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Abstract 

 

Nowadays, fall detection is a major challenge in the public health care domain, 

especially for the elderly living alone.  Falls are the leading cause of injury deaths among 

older adults, those aged 65 or older. Moreover, the lack of medical staff, who take care of 

rehabilitants in hospital, is an urgent problem in the 21
st
 century. Therefore, the demand for 

surveillance systems, especially for fall detection, has considerably increased within the 

healthcare industry. 

This thesis presents an exploration for a Fall Detection System based on camera under 

an algorithmic and architectural point of view. The studied Fall Detection System is suitable 

not only for the elderly living alone, but also for rehabilitants in hospitals. Our system is 

composed of four modules:  Object Segmentation, Filter, Feature Extraction and Recognition 

and can give an urgent alarm for detecting different kinds of fall.  

Firstly, different algorithms are proposed and studied for the modules which compose 

the Fall Detection System like the Background Subtraction-Neural Network (BGS-NN), the 

Background Subtraction-Template Matching (BGS-TM), the Background Subtraction-Hidden 

Markov Model (BGS-HMM), and the Gaussian Mixture Model (GMM-HMM). In order to 

evaluate the efficiency of these algorithms, a comparison is made on the accuracy (Acc), 

precision (PR) and recall (RC) performance.  This comparison leads to select the BGS/TM 

which will be used for the remainder of this research work. This algorithm is simulated on 

Matlab with 91.67% (RC), 100% (PR) and 95.65% (Acc) and implemented on ZYNQ 

platform by using C++ and OpenCV. Furthermore, in order to evaluate the efficiency of our 

Fall Detection System, a DUT-HBU database which is classified with different actions: fall, 

non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides and cross) is 

created and used for simulation, evaluation and implementation purposes.  

Secondly, the aim is to define a methodology to explore low cost architectures for this 

fall detection system. As we consider heterogeneous architecture, new power consumption 

and execution time models for processor core and FPGA are defined according to the 

different configurations of the target architecture (ZYNQ platform) and the features of the 

applications like: core frequency, number of processor cores, image resolution. To validate 

the accuracy of the proposed models, we also analyze the error rate of these models that show 

that they don’t exceed 3.5%. The power consumption and execution time models are then 

extended to hardware/software architectures according to the assignment of the Fall Detection 

System tasks and have been coupled with an accuracy model to evaluate the performance of 

this system. With these extended models, our approach targets to explore low cost architecture 
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by defining a suitable Design Space Exploration methodology. We also apply two techniques 

for parallelization which are based on intra-task and inter-task static scheduling with the aim 

to enhance the accuracy and the power consumption of this system. As example, first 

execution on ARM Cortex A9 processor of ZYNQ platform achieves an accuracy of 62% 

with energy per frame of 43mJ/f. When the parallel techniques based on hardware/software 

architecture are applied, the frame rate of our system is considerably increased and the 

accuracy rate reaches 98.3% with energy per frame of 29.5mJ/f.  
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Résumé 

 

De nos jours, la détection de chute est un défi majeur dans le domaine de la santé publique, en 

particulier pour les personnes âgées vivant seules. Les chutes sont la principale cause de 

décès, suite à des  blessures, chez les personnes âgées de plus de 65 ans. Par ailleurs, le 

manque de personnel médical, par exemple pour les patients en rééducation, dans les hôpitaux 

ou les maisons de retraite, est un problème important mondial pour le 21ème siècle. Par 

conséquent, le développement de systèmes de surveillance, en particulier pour la détection de 

chute, devient une nécessité pour le secteur de la santé. 

Le but de cette thèse est de concevoir un système de détection de chute basée sur une 

surveillance par caméra et d’étudier à la fois les aspects algorithmiques et architecturaux. 

Notre système de détection de chute est conçu non seulement pour les personnes âgées vivant 

seules, mais aussi pour les personnes en réadaptation à l'hôpital ou placée en maison de 

retraite. Notre système se compose de quatre modules: la segmentation d’objet, le filtrage, 

l’extraction de caractéristiques et la reconnaissance qui permettent en plus de la détection de 

chute d’identifier le type de ces chutes (avant, arrière, coté) dans le but de définir un niveau 

d’alarme. 

Dans un premier temps, différents algorithmes ont été étudiés pour réaliser les 

traitements des modules qui composent notre système de détection de chute comme le 

Background Subtraction-Neural Network (BGS-NN) ; le Background Subtraction-Template 

Matching (BGS-TM) ; le Background Subtraction-Hidden Markov Model (BGS-HMM) ; et le 

Gaussian Mixture Model (MGM-HMM). Afin d’évaluer l’efficacité de ces algorithmes, une 

comparaison est effectuée sur les paramètres qui permettent d’évaluer la performance du 

système soit: Accuracy (Acc), Precision (PR), Recall (RC). Le résultat de cette comparaison 

nous a amené à sélectionner le BGS/TM qui sera utilisé dans la suite de ces travaux de 

recherche.  La simulation de cet algorithme sous Matlab a permis d’évaluer le RC à 91,67%, 

le PR à 100% et l’ACC à 95,65%. Cet algorithme a aussi été testé après implémentation sur 

une plateforme ZynQ en utilisant le langague C++ et OPENCV. De plus, afin de mieux 

évaluer l’efficacité du système de détection de chute proposé, une base de donnée DTU-HBU 

a été construite et classifiées selon les différentes actions: chute, non-chute (assis, couché, 

rampant, etc.) selon trois angles de caméra (de face, de côtés et de biais).  

Dans un second temps, l’objectif a été de définir une méthodologie permettant de 

sélectionner les architectures à faible coût qui présenteraient les meilleures performances. 

Comme nous considérons des architectures hétérogènes, un premier travail fut de définir des 

modèles de consommation et du temps d’exécution pour différentes cibles technologiques, 
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processeur et FPGA. A titre d’exemple, la plateforme ZYNQ a été considérée. Les différentes 

configurations de cette plateforme ont été caractérisées pour les algorithmes de détection de 

chute. En particulier, des paramètres comme la fréquence, le nombre de cœurs actifs, la 

résolution de l’image ont été pris en compte. Pour valider la précision des modèles proposés, 

des expérimentations ont été menées et l’erreur pour ces tests n’a pas excédé 3,5%. Ces 

modèles ont ensuite été étendus à des architectures hétérogènes et complétés par un modèle de 

l’Accuracy (ACC) qui permet d’évaluer la performance du système complet. Sur la base de 

ces modèles, notre approche vise à explorer les architectures à faible coût par la définition 

d’une méthodologie adaptée de DSE. Afin d’exploiter le parallélisme offert par la plateforme 

ZYNQ, deux techniques d’ordonnancement statique (Intra tâche et inter tâche) ont été 

utilisées dans le but de réduire la consommation d’énergie tout en possédant une performance 

adaptée. Les résultats obtenus montrent qu’une première implémentation fournit un 

ACC=62% avec une énergie par image de 43 mJ alors qu’après optimisation, l’ACC atteint 

98,3% pour une énergie de 29,5 mJ. 
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Chapter 1. Introduction 

 

 

 

Currently, accompanying with the development of society, e-health systems are 

playing increasingly important roles in our lives. Among them, medical care and falling 

accidents for the elderly seem to draw attention as important topics in healthcare and 

human behaviour recognition domains. In addition, to efficiently monitor the situation of 

patients, there is at least a medical staff (i.e. a doctor or a nurse) who presents next to 

patients for hours. The extremely increasing demands on healthcare services have been, 

thus, urging the development of new generation of surveillance systems. These novel 

systems can be benefit from new advances in sensors, digital video processing, and 

broadband access network infrastructures. Therefore, the health services today have been 

dominated by high-tech devices as well as automatic systems which have greatly 

facilitated the higher ability in convenience, fast response, and high reliability. 

According to the statistics given in the international advisory conference on 

innovation, training of health forces in the 21st century took place on 28/04/2011 in 

Hanoi, Vietnam showed that there were only 0.5 doctors and/or 0.8 nurses per 1000 

population. It means that according to the World Health Organization (WHO) Vietnam 

should add about 80 thousand health forces to meet the general requirements [1]. That 

was the general reality of the countries on over the world, including developing 

countries. In addition, another study of the elderly from Vietnam Association of 

Rheumatology, every year, every three people over 65 years old have at least one person 

fell. The accident was the sixth most common causes of  death for the elderly, in which 

the incidence of falls was the majority [2]. In Vietnam, the proportion of people of 60 

years and older increased from 6.7% in 1979 to 9.2% in 2006 [3]. Vietnamese life 

expectancy at birth increased from 66 years in 1990 to 72 years in 2006 and the average 

life expectancy of elderly Vietnamese is 73 years old [4].  

The application of the intelligent video surveillance for taking care the elderly at 

home or the rehabilitants in Vietnam’s hospital is proposed to find out the solutions for 

this reality in Vietnam. Before more details of this approach are discussed, many 

approaches applied in healthcare systems based intelligent surveillance (sensors, audio, 

video, communication networks) as following sections will be reviewed. For this 

intelligent video surveillance system, usually the performance is the main objective but 

today the power consumption is also a critical parameter and more especially for 

autonomous object. The challenge is to build some tools or some ways to evaluate the 

performance, the recognition rate, and the power consumption at early step of the design. 
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These ways help in reducing the time-to-market for a quality product. In this thesis, a 

new Fall Detection algorithm is proposed and a methodology is defined to design low 

cost architectures.  

 

1.1 The healthcare systems  

With the rapid development of science and technology, surveillance systems are 

developing quickly. Nowadays, these systems not only generally monitor but also enable 

to analyse and process the captured data to activate an alarm when there are abnormal 

actions. This feature is quite suitable for a healthcare system. 

 

1.1.1 The healthcare system based on sensors 

1.1.1.1 Sensors worn on human body 

A sensor is an electronic device that easily detects events or changes from the external 

environment, and then the received signals are transformed into an electrical or optical 

signal to control other devices. There are many sensors such as micro switches, spirit 

levels, accelerometers, and gyroscopes that are embedded in garments, or walking sticks 

[5]. The sensor systems can be stuck at the area where needs to collect the surroundings 

and then transmit to the central processor and finally process it for a specific purpose. 

Sensor and its essential features have been implemented in industrial and in medical 

equipment in particular. By capturing signals from sensors, doctors or healthcare 

scientists have a chance to easily monitor or even remotely diagnosis while patients are 

in hospital, clinic or even at home. The model of a healthcare system based on sensors is 

depicted in Figure 1.1. 

A sensor mounted on body generally divides into three main factors: wireless, 

wire, and integrated in patients’ body [6]. There are specific sensors for each part of the 

body and for each surveillance. Wearable embedded systems use sensors that can detect 

changes in postures, activities or motions of the person wearing devices. A wearable 

motion detection device using tri-axial accelerometer, which can detect and predict 

events based on tri-axial acceleration of human upper trunk, was designed and realized, 

[7]. With this method, the elderly who suffer from chronic diseases can be not only 

monitored effectively, but the early symptoms of the disease are also found. Wearable 

devices are simple and cheap; however, they might disturb the user’s normal life. In 

addition, the issue of surveillance is that the elderly often forget to wear this equipment, 

and it depends on the ability and willingness of the elderly. 
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Figure 1.1-A model of the healthcare system based on sensors stuck on human body [8]. 

 

1.1.1.2 Ambient sensors 

Due to the adverse effects of the wearable devices, some ambience systems which are 

not stuck directly on the human body are researched and applied recently. Welfare 

Techno House in Japan is an excellent example for the ambience systems [9].  

 

 

 

 

 

 

 

 

 

Figure 1.2-Welfare Techno House system [9] 

 

In this system, automated electrocardiogram (ECG) measurements can be taken 

while the subjects are in bed, in the bathtub, and on the toilet, without their awareness 

and without using body surface electrodes. The sensors are installed in furniture and/or 

sanitary goods and the subject needs to attach the sensor. The heart rate and body weight 

can be obtained without any special measurement and the subject can receive daily 

physiological parameters without any awareness and discomfort. It is useful for 

understanding personal health status and daily activity information without the use of 
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invasive measurements. Some monitoring devices in the Welfare Techno House are 

shown in Figure 1.2. 

 

1.1.2 The healthcare system based on audio 

The healthcare system based on sound includes circular microphone array located in a 

room or relatively narrow and quiet space. When a sound is detected, the sound system 

will automatically amplify the signal, then identify and classify whether it is sound 

caused by the monitoring action or not [6]. However, this is the main limitation of this 

kind of the sound system, because it is usually placed in daily life environment,  it is 

easily disturbed by surroundings noise, like falling objects or crying, etc. Furthermore, 

the sound also depends on each patient, type of actions or the position. Therefore, this 

system is not reliable enough to apply in the real life. A sound falling detection system 

consisting of the circular microphone array is depicted in Figure 1.3 [6]. 

 

 

 

 

 

 

 

Figure 1.3-A circular microphone array used to automatically detects falling actions[6] 

 

1.1.3 The healthcare system based on communication network 

The care of patients now is involved in many different individuals, namely doctors, 

nurses, patients and their families. All of them need to share patient information and 

discuss their management. As a result, communication technologies are becoming a 

significant role in supporting health services. However, it is generally accepted that there 

is still a gap in applying communication technologies in healthcare systems, especially in 

rural areas where voice-mail or electronic mail is still not available.  

A communication system involves people, the messages they wish to convey, the 

technologies that mediate conversations, and the organisational structures that define and 

constrain the conversations that are allowed to occur [10]. A possible communication 

pathway for a laboratory test, ordered by a general practitioner is shown in Figure 1.4. 

There are significant organisational and communication challenges facing those 

delivering healthcare in the community. The model of shared care often adopted means 

that many different healthcare professionals may be involved in the management of an 
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individual patient. Even apparently simple activities such as ordering a laboratory test in 

general practice, and receiving the report, can involve many individuals, and many 

opportunities for inefficiency and errors. 

 

 

 

 

 

 

 

 

 Figure 1.4. A possible communication pathways for a laboratory test [3]. 

 

 

Figure 1.4-A possible communication pathways for a laboratory test  [10] 

 

1.1.4 The healthcare system based on intelligent video surveillance 

Ambience systems use sensors installed in the living environments that certainly does 

not disturb the users. However, these kinds of sensor-based ambient systems normally 

result in high false alarm rate. Several studies have been proposed recently to use vision-

based systems. Visual surveillance systems have been installed at many places in our 

lives, for instance offices, factories, schools or buildings. They recorded visual as well as 

any actions in the camera’s area. At present, a variety of cameras are adopted to obtain 

the real-time situation for the elderly at home, and elderly abnormality is judged 

according to the above situations.  

According to abnormality types and credibility, the systems analyse, process, 

and evaluate patients’ situation to make some correction measurements in advanced in 

order to notify the guardian or those who concern. In today's modern life, intelligent 

video surveillance for elderly people living alone is an important application in the field 

of intelligent video surveillance. To reduce the workload of the remote monitoring staffs, 

the scene images are pre-processed by using techniques like image processing, or data 

mining, etc. After that, the captured scene images are transmitted by the internet or other 

communication methods to the distant guardian, and then these signals are carefully 

examined. By using intelligent video surveillance, people can effectively monitor their 

family as well as their business and issue warnings via computers or gadgets as soon as 

possible with many benefits. If there is any unusual events, user can take the warning to 
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others who are nearer to that area to prevent a bad outcome. An example of using 

intelligent video surveillance in hospital is illustrated in Figure 1.5. In addition, Ming-

Liang Wang et al. [11] has proposed a video surveillance system using an omni-

directional charge-coupled device (CCD) camera which is adopted to provide a 360° 

view angle of the indoor scene in a single image. The authors combined different 

algorithms for robust human motion tracking such as motion history image (MHI), 

Continuously Adaptive Mean Shift (CamShift) and optical flow in order to increase the 

robustness of the surveillance and tracking system. And for the human activity 

recognition, they use a calibrated one-to-one correspondence between the ground 

locations and the omni-directional vision sensor (ODVS) images. 

 

 

Figure 1.5-A person is monitoring the healthcare camera in a hospital [12] 

 

1.2 Fall Detection Approaches. 

1.2.1 Classification Fall Detection Approach 

The biggest advantage of video surveillance is the ability of real time execution by using 

standard computing platforms and low cost cameras. The methods have the capability to 

deal with robustness, however, still leave a widen horizon for further research and 

development. There are some different types of fall detection as follows[13]: 

 

1.2.1.1 Spatiotemporal 

Shape modelling using spatiotemporal features provides crucial information of human 

activities, which is used to detect different events. Image analysis requires efficient and 

accurate shape modelling methods [14]. Homa Foroughi et al. [15] proposed a novel 

approach for human fall detection based on combination of integrated time motion images 

and eigenspace technique. Integrated Time Motion Image (ITMI) is a type of spatio-temporal 
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database that includes motion and time of motion occurrence.  Based on these observations, 

they extracted some motion information from the video sequences. Although, this motion 

information can be used directly in motion classification, they used eigenspace techniques for 

feature. Finally a multilayer perceptron (MLP) Neural Network is used for precise 

classification of motions and determination of a fall event. 

 

1.2.1.2 Inactivity/change of shape 

This algorithm bases on shape change analysis as well as inactivity detection. Vinay 

Vishwakarma et al. presented an approach for human fall detection consists of two parts: 

object detection and the use of a fall model. The authors used an adaptive background 

subtraction method to detect a moving object and mark it with its minimum-bounding 

box. The fall model uses a set of extracted features to analyze, detect and confirm a fall. 

Then they implemented a two-state finite state machine (FSM) to continuously monitor 

people and their activities [16]. 

 

1.2.1.3 Posture 

The use of posture information contributes towards accurate fall detection. Different 

body positions are used to calculate postures. Specific types of postures are identified and 

localised in image sequences. Generally, model dependent methods obtain postures 

relatively easy and are robust to occlusion to an extent after labelling the body parts. Rita 

Cucchiaraour et al. proposed a human behaviour classification by the posture of the 

monitored person and, consequently, detected corresponding events and alarmed 

situations, like a fall. There are two phases in this project: firstly, posture classification 

performed frame-by-frame. This classification exploits simple visual features. Secondly, 

the obtained posture is further validated exploiting the information extracted by a 

tracking module in order to take into account the reliability of the classification of the 

first phase. This is motivated by the concept of “posture state” defined in a state-

transition graph that takes into account for the classification the reliability of the track 

and acquired knowledge of the people’s average behaviour in changing their posture[17]. 

  

1.2.1.4  3D head position analysis 

Head position analysis is based on head tracking that determines the occurrence of large 

movement within the video sequences. Different state models are used to track the head 

based on the magnitude of the movement. In 3D head motion analysis methods, the 

principle of faster vertical motion than horizontal motion during a fall is applied. The 

head is initially located and then the 3D head position is estimated using fiHead. The 

idea of using appropriate thresholds to distinguish a fall from other actions is applied by 

computing vertical and horizontal velocities of the head [18][19]. 
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In this thesis, we propose algorithms for the Fall Detection System including 

Object Segmentation, Object Enhancement, Feature Extraction and Recognition 

modules. To understand the behaviour of human object inside the video, the five features 

are calculated by the different positions of object performed frame by frame. The 

postures of object which are classified in our DUT-HBU dataset: fall and non-fall 

(bending, sitting, lying, creeping, etc.) are used for evaluation of this system. Our system 

is evaluated in terms of the accuracy, recall and precision performance. We also compare 

the performances among various algorithms such as BackGround Subtraction/Hidden 

Markov Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-

HMM), BackGround Subtraction/Neural Network (BGS-NN), and BackGround 

Subtraction/Template Matching (BGS-TM). 

 

1.2.2 Efficient Architecture for Fall Detection on heterogeneous platform 

Currently, the advanced co-design step can lead to many solutions, especially in video 

processing: there are many ways of partitioning a system, and of writing the software 

with the chosen hardware. It is now well-known that the software has a very considerable 

impact on the final power consumption of a system. To find the best solution is a 

complex task.  

New System on Chips (SOCs) that combine processor cores and field-

programmable gate array (FPGA) architecture will help to build complex and performing 

systems. Some examples of video processing on heterogeneous architecture are shown as 

follows: 

Eduardo Gudis, Pullan Lu et al. [20] have described an architecture framework 

using heterogeneous hardware accelerators for embedded vision applications. They 

presented a framework using an extensive library of pipelined real time vision hardware 

accelerators and service-based software architecture. Their framework allows the 

service-based software to take advantages of the hardware acceleration blocks available 

and perform the remainder of the processing in software. Three applications - Video 

stabilization (pre-processing), Moving Target Indication, and Contrast Normalization - 

were implemented on two Xilinx Zynq platforms: (1) the Xilinx ZC702 evaluation board 

with 7020-1part, and (2) a custom board with 7045-1 board.  

Another video application applied OpenCV which is implemented on Zynq 

platform is illustrated in [21]. Road sign recognition is an autonomous application in 

driver assistance systems and road sign maintenance. This algorithm is presented using 

the Xilinx Zynq-7020 chip on a Zedboard to scan 1920×1080 images taken by an ON 

Semiconductor VITA-2000 sensor attached via the FPGA Mezzanine Card (FMC) slot. 

The Programmable Logic section of the Zynq is used to perform essential image pre-

processing functions and colour based on filtering of the image. Software classifies the 

shapes in the filtered image, and they used OpenCV's template matching function to 
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identify the signs from a database of United Kingdom road signs. The system was 

designed in six weeks, and can process one frame in approximately 5 seconds. This is a 

promising start for a real-time System on Chip based approach to the problem of road 

sign recognition and also for using the Zynq platform for rapid deployment of these 

types of applications. 

In addition, the jpeg decoder, image rectification, Semi Global Matching 

algorithm, and Stixel clustering are the applications which are accelerated on FPGA by 

using Xilinx Zynq 7045. In [22] Gilliland. S et al. evaluated the performance of an 

FPGA based embedded ARM processor system to implement signal processing for 

ultrasonic imaging and non-destructive testing applications. FPGA based on embedded 

processors possesses many advantages including a reduced overall development time, 

increased performance, and the ability to perform hardware-software (HW/SW) co-

design. This study examined the execution performance of split spectrum processing, 

chirplet signal decomposition, Wigner-Ville distributions and short time Fourier 

transform implementations on two embedded processing platforms - a Xilinx Virtex-5 

FPGA with embedded MicroBlaze processor and a Xilinx Zynq FPGA with embedded 

ARM processor. Overall, the Xilinx Zynq FPGA significantly outperforms the Virtex-5 

based system in software applications. 

 Dobai and Sekanina [23] demonstrated evolutionary design of 

switching image filters on the platform. The investigated implementations included 

virtual reconfigurable circuits and the use of dynamic partial reconfiguration. The 

achieved results demonstrated the advantages and disadvantages of the Zynq platform. 

The observations intended to be useful for designers who would develop evolvable 

hardware on this new platform. They presented the time required to evaluate one filter 

candidate (individual), the time for a generation of filter candidates (4 individuals), the 

number of generation per second and the relative acceleration in comparison ARM 

processor (without the PL). First, the pure software-based approach was evaluated on the 

ARM processor of the available Zynq device. Second, they compared the processor of 

Zynq with a desktop processor (Intel i5). The code in language C was pre-ported to that 

processor. According to this experiment, the Intel i5 processor was 5 and 6 times faster 

than the ARM processor of the Zynq device. The third experiment was to determine the 

magnitude of the FPGA-based acceleration of the filter evolution. The implementation 

revealed that the operational frequency of the pure virtual reconfigurable circuits (VRC) 

and hybrid VRC-DPR (dynamic partial reconfiguration) approach was 203.6 MHz and 

265.3 MHz, respectively. The hybrid approach was able to evaluate the candidate filters 

approximately by 30% faster. On the other hand, the VRC approach mutated the circuit 

in negligible time and the hybrid approach required more time. The hybrid approach 

changed the interconnections similarly to the pure VRC approach but the replacement of 

the processor elements by dynamic partial reconfiguration (PEs by DPR) takes longer.  
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Monson et al. developed their application in High-Level Synthesis (HLS) for 

FPGAs making it possible to “run” C code on FPGAs and thereby making modern 

programming environments available to FPGA developers. In their research, C code for 

a complex optical-flow algorithm was optimized for both a desktop PC and a FPGA-

based system, the Xilinx Zynq-7000, which is a device containing both a programmable 

fabric and two ARM cores. They discussed how the code was optimized and restructured 

to execute effectively on the programmable fabric and the ARM cores. The 

resulting Zynq version of the C code was competitive with the desktop PC but only 

consumed 1/7 as much energy. 

In the other co-design Digital Signal Processor (DSP)/FPGA, Giuseppe Baruffa 

et al [24] presented the architecture of a DSP/FPGA based hardware platform, which is 

conceived to leverage programmable logic processing power for high 

definition video processing. Their system was reconfigurable and scalable, since multiple 

boards may be parallelized to speed-up the most demanding tasks. The application 

frameworks, JPEG 2000 and H.264, both at high dimension (HD) and Super HD (SHD) 

resolutions have been simulated and performed on the embedded processing cores. The 

issues such as real-time, or near real-time encoding was viable, the modularity of the 

architecture allowed parallelization and performance scalability were proposed in this 

study. Cooperation of FPGA and DSP processing modules was required to fulfil the 

proposed objectives. Performance results showed that real-time encoding and decoding 

of HD and SHD video were possible by using a parallelized configuration. 

In addition of co-design, Felix Büsching et al. [25] proposed an outdoor fall 

detection system. The system consisted of an Android smartphone and an INGA wireless 

sensor node. This node was equipped with an accelerometer, a gyroscope and a 

barometric pressure sensor. However, only the accelerometer for the fall detection was 

utilized. In the system, the smartphone was used as a counterpart. It was implemented for 

the three different applications to:   

a) send a text message with a predefined text to a predefined phone number;  

b) all raw data which is transmitted to the smart phone and processed a fall 

detection;  

c) work as a standalone fall detection and alert system applying the same 

algorithms as the second application. Nevertheless, this application only utilized the 

acceleration sensor of the smartphone. 

 The research works described below show that this kind of video application 

needs heterogeneous architecture (Processor cores + FPGA) to meet a sufficient frame 

rate. So in this thesis, we consider this type of architecture (Zynq platform) and we firstly 

define the power and execution time models for different target circuit: processor core, 

FPGA with the aim to evaluate the performance (recognition rate and energy) of the fall 

detection system. Our models are determined based on the Functional Level Power 
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Analysis for the processor cores and related with hardware resources for FPGA. In order 

to find architectures and suitable configuration which allow an acceptable fall 

recognition rate, we propose a new methodology for exploring low cost architectures and 

by applying parallelism techniques such as intra-task and inter-task static scheduling 

based on hardware/software architecture for Fall Detection System.  

 

1.3 Research questions  

The problem landscape of implementing the video processing has many facets. Within 

the limited framework of this thesis, all aspects of this research domain cannot be 

addressed. We focus on the following questions: 

 

1. How can we avoid transmitting the image to other remote systems for privacy 

reason? 

When the Fall Detection System works, all activities of a person are recorded and 

processed. The video content will automatically be analysed and carried out by computer 

or hardware device. If a falling is occurred, the system will immediately send a warning 

of FALL or NON FALL to the remote monitoring center.  It also provides the exact 

cause of human falling and all input video are processed inside closed system. 

 

2. How are the performances (accuracy, precision and recall) of this system?  

Fall detection is a challenge in the public healthcare system, especially for the elderly, 

and reliable surveillance is a necessity to mitigate the effects of falls. The technology and 

products related to fall detection have always been in high demand within the security 

and the health-care industries. An effective Fall Detection System is required to provide 

urgent support and to significantly reduce the medical care costs associated with falls. 

Therefore, we first should have a database with various kinds of human activities. In this 

system, the DUT-HBU dataset [26] is used and all video data are compressed in .avi 

format and captured by a single camera in a small room with the changeable conditions 

such as brightness, objects, direction of camera, etc. In this database, the fall direction is 

subdivided into three basic directions which are Direct fall, Cross fall, and Side fall. In 

terms of non-fall videos, usual activities which can be misrecognized with fall action 

such as lying, sitting, creeping, and bending are also classified into three mentioned 

directions. Moreover, to evaluate the efficient and accuracy of a system, we analyse the 

Precision (PR), Recall (RC) and Accuracy (Acc).  

 

  



12 

 

 

3. How does a video system meet the real-time processing? 

Designing a real-time system requires a holistic approach that is considered many 

aspects such as algorithms, architectures, and implementation methods of applications in 

order to meet a specified deadline. The constraints on the considered video processing 

are that the system must be able to maintain an average processing rate higher than the 

required frame rate in order to get a sufficient accuracy for fall detection recognition rate. 

This requires a deterministic and bounded execution time. In our system, we apply 

parallelism techniques based on hardware/software architecture to improve the execution 

time and by this way the performance of our system.  

 

4. How is the “cost” of this system? 

Fall detection systems based on cameras have proven to offer a promising solution which 

is complementary to the wearable sensors. One advantage of visual-based fall detections 

is they can be installed in-door and not required to be worn by any users. The cameras 

can be wall- or ceiling-mounted, depending on the interests on orientation and field of 

view of the frames to be captured. Besides, the recorded video allows more efficient use 

of multiple events analysis and post verification. Moreover, cameras are increasingly 

becoming a strong candidate for the choice of fall detection sensor due to the rapid drop 

of camera costs. So far, different visual-based fall detection techniques have been 

identified. Nevertheless, the development of such systems has been implemented as 

software-based solutions on computers. 

In addition, we want to design a standalone Fall Detection System corresponding 

with the less energy consumption and the higher performance. Therefore, in our system, 

we try to extract the power consumption and execution time models for processor cores 

and FPGA to explore the low cost architectures which offer sufficient frame rate, low 

power/energy consumption and an adequate accuracy rate based on Design Space 

Exploration methodology. Some parallelism techniques are also applied to improve the 

execution time and by the way the performance of Fall Detection System.   

 

1.4 Thesis contributions 

Most of video surveillance for fall detection researches includes two or three modules to 

detect the behaviour of human object. They recognise the movement of object by 

analysis of shape of object modeling in several frames or the different centroid of object 

or by comparing with the available template, etc. Therefore, it is also necessary to 

explore the algorithms which provide a high performance of recognition ability for a Fall 

Detection System. In addition, the algorithms have usually been compared together by 

simulating on Matlab and evaluated the reliable performance by a database. Besides, 

several video applications such as object segmentation, video compression format 
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(H.264 or MPEG4), filter (sobel, canny, etc.), and recognition (using Neural Network, 

Template Matching, etc.) have been studied on power/energy consumption 

characterization and modeling at different levels for embedded video system. Many 

methodologies have handled the low and high level models related to the processor, 

memory or FPGAs. In this thesis, the first main contribution is to propose efficient 

algorithms for the Fall Detection System which consists not only to signalize a fall but 

also the type of this fall in order to determine the urgency of the situation. Comparing to 

others fall detection, our system consists of 4 modules: Object Segmentation, Filter, 

Feature Extraction and Recognition with an automatic alarm whenever FALL is 

occurred. Then, in order to find out fall detection architectures which meet users and 

application constraints, power consumption and execution time models are defined 

taking into account architecture and application parameters. Thus, low cost architectures 

for our system are explored by using the parallelism techniques to find out the 

heterogeneous architectures which couple the energy consumption and fall detection 

accuracy rate. To achieve this goal, we intend to pursue the methodology scheduled as 

follows: 

 (1) We determine recent algorithms which are applied on each module of Fall 

Detection System and our system also give an urgent alarm for detecting 

different kinds of fall. We make then various simulations to compare the 

recognition rate performances among algorithms such as BackGround 

Subtraction/Hidden Markov Model (BGS-HMM), Gaussian Mixture 

Model/Hidden Markov Model (GMM-HMM), BackGround Subtraction/Neural 

Network (BGS-NN) and BackGround Subtraction/Template Matching (BGS-

TM). In this thesis, in order to evaluate the efficiency of the Fall Detection 

System, a DUT-HBU database which is classified with different actions: fall, 

non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides and 

cross) is created and used for simulation, evaluation and implementation 

purposes. The testing databases are then regrouped into three different scenarios 

types: well-matched (WM), medium-mismatched (MM) and highly-mismatched 

(HM). We select the BGS/TM algorithm, which is sufficient for recognition 

performance by using the well-matched test in this database, and is in order to 

implementation purpose. Some factors which affect to the quality of recognition 

in this system such as environment brightness, occlusion of object, many 

movement objects appearing in a frame at the same time are also analysed.   

  (2) In order to find out a suitable architecture for the proposed algorithm, power 

consumption and execution time models are proposed for processor cores based 

on Functional Level Power Analysis (FLPA) and FPGA related with the 

hardware resources and then for heterogeneous architecture. Our video 

application was implemented on processor cores (ARM Cortex A9 processor) of 

ZYNQ Platform different configurations. TI USB Interface Adapter PMBus 
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associated with TI Fusion Digital Power Designer GUI are used to measure the 

power consumption on processor cores. Some tasks of the application are also 

synthesized, and characterized on FPGA by using Vivado 2012.4 tool. The curve 

fitting of regression law is used to get the mathematic models for power 

consumption and execution time which depend on algorithm and architecture 

parameters, such as operating frequencies, number of cores, image resolution. 

The error rate of these models is then evaluated and used for exploring the 

architecture for the Fall Detection System.  

(3) By extending the power consumption and execution time models, we propose 

a Design Space Exploration methodology to define low cost architecture for Fall 

Detection System. In this methodology, in order to explore heterogeneous architectures 

for our system, two parallelism techniques intra-task and inter-task static scheduling are 

applied. The low cost architectures are selected with the compromising of energy 

consumption and accuracy rate performance of the Fall Detection System.  
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Segmentation of Fall detection”, RUNSUD 2013, 23-24 April, 2013. 

[6] Thi Khanh Hong Nguyen, Cecile. Belleudy and Tuan.V.Pham, “Low Power 

Exploration Design Flow for Fall Detection System”, COLLOQUE NATIONAL 
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1.6 Thesis Organization 

This thesis is divided into 5 chapters. After the introduction in Chapter 1, we present the 

Fall Detection approaches and analyse the comparison of the performance of these 

approaches by their simulation on Matlab in Chapter 2. In Chapter 3 the extraction of the 

execution time and power models based on Function Level Power Analysis for processor 

cores and based on hardware resources for FPGA is discussed. And then the Design 

Space Exploration methodology including two parallelism techniques (intra-task and 

inter-task static scheduling) which is applied to explore low cost architectures for this 

system based on heterogeneous architectures with different configurations is described in 

Chapter 4. Finally, Chapter 5 contains the conclusions and proposals for the future works 

of this work.    
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Figure 1.6-An outline of the different chapters, research questions and contributions in this thesis 
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Chapter 2. Fall Detection Algorithm 

 

 

 

Nowadays, fall detection is a serious challenge in the public health care domain, 

especially for the elderly living alone. There are some health care systems based on 

sensors, audio, communication network and video processing. In our work, we develop a 

Fall Detection System based on video processing. The Fall Detection System is 

developed in two sides: algorithms and architectures. In this Chapter, we study and make 

the simulations of algorithms used in the Fall Detection System.  

In Section 2.1 of this chapter, the overview of Fall Detection System describes 

the definition of a falling event and the Fall Detection approaches which are currently 

used in recognition the postures or action of human object. The most important part is in 

Section 2.2 where we propose studied algorithms for the Fall Detection System including 

four modules: Object Segmentation, Object Enhancement, Feature Extraction and 

Recognition. In order to understand the behaviour of human object in our system, some 

recognition models are studied and illustrated more detail in Section 2.3. Moreover, the 

DUT-HBU database which is classified with different actions: fall, non-fall (sitting, 

lying, creeping, etc.) in different directions of camera (face, sides and cross) is used for 

evaluation our system. The system is evaluated in terms of the accuracy, recall and 

precision performance. Finally, the results on Matlab’s simulation in comparing the 

performances among these algorithms such as BackGround Subtraction/Hidden Markov 

Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-HMM), 

BackGround Subtraction/Neural Network (BGS-NN), and BackGround 

Subtraction/Template Matching (BGS-TM) are shown in Section 2.4. At the end of this 

Chapter, we make the general discussion about parameters which impact on the quality 

of recognition ability in the Fall Detection System.     

 

2.1 Overview of Fall Detection algorithm 

2.1.1 Definition of falling event 

According to the World Health Organization (WHO), there is no any specific definition 

of falls. In our work, falling accident is defined as "the loss of balance with involuntary 

causes the body suddenly fell to the ground". Accidental falls are always dangerous for 

children, adults, especially the elderly and cause serious consequences. 

Sudden fall (or falls by accident) is often affected by the impact and the external 

factors and by many different reasons, such as: slip and fall, walk and fall, fall from 
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heights, etc. Unexpected fall mainly for the elderly (or falls not by accident) may occur 

by many reasons. When considering the characteristics of the falls, the following factors 

are generally considered: 

 Direction falls: front, sides, behind. 

 Position of the body before and after the fall: lying, sitting, standing, kneeling, 

and leaning. 

 Speed of fall: rapidly or slowly falling down with wobbled knees. 

 Active or react before falling: legs or arms raise high, head thrown back, head 

peers ahead. 

Daily actions are mistaken as falling like running, sit down, laying and etc. 

These above mentioned factors are used to classify and build scenarios, various 

situations of fall and then used to train and build the fall detection, evaluation and 

development in our system. 

There are four stages in the process of falls include [10]: pre-fall, fall phase 

(main phase), after falling phase and recovery phase. 

 In the pre-fall phase, people are doing the normal activities in daily (probably 

occur with sudden movements like sitting or lying down quickly). Fall detection 

system distinguishes this stage with the following phase. 

 Fall phase includes sudden movement of the body to the ground, and ends with a 

crash to the ground. The period of this phase is usually very short, 300-500 ms 

[11], it is determined from 400-800 ms. 

 In the after falling phase, the body is not a normal movement, still lying on the 

ground.  

 Recovery phase: the falling elderly can stand up by themselves or by the other 

helps. 

 

2.1.2 Fall Detection algorithms 

Nowadays, fall detection is a major challenge in the public health care domain, 

especially for the elderly living alone. In 2013, the Center for Disease Control and 

Prevention
1
 (CDC) reported that rate of fall injuries for adults from 85 years old and 

older was almost ten times than that for adults between 65 and 74 in the United State
2
. 

This statistic also shows that falls are the primary reason of injury related to death for 

seniors aged 65 and older. Along with the population explosion of the elderly in the 

world, the demand for surveillance systems, especially for fall detection, has 

considerably increased within the healthcare industry. Developing intelligent 

surveillance systems take an important role, especially vision-based systems, which can 

                                                 
1
 http://www.cdc.gov/ 

2
 http://www.cdc.gov/injury/wisqars/pdf/leading_cause_of_nonfatal_injury_2012-a.pdf 
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automatically monitor and detect falls. It has been proved that the medical consequences 

of a fall are highly contingent upon the response and rescue time. Thus, a highly-accurate 

automatic Fall Detection System is an important part of the living environment for the 

elderly to expedite and improve the medical care. In order to provide immediate medical 

attention, and contribute to solve the lack of manpower in the health sector, many Fall 

Detection Systems have been studied recently. Several studies have been proposed to use 

vision-based systems. By using a single camera, Rougier et al. [27] propose an algorithm 

based on a combination of motion history and human shape variation which provides 

promising results on video sequence of daily activities and simulated falls. In order to 

reduce the occlusion areas by cause of the irrelevant position of camera or movement of 

object, several research works have developed to use multiple cameras [28]. Rougier and 

his research group [29] present a new method to detect falls by analysing human shape 

deformation during video sequences captured from four cameras. The shape matching 

technique is used to track the person's silhouette along the video sequence. Auvinet et al. 

[30] reconstruct 3-D volume of a person from eight cameras using calibration 

information. If a big portion of the body volume is near the ground for a period of time 

they recognise it as a fall. 

 

 

 

 

 

 

Figure 2.1-A typical fall while walking 

 

  

 

 

 

 

Figure 2.2-Some typical types of non-fall action 

In most of the developed camera-based systems, the algorithms mainly carried 

out in four phases as illustrated in Figure 2.3. Among them, Object Segmentation plays 

an important role in ensuring system robustness. From the practical aspects, the system 

should be able of dealing with lighting changes, movement through clutter areas, 

unexpected objects overlapping in the visual field and objects being introduced or 
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removed from the scene. First, moving object is segmented from each frame of the input 

video in the first module of the following diagram. An Object Enhancement is also used 

to improve the impact of noise in order to get the better object for the next modules. 

Afterwards, an ellipse model is built from the segmented object and used for extracting 

five features. These features are applied for training by recognition models. From the 

trained features, probability of each observed input data is calculated. By looking at the 

output results from sequential frames stored in a buffer, a final decision is made. Figure 

2.4 shows the process of fall detection by video. 

 

 

 

Figure 2.3-Block diagram of Fall Detection System. 

 

 

Figure 2.4-Detecting the fall by video analysis 

 

2.1.2.1 Object Segmentation  

Video signal including sequence of frames captured from the camera is put into Object 

Segmentation module to extract objects from the background. The output of this module 

is a stain, shape of the moving object. This is the first module in the Fall Detection 

System, therefore, its accuracy makes a considerable impact to next processing modules. 

Human objects are extracted from the background of an image by using the 

Object Segmentation algorithms. The object is segmented based on the difference 

between two consecutive frames in the time domain [31] or the type of removing 

background from an image [32][33]. In recent years, Background Subtraction method 

has become more popular and many thanks go to the development of optimization 

techniques in estimating dynamic background [34]. Stauffer and Grimson [35] have done 
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the Gaussian mixture model which is very flexible and suitable for objects moving 

slower than the background.  

Because monitored objects continuously move up, so objects are tracked to set 

the connection of objects via consecutive frames in the sequence images. To achieve 

accurate detection, tracking objects have the ability to handle the causes which are 

happened by segmented objects are not perfect and handle the occlusion by camera 

angles. Cheng and Hwang present not only the partial adaptive sample called Kalman 

algorithm [36] but also the combination of statistical data in order to detect multi-objects 

[34] with high accuracy and reliability. Comaniciu et al. propose tracking method in 

which the moving average values changed based on the centre of the image [37]. In this 

method, human object is performed as the convolution of the object’s properties with the 

central image are calculated the cost vie spatial. One of the biggest advantages of this 

method is less computation complexity compared to other methods.  

 

2.1.2.2 Object Enhancement 

The Object Segmentation methods are sensitive to the changes of background. But in 

reality, the background pattern is always affected by external factors such as intensity 

light, wind shake or reasons due to the colour of some object’s part coincides with the 

background. All these factors make the object (foreground) which is extracted from the 

background not only is necessary moving object but also includes noises or the inner 

object are not filled. Therefore, to ensure the provided object is the better quality for the 

next modules of the system, the object needs to be purified by removing the silhouette, 

the part of noise is not the object and blobbing the object model. One of the methods 

used to filter object after object segmentation module is Mathematical Morphology 

(MM) [38]. The other methods are Sobel Filter, Canny, Prewitt, etc.[39][40][41].  

 

2.1.2.3 Object Feature Extraction  

In order to understand the behaviour of extracted object, its features are calculated and 

analysed. After having extracted object from the previous modules, the movement curves 

which are bounded the object based on 2D/3D model are used to calculate the features of 

object [42][43]. To estimate the posture of object based on video analysis faces to some 

obstacles such as the depth of image, lots of object postures are continuously moving 

from video and the free gradient of joints are rather high. There are a number of methods 

that can solve this problem [44]. We can divide them into two categories either based on 

the model (model-based) [45][46] or not dependent on model (model-free) [47][48]. 

The above methods reflect the change of human posture quite accurate. 

However, the number of application research to automatically track the 3D human 

posture is very limited. In [49], R. Holt et al. suggest a method for automatic estimation 
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of 3D human pose from the video signal in real time effectively. The method is of 

analysis-via-synthesis splitting human body into several different sections. The human 

body is segmented from the background, extracted the 2D features, tracked the 2D 

features and reconstructed 3D posture. This method performs the minimization of 

complexity computation and restores lost events or obscured part as shown in [50]. 

 

2.1.2.4 Recognition events 

After obtaining the results of modeling the human body 2D/3D and motion curves 

around each human body, human actions are recognised and understood their behaviour 

from video sequences. Recently, there are some methods used in this module such as 

Template Matching (TM) or Threshold-based, Neural Network (NN), Hidden Markov 

Model (HMM), Dynamic Bayesian Network (DBN), etc. [51][52][53][54].  

For Template Matching, the extracted features are compared directly to the 

stored features (templates). These stored templates are extracted from the process of the 

past experiences and learning [55]. The application of machine learning techniques in 

identification of human behaviour is still facing many obstacles and very complicated. 

This is due to the extreme diversity of the same action but made by different people or 

even an action, but with a different angle and different duration. Furthermore, the 

features are reliably coped with the changing spatial-temporal scales related to human 

activity. These features must be separated by encapsulating in the unique properties of 

the same action, but made by different people. After describing the feature of an action, 

the next important issue is how to develop a method for identifying properties in the 

space available. Recently, Artificial Neural Networks (ANN), Hidden Markov model 

(HMM) and Dynamic Bayesian Network (DBN) are the most common methods to 

modelise and classify human action sequences. However, the methods are ongoing to 

verify which the most effective one is.  

 

2.2 Proposed Fall Detection Algorithm 

In our work, we propose an algorithm for elderly fall detection including four modules: 

Object Segmentation, Object Enhancement, Feature Extraction and Recognition. Human 

activities are captured in a video that is further analysed using image processing and an 

embedded system to detect fall and generate an alarm of FALL or NON FALL. It also 

provides the exact causes of human fall. To get more efficient in recognition and 

classification of falls, the database with different kinds of falls is built, called HBU-

database. Different scenarios are considered when identifying different kinds of falls and 

non-fall actions: falls from walking or standing, falls from sleeping or lying in the bed 

and falls from sitting on a chair, etc. or non-fall events like walking, lying, creeping, 

sitting and so on. 
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In following subsection, these algorithms in each module are described.   

2.2.1 Object Segmentation 

2.2.1.1 Background subtraction (BGS) 

In our work, two main methods are used to deal with Object Segmentation. Object 

Segmentation module is responsible for detecting and distinguishing between moving 

objects and the rest of the frame which is also called background [56]. In this work, a 

Background Subtraction method is applied to distinguish background and moving 

objects. A pixel is marked as foreground if  

     ii                                       (2.1) 

Where,   is a “predefined” threshold. And the updated background is estimated as: 

    iii   )1(1                 (2.2) 

Where  is kept small to prevent artificial “tails” forming behind moving objects. Here, 

we use average of 3 consecutive frames instead of using the current frame I. And   is 

chosen 0.05 as in [57].  

 

2.2.1.2 Gaussian mixture model (GMM) 

In cases of movement through clutter areas, objects overlapping in the visual field, 

shadows, lighting changes, and effects of moving elements of the scene, Background 

Subtraction methods achieve less efficiency of output. An adaptive Gaussian mixture 

model [58] is one of the solution to handle variations in lighting, moving clutter scene, 

multiple moving objects and other arbitrary changes to the observed scene. In this work, 

the values of a particular pixel over time are considered as a “pixel process”. The “pixel 

process” is a time series of pixel values that was shown in equation 2.3 as follows:  

      tkkyxt  1:),,(,..., 001                    (2.3) 

If each pixel results from a specific surface under particular lighting, a single 

Gaussian is sufficient to model the pixel value while accounting for acquisition noise. If 

only lighting changes over time, a single adaptive Gaussian per pixel will be sufficient. 

In practice, multiple surfaces often appear in the view of a particular pixel and the 

changeable lighting conditions. Thus, multiple adaptive Gaussians are necessary [35]. 

The recent history of each pixel, {X1… Xt}, is modeled by a mixture of K Gaussian 

distributions. The probability of observing the current pixel value can be calculated by:  

                   ),,( ,,, titittitp                     (2.4) 
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Where i,t is the weight parameter of the i
th
 Gaussian distribution;  is the probability 

density function of i
th
 Gaussian distribution. At each frame, the value of pixel at (x0, y0) is 

Xt. A Gaussian distribution is a match if Xt is within 2.5 times of its standard deviations. 

Each pixel can have at most one matching Gaussian from its mixture. From the labelling 

of each Gaussian we have two following cases:  

 a) In the first case: if pixels have a matching distribution, Gaussian is marked 

as matched that will be updated by following equation: 

   tktkti M ,1,, )1(                         (2.5) 

  ttt X  1)1(            (2.6) 

  )()()1( 2

1

2

tt

T

tttt XX            (2.7) 

Where   is the learning rate parameter and ),|( kktX   . For the other 

unmatched Gaussian, only the weight of distribution is updated with equation 2.4. 

b) In the second case: none Gaussian is marked as matched. Xt is assigned as a 

foreground pixel and the least probable component is replaced by a distribution with the 

current value as its mean, an initially high variance, and a low weight parameter.  

Distributions having a high weight and low variance are precisely the 

distributions that represented the background model. In order to find them, the K 

distributions are ordered based on the fitness value tktk ,, /  and the first S distributions 

are used as a model of the background of the scene where S is estimated as  

   )(minarg
1

,



b

k

tkb TS             (2.8) 

Where T is the minimum fraction of the background model.  

So as to remove noise and improve image’s quality from object’s binary image, 

mathematical morphology methods such as dilation and erosion, opening and closing to 

improving quality of segmented objects are applied. Figure 2.5 shows the result of object 

segmentation. 

As shown in Figure 2.5, the result derived from the GMM method is 

significantly better than the BGS method. This is due to adaptability of the Gaussian 

distributions and an automatic pixel-wise threshold (that is presented by two significant 

parameters - , the learning rate and T, the minimum fraction of the background model). 

Meanwhile, the BGS method is a simple Object Segmentation method based on a 

predefine threshold. 
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2.2.2 Object Enhancement 

There are some supporting methods to improve the quality of image from the object 

binary image such as Morphology Mathematic (MM), Edge Detection Filter (Sobel, 

Canny and Prewit Filter). 

In the following subsection, we describe the two techniques used to improve the 

quality of segmented object such as Mathematical Morphology and Sobel Edge 

Detection.  

 

2.2.2.1. Mathematical Morphology 

The Object Enhancement module as Filter removes noise and improves image’s quality 

from object’s binary image [56]. Mathematical Morphology (MM) is a mathematical 

theory which is used to process, analyse the images and improve quality of segmented 

objects [59]. It provides an alternative algorithm to image processing based on shape 

concept stemmed from set theory [60], not on traditional mathematical modeling and 

analysis. In the MM’s theory, images are treated as sets, and morphological 

transformations which is derived from Minkowski addition and subtraction are defined to 

extract features in images [61]. MM methods involving dilation and erosion, opening and 

closing are used in our work. 

 

 

 

Figure 2.5 (a) Estimated background; (b) Frame input; 

(c) Background Subtraction method; (d) Adaptive GMM method 

The morphologic operations work with two images: the original data is 

processed and a structuring element. Each structuring element has a shape which can be 

thought as a parameter to the operation. Two most common structuring elements are 
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connected to sets 4 and 8 as shown in Figure 2.6. To apply mathematical morphology, 

digital images must be binary images in which pixels represent the object image encoded 

by the pixel “1” and background encoded by the pixel “0”. Most fundamental 

morphological operations are morphological dilation and morphological erosion. 

Besides, we also have two compound operations named as opening and closing are 

defined. 

When the case of binary image is considered, A is the set of points representing 

the binary one pixel of the original binary image and B is the set of points representing 

binary one pixels of structuring element. 

Dilation is an operation that enlarges the objects presented in a binary image. 

Results of dilation are influenced both by the size and shape of a structuring element. 

Dilation of a binary image A by binary structuring element B is defined as: 

                            (2.9) 

Erosion is the opposite of dilation. This operation shrinks the objects in a binary 

image. That is erosion operation causes object to lose its size. Erosion of a binary image 

A by binary structuring element B is defined as: 

                                           (2.10) 

 

Figure 2.6-Structuring elements in Mathematical morphology 

Opening is simply the erosion of A by a structuring element B followed by a 

dilation of the output by the same structuring element. Opening of a binary image A by a 

binary structuring element B is defined as: 

                                 (2.11) 

Closing of an image is also a combinational operation of erosion and dilation. It 

differs from the opening operation in the sense of order of occurrence of erosion and 

dilation operation. Closing of an image A by a structuring element B is defined as: 

                                    (2.12) 

Examples of four basic morphological operations namely dilation, erosion, 

opening and closing are shown in Figure 2.7. These morphological operations are 
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changed relying on the structuring element. The objects are detected by the certain 

structuring element to determine whether the structuring element fit or not with the edge 

of the image. In each issue in this figure, the structuring elements are compared with 

each pixel of the objects and then use one of four methods above to change the edge to 

filter as the expected targets, like removing noise or cutting the unexpected edges.  

Erosion is a transformation of shrinking, which decreases the grey-scale value of 

the image, while dilation is a transformation of expanding, which increases the grey-

scale value of the image. But both of them are sensitive to the image edge whose grey-

scale value changes obviously. Erosion filters the inner image while dilation filters the 

outer image. Opening is erosion followed by dilation and closing is dilation followed by 

erosion. Opening generally smooths the contour of an image, and breaks narrow gaps. 

Opposed to opening, closing tends to fuse narrow breaks, eliminates small holes, and 

fills gaps in the contours. Therefore, morphological operation is used to detect image 

edge, and at the same time, denoise the image. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7-Example of Mathematical morphology operations[62]. 

a, Dilation (green blocks are the ones added to the original). 

b, Erosion (the green blocks are the ones that will disappear from the image). 

c, Opening.  d, Closing. 

 

2.2.2.2 Sobel Edge Detection 

Sobel edge detection algorithm is the most commonly used techniques in image 

processing for edge detection [63]. Two types of Sobel operators, which are horizontal 

and vertical, are used. The operator calculates the gradient of the image intensity at each 

b

, 

a

., 

c, d, 
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point, giving the direction of the largest possible increase from light to dark and the rate 

of change in that direction. The Sobel kernels are given by 

     
    
    
    

          
      
         
        

                        (2.13) 

In this case, the kernel Gx is sensitive to changes in the x direction, i.e. edges 

that run vertically, or have a vertical component. Similarly, the kernel Gy is sensitive to 

changes in y direction, i.e. edges that run horizontally, or have a horizontal component. 

The two gradients computed at each pixel (Gx and Gy) by convolving with above two 

kernels can be regarded as the x and y components of gradient vector. This vector is 

oriented along the direction of change, normal to the direction in which the edge runs. 

Gradient magnitude and direction are given by: 

      
    

                                                                 (2.14) 

An approximate magnitude is computed using:  

                                    (2.15) 

The angle of orientation of the edge (relative to the pixel grid) giving rise to the 

spatial gradient is given by 

       
  

  
                                          (2.16) 

In our other work, we evaluate hardware resources and power consumption of 

Sobel Edge Detection which is implemented with two studies: Xilinx system generator 

(XSG) and Vivado_HLS tools. These tools both are very useful for developing computer 

vision algorithms. The comparison the hardware resources and power consumption 

among FPGA platforms (Zynq-7000 AP SoC, Spartan 3A DSP) are analysed. 

 

2.2.3 Object Feature Extraction 

Before extracting features of object to understand its behaviour, it is necessary to 

modelise the shape of object, called body modeling step. 

 

2.2.3.1 Body modeling 

Objects are generally represented by their shapes and appearances. In this section, we 

first describe the object’s shape representations for tracking and then address the joint 

shape and appearance representations [64]: 

 Points. The object is represented by a point, that is, the centroid (Figure 2.8(a)) 

[65] or by a set of points (Figure 2.8(b)) [66]. In general, the point representation 

is suitable for tracking objects that occupy small regions in an image. 
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 Primitive geometric shapes. Object shape is represented by a rectangle, ellipse 

(Figure 2.8(c), (d) [67], etc. Object motion for such representations is usually 

modelled by translation, affine, or projective (homography) transformation. 

Though primitive geometric shapes are more suitable for representing simple 

rigid objects, they are also used for tracking non rigid objects.  

 Object silhouette and contour. Contour representation defines the boundary of an 

object (Figure 2.8(g), (h)). The region inside the contour is called the silhouette 

of the object (see Figure 2.8(i)). Silhouette and contour representations are 

suitable for tracking complex non rigid shapes [68]. 

 

Figure 2.8-Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, [64] 

(d) Elliptical patch, (e) part-based multiple patches, (f) object skeleton,  

(g) Complete object contour, (h) control points on object contour, (i) object silhouette. 

 

 Articulated shape models. Articulated objects are composed of body parts that 

are held together with joints. For example, the human body is an articulated 

object with torso, legs, hands, head, and feet connected by joints. The 

relationships among the parts are governed by kinematic motion models, for 

example, joint angle, etc. In order to represent an articulated object, one can 

model the constituent parts using cylinders or ellipses as shown in Figure 2.8(e). 

 Skeletal models. Object skeleton is extracted by applying medial axis transform 

to the object silhouette. This model is commonly used as a shape representation 

for recognizing objects [69]. Skeleton representation is modelised both 

articulated and rigid objects (see Figure 2.8(f)). 

There are a lot of ways to represent the appearance features of objects. It is noted 

that shape representations are also combined with the appearance representations [70] for 



30 

 

 

tracking. Some popular appearance representations in the context of object tracking are 

presented as follows: 

 Probability densities of object appearance. The probability density estimates of 

the object appearance is either parametric, such as Gaussian and a mixture of 

Gaussians [71] or nonparametric. The probability densities of object appearance 

features (colour, texture) are computed from the image regions specified by the 

shape models (interior region of an ellipse or a contour). 

 Templates: are formed using simple geometric shapes or silhouettes [72]. An 

advantage of a template is that it carries both spatial and appearance information. 

Templates, however, only encode the object appearance generated from a single 

view. Thus, they are only suitable for tracking objects whose poses do not vary 

considerably during the course of tracking. 

 Active appearance models are generated by simultaneously modelling the object 

shape and appearance [73]. The object shape is generally defined by a set of 

landmarks. Similar to the contour-based representation, the landmarks reside on 

the object boundary or, alternatively, they can reside inside the object region. For 

each landmark, an appearance vector is stored which is in the form of colour, 

texture, or gradient magnitude. Active appearance models require a training 

phase where both the shape and its associated appearance are learned from a set 

of samples using, for instance, the principal component analysis. 

 Multi-view appearance models. These models encode different views of an 

object. One approach to represent the different object views is to generate a 

subspace from the given views. Subspace approaches, for example, Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA), have 

been used for both shape and appearance representation [74]. 

 

2.2.3.2 Body modeling based on ellipse model 

Ellipse model is a very simple model describing the motion or the shape of the human 

body. In this model, a single object is surrounded by an ellipse. Ellipse model 

accompanying with fall action is shown in Figure 2.9. There are three important 

parameters of the ellipse model that are defined as follows: 

 Centroid of ellipse: In each frame, the centroid coordinate of ellipse O (Ox, Oy) 

is an average of the all x coordinates and the all y coordinates of the white pixels. 
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Where, Height, Width are the height and width of the image frame. 

i = 1: Height; j = 1: Width 

P(i, j) is the binary value of current image frame which position pixel is at the (i,j); 

In which P(i, j)= 0  if (i, j) image pixel is black and P(i, j)=1 if (i, j) image pixel is 

white [26]. 

 Vertical angle of the object: The vertical angle of the object is the angle between 

the major axis of ellipse and horizontal line. 

 

 

 

 

 

 

 

 

Figure 2.9-Vertical angle  

 The value of θ is determined as interval of
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 . The goal of getting the 

defined domain is to easier distinguish the fall of object being face fall or side 

fall. The vertical angle θ is calculated by  
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If we move the axis to the centroid of ellipse and calculate the mean of pixels, 

the vertical angle θ will be recalculated as following:  
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Where, x = i - Ox and y = j - Oy (Ox, Oy:  centroid of ellipse coordinate).  

Figure 2.10 shows some examples of ellipse models which describe the duration 

of fall action.  

 Major and minor axis of the object: Major and minor axes are double distances 

from O to O1(x1, y1) and O2(x2, y2), respectively, where: 

Major axis 

 X 
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* O1 is average of the all x coordinates and the all y coordinates of the white 

pixels W(Wx, Wy) located in the limited angle so that 
060ˆ hOW  

* O2 is average of the all x coordinates and the all y coordinates of the white 

pixels W(Wx, Wy) located in the limited angle so that 
060)2/(ˆ  hOW  

   

Figure 2.10-Ellipse model for fall action 

 

2.2.3.3 Object Feature Extraction  

After modeling the human body with ellipse model, features from model are extracted to 

identify the falls of object. There are many features that are used to recognize the fall 

action from human with 2D ellipse model. In the context of our work, 5 features are used 

to detect and classify falls comparing with the daily activities of object: 

 Vertical angle θ (or Current Angle). 

 Coefficient of motion (Cmotion). 

 Deviation of the angle (CTheta). 

 Eccentricity. 

 Deviation of the centroid (CCentroid). 

a) Current angle is vertical angle of the object. At the same camera angles the 

object with various movement releases difference for the deviation angle of the object. 

Instantaneous angle is vertical angle of the object in the frame, is also elliptical angle θ 

calculated above [26]. Figure 2.11 shows that at the same camera angles, if the object is 

walking, the vertical angle of object closes to 90
O 

via horizontal, and if object is bending 

or falling, the current angle of object will far from 90
O
. 
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Figure 2.11-Current angle of object 

b) Coefficient of motion (Cmotion)  

The brightness of a gray image has value in the interval [0, 255], in which the value of 0 

is blackest and 255 is whitest. The speed of the object motion is determined by a gray 

image in which the black pixels are background pixels, white pixels is the object 

extracted from the current frame. At the same position over time, the gray pixels are the 

white pixels of the previous image frame. Therefore, the gray frame is used to determine 

speed of the object motions as known Motion History Image (MHI)[75] as shown in 

Figure 2.12.  

 

    

         

 

 

 

 

 

 

Figure 2.12-Motion History Image. 

(a) MHI of slow action      (b) MHI of fast action 

The MHI or the Cmotion of object is determined by following equation   

    

            (2.21) 

 

In each MHI, Cmotion has value in a haft of interval [0, 1). Cmotion = 0 when the object 

almost does not walk around. Cmotion comes to 1 when the object moves as quickly as 

he/she does. Whenever the fall occurs, Cmotion has high values because the motion speed 

WhitepixelGraypixel

Graypixel
CMotion




88.9022 78.590

(a 

 
(b) 
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is rather high. As shown in Figure 2.13, during the period of fall in the red line Cmotion is 

significantly higher value with 0.7 than the blue line of normal walking Cmotion is within 

(0.5- 0.6). However with the different camera angle, Cmotion has different value. For the 

face fall action Cmotion decreases lower than normal walking. Thus, to distinguish two 

cases, other features are determined. 

 

Walking 

Cross fall 

Face fall 

Side fall 

Figure 2.13-The variable of coefficient of motion 

c) Deviation of the angle (CTheta) 

Considering the frame at the moment t, CTheta is calculated based on the values of the 

current frame of n frames from the frame (t - n + 1)
th
 to the frame t

th
 (with t ≤ n). 

Standard deviation is a value which performs the degree of convergence or the histogram 

of the database. If a database has small standard deviations, this means that the data 

elements have a high level of similarity. In contrast, the data elements scatter in the space 

of their value. In our work, CTheta is standard deviation of angles θ from 15 successive 

frames. CTheta is usually higher when a fall occurs [26]. 

The current vertical angle changes slowly and the level of moving vertically of 

the object is slow in the database. In this case, the standard deviation of the object 

changes at low standard deviations or vice versa. Therefore, when moving normally, the 

object is slightly changing in vertical angle, and thus the standard deviation value is 

small. On the other hand, when a fall action happens, the standard deviation value is 

suddenly high, as presented in Figure 2.14. 

It is seen that in case of side falls and cross falls, the CTheta is much higher than 

the non-fall actions and in light of direct falling actions. Figure 2.14 shows that CTheta is 

slightly higher than walking, but smaller than side fall cases. 
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Walking  

Cross fall 

Face fall 

Side fall 

Figure 2.14-Deviation of the angle (CTheta) 

d) Eccentricity  

Eccentricity at current frame is computed as below: 

           (2.22) 

 

Where, e: eccentricity; a, b: semi-major and semi-minor axis of ellipse. e is smaller when 

direct fall happens [76]. This is clearly seen in Figure 2.15. 

e) Deviation of the centroid (CCentroid)  

Considering the frame at the moment t, the system calculates CCentroid based on the values 

of y-coordinate of the centroid of n frames from the frame (t - n + 1)
th
 to the frame t

th
 

(with t ≤ n). CCentroid is the standard deviation consisting of the y-coordinates of the 

certain n frames. CCentroid is standard deviation of centroid coordinates from 15 successive 

frames. CCentroid decreases rapidly when the fall occurs [26]. 

This feature distinguishes between fall actions and non-fall actions. When a fall 

action occurs (red line), the CCentroid is high as the vertical change of the eccentricity is so 

fast. In addition, when a non-fall action happens (blue line), the CCentroid is small as the 

slowly vertical changes.  

2

2

1
a

b
e 
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Walking  

Cross fall 

Face fall 

Side fall 

Figure 2.15-Eccentricity 

 

2.3 Recognition event  

In our work, three recognition algorithms are applied to realise the behaviour of object. 

Firstly, it is Threshold-based algorithm. However, this method is not robust with many 

different scenarios of our database. The second method is Neural Network algorithm. 

This is more effectively than Threshold-based one, but it is too slow to apply our system 

in case of online. Therefore, the third algorithm, Hidden Markov Model, is also used to 

train and test on this system. 

 

2.3.1 Threshold-based algorithm 

Threshold-based algorithm is to set some hard thresholds to distinct whether an input 

action is fall or non-fall. These thresholds are picked up from training process which is to 

choose the relevant values for 5 main parameters in our system, namely CMotion, CTheta, 

CCentroid, Theta and Eccentricity. 

Based on the direction of falls and the type of falls, three models are built to 

detect falling accidents [77]. The first model is direct fall. In this case CMotion, CTheta, 

CCentroid are high but Theta is low. The second model is cross fall, in which CMotion, CTheta 

is high, and Theta, CCentroid and Eccentricity get a medium value. In the last model, the 

victim falls in the both side directions of the camera. Consequently Theta is almost 

constant, CMotion is in average, Eccentricity is low while CCentroid is quite high. The 

features are combined with each other depending on the fall models, the thresholds are 

selected from the survey of training videos. 
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Although this algorithm offers a significantly fast method to train and test the fall 

detection, there is still a drawback in system’s recognition ability. The hard thresholds is 

not flexible, therefore it is difficult to have an exact decision in a complicated data. 

 

2.3.2 Neural Network algorithm 

Neural Network (NN) is the second method dealing with fall action’s recognition in this 

study. The neural network is divided into three layers: the input layer, the hidden layer 

and the output layer. Each layer in this order gives input to the next one [78]. The 

threshold function of the units is modified to be a sigmoid function. The use of the 

sigmoid function gives the extra information necessary for the network to implement the 

back propagation training algorithm. Actually, the network utilised in this work is feed 

forward neural network of which neurons are only connected foreword. Each layer of the 

neural network contains connections to the next layer (for example, from the input to the 

hidden layer), but there are no back connections. Back propagation which is a form of 

supervised training describes how this type of neural network is trained. Back 

propagation works by finding the squared error of the entire network, and then 

calculating the error term for each of the output and hidden units by using the output 

from the previous neuron layer. The weights of the entire network are then adjusted with 

dependence on the error term and the given learning rate. Training continues on the 

training set until the error function reaches a certain minimum. If the minimum is set too 

high, the network might not be able to correctly classify a pattern. But if the minimum is 

set too low, the network will have difficulties in classifying noisy patterns. 

In the computer-based part of our work, the neural network’s initialization 

follows 4 major steps: configuration, training algorithm selection, training optimization 

and test [26]. 

 

2.3.2.1 Configuration 

To detect person’s falling, a two-layer feedforward NN is initialized with a five-

dimension input vector which comprises five extracted features from the previous step 

and a two-dimension output vector which represents for fall and non-fall decision. The 

single hidden layer consists of nhu neurons (nhu-number of hidden unit) with weights 

and biases. The activation function of the neurons in the hidden layer is the hyberbolic 

tangent sigmoid function due to its desirable attributes. The number of hidden units nhu 

was chosen to be variable, as the optimal value depends mainly on the complexity of the 

problem. nhu was varied for each optimization step in a wide range to derive the best 

value for a specific configuration. The output layer consists of two output neurons whose 

activation transfer functions are again the hyperbolic tangent sigmoid function. The first 

output signalizes the falling, and the second output presents non fall. And the first target 
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output is labelled with 1 for falling and 0 for non-falling. Biases and weights of all units 

were initialized randomly.  

 

2.3.2.2 Training algorithm selection  

The optimization criterion is selected to be the minimization of the mean square error 

(MSE) derived over the whole training set [79]. The maximum number of epochs is set 

to quasi ∞, and the goal of training, which is asked to be a small MSE value, is set to 

quasi zero. The training set is first split up into a training subset and a validation subset. 

The training of the ANN only stops if the MSE derived from the validation subset could 

not be reduced within 5 consequent training epochs. This method is considered to retain 

generalization.  

Two learning algorithms are considered: Scale Conjugate Gradient (SCG) [80] 

and Resilient Backpropagation (RP) [81]. Because SCG algorithm is investigated due to 

its common usage in pattern classification tasks and RP algorithm is fast convergence.   

 

2.3.2.3 Training optimization  

To optimize training process, there are three main steps involving selecting learning 

algorithm, size of validation subset and number of hidden units.  

 Firstly, two learning algorithms are considered: Scale Conjugate Gradient (SCG) 

and Resilien Backpropagation (RP). The database is randomly split up into 20% 

validation and 80% training subsets. From training process, the SCG algorithm is 

selected as providing a better work, which means the MSE gets optimized within 

a significantly smaller number of training epochs, where         
       

       
.  

 Secondly, to avoid overfitting the validation course is performed during the 

training period. The database is divided into a training subset and a validation 

subset (VS) in such a way that VS is large enough to have similar characteristics 

to the training subset, otherwise the training algorithm will stop early. On the 

other hand, the size of the validation subset should be kept as small as possible 

to retain a large training subset. From the former step, the Scale Conjugate 

Gradient (SCG) algorithm is used to train the neural network with hidden layers 

is fixed at 10 with validation subsets of different relative size (5%, 10%, 15%, 

20%, 25%, 30% and 35%).  

 After the process, it is said that 20% validation set and 80% training set offer the 

largest f-score and the smallest MSE. So this case is chosen as the appropriate 

configuration. Eventually, the SCG algorithm and the 20%-validation-subset size 

are implemented. We only changes the number of hidden layer in a wide range 

of nhu = {10, 20, 30, 40, 50, 60} to the optimal configuration. At the end, the 
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configuration with nhu = 50 is optimal, due to f-score is the largest and MSE is 

the smallest. 

 

2.3.2.4 Test   

After being trained by neural network, the neural network is used to test DUT-HBU 

database described more detail in Appendix. 

 

2.3.3 Hidden Markov Model algorithm. 

The Hidden Markov Model (HMM) is a useful statistical tool for modelling generative 

sequences that can be characterized by a basically process generating observable 

sequences. HMM, which has recently been applied with particular success to speech 

recognition, is a kind of stochastic state transit model [82]. Besides, dealing with variable 

length feature vectors as fall and non-fall action is an advantage of HMM over other 

machine learning methods. In this work, fall or non-fall state transition is analysed 

through observation series O = {O1, O2,…,On} indirectly. The 5 state HMM expresses 

fall process is denoted as  and it can be demonstrated by arrays:   ,,  for 

short. 

For training process, λ is adjusted to get the conditional probability P(O|λ) 

maximum. The Baum-Welch algorithm for unsupervised training is used for training 

purpose [82]. This algorithm computes maximum likelihood estimates and posterior 

mode estimates for the parameters of the HMM. This is updated weights through 

recursion to get better model. In order to distinguish falling actions from the other non-

fall activities, two HMMs were built. The observation data of HMMs is code-words in 

the codebook. The initial condition used for HMM training is 5 hidden states and  

random values for initial state distribution (π), state transition matrix (A) and emission 

matrix (B). Then the Baum-Welch algorithm is run until convergence condition is 

satisfied. In this study, experimental results showed that the 5-state left-to-right hidden 

Markov model provided the highest performance. 

For testing process, this process in this proposed system is separated into two 

following steps: 

 Clustering: The Euclidean distance from each feature vector to each codeword in 

the codebook is calculated. This feature vector is marked by codeword 

coefficients that have the shortest distance to it.  

 Decoding and decision making: A vector containing 15 coefficients is taken into 

decoding process for both fall and non-fall models. After decoding, the system 

compares the results of two models to make the decision to label “1” (if fall 

model is more likelihood) or “0” (if non-fall model is more likelihood). Then the 
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label will be stored in a buffer length is 15. When the total number of “1” in this 

buffer is greater than “predefined” threshold, the falling incident is detected. 

 

2.4 Evaluation 

2.4.1 DUT-HBU database 

2.4.1.1 Database description (see more in Appendix) 

Database name: DUT-HBU database (Danang University of Technology- Human 

Behavior Understanding) of Electronic & Telecommunication Engineering Department, 

Danang University of Technology, Danang, Vietnam.  

In our database, there are 216 videos which are divided into 106 falling videos 

and 110 non-fall videos as shown in Table 2.1. In our work, 113 videos are used for 

training and the rest are used for testing purpose. Scenario of creating the database of 

falling is based on direction of object with camera. Three falling directions (Figure 2.16) 

are defined in this database as:  

 Direct: object falls the same orientation with the direction of the camera. 

 Cross: objects created the 30
o
-60

o
 angles with camera when the falling occurs.  

 Side: object falls in a perpendicular direction to the camera. 

In each direction of the falling action, these videos also include activities as follows:   

- Slip: Objects are slipped and fallen backward. 

- Stumble: Objects are fallen ahead, do not kneel but raise their hand. 

- Faint: Objects are fallen ahead, kneel but do not raise their hand. 

- Roll-fall: Objects are rolled down from high position when they are lying. 

 

 

 

 

 

 

Figure 2.16-The position of falling compared with angles of camera 

Besides the fall clips, non-fall videos are also classified by three directions above. These 

videos consist of activities which are easily confused with falling action such as: lying, 

sitting, creeping, and bending [83].  

- Bending: Doing exercise or putting your arm down. 

Side Cross Direct 
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- Creeping: Crawling to find something on the floor. 

- Lying: Walking and lying on the floor. 

- Sitting: Sitting on the chair or the floor.  

Table 2.1-Classifier of videos according to activities 

 

DATABASE 
Training Testing 

Sum Pure 

data 
Noisy 

data 
Test1 Test2 Test 

Fall 

Cross 4 18 4 4 8 34 

Direct 4 19 4 6 9 38 

Side 5 17 4 5 8 34 

Non-fall 

Bending 

Cross 1 4 1 1 1 7 

Direct 3 5 1 1 1 8 

Side 1 3 1 2 2 8 

Creeping 

Cross 1 3 1 2 1 7 

Direct 2 4 1 1 1 7 

Side 1 4 1 1 1 7 

Lying 

Cross 1 3 1 1 2 7 

Direct 3 5 1 1 0 7 

Side 1 4 1 1 2 8 

Sitting 

Cross 0 2 0 1 2 5 

Direct 3 6 1 1 1 9 

Side 1 4 1 1 1 7 

Others 0 12 0 0 11 23 

Sum 31 113 23 29 51 216 

 

From the classification in Table 4.1, we divide to analyse more detail the action cases as 

presented in Table 4.2. 

2.4.1.2 Training databases 

Two training scenarios are implemented in this study:  

 Scenario 1: Training with pure data.   

Pure data consists of videos which have stable background. These videos are captured in 

a small room under good brightness condition. The object is not obscured by furniture in 

the room. Furthermore, our subjects wear natural clothing (as opposed to motion capture 

suits that is often done for pure motion capture sessions). Training set in the Scenario 1 is 

named as Scenario1 set. It contains 31 video clips of clear data with 13 falling clips and 

18 non-fall clips. 
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Table 2.2-Glossary of action classification 

 

Action Meaning 

Fc (Fall Cross) Fall creates a cross direction with camera angles 

Fd(Fall Direct) Fall creates the same orientation with the direction of the camera 

Fs (Fall Side) Object falls in a perpendicular direction to the camera 

Ncb (Non-Fall 

Cross Bending) 
Object bends in a cross direction with camera angles 

Ndb (Non-Fall 

Direct Bending) 
Object bends in the same orientation with the direction 

Nsb (Non-Fall side 

Bending) 
Object bends in a perpendicular direction to the camera 

Ncc (Non-Fall 

Cross Creeping) 
Object creeps in a cross direction with camera angles 

Ndc (Non-Fall 

Direct Creeping) 
Object creeps in the same orientation with the direction 

Nsc (Non-Fall Side 

Creeping) 
Object creeps in a perpendicular direction to the camera 

Ncl (Non-Fall 

Cross Lying) 
Object lies in bed or on a bench in a cross direction with camera 

angles 

Ndl (Non-Fall 

Direct Lying) 
Object lies in bed or on a bench in the same orientation with the 

direction 

Nsl (Non-Fall Side 

Lying) 
Object lies in bed or on a bench in a perpendicular direction to the 

camera 

Ncs (Non-Fall 

Cross Sitting) 
Object sits on a chair or on the floor in a cross direction with 

camera angles 

Nds (Non-Fall 

Direct Sitting) 
Object sits on a chair or on the floor in the same orientation with 

the direction 

Nss (Non-Fall Side 

Sitting) 
Object sits on a chair or on the floor in a perpendicular direction to 

the camera 

 

 Scenario 2: Training with noisy data.  

The noisy data consists of videos that have activities or situations similar to the 

ones of the Test2, and Test3 sets (which will be described later). Noise data is used for 

enriching the training set and provided others cases for a better training. The training set 

is named as Scenario2. It includes 31 clear data videos, 29 videos similar to the videos of 

Test2 set and 51 videos similar to the ones of Test3 set. They have 54 falling video clips 

and 59 non-fall video clips in the Scenario 2. The testing sets of scenario 1 are reused in 

this scenario. 
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Figure 2.17-Daily activities look like falling  

 

2.4.1.3 Testing databases 

The training set consists of videos which have static backgrounds. They are captured in a 

small room under good brightness condition. The object is not obscured by furniture in 

the room. Furthermore, moving subjects wear natural clothing (as opposed to motion 

capture suits that is often done for pure motion capture sessions). In comparison to the 

training data in [26], this training database contains 31 videos structured from 13 falling 

videos and 18 non-fall videos. 

The testing set is regrouped into three main types which are named as Test1, 

Test2 and Test3 corresponding to three different testing scenarios as well-matched 

(WM), medium-mismatched (MM) and highly-mismatched (HM) condition, 

respectively. This setup is designed to qualify robustness of the developed algorithms as 

illustrated below: 

 WM test clips: Their contents and recoding conditions are very similar to the 

ones for training. In each clip, there is only one moving object with static 

background. This set has 12 falling videos and 11 non-fall videos. 



44 

 

 

 MM test clips: includes these actions which have similar characteristics of object 

in the training videos but the environment brightness and camera position are 

changed. This consists of 15 fall videos and 14 non-fall videos.  

 HM test clips: There are many changes in activities and recording conditions 

compared to those of the training videos such as: part of the object is obscured, 

background is changed with extra static objects, or there are more than two 

moving objects in these video. This consists of 25 fall videos and 26 non-fall 

videos.  

The detailed breakdown of different types of fall videos and non-fall videos is 

shown in Table 2.1. 

 

2.4.2 Performance measurement 

Receiver-operating characteristic (ROC) analysis was originally developed during World 

War II to analyse classification accuracy in differentiating signal from noise in radar 

detection [84]. ROC analysis is a useful tool for evaluating the performance of database 

tests and more generally for evaluating the accuracy, recall and precision. Performance 

of such systems is commonly evaluated using the data in the matrix called as 

contingency table or confusion matrix. In Figure 2.18 a confusion matrix gives 

information about actual (True class) and predicted (hypothesized class) classifications 

done by a classification system.  

 

Figure 2.18-Confusion matrix 

In our work, the following statistical measures are exploited to assess the examined 

algorithms: Recall (RC) [%], Precision (PR) [%] and Accuracy (Acc) [85]. They are 

defined as follows:  

 
FNFPTNTP

TNTP
Acc

FPTP

TP
PR

FNTP

TP
RC










 ,,                (2.23) 
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Whereas TP: true positives (fall detection with fall videos); FP: false positives (fall 

detection with non-fall videos); FN: false negatives (no fall detection with fall videos) 

and TN: true negative (no fall detection with non-fall videos). 

The role of the RC, the PR, and the Acc is to evaluate overall performance of the 

system. The higher values of the RC, the PR, the Acc are, the more effective system is. 

Actually, two parameters PR, RC play a key role in a fall detection system due to the fact 

that when applying the detection system falls to the elderly, especially elderly or patients 

living alone, we need to figure out exactly fall actions in order to have a correct and 

prompt warning to ensure life safety for the monitored people. 

 

2.4.2.1 Performance of the system based on Neural Network 

Besides two training scenarios in the previous section, two different feature sets are 

extracted and examined:   

 The first feature set (FS1) contains 5 features which are extracted in every frame 

as proposed in our previous work [12].  

 The second feature set (FS2) is built by extracting five features above from 20 

consecutive frames. In this feature set, 20 frame-sequence times is equal to fall 

action, so FS2 is dynamic feature set. 

In this subsection, we evaluate performance of feature sets as well as roles of different 

training sets, there are four models as follows: 

 Model 1: Feature Set 1, Scenario 1 (FS1-SN1). 

 Model 2: Feature Set 1, Scenario 2 (FS1-SN2). 

 Model 3: Feature Set 2, Scenario 1 (FS2-SN1). 

 Model 4: Feature Set 2, Scenario 2 (FS2-SN2). 

a) Performance of the Model 1 (FS1 – SN1) 

Table 2.3 describes the detailed results of Test1, Test2 and Test3 for this model.  
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Table 2.3-Performance of the Model 1 

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 3 6 13 0 1 2 3 4 4 8 16

Fd 4 3 6 13 0 3 3 6 4 6 9 19

Fs 4 5 7 16 0 0 1 1 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 0 1 1 1 2 0 3 1 2 1 4

Ndc 0 1 0 1 1 0 1 2 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 1 1 1 1 1 3 1 1 2 4

Ndl 0 1 0 1 1 0 0 1 1 1 0 2

Nsl 0 0 1 1 1 1 1 3 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 3 3 0 0 8 8 0 0 11 11

23 29 51 103

Sum

Fall

Non-

fall

Sum

Scenario1

FS1

Fall Non-fall

 

 

Figure 2.19-Evaluating TPR and TNR of ALL three tests (FS1, SN1) 

 

Based on the results in Table 2.3 the statistical results namely True positive rate-TPR 

[%] and True negative rate-TNR [%] are calculated and presented as shown in Figure 

2.19 
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 When the direction of the camera is considered, TPR decreases accompanying 

the percentage of seeing objects decline, such as TPR is much over 90% for side 

falls, is around 90% for cross falls and below 90% in direct falls. 

 For non-fall actions: Figure 2.17 presents the bending or sitting on a chair which 

is not confused with falling actions, on the other hand actions such as sitting on 

the floor, lying or creeping are easily to be confused by falling actions.  

b) Performance of the Model 2 (FS1 – SN2) 

The detailed result of Test1, Test2 and Test3 for this model is shown in Table 2.4. 

 In this model, the performance of the system is improved significantly; however, 

the one for direct falls is still not good. After analysing the result, we realise that 

there are some confusion between direct falls and sitting on the floor. These 

actions have the similar features but happen in different duration.  

 The action falls down and not be mistaken to be considered in detail and we find 

often is confused between direct action and action fall sitting on the floor. Two 

actions have similar properties, but the duration of action is different. 

To overcome this shortcoming, a features’ vector consisting of 20 consecutive frames 

which is the same as the time a falling action happens is considered.  

Table 2.4-Performance of the Model 2 

 

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 4 7 15 0 0 1 1 4 4 8 16

Fd 3 4 8 15 1 2 1 4 4 6 9 19

Fs 4 5 6 15 0 0 2 2 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 1 0 1 1 1 1 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 0 0 0 0 1 1 2 4 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 2 2 0 0 9 9 0 0 11 11

23 29 51 103

Non-fall Sum

Fall

Non-

fall

Sum

Scenario2

FS1

Fall
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Figure 2.20-Evaluating TPR and TNR of ALL three tests (FS1, SN2) 

c) Performance of the Model 3 (FS2 – SN1) 

The detailed results of Test1, Test2 and Test3 for this model are shown in Table 2.5. 

Table 2.5-Performance of the Model 3 

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 3 7 14 0 1 1 2 4 4 8 16

Fd 4 3 5 12 0 3 4 7 4 6 9 19

Fs 4 4 7 15 0 1 1 2 4 5 8 17

Ncb 0 0 1 1 1 1 0 2 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 1 0 1 1 1 1 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 1 0 0 1 1 1 2 4 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 2 2 0 0 9 9 0 0 11 11

23 29 51 103

Sum

Fall

Non-

fall

Sum

Scenario1

FS2

Fall Non-fall
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Figure 2.21-Evaluating TPR and TNR of ALL three tests (FS2, SN1) 

 

As we can see in Figure 2.21 the performance of FS2 is better than the previous ones. 

d) Performance of the Model 4 (FS2 – SN2) 

Table 2.6 presents the detailed results of Test1, Test2 and Test3 for this model.  

Table 2.6-Performance of the Model 4 

 

Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL Test1 Test2 Test3 ALL

Fc 4 4 8 16 0 0 0 0 4 4 8 16

Fd 3 5 8 16 1 1 1 3 4 6 9 19

Fs 4 5 8 17 0 0 0 0 4 5 8 17

Ncb 0 0 0 0 1 1 1 3 1 1 1 3

Ndb 0 0 0 0 1 1 1 3 1 1 1 3

Nsb 0 0 0 0 1 2 2 5 1 2 2 5

Ncc 0 0 1 1 1 2 0 3 1 2 1 4

Ndc 0 0 0 0 1 1 1 3 1 1 1 3

Nsc 0 0 0 0 1 1 1 3 1 1 1 3

Ncl 0 0 0 0 1 1 2 4 1 1 2 4

Ndl 0 0 0 0 1 1 0 2 1 1 0 2

Nsl 0 0 1 1 1 1 1 3 1 1 2 4

Ncs 0 0 0 0 0 1 2 3 0 1 2 3

Nds 0 0 0 0 1 1 1 3 1 1 1 3

Nss 0 0 0 0 1 1 1 3 1 1 1 3

No 0 0 1 1 0 0 10 10 0 0 11 11

23 29 51 103

Sum
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fall

Sum
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In this model, the performance increases considerably. All side and cross falling 

actions are recognised correctly and the recognition of direct falling actions is over 80%. 

However, some fast non-fall actions are still confused with falling actions.  

 

Figure 2.22-Evaluating TPR and TNR of ALL three tests (FS2, SN2) 

 

e) Overall performance of the Neural Network 

The overall performance for all four models is presented in Figure 2.23 This shows 

Recall (RC) [%], Precision (PR) [%] and Accuracy (Acc) [%]. 

The statistical results depicted in Figure 2.23 below provide information about 

classification performance of training methods.  

 Statistical results in training Scenario2 are higher than in Scenario1. We observe 

that the accuracies of ALL set in scenario 2 with FS1 and FS2 are 90.38% and 

94.23%, respectively. But in scenario 1, these factors are 82.69% and 84.76%.  

 Training Scenario1: Its performance is acceptable in clean data. Statistical results 

decreased dramatically in the noise data. With FS1, results indicate that Acc is 

high for Test1 set up to 100%, but for Test2 set, this result is 79.31% and the 

lowest is in Test3 set, only 76.92%.  

 Training Scenario2: This model obtains stable statistical results in almost any 

conditions. This proves that behaviour is fair when many data with different 

conditions are trained.  

 NN which is trained with FS2 gives much better results than NN which is trained 

with FS1, in the same training scenario. With FS2, the time element is added. It 

increases the recognition ability.  

 In four fall detection models above, the fourth model which used FS2 and 

training Scenario2 performs the best and behaves fair in almost any conditions. 
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We can see statistical results of scenario 2, FS2 for ALL set in Figure 2.23. They 

are 94.34% for RC, 94.34% for PR and 94.23% for Acc. 

 

2.4.3 Performance of the system based on Hidden Markov Model 

The performance of the algorithm GMM-HMM evaluated with three different test sets is 

depicted in Figure 2.24 and Table 2.7. The overall performance of the proposed 

algorithm is quite high in most scenarios: (i) the best result obtained under the WM test, 

due to similarities in action styles and environment conditions between training and 

testing; (ii) in the MM test, because there are differences between camera angle and 

brightness of the test environment, performance is reduced to about 86%; (iii) with many 

actions performed naturally in daily life, there are several practical challenging situations 

happened such as: object is obscured by other static objects in the room, new object is 

added into the room background, the light is suddenly changed, falling directions do not 

match with the classified directions assumed during the algorithm development, etc. 

Thus, this test provides lower recognition rates than the others, but still acceptable.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23-Evaluating three tests for four different models 
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Figure 2.24-Statistical results following to Recall (RC) [%], Precision (PR) [%] and Accuracy 

(Acc) 

As detailed in Table 2.7, performance of the proposed algorithm varies correspondingly 

with object vision ability of camera. This system is good at cross or side falling actions. 

For non-fall activities, some actions such as bending or sitting on chair are usually 

recognized exactly, and other actions such as sitting on floor, lying or creeping are 

confused sometimes. 

 

2.4.4 Comparison these methods  

Beside the proposed algorithm GMM-HMM as described above, we also develop 

another algorithm using BGS for Object Segmentation and HMM for detection (named 

as BGS-HMM). Together with these two algorithms, our previous published work [26] 

based on BGS and Neural Network (BGS-NN) algorithm and the method using BGS and 

template matching (BGS-TM) reported in [77] are reprogrammed and comparatively 

evaluated on the same test database above. Their performances are depicted in Figure 

2.25, we mention the following comments: 

 While the BGS-TM method provides rather good results for the WM condition 

(95.65%), it performs worse under more difficult scenarios MM (55.17%) and 

HM (66.67%). Because of using the constant thresholds, this template matching 

method causes higher false alarm and lower recognition rate.   

 The hard threshold problem has been solved by training NN and HMM in this 

study. This evident is shown in Figure 2.25b and Figure 2.25c. Here, the results 

derived from the BGS-NN are slightly higher than the ones obtained by the 

BGS-HMM. We assume this due to the algorithm used larger amount of data for 

training NN. Meanwhile, the HMM was trained with fewer training data [26]. 

Test1 Test2 Test3 Total 

Recall 100 86.67 84   88.64 

Precision 100 86.67 80.77   86.79 

Accuracy 100 86.21 82.35   87.38 
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Table 2.7-Classifier of videos according to activities 

 

Database 
 Fall  Non-fall 

Sum 
Test1 Test2 Test3 Test1 Test2 Test3 

Fall 

Direct 4 4 7 0 2 2 19 

Cross 4 4 6 0 0 2 16 

Side 4 5 8 0 0 0 17 

Non-

fall 

Bending 

Direct 0 0 0 1 1 1 3 

Cross 0 0 0 1 1 1 3 

Side 0 0 0 1 2 2 5 

Creeping 

Direct 0 0 1 1 1 0 3 

Cross 0 0 0 1 2 1 4 

Side 0 1 0 1 0 1 3 

Lying 

Direct 0 0 0 1 1 0 2 

Cross 0 0 1 1 1 1 4 

Side 0 0 0 1 1 2 4 

Sitting 

Direct 0 0 0 1 1 1 3 

Cross 0 1 0 0 0 2 3 

Side 0 0 0 1 1 1 3 

Others 0 0 2 0 0 9 11 

Sum 12 15 26 11 14 25 103 

 

 By comparing performance of the GMM-HMM algorithm with three other 

methods, we can see the positive affect of using adaptive background Gaussian 

model. This method deals with lighting change by slowly adapting the Gaussian 

parameters. By adapting the old background with new added static object, it 

helps to remove obstacle objects from the real segmented object. The slow 

moving objects are therefore also eliminated from the foreground estimation.    

 While, only pure data (good brightness, static background, etc...) in training the 

HMM system is used in this study, the NN actually exploits much more noisy 

training data including many different environments for learning purpose. 

However, excepting the WM condition, its performance is less than the one of 

our proposed algorithm in both MM and HM scenarios. We assume this 
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improvement due to the contribution of adaptive GMM in object segmentation. 

With Gaussian Mixture Model, interest objects are well segmented which leads 

to better extracted features [26]. 

 The last comment is good balance between RC and PR scores of the proposed 

GMM-HMM method while this cannot be achieved by other algorithms. 

 

2.4.5 Analysis of error recognition 

The fourth model is GMM-HMM as shown in Figure 2.25 gives the best results, but it is 

not the optimum. The causes of the error recognition come from many aspects. A part is 

from the algorithm and the others are from the objective conditions such as poor light 

conditions, more than one object moving at the same time, or bad extracted features 

chosen to distinguish the actions. We will review many different aspects to analyse 

advantages, shortcomings and orient optimization solutions in recognition. 

 

2.4.5.1 False extraction objects 

a) Environment’s brightness 

To correct the interference caused by poor brightness conditions such as weak or sudden 

changeable light intensity, we need to use better methods at extracting objects under less 

influence of light. Other cases as clothes of object coincide with the background colour 

that will make extracted object lost some parts. So, this lets the characteristics of the 

activity caused false identification system as described in Figure 2.26. 

b) Object is obscured  

One of the problems in the stage of extracting objects that are obscured some parts of 

theirs body by preventing between objects and camera in the room as illustrated in 

Figure 2.27 This is a very difficult problem to overcome if one camera is only used. 

Some researchers have suggested solutions like hanging camera on the ceiling to avoid 

occlusion. But it is difficult to distinguish the action falls to the sitting down action or 

lying down on floor with this solution. 
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a) 
b) 

 
 

c) 
d) 

Figure 2.25-Recognition performance derived from 

(a) BGS-TM (b) BGS-NN (c) BGS-HMM (d) GMM-HMM 
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Recall 100 73.33 76.92 81.13 
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Recall 100 73.33 73.08 80.77 
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0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

P
er

fo
rm

a
n

ce
 (

%
) 

Test1 Test2 Test3 Total 

Recall 100 86.67 84 88.64 
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Accuracy 100 86.21 82.35 87.38 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

P
er

fo
rm

a
n

ce
 (

%
) 



56 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26-Extracted object under not good environment’s brightness 

 

Figure 2.27-Object is obscured some parts of body 

 

c) Many movement objects appear in the frame at the same time  

Extracted Object method based on background subtraction only works well in the case of 

a static background with one moving object as suggest at the beginning of this Chapter. 

For the video has other objects moving with complex routine, the quality of the output of 

background subtraction stage is very bad and hard to track the object as shown in Figure 

2.28. To distinguish the supervision subject with other objects which move at the same 

time, we should use the more complex methods as follows tracking multi-points on the 

body or Stick-figures technique instead of silhouette. 
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Figure 2.28-Many objects are moving at the same time 

 

2.4.5.2 Extracted features 

The 2D model estimated from a camera in this thesis will not show the depth of the 

object; hence, the five selected features are used to classify the actions. Figure 2.29 

shows the values of extracted features of face fall action and sitting down on the floor 

and continuously stand up to go. 

Obviously with two different actions, face fall and sitting actions, the five 

features are very similar, thus the system cannot distinguish the two actions and it causes 

misclassification. It means that the five extracted attributes are not sufficient to 

distinguish the fall actions given in this thesis. 

From the above analysis, we found that this solution has to be further processed. 

However, it is basically solved the problem of fall recognition. The algorithms achieve 

high effective due to the large of recognition sample set. The purity video gives right 

results with higher rates. It is necessary to consider the other problems such as the 

obscured object, silhouette of object, etc. in identifying the real situation.  

 

2.5 General discussion 

The experimental results show that the performance of this proposed algorithm is quite 

high and robust even in conditions such as lighting changes, added background, varied 

camera vision, obscured objects, long-term scene changes, etc. Although the final result 

of the computer-based Fall Detection System is quite good, its design faces some major 

challenges discussed in this section.  
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2.5.1 Performance under real-life conditions 

In Fall Detection System, accuracy and reliability are two major criteria which should be 

improved as much as possible. This is easier to achieve in experimental environments 

under controlled conditions. However, the detection rate perhaps decreases when applied 

to a real situation [86]. Especially, our database use data recorded from falls of young 

people simulated at the discretion of each impersonator in the videos. So, our database 

lacks of a standardized procedure or compares with a public database. Meanwhile, the 

real fall detection aim to older people or patients who have some distinctions with young 

people in the database. There are only few studies incorporated data from older people 

[87][88], but their participation is limited to perform a set of simulated activities of daily 

living for a few minutes or hours. That is not enough to assess the system performance in 

a real situation.  

 

2.5.2 Usability  

The fall detection based on camera is particularly implemented at certain areas, namely 

small hospitals or nursery homes where a small surveillance area and not many people 

moving simultaneously have. Moreover, this system still limits to become an online 

system which can capture a moving object, train itself and test at the same time. 

Furthermore, the most important restriction here is that this system is not wearable, 

which is more convenient and applicable at the contemporary time.  

 

2.6 Conclusion  

In this chapter, the algorithms used in Object Segmentation, Filter, Feature Extraction 

and Recognition module of the Fall Detection System is described. Moreover, we 

introduce the speciality of DUT-HBU database which is used for evaluation our 

proposed algorithms in this Chapter and also in other Chapter. We assess the describe 

Fall Detection System by using the accuracy, recall, precision performances. The 

comparison is then shown simulation results between these algorithms such as 

BackGround Subtraction/Hidden Markov Model (BGS-HMM); Gaussian Mixture 

Model/Hidden Markov Model (GMM-HMM); BackGround Subtraction/Neural Network 

(BGS-NN); BackGround Subtraction/Template Matching (BGS-TM). Therefore, we 

select the BGS-TM algorithms for implementing our system on processor cores and 

FPGA. Finally, we analysis some shortcomings of these techniques to give the false 

recognition output related environment brightness, occlusion of object, multi objects, etc.  

In the next Chapter, we characterise the algorithm and architecture parameters to 

model the execution time and power consumption of video processing applications 

which support for exploring the low cost architecture of Fall Detection System on both 

processor cores and FPGA. For the implementation aim, each modules of Fall Detection 
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System is considered as a task: Object Segmentation, Filter, Feature Extraction and 

Recognition.  

 

  

 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

           

 

 

 

 

 

 

 

 

 

 

 

Figure 2.29-Comparison the five features of face fall and sitting action   
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Chapter 3. Power and Time Model 

Methodology for Fall Detection System 

 

         

 

 

 

 

Various design methods have been proposed to estimate power from low level to high 

levels that requires design information in language such as Verilog/VHDL/SystemC/C. 

However, the more detailed the model is the slower the simulation and thus the slower 

the estimation. Therefore, to improve this process, it is desirable to define a power 

estimation methodology.   

Consequently, the target of this Chapter is on defining an efficient power model 

to estimate the power consumption of video applications in the Fall Detection System. 

We also extract the execution time model by this way. In general, the aim of power 

estimation methodology mentions about the speed and accuracy. In our work, we target 

accuracy based modeling style and analysis information collected from measurement on 

real board to obtain sufficiently accurate power estimation for the Fall Detection System 

on heterogeneous platform. Therefore, we experiment and verify the model’s accuracy 

on Zynq-7000 AP SoC platform, to show the applicability of our model. 

The following of this chapter is structured as follows:  Section 3.2 and 3.3 

describe the power consumption modeling approaches and execution time estimation 

approaches. The discussion for selecting the suitable heterogeneous platform such as 

Zynq 7000 AP SoC to implement the Fall Detection System is clarified in Section 3.4. 

Section 3.5 presents the method to measure the power/execution time on processor cores 

and FPGA for our system. Then, the proposed power model of the Fall Detection 

System on heterogeneous platform is illustrated in Section 3.6. The next Section 3.7 

is dedicated to the definition of execution time models for heterogeneous platform.  
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3.1 Power and energy consumption characterization and estimation in 

MPSoC 

In today's high-performance system designs, power consideration is becoming 

increasingly important leading to develop the power consumption in MPSoC at early 

step of the design. Understanding source of power consumption allows designers to 

configure on MPSoC environment to minimize power consumption, successfully meet a 

given power budget to maintain a reliable product and also sufficient the recognition 

rate.  

The power consumption of CMOS circuit consists mainly of dynamic and static power. 

                                     (3.1) 

In a CMOS device including n transistors, the static power consumption, Pstatic, is 

calculated as a function of the number of transistors, the leakage current Ilkg_i of each 

transistor and the supply voltage Vdd. It is represented by equation 3.2 

                    
 
            (3.2) 

Actually, when no switching activity occurs, transistors in CMOS circuits lose an 

amount of current that can be negligible or not according to the architecture and the 

technology of the circuit. The static power, Pstatic, in our work is the additional 

continuous power dissipation when the device is configured and there is no activity.  

The dynamic power dissipation, Pdynamic, of a CMOS circuit is depicted by an 

approximate relation given by equation 3.3 which includes the operating frequency f, the 

supply voltage Vdd and the total load capacitance of all gates CL. Where  is the average 

switching activity of the component. 

                     
         (3.3) 

Dynamic power can be an important source of power dissipation and is considerably 

dependent on the application and the architecture of processor cores or FPGA. 

In addition, the energy consumed by a system is the number of power dissipated 

during a certain period of time. For instance, if a task T is running on a MPSoC during 

an execution interval of T: [a, b] then the energy consumed by the MPSoC during this 

time interval is given by equation 3.4: 

                    
 

 
                              (3.4) 

To define a methodology of power/energy consumption estimation, it is 

necessary to characterize the variation of power/energy consumption on hardware 

(FPGA) and software (processor) parts separately or the combination of heterogeneous 

solution. The power/energy estimation is a process to evaluate of the power consumption 

of a design. The aim is to check whether power and reliability constraints are met or not. 

After defining the power consumption estimation, it is necessary to explore architectures 
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with the low cost power/energy consumption for the Fall Detection System. Generally, 

the estimation methods are based on the followings [89]:   

 Power estimation is based on the simulations of the embedded system and its 

results depend on the activities/toggles of the design.  

 Power estimation using mathematical models shows the dependence of power 

consumption of the embedded system on certain parameters. These parameters 

can be static such as the processor frequency, the number of cores, the memory 

size, etc. or dynamic such as cache miss rate, pipeline stall, instruction per cycle, 

etc. 

In the following Section, we review the state of the art of power consumption modeling 

approaches on embedded systems at different abstraction levels.  

 

3.2 Power consumption modeling approaches 

In this Section, we present an overview of recent approaches to model the power 

consumption. The power consumption models can be distinguished into two main 

categories [90]: 

 Low-Level models. 

 High-Level models. 

Low-level models calculate the power from detailed electrical descriptions: circuit levels, 

gate level, register transfer level (RTL) and architecture level.  The current low level 

tools are such as SPICE [91] at the transistor level, Diesel [92] at the gate level and 

Petrol [93] at the RTL level, which deal with fine-grained activities. The simulation time 

of these tools depends on circuit size and circuit complexity. Thus, it is rather difficult in 

application for complex MPSoC. Notwithstanding, the tools supply a good accuracy, but 

it is not always practical to implement in the early design flow as they require generally a 

deeper knowledge of the circuit. While, high-level models deal with instructions and 

functional units of the programs with less architectural and technology knowledge [90]. 

 

3.2.1 Low-level power consumption estimation techniques 

Both accuracy of the estimation and speed of the simulator compromise the efficiency of 

the power simulator. There are many power simulators available in the industry and also 

in academic research centers. In this subsection, we survey the estimation techniques of 

the power consumption frequently used at lower levels. The low-level power 

consumption estimation techniques cover a wide range of abstractions levels such as the: 

 Circuit/Transistor level estimations; 

 Logic gate level estimations;  

 RTL estimations; 
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 Architectural level estimations; 

Circuit-level estimations 

At this level, the processor cores are presented in terms of transistors and nets which also 

require undergoing all the steps in the design flow. Furthermore, the circuit-level of the 

system uses element models which are based on linear differential equations [94] and 

works in continuous time domain. This implies that a simple simulation for a small set of 

transistors requires a large number of time which is not always available in this fast 

moving industry and not practical for complex SoC [95]. PowerMil [96] is an early 

attempt to build a low-level power consumption simulator. This tool is used for 

simulating current and the power characteristic in VLSI circuits. It is also accomplished 

to simulate detailed current behavior in modern deep sub-micron CMOS circuits, 

including sophisticated circuits such as sense-amplifiers, with speed and capacity 

approaching conventional gate level simulators [97] 

Gate-level estimations 

The description about the gate-level method to estimate the power consumption as 

example of processor cores is presented in this subsection. The main advantage of these 

methods with respect to circuit-level simulation method is that the simulation is event-

driven and takes place in a discrete time domain which considerably reduces the 

computational complexity, without any significant loss of accuracy [95]. 

In [97], Subodh Gupta and Farid N. Najm propose an automatically generation 

of 3-dimensional table to estimate the power consumed in circuit for a given statistics. 

Their power model is constructed with three variables: average input signal probability, 

average input transition density and average output zero-delay transition density. A novel 

and significant aspect of this approach is that they extend the same model for all types of 

combinational gate-level circuits and requires no user intervention. Another important 

fact is that their model works gives very good accuracy, with a Root Mean Square error 

(RMS) of under about 6%.  

Besides, Ding Chih-Shun et al. [98] present an accurate and efficient gate-level 

power estimation technique called tagged probabilistic simulation (TPS).  TPS is based 

on the notion of tagged (probability) waveforms which divide the logic waveform space 

into a small number of disjoint parts and then represents all the logic waveforms in a part 

by a probability waveform. The advantage of this simulation strategy is that the 

correlations among circuit internal nodes (referred as logic gates) can be effectively 

accounted for. In [99], S.T. Oskuii et al. extend this technique by using a novel 

waveform set method. Previous method has local glitch filtering approaches that fail to 

model this phenomenon correctly. Glitches originated from a node may be filtered in 

some, but not necessarily all, of its successor nodes. Their technique allows modeling the 

removal of glitches in more detail by using a global glitch filtering. 
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RTL estimations 

Most of the RTL designs are illustrated as a collection of blocks and a network of 

interconnections. The blocks, sometimes referred to as adders, registers, multiplexers and 

macros (a complex functionality block including among of register, adders, etc.), while 

the interconnections are simply nets or group of nets. Most of the tools presented in the 

literature follow similar pattern like the power properties of the block can be derived 

from an analysis of the block isolated from a design, under defined conditions. The main 

factor influencing the power consumption model of a macro is the input statistics [95].  

Most of the research in RTL power estimation is based on empirical methods 

that measure the power consumption of existing implementations and produce models 

from those measurements. There is another approach which is widely used by RTL 

designers is based on measurement for estimating the power consumption of data-path 

functional units. Liu et al. [100] develop a method and a tool for power modeling to 

estimate the power consumption of different parts of a chip such as logic gate, local and 

intermediate interconnection, memory size. However, this tool is not as accurate as gate 

level simulators, it gives a fast estimation before circuit and layout design. In the other 

sides, the method power consumption estimation is based on predictable input signal 

statistics proposed by Landman and Rabaey [101] with a quite accurate (10% to 15% 

error rate). The feasibility of this method depends on correct input statistics or the ability 

to correctly model. 

A methodology for creating power macro models bases on linear regressions but 

their flow is specific to the structural RTL macros and power estimation performed at the 

gate-level is proposed by  Bogliolo et al.[102]. They analyze the application of linear and 

nonparametric regression for the automatic construction of RTL power macro models for 

registers and combinational logic blocks (called macro). Their approaches are focused 

on: off-line and online characterization. For off-line characterization, the power of RTL 

macro is based on tests. And they adaptively do online characterization for error 

minimization. Continuously, Qing Wu et al. [103] propose macro-model predicted not 

only the cycle-by-cycle power consumption of a module but also the moving average of 

power consumption and the power profile of the module over time for RTL. The authors 

introduce a power function and approximation steps to generate the power macro-model. 

Potlapally et al. [104] present another technique related RTL circuit that are the cycle-

accurate power macro modeling. Their techniques are based on RTL components 

demonstrate different power behavior for input vectors at different cycle. They create 

power macro model for each of these behaviors also known as power modes. Their 

design flow selects an appropriate power mode given from the input vector in each cycle 

and then applies power macro model techniques. 
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Architectural-level estimations 

In the previous abstraction of low level estimation, the literature discuss about the power 

consumption estimation on processor cores and FPGA. This subsection describes the 

state of art for power consumption estimation based on architectural-level estimation. 

The simulators derive power estimates from the analysis of circuit activity induced by 

the application programs during each cycle and from detailed capacitive models for the 

components activated. A major difference between these simulators is the estimation 

accuracy and estimation speed. SimplePower tool [105], works with a transition-

sensitive power model for the data-path functional unit. The SimplePower core accesses 

a table containing the switch capacitance for each input transition of the functional unit 

exercised. The use of a transition-sensitive approach has both design challenges as well 

as performance concerns during simulation [94]. The first concern is that the 

construction of these tables is time consuming. Unfortunately, the size of this table grows 

exponentially with the size of the inputs. The table construction problem can be 

addressed by clustering algorithm [106] and partitioning mechanisms [105]. Further, not 

all tables grow exponentially with the number of inputs. The second concern is the 

performance cost of the lookup table for each component access in a cycle. In order to 

overcome this concern, simulators like SoftWatt [107] and Wattch [108] use a simple 

fixed-activity model for the functional units. These simulators only track the number of 

accesses to a specific component and utilize an average capacity value to estimate the 

power consumed. In contrast to the datapath components that use a transition-sensitive 

approach, the models estimate the power consumed per access and do not accommodate 

the power differences found in sequences of accesses. 

One of the most widely used another tool in architectural domain is Wattch 

[108]. Wattch tool is used for superscalar processor. The base infrastructure is offered by 

SimpleScaler [34] for this tool. SimpleScaler carries out fast, flexible and accurate 

simulation of modern processors that implement a derivative of MIPS architecture. In 

addition, it also supports detailed cycle accurate information for all models, including 

datapath elements, memory and Content Addressable Memory (CAM) arrays, control 

logic, and clock distribution network. Wattch uses activity-driven, parametrisable power 

models, and it displayed accuracy better than 10% when tested on three different 

architectures. Energy measuring tools can be either transition-sensitive or based on 

analytical formulas. Since transition-sensitive simulators estimate the energy 

consumption based on bit-switching activities, they take a significant amount of time to 

generate energy estimates (for example, SimplePower). In [109], the other approaches to 

evaluate energy estimates at the architectural-level for memory system called Virtual 

Energy Counters (vEC) tool by the following formula: 

                                    (3.5) 
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Where, Ebus represents data and address bus energy between processor and cache; Ecell 

represents cache energy; Epad represents data and address pad energy between cache and 

main memory; and finally Emain represents the main memory energy. 

vEC provides a user interface to estimate the energy consumption for memory system. 

The energy estimates are provided for those consumed in the data, instruction and 

extended caches, main memory, address bus, data bus, address pads and data pads. 

Energy estimations for instruction number and clock cycles are also supported by vEC.  

System for Early Analysis of SoCs (SEAS) [110] proposes a methodology for 

analysis SoCs in early design stage. SEAS provides integrated algorithms which use for 

testing the performance, floorplan, timing and power. Power evaluation in this system 

works at a granularity of processor cores, where pre-characterized data for power is used 

based on the power state of the design. Power states of the cores are based on active, idle 

or sleep states of cores. By extracting the power values for the states of cores, users can 

estimate the average power for the whole system in early stage with high accuracy.  

 

3.2.2 High-level power consumption estimation techniques  

The accurate power estimation at high level takes a significant role in any successful 

design methodology. Many researchers are interested in extending this area because of 

increasing the complexity of the MPSoC's architecture. In this section, we present some 

high level power estimation approaches which consist of spreadsheet, Instruction Level 

Power Analysis (ILPA) and Functional Level Power Analysis (FLPA).  

3.2.2.1 Spreadsheet based approaches 

In the early stage of design process, spreadsheets are determined for the initial planning 

to take some important decision [111]. The users are not necessary to learn any 

complex/sophisticated tool in order to get design decisions based on spreadsheet 

approach.  One of the basic applications of spreadsheet is area estimation. We can get 

estimation values on area by using data sheets from intellectual property (IP) providers, 

library cell estimate, etc. Spreadsheet supplies an ability to capture such information that 

can be used for quick area estimation. In [112], the designer can find out some decisions 

to control power based on spreadsheet approach. Power budgeting approaches using 

spreadsheets are very essential for printed circuit board (PCB), power supplies, voltage 

regulators, heat sink, and cooling systems.  

A spreadsheet tool is as example for Xilinx Power Estimator (XPE) [113]. In 

industry, the power estimation for programmable devices with a complex process and 

architecture like FPGAs needs to be done very efficiently. To produce accurate 

estimates, the power estimation process requires reliable input values, such as resource 

utilization (e.g. flip-flops, look-up tables, I/Os, block RAMS, DCMs, etc.), clock rates 

and toggle rates.  
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In fact, XPE uses your design and environmental input, and then combines this 

information with the device data model to compute and present an estimated distribution 

of the power in the targeted device. XPE presents the following power types:  

 Power by voltage supplies is useful information to select and size power supply 

components such as regulators, etc. Supply power includes both off-chip and on-

chip dissipated power. 

 Power by User logic resources allows users to experiment with architecture, 

resources, and implementation trade-off choices in order to remain within the 

allotted power budget. 

 Thermal power is the expected thermal properties of the device. It helps the 

users to evaluate the necessary for passive or active cooling for a design.  

In addition, Power Estimation Tool (PET)
3
 provides users the ability to gain 

insight in to the power consumption of select Texas Instrument (TI) processors such as 

OMAP35x, AM35x and AM335x Processors. The tool includes the ability for the user to 

choose multiple application scenarios and understand the power consumption as well as 

how advanced power saving techniques can be applied to further reduce overall power 

consumption. 

Spreadsheets are fast, flexible, and generally well understood. Unfortunately, the 

disadvantages are also applicable-error prone nature, wide accuracy variance, and 

manual interface. Nonetheless, spreadsheets such as Microsoft’s Excel are used to model 

entire systems. System components and sub-blocks are modelled with customizes 

equations using parameters such as supply voltage, operating frequency, and effective 

switched capacitances. Technology data may or may not be explicitly parameterized, but 

it is typically derived from data-book information published by the technology vendors. 

Spreadsheets are most often used for project planning but may not be able to provide 

accurate guidance for block-level hardware power estimation and reduction. This 

motivates a need to provide a power model, which can perform accurate yet efficient 

power analysis at early stage of the design. Thus, it is necessary to define another 

estimation method of power consumption on processor cores, hardware. The next 

subsection provides an overview the power model based on approaches for power 

estimation purposes such as Instruction Level Power Analysis (ILPA) and Functional 

Level Power Analysis (FLPA). 

 

  

                                                 
3
 http://www.ti.com/tool/powerest 
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3.2.2.2 Instruction Level Power Analysis (ILPA) 

An instruction level power model for individual processors was first proposed by Tiwari 

et al. [114][115]. The total energy consumption of a program Ep is expressed with the 

following equation:  

                                                 (3.6) 

The following factors contribute towards the energy cost of a program: 

Bi - Base cost for each instruction i. 

Ni - Number of execution times for each instruction i. 

Oi,j - Circuit state change overhead for each instruction pair (i,j). 

Ni,j - Number of execution times for each instruction pair (i,j). 

Ek - Energy cost for other inter-instruction effects (stalls, cache misses etc.). 

In[114], Tiwari et al. measure the current drawn by the processor as it repeatedly 

executes distinct instructions or distinct instruction sequences, it is possible to obtain 

most of the information that is required to evaluate the power consumption of a program 

for the processor under test. The authors model the power consumption of the Intel 

DX486 and Fujitsu SPARClite 934 processor. Power is modeled as a base cost for each 

instruction plus the inter-instruction overheads that depend on neighboring instructions. 

The base cost of an instruction can be considered as the cost associated with the basic 

processing needed to execute the instruction. However, when sequences of instructions 

are considered, certain inter-instruction effects come into play, which are not reflected in 

the cost computed solely from base cost. This effect and others can be summarized as the 

following: 

a) Circuit state: switching activity depends on the current inputs and previous 

circuit state.  

b) Resource constraints: resource constraints in the CPU can lead to stalls, for 

instance, pipeline stalls and write buffer stalls. 

c) Cache misses: the instruction timings listed in manuals provide the cycle 

count assuming a cache hit. For a cache miss, a certain cycle penalty has to be added to 

the instruction execution time. 

During executing, certain instruction sequences which these effects occur may provide a 

way to isolate the power cost of these effects. Thus, the total of the power costs in each 

instruction that is executed in a program enhanced by the power cost of the inter-

instruction and other effects can be an estimate for the power cost of the program.  

Much more accurate measuring environments have been proposed to precisely 

monitor the instantaneous current drawn by the processor instead of the average current. 

One of these approaches has used current mirror, based on bipolar junction transistors as 
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current sensing circuit as shown Figure 3.1. The Instruction level power models in the 

work of Nikolaidis et al. [116] are derived by measuring the instantaneous current drawn 

by the ARM7 TDMI processor at each clock cycle.  Their model is traced by executed 

assembly instructions, generated by an appropriate processor simulator and estimated the 

base and inter-instruction energy cost of the executed program taking into account the 

energy. Niloladies et al. improve their power model by using the energy sensitive factors 

as well as the effect of pipeline stalls and flushes in [117]. This method is developed for 

pipelined processors like the ARM7 (three-stage pipeline: instruction fetch, instruction 

decode and instruction execute). Another approach, to reduce the spatial complexity of 

instruction-level power models, is also presented in their work in relation to a reference 

instruction as No Operation (NOP). The main drawback of this method is the complexity 

in measurement the current. More researchers attempted to enhance the original Tiwari 

ILPA power consumption modeling technique as in[118][119] 

 
 

a) b) 

Figure 3.1-(a) Experimental Setup for current measurement, (b) The simple current mirror. DUT 

is the Device Under Test [116] 

The ILPA-based methods have some disadvantages, one of these disadvantages 

is that the number of current measurements is directly related to the number of 

instructions in the Instruction Set Architecture (ISA) and also the number of parallel 

instructions composing the very long instruction in the VLIW processor. The problem 

complexity of instruction level power characterization of K-issue VLIW processor is 

O(N
2K

) where N is the number of instructions in the ISA and K is number of parallel 

instructions composing the VLIW [120].  

This technique helps to evaluate the power cost of embedded software and verify 

specified power constraints if a design meet. Moreover, it is also use to search the design 

space in software power optimization. 
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3.2.2.3 Functional Level Power Analysis (FLPA) 

In order to overcome the shortcoming of ILPA, J. Laurent, N. Julien et al.,  first 

introduce Functional Level Power Analysis (FLPA) method in [121]. The functional 

level power modeling approach is applicable to all types of processor architectures. 

Furthermore, FLPA modeling can be applied to a processor with moderate effort, and no 

detailed knowledge of the processors circuitry is needed. This approach is based on a 

functional analysis of the core of processor to determine a set of consumption rules. The 

way of which interactions between functional blocks induce power consumption depends 

on several identified parameters which called architecture parameters are configuration 

and algorithmic parameters as shown in Figure 3.2. Their functional analysis presents a 

very efficient and straightforward method for energy optimization. The error rate 

between estimation and measurement is not higher than 7.4% for their considered 

application and architecture. The result of this method is applied to a FIR 16 filter on a 

TMS320C6201 DSP and has extended to other processors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2-The Functional Methodology[121] 

 

In the previous work [121], the estimation are already validated at the assembly 

level by direct comparison with measurements. Then Eric Senn, N. Julien et al. [122] 
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functional blocks will influence on the power consumption of these components such as 

Processing Unit, Instruction Management Unit (IMU), internal memory and others. First, 

a functional analysis of these blocks is performed to specify and then discard the non 

consuming blocks (those with negligible impact on the power-consumption). The second 

step is to figure out the parameters that affect the power consumption of each of the 

power consuming blocks. For instance, the IMU is affected by the instructions 

dispatching rate which in turn is related to the degree of parallelism.  

In addition, the relevant consumption parameters are chosen as the significant 

links between the blocks. There are two types of parameter: algorithmic parameter values 

depend on the executed algorithm (such as the cache miss rate, parallelism rate, 

processing unit rate, external memory access rate and Direct Memory Access rate)  and 

architectural parameter values depend on the processor configuration resolved by the 

designer (typically the clock frequency, word length of input data, memory mode) [123]. 

The model is shown by a set of analytical function or a table of consumption values that 

accord to functional and architectural parameters. As the model is established, the 

estimation process includes extracting the appropriate parameter values from the design, 

which will be injected into the model to compute the power consumption.  

The SoftExplorer tool is developed based on this method [124]. This tool realizes 

the suitable trade-off between the estimation accuracy and time in order to ensure a rapid 

and reliable feedback to the designer. The SoftExplorer tool is allowed to estimate the 

power consumption of algorithm which is developed on C code[125]. This tool also is 

used to optimize the power consumption of an application. Eric Senn et al. show a 

functional level power analysis to extract the different power models and illustrate how 

to perform the best data mapping for an application. This methodology is implemented 

on various processor such as ARM7, the low-power (C55) and Very Large Instruction 

Word-VLIW (C62) processor [126]. Moreover, these crucial phenomena like pipeline 

stalls, caches misses, and memory accesses are applied. The recently work of M. E. A. 

Ibrahim et al. [94] present a precise high-level power estimation methodology for the 

software loaded on a VLIW processor based on a FLPA. Their targeted processor is the 

TMS320C6416T DSP from Texas Instrument. 

In the work of S. Rethinagiri et al. [127], they extend the FLPA to create generic 

power models for the different target processors such as ARM processors (ARM9, ARM 

Cortex-A8 and ARM Cortex-A9 processors), DSP processor, Heterogeneous 

multiprocessor (OMAP5912 and OMAP3530) under test. Their estimation of power and 

energy results provides a maximum error of 5% for mono-processor and 9% for 

heterogeneous multiprocessor based system when compared against the real board 

measurements. 

For these reasons, in context of our work, we apply this methodology to generate 

power models at high level estimation. Then, the FLPA methodology is used to establish 

the power model for different components of video processing in the Fall Detection 
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System on processor cores. This approach is extended in extracting the power models for 

software (processor cores), hardware (FPGA) and heterogeneous architecture. Moreover, 

we consider several important issues in our model. The main contributions are as 

follows: 

First, precise models are defined to estimate the power consumption of the 

targeted processor cores for the Fall Detection System related these basic parameters 

such as number of cores, instruction per cycle, frequency of cores, caches miss rate, etc. 

and for FPGA. We, then, prove the validation and accuracy of our model for two 

technology target: processor cores and FPGA. After extracting the power consumption 

models for the Fall Detection System, we continuously to discuss some approaches in 

estimation of execution time for calculating the energy of these exploration architectures 

as following Section.  

 

3.3 Execution time estimation approaches 

Execution time estimation is important for designing processor cores. It provides the 

basic suggestion for selections of core of processors and other hardware components for 

the systems. It is also necessary to manage resource unit when scheduling program 

execution to meet the design constraints (such as efficient of energy, real-time) and to 

optimize the system performance and any other optimization goal. Estimating a program 

execution time is particularly critical in design of real-time systems [128]. Real-time 

systems require more than delivering accurately produced computational results. They 

also require tasks to meet their deadlines because, for applications such as Fall Detection 

System, process control, flight control, avionics, defense systems, vision and robotics, 

pervasive and ubiquitous computing, etc.  

Estimation of the execution time is an important part to estimate the efficiency of 

our system such as energy consumption and the frame rate. The aim of this section is to 

highlight two types of techniques in estimating execution time: static and dynamic. Static 

techniques apply a structural analysis of a piece of software and analytical model of the 

underlying hardware to define execution time without executing the software. Besides, 

dynamic techniques require executing the program of interest in order to estimate the 

execution time of a program. Furthermore, some dynamic estimation techniques also use 

a (static) structural analysis of a program when estimating its execution time. Both types 

of techniques are described in the following subsection, and we also discuss about the 

tools based on these techniques. 

 

3.3.1 Static timing estimation 

Static timing analysis techniques estimate the execution time of a program without 

actually executing any code. They are mainly used to determine the Worst-Case 



74 

 

 

Execution time (WCET) of a program, meaning a conservative estimate or upper bound 

for the execution time of a program. Most existing solutions are based on static program 

analysis techniques to model the execution of a piece of software on a given target 

processor [129]. In general, they are roughly concluded three steps [130]: 

a) Control flow analysis decomposes the structure of the program into atomic 

units for the subsequent analysis steps. The result of program representation is 

consequently the control flow graph (CFG), which is composed of basic blocks. A basic 

block is a maximal sequence of program statements with only one point of entry and 

exit. 

b) Micro-architectural analysis determines the execution time for the atomic 

units of a program using the result of the control flow analysis. In most cases this 

analysis is performed using an abstract model of the target processor. This model can be 

based on abstract interpretation[131] or symbolic execution [132]. The both cases focus 

on the execution time for sequences of machine instructions and neglect details of the 

computations these instructions perform on the real hardware.  

c) Global bound calculation uses the results of the two previous steps to obtain 

an estimate for the total execution time of a program. The prevalent technique for doing 

this is implicit path enumeration [132]. This approach translates the structural constraints 

and local execution time estimates into an integer linear programming (ILP) problem, 

which is then solved using standard ILP solvers. If a program contains loops, the 

maximal number of times a loop may execute must be determined by a previous analysis 

or provided by the user. This is necessary for the ILP solver to find a worst case path. 

In addition, Theiling et al.[131] propose an approach which employs abstract 

interpretation for micro-architectural modeling and integer linear problem (ILP) for path 

analysis. In their study, they show how the micro architecture analysis is separated from 

the path analysis in order to make the overall analysis fast.  

 

3.3.2 Dynamic timing estimation 

The dynamic timing technique measures execution time directly on the hardware, for 

some set of inputs, and measuring the execution time of the task or its parts. This means 

that target hardware must be available. The level of granularity at which these 

measurements can be performed varies for different processor architectures. The 

counters only provide a limited level of accuracy must be taken to obtain accurate 

measurements, while most current processor architectures support hardware performance 

counters [133]. In addition, it is necessary to modify the observed program by adding 

instrumentation code for manipulating the hardware performance counters of the 

processor. The measurements are impacted on the modification of program code. To 

perform measurements with an increased level of accuracy, for example, up to the level 
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of individual instruction, additional tools like logic analyzers or processors with 

dedicated tracing hardware support are required. 

Probabilistic and statistical timing analyses [134] are variants of dynamic 

approaches for execution time estimation. Probabilistic timing analysis tries to capture 

the variance of execution times by providing a probability distribution for the possible 

execution times of a program. This distribution is calculated by analyzing the execution 

time of individual program parts from a large set of measurements. The complete 

measurement process can take several days of observing the system in operation and 

produce gigabytes of data. Using this data, the execution time distributions of smaller 

program parts are incrementally combined to get the distribution for the complete 

program. The limitation of this combination step is that the execution time of individual 

program parts is assumed to be independent, which is often not the case in practice. More 

recent approaches for dynamic timing analysis apply statistical methods, like extreme 

value theory, to reason about the worst-case execution of a program without ever 

observing it [135]. However, this is still an area of active research without a generally 

accepted solution. 

 

3.3.3 Timing estimation tools 

The tool providers and researchers participating in this survey have received the 

following list of questions: 

 What is the functionality of your tool? 

 What methods are employed in your tool? 

 What are the limitations of your tool? 

 Which hardware platforms does your tool support? 

In the following Section, we try to reply these questions for different tools. 

 

3.3.3.1 The aiT Tool  

The AbsInt Timing analyzer [136] is a timing analysis tool developed and 

commercialized by AbsInt Angewandte Informatik, a German company. The purpose of 

AbsInt’s timing-analysis tool aiT is compute automatically upper bounds for the the 

worst-case execution time (WCET) of code design in executables. These codes may be 

tasks called by a scheduler in some real-time application, where each task has a specified 

deadline. aiT works on executables because the source code does not contain information 

on register usage and on instruction and data addresses. Such addresses are important for 

cache analysis and the timing of memory accesses in case there are several memory areas 

with different timing behavior. In aiT’s case, value analysis and cache/pipeline analysis 
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are realized by abstract interpretation, a semantics-based method for static program 

analysis. 

The aiT tool contains some limitations. This tool includes automatic analysis to 

determine the target of indirect calls and branches and to determine upper bounds of the 

iterations of loops. These analyses do not work in all cases. If they fail, the user has to 

provide annotations. aiT relies on the standard calling convention. If some code doesn’t 

adhere to the calling convention, the user might need to supply additional annotations 

describing control flow properties of the task. 

This tool supports to the following hardware platforms: Versions of aiT exist for 

the Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307, ARM7 

TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85 (prototype), and 

Infineon TriCore 1.3. 

 

3.3.3.2 The Heptane tool of IRISA, Rennes 

The Heptane 
4
 is an open-source static WCET analysis tool [137]. The purpose of 

Heptane is to obtain upper bounds for the execution times of C programs by a static 

analysis of their code (source code and binary code). The tool analyses the source and/or 

binary format depending on the calculation method the tool is parameterized to work 

with. 

Heptane integrates mechanisms to take into account the effect of instruction 

caches, pipelines and branch prediction. 

 Pipelines are tackled by an off-line simulation of the flow of instructions 

through the pipelines. 

 An extension of Frank Mueller’s so-called static cache simulation [138], 

based on data flow analysis is implemented in the tool. It classifies every 

instruction according to its worst-case behavior with respect to the 

instruction cache. Instruction categories take into account loop nesting 

levels.  

 An approach derived from static cache simulation is used to integrate the 

effect of branch predictors based on a cache of recently taken branches. The 

modeling of the instruction cache, branch predictor and pipeline produce 

results expressed in a micro-architecture-independent formalism, thus 

allowing Heptane to be easily modified or retargeted to a new architecture. 

Limitations of this tool:  there are no automatic flow analysis, no detection of 

mutually exclusive or infeasible paths and resulting in pessimistic upper bounds for some 

tasks. The bound-calculation method based on timing schemata currently does not 

                                                 
4
 https://team.inria.fr/alf/software/heptane/ 
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support compiler optimizations that cause a mismatch between the task’s syntax tree and 

control flow graph. This tool doesn’t support for data cache analysis and limits the 

number and types of target processors excepting the gcc compiler. 

The hardware platforms supported for Heptane are designed to produce timing 

information for in order mono-processor architectures such as Pentium1 - accounting for 

one integer pipeline only, StrongARM 1110, Hitachi H8/300, and MIPS as a virtual 

processor with an overly simplified timing model. 

AiT tool does not consider cache and pipeline in core of processors, thus these 

parameters also effect on the execution time. In addition, The Heptane tool is a static 

analysis of their code (source code and binary code) to predict the off-line execution time 

of a system. In our work, we have to measure total cycles, stall cycles, and level cache 

miss profile related the execution time of processor. Therefore, the Performance Monitor 

Unit is part of the ARM processor supports to our purpose in modeling the execution 

time for core of processors. 

 

3.4 Heterogeneous platform: Zynq7000 AP SoC platform  

3.4.1 Motivation  

The Fall Detection System based on Computer vision systems, which are elaborated in 

chapter 2, can act upon still images or video and are able to extract meaningful 

information from the content of images. In which image processing (as a whole, i.e. to 

include video processing and computer vision) can be segmented into three levels of 

abstraction: pixels, features and objects, description, which are characterised by the 

amount of image data being processed and the amount of knowledge available regarding 

the content of the image [139]. 

Considering the implementation of image processing systems in general, it is 

significant that different types of processing are required to operate on different types and 

volumes of data. This process requires a very large amount of pixel data on two first tasks (as 

Object Segmentation and Filter) of Fall Detection System which repetitive operations are 

performed, while a lot of data using to process more complex algorithms in calculating the 

five features (current angle, Cmotion (MHI), Ctheta, Eccentricity and Ccentroid). Continuously, 

analysis or classification of these features is necessary to understand the object’s behaviors in 

context by using the different model in recognition such as. 

For this reason, Zynq is a highly optimised platform for image processing. The 

Programmable Logic (PL) is well suited to fast, parallel operations like those required 

for pixel-level image processing. Computer vision functionality can be implemented in 

software for execution on the Zynq Processing System (PS) and integrated with higher-

level software applications as required. The transition between the two, via the detection 

of features and objects within the image, might be accomplished using the PL with 
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appropriate interfacing to the PS, or by leveraging the SIMD facilities of the NEON 

processor. Extensive support for NEON is available in third party image and video 

processing products [140]. 

In addition to the device architecture, the role of Xilinx and third party 

development tools in enabling the design of image processing systems for Zynq is 

considered. The following are worthy of particular note [139]: 

 Xilinx IP blocks: a number of IP blocks are available in IP Integrator for image 

and video processing applications, including video memory, image 

enhancement, and colour adjustment functionality. 

 OpenCV, Open Computer Vision in [141] is an open source project providing a 

set of C/C++ libraries for image and video processing. The facilities of OpenCV 

can be used to develop software algorithms for running on the PS.  

 Vivado HLS Video Libraries include specific support for image and video 

processing, via a library of functions synthesisable to HDL. These can replace 

selected OpenCV functions and therefore functionality can be partitioned into 

hardware if desired [142].  

 MATLAB/Simulink are available extensive facilities for image and video 

processing and computer vision [143]. In addition, to providing relevant 

functions and a development environment, developed algorithms can be 

converted to C/C
++

 code for implementation on Zynq. 

 

3.4.2 Description of Zynq-7000 AP SoC 

The Xilinx Zynq-7000 family is a System on Chip architecture that integrates a dual-core 

ARM Cortex-A9 MPCore based Processing System (PS) and Xilinx Programmable 

Logic (FPGA) in single device, built on 28nm process technology. The ARM Cortex -A9 

MPCore CPUs are the heart of the PS which also includes On-Chip Memory (OCM), 

external memory interfaces and a set of I/O peripherals. The Zynq offers the flexibility 

and scalability of an FPGA, while providing performance, power, and ease of use 

typically associated with ASIC and ASSPs. 

The Zynq platform is different from the older approaches. The PS is considered 

to be an essential part of the the chip and so it is possible to see Zynq as just a kind of an 

ARM SoC with an optional FPGA fabric. Figure 3.3 illustrates the functional blocks of 

the Zynq-7000 AP SoC. The PS and the PL are on separate power domains, enabling the 

user of these devices to power down the PL for power management if required. 

The Zynq-7000 AP SoC is composed of the following major functional blocks: 

 Processing System (PS): 

− Application processor unit (APU) 
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− Memory interfaces 

− I/O peripherals (IOP) 

− Interconnect 

 Programmable Logic (PL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3-Zynq-7000 All Programmable SoC Overview[144]  

 

3.4.3 The Performance Monitor Unit (PMU)  

From the description of Zynq platform which consists of dual core of ARM Cortex A9 

and FPGA is presented in previous subsection. The ARM Cortex A9 processors are the 

latest and highest performance ARM processors implementing the full richness of the 

widely supported ARMv7 architecture [145]. The Performance Monitors are part of the 

ARM Debug architecture and is an optional feature of an implementation used to define 

execution time for the Fall Detection System [146]. The basic form of the Performance 

Monitors is presented as follows: 

 A cycle counter is the ability to count every cycle or every 64th cycle. 

 A number of event counters, ARMv7 provides space for up to 31 counters. The 

actual number of counters is set as IMPLEMENTATION DEFINED, and the 

specification includes an identification mechanism. 

 Controls for: enabling and resetting counters; flagging overflows; enabling 

interrupts on overflow. 
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Monitoring software can enable the cycle counter independently of the event counters. 

The events that can be monitored split into: 

 Architectural and micro-architectural events which are likely to be consistent 

across many micro-architectures. 

 Implementation-specific events. 

 The PMU architecture defining for common events, for use across many 

architectures and micro-architectures by using event numbers. 

 Reserves a large event number space for IMPLEMENTATION DEFINED 

events. When the full set of events for an implementation is 

IMPLEMENTATION DEFINED. ARM recommends that processors implement 

as many of the events as are appropriate to the architecture profile and micro-

architecture of the implementation. 

The accuracy of The Performance Monitors provides approximately accurate 

count information. To keep the implementation and validation cost low, a reasonable 

degree of inaccuracy in the counts is acceptable. ARM does not define a reasonable 

degree of inaccuracy but recommends the following guidelines: 

 Under normal operating conditions, the counters must present an accurate value 

of the count. 

 In exceptional circumstances, such as a change in security state or other 

boundary condition, it is acceptable for the count to be inaccurate. 

 Under very unusual non repeating pathological cases then counts can be 

inaccurate. These cases are likely to occur as a result of asynchronous 

exceptions, such as interrupts, where the chance of a systematic error in the 

count is very unlikely. 

Limitation of PMU is permitted inaccuracy. In particular, the architecture does not define 

the point in a pipeline where the event counter is incremented, relative to the point where 

a read of the event counters is made. This means that pipelining effects can cause some 

imprecision. Entry to and exit from Debug state can also disturb the normal running of 

the processor, causing additional inaccuracy in the Performance Monitors. It disables the 

counters while in Debug state limits the extent of this inaccuracy. An implementation 

can limit this inaccuracy to a greater extent, for example by disabling the counters as 

soon as possible during the Debug state entry sequence.  

In spite of this limitation, we have applied PMU to extract the parameters used to 

estimate the power consumption for processors and then create the power models for 

processor cores.   
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3.5 Power/execution time models for video applications 

Currently, there are generally three types of implementations: processor based solutions 

(software solutions), FPGA based solutions (hardware solutions) and a combination of 

both. One of FPGA designers’ problems is that the open-source community for IP cores 

is not very developed, at least in comparison to open-source software such as OpenCV. 

Therefore, we develop and valid the power/execution time models for Fall Detection 

System which is run on ARM processors, while offering the possibility to accelerate 

through FPGA.  

For modeling the power consumption and execution time on processor cores, we 

have applied the FLPA (Functional Level Power Analysis) methodology, which are 

developed by Laurent et al [123] and allows to extract the processor power consumption 

model with a set of high level parameters in the research of N. Julien et al [147]. 

 

3.5.1 Power estimation methodology for Fall Detection System 

In our work, as explain before we select the Zynq 7000 AP SoC platform which has both 

processor cores and FPGA. The aim is to estimate the power consumption and execution 

time in order to evaluate the performance of different implementation.  

For processor cores, we first need to realize the power/time characterization of 

the target. This methodology is based on physical measurements in order to guarantee 

realistic values with good accuracy. The FLPA methodology, as shown in Figure 3.4, has 

four main parts, which are given below:   

 Firstly, a primary functional analysis helps the designer to determine which 

relevant parameters have an impact on the power consumption. There are two 

types of parameter: algorithmic parameter values depend on the specificity of the 

application and architectural parameter values depend on the processor 

configuration settled by the designer.  

 Then, they characterized the power consumption behaviour and execution time 

(obtained by measurements) in varying independently parameters.  

 Next, a mathematical model is determined by regression law. 

 Finally, the accuracy of the determined model is validated against a new 

measurements set. 

In our system, we consider to extract the characteristics and to determine the 

power consumption model for the Object Segmentation, Filter (Mathematical 

Morphology), Feature Extraction and Recognition tasks. Therefore, the number of 

experiments for exploring the best architecture of Fall Detection System is reduced. Two 

types of parameters are considered in this approach:  
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 Algorithmic parameters depend on the executed algorithm (typically the cache 

miss rate for the processor cores).  

 The component configuration set by the designer (i.e., Clock frequency) is the 

dependent of architectural parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4-Functional Level Power Analysis Methodology [147] 

 

For FPGA side, the estimated power is given by the sum of static power and 

dynamic power. The static power depends on the specific FPGA family. The dynamic 

power is the sum of logic power, signal power and clock power. Deng. L.et al. in [148] 

derive the power models which the power components are proportional to the area of a 

design, including hardware resource power, signal power and clock power. Their power 

models for the components that are proportional to the area of the design are derived by 

performing nonlinear regression analysis on the area and power data of applications. 

The power consumption model on FPGA of our system is extended from their 

approach. Our model which is extracted based on the hardware resources including the 

BRAM, DSP, LUT and FF for two first tasks (Object Segmentation and Filter using 

Mathematical Morphology) in Fall Detection System is presented in Section 3.6.2.  
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3.5.2 Power measurement 

 A power measurement bench is developed in order to reduce the time of each scenario 

measurements. Voltage and current monitoring and control are available for selected 

power rails through Texas Instruments' Fusion Digital Power graphical user interface. 

The three onboard Texas Instrument (TI) power controllers in Figure 3.5 (U32 at address 

52, U33 at address 53, and U34 at address 54) are wired to the same Power Management 

Bus (PMBus). The PMBus connector, J59 (as shown in Figure 3.76), is provided an 

interface of the TI USB Interface Adapter PMBus pod (TI Evaluation Module USB-TO-

GPIO) [149] and associated TI Fusion Digital Power Designer GUI [150]. This is the 

most convenient way to monitor the voltage and current values for the power rail. 

  

 

 

Figure 3.5-Integrated Texas Instruments digital power controller on Zynq-7000 Ap SoC 

 

Voltage and current levels of the power supply are measured with Texas 

Instruments’ UCD9248 Digital PWM System Controller, integrated on the Zynq board. 

This multi-rail and multiphase PWM controller for power converters supports the Power 

Management Bus (PMBus) communication protocol. Its PWM signal drives a UCD7242 

integrated circuit that regulates Vccint supply voltage. A set of PMBus commands is used 

to configure IC functions. The UCD7242 possesses on-chip voltage and current sensing 

circuitry and communicates with the UCD9248. 

Fusion Digital Power Designer is a Graphical User Interface (GUI) used to 

configure and monitor a Texas Instruments digital power controller as shown in Figure 

3.5 (UCD 91XX, UCD 92XX), they typically embedded on an EVM. The application 

uses the PMBus protocol to communicate with the controller over serial bus by way of a 

TI USB adapter. PMBus uses the System Management Bus (SMBus) to communicate 

Texas Instruments digital 

power controller 
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with a controller over serial bus. The PMBus specification defines the application layer 

while the SMBus standard defines the transport layer. 

Figure 3.6 shows the measurement environment for Zynq-7000 AP SoC platform 

composed of a power measurement instrument. The EVM has four separate power rails: 

Rail 1 Vccint: 1.0V nominal supply of Zynq-7000 AP SoC platform that powers 

all of the PL internal logic circuit. 

Rail 2 Vccpint: 1.0V nominal supply that powers all of the PS internal logic 

circuits. 

Rail 3 Vccaux: 1.8V nominal supply that powers all of the PL auxiliary circuits. 

Rail 4 Vccpaux: 1.8V nominal supply that powers all of the PS auxiliary circuits. 

The following steps describe how to make the measurements on the Zynq-7000 

AP SoC platform: 

a) Plug in the USB cable to both the PC and the USB interface adapter with 

Zynq platform across jumper J59 (Figure 3.7) and wait for the green LED to illuminate. 

b) Monitor real-time data such as input voltage, output voltage, output current, 

temperature, and warnings/faults are continuously monitored and displayed by the GUI. 

c) Monitor power in each rail of PS or PL. 

d) Calculate the average power from step 3 for different part of Zynq -7000 Ap 

SoC platform. 

 

 

 

Figure 3.6-Measurement environment for Zynq-7000 AP SoC platform 
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Figure 3.7-Power Measurement probes across jumper for Zynq-7000 AP SoC 

 

3.5.3 Execution time measurement 

For performance measurement code, there are too many variations of timing 

mechanisms, operating system behaviors and run-time environment to have one single, 

simple solution [151]. In our system, the measurement time is performed by interval 

counting. The operating system also uses the timer to record the cumulative time used by 

each process. This information provides a somewhat imprecise measure of program 

execution time. The operating system maintains counts of the amount of user time and 

the amount of system time used by each process. When a timer interrupt occurs, the 

operating system determines which process is active and increments one of the counts for 

that process by the timer interval. It increases the system time if the system is executing 

in kernel mode, and the user time otherwise. 

We can also read the process timers by calling the library function times, 

declared as follows: 

t_start = get_time (); 

process task (); 

t_stop = get_time (); 

Execution_time = t_stop – t_start; 

As a return value of execution time, times is the difference of number of t_stop and 

t_start since each process task start. Therefore, computation the total time between two 

different points in a program execution is calculated by making two calls to times and 

computing the difference of the return values. 

J59 
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For measure the execution time on FPGA, we have to define the latency time 

and the clock period while synthesising a video application by using Vivado_HLS. The 

execution is multiple by the average latency and clock period during process. 

 

3.6 Proposed power model of the Fall Detection System on heterogeneous 

platform 

Increased demand and reduced time for getting low power architecture of Fall Detection 

System based HW/SW co-design. Design methodologies, where decrease of power 

consumption in such system can be done at the first stage of design. It knows that any 

optimization requires good analysis of design and so is the case with managing the 

power consumption of the design. To reduce the time when extracting the low power 

consumption in the final Fall Detection System version, it is necessary to have early 

power consumption estimation. Thus, we develop power models as achieved in this 

section.  

Figure 3.8 illustrates the methodology for extracting power models applied on 

Fall Detection System. Firstly, we choose both traditional implementation ways for video 

applications are on Software (ARM Cortex A9 processor) and Hardware (FPGA). On the 

software (SW) side, Object Segmentation, Filter tasks are implemented on one core and 

both two cores of processor. The basic idea is to expose data parallelism for these two 

tasks, the original image can be split into slices (2 slices or 3 slices) that can be 

segmented and filtered in parallel. Therefore, the object in each slice is merged in a 

complete binary image. Secondly, we can extract the parameters such as power 

consumption and execution time. The analysis of these tasks which take the longest 

processing will be considered for hardware acceleration. Filter tasks is selected in this 

case. Notwithstanding, Feature Extraction and Object Segmentation tasks take not too 

much difference in execution time together. Thus, other ones, Object Segmentation task, 

will be candidate implementation based FPGA. All tasks are processed on software with 

two different resolutions of input images, and various operating frequencies (667 MHz, 

333 MHz and 222MHz). 

In context of our work, some parameters are derived to extract power/time model 

for heterogeneous platform and find out more complex architectures based platforms. 

Table 3.1 summarizes the model parameters 

 

3.6.1 Power models for processor  

To extract the performance of processors which include a set of metrics such as Data 

cache access, data cache refill, total instruction, total cycle and data memory access, etc, 

we enable the optional non-invasive debug component, Performance Monitors 
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Extension. In ARMv7, the Performance Monitors Extension is an optional feature which 

helps to derive the specification of the earlier ARM implementations [146].   

 

 

 

          

          

          

          

          

          

          

           

Figure 3.8-Framework for extracting power models 

Table 3.1-Model parameters 

 

Symbol Description 

Power Model 

 Caches miss rate for processor 

IPC Instructions per cycle 

s Resolution Images 

Fcore Frequency of the core  

N Number of cores 

Time Model 

CPI Cycles per Instruction 

I Total Instructions 

Mstall Memory stall 

Rstall Read Stall cycles 

Wstall Write Stall cycles 

RstallIP Read Stall cycle per Instruction 

WstallIP Write Stall cycles per Instruction 

T Execution time of a program 

 

  

Software 

ARM Cortex A9  

 

 

Hardware 

FPGA 

Object 

Segmentation 

Filter 

(Mathematical 

Morphology) 

 

Feature 

Extraction 
Recognition 

Power /Time 

Models 

FLPA 
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3.6.1.1 Scenario implementations 

In our work, the four tasks of Object Segmentation, Filter, Feature Extraction and 

Recognition are independently executing, with negligible interference from other tasks. 

The system is composed of low power processor with N cores, operating at clock 

frequency F, where F  {Fmin, Fmax}. As we discussed the concepts of Fall Detection 

System in Chapter 2 and the FLPA methodology is explained in subsection 3.2.2.3. 

Firstly, different functional blocks are divided into such as the memory unit, clock 

system unit as shown in Figure 3.9. These parameters are indicated for each functional 

block of the processor and they are 1 and 2 respectively for L1 and L2 cache miss rates, 

Instruction per cycle (IPC) for all the activated cores and F for clock unit. The second 

step is the characterization of the power model by varying the parameters. The scenario 

of our test is also the two separate modules of Fall Detection System with different 

resolution images and number of cores. In our work, characterization is accomplished by 

measurement on Zynq 700 AP SoC platform. 

Figure 3.10 and Figure 3.11 present the relationship between frequencies and 

power consumption on various cores of processor of two above applications. The clock 

is operated to run on the platform at different available frequencies such as 222MHz, 

333MHz and 667 MHz. The various estimation of power consumption for Object 

Segmentation and Filter task (using Mathematical Morphology) is distinguished with 

application on one core or two cores and with no application. Power modeling 

methodology is proposed for different frequency scaling and the number of cores. 
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Figure 3.9-Functional Blocks of Dual Core ARM Cortex A9 processor
5
 

 

Table 3.2-Power model of Object Segmentation and Filter task 

 

                                                 
5
 http://www.design-reuse.com/articles/16875/the-arm-cortex-a9-processors.html 

Tasks Parameters Power models 

Object 

Segmentation 

Frequency 

of cores 

(F) 

                          

                           

                                

Mathematic 

Morphology 

        
                 

         
                 

                                

Clock System Unit 

Memory Controller 

Frequency (F) Frequency (F) 

Processing Unit 0 (IPC) 

Instruction Execute 

Load/store 

L1 Cache 

Instruction-cache 

(32KB) 

Data-cache 

(32KB) 

L1 Instruction miss rate L1 Data miss rate 

L2 Instruction miss rate L2 Data miss rate 

1 

2 

Read access rate Write access rate 

Processing Unit 0 (IPC) 

Instruction Execute 

Load/store 

L1 Cache  

Instruction-cache 

(32KB) 

Data-cache 

(32KB) 

L2 Cache & Controller (512 KB) 

L1 Instruction miss rate L1 Data miss rate 1 

Read access rate Write access rate 
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Figure 3.10-Power models of Object Segmentation with 320x240 input images on SW 

Figure 3.11-Power models of Mathematical Morphology with 640x480 input image on SW 
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In addition, power depends on not only frequencies and number of cores but also 

the cache miss rate () of two levels caches on processor (for instances, ARM Cortex 

A9) and Instructions per Cycle.  Figure 3.12 and Figure 3.13 present the variation of the 

power consumption according to the IPC and cache miss rate ( ) parameter in different 

resolution images. In the others,  and IPC are not unremarkable affected by the 

resolutions and the number of cores. In fact, we also find that  and IPC are independent 

with frequencies from experiments.  

 

 

Figure 3.12-The power consumption and cache miss rate of Object Segmentation and Mathematic 

Morphology with various resolutions 

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 

100 

200 

300 

400 

500 

600 

ca
ch

e 
m

is
s 

ra
te

 
 (

%
) 

P
o
w

er
 c

o
n

su
m

p
ti

o
n

 (
m

W
) 

cache miss rate power_consumption 



92 

 

 

 

Figure 3.13-The power consumption and Instruction per Cycle (IPC) of Object Segmentation and 

Mathematic Morphology with various resolutions 

 

In these applications, for instance, Object Segmentation, these images are parallelized by 

splitting each image (frame) into two slices running on dual core of processor. In this 

case, the multithreading technique is implemented on the processing system of Zynq 

7000 AP SoC platform. Each thread will be scheduled by Linux to running on each 

separate processor.  Object Segmentation task is processed in parallel on two cores as 

follows: 
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Function parallel_object_segmentation is 

    Input: pixel array of origin image A 

    Output: pixel array of processed image P 

 

    //------------------------ 

    Declare an pixel array A1 

    Declare an pixel array A2 

    Declare an pixel array P1 

    Declare an pixel array P2 

 

    Set A1 to first slice of A 

    Set A2 to the second slice of A 

    //------------------------ 

 

    Create 2 threads to process each slice of A 

    //Each thread will be scheduled by Linux to running on each separate processor if 

possible 

         

        Thread 1: call object_segmentation function 

            P1 = object_segmentation(A1) 

         

        Thread 2: call object_segmentation function 

            P2 = object_segmentation(A2) 

 

    Waiting for finished threads 

 

    Merge P1, P2 to P 

        Copy P1 to first slice of P 

        Copy P2 to the second slice of P 

 

    Return P 

 

3.6.1.2 The general models of power consumption 

The power consumption models are determined from the all experiments by using 

regression analysis. Regression analysis is a statistical process for estimating the 

relationships among variables in statistics. It includes many techniques for modeling and 

analyzing several variables, when the focus is on the relationship between a dependent 

variable and one or more independent variables. Regression analysis is widely used 

for prediction and forecasting. In restricted circumstances, regression analysis is used to 

infer causal relationships between the independent and dependent variables [152].  

The models in our work are defined in which are related the parameters are 

indicated such as core frequency, number of cores, Instruction per Cycle, Cache miss 

rate, resolution images (as shown in Table 3.1). Therefore, the power model for the 

ARM Cortex A9 processor is created by (see more in Equation 3.6):  

PPS (mW) = 31.7 + 0.42*F + 52.9*N + 7.7*(1+2) + 68.3*IPC           (3.6) 

Where,  



94 

 

 

PPS: Power consumption on processor cores. 

F: frequency of processor cores. 

N: Number of core. 

1, 2: Caches miss rate of L1 and L2 caches on processor. 

IPC: Instruction per Cycle. 

The different power models are validated by the real board measurement in order 

to find the efficiency of FLPA modeling for processor cores applied in this thesis. The 

video applications are compiled for FPGA and processor cores on Zynq 7000 AP SoC 

platform. While these applications are running, the power consumption is measured 

online. Finally the measurement of experiment from the platform is compared with the 

estimation from the power consumption model which is extracted the useful activities of 

the power model. 

Table 3.3 shows the maximum and average errors obtained with our approach 

modeling against measurements on ARM Cortex A9. The results obtained for the twelve 

experiments (for Object Segmentation and Filter tasks) and six experiments (for Feature 

Extraction and Recognition tasks) validate our approach. Furthermore, Table 3.3 describes 

the parameter numbers including image resolution, number of processor cores, frequency of 

processor cores and execution time for each model. With each models the power estimation 

is obtained. Our power modeling approach has a negligible maximum error equal to 3.5 %.  

 

Table 3.3-Maximum and average errors for power consumption model on processors 

 

Applications Processors 
Maximum 

error % 

Average 

error % 

Measurement 

numbers 

Parameter 

numbers 

Object 

Segmentation 

ARM 

Cortex A9 
5.5 2.2 12 4 

Filter 

(Mathematical 

Morphology) 

ARM 

Cortex A9 
5.3 2.4 12 4 

Feature 

Extraction 

ARM 

Cortex A9 
6.2 3.5 6 4 

Recognition  
ARM 

Cortex A9 
5.8 2.9 6 4 
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3.6.1.3 The power model for Fall Detection System on processor cores 

We estimate the power consumption of processor cores for Fall Detection System based on 

the power model as illustrated in equation 3.6. The new modeling related not only frequency 

of core, number of cores but also image resolution parameters is considered in this 

subsection. The image resolution is one of a factor impacting on the accuracy of our system.  

Therefore, the power consumption model for each task of Fall Detection System extended 

from equation 3.6 is determined as follows: 

                                                             

       (3.7) 

Where, P (i) is the power consumption on task i. In which i is i
th
 of task and i= (1:4); N 

is the number of processor cores; Fcores is the frequency of processor cores; the image 

size or the image resolution is assigned by s. 

The evaluation of the general model is analysed by the real measurement on 

processor cores with the maximum error 3.5%. This error rate is not too high, therefore it is a 

good adequacy in extending power consumption models for the Fall Detection System.  

 

3.6.2 Power models for hardware 

3.6.2.1 The mathematic models of power consumption on hardware 

For modeling the power consumption on FPGA, two selected tasks in Fall Detection 

System, the Object Segmentation and Filter tasks, are implemented on HW (FPGA). By 

this way, the power of these tasks is estimated. In addition, in order to extract more 

architecture for Fall Detection System then power consumption and hardware resources 

are evaluated.  

Table 3.4-The power consumption on FPGA 

 

Application Resolution 

Power on 

Hardware 

 (W) 

Object 

Segmentation 

320x240 0.124 

640x480 0.124 

Mathematical 

Morphology 

320x240 0.184 

640x480 0.184 

1920x1080 0.184 
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While running the video applications on the Zynq 7000 AP SoC platform, the 

total on- chip power and its details are estimated and are shown in Table 3.3. The total 

power is calculated as follows: 

                                                                     (3.8) 

Where, Pno_application indicates the power of processor cores without any implementation. 

PFPGA includes PFPGA_static and PFPGA_dynamic.  

Table 3.4 illustrates the relationship of hardware resources and power consumption of 

these tasks on Zynq platform. Although, the image resolutions of Object Segmentation 

and Filter task (using Mathematical Morphology) processed on FPGA is adjusted, there 

are not many differences of hardware resources between them.  Therefore, the power 

consumption on FPGA almost doesn’t change while varying the image resolutions.    

As we discuss in Section 3.5.1, the model of power consumption on FPGA is 

extracted as following equation 3.9: 

                                                   (3.9) 

Where, PBRAM , PLUT and PFF  are power consumption on BRAM, LUT and Flip Flop.  

 
Table 3.5-Hardware resources and power consumption on different input image resolutions 

 

 

 

3.6.2.2 Validation of the power models on FPGA  

Table 3.6 illustrates the validation results of estimated and measurement power 

consumption for two video applications on FPGA. After extracting the power 

consumption models, we can estimate the power consumption of two first tasks such as 

Object Segmentation, Filter (using Mathematical Morphology) at different of image 

resolutions based on equation 3.9. The error rate of our model for FPGA is minimum 

value of 0.08% and the maximum of 1.36%. The accuracy of this model is all lower than 

2%. 

 

Tasks Resolutions 
BRAM DSP LUT FF Power 

(mW) Usage % Usage % Usage % Usage % 

Object 

Segmentation 

320x240 0 0 0 0 60 0.34 370 0.34 124 

640x480 0 0 0 0 65 1.2 458 0.6 124 

Filter 

(Mathematical 

Morphology) 

320x240 21 15 11 5 7329 6.88 9282 17.44 184 

640x480 21 15 11 5 7384 6.93 9341 17.55 184 

1920x1080 21 15 11 5 7473 7.02 9727 18.28 184 
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Table 3.6-The validation of power consumption model on FPGA 

 

The aim of our work is to define the power consumption models for both 

processor cores and FPGA, as called heterogeneous architecture. It is necessary for 

exploration the low cost architecture for Fall Detection System. We present the power 

consumption model for heterogeneous architecture in next subsection.    

 

3.6.3 Power consumption models for heterogeneous architecture 

Recently, the FPGAs incorporate processor cores, arithmetic elements and memory 

blocks, in addition to the usual logic elements. They allow the realization of complex 

SoC (System on Chip) by combining hardware and software design. So, in the two 

previous sections, both processor cores and FPGA are selected to validate our power 

modeling approach. From Equation 3.7, the power modeling is deduced as follows: 

                                              (3.10) 

Where, PPS is the total power on processor cores; PFPGA includes the static and dynamic 

of power on FPGA, in which dynamic power consumes on various logic blocks, DSP, 

BRAM, or others.  

 

3.7 Execution time models for heterogeneous platform 

Estimating the execution time of computer programs is an important but challenging 

problem in the computer systems. Existing methods require experts to perform detailed 

analysis of program code in order to construct estimators or select important features. 

We recently developed a new model to automatically extract a large number of features 

from program execution on various video application inputs, on which estimation time 

models can be constructed without expert knowledge.  

Tasks Resolutions Pestimation 

(mW) 

Pmeasure 

(mW) 

Error rate (%) 

Object 

Segmentation 

320x240 123.9 124 0.08 

640x480 124.2 124 0.16 

Filter 

(Mathematical 

Morphology) 

320x240 186.5 184 1.36 

640x480 185.6 184 0.87 

1920x1080 185.5 184 0.82 
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The execution time for these applications in parallel is modelised when they 

execute in multiprocessors. The execution time models are extracted for both processor 

and FPGA which are presented as follows: 

3.7.1 Execution time models for processor 

The total cycles, stall cycles, and level cache miss profile are estimated to create the 

execution time model of processor with factors such as number of processor cores N, 

frequency F, etc. The execution time of processor cores is defined as follows: 

Execution time of processor cores T = (Processor execution clock cycle + memory stall 

cycle)* clock cycle time.  

Where, 

Memory stall cycle = (Read stalls per Instruction + Write stalls per Instruction)* Total 

instruction 

              Mstall = (RPI stall + WPIstall)* I                           (3.11) 

Processor cores execution clock cycle = Cycle per Instruction * Total instruction  

Processor cores execution clock cycle = CPI* I                 (3.12) 

Therefore, the execution time of processor cores is defined in the following equation:  

           
                     

   
                                        (3.13) 

Where,  

i is the i
th
 task, with i=(1:4); 

CPI is Cycle per Instruction; 

RPIstall , WPIstall are Read and Write stalls per Instruction; 

I is total instructions; 

N, F are number and frequency of processor cores. 

For an application on processor cores, we can evaluate the execution time by: 

 First and most importantly, the models are applied to estimate the execution time 

in different frequencies, number of cores, Cycle per Instruction, etc. based on 

equation 3.13. 

 Second, the measurement of the implementation programs with reasonable 

complex functionality is obtained. An inexperienced observer is not trivially 

identified the important features by this way. 

Therefore, the error rate between estimation time and measurement is analysed. In our 

system, the assessment is applied for two first tasks: Object Segmentation and Filter 

(using Mathematical Morphology). The error rates take around 0.05 % for 1 core and 
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0.053% for 2 cores of Object Segmentation task. The same comparison of Filter 

(Mathematical Morphology) task, its rates are determined at 0.02% and 0.07% (as shown 

in Figure 3.15).    

 

Figure 3.14-Execution time validation of Object Segmentation task 

 

 

Figure 3.15-Execution time validation of Filter task (Mathematic Morphology) 
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However, the extraction of these previous parameters is not sufficient for 

exploring the heterogeneous architecture of the Fall Detection System. We create the 

execution time model which relates not only the basic factors (based on equation 3.13) 

but also the image resolutions. In addition, the image resolution is a parameter which 

influences the accuracy of our system (see more detail in Section 4.5.3).  Thus, we 

extend to extract the time model             for each task of our system as follows: 

           
 
                                                  (3.14) 

         
 
                                                 (3.15) 

         
 
                                             (3.16) 

         
 
                                              (3.17) 

Where, s is the image resolution; N, Fcore are number and frequency of processor cores. 

In order to explore the suitable architectures for our system, we extract the time models 

of tasks which are executed both on processor cores and on FPGA. In the next 

subsection, we continuously propose the execution time models for hardware of two 

tasks Object Segmentation and Filter tasks (using Mathematical Morphology 

techniques). 

 

3.7.2 Times models for hardware acceleration (FPGA) 

The execution time of two tasks such as Object Segmentation and Mathematical 

Morphology is defined with various image resolutions, at frequency of 50MHz and 

targeting with 20ns of clock default. The Vivado_HLS tool supports for this high level 

estimation.  The execution time of these tasks depends on the image resolution inputs as 

presented in Table 3.7.  

 

Table 3.7-Estimation of Execution time on hardware for video applications 

 

Application Resolution 
Execution Time 

(ms) 

Object 

Segmentation 

320x240 0.33 

680x480 1.32 

Mathematical 

Morphology 

320x240 4.35 

680x480 17.72 

1920x1080 218 
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Execution time model for FPGA is extracted as follows: 

                                (3.18) 

                                  (3.19) 

Where,           is the execution time on FPGA of i
th
 task with i= (1:2); 1, 2 are 

execution time on Object Segmentation and Filter task; s is the image resolutions of 

input image.   

 

3.8 Conclusion 

In this Chapter, we specific the separate video tasks which are used in the Fall Detection 

System to extract the general power consumption and execution time models. The 

modeling methodology is defined by analysing processor cores (based on FLPA) and 

FPGA (related to hardware resources) with the aim to combine then for heterogeneous 

architecture. To defined power consumption and time models for processor cores, 

different scenery of experiments are implemented according to the different 

configurations offered by the ARM Cortex A9 processor of Zynq platform. On the basis 

of the FPLA techniques, power consumption and execution time models have been 

extracted for the different tasks of the Fall Detection System.  

Moreover, these models are extended for the Fall Detection System regarding 

the features of the target architectures and the considered application such as image 

resolutions, core frequency and number of activated cores. The analysis of the error rate 

shows a maximum of 3.5% for the power consumption and 0.07% for the execution time. 

The error rates offer a good quality models on processor cores.  

In addition, the video applications are synthesized on FPGA part with various 

image resolutions by supporting of Vivado_HLS tool in order to estimate and model the 

power consumption and execution time. These models take into account hardware 

resource requirements and features of the application. The error rate is inferior to 2%. 

Our models also allow to assess the power consumption and execution time for different 

configurations of heterogeneous architecture and assignments of tasks of the Fall 

Detection System. 

The next Chapter introduces a new exploration methodology for low cost 

architectures of the Fall Detection System. At first, the execution time and power 

consumption models has been completed by the evaluation of the accuracy, precision and 

recall performances of the Fall Detection System for different configurations of the 

architecture and the application. An accuracy model for this system needs to be 

determined. Then I define a Design Space Exploration (DSE) Methodology for the Fall 

Detection System by applying the parallelism techniques such as intra-task and inter-task 

static scheduling. 
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Chapter 4. Low Cost Architecture for Fall 

Detection System 

 

 

 

Currently, designing low-power complex embedded systems is a main challenge for 

corporations in a large number of electronic domains. There are multiple motivations 

which lead designers to consider low-power design such as increasing lifetime, 

improving battery longevity, limited battery capacity, and temperature constraints. 

Unfortunately, there is a lack of efficient methodology and accurate tool to obtain 

power/energy estimation of a complete system. From functional estimation based on real 

board’s measurements, our methodology helps designers to develop new power models 

and to explore new architectures for the Fall Detection System. We apply parallelism 

techniques at task level in order to reduce energy, power consumption and execution 

time for our system with sufficient performance of accuracy.   

This chapter is organized as follows: Section 4.1 presents the literature of high 

level synthesis tools based on C/C++ specification. Section 4.2 describes some 

techniques in reducing low power at low level and high level of abstracts. The recent 

implementations on video applications and especially on the Fall Detection are illustrated 

in Section 4.3. Section 4.4 depicts an overview of low cost architecture exploration 

methodology. At first, the Fall Detection System is implemented on software with the 

different configurations and the comparison between image resolutions in execution 

time, power/energy consumption is made. The evaluation of accuracy, precision and 

recall performances are all given in Section 4.5 and shown insufficient frame rate. We 

then assess the execution time, power/energy consumption on two tasks of the Fall 

Detection System implemented on hardware in Section 4.6. In order to explore the 

different architectures, assignment and scheduling of tasks, the parallelism techniques 

such as intra-task and inter-task for the Fall Detection System are applied and elaborated 

in Section 4.7. Section 4.8 describes the Design Space Exploration (DSE) Methodology 

for the Fall Detection System to define the low cost architectures. 

In the next Section, the literature of high level synthesis tools based on C/C++ 

languages for heterogeneous architectures such as CatapultC
6
, Gaut

7
, Spark

8
, PICO and 

Vivado HLS 
9
is presented below.   

                                                 
6
 http://calypto.com/en/products/catapult/overview/ 

7
 http://hls-labsticc.univ-ubs.fr/ 

8
 http://mesl.ucsd.edu/spark/ 
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4.1 High level synthesis tools based on C/C++ specification 

For industry and academic research, the recent High-level synthesis (HLS) tools use 

C/C++/SystemC code targeting processor cores and FPGA implementation. However, in 

this Section, we only introduce the state-of-art of high level synthesis tools based on 

C/C++ code. 

 

4.1.1 CATAPULT 

Different manual methods are automated to reduce the time for hardware production in 

the Catapult synthesis flow [153]. The flow is centered around Catapult HLS tool, where 

the selection of microarchitecture is based on the constraints (provided by the 

designer/user). This tool creates the RTL architecture based on these constraints. 

Moreover, the target technology used, clock period or clock frequency are also specified 

as constraints. Some important points of Catapult based design methodology are 

discussed as follows: 

 Verifying generated RTL against original C code, the function is one of the 

most important stages of the design flow. RTL architecture is wrapped around a 

SystemC transactor. By performing the wrapping, original C++ testbenches are 

compiled with the SystemC top module instantiating generated RTL module and 

finally comparator is used to compare the outputs. The wrapper code along with 

the makefiles is auto-generated to complete the verification flow.  

 Synthesis Constraints for Catapult Flow: there are two types of constraints in 

the Catapult flow. The former is related to target technology and clock- 

frequency, etc. The latter is used to control the architecture. These constraints 

can be inserted using GUI or using directives. The directives facilitate loop 

unrolling, loop pipelining and hardware interface synthesis, etc. In addition, 

these constraints are not encoded in the source code, hence appropriate micro-

architectures are created during synthesis stage. 

 C++ and optimization support: It is necessary to underline that most of the 

C++ constructs are supported by this tool except the code, which requires 

dynamic memory allocation/deallocation such as use of malloc, free, new and 

delete. In other words, code should be statically deterministic, therefore all the 

properties, memory allocation can be performed during compile time. Catapult 

also supports pointer synthesis, classes & templates and bit-accurate data-types, 

etc. Catapult C provides loop pipelining, loop merging, loop unrolling, 

technology driven resource allocation and scheduling, etc., for the optimization 

side. 

                                                                                                                                     
9
 http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html 
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4.1.2 Program In Chip Out (PICO) tool’s 

PICO tool’s [154] is mainly targeting SoC platforms. Before introducing the tool, it is 

crucial to characterize different IPs in the context of this tool and their approach. The IPs 

are categorised in the following groups: 

 Star IPs are CPUs/DSP blocks. These blocks are generally fixed for many 

generations of SoCs. The IPs are manually created, therefore their instruction 

level characteristics are well-defined. In SoC, various models of such IPs are 

used at different granularities, including instruction level simulation model, 

RTL/gate-level model, etc.  

 Complex Application IPs such as video-codec, wireless modem, etc. are 

different factor for the end product especially for embedded systems.  

 Connectivity and Control IPs, such as DMA, USB, etc. are generally utilized 

in communication. It can be considered as system-level glue. Notwithstanding, 

their functionality is not needed and requires very minimal tailoring. 

 Memory is generally the biggest contributor to silicon area. Memory models are 

compiled and built from the bottom-up. 

These discussions of IPs above are necessary for SoC development. However, in 

complex application engine, it generally requires the bulk of effort for design and 

verification purposes. 

PICO accepts the sequential C specification and tries to extract the parallelism 

from the sequential C code such as in the specific domain like signal processing 

applications. In such domains, a lot of parallelism is available during application 

processed by the hardware. A programming model is useful where a part of function has 

no dependency between the different tasks. If one task works on a block of data and 

other works on another block of data, then a lot of parallelism can be extracted in 

pipelined manner. The execution model of PICO is based on Kahn Process Network 

(KPN), where a set of sequential processes communicates via streams with block-on-

read and unbounded buffering. These processes are the hardware blocks, which 

communicate with each other through streams. The restriction on unbounded buffering, 

however, is big, which is basically solved by imposing additional constraints on the 

execution model. 

 

4.1.3 GAUT, SPARK tools 

GAUT [155] is an academic high-level synthesis tool based on C as design language and 

applicable for digital signal processing applications. GAUT starts from bit-accurate 

specification written in C/C++ and extracts the possible parallelism before going through 

the conventional stages such as binding, allocation and scheduling tasks. GAUT has 
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mandatory synthesis constraints, which are throughput and clock-period. The compiler of 

GAUT derives gcc/g++ to extract a data flow graph (DFG) representation of the 

application. The synthesis process is not completely technology independent but can be 

useful for virtual platform development for micro-architectural analysis. 

SPARK [156] presents a high-level design methodology based on the high-level 

synthesis tool, which takes Behavioral C as input design language and capable of 

generating RTL VHDL. The main contributions of the methodology based on SPARK 

are:  

 Inclusion of code motion and code transformation techniques at compiler level to 

include maximum parallelism for high-level synthesis. 

 Proposal of high-level synthesis starting with behavioral C input.  

The approach presents in SPARK helps designer in understanding how and by what 

amount of the quality results can get affected by the language level transformations such 

as loop unrolling, loop-invariant code motion, etc. on generated circuit from HLS. The 

approach suggests that no single code transformation approach is universally applicable. 

However, such techniques with heuristics applied for particular application domain leads 

to better quality or results. The transformations and techniques applied in this 

methodology include exploitation of instruction-level parallelism, such as speculative 

code motions, percolation scheduling and trail blazing. 

 

4.1.4 Vivado HLS tool 

The Xilinx® Vivado® High-Level Synthesis (HLS) [157] compiler provides a 

programming environment similar to those available for application development on 

both standard and specialized processors. The HLS shares key technology with processor 

compilers for the interpretation, analysis, and optimization of C/C++ programs. Their 

main difference is in the execution target of the application. 

By targeting an FPGA, the HLS enables a software engineer to optimize code for 

throughout, power, and latency without the need to address the performance bottleneck 

of a single memory space and limited computational resources. This allows the 

implementation of computationally intensive software algorithms into actual products, 

not just functionality demonstrators. Therefore, our work bases on the HLS. This 

subsection introduces how the HLS compiler works and how it differs from a traditional 

software compiler. 

Application code targeting the HLS compiler uses the same categories as any 

processor compiler. HLS analyzes all programs in terms of:  

 Operations refer to both the arithmetic and logical components of an application 

that are involved in computing a result value. When working with operations, the 
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main difference between HLS and other compilers is in the restrictions placed on 

the designer. With a processor compiler, the fixed processing architecture means 

that the user can only affect performance by limiting operation dependency and 

manipulating memory layout to maximize cache performance. In contrast, HLS 

is not constrained by a fixed processing platform. An algorithm-specific platform 

is built based on user input. This allows an HLS designer to affect the 

application performance in terms of throughput, latency and power;  

 Conditional statements are program control flow statements that are typically 

implemented as if, if-else, or case statements. These coding structures are an 

integral part of most algorithms and are fully supported by all compilers, 

including HLS. The only difference between compilers is how these types of 

statements are implemented. With a processor compiler, conditional statements 

are translated into branch operations that might or might not result in a context 

switch. In an FPGA, a conditional statement does not have the same potential 

impact on performance as in a processor. HLS creates all the circuits described 

by each branch of the conditional statement. Therefore, the runtime execution of 

a conditional software statement involves the selection between two possible 

results rather than a context switch; 

 Loops are a common programming construct for expressing iterative 

computation. Although this might be true with early versions of compilers for 

FPGAs, HLS fully supports loops and can even do transformations that are 

beyond the capabilities of a standard processor compiler. HLS can parallelize or 

pipeline the iterations of a loop to reduce computation latency and increase the 

input data rate. The user controls the level of iteration pipelining by setting the 

loop initialization interval (II). The II of a loop specifies the number of clock 

cycles between the start times of consecutive loop iterations; 

 Functions are a programming hierarchy that can contain operators, loops and 

other functions. The treatment of functions in both HLS and processor compilers 

is similar to that of loops. In HLS, the main difference between loops and 

functions is related to terminology. HLS can parallelize the execution of both 

loops and functions. With loops, this transformation is typically referred to as 

pipelining, because there is a clear hierarchy difference between operators and 

loop iterations. With functions, operations outside of a loop body and within 

loops are in the same hierarchical context, which might lead to confusion if the 

term pipelining is used. To avoid potential confusion when working with HLS, 

the parallelization of function call execution is referred to as dataflow 

optimization. The dataflow optimization instructs HLS to create independent 

hardware modules for all functions at a given level of program hierarchy. These 

independent hardware modules are capable of concurrent execution and self-

synchronize during data transfer.  
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In our work, the Fall Detection System is built based on video processing. Compare with 

the other tools, only Vivado HLS supports for performing real-time approach for our 

system by the followings reasons: 

 OpenCV is a useful framework for developing computer vision designs. 

OpenCV applications can be also used in embedded systems by recompiling 

them for the ARM architecture and executing them in Zynq devices. In this case, 

the video processing is still implemented using OpenCV functions calls 

executing on a processor (such as the Cortex™-A9 processor cores in Zynq 

Processor System).   

 Alternatively, the OpenCV function calls can be replaced by corresponding 

synthesizable functions from the Xilinx Vivado HLS video library. HLS Video 

Library is a C/C++ library provided with Vivado HLS to help accelerate 

computer vision/image processing applications on FPGA. It includes commonly 

used data structures, OpenCV interfaces, AXI4-Stream I/O, and video 

processing functions. HLS Video Library uses OpenCV libraries as reference 

model, most video processing functions has the similar interface and equivalent 

behavior with corresponding OpenCV functions. The pre-built OpenCV libraries 

(with FFmpeg support) are also shipped with Vivado HLS on different 

platforms. 

Besides, we review about the high level synthesis based on C/C++ language. The 

low power techniques such as Clock gating, operand isolation, dynamic voltage and 

frequency scaling, etc. are discussed as following Section:  

  

4.2 Low power techniques 

Dynamic power is one of the most crucial terms of power consumption of a design, thus 

it is is necessary to reduce the dynamic power targeted for the power-aware processes. 

Some research has been worked in the area of power reduction at the RTL and high-

levels of abstractions. Approaches focusing on RTL or higher level depend on the 

knowledge designers. In the following, we briefly introduce the approaches are used in 

low power design such as clock gating, operand isolation, dynamic voltage and 

frequency scaling (DVFS) and others: 

 Clock-gating is one of the most frequently used techniques at RTL to reduce 

dynamic power dissipation without affecting the functionality of the design. 

Clock gating works by taking the enable conditions attached to registers and uses 

them to gate the clocks. Therefore, it is imperative that a design must contain 

these enable conditions in order to use and benefit from clock gating. Since it 

removes large numbers of muxes and replaces them with clock gating logic, this 

clock gating process can also save significant die area as well as power. Nikhil 

Tripathi et al. [158] refer to ultilise combinational clock gating to reduce the 
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switching activity on the clock network, thereby reducing dynamic power 

consumption in the design but this task does not alter the behavior of the register 

being gated. To evaluate FPGA clock network architectures with built-in clock 

gating capability, the authors in [159] describe a flexible placement algorithm to 

operate various gating granularities. Their results show that the dependent of the 

clock gating architecture and the fraction of time clock signals are enabled, clock 

power can be reduced by over 50%, and a fine granularity gating architecture 

yields significant power benefits. However, the research shows the advantages of 

clock-gating for reducing power consumption. Their works require RTL 

simulation and generation of Value Change Dump (VCD) and subsequent 

analysis, making the entire process extremely time consuming. It will require a 

great deal of effort to make the entire process few orders of magnitude faster, 

while power savings should be better or equal at least.  Moreover, Sumit Ahuja 

[112] proposes approaches to enable clock-gating from the C description itself 

for various granularities of clock-gating such as fine grain at variable level and 

coarse grain at function or scope level. They also present their extension this 

approach for sequential clock-gating and propose how to use power models to 

guide power reduction process at high-level. The advantage of the approaches is 

facilitation of power reduction features at the high-level design with faster than 

other. [160] also proposes an approach based on clock-gating in the HLS flow. 

Nevertheless, their approach lacks a simulation driven realistic power reduction 

feature. It requires RTL synthesis to insert the gating logic while the necessary 

logic is inserted into the source code before generating the RTL.  

 Operand isolation is a technique, which helps in reducing the redundant 

activities around datapath unit. It is considered as a complementary technique to 

clock-gating. Although clock-gating does not help in controlling the datapath 

activity, it just controls the clock toggles of registers. Munch et al. present an 

opportunity to reduce power at the RTL using operand isolation based technique 

to reduce the dynamic power at the RTL [161].  

 Dynamic Voltage and Frequency Scaling (DVFS): The dynamic power 

consumption Pd of a CMOS circuit as introduced in Section 3.1 is determined 

by: 

           
                       (4.1) 

with Vdd the supply voltage, f the clock frequency,  the switching activity level 

and C the capacitance of the circuit. Dynamic power consumption in a processor 

can be decreased by reducing two of its key contributors, supply voltage and 

clock frequency. In fact, since the power dissipated in a CMOS circuit is 

proportional to the square of the supply voltage, the most effective way to reduce 

power is to scale down the supply voltage [162]. However, reducing the supply 

voltage also increases the device delay, so frequency also needs to be reduced. 
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DVFS is a highly significant method to minimize the power dissipation and thus 

maximize the battery service time in battery-powered portable computing and 

communication devices. The key ideal behind DVFS techniques is to vary the 

voltage supply and the clock frequency of the system so as to provide “just 

enough” circuit speed to process the workload while meeting the total 

computation time and/or throughput constraints and thereby reduce the energy 

dissipation. Several strategies have been proposed to exploit certain aspects of 

DVFS and over a particular method to build pseudo intermediate frequencies for 

use in conjunction with the techniques of Dynamic Voltage Scaling (DVS) 

[163], [164]. 

Dynamic voltage scaling (DVS) [165], [166] refers to runtime change in the 

supply voltage levels supplied to various components in a system so as to reduce 

the overall system power dissipation while maintaining a total computation time 

and/or throughput requirement. 

 Besides the previous techniques used for reducing power consumption design, in 

the other researchs, high-level synthesis for C-like HDLs includes stages such as 

scheduling, allocation and binding. Therefore, various techniques are proposed 

for different stages to affect the power consumption of the design once the RTL 

is created from HLS. Scheduling of various operations in a design is exploited 

for generating power-efficient designs. The problem of resource-constrained 

scheduling for low-power has been addressed in [167]. These approaches use 

Control Data Flow Graphs (CDFGs) to first determine the mobility of various 

operations based on the ASAP (As Soon As Possible) and ALAP (As Late As 

Possible) schedules. Using the computed nobilities and other relevant factors, 

priorities are assigned to various operations. Based on the assigned priorities, 

various operations of the design are then scheduled in each clock cycle such that 

the power consumption of the design is reduced. 

The authors of [168] propose a methodology to explore different hardware 

configurations and also to achieve  accurate design matrices for each configuration. They 

utilise C2R high level synthesis tool to directly generate RTL description of the 

hardware. They present case studies to develop or modify behavioral IP descriptions and 

use standard FPGA boards to profile the IP in very short time. The differences in the 

measured and actual IP design matrices are not significant as one is more concerned with 

relative difference among various configurations. A variety of compute-intense 

benchmarks like AES is used to demonstrate how platform specific optimizations as well 

as higher level micro architectural optimizations can be done using a commercial HLS 

tool, Xilinx Spartan/Virtex boards and Xilinx EDK design suite. Their results show how 

various architectures in hardware/software co-design flow are chosen while keeping 

energy efficiency in mind and they reduce design cycle time to reach the optimal results. 
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In the next Section, we discuss about the implementation of video applications 

and Fall Detection System on different processor cores, FPGA, DSP, etc. or 

heterogeneous solutions.  

 

4.3 Video applications and Fall Detection System implemented on various 

platforms 

Firstly, the overview of video processing tasks, for example pre-processing, 3D shapes 

reconstruction, data compression, etc. implemented on hardware acceleration (FPGA), 

processors or on combination of HW/SW are presented as follows:  

J. Ayoub, O. Romain, B. Granado et al. [169] research an active vision technique 

implemented in an embedded system for 3D shapes reconstruction. The major aim of 

their work is to have a balance in the accuracy of all components in the system where the 

size and autonomy of such an embedded sensor are hard constraints. They improve the 

pre-processing algorithms by reducing the time needed to compute the spots centers. In 

addition, lens distortion of the camera is included in the model to increase accuracy when 

reconstructing objects. The distortion correction method is implemented on Xilinx Virtex 

II Pro FPGA (xc2vp30). The evaluation of experiments presents that the size and the 

time are reduced, precision increased, when the resources spend on processing are 

relatively acceptable in comparison to the benefits. 

The work of Floris Driessen [170] proposes the  combination of embedded 

processors and customized accelerators on heterogeneous computation platform, the 

Zynq-7000 all programmable SoC. This combination offers a high-end embedded 

processor combined with field programmable gate array (FPGA) based on reconfigurable 

logic. Peng Shen Ong et al. [171] propose the fall detection system which is 

implemented on Terasic’s DE2- 115 development board including Altera Cyclone IV 

(EP4CE115) FPGA device, a 5 megapixels CMOS camera sensor and a LCD touch 

panel. This system is also designed with highly exploitation of the parallel and pipeline 

architecture of the FPGA. 

The authors of [172] present the system built by Shimmer technology and 

applied the orthogonal matching pursuit (OMP) algorithm for advanced data 

compression. This system is simulated and implemented on the Virtex-5 and Zynq7 

(FPGA) using Vivado high level synthesis tool. It is used to estimate the area, power and 

computation time for the fall detection with different scenarios. Benaoumeur Senouci et 

al [173] propose another heterogeneous implementation is based on Xilinx’s SoC named 

Zynq methodology for a embedded fall detection system using a smart camera. They 

propose a HW/SW implementation to detect falls in a home environment using a single 

camera and an optimized descriptor adapted to real-time tasks. The main contributions of 

this work are the proposal of a co-design methodology. In their methodology, the 

HW/SW is partitioned by using high-level algorithmic description and high-level 
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synthesis tools. They give the fast prototyping which allows fast architecture exploration 

and optimisation to be performed. They design a hardware accelerator to efficient 

algorithm used in image analysis.  

Frederik R. Grüll in [174] discusses biomedical image processing that is 

accelerated and reconstruction on FPGA in his thesis. The implementation is carried out 

with the MaxCompiler library from Maxeler Technologies and Xilinx. For acceleration, 

every processing pipeline must be re-designed. The background measurement is changed 

to exponential smoothing for every pixel over time. The spot finder is modified to 

operate after the background subtraction. The former least-square fit is simplified to a 

Gaussian estimator for feature extraction. The resulting pipeline system consists of two 

statically scheduled pipelines connected by a FIFO. The first pipeline operates on entire 

frames.  The second extracts the features of every detected spot and operates on the 

Region of Interest (ROIs) only. The latter reconstructs the density distribution in a 3D 

volume from 2D images obtained with an electron microscope from multiple angles. The 

method belongs to the class of computed tomography, which is widely used in medicine 

and biology.  

Secondly, we also review some implementations for Fall Detection System are 

combined various methods. Besides, Michal Kepski and Bogdan Kwolek deploy the 

Kinect and accelerate-meter in fall detection system [175]. They implement this system 

on PandaBoard ES, which is a low-power and low-cost single board computer 

development platform based on Texas Instruments OMAP4 line of processors. In 

addition, a method for detecting falls at homes of elderly using a two-stage fall detection 

system is presented by Erik E. Stone et al. [176]. The first stage of the detection system 

characterizes a person’s vertical state in individual depth image frames. The 

segmentation on ground events from the vertical state time series is then obtained by 

tracking the person according time. The second stage uses an ensemble of decision trees 

to compute a confidence that a fall precede on a ground event. Their database consists of 

454 falls where 445 falls are performed by trained stunt actors and 9 naturally occurring 

resident falls. The database is collected in nine years at the actual homes of older adults 

living at 13 apartments. This means that the data collection allows for characterization of 

system performance under real-world condition, which is not shown in other studies. 

Cross validation results are included for standing, sitting and lying down positions, 

within 4 m versus far fall locations and occluded versus not occluded fallers. 

Martin Humenberger et al. in [177] present a bio-inspired, purely passive and 

embedded fall detection system by the combination of FPGA and DSP. Bio-inspired 

means that the use of two optical detector chips with event-driven pixels that are 

sensitive to relative light intensity changes only. The chips are used as stereo 

configuration which enables a 3D representation of the observed area with a stereo 

matching technique. In contrast to conventional digital cameras, this image sensor 

delivers asynchronous events instead of synchronous intensity or color images. Thus, the 
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privacy issue is systematically solved. Moreover, the stationary installed the 

fall detection system has a better acceptance for independent living compared to 

permanently worn devices. The fall detection is performed by a trained neural network. 

First, a meaningful feature vector is calculated from the point clouds. Then the neural 

network classifies the actual event as fall or non-fall. All processing is done on an 

embedded device consisting of an FPGA for stereo matching and a DSP for neural 

network calculation achieving several fall evaluations per second. The results of 

evaluation indicate that the fall detection system achieves a fall detection rate of more 

than 96% with false positives below 5% for the prerecorded database consisting of 

679 fall scenarios. 

Recently, with systems and software engineers programming in C/C++ and their 

hardware counterparts working in hardware description languages such as VHDL and 

Verilog, problems arising from the use of different design languages, incompatible tools 

and fragmented tool flows are becoming common. The SystemC
10

 language and 

modeling platform, based on C++, are developed as the solution for representing 

functionality, communication, software and hardware. The reason is clear: increasing 

design complexity demands very fast executable specifications to validate system 

concepts, and only C/C++ delivers adequate levels of abstraction, hardware/software 

integration and performance. System design today also demands a single common 

language and modeling foundation in order to make a market for interoperable system-

level design tools, services and IP a reality [178]. 

Apart from the modeling benefits available in C++ such as data abstraction, 

modularity, and object orientation, the advantages of SystemC include the establishment 

of a common design environment consisting of C++ libraries, models and tools, thereby 

setting up a foundation for hardware/software co-design; the ability to exchange IP easily 

and efficiently; and the ability to reuse test benches across different levels of modeling 

abstraction. 

Despite, SystemC is built based on C/C++ language and all system specifications 

can be refined to mixed software and hardware implementations, but hardware 

implementations can be accurately modeled all the way to the RTL. Especially, SystemC 

isn’t support for OpenCV integration in C/C++ language. Therefore, we select the tool 

which supports for not only using video libraries such as OpenCV but also combination 

HW/SW implementation.    

From the state-of-art, we introduce about synthesis tools at the high level based 

on C/C++ such as Catapult, Pico, Gaut, Spark and Vivado_HLS; the low power 

techniques from low level to high level of abstract. The Vivado_HLS is selected for 

synthesising our work, the Fall Detection System with the advantage of including the 

OpenCV libraries and also supporting for heterogeneous platform. In addition, these 

                                                 
10

 http://accellera.org/downloads/standards/systemc 
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researches propose the implementation the Fall Detection on embedded system with the 

combination of FPGA (used for stereo matching) and DSP (used for neural network). 

Moreover, the authors present a HW/SW co-design with using wearable sensor based on 

Virtex 5 and Zynq platform. Some works implement combination of the Kinect and 

accelerometer for the Fall Detection System on PandaBoard ES, Texas Instruments 

OMAP4 platform. There are not in existence of the design exploration based on HW/SW 

co-design with low cost architectures for the Fall Detection System. Therefore, our 

research concentrates on exploring the architectures of the Fall Detection System which 

is applied power/time model and evaluated the recognition rate. The four tasks of Fall 

Detection System are implemented on processor cores and we explore the low cost 

architectures based on HW/SW co-design. In the following Section, we elaborate the 

description of our low cost architectures methodology for the Fall Detection System. 

 

4.4 Overview of low cost architecture methodology  

As mentioned in the Chapter 1, one contribution of this thesis is to define low cost 

architectures for the Fall Detection System which operates on heterogeneous platform. 

To explore the low cost architecture for our system: the experimental results of the Fall 

Detection System on processor cores are adjusted on different frequency scaling and 

image resolutions. The parameters such as execution time, power/energy and recognition 

rate are determined. Especially, the recognition rate such as accuracy, precision and 

recall performance of this system (see more on Section 2.4.2) are also given in the 

comparison picture of image resolutions and frame rates. In addition, to create the 

accuracy rate model for the extracted architectures of this system, thus the accuracy 

model is as a function of image resolutions and frame rates. The reason of accuracy 

model is only selected to create in exploration the low cost of architecture. The accuracy 

rate, which is a parameter of the test, is the proportion of true results (both true 

positives and true negatives) among the total number of cases examined in this system. 

Therefore, it is necessary for using this model to estimate the accuracy of our 

architectures. After that, execution time and power models are applied in combination of 

HW/SW. The relation between energy and accuracy rate of architecture is significant 

information in order to find out the best architecture for the Fall Detection System. The 

low cost architectures based on this methodology which compromises all parameters 

such as execution time, power/energy consumption, frame rate and accuracy rate are 

characterised (as depicted in Figure 4.1).  

Our low cost architecture methodology starts with applying the power/time 

models which are presented in Chapter 3. The extracted power and execution time 

models are for separated tasks of the Fall Detection System based on processor cores and 

FPGA. In this case, we can address some situations for our methodology for 

heterogeneous architecture as follows: 
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 Software (processor cores): the implementation of this system with integration 

of operating systems is focused on. Furthermore, any algorithms which exhibit 

significant parallelism can be identified and are strong candidates for 

implementation on processor cores. This corresponds to a model where 

computationally intensive but parallel tasks can be off-loaded from the 

processor cores into hardware to achieve an overall performance increase. 

 

 

Figure 4.1-Our low cost architecture design methodology for Fall Detection System 

 

 Hardware (FPGA) is selected as one of candidates for tasks in the Fall 

Detection System, which need to accelerate (execution time). The tasks which 

meet the time constraints are selected for this hardware purpose.  

 Hardware/Software (HW/SW) co-design: This combination is currently trend, 

especially for the system to take full advantage of partitioning the system on 

software and hardware sides to improve execution time, reduce energy and 

apply the parallelism techniques. However, it can also deliver a sufficient 

recognition rate.   

Continuously, HW/SW exploration architecture for all tasks of the Fall Detection 

System is estimated the execution time and power consumption. The results from this 

step help us to have earlier evaluations. 

After, the first evaluations performed in previous step, some solutions for 

improving the performance for the Fall Detection System including intra-task and inter-

Extracted  

architectures 

 

Power/Time Models 

HW/SW 

architecture 

Constraints 

satisfy? 

 

Released 

low cost  

architectures 

Power/time estimation 

Yes No 

Modeling 



116 

 

 

task techniques for HW/SW architectures are proposed. The parallelism in each core of 

processor and the accelerated modules on FPGA are combined.  

It is a challenge to select suitable values for all parameters such as frame rates, 

power/energy and recognition rate which satisfy the constraints for the extracted 

architectures. Thus, suitable architectures for this system are compromised these 

parameters. One of important constraint is accuracy rate for HW/SW architectures, it 

influences on other constraint such as energy, frame rates. From the experiment, the 

frame rate of an architecture which accuracy rate satisfies at least 80% is defined. 

Therefore, the frame rate constraint is greater and equal 30 fps for our methodology.  

Finally, after all extracted architectures are considered by the constraints. The 

low cost architectures, which compromising between the accuracy rate and energy, are 

released. The selected architecture depends on the aim of the designer for this system. 

  

4.5 Software development and testing 

In the software design, three entries include: the Board Support Package (BSP), the 

Operating System to communicate with the hardware and Software Applications run on 

top of the Operating System. Firstly, the Operating System such as Linux, Android, an 

embedded OS are selected; a Real-Time Operating System (RTOS) for deterministic, 

time-critical applications; or Standalone, a ‘light’ OS including only the most basic 

functions. Especially, for two available processor cores and two different types of OS on 

each core are deployed. In our system, the Linux operating System is selected to develop 

on ARM Cortex A9 processor which includes in Zynq 7000 AP SoC platform of Xilinx. 

In this Section, the Fall Detection System in High Level Languages specified in 

C/C++ integrated OpenCV, cross-compiled along with libraries which implement the 

communication Application Programming Interfaces (APIs) and runtime layer using 

gcc/g++ toolchains are designed. The toolchains generate an .elf file downloaded to the 

processor ARM Cortex A9 on Zynq platform supported by SDK tools.  Our system is 

executed by the configuration of image resolutions, frequencies of processor cores. The 

recognition rate is then evaluated. Moreover, the extracted accuracy model is based on 

the experiments of the Fall Detection System and use to apply in the exploration low cost 

architecture.    

 

4.5.1 Case study 

For exploring the various architectures for the Fall Detection, the case study is presented 

as follows: 



117 

 

 

 Input video is recorded by the Camera Web Cam-Philips SPC 900NC 
11

 that is 

mounted on the wall at the distance of 3m from the floor. 

  Resolution of input video : 320x240 pixels, 680x360 pixels, 680x480 pixels and 

704x576 pixels. 

 Core frequency: 222 MHz, 333MHz and 667 MHz.  

 Apply and extend the power and execution time models which are presented in 

Chapter 3 to estimate these values. 

 Moreover, this system is explored the low cost architecture based on 

power/execution time model and accuracy rate model.  

 

4.5.2 Primary implementation and experiment results for the Fall    

Detection System on software 

The implementations are varied on different frequencies which are available on Cortex 

A9 processor with 667 MHz, 333MHz and 222MHz. An example of two first resolutions 

is 320x240 pixels and 680x360 pixels, as shown in Figure 4.2. 

In addition, the measurement of power is taken by the Fusion Digital Power 

Designer GUI. The TI USB Adapter includes Power Management Bus (PMBus) which is 

already described in Section 3.4.3. PMBus is an open standard power-management 

protocol. This flexible and highly versatile standard allows for communication between 

Zynq platform and PC based on both analog and digital technologies and provides true 

interoperability, which will reduce design complexity and shorten time to market for 

power system designers. Therefore, the energy per frame is multiplied by the power 

consumption (P) and total execution time (T) as following equation:  

                                                                (4.2) 

Besides, the frame rate of this system is calculated by:  

               
 

 
                                       (4.3) 

After defining the execution time, power/energy consumption and the frame rate 

of these video are calculated by using the equation 4.2 and 4.3.  

 

                                                 
11

 http://www.p4c.philips.com/cgi-bin/dcbint/cpindex.pl?ctn=SPC900NC/00&scy=gb&slg=en 
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Table 4.1-Fall Detection System implements on different frequencies 

 

Image 

resolution 

Frequency 

MHz 

Average execution time(ms) Frame 

rate 

(fps) 

Read Object Frame Feature Recog-

nition 
Total 

data Seg. filter Extraction 

320x240 

667 10.9 8.6 75.3 10.9 1.65 107.4 9.3 

333 21.3 14.5 150 14.5 3.015 214.3 4.7 

222 36.3 25.6 225.8 21.4 4.6 313.6 3.2 

680x360 

667 24.7 17.7 234.9 24.6 4.4 306.8 3.3 

333 50.1 34.1 470.1 42.2 8.8 606.3 1.6 

222 71.7 52.9 705.3 72.9 13.3 917.6 1.1 

640x480 

667 35.2 40 295.4 54.8 5.5 431.6 2.3 

333 67.7 67.5 590 93 11 830.2 1.2 

222 101.3 101.3 726.4 139.2 16.6 1246.4 0.8 

704x576 

667 45.5 33.3 389.4 52.6 7.3 528.7 1.9 

333 73.7 66 778.7 104.5 14.5 1038.4 1 

222 108.9 312.7 1167.7 156.2 21.7 1554.8 0.6 

 

Table 4.1 depicts the metrics of frame rates, execution time in different of the 

image resolutions and the frequencies. The mean of total execution time of the Fall 

Detection System is approximately 0.107s/frame. The Frame Filter task based on 

Morphology Filter takes around 2/3 times of total execution time. The similar 

observation has been obtained when using higher resolution of 680x360 pixels. In which 

the execution time is 0.234s/frame for Frame Filter and 0.3s/frame for total execution 

time. Frame Filter takes the most time, so that this evidence would be also considered for 

accelerating on hardware.  

In addition, Table 4.2 illustrates the relation among the power/energy 

consumption and the different image resolutions and frequencies of cores. The higher 

frequency is scaled, the lower energy is taken. In contrast, the image resolutions and the 

energy consumption are proportional relationship.  
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Table 4.2-The Power/Energy of Fall Detection System on SW 

 

Image 

resolution 

Frequency 

(MHz) 

Power 

mW 

Energy 

mJ 

320x240 

667 420 45.11 

333 304.55 65.26 

222 254.55 79.83 

680x360 

667 420.91 129.13 

333 310 187.95 

222 264.55 242.75 

640x480 

667 437.27 188.73 

333 323.64 268.68 

222 269.09 335.39 

704x576 

667 446.36 235.99 

333 324.55 337.01 

222 281.82 438.17 

 

Figure 4.2 illustrates the comparison execution time at two image resolutions, 

320x240 and 680x360, processing on one processor of Zynq 7000 AP SoC platform. In 

each image resolution, the Frame Filter task, using Mathematic Morphology technique, 

executes the most value than the other ones.  In this case, the measured power 

consumption of whole Fall Detection System is closed to 0.403W. 

Therefore, the energy per frame is multiplied by the power consumption (P) and 

total execution time (T) presented as follows: 

Epf = P*T= 0.403*0.107= 0.043 (J/frame)        (4.4) 

As the result of this experiment, the frame rate of this system is calculated by: 

Frame rate = 1/0.107 = 9.3 (fps)         (4.5) 

It is found out that the over all of this system does not keep on operation at 30 frames per 

second. Thus, this parameter could have an effect on the recognition ability of this 

system. It is also a challenge in video design to get the reasonable precision, accuracy, 

recall performance.  

From both Table 4.1 and Table 4.2, the processing speed on one core of ARM 

Cortex A9 processor is significant less than 10 fps compares with the 30 fps input. 
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Therefore, it is necessary to propose hardware accelerator or combine both of them to 

improve the execution time to satisfy the real time challenge for the Fall Detection 

System. We provide some solutions for this challenge in the next Section. 

 

 

Figure 4.2-Comparison execution times at two image resolutions on one core 

  

4.5.3 Performance evaluation for the Fall Detection System 

4.5.3.1 The database 

As discussing in Chapter 2, The DUT-HBU database [26] is used to evaluate the 

performance of this system.  All video data are compressed in .avi format and captured 

by a single camera in a small room with the changeable conditions such as brightness, 

objects, direction of camera, etc. The fall direction is subdivided into three basic 

directions in this database: Direct fall, cross fall, side fall. In terms of non-fall videos, 

usual activities which can be misrecognised with fall action such as lying, sitting, 

creeping, bending are also classified into three directions above. In this study, we create 

two databases (as shown in Table 4.3): 

Train set: Clear data consists of videos which have stable background. These 

videos are captured in a small room under good brightness condition. The object is not 

obscured by furniture in the room. Train set contains 21 videos of fall and 26 videos of 

daily activities. 

Test set: Contents and activities in the video clips for testing are basically 

performed similar to the ones for training, just a small difference of environment 
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condition. In each clip, there is only an object with stable background and include 21 fall 

videos and the rest is 33 videos. 

Table 4.3-Classification of videos 

 

Action Video 
Database 

Train Test Sum Sum 

Fall 

Side -Fall (F1) 7 7 14 

42 Direct-Fall(F2) 8 6 14 

Cross-Fall(F3) 6 8 14 

Non 

Fall 

Bending (N1) 6 8 14 

59 
Lying(N2) 5 8 13 

Creeping(N3) 9 8 17 

Sitting(N4) 6 9 15 

Sum 47 54 101 101 

 

4.5.3.2 The classifying evaluation  

The evaluation of recognition rate such as the Precision (PR), Recall (RC) and Accuracy 

(Acc) are given in Section 2.4.2 and shown in the Equation 4.3.  

FNFPTNTP

TNTP
Acc

FPTP

TP
PR

FNTP

TP
RC










 ,,    (4.6) 

Where TP, TN, FN, and FP are defined as follows: 

True positives (TP): amount of fall actions which are correctly classified as fall.  

False positives (FP): amount of non-fall actions which are wrongly considered to be fall.  

False negatives (FN): amount of fall actions which are wrongly rejected and classified as 

non-fall actions. 

True negative (TN): amount of non-fall actions which are correctly classified as non-fall. 

 

4.5.3.3 The confusion matrix  

A confusion matrix presents classification system which includes actual and predicted 

classifications. Performance of such systems is commonly evaluated using the data in the 

matrix. Table 4.4 shows the confusion matrix for two classes which are categorised 

FALL or NON FALL for both database of Train and Test implemented on ARM Cortex 
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A9 of Zynq-7000 AP SoC platform. The evaluation is experimented on 101 videos, in 

which 47 videos are in Train set and 54 ones are in Test set. For instance, 7 videos are 

categorised in Side-Fall (F1) of Train set and the system can recognise all events in these 

videos are FALL. In case of Sitting (N4), we, however, have 6 videos, there are 5 videos 

which are detected as NONFALL and a video is misrecognised as FALL.  

Table 4.4-Confusion matrix 

 

  System 

D
a

ta
b

a
se

 

Action Video 
Train Test 

Fall NonFall Fall NonFall 

Fall 

F1 7 0 6 1 

F2 7 1 5 1 

F3 5 1 5 3 

Non Fall 

N1 1 5 1 7 

N2 1 4 2 6 

N3 2 7 1 7 

N4 1 5 2 7 

Sum 47 54 

 

From the confusion matrix, the Recall, Precision and Accuracy are calculated 

and depicted in Figure 4.3. The result of pure data in Train set is higher than Test set in 

all Recall, Precision, and Accuracy. The reason is that Template Matching uses “hard 

threshold” and the combination of features is quite simple to detect a fall event. Four 

models of the fall are not enough to describe all falls may occur in this system. 

 

Figure 4.3-The results of Template Matching Algorithm with resolution_320x240 
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Figure 4.4 is shown the performance comparison of two image sizes: 320x240 

and 640x480 with the frame rate is 30fps for the offline video processing of Train set.  

The lower performance of 640x480 resolutions of input image is calculated with 66.7 % 

of Recall, 57.1 % of Precision and 78.3% of Accuracy in the same conditions such as 

classification of Train set, the threshold and frame rate comparing with 90.5 % of Recall, 

79.2% of Precision and 85.1 % of Accuracy in the 320x240 resolution.   

 

 

Figure 4.4-The performance comparison of two resolutions 

 

4.5.3.4 The accuracy model  

It is crucial to define the relationship between accuracy performances in the system with 

the other parameters such as frame rate, resolution, etc. Our aim is to extract an accuracy 

model for the heterogeneous architectures. In our work, some experiment on two 

different resolutions (320x240 and 680x480) and various frame rates is presented in 

Table 4.5.  

Table 4.5-The relationship between Accuracy performance with resolution and frame rate of 

input video 

Resolution  fps 
Accuracy 

(%) 

Accuracy estimation 

(%)  

Error rate 

(%) 

320x240 10 66.7 65.7 1.5 

320x240 20 72.2 74 2.5 

320x240 30 85.1 84.3 1 

640x480 30 78.3 78.3 0 
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The performance of accuracy is extracted by using the regression law, the following 

equation presents the dependence of accuracy with image resolution and frame rate 

Accuracy = 55.3+0.000026*s +1.034*fps                    (4.7)

  

Where, s is the image size of the input video with two resolutions (320x240) and 

(640x480); Fps is the frame rate which is listed in Table 4.5.  

To estimate reliable of the accuracy model, the accuracy of this system is 

validated and applied the above model as shown in Table 4.5. The error rate is achieved 

less than 3%. The accuracy model for our system is defined from 10 to 50 fps. This 

model is used to define the accuracy rate of our system with heterogeneous architectures 

in exploring low cost architectures as presented in the later Section. 

4.6 Hardware development and testing 

As discuss in the subsection 4.4.2, the Frame Filter using the Morphology Mathematics 

is selected for implementing on Hardware. However, to extract more architectures for 

this system, we also choose the Object Segmentation task for hardware purpose. By this 

way, the power and execution time of these tasks are estimated by the Vivado_HLS tool.  

Table 4.6 illustrates the summary the extracted power and execution time model 

presented in Chapter 3. Whenever, the resolution images increases the execution time 

and the energy is higher.  

Table 4.6-Summary the results on hardware 

 

Application Resolution 
Execution Time 

(ms) 

Power 

 (W) 

Energy  

(mJ) 

Object 

Segmentation 

320x240 0.33 0.124 0.043 

640x480 1.32 0.124 0.183 

Mathematical 

Morphology 

320x240 4.35 0.184 6.851 

640x480 17.72 0.184 27.944 

1920x1080 218 0.184 40.111 

 

4.7 Application of parallelism techniques 

The aim of this Section determines optimal architectures which has the best compromise 

between execution time, power/energy consumption and accuracy rate. Besides, 

extending the extracted power and execution time models derived from Chapter 3, we 

then propose to use the parallelism techniques for this system on the Zynq platform. 

Parallelism techniques for the video application tasks may exist among several frames 
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(inter-task parallelism) as well as within a single frame (intra-task parallelism). These 

techniques are described as follows: 

 Intra-task parallelism is handled several tasks corresponding with four tasks 

(Object Segmentation, Filter, Feature Extraction and Recognition) in Fall 

Detection System within a frame. The two first tasks perform in parallel by 

separating an image (frame) in two slices. It means that each slice is exploited on 

each core of processor at the same time. 

 Inter-task parallelism: there are also four tasks (Object Segmentation, Filter, 

Feature Extraction and Recognition) in Fall Detection System. Meanwhile, one 

or two tasks are assigned to exactly each core of processor and/or in hardware. 

For instance, first task is run on first core of processor, the second task is 

exploited on FPGA, and the last tasks are executed on the second core of 

processor. Tasks are performed in parallel by consecutive frames. 

 

4.7.1 Intra-task parallelism technique 

In this subsection, the intra-task technique is performed for the Fall Detection System 

which has four tasks assigned to processor cores and/or hardware as follows: 

 Task 1: Object segmentation. 

 Task 2: Frame filter. 

 Task 3: Feature extraction. 

 Task 4: Recognition 

We have many ways to schedule these tasks of our system based on the intra-

task technique. In our context, we suppose that Task 1 and Task 2 have three solutions 

of execution: 1 core, 2 cores and FPGA (hardware). The Task 3 and Task 4 are just 

exploited on 1 core of processors. To understand more detail of the explored architecture 

cases (as presented in Table 4.12), two proposed cases, A2 and A5, are described below: 

Architecture 2: the Task 1, Task 3 and Task 4 are executed in one core of processor. 

Task 2 is run on the FPGA. In the various frequencies the execution time (ms), power 

consumption (mW) and energy per frame (mJ) are shown in Table 4.7 and Table 4.8. 
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Table 4.7-Task regroups Architecture 2 with 320x240 resolutions 

 

Frequency 

(MHz) 

Task 1 Task 2 Task 3 Task 4 

Object 

segmentation 

Frame 

filter 

Feature 

extraction 

Recognition 

667 9.736 4.35 10.9 1.65 

333 19.5 4.35 14.5 3.015 

222 29.25 4.35 21.4 4.6 

 

Table 4.8-The relationship of power and energy per frame at different frequencies 

 

Frequency 

(MHz) 
T(ms) P(mW) Epf (mJ) Fps 

667 26.6 1266 33.7 37.6 

333 41.4 933.3 38.6 24.2 

222 59.6 793.8 47.3 16.8 

 

Our experiment is implemented on Zynq 7000 AP SoC which has three 

configurations of frequency such as 222 MHz, 333 MHz and 667MHz. As shown in 

Table 4.8, by corresponding with the maximum frequency, 667MHz, we can deduce the 

maximum of frame rate with 37.6fps. 

As this frame rate is very high without significant increase on the accuracy, a 

desirable frame rate for the output of our system can be specifed and predetermined. We 

can adjust the frequency of cores that helps the designer decreasing the power. Thus, the 

frequencies of cores are recalculated by the equation 4.8 and Table 4.9 presents the value 

of frequencies when having given frame rate.  

              
   

      
                  (4.8) 

 

Table 4.9-Example of frequency for different frame rate 

 

Fps Fcore (MHz) 

25 443.5 

30 532.2 

35 620.9 
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We continuously discuss about the other Architecture, A4, which is scheduled 

not only on processor cores but also on FPGA as shown below: 

Architecture 4: the Task 1 and Task 2 are processed on the FPGA. Task 3 and Task 4 

are executed on one core of processor. With the different frequencies, the execution time 

(ms), power consumption (mW) and energy per frame (mJ) are illustrated in Table 4.10 

and Table 4.11.  

Table 4.10-Task regroups case 4 

 

Frequency 

(MHz) 

Task 1 Task 2 Task 3 Task 4 

Object 

segmentation 

Frame filter Feature 

extraction 

Recognition 

667 0.330 4.350 10.9 1.65 

333 0.330 4.350 14.5 3.015 

222 0.330 4.350 21.4 4.6 

 

Table 4.11-The estimation power/energy per frame at different frequencies (A4) 

 

Frequency 

(Mhz) 
T(ms) P(mW) Epf (mJ) Fps 

667 17.2 857.3 14.7 58.1 

333 22.2 649.6 14.4 45 

222 30.7 554.5 17 32.6 

 

 For architecture 4, the Object Segmentation task in Fall Detection System is 

accelerated on FPGA. So, the execution time is considerably improved. However, as 

shown in Table 4.11 the maximum of frame rate reaches at 58.1 for the maximum 

frequency, 667MHz. This maximum frame rate is higher than the limited frame rate of 

the accuracy model. Therefore, we can recalculate the frequency of processor cores by 

using the equation 4.8 with the boundary of input frame rate is lower than 50fps. 
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Table 4.12-Intra-task parallelism technique 

 

Architectures Task 1 Task 2 Task 3 Task 4 

A1 Core 1 ObjSeg   Filter FeatureEx Recog 

A2 
Core 1  ObjSeg  

 
FeatureEx  Recog 

FPGA 
 

Filter  
  

A3 
Core 1  

 
Filter FeatureEx Recog 

FPGA ObjSeg 
   

A4 
Core 1   

  
FeatureEx Recog 

FPGA ObjSeg  Filter 
  

A5 
Core 1   ObjSeg  Filter FeatureEx  Recog 

Core 2 ObjSeg Filter 
  

A 6 

Core 1   ObjSeg  
 

FeatureEx Recog 

Core 2 ObjSeg 
   

FPGA 
 

Filter 
  

A7 

Core 1  
 

Filter FeatureEx Recog 

Core 2 
 

Filter 
  

FPGA ObjSeg 
   

 

Table 4.8 and Table 4.12 show that the intra-task technique supports the system 

in significant improvement of execution time. However, a trade-off between execution 

time which impacts the accuracy of fall detection and power/energy consumption is also 

considered. The power consumption model is extracted in Chapter 3 for processor cores, 

FPGA and the model when no application is running. These models are presented as 

follows:  

                                                            (4.9) 

                                                    (4.10) 

                                                            (4.11) 
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In the intra-task technique, the power consumption is estimated based on two 

situations as follows: 

 Situation 1: we consider this situation that all tasks are implemented on software 

(1 core and/or 2 cores) 

                                                                               (4.12) 

                  
 
                      (4.13) 

Where, P(i) is the power consumption on task i. In which i is i
th
 of task and i= (1:4); N 

is the number of processor cores; Fcores is the frequency of processor cores; the image 

size or the image resolution is assigned as a half of input image size for parallel 

execution. 

 Situation 2: one task is implemented on software (1 core and/or 2 cores) or 

hardware (FPGA) 

If i is run on hardware, the power consumption is calculated by: 

                                                           (4.14) 

If i is run on software, the power consumption is determined by: 

                                                 (4.15) 

For this case, the power consumption model based on intra-task technique is presented 

as follows: 

                                                       (4.16) 

                                    

Where, i is the running task number; ai =1 and bi= 0 if i is executed on processor cores; 

ai =0 and bi= 1 if i is running on FPGA. For example, in architecture A6 (as shown in 

Table 4.12), if we want to calculate the power consumption on Task 1 which is run in 

parallel on core 1 and core 2, we have a1 = 1 and b1 = 0. In addition, the power 

consumption on Task 2 is implemented on FPGA, a2 =0 and b2= 1. 

The intra-task technique is applied for the Fall Detection System with both 

image resolutions presented: 320x240 and 680x360; three frequencies: 667MHz, 

333MHz and 222MHz. The architecture cases are shown in Table 4.12. 

We continuously consider the next inter-task technique for our system to explore 

more architecture cases with the estimation of the energy and the impact of accuracy. 

The main scheduling based on this technique is discussed briefly as following 

subsection.    
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4.7.2. Inter-task parallelism technique 

The intra-task technique schedules the execution time of four tasks within a single 

frame. Each task is assigned on 1 core, 2 cores and FPGA. Notwithstanding, in the inter-

task technique, the scheduling of the four tasks is on the core 1, the core 2 and FPGA in 

consecutive frames. For instance, Task 1 is executed on the core 1, Task 2 is 

implemented on the FPGA and the Tasks 3 and Task 4 are assigned to the core 2. The 

time slot (TS) corresponds to the execution time of the slowest task on processor cores. 

Therefore, the parallel and pipeline scheduling for this system with the assigned time slot 

are built and presented as follows: 

 

Table 4.13-The inter-task technique with scheduling of five consecutive frames 

 

 

Where,  

Tcore (τ1, I1) is the execution time of Task 1 (of I1 frame) on core 1; 

TFPGA (τ2, I1) is the execution time of Task 2 (of I1 frame) on FPGA; 

Tcore (τ3, I1) is the execution time of both Task 3 and Task 4 (of I1 frame) on core 2. 

In this context, we have only three tasks and the execution time of each task 

equals to a time slot (TS). The power consumption of our system based on inter-task 

technique is first considered at TS3 with the complete pipeline scheduling all tasks on 

SW and HW. We can extract the power model for this case: 

                                                                (4.17)  

Where,                    is the power consumption of three tasks (task1, task3 

and task4) which is implemented on processor cores. PFPGA(2) is the power of task 2 on 

FPGA. N is the number of processor cores and for inter_task technique N=2; Fcore is the 

frequency of processor cores; s is the image size or the image resolution.  

For example, Table 4.1 shows that Feature Extraction task takes the maximum 

execution time, 10.9 ms in case of 320x240 input image resolution at maximum 

frequency of core 667MHz. When the TS = 10.9 ms, we have the corresponding frame 

rate= 91.7 fps. This frame rate value (91.7 fps) is the maximum frame rate (fpsmax) for 

TS, but is higher than the boundary of maximum frame rate 50fps for accuracy model of 

 TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 

Core 1  (τ1, I1) (τ1, I2) (τ1, I3) (τ1, I4) (τ1 , I5) (τ1, I6) (τ1, I7) (τ1, I8) 

FPGA  (τ2, I1) (τ2, I2) (τ2, I3) (τ2, I4) (τ2 , I5) (τ2, I6) (τ2, I7) 

Core 2    (τ3, I1) (τ3, I2) (τ3, I3) (τ3, I4) (τ3 , I5) (τ3, I6) 
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our system. So, we have to reconfigurate the frequency of core to get the suitable frame 

rate. Besides, from the equation 4.17, the power consumption on processor cores is 

impacted by different parameters such as frequency of cores, image resolutions and 

number of cores. Therefore, by adjusting the frame rate, we can recalculate the frequency 

of core, which help to reduce the power/energy consumption of our system and is 

determined by the following formula: 

                
   

      
                                (4.18) 

Then, energy consumption per frame is deduced: 

                             
      

   
                                 (4.19) 

After using the parallelism techniques to schedule the execution time for Fall 

Detection System, we explore the low cost architectures which is compromised the 

parameters such as execution time, power/energy consumption, the accuracy rate and the 

frame rate by using the Design Space Exploration Architecture methodology. This 

methodology is illustrated as following Section:  

 

4.8 Design Space Exploration Architecture for Fall Detection System 

Design space exploration (DSE) is an analyzing process of functional implementation 

alternatives. It is used to define an optimal solution. The designer traditionally starts with 

an informal specification and develops a reference executable in kinds of high-level 

language. A methodology for the low cost architectures of the Fall Detection System 

with (execution time, power consumption, accuracy rate) constraints is determined DSE 

at the early stages of the development. The methodology is then validated for functional 

correctness as follows the system specification. It is used to get harsh estimations of its 

performance requirements. The initial step is followed by manual or semi-automatic 

generation of several alternative designs which are subjected by image resolutions, 

number of cores, frequency of cores, etc. Finally, the most suitable designs are chosen 

based on various performance metrics such as accuracy rate, frame rate, power/energy 

consumption. 

On the other side, the aim of DSE finds an efficient design configuration. The 

design leads to an efficient HW/SW architecture, therefore, the requirement energy of 

system is minimized and the performance requirements are satisfy the constraints. Thus, 

it is worth noting that both performance of the system and a minimization of energy are 

based on architecture selections. The design exploration process is illustrated in Figure 

4.5. The process consists of two entry points: architecture templates and application 

characteristics. 

 The architecture templates are defined by architecture cases with different 

frequencies, number of cores, and hardware/software combination. The 
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architectures are scheduled by using inter-task and intra-task parallelism 

techniques.  

 The application characteristics are different image resolutions and the frame rate. 

From the matching of architecture templates and application characteristics, 

numbers of low power architectures are defined. Then, the accuracy rates are 

estimated by performance model which is extracted in Section 4.4.3.4. 

Moreover, the design exploration process is an initial platform-independent 

program which is subsequently enriched and integrated with information coming from 

the definition of the target architecture model of the implementations on that platform.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5-Design Space Exploration for Fall Detection System 

 

4.8.1 Methodology  

Thanks for Matlab which supports us to get the visual performance of this system.  The 

low cost architecture exploration can be defined as: 

 Firstly, two resolutions of images: 320x240 or 640x480 is selected in this 

simulation. 

 Then, three frequencies such as 222MHz, 333MHz and 667MHz are configured. 

 Architecture cases based on inter-task and intra-task parallelism techniques. 

 From the selected input, number of architectures for Fall Detection System using 

the execution time/power models and accuracy rate are explored. 

 The requirement of frame rate for processing in the system is greater than 10fps 

and less than 50fps. These best architectures not only consume the lowest energy 

Architecture templates Application characteristics 

Architecture design space 
Application design space 

 

Low cost architecture for 

Fall Detection System 

 

Evaluation Performance 
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but also satisfy the highest accuracy rate performance among the explored 

architectures. In fact, it is necessary to compromise a best architecture among 

these power/energy consumption, frame rate and accuracy. The best architecture 

depends on the purpose of the users’ demand.  

Our methodology is to determine the low cost architectures for the Fall Detection System 

by following descriptions: 

 

Initial:   - Frequency of cores Fcore= [667MHz, 333 MHz, 222 MHz] 

               - Maximum frame rate fpsmax = 50; 

               - Image resolution s= [320x240, 640x480]; 

  - Number_of_core N = [1, 2]; 

  - Time slot (TS) is the slowest execution time of task on processor cores 

  - Architecture_case  C = [1 1 1 1;  

                 1 0 1 1; 

                                                        0  1 1 1;  

                                                        0 0 1 1];    

 // select the architectures: C[i,j] = 1 mean task j
th

 executes on processor cores and C[i,j] 

= 0 mean task j
th

 runs on FPGA; i is the i
th 

 test case 

                          

Computation: 

For f =1 to 3 // select the frequency of cores: 667MHz, 333 MHz, 222 MHz  

  If select= Intra-task technique then 

     for s=1 to 2  // select image resolutions: 320x240 or 640x480   

          for N=1 to 2  // select the number of processor cores; N is extended to 3 or 4, it depends on 

the platforms.  

             For j =1 to 4 

 If i = 1 then // select the architecture_ case 1 [1 1 1 1] 

                                                  

                              
 
            // as shown in Section 3.7.1 

  Else  // select the three rest of architecture_cases 

       for i = 2 to 4  

                                                             

                    
 
                           

                                                                                                   //as shown in Section 3.7.1 

         end for j 

                             
 
              

                    //Frame rate output:            
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                                    // only accepting the architectures if they sastify with 10  fps  50 

                     // Accuracy of architectures: 

                                             

                      //Output:                             

                                                    

                   End for i 

             End if 

          End for N 

      End for s 

 Else if select= Inter-task technique: 

     for s=1 to 2  // select image resolutions: 320x240 or 640x480    

             N=2; 

  i=2; 

                                                                        

                                                
      

   
    

                     //Frame rate output:       
 

  
     

                                    // only accepting the architectures if they sastify with 10  fps  50 

                   // Accuracy of architectures:   

                                                   

                   //Output:     

                                                                      

    end for s  

 end If   

end. 

 

4.8.2 Model results 

Based on the previous methodology, the exploration low cost architectures for the Fall 

Detection based on intra-task technique is related power/energy, accuracy rate, and 

frame rate are defined as shown in Table 4.14.  

Figure 4.6 and Table 4.14 depict the simulation results of architecture exploration. It is 

the trade-off power/energy and the accuracy rate performance of the Fall Detection 

System. Three architectures which have compromised between energy and accuracy 

performance belong to A3, A4 and A7. A4 takes lowest energy 20mJ with 80.9 % 

accuracy, A7 spends 24.1mJ for energy with 97.6% accuracy and A3 consumes 29.5 mJ 

with the highest accuracy around 98%. 
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Table 4.14-The relationship between energy and accuracy in different architectures 

 

Architecture (intra-task)  Energy (mJ) Accuracy (%) 

Architecture 4 (A4) 

1 core (333MHz) + HW_ 640x480 
20 80.9 

Architecture 2 (A2) 

1 core (667MHz) + HW_640x480 
35.6 85.2 

Architecture 6 (A6) 

2 core (667MHz) + HW_640x480 
31.2 91.6 

Architecture 5 (A5) 

2core (333MHz)_320x240 
34.6 93.5 

Architecture 1 (A1) 

1 core(667MHz)_320x240 
42.6 95.7 

Architecture 7 (A7) 

2core (333MHz) +HW_320x240 
24.1 97.6 

Architecture 3 (A3) 

1 core (667MHz) + HW_320x240 
29.5 98.3 

 

Figure 4.6-Architecture exploration for Fall Detection System 
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As discuss in Section 4.7.2 for the inter-task technique, the time slot is assigned 

to the slowest task on processor cores at the different frequencies. The task1, task3, task4 

are just executed in parallel core 1, core 2 and task 2 is run on FPGA. We also consider 

the two configurations: image resolution (680x480 and 320x240); frequency of cores 

(667MHz, 333MHz and 222MHz).  

Table 4.15 presents the energy per frame and accuracy performance of four 

architectures for Fall Detection System. The energy per frame of architecture A’1 takes 

11.6 mJ with rather high accuracy 93.7 % and 34.8 mJ with only accuracy 66.2% for 

architecture A’2. The two suitable architectures, A’1 and A’2, are selected for inter_task 

technique corresponding with two input image resolutions.   

Table 4.15-The power/energy consumption and architectures based on inter-task technique 

 

Architecture  

(inter-task) 

Time slot 

ms 

Pinter_task  

(mW) 

Epf  

(mJ) 

Accuracy 

(%) 

A’1 

(320x240_222MHz) 
25.6 453.8 11.6 93.7 

A’2 

(680x480_667MHz) 
60.3 634.8 34.8 66.2 

A’3 

(680x480_333MHz) 
104 501.2 46.6 58.4 

A’4 

(680x480_222MHz) 
155.8 456.8 63.6 54.7 

 

The Design Space Exploration methodology which applies the parallelism techniques:  

intra-task and inter-task, help the designer to extract the different architectures for Fall 

Detection System. In addition, the DSE can extend the various configurations of the 

image resolutions, frequencies of processor cores and the number of cores (for example 

three cores or four cores).  

 

4.9. Conclusion 

This chapter defines the low cost architectures to overcome the constraints such as 

execution time, frame rate, power/ energy consumption and accuracy rate. The power 

consumption and execution time models are extended in comparison in Chapter 3 to 

estimate these parameters for the complete Fall Detection System. We also propose a 

model for the accuracy rate performance which is function of image resolutions and 
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frame rate. This accuracy model then applied for evaluating features of the different 

candidate the architecture.  

We defined a Design Space Exploration methodology in order to explore 

heterogeneous architectures with hardware/software combination for our system by 

applying two parallelism techniques: intra-task and inter-task static scheduling. As 

example, for the intra-task technique some exploration of low cost architecture are: if 

we are interested in the energy consumption, the architecture A4 would be selected with 

lowest energy per frame 20mJ and accuracy rate with 80.9 %. In contrast, if the main 

parameter is the accuracy performance, the architecture A3 would be selected and 

presents the highest accuracy about 98 % and the energy with 29.5 mJ.  However, the 

architecture which gets the best compromise between energy and accuracy performance 

is architecture A7 which consumes 24.1mJ for energy with 97.6% accuracy. For the 

inter-task approach, if we consider A’1 and A’2 architectures for two image resolution 

320x240 and 680x480, the energy per frame takes 11.6 mJ with rather high accuracy 

93.7 % (A’1) and 34.8 mJ with only accuracy 66.2% (A’2). We notice that when the 

image resolutions increase, the fps significantly diminishes that induces a decrease in the 

accuracy rate. The proposed inter_task static scheduling must be enhanced to get better 

accuracy performance.   

 In addition, we can select one of the two optimal architectures (A7 and A’1) to 

develop on a certain heterogeneous platform without spending a lot of time on 

experiments. Furthermore, the DSE can be extended for the processors with more cores 

such as 3 cores, 4 cores, 8cores, etc., various image resolutions and frequencies. 
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Chapter 5. Conclusions and perspectives 

 

 

 

 

 

This thesis has presented an exploration of the Fall Detection under algorithmic and 

architectural point of view.  The aim is to find out low cost architectures based on power 

consumption, execution time model and accuracy rate performance. The study of Fall 

Detection System, which is established on a video processing and was investigated, in 

which: 

(1) The human object inside the image has been segmented from the 

background; the technical construction of geometric modeling for the human body and 

extract features to recognise the fall actions; 

(2)  Solutions of different recognition model for fall action are training with high 

precision and reliability; 

(3) Creating scenarios and building databases video are classified with different 

actions: fall, non-fall (sitting, lying, creeping, etc.) in three camera directions (face, sides 

and cross); and applying the evaluation criteria is for testing the model to detect falls. 

(4) Moreover, we make the comparison (the recall, precision, and accuracy 

performance) among the suitable algorithms using in Fall Detection System such as 

Background Subtraction-Neural Network (BGS-NN); Background Subtraction-Template 

Matching (BGS-TM); Background Subtraction-Hidden Markov Model (BGS-HMM); 

Gaussian Mixture Model (GMM-HMM); 

(5) In the architectural point, then, execution time and power consumption 

models have been extracted based on not only algorithm parameters (cache miss rate, 

instruction per cycle, and image size) but also architectural parameters (number of cores 

and operating frequency). Functional Level Power Analysis (FLPA) is applied for 

creating the power models on processor cores and power models on FPGA are based on 

the hardware resources; 

(6) From extracted models, the power consumption and execution time models 

are extended with hardware/software architectures for the Fall Detection System; 

(7) Our approach targets to explore low cost architecture for this system by using 

the parallelism techniques with the aim to find out the architectures which offer the best 

compromise between energy and fall detection accuracy rate. 
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5.1 Conclusion 

In this thesis, at first, the efforts have been devoted to improve the Fall Detection 

algorithms. Heterogeneous architectures for video applications in Fall Detection System 

are studied to extract the models for execution time and power consumption. Then, we 

proposed a new Design Space Exploration methodology to define the low cost 

architecture for Fall Detection System which presents a sufficient accuracy rate. Our 

methodology also applies parallelism techniques. 

In Chapter 2, the application which is divided in four modules, Object 

Segmentation, Filter, Feature Extraction and Recognition, is elaborated with different 

algorithms. Moreover, we described the speciality of DUT-HBU database, including data 

information, camera, environment, actor/actress and scripts of classification, which are 

used for simulation and evaluation purpose and implementation. The Fall Detection 

System was assessed by using the accuracy, recall, and precision performances. 

Notwithstanding, our database used data recorded from falls of young people simulated 

at the discretion of each impersonator in the videos. Hence, our database lacked of a 

standardized procedure or needed to compare with a public database. Meanwhile, the 

real fall detection aims to older people or patients who have some distinctions with 

young people in the database. The simulation results were then used to compare the 

performances among the algorithms such as BackGround Subtraction/Hidden Markov 

Model (BGS-HMM), Gaussian Mixture Model/Hidden Markov Model (GMM-HMM), 

BackGround Subtraction/Neural Network (BGS-NN) and BackGround 

Subtraction/Template Matching (BGS-TM). One of the most important advantages is 

that our system is well-accepted due to the fact that we have a local processing, it is 

convenient and more applicable at the contemporary indoor for elderly living alone or 

rehabilitants in hospital. We analysed the shortcomings which give the false recognition 

output such as environment brightness, occlusion of object, many movement objects 

appearing in a frame at the same time. Especially, the extracted features that are not 

strong enough to distinguish between face fall and sitting actions were also considered. 

These evidences are not enough to assess the system performance in a real situation. 

Moreover, these algorithms were evaluated with the off-line videos, making the 

execution time and estimation backgrounds are not too complex.  

In Chapter 3, the video tasks which are defined in the Fall Detection System 

were at first analysed separately and power consumption and execution time models for 

them have been proposed. A power and execution time modeling methodology was 

proposed for processor cores based on FLPA and FPGA related with the hardware 

resources and then for heterogeneous architecture. All the implementation for extracting 

these models were executed on Zynq7000 AP SoC including processor cores (ARM 

Cortex A9) and FPGA with supporting of Vivado_HLS. The scenery of processor core 

experiments was implemented by considering different configurations. TI USB Interface 

Adapter PMBus associated with TI Fusion Digital Power Designer GUI was used to 
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measure the power consumption on processor cores to evaluate the error rate of these 

power consumption models. Moreover, the power consumption and execution time 

models for processor cores were extended for the Fall Detection System related to 

different parameters such as image resolutions, frequencies and number of cores. In 

addition, the power consumption and execution time models of FPGA were only 

extracted for two tasks (Object Segmentation and Filter) for which the execution time 

can be improve significantly. The defined models allowed to evaluate the power 

consumption and execution time with different configurations of heterogeneous 

architectures for Fall Detection System. The more architecture for the Fall Detection 

System will be explored, if the more tasks like Feature Extraction and Recognition are 

selected to implement on FPGA.  

In Chapter 4, the Design Space Exploration methodology which is used to define 

the low cost architectures the Fall Detection System was introduced. The low cost 

architectures meet the constraints such as execution time, frame rate, and accuracy rate.  

The extracted power consumption and execution time models were extended to explore 

different hardware/software architectures for the Fall Detection System. In addition, 

these estimations are useful to explore low cost architectures based on two parallelism 

techniques: intra-task and inter-task static scheduling on heterogeneous architecture for 

the Fall Detection System. The low cost architectures were selected with the 

compromising of energy and accuracy rate performance of the Fall Detection System. 

However, the accuracy rate must be extracted with more parameters recognition features, 

filter method, etc. In our system, the BGS-TM algorithm with well-matched for was 

implemented on processor cores with accuracy of 62% and energy per frame of 43mJ/f. 

When the parallel techniques based on hardware/software architecture are applied, the 

frame rate of our system is considerably increased and the accuracy rate reaches 98.3% 

with energy per frame of 29.5mJ/f. Based on this methodology, the optimal architectures 

were selected to develop on a certain heterogeneous platform without carrying on time-

consuming experiments. Moreover, the DSE can be extended for the processors with 

more cores such as 3 cores, 4 cores, 8 cores, etc., various image resolutions and 

frequencies. 

 

5.2 Perspectives 

Although we have presented the modeling approach of execution time and power 

consumption for processor cores and hardware by using HLS tools, there are still many 

aspects of our approach must be improved on algorithms, application domains, 

evaluation tools, database, and architecture definition, etc. Several perspectives that our 

work has created and how these opportunities may be addressed will be outlined below. 
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5.2.1 Improve the Fall Detection Algorithm 

Most of recognition errors are due to impact of environment factors, so the human object 

is extracted from usual complex background stage. In addition, as the simulation results 

in Chapter 2, if we develop the algorithms for implementation on hardware/software 

architecture such as Background Subtraction/Hidden Markov Model (BGS-HMM), 

Gaussian Mixture Model/Hidden Markov Model (GMM-HMM), Background 

Subtraction/Neural Network (BGS-NN), it will give higher performance compare to our 

system using Background subtraction/Template Matching.  

This system need to be tested on other databases to get more the evaluation of 

accuracy, recall, and precision performance. Therefore, it is necessary to develop and 

collect addition database from various sources to have a stronger database which uses for 

training our system in optimal way. It is one of the reliability of these algorithms before 

we decide to design a stand-alone system for the practical application in the hospital or at 

home.  

The focus should also be on the stage of feature extraction to extract more new 

features to distinguish similar actions from the object or improve the effects of noise 

such as removing the silhouette of the object or the changeable brightness of 

environment. The objects obscured by other objects in the room have also to be handled. 

Modeling 3D human body is a prevalent method to create depth to object to enhance 

effective recognition of the actions.  

In addition, the developments of not only the accuracy rate model but also the 

recall and precision models are needed in order to achieve more performances of the low 

cost architecture for Fall Detection System.   

Furthermore, in our Fall Detection System, we have already detected the fall of 

object and it would be more interesting to analyse many kinds of the human motions 

after the fall in order to send different degree of alarm.   

 

5.2.2 Power/execution time optimization 

Most of video processing applications require real-time solutions. A usual approach to 

achieve this performance goal is to exploit the heterogeneous architecture consists of 

different types: GPUs (Graphical Processing Units) or FPGAs (Field Programmable Gate 

Arrays) or processor cores.  The GPUs are very efficient at manipulating computer 

vision, video and image processing, and their highly parallel structure makes them more 

effective than general-purpose processor cores for algorithms where processing of large 

blocks of data is done in parallel. It means that the combination with GPUs is 

considerably improved the execution time for a system. Hence, there are some solutions 

for exploring more heterogeneous architectures for our system such as GPUs/ processor 

cores or even combination three types: processor cores, GPUs and FPGAs.  
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In addition, to design a stand-alone Fall Detection System, the autonomy must 

be powered on battery. And how long the battery power allows to the autonomous 

operation for this system must be considered. 

 

5.2.3 Camera network 

In this thesis, our system has concentrated on a single camera. While video surveillance 

system needs to work in a network environment, it is necessary to analyse the moving 

object patterns that evolve over long periods of time and large space. To understand the 

moving patterns are observed by a multi-camera network, the first step is to infer the 

spatial organization of the environment under surveillance, which is achieved by camera 

node localization, camera calibration, or camera network topology inference for different 

purposes.  

In addition, video surveillance may interface with other wireless technologies, 

such as body area networks (BANs), and radio frequency identification (RFID) 

technology. In this case, more autonomous and intelligent E-healthcare applications can 

be generated to improve people’s quality of life. For example, with a patient’s personal 

information stored in RFID tag, and physiological data retrieved by a BAN worn by the 

patient, the doctor or other care-givers can remotely diagnose a problem by relying on 

video surveillance system.  

 

5.2.4 Solutions for combination of many equipments for the Fall Detection 

System 

After exploring the low cost architecture based on the relation of accuracy rate and 

energy, we are going to design the real system which is applied and developed in 

Vietnam. In addition, we ongoing to connect with the other equipments such as mobile 

phone, e-health bracelets, wireless sensors, smart watch, etc. which will make more 

flexible for users in case of getting out the room. Besides, this system needs to not only 

detect the fall of elderly but also diagnose the diseases, for example Alzheimer, absent-

mindedness and heart disease and so on.   
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Appendix  

Database description  

Database name: DUT-HBU database 

File format: *.avi 

Authors:  

 Hieu V.Nguyen  

 Tuan V.Pham  

 Hong T.K Nguyen 

 Duy H.Le  

 Hoan V.Tran  

 Khue Tra    

 Phung T.K Lai  

 Viet Q.Truong  

Electronic & Telecommunication Engineering Department - Danang University of 

Technology, Danang, Vietnam  

Camera : Philips Webcam SPC 900NC [179] 

 Sensor: CCD 

 Resolution : 320x240 

 Interpolated snapshot resolution: 1.3 MP 

 Max. frame rate: 90 fps 

 Colour depth: 24 bit 

Environment: Lab room of HBU group  

 Size : 3x5 m
2
 

 Brightness : Good ( natural light) 

 Background : quite stable 

 Moving object : 1 

 Camera position: see in Figure A 
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Figure A-Camera position 

Actor/Actress: 4 persons 

 

Table A-Descriptions of the actor /actress 

 

 Duy Hoan Phung Hong 

Sex Male Male Female Female 

Age 22 22 22 35 

Height 1m65 1m75 1m56 1m53 

Weight 56Kg 60Kg 40Kg 48Kg 

  

 3m 
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