion

capture suits that is often done for pure motion capture sessions). In comparison to the

training data in [26], this training database contains 31 videos structured from 13 falling

videos and 18 non-fall videos.

The testing set is regrouped into three main types which are named as Test1,

Test2 and Test3 corresponding to three different testing scenarios as well-matched

(WM), medium-mismatched (MM) and highly-mismatched (HM) condition,

respectively. This setup is designed to qualify robustness of the developed algorithms as

illustrated below:

 WM test clips: Their contents and recoding conditions are very similar to the

ones for training. In each clip, there is only one moving object with static

background. This set has 12 falling videos and 11 non-fall videos.

44

 MM test clips: includes these actions which have similar characteristics of object

in the training videos but the environment brightness and camera position are

changed. This consists of 15 fall videos and 14 non-fall videos.

 HM test clips: There are many changes in activities and recording conditions

compared to those of the training videos such as: part of the object is obscured,

background is changed with extra static objects, or there are more than two

moving objects in these video. This consists of 25 fall videos and 26 non-fall

videos.

The detailed breakdown of different types of fall videos and non-fall videos is

shown in Table 2.1.

2.4.2 Performance measurement

Receiver-operating characteristic (ROC) analysis was originally developed during World

War II to analyse classification accuracy in differentiating signal from noise in radar

detection [84]. ROC analysis is a useful tool for evaluating the performance of database

tests and more generally for evaluating the accuracy, recall and precision. Performance

of such systems is commonly evaluated using the data in the matrix called as

contingency table or confusion matrix. In Figure 2.18 a confusion matrix gives

information about actual (True class) and predicted (hypothesized class) classifications

done by a classification system.

Figure 2.18-Confusion matrix

In our work, the following statistical measures are exploited to assess the examined

algorithms: Recall (RC) [%], Precision (PR) [%] and Accuracy (Acc) [85]. They are

defined as follows:

FNFPTNTP

TNTP
Acc

FPTP

TP
PR

FNTP

TP
RC

 ,, (2.23)

45

Whereas TP: true positives (fall detection with fall videos); FP: false positives (fall

detection with non-fall videos); FN: false negatives (no fall detection with fall videos)

and TN: true negative (no fall detection with non-fall videos).

The role of the RC, the PR, and the Acc is to evaluate overall performance of the

system. The higher values of the RC, the PR, the Acc are, the more effective system is.

Actually, two parameters PR, RC play a key role in a fall detection system due to the fact

that when applying the detection system falls to the elderly, especially elderly or patients

living alone, we need to figure out exactly fall actions in order to have a correct and

prompt warning to ensure life safety for the monitored people.

2.4.2.1 Performance of the system based on Neural Network

Besides two training scenarios in the previous section, two different feature sets are

extracted and examined:

 The first feature set (FS1) contains 5 features which are extracted in every frame

as proposed in our previous work [12].

 The second feature set (FS2) is built by extracting five features above from 20

consecutive frames. In this feature set, 20 frame-sequence times is equal to fall

action, so FS2 is dynamic feature set.

In this subsection, we evaluate performance of feature sets as well as roles of different

training sets, there are four models as follows:

 Model 1: Feature Set 1, Scenario 1 (FS1-SN1).

 Model 2: Feature Set 1, Scenario 2 (FS1-SN2).

 Model 3: Feature Set 2, Scenario 1 (FS2-SN1).

 Model 4: Feature Set 2, Scenario 2 (FS2-SN2).

a) Performance of the Model 1 (FS1 – SN1)

Table 2.3 describes the detailed results of Test1, Test2 and Test3 for this model.

46

Table 2.3-Performance of the Model 1

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 3 6 13 0 1 2 3 4 4 8 16

Fd 4 3 6 13 0 3 3 6 4 6 9 19

Fs 4 5 7 16 0 0 1 1 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 0 1 1 1 2 0 3 1 2 1 4

Ndc 0 1 0 1 1 0 1 2 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 1 1 1 1 1 3 1 1 2 4

Ndl 0 1 0 1 1 0 0 1 1 1 0 2

Nsl 0 0 1 1 1 1 1 3 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 3 3 0 0 8 8 0 0 11 11

23 29 51 103

Sum

Fall

Non-

fall

Sum

Scenario1

FS1

Fall Non-fall

Figure 2.19-Evaluating TPR and TNR of ALL three tests (FS1, SN1)

Based on the results in Table 2.3 the statistical results namely True positive rate-TPR

[%] and True negative rate-TNR [%] are calculated and presented as shown in Figure

2.19

0
10
20
30
40
50
60
70
80
90

100

F
c

F
d F
s

N
cb

N
d

b

N
sb

N
cc

N
d

c

N
sc

N
cl

N
d

l

N
sl

N
cs

N
d

s

N
ss N
o

Scenario1, FS1

TPR (%) TNR (%)

47

 When the direction of the camera is considered, TPR decreases accompanying

the percentage of seeing objects decline, such as TPR is much over 90% for side

falls, is around 90% for cross falls and below 90% in direct falls.

 For non-fall actions: Figure 2.17 presents the bending or sitting on a chair which

is not confused with falling actions, on the other hand actions such as sitting on

the floor, lying or creeping are easily to be confused by falling actions.

b) Performance of the Model 2 (FS1 – SN2)

The detailed result of Test1, Test2 and Test3 for this model is shown in Table 2.4.

 In this model, the performance of the system is improved significantly; however,

the one for direct falls is still not good. After analysing the result, we realise that

there are some confusion between direct falls and sitting on the floor. These

actions have the similar features but happen in different duration.

 The action falls down and not be mistaken to be considered in detail and we find

often is confused between direct action and action fall sitting on the floor. Two

actions have similar properties, but the duration of action is different.

To overcome this shortcoming, a features’ vector consisting of 20 consecutive frames

which is the same as the time a falling action happens is considered.

Table 2.4-Performance of the Model 2

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 4 7 15 0 0 1 1 4 4 8 16

Fd 3 4 8 15 1 2 1 4 4 6 9 19

Fs 4 5 6 15 0 0 2 2 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 1 0 1 1 1 1 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 0 0 0 0 1 1 2 4 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 2 2 0 0 9 9 0 0 11 11

23 29 51 103

Non-fall Sum

Fall

Non-

fall

Sum

Scenario2

FS1

Fall

48

Figure 2.20-Evaluating TPR and TNR of ALL three tests (FS1, SN2)

c) Performance of the Model 3 (FS2 – SN1)

The detailed results of Test1, Test2 and Test3 for this model are shown in Table 2.5.

Table 2.5-Performance of the Model 3

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 3 7 14 0 1 1 2 4 4 8 16

Fd 4 3 5 12 0 3 4 7 4 6 9 19

Fs 4 4 7 15 0 1 1 2 4 5 8 17

Ncb 0 0 1 1 1 1 0 2 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 1 0 1 1 1 1 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 1 0 0 1 1 1 2 4 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 2 2 0 0 9 9 0 0 11 11

23 29 51 103

Sum

Fall

Non-

fall

Sum

Scenario1

FS2

Fall Non-fall

0
10
20
30
40
50
60
70
80
90

100

F
c

F
d F
s

N
cb

N
d

b

N
sb

N
cc

N
d

c

N
sc

N
cl

N
d

l

N
sl

N
cs

N
d

s

N
ss N
o

Scenario2, FS1

TPR (%) TNR (%)

49

Figure 2.21-Evaluating TPR and TNR of ALL three tests (FS2, SN1)

As we can see in Figure 2.21 the performance of FS2 is better than the previous ones.

d) Performance of the Model 4 (FS2 – SN2)

Table 2.6 presents the detailed results of Test1, Test2 and Test3 for this model.

Table 2.6-Performance of the Model 4

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 4 8 16 0 0 0 0 4 4 8 16

Fd 3 5 8 16 1 1 1 3 4 6 9 19

Fs 4 5 8 17 0 0 0 0 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 0 1 1 1 2 0 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 0 0 1 1 1 1 1 3 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 1 1 0 0 10 10 0 0 11 11

23 29 51 103

Sum

Fall

Non-

fall

Sum

Scenario2

FS2

Fall Non-fall

0
10
20
30
40
50
60
70
80
90

100

Fc Fd Fs

N
cb

N
db

N
sb

N
cc

N
dc

N
sc

N
cl

N
dl

N
sl

N
cs

N
ds

N
ss N
o

Scenario1, FS2

TPR (%) TNR (%)

50

In this model, the performance increases considerably. All side and cross falling

actions are recognised correctly and the recognition of direct falling actions is over 80%.

However, some fast non-fall actions are still confused with falling actions.

Figure 2.22-Evaluating TPR and TNR of ALL three tests (FS2, SN2)

e) Overall performance of the Neural Network

The overall performance for all four models is presented in Figure 2.23 This shows

Recall (RC) [%], Precision (PR) [%] and Accuracy (Acc) [%].

The statistical results depicted in Figure 2.23 below provide information about

classification performance of training methods.

 Statistical results in training Scenario2 are higher than in Scenario1. We observe

that the accuracies of ALL set in scenario 2 with FS1 and FS2 are 90.38% and

94.23%, respectively. But in scenario 1, these factors are 82.69% and 84.76%.

 Training Scenario1: Its performance is acceptable in clean data. Statistical results

decreased dramatically in the noise data. With FS1, results indicate that Acc is

high for Test1 set up to 100%, but for Test2 set, this result is 79.31% and the

lowest is in Test3 set, only 76.92%.

 Training Scenario2: This model obtains stable statistical results in almost any

conditions. This proves that behaviour is fair when many data with different

conditions are trained.

 NN which is trained with FS2 gives much better results than NN which is trained

with FS1, in the same training scenario. With FS2, the time element is added. It

increases the recognition ability.

 In four fall detection models above, the fourth model which used FS2 and

training Scenario2 performs the best and behaves fair in almost any conditions.

0
10
20
30
40
50
60
70
80
90

100
Fc Fd Fs

N
cb

N
db

N
sb

N
cc

N
dc

N
sc

N
cl

N
dl

N
sl

N
cs

N
ds

N
ss N
o

Scenario2, FS2

TPR (%) TNR (%)

51

We can see statistical results of scenario 2, FS2 for ALL set in Figure 2.23. They

are 94.34% for RC, 94.34% for PR and 94.23% for Acc.

2.4.3 Performance of the system based on Hidden Markov Model

The performance of the algorithm GMM-HMM evaluated with three different test sets is

depicted in Figure 2.24 and Table 2.7. The overall performance of the proposed

algorithm is quite high in most scenarios: (i) the best result obtained under the WM test,

due to similarities in action styles and environment conditions between training and

testing; (ii) in the MM test, because there are differences between camera angle and

brightness of the test environment, performance is reduced to about 86%; (iii) with many

actions performed naturally in daily life, there are several practical challenging situations

happened such as: object is obscured by other static objects in the room, new object is

added into the room background, the light is suddenly changed, falling directions do not

match with the classified directions assumed during the algorithm development, etc.

Thus, this test provides lower recognition rates than the others, but still acceptable.

Figure 2.23-Evaluating three tests for four different models

7
3

.3
3

8
4

.6
2

7
9

.3
1

8
6

.6
7

9
2

.8
6

8
9

.6
6

6
6

.6
7

9
0

.9
1

7
9

.3
1

9
3

.3
3

1
0

0

9
6

.5
5

0
10
20
30
40
50
60
70
80
90

100

RC(%) PR(%) Acc(%)

(%
)

Test2 (MM)

Scenario1, FS1 Scenario2, FS1

Scenario1, FS2 Scenario2, FS2

1
0

0

1
0

0

1
0

0

9
1

.6
7

1
0

0

9
5

.6
5

1
0

0

9
2

.3
1

9
5

.8
3

9
1

.6
7

1
0

0

9
5

.6
5

0

20

40

60

80

100

RC(%) PR(%) Acc(%)

(%
)

Test1 (WM)

Scenario1, FS1 Scenario2, FS1

Scenario1, FS2 Scenario2, FS2

7
6

.9
2

7
6

.9
2

7
6

.9
2

8
4

.6
2

9
1

.6
7

8
8

.4
6

7
6

.9
2

8
6

.9
6

8
2

.6
9

9
6

.1
5

8
9

.2
9

9
2

.3
1

0

20

40

60

80

100

RC(%) PR(%) Acc(%)

(%
)

Test3 (HM)

Scenario1, FS1 Scenario2, FS1

Scenario1, FS2 Scenario2, FS2

8
1

.1
3

8
4

.3
1

8
2

.6
9

8
6

.7
9

9
3

.8
8

9
0

.3
8

7
9

.2
5

8
9

.3
6

8
4

.7
6

9
4

.3
4

9
4

.3
4

9
4

.2
3

0

20

40

60

80

100

RC(%) PR(%) Acc(%)

(%
)

ALL

Scenario1, FS1 Scenario2, FS1

Scenario1, FS2 Scenario2, FS2

52

Figure 2.24-Statistical results following to Recall (RC) [%], Precision (PR) [%] and Accuracy

(Acc)

As detailed in Table 2.7, performance of the proposed algorithm varies correspondingly

with object vision ability of camera. This system is good at cross or side falling actions.

For non-fall activities, some actions such as bending or sitting on chair are usually

recognized exactly, and other actions such as sitting on floor, lying or creeping are

confused sometimes.

2.4.4 Comparison these methods

Beside the proposed algorithm GMM-HMM as described above, we also develop

another algorithm using BGS for Object Segmentation and HMM for detection (named

as BGS-HMM). Together with these two algorithms, our previous published work [26]

based on BGS and Neural Network (BGS-NN) algorithm and the method using BGS and

template matching (BGS-TM) reported in [77] are reprogrammed and comparatively

evaluated on the same test database above. Their performances are depicted in Figure

2.25, we mention the following comments:

 While the BGS-TM method provides rather good results for the WM condition

(95.65%), it performs worse under more difficult scenarios MM (55.17%) and

HM (66.67%). Because of using the constant thresholds, this template matching

method causes higher false alarm and lower recognition rate.

 The hard threshold problem has been solved by training NN and HMM in this

study. This evident is shown in Figure 2.25b and Figure 2.25c. Here, the results

derived from the BGS-NN are slightly higher than the ones obtained by the

BGS-HMM. We assume this due to the algorithm used larger amount of data for

training NN. Meanwhile, the HMM was trained with fewer training data [26].

Test1 Test2 Test3 Total

Recall 100 86.67 84 88.64

Precision 100 86.67 80.77 86.79

Accuracy 100 86.21 82.35 87.38

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

a
n

ce
 (

%
)

53

Table 2.7-Classifier of videos according to activities

Database
 Fall Non-fall

Sum
Test1 Test2 Test3 Test1 Test2 Test3

Fall

Direct 4 4 7 0 2 2 19

Cross 4 4 6 0 0 2 16

Side 4 5 8 0 0 0 17

Non-

fall

Bending

Direct 0 0 0 1 1 1 3

Cross 0 0 0 1 1 1 3

Side 0 0 0 1 2 2 5

Creeping

Direct 0 0 1 1 1 0 3

Cross 0 0 0 1 2 1 4

Side 0 1 0 1 0 1 3

Lying

Direct 0 0 0 1 1 0 2

Cross 0 0 1 1 1 1 4

Side 0 0 0 1 1 2 4

Sitting

Direct 0 0 0 1 1 1 3

Cross 0 1 0 0 0 2 3

Side 0 0 0 1 1 1 3

Others 0 0 2 0 0 9 11

Sum 12 15 26 11 14 25 103

 By comparing performance of the GMM-HMM algorithm with three other

methods, we can see the positive affect of using adaptive background Gaussian

model. This method deals with lighting change by slowly adapting the Gaussian

parameters. By adapting the old background with new added static object, it

helps to remove obstacle objects from the real segmented object. The slow

moving objects are therefore also eliminated from the foreground estimation.

 While, only pure data (good brightness, static background, etc...) in training the

HMM system is used in this study, the NN actually exploits much more noisy

training data including many different environments for learning purpose.

However, excepting the WM condition, its performance is less than the one of

our proposed algorithm in both MM and HM scenarios. We assume this

54

improvement due to the contribution of adaptive GMM in object segmentation.

With Gaussian Mixture Model, interest objects are well segmented which leads

to better extracted features [26].

 The last comment is good balance between RC and PR scores of the proposed

GMM-HMM method while this cannot be achieved by other algorithms.

2.4.5 Analysis of error recognition

The fourth model is GMM-HMM as shown in Figure 2.25 gives the best results, but it is

not the optimum. The causes of the error recognition come from many aspects. A part is

from the algorithm and the others are from the objective conditions such as poor light

conditions, more than one object moving at the same time, or bad extracted features

chosen to distinguish the actions. We will review many different aspects to analyse

advantages, shortcomings and orient optimization solutions in recognition.

2.4.5.1 False extraction objects

a) Environment’s brightness

To correct the interference caused by poor brightness conditions such as weak or sudden

changeable light intensity, we need to use better methods at extracting objects under less

influence of light. Other cases as clothes of object coincide with the background colour

that will make extracted object lost some parts. So, this lets the characteristics of the

activity caused false identification system as described in Figure 2.26.

b) Object is obscured

One of the problems in the stage of extracting objects that are obscured some parts of

theirs body by preventing between objects and camera in the room as illustrated in

Figure 2.27 This is a very difficult problem to overcome if one camera is only used.

Some researchers have suggested solutions like hanging camera on the ceiling to avoid

occlusion. But it is difficult to distinguish the action falls to the sitting down action or

lying down on floor with this solution.

55

a)
b)

c)
d)

Figure 2.25-Recognition performance derived from

(a) BGS-TM (b) BGS-NN (c) BGS-HMM (d) GMM-HMM

Test1 Test2 Test3 Total

Recall 91.67 60 72 73.01

Precision 100 56.25 64.29 70

Accuracy 95.65 55.17 66.67 69.9

0

10

20

30

40

50

60

70

80

90

100
P

er
fo

rm
a
n

ce
 (

%
)

Test1 Test2 Test3 Total

Recall 100 73.33 76.92 81.13

Precision 100 85.62 76.92 84.31

Accuracy 100 79.31 76.92 82.69

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

a
n

ce
 (

%
)

Test1 Test2 Test3 Total

Recall 100 73.33 73.08 80.77

Precision 92.31 73.33 79.61 82.35

Accuracy 95.96 72.41 76.92 81.55

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

a
n

ce
 (

%
)

Test1 Test2 Test3 Total

Recall 100 86.67 84 88.64

Precision 100 86.67 80.77 86.79

Accuracy 100 86.21 82.35 87.38

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

a
n

ce
 (

%
)

56

Figure 2.26-Extracted object under not good environment’s brightness

Figure 2.27-Object is obscured some parts of body

c) Many movement objects appear in the frame at the same time

Extracted Object method based on background subtraction only works well in the case of

a static background with one moving object as suggest at the beginning of this Chapter.

For the video has other objects moving with complex routine, the quality of the output of

background subtraction stage is very bad and hard to track the object as shown in Figure

2.28. To distinguish the supervision subject with other objects which move at the same

time, we should use the more complex methods as follows tracking multi-points on the

body or Stick-figures technique instead of silhouette.

57

Figure 2.28-Many objects are moving at the same time

2.4.5.2 Extracted features

The 2D model estimated from a camera in this thesis will not show the depth of the

object; hence, the five selected features are used to classify the actions. Figure 2.29

shows the values of extracted features of face fall action and sitting down on the floor

and continuously stand up to go.

Obviously with two different actions, face fall and sitting actions, the five

features are very similar, thus the system cannot distinguish the two actions and it causes

misclassification. It means that the five extracted attributes are not sufficient to

distinguish the fall actions given in this thesis.

From the above analysis, we found that this solution has to be further processed.

However, it is basically solved the problem of fall recognition. The algorithms achieve

high effective due to the large of recognition sample set. The purity video gives right

results with higher rates. It is necessary to consider the other problems such as the

obscured object, silhouette of object, etc. in identifying the real situation.

2.5 General discussion

The experimental results show that the performance of this proposed algorithm is quite

high and robust even in conditions such as lighting changes, added background, varied

camera vision, obscured objects, long-term scene changes, etc. Although the final result

of the computer-based Fall Detection System is quite good, its design faces some major

challenges discussed in this section.

58

2.5.1 Performance under real-life conditions

In Fall Detection System, accuracy and reliability are two major criteria which should be

improved as much as possible. This is easier to achieve in experimental environments

under controlled conditions. However, the detection rate perhaps decreases when applied

to a real situation [86]. Especially, our database use data recorded from falls of young

people simulated at the discretion of each impersonator in the videos. So, our database

lacks of a standardized procedure or compares with a public database. Meanwhile, the

real fall detection aim to older people or patients who have some distinctions with young

people in the database. There are only few studies incorporated data from older people

[87][88], but their participation is limited to perform a set of simulated activities of daily

living for a few minutes or hours. That is not enough to assess the system performance in

a real situation.

2.5.2 Usability

The fall detection based on camera is particularly implemented at certain areas, namely

small hospitals or nursery homes where a small surveillance area and not many people

moving simultaneously have. Moreover, this system still limits to become an online

system which can capture a moving object, train itself and test at the same time.

Furthermore, the most important restriction here is that this system is not wearable,

which is more convenient and applicable at the contemporary time.

2.6 Conclusion

In this chapter, the algorithms used in Object Segmentation, Filter, Feature Extraction

and Recognition module of the Fall Detection System is described. Moreover, we

introduce the speciality of DUT-HBU database which is used for evaluation our

proposed algorithms in this Chapter and also in other Chapter. We assess the describe

Fall Detection System by using the accuracy, recall, precision performances. The

comparison is then shown simulation results between these algorithms such as

BackGround Subtraction/Hidden Markov Model (BGS-HMM); Gaussian Mixture

Model/Hidden Markov Model (GMM-HMM); BackGround Subtraction/Neural Network

(BGS-NN); BackGround Subtraction/Template Matching (BGS-TM). Therefore, we

select the BGS-TM algorithms for implementing our system on processor cores and

FPGA. Finally, we analysis some shortcomings of these techniques to give the false

recognition output related environment brightness, occlusion of object, multi objects, etc.

In the next Chapter, we characterise the algorithm and architecture parameters to

model the execution time and power consumption of video processing applications

which support for exploring the low cost architecture of Fall Detection System on both

processor cores and FPGA. For the implementation aim, each modules of Fall Detection

59

System is considered as a task: Object Segmentation, Filter, Feature Extraction and

Recognition.

Figure 2.29-Comparison the five features of face fall and sitting action

0 50 100 150 200 250 300 350
0

50

100

150

0 50 100 150 200 250 300 350
0

50

100

150

Theta

CMotion

0 50 100 150 200 250 300 350
0

0.4

0.8

0 50 100 150 200 250 300 350
0

0.4

0.8

0 50 100 150 200 250 300 350
0

5

10

15

CTheta

0 50 100 150 200 250 300 350
0

5

10

0 50 100 150 200 250 300 350
0

0.5

1

0 50 100 150 200 250 300 350
0

0.5

1

Eccentricity

0 50 100 150 200 250 300 350
0

5

10

15

0 50 100 150 200 250 300 350
0

5

10

15

CCentroid

 Face fall Sitting

60

61

Chapter 3. Power and Time Model

Methodology for Fall Detection System

Various design methods have been proposed to estimate power from low level to high

levels that requires design information in language such as Verilog/VHDL/SystemC/C.

However, the more detailed the model is the slower the simulation and thus the slower

the estimation. Therefore, to improve this process, it is desirable to define a power

estimation methodology.

Consequently, the target of this Chapter is on defining an efficient power model

to estimate the power consumption of video applications in the Fall Detection System.

We also extract the execution time model by this way. In general, the aim of power

estimation methodology mentions about the speed and accuracy. In our work, we target

accuracy based modeling style and analysis information collected from measurement on

real board to obtain sufficiently accurate power estimation for the Fall Detection System

on heterogeneous platform. Therefore, we experiment and verify the model’s accuracy

on Zynq-7000 AP SoC platform, to show the applicability of our model.

The following of this chapter is structured as follows: Section 3.2 and 3.3

describe the power consumption modeling approaches and execution time estimation

approaches. The discussion for selecting the suitable heterogeneous platform such as

Zynq 7000 AP SoC to implement the Fall Detection System is clarified in Section 3.4.

Section 3.5 presents the method to measure the power/execution time on processor cores

and FPGA for our system. Then, the proposed power model of the Fall Detection

System on heterogeneous platform is illustrated in Section 3.6. The next Section 3.7

is dedicated to the definition of execution time models for heterogeneous platform.

62

3.1 Power and energy consumption characterization and estimation in

MPSoC

In today's high-performance system designs, power consideration is becoming

increasingly important leading to develop the power consumption in MPSoC at early

step of the design. Understanding source of power consumption allows designers to

configure on MPSoC environment to minimize power consumption, successfully meet a

given power budget to maintain a reliable product and also sufficient the recognition

rate.

The power consumption of CMOS circuit consists mainly of dynamic and static power.

 (3.1)

In a CMOS device including n transistors, the static power consumption, Pstatic, is

calculated as a function of the number of transistors, the leakage current Ilkg_i of each

transistor and the supply voltage Vdd. It is represented by equation 3.2

 (3.2)

Actually, when no switching activity occurs, transistors in CMOS circuits lose an

amount of current that can be negligible or not according to the architecture and the

technology of the circuit. The static power, Pstatic, in our work is the additional

continuous power dissipation when the device is configured and there is no activity.

The dynamic power dissipation, Pdynamic, of a CMOS circuit is depicted by an

approximate relation given by equation 3.3 which includes the operating frequency f, the

supply voltage Vdd and the total load capacitance of all gates CL. Where is the average

switching activity of the component.

 (3.3)

Dynamic power can be an important source of power dissipation and is considerably

dependent on the application and the architecture of processor cores or FPGA.

In addition, the energy consumed by a system is the number of power dissipated

during a certain period of time. For instance, if a task T is running on a MPSoC during

an execution interval of T: [a, b] then the energy consumed by the MPSoC during this

time interval is given by equation 3.4:

 (3.4)

To define a methodology of power/energy consumption estimation, it is

necessary to characterize the variation of power/energy consumption on hardware

(FPGA) and software (processor) parts separately or the combination of heterogeneous

solution. The power/energy estimation is a process to evaluate of the power consumption

of a design. The aim is to check whether power and reliability constraints are met or not.

After defining the power consumption estimation, it is necessary to explore architectures

63

with the low cost power/energy consumption for the Fall Detection System. Generally,

the estimation methods are based on the followings [89]:

 Power estimation is based on the simulations of the embedded system and its

results depend on the activities/toggles of the design.

 Power estimation using mathematical models shows the dependence of power

consumption of the embedded system on certain parameters. These parameters

can be static such as the processor frequency, the number of cores, the memory

size, etc. or dynamic such as cache miss rate, pipeline stall, instruction per cycle,

etc.

In the following Section, we review the state of the art of power consumption modeling

approaches on embedded systems at different abstraction levels.

3.2 Power consumption modeling approaches

In this Section, we present an overview of recent approaches to model the power

consumption. The power consumption models can be distinguished into two main

categories [90]:

 Low-Level models.

 High-Level models.

Low-level models calculate the power from detailed electrical descriptions: circuit levels,

gate level, register transfer level (RTL) and architecture level. The current low level

tools are such as SPICE [91] at the transistor level, Diesel [92] at the gate level and

Petrol [93] at the RTL level, which deal with fine-grained activities. The simulation time

of these tools depends on circuit size and circuit complexity. Thus, it is rather difficult in

application for complex MPSoC. Notwithstanding, the tools supply a good accuracy, but

it is not always practical to implement in the early design flow as they require generally a

deeper knowledge of the circuit. While, high-level models deal with instructions and

functional units of the programs with less architectural and technology knowledge [90].

3.2.1 Low-level power consumption estimation techniques

Both accuracy of the estimation and speed of the simulator compromise the efficiency of

the power simulator. There are many power simulators available in the industry and also

in academic research centers. In this subsection, we survey the estimation techniques of

the power consumption frequently used at lower levels. The low-level power

consumption estimation techniques cover a wide range of abstractions levels such as the:

 Circuit/Transistor level estimations;

 Logic gate level estimations;

 RTL estimations;

64

 Architectural level estimations;

Circuit-level estimations

At this level, the processor cores are presented in terms of transistors and nets which also

require undergoing all the steps in the design flow. Furthermore, the circuit-level of the

system uses element models which are based on linear differential equations [94] and

works in continuous time domain. This implies that a simple simulation for a small set of

transistors requires a large number of time which is not always available in this fast

moving industry and not practical for complex SoC [95]. PowerMil [96] is an early

attempt to build a low-level power consumption simulator. This tool is used for

simulating current and the power characteristic in VLSI circuits. It is also accomplished

to simulate detailed current behavior in modern deep sub-micron CMOS circuits,

including sophisticated circuits such as sense-amplifiers, with speed and capacity

approaching conventional gate level simulators [97]

Gate-level estimations

The description about the gate-level method to estimate the power consumption as

example of processor cores is presented in this subsection. The main advantage of these

methods with respect to circuit-level simulation method is that the simulation is event-

driven and takes place in a discrete time domain which considerably reduces the

computational complexity, without any significant loss of accuracy [95].

In [97], Subodh Gupta and Farid N. Najm propose an automatically generation

of 3-dimensional table to estimate the power consumed in circuit for a given statistics.

Their power model is constructed with three variables: average input signal probability,

average input transition density and average output zero-delay transition density. A novel

and significant aspect of this approach is that they extend the same model for all types of

combinational gate-level circuits and requires no user intervention. Another important

fact is that their model works gives very good accuracy, with a Root Mean Square error

(RMS) of under about 6%.

Besides, Ding Chih-Shun et al. [98] present an accurate and efficient gate-level

power estimation technique called tagged probabilistic simulation (TPS). TPS is based

on the notion of tagged (probability) waveforms which divide the logic waveform space

into a small number of disjoint parts and then represents all the logic waveforms in a part

by a probability waveform. The advantage of this simulation strategy is that the

correlations among circuit internal nodes (referred as logic gates) can be effectively

accounted for. In [99], S.T. Oskuii et al. extend this technique by using a novel

waveform set method. Previous method has local glitch filtering approaches that fail to

model this phenomenon correctly. Glitches originated from a node may be filtered in

some, but not necessarily all, of its successor nodes. Their technique allows modeling the

removal of glitches in more detail by using a global glitch filtering.

65

RTL estimations

Most of the RTL designs are illustrated as a collection of blocks and a network of

interconnections. The blocks, sometimes referred to as adders, registers, multiplexers and

macros (a complex functionality block including among of register, adders, etc.), while

the interconnections are simply nets or group of nets. Most of the tools presented in the

literature follow similar pattern like the power properties of the block can be derived

from an analysis of the block isolated from a design, under defined conditions. The main

factor influencing the power consumption model of a macro is the input statistics [95].

Most of the research in RTL power estimation is based on empirical methods

that measure the power consumption of existing implementations and produce models

from those measurements. There is another approach which is widely used by RTL

designers is based on measurement for estimating the power consumption of data-path

functional units. Liu et al. [100] develop a method and a tool for power modeling to

estimate the power consumption of different parts of a chip such as logic gate, local and

intermediate interconnection, memory size. However, this tool is not as accurate as gate

level simulators, it gives a fast estimation before circuit and layout design. In the other

sides, the method power consumption estimation is based on predictable input signal

statistics proposed by Landman and Rabaey [101] with a quite accurate (10% to 15%

error rate). The feasibility of this method depends on correct input statistics or the ability

to correctly model.

A methodology for creating power macro models bases on linear regressions but

their flow is specific to the structural RTL macros and power estimation performed at the

gate-level is proposed by Bogliolo et al.[102]. They analyze the application of linear and

nonparametric regression for the automatic construction of RTL power macro models for

registers and combinational logic blocks (called macro). Their approaches are focused

on: off-line and online characterization. For off-line characterization, the power of RTL

macro is based on tests. And they adaptively do online characterization for error

minimization. Continuously, Qing Wu et al. [103] propose macro-model predicted not

only the cycle-by-cycle power consumption of a module but also the moving average of

power consumption and the power profile of the module over time for RTL. The authors

introduce a power function and approximation steps to generate the power macro-model.

Potlapally et al. [104] present another technique related RTL circuit that are the cycle-

accurate power macro modeling. Their techniques are based on RTL components

demonstrate different power behavior for input vectors at different cycle. They create

power macro model for each of these behaviors also known as power modes. Their

design flow selects an appropriate power mode given from the input vector in each cycle

and then applies power macro model techniques.

66

Architectural-level estimations

In the previous abstraction of low level estimation, the literature discuss about the power

consumption estimation on processor cores and FPGA. This subsection describes the

state of art for power consumption estimation based on architectural-level estimation.

The simulators derive power estimates from the analysis of circuit activity induced by

the application programs during each cycle and from detailed capacitive models for the

components activated. A major difference between these simulators is the estimation

accuracy and estimation speed. SimplePower tool [105], works with a transition-

sensitive power model for the data-path functional unit. The SimplePower core accesses

a table containing the switch capacitance for each input transition of the functional unit

exercised. The use of a transition-sensitive approach has both design challenges as well

as performance concerns during simulation [94]. The first concern is that the

construction of these tables is time consuming. Unfortunately, the size of this table grows

exponentially with the size of the inputs. The table construction problem can be

addressed by clustering algorithm [106] and partitioning mechanisms [105]. Further, not

all tables grow exponentially with the number of inputs. The second concern is the

performance cost of the lookup table for each component access in a cycle. In order to

overcome this concern, simulators like SoftWatt [107] and Wattch [108] use a simple

fixed-activity model for the functional units. These simulators only track the number of

accesses to a specific component and utilize an average capacity value to estimate the

power consumed. In contrast to the datapath components that use a transition-sensitive

approach, the models estimate the power consumed per access and do not accommodate

the power differences found in sequences of accesses.

One of the most widely used another tool in architectural domain is Wattch

[108]. Wattch tool is used for superscalar processor. The base infrastructure is offered by

SimpleScaler [34] for this tool. SimpleScaler carries out fast, flexible and accurate

simulation of modern processors that implement a derivative of MIPS architecture. In

addition, it also supports detailed cycle accurate information for all models, including

datapath elements, memory and Content Addressable Memory (CAM) arrays, control

logic, and clock distribution network. Wattch uses activity-driven, parametrisable power

models, and it displayed accuracy better than 10% when tested on three different

architectures. Energy measuring tools can be either transition-sensitive or based on

analytical formulas. Since transition-sensitive simulators estimate the energy

consumption based on bit-switching activities, they take a significant amount of time to

generate energy estimates (for example, SimplePower). In [109], the other approaches to

evaluate energy estimates at the architectural-level for memory system called Virtual

Energy Counters (vEC) tool by the following formula:

 (3.5)

67

Where, Ebus represents data and address bus energy between processor and cache; Ecell

represents cache energy; Epad represents data and address pad energy between cache and

main memory; and finally Emain represents the main memory energy.

vEC provides a user interface to estimate the energy consumption for memory system.

The energy estimates are provided for those consumed in the data, instruction and

extended caches, main memory, address bus, data bus, address pads and data pads.

Energy estimations for instruction number and clock cycles are also supported by vEC.

System for Early Analysis of SoCs (SEAS) [110] proposes a methodology for

analysis SoCs in early design stage. SEAS provides integrated algorithms which use for

testing the performance, floorplan, timing and power. Power evaluation in this system

works at a granularity of processor cores, where pre-characterized data for power is used

based on the power state of the design. Power states of the cores are based on active, idle

or sleep states of cores. By extracting the power values for the states of cores, users can

estimate the average power for the whole system in early stage with high accuracy.

3.2.2 High-level power consumption estimation techniques

The accurate power estimation at high level takes a significant role in any successful

design methodology. Many researchers are interested in extending this area because of

increasing the complexity of the MPSoC's architecture. In this section, we present some

high level power estimation approaches which consist of spreadsheet, Instruction Level

Power Analysis (ILPA) and Functional Level Power Analysis (FLPA).

3.2.2.1 Spreadsheet based approaches

In the early stage of design process, spreadsheets are determined for the initial planning

to take some important decision [111]. The users are not necessary to learn any

complex/sophisticated tool in order to get design decisions based on spreadsheet

approach. One of the basic applications of spreadsheet is area estimation. We can get

estimation values on area by using data sheets from intellectual property (IP) providers,

library cell estimate, etc. Spreadsheet supplies an ability to capture such information that

can be used for quick area estimation. In [112], the designer can find out some decisions

to control power based on spreadsheet approach. Power budgeting approaches using

spreadsheets are very essential for printed circuit board (PCB), power supplies, voltage

regulators, heat sink, and cooling systems.

A spreadsheet tool is as example for Xilinx Power Estimator (XPE) [113]. In

industry, the power estimation for programmable devices with a complex process and

architecture like FPGAs needs to be done very efficiently. To produce accurate

estimates, the power estimation process requires reliable input values, such as resource

utilization (e.g. flip-flops, look-up tables, I/Os, block RAMS, DCMs, etc.), clock rates

and toggle rates.

68

In fact, XPE uses your design and environmental input, and then combines this

information with the device data model to compute and present an estimated distribution

of the power in the targeted device. XPE presents the following power types:

 Power by voltage supplies is useful information to select and size power supply

components such as regulators, etc. Supply power includes both off-chip and on-

chip dissipated power.

 Power by User logic resources allows users to experiment with architecture,

resources, and implementation trade-off choices in order to remain within the

allotted power budget.

 Thermal power is the expected thermal properties of the device. It helps the

users to evaluate the necessary for passive or active cooling for a design.

In addition, Power Estimation Tool (PET)
3
 provides users the ability to gain

insight in to the power consumption of select Texas Instrument (TI) processors such as

OMAP35x, AM35x and AM335x Processors. The tool includes the ability for the user to

choose multiple application scenarios and understand the power consumption as well as

how advanced power saving techniques can be applied to further reduce overall power

consumption.

Spreadsheets are fast, flexible, and generally well understood. Unfortunately, the

disadvantages are also applicable-error prone nature, wide accuracy variance, and

manual interface. Nonetheless, spreadsheets such as Microsoft’s Excel are used to model

entire systems. System components and sub-blocks are modelled with customizes

equations using parameters such as supply voltage, operating frequency, and effective

switched capacitances. Technology data may or may not be explicitly parameterized, but

it is typically derived from data-book information published by the technology vendors.

Spreadsheets are most often used for project planning but may not be able to provide

accurate guidance for block-level hardware power estimation and reduction. This

motivates a need to provide a power model, which can perform accurate yet efficient

power analysis at early stage of the design. Thus, it is necessary to define another

estimation method of power consumption on processor cores, hardware. The next

subsection provides an overview the power model based on approaches for power

estimation purposes such as Instruction Level Power Analysis (ILPA) and Functional

Level Power Analysis (FLPA).

3
 http://www.ti.com/tool/powerest

69

3.2.2.2 Instruction Level Power Analysis (ILPA)

An instruction level power model for individual processors was first proposed by Tiwari

et al. [114][115]. The total energy consumption of a program Ep is expressed with the

following equation:

 (3.6)

The following factors contribute towards the energy cost of a program:

Bi - Base cost for each instruction i.

Ni - Number of execution times for each instruction i.

Oi,j - Circuit state change overhead for each instruction pair (i,j).

Ni,j - Number of execution times for each instruction pair (i,j).

Ek - Energy cost for other inter-instruction effects (stalls, cache misses etc.).

In[114], Tiwari et al. measure the current drawn by the processor as it repeatedly

executes distinct instructions or distinct instruction sequences, it is possible to obtain

most of the information that is required to evaluate the power consumption of a program

for the processor under test. The authors model the power consumption of the Intel

DX486 and Fujitsu SPARClite 934 processor. Power is modeled as a base cost for each

instruction plus the inter-instruction overheads that depend on neighboring instructions.

The base cost of an instruction can be considered as the cost associated with the basic

processing needed to execute the instruction. However, when sequences of instructions

are considered, certain inter-instruction effects come into play, which are not reflected in

the cost computed solely from base cost. This effect and others can be summarized as the

following:

a) Circuit state: switching activity depends on the current inputs and previous

circuit state.

b) Resource constraints: resource constraints in the CPU can lead to stalls, for

instance, pipeline stalls and write buffer stalls.

c) Cache misses: the instruction timings listed in manuals provide the cycle

count assuming a cache hit. For a cache miss, a certain cycle penalty has to be added to

the instruction execution time.

During executing, certain instruction sequences which these effects occur may provide a

way to isolate the power cost of these effects. Thus, the total of the power costs in each

instruction that is executed in a program enhanced by the power cost of the inter-

instruction and other effects can be an estimate for the power cost of the program.

Much more accurate measuring environments have been proposed to precisely

monitor the instantaneous current drawn by the processor instead of the average current.

One of these approaches has used current mirror, based on bipolar junction transistors as

70

current sensing circuit as shown Figure 3.1. The Instruction level power models in the

work of Nikolaidis et al. [116] are derived by measuring the instantaneous current drawn

by the ARM7 TDMI processor at each clock cycle. Their model is traced by executed

assembly instructions, generated by an appropriate processor simulator and estimated the

base and inter-instruction energy cost of the executed program taking into account the

energy. Niloladies et al. improve their power model by using the energy sensitive factors

as well as the effect of pipeline stalls and flushes in [117]. This method is developed for

pipelined processors like the ARM7 (three-stage pipeline: instruction fetch, instruction

decode and instruction execute). Another approach, to reduce the spatial complexity of

instruction-level power models, is also presented in their work in relation to a reference

instruction as No Operation (NOP). The main drawback of this method is the complexity

in measurement the current. More researchers attempted to enhance the original Tiwari

ILPA power consumption modeling technique as in[118][119]

a) b)

Figure 3.1-(a) Experimental Setup for current measurement, (b) The simple current mirror. DUT

is the Device Under Test [116]

The ILPA-based methods have some disadvantages, one of these disadvantages

is that the number of current measurements is directly related to the number of

instructions in the Instruction Set Architecture (ISA) and also the number of parallel

instructions composing the very long instruction in the VLIW processor. The problem

complexity of instruction level power characterization of K-issue VLIW processor is

O(N
2K

) where N is the number of instructions in the ISA and K is number of parallel

instructions composing the VLIW [120].

This technique helps to evaluate the power cost of embedded software and verify

specified power constraints if a design meet. Moreover, it is also use to search the design

space in software power optimization.

71

3.2.2.3 Functional Level Power Analysis (FLPA)

In order to overcome the shortcoming of ILPA, J. Laurent, N. Julien et al., first

introduce Functional Level Power Analysis (FLPA) method in [121]. The functional

level power modeling approach is applicable to all types of processor architectures.

Furthermore, FLPA modeling can be applied to a processor with moderate effort, and no

detailed knowledge of the processors circuitry is needed. This approach is based on a

functional analysis of the core of processor to determine a set of consumption rules. The

way of which interactions between functional blocks induce power consumption depends

on several identified parameters which called architecture parameters are configuration

and algorithmic parameters as shown in Figure 3.2. Their functional analysis presents a

very efficient and straightforward method for energy optimization. The error rate

between estimation and measurement is not higher than 7.4% for their considered

application and architecture. The result of this method is applied to a FIR 16 filter on a

TMS320C6201 DSP and has extended to other processors.

Figure 3.2-The Functional Methodology[121]

In the previous work [121], the estimation are already validated at the assembly

level by direct comparison with measurements. Then Eric Senn, N. Julien et al. [122]

apply the same process for the C-level. In this method, the identification of a set of

Compilation &

profiling

Parameters

Extraction

Power estimation

Functional Analysis

Measurements

Power models

Software Task
Processor/FPGA

Architecture

Architectural

parameters

Algorithmic

parameters

72

functional blocks will influence on the power consumption of these components such as

Processing Unit, Instruction Management Unit (IMU), internal memory and others. First,

a functional analysis of these blocks is performed to specify and then discard the non

consuming blocks (those with negligible impact on the power-consumption). The second

step is to figure out the parameters that affect the power consumption of each of the

power consuming blocks. For instance, the IMU is affected by the instructions

dispatching rate which in turn is related to the degree of parallelism.

In addition, the relevant consumption parameters are chosen as the significant

links between the blocks. There are two types of parameter: algorithmic parameter values

depend on the executed algorithm (such as the cache miss rate, parallelism rate,

processing unit rate, external memory access rate and Direct Memory Access rate) and

architectural parameter values depend on the processor configuration resolved by the

designer (typically the clock frequency, word length of input data, memory mode) [123].

The model is shown by a set of analytical function or a table of consumption values that

accord to functional and architectural parameters. As the model is established, the

estimation process includes extracting the appropriate parameter values from the design,

which will be injected into the model to compute the power consumption.

The SoftExplorer tool is developed based on this method [124]. This tool realizes

the suitable trade-off between the estimation accuracy and time in order to ensure a rapid

and reliable feedback to the designer. The SoftExplorer tool is allowed to estimate the

power consumption of algorithm which is developed on C code[125]. This tool also is

used to optimize the power consumption of an application. Eric Senn et al. show a

functional level power analysis to extract the different power models and illustrate how

to perform the best data mapping for an application. This methodology is implemented

on various processor such as ARM7, the low-power (C55) and Very Large Instruction

Word-VLIW (C62) processor [126]. Moreover, these crucial phenomena like pipeline

stalls, caches misses, and memory accesses are applied. The recently work of M. E. A.

Ibrahim et al. [94] present a precise high-level power estimation methodology for the

software loaded on a VLIW processor based on a FLPA. Their targeted processor is the

TMS320C6416T DSP from Texas Instrument.

In the work of S. Rethinagiri et al. [127], they extend the FLPA to create generic

power models for the different target processors such as ARM processors (ARM9, ARM

Cortex-A8 and ARM Cortex-A9 processors), DSP processor, Heterogeneous

multiprocessor (OMAP5912 and OMAP3530) under test. Their estimation of power and

energy results provides a maximum error of 5% for mono-processor and 9% for

heterogeneous multiprocessor based system when compared against the real board

measurements.

For these reasons, in context of our work, we apply this methodology to generate

power models at high level estimation. Then, the FLPA methodology is used to establish

the power model for different components of video processing in the Fall Detection

73

System on processor cores. This approach is extended in extracting the power models for

software (processor cores), hardware (FPGA) and heterogeneous architecture. Moreover,

we consider several important issues in our model. The main contributions are as

follows:

First, precise models are defined to estimate the power consumption of the

targeted processor cores for the Fall Detection System related these basic parameters

such as number of cores, instruction per cycle, frequency of cores, caches miss rate, etc.

and for FPGA. We, then, prove the validation and accuracy of our model for two

technology target: processor cores and FPGA. After extracting the power consumption

models for the Fall Detection System, we continuously to discuss some approaches in

estimation of execution time for calculating the energy of these exploration architectures

as following Section.

3.3 Execution time estimation approaches

Execution time estimation is important for designing processor cores. It provides the

basic suggestion for selections of core of processors and other hardware components for

the systems. It is also necessary to manage resource unit when scheduling program

execution to meet the design constraints (such as efficient of energy, real-time) and to

optimize the system performance and any other optimization goal. Estimating a program

execution time is particularly critical in design of real-time systems [128]. Real-time

systems require more than delivering accurately produced computational results. They

also require tasks to meet their deadlines because, for applications such as Fall Detection

System, process control, flight control, avionics, defense systems, vision and robotics,

pervasive and ubiquitous computing, etc.

Estimation of the execution time is an important part to estimate the efficiency of

our system such as energy consumption and the frame rate. The aim of this section is to

highlight two types of techniques in estimating execution time: static and dynamic. Static

techniques apply a structural analysis of a piece of software and analytical model of the

underlying hardware to define execution time without executing the software. Besides,

dynamic techniques require executing the program of interest in order to estimate the

execution time of a program. Furthermore, some dynamic estimation techniques also use

a (static) structural analysis of a program when estimating its execution time. Both types

of techniques are described in the following subsection, and we also discuss about the

tools based on these techniques.

3.3.1 Static timing estimation

Static timing analysis techniques estimate the execution time of a program without

actually executing any code. They are mainly used to determine the Worst-Case

74

Execution time (WCET) of a program, meaning a conservative estimate or upper bound

for the execution time of a program. Most existing solutions are based on static program

analysis techniques to model the execution of a piece of software on a given target

processor [129]. In general, they are roughly concluded three steps [130]:

a) Control flow analysis decomposes the structure of the program into atomic

units for the subsequent analysis steps. The result of program representation is

consequently the control flow graph (CFG), which is composed of basic blocks. A basic

block is a maximal sequence of program statements with only one point of entry and

exit.

b) Micro-architectural analysis determines the execution time for the atomic

units of a program using the result of the control flow analysis. In most cases this

analysis is performed using an abstract model of the target processor. This model can be

based on abstract interpretation[131] or symbolic execution [132]. The both cases focus

on the execution time for sequences of machine instructions and neglect details of the

computations these instructions perform on the real hardware.

c) Global bound calculation uses the results of the two previous steps to obtain

an estimate for the total execution time of a program. The prevalent technique for doing

this is implicit path enumeration [132]. This approach translates the structural constraints

and local execution time estimates into an integer linear programming (ILP) problem,

which is then solved using standard ILP solvers. If a program contains loops, the

maximal number of times a loop may execute must be determined by a previous analysis

or provided by the user. This is necessary for the ILP solver to find a worst case path.

In addition, Theiling et al.[131] propose an approach which employs abstract

interpretation for micro-architectural modeling and integer linear problem (ILP) for path

analysis. In their study, they show how the micro architecture analysis is separated from

the path analysis in order to make the overall analysis fast.

3.3.2 Dynamic timing estimation

The dynamic timing technique measures execution time directly on the hardware, for

some set of inputs, and measuring the execution time of the task or its parts. This means

that target hardware must be available. The level of granularity at which these

measurements can be performed varies for different processor architectures. The

counters only provide a limited level of accuracy must be taken to obtain accurate

measurements, while most current processor architectures support hardware performance

counters [133]. In addition, it is necessary to modify the observed program by adding

instrumentation code for manipulating the hardware performance counters of the

processor. The measurements are impacted on the modification of program code. To

perform measurements with an increased level of accuracy, for example, up to the level

75

of individual instruction, additional tools like logic analyzers or processors with

dedicated tracing hardware support are required.

Probabilistic and statistical timing analyses [134] are variants of dynamic

approaches for execution time estimation. Probabilistic timing analysis tries to capture

the variance of execution times by providing a probability distribution for the possible

execution times of a program. This distribution is calculated by analyzing the execution

time of individual program parts from a large set of measurements. The complete

measurement process can take several days of observing the system in operation and

produce gigabytes of data. Using this data, the execution time distributions of smaller

program parts are incrementally combined to get the distribution for the complete

program. The limitation of this combination step is that the execution time of individual

program parts is assumed to be independent, which is often not the case in practice. More

recent approaches for dynamic timing analysis apply statistical methods, like extreme

value theory, to reason about the worst-case execution of a program without ever

observing it [135]. However, this is still an area of active research without a generally

accepted solution.

3.3.3 Timing estimation tools

The tool providers and researchers participating in this survey have received the

following list of questions:

 What is the functionality of your tool?

 What methods are employed in your tool?

 What are the limitations of your tool?

 Which hardware platforms does your tool support?

In the following Section, we try to reply these questions for different tools.

3.3.3.1 The aiT Tool

The AbsInt Timing analyzer [136] is a timing analysis tool developed and

commercialized by AbsInt Angewandte Informatik, a German company. The purpose of

AbsInt’s timing-analysis tool aiT is compute automatically upper bounds for the the

worst-case execution time (WCET) of code design in executables. These codes may be

tasks called by a scheduler in some real-time application, where each task has a specified

deadline. aiT works on executables because the source code does not contain information

on register usage and on instruction and data addresses. Such addresses are important for

cache analysis and the timing of memory accesses in case there are several memory areas

with different timing behavior. In aiT’s case, value analysis and cache/pipeline analysis

76

are realized by abstract interpretation, a semantics-based method for static program

analysis.

The aiT tool contains some limitations. This tool includes automatic analysis to

determine the target of indirect calls and branches and to determine upper bounds of the

iterations of loops. These analyses do not work in all cases. If they fail, the user has to

provide annotations. aiT relies on the standard calling convention. If some code doesn’t

adhere to the calling convention, the user might need to supply additional annotations

describing control flow properties of the task.

This tool supports to the following hardware platforms: Versions of aiT exist for

the Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307, ARM7

TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85 (prototype), and

Infineon TriCore 1.3.

3.3.3.2 The Heptane tool of IRISA, Rennes

The Heptane
4
 is an open-source static WCET analysis tool [137]. The purpose of

Heptane is to obtain upper bounds for the execution times of C programs by a static

analysis of their code (source code and binary code). The tool analyses the source and/or

binary format depending on the calculation method the tool is parameterized to work

with.

Heptane integrates mechanisms to take into account the effect of instruction

caches, pipelines and branch prediction.

 Pipelines are tackled by an off-line simulation of the flow of instructions

through the pipelines.

 An extension of Frank Mueller’s so-called static cache simulation [138],

based on data flow analysis is implemented in the tool. It classifies every

instruction according to its worst-case behavior with respect to the

instruction cache. Instruction categories take into account loop nesting

levels.

 An approach derived from static cache simulation is used to integrate the

effect of branch predictors based on a cache of recently taken branches. The

modeling of the instruction cache, branch predictor and pipeline produce

results expressed in a micro-architecture-independent formalism, thus

allowing Heptane to be easily modified or retargeted to a new architecture.

Limitations of this tool: there are no automatic flow analysis, no detection of

mutually exclusive or infeasible paths and resulting in pessimistic upper bounds for some

tasks. The bound-calculation method based on timing schemata currently does not

4
 https://team.inria.fr/alf/software/heptane/

77

support compiler optimizations that cause a mismatch between the task’s syntax tree and

control flow graph. This tool doesn’t support for data cache analysis and limits the

number and types of target processors excepting the gcc compiler.

The hardware platforms supported for Heptane are designed to produce timing

information for in order mono-processor architectures such as Pentium1 - accounting for

one integer pipeline only, StrongARM 1110, Hitachi H8/300, and MIPS as a virtual

processor with an overly simplified timing model.

AiT tool does not consider cache and pipeline in core of processors, thus these

parameters also effect on the execution time. In addition, The Heptane tool is a static

analysis of their code (source code and binary code) to predict the off-line execution time

of a system. In our work, we have to measure total cycles, stall cycles, and level cache

miss profile related the execution time of processor. Therefore, the Performance Monitor

Unit is part of the ARM processor supports to our purpose in modeling the execution

time for core of processors.

3.4 Heterogeneous platform: Zynq7000 AP SoC platform

3.4.1 Motivation

The Fall Detection System based on Computer vision systems, which are elaborated in

chapter 2, can act upon still images or video and are able to extract meaningful

information from the content of images. In which image processing (as a whole, i.e. to

include video processing and computer vision) can be segmented into three levels of

abstraction: pixels, features and objects, description, which are characterised by the

amount of image data being processed and the amount of knowledge available regarding

the content of the image [139].

Considering the implementation of image processing systems in general, it is

significant that different types of processing are required to operate on different types and

volumes of data. This process requires a very large amount of pixel data on two first tasks (as

Object Segmentation and Filter) of Fall Detection System which repetitive operations are

performed, while a lot of data using to process more complex algorithms in calculating the

five features (current angle, Cmotion (MHI), Ctheta, Eccentricity and Ccentroid). Continuously,

analysis or classification of these features is necessary to understand the object’s behaviors in

context by using the different model in recognition such as.

For this reason, Zynq is a highly optimised platform for image processing. The

Programmable Logic (PL) is well suited to fast, parallel operations like those required

for pixel-level image processing. Computer vision functionality can be implemented in

software for execution on the Zynq Processing System (PS) and integrated with higher-

level software applications as required. The transition between the two, via the detection

of features and objects within the image, might be accomplished using the PL with

78

appropriate interfacing to the PS, or by leveraging the SIMD facilities of the NEON

processor. Extensive support for NEON is available in third party image and video

processing products [140].

In addition to the device architecture, the role of Xilinx and third party

development tools in enabling the design of image processing systems for Zynq is

considered. The following are worthy of particular note [139]:

 Xilinx IP blocks: a number of IP blocks are available in IP Integrator for image

and video processing applications, including video memory, image

enhancement, and colour adjustment functionality.

 OpenCV, Open Computer Vision in [141] is an open source project providing a

set of C/C++ libraries for image and video processing. The facilities of OpenCV

can be used to develop software algorithms for running on the PS.

 Vivado HLS Video Libraries include specific support for image and video

processing, via a library of functions synthesisable to HDL. These can replace

selected OpenCV functions and therefore functionality can be partitioned into

hardware if desired [142].

 MATLAB/Simulink are available extensive facilities for image and video

processing and computer vision [143]. In addition, to providing relevant

functions and a development environment, developed algorithms can be

converted to C/C
++

 code for implementation on Zynq.

3.4.2 Description of Zynq-7000 AP SoC

The Xilinx Zynq-7000 family is a System on Chip architecture that integrates a dual-core

ARM Cortex-A9 MPCore based Processing System (PS) and Xilinx Programmable

Logic (FPGA) in single device, built on 28nm process technology. The ARM Cortex -A9

MPCore CPUs are the heart of the PS which also includes On-Chip Memory (OCM),

external memory interfaces and a set of I/O peripherals. The Zynq offers the flexibility

and scalability of an FPGA, while providing performance, power, and ease of use

typically associated with ASIC and ASSPs.

The Zynq platform is different from the older approaches. The PS is considered

to be an essential part of the the chip and so it is possible to see Zynq as just a kind of an

ARM SoC with an optional FPGA fabric. Figure 3.3 illustrates the functional blocks of

the Zynq-7000 AP SoC. The PS and the PL are on separate power domains, enabling the

user of these devices to power down the PL for power management if required.

The Zynq-7000 AP SoC is composed of the following major functional blocks:

 Processing System (PS):

− Application processor unit (APU)

79

− Memory interfaces

− I/O peripherals (IOP)

− Interconnect

 Programmable Logic (PL).

Figure 3.3-Zynq-7000 All Programmable SoC Overview[144]

3.4.3 The Performance Monitor Unit (PMU)

From the description of Zynq platform which consists of dual core of ARM Cortex A9

and FPGA is presented in previous subsection. The ARM Cortex A9 processors are the

latest and highest performance ARM processors implementing the full richness of the

widely supported ARMv7 architecture [145]. The Performance Monitors are part of the

ARM Debug architecture and is an optional feature of an implementation used to define

execution time for the Fall Detection System [146]. The basic form of the Performance

Monitors is presented as follows:

 A cycle counter is the ability to count every cycle or every 64th cycle.

 A number of event counters, ARMv7 provides space for up to 31 counters. The

actual number of counters is set as IMPLEMENTATION DEFINED, and the

specification includes an identification mechanism.

 Controls for: enabling and resetting counters; flagging overflows; enabling

interrupts on overflow.

80

Monitoring software can enable the cycle counter independently of the event counters.

The events that can be monitored split into:

 Architectural and micro-architectural events which are likely to be consistent

across many micro-architectures.

 Implementation-specific events.

 The PMU architecture defining for common events, for use across many

architectures and micro-architectures by using event numbers.

 Reserves a large event number space for IMPLEMENTATION DEFINED

events. When the full set of events for an implementation is

IMPLEMENTATION DEFINED. ARM recommends that processors implement

as many of the events as are appropriate to the architecture profile and micro-

architecture of the implementation.

The accuracy of The Performance Monitors provides approximately accurate

count information. To keep the implementation and validation cost low, a reasonable

degree of inaccuracy in the counts is acceptable. ARM does not define a reasonable

degree of inaccuracy but recommends the following guidelines:

 Under normal operating conditions, the counters must present an accurate value

of the count.

 In exceptional circumstances, such as a change in security state or other

boundary condition, it is acceptable for the count to be inaccurate.

 Under very unusual non repeating pathological cases then counts can be

inaccurate. These cases are likely to occur as a result of asynchronous

exceptions, such as interrupts, where the chance of a systematic error in the

count is very unlikely.

Limitation of PMU is permitted inaccuracy. In particular, the architecture does not define

the point in a pipeline where the event counter is incremented, relative to the point where

a read of the event counters is made. This means that pipelining effects can cause some

imprecision. Entry to and exit from Debug state can also disturb the normal running of

the processor, causing additional inaccuracy in the Performance Monitors. It disables the

counters while in Debug state limits the extent of this inaccuracy. An implementation

can limit this inaccuracy to a greater extent, for example by disabling the counters as

soon as possible during the Debug state entry sequence.

In spite of this limitation, we have applied PMU to extract the parameters used to

estimate the power consumption for processors and then create the power models for

processor cores.

81

3.5 Power/execution time models for video applications

Currently, there are generally three types of implementations: processor based solutions

(software solutions), FPGA based solutions (hardware solutions) and a combination of

both. One of FPGA designers’ problems is that the open-source community for IP cores

is not very developed, at least in comparison to open-source software such as OpenCV.

Therefore, we develop and valid the power/execution time models for Fall Detection

System which is run on ARM processors, while offering the possibility to accelerate

through FPGA.

For modeling the power consumption and execution time on processor cores, we

have applied the FLPA (Functional Level Power Analysis) methodology, which are

developed by Laurent et al [123] and allows to extract the processor power consumption

model with a set of high level parameters in the research of N. Julien et al [147].

3.5.1 Power estimation methodology for Fall Detection System

In our work, as explain before we select the Zynq 7000 AP SoC platform which has both

processor cores and FPGA. The aim is to estimate the power consumption and execution

time in order to evaluate the performance of different implementation.

For processor cores, we first need to realize the power/time characterization of

the target. This methodology is based on physical measurements in order to guarantee

realistic values with good accuracy. The FLPA methodology, as shown in Figure 3.4, has

four main parts, which are given below:

 Firstly, a primary functional analysis helps the designer to determine which

relevant parameters have an impact on the power consumption. There are two

types of parameter: algorithmic parameter values depend on the specificity of the

application and architectural parameter values depend on the processor

configuration settled by the designer.

 Then, they characterized the power consumption behaviour and execution time

(obtained by measurements) in varying independently parameters.

 Next, a mathematical model is determined by regression law.

 Finally, the accuracy of the determined model is validated against a new

measurements set.

In our system, we consider to extract the characteristics and to determine the

power consumption model for the Object Segmentation, Filter (Mathematical

Morphology), Feature Extraction and Recognition tasks. Therefore, the number of

experiments for exploring the best architecture of Fall Detection System is reduced. Two

types of parameters are considered in this approach:

82

 Algorithmic parameters depend on the executed algorithm (typically the cache

miss rate for the processor cores).

 The component configuration set by the designer (i.e., Clock frequency) is the

dependent of architectural parameters.

Figure 3.4-Functional Level Power Analysis Methodology [147]

For FPGA side, the estimated power is given by the sum of static power and

dynamic power. The static power depends on the specific FPGA family. The dynamic

power is the sum of logic power, signal power and clock power. Deng. L.et al. in [148]

derive the power models which the power components are proportional to the area of a

design, including hardware resource power, signal power and clock power. Their power

models for the components that are proportional to the area of the design are derived by

performing nonlinear regression analysis on the area and power data of applications.

The power consumption model on FPGA of our system is extended from their

approach. Our model which is extracted based on the hardware resources including the

BRAM, DSP, LUT and FF for two first tasks (Object Segmentation and Filter using

Mathematical Morphology) in Fall Detection System is presented in Section 3.6.2.

Analysis

Characterization

Modeling

Validation

Scenario Functional

Analysis

Parameter

Extraction

Power Consumption

Measurement

Measurement

Bench

Mathematical

Analysis

Model

Extraction

Model Estimation

Verification

and Validation

IPs

library

83

3.5.2 Power measurement

 A power measurement bench is developed in order to reduce the time of each scenario

measurements. Voltage and current monitoring and control are available for selected

power rails through Texas Instruments' Fusion Digital Power graphical user interface.

The three onboard Texas Instrument (TI) power controllers in Figure 3.5 (U32 at address

52, U33 at address 53, and U34 at address 54) are wired to the same Power Management

Bus (PMBus). The PMBus connector, J59 (as shown in Figure 3.76), is provided an

interface of the TI USB Interface Adapter PMBus pod (TI Evaluation Module USB-TO-

GPIO) [149] and associated TI Fusion Digital Power Designer GUI [150]. This is the

most convenient way to monitor the voltage and current values for the power rail.

Figure 3.5-Integrated Texas Instruments digital power controller on Zynq-7000 Ap SoC

Voltage and current levels of the power supply are measured with Texas

Instruments’ UCD9248 Digital PWM System Controller, integrated on the Zynq board.

This multi-rail and multiphase PWM controller for power converters supports the Power

Management Bus (PMBus) communication protocol. Its PWM signal drives a UCD7242

integrated circuit that regulates Vccint supply voltage. A set of PMBus commands is used

to configure IC functions. The UCD7242 possesses on-chip voltage and current sensing

circuitry and communicates with the UCD9248.

Fusion Digital Power Designer is a Graphical User Interface (GUI) used to

configure and monitor a Texas Instruments digital power controller as shown in Figure

3.5 (UCD 91XX, UCD 92XX), they typically embedded on an EVM. The application

uses the PMBus protocol to communicate with the controller over serial bus by way of a

TI USB adapter. PMBus uses the System Management Bus (SMBus) to communicate

Texas Instruments digital

power controller

84

with a controller over serial bus. The PMBus specification defines the application layer

while the SMBus standard defines the transport layer.

Figure 3.6 shows the measurement environment for Zynq-7000 AP SoC platform

composed of a power measurement instrument. The EVM has four separate power rails:

Rail 1 Vccint: 1.0V nominal supply of Zynq-7000 AP SoC platform that powers

all of the PL internal logic circuit.

Rail 2 Vccpint: 1.0V nominal supply that powers all of the PS internal logic

circuits.

Rail 3 Vccaux: 1.8V nominal supply that powers all of the PL auxiliary circuits.

Rail 4 Vccpaux: 1.8V nominal supply that powers all of the PS auxiliary circuits.

The following steps describe how to make the measurements on the Zynq-7000

AP SoC platform:

a) Plug in the USB cable to both the PC and the USB interface adapter with

Zynq platform across jumper J59 (Figure 3.7) and wait for the green LED to illuminate.

b) Monitor real-time data such as input voltage, output voltage, output current,

temperature, and warnings/faults are continuously monitored and displayed by the GUI.

c) Monitor power in each rail of PS or PL.

d) Calculate the average power from step 3 for different part of Zynq -7000 Ap

SoC platform.

Figure 3.6-Measurement environment for Zynq-7000 AP SoC platform

85

Figure 3.7-Power Measurement probes across jumper for Zynq-7000 AP SoC

3.5.3 Execution time measurement

For performance measurement code, there are too many variations of timing

mechanisms, operating system behaviors and run-time environment to have one single,

simple solution [151]. In our system, the measurement time is performed by interval

counting. The operating system also uses the timer to record the cumulative time used by

each process. This information provides a somewhat imprecise measure of program

execution time. The operating system maintains counts of the amount of user time and

the amount of system time used by each process. When a timer interrupt occurs, the

operating system determines which process is active and increments one of the counts for

that process by the timer interval. It increases the system time if the system is executing

in kernel mode, and the user time otherwise.

We can also read the process timers by calling the library function times,

declared as follows:

t_start = get_time ();

process task ();

t_stop = get_time ();

Execution_time = t_stop – t_start;

As a return value of execution time, times is the difference of number of t_stop and

t_start since each process task start. Therefore, computation the total time between two

different points in a program execution is calculated by making two calls to times and

computing the difference of the return values.

J59

86

For measure the execution time on FPGA, we have to define the latency time

and the clock period while synthesising a video application by using Vivado_HLS. The

execution is multiple by the average latency and clock period during process.

3.6 Proposed power model of the Fall Detection System on heterogeneous

platform

Increased demand and reduced time for getting low power architecture of Fall Detection

System based HW/SW co-design. Design methodologies, where decrease of power

consumption in such system can be done at the first stage of design. It knows that any

optimization requires good analysis of design and so is the case with managing the

power consumption of the design. To reduce the time when extracting the low power

consumption in the final Fall Detection System version, it is necessary to have early

power consumption estimation. Thus, we develop power models as achieved in this

section.

Figure 3.8 illustrates the methodology for extracting power models applied on

Fall Detection System. Firstly, we choose both traditional implementation ways for video

applications are on Software (ARM Cortex A9 processor) and Hardware (FPGA). On the

software (SW) side, Object Segmentation, Filter tasks are implemented on one core and

both two cores of processor. The basic idea is to expose data parallelism for these two

tasks, the original image can be split into slices (2 slices or 3 slices) that can be

segmented and filtered in parallel. Therefore, the object in each slice is merged in a

complete binary image. Secondly, we can extract the parameters such as power

consumption and execution time. The analysis of these tasks which take the longest

processing will be considered for hardware acceleration. Filter tasks is selected in this

case. Notwithstanding, Feature Extraction and Object Segmentation tasks take not too

much difference in execution time together. Thus, other ones, Object Segmentation task,

will be candidate implementation based FPGA. All tasks are processed on software with

two different resolutions of input images, and various operating frequencies (667 MHz,

333 MHz and 222MHz).

In context of our work, some parameters are derived to extract power/time model

for heterogeneous platform and find out more complex architectures based platforms.

Table 3.1 summarizes the model parameters

3.6.1 Power models for processor

To extract the performance of processors which include a set of metrics such as Data

cache access, data cache refill, total instruction, total cycle and data memory access, etc,

we enable the optional non-invasive debug component, Performance Monitors

87

Extension. In ARMv7, the Performance Monitors Extension is an optional feature which

helps to derive the specification of the earlier ARM implementations [146].

Figure 3.8-Framework for extracting power models

Table 3.1-Model parameters

Symbol Description

Power Model

 Caches miss rate for processor

IPC Instructions per cycle

s Resolution Images

Fcore Frequency of the core

N Number of cores

Time Model

CPI Cycles per Instruction

I Total Instructions

Mstall Memory stall

Rstall Read Stall cycles

Wstall Write Stall cycles

RstallIP Read Stall cycle per Instruction

WstallIP Write Stall cycles per Instruction

T Execution time of a program

Software

ARM Cortex A9

Hardware

FPGA

Object

Segmentation

Filter

(Mathematical

Morphology)

Feature

Extraction
Recognition

Power /Time

Models

FLPA

88

3.6.1.1 Scenario implementations

In our work, the four tasks of Object Segmentation, Filter, Feature Extraction and

Recognition are independently executing, with negligible interference from other tasks.

The system is composed of low power processor with N cores, operating at clock

frequency F, where F {Fmin, Fmax}. As we discussed the concepts of Fall Detection

System in Chapter 2 and the FLPA methodology is explained in subsection 3.2.2.3.

Firstly, different functional blocks are divided into such as the memory unit, clock

system unit as shown in Figure 3.9. These parameters are indicated for each functional

block of the processor and they are 1 and 2 respectively for L1 and L2 cache miss rates,

Instruction per cycle (IPC) for all the activated cores and F for clock unit. The second

step is the characterization of the power model by varying the parameters. The scenario

of our test is also the two separate modules of Fall Detection System with different

resolution images and number of cores. In our work, characterization is accomplished by

measurement on Zynq 700 AP SoC platform.

Figure 3.10 and Figure 3.11 present the relationship between frequencies and

power consumption on various cores of processor of two above applications. The clock

is operated to run on the platform at different available frequencies such as 222MHz,

333MHz and 667 MHz. The various estimation of power consumption for Object

Segmentation and Filter task (using Mathematical Morphology) is distinguished with

application on one core or two cores and with no application. Power modeling

methodology is proposed for different frequency scaling and the number of cores.

89

Figure 3.9-Functional Blocks of Dual Core ARM Cortex A9 processor
5

Table 3.2-Power model of Object Segmentation and Filter task

5
 http://www.design-reuse.com/articles/16875/the-arm-cortex-a9-processors.html

Tasks Parameters Power models

Object

Segmentation

Frequency

of cores

(F)

Mathematic

Morphology

Clock System Unit

Memory Controller

Frequency (F) Frequency (F)

Processing Unit 0 (IPC)

Instruction Execute

Load/store

L1 Cache

Instruction-cache

(32KB)

Data-cache

(32KB)

L1 Instruction miss rate L1 Data miss rate

L2 Instruction miss rate L2 Data miss rate

1

2

Read access rate Write access rate

Processing Unit 0 (IPC)

Instruction Execute

Load/store

L1 Cache

Instruction-cache

(32KB)

Data-cache

(32KB)

L2 Cache & Controller (512 KB)

L1 Instruction miss rate L1 Data miss rate 1

Read access rate Write access rate

90

Figure 3.10-Power models of Object Segmentation with 320x240 input images on SW

Figure 3.11-Power models of Mathematical Morphology with 640x480 input image on SW

y = 0.3284x + 180.91

R² = 1

y = 0.4276x + 174.17

R² = 0.9975

y = 0.1317x + 193.36

R² = 0.9995

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
m

W
)

Frequency (MHz)

Total Power_1core Total power_2core No application

Linear (Total Power_1core) Linear (Total power_2core) Linear (No application)

y = 0.3249x + 190.97

R² = 0.9881

y = 0.4169x + 189.19

R² = 0.9895

y = 0.1317x + 193.36

R² = 0.9995

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
m

W
)

Frequency (MHz)

Total power_1core Total power_2core

No application Linear (Total power_1core)

91

In addition, power depends on not only frequencies and number of cores but also

the cache miss rate () of two levels caches on processor (for instances, ARM Cortex

A9) and Instructions per Cycle. Figure 3.12 and Figure 3.13 present the variation of the

power consumption according to the IPC and cache miss rate () parameter in different

resolution images. In the others, and IPC are not unremarkable affected by the

resolutions and the number of cores. In fact, we also find that and IPC are independent

with frequencies from experiments.

Figure 3.12-The power consumption and cache miss rate of Object Segmentation and Mathematic

Morphology with various resolutions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

100

200

300

400

500

600

ca
ch

e
m

is
s

ra
te

 (

%
)

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
m

W
)

cache miss rate power_consumption

92

Figure 3.13-The power consumption and Instruction per Cycle (IPC) of Object Segmentation and

Mathematic Morphology with various resolutions

In these applications, for instance, Object Segmentation, these images are parallelized by

splitting each image (frame) into two slices running on dual core of processor. In this

case, the multithreading technique is implemented on the processing system of Zynq

7000 AP SoC platform. Each thread will be scheduled by Linux to running on each

separate processor. Object Segmentation task is processed in parallel on two cores as

follows:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

100

200

300

400

500

600

In
st

ru
ct

io
n

 P
er

 C
y

cl
e

 (
IP

C
)

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
m

W
)

Intruction Per Cycle (IPC) power_consumption

93

Function parallel_object_segmentation is

 Input: pixel array of origin image A

 Output: pixel array of processed image P

 //------------------------

 Declare an pixel array A1

 Declare an pixel array A2

 Declare an pixel array P1

 Declare an pixel array P2

 Set A1 to first slice of A

 Set A2 to the second slice of A

 //------------------------

 Create 2 threads to process each slice of A

 //Each thread will be scheduled by Linux to running on each separate processor if

possible

 Thread 1: call object_segmentation function

 P1 = object_segmentation(A1)

 Thread 2: call object_segmentation function

 P2 = object_segmentation(A2)

 Waiting for finished threads

 Merge P1, P2 to P

 Copy P1 to first slice of P

 Copy P2 to the second slice of P

 Return P

3.6.1.2 The general models of power consumption

The power consumption models are determined from the all experiments by using

regression analysis. Regression analysis is a statistical process for estimating the

relationships among variables in statistics. It includes many techniques for modeling and

analyzing several variables, when the focus is on the relationship between a dependent

variable and one or more independent variables. Regression analysis is widely used

for prediction and forecasting. In restricted circumstances, regression analysis is used to

infer causal relationships between the independent and dependent variables [152].

The models in our work are defined in which are related the parameters are

indicated such as core frequency, number of cores, Instruction per Cycle, Cache miss

rate, resolution images (as shown in Table 3.1). Therefore, the power model for the

ARM Cortex A9 processor is created by (see more in Equation 3.6):

PPS (mW) = 31.7 + 0.42*F + 52.9*N + 7.7*(1+2) + 68.3*IPC (3.6)

Where,

94

PPS: Power consumption on processor cores.

F: frequency of processor cores.

N: Number of core.

1, 2: Caches miss rate of L1 and L2 caches on processor.

IPC: Instruction per Cycle.

The different power models are validated by the real board measurement in order

to find the efficiency of FLPA modeling for processor cores applied in this thesis. The

video applications are compiled for FPGA and processor cores on Zynq 7000 AP SoC

platform. While these applications are running, the power consumption is measured

online. Finally the measurement of experiment from the platform is compared with the

estimation from the power consumption model which is extracted the useful activities of

the power model.

Table 3.3 shows the maximum and average errors obtained with our approach

modeling against measurements on ARM Cortex A9. The results obtained for the twelve

experiments (for Object Segmentation and Filter tasks) and six experiments (for Feature

Extraction and Recognition tasks) validate our approach. Furthermore, Table 3.3 describes

the parameter numbers including image resolution, number of processor cores, frequency of

processor cores and execution time for each model. With each models the power estimation

is obtained. Our power modeling approach has a negligible maximum error equal to 3.5 %.

Table 3.3-Maximum and average errors for power consumption model on processors

Applications Processors
Maximum

error %

Average

error %

Measurement

numbers

Parameter

numbers

Object

Segmentation

ARM

Cortex A9
5.5 2.2 12 4

Filter

(Mathematical

Morphology)

ARM

Cortex A9
5.3 2.4 12 4

Feature

Extraction

ARM

Cortex A9
6.2 3.5 6 4

Recognition
ARM

Cortex A9
5.8 2.9 6 4

95

3.6.1.3 The power model for Fall Detection System on processor cores

We estimate the power consumption of processor cores for Fall Detection System based on

the power model as illustrated in equation 3.6. The new modeling related not only frequency

of core, number of cores but also image resolution parameters is considered in this

subsection. The image resolution is one of a factor impacting on the accuracy of our system.

Therefore, the power consumption model for each task of Fall Detection System extended

from equation 3.6 is determined as follows:

 (3.7)

Where, P (i) is the power consumption on task i. In which i is i
th
 of task and i= (1:4); N

is the number of processor cores; Fcores is the frequency of processor cores; the image

size or the image resolution is assigned by s.

The evaluation of the general model is analysed by the real measurement on

processor cores with the maximum error 3.5%. This error rate is not too high, therefore it is a

good adequacy in extending power consumption models for the Fall Detection System.

3.6.2 Power models for hardware

3.6.2.1 The mathematic models of power consumption on hardware

For modeling the power consumption on FPGA, two selected tasks in Fall Detection

System, the Object Segmentation and Filter tasks, are implemented on HW (FPGA). By

this way, the power of these tasks is estimated. In addition, in order to extract more

architecture for Fall Detection System then power consumption and hardware resources

are evaluated.

Table 3.4-The power consumption on FPGA

Application Resolution

Power on

Hardware

 (W)

Object

Segmentation

320x240 0.124

640x480 0.124

Mathematical

Morphology

320x240 0.184

640x480 0.184

1920x1080 0.184

96

While running the video applications on the Zynq 7000 AP SoC platform, the

total on- chip power and its details are estimated and are shown in Table 3.3. The total

power is calculated as follows:

 (3.8)

Where, Pno_application indicates the power of processor cores without any implementation.

PFPGA includes PFPGA_static and PFPGA_dynamic.

Table 3.4 illustrates the relationship of hardware resources and power consumption of

these tasks on Zynq platform. Although, the image resolutions of Object Segmentation

and Filter task (using Mathematical Morphology) processed on FPGA is adjusted, there

are not many differences of hardware resources between them. Therefore, the power

consumption on FPGA almost doesn’t change while varying the image resolutions.

As we discuss in Section 3.5.1, the model of power consumption on FPGA is

extracted as following equation 3.9:

 (3.9)

Where, PBRAM , PLUT and PFF are power consumption on BRAM, LUT and Flip Flop.

Table 3.5-Hardware resources and power consumption on different input image resolutions

3.6.2.2 Validation of the power models on FPGA

Table 3.6 illustrates the validation results of estimated and measurement power

consumption for two video applications on FPGA. After extracting the power

consumption models, we can estimate the power consumption of two first tasks such as

Object Segmentation, Filter (using Mathematical Morphology) at different of image

resolutions based on equation 3.9. The error rate of our model for FPGA is minimum

value of 0.08% and the maximum of 1.36%. The accuracy of this model is all lower than

2%.

Tasks Resolutions
BRAM DSP LUT FF Power

(mW) Usage % Usage % Usage % Usage %

Object

Segmentation

320x240 0 0 0 0 60 0.34 370 0.34 124

640x480 0 0 0 0 65 1.2 458 0.6 124

Filter

(Mathematical

Morphology)

320x240 21 15 11 5 7329 6.88 9282 17.44 184

640x480 21 15 11 5 7384 6.93 9341 17.55 184

1920x1080 21 15 11 5 7473 7.02 9727 18.28 184

97

Table 3.6-The validation of power consumption model on FPGA

The aim of our work is to define the power consumption models for both

processor cores and FPGA, as called heterogeneous architecture. It is necessary for

exploration the low cost architecture for Fall Detection System. We present the power

consumption model for heterogeneous architecture in next subsection.

3.6.3 Power consumption models for heterogeneous architecture

Recently, the FPGAs incorporate processor cores, arithmetic elements and memory

blocks, in addition to the usual logic elements. They allow the realization of complex

SoC (System on Chip) by combining hardware and software design. So, in the two

previous sections, both processor cores and FPGA are selected to validate our power

modeling approach. From Equation 3.7, the power modeling is deduced as follows:

 (3.10)

Where, PPS is the total power on processor cores; PFPGA includes the static and dynamic

of power on FPGA, in which dynamic power consumes on various logic blocks, DSP,

BRAM, or others.

3.7 Execution time models for heterogeneous platform

Estimating the execution time of computer programs is an important but challenging

problem in the computer systems. Existing methods require experts to perform detailed

analysis of program code in order to construct estimators or select important features.

We recently developed a new model to automatically extract a large number of features

from program execution on various video application inputs, on which estimation time

models can be constructed without expert knowledge.

Tasks Resolutions Pestimation

(mW)

Pmeasure

(mW)

Error rate (%)

Object

Segmentation

320x240 123.9 124 0.08

640x480 124.2 124 0.16

Filter

(Mathematical

Morphology)

320x240 186.5 184 1.36

640x480 185.6 184 0.87

1920x1080 185.5 184 0.82

98

The execution time for these applications in parallel is modelised when they

execute in multiprocessors. The execution time models are extracted for both processor

and FPGA which are presented as follows:

3.7.1 Execution time models for processor

The total cycles, stall cycles, and level cache miss profile are estimated to create the

execution time model of processor with factors such as number of processor cores N,

frequency F, etc. The execution time of processor cores is defined as follows:

Execution time of processor cores T = (Processor execution clock cycle + memory stall

cycle)* clock cycle time.

Where,

Memory stall cycle = (Read stalls per Instruction + Write stalls per Instruction)* Total

instruction

 Mstall = (RPI stall + WPIstall)* I (3.11)

Processor cores execution clock cycle = Cycle per Instruction * Total instruction

Processor cores execution clock cycle = CPI* I (3.12)

Therefore, the execution time of processor cores is defined in the following equation:

 (3.13)

Where,

i is the i
th
 task, with i=(1:4);

CPI is Cycle per Instruction;

RPIstall , WPIstall are Read and Write stalls per Instruction;

I is total instructions;

N, F are number and frequency of processor cores.

For an application on processor cores, we can evaluate the execution time by:

 First and most importantly, the models are applied to estimate the execution time

in different frequencies, number of cores, Cycle per Instruction, etc. based on

equation 3.13.

 Second, the measurement of the implementation programs with reasonable

complex functionality is obtained. An inexperienced observer is not trivially

identified the important features by this way.

Therefore, the error rate between estimation time and measurement is analysed. In our

system, the assessment is applied for two first tasks: Object Segmentation and Filter

(using Mathematical Morphology). The error rates take around 0.05 % for 1 core and

99

0.053% for 2 cores of Object Segmentation task. The same comparison of Filter

(Mathematical Morphology) task, its rates are determined at 0.02% and 0.07% (as shown

in Figure 3.15).

Figure 3.14-Execution time validation of Object Segmentation task

Figure 3.15-Execution time validation of Filter task (Mathematic Morphology)

y = 9.7577x - 0.0195
R² = 1

y = 4.8969x - 0.0098
R² = 1

0

5

10

15

20

25

30

35

667 333 222

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Frequency (MHz)

1_core_estimation 1_core_measurement

2_cores_estimation 2_cores_measurement

y = 75.25x - 0.1333
R² = 1

y = 37.837x - 0.0756
R² = 1

0

50

100

150

200

250

667 333 222

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Frequency (MHz)

1_core_estimation 1_core_measurement

2_cores_estimation 2_cores_measurement

100

However, the extraction of these previous parameters is not sufficient for

exploring the heterogeneous architecture of the Fall Detection System. We create the

execution time model which relates not only the basic factors (based on equation 3.13)

but also the image resolutions. In addition, the image resolution is a parameter which

influences the accuracy of our system (see more detail in Section 4.5.3). Thus, we

extend to extract the time model for each task of our system as follows:

 (3.14)

 (3.15)

 (3.16)

 (3.17)

Where, s is the image resolution; N, Fcore are number and frequency of processor cores.

In order to explore the suitable architectures for our system, we extract the time models

of tasks which are executed both on processor cores and on FPGA. In the next

subsection, we continuously propose the execution time models for hardware of two

tasks Object Segmentation and Filter tasks (using Mathematical Morphology

techniques).

3.7.2 Times models for hardware acceleration (FPGA)

The execution time of two tasks such as Object Segmentation and Mathematical

Morphology is defined with various image resolutions, at frequency of 50MHz and

targeting with 20ns of clock default. The Vivado_HLS tool supports for this high level

estimation. The execution time of these tasks depends on the image resolution inputs as

presented in Table 3.7.

Table 3.7-Estimation of Execution time on hardware for video applications

Application Resolution
Execution Time

(ms)

Object

Segmentation

320x240 0.33

680x480 1.32

Mathematical

Morphology

320x240 4.35

680x480 17.72

1920x1080 218

101

Execution time model for FPGA is extracted as follows:

 (3.18)

 (3.19)

Where, is the execution time on FPGA of i
th
 task with i= (1:2); 1, 2 are

execution time on Object Segmentation and Filter task; s is the image resolutions of

input image.

3.8 Conclusion

In this Chapter, we specific the separate video tasks which are used in the Fall Detection

System to extract the general power consumption and execution time models. The

modeling methodology is defined by analysing processor cores (based on FLPA) and

FPGA (related to hardware resources) with the aim to combine then for heterogeneous

architecture. To defined power consumption and time models for processor cores,

different scenery of experiments are implemented according to the different

configurations offered by the ARM Cortex A9 processor of Zynq platform. On the basis

of the FPLA techniques, power consumption and execution time models have been

extracted for the different tasks of the Fall Detection System.

Moreover, these models are extended for the Fall Detection System regarding

the features of the target architectures and the considered application such as image

resolutions, core frequency and number of activated cores. The analysis of the error rate

shows a maximum of 3.5% for the power consumption and 0.07% for the execution time.

The error rates offer a good quality models on processor cores.

In addition, the video applications are synthesized on FPGA part with various

image resolutions by supporting of Vivado_HLS tool in order to estimate and model the

power consumption and execution time. These models take into account hardware

resource requirements and features of the application. The error rate is inferior to 2%.

Our models also allow to assess the power consumption and execution time for different

configurations of heterogeneous architecture and assignments of tasks of the Fall

Detection System.

The next Chapter introduces a new exploration methodology for low cost

architectures of the Fall Detection System. At first, the execution time and power

consumption models has been completed by the evaluation of the accuracy, precision and

recall performances of the Fall Detection System for different configurations of the

architecture and the application. An accuracy model for this system needs to be

determined. Then I define a Design Space Exploration (DSE) Methodology for the Fall

Detection System by applying the parallelism techniques such as intra-task and inter-task

static scheduling.

102

103

Chapter 4. Low Cost Architecture for Fall

Detection System

Currently, designing low-power complex embedded systems is a main challenge for

corporations in a large number of electronic domains. There are multiple motivations

which lead designers to consider low-power design such as increasing lifetime,

improving battery longevity, limited battery capacity, and temperature constraints.

Unfortunately, there is a lack of efficient methodology and accurate tool to obtain

power/energy estimation of a complete system. From functional estimation based on real

board’s measurements, our methodology helps designers to develop new power models

and to explore new architectures for the Fall Detection System. We apply parallelism

techniques at task level in order to reduce energy, power consumption and execution

time for our system with sufficient performance of accuracy.

This chapter is organized as follows: Section 4.1 presents the literature of high

level synthesis tools based on C/C++ specification. Section 4.2 describes some

techniques in reducing low power at low level and high level of abstracts. The recent

implementations on video applications and especially on the Fall Detection are illustrated

in Section 4.3. Section 4.4 depicts an overview of low cost architecture exploration

methodology. At first, the Fall Detection System is implemented on software with the

different configurations and the comparison between image resolutions in execution

time, power/energy consumption is made. The evaluation of accuracy, precision and

recall performances are all given in Section 4.5 and shown insufficient frame rate. We

then assess the execution time, power/energy consumption on two tasks of the Fall

Detection System implemented on hardware in Section 4.6. In order to explore the

different architectures, assignment and scheduling of tasks, the parallelism techniques

such as intra-task and inter-task for the Fall Detection System are applied and elaborated

in Section 4.7. Section 4.8 describes the Design Space Exploration (DSE) Methodology

for the Fall Detection System to define the low cost architectures.

In the next Section, the literature of high level synthesis tools based on C/C++

languages for heterogeneous architectures such as CatapultC
6
, Gaut

7
, Spark

8
, PICO and

Vivado HLS
9
is presented below.

6
 http://calypto.com/en/products/catapult/overview/

7
 http://hls-labsticc.univ-ubs.fr/

8
 http://mesl.ucsd.edu/spark/

104

4.1 High level synthesis tools based on C/C++ specification

For industry and academic research, the recent High-level synthesis (HLS) tools use

C/C++/SystemC code targeting processor cores and FPGA implementation. However, in

this Section, we only introduce the state-of-art of high level synthesis tools based on

C/C++ code.

4.1.1 CATAPULT

Different manual methods are automated to reduce the time for hardware production in

the Catapult synthesis flow [153]. The flow is centered around Catapult HLS tool, where

the selection of microarchitecture is based on the constraints (provided by the

designer/user). This tool creates the RTL architecture based on these constraints.

Moreover, the target technology used, clock period or clock frequency are also specified

as constraints. Some important points of Catapult based design methodology are

discussed as follows:

 Verifying generated RTL against original C code, the function is one of the

most important stages of the design flow. RTL architecture is wrapped around a

SystemC transactor. By performing the wrapping, original C++ testbenches are

compiled with the SystemC top module instantiating generated RTL module and

finally comparator is used to compare the outputs. The wrapper code along with

the makefiles is auto-generated to complete the verification flow.

 Synthesis Constraints for Catapult Flow: there are two types of constraints in

the Catapult flow. The former is related to target technology and clock-

frequency, etc. The latter is used to control the architecture. These constraints

can be inserted using GUI or using directives. The directives facilitate loop

unrolling, loop pipelining and hardware interface synthesis, etc. In addition,

these constraints are not encoded in the source code, hence appropriate micro-

architectures are created during synthesis stage.

 C++ and optimization support: It is necessary to underline that most of the

C++ constructs are supported by this tool except the code, which requires

dynamic memory allocation/deallocation such as use of malloc, free, new and

delete. In other words, code should be statically deterministic, therefore all the

properties, memory allocation can be performed during compile time. Catapult

also supports pointer synthesis, classes & templates and bit-accurate data-types,

etc. Catapult C provides loop pipelining, loop merging, loop unrolling,

technology driven resource allocation and scheduling, etc., for the optimization

side.

9
 http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

105

4.1.2 Program In Chip Out (PICO) tool’s

PICO tool’s [154] is mainly targeting SoC platforms. Before introducing the tool, it is

crucial to characterize different IPs in the context of this tool and their approach. The IPs

are categorised in the following groups:

 Star IPs are CPUs/DSP blocks. These blocks are generally fixed for many

generations of SoCs. The IPs are manually created, therefore their instruction

level characteristics are well-defined. In SoC, various models of such IPs are

used at different granularities, including instruction level simulation model,

RTL/gate-level model, etc.

 Complex Application IPs such as video-codec, wireless modem, etc. are

different factor for the end product especially for embedded systems.

 Connectivity and Control IPs, such as DMA, USB, etc. are generally utilized

in communication. It can be considered as system-level glue. Notwithstanding,

their functionality is not needed and requires very minimal tailoring.

 Memory is generally the biggest contributor to silicon area. Memory models are

compiled and built from the bottom-up.

These discussions of IPs above are necessary for SoC development. However, in

complex application engine, it generally requires the bulk of effort for design and

verification purposes.

PICO accepts the sequential C specification and tries to extract the parallelism

from the sequential C code such as in the specific domain like signal processing

applications. In such domains, a lot of parallelism is available during application

processed by the hardware. A programming model is useful where a part of function has

no dependency between the different tasks. If one task works on a block of data and

other works on another block of data, then a lot of parallelism can be extracted in

pipelined manner. The execution model of PICO is based on Kahn Process Network

(KPN), where a set of sequential processes communicates via streams with block-on-

read and unbounded buffering. These processes are the hardware blocks, which

communicate with each other through streams. The restriction on unbounded buffering,

however, is big, which is basically solved by imposing additional constraints on the

execution model.

4.1.3 GAUT, SPARK tools

GAUT [155] is an academic high-level synthesis tool based on C as design language and

applicable for digital signal processing applications. GAUT starts from bit-accurate

specification written in C/C++ and extracts the possible parallelism before going through

the conventional stages such as binding, allocation and scheduling tasks. GAUT has

106

mandatory synthesis constraints, which are throughput and clock-period. The compiler of

GAUT derives gcc/g++ to extract a data flow graph (DFG) representation of the

application. The synthesis process is not completely technology independent but can be

useful for virtual platform development for micro-architectural analysis.

SPARK [156] presents a high-level design methodology based on the high-level

synthesis tool, which takes Behavioral C as input design language and capable of

generating RTL VHDL. The main contributions of the methodology based on SPARK

are:

 Inclusion of code motion and code transformation techniques at compiler level to

include maximum parallelism for high-level synthesis.

 Proposal of high-level synthesis starting with behavioral C input.

The approach presents in SPARK helps designer in understanding how and by what

amount of the quality results can get affected by the language level transformations such

as loop unrolling, loop-invariant code motion, etc. on generated circuit from HLS. The

approach suggests that no single code transformation approach is universally applicable.

However, such techniques with heuristics applied for particular application domain leads

to better quality or results. The transformations and techniques applied in this

methodology include exploitation of instruction-level parallelism, such as speculative

code motions, percolation scheduling and trail blazing.

4.1.4 Vivado HLS tool

The Xilinx® Vivado® High-Level Synthesis (HLS) [157] compiler provides a

programming environment similar to those available for application development on

both standard and specialized processors. The HLS shares key technology with processor

compilers for the interpretation, analysis, and optimization of C/C++ programs. Their

main difference is in the execution target of the application.

By targeting an FPGA, the HLS enables a software engineer to optimize code for

throughout, power, and latency without the need to address the performance bottleneck

of a single memory space and limited computational resources. This allows the

implementation of computationally intensive software algorithms into actual products,

not just functionality demonstrators. Therefore, our work bases on the HLS. This

subsection introduces how the HLS compiler works and how it differs from a traditional

software compiler.

Application code targeting the HLS compiler uses the same categories as any

processor compiler. HLS analyzes all programs in terms of:

 Operations refer to both the arithmetic and logical components of an application

that are involved in computing a result value. When working with operations, the

107

main difference between HLS and other compilers is in the restrictions placed on

the designer. With a processor compiler, the fixed processing architecture means

that the user can only affect performance by limiting operation dependency and

manipulating memory layout to maximize cache performance. In contrast, HLS

is not constrained by a fixed processing platform. An algorithm-specific platform

is built based on user input. This allows an HLS designer to affect the

application performance in terms of throughput, latency and power;

 Conditional statements are program control flow statements that are typically

implemented as if, if-else, or case statements. These coding structures are an

integral part of most algorithms and are fully supported by all compilers,

including HLS. The only difference between compilers is how these types of

statements are implemented. With a processor compiler, conditional statements

are translated into branch operations that might or might not result in a context

switch. In an FPGA, a conditional statement does not have the same potential

impact on performance as in a processor. HLS creates all the circuits described

by each branch of the conditional statement. Therefore, the runtime execution of

a conditional software statement involves the selection between two possible

results rather than a context switch;

 Loops are a common programming construct for expressing iterative

computation. Although this might be true with early versions of compilers for

FPGAs, HLS fully supports loops and can even do transformations that are

beyond the capabilities of a standard processor compiler. HLS can parallelize or

pipeline the iterations of a loop to reduce computation latency and increase the

input data rate. The user controls the level of iteration pipelining by setting the

loop initialization interval (II). The II of a loop specifies the number of clock

cycles between the start times of consecutive loop iterations;

 Functions are a programming hierarchy that can contain operators, loops and

other functions. The treatment of functions in both HLS and processor compilers

is similar to that of loops. In HLS, the main difference between loops and

functions is related to terminology. HLS can parallelize the execution of both

loops and functions. With loops, this transformation is typically referred to as

pipelining, because there is a clear hierarchy difference between operators and

loop iterations. With functions, operations outside of a loop body and within

loops are in the same hierarchical context, which might lead to confusion if the

term pipelining is used. To avoid potential confusion when working with HLS,

the parallelization of function call execution is referred to as dataflow

optimization. The dataflow optimization instructs HLS to create independent

hardware modules for all functions at a given level of program hierarchy. These

independent hardware modules are capable of concurrent execution and self-

synchronize during data transfer.

108

In our work, the Fall Detection System is built based on video processing. Compare with

the other tools, only Vivado HLS supports for performing real-time approach for our

system by the followings reasons:

 OpenCV is a useful framework for developing computer vision designs.

OpenCV applications can be also used in embedded systems by recompiling

them for the ARM architecture and executing them in Zynq devices. In this case,

the video processing is still implemented using OpenCV functions calls

executing on a processor (such as the Cortex™-A9 processor cores in Zynq

Processor System).

 Alternatively, the OpenCV function calls can be replaced by corresponding

synthesizable functions from the Xilinx Vivado HLS video library. HLS Video

Library is a C/C++ library provided with Vivado HLS to help accelerate

computer vision/image processing applications on FPGA. It includes commonly

used data structures, OpenCV interfaces, AXI4-Stream I/O, and video

processing functions. HLS Video Library uses OpenCV libraries as reference

model, most video processing functions has the similar interface and equivalent

behavior with corresponding OpenCV functions. The pre-built OpenCV libraries

(with FFmpeg support) are also shipped with Vivado HLS on different

platforms.

Besides, we review about the high level synthesis based on C/C++ language. The

low power techniques such as Clock gating, operand isolation, dynamic voltage and

frequency scaling, etc. are discussed as following Section:

4.2 Low power techniques

Dynamic power is one of the most crucial terms of power consumption of a design, thus

it is is necessary to reduce the dynamic power targeted for the power-aware processes.

Some research has been worked in the area of power reduction at the RTL and high-

levels of abstractions. Approaches focusing on RTL or higher level depend on the

knowledge designers. In the following, we briefly introduce the approaches are used in

low power design such as clock gating, operand isolation, dynamic voltage and

frequency scaling (DVFS) and others:

 Clock-gating is one of the most frequently used techniques at RTL to reduce

dynamic power dissipation without affecting the functionality of the design.

Clock gating works by taking the enable conditions attached to registers and uses

them to gate the clocks. Therefore, it is imperative that a design must contain

these enable conditions in order to use and benefit from clock gating. Since it

removes large numbers of muxes and replaces them with clock gating logic, this

clock gating process can also save significant die area as well as power. Nikhil

Tripathi et al. [158] refer to ultilise combinational clock gating to reduce the

109

switching activity on the clock network, thereby reducing dynamic power

consumption in the design but this task does not alter the behavior of the register

being gated. To evaluate FPGA clock network architectures with built-in clock

gating capability, the authors in [159] describe a flexible placement algorithm to

operate various gating granularities. Their results show that the dependent of the

clock gating architecture and the fraction of time clock signals are enabled, clock

power can be reduced by over 50%, and a fine granularity gating architecture

yields significant power benefits. However, the research shows the advantages of

clock-gating for reducing power consumption. Their works require RTL

simulation and generation of Value Change Dump (VCD) and subsequent

analysis, making the entire process extremely time consuming. It will require a

great deal of effort to make the entire process few orders of magnitude faster,

while power savings should be better or equal at least. Moreover, Sumit Ahuja

[112] proposes approaches to enable clock-gating from the C description itself

for various granularities of clock-gating such as fine grain at variable level and

coarse grain at function or scope level. They also present their extension this

approach for sequential clock-gating and propose how to use power models to

guide power reduction process at high-level. The advantage of the approaches is

facilitation of power reduction features at the high-level design with faster than

other. [160] also proposes an approach based on clock-gating in the HLS flow.

Nevertheless, their approach lacks a simulation driven realistic power reduction

feature. It requires RTL synthesis to insert the gating logic while the necessary

logic is inserted into the source code before generating the RTL.

 Operand isolation is a technique, which helps in reducing the redundant

activities around datapath unit. It is considered as a complementary technique to

clock-gating. Although clock-gating does not help in controlling the datapath

activity, it just controls the clock toggles of registers. Munch et al. present an

opportunity to reduce power at the RTL using operand isolation based technique

to reduce the dynamic power at the RTL [161].

 Dynamic Voltage and Frequency Scaling (DVFS): The dynamic power

consumption Pd of a CMOS circuit as introduced in Section 3.1 is determined

by:

 (4.1)

with Vdd the supply voltage, f the clock frequency, the switching activity level

and C the capacitance of the circuit. Dynamic power consumption in a processor

can be decreased by reducing two of its key contributors, supply voltage and

clock frequency. In fact, since the power dissipated in a CMOS circuit is

proportional to the square of the supply voltage, the most effective way to reduce

power is to scale down the supply voltage [162]. However, reducing the supply

voltage also increases the device delay, so frequency also needs to be reduced.

110

DVFS is a highly significant method to minimize the power dissipation and thus

maximize the battery service time in battery-powered portable computing and

communication devices. The key ideal behind DVFS techniques is to vary the

voltage supply and the clock frequency of the system so as to provide “just

enough” circuit speed to process the workload while meeting the total

computation time and/or throughput constraints and thereby reduce the energy

dissipation. Several strategies have been proposed to exploit certain aspects of

DVFS and over a particular method to build pseudo intermediate frequencies for

use in conjunction with the techniques of Dynamic Voltage Scaling (DVS)

[163], [164].

Dynamic voltage scaling (DVS) [165], [166] refers to runtime change in the

supply voltage levels supplied to various components in a system so as to reduce

the overall system power dissipation while maintaining a total computation time

and/or throughput requirement.

 Besides the previous techniques used for reducing power consumption design, in

the other researchs, high-level synthesis for C-like HDLs includes stages such as

scheduling, allocation and binding. Therefore, various techniques are proposed

for different stages to affect the power consumption of the design once the RTL

is created from HLS. Scheduling of various operations in a design is exploited

for generating power-efficient designs. The problem of resource-constrained

scheduling for low-power has been addressed in [167]. These approaches use

Control Data Flow Graphs (CDFGs) to first determine the mobility of various

operations based on the ASAP (As Soon As Possible) and ALAP (As Late As

Possible) schedules. Using the computed nobilities and other relevant factors,

priorities are assigned to various operations. Based on the assigned priorities,

various operations of the design are then scheduled in each clock cycle such that

the power consumption of the design is reduced.

The authors of [168] propose a methodology to explore different hardware

configurations and also to achieve accurate design matrices for each configuration. They

utilise C2R high level synthesis tool to directly generate RTL description of the

hardware. They present case studies to develop or modify behavioral IP descriptions and

use standard FPGA boards to profile the IP in very short time. The differences in the

measured and actual IP design matrices are not significant as one is more concerned with

relative difference among various configurations. A variety of compute-intense

benchmarks like AES is used to demonstrate how platform specific optimizations as well

as higher level micro architectural optimizations can be done using a commercial HLS

tool, Xilinx Spartan/Virtex boards and Xilinx EDK design suite. Their results show how

various architectures in hardware/software co-design flow are chosen while keeping

energy efficiency in mind and they reduce design cycle time to reach the optimal results.

111

In the next Section, we discuss about the implementation of video applications

and Fall Detection System on different processor cores, FPGA, DSP, etc. or

heterogeneous solutions.

4.3 Video applications and Fall Detection System implemented on various

platforms

Firstly, the overview of video processing tasks, for example pre-processing, 3D shapes

reconstruction, data compression, etc. implemented on hardware acceleration (FPGA),

processors or on combination of HW/SW are presented as follows:

J. Ayoub, O. Romain, B. Granado et al. [169] research an active vision technique

implemented in an embedded system for 3D shapes reconstruction. The major aim of

their work is to have a balance in the accuracy of all components in the system where the

size and autonomy of such an embedded sensor are hard constraints. They improve the

pre-processing algorithms by reducing the time needed to compute the spots centers. In

addition, lens distortion of the camera is included in the model to increase accuracy when

reconstructing objects. The distortion correction method is implemented on Xilinx Virtex

II Pro FPGA (xc2vp30). The evaluation of experiments presents that the size and the

time are reduced, precision increased, when the resources spend on processing are

relatively acceptable in comparison to the benefits.

The work of Floris Driessen [170] proposes the combination of embedded

processors and customized accelerators on heterogeneous computation platform, the

Zynq-7000 all programmable SoC. This combination offers a high-end embedded

processor combined with field programmable gate array (FPGA) based on reconfigurable

logic. Peng Shen Ong et al. [171] propose the fall detection system which is

implemented on Terasic’s DE2- 115 development board including Altera Cyclone IV

(EP4CE115) FPGA device, a 5 megapixels CMOS camera sensor and a LCD touch

panel. This system is also designed with highly exploitation of the parallel and pipeline

architecture of the FPGA.

The authors of [172] present the system built by Shimmer technology and

applied the orthogonal matching pursuit (OMP) algorithm for advanced data

compression. This system is simulated and implemented on the Virtex-5 and Zynq7

(FPGA) using Vivado high level synthesis tool. It is used to estimate the area, power and

computation time for the fall detection with different scenarios. Benaoumeur Senouci et

al [173] propose another heterogeneous implementation is based on Xilinx’s SoC named

Zynq methodology for a embedded fall detection system using a smart camera. They

propose a HW/SW implementation to detect falls in a home environment using a single

camera and an optimized descriptor adapted to real-time tasks. The main contributions of

this work are the proposal of a co-design methodology. In their methodology, the

HW/SW is partitioned by using high-level algorithmic description and high-level

112

synthesis tools. They give the fast prototyping which allows fast architecture exploration

and optimisation to be performed. They design a hardware accelerator to efficient

algorithm used in image analysis.

Frederik R. Grüll in [174] discusses biomedical image processing that is

accelerated and reconstruction on FPGA in his thesis. The implementation is carried out

with the MaxCompiler library from Maxeler Technologies and Xilinx. For acceleration,

every processing pipeline must be re-designed. The background measurement is changed

to exponential smoothing for every pixel over time. The spot finder is modified to

operate after the background subtraction. The former least-square fit is simplified to a

Gaussian estimator for feature extraction. The resulting pipeline system consists of two

statically scheduled pipelines connected by a FIFO. The first pipeline operates on entire

frames. The second extracts the features of every detected spot and operates on the

Region of Interest (ROIs) only. The latter reconstructs the density distribution in a 3D

volume from 2D images obtained with an electron microscope from multiple angles. The

method belongs to the class of computed tomography, which is widely used in medicine

and biology.

Secondly, we also review some implementations for Fall Detection System are

combined various methods. Besides, Michal Kepski and Bogdan Kwolek deploy the

Kinect and accelerate-meter in fall detection system [175]. They implement this system

on PandaBoard ES, which is a low-power and low-cost single board computer

development platform based on Texas Instruments OMAP4 line of processors. In

addition, a method for detecting falls at homes of elderly using a two-stage fall detection

system is presented by Erik E. Stone et al. [176]. The first stage of the detection system

characterizes a person’s vertical state in individual depth image frames. The

segmentation on ground events from the vertical state time series is then obtained by

tracking the person according time. The second stage uses an ensemble of decision trees

to compute a confidence that a fall precede on a ground event. Their database consists of

454 falls where 445 falls are performed by trained stunt actors and 9 naturally occurring

resident falls. The database is collected in nine years at the actual homes of older adults

living at 13 apartments. This means that the data collection allows for characterization of

system performance under real-world condition, which is not shown in other studies.

Cross validation results are included for standing, sitting and lying down positions,

within 4 m versus far fall locations and occluded versus not occluded fallers.

Martin Humenberger et al. in [177] present a bio-inspired, purely passive and

embedded fall detection system by the combination of FPGA and DSP. Bio-inspired

means that the use of two optical detector chips with event-driven pixels that are

sensitive to relative light intensity changes only. The chips are used as stereo

configuration which enables a 3D representation of the observed area with a stereo

matching technique. In contrast to conventional digital cameras, this image sensor

delivers asynchronous events instead of synchronous intensity or color images. Thus, the

113

privacy issue is systematically solved. Moreover, the stationary installed the

fall detection system has a better acceptance for independent living compared to

permanently worn devices. The fall detection is performed by a trained neural network.

First, a meaningful feature vector is calculated from the point clouds. Then the neural

network classifies the actual event as fall or non-fall. All processing is done on an

embedded device consisting of an FPGA for stereo matching and a DSP for neural

network calculation achieving several fall evaluations per second. The results of

evaluation indicate that the fall detection system achieves a fall detection rate of more

than 96% with false positives below 5% for the prerecorded database consisting of

679 fall scenarios.

Recently, with systems and software engineers programming in C/C++ and their

hardware counterparts working in hardware description languages such as VHDL and

Verilog, problems arising from the use of different design languages, incompatible tools

and fragmented tool flows are becoming common. The SystemC
10

 language and

modeling platform, based on C++, are developed as the solution for representing

functionality, communication, software and hardware. The reason is clear: increasing

design complexity demands very fast executable specifications to validate system

concepts, and only C/C++ delivers adequate levels of abstraction, hardware/software

integration and performance. System design today also demands a single common

language and modeling foundation in order to make a market for interoperable system-

level design tools, services and IP a reality [178].

Apart from the modeling benefits available in C++ such as data abstraction,

modularity, and object orientation, the advantages of SystemC include the establishment

of a common design environment consisting of C++ libraries, models and tools, thereby

setting up a foundation for hardware/software co-design; the ability to exchange IP easily

and efficiently; and the ability to reuse test benches across different levels of modeling

abstraction.

Despite, SystemC is built based on C/C++ language and all system specifications

can be refined to mixed software and hardware implementations, but hardware

implementations can be accurately modeled all the way to the RTL. Especially, SystemC

isn’t support for OpenCV integration in C/C++ language. Therefore, we select the tool

which supports for not only using video libraries such as OpenCV but also combination

HW/SW implementation.

From the state-of-art, we introduce about synthesis tools at the high level based

on C/C++ such as Catapult, Pico, Gaut, Spark and Vivado_HLS; the low power

techniques from low level to high level of abstract. The Vivado_HLS is selected for

synthesising our work, the Fall Detection System with the advantage of including the

OpenCV libraries and also supporting for heterogeneous platform. In addition, these

10

 http://accellera.org/downloads/standards/systemc

114

researches propose the implementation the Fall Detection on embedded system with the

combination of FPGA (used for stereo matching) and DSP (used for neural network).

Moreover, the authors present a HW/SW co-design with using wearable sensor based on

Virtex 5 and Zynq platform. Some works implement combination of the Kinect and

accelerometer for the Fall Detection System on PandaBoard ES, Texas Instruments

OMAP4 platform. There are not in existence of the design exploration based on HW/SW

co-design with low cost architectures for the Fall Detection System. Therefore, our

research concentrates on exploring the architectures of the Fall Detection System which

is applied power/time model and evaluated the recognition rate. The four tasks of Fall

Detection System are implemented on processor cores and we explore the low cost

architectures based on HW/SW co-design. In the following Section, we elaborate the

description of our low cost architectures methodology for the Fall Detection System.

4.4 Overview of low cost architecture methodology

As mentioned in the Chapter 1, one contribution of this thesis is to define low cost

architectures for the Fall Detection System which operates on heterogeneous platform.

To explore the low cost architecture for our system: the experimental results of the Fall

Detection System on processor cores are adjusted on different frequency scaling and

image resolutions. The parameters such as execution time, power/energy and recognition

rate are determined. Especially, the recognition rate such as accuracy, precision and

recall performance of this system (see more on Section 2.4.2) are also given in the

comparison picture of image resolutions and frame rates. In addition, to create the

accuracy rate model for the extracted architectures of this system, thus the accuracy

model is as a function of image resolutions and frame rates. The reason of accuracy

model is only selected to create in exploration the low cost of architecture. The accuracy

rate, which is a parameter of the test, is the proportion of true results (both true

positives and true negatives) among the total number of cases examined in this system.

Therefore, it is necessary for using this model to estimate the accuracy of our

architectures. After that, execution time and power models are applied in combination of

HW/SW. The relation between energy and accuracy rate of architecture is significant

information in order to find out the best architecture for the Fall Detection System. The

low cost architectures based on this methodology which compromises all parameters

such as execution time, power/energy consumption, frame rate and accuracy rate are

characterised (as depicted in Figure 4.1).

Our low cost architecture methodology starts with applying the power/time

models which are presented in Chapter 3. The extracted power and execution time

models are for separated tasks of the Fall Detection System based on processor cores and

FPGA. In this case, we can address some situations for our methodology for

heterogeneous architecture as follows:

115

 Software (processor cores): the implementation of this system with integration

of operating systems is focused on. Furthermore, any algorithms which exhibit

significant parallelism can be identified and are strong candidates for

implementation on processor cores. This corresponds to a model where

computationally intensive but parallel tasks can be off-loaded from the

processor cores into hardware to achieve an overall performance increase.

Figure 4.1-Our low cost architecture design methodology for Fall Detection System

 Hardware (FPGA) is selected as one of candidates for tasks in the Fall

Detection System, which need to accelerate (execution time). The tasks which

meet the time constraints are selected for this hardware purpose.

 Hardware/Software (HW/SW) co-design: This combination is currently trend,

especially for the system to take full advantage of partitioning the system on

software and hardware sides to improve execution time, reduce energy and

apply the parallelism techniques. However, it can also deliver a sufficient

recognition rate.

Continuously, HW/SW exploration architecture for all tasks of the Fall Detection

System is estimated the execution time and power consumption. The results from this

step help us to have earlier evaluations.

After, the first evaluations performed in previous step, some solutions for

improving the performance for the Fall Detection System including intra-task and inter-

Extracted

architectures

Power/Time Models

HW/SW

architecture

Constraints

satisfy?

Released

low cost

architectures

Power/time estimation

Yes No

Modeling

116

task techniques for HW/SW architectures are proposed. The parallelism in each core of

processor and the accelerated modules on FPGA are combined.

It is a challenge to select suitable values for all parameters such as frame rates,

power/energy and recognition rate which satisfy the constraints for the extracted

architectures. Thus, suitable architectures for this system are compromised these

parameters. One of important constraint is accuracy rate for HW/SW architectures, it

influences on other constraint such as energy, frame rates. From the experiment, the

frame rate of an architecture which accuracy rate satisfies at least 80% is defined.

Therefore, the frame rate constraint is greater and equal 30 fps for our methodology.

Finally, after all extracted architectures are considered by the constraints. The

low cost architectures, which compromising between the accuracy rate and energy, are

released. The selected architecture depends on the aim of the designer for this system.

4.5 Software development and testing

In the software design, three entries include: the Board Support Package (BSP), the

Operating System to communicate with the hardware and Software Applications run on

top of the Operating System. Firstly, the Operating System such as Linux, Android, an

embedded OS are selected; a Real-Time Operating System (RTOS) for deterministic,

time-critical applications; or Standalone, a ‘light’ OS including only the most basic

functions. Especially, for two available processor cores and two different types of OS on

each core are deployed. In our system, the Linux operating System is selected to develop

on ARM Cortex A9 processor which includes in Zynq 7000 AP SoC platform of Xilinx.

In this Section, the Fall Detection System in High Level Languages specified in

C/C++ integrated OpenCV, cross-compiled along with libraries which implement the

communication Application Programming Interfaces (APIs) and runtime layer using

gcc/g++ toolchains are designed. The toolchains generate an .elf file downloaded to the

processor ARM Cortex A9 on Zynq platform supported by SDK tools. Our system is

executed by the configuration of image resolutions, frequencies of processor cores. The

recognition rate is then evaluated. Moreover, the extracted accuracy model is based on

the experiments of the Fall Detection System and use to apply in the exploration low cost

architecture.

4.5.1 Case study

For exploring the various architectures for the Fall Detection, the case study is presented

as follows:

117

 Input video is recorded by the Camera Web Cam-Philips SPC 900NC
11

 that is

mounted on the wall at the distance of 3m from the floor.

 Resolution of input video : 320x240 pixels, 680x360 pixels, 680x480 pixels and

704x576 pixels.

 Core frequency: 222 MHz, 333MHz and 667 MHz.

 Apply and extend the power and execution time models which are presented in

Chapter 3 to estimate these values.

 Moreover, this system is explored the low cost architecture based on

power/execution time model and accuracy rate model.

4.5.2 Primary implementation and experiment results for the Fall

Detection System on software

The implementations are varied on different frequencies which are available on Cortex

A9 processor with 667 MHz, 333MHz and 222MHz. An example of two first resolutions

is 320x240 pixels and 680x360 pixels, as shown in Figure 4.2.

In addition, the measurement of power is taken by the Fusion Digital Power

Designer GUI. The TI USB Adapter includes Power Management Bus (PMBus) which is

already described in Section 3.4.3. PMBus is an open standard power-management

protocol. This flexible and highly versatile standard allows for communication between

Zynq platform and PC based on both analog and digital technologies and provides true

interoperability, which will reduce design complexity and shorten time to market for

power system designers. Therefore, the energy per frame is multiplied by the power

consumption (P) and total execution time (T) as following equation:

 (4.2)

Besides, the frame rate of this system is calculated by:

 (4.3)

After defining the execution time, power/energy consumption and the frame rate

of these video are calculated by using the equation 4.2 and 4.3.

11

 http://www.p4c.philips.com/cgi-bin/dcbint/cpindex.pl?ctn=SPC900NC/00&scy=gb&slg=en

118

Table 4.1-Fall Detection System implements on different frequencies

Image

resolution

Frequency

MHz

Average execution time(ms) Frame

rate

(fps)

Read Object Frame Feature Recog-

nition
Total

data Seg. filter Extraction

320x240

667 10.9 8.6 75.3 10.9 1.65 107.4 9.3

333 21.3 14.5 150 14.5 3.015 214.3 4.7

222 36.3 25.6 225.8 21.4 4.6 313.6 3.2

680x360

667 24.7 17.7 234.9 24.6 4.4 306.8 3.3

333 50.1 34.1 470.1 42.2 8.8 606.3 1.6

222 71.7 52.9 705.3 72.9 13.3 917.6 1.1

640x480

667 35.2 40 295.4 54.8 5.5 431.6 2.3

333 67.7 67.5 590 93 11 830.2 1.2

222 101.3 101.3 726.4 139.2 16.6 1246.4 0.8

704x576

667 45.5 33.3 389.4 52.6 7.3 528.7 1.9

333 73.7 66 778.7 104.5 14.5 1038.4 1

222 108.9 312.7 1167.7 156.2 21.7 1554.8 0.6

Table 4.1 depicts the metrics of frame rates, execution time in different of the

image resolutions and the frequencies. The mean of total execution time of the Fall

Detection System is approximately 0.107s/frame. The Frame Filter task based on

Morphology Filter takes around 2/3 times of total execution time. The similar

observation has been obtained when using higher resolution of 680x360 pixels. In which

the execution time is 0.234s/frame for Frame Filter and 0.3s/frame for total execution

time. Frame Filter takes the most time, so that this evidence would be also considered for

accelerating on hardware.

In addition, Table 4.2 illustrates the relation among the power/energy

consumption and the different image resolutions and frequencies of cores. The higher

frequency is scaled, the lower energy is taken. In contrast, the image resolutions and the

energy consumption are proportional relationship.

119

Table 4.2-The Power/Energy of Fall Detection System on SW

Image

resolution

Frequency

(MHz)

Power

mW

Energy

mJ

320x240

667 420 45.11

333 304.55 65.26

222 254.55 79.83

680x360

667 420.91 129.13

333 310 187.95

222 264.55 242.75

640x480

667 437.27 188.73

333 323.64 268.68

222 269.09 335.39

704x576

667 446.36 235.99

333 324.55 337.01

222 281.82 438.17

Figure 4.2 illustrates the comparison execution time at two image resolutions,

320x240 and 680x360, processing on one processor of Zynq 7000 AP SoC platform. In

each image resolution, the Frame Filter task, using Mathematic Morphology technique,

executes the most value than the other ones. In this case, the measured power

consumption of whole Fall Detection System is closed to 0.403W.

Therefore, the energy per frame is multiplied by the power consumption (P) and

total execution time (T) presented as follows:

Epf = P*T= 0.403*0.107= 0.043 (J/frame) (4.4)

As the result of this experiment, the frame rate of this system is calculated by:

Frame rate = 1/0.107 = 9.3 (fps) (4.5)

It is found out that the over all of this system does not keep on operation at 30 frames per

second. Thus, this parameter could have an effect on the recognition ability of this

system. It is also a challenge in video design to get the reasonable precision, accuracy,

recall performance.

From both Table 4.1 and Table 4.2, the processing speed on one core of ARM

Cortex A9 processor is significant less than 10 fps compares with the 30 fps input.

120

Therefore, it is necessary to propose hardware accelerator or combine both of them to

improve the execution time to satisfy the real time challenge for the Fall Detection

System. We provide some solutions for this challenge in the next Section.

Figure 4.2-Comparison execution times at two image resolutions on one core

4.5.3 Performance evaluation for the Fall Detection System

4.5.3.1 The database

As discussing in Chapter 2, The DUT-HBU database [26] is used to evaluate the

performance of this system. All video data are compressed in .avi format and captured

by a single camera in a small room with the changeable conditions such as brightness,

objects, direction of camera, etc. The fall direction is subdivided into three basic

directions in this database: Direct fall, cross fall, side fall. In terms of non-fall videos,

usual activities which can be misrecognised with fall action such as lying, sitting,

creeping, bending are also classified into three directions above. In this study, we create

two databases (as shown in Table 4.3):

Train set: Clear data consists of videos which have stable background. These

videos are captured in a small room under good brightness condition. The object is not

obscured by furniture in the room. Train set contains 21 videos of fall and 26 videos of

daily activities.

Test set: Contents and activities in the video clips for testing are basically

performed similar to the ones for training, just a small difference of environment

121

condition. In each clip, there is only an object with stable background and include 21 fall

videos and the rest is 33 videos.

Table 4.3-Classification of videos

Action Video
Database

Train Test Sum Sum

Fall

Side -Fall (F1) 7 7 14

42 Direct-Fall(F2) 8 6 14

Cross-Fall(F3) 6 8 14

Non

Fall

Bending (N1) 6 8 14

59
Lying(N2) 5 8 13

Creeping(N3) 9 8 17

Sitting(N4) 6 9 15

Sum 47 54 101 101

4.5.3.2 The classifying evaluation

The evaluation of recognition rate such as the Precision (PR), Recall (RC) and Accuracy

(Acc) are given in Section 2.4.2 and shown in the Equation 4.3.

FNFPTNTP

TNTP
Acc

FPTP

TP
PR

FNTP

TP
RC

 ,, (4.6)

Where TP, TN, FN, and FP are defined as follows:

True positives (TP): amount of fall actions which are correctly classified as fall.

False positives (FP): amount of non-fall actions which are wrongly considered to be fall.

False negatives (FN): amount of fall actions which are wrongly rejected and classified as

non-fall actions.

True negative (TN): amount of non-fall actions which are correctly classified as non-fall.

4.5.3.3 The confusion matrix

A confusion matrix presents classification system which includes actual and predicted

classifications. Performance of such systems is commonly evaluated using the data in the

matrix. Table 4.4 shows the confusion matrix for two classes which are categorised

FALL or NON FALL for both database of Train and Test implemented on ARM Cortex

122

A9 of Zynq-7000 AP SoC platform. The evaluation is experimented on 101 videos, in

which 47 videos are in Train set and 54 ones are in Test set. For instance, 7 videos are

categorised in Side-Fall (F1) of Train set and the system can recognise all events in these

videos are FALL. In case of Sitting (N4), we, however, have 6 videos, there are 5 videos

which are detected as NONFALL and a video is misrecognised as FALL.

Table 4.4-Confusion matrix

 System

D
a

ta
b

a
se

Action Video
Train Test

Fall NonFall Fall NonFall

Fall

F1 7 0 6 1

F2 7 1 5 1

F3 5 1 5 3

Non Fall

N1 1 5 1 7

N2 1 4 2 6

N3 2 7 1 7

N4 1 5 2 7

Sum 47 54

From the confusion matrix, the Recall, Precision and Accuracy are calculated

and depicted in Figure 4.3. The result of pure data in Train set is higher than Test set in

all Recall, Precision, and Accuracy. The reason is that Template Matching uses “hard

threshold” and the combination of features is quite simple to detect a fall event. Four

models of the fall are not enough to describe all falls may occur in this system.

Figure 4.3-The results of Template Matching Algorithm with resolution_320x240

Train Test Total

Recall 90.5 76.2 83.35

Precision 79.2 72.7 75.95

Accuracy 85.1 79.6 82.35

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

a
n

ce
 (

%
)

123

Figure 4.4 is shown the performance comparison of two image sizes: 320x240

and 640x480 with the frame rate is 30fps for the offline video processing of Train set.

The lower performance of 640x480 resolutions of input image is calculated with 66.7 %

of Recall, 57.1 % of Precision and 78.3% of Accuracy in the same conditions such as

classification of Train set, the threshold and frame rate comparing with 90.5 % of Recall,

79.2% of Precision and 85.1 % of Accuracy in the 320x240 resolution.

Figure 4.4-The performance comparison of two resolutions

4.5.3.4 The accuracy model

It is crucial to define the relationship between accuracy performances in the system with

the other parameters such as frame rate, resolution, etc. Our aim is to extract an accuracy

model for the heterogeneous architectures. In our work, some experiment on two

different resolutions (320x240 and 680x480) and various frame rates is presented in

Table 4.5.

Table 4.5-The relationship between Accuracy performance with resolution and frame rate of

input video

Resolution fps
Accuracy

(%)

Accuracy estimation

(%)

Error rate

(%)

320x240 10 66.7 65.7 1.5

320x240 20 72.2 74 2.5

320x240 30 85.1 84.3 1

640x480 30 78.3 78.3 0

66.7

57.1

78.3

90.5

79.2
85.1

0

10

20

30

40

50

60

70

80

90

100

Recall Precision Accuracy

P
er

fo
rm

a
n

ce
 (

%
)

resolution_640x480 resolution_320x240

124

The performance of accuracy is extracted by using the regression law, the following

equation presents the dependence of accuracy with image resolution and frame rate

Accuracy = 55.3+0.000026*s +1.034*fps (4.7)

Where, s is the image size of the input video with two resolutions (320x240) and

(640x480); Fps is the frame rate which is listed in Table 4.5.

To estimate reliable of the accuracy model, the accuracy of this system is

validated and applied the above model as shown in Table 4.5. The error rate is achieved

less than 3%. The accuracy model for our system is defined from 10 to 50 fps. This

model is used to define the accuracy rate of our system with heterogeneous architectures

in exploring low cost architectures as presented in the later Section.

4.6 Hardware development and testing

As discuss in the subsection 4.4.2, the Frame Filter using the Morphology Mathematics

is selected for implementing on Hardware. However, to extract more architectures for

this system, we also choose the Object Segmentation task for hardware purpose. By this

way, the power and execution time of these tasks are estimated by the Vivado_HLS tool.

Table 4.6 illustrates the summary the extracted power and execution time model

presented in Chapter 3. Whenever, the resolution images increases the execution time

and the energy is higher.

Table 4.6-Summary the results on hardware

Application Resolution
Execution Time

(ms)

Power

 (W)

Energy

(mJ)

Object

Segmentation

320x240 0.33 0.124 0.043

640x480 1.32 0.124 0.183

Mathematical

Morphology

320x240 4.35 0.184 6.851

640x480 17.72 0.184 27.944

1920x1080 218 0.184 40.111

4.7 Application of parallelism techniques

The aim of this Section determines optimal architectures which has the best compromise

between execution time, power/energy consumption and accuracy rate. Besides,

extending the extracted power and execution time models derived from Chapter 3, we

then propose to use the parallelism techniques for this system on the Zynq platform.

Parallelism techniques for the video application tasks may exist among several frames

125

(inter-task parallelism) as well as within a single frame (intra-task parallelism). These

techniques are described as follows:

 Intra-task parallelism is handled several tasks corresponding with four tasks

(Object Segmentation, Filter, Feature Extraction and Recognition) in Fall

Detection System within a frame. The two first tasks perform in parallel by

separating an image (frame) in two slices. It means that each slice is exploited on

each core of processor at the same time.

 Inter-task parallelism: there are also four tasks (Object Segmentation, Filter,

Feature Extraction and Recognition) in Fall Detection System. Meanwhile, one

or two tasks are assigned to exactly each core of processor and/or in hardware.

For instance, first task is run on first core of processor, the second task is

exploited on FPGA, and the last tasks are executed on the second core of

processor. Tasks are performed in parallel by consecutive frames.

4.7.1 Intra-task parallelism technique

In this subsection, the intra-task technique is performed for the Fall Detection System

which has four tasks assigned to processor cores and/or hardware as follows:

 Task 1: Object segmentation.

 Task 2: Frame filter.

 Task 3: Feature extraction.

 Task 4: Recognition

We have many ways to schedule these tasks of our system based on the intra-

task technique. In our context, we suppose that Task 1 and Task 2 have three solutions

of execution: 1 core, 2 cores and FPGA (hardware). The Task 3 and Task 4 are just

exploited on 1 core of processors. To understand more detail of the explored architecture

cases (as presented in Table 4.12), two proposed cases, A2 and A5, are described below:

Architecture 2: the Task 1, Task 3 and Task 4 are executed in one core of processor.

Task 2 is run on the FPGA. In the various frequencies the execution time (ms), power

consumption (mW) and energy per frame (mJ) are shown in Table 4.7 and Table 4.8.

126

Table 4.7-Task regroups Architecture 2 with 320x240 resolutions

Frequency

(MHz)

Task 1 Task 2 Task 3 Task 4

Object

segmentation

Frame

filter

Feature

extraction

Recognition

667 9.736 4.35 10.9 1.65

333 19.5 4.35 14.5 3.015

222 29.25 4.35 21.4 4.6

Table 4.8-The relationship of power and energy per frame at different frequencies

Frequency

(MHz)
T(ms) P(mW) Epf (mJ) Fps

667 26.6 1266 33.7 37.6

333 41.4 933.3 38.6 24.2

222 59.6 793.8 47.3 16.8

Our experiment is implemented on Zynq 7000 AP SoC which has three

configurations of frequency such as 222 MHz, 333 MHz and 667MHz. As shown in

Table 4.8, by corresponding with the maximum frequency, 667MHz, we can deduce the

maximum of frame rate with 37.6fps.

As this frame rate is very high without significant increase on the accuracy, a

desirable frame rate for the output of our system can be specifed and predetermined. We

can adjust the frequency of cores that helps the designer decreasing the power. Thus, the

frequencies of cores are recalculated by the equation 4.8 and Table 4.9 presents the value

of frequencies when having given frame rate.

 (4.8)

Table 4.9-Example of frequency for different frame rate

Fps Fcore (MHz)

25 443.5

30 532.2

35 620.9

127

We continuously discuss about the other Architecture, A4, which is scheduled

not only on processor cores but also on FPGA as shown below:

Architecture 4: the Task 1 and Task 2 are processed on the FPGA. Task 3 and Task 4

are executed on one core of processor. With the different frequencies, the execution time

(ms), power consumption (mW) and energy per frame (mJ) are illustrated in Table 4.10

and Table 4.11.

Table 4.10-Task regroups case 4

Frequency

(MHz)

Task 1 Task 2 Task 3 Task 4

Object

segmentation

Frame filter Feature

extraction

Recognition

667 0.330 4.350 10.9 1.65

333 0.330 4.350 14.5 3.015

222 0.330 4.350 21.4 4.6

Table 4.11-The estimation power/energy per frame at different frequencies (A4)

Frequency

(Mhz)
T(ms) P(mW) Epf (mJ) Fps

667 17.2 857.3 14.7 58.1

333 22.2 649.6 14.4 45

222 30.7 554.5 17 32.6

 For architecture 4, the Object Segmentation task in Fall Detection System is

accelerated on FPGA. So, the execution time is considerably improved. However, as

shown in Table 4.11 the maximum of frame rate reaches at 58.1 for the maximum

frequency, 667MHz. This maximum frame rate is higher than the limited frame rate of

the accuracy model. Therefore, we can recalculate the frequency of processor cores by

using the equation 4.8 with the boundary of input frame rate is lower than 50fps.

128

Table 4.12-Intra-task parallelism technique

Architectures Task 1 Task 2 Task 3 Task 4

A1 Core 1 ObjSeg Filter FeatureEx Recog

A2
Core 1 ObjSeg

FeatureEx Recog

FPGA

Filter

A3
Core 1

Filter FeatureEx Recog

FPGA ObjSeg

A4
Core 1

FeatureEx Recog

FPGA ObjSeg Filter

A5
Core 1 ObjSeg Filter FeatureEx Recog

Core 2 ObjSeg Filter

A 6

Core 1 ObjSeg

FeatureEx Recog

Core 2 ObjSeg

FPGA

Filter

A7

Core 1

Filter FeatureEx Recog

Core 2

Filter

FPGA ObjSeg

Table 4.8 and Table 4.12 show that the intra-task technique supports the system

in significant improvement of execution time. However, a trade-off between execution

time which impacts the accuracy of fall detection and power/energy consumption is also

considered. The power consumption model is extracted in Chapter 3 for processor cores,

FPGA and the model when no application is running. These models are presented as

follows:

 (4.9)

 (4.10)

 (4.11)

129

In the intra-task technique, the power consumption is estimated based on two

situations as follows:

 Situation 1: we consider this situation that all tasks are implemented on software

(1 core and/or 2 cores)

 (4.12)

 (4.13)

Where, P(i) is the power consumption on task i. In which i is i
th
 of task and i= (1:4); N

is the number of processor cores; Fcores is the frequency of processor cores; the image

size or the image resolution is assigned as a half of input image size for parallel

execution.

 Situation 2: one task is implemented on software (1 core and/or 2 cores) or

hardware (FPGA)

If i is run on hardware, the power consumption is calculated by:

 (4.14)

If i is run on software, the power consumption is determined by:

 (4.15)

For this case, the power consumption model based on intra-task technique is presented

as follows:

 (4.16)

Where, i is the running task number; ai =1 and bi= 0 if i is executed on processor cores;

ai =0 and bi= 1 if i is running on FPGA. For example, in architecture A6 (as shown in

Table 4.12), if we want to calculate the power consumption on Task 1 which is run in

parallel on core 1 and core 2, we have a1 = 1 and b1 = 0. In addition, the power

consumption on Task 2 is implemented on FPGA, a2 =0 and b2= 1.

The intra-task technique is applied for the Fall Detection System with both

image resolutions presented: 320x240 and 680x360; three frequencies: 667MHz,

333MHz and 222MHz. The architecture cases are shown in Table 4.12.

We continuously consider the next inter-task technique for our system to explore

more architecture cases with the estimation of the energy and the impact of accuracy.

The main scheduling based on this technique is discussed briefly as following

subsection.

130

4.7.2. Inter-task parallelism technique

The intra-task technique schedules the execution time of four tasks within a single

frame. Each task is assigned on 1 core, 2 cores and FPGA. Notwithstanding, in the inter-

task technique, the scheduling of the four tasks is on the core 1, the core 2 and FPGA in

consecutive frames. For instance, Task 1 is executed on the core 1, Task 2 is

implemented on the FPGA and the Tasks 3 and Task 4 are assigned to the core 2. The

time slot (TS) corresponds to the execution time of the slowest task on processor cores.

Therefore, the parallel and pipeline scheduling for this system with the assigned time slot

are built and presented as follows:

Table 4.13-The inter-task technique with scheduling of five consecutive frames

Where,

Tcore (τ1, I1) is the execution time of Task 1 (of I1 frame) on core 1;

TFPGA (τ2, I1) is the execution time of Task 2 (of I1 frame) on FPGA;

Tcore (τ3, I1) is the execution time of both Task 3 and Task 4 (of I1 frame) on core 2.

In this context, we have only three tasks and the execution time of each task

equals to a time slot (TS). The power consumption of our system based on inter-task

technique is first considered at TS3 with the complete pipeline scheduling all tasks on

SW and HW. We can extract the power model for this case:

 (4.17)

Where, is the power consumption of three tasks (task1, task3

and task4) which is implemented on processor cores. PFPGA(2) is the power of task 2 on

FPGA. N is the number of processor cores and for inter_task technique N=2; Fcore is the

frequency of processor cores; s is the image size or the image resolution.

For example, Table 4.1 shows that Feature Extraction task takes the maximum

execution time, 10.9 ms in case of 320x240 input image resolution at maximum

frequency of core 667MHz. When the TS = 10.9 ms, we have the corresponding frame

rate= 91.7 fps. This frame rate value (91.7 fps) is the maximum frame rate (fpsmax) for

TS, but is higher than the boundary of maximum frame rate 50fps for accuracy model of

 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8

Core 1 (τ1, I1) (τ1, I2) (τ1, I3) (τ1, I4) (τ1 , I5) (τ1, I6) (τ1, I7) (τ1, I8)

FPGA (τ2, I1) (τ2, I2) (τ2, I3) (τ2, I4) (τ2 , I5) (τ2, I6) (τ2, I7)

Core 2 (τ3, I1) (τ3, I2) (τ3, I3) (τ3, I4) (τ3 , I5) (τ3, I6)

131

our system. So, we have to reconfigurate the frequency of core to get the suitable frame

rate. Besides, from the equation 4.17, the power consumption on processor cores is

impacted by different parameters such as frequency of cores, image resolutions and

number of cores. Therefore, by adjusting the frame rate, we can recalculate the frequency

of core, which help to reduce the power/energy consumption of our system and is

determined by the following formula:

 (4.18)

Then, energy consumption per frame is deduced:

 (4.19)

After using the parallelism techniques to schedule the execution time for Fall

Detection System, we explore the low cost architectures which is compromised the

parameters such as execution time, power/energy consumption, the accuracy rate and the

frame rate by using the Design Space Exploration Architecture methodology. This

methodology is illustrated as following Section:

4.8 Design Space Exploration Architecture for Fall Detection System

Design space exploration (DSE) is an analyzing process of functional implementation

alternatives. It is used to define an optimal solution. The designer traditionally starts with

an informal specification and develops a reference executable in kinds of high-level

language. A methodology for the low cost architectures of the Fall Detection System

with (execution time, power consumption, accuracy rate) constraints is determined DSE

at the early stages of the development. The methodology is then validated for functional

correctness as follows the system specification. It is used to get harsh estimations of its

performance requirements. The initial step is followed by manual or semi-automatic

generation of several alternative designs which are subjected by image resolutions,

number of cores, frequency of cores, etc. Finally, the most suitable designs are chosen

based on various performance metrics such as accuracy rate, frame rate, power/energy

consumption.

On the other side, the aim of DSE finds an efficient design configuration. The

design leads to an efficient HW/SW architecture, therefore, the requirement energy of

system is minimized and the performance requirements are satisfy the constraints. Thus,

it is worth noting that both performance of the system and a minimization of energy are

based on architecture selections. The design exploration process is illustrated in Figure

4.5. The process consists of two entry points: architecture templates and application

characteristics.

 The architecture templates are defined by architecture cases with different

frequencies, number of cores, and hardware/software combination. The

132

architectures are scheduled by using inter-task and intra-task parallelism

techniques.

 The application characteristics are different image resolutions and the frame rate.

From the matching of architecture templates and application characteristics,

numbers of low power architectures are defined. Then, the accuracy rates are

estimated by performance model which is extracted in Section 4.4.3.4.

Moreover, the design exploration process is an initial platform-independent

program which is subsequently enriched and integrated with information coming from

the definition of the target architecture model of the implementations on that platform.

Figure 4.5-Design Space Exploration for Fall Detection System

4.8.1 Methodology

Thanks for Matlab which supports us to get the visual performance of this system. The

low cost architecture exploration can be defined as:

 Firstly, two resolutions of images: 320x240 or 640x480 is selected in this

simulation.

 Then, three frequencies such as 222MHz, 333MHz and 667MHz are configured.

 Architecture cases based on inter-task and intra-task parallelism techniques.

 From the selected input, number of architectures for Fall Detection System using

the execution time/power models and accuracy rate are explored.

 The requirement of frame rate for processing in the system is greater than 10fps

and less than 50fps. These best architectures not only consume the lowest energy

Architecture templates Application characteristics

Architecture design space
Application design space

Low cost architecture for

Fall Detection System

Evaluation Performance

133

but also satisfy the highest accuracy rate performance among the explored

architectures. In fact, it is necessary to compromise a best architecture among

these power/energy consumption, frame rate and accuracy. The best architecture

depends on the purpose of the users’ demand.

Our methodology is to determine the low cost architectures for the Fall Detection System

by following descriptions:

Initial: - Frequency of cores Fcore= [667MHz, 333 MHz, 222 MHz]

 - Maximum frame rate fpsmax = 50;

 - Image resolution s= [320x240, 640x480];

 - Number_of_core N = [1, 2];

 - Time slot (TS) is the slowest execution time of task on processor cores

 - Architecture_case C = [1 1 1 1;

 1 0 1 1;

 0 1 1 1;

 0 0 1 1];

 // select the architectures: C[i,j] = 1 mean task j
th

 executes on processor cores and C[i,j]

= 0 mean task j
th

 runs on FPGA; i is the i
th

 test case

Computation:

For f =1 to 3 // select the frequency of cores: 667MHz, 333 MHz, 222 MHz

 If select= Intra-task technique then

 for s=1 to 2 // select image resolutions: 320x240 or 640x480

 for N=1 to 2 // select the number of processor cores; N is extended to 3 or 4, it depends on

the platforms.

 For j =1 to 4

 If i = 1 then // select the architecture_ case 1 [1 1 1 1]

 // as shown in Section 3.7.1

 Else // select the three rest of architecture_cases

 for i = 2 to 4

 //as shown in Section 3.7.1

 end for j

 //Frame rate output:

134

 // only accepting the architectures if they sastify with 10 fps 50

 // Accuracy of architectures:

 //Output:

 End for i

 End if

 End for N

 End for s

 Else if select= Inter-task technique:

 for s=1 to 2 // select image resolutions: 320x240 or 640x480

 N=2;

 i=2;

 //Frame rate output:

 // only accepting the architectures if they sastify with 10 fps 50

 // Accuracy of architectures:

 //Output:

 end for s

 end If

end.

4.8.2 Model results

Based on the previous methodology, the exploration low cost architectures for the Fall

Detection based on intra-task technique is related power/energy, accuracy rate, and

frame rate are defined as shown in Table 4.14.

Figure 4.6 and Table 4.14 depict the simulation results of architecture exploration. It is

the trade-off power/energy and the accuracy rate performance of the Fall Detection

System. Three architectures which have compromised between energy and accuracy

performance belong to A3, A4 and A7. A4 takes lowest energy 20mJ with 80.9 %

accuracy, A7 spends 24.1mJ for energy with 97.6% accuracy and A3 consumes 29.5 mJ

with the highest accuracy around 98%.

135

Table 4.14-The relationship between energy and accuracy in different architectures

Architecture (intra-task) Energy (mJ) Accuracy (%)

Architecture 4 (A4)

1 core (333MHz) + HW_ 640x480
20 80.9

Architecture 2 (A2)

1 core (667MHz) + HW_640x480
35.6 85.2

Architecture 6 (A6)

2 core (667MHz) + HW_640x480
31.2 91.6

Architecture 5 (A5)

2core (333MHz)_320x240
34.6 93.5

Architecture 1 (A1)

1 core(667MHz)_320x240
42.6 95.7

Architecture 7 (A7)

2core (333MHz) +HW_320x240
24.1 97.6

Architecture 3 (A3)

1 core (667MHz) + HW_320x240
29.5 98.3

Figure 4.6-Architecture exploration for Fall Detection System

0

5

10

15

20

25

30

35

40

45

80.9 85.2 91.6 93.5 95.7 97.6 98.3

E
n

er
g
y
 (

m
J
)

Accuracy (%)

A4

A2

A6

A5

A1

A7 A7

A3

136

As discuss in Section 4.7.2 for the inter-task technique, the time slot is assigned

to the slowest task on processor cores at the different frequencies. The task1, task3, task4

are just executed in parallel core 1, core 2 and task 2 is run on FPGA. We also consider

the two configurations: image resolution (680x480 and 320x240); frequency of cores

(667MHz, 333MHz and 222MHz).

Table 4.15 presents the energy per frame and accuracy performance of four

architectures for Fall Detection System. The energy per frame of architecture A’1 takes

11.6 mJ with rather high accuracy 93.7 % and 34.8 mJ with only accuracy 66.2% for

architecture A’2. The two suitable architectures, A’1 and A’2, are selected for inter_task

technique corresponding with two input image resolutions.

Table 4.15-The power/energy consumption and architectures based on inter-task technique

Architecture

(inter-task)

Time slot

ms

Pinter_task

(mW)

Epf

(mJ)

Accuracy

(%)

A’1

(320x240_222MHz)
25.6 453.8 11.6 93.7

A’2

(680x480_667MHz)
60.3 634.8 34.8 66.2

A’3

(680x480_333MHz)
104 501.2 46.6 58.4

A’4

(680x480_222MHz)
155.8 456.8 63.6 54.7

The Design Space Exploration methodology which applies the parallelism techniques:

intra-task and inter-task, help the designer to extract the different architectures for Fall

Detection System. In addition, the DSE can extend the various configurations of the

image resolutions, frequencies of processor cores and the number of cores (for example

three cores or four cores).

4.9. Conclusion

This chapter defines the low cost architectures to overcome the constraints such as

execution time, frame rate, power/ energy consumption and accuracy rate. The power

consumption and execution time models are extended in comparison in Chapter 3 to

estimate these parameters for the complete Fall Detection System. We also propose a

model for the accuracy rate performance which is function of image resolutions and

137

frame rate. This accuracy model then applied for evaluating features of the different

candidate the architecture.

We defined a Design Space Exploration methodology in order to explore

heterogeneous architectures with hardware/software combination for our system by

applying two parallelism techniques: intra-task and inter-task static scheduling. As

example, for the intra-task technique some exploration of low cost architecture are: if

we are interested in the energy consumption, the architecture A4 would be selected with

lowest energy per frame 20mJ and accuracy rate with 80.9 %. In contrast, if the main

parameter is the accuracy performance, the architecture A3 would be selected and

presents the highest accuracy about 98 % and the energy with 29.5 mJ. However, the

architecture which gets the best compromise between energy and accuracy performance

is architecture A7 which consumes 24.1mJ for energy with 97.6% accuracy. For the

inter-task approach, if we consider A’1 and A’2 architectures for two image resolution

320x240 and 680x480, the energy per frame takes 11.6 mJ with rather high accuracy

93.7 % (A’1) and 34.8 mJ with only accuracy 66.2% (A’2). We notice that when the

image resolutions increase, the fps significantly diminishes that induces a decrease in the

accuracy rate. The proposed inter_task static scheduling must be enhanced to get better

accuracy performance.

 In addition, we can select one of the two optimal architectures (A7 and A’1) to

develop on a certain heterogeneous platform without spending a lot of time on

experiments. Furthermore, the DSE can be extended for the processors with more cores

such as 3 cores, 4 cores, 8cores, etc., various image resolutions and frequencies.

138

139

Chapter 5. Conclusions and perspectives

This thesis has presented an exploration of the Fall Detection under algorithmic and

architectural point of view. The aim is to find out low cost architectures based on power

consumption, execution time model and accuracy rate performance. The study of Fall

Detection System, which is established on a video processing and was investigated, in

which:

(1) The human object inside the image has been segmented from the

background; the technical construction of geometric modeling for the human body and

extract features to recognise the fall actions;

(2) Solutions of different recognition model for fall action are training with high

precision and reliability;

(3) Creating scenarios and building databases video are classified with different

actions: fall, non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides

and cross); and applying the evaluation criteria is for testing the model to detect falls.

(4) Moreover, we make the comparison (the recall, precision, and accuracy

performance) among the suitable algorithms using in Fall Detection System such as

Background Subtraction-Neural Network (BGS-NN); Background Subtraction-Template

Matching (BGS-TM); Background Subtraction-Hidden Markov Model (BGS-HMM);

Gaussian Mixture Model (GMM-HMM);

(5) In the architectural point, then, execution time and power consumption

models have been extracted based on not only algorithm parameters (cache miss rate,

instruction per cycle, and image size) but also architectural parameters (number of cores

and operating frequency). Functional Level Power Analysis (FLPA) is applied for

creating the power models on processor cores and power models on FPGA are based on

the hardware resources;

(6) From extracted models, the power consumption and execution time models

are extended with hardware/software architectures for the Fall Detection System;

(7) Our approach targets to explore low cost architecture for this system by using

the parallelism techniques with the aim to find out the architectures which offer the best

compromise between energy and fall detection accuracy rate.

140

5.1 Conclusion

In this thesis, at first, the efforts have been devoted to improve the Fall Detection

algorithms. Heterogeneous architectures for video applications in Fall Detection System

are studied to extract the models for execution time and power consumption. Then, we

proposed a new Design Space Exploration methodology to define the low cost

architecture for Fall Detection System which presents a sufficient accuracy rate. Our

methodology also applies parallelism techniques.

In Chapter 2, the application which is divided in four modules, Object

Segmentation, Filter, Feature Extraction and Recognition, is elaborated with different

algorithms. Moreover, we described the speciality of DUT-HBU database, including data

information, camera, environment, actor/actress and scripts of classification, which are

used for simulation and evaluation purpose and implementation. The Fall Detection

System was assessed by using the accuracy, recall, and precision performances.

Notwithstanding, our database used data recorded from falls of young people simulated

at the discretion of each impersonator in the videos. Hence, our database lacked of a

standardized procedure or needed to compare with a public database. Meanwhile, the

real fall detection aims to older people or patients who have some distinctions with

young people in the database. The simulation results were then used to compare the

performances among the algorithms such as BackGround Subtraction/Hidden Markov

Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-HMM),

BackGround Subtraction/Neural Network (BGS-NN) and BackGround

Subtraction/Template Matching (BGS-TM). One of the most important advantages is

that our system is well-accepted due to the fact that we have a local processing, it is

convenient and more applicable at the contemporary indoor for elderly living alone or

rehabilitants in hospital. We analysed the shortcomings which give the false recognition

output such as environment brightness, occlusion of object, many movement objects

appearing in a frame at the same time. Especially, the extracted features that are not

strong enough to distinguish between face fall and sitting actions were also considered.

These evidences are not enough to assess the system performance in a real situation.

Moreover, these algorithms were evaluated with the off-line videos, making the

execution time and estimation backgrounds are not too complex.

In Chapter 3, the video tasks which are defined in the Fall Detection System

were at first analysed separately and power consumption and execution time models for

them have been proposed. A power and execution time modeling methodology was

proposed for processor cores based on FLPA and FPGA related with the hardware

resources and then for heterogeneous architecture. All the implementation for extracting

these models were executed on Zynq7000 AP SoC including processor cores (ARM

Cortex A9) and FPGA with supporting of Vivado_HLS. The scenery of processor core

experiments was implemented by considering different configurations. TI USB Interface

Adapter PMBus associated with TI Fusion Digital Power Designer GUI was used to

141

measure the power consumption on processor cores to evaluate the error rate of these

power consumption models. Moreover, the power consumption and execution time

models for processor cores were extended for the Fall Detection System related to

different parameters such as image resolutions, frequencies and number of cores. In

addition, the power consumption and execution time models of FPGA were only

extracted for two tasks (Object Segmentation and Filter) for which the execution time

can be improve significantly. The defined models allowed to evaluate the power

consumption and execution time with different configurations of heterogeneous

architectures for Fall Detection System. The more architecture for the Fall Detection

System will be explored, if the more tasks like Feature Extraction and Recognition are

selected to implement on FPGA.

In Chapter 4, the Design Space Exploration methodology which is used to define

the low cost architectures the Fall Detection System was introduced. The low cost

architectures meet the constraints such as execution time, frame rate, and accuracy rate.

The extracted power consumption and execution time models were extended to explore

different hardware/software architectures for the Fall Detection System. In addition,

these estimations are useful to explore low cost architectures based on two parallelism

techniques: intra-task and inter-task static scheduling on heterogeneous architecture for

the Fall Detection System. The low cost architectures were selected with the

compromising of energy and accuracy rate performance of the Fall Detection System.

However, the accuracy rate must be extracted with more parameters recognition features,

filter method, etc. In our system, the BGS-TM algorithm with well-matched for was

implemented on processor cores with accuracy of 62% and energy per frame of 43mJ/f.

When the parallel techniques based on hardware/software architecture are applied, the

frame rate of our system is considerably increased and the accuracy rate reaches 98.3%

with energy per frame of 29.5mJ/f. Based on this methodology, the optimal architectures

were selected to develop on a certain heterogeneous platform without carrying on time-

consuming experiments. Moreover, the DSE can be extended for the processors with

more cores such as 3 cores, 4 cores, 8 cores, etc., various image resolutions and

frequencies.

5.2 Perspectives

Although we have presented the modeling approach of execution time and power

consumption for processor cores and hardware by using HLS tools, there are still many

aspects of our approach must be improved on algorithms, application domains,

evaluation tools, database, and architecture definition, etc. Several perspectives that our

work has created and how these opportunities may be addressed will be outlined below.

142

5.2.1 Improve the Fall Detection Algorithm

Most of recognition errors are due to impact of environment factors, so the human object

is extracted from usual complex background stage. In addition, as the simulation results

in Chapter 2, if we develop the algorithms for implementation on hardware/software

architecture such as Background Subtraction/Hidden Markov Model (BGS-HMM),

Gaussian Mixture Model/Hidden Markov Model (GMM-HMM), Background

Subtraction/Neural Network (BGS-NN), it will give higher performance compare to our

system using Background subtraction/Template Matching.

This system need to be tested on other databases to get more the evaluation of

accuracy, recall, and precision performance. Therefore, it is necessary to develop and

collect addition database from various sources to have a stronger database which uses for

training our system in optimal way. It is one of the reliability of these algorithms before

we decide to design a stand-alone system for the practical application in the hospital or at

home.

The focus should also be on the stage of feature extraction to extract more new

features to distinguish similar actions from the object or improve the effects of noise

such as removing the silhouette of the object or the changeable brightness of

environment. The objects obscured by other objects in the room have also to be handled.

Modeling 3D human body is a prevalent method to create depth to object to enhance

effective recognition of the actions.

In addition, the developments of not only the accuracy rate model but also the

recall and precision models are needed in order to achieve more performances of the low

cost architecture for Fall Detection System.

Furthermore, in our Fall Detection System, we have already detected the fall of

object and it would be more interesting to analyse many kinds of the human motions

after the fall in order to send different degree of alarm.

5.2.2 Power/execution time optimization

Most of video processing applications require real-time solutions. A usual approach to

achieve this performance goal is to exploit the heterogeneous architecture consists of

different types: GPUs (Graphical Processing Units) or FPGAs (Field Programmable Gate

Arrays) or processor cores. The GPUs are very efficient at manipulating computer

vision, video and image processing, and their highly parallel structure makes them more

effective than general-purpose processor cores for algorithms where processing of large

blocks of data is done in parallel. It means that the combination with GPUs is

considerably improved the execution time for a system. Hence, there are some solutions

for exploring more heterogeneous architectures for our system such as GPUs/ processor

cores or even combination three types: processor cores, GPUs and FPGAs.

143

In addition, to design a stand-alone Fall Detection System, the autonomy must

be powered on battery. And how long the battery power allows to the autonomous

operation for this system must be considered.

5.2.3 Camera network

In this thesis, our system has concentrated on a single camera. While video surveillance

system needs to work in a network environment, it is necessary to analyse the moving

object patterns that evolve over long periods of time and large space. To understand the

moving patterns are observed by a multi-camera network, the first step is to infer the

spatial organization of the environment under surveillance, which is achieved by camera

node localization, camera calibration, or camera network topology inference for different

purposes.

In addition, video surveillance may interface with other wireless technologies,

such as body area networks (BANs), and radio frequency identification (RFID)

technology. In this case, more autonomous and intelligent E-healthcare applications can

be generated to improve people’s quality of life. For example, with a patient’s personal

information stored in RFID tag, and physiological data retrieved by a BAN worn by the

patient, the doctor or other care-givers can remotely diagnose a problem by relying on

video surveillance system.

5.2.4 Solutions for combination of many equipments for the Fall Detection

System

After exploring the low cost architecture based on the relation of accuracy rate and

energy, we are going to design the real system which is applied and developed in

Vietnam. In addition, we ongoing to connect with the other equipments such as mobile

phone, e-health bracelets, wireless sensors, smart watch, etc. which will make more

flexible for users in case of getting out the room. Besides, this system needs to not only

detect the fall of elderly but also diagnose the diseases, for example Alzheimer, absent-

mindedness and heart disease and so on.

144

145

Appendix

Database description

Database name: DUT-HBU database

File format: *.avi

Authors:

 Hieu V.Nguyen

 Tuan V.Pham

 Hong T.K Nguyen

 Duy H.Le

 Hoan V.Tran

 Khue Tra

 Phung T.K Lai

 Viet Q.Truong

Electronic & Telecommunication Engineering Department - Danang University of

Technology, Danang, Vietnam

Camera : Philips Webcam SPC 900NC [179]

 Sensor: CCD

 Resolution : 320x240

 Interpolated snapshot resolution: 1.3 MP

 Max. frame rate: 90 fps

 Colour depth: 24 bit

Environment: Lab room of HBU group

 Size : 3x5 m
2

 Brightness : Good (natural light)

 Background : quite stable

 Moving object : 1

 Camera position: see in Figure A

146

Figure A-Camera position

Actor/Actress: 4 persons

Table A-Descriptions of the actor /actress

 Duy Hoan Phung Hong

Sex Male Male Female Female

Age 22 22 22 35

Height 1m65 1m75 1m56 1m53

Weight 56Kg 60Kg 40Kg 48Kg

 3m

147

Bibliography

[1] Community Health, “Vietnam still lacks of 78.700 health forces,”

www.congan.com.vn, 2011. [Online]. Available:

http://www.congan.com.vn/?mod=detnews&catid=402&id=285056. [Accessed:

09-Jan-2015].

[2] “The Old Alone : Beware of Falling.” [Online]. Available: http://dansotn.com/tin-

dan-so/dansoxahoi/7477-nguoi-gia-o-mot-minh-de-phong-te-nga.html.

[Accessed: 09-Jan-2015].

[3] GSO, “The population change and family planning survey 2006.” 2007.

[4] L. V Hoi, H. D. Phuc, T. V Dung, N. T. K. Chuc, and L. Lindholm, “Remaining

life expectancy among older people in a rural area of Vietnam: trends and

socioeconomic inequalities during a period of multiple transitions,” BMC Public

Health, vol. 9, p. 471, Jan. 2009.

[5] B. Mirmahboub, S. Samavi, N. Karimi, and S. Shirani, “Automatic monocular

system for human fall detection based on variations in silhouette area.,” IEEE

Trans. Biomed. Eng., vol. 60, no. 2, pp. 427–36, Feb. 2013.

[6] Y. Li, K. C. Ho, and M. Popescu, “A microphone array system for automatic fall

detection,” IEEE Trans. Biomed. Eng., vol. 59, no. 5, pp. 1291–301, May 2012.

[7] L. Tong, Q. Song, Y. Ge, M. Liu, and M. Ieee, “HMM-Based Human Fall

Detection and Prediction Method Using Tri-Axial Accelerometer,” IEEE Sens. J.,

vol. 13, no. 5, pp. 1849–1856, May 2013.

[8] G. S. Quirino, A. R. L. Ribeiro, and E. D. Moreno, “Asymmetric Encryption in

Wireless Sensor Networks,” 2012. [Online]. Available:

http://www.intechopen.com/books/wireless-sensor-networks-technology-and-

protocols/asymmetric-encryption-in-wireless-sensor-networks.

[9] T. Tamura, A. Kawarada, M. Nambu, A. Tsukada, K. Sasaki, and K. Yamakoshi,

“E-Healthcare at an Experimental Welfare Techno House in Japan,” Open Med.

Inform. J., pp. 1–7, 2007.

[10] E. Coiera, “Communication Systems in Healthcare,” Clin. Biochem. Rev., vol. 27,

no. May, pp. 89–98, 2006.

[11] M. Wang, C. Huang, and H. Lin, “An Intelligent Surveillance System Based on

an Omnidirectional Vision Sensor,” 2006 IEEE Conf. Cybern. Intell. Syst., pp. 1–

6, Jun. 2006.

[12] “Clinical Skills | AV Installation London.” [Online]. Available:

http://avinstallationlondon.co.uk/services/clinical-skills/. [Accessed: 21-Oct-

2014].

148

[13] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: Principles and

approaches,” Neurocomputing, vol. 100, pp. 144–152, Jan. 2013.

[14] H. Yang, J. Tian, Y. Chu, Q. Tang, and J. Liu, “Spatiotemporal Smooth Models

for Moving Object Detection,” IEEE Signal Process. Lett., vol. 15, pp. 497–500,

2008.

[15] H. Foroughi, A. Naseri, A. Saberi, and H. Sadoghi Yazdi, “An eigenspace-based

approach for human fall detection using Integrated Time Motion Image and

Neural Network,” in the 9th International Conference on Signal Processing,

2008, pp. 1499–1503.

[16] V. Vishwakarma, C. Mandal, and S. Sural, “Automatic Detection of Human Fall

in Video,” Springer-Verlag Berlin Heidelb., 2007.

[17] R. Cucchiara, C. Grana, A. Prati, A. Member, and R. Vezzani, “Probabilistic

Posture Classification for Human-Behavior Analysis,” IEEE Trans. Syst. Man,

Cybern. A Syst. Humans, vol. 35, no. 1, pp. 42–54, 2005.

[18] L. Hazelhoff, J. Han, and P. H. N. De With, “Video-Based Fall Detection in the

Home Using Principal Component Analysis,” in Advanced Concepts for

Intelligent Vision Systems, 2008.

[19] X. Yu, “Approaches and Principles of Fall Detection for Elderly and Patient,” in

the 10th International Conference on e-health Networking, Applications and

Services, 2008. HealthCom, 2008, pp. 42–47.

[20] E. Gudis, P. Lu, D. Berends, K. Kaighn, G. van der Wal, G. Buchanan, S. Chai,

and M. Piacentino, “An Embedded Vision Services Framework for

Heterogeneous Accelerators,” 2013 IEEE Conf. Comput. Vis. Pattern Recognit.

Work., pp. 598–603, Jun. 2013.

[21] M. Russell and S. Fischaber, “OpenCV based road sign recognition on Zynq,” in

IEEE International Conference on Industrial Informatics (INDIN), 2013, pp.

596–601.

[22] S. Gilliland, P. Govindan, T. Gonnot, and J. Saniie, “Performance evaluation of

FPGA based embedded ARM processor for ultrasonic imaging,” in IEEE

International Ultrasonics Symposium, IUS, 2013, pp. 519–522.

[23] R. Dobai and L. Sekanina, “Image filter evolution on the Xilinx Zynq Platform,”

2013 NASA/ESA Conf. Adapt. Hardw. Syst., pp. 164–171, Jun. 2013.

[24] G. Baruffa, F. Fiorucci, F. Frescura, P. Micanti, L. Verducci, and B. Villarini, “A

reprogrammable computing platform for JPEG 2000 and H.264 SHD video

coding,” in the 8th IEEE Workshop on Embedded Systems for Real-Time

Multimedia, 2010, pp. 107–113.

[25] F. Büsching, H. Post, M. Gietzelt, and L. Wolf, “Fall Detection on the Road,” in

the 15th International Conference on e-Health Networking, Applications &

Services (Healthcom), 2013, pp. 439–443.

149

[26] Y. T. Ngo, H. V. Nguyen, and T. V. Pham, “Study on fall detection based on

intelligent video analysis,” 2012 Int. Conf. Adv. Technol. Commun., pp. 114–117,

Oct. 2012.

[27] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Fall Detection from

Human Shape and Motion History Using Video Surveillance,” in the 21st

International Conference on Advanced Information Networking and Applications

Workshops, AINAW, 2007, vol. 2, pp. 875–880.

[28] A. M. Tabar, A. Keshavarz, and H. Aghajan, “Smart home care network using

sensor fusion and distributed vision-based reasoning,” in Proceedings of the 4th

ACM international workshop on Video surveillance and sensor networks - VSSN

’06, pp. 145–154.

[29] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust Video

Surveillance for Fall Detection Based on Human Shape Deformation,” IEEE

Trans. Circuits Syst. Video Technol., vol. 21, no. 5, pp. 611–622, May 2011.

[30] E. Auvinet, F. Multon, A. Saint-arnaud, J. Rousseau, and J. Meunier, “Fall

Detection With Multiple Cameras : An Occlusion-Resistant Method Based on 3-

D Silhouette Vertical Distribution,” IEEE Trans. Inf. Technol. Biomed., vol. 15,

no. 2, pp. 290–300, 2011.

[31] C. Kim and J. Hwang, “Fast and automatic video object segmentation and

tracking for content-based applications,” IEEE Trans. Circuits Syst. Video

Technol., vol. 12, no. 2, pp. 122–129, 2002.

[32] J.-S. Hu and T.-M. Su, “Robust Background Subtraction with Shadow and

Highlight Removal for Indoor Surveillance,” EURASIP J. Adv. Signal Process.,

vol. 2007, no. 1, pp. 1–14, 2007.

[33] R. Cucchiara, C. Grana, M. Piccardi, and a. Prati, “Detecting objects, shadows

and ghosts in video streams by exploiting color and motion information,” Proc.

11th Int. Conf. Image Anal. Process., pp. 360–365.

[34] S. Wang, M. Wu, and Y. Xie, “An effective segmentation cue for moving object

segmentation from a moving camera,” in 7th International Symposium on

Advanced Optical Manufacturing and Testing Technologies: Optoelectronics

Materials and Devices for Sensing and Imaging, 2014, vol. 9284.

[35] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for

real-time tracking,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 2, 1999.

[36] H.-Y. Cheng and J.-N. Hwang, “Adaptive particle sampling and adaptive

appearance for multiple video object tracking,” Signal Processing, vol. 89, no. 9,

pp. 1844–1849, Sep. 2009.

[37] D. Comaniciu and V. Ramesh, “Real-Time Tracking of Non-Rigid Objects using

Mean Shift,” in Proceedings IEEE Conference on Computer Vision and Pattern

Recognition, 2000, no. 7, pp. 1–8.

150

[38] L. He, “Generation Of Human Body Models,” Master thesis in Computer

Science, The University of Auckland, 2005.

[39] E. Aybar, “Sobel Edge Detection Method For Matlab.” [Online]. Available:

http://www.figes.com.tr/matlab/teknik-makaleler/eaybar_tam_metin.pdf.

[40] Z. Othman, M. Rafiq, and A. Kadir, “Comparison of Canny and Sobel Edge

Detection in MRI Images,” in Computer Science, Biomechanics & Tissue

Engineering Group, and Information System, 2009, pp. 133–136.

[41] C. S. Panda, “Filtering Corrupted Image and Edge Detection in Restored

Grayscale Image Using Derivative Filters,” Int. J. Image Process., vol. 3, no. 3,

pp. 105–119, 2009.

[42] J. Wang, Z. Liu, and Y. Wu, “Learning Actionlet Ensemble for 3D Human

Action Recognition,” in Human Action Recognition with Depth Cameras,

SpringerBriefs in Computer Science, 2014, pp. 11–40.

[43] J. K. Aggarwal and L. Xia, “Human activity recognition from 3D data: A

review,” Pattern Recognit. Lett., vol. 48, pp. 70–80, Oct. 2014.

[44] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based

human motion capture and analysis,” Comput. Vis. Image Underst., vol. 104, no.

2–3, pp. 90–126, Nov. 2006.

[45] M. W. Lee and I. Cohen, “A model-based approach for estimating human 3D

poses in static images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6,

pp. 905–916, 2006.

[46] C. Sminchisescu and B. Triggs, “Kinematic Jump Processes For Monocular 3D

Human Tracking,” in Proceedings IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2003.

[47] A. Agarwal and B. Triggs, “Recovering 3D human pose from monocular

images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 44–58, Jan.

2006.

[48] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-

sensitive hashing,” in Proceedings 9th IEEE International Conference on

Computer Vision, 2003, pp. 750–757.

[49] R. J. Holt, A. N. Netravali, T. S. Huang, and R. J. Qian, “Determining articulated

motion from perspective views: a decomposition approach,” in Proceedings of

1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects, 1994, pp.

126–137.

[50] S.-R. Ke, L. Zhu, J.-N. Hwang, H.-I. Pai, K.-M. Lan, and C.-P. Liao, “Real-Time

3D Human Pose Estimation from Monocular View with Applications to Event

Detection and Video Gaming,” in the 7th IEEE International Conference on

Advanced Video and Signal Based Surveillance, 2010, pp. 489–496.

151

[51] J. K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review,” Comput. Vis.

Image Underst., vol. 73, no. 3, pp. 428–440, Mar. 1999.

[52] L. Wang, W. Hu, and T. Tan, “Recent developments in human motion analysis,”

Pattern Recognit., vol. 36, no. 3, pp. 585–601, Mar. 2003.

[53] M.-C. Roh and S.-W. Lee, “Human gesture recognition using a simplified

dynamic Bayesian network,” Multimed. Syst., Oct. 2014.

[54] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based event recognition:

Activity representation and probabilistic recognition methods,” Comput. Vis.

Image Underst., vol. 96, no. 2, pp. 129–162, 2004.

[55] M. Yang, D. J. Kriegman, S. Member, and N. Ahuja, “Detecting Faces in

Images : A Survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 1, pp.

34–58, 2002.

[56] D. Anderson, J. M. Keller, M. Skubic, X. Chen, and Z. He, “Recognizing falls

from silhouettes.,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, pp. 6388–6391,

2006.

[57] M. Piccardi, “Background subtraction techniques: a review,” IEEE Int. Conf.

Syst. Man Cybern., vol. 4, pp. 3099–3104, 2004.

[58] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background

subtraction,” Proc. 17th Int. Conf. Pattern Recognition, ICPR, vol. 2, 2004.

[59] S. Mukhopadhyay and B. Chanda, “An edge preserving noise smoothing

technique using multiscale morphology,” Signal Processing, vol. 82, no. 4, pp.

527–544, Apr. 2002.

[60] B. Naegel, “Using mathematical morphology for the anatomical labeling of

vertebrae from 3D CT-scan images,” Comput. Med. Imaging Graph., vol. 31, no.

3, pp. 141–156, Apr. 2007.

[61] R. M. Haralick and S. R. Sternberg, “Image Analysis Using Mathematical

Morphology,” IEEE Trans. Pattern Anal. Mach. Intell., no. 4, pp. 532–550, 1987.

[62] D. F. Pava and C. Science, Object Detection In Low Resolution Video Sequences.

ProQuest, 2009.

[63] S. Gupta and S. G. Mazumdar, “Sobel Edge Detection Algorithm,” Int. J.

Comput. Sci. Manag. Res., vol. 2, no. 2, pp. 1578–1583, 2013.

[64] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,” ACM Comput.

Surv., vol. 38, no. 4, pp. 1–45, Dec. .

[65] C. J. Veenman, M. J. T. Reinders, and E. Backer, “Resolving Motion

Correspondence for Densely Moving Points,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 23, no. 1, pp. 54–72.

152

[66] D. Serby, E. K. Meier, and L. Van Gool, “Probabilistic object tracking using

multiple features,” Proc. 17th Int. Conf. Pattern Recognition, ICPR, vol. 2, pp.

184–187, 2004.

[67] D. Comaniciu, S. Member, and V. Ramesh, “Kernel-Based Object Tracking,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–577.

[68] A. Yilmaz, X. Li, and M. Shah, “Contour-based object tracking with occlusion

handling in video acquired using mobile cameras,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 26, no. 11, pp. 1531–6, Nov. 2004.

[69] A. Ali and J. K. Aggarwal, “Segmentation and Recognition of Continuos Human

Activity,” in IEEE Workshop on Detection and Recognition of Events in Video,

2001, pp. 28–35.

[70] R. Cutler and L. S. Davis, “Robust real-time periodic motion detection, analysis,

and applications,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 781–796, 2000.

[71] N. Paragios and R. Deriche, “Geodesic Active Regions and Level Set Methods

for Supervised Texture Segmentation,” Int. J. Comput. Vis., vol. 46, no. 3, pp.

223–247, 2002.

[72] P. Fieguth and D. Terzopoulos, “Color-based tracking of heads and other mobile

objects at video frame rates,” in IEEE Conference on Computer Vision and

Pattern Recognition, 1997, pp. 21–27.

[73] G. J. Edwards, C. J. Taylor, T. F. Cootes, and M. Manchester, “Interpreting Face

Images using Active Appearance Models,” in International Conference on Face

and Gesture Recognition, 1998, pp. 300–305.

[74] B. Moghaddam and a. Pentland, “Probabilistic visual learning for object

representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 696–

710, Jul. 1997.

[75] J. W. Davis, “Hierarchical motion history images for recognizing human motion,”

in Proceedings. IEEE Workshop on Detection and Recognition of Events in

Video, 2001.

[76] M. Valera and S. a. Velastin, “Intelligent distributed surveillance systems: a

review,” IEE Proceedings-Vision, Image, Signal Process., vol. 152, no. 2, p. 192,

2005.

[77] K. Tra, V. Q. Truong, and T. V Pham, “Threshold-based Versus Artificial Neural

Network For Fall Detection,” in the 5th Science Conference of the University of

Da Nang, 2012.

[78] D. Svozil, V. Kvasnieka, and J. Pospichal, “Introduction to multi-layer feed-

forward neural networks,” Chemom. Intell. Lab. Syst., vol. 39, no. 1, pp. 43–62,

1997.

153

[79] W. Roush, W. Dozier, and S. Branton, “Comparison of Gompertz and Neural

Network Models of Broiler Growth,” Poult. Sci., vol. 85, no. 4, pp. 794–797,

2006.

[80] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised

learning,” Neural networks, 1993.

[81] F. M. Al-Naima and A. H. Al-Timemy, “Resilient Back Propagation Algorithm

for Breast Biopsy Classification Based on Artificial Neural Networks,” Comput.

Intell. Mod. Heuristics, 2010.

[82] B. H. Juang, “An Introduction to Hidden Markov Models,” IEEE ASSP Mag.,

vol. 3, no. 1, pp. 4–16, 1986.

[83] S. Abbate, M. Avvenuti, P. Corsini, A. Vecchio, and J. Light, Monitoring of

human movements for fall detection and activities recognition in elderly care

using wireless sensor network : a survey. InTech, 2010.

[84] L. B. Lusted, “Detectability Decision-Making,” Science, vol. 171, no. 3977, pp.

1217–1219, 1971.

[85] T. Fawcett, “ROC Graphs : Notes and Practical Considerations for Data Mining

Researchers,” Mach. Learn., 2004.

[86] N. Noury, A. Fleury, P. Rumeau, a K. Bourke, G. O. Laighin, V. Rialle, and J. E.

Lundy, “Fall detection-principles and methods,” in the 29th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,

2007, pp. 1663–1666.

[87] F. Bagalà, C. Becker, A. Cappello, L. Chiari, K. Aminian, J. M. Hausdorff, W.

Zijlstra, and J. Klenk, “Evaluation of accelerometer-based fall detection

algorithms on real-world falls,” PLoS One, vol. 7, no. 5, p. e37062, Jan. 2012.

[88] A. K. Bourke, J. V O’Brien, and G. M. Lyons, “Evaluation of a threshold-based

tri-axial accelerometer fall detection algorithm,” Gait Posture, vol. 26, no. 2, pp.

194–199, Jul. 2007.

[89] S. Ahuja, D. Mathaikutty, and S. K. Shukla, “Applying verification collaterals for

accurate power estimation,” in 9th International workshop on Microprocessor

test and Verifcation (MTV), Austin, Texas, USA., p.p 61–66.

[90] M. Casas-Sanchez, C. J. Bleakley, and J. Rizo-Morente, “Software Level Power

Consumption Models and Power Saving Techniques for Embedded DSP

Processors,” J. Low Power Electron., vol. 2, pp. 281–290.

[91] “The Spice Home Page.” [Online]. Available:

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/. [Accessed: 22-Jun-2015].

[92] Philips Electronic Design and Tools Group, “DIESEL User Manual,” 2001.

154

[93] R. P. Llopis and K. Goossens, “The petrol approach to high-level power

estimation,” in Proceedings of the 1998 international symposium on Low power

electronics and design, ISLPED, 1998, pp. 130–132.

[94] M. E. a. Ibrahim, M. Rupp, and H. a. H. Fahmy, “A Precise High-Level Power

Consumption Model for Embedded Systems Software,” EURASIP J. Embed.

Syst., vol. 2011, pp. 1–14, 2011.

[95] C. Brandoleseˇc, “A Codesign Approach to Software Power Estimation for

Embedded Systems,” PhD disseration, Politecnico diMilano, Institute of

Electronics Information, 2000.

[96] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, “The design and

implementation of PowerMill,” in Proceedings of the 1995 international

symposium on Low power design, ISLPED, 1995, pp. 105–110.

[97] S. Gupta and F. N. Najm, “Power Macromodeling For High Level Power

Estimation,” in Proceedings of the 34th Design Automation Conference, 1997,

pp. 365–370.

[98] C. Ding, C.-Y. Tsui, and M. Pedram, “Gate-level Power Estimation Using

Tagged Probabilistic Simulation,” IEEE Trans. Comput. Des. Integr. Circuits

Syst., vol. 17, no. 11, pp. 1099–1107, 1998.

[99] S. Oskuii, P. Kjeldsberg, and E. Aas, “Probabilistic gate-level power estimation

using a novel waveform set method,” in Proceedings of the 17th ACM Great

Lakes symposium on VLSI, 2007, pp. 37–42.

[100] D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI chips,”

IEEE J. Solid-State Circuits, vol. 29, no. 6, pp. 663–670, 1994.

[101] P. E. Landman and J. M. Rabaey, “Activity-sensitive architectural power analysis

for the control path,” in Proceedings of the 1995 international symposium on Low

power design, ISLPED, 1995, pp. 93–98.

[102] A. Bogliolo, L. Benini, and G. De Micheli, “Regression-based RTL power

modeling,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 3, pp. 337–372,

Jul. 2000.

[103] Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding, “Cycle-accurate macro-models for

RT-level power analysis,” Proc. 1997 Int. Symp. Low Power Electron. Des., pp.

125–130.

[104] N. R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. S. Hsiao, and S. T.

Chakradhar, “Accurate power macro-modeling techniques for complex RTL

circuits,” in the 14th International Conference on VLSI Design, 2001, pp. 235–

241.

[105] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The Design and Use of

SimplePower : A Cycle-Accurate Energy Estimation Tool,” in Proceedings of the

37th Annual Design Automation Conference, 2000, pp. 340–345.

155

[106] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on

clustering,” in Proceedings of the 33rd annual Design Automation Conference,

Dac ’96, 1996, pp. 702–707.

[107] A. Sivasubramaniam, M. Jane, and I. N. Vijaykrishnan, “Using Complete

Machine Simulation for Software Power Estimation : The SoftWatt Approach,” in

Proceedings of the Eighth International Symposium on High-Performance

Computer Architecture, 2002, pp. 141–150.

[108] D. Brooks, V. Tiwari, and A. Martonosi, “Wattch: a Frame work for

Architecture- level Power Analysis and Optimization,” ACM, vol. 28, no. 2, pp.

83–94, 2000.

[109] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A.

Sivasubramaniam, “vEC : Virtual Energy Counters,” in Proceedings of the 2001

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, 2001, pp. 28–31.

[110] R. a. Bergamaschi, N. Dhanwada, S. Bhattacharya, W. E. Dougherty, I. Nair, J.

Darringer, and R. Paliwal, “SEAS: a system for early analysis of SoCs,” in

Proceedings of the 1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, 2003, pp. 150–155.

[111] “Xilinx Power Estimator (XPE).” [Online]. Available:

http://www.xilinx.com/products/technology/power/xpe.html. [Accessed: 22-Jul-

2015].

[112] S. Ahuja, “High Level Power Estimation and Reduction Techniques for Power

Aware Hardware Design,” 2010.

[113] “Xilinx Power Estimator User Guide,” 2014. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug440-

xilinx-power-estimator.pdf.

[114] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software : A

First Step Towards Software Power Minimization,” IEEE Trans. Very Large

Scale Integr. Syst., 1994.

[115] V. Tiwari, S. Malik, a. Wolfe, and M. T.-C. Lee, “Instruction level power

analysis and optimization of software,” Proc. 9th Int. Conf. VLSI Des., 1996.

[116] S. Nikolaidis, N. Kavvadias, P. Neofotistos, and K. Kosmatopoulos,

“Instrumentation Set-up for Instruction Level Power,” in PATMOS2002,

Springer-Verlag Berlin Heidelberg, 2002, pp. 71–80.

[117] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S. Blionas,

“Instruction level energy modeling for pipelined processors,” J. Embed. Comput.,

vol. 1, no. 3, pp. 317–324, 2005.

[118] S. Kerrison, U. Liqat, K. Georgiou, and A. Serrano, “Energy Consumption

Analysis of Programs based on XMOS ISA-Level Models,” in Logic-Based

156

Program Synthesis and Transformation, Springer International Publishing, 2013,

pp. 72–90.

[119] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile

application energy consumption using program analysis,” in the 35th

International Conference on Software Engineering (ICSE), 2013, pp. 92–101.

[120] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An instruction-level energy

model for embedded VLIW architectures,” IEEE Trans. Comput. Des. Integr.

Circuits Syst., vol. 21, no. 9, pp. 998–1010, 2002.

[121] J. Laurent, E. Senn, N. Julien, and E. Martin, “High-Level Energy Estimation for

DSP Systems,” in PATMOS. IEEE, 2001.

[122] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power Consumption Estimation of

a C Program for Data-Intensive Applications,” in Integrated Circuit Design.

Power and Timing Modeling, Optimization and Simulation, Springer Berlin

Heidelberg, 2002, pp. 332–341.

[123] J. Laurent, E. Senn, N. Julien, E. Martin, F. Level, and P. Analysis, “Functional

Level Power Analysis : An Efficient Approach for Modeling the Power

Consumption of Complex Processors Complex Processors,” in Proceedings of the

conference on Design, automation and test in Europe -Volume 1. IEEE Computer

Society, 2004.

[124] M. Schneider, H. Blume, and T. G. Noll, “Power estimation on functional level

for programmable processors,” Adv. Radio Sci., vol. 2, no. 8, pp. 215–219, 2004.

[125] E. Senn, J. Laurent, N. Julien, and E. Martin, “SoftExplorer: estimation,

characterization, and optimization of the power and energy consumption at the

algorithmic level,” in Integrated Circuit and System Design. Power and Timing

Modeling, Optimization and Simulation, Springer Berlin Heidelberg, 2004, pp.

342–351.

[126] T. Ducroux, G. Haugou, V. Risson, and P. Vivet, “Fast and accurate power

annotated simulation: Application to a many-core architecture,” in the 23rd

International Workshop on Power and Timing Modeling, Optimization and

Simulation, PATMOS, 2013, pp. 191–198.

[127] S. K. Rethinagiri, O. Palomar, J. A. Moreno, O. Unsal, and A. Cristal, “System-

Level Power and Energy Estimation Methodology for Open Multimedia

Applications Platforms,” in IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2014, pp. 442–449.

[128] G. Hellestrand, “The Engineering of Supersystems,” Computer, vol. 38, no. 1, pp.

103–105, 2005.

[129] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.

Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,

J. Staschulat, and P. Stenstr, “The Worst-Case Execution Time Problem -

Overview of Methods and Survey of Tools,” ACM Trans. Embed. Comput. Syst.,

vol. 7, no. 3, p. 36, 2008.

157

[130] S. Stattelmann, M. Oriol, and T. Gamer, “Execution Time Analysis for Industrial

Control Applications,” arXiv Prepr. arXiv1404.0847, Apr. 2014.

[131] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and Precise WCET Prediction

by Separated Cache and Path Analyses,” Real-Time Syst., vol. 18, no. 2–3, pp.

157–179, 2000.

[132] T. Lundqvist and P. Stenstrom, “An Integrated Path and Timing Analysis Method

based on Cycle-Level Symbolic Execution,” Real-Time Syst., vol. 17, no. 2–3, pp.

183–207, 1999.

[133] D. Zaparanuks and M. Hauswirth, “Accuracy of Performance Counter

Measurements,” in IEEE International Symposium on Performance Analysis of

Systems and Software, ISPASS, 2009, pp. 23–32.

[134] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic hard real-

time systems,” in 23rd IEEE Real-Time Systems Symposium, RTSS, 2002, pp.

279–288.

[135] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A Statistical Response-Time

Analysis of Real-Time Embedded Systems,” in the 33rd IEEE Real-Time Systems

Symposium, 2012, pp. 351–362.

[136] C. Ferdinand and R. Heckmann, “aiT: Worst case execution time prediction by

static program analysis,” in Building the Information Society, Springer, 2004, pp.

377–383.

[137] A. Colin and I. Puaut., “A Modular & Retargetable Framework for Tree-based

WCET Analysis,” in the 13th Euromicro Conference on Real-Time Systems,

2001, pp. 37–44.

[138] M. France, “Timing Analysis for Instruction Caches,” J. Real-Time Syst., vol. 18,

no. 2–3, pp. 217–247, 2000.

[139] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq Book:

Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All

Programmable Soc. 2014.

[140] M. Mitchell, “Zynq for Video Applications,” 2012.

[141] “OpenCV | OpenCV.” [Online]. Available: http://opencv.org/. [Accessed: 14-

Dec-2014].

[142] A. S. Neuendorffer, T. Li, and D. Wang, “Accelerating OpenCV Applications

with Zynq-7000 All Programmable SoC using Vivado HLS Video Libraries,”

2013. [Online]. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp1167.pdf.

[143] “Image Processing and Computer Vision - MATLAB & Simulink Solutions -

MathWorks France.” [Online]. Available:

http://fr.mathworks.com/solutions/image-video-

158

processing/index.html;jsessionid=649f5b5f03a000705f80a1619981. [Accessed:

14-Dec-2014].

[144] “Zynq-7000 All Programmable SoC,” 2015. [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-

TRM.pdf.

[145] ARM Ltd, “Cortex -A9 Technical Reference Manual,” 2010. [Online]. Available:

http://www.arm.com/cortex-a9.php.

[146] “ARM Architecture Reference Manual,” 2014. [Online]. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.ht

ml.

[147] N. Julien, J. Laurent, E. Senn, and E. Martin, “Power Consumption modeling and

Characterization of the TI C6201,” IEEE Micro, no. 5, pp. 40–49, 2003.

[148] L. Deng, K. Sobti, Y. Zhang, and C. Chakrabarti, “Accurate area, time and power

models for FPGA-based implementations,” J. Signal Process. Syst., vol. 63, no. 1,

pp. 39–50, 2011.

[149] “USB-TO-GPIO-USB Interface Adapter EVM.” [Online]. Available:

https://store.ti.com/USB-TO-GPIO-USB-Interface-Adapter-EVM-

P960.aspx?DCMP=hpa_pwr_xilinxfpga&HQS=xilinx_usb. [Accessed: 16-Dec-

2014].

[150] “Digital Power Software - FUSION_DIGITAL_POWER_DESIGNER - TI

Software Folder.” [Online]. Available:

http://www.ti.com/tool/fusion_digital_power_designer&DCMP=hpa_pmp_gener

al&HQS=NotApplicable+OT+fusion-gui. [Accessed: 16-Dec-2014].

[151] “Measuring Program Execution Time.” [Online]. Available:

http://gec.di.uminho.pt/Discip/MaisAC/CS-APP_Bryant/csapp.ch9.pdf.

[152] J. Aldrich, “Fisher and Regression,” Stat. Sci., vol. 20, no. 4, pp. 401–417, Nov.

2005.

[153] “ Catapult Synthesis.” [Online]. Available:

http://calypto.com/en/products/catapult/overview. [Accessed: 09-Mar-2015].

[154] “Synopsys.” [Online]. Available: http://www.synopsys.com/home.aspx.

[Accessed: 09-Mar-2015].

[155] “GAUT: High-Level Synthesis tool, From C to RTL.” [Online]. Available:

http://hls-labsticc.univ-ubs.fr/html/presentation.html. [Accessed: 09-Mar-2015].

[156] N. A. Gupta S, Gupta RK, Dutt ND, SPARK: A Parallelizing Approach to the

High-Level Synthesis of Digital Circuits. Springer Science & Business Media,

2004.

[157] Xilinx Inc, “Introduction to FPGA Design with Vivado High-Level Synthesis,”

2013. [Online]. Available:

159

http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-

fpga-design-hls.pdf.

[158] “Reduce Power in Chip Designs with Sequential Clock Gating.” [Online].

Available: http://electronicdesign.com/power/reduce-power-chip-designs-

sequential-clock-gating. [Accessed: 25-Jun-2015].

[159] S. Huda, J. Muntasir Mallick, and J. H. Anderson, “Clock Gating Architecture

For FPGA Power Reduction,” in the International Conference on Field

Programmable Logic and Applications, FPL, 2009, pp. 112–118.

[160] Mentor Graphics Inc, “Advanced Clock Gating Techniques in Catapult C

Synthesis.” .

[161] M. Pedram and J. M. Rabaey, Power aware design methodologies. Springer

Science & Business Media, 2002.

[162] R. Zurawski, Embedded Systems Handbook. CRC Press, 2004.

[163] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip regulators,”

ACM Trans. Archit. Code Optim., vol. 8, no. 1, pp. 1–24, 2011.

[164] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power

embedded operating systems,” ACM SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp.

89–102, 2001.

[165] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power

optimization of variable-voltage core-based systems,” IEEE Trans. Comput. Des.

Integr. Circuits Syst., vol. 18, no. 12, pp. 1702–1714, 1999.

[166] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic

voltage scaling algorithms,” in Proceedings of the 1998 international symposium

on Low power electronics and design, 1998, pp. 76–81.

[167] L. Negri and A. Chiarini, “Power Simulation of Communication Protocols with

StateC,” in Applications of Specification and Design Languages for SoCs,

Springer, 2006, pp. 277–294.

[168] S. Ahuja, A. Lakshminarayana, and S. K. Shukla, Low Power Design with High-

Level Power Estimation and Power-Aware Synthesis. Springer Science &

Business Media, 2011.

[169] J. Ayoub, O. Romain, Bertrand Granado, and Y. Mhanna, “Accuracy

Amelioration of an Integrated Real-Time 3D Image Sensor,” in Conference on

Design & Architectures for Signal and Image Processing, 2008.

[170] F. Driessen, “Throughput Exploration and Optimization of a Consumer Camera

Interface for a Reconfigurable Platform.”

[171] P. S. Ong, Y. C. Chang, C. P. Ooi, E. K. Karuppiah, and S. M. Tahir, “An FPGA

Implementation of Intelligent Visual Based Fall Detection,” Int. J. Comput.

Information, Syst. Control Eng., vol. 7, no. 2, pp. 199–204, 2013.

160

[172] H. Rabah, A. Amira, and A. Ahmad, “Design and implementaiton of a fall

detection system using compressive sensing and shimmer technology,” in the

24th International Conference on Microelectronics (ICM), 2012, pp. 1–4.

[173] B. Senouci, I. Charfi, B. Heyrman, J. Dubois, and J. Miteran, “Fast prototyping of

a SoC-based smart-camera: a real-time fall detection case study,” J. Real-Time

Image Process., pp. 1–14, 2014.

[174] F. R. Grüll, “Acceleration of Biomedical image processing and reconstruction

with FPGAs,” PhD diss., Univ.-Bibliothek Frankfurt am Main, 2015.

[175] M. Kepski and B. Kwolek, “Human Fall Detection Using Kinect Sensor,” in

Proceedings of the 8th International Conference on Computer Recognition

Systems CORES, 2013, pp. 743–752.

[176] E. E. Stone and M. Skubic, “Fall detection in homes of older adults using the

Microsoft Kinect,” IEEE J. Biomed. Heal. informatics, vol. 19, no. 1, pp. 290–

301, Jan. 2015.

[177] M. Humenberger, S. Schraml, C. Sulzbachner, A. N. Belbachir, A. Srp, and F.

Vajda, “Embedded fall detection with a neural network and bio-inspired stereo

vision,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2012, pp. 60–67.

[178] B. S. Swan and C. D. Systems, “An Introduction to System Level Modeling in

SystemC 2.0,” Cadence Des. Syst. Inc., Draft Rep., 2001.

[179] “Philips Webcam SPC900NC VGA CCD with Pixel Plus.” [Online]. Available:

http://www.p4c.philips.com/cgi-

bin/dcbint/cpindex.pl?ctn=SPC900NC/00&scy=gb&slg=en. [Accessed: 12-Jan-

2015].

