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THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
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Abstract

Competing interactions are an essential feature of frustrated magnetic systems, they stand behind

a large degeneracy of classical or mean-field ground states. In many cases such degeneracy can

be lifted by thermal and quantum fluctuations, this mechanism is commonly called order from

disorder.

Experimentally studied magnetic systems inevitably contain a certain amount of structural

disorder. In this Ph.D. project I study the influence of defects: vacancies and bond disorder on

a degenerate ground state manifold for various frustrated systems. The quenched disorder is

found to be capable of consistently lifting the degeneracy, moreover, it has an opposite tendency,

compared to the order by disorder mechanism, produced by fluctuations. For every considered

model, analytic energy corrections are derived in the form of effective anisotropic terms, which act

on the manifold of degenerate ground states. Analytical arguments are confirmed by numerical

calculations, which include energy minimisation and classical Monte Carlo simulations. The

detected sequences of ordered states is attributed to competition of fluctuations and structural

disorder. The observed effect can open additional possibilities in tuning and manipulating

magnetic structure of frustrated spin systems.

Finally, the effect of an external magnetic field is investigated for the pure XY pyrochlore

antiferromagnet. Depending on the field orientation I observe phase transitions, which do not

exist within the mean-field description of the system. They are generalisations of the spin-flop

transition for the case of broken discrete Zk symmetry with k > 2.
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Résumé

La compétition des interactions est une caractéristique essentielle des systèmes frustrés, elle est

à l’origine d’une large dégénérescence des états fondamentaux classiques ou, obtenus par une

théorie de champ moyen. Fréquemment la dégénérescence peut être levée par des fluctuations

thermiques ou quantiques, ce qui constitue la base du mécanisme appelé ordre par le désordre.

Les systèmes magnétiques étudiés expérimentalement contiennent une quantité inévitable

de désordre structural. Dans cette thèse de doctorat, l’influence des défauts, créé par des sites

inoccupés ou par un désordre des liens sur l’espace dégénéré des états fondamentaux est étudiée

pour des systèmes frustrés divers. Nous avons trouvé qu’un désordre structural est, lui aussi,

capable de lever systématiquement la dégénérescence; par ailleurs, la tendance est inverse par

rapport au le mécanisme d’ordre par le désordre produit par les fluctuations. Pour chacun des

modèles considérés, les corrections à l’énergie ont été calculées sous la forme de termes anisotropes

effectifs qui agissent sur l’espace dégénéré des états fondamentaux. Ces arguments analytiques ont

été confirmés par des calculs numériques que nous avons effectués par minimisation de l’énergie,

ainsi que par simulation de type Monte-Carlo classique. La séquence des états ordonnés que nous

avons détectée est attribuée à la compétition entre l’effet d’ordre induit par les fluctuations et celui

induit par les défauts structuraux. L’effet observé peut ouvrir des possibilités supplémentaires de

contrôler la structure magnétique des systèmes.

Enfin, les effets d’un champ magnétique externe ont été étudiés pour le système antiferro-

magnétique pyrochlore pur avec anisotropie de plan facile. Nous avons observé des transitions de

phases qui dépendent de l’orientation du champ et qui n’existent pas dans la description de type

champ moyen du système. Elles constituent une généralisation des transitions de type spin-flop

pour le cas de la symétrie discrète Zk brisée avec k > 2.
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Chapter 1

Introduction

The term frustration generally refers to a competition without definitive win. Cancellation of

dominant microscopic couplings enhances the role of various subdominant interactions, producing

a plethora of unconventional phases and effects. Due to its incredibly rich and complex behaviour,

frustrated systems attract a lot of research attention. High degeneracy of ground states represents

another fundamental consequence of competing interactions. Moreover, it is often the case that

the classical ground state is invariant under some symmetry operation, while the Hamiltonian

that describes the system is not. Such a symmetry is said to emerge in the low-energy sector

of the model. Mathematically, it can be expressed via the noncommutation of the symmetry

operator Ô with the Hamiltonian of the system

�

Ĥ, Ô
�

6= 0,
�

Ĥ, P ÔP
�

= 0, (1.1)

where P is a projector to a ground state sector of Ĥ.

These emergent symmetries should not be confused with a more common situation of

spontaneous symmetry breaking. In the latter the invariance of the Hamiltonian is spontaneously

lost in a specific low-energy state, while the states themselves are related by some symmetry

operation. Emergent symmetry describes, in a sense, an opposite situation: the system becomes

more symmetric in the ground state sector in comparison with the higher energies.

The operator Ô does not describe a true symmetry of the system, it is rather an artefact of

the application of the mean-field approximation to the model. So the corresponding degeneracy

can in principle be lifted by various mechanisms that are left beyond the mean-field theory.

For example, these accidentally degenerate states may have different entropy S or a different

spectrum of zero-point quantum fluctuations:

F = Ecl − TS, Eg.s. = Ecl +
~

2

X

k

ωk. (1.2)

These degeneracy lifting mechanisms, which are associated with fluctuations, thermal or quantum,

are called order by disorder after a work of Jacques Villain et al. [1]. In its modern form it

was first used by Shender [2] for explaining magnetic order of the Mn3Cr2Ge3O12 garnet. Being

investigated for numerous spin models, the order by disorder mechanism finds so far only a

few realisations in magnetic materials. Perhaps, the clearest examples of the order by disorder

selection are provided by the 1/3 magnetisation plateau in triangular-lattice antiferromagnets [3–
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5] and by zero-field noncoplanar spin structure of the XY pyrochlore antiferromagnet Er2Ti2O7

[6, 7].

Various other mechanisms, which lift the accidental ground state degeneracy should be taken

into account when studying real systems. As was already mentioned, additional interactions, may

cause state selection already on the mean-field level. Internal subleading effects, such as weak

anisotropies and further neighbour interaction, usually bring a complication due to the difficulty

of distinguishing fluctuation effects from those of interactions. On the contrary, external tunable

parameters, such as an application of a magnetic field or hydrostatic pressure, presents a tool

for probing the order by disorder phenomenon. It is also possible to propose other scenarios of

modification of the energy of the system. For example, a defect in a lattice causes an energy gain

due to local relief of frustration, therefore, it has the potential of causing the lifting of degeneracy.

Most of the existing theoretical studies of defects in magnetic solids focus on a single impurity

problem. A number of works were devoted to studying magnetic susceptibility of different types of

impurities: vacancies and additional spins. Sachdev et. al showed that the impurity susceptibility

has a Curie-like divergence with the universal effective spin [8]. Logarithmic corrections to χ(T )

were later derived [9, 10]. Another important line of studies is dedicated to studying long range

magnetisation patterns around impurities in the external field. The universal form of tilting

of spins, surrounding a single vacancy was obtained by Lüscher and Sushkov using harmonic

spin-wave calculations [11]. The result was later generalised to the case of impurities in the form

of additional spins [12], and confirmed by quantum Monte Carlo simulations [13, 14].

In addition to this, frustrated magnets exhibit a variety of new effects, caused by impurities.

Structural disorder modifies locally exchange interactions and destroys perfect magnetic frustra-

tion at the microscopic level [15]. As a result, magnetic moments tilt from the equilibrium bulk

structure causing spin textures, even at zero magnetic field [16, 17]. Another subsequent effect is

that a single impurity produces a net uncompensated magnetic moment [16–18], which is, in

contrast with collinear antiferromagnets, fractional and highly dependent on the system details.

Scaling from a single vacancy to a more realistic situation of finite concentration of impurities

is straightforward for simple collinear antiferromagnets. In the case of frustrated magnets more

complex behaviour can be detected. First of all, a common notion is that a combination of the

large degeneracy of states together with disorder leads to the spin-glass phase. This behaviour

was first observed in the random ferro-antiferromagnetic interaction model, which represents,

however, an example of a rather strong randomness.

A surprising effect appears when the opposite limit of not very intense disorder is considered.

Henley first suggested an idea that dilution can, on the contrary, be the source of order. He

argued that a noncollinear state is selected by nonmagnetic impurities from the degenerate ground

state manifold of FCC antiferromagnet [19]. The action of dilution on the ground state manifold

was described by a phenomenological positive biquadratic exchange. Henley’s prediction was

supported by Monte Carlo simulations by Giebultowicz [20]. Later the same positive biquadratic

exchange was derived for the BCT antiferromagnet [21] and for the J1−J2 square antiferromagnet

[22] by minimising the energy of the tilted distorted state and averaging over vacancy replica.

Monte Carlo studies of the latter model with XY and Heisenberg spins [23, 24] confirmed the

argumentation by reporting orthogonal orientation of sublattices in the presence of impurities.
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However, such an “antiparallel” phase was found to have only short range correlations as it

involved no symmetry breaking.

All aforementioned systems can be decoupled into independent subsystems in such a way that

the effective fields produced by spins of one subsystem (a) at any spin of the other subsystem (b)

cancel: ha→b = 0 . For those systems a very simple and elegant argument was presented, which

explains collinear order by fluctuations and anticollinear order, favoured by impurities. Both

fluctuations of spins and vacancies on subsystem a produce a distortion to the local field, felt

by the second subsystem δha→b 6= 0. Similar to the situation of a square antiferromagnet in

external field, interaction of such a distortion with the spins on subsystem b is maximised when

Sb ⊥ δha→b. When the distortion is caused by fluctuations, it is perpendicular to the direction

of spin on subsystem a: δha→b k δSa ⊥ Sa. Therefore, two subsystems tend to align parallel

to each other. In the second case of a vacancy on a site a: δha→b k Sa, and the antiparallel

alignment is realised.

Interestingly, in a somewhat different context of magnetic multilayers positive biquadratic

exchange interaction was reported by Slonczewski [25]. It appeared as a subleading interaction

due to interface roughness. Accordingly, the order by disorder and the effect of structural disorder

are associated with negative and positive effective biquadratic interactions. Such additional

terms are even proposed to be included in numerical simulations of classical frustrated systems

at low T to emulate the effect of quantum fluctuations or disorder [26].

These two concepts: (i) structural disorder can consistently and independently from the

particular impurity realisation select the states from the accidentally degenerate ground state

manifold, and (ii) effect of fluctuations and structural disorder on the degenerate lowest energy

states can be represented by the action of an effective interaction terms with different signs,

constitute the core ideas of this work.

Though simple and quite appealing, Henley’s argumentation for obvious reasons cannot be

applied to a general problem of lifting the continuous ground state degeneracy in noncollinear

frustrated magnets,

In this Ph.D. project we aim to present a unified approach to frustrated systems with

continuous emergent ground state degeneracy. We consider models with varying properties of

ground states: the Heisenberg antiferromagnet on a triangular lattice, the easy-plane pyrochlore

antiferromagnet, 120◦ and 90◦ compass models. While the standard state selection effect of

fluctuations in these systems is well established, we concentrate on studying the order by structural

disorder mechanism. Consequently, we investigate the interplay of this weak and substantially

energetic effect with the ordering by fluctuations.

In addition to this, we demonstrate how spin fluctuations, and in general the beyond-mean-

field approximation effects can be probed by application of additional tunable external parameters,

such as the magnetic field.

Outline of the work

In this work we analyse the interplay between energetic and fluctuational effects in lifting the

emergent ground state degeneracy of frustrated systems. The first two chapters show various

methods that were used throughout our studies. They are all described in various studies and
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reviews, so in these methodological chapters we present only the necessary introduction to the

methods and demonstrate modifications that were made for adapting them to specific models.

The rest of the work (chapters 4-7, apart from the description of the corresponding models)

contains original results that were obtained during this Ph.D. project. More details about the

contents of the work are presented below.

In chapter 2 various analytical methods that were used to study lifting of ground state

degeneracy are demonstrated. First, we present technical details of the real space perturbation

expansion, which is an efficient alternative to a commonly-used harmonic spin-wave approach.

The method treats fluctuation of spins around an equilibrium configuration in terms of a series

of effective Hamiltonians that act on the whole degenerate ground state manifold. After that

we describe our analytic model for disorder and introduce an integration procedure for spin

deviations, which gives the energies of the new ground states.

Chapter 3 contains the description of numerical methods and techniques that were used in

this work. First of all, we present the core of our classical Monte Carlo algorithm, which uses

a combination of the single spin Metropolis steps with microcanonical overrelaxation updates.

Then a finite size scaling procedure is described, which is an essential tool for extracting the

precise information about the studied phase transitions. We give a brief introduction to scaling

procedures in case of second and first order phase transitions, as well as for Berezinsky-Kosterlitz-

Thouless phase transition. Finally, the details of our mean-field energy minimisation algorithm,

which is used for studying ground state of the systems at T = 0, are demonstrated.

In chapter 4 the collective impurity effects on the paradigmatic frustrated system: the

Heisenberg triangular antiferromagnet are studied. First, building on the previous works [21,

22], we show that, averaged over different realisations, bond and site disorder generate positive

biquadratic exchange, and therefore, lift the continuous degeneracy of spin plane orientation in

the magnetic field. Such an effective interaction is obtained by integrating out static fluctuations

in a spin texture and due to its sign favours the least collinear spin configurations. This state

selection competes with the action of the conventional order by disorder mechanism, which can

be described by a negative biquadratic exchange. The rich phase diagram of the system with

impurities, which emerges from this competition, is obtained by Monte Carlo simulations.

In addition to this, we present another effect of a finite impurity concentration on the

Heisenberg triangular system. It is the nontrivial dependence of the effective vacancy moment

on the defect concentration mimp(nimp). A substantial growth of mimp in comparison with the

single vacancy value is explained by the clustering of impurities. This quadratic in concentration

effect turns out to be nonnegligible due to the small initial value of m◦
imp = 0.04S [16].

In chapter 5 we study the effect of structural disorder on the anisotropic XY pyrochlore

model, which describes the low-temperature magnetic properties of the rare earth magnetic

insulator Er2Ti2O7. This model is interesting because in pyrochlores lifting of the ground

state degeneracy by biquadratic spin interaction is prohibited by symmetry. In this chapter we

show that structural disorder favours the coplanar mx2−y2 (ψ3) magnetic state, the opposite

of the m3z2−r2 (ψ3) configuration, which is stabilised by fluctuations in the pure system. The

competition of two effects results in a reconfigurational first order phase transition, occurring at

low temperature inside the antiferromagnetic phase. The study of this system is additionally
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motivated by the fact that Er2Ti2O7 represents the least contested experimentally observed

example of the order by disorder mechanism. As in pyrochlores weaker interactions that break

the degeneracy of states on the mean-field level are suppressed by symmetry.

The same anisotropic XY pyrochlore model is employed in chapter 6 to investigate the

competition of fluctuations with the external magnetic field in the pure system. Finite H lifts

the ground state degeneracy at the mean field level and leads to the rather simple H − T phase

diagrams. We show that the weak Z6 anisotropy which is generated by impurities modifies the

observed phase diagrams. It leads to an extra second order phase transition at low magnetic field

when H k [001] and an unusual pair of reentrant phase transitions when H k [111]. The findings

of the symmetry analysis are confirmed by numerical and analytical energy minimisation in the

low-H limit. Finally, classical Monte Carlo H − T phase diagrams for different directions of the

magnetic field are presented.

Chapter 7 is devoted to the study of the order by structural disorder phenomenon in 120◦

and 90◦ compass models. These models provide an interesting example of frustrated models on

nonfrustrated lattices with very unusual sets of symmetries: both true and emergent. Discrete

emergent symmetries of the 120◦ model are found to be preserved by vacancies, while continuous

symmetry is lifted in favour of states, least supported by fluctuations. Monte Carlo simulations

confirm such a scenario and show an appearance of a new long range order phase at low T . This

new phase is unusual as it can only appear as a result of both structural disorder and fluctuations.

Contrary to this no new ordered phase is stabilised by defects in the 90◦ model in two and

three dimensions. Instead the paramagnetic phase bounds the fluctuation-stabilised nematic

phase from below. Compass models are known to describe orbital order in Mott insulators and

superconductivity in Josephson junction arrays and therefore, this chapter extends the concept

of state selection by quenched disorder to a wider range of physical models.

Lastly, the results of this work are summarised in chapter 8, in addition, a brief overview of

possible future work on the subject is presented.





Chapter 2

Analytical methods

The aim of this chapter is to present technical details of the analytical methods that are

used in our studies. Our operational example throughout this chapter will be the Heisenberg

antiferromagnetic model on the triangular lattice. It shares the main features of all models,

considered in the work, but on the other hand is simple enough to serve as a demonstrative tool.

As all the methods presented in this chapter will be used for various systems, we keep a certain

level of generality in the expressions to avoid further repetitions and emphasise the points that

will be crucial for us in further use regardless of the model. We point out that in this section we

will be focused on the technical aspects of the calculations, rather than actual physical results,

which will be the purpose of the next chapter.

The standard analytic approach to the problem of degeneracy lifting in frustrated magnets is

to use the spin-wave theory. The spectrum of zero point quantum fluctuations [27] (or thermal

fluctuations in the classical case [28]) is calculated in the harmonic approximation for a few (or

many) degenerate states. Then the configuration with the lowest total energy is the one selected

by fluctuations. In section 2.1 of this chapter we present an alternative approach to the problem

of continuous degeneracy lifting in pure frustrated magnets. The method treats fluctuations

around a classical ground state in terms of the real-space perturbation expansion and comprises

our main analytical tool in the studies of all subsequent models.

Section 2.2 is devoted to the analytical treatment of quenched disorder in the spin system. We

aim to describe spin vacancies, which model substitutions of magnetic ions by the nonmagnetic

ones. So we concentrate on the continuous limit of disorder: weak vacancies, where the impurity

spin is present, but has a reduced length. This allows to handle nonmagnetic impurities by

the methods of perturbation expansion, developed earlier. We also briefly consider weak bond

disorder as the other type of structural disorder.

2.1 Real space perturbation expansion

This method, which we call Real Space Perturbation Theory (RSPT) was employed in a number

of studies of the degeneracy lifting in various frustrated systems, such as FCC [29, 30], XY

checkerboard AFM [31] XXZ model on the Kagome lattice [32]. Moreover, this formalism suits

well to tackle the systems that lack translational symmetry, for example, for frustrated magnets
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with structural disorder [33]. Eventually such a study will be the principal aim of the work,

but first, in this section we develop the real space perturbation expansion for pure noncollinear

magnets, following the course of Ref. [34].

Real space perturbation expansion is essentially the method of treating the terms in the

Hamiltonian that are left beyond the mean-field approximation. All these terms that describe

fluctuations of spins around the equilibrium configuration can be split into two parts. One

of them depends only on the coordinates of only one spin, while in the other we collect the

correlations of spins on neighbouring sites. Then an auxiliary problem that contains only the

former site-diagonal part can be directly solved and used for determining the average of the

latter terms that are treated as perturbations.

The main advantage of this approach is the description in terms of effective Hamiltonians,

operating in the manifold of classical ground states. It allows to study the state selection by

thermal and quantum fluctuations for the whole manifold of degenerate states without ad-hoc

assumptions about plausible candidates. Moreover, the method is relatively simple, at least for a

few lowest order corrections and does not require numerical computations, like in most of the

spin-wave calculations.

To be specific in our derivations of this section, we use a model of frustrated triangular system

of Heisenberg spins with antiferromagnetic interaction (HTAFM) under an external magnetic

field. The particular choice of the system is motivated by the fact that it is simple and exemplary

at the same time. Moreover, it will be the main system under consideration in chapter 4, so we

will directly use the obtained results hereafter. We emphasise the fact that all the derivations

can and will be repeated with minor alterations for other systems, so here we maintain a certain

level of generality. The physical aspects of the obtained results will be discussed later, in this

section we concentrate on describing the technical details of the analytical approach.

The section is organised as follows. Subsection 2.1.1 contains a brief presentation of HTAFM,

while the main part of it is devoted to a general decomposition of the Hamiltonian in the

site-diagonal part, which in many cases can be easily solved, and a series of interaction terms.

The obtained results are applied in the following subsections 2.1.2 and 2.1.3 to the cases of

thermal and quantum fluctuations respectively. We use perturbation theory up to the third

order to generate a series of fluctuation-induced corrections, which may lift the initial ground

state degeneracy. We also present a simple diagrammatic representation for both perturbation

expansions.

2.1.1 General form of real space expansion

In this subsection we perform a decomposition of the Hamiltonian in a series small perturbations.

We describe the method on the particular example of the Heisenberg atiferromagnetic model on

the triangular lattice in an external magnetic field

Ĥ = J
X

hiji
Si · Si −H ·

X

i

Si. (2.1)

When the field is finite 0 < H < Hs = 9JS the mean-field ground state of this model has

continuous ’accidental’ degeneracy, consisting in arbitrary orientation of the spin plane with

respect to the field direction [27, 35]. In any of these lowest energy configurations, each spin is
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pointing along its local field, which is made up of interaction with the neighbours and external

field

Si k hi; hi = H− J
z
X

j=1

′Sj . (2.2)

Here and everywhere throughout this work by prime we denote the summation over all nearest

neighbours of site i. One very important property of the model that will be used in further

derivations is that the magnitude of the local field is independent of H and of the site index:

|hi| = h = 3JS. A simple proof of this statement as well as a more detailed introduction into

HTAFM can be found in chapter 4.

Then we can start with an arbitrary ground state and perform a coordinate transform to

the local coordinates. The new frame is defined by the condition that the ẑi axis is directed

along the local field hi on the site i. The directions of the other two local coordinate axes can be

chosen in a way which is the most appropriate for the considered spin system. For the systems,

which have a distinct plane in spin space, for example, when the whole configuration is planar or

in case of planar anisotropy, it is convenient to choose x̂i coordinate to lie in this plane, and ŷi

to be orthogonal to it.

For the HTAFM we choose a specific bond-dependent local coordinates: we select the x̂i and

x̂j axes such that they lie within the common ẑi − ẑj plane, and ŷi and ŷj to be orthogonal to

it. For planar spin configurations is is the natural choice of coordinate frame because it results

in x̂ − ẑ plane to be independent of all spins (and bonds) and to confine all the spins. For a

more general case of noncoplanar ordered states it involves some additional complications, as the

coordinate frame then depends on a bond, rather than on one lattice site. In this case x̂i(ij) and

ŷi(ik) are not necessarily orthogonal. However, in our calculations this will only be important

for the third and higher order corrections, which are subdominant for this system. In this section

we still present an expression for these terms, without successive calculations as corresponding

corrections are relevant for other models of this study.

Written in the new coordinate frame the mean-field ground state implies that all spins point

along their local ẑi axis with Sz = S. The parameterisation of a state is transferred onto a set of

angles between local axis cos θij = (ẑi · ẑj). Spins may deviate from their equilibrium state due

to fluctuations, disorder, etc., which results in small but nonzero Sx and Sy components. Then

the Hamiltonian of this system takes the form

Ĥ = J
X

hiji

h

Sy
i S

y
j +

�

Sz
i S

z
j + Sx

i S
x
j

�

cos θij +
�

Sx
i S

z
j − Sz

i S
x
j

�

sin θij

i

− H
X

i

Sz
i cos θi + Sx

i sin θi. (2.3)

Note that θi - is the angle between the local ẑi axis and the direction of an external magnetic

field. The main step of RSPT is to collect all terms that depend on components of only one spin.

Ĥ = Ecl + h
X

i

(S − Sz
i ) + J

X

hiji

h

Sy
i S

y
j + Sx

i S
x
j cos θij + (S − Sz

i )(S − Sz
j ) cos θij

+
�

Sx
i S

z
j − Sz

i S
x
j

�

sin θij
�

−H
X

i

Sx
i sin θi. (2.4)
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Ecl - is the classical degenerate energy of the ground state, the following terms are corrections

due to fluctuations of spins. The first sum of the right-hand part is diagonal in real space

site index, it represents mean-field energy renormalisation. Taken alone, as an unperturbed

Hamiltonian Ĥ0 = h
P

i(S − Sz
i ) its excitation spectrum can be easily obtained. Then the rest

terms represent the interaction of fluctuations of different neighbouring sites V̂ , the method

treats them perturbatively over Ĥ0.

Ĥ = Ecl + Ĥ0 + V̂ . (2.5)

In the following subsections we develop specific perturbation theories for classical and quantum

cases. It is important to note that there is no explicit small parameter that distinguishes V̂ from

Ĥ0. The method is in fact a 1/z expansion, where z - is the coordination number of the lattice

as Ĥ0 = O(zJ), while V̂ = O(J).

2.1.2 Thermal order by disorder

Below we elaborate real space perturbation theory for the system of purely classical spins of

arbitrary length S. We take the temperature of the system to be small but finite T ≪ J . In

this case, thermal spin fluctuations Sx
i and Sy

i are small, compared to S, and we can expand

Sz =
p

S2 − Sx2 − Sy2 = S − Sx2

2S
− Sy2

2S
+O

�

S⊥4
�

. (2.6)

Then decomposition (2.4) will take the form

Ĥ = Ĥ0 + V̂2 + V̂3; Ĥ0 =
h

2S

X

i

�

Sx
i
2 + Sy

i
2
�

; (2.7)

V̂2 = J
X

hiji

h

Sy
i S

y
j + Sx

i S
x
j cos θij

i

; (2.8)

V̂3 = − J

2S

X

hiji
sin θij

h

Sx
i

�

Sx
j
2 + Sy

j
2
�

− Sx
j

�

Sx
i
2 + Sy

i
2
�

i

. (2.9)

We have omitted classical energy Ecl as it has the same value for the whole degenerate manifold

of states. Also, linear in Sx terms vanish because (2.7) is the decompositions around a ground

state. Terms V̂2 - V̂3 are perturbations, ranged according to the power of spin deviation.

As was said before we take Ĥ0 as an unperturbed Hamiltonian, and we are able to calculate

all kinds of thermal averages in the usual way

hA(S⊥)i = 1

Z

Z

A(S⊥)e−
Ĥ0
T

Y

i

dS⊥
i , (2.10)

where A(S) - is an arbitrary function of spin fluctuations, and Z - partition function. Particularly

we will be interested in the quantities like h(Sα
i )

k(Sβ
j )

li. First, as Ĥ0 is a noninteracting

Hamiltonian, fluctuations of different spins or of different components of one spins are independent

and uncorrelated. Therefore, we have h(Sα
i )

k(Sβ
j )

li = h(Sα
i )

kih(Sβ
j )

li unless i = j and α = β.

Then an average of odd power of spin fluctuation vanishes since Ĥ0 is an even function of Sα
i .

The nonzero quantities are

h(Sα)2i = ST

h
; h(Sα)4i = 3

�

ST

h

�2

; h(Sα)2k+1i = 0; (2.11)
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for arbitrary i and α = {x, y}.
A thermodynamic perturbation theory is developed to calculate the entropy of degenerate

states. It results in corrections to the free energy of the system:

F = F0 −
hV̂ 2i
2T

+
hV̂ 3i
6T 2

+ · · · , (2.12)

where we assumed that the perturbation V has a vanishing average hV i = 0, and F0 - is the

degenerate free energy of the unperturbed Hamiltonian Ĥ0. The leading correction is given by

ΔF (2) = − J2

2T

�

h

X

hiji

�

Sy
i S

y
j + Sx

i S
x
j cos θij

� i2
�

. (2.13)

According to eq. (2.11) and the discussion above it, the sum reduces to

ΔF (2) = −TJ2S2

2h2

X

hiji

�

1 + cos2 θij
�

. (2.14)

Thus we obtained an effective correction to the free energy, which depends on the ground state

through the parameterising angles θij . This term acts on the manifold of degenerate states and

represents entropic selection by thermal fluctuations. For the considered model the nontrivial

correction appeared already at the lowest level of perturbation theory, so we emphasise the

relative easiness of the RSPT method. However, for other frustrated models the lowest order

may be not enough, and one may need to go further and consider contributions from higher order

interaction terms, for example, V̂3 or/and higher free energy corrections ΔF (3) = hV̂ 3i
6T 2 and so on.

These considerations can be recast into a simple cluster expansion with a graphical represen-

tation, which is especially handy when the contribution of higher order corrections have to be

calculated. We present this technique as the following set of rules:

1. Each term of the k-th order of perturbation expansion is represented by a graph, which

contains exactly k links. Every link that connects two sites represents one of the interaction

terms V̂l (2.8) - (2.9). Multiple different links per bond are allowed, but only connected diagrams

should be taken into account.

2. Then one counts a total number of Sx
i and Sy

i terms brought by the links, connected to each

site. It can be represented by a pair of occupation numbers per vertex. A cluster gives a nonzero

contribution if and only if occupation numbers of each site for both polarisations are even.

3. Finally, to calculate a total contribution of the diagram one includes: a) a factor hSα2i = ST
h

for each vertex that is doubly occupied, hSα4i = 3(STh )2 - four-times occupied, etc.; b) a functional

prefactor from expressions (2.8 - 2.9) per each link used; c) a combinatorial prefactor that equals

to the number of distinct ways a graph can be constructed d) a summation over the whole lattice

and a corresponding general prefactor from the perturbation theory (2.12).
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Figure 2.1: Second order perturbation theory graphs, constructed from V̂2 (red links) and V̂3

(blue links) interactions. Numbers in brackets are occupation numbers for fluctuation terms
Sx
i on each vertex. Only one polarisation was used, graphs with Sy

i and both polarisations are
constructed likewise.

To demonstrate this technique in figure 2.1 we present the diagrams, constructed from two

interaction terms V̂2 and V̂3, which contribute to the second order correction ΔF (2). The first

graph 2.1(a) was calculated above in equation (2.14). The others can be similarly considered.

Note that only Sx polarisation was used in clusters of Fig.2.1, the contributions of Sy component

and mixed terms are calculated likewise. For visualisation figure 2.2 contains some of the third

order corrections ΔF (3).

Figure 2.2: Four clusters, which contribute to ΔF (3). The colour code is the same, as above, and
only Sx

i polarisation is used.

The expression for its single bond contribution 2.2(c) is especially simple, we provide it for

an additional illustration:

ΔF (3c) = 3
1

6T 2
· 9S

4T 4

h4

X

hiji

J2

4S2
cos θij sin

2 θij . (2.15)

It is interesting to compare this method with the usual way of considering thermal order

by disorder by spin-wave calculations. The result of RSPT is an analytic series of effective

contributions to F in two small parameters: T and 1/z. Interaction terms V̂3, V̂4, . . . and higher

correspond to anharmonic terms in spin-wave theory and are usually discarded. In RSPT it is

relatively easy to obtain at least the leading contribution of these terms. As it should be, their

contribution is of higher order in T as they include a higher number of averages h(Sα)2i ∝ T

(compare diagram 2.1(a) with 2.1(b) - (c) and 2.2(a) with 2.2(b)-(d)). On the other hand

diagrams 2.1(a) and 2.2(a) are both O(T ), but differ in the graph length, which scales as 1/z.

They contribute to harmonic spin-wave approximation, which naturally includes the graphs of

all lengths at once.
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2.1.3 Quantum order by disorder

In this subsection we formulate the RSPT for the case of quantum fluctuations. The idea behind

the calculations is essentially the same, as in the case of thermal order by disorder. The results

also resemble the ones of the previous subsection: in the end, we obtain a series of corrections

to the ground state energy with 1/z being the small parameter. It is interesting to note that

the terms of the series can be attributed to different orders of the usual 1/S decomposition.

However, there will also be some differences, particularly in the formulation of the graphical

cluster expansion for the quantum case.

If spins are treated as quantum mechanical operators, it is natural to express spin components

via ladder operators S± = Sx ± iSy. Then the expansion of the Hamiltonian in fluctuations will

take the following form:

Ĥ = Ĥ0 + V̂2a + V̂2b + V̂3 + V̂4; Ĥ0 = h
X

i

(S − Sz
i ); (2.16)

V̂2a = −J

4

X

hiji
(1− cos θij)

�

S+
i S

+
j + S−

i S
−
j

�

; V̂2b =
J

4

X

hiji
(1 + cos θij)

�

S+
i S

−
j + S−

i S
+
j

�

;

V̂3 =
J

2

X

hiji
sin θij

�

S−
i + S+

j

�

(S − Sz
i ) ; V̂4 = J

X

hiji
cos θij (S − Sz

i )
�

S − Sz
j

�

.

Again, the first term is chosen as an unperturbed Hamiltonian, it has the form of the Zeeman

Hamiltonian for noninteracting spins. The ground state |0i of such system is a fully saturated

configuration, it corresponds to one of the degenerate mean-field states. It is the eigenstate of the

Sz operator with Sz|0i = S|0i. Below we will calculate quantum corrections due to fluctuations

to these states. In a saturated state we have S+
i |0i = 0. Therefore, our ground state is the

noninteracting vacuum of spin flips

h0|V̂ |0i = 0. (2.17)

The conjugate operator decreases the total spin by producing one excitation quantum S−
i |0i ∝ |1i

with the energy h1|Ĥ0|1i = h. This allows us to treat all interaction terms perturbatively using

the standard Rayleigh-Schrödinger perturbation expansion.

The second order correction to the energy is then calculated by

ΔE(2) =
X

n

h0|V̂ |nihn|V̂ |0i
E0 − En

. (2.18)

The only nonzero contribution to ΔE(2) is given by the V̂2a interaction. When applied to the

vacuum state, V̂2a generates a pair of spin flips on adjacent sites - an exited state |ni with the

energy En = E0 + 2h, which is then annihilated by a conjugate operator. After the substitution

we obtain

ΔE(2) = −J2S2

8h

X

hiji
(1− cos θij)

2 . (2.19)

In the Heisenberg triangular antiferromagnet already the second order correction has nontrivial

dependence on angles θij . However, it may happen that the second order of perturbation theory

correction ΔE(2) does not lift the initial ground state degeneracy. Then one has to proceed to
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higher order corrections, ΔE(3), etc.

ΔE(3) =
X

n,m

h0|V̂1|nihn|V̂ |mihm|V̂1|0i
(E0 − En) (E0 − Em)

. (2.20)

Similar to the case of thermal order by disorder, the determination of nonzero contributions

of the perturbation theory can be done with the help of the diagrammatic technique, defined by

the following rules:

1. Each term of the k-th order of perturbation series is represented by a diagram that consists of

exactly k links. Every link corresponds to one of the interaction terms Vi (2.16) that acts on a

specific lattice bond. More than one link per bond is allowed, but only the connected diagrams

should be taken.

2. The ground state is a vacuum for the spin flips, therefore, every term of the perturbation

theory starts (ends) with creation (annihilation) of a pair of spin flips upon acting of S−
i S

−
j

(S+
i S

+
j ) part of the V1 term. Also, each lattice site should have an equal number of S−

i and S+
i

operators.

Following these rules the term (2.19) corresponds to the diagram:

|00i
S−
i S−

j−−−−→ |11i
S+
i S+

j−−−−→ |00i , (2.21)

which is essentially analogous to the thermal graph (a) in figure 2.1 and the corresponding free

energy correction (2.14).

This process is the only second order process that appears in the quantum perturbation

expansion, below we calculate also the third order processes. There are two types of them

corresponding to triangular and dimer clusters respectively. The former is described by the

diagram:

|000i
S−
i S−

j−−−−→ |110i
S+
j S−

k−−−−→ |101i S+
k
S+
i−−−−→ |000i. (2.22)

For the coplanar spin configuration the corresponding energy correction is

ΔE
(3a)
(ij,jk,ki) =

J3S3

32h2
(1− cos θij)(1 + cos θjk)(1− cos θki). (2.23)

To obtain the final result one needs to take into account all 6 possible processes on one triangle

and sum over all the plaquette of the lattice. The dimer process is described by the diagram

|00i
S−
i S−

j−−−−→ |11i
Sz
i S

z
j−−−→ |11i

S+
i S+

j−−−−→ |00i (2.24)

that describes the action of V̂1 and V̂4 operators and produces the term

ΔE(3b) =
J3S2

16h2

X

hi,ji
(1− cos θij)

2 cos θij . (2.25)

Equations (2.19), (2.23) and (2.25) have the form of effective Hamiltonians, operating in the

manifold of degenerate classical ground states, parameterised by the angles θij . As in previous

section they highlight the physics behind the real space perturbation expansion and its underlying

difference with the commonly used harmonic spin wave calculations. ΔE(3b) (2.25) is in fact a

renormalisation of the second order dimer process (2.19) by the interaction of excited states.
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As it originates from the anharmonic term V̂4, it is of higher order in 1/S decomposition O(J).

Each following order of perturbation expansion will contain expressions for further corrections.

However, none of these nonlinear terms appear in the harmonic spin wave calculations. On the

other hand ΔE(3a) scales as O(JS), and is a part of the harmonic spin wave contribution, which

naturally includes all lattice loops of arbitrary length. The main difficulty in the real space

perturbation expansion comes from the fact that the number of diagrams quickly grows with

the order of perturbation theory, in a sense this is the price you pay for for the possibility of

performing the calculations analytically.

2.2 Structural disorder

Structural disorder modifies locally exchange interactions and destroys perfect magnetic frus-

tration at the microscopic level. As a result, magnetic moments tilt from the equilibrium bulk

structure producing spin textures [12, 16, 36] and net uncompensated moments [16–18]. These

magnetic moments of impurities will be studied in chapter 4.3 in the framework of the triangular

antiferromagnet. The idea of uncompensated moments and related local magnetic fields was also

used by Henley in his explanation of vacancy-induced degeneracy lifting in the J1–J2 square-

lattice antiferromagnet [22]. Though simple and appealing, this approach cannot be applied to a

general problem of order by structural disorder in noncollinear frustrated magnets.

In this section we develop an approach to study the effect of structural disorder on frustrated

systems with continuous ground state degeneracy in the framework of real space perturbation

decomposition (2.4). In the analogy with the previous section we show how bond and site disorder

generate a series of effective anisotropic exchanges that act on the manifold of degenerate ground

states. Despite having a similar form, disorder-induced degeneracy lifting has a qualitatively

different effect on the ground state selection in the frustrated magnet, compared with the effect

of thermal or quantum fluctuations, considered earlier. The corresponding correction comes

primarily from the linear in spin tilting term V1, which is absent when fluctuations around a

true ground state are considered. Hence, the degeneracy breaking term will appear as a result of

straightforward energy minimisation in real space due to linear impurity induced perturbation.

Technically, it results in a different combination of trigonometric functions of angles θij and in

inversion of the sign of the anisotropies.

As we will show, for the Heisenberg triangular antiferromagnet a nontrivial degeneracy

breaking term appears already as the effect of direct energy minimisation. But in general the

anisotropy, generated by the lowest energy correction may be forbidden by symmetry. So to

give a flavour of calculation of the higher order corrections in this section we present a series of

effective Hamiltonians beyond the leading contribution.

Also, note that the investigated effect of order by structural disorder is essentially classical

and static. So we assume that spins are three-component classical vectors with |Si| = S and

consider them at T = 0. Therefore, we do not study the effect of quantum or thermal fluctuations

around the new disorder induced configurations, which is a much more involved task.

The rest of the section is organised as follows: in subsection 2.2.1 we develop a model that

allows analytic treatment of diluted magnetic systems in the limit of weak nonmagnetic impurities.

Then we show how the selection terms arise from minimisation of ground state energy with the
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impurity-induced linear perturbation. In the following subsection 2.2.2 we perform the similar

calculations for the structural disorder in the form o the weak bond disorder.

2.2.1 Site disorder

A single vacancy induces a strong local perturbation of the magnetic structure in noncollinear

antiferromagnets [16]. To obtain a qualitative insight into the analytic treatment of the impurity

problem we use a model of weak site disorder [21]. Specifically, we let a small fraction nimp ≪ 1 of

classical spins to be shorter by a small amount ǫ ≪ 1. These impurities are distributed randomly

over the lattice and we assign a parameter pi = 1 to every impurity spin and pi = 0 otherwise:
P

i pi = Nimp. In the spin Hamiltonian impurities are included by substitution Si → Si(1− ǫpi),

and we have for pairwise spin-spin interactions

Sα
i S

β
j −→ Sα

i S
β
j

�

1− ǫ(pi + pj) + ǫ2pipj
�

. (2.26)

The last term is quadratic in ǫ and is nonvanishing only when each of the sites i and j contains a

vacancy. It will be neglected in further calculations due to the considered nimp ≪ 1 and ǫ ≪ 1

limit. Before we proceed with the Hamiltonian decomposition, it is useful to list the summation

properties of parameters pi that follow from the definition:

p2i = pi;
1

N

X

i

pi = nimp; hh 1

Nbond

X

hi,ji
pipjii = n2

imp. (2.27)

In the last equality double angular brackets explicitly indicate the averaging over all possible

disorder realisations. Otherwise it can be understood as taking a thermodynamic limit when

the impurity allocation is completely random. Physically its main message is that situations,

which involve correlation of two or more different impurities are rare and contribute weakly to

the calculated averages. So throughout this work we will never consider them as our main limit

will be nimp ≪ 1.

The presence of vacancies violates the balance between interactions and reduces frustration,

as a result, spins deviate from their former ground state. In the local coordinate frame, like the

one introduced in subsection 2.1.1 spins acquire transverse components S⊥
i , which are small as

long as disorder strength is small. Then we perform the same decomposition as in the previous

section. Namely, we make a substitution (2.26) into equation (2.3) and collect all single-site

terms. A static distortion of the equilibrium magnetic structure will be then found from a simple

minimisation procedure.

Impurities modify both the mean-field ground state energy and the local fields that act on

each spin. Indeed, the true local field hi = H − J
Pz

j=1
′Sj(1 − ǫpj) now acquires a nonzero

transverse component. But it is convenient to express the vacancy-induced changes explicitly,

keeping unchanged pure mean-field values Ecl and h. Then, as long as the surrounding spin

deviations are small, we can treat this transverse component as a linear force V̂1 that drives the

system out of the degenerate equilibrium position. Of course hz component also gets renormalised,
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we recast it as the renormalisation of spin deviations Sx and Sy. In the end, we obtain

Ĥ = Ecl + ǫnimphSN + Ĥ0 + V̂1; (2.28)

Ĥ0 =
h

2S

X

i

�

Sx
i
2 + Sy

i
2
�

�

1− ǫpi −
JSǫ

h

z
X

j=1

′ cos θijpj

�

; (2.29)

V̂1 = JS
X

hiji
sin θij

�

Sx
i − Sx

j

�

[1− ǫ (pi + pj)] . (2.30)

The second term in the decomposition of Ĥ (2.28) is an overall energy shift due to the presence

of impurities. And the two extra terms in the parenthesis of (2.29) correspond to modification of

length of spin i and the above mentioned renormalisation of the hz component of the local field.

The crucial difference with the preceding section is that because of the presence of random

vacancies linear in spin deviations term V̂1 does not vanish:

V̂1 = −JSǫ
X

i

Sx
i

z
X

j=1

′ sin θijpj . (2.31)

V̂1 6= 0 denotes that the mean-field ground state is no longer a true ground state of the system.

Indeed, spins, surrounding a defect rearrange due to the local relief of frustration. Then the new

equilibrium magnetic structure can be found by minimising a new Hamiltonian Ĥ0 + V̂1.

Sy
i = 0; Sx

i =
JS2ǫ

h

Pz
j=1

′ sin θijpj

1− ǫpi − JSǫ
h

Pz
j=1

′ cos θijpj
; (2.32)

and

ΔE = Ĥ0 + V̂1 = −J2S3ǫ2

2h

X

i

�

Pz
j=1

′ sin θijpj
�

(
Pz

k=1
′ sin θikpk)

1− ǫpi − JSǫ
h

Pz
j=1

′ cos θijpj
. (2.33)

We decompose the denominator and show the leading term in the ǫk series. We also remind that

we are only interested in linear in nimp terms. Then, according to (2.27) we have hhpipjii = nimpδij

and the dominant contribution to eq. (2.33) is given by

ΔE(1) = −J2S3ǫ2

2h

X

i

z
X

j=1

′ sin2 θijp
2
j . (2.34)

Averaging over possible impurity distributions, we get the expression for the energy correction

due to weak vacancies in the limit of small ǫ and nimp

ΔE(1) = −J2S3ǫ2nimp

h

X

hi,ji
sin2 θij . (2.35)

For the Heisenberg TAFM this expression already depends on the angles θij , which parameterise

the ground state, and can lift the accidental ground state degeneracy. It may not be the case for

other systems, so below we obtain further corrections to the energy to illustrate our approach

and its analogy with the fluctuation decompositions, presented in the previous section. It may

be also interesting to see the structure of further terms in the framework of possible ǫ → 1 limit,

which is essential when one wants to compare the obtained results with the real dilution results.
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First one can consider the interaction terms in the perturbation decomposition of the

Hamiltonian (2.28), such as V̂2 or higher:

V̂2 = J
X

hiji

h

Sy
i S

y
j + Sx

i S
x
j cos θij

i

[1− ǫ(pi + pj)] . (2.36)

It represents energy modification due to correlation of two spin tilting, surrounding an impurity.

We substitute (2.32) into (2.36) and recover the leading in ǫ term:

ΔE(2) =
J3S4ǫ2

h2

X

hi,ji

2
X

k=1

′′ cos θij sin θik sin θjkp
2
k. (2.37)

The second sum here runs over the sites, neighbouring both i and j, in a triangular geometry

there are two of sites for every bond. To make an analogy with the results of the previous section,

correction (2.37) can be rewritten as a sum over all triangular plaquettes. Like before (2.37) is of

the same order as (2.35) in dilution strength O(ǫ2), but represents a larger elementary cluster

and therefore is of higher order in 1/z.

Also, decomposing further the denominator of equation (2.33), we get the term that represents

renormalisation of a single bond energy correction (2.35)

ΔE(3) = −J3S4ǫ3

2h2

X

i

z
X

j=1

′ sin2 θij cos θijp
3
j . (2.38)

ΔE(3) represents the same order term in 1/z expansion as ΔE(2). Also, both introduce the third

harmonic in angle θij , and for certain systems can induce the leading energy shift.

2.2.2 Bond disorder

In a very similar way other types of structural disorder can be treated. For example, bond

disorder that appears in real materials as a result of magneto-elastic coupling or disorder on

nonmagnetic crystalline structure can be modelled via the fluctuating coupling constants

J → J(1 + δij);
X

hiji
δij = 0;

1

Nbond

X

hiji
δ2ij = D. (2.39)

The fluctuating part δij should not be confused with Kronecker delta. In this section is considered

to be uncorrelated on adjacent bonds and small to keep all the exchange constants well inside

antiferromagnetic parameter range D ≪ 1. The subsequent calculation is completely similar to

the previous section up to a substitution −ǫ(pi+pj) → δij . Bond disorder induces a nonvanishing

linear in deviations term that causes tilting of the spins

V̂1 = SJ
X

hiji
δij sin θij

�

Sx
i − Sx

j

�

. (2.40)

Minimisation of the Hamiltonian Ĥ0 + V̂1 with respect to Sx
i under the assumption that bonds

fluctuate independently gives

Sx
i = −JS2

h

Pz
j=1

′δij sin θij

1 + JS
h

Pz
j=1

′δij cos θij
. (2.41)
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In comparison with the weak impurity model (sec. 2.2.1) we now have only one small parameter

D that describes the structural disorder. The type of the cluster for each correction is now

determined by the properties (2.39), namely by the rule that each bond must be included in the

cluster at least twice. Thus up to the lowest order in disorder strength

ΔE(1) = −DJ2S3

h

X

hi,ji
sin2 θij . (2.42)

As in the previous section, further corrections ΔE(2),ΔE(3), etc. are obtained by considering

interaction of spin deviations V̂2 = J
P

hiji(1+ δij)S
x
i S

x
j cos θij and decomposing the denominator

of (2.41).

The possibility to treat different types of disorder by the same method is quite functional

and demonstrates the universality of the real space perturbation approach. However, in this

study we mainly stay concentrated on the disorder in the form of nonmagnetic substitutions or

vacancies. As will be shown in further chapters, our numerical studies cover exactly the case of

true vacancies. They support our findings that for certain frustrated systems dilution stabilises

new long range order phases. In order to undoubtedly extend this conclusion to the case of bond

disorder, additional numerical studies are required.





Chapter 3

Numerical methods

3.1 Monte-Carlo simulations

Monte Carlo (MC) numerical techniques make use of random numbers to solve various kinds of

mathematical problems. Here in this study we will be interested in the particular class of tasks:

calculating the thermal average of an observable M in a canonical ensemble of a classical system

hMi = 1

Z

Z

Ω
dxA(x)e−βE(x). (3.1)

Even in this specific formulation a complete and rigorous review of various MC methods is by

far not the aim of this section. For this we refer to acknowledged books, [37, 38] and instead we

briefly present the methods and optimisation techniques that were used in our studies of various

exchange Hamiltonians.

In the spirit of the standard MC integration technique one may think of generating a sufficient

number of random microstates of the system to calculate the integral (3.1). Unfortunately, such

a straightforward approach, which is called direct sampling fails because most of the randomly

generated spin configurations would contribute negligibly to the sum due to the Boltzmann weight

together with a huge number of degrees of freedom. This problem is bypassed by the importance

sampling, the idea of which is to select spin configurations randomly and independently from the

equilibrium distribution

Peq(x) =
exp[−βE(x)]

Z
. (3.2)

These spin configurations, when sampled adequately large in number, constitute, to a very good

approximation, a canonical ensemble. Therefore, average of a macroscopic property can be

calculated as a simple arithmetic mean over the sampled microstates.

The organisation of the rest of the section is the following: in subsection 3.1.1 we present

the Metropolis algorithm, which efficiently generates random microstates from the Boltzmann

distribution. Subsection 3.1.2 is devoted to the simple but effective overrelaxation technique that

highly increases the efficiency of the single spin Metropolis algorithm. The analysis of errors is

made in subsection 3.1.3. Finally, in the last two subsections we concentrate on the ways to

implement and optimise the presented algorithm: we discuss methods of parallelising the task

and present technical details of our realisation of the MC simulations.
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3.1.1 Metropolis sampling

We consider a system of classical vector spins in equilibrium and its phase space Ω with each

point fully describing the microstate si of the system. The probability of each state is given by

the Boltzmann distribution (3.2), which is not known because of the partition function in the

denominator. What can be calculated, though, is the relative probability Peq(si)/Peq(sj), which

depends only on the energy difference between two states

ΔE = Ei − Ej . (3.3)

Therefore, the problem of unknown Z can be avoided by generating a new sample state directly

from the previous one using a Markov chain of microstates. The concept of Markov process lies

in the core of Metropolis algorithm, an we present it below.

Consider a discrete stochastic process of evolution of the classical system with time. At

each moment ti the state of the system is described by a point in the phase space: xi = sti . A

stochastic process is called a Markov process if the conditional probability of the future state

(conditional on all its past states) depends only on the present state, in other words, it is a

memoryless process. So the conditional probability to find a system in the state xn+1 = stn+1 , if

its its predecessors were stn , stn−1 , . . . equals to

P
�

xn+1 = stn+1 |xn = stn ;xn−1 = stn−1 ; . . . ;x1 = st1
�

= P
�

xn+1 = stn+1 |xn = stn
�

. (3.4)

The corresponding sequence of states {st} is called a Markov chain, and the above conditional

probability can be interpreted as the transition probability to move from state i to state j in a

single step,

Wij = W (si → sj) = P (xn+1 = sj |xn = si) (3.5)

with the usual properties of transition probabilities Wij ≥ 0 and
P

j Wij = 1. Thus Wij can

be interpreted as the i, j-th element of the stochastic matrix W that completely specifies the

stochastic dynamical evolution of the system given the initial state s0 at t = 0.

The property of independence of transition probabilities on the evolution history is rather

special, and only some real systems actually do have such a physical dynamics. The importance

sampling Monte Carlo process (and the Metropolis algorithm which will be presented below)

is a Markov process, with a particular choice of transition probabilities: one must satisfy the

principle of detailed balance with the equilibrium probability Peq(sj),

WjiPeq(sj) = WijPeq(si). (3.6)

Detailed balance guarantees that a stationary state with the probability distribution Peq is

sampled. Any transition rate which satisfies eq. (3.6) is acceptable. The most common choice of

Wij in statistical physics has the Metropolis form [39]

Wij = min
�

e−ΔE/T , 1
�

. (3.7)

Now we have all the ingredients of Metropolis sampling and can describe the protocol step

by step:

1) For a current spin configuration choose a lattice site and a new trial spin state of this site.
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2) Calculate the energy change ΔE from this trial move.

3a) If ΔE < 0, accept the move as it reduces the total energy.

3b) If ΔE > 0, generate a random number x, uniformly distributed in (0, 1). Accept the trial

state if x < exp (−ΔE/T ), and stay in the former state otherwise.

4) Repeat the procedure, starting from 1).

Consecutive probing of every spin of the lattice or probing of N random spins is considered

as a unit move of the protocol and is called the Monte Carlo Step (MCS). After a fixed number

of MCS have been made, the observable Mn is calculated and added to the statistical average

which is being kept. As the algorithm generates trial states with a probability proportional to

Eqn. (3.4), the desired average hMi =Pn PnMn simply becomes an arithmetic average over the

entire sample of states which is kept. A finite sample estimate of an order parameter is

hMi = 1

N

N
X

i=1

Mi. (3.8)

The same applies to energy E or any other directly measurable observable. Employing fluctuation

dissipation theorems we can similarly estimate specific heat and order parameter susceptibility

C =
∂E

∂T
=

hE2i− hEi2
NT 2

; (3.9)

χ =
∂M

∂H
=

N

T
(hM2i− hMi2). (3.10)

In addition to detailed balance, other important constraint on the algorithm is ergodicity,

which states that all possible configurations of the system should be attainable. In principle, it

must be possible to reach each point of the phase space, starting from any other point. There is

a danger that specialised algorithms may be unintentionally nonergodic, for example, due to the

symmetry restrictions of the steps, thus yielding incorrect results.

A related problem in studying the phase transitions comes from the fact that well inside

the ordered phase different regions of phase space are separated by very high energy barriers,

which make it practically almost impossible to explore the whole phase in one simple Metropolis

run. Such trapping is called quasi-nonergodicity and can be dealt with by performing several

independent simulations starting from different initial spin configurations.

3.1.2 Overrelaxation

Another efficient way to enhance the random walk through the phase space is called overrelaxation

[40]. The idea of the technique is to include occasional deterministic micro-canonical steps that

put a system into a remote state in the phase space with the same energy. Overrelaxation moves

take the simplest form when the Hamiltonian of the system is linear in each spin and can be

rewritten in terms of local fields hi that act on each spin:

Ĥ =
X

i

Si · hi. (3.11)

Then it is clear that the energy of the system remains unchanged if one rotates any spin around the

direction of its local field by arbitrary angle φ. It is convenient to choose for the micro-canonical
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move the most distant rotation φ = π

S −→ S′ = 2 (S · n)n− S, (3.12)

where n - is the unit vector, pointing in the direction of the local field that acts on spin S.

A typical use of the overrelaxation technique is to perform a micro-canonical sweep of all

spins of the lattice after one or several MCS. As a final remark about overrelaxation we note that

enhancement of the walk through the phase space also helps to decrease the autocorrelation time

of the random Markovian process. As a result occasional overrelaxation steps decrease statistical

errors, associated with the finite number of sampled microstates. This topic will be discussed in

more details in the next subsection.

3.1.3 Estimate of errors

The obtained MC estimates are always a subject to errors of various types: both systematic

and statistical. Considering the former, the errors that come from the finite lattice size and

boundary conditions can actually be used to extract precise information about phase transition

temperature, as will be explained in section 3.2. Other sources of systematic errors can be

overcome by the choice of a good random number generator and by discarding a sufficient number

of initial measurements to allow for a good equilibration. Below we shall discuss the origin of

statistical errors of MC simulations and how one should proceed to decrease it.

The estimate of the average of an observable from N independent measurements is given by

equation (3.1). Using the Central Limit Theorem of statistics the standard error of this estimate

can be expressed through the variance of hMi: ΔhMi = σ(M)/
√
N . We substitute σ(M) by its

unbiased estimate and reconstruct the formula for the computation of errors of averages from

uncorrelated measurements

ΔhMi =
"

1

N (N − 1)

X

i

(Mi − hMi)2
#1/2

. (3.13)

However, one cannot directly apply this result to importance sampling MC algorithm due

to the autocorrelations of the subsequently generated observations {Mi}. When the generated

sample states are correlated, the statistical error increases as ΔhMi → ΔhMi (1 + 2τM/δt),

where τM and δt are autocorrelation time, measured in MCS and time between the subsequent

observations respectively. This effect is especially important close to the phase transitions, where

τM may diverge, which results in the critical slowing down of the MC algorithm. In other words,

close to the phase transition one needs to skip more steps to generate statistically independent

configurations.

In our study we typically performed one measurement every 5− 10 MCS and also include

overrelaxation moves (see subsection 3.1.2 for more details), which also help to decrease the

autocorrelation times within a single scan. In any case effectively we get rid of autocorrelation

effects by averaging over Nrepl of independent runs. For the MC simulations of the system with

impurities it was the averaging over different disorder realisation, for pure systems we performed

a number of runs with random initial spin configurations. So in the end all our measurements
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and error bars are calculated by

hMi = 1

Nrepl

Nrepl
X

j=1

M∗
j ; ΔhMi = 1

Nrepl





Nrepl
X

j=1

�

M∗
j − hMi

�2





1/2

, (3.14)

where M∗
j itself is an average of a large number of measurements Nmeas within a single run.

Table 3.1 contains typical values for these MC parameters that we used in different studies.

3.1.4 Parallelisation techniques

In the nowadays life all modern numerical calculations require to be parallel. It is especially true

for the lattice MC simulations, where large spin systems must be simulated to perform a FSS

analysis. Below we briefly observe methods of parallelising classical MC simulations and describe

the methods, used in the present study.

As explained above measuring an observable in the MC scheme inevitably requires sampling of

the phase space of the system and averaging the momentarily measured independent values. This

independence, while being the big trouble of the importance sampling (see discussion below eq.

(3.13)), is the key factor that stands behind the most straightforward parallelism idea. A machine

with k cores can perform k parallel independent MC runs with different initial spin configurations

that are averaged at the end. Such workload when almost no intertask communication is required

is often called embarrassing or perfect parallelism. This method is sometimes criticised for

the necessity of independent thermal equilibration of each run, which leads to the large total

computation time spent on auxiliary thermalisation process. However, it is easy to implement

via the MPI protocol and it naturally helps to independently explore the phase space. Moreover,

embarrassing parallelism is the natural one to use for simulation of the system with structural

disorder as it involves one additional level of averaging over many random impurity configurations

at the last step.

Another technique that can be applied for parallelising the MC workload is called checkerboard

decomposition or sublattice parallelisation. If a lattice can be split into nsubl equal sublattices,

such that the spins on one sublattice do not interact with each other, then single spin updates of

all spins on this sublattice can be performed in parallel. Indeed, in this case an update of a spin

does not distort the local fields hi of other spins on the same sublattice and does not affect the

acceptance probability of parallel updates. For example, the nearest neighbour cubic, triangular

and pyrochlore magnets may be divided into 2, 3 and 4 sublattices respectively. Moreover, the

model does not have to be restricted to nearest neighbour exchange, but in that case the number

of sublattices will increase. The procedure is performed as follows: one sublattice α(k) is chosen,

and a Metropolis update is performed simultaneously on all or any number of spins on that

sublattice Si∈α(k) . Then another α(k+1) is taken. One important thing to remember is that every

time sublattices should be picked randomly in order to preserve detailed balance.

When choosing a way to parallelise the MC run, one should always take into account the

architecture of the computational cluster, where the code will be run as there is no general ideal

way to parallelise the workload. Moreover, one should remember that parallelisation may also

help to solve a directly unrelated problem of optimising the memory usage of the machine.
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A typical state of the art classical MC spin simulation is done on a system of N � 105

three-component spins. Coded as a double precision array of real numbers, it requires about

1 MB of memory. Such a MC run can almost entirely fit into the cache of a common CPU.

However, despite the obvious low use of memory, the MC task may be surprisingly not entirely

CPU-bound. Depending on the size of the spin system different amounts of L2 and L3 cache is

needed for different simulations. As the access speed to these memory supplies is very different,

an optimised memory usage gives a considerable increase of computational speed even for such a

low in memory task. It can be especially interesting for the machines with NUMA architecture,

where several CPUs, share the same high-level cache. On such machines sublattice parallelisation

may be preferable to parallel tempering or embarrassing parallelisation.

3.1.5 Technical details of the realisation

Finally, we present the general scheme of our MC simulations, with minor alterations it was used

in all our studies. Our simulations were made on the Meso calculation server of the Theory Group

of INAC/SPSMS. The cluster consists of 23 nodes, each contains 48 800 MHz AMD Opteron

6176 CPU with 512kB L2 cache. The CPUs are grouped into 8 NUMA nodes (Non Uniform

Memory Access) with 6 cores on each node, which share 5 MB of common L3 cache memory.

This architecture proposes natural units for parallelisation: sublattice parallelisation was done

on one NUMA node in 6 threads using OpenMP specification. Therefore, MC simulations of

even the biggest cluster sizes fit entirely into the cache of one NUMA node, thus optimising the

memory usage in addition to parallelising the task. 8× k replicas of the system were simulated

in parallel using the embarrassing parallelisation scheme (k stands for the number of nodes taken

for the run).

Every run started by choosing randomly Nimp lattice sites to host vacancies, the corresponding

spins were set to zero. Then a random initial spin configuration was generated. Starting deep in

the paramagnetic phase we decreased temperature (or the magnitude of external field), measuring

a set of observables {Mi} for each value of parameter T (H).

Initial Nequil MCS were omitted to equilibrate the system for each T (or H), then Nmeas

momentary snapshots of the system were used to obtain an estimate of the order parameters

(3.1). After each measured snapshot 5− 10 MCS, alternating with several overrelaxation sweeps

were made to drive the system to a distinct state. Every MCS consisted of nsubl single-spin

Metropolis updates of all spins on one sublattice. Each time a sublattice was chosen randomly,

and all the updates were performed in parallel.

Upon finishing the sweep over the desired parameter range, the procedure was repeated Nrepl

times for different random impurity replicas. The final values for the observables and the error

bars were taken from this last averaging over disorder realisations. In the table 3.1 we list typical

simulation parameters for different problems that are studied below in the manuscript.

3.2 Finite Size Scaling

There is absolutely no possible way to perform numerical simulations of the clusters that are

as big as real experimental samples. All the lattices that are reachable by current numerical
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N Nmeas Nequil Nrepl

HTAFM L2, L ≤ 150 2 · 105 0.4 · 105 96× 1

XY pyrochlore 4L3, L ≤ 16 2 · 105 1.5 · 105 96× 1

XY pyrochlore
in field

4L3, L ≤ 24 3.5 · 105 3 · 105 1× 96

120◦ model L3, L ≤ 30 1.5 · 105 2.7 · 105 24× 24

2D 90◦ model L2, L ≤ 100 2 · 105 2.8 · 105 20× 24

3D 90◦ model L3, L ≤ 40 2 · 105 2 · 105 18× 24

Table 3.1: Parameters of Monte Carlo simulations of various problems in the study. In the last
column number of different impurity realisations and a number of independent runs for each
replica is given.

techniques are essentially final and by far small. There are two types of problems, associated

with the finite lattice size. The first type of errors is due to boundary conditions. And the second,

is the mismatch between the true phase transition temperature Tc and the temperatures Tc(L),

where singularities are observed for the system with characteristic length scale L.

Luckily Tc(L) deviates from true Tc in a controllable way, and by studying Tc(L) for different

cluster sizes one can predict the infinite lattice phase transition point Tc(L = ∞) = Tc. Therefore,

what seems to be a problem in fact can be turned into an incredibly powerful tool. The theory

and the set of methods that treat the effects of finite lattice sizes is called Finite Size Scaling

(FSS). In this section we will present a brief overview of the methods that we used to estimate

critical temperatures of different phase transitions from our MC data.

Finite size scaling theory is especially powerful in the case of the II-nd order type phase

transitions. In subsection 3.2.1 we present the brief introduction to the theory and show Tc and

different critical indices can be extracted from finite size data. In the next subsection 3.2.2 we

treat the case of discontinuous phase transitions. Finally, the complex phase diagram of the

Heisenberg antiferromagnet on a triangular lattice contains several phases with algebraic order

and Berezinsky-Kosterlitz-Thouless (BKT) phase transition. So subsection 3.2.3 is devoted to

the FSS methods in the context of BKT transition.

3.2.1 Second-order transition

It is known from statistical physics that the correlation length diverges as the critical temperature

of the II-nd order phase transition is approached ξ ∝ τ−ν . Here τ = |T − Tc|/Tc is the reduced

temperature. However, in the finite lattice simulations the correlation length cannot be larger

than L - the characteristic size of the system. Moreover, a finite system becomes critical already

when ξ = L. At this point the observables, such as χ and C saturate and exhibit a rounded peak,

instead of a true divergence. What makes matters worse is that it happens at the pseudocritical

temperature Tc(L) > Tc, which depends on L. Using the scaling anzatz for the free energy F and

the idea that the only way F can depend on L is via the dimensionless parameter L/ξ ∝ Lτν we

will obtain methods of finite size analysis.

We are interested in the critical behaviour of the system in the vicinity of the phase transition,

which can be extracted from the singular part of the free energy. According to the finite size
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scaling theory [41, 42] its size dependence is described by the scaling anzatz of the following form

F (L, T,H) = L−(2−α)/νF
�

τL1/ν , HL(γ+β)/ν
�

, (3.15)

where α,β, γ are critical exponents. Differentiating this function and setting H = 0 one gets the

scaling form of various thermodynamic functions:

M(L, T ) = L−β/νM0(τL
1/ν); (3.16)

χ(L, T ) = Lγ/νχ0(τL
1/ν); (3.17)

C(L, T ) = Lα/νC0(τL
1/ν), (3.18)

where M0, χ0 and C0 are fixed scaling functions. Here we also used a hyperscaling relation

between the critical exponents dν = 2− α = γ + 2β. The main result is rather straightforward:

exactly at phase transition τ = 0, and the whole size dependence reduces to universal power law

behaviour.

Mc(L) ∝ L−β/ν , χc(L) ∝ Lγ/ν , Cc(L) ∝ Lα/ν . (3.19)

According to the equations (3.9) and (3.10) these functions are nothing but first or second

order moments of the order parameter or energy probability distributions. Similarly, one can

consider fourth and higher order moments. It turns out that it is especially convenient to study

the ratio of the kind hm4i/hm2i2 because in this case for τ = 0 the power law prefactor L−β/ν

gets cancelled, and the ratio becomes size independent. This approach was proposed by Kurt

Binder and the corresponding quantity is known as Binder cumulant of the order parameter [43]

UB = 1− hm4i
3hm2i2 . (3.20)

Before proceeding to the application of the FSS theory, we note that the form of scaling

anzatz (3.15) is subject to additional corrections away from Tc or when system size L is not

sufficiently large [44, 45].

Thus we obtain a way to extract the value of the transition temperature and critical exponents.

Tc is usually obtained as the abscissa of the common intersection of U
(L)
B when the set of functions

is plotted against T . Then this estimate can be used for estimating critical exponents. First one

extracts ν by plotting U
(L)
B as a function of τL1/ν . Varying ν, one aims for the collapse of all

curves to a single function. As the last step of the FSS procedure one plots a set of functions

M(L, T ) · Lβ/ν against the same combination τL1/ν in the vicinity of the phase transition with

β as an external parameter, which is being varied. All the curves merge for the correct β. Other

indices are extracted in the same way using equations (3.17) and (3.18).

We note that in this work we used a less sophisticated procedure of obtaining the critical

exponents. It involves plotting functions M(L, T ) ·Lβ/ν simply against T . The functions become

independent of the system size exactly at T = Tc for the correct value of β/ν. So varying the

exponent ratio we looked for the best curves crossing and thus estimated the exponents.

3.2.2 First-order transition

The behaviour of the observables in the first order transition is very different from the continuous

transition, considered before. The correlation length ξ does not diverge, instead, the energy of
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the system and the order parameter exhibit a finite jump, therefore there is no sense in describing

the transition in terms of critical indices. But the problem of smearing of the singularities and

the extraction of precise transition temperature in the finite system still exists. Good reviews of

methods of extracting transition temperatures from MC simulations are made by Janke [46] and

Binder [47]. Below we present the methods that were used in this work.

In the finite system no sharp singularities can develop. The jumps of E and M become

smooth crossovers, ant the δ-like singularities of χ and C exhibit slightly displaced smooth peaks.

The main and the only scaling parameter for the I-st order transition is the volume of the system:

the height of the specific heat peak Cc(L) is proportional to Ld, and its position Tc(L) scales

with inverse volume [48]. Therefore, to obtain the estimate of the infinite system transition

temperature one can plot Tc(L) against V
−1 and linearly extrapolate to V → ∞.

Often in the work we faced a problem of defining the type of transition in the first place, and

determining transition temperature. For this purpose it is convenient to use Binder cumulant of

energy VB = 1− hE4i
3hE2i2 . It has a specific feature: a minimum, which is absent in the case of the

II-nd order transition. Similarly to specific heat peak, the position of the minimum also scales

with inverse volume 1/Ld.

The usual way of obtaining the critical temperature of the first order phase transition is by

examining the distribution function of the order parameter or energy. Close to Tc it has the

form of the sum of two Gaussian distribution functions around equilibrium values of the order

parameter M± with different weights ρ±:

P (M) = ρ+PG(M+) + ρ−PG(M−). (3.21)

These weights become equal exactly at T = Tc(L). This method is rather cumbersome and we

only used it used as an evidence for the I-st order transition type rather than to exact transition

determination.

3.2.3 Berezinsky-Kosterlitz-Thouless transition

A BKT transition is associated with the formation of topological defects - binding-unbinding

of spin vortices. Therefore, it is natural to describe the system with spin stiffness or helicity

modulus. It is by definition the elasticity coefficient against a small nonuniform rotation of spins

ϕ(r) → ϕ(r) + δϕ(r) around a fixed direction [49]

ρS =
∂2F (δϕ)

∂ (δϕ)2

�

�

�

�

δϕ=0

. (3.22)

Exactly at T = Tc ρS exhibits a finite universal jump of the magnitude ρS = 2Tc/π.

Scaling theory for the spin stiffness in the BKT transition predicts logarithmic corrections

for small L [50]

ρS(T, L) = ρS(T,∞)

�

1 +
1

2 lnL+ C

�

. (3.23)

The way to proceed is then the following: for each of the available lattice sizes find Tc(L),

such that ρS(L) = 2Tc(L)/π, then interpolate obtained values with the function Tc(L) =

Tc

�

1 + (2 lnL+ C)−1
�

and obtain Tc as one of the fitting parameters.
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3.3 Mean-field minimisation

Another numerical technique that is widely used in our studies is an energy minimisation

algorithm for a classical spin system. It can be used to find numerically the mean-field ground

state of a frustrated system. It is especially useful for the systems with structural disorder when

analytical methods that use translational symmetry break down.

3.3.1 Description of the method

The core of the method lies in the possibility of expressing the energy of the system via the local

fields hi that are independent of the corresponding spin Si

E = −
X

i

Si · hi; hi = −
z
X

j=1

JijSj +H. (3.24)

Here the sum runs over all spins that interact with Si, not only limited to the nearest neighbours.

Then for any spin configuration setting Si k hi will decrease the energy of the system. Repeating

the procedure iteratively for all spins leads to convergence to a minimum of the energy.

This method is fundamentally similar to the gradient descent optimisation method, where at

each step the energy function is minimised with respect to a fixed part of coordinates of the full

phase space. Therefore, this method can be generalised for the case of a local field that depends

on the corresponding spin hi = hi(Si). It is the case, for example, for the system with single site

anisotropy term ΔH = D
P

i S
z
i
2 or biquadratic interaction V̂ =

P

hi,jiKij (Si · Sj). At each

step one should take

Si = − ∇iE

|∇iE| ; ∇iE =
∂E

∂Si
. (3.25)

An important question, concerning this method is the choice of initial conditions. The

algorithm is deterministic, and for each initial spin configuration will converge to one minimum

of energy. If the energy landscape is rough, as in the case of systems with impurities, it may

contain a lot of local extrema. Therefore, one needs to sample a lot of initial spin configurations

and choose a global minimum of energy among them. In addition to completely random initial

conditions, we included several imposed spin configurations that were usually taken from the

studied manifold of states. We compared the results with the random initial conditions on equal

rights.

To sum up, our protocol was the following: starting from an initial condition, we solve

iteratively the local energy minimum condition (3.25) for a randomly chosen spin. After

every spin was sampled, a convergence condition was checked, which usually consisted of
P

i kS
(k+1)
i − S

(k)
i k < δ with δ ≃ 10−6N . The iterations were repeated until the criterion was

met. Then energy and all necessary order parameters were measured and the whole procedure

repeated for another initial configuration. A global minimum of energy corresponding to each

impurity replica was chosen afterwards. The final data are produced by averaging over the lowest

energy magnetic structures obtained for each impurity set.

The method allows for some optimisation. First, it was noted that the convergence is

reached faster if instead of the true gradient descent, (3.25) a partial step is taken: S
(k)
i k

α∇iE + (1− α)S
(k−1)
i with gradually growing α → 1. Also, as long as the Hamiltonian contains
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only nearest neighbour interactions, a sublattice parallelisation algorithm can be applied to

improve the performance on parallel architectures. However, as our problems included averaging

over a large number of impurity replicas, a simpler embarrassingly parallel scheme was usually

used. For more details on parallelisation techniques refer to section 3.1.4.





Chapter 4

Dilution in triangular antiferromagnets

The antiferromagnet on a two-dimensional triangular lattice is a paradigmatic example of a

frustrated system. Continuous Heisenberg and XY spin models attract considerable research

interest for 30 years since pioneering works by Kawamura and Miyasita [28, 35, 51] and Lee,

Joannopoulos, Negele and Landau [49, 52]. With the help of spin-wave analysis and Monte Carlo

simulations these groups obtained incredibly rich phase diagrams of the classical models. Their

most prominent common feature, the magnetisation plateau around H ≈ 1
3Hs, was observed in

a number of compounds, for example, RbFe(MoO4)2 [3, 4], Cs2CuBr4 [5, 53] and Ba3CoSb2O9

[54, 55].

This up-up-down (uud) configuration, which is often loosely called a plateau phase, and in

general the phase diagram of the pure models can be theoretically explained by the concept

of order by disorder. In the magnetic field the clean classical TAFM exhibits an accidental

degeneracy of ground states, consisting in an arbitrary orientation of the spin plane with respect

to field direction. However, these states have different energy of thermal fluctuations, analytically

it is realised by the action of a phenomenological biquadratic exchange.

We show that structural disorder in its various realisations can also lift the ground state

degeneracy. Moreover, it favours the least collinear conical state. Such selection takes place

because of the positive biquadratic exchange produced by structural disorder. In section 4.2 we

derive it analytically, minimising the energy of the tilted spin states. In addition, our extensive

Monte Carlo simulations show how the H −T phase diagram is influenced by introducing a finite

concentration of vacancies.

Section 4.3 contains our second result: a nontrivial substantial growth of an effective impurity

moment mimp upon increasing the fraction of vacant sites nimp. In noncollinear magnets even

in the absence of the external magnetic field an impurity induces a transverse local field on

its neighbours and leads to the screening of magnetic moment of a missing spin. Wollny et al.

[16] found that in the Heisenberg TAFM the magnetic moment around a vacancy is equal to

m◦
imp = 0.039S. Our numerical results show deviation of mimp from the independent impurity

behaviour even at smallest studied nimp ≤ 1%. We explain the observed tendency by the effects

of clustering of impurities.

Our main system under study in this chapter is an isotropic Heisenberg model. However, the

results can be also applied to the easy-plane TAFM, which is more relevant for experimental
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studies. In the last section 4.4 we discuss specific features of order by structural disorder in the

XY triangular antiferromagnet.

4.1 Heisenberg triangular antiferromagnet: the model

We study the isotropic nearest-neighbour antiferromagnet in external field H

Ĥ = J
X

hiji
Si · Si −H ·

X

i

Si. (4.1)

with spins Si located at the vertices of an ideal two-dimensional triangular lattice. The geometry

of the system allows decomposition of the Hamiltonian into a sum over elementary triangular

blocks or plaquettes with three spins SA, SB, SC , belonging to the plaquettes. The quantity

of interest is then a total magnetisation of a triangular block S△ = SA + SB + SC , as the

Hamiltonian can be expressed through it

Ĥ =
X

△

1

4

�

JS2
△ − 2

3
H · S△ − J

�

S2
A + S2

B + S2
C

�

�

. (4.2)

The last term is constant, so the energy minimum condition corresponds to a constraint on a

total spin of this block:

S△ =
H

3J
. (4.3)

This simple equality has several important consequences [28, 52]. First, the value of saturation

field HS = 9JS follows directly from it. Also, equation (4.3) allows simple calculation of the

local magnetic field, felt by a spin from the interaction with its neighbours and external field

hi =
∂EGS

∂Si
=

6
X

j=1

1

2
JSni = 3JSni, (4.4)

as only the last term in (4.2) contributes to hi. This means that the magnitude of the local field

is independent of lattice site and of H. Of course the mean-field description assumes that each

spin is pointing along its local field Si k hi k ni.

A three-spin configuration, which satisfies (4.3) on a simple plaquette is directly extended

over the whole lattice. Indeed, all neighbouring triangles share two out of three spins, say SA

and SB. Then their third spins should be equal to SC = H/3J − SA − SB. This constitutes a

three sublattice ordering with a wave vector Q = (4π/3, 0).

Last but not least, a vector equation (4.3) imposes three constraints on the ground state

configuration. Formed by three vector spins with six coordinate angles the ground state then

has three undetermined degrees of freedom. They represent an arbitrary orientation of the spin

plane in the spin space and a concrete orientation of one sublattice in this plane.

In the absence of Zeeman term this symmetry of the ground state is an exact SO(3) rotation

symmetry of the pure exchange Hamiltonian (4.1). The famous 120◦ structure, arbitrarily

oriented in the spin space is the lowest energy configuration at T = 0. It is important to note

that due to the Mermin-Wagner theorem [56] this continuous symmetry cannot be broken at

finite temperature.
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When the magnetic field is present 0 < H < HS , the Hamiltonian has only the S1 ⊗
Z3 symmetry. It is invariant under the rotation around the direction of magnetic field and

permutations of three sublattices. There is no symmetry operation, related to other two continuous

degrees of freedom. Such symmetry of the lowest energy states is called emergent symmetry, and

is an artefact of the mean-field treatment of the model.

As an illustration of this phenomenon in Fig. 4.1 (a) - (f) we present various spin structures

that can be realised in the Heisenberg triangular antiferromagnet in the magnetic field [49, 51].

Figure 4.1: Ordered magnetic states of a TAFM in an external field. Spin configurations appearing
for the TAFM without impurities: (a) coplanar Y -state, (b) collinear uud state, and (c) coplanar
2:1 (V ) state. Spin configurations in the presence of nonmagnetic impurities: (d) anti-Y state
and equivalent (e) fan state of the XY TAFM and (f) conical (umbrella) state of the Heisenberg
TAFM.

For a certain fixed value of H several different spin configurations may have the same energy. For

example, at H = 3J a so called 1/3 magnetisation plateau or up-up-down state (b) can be formed

as well as a fan structure with a right angle (e) or a noncoplanar cone (umbrella) structure (f),

or any other from a two-dimensional continuous manifold of states. We note that the anti-Y (d)

and the fan state (e) are equivalent from the symmetry point of view. They comprise different

realisations of the same phase at different H smoothly connected via the 90◦ configuration at

H = 3J .

4.2 Order by Structural disorder in the Heisenberg TAFM

The accidental degeneracy of the ground state manifold is lifted when one takes into account

terms beyond the mean-field approximation. For example, one can consider spin waves around

different ground states in the harmonic approximation. Calculation of the spectrum produces

a correction to the energy or the free energy of the system, this mechanism is called order by

disorder. In this section we address the problem of ground state selection in the Heisenberg

triangular antiferromagnet by an alternative approach.

First, using the perturbation expansion in real space, introduced in the previous chapter, in

subsection 4.2.1 we show that the effect of thermal and quantum fluctuations can be described

by an effective biquadratic interaction term in the Hamiltonian. Since the celebrated work

of Shender [2] biquadratic exchange is known to realise order by disorder in many collinear

frustrated magnets. It is even proposed to emulate a quantum system in classical numerical

simulations at low T [26, 57]. However, for noncollinear magnets, including the Heisenberg

TAFM it was only presented phenomenologically. So derivation of the biquadratic exchange adds

to the completeness of the theoretical description of the model.

Nevertheless, the main results of this section (and arguably, of the whole chapter) are

presented further. In subsection 4.2.2 we show that the average gain of energy due to the
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vacancy-induced spin relaxation is different for degenerate states. So structural disorder can also

lift the ground state degeneracy and its impact on the manifold can be represented by exactly

the same biquadratic exchange anisotropy but with the opposite sign. Therefore, the true ground

state of the system with defects is a result of the competition of the two opposite effects.

These conclusions are confirmed by the numerical simulations of the system with missing

spins. Subsection 4.2.3 shows that, indeed, the least collinear state is selected by vacancies at

T = 0. While Monte Carlo phase diagram of the system with nimp = 5% of static vacancies,

presented in sec. 4.2.4 supports the scenario of competition of biquadratic exchanges with

different signs. Critical properties of the phase transitions are discussed and illustrated in the

following section 4.2.5. In the last part of the section we discuss a possibility of observation of

the disorder-induced phase in a real system.

4.2.1 Order by fluctuations

Real space perturbation expansion is a method of a perturbative treatment of the terms beyond

the mean-field, which can be represented by different types of interactions of spin fluctuations

on different sites. Using this method, which was presented in detail in chapter 2, we obtain the

leading in 1/z corrections to energy due to thermal and quantum fluctuations of spins. In fact,

as the exemplary calculations of chapter 2 were made on the TAFM, we directly use the results,

obtained earlier and discuss the physical sense behind the expressions.

In a pure system at finite temperature the entropy of the degenerate states is different. In

the leading order in 1/z thermal fluctuations can be represented by an effective biquadratic term

in the free energy (2.14)

ΔF = − T

18S4

X

hiji
(Si · Sj)

2 . (4.5)

In the case of quantum spins a similar biquadratic term appears as the result of quantum

fluctuations around the ground states (2.19)

ΔE = − J

24S3
(Si · Sj)

2 . (4.6)

Both of the terms describe the interaction of fluctuations on neighbouring sites and come from

the second order of perturbation theory: classic or quantum.

Equations (4.5) and (4.6) realise the fact that fluctuations favour the most collinear spin

structures from the degenerate manifold of frustrated triangular antiferromagnet. It was observed

by classical [28, 49] and quantum [27] spin-wave theory and by different numerical simulations

[35, 49].

The evolution of phases of the model [35, 58, 59] is perfectly described by the effective

biquadratic exchange alone. In figure 4.2 we present the Monte Carlo phase diagram of Gvozdikova

et al. [58]. Its main features can be understood solely by considering the biquadratic anisotropy:

1) Coplanar configurations are favoured over the noncoplanar conical ones. 2) The most collinear

uud structure produces the strongest correction. This explains an extent of the plateau phase

to low fields at higher temperatures. 3) Y and V phases are favoured over their symmetrical

counterparts - anti-Y phase and the fan phase (Fig. 4.1 (d) and (e)).
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Figure 4.2: Monte Carlo H − T phase diagram of a pure Heisenberg triangular antiferromagnet,
obtained by Gvozdikova et al. [58].

While presenting the details of RSPT we have also shown that higher order corrections also

lift the ground state degeneracy. But they are smaller by at least an additional 1/z factor, so

they renormalise the order by disorder strength and introduce other weaker effective interactions,

but do not affect the overall state selection tendency.

4.2.2 Ground state selection by structural disorder

Defects in magnetic structure violate locally perfect geometrical frustration, so the surrounding

spins reorganise and gain in energy. This energy gain may vary in different states of the degenerate

manifold. Below in a limit of weak disorder, we minimise the energy of the system with defects

and obtain the effective corrections to the Hamiltonian that characterise different energy gains.

In section 2.2 we have presented the model of weak impurities. In this model a small fraction

of randomly distributed spins nimp ≪ 1 is set to have smaller length S(imp) = S(1 − ǫ) with

ǫ ≪ 1. This approximation is analogous to restricting the impact of impurities to its nearest

neighbours only and suits more for the analytical calculation than true vacancies.

The calculation of energy correction from the weak vacancies was done in eq. (2.26) - (2.35),

the result can be expressed as

ΔE =
Jǫ2nimp

3S2

X

hiji
(Si · Sj)

2 . (4.7)

Therefore, a small finite concentration of weak vacancies may be described by a positive biquadratic

exchange.

A very similar result was obtained for another physically relevant model of quenched disorder

- a weak bond disorder. It is modelled by a variation of exchange constants J → J(1 + δij),

with unbiased small random hhδ2ijii = D ≪ 1. In this case the energy correction depends on the

ground state in the same way as for weak impurities and we have

ΔE =
DJS2

3S2

X

ij

(Si · Sj)
2 . (4.8)
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The energy corrections, generated by structural disorder have the same functional form, as

(4.5) and (4.6), but the opposite sign. Therefore, structural disorder favours the least collinear

structures in the ensemble of degenerate classical ground states. Selection of orthogonal or

anticollinear ground states was previously known in the context of the diluted J1–J2 square-

lattice antiferromagnet [22, 24] yet the tendency determined by (4.7) is rather general, see also

refs. [21, 26] with similar conclusions.

4.2.3 Numerical determination of ground state at T = 0

To confirm the conclusion of the previous subsection that structural disorder robustly selects

the least collinear conical states from the degenerate continuous manifold we have used different

numerical techniques. First, we present the results of our energy minimisation algorithm, which

searches for the ground state of the system at T = 0. In numerical simulations there is no need

for structural disorder to be weak, so we performed all our runs on the systems with real spin

vacancies. For every run a fixed number Nimp = nimpN of spins was set to zero, and every

measurement is the result of averaging over 96 random impurity replicas.

The numerical minimisation algorithm was described in section 3.3. For each of 103 random

initial spin configurations a local energy minimum was deterministically found, and a global

ground state was then selected. Ground-state configurations of the TAFM in the magnetic field

are characterised by the antiferromagnetic order parameter:

MQ =
1

N

X

i

Sie
−iQri . (4.9)

In particular, the conical state is unambiguously distinguished from the coplanar configurations

by a finite M⊥
Q = (|Mx

Q|2 + |My
Q|2)1/2 and |M z

Q| = 0.

Numerical results for transverse and longitudinal components of staggered magnetisation

at H/J = 3 are shown in Fig. 4.3. The conical state remains stable for all studied impurity

concentrations including the smallest one nimp = 0.1%. The lack of appreciable finite-size effects

in M⊥
Q indicates the absence of a spin-glass phase and the development of the true long-range
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Figure 4.3: Zero-temperature transverse |M⊥
Q | and longitudinal |M z

Q| antiferromagnetic order
parameters at H/J = 3 for clusters with different concentration of vacancies nimp and different
linear size L.
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order in transverse components. Large error bars in |M z
Q| indicate that a larger number of

impurity replicas has to be sampled when the number of vacancies is small. A similar behaviour

is found for all 0 < H < Hs although with more iteration steps being required for H → 0.

Hence, the numerical results for the diluted TAFM fully corroborate the analytical findings of

the previous subsection.

4.2.4 Phase diagram of HTAFM with impurities

In a classical model, two types of disorder, thermal and quenched, lift the ground state degeneracy,

but select opposite spin configurations. They compete with each other producing a rich H − T

phase diagram, so we have performed the classical Monte Carlo simulations of the diluted TAFM

in order to capture their cumulative effect on the frustrated system. The hybrid algorithm,

presented in chapter 3 was employed in a wide range of temperatures and magnetic fields.

Physical quantities and associated error bars were estimated from averaging over 96 impurity

replicas. Phase transition boundaries were determined by the standard finite-size scaling analysis

of clusters with linear sizes up to L = 150.

H
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Figure 4.4: Classical Monte Carlo phase diagram of the Heisenberg TAFM with 5% of nonmag-
netic impurities. Solid lines that connect data points are guides for the eye. The inset shows the
concentration evolution of the ordered phases for H/J = 1.3, which is indicated by the dashed
line on the main panel.

The magnetic phase diagram of the Heisenberg TAFM with 5% of vacancies is shown in

Fig. 4.4. The main new feature in comparison with the diagram of the pure model (Fig. 4.2)

is the emergence of the conical state at low temperatures for all H ≤ HS . It is in absolute

agreement with the scenario of competition of biquadratic exchanges with opposite signs (4.5)

and (4.7). At high enough temperatures the increased thermal fluctuations overcome quenched

disorder and magnetic phases of the pure TAFM reappear again, though the Y -phase remains

absent for nimp = 5%.
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The phase transition boundaries are drawn down to H/J ∼ 1. In lower magnetic fields,

finite-size effects become stronger and require simulations of significantly larger lattices than

those studied in our work. Therefore, we cannot exclude reappearance of the Y -phase at very low

fields. Instead, we show the evolution of the phase boundaries with the vacancy concentration at

fixed H = 1.3J in the inset of Fig. 4.4. The Y -phase is present in this field for small nimp and

disappears at nimp ∼ 4.5%. We note that we expect the absence of finite-T phase transitions at

H = 0 in agreement with the Mermin-Wagner theorem, so all low H phase boundaries should

end at the origin point of the diagram.

4.2.5 Phase transitions and critical properties

The effect of impurities on the critical behaviour of the TAFM can be assessed using the Harris

criterion [60], which states that disorder becomes relevant for transitions with α = 2− dν > 0. In

particular, the Berezinsky-Kosterlitz-Thouless (BKT) transition formally has ν = ∞ and remains

unaffected by vacancies as was confirmed numerically in [61]. The second-order transition into

the uud state, which belongs to the universality class of the 2D three-state Potts model, has

α = 1/3 and is, therefore, driven by impurities to a new random fixed point, see [62, 63] and

references therein. Nevertheless, the spin correlation exponent η stays very close to the clean

value η = 4/15 [62] and we also found virtually no difference with the pure case for the critical

behaviour of the order parameter at this transition in our Monte Carlo simulations.

In comparison with the pure system the phase diagram of the diluted model has an additional

conical phase. In the high-field region 5J � H < Hs the direct transition from the paramagnetic

to the conical state is accompanied by breaking of the Z2 ⊗ S1 symmetry, where Z2 describes

chirality ordering. Therefore, this transition is similar to the one that occurs at the high field

region of the pure system, where a continuous BKT and second order phase transitions occur

very close to one another. Statistical errors in simulations brought by the impurities are too

large to resolve a presumably tiny splitting of TBKT and Tchir as well as an effect of the disorder

on the Ising-like chiral transition.

At lower fields H � 5J the transition from the planar phases to a conical state should be

of the first order because of the different spin plane orientation on two sides of the boundary.

However, a signature of the first-order transition was seen only for 2J � H < 3J from the scaling

of the specific heat anomaly. At higher and lower fields the diluted TAFM shows fingerprints of a

continuous transition between conical and coplanar states. We address it to a strong smearing of

the first order transition by impurities, but allow another possibility: presence of an intermediate

phase with the restored symmetry in a narrow temperature interval.

Below we illustrate these critical properties and, more generally, the determination of the

phase boundary by presenting various FSS procedures in four different field ranges. First, we

introduce various order parameters that help to distinguish different phases and determine

precisely phase boundaries. Along with the usual antiferromagnetic order parameter (4.9), we

used chirality, defined as a pairwise vector product of spins on one plaquette

κ =
2

3
√
3N

X

△

�

SA × SB + SB × SC + SC × SA

�

. (4.10)
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It vanishes when any two spins on an elementary triangle are parallel. Table 4.1 lists various

phases that were observed in our study. The star signs in the corresponding cells denote quantities

that have nonzero values in these phases. Longitudinal chirality κ
z is therefore especially practical

in capturing the new conical phase, stabilised by impurities.

Cone Fan Y uud V PM

M z
Q ⋆ ⋆ ⋆ ⋆

M⊥
Q ⋆ ⋆ ⋆ ⋆

κz ⋆

κ⊥ ⋆ ⋆

Table 4.1: Components of staggered magnetisation MQ and chirality κ, which were used to
distinguish various phases in our MC simulations.

Precise phase boundary location was done using the finite-size scaling procedures, which were

described in section 3.2. Particularly, Binder cumulant and susceptibility of the order parameters

were used in determination of the discrete symmetry breaking

UB = 1−
hM4

Qi
3hM2

Qi2
; χ =

N

T
hM2

Qi. (4.11)

While scaling of spin stiffness (3.22) allowed the precise location of the BKT transition

ρs = − J

N
√
3

X

hi,ji
hSx

i S
x
j + Sy

i S
y
j i − 2J2

NT
√
3
h
h

X

hi,ji

�

Sx
i S

y
j + Sy

i S
x
j

�

(ê · rij)
i2
i. (4.12)

1) First, we present the results of the high field scan at H = 6J . We used scaling of κz, as

shown in Fig. 4.5 (a) to locate the Ising transition and scaling of spin stiffness on panel (b) of

the same picture to determine the BKT transition.
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(a) Square of the longitudinal chirality κz2 - the or-
der parameter of the conical phase. Inset: scaling of
the corresponding susceptibility with the Ising critical
exponent η = 1/4 gives the temperature of the phase
transition.
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(b) Determination of the BKT transition to the conical
phase using scaling of spin stiffness. Finite lattice
size transition temperatures Tc(L) are obtained as the
intersections with the ρ = 2T/π line. Inset shows the
fit with the two-parameter scaling function Tc(L) =
Tc

�

1 + (2 lnL+ C)−1
�

. C = −6.264 was used.

Figure 4.5: Finite size scaling for H = 6J . nimp = 5%
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2) When the magnetic field is below H/J � 5 some features of the pure phase diagram start

to appear. In particular, an evolution into the conical phase happens via intermediate planar

configurations. Figure 4.6 illustrates the phase evolution at H = 4J . The transition from the

paramagnetic phase is determined like in the pure case by scaling of χ⊥ and ρs on panels (a) and

(b). The weak first order phase transition Tc was defined as the crossing point of the different

order parameter curves, as they exhibit weak inverse scaling behaviour. Panel (d) illustrates

the absence of sharp features in the specific heat (3.9) We also note that in our field scans we

observed a decrease of the V − uud boundary of around 10%, compared to the pure case.
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(a) Transverse component of staggered magnetisation
and the corresponding susceptibility. 2D three-state
Potts model critical exponent was used to determine
the transition temperature Tc = 0.185(5) to the V
phase .
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(b) Scaling of spin stiffness, as described in section
3.2.3 was used to determine the location of PM–V
phase boundary. Fitting of intersection points gives
Tc = 0.181(2) and C = −4.865.
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(c) Order parameter of the cone phase shows a rather
continuous growth with almost no finite-size effects.
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(d) Magnetic specific heat shows a broad cusp, instead
of a first-order-like anomaly.

Figure 4.6: Finite size scaling for H = 4J . Top panels show the PM–V transition, bottom panels
illustrate the transition to the impurity-induced cone phase. nimp = 5%
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3) The PM–uud–cone evolution at H = 2J is shown in figure 4.7. In general the PM – uud

phase boundary happens to be determined with the highest precision of all by the crossing of the

Binder cumulants Ub(M
⊥
Q ) (panel (b)). Scaling of susceptibilities, shown on the inset of panel

(a) confirms the estimate of Tc. The lower transition in the intermediate field range shows the

sharpest first order features, as seen on panels (c) and (d).
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(a) Order parameter of the plateau phase. Inset shows
the scaling procedure, which gives an estimate of the
transition temperature Tc = 0.306(3).
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(b) Crossing of the Binder cumulants - the simplest way
to obtain transition temperature Tc = 0.304(2). Inset
shows the zoom to the crossing area.
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(c) Phase transition to the cone state. In the interme-
diate field range 2J � H � 3J longitudinal chirality
exhibits a more rapid growth than for other H.
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(d) Specific heat has two sharp maxima, which corre-
spond to the PM–uud–cone phase evolution.

Figure 4.7: Finite size scaling for H = 2J . Top panels show the determination of PM–uud
boundary, bottom panels illustrate the transition to the vacancy-induced cone phase. nimp = 5%

4) Finally, in the low-H region of the phase diagram the phase boundaries were defined

by the same methods. The main difference with the previous case is that we did not rule out

completely the presence of the Y phase. However, strong finite size effects did not allow to

resolve the possible BKT transition (see panels (e) and (f) of Fig. 4.8) from the transition to the

noncoplanar phase. This uncertainty is indicated by large error bars on the phase diagram (Fig.

4.4).
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(b) Transition temperature determination using the
Binder cumulants of the order parameter Mz.
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(c) Growth of κz indicates a transition to the cone
phase at Tc = 0.174(5). Inverse finite-size behaviour
supports a theoretical prediction of the weak first order
transition.
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(d) An extremely weak anomaly in C at the lower phase
transition is detected. A broad cusp around T = 0.22
may indicate an intermediate BKT transition to the Y
phase.
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(e) Nonzero transverse chirality indicates an onset of the
Y phase. Inset shows FSS scaling of the corresponding
susceptibility with the BKT critical exponent η = 1/4.
The available cluster sizes are not enough to unambigu-
ously resolve a crossing of the scaling functions from
their touching around T ⋆ ≃ 0.185(5).
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(f) A BKT phase transition is best traced by the scaling
of the spin stiffness ρs. The transition, if present, occurs
at T ⋆ = 0.174(5), very close to the boundary of the cone
phase. The plot may also indicate a BKT transition to
the cone phase from the possible intermediate phase
with the restored symmetry.

Figure 4.8: Finite size scaling of Monte Carlo results for H = 1.3J . Top panels show the
determination of PM–uud boundary, middle panels illustrate the transition to the cone phase,
bottom panels show the possibility of the intermediate Y phase. nimp = 5%
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4.2.6 Estimate of ncrit and observation perspectives

Quantum fluctuations around a mean-field state can be modelled by a negative biquadratic

exchange in the Hamiltonian, as was shown in (4.6). Then beyond the classical model, quantum

fluctuations will compete with the effect of dilution even at T = 0. For a given spin value S, there

is a critical concentration of vacancies nc
imp ∼ 1/S needed to overcome the quantum selection of

‘most collinear’ states.

We can compare the strength of two competing effects at the plateau point H = 3J in the limit

of separate energy contribution from quantum fluctuation and structural defects. Consideration

of the interplay of these effects greatly complicates the task because of the difficulty of calculation

of the spin-wave spectra around a disorder-induced texture. We compare the total classical

energy gain with the harmonic spin-wave energy in the uud and cone state, which is calculated as

ΔE(s) = ΔE
(s)
Q +ΔE

(s)
imp, s = {uud, cone}. (4.13)

The first contribution can be determined by the harmonic spin-wave calculations. Chubukov and

Golosov obtained ΔE
(cone)
Q −ΔE

(uud)
Q = JS2Q with Q ≃ 0.065/S [27]. The energy gain ΔE

(cone)
imp

is the output of our numerical minimisation technique and can be expressed as ΔE
(cone)
imp =

−hSnimp − JS2αnimp with α ≃ 0.65. Here the second term represents the energy gain from spin

reorganisation. This contribution is absent in the collinear spin structures, therefore we have

ΔE
(uud)
imp = −hSnimp. Comparing these energies we find that the 1/3 magnetisation plateau of

the Heisenberg TAFM is stable up to nc
imp ∼ 4% for S = 5/2. This estimate of nc

imp becomes

even lower once quantum effects are further suppressed by weak magnetic anisotropy. Finally,

the extent of the cone phase at low H suggests that critical vacancy concentration at H < 3J

will be lower than the one, indicated above.

4.3 Effective magnetic moment of impurities

A removed magnetic moment in an antiferromagnetic insulator induces a net magnetic moment

in the system even at H = 0 (Note that throughout this section we will consider the magnetic

field to be absent). For noncollinear magnetic structures the moment is, however, screened by

a spin texture resulting from the canting of the surrounding spins [12, 16, 17]. Such a spin

canting of only nearest neighbour spins is illustrated in Fig. 4.9(a). As a result, an impurity

moment acquires a nonuniversal fractional value, which depends on the system details. Wollny

and collaborators [16] have shown that a vacancy in the classical Heisenberg TAFM becomes

slightly overcompensated, i.e. at T = 0 the net magnetic moment is equal to m◦
imp = 0.039S

and has the same direction as a missing spin. At finite temperatures in the absence of long

range order this purely classical moment is free to rotate in spin space leading to a Curie-like

paramagnetic divergence of the magnetic susceptibility at T → 0. In a system with a small but

finite concentration of defects, the impurity contributions sum up to give

χ(T ) =
Nimpm

2
imp

3T
+O(1). (4.14)

We have numerically investigated a system with a fixed concentration of vacancies, measured

mimp and studied how the impurity screening is modified by finite nimp. First, we report results of
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Figure 4.9: (a) An example of spin distortions around the impurity in the classical 120◦ ordered
state. Shaded area shows all nearest neighbours up to the order 3. (b), (c) Simple clusters
of impurities with the strongest distortion of screening. Effective magnetic moment of these
configurations equals to m◦◦

imp = 0.11 and m◦·◦
imp = 0.08 respectively.

zero-field Monte Carlo simulations of the classical nearest-neighbour Heisenberg antiferromagnet

with a finite concentration of static vacancies. The algorithm is basically the same as the

one presented in the previous section. We found that cluster size has little effect on bulk

thermodynamic quantities at T → 0 and, therefore, used moderate cluster size L = 90 in all

runs for this work, except for the cases of small amount of impurities nimp < 0.01, where larger

clusters are needed for better statistics.

Figure 4.10(a) shows uniform magnetic susceptibility χ(T ) normalised per spin obtained from

the Monte Carlo simulations of the TAFM with and without impurities as

χ =
1

3TL2

D�

X

i

Si

�2E

. (4.15)

The main difference between the curves is the emergent 1/T divergence of χ at low temperatures,

which becomes stronger with increasing nimp. This upturn may look counterintuitive as no

extra magnetic moments are brought into the system. Note that our Monte Carlo results for

χ(T ) closely resemble the susceptibility data measured for nominally pure TAFM materials, for

example, for LuMnO3 [64].

We associate an average magnetic moment mimp with every impurity and interpolate the

susceptibility curves at T → 0 with eq. (4.14) to determine its value. In addition, we obtain

independent results for the impurity moments mimp by another method: direct calculation of

m2
imp =

1

Nimp

�

X

i

Si

�2
(4.16)

in the classical ground state at zero temperature from our energy minimisation algorithm. mimp,

obtained by both methods was averaged over at least 200 random impurity configurations.

Figure 4.10 (b) presents the main result of this section: a nontrivial growth of the single

impurity moment with concentration. Values, obtained by the two methods (displayed by full

and open circles respectively) match perfectly and in the following we do not make the difference

between the two methods. The growth is observed even at small nimp ∼ 1%, which is somewhat

surprising as at such weak dilution one may expect a nearly independent impurity behaviour

with mimp = m◦
imp. Indeed, Fig. 4.10 (b) shows that mimp is significantly renormalised from the
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(a) Magnetic susceptibility for different concentra-
tions of vacancies, from our Monte Carlo simulations
of the Heisenberg TAFM at H = 0. The Curie-like
singularity at T → 0 gives the value of effective
impurity moment mimp from eq. (4.14).
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(b) Growth of the effective impurity moment with
vacancy concentration obtained using susceptibility
interpolation (full circles) and direct measurement
at the ground state (open circles). Open squares
correspond to mimp in the restricted impurity config-
urations. Dashed line and a big marker at nimp = 0
show m◦

imp from the work [16].

Figure 4.10: Impurity moment mimp manifests itself as a Curie-like divergence of χ at T → 0 (a).
In noncollinear magnets it exhibits nontrivial growth from the single vacancy value.

single impurity value, even at the lowest considered nimp = 0.2%, which is comparable to the

case of a single impurity on a cluster with L = 12, studied in the work of Wollny et al. [16].

One possible explanation of growing mimp is an assumption that screening clouds from

different impurity sites interact, and self-average. According to Ref. [11, 16] readjustment

angles of spins, surrounding an impurity decay as δΘ(r) ∼ 1/r3 at long distances. For a finite

concentration of impurities one may expect cut off of individual screening clouds at average

distances R ∼ n
−1/2
imp . It leads to the modification of screening, consistent with the square root

dependence on vacancy fraction:

δm ∼
Z ∞

R
Θ(r)|l(r)|d2r ∼ n

1/2
imp. (4.17)

Here l(r) - is a vector, pointing in the direction spin distortion, and results only in a prefactor,

which is omitted. However, the measured mimp (Fig. 4.10 (b)) clearly does not fit to this

procedure, and therefore demands for a different explanation of the observed dependence.

We ascribe the growth of impurity moment to the effects that are quadratic in nimp. Indeed,

an individual impurity moment is strongly screened to a very small value m◦
imp. Hence, one is

forced to consider statistically rare cases of two impurities occupying nearby sites, see figs. 4.9

(b) and (c). If such impurity configurations have moments, which are not very well screened and

significantly larger than m◦
imp, their impact on the net magnetic moment and the low-temperature

susceptibility may be quite significant.

We measured mimp for a few simple vacancy configurations and show in figs. 4.9(b) and (c)

two impurity clusters with the largest values of the effective magnetic moment. The calculations

yield m◦◦
imp = 0.11 and m◦·◦

imp = 0.08 respectively, the result that is several times larger than

m◦
imp. Along with the large coordination number of the triangular lattice, it overcomes the small

statistical weight P ∼ n2
imp of these configurations.
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In addition, we have performed similar numerical simulations restricting vacancies from being

placed within the first three neighbours from each other. The respective exclusion region is

shown by the shaded area in Fig. 4.9(a). In the first place, such a computation serves to verify

the above hypothesis; second, it may also model weak correlations in the structural disorder,

which develop in real solids due to elastic tension etc. The results are plotted in Fig. 4.10(b) with

open square markers. They demonstrate only a slight growth of mimp from m◦
imp. Therefore, at

distances exceeding 2–3 lattice spacings, impurities only barely interact and behave completely

individually. These results strongly support the above explanation of the growth of impurity

moment due to clustering of vacancies.

4.4 Order by structural disorder in the easy-plane TAFM

Most of the known triangular antiferromagnets, including the ones that belong to the recently

synthesised family Ba3TT
′
2O9, with transition metals T = Co,Ni,Mn and T′ = Sb,Nb, [55, 65,

66] are not purely Heisenberg, but have a certain exchange anisotropy. The easy-plane TAFM

exhibit similar accidental degeneracy of ground states, as the Heisenberg system, therefore, it is

interesting to study the order by structural disorder in these models.

In this section we consider the extreme case of the XY TAFM, or the planar rotator model

Ĥ = J
X

hiji
Si · Si −H ·

X

i

Si (4.18)

with two dimensional spins Si and the magnetic field, directed parallel to the spin plane. Its

ordered states were investigated by Lee et al. [49, 52]. After the application of the minimum of

energy condition (4.3) one degree of freedom is left unspecified. So much like in the Heisenberg

system, the planar ground states of the model are subject to the accidental degeneracy.

To study state selection in the XY model the same analysis, as in the section 4.2 can be

carried out. The only difference with the isotropic case is the absence of terms, containing

the out-of-plane component Sy
i in eq. (2.3) and everywhere below. But the derivation of all

biquadratic exchanges from thermal and quantum fluctuations remains intact. Therefore, thermal

fluctuations lift the ground-state degeneracy in favour of the same sequence of phases in magnetic

field as for the Heisenberg model, see Fig. 4.1(a)–(c). The same applies to the competing term

from structural disorder: vacancies and weak bond disorder can be described by an effective

positive biquadratic correction. In the case when the conical state, Fig. 4.1(f), as well as other

noncoplanar configurations are forbidden, it lifts the degeneracy between the coplanar structures

only. More specifically, it stabilises the anti-Y (d) and the fan (e) states, which are different

realisations of the same ordered phase at different magnetic fields.

We have complemented analytical consideration with a numerical search for the lowest-energy

magnetic structures using the same technique as for the isotropic model. First, we constructed a

proper order parameter that distinguishes different planar spin configurations. In particular, it

should be able to tell the anti-Y phase, Fig. 4.1 (d) or fan phase (e) from Y , uud and V states.

The principal order parameter of any ordered structure in the XY TAFM is again the usual
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staggered magnetisation with the ordering vector Q = (4π/3, 0)

MQ =
1

N

X

i

Sie
−iQri . (4.19)

It is a complex vector with two components M
k
Q and M⊥

Q , defined relative to the direction of the

magnetic field. The symmetry analysis of the study [49] shows that up to the 120◦ rotation in

the the complex plane (in other words, up to permutations of the three sublattices) Im(MQ) = 0

in uud and V phases. On the other hand, in the fan phase Im(M⊥
Q ) is nonzero. Therefore, a

natural order parameter is

m⊥
3
′′ =

8

N

�

�

�Im(M⊥
Q

3)
�

�

�. (4.20)

The normalisation prefactor is chosen such that m⊥
3
′′ = 1 in the perfect 120◦ structure. On the

other hand the symmetry of Y and anti-Y phases is the same, so they differ only by the values

of the order parameters. In the anti-Y configuration m⊥
3
′′ decreases with decreasing magnetic

field, while in the Y state it stays smaller and grows. At the same time another component

m
k
3
′ =

8

N
Re(M

k
Q
3) (4.21)

is strictly positive in the anti-Y state, while it is negative in its counterpart.

Numerical results are fully consistent with the presence of the fan (anti-Y ) state in the whole

range of magnetic fields. We present the results of simulations of the model with nimp = 5%

of vacancies in figure 4.11, which shows a clear anti-Y –fan–PM evolution of phases. The finite

size analysis, shown on the inset, states that the selection of the least collinear configurations

is robust, and no signs of glassy behaviour are observed. Finally, we note that a considerably

larger amount of initial configurations were required to obtain a true ground state in comparison

with the Heisenberg model. This explains relatively small cluster sizes, used in this study.
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Figure 4.11: Two of four components of the cube of the order parameter M3
Q at zero temperature.

Calculations are performed for L = 30 and nimp = 5%. Inset shows the absence of considerable
finite size effects at the plateau point H/J = 3. Every measurement is averaged over 200 impurity
replicas. 103− 104 initial conditions is required to systematically find the global energy minimum.

The results of this section can be directly applied to the case of moderate easy-plane anisotropy,

which corresponds to the XXZ triangular antiferromagnet, an intermediate case between the

Heisenberg and the planar rotator model. Stabilisation of the same least collinear fan state is

expected when the magnetic field lies in the easy plane.
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4.5 Summary

Nonmagnetic impurities modify the behaviour of the classical TAFM in an external magnetic field.

The effect of static disorder can be qualitatively described by a positive biquadratic exchange,

which competes with a similar effective interaction of the opposite sign generated by thermal and

quantum fluctuations. Vacancies tend to stabilise the conical state for the Heisenberg TAFM,

whereas for the XY model with an in-plane field they favour the fan spin structure. Systematic

experimental studies of frustrated magnets doped with nonmagnetic impurities may, therefore,

bring new fascinating physics. Apart from the fundamental interest, this can open additional

possibilities in controlling electrical and magnetic polarisations in triangular multiferroics. From

the theoretical perspective it would be interesting to perform thorough numerical studies of

the triangular system with bond disorder or other types of defects that appear in magnetic

solids. These results may shed more light on the mechanism, which stands behind the observed

competition of impurities and fluctuations,

Secondly, we demonstrate that an effective fractional impurity moment revealed in the

paramagnetic Curie tail of the magnetic susceptibility exhibits a substantial growth with the

impurity concentration. We attribute this growth to an anomalously small value of mimp of an

isolated vacancy in the TAFM, and, as a consequence, to significance of correlated impurity

effects ∼ n2
imp. This effect should be experimentally detectable as Curie tails in χ(T ) are often

observed in magnets. Magnetic moment of a single impurity can be extracted from the study of

these tails in samples with a known defect concentration. It might be also interesting to study

other noncollinear helical antiferromagnets. While we expect the effect to persist, it may be

quantitatively very different, for example, due to the not so small values of vacancy moments.



Chapter 5

Order by structural disorder in the XY

pyrochlore antiferromagnet

The order by disorder is an elegant concept, which explains the realisation of a specific state

from an otherwise degenerate ground state manifold of some frustrated systems. However, it is

sometimes criticised for the fact that it lacks undoubtful experimental observation. Er2Ti2O7 is

the least contested experimental realisation of the fluctuation-induced ordering, that is why it

plays a central role in discussions about order by disorder.

It is natural then to ask a question, whether a mechanism of order by structural disorder can

be extended to this compound? In addition, the properties of its ground states make Er2Ti2O7

an even more interesting case to study order by structural disorder effect. Firstly due to the

fact that the least collinear mx2−y2 state is favoured by thermal and quantum fluctuations

in the pure system and secondly because biquadratic exchange, associated with ground state

selection does not lift the degeneracy of the ground state manifold in XY anisotropic pyrochlore

antiferromagnets.

In this chapter we present a study of the frustrated anisotropic easy-plane antiferromagnet on

the pyrochlore lattice, which is relevant for Er2Ti2O7. We show that despite the aforementioned

distinctions between triangular and pyrochlore antiferromagnets, our main conclusion is valid for

both systems. Structural disorder breaks the continuous ground state degeneracy and selects the

states that are the least favoured by the conventional order by disorder effect.

The organisation of the chapter is the following: first, we present a minimal model that

describes the low-T properties of Er2Ti2O7. Then in section 5.2, following the path of the real

space perturbation expansion, we derive the effective anisotropic corrections, originating from

thermal and quantum fluctuations, responsible for selecting the ground state in the pure model.

The next section 5.3 is devoted to the analytic treatment of pyrochlore with structural disorder

and to the order by structural disorder mechanism. In section 5.4 we present our numerical results

for the classical pyrochlore system. They support our scenario of competition of thermal and

structural disorder in selecting the ground state of the system. Finally, in section 5.5 we discuss

the possibility of experimental observation of the new impurity-induced phase in Er2Ti2O7 and

the future perspectives of our findings.
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5.1 Introduction and model for Er2Ti2O7

Er2Ti2O7 - is a paradigmatic example of lifting the ground state degeneracy by the order by

disorder effect. In this section we present the model that suits for studying the low-T properties

of the compound. In Er2Ti2O7 magnetic Er3+ ions reside in vertices of a pyrochlore lattice - a

lattice, formed by the regular corner sharing tetrahedra. Er3+ ions form a 4I15/2 configuration

with the total angular momentum J = 15/2. According to the crystal field analysis [67, 68] this

multiplet is split by a strong local crystalline field with D3d symmetry, producing the ground

state Kramers doublet. This is a reasonable approximation as long as the energy scales of the

Hamiltonian: exchange parameters J � 0.4 meV and the external magnetic field H � 2T are

much smaller than the gap to higher crystal field levels Δ ∼ 6.5 meV [67]. The magnetic moment

of this doublet is found to lie mainly in the local xy plane, so the problem can be mapped onto a

S = 1/2 XXZ-pseudospin model. At TN ≃ 1.2K it undergoes a second order phase transition in

the 3D XY -universality class [69, 70] to an ordered state. According to group theory, this state

belongs do a continuously degenerate one-dimensional manifold of states. Neutron diffraction

experiments show that a specific noncoplanar m3z2−r2 configuration with 6 domains is realised

from the manifold [67]. A combination of thermal and quantum order by disorder is the most

probable explanation of this selection [6, 7, 71, 72] because Er2Ti2O7 ground state degeneracy is

symmetry protected from small perturbations. Finally, recent experiments by Ross et al. [73]

confirm the presence of a spin wave gap, corresponding to quantum fluctuations. Therefore, there

is a good general agreement that it is, indeed, the order by disorder effect that is responsible

for selection. We note, however, that there is an alternative point of view on the ground state

selection in Er2Ti2O7, based on the effect of higher crystal field levels [74, 75].

In a pyrochlore material the unit cell contains four magnetic sites. Their positions in units of

the cubic lattice parameter a are given by

r1 = (0, 0, 0) , r2 = (14 ,
1
4 , 0) , r3 = (0, 14 ,

1
4) , r4 = (14 , 0,

1
4) . (5.1)

When a pyrochlore system has a distinct Ising or planar anisotropy it is convenient to consider it

in a local basis with ẑi oriented along the symmetry axis on each site (Fig. 5.1).

ẑ1 =
1√
3
(1, 1, 1) , ẑ2 =

1√
3
(−1,−1, 1) , ẑ3 =

1√
3
(1,−1,−1) , ẑ4 =

1√
3
(−1, 1,−1) . (5.2)

The most general form of the bilinear pseudospin 1/2 Hamiltonian that is compatible with

the symmetry of the lattice can be written as [6, 76]

Ĥ =
X

hiji
JzzS

z
i S

z
j + J⊥S

⊥
i · S⊥

j + Ja
⊥(S

⊥
i · r̂ij)(S⊥

j · r̂ij) + Jz⊥
�

Sz
j (S

⊥
i · r̂ij) + Sz

i (S
⊥
j · r̂ji)

�

. (5.3)

Here r̂ij = (ri − rj)/|ri − rj | is a unit vector in the bond direction. Spin operators Si are

taken in the local coordinate frame with Sz
i and S⊥ being projections on the local trigonal

axis and on the orthogonal xy plane, respectively. Jzz and J⊥ are coupling constants of Ising

and XY -type coupling constants. The third term represents the bond-dependent dipole like

anisotropy, in principle both signs of Ja
⊥ are allowed by symmetry. And the last term is the

Dzyaloshinskii-Moriya type interaction, which can also be present in pyrochlores due to the

absence of inversion symmetry.
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with a point Ja
⊥/J⊥ ≃ 1.5(2) corresponding to Er2Ti2O7.

We begin with the description of the classical ground states of the spin model (5.7). Through-

out all the work we will be interested in the antiferromagnetic sign of the main XY interaction

J⊥ > 0. Then, depending on the sign of Ja
⊥, magnetically ordered states belong to one of the

two different classes, which transform according to the E or T2 irreducible representations of the

tetrahedral point group. They are also labelled in the literature as (Γ5) and (Γ7) representations

respectively. Figure 5.1(e) shows a mean-field ground state phase diagram of the model (5.7). For

negative Ja
⊥ the anisotropic exchange has the same effect as the long-range dipolar interactions.

It selects the Palmer-Chalker states, [80] represented by the mxy state in Fig. 5.1(b). Their

classical energy is ET2 = −S2(J⊥ − 1
2J

a
⊥). For Ja

⊥ > 0 the ground state belongs to a two

component E representation with the energy EE = −S2(J⊥ + 1
2J

a
⊥). Its basis is formed by

the noncoplanar state m3z2−r2 (ψ2) and the coplanar mx2−y2 (ψ3) state. These are shown in

figs. 5.1(c) and 5.1(d), respectively. Value Ja
⊥ = 0 yields a highly degenerate point with many

magnetic structures described by different ordering wave vectors having the same classical energy

[81]. Before proceeding further we note that a small (compared to both J⊥ and Ja
⊥) nonzero

value of the two other couplings Jzz and Jz⊥ does not distort the phase diagram of Fig. 5.1,

leaving the ground states within E and T2 representations.

From now on we focus on Ja
⊥ > 0, and choose the direction of local x̂i and ŷi axes such that

they coincide with the direction for the m3z2−r2 and the mx2−y2 state on each site:

x̂1 =
1√
6
(1, 1,−2) , x̂2 =

1√
6
(−1,−1,−2) , x̂3 =

1√
6
(1,−1, 2) , x̂4 =

1√
6
(−1, 1, 2) ,

ŷ1 =
1√
2
(−1, 1, 0) , ŷ2 =

1√
2
(1,−1, 0) , ŷ3 =

1√
2
(−1,−1, 0) , ŷ4 =

1√
2
(1, 1, 0) . (5.8)

Then the whole degenerate manifold of ground states can be parameterised with one angle ϕ as

Si = S (x̂i cosϕ+ ŷi sinϕ) . (5.9)

Angle values ϕ = πk/3 and ϕ = π(k + 1
2)/3 correspond to different m3z2−r2 and mx2−y2 states,

respectively. A possibility to parameterise the lowest energy states with one variable follows also

from the simple degree of freedom counting argument. Consider a simple building block of the

lattice - one tetrahedron with four classical vector spins. Function (5.7) is minimal when all

spins lie in their easy planes and when the net magnetisation of the plaquette is zero. Therefore,

we have four degrees of freedom, constrained by three equations.

According to the group theory m3z2−r2 and mx2−y2 states remain strictly degenerate for a

general case of the bilinear spin Hamiltonian involving further anisotropic terms or couplings to

distant neighbours. An effective biquadratic exchange (Si · Sj)
2, does not lift this degeneracy

either. The degeneracy may be lifted only by interactions of the sixth order in spin components,

which are usually extremely small in real materials. Hence, the spin model (5.7) provides an

interesting example of the order from disorder selection. For 0 < Ja
⊥/J⊥ < 4, thermal and

quantum fluctuations favour the noncoplanar ground states of the type m3z2−r2 , including the

point Ja
⊥/J⊥ ∼ 1.5 corresponding to Er2Ti2O7 [6, 7, 70]. For Ja

⊥/J⊥ > 4, the selection takes a

different route and fluctuations stabilise the mx2−y2 states [82]. The corresponding transition at

Ja
⊥ = 4J⊥ is indicated by a dashed line in Fig. 5.1(e). In the next section we show that quantum

and thermal corrections to the classical energy generate Eeff ∼ −(Ja
⊥ − 4J⊥) cos 6ϕ explaining

the above transition.
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5.2 Order by disorder

In the previous chapter we have shown that for the Heisenberg triangular antiferromagnet the

leading correction beyond the mean-field approximation can be represented by an additional

biquadratic exchange term in the Hamiltonian. It leads to the lifting of the mean-field degeneracy

of the ground state of the system in the external field. The same argumentation applies to a

number of other frustrated systems: the most collinear spin structures are selected by thermal

and quantum fluctuations of spins [19, 22]. This effect is known as order from disorder.

In Er2Ti2O7 biquadratic exchange does not break the ground state symmetry and thus cannot

realise order by disorder. Indeed, substitution of (5.9) into K(Si ·Sj)
2 produces a fourth harmonic

of ϕ. But it cannot enter in the Hamiltonian as the [111] direction is not a fourfold rotation axis

of the pyrochlore lattice.

In this section we will apply the formalism of the real space perturbation expansion to the

easy-plane pyrochlore system and show that fluctuations break the symmetry via the sixth

harmonic of ϕ. For this, one needs to go to the higher order in perturbation expansion - direct

calculation of the second order terms results in a constant, independent of ϕ. Therefore, the

derivation of these terms will be omitted. One of the disadvantages of the real space perturbation

expansion is that the number of terms grows rapidly with the order of the theory. Third order

quantum correction involves calculation of two contributions, which partly compensate each other.

It causes come additional complications for the S = 1/2 case, which is relevant for Er2Ti2O7. In

subsection 5.2.4 we develop the modified RSPT, which helps to circumvent the problem of the

exact cancellation of two terms and show that the overall tendency of degeneracy breaking holds

also for S = 1/2 spins.

Our findings of this section correspond to the results of classical [72, 82] and quantum [6,

7] harmonic spin wave calculations. Qualitatively, we show that order by disorder favours six

m3z2−r2 states.

5.2.1 General formalism

To proceed with calculations for the anisotropic XY pyrochlore (5.7) we shall use an alternative

form of the spin Hamiltonian

Ĥ =
1

12

X

hiji
− (2J⊥ + Ja

⊥) (S
+
i S

−
j + S−

i S
+
j ) + (4J⊥ − Ja

⊥) (e
iγijS+

i S
+
j + e−iγijS−

i S
−
j ). (5.10)

where the phases γij depend on the choice of basis in the xy planes. This form of the spin

Hamiltonian is similar to eq. (5.4) with a minor redefinition of complex factors, we explicitly

extract phases, which greatly simplifies our subsequent expressions. For the above choice of axes

(5.8) we have

γ12 = γ34 = 0 , γ13 = γ24 =
2π

3
, γ14 = γ23 = −2π

3
. (5.11)

The real-space perturbation expansion starts with (i) rewriting the Hamiltonian in the local

frame around an arbitrary ground-state spin configuration and (ii) separating all terms that

depend on the deviation of only one spin. This on-site part is subsequently regarded as a

noninteracting Hamiltonian Ĥ0 with trivially calculated excited states. All other terms describe
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interactions of spin fluctuations on adjacent sites and are treated as a perturbation V̂ . Standard

thermodynamic or quantum perturbation theories are used to calculate the effect of V̂ . The

obtained correction terms generate effective spin-spin interactions beyond the original spin

Hamiltonian and produce the order by disorder effect.

Following the course of derivation of the section 2.1, we start with a ground state, parame-

terised by a value of ϕ (5.9) in the coordinate frame, defined by equations (5.2) and (5.8). First,

we transform to the local basis, such that the new ẑ axis becomes parallel to the spin direction

(5.9). As the Hamiltonian contains only planar spin components, it is convenient to choose the

new local x̂ axis to lie in the respective easy plane. We underline that a new frame does not

cause a complication, related to the bond-dependence of the local coordinate frame, which exists

for the TAFM model. Such a transform is in fact a rotation in a renamed easy ẑ− x̂ plane, so

the ladder components S±
i acquire a phase S± = e±iϕ(Sz ± iSx). Then, in the new coordinate

system the spin Hamiltonian takes the form

Ĥ =
X

hiji

�

hijS
z
i S

z
j −MijS

x
i S

x
j −Kij(S

x
i S

z
j + Sz

i S
x
j )
�

, (5.12)

where hij , Mij , and Kij are bond-dependent constants

hij = −1

6
(2J⊥ + Ja

⊥) +
1

6
(4J⊥ − Ja

⊥) cos(2ϕ+ γij),

Kij =
1

6
(4J⊥ − Ja

⊥) sin(2ϕ+ γij), (5.13)

Mij =
1

6
(2J⊥ + Ja

⊥) +
1

6
(4J⊥ − Ja

⊥) cos(2ϕ+ γij).

They explicitly depend on the angle ϕ, which parameterises the classical ground states and on

the type of the bond via the parameters γij (5.11). Finally, we extract the on-site part and

rewrite (5.12) as Ĥ = Ĥ0 + V̂2 + V̂3 + V̂4, where

Ĥ0 = h
X

i

(S − Sz
i ), h = (2J⊥ + Ja

⊥)S,

V̂2 = −
X

hiji
MijS

x
i S

x
j , V̂3 = −

X

hiji
Kij(S

x
i S

z
j + Sz

i S
x
j ), (5.14)

V̂4 =
X

hiji
hij(S − Sz

i )(S − Sz
j ).

The constant h =
P

j hijS is an amplitude of a local magnetic field, which is the same on

every site for any ground state. In the above expression, we also omitted a constant term

corresponding to the classical energy. In the two following subsections we calculate the relevant

energy corrections generated by thermal and quantum fluctuations.

5.2.2 Thermal order by disorder

First, we consider a model of purely classical spins of the length |Si| = S. At low temperatures,

spins fluctuate about their equilibrium directions by small Sx and Sy corresponding to deviations

within the local easy plane and out of it, respectively. As before the local fluctuations are

governed by Ĥ0 =
h
2S

P

(Sx
i
2 + Sy

i
2).
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The consecutive calculation of corrections, from a cluster expansion of the section 2.1.2, yields

that all processes, which involve clusters with only two links, for example, ΔF (2) (2.14), do not

depend on the parameter ϕ. It is the illustration of the fact that ŷi are the directions of the

sixfold rotation axis. In what follows, we omit all constant corrections, which is indicated by the

sign ≃. The sixth harmonic of ϕ appears in the triangular process (Fig. 2.2):

ΔF (3) =
hV̂ 3

2 i
6T 2

= −TS3

h3

X

△
MijMjkMki. (5.15)

Summation in (5.15) is performed over all triangular plaquettes of a pyrochlore lattice and

i, j, k ∈ △. Substituting Mij and h from (5.13) and (5.14) we obtain

ΔF (3) ≃ −TN

432
· (4J⊥ − Ja

⊥)
3

(2J⊥ + Ja
⊥)

2
cos 6ϕ , (5.16)

where N is the number of sites. The correction ΔF (3) is linear in T reflecting the fact that it is

produced by the harmonic fluctuations. It also has the sixfold symmetry in agreement with the

Z6 symmetry breaking in the m3z2−r2 magnetic structure [70]. The respective term changes sign

when Ja
⊥ passes through 4J⊥, in total agreement with the phase diagram sketched in Fig. 5.1(e)

and with the previous findings [82]. For the ratio of parameters Ja
⊥/J⊥ ∼ 1.5 appropriate for

Er2Ti2O7, thermal fluctuations select ϕ = 0,π/3, ... corresponding to the noncoplanar m3z2−r2

spin configuration.

5.2.3 Quantum order by disorder

We now set T = 0 and use the Rayleigh-Schrödinger perturbation theory to calculate quantum

corrections to the classical ground-state energy. We treat Sα as spin operators obeying the

standard commutation relations. Again, we focus on the effect of V̂2, which for the quantum

case is more conveniently written in terms ladder operators

V̂2 = −1

4

X

hiji
Mij(S

+
i + S−

i )(S
+
j + S−

j ) . (5.17)

It is interesting to note that in comparison with the Heisenberg model the creation/annihilation

operator V̂2a and spin-flip hopping operator V̂2b (2.16) have now the same amplitude and can be

written in terms of a single V̂2 term.

The second order correction ΔE(2) (2.21) does not lift the degeneracy. Selection between

different ground states is determined by the third-order excitation process described by the

diagram

|000i
S−
i S−

j−−−−→ |110i
S+
j S−

k−−−−→ |101i S+
k
S+
i−−−−→ |000i (5.18)

with three sites i, j, k belonging to the same triangular plaquette. The corresponding energy

correction is given by a plaquette sum

ΔE(3a) = − 3S3

16h2

X

△
MijMjkMki ≃ − SN

2304

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ . (5.19)

The quantum correction scales as ΔE(3) = O(JS) and, thus, represents a harmonic spin-wave

contribution. The full harmonic spin-wave calculation is, of course, not restricted to triangular
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plaquettes and includes graphs of all possible lengths [6]. However, for Ja
⊥ � 1 its angular

dependence as well as the corresponding prefactor is very closely reproduced by (5.19), as it is

shown in Ref. [83].

The third-order real-space correction also contains a contribution O(J), which goes beyond

the harmonic spin-wave theory. Its contribution is described by the diagram

|00i
S−
i S−

j−−−−→ |11i
Sz
i S

z
j−−−→ |11i

S+
i S+

j−−−−→ |00i (5.20)

and corresponds to a single-bond process that includes interaction of two spin flips generated by

V̂4. The expression for the ϕ - dependent part is

ΔE(3b) =
S2

16h2

X

hiji
M2

ijhij ≃ N

4608

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ . (5.21)

It exhibits the same functional form as eq. (5.19), but has the opposite sign and, therefore,

partially compensates the energy difference between m3z2−r2 and mx2−y2 states. Still, for S ≥ 1

and Ja
⊥ < 4 the total third-order correction equals to

ΔE(3) ≃ −
�

S − 1

2

�

N

2308

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ (5.22)

and selects the m3z2−r2 states. However, for the case S = 1/2 relevant to Er2Ti2O7, the two

angular-dependent terms cancel each other and one needs to include further corrections or

perform a more careful analysis of the real-space perturbation terms. In particular, we modify

the quantum perturbation theory by a partial resummation of the infinite series of corrections.

We present further details on that in the next subsection, though the main conclusion on the

state selection by quantum fluctuations remains intact. For S = 1/2 the selected states are the

m3z2−r2 states, while the amplitude of the sixfold harmonics (5.19) is reduced by 40% due to

interaction effects.

5.2.4 Quantum perturbation theory for S = 1/2

In the previous subsection we have found that the third-order quantum correction ΔE(3b),

resulting from the interaction of two spin flips, cancels the harmonic spin-wave contribution

ΔE(3a) leaving intact the degeneracy between m3z2−r2 and mx2−y2 states when S = 1/2. To

treat more carefully interaction effects we adopt a modified real-space expansion based on a

partial rearrangement of the perturbation terms in Eq. (5.14). Specifically, V̂4 is now included

into a new unperturbed Hamiltonian

Ĥ′
0 = h

X

i

(S − Sz
i ) +

X

hiji
hij(S − Sz

i )(S − Sz
j ) . (5.23)

In this way the Ising part of spin-flip interaction is treated exactly. Basically, the new expansion

corresponds to resummation of an infinite subset of terms in the original real-space approach. A

similar trick was also applied in Ref. [84] for the Ising expansion at the fractional magnetisation

plateaus.
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The main difference between the two forms of the real-space expansion is in assignment of

excitation energies in (2.18) and (2.20). The lowest-energy excitation, a pair of spin-flips on the

same bond, costs now En − E0 = 2h+ hij . We rewrite it as

En − E0 =
1

6
(2J⊥ + Ja

⊥)η +
1

6
(4J⊥ − Ja

⊥) cos(2ϕ+ γij) , (5.24)

with η = (12S − 1). We will use 1/η as a small parameter to decompose the excitation

energy denominator. In fact, this expansion has the same physical sense, as the whole real

space perturbation decomposition as 1/η ∼ hij/h ∼ 1/z. The rest of the quantum real space

perturbation theory is the same. So we can use the diagrammatic technique with the remaining

interaction terms. In the second and third orders only V̂2 will contribute. Below we calculate

both contributions, keeping the lowest order terms up to O
�

η−3
�

and dropping all unessential

constants.

The second-order energy correction corresponds to single-bond processes and is expressed by

ΔE(2) = −S2

4

X

hiji

M2
ij

2h+ hij
. (5.25)

After some simple but somewhat cumbersome algebra one obtains

ΔE(2) ≃ 1

32

NS2

η3
(4J⊥ − Ja

⊥)
3

(2J⊥ + Ja
⊥)

2
(η − 2) cos 6ϕ . (5.26)

For large S this expression matches exactly with the corresponding term in ΔE(3b) (5.21).

In the third order, there is only a triangular cluster process, which provides the energy shift

ΔE(3) = −S3

4

X

△

X

hjki∈△

MijMkiMkj

(2h+ hij)(2h+ hik)
. (5.27)

The second sum here denotes different possible links with hopping operator S+
j S

−
k + h.c. on a

plaquette. We also calculate it expanding in powers of 1/η as

ΔE(3) ≃ − 1

192

NS2

η3
(4J⊥ − Ja

⊥)
3

(2J⊥ + Ja
⊥)

2

 

η2 + η +
3

4

(4J⊥ − Ja
⊥)

2

(2J⊥ + Ja
⊥)

2

!

cos 6ϕ . (5.28)

The first leading term again matches the angular-dependent part of the previous expression

(5.19).

Comparing now ΔE(2) and ΔE(3), we do see the cancellation of the leading 1/η terms for

S = 1/2. Still the coefficient in front of the cosine is negative:

ΔE = − N

8000

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2

 

1 +
1

16

(4J⊥ − Ja
⊥)

2

(2J⊥ + Ja
⊥)

2

!

cos 6ϕ . (5.29)

Thus, for S = 1/2 the quantum order by disorder selection acts in the same way as for large

spins. The main consequence of spin flip interactions is ∼ 40% reduction of the amplitude of the

cosine harmonics as compared to the noninteracting result (5.19).
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5.3 Order by structural disorder

Building on the previous works about order by structural disorder in frustrated systems [21, 22,

24] and foremost on our results on the triangular antiferromagnet with impurities of chapter

4 we study the effect of lattice defects on the ground state of the XY anisotropic pyrochlore

antiferromagnet. We show that the impact of quenched disorder in the form of weak vacancies

or weak bond disorder on the ground state of the system can be described by an effective

cos 6ϕ anisotropy term with the positive sign. Thus defects favour the opposite configurations

in comparison with the ones, selected by fluctuations (see sec. 5.2). For Er2Ti2O7 this implies

stabilisation of the mx2−y2 spin configuration.

Also, recently Andreanov and McClarty [85] studied spin textures around vacancies in the

same model. By minimising the energy of the system with missing spins they reached similar

conclusions of the mx2−y2 state selection by vacancies in Er2Ti2O7. They also showed, that this

scenario is realized already when a single impurity is placed on a lattice.

Technically impurities in Er2Ti2O7 may arise from the substitution of magnetic Er3+ ion by

a nonmagnetic Y 3+, which has a very similar ionic radius. Similar defects were considered in

Ising pyrochlores Dy2−xYxTi2O7 and Ho2−xYxTi2O7 [86, 87] with spin-ice ground state. Besides,

substitution of nonmagnetic Ti4+ by a magnetic erbium ion may lead to a random bond-like

disorder, like in Yb2+xTi2−xO7 [88].

5.3.1 Nonmagnetic impurities

To study analytically the effect of spin vacancies we use a toy model of weak site disorder [21].

Specifically, we let some fraction nimp of classical spins to be shorter by a small amount ǫ ≪ 1.

These impurities are distributed randomly over the lattice and we assign a parameter pi = 1 to

every impurity spin and pi = 0 otherwise:
P

i pi = Nimp. In the spin Hamiltonian impurities are

included by substitution Si → Si(1− ǫpi) and to leading order in ǫ we have for pairwise spin-spin

interactions Sα
i S

β
j → Sα

i S
β
j [1− ǫ(pi + pj)].

We perform the same decomposition of the spin Hamiltonian as described in sec. 5.2. There are

two main differences with the preceding section: the noninteracting Hamiltonian gets renormalised

in the presence of impurities, and the part of the Hamiltonian, linear in spin deviations V̂1 does

not vanish:

Ĥ0 =
h

2S

X

i

�

Sx
i
2 + Sy

i
2
�

�

1− ǫpi −
Sǫ

h

6
X

j=1

′pjhij

�

; (5.30)

V̂1 = S
X

hiji
Kijǫ (pi + pj) (S

x
i + Sx

j ) , (5.31)

describing the fact that spins that are adjacent to impurities tilt from their equilibrium orientations

in the bulk. Minimisation of the quadratic form Ĥ0 + V̂1 over Sx
i gives

Sx
i =

S2ǫ

h

P6
j=1

′Kijpj

1− ǫpi − Sǫ
h

P6
j=1

′hijpj
, (5.32)

similar to what was obtained for the triangular system (2.32). Substitution of this new minimum

condition into Ĥ0 + V̂1 produces an energy correction in the form an effective biquadractic
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exchange. As before, for the easy-plane pyrochlore this energy correction is independent of the

angle ϕ. According to derivations of section 2.2, the leading third order term ΔE(2) comes from

the substitution of Sx
i into the interaction term V̂2 = −

P

hijiMijS
x
i S

x
j . We restrict ourselves to

the lowest order in impurity strength ǫ and concentration nimp, as it is done in section 2.2. then

the correction takes the form

ΔE(2) = −S4ǫ2

h2

X

hiji

2
X

k=1

′′MijKikKjkp
3
k , (5.33)

where the last summation is over two sites sharing the same tetrahedron with i and j. Finally,

substituting the expressions for bond-dependent parameters Mij and Kij from (5.13) we obtain

ΔE(2) ≃ S2ǫ2Nnimp

144

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ . (5.34)

This total energy correction has the sixfold symmetry, but the opposite sign compared to

Eqs. (5.16) and (5.19). Hence, for Ja
⊥ < 4J⊥ the on-site disorder favours magnetic configurations

(5.9) with ϕ = π(1 + 2n)/6. These correspond to six coplanar mx2−y2 states.

5.3.2 Bond disorder

Another type of randomness in magnetic solids is bond disorder. In pyrochlore materials it may

appear as a result of doping on the nonmagnetic B sites. We model this type of disorder by

small random variation of J⊥ and Ja
⊥:

J⊥ −→ J ij
⊥ = J⊥(1 + δij) , Ja

⊥ −→ Ja
⊥
ij = Ja

⊥(1 + δij) . (5.35)

The fluctuating part δij is assumed to be uncorrelated between adjacent bonds and relatively

small, hδ2iji = D ≪ 1, such that it does not change the sign of the exchange constants.

The subsequent calculation is completely similar to the previous subsection up to a substitution

ǫ(pi + pj) → δij . The state-dependent energy correction has the form

ΔE(3) = −S4

h2

X

hiji
MijK

2
ijδ

2
ij ≃

S2DN

288

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ. (5.36)

Again, we obtain that structural disorder has the same tendency of lifting the degeneracy in

favour of mx2−y2 states independent of the form of quenched randomness. Both weak impurities

and bond disorder thus compete with the conventional order by disorder mechanism and select

the contrary spin configurations.

5.4 Numerical results

In this section the analytic results obtained for weak disorder are corroborated by a numerical

investigation of genuine vacancies in the classical anisotropic XY pyrochlore antiferromagnet.

For that we return back to the original spin Hamiltonian

Ĥ =
X

hiji
J⊥S

⊥
i · S⊥

j + Ja
⊥(S

⊥
i · r̂ij)(S⊥

j · r̂ij) (5.37)
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and set J⊥ = 1, in other words, we measure T and Ja
⊥ in the units of J⊥. In three dimensions

vacancies are on average situated close to each other already for small doping concentrations

making it difficult to observe experimentally a single impurity behaviour. Therefore, we consider

outright a finite density of impurities. Overall, two types of numerical data are considered:

determination of the ground-state magnetic structure at zero temperature and Monte Carlo sim-

ulations of finite-temperature properties. In both cases numerical computations were performed

on periodic clusters of N = 4L3 classical spins. Random vacancies were introduced by setting

|Si| = 0 for a fixed number of sites Nimp = nimpN . For all computations we employed about 100

independent impurity configurations used to average numerical data and to estimate the error

bars.

For Ja
⊥ > 0, magnetic states of the XY pyrochlore antiferromagnet are characterised by two

order parameters. The first one, m discriminates ordering within the E-manifold from other

irreducible representations of the tetrahedral group

m =
q

m2
x +m2

y, mx =
1

N

X

i

Si · x̂i , my =
1

N

X

i

Si · ŷi. (5.38)

Here, two components mx and my are defined using the above choice of axes in the local xy

planes, see eq. (5.8). The clock order parameter m6 = m cos 6ϕ distinguishes between the

different E-states [70] and is in fact the main interest of this study.

m6 =
1

m5
Re{(mx + imy)

6}. (5.39)

m6 has a positive value for six noncoplanar states m3z2−r2 and becomes negative for coplanar

spin configurations mx2−y2 .

5.4.1 Ground state minimisation

We begin with minimisation of the classical energy (5.37) for a fixed concentration of static

vacancies. The method consists of solving iteratively the classical energy minimum condition

for each spin Si = hi/|hi| and therefore moving down the energy landscape on each step. More

details on the method can be found in section 3.3. For each value of the anisotropy parameter

Ja
⊥ > 0 we performed numerical minimisation for several cluster-sizes up to L = 20. For each

measurement we used up to 5 · 103 random initial conditions with the number increasing for

larger clusters, and Nrepl = 96 (Nrepl = 192 for nimp = 0.5%) different impurity replicas.

Figure 5.2 shows our results for the clock order parameter m6 in the XY pyrochlore antifer-

romagnet with nimp = 5% of nonmagnetic impurities. Negative values of m6 confirm appearance

of the coplanar mx2−y2 state induced by impurities for Ja
⊥ < 4. The absolute value of the order

parameter grows with increasing cluster size, leaving no doubts about the existence of the true

long-range order. Note that a nonzero value of 1− |m6| for L → ∞ signifies small spin canting

from an ideal mx2−y2 magnetic structure, which appears due to local lifting of frustration and is,

finally, responsible for the selection of the coplanar state.

For large Ja
⊥ > 4, which is not relevant for Er2Ti2O7, but may be realised in other anisotropic

pyrochlores, random impurities stabilise the noncoplanarm3z2−r2 magnetic structure characterised

by positive m6 > 0. The value Ja
⊥ = 4 corresponds to the isotropic XY spin model in the site-

dependent local frame. Consequently, two states, m3z2−r2 and mx2−y2 , remain exactly degenerate
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Figure 5.2: Zero-temperature energy minimisation results for the clock order parameter m6

obtained for an XY pyrochlore antiferromagnet with nimp = 5% of nonmagnetic impurities for
several cluster sizes L and different values of the anisotropic exchange Ja

⊥. Positive and negative
values of m6 correspond to m3z2−r2 and mx2−y2 magnetic states, respectively.

for this value of Ja
⊥: neither thermal/quantum fluctuations [82], nor impurities (Sec. 5.3) can lift

this degeneracy determined by an emergent SO(2) rotational symmetry of the spin Hamiltonian.

For Ja
⊥ close to 4, convergence of the iterative procedure becomes very slow, see the L = 20

point for Ja
⊥ = 2.5 in Fig. 5.2. One needs to employ a significantly larger number of initial

configurations to approach the true minimum state. This may indicate the development of

some type of glassiness in the system. The similar effect is also present for very small Ja
⊥ � 0.1

because of an additional degeneracy appearing for Ja
⊥ = 0. Finally, we also studied different

impurity concentrations in the range 0.5% < nimp < 7% and obtained the ground state selection

independent of nimp.

5.4.2 Monte Carlo simulations

Monte Carlo simulations of the classical XY pyrochlore antiferromagnet were performed using

the Metropolis algorithm alternating five Metropolis steps with five microcanonical overrelaxation

sweeps before every measurement. In total, 2 ·105 measurements were taken at every temperature

and averaging was done over 96 impurity configurations. Refer to section 3.1.5 for more details

of the algorithm. We simulated the model (5.37) in the range of the anisotropy parameter

0.3 ≤ Ja
⊥ ≤ 2 and impurity concentration 0 < nimp < 10%.

The temperature dependence of the two order parameters m and m6, defined in (5.38) and

(5.39), for Ja
⊥ = 0.5 and nimp = 5% is shown in Fig. 5.3. The transition temperature Tc = 0.415

was determined from intersection of Binder cumulants UL = hm4i/hm2i2 (see inset of Fig. 5.3).

The obtained TC = 0.415(5) is somewhat reduced compared to the transition into the pure model

T 0
c = 0.4454 for the same value of Ja

⊥, which is a usual behaviour of diluted magnetic systems.

The critical behaviour of the model (5.37) belongs to the 3D XY universality class [70] with

the known value of the correlation length exponent ν ≈ 0.672 [89]. We can now use the Harris

criterion, [60] which states that the critical behaviour for phase transitions with dν > 2 remains

unchanged in the presence of disorder. Since ν is slightly larger than 2/3, the critical point in the
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XY pyrochlore antiferromagnet remains unaffected upon dilution with nonmagnetic impurities.

Observation and confirmation of this fact is an interesting challenge, which is left out of the

scope of this work as we did not perform a precise enough FSS analysis

Nevertheless, the diluted antiferromagnet exhibits a peculiar temperature dependence of

the clock order parameter m6, see the right panel of Fig. 5.3. Just below Tc, m6 is positive,

as expected for the m3z2−r2 state, and grows at fixed T with the system size L. Such ‘inverse’

finite-size scaling is attributed to the dangerously irrelevant role of the sixfold anisotropy in the

XY transition in three dimensions and is explained by the presence of an additional length-scale

ξ6 ≫ ξ [70]. Upon further cooling, the clock order parameter shows a sharp jump to negative

values at T1 ≈ 0.12. This jump signifies a phase transition into the mx2−y2 state stabilised by

impurities. Basically, the temperature dependence of m6 is determined by competition of two

terms: the impurity correction ΔE2 given by eq. (5.34) and the free-energy correction ΔF (3)

generated by thermal fluctuations (5.16). They have different signs and at T → 0 the impurity

contribution dominates selecting the mx2−y2 state. However, thermal fluctuations grow with

temperature and above T1 the effective anisotropy ΔF (3) wins over ΔE2 leading to the m3z2−r2

state right below Tc.

0.4 0.6

T

0.75

1

m

0 0.2 0.4 0.6

T

-1

-0.5

0

0.5

1

m
6

L = 8

L = 10

L = 12

L = 16

0.4 0.45

T

0.6

0.8

U
B

Figure 5.3: Finite size analysis of the Monte Carlo results for the antiferromagnetic m (left panel)
and the clock m6 (right panel) order parameters for the XY pyrochlore antiferromagnet (5.37)
with Ja

⊥ = 0.5 and 5% of vacancies. The dotted vertical line indicates the transition temperature.
Dashed lines show the behaviour of m and m6 for a pure system with L = 16. The inset shows
the crossing of Binder cumulants, which is used to define TC .

The phase transition between m3z2−r2 and mx2−y2 states is expected to be of the first order

on symmetry grounds. (Another possibility is two closely located second-order transitions with

an intermediate low-symmetry phase.) We collected histograms for the clock order parameter

m6 for a few impurity concentrations, which confirm the first-order nature of the transition. On

the other hand, no anomaly is seen in the specific heat or magnetic susceptibility even for the

largest clusters. Thermodynamic signatures of the first-order transition appear to be blurred by

the disorder. Such behaviour is similar to what was observed in the previous chapter, where a

triangular antiferromagnet was studied.

The observed sequence of ordered phases remains stable under variations of nimp and Ja
⊥.

Figure 5.4 shows dependence on vacancy concentration for Ja
⊥ = 0.3. We include only Monte Carlo

results for the largest clusters with L = 16. The first-order transition temperature progressively

grows between T1 = 0.025 for nimp = 1% to T1 = 0.125 for nimp = 10%. The order parameter
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Figure 5.4: Temperature dependence of the magnetic order parameters for different impurity
concentrations. Monte Carlo results are for Ja

⊥ = 0.3 and L = 16.

jump is very sharp for the lowest impurity concentration, but becomes significantly smeared

for nimp = 10%. We attribute this effect to a substantial finite-size scaling at large impurity

concentrations. Monte Carlo simulations of significantly bigger clusters are required for a precise

determination of the transition point between the two E states for large density of vacancies.

Finally, dependence on Ja
⊥ is illustrated in Fig. 5.5. As expected, the mx2−y2 state is present

at low temperatures for all studied values of the anisotropic exchange, including Ja
⊥ = 1.5, which

is very close to the experimental estimate of Er2Ti2O7. Somewhat surprisingly, the thermal

selection of the m3z2−r2 state in the vicinity of Tc is also remarkably stable under variations

of nimp or Ja
⊥. This can be considered as a consequence of the Harris criterion, which asserts

irrelevance of quenched disorder for transitions in the 3D XY universality class.
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Figure 5.5: Temperature dependence of the magnetic order parameters for fixed impurity
concentration nimp = 5% and different values of Ja

⊥. Monte Carlo results are for L = 16 clusters.

5.5 Structural vs quantum disorder and observation perspectives

The Monte Carlo results of the previous section give a general idea about competition between

impurities and thermal fluctuations in the ground-state selection. Beyond the classical model,

similar competition exists also for the structural disorder and quantum effects, even at T = 0.

There must be a critical impurity concentration above which the quantum selection gives way

to the spin configurations stabilised by vacancies. Since the energy gain produced by impurity

substitution is a purely classical effect, the critical impurity concentration scales with the spin



66 Chapter 5. Order by structural disorder in the XY pyrochlore antiferromagnet

length as nc ∼ 1/S. This raises a legitimate question about observability of the structural order

from disorder effect in spin-1/2 frustrated magnets, in particular, in diluted Er2Ti2O7.

Even an approximate calculation of nc is a fairly difficult theoretical problem. One can

calculate the harmonic energy correction from quantum fluctuations as well as relaxation energy

gain due to impurities. However, direct comparison of these quantities is complicated by the fact

that competing m3z2−r2 and mx2−y2 configurations cease to be the classical ground states in the

presence of impurities and, hence have ill-defined harmonic excitation spectra.

Here, we circumvent the difficulty of treating nonlinear quantum effects for an impurity-

induced spin texture in Er2Ti2O7, by assuming that concentration of vacancies is low. Then,

the quantum energy correction can be approximated by that for the pure S = 1/2 pyrochlore

antiferromagnet (5.19), whereas the classical energy gain from impurities is estimated from eq.

(5.34) by substituting ǫ = 1. In this way we obtain a rather large but not excessive value of the

critical impurity concentration nc ≈ 14% being only weakly dependent on the exchange constants

J⊥ and Ja
⊥.

Instead of using the harmonic results, we can regard further degeneracy breaking corrections,

where renormalisation by the anharmonic processes is taken into account. For quantum selection

it implies considering a correction (5.21). Or a more accurate result (5.29) with a 40% reduced

amplitude of the sixfold harmonics due to renormalisation by interaction effects. For the structural

disorder correction in the limit ǫ → 1 we need to calculate the correction of the kind (2.37).

It is caused by the reduction of the strength of the local field and is of the same order in 1/z

expansion. Following the path of section 2.2.1 we obtain

ΔE(3) ≃ −S2ǫ3Nnimp

288

(4J⊥ − Ja
⊥)

3

(2J⊥ + Ja
⊥)

2
cos 6ϕ . (5.40)

It also renormalises the harmonic result, but not the overall selection sign. Comparing the

prefactors of ΔEQ from (5.29) and ΔE(2) +ΔE(3), we obtain the similar nc ≈ 15%.

Undoubtedly, the above estimate is rather crude and there are good chances that the critical

impurity concentration for Er2Ti2O7 is smaller than the estimates above. We have seen that

inclusion of the higher order corrections can cause significant renormalisation of the strength of

degeneracy breaking terms. Moreover, the approximation adopted for derivation of (5.34) treats

only tilting of nearest-neighbour spins around a vacancy. Inclusion of full-range spin relaxation

in an impurity-induced magnetic texture should further increase the corresponding energy gain

and, hence reduce the critical value of nimp. Nevertheless, Niven et al. [90] found that long range

order in diluted Er2Ti2(1−x)Y2xO7 persists for x � 18%. Therefore, we conclude that even for

rather conservative estimate nc = 15% the experimental observation of impurity-induced mx2−y2

phase in Er2Ti2O7 is very likely.



Chapter 6

Pyrochlore in external magnetic field

Most of the experimental studies, performed on Er2Ti2O7 are made under an applied magnetic

field. At the same time, an extensive theoretical description of this easy-plane pyrochlore in a

magnetic field has been lacking so far. One of the reasons for it may be the relative simplicity

of the observed H − T phase diagrams [69, 79, 91, 92]: no phase transitions inside the ordered

phase has yet been detected. The only exception may be the magnetisation curves of Petrenko

et al. [92], which show extra features in magnetic susceptibility at very low field for H k [110]

and [001] directions.

In this study we present a theory of the easy-plane pyrochlore antiferromagnet in an external

magnetic field. In particular, we investigate the evolution of the spin structure inside the

antiferromagnetically ordered phase. Basing on the symmetry analysis and on low-H perturbative

calculations, we predict that the magnetic field lifts the emergent U(1) symmetry of the ground

state of the model. Remarkably, its effect varies depending on the direction of H . We predict the

presence of the nontrivial phases well inside the long-range ordered state when H k h001i and
H k h111i. On the other hand, field evolution of the antiferromagnetic structure in the H k h110i
case is continuous and does not undergo a phase transition.

These findings can be applied to real Er2Ti2O7 compound: the benchmark of our theory

will be the detection of the phase transition when H k [001] and its absence in the other case

H k [110]. Value of the critical field will allow to quantify the strength of quantum order by

disorder at zero field. So far, the predicted positions of the paramagnet-antiferromagnet phase

boundaries for three field direction, obtained with our Monte Carlo simulations at T → 0, are is

in good agreement with the experimental results.

The organisation of the chapter is the following: first, we perform a symmetry analysis and

anticipate the general form of the terms, responsible for selecting a ground state of Er2Ti2O7 in

the presence of the magnetic field. Then in section 6.2 treating the Zeeman term as perturbation

and minimising the energy of the system, we obtain the analytic expression for these degeneracy

lifting terms in the limit of low magnetic field. Section 6.3 contains the results of our Monte Carlo

simulations of the system. In particular, we present the H − T phase diagrams of the classical

model, which agree well with the analytical predictions of the symmetry analysis. In the next

section 6.4 we consider quantum corrections to the theory. They are treated within the framework

real space perturbation theory, developed in the previous chapter. We also make predictions
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for the phase transition location in the real system. Finally, our findings and predictions are

summarised in section 6.5.

6.1 Landau symmetry analysis

In this section we obtain the general form of the lowest order anisotropy terms in the free

energy that are allowed by symmetry. When the magnetic field is absent, these terms have the

cos 6ϕ form, which is in total agreement with effective anisotropies, generated by fluctuations

or structural disorder, as was presented in the previous chapter. The presence of the magnetic

field gives way to lower harmonics of ϕ. The sign and the exact form of the term will depend

on the direction of H. Motivated by the results of our numerical simulations, which showed an

additional phase transition for the H k h111i case, we go further and obtain the form of the

subleading anisotropy term.

The minimal model that describes well the low temperature properties of Er2Ti2O7 was

introduced in the previous chapter. In the presence of an external field it has the form

Ĥ =
X

hiji
J⊥S

⊥
i · S⊥

j + Ja
⊥(S

⊥
i · r̂ij)(S⊥

j · r̂ij)−
X

i

gαβH
α
i S

β
i . (6.1)

When H = 0 the magnetic structure of the ground state transforms under E or T2 irreducible

representation (irrep) depending on the sign of of anisotropic exchange Ja
⊥. As in the previous

chapter we are interested in the Ja
⊥ > 0 case, for which on the mean-field level the continuous

manifold of states has the same lowest energy EMF = −J⊥ − 1/2Ja
⊥. In the coordinate frame,

defined by the (5.8) these states can be parameterised by a single variable ϕ

Si = S (x̂i cosϕ+ ŷi sinϕ) . (6.2)

Beyond the mean-field approximation this emergent U(1) symmetry is lifted, for example, via

the order by disorder process. Application of external field can also select certain states from the

degenerate manifold (6.2). Below we present the symmetry analysis, which allows to anticipate

the general form of the free energy corrections with the nontrivial dependence on ϕ.

We start the analysis with the list of possible symmetry operations that leave the pyrochlore

lattice invariant. They are presented in the character table of the tetrahedral point group Td

(Fig. 6.1 (a)). We also show the examples of rotation axes C3, C2, S4 and a mirror plane σd in

figure 6.1 (b). The ground state (6.2) belongs to the two component E irrep with basis vectors

mx and my with the following transformation properties:

mx =
X

i

Si · x̂i, mx ∼ z2 − 1

2
x2 − 1

2
y2,

my =
X

i

Si · ŷi, my ∼
√
3

2
(x2 − y2). (6.3)

To construct nontrivial invariants it is practical to consider structures of the kind

mx ± imy ∼ e±2πi/3x2 + e∓
2πi
3 y2 + z2. (6.4)
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Td E 8C3 3C2 6S4 6σd
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 1 -1
T2 3 0 -1 -1 1

(a) Character table of Td.

(b) Visualisation of the symmetry el-
ements of Td. Twofold and improper
fourfold rotation axis coincide. The
mirror plane σ{110} is shown in grey.

Figure 6.1: Symmetry of the tetrahedral point group Td

They are directly related to the variable ϕ, which parameterises different ground states:

mx ± imy = me±iϕ. Also, they have simple transformation properties:

C
[111]
3 (mx ± imy) = e∓2πi/3(mx ± imy),

C
[001]
2 (mx ± imy) = mx ± imy,

σ
{110}
d (mx ± imy) = mx ∓ imy, (6.5)

S
[001]
4 (mx ± imy) = mx ∓ imy,

T (mx ± imy) = −(mx ± imy).

The last equality describes transformation properties under time-reversal operation. Eqs. (6.5)

lead to a set of restrictions on the invariant combination, constructed from mx ± imy: i) the

power k of (mx ± imy)
k should be a multiple of three and even; ii) the invariant has to be an

even function of mx,y and real. All these conditions are satisfied for the term

ΔF = −AObD
6

�

(mx + imy)
6 + (mx − imy)

6
�

= −AObD
6 m6 cos 6ϕ. (6.6)

It is exactly the sixfold anisotropy term that represented fluctuation selection in the previous

chapter

Introduction of the mixing of m with the magnetic field allows to construct additional invari-

ants. H transforms under a three-component T1 representation of Td, here are its transformation

properties under the symmetry operations

C
[111]
3 (Hx, Hy, Hz) = (Hy, Hz, Hx),

C
[001]
2 (Hx, Hy, Hz) = (−Hx,−Hy, Hz),

σ
{110}
d (Hx, Hy, Hz) = (Hy, Hx, Hz), (6.7)

S
[001]
4 (Hx, Hy, Hz) = (Hy,−Hx,−Hz),

T (Hx, Hy, Hz) = −(Hx, Hy, Hz).
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In antiferromagnets linear in H invariants are absent, therefore first, we consider the sym-

metrised direct product

{T1 ⊗ T1} = A1 + E + T1. (6.8)

The scalar component - is of course the magnitude of magnetic field H2 ∼ A1, which is invariant

under all symmetry operations. Therefore, the simplest possible term that breaks the ground

state degeneracy can be constructed as

ΔF = A6H
2m6 cos 6ϕ. (6.9)

However, it is not the only invariant quadratic in H. Let’s consider the E component of eq.

(6.8) with the basis

hx = H2
z − 1

2
H2

x − 1

2
H2

y ; hy =

√
3

2

�

H2
x −H2

y

�

. (6.10)

One can make a scalar out of the direct product of two or more E irreps as {E⊗E} = A1+A2+E.

This scalar will be the desired invariant, if we take

ΔF = A2

�

(mx + imy)
2(hx + ihy) + (mx − imy)

2(hx − ihy)
�

. (6.11)

Substituting expressions (6.10) we get

ΔF = A2m
2

"

�

H2
z − 1

2
H2

x − 1

2
H2

y

�

cos 2ϕ−
√
3

2

�

H2
x −H2

y

�

sin 2ϕ

#

. (6.12)

This term is only quadratic in the order parameter m, and usually prevails over (6.9). Different

directions of the magnetic field, introduced into (6.12) will produce various two-minima selection

with the angles ϕ and ϕ + π. The only exception would be the field along the trigonal axis

H k h111i. In this case both terms in (6.12) vanish. It happens because this direction of magnetic

field is orthogonal to the components hx and hy.

The interplay of leading in H degeneracy breaking terms (6.9) and (6.12) define ordered

structure for any field direction. However, our numerical simulations, which will be presented

further in the chapter, do not support the scenario of ordering by only a sixfold term when

H k h111i. The high-field ordered state does not correspond to any of selection terms (6.9) or

(6.12). It is the reason why we go on in our analysis and obtain the following cubic in H correction

to the free energy. The decomposition of H3 over irreducible representations is governed by

{{T1 ⊗ T1}⊗ T1} = A1 + E + 3T1. (6.13)

As we have seen before the E component is absent in the H k h111i case. Mixing of T1 with E

from the order parameter can not produce a scalar invariant combination either. Instead, the

HxHyHz ∼ A1 combination can be coupled to a scalar, generated from the corresponding power

of the order parameter. In the presence of H3 term the constraint of T-invariance in (6.5) now

demands for the odd power of m, so the cubic term is allowed

ΔF = A3HxHyHz

�

(mx + imy)
3 + (mx − imy)

3
�

. (6.14)
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It is interesting to note that cubic contribution vanishes for the other two directions of magnetic

field H k h001i and H k h110i. When it is parallel to the h111i axis, it reduces to

ΔF = A3H
3m3 cos 3ϕ. (6.15)

Equations (6.9), (6.12) and (6.15) lie at the heart of our results of this chapter. In the further

subsections we will show how they interact with the order by disorder selection (6.6) and establish

the H − T phase diagrams of easy-plane pyrochlore.

Of course, symmetry analysis cannot predict the sign of the terms, which will be realised

in the system, both are allowed by symmetry. Above in equations (6.9), (6.12) and (6.15) we

chose an overall sign such that the selected states correspond to our numerical results for positive

amplitudes A6, A2 and A3. An overall minus sign is introduced in the order by disorder term

(6.6) also to consider AObD
6 > 0.

6.1.1 H k h001i

The selection is especially simple when H is directed along the symmetry axes of the crystal. First,

we consider the magnetic field directed along one of the main cubic axes Hx = Hy = 0;Hz = H.

Then (6.12) takes the form

ΔF [001] = A2m
2H2 cos 2ϕ (6.16)

and favours states with ϕ = π/2, 3π/2. At T = 0 these mx2−y2-like configurations are the ground

states for any 0 < H < HS . At finite temperatures the situation is more complex because two

competing degeneracy lifting terms (6.16) and (6.9) are present. At not very large T and H we

can take m = 1 and explicitly extract linear temperature dependence in the prefactor of the

order by disorder term

F = A2H
2m2 cos 2ϕ−AObD

6 Tm6 cos 6ϕ. (6.17)

Simple minimisation of this equation then gives a set of minima

H > HC : ϕ =
π

2
+ πk;

H < HC : ϕ = ±1

2
arccos

 

1

2

s

1 +
A2H2

3AObD
6 T

!

+ πk; (6.18)

ϕ = πk (local minima).

At the critical field HC = 3

q

AObD
6 T
A2

a second order phase transition occurs: each of the minima

is split into two. The evolution of the lowest energy states with magnetic field at constant T is

schematically presented in figure 6.2 (a).

The field-selection term is absent at H = 0, but for H → HS prevails over order by disorder

independently of T . Therefore, the ordered state undergoes a phase transition at any temperature,

we show a sketch of the phase diagram in figure 6.2 (b). The expression for HC , however, is

valid only when both H and T are small. At higher T the behaviour of the critical field is more

complex, we expect it to be nonmonotonic. Increase as H ∝
√
T at low temperatures due to the

onset of thermal order by disorder should be followed by the eventual drop to HC(T = TN ) = 0.

This drop at higher T should occur due to the decrease with temperature of m. Close to TN the
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Figure 6.2: H k h001i (a) Field evolution of the antiferromagnetic structure in the presence of
the zero-field anisotropy. Circles represent the manifold of degenerate ground states (6.2). Full
(open) markers on them denote global (local) minima of the function (6.17). (b) Qualitative
sketch of the phase diagram of the system in magnetic field. The red line denotes the transition
from the paramagnetic to the antiferromagnetic phase with Q = 0. The black line illustrates the
new transition to the m3z2−r2-like phase stabilized in the shaded region.

order parameter of the E irrep has a well known critical behaviour m ∝ (T − TN )β . This results

in HC(T ) ∝ (T −TN )2β at T → TN . It would be interesting to observe the nonmonotonic HC(T )

experimentally.

6.1.2 H k h110i

We pass on to the case of the magnetic field along the diagonal of the cubic face, we substitute

H = (H,H, 0)/
√
2 into (6.12) and obtain

ΔF [110] = −A2

2
m2H2 cos 2ϕ. (6.19)

Therefore, the magnetic field along the [110] axis stabilises a pair of states with ϕ = 0,π. These

are two of the six domains that belong to m3z2−r2 state, which is selected by thermal fluctuations.

The minimisation analysis is unnecessary in this case because both terms favour the same

states. So we conclude that at the H − T phase diagram will have a single phase at all H and T ,

it is sketched in figure 6.3 (b). Upon decreasing H a two-domain state with ϕ = 0,π evolves

continuously into a state with ϕ = 2πk/3. At H = 3

q

2AObD
6 T
A2

four local minima of free energy

appear and gradually become deeper. However, they become true ground states only when

H = 0. This evolution is presented in Fig. 6.3 (a).
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Figure 6.3: H k h110i (a) Field evolution of the lowest energy states of the system in the presence
of the zero-field anisotropy. (b) Sketch of the H −T phase diagram with a single PM-AFM phase
transition.

6.1.3 H k h111i

In this case the degeneracy lifting by the magnetic field is governed by two terms (6.9) and (6.15).

Together with the correction from fluctuations (6.6) they give

F = A3H
3m3 cos 3ϕ+A6H

2m6 cos 6ϕ−AObD
6 Tm6 cos 6ϕ. (6.20)

Now the selection scheme is more complex and is governed by the ratio

ζ =
4m3(A6H

2 −AObD
6 T )

A3H3
. (6.21)

The parameter ζ depends on all selection strengths and at each T andH determines a configuration

with the lowest free energy:

ζ > 1 : ϕ = ±1

3
arccos

�

−ζ−1
�

+
2πk

3
;

−1 < ζ < 1 : ϕ =
π

3
+

2πk

3
; (6.22)

ζ < −1 : ϕ =
π

3
+

2πk

3
;

ϕ =
2πk

3
(local minima).

To illustrate these equations we consider several limiting cases.

1) When H = 0, lifting of the degeneracy happens only due to the order by disorder process,

which selects six m3z2−r2 states. It corresponds to ζ = −∞, where three local minima become

global ones.

2) At the opposite limit of high magnetic field H → HS the cubic term grows faster than quadratic

one and may eventually become dominant. Then a configuration with three m3z2−r2-like states

is stabilised. It corresponds to |ζ| becoming small due to a rapidly growing denominator.

3) Finally, the second term in (6.20) is dominant when both H and T are small, it selects six

mx2−y2-like configurations. This case is equivalent to ζ being large and positive.

4) A limit of vanishing T = 0 when the selection by fluctuations is absent is also important. It
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allows one to easily calculate the critical field HC = 4m3A6/A3.

Figure 6.4 demonstrates the evolution of minima and a possible phase diagram of the system.

We emphasise that differently with the previous schemes the transformation of states is shown as

a function of ζ. Qualitatively different paths of evolution with H are shown by three broken

lines. Like in the H k h001i case the new phase transition is of the Ising universality class as it is

associated with splitting/merging of pairs of states.

Figure 6.4: H k h111i (a) Magnetic structure of the system as a function of the dimensionless
parameter ζ(H,T ), defined in eq. (6.21). Three qualitatively different magnetisation processes
are shown by three discontinuous lines below the scheme and on the phase diagram (the third
line lies on top of the T = 0 axis.) (b) Sketch of the classical H − T phase diagram with its main
feature -the new mx2−y2-like phase, located al low T and H.

6.1.4 Ja
⊥ > 4 case

In the above analysis of phase transitions we considered only the case of Ja
⊥ < 4, and hence

of positive AObD
6 in a prefactor of the fluctuation selection terms (6.6). This case is usually

more relevant, due to the direct application to Er2Ti2O7 with is modelled by Ja
⊥ = 1.5. In this

subsection for the sake of completeness, we consider the opposite situation of Ja
⊥ > 4 and briefly

discuss the possible phases and transitions in this sector of parameter range.

First, we may assume that the sign of the field selection terms (6.9), (6.12) and (6.15) does

not change as we vary the parameters of the Hamiltonian. Indeed, lifting of the ground state

degeneracy by the external field should not be affected by internal couplings of the system. This

assumption will be confirmed in the following section, where we derive selection terms in the

limit of small H . On the contrary the sign of order by disorder correction (6.6) is reversed, as we

saw in chapter 5.2.

Then the pictures for H k h001i and H k h110i cases at A < 0 are reversed. In the former

case we predict no phase transition, but when the field is applied along the h110i direction, on
the contrary, the system evolves from the zero field mx2−y2 state to the configurations with

ϕ = 0,π via an Ising phase transition at all T > 0.

ForH k h111i two last terms in (6.20) favour the samemx2−y2 state. Therefore, the situation is

significantly simplified: for any T ≥ 0 there is a competition between the mx2−y2 phase, stabilised

at low magnetic field and the m3z2−r2-like configuration with three minima at ϕ = π/3 + 2πk/3.
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This suggests a field evolution via a single Ising phase transition at all temperatures, and the

phase diagram similar to the one, presented on Fig. 6.2 (b).

6.2 Low-H perturbative calculations for the field induced

anisotropies

In this section analytic expressions for field selection anisotropy will be obtained in the limit of

small H. We treat the Zeeman term in the Hamiltonian as a linear perturbation to the ground

state and minimise the energy with respect to it. The obtained energy corrections will be treated

as field-induced anisotropic terms in the Hamiltonian. The expressions for the degeneracy lifting

terms for three different directions of magnetic field will constitute the main result of this section.

Also, in subsection 6.2.5 we show that these expressions are in perfect quantitative agreement

with the numerical energy minimisation results.

We follow the steps of the real space perturbation theory, developed for pyrochlores in the

previous chapter and consider the Hamiltonian, written in the form (5.12)

Ĥ =
X

hiji

�

hijS
z
i S

z
j −MijS

x
i S

x
j −Kij(S

x
i S

z
j + Sz

i S
x
j )
�

−
X

i

gαβH
α
i S

β
i . (6.23)

This Hamiltonian is obtained as a result of coordinate transform from the usual frame, defined

by (5.2) and (5.8) to the local frame, where ẑi denotes a quantisation axis for a particular ground

state, labelled by ϕ. In equation (6.23) hij , Mij , and Kij are coupling constants, which explicitly

depend on the angle ϕ:

hij = −1

6
(2J⊥ + Ja

⊥) +
1

6
(4J⊥ − Ja

⊥) cos(2ϕ+ γij),

Kij =
1

6
(4J⊥ − Ja

⊥) sin(2ϕ+ γij), (6.24)

Mij =
1

6
(2J⊥ + Ja

⊥) +
1

6
(4J⊥ − Ja

⊥) cos(2ϕ+ γij),

h =

6
X

i=1

hij = (2J⊥ + Ja
⊥)S,

and on the bond-dependent phase angles

γ12 = γ34 = 0 , γ13 = γ24 =
2π

3
, γ14 = γ23 = −2π

3
. (6.25)

We consider the g tensor in the last term of (6.23) to be diagonal in the local basis with

components g = {g⊥, gy, g⊥}. We denote by ξi the angle that the in-plane component of magnetic

field constitutes with the original x̂ axis (5.8). Then in the transformed frame the Zeeman term

is written as

ĤZ = −
X

i

h

gyHy
i S

y
i + g⊥H⊥

i (Sx
i sin(ϕ− ξi) + Sz

i cos(ϕ− ξi))
i

. (6.26)
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Below we provide explicit values of in-plane field component H⊥ =
√
H2 −Hy2 and polar angle

ξ for three distinct directions of magnetic field in the specific coordinate frame, defined by (5.8):

H k [001] H k [110] H k [111] (6.27)

H⊥
1 =

r

2

3
H; ξ1 = π; H⊥

1 =
1√
3
H; ξ1 = 0; H⊥

1 = 0;

H⊥
2 =

r

2

3
H; ξ2 = π; H⊥

2 =
1√
3
H; ξ2 = π; H⊥

2 =

√
8

3
H; ξ2 = π;

H⊥
3 =

r

2

3
H; ξ3 = 0; H⊥

3 = H; ξ3 = −π/2; H⊥
3 =

√
8

3
H; ξ3 = −π/3;

H⊥
4 =

r

2

3
H; ξ4 = 0; H⊥

4 = H; ξ4 = π/2; H⊥
4 =

√
8

3
H; ξ4 = π/3.

6.2.1 Minimisation procedure

We start from the ground state, parameterised by a fixed value of angle ϕ and introduce a weak

magnetic field H ≪ J⊥; Ja
⊥. This field will generate a distortion of the system through nonzero

but small Sx
i and Sy

i . As before, we can expand Sz
i ≃ S − Sx2

2S − Sy2

2S . Substituting this into

equations (6.23) and (6.26) and keeping only quadratic in fluctuations terms, we get:

Ĥ =
h

2S

X

i

�

Sx
i
2 + Sy

i
2
�

−
X

hiji
MijS

x
i S

x
j − gy

X

i

Hy
i S

y
i − g⊥

X

i

H⊥
i Sx

i sin(ϕ− ξi). (6.28)

In what follows, we find a new minimum of energy in the limit of small distortions and obtain

the correction to ground state energy for each value of parameter ϕ.

First, we deal with the out of plane part of the Hamiltonian. It is diagonal in spins, therefore

straightforward minimisation gives

ΔEy
Z = −S(gy)2

2h

X

i

Hy
i
2 = −2

3

(gyH)2N

(2J⊥ + Ja
⊥)

. (6.29)

This correction is constant for all ground states and all directions of external magnetic field.

Minimisation over the in-plane fluctuation part is more involved due to the presence of

interaction terms. The ordered ground state (6.2) is a Q = 0 spin structure. Then the whole

lattice is described by a single unit cell with four spins i, j = 1, . . . 4, and the quadratic form

reduces to a 4 by 4 matrix. In order to compensate for the reduction of the number of the

neighbours of each spin, we double the magnitude of off-diagonal interaction terms in (6.28), the

local field felt by each of the four spins is of course left the same h = (2J⊥ + Ja
⊥)S. Due to the

properties of phase angles (6.25) the matrix of the quadratic form M has a highly symmetric

structure:

M = −













−h/(2S) M12 M13 M14

M12 −h/(2S) M14 M13

M13 M14 −h/(2S) M12

M14 M13 M12 −h/(2S)













(6.30)
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and is relatively easy to diagonalise. The eigenmodes Λ = 1
3diag{λ1;λ2;λ3;λ4} are calculated by

Λ = T−1MT , where T - is the suitable orthogonal transformation matrix

T =
1

2













−1 −1 1 1

−1 1 −1 1

1 −1 −1 1

1 1 1 1













. (6.31)

We obtain the following set of eigenmodes

λ1 = 2(2J⊥ + Ja
⊥)− (4J⊥ − Ja

⊥) cos(2ϕ+ γ12),

λ2 = 2(2J⊥ + Ja
⊥)− (4J⊥ − Ja

⊥) cos(2ϕ+ γ13),

λ3 = 2(2J⊥ + Ja
⊥)− (4J⊥ − Ja

⊥) cos(2ϕ+ γ14),

λ4 = 0. (6.32)

The zero energy mode λ4 corresponds to the transformation of the spin state within the degenerate

manifold, it does not contribute to the lifting of the ground state degeneracy.

Ĥ =

3
X

i=1

λiσ
2
i − g⊥

4
X

i,j=1

H⊥
j sin(ϕ− ξj)tjiσi. (6.33)

The correction to the ground state energy is then obtained by direct minimisation of this diagonal

Hamiltonian

ΔE⊥
Z = −(g⊥)2

4

N

4

3
X

i=1

�

P4
j=1H

⊥
j sin(ϕ− ξj)tji

�2

λi
. (6.34)

Introducing a normalisation factor N/4, we extend the result to the full lattice. In the following

subsections we present the results for the three interesting field directions by substituting

corresponding projections of H (6.27) and performing simple trigonometric calculations.

6.2.2 H k h001i result

When the applied field is parallel to one of the crystallographic axes, only one term, containing

λ1 in the sum (6.34) will be not zero and the energy correction has a simple form

ΔE⊥
Z =

(g⊥H)2N

8(2J⊥ + Ja
⊥)

cos 2ϕ− 1

1− ε cos 2ϕ
, (6.35)

where we introduced a dimensionless model parameter ε =
4J⊥−Ja

⊥
4J⊥+2Ja

⊥
= J±±

2J±
. In the parameter

region, spanned by positive J⊥ and Ja
⊥, it varies inside −0.5 < ε < 1. More generally, the

ground state of the model belongs to E irrep when −1 < ε < 1 [82]. Therefore, for all

relevant ε the denominator of (6.35) stays strictly positive, and the state selection is governed by

ΔE⊥
Z ∼ H2 cos 2ϕ.

By minimising the Hamiltonian of a pyrochlore in small magnetic field, we recovered the

result of the Landau symmetry analysis of the previous section (6.16). The magnetic field along

the [001] axis selects two mx2−y2 - like states with ϕ = 0,π. Moreover, taking the Fourier integral,
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one can obtain the expression for the amplitude of the leading harmonic, in the limit of weak

magnetic field. In (6.16) it was denoted as A2:

A2 =
(g⊥H)2N

4(2J⊥ + Ja
⊥)

1

1 + ε+
q

1+ε
1−ε

. (6.36)

Finally, comparison with the numerical results suggests that the quadratic correction to

energy (6.35) is valid within 5% of accuracy up to Hlim ≃ 0.8J⊥ (see section 6.2.5 for more

details).

6.2.3 H k h110i result

For H k h110i two other eigenmodes λ2 and λ3 contribute to the energy shift. Using the same

notations, as in the previous case we obtain

ΔE⊥
Z = − (g⊥H)2N

16(2J⊥ + Ja
⊥)

2− ε
2 + (ε+ 1) cos 2ϕ+ ε cos 4ϕ

1− ε2

4 + ε cos 2ϕ+ ε2

2 cos 4ϕ
. (6.37)

The form of the correction is now more complex, the magnetic field explicitly generates two

different harmonics cos 2ϕ and cos 4ϕ. However, one can still proceed with the same analysis as in

the previous subsection and see that i) denominator is again finite and positive ii) ϕ = π/2, 3π/2

states have the minimal energy iii) the corresponding cos 2ϕ harmonic has an amplitude −A2/2

from eq. (6.36). These facts are clear for ε = 0 but also hold for any −1 < ε < 1. The most

striking is the correspondence of Fourier harmonics of H k h110i and H k h001i cases up to a

factor −1/2 in complete agreement with the symmetry analysis of the previous subsection.

6.2.4 H k h111i result

Now the energy correction equals to

ΔE⊥
Z =

(g⊥H)2N

8(2J⊥ + Ja
⊥)

−4 + 2ε+ ε2 + ε2 cos 6ϕ

1− 3ε2

4 − ε3

4 cos 6ϕ
. (6.38)

Like before the denominator is always positive. The selection term is proportional to cos 6ϕ with

a nonnegative coefficient. This correction is minimal for the mx2−y2-like states, characterised

by ϕ = π
6 + π

3k. Note that ground state-dependent terms vanish at Ja
⊥ = 4 (ε = 0), where the

rotational U(1) symmetry becomes exact for the Hamiltonian, and the magnetic field H k h111i
does not break it.

Equation (6.38) partially confirms the results of section 6.1.3, specifically, the equation (6.9).

The second invariant (6.15) is not present here because we considered only the leading O(H2)

correction to energy. Our numerical minimisation, however, suggests that it will give a significant

5% contribution starting from Hlim ≃ 0.4J⊥. Thus the validity of ΔE⊥
Z for H k h111i is somewhat

reduced, compared to the H k h001i case. More details on numerical check of formulas (6.35)

and (6.38) will be given in the following subsection.
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6.2.5 Numerical minimisation

We used the deterministic algorithm of searching the ground state of the classical system, which

was presented in section 3.3 of this work. It consists of iterative minimisation of energy of each

spin by setting

Si k hloc
i ; hloc

i =
6
X

j=1

h

J⊥S
⊥
j + Ja

⊥(S
⊥
j · r̂ij)r̂ij

i⊥
− gkHkẑi − g⊥H⊥, (6.39)

where ẑi - is a local trigonal axis for site i, and the sum runs over six neighbours of the site i.

The procedure was repeated until convergence for 500 different random initial spin configurations,

and a global minimum was determined for each value and direction of the magnetic field. We

checked that with periodic boundary conditions the size of the cluster does not play any role,

which is the consequence of the studied Q = 0 spin structure, so we took L = 1. This protocol

corresponds to the search for the ground state of the system at T = 0. The obtained sequence of

ordered phases for all three cases corresponds to the T = 0 analysis of section 6.1.

To allow for the quantitative comparison of our analytical results we modified the numerical

algorithm to get an estimate of the angular dependence of ΔEZ(ϕ). We minimised the energy

(6.39) for the spins on three out of four sublattices, while fixing the azimuthal angle ϕ1 and the

out of plane component Sz
1 of the spin on the first sublattice. Then we swept through all Sz

1 and

chose the global minimum of energy E(ϕ, H).

At lowH these results can be compared with the energy corrections ΔEy
Z and ΔE⊥

Z , calculated

above in equations (6.29), (6.35), (6.37) and (6.38). In figure 6.5 we present the comparison of

analytically (solid lines) and numerically (symbols) calculated correction ΔEZ = ΔEy
Z +ΔE⊥

Z

for H = 3.47 · 10−3J⊥ and for three different field directions.

Figure 6.5: Field induced correction to energy, for the whole degenerate manifold of states,
calculated analytically (solid lines) in eq. (6.29) (6.35), (6.37) and (6.38) and numerically
(symbols) using the minimisation procedure. The set of parameters, relevant to Er2Ti2O7 is used
in the numerics: J⊥ = 1, Ja

⊥ = 1.5, g⊥ = 1, gk = 0.5. The magnetic field is set H = 3.47 · 10−3J⊥.

While Fig. 6.5 evidences the correctness of our analytics at low H, this numerical method

can be also used to estimate the applicability limits of the calculations of this section at higher

magnetic fields. We found that for the H k [001] case our low-field minimisation procedure gives

a 5% accuracy result up to Hlim ≃ 0.8J⊥. As we will show in the following section, the phase

transition in the classical model occurs at H ≃ 0.15J⊥ (figure 6.6), which is well below Hlim
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This is a promising result, as it allows to describe the effects of the magnetic field at the phase

transition not only in the classical case, but also very likely in the real system (see section 6.4

for more details on quantum effects on the phase transitions). In the second interesting case of

H k [111] the 5% accuracy of equation (6.38) is reached at somewhat lower Hlim ≃ 0.4J⊥. It

happens due to the emergence of cos 3ϕ harmonic (6.15), which vanishes at low field as H3, and

therefore is not present in the quadratic correction to energy (6.38).

Also, it is interesting to note that in our numerical results we recovered the change of sign of

the fourth harmonic term with ε (6.37). While the second harmonic stays always negative, the

prefactor of cos 4ϕ term becomes positive for Ja
⊥ > 4J⊥. It can modify the simple two domain

structure with ϕ = 0,π, predicted in section 6.1.4. Indeed, a more complex ground state was

observed at some parameter range in our simulations.

6.3 Finite temperature Monte Carlo studies

To study the properties of the system at finite temperatures we performed Monte Carlo simulations.

The general algorithm was described in section 3.1, below we present some details, relevant for

the particular model.

A measurement was made after five consecutive Metropolis MCS, followed by five micro-

canonical overrelaxation sweeps of the cubic lattice with N = 4L3 spins, L ≤ 24. Most of the

Monte Carlo runs were performed at fixed T , starting from a random spin configuration at high

field H > HS and moving down to the lower fields. In this study we used more independent runs

than usual to sample the phase space better, as for higher fields the algorithm exploded a small

area of phase space in the vicinity of one global minimum. Each point on a figure is a statistical

average over 96 independent runs, during each run measurements were taken during up to 2 · 105
MCS, and first 5 · 104 MCS were omitted for thermalisation. A total number of MCS was higher

for larger clusters.

In our runs we measured several order parameters. First, m, the order parameter of E irrep

was used to determine the PM-AFM transition.

m =
q

m2
x +m2

y, mx =
1

N

X

i

Si · x̂n, my =
1

N

X

i

Si · ŷn. (6.40)

To answer the question of lifting the continuous degeneracy within the E manifold, we measured

a series of Potts-like order parameters M
′

k and M
′′

k with k = 2, 3, 4, 6:

M
′

k =
1

mk−1
Re{(mx + imy)

k} = m cos kϕ; (6.41)

M
′′

k =
1

mk−1
Im{(mx + imy)

k} = m sin kϕ (6.42)

and corresponding Binder cumulants

U(Mk) = 1− hM4
k i

3hM2
k i2

. (6.43)

First, we present the results for the case of the magnetic field parallel to one of the main

crystallographic axis H k [001]. The results are summarised in the figure 6.6 (a). For each

field sweep we first observed a PM-AFM second order phase transition, followed by another
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inset shows a procedure of β/ν ratio determination.
The best crossing was observed for β/ν = 0.70(5).
Bottom panel: crossing of Binder cumulants defines
the transition field HC = 0.156(2)J⊥, and the inset
shows the zoom into the intersection area .

Figure 6.6: Monte Carlo results for the H k [001] case.

second order transition at H = HC well inside the AFM phase. We concentrate on the latter

transition, and show the example of the finite size analysis T = 0.05J⊥ with |M ′′

2 | as a primary

order parameter on panel (b) of Fig. 6.6. Critical field HC = 0.156(2)J⊥ was determined by the

crossing of the Binder cumulants U(|M ′′

2 |) (bottom panel). Also, rough estimates of the critical

exponents η and β/ν were obtained by the simple protocol, described in the last paragraph of

section 3.2.1. The best crossing was achieved when β/ν = 0.70(5) and η = 0.40(5) respectively.

The abscissa of the crossing point gives HC = 0.157(2)J⊥, consistent with the value, obtained

from Binder functions. The example of the scaling procedure is shown in the inset of figure 6.6

(a).

Finally, we note that at higher temperatures the system is subject to strong finite size

effects. We did not observe a single intersection of U(|M ′′

2 |) lines even for the largest clusters,

this is depicted by larger error bars at T ≥ 0.3J⊥ on the phase diagram. This extremely slow

convergence of U(|M ′′

2 |) and inverse scaling of the order parameter |M ′′

2 | (Fig. 6.6 (a)) - another

peculiar scaling behaviour - is caused by the dangerous irrelevance of the Z6 anisotropy, which

drives this phase transition. For further details see [70] and reference therein.

We repeated all procedures for the other case of H k [111], and present the results in figure 6.7

(a). Now the lower phase transition occurs only in the region of small T ≤ 0.1J⊥ and H ≤ 1.5J⊥
and is traced by nonzero |M ′′

3 |. The same finite size analysis, as in the previous case, was carried

out, the main features of it are shown in figure 6.7 (b). Now we have to investigate two phase

transitions. However, we were able to precisely study only the upper one due to very strong
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Figure 6.7: Monte Carlo results for the H k h111i case.

autocorrelation effects at lower transition. Much longer simulation time is needed to reduce the

noise in the fourth order Binder cumulants UB(|M
′′

3 |) at low T and H . The critical properties of

the upper transition are governed by β/ν = 0.65(5) and η = 0.35(5).

The inner phase transitions for both H k [001] and H k [111] are expected to belong to the

3D Ising universality class. They are associated with the splitting or merging of several pairs

of minima. In the former case a two-domain structure with ϕ = π/2, 3π/2 transforms into a

configuration with four domains. In the latter, three minima with ϕ = π/3,π, 5π/3 continuously

evolve into six mx2−y2-like states and backwards upon decreasing the strength of magnetic field.

3D Ising transitions critical exponents are known with high precision: β/ν = 0.5181(8) and

η = 0.0364(5). It is clear that our values for the critical indices are significantly higher than

the benchmark ones. Nevertheless, we do not think that the transitions belong to the new

universality class. The more probable scenario is the effect of a dangerously irrelevant Z6-like

local field [70].

Finally, the same simulations were performed for the third case H k [110]. And no sign of

additional phase transition was seen at any T and H. This agrees well with the theoretical

prediction of section 6.1.2: a configuration with ϕ = 0,π, selected by H transforms smoothly into

the m3z2−r2 ordered structure at H = 0. This rather trivial phase diagram is shown in Fig. 6.8.
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Figure 6.8: Monte Carlo phase diagram for H k h110i with only one paramagnetic-
antiferromagnetic second order phase boundary. Four domains of the m3z2−r2 phase are energeti-
cally unfavourable when H > 0, so there is no symmetry breaking at finite field.

Before moving on, we note that when we set H k [001] and H k [110], the observed PM-AFM

transition was always of the second order. On the contrary for H k [111] the transition should

be of the first order, as it is driven by the cubic invariant (6.15). However, even T → 0 the

observed discontinuity in magnetisation or the order parameter was very small. At temperatures,

higher than T � 0.2J⊥, the system evolved through a crossover, rather than a sharp first order

transition.

6.3.1 Monte Carlo and distribution functions

To illustrate the phase transitions and the evolution of the ordered states we measured probability

distribution functions of states ρ(ϕ) at different T and H . Starting at a random initial spin state

in the paramagnetic region, we decreased the temperature at fixed H, equilibrating the system

at each step using the same Monte Carlo procedure, as described earlier in this section. Upon

reaching the desired T , we took the snapshots of the system, every 50 MSC, measuring mx and

my (see eq. (6.40)) and calculating the angle ϕ:

ϕ = sign(my) arccos
�mx

m

�

. (6.44)

The whole procedure was repeated 2400 times, each starting from a new initial configuration,

making a total of 105 snapshots.

Subsequently we plot the histogram for the ordering angle ϕ, which is a measure of the angle

distribution function ρ(ϕ). Panels (a) of figures 6.9 and 6.10 show ρ(ϕ|H) for the two interesting

cases at T = 0.05. Each line corresponds to a star symbol of the same colour on a phase diagram

(panels (b)). The splitting and merging of minima as well as the emergence of local minima at

low fields is clearly visible for both field directions. This data strongly supports our picture of

Ising phase transitions in anisotropic pyrochlore in a field.





6.4. Quantum effects and observation perspectives 85

two subsections we study the effect of this correction for two field directions. For H k h001i we
estimate the shift of the phase transition boundary. And for the field along the trigonal axis

H k h111i we the existence of a mx2−y2 phase is discussed. We note that for the third case

H k h110i inclusion of quantum effects does not significantly modify the behaviour of the system

under applied field.

6.4.1 Phase transition shift for H k h001i

Quantum zero point fluctuations produce a − cos 6ϕ term (6.45), which results in a shift of the

phase transition boundary. The expression for HC was obtained in section 6.1.1:

HC = 3

s

ATh
6 T +AQ

6

A2
. (6.46)

The shift due to AQ
6 is present at all 0 ≤ T < TN , it is especially interesting to estimate the new

value for HC at T = 0. Then we substitute values for amplitudes from (6.36) and (6.45) and

obtain for the parameters, relevant for Er2Ti2O7: J
a
⊥ = 1.5J⊥, g⊥ = 1, ε = 5/14 and S = 1/2

that HC(0) = 0.24(1)J⊥. Note that this fairly small shift of HC legalises the employed quadratic

approximation of the field-induced anisotropy. The estimate is still rather crude mainly because

of the difficulty of calculation of quantum effects, even at H = 0.

Equation (6.46) can be also treated the other way round: once the experimental value of

HC(0) is obtained, one can calculate the magnitude of the order by disorder effect. In this sense

it is an alternative to the spin-wave gap measurements that were done recently by Ross et al.

[73].

6.4.2 Existence of phase transition for H k h111i

Contrary to the previous case, for H k h111i quantum fluctuations act against the nontrivial

phase stabilised by the magnetic field. It may happen that the mx2−y2-like phase gets completely

suppressed in a real system. Below we obtain a critical value of the amplitude AQ
6 crit of the

quantum order by disorder term, which still let the additional second order transition. After

that we will compare it with the prefactor in equation (6.45).

To explain the suppression of the mx2−y2-like phase at high magnetic field, both invariants

(6.9) and (6.15) are necessary. Unfortunately, the quadratic approximation of section 6.2 gives us

analytic expression only for the first term. So we use our angular-resolved minimisation algorithm

(sec. 6.2.5) and obtain the amplitude of cos 6ϕ and cos 3ϕ harmonics numerically. We proceed

as follows: a series of minimisation runs at different H is made. Every time the result is fit by

the three-parameter function ΔE(ϕ) = A6 cos 6ϕ+A3 cos 3ϕ− C. The obtained amplitudes are

plotted in figure 6.11, from where, making another fit, the field dependence of the coefficients is

extracted

A6(H) = A
(2)
6 H2 +A

(4)
6 H4 +O(H6); A3(H) = A

(3)
3 H3 +O(H5). (6.47)

Simple analysis of section 6.1.3 states that the phase transition occurs at ζ = 1 (see eqs.

(6.21) and (6.22)), or when the magnetic field satisfies the condition A6(HC)−AQ
6 = A3(HC)/4.
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Figure 6.11: Data points are the amplitudes of harmonics of ΔE(ϕ) = A6 cos 6ϕ−A3 cos3 ϕ−C
from numerical angle-resolved energy minimisation (see section 6.2.5) for T = 0 and different
strengths of magnetic field H k [111]. Lines - are fits of the data to expressions (6.47). The
corresponding fitting parameters are given in the legend.

Below we maximise AQ
6 as a function of magnetic field to obtain its critical value when the

transition still exists. Using (6.47), we obtain that an extremum AQ
6 crit is reached when

A
(2)
6 − 3

8
A

(3)
3 H + 2A

(4)
6 H2 = 0. (6.48)

Using the interpolated values of coefficients (see legend of Fig. 6.11) and the critical

field from the solution of (6.48) (HC = 0.79J⊥), we obtain the estimate of the maximum

of the quantum order by disorder strength, which allows the appearance of the new field-

driven phase AQ
6 crit = 0.9 · 10−4J⊥. If we compare this value with the prefactor in eq. (6.45)

(AQ
6 RSPT = 1.6 · 10−4J⊥), we see that it is probable that in real Er2Ti2O7 quantum fluctuations

hide the new phase completely. However, as the values are close, due to the aforementioned

uncertainty in the order by disorder strength, the absence of phase transition should still be

confirmed in the experiment.

6.5 Summary

To summarise, in this chapter we have presented the theory for the anisotropic easy-plane

pyrochlore antiferromagnet in the external magnetic field. It is directly applicable for the rare-

earth pyrochlore compound Er2Ti2O7. We have made a series of predictions that are observable

and that would be interesting to study experimentally. We list them below.

1) A finite field second order Ising phase transition inside the antiferromagnetic phase is present

for H k h001i case and absent when H k h110i. The transitions can be detected either by

magnetisation measurements, or by observing different neutron diffraction patterns above and

below the critical field.

2) At T = 0 it occurs at HC(0) = 0.040HS . The whole transition line is nonmonotonic with the

broad maximum Hmax
C = 0.047HS around T = 0.2TN .

3) The measured value of HC(0) is directly associated with the quantum order by disorder

strength. It may be used as a benchmark for theoretical calculations of [6, 7, 83], alternative to

the measurements of the spin-wave gape of Ross et al. [73].
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4) The maximum in HC is caused solely by the thermal order by disorder, its observation would

mean a direct probe of the effect.

5) At H k h111i the possibility of a pair of transitions at very low T is not completely ruled

out. However, a very precise sample orientation is needed as even a small misalignment of the

magnetic field from the symmetry axis wipes out the effect even in the classical system.





Chapter 7

Order by structural disorder in orbital

models

Orbital models are usually taken on regular bipartite lattices: square, cubic or hexagonal.

However, due to the directional nature of interactions, the models are highly frustrated and

have nontrivial sets of discrete gauge-like symmetries. In addition, their ground state manifold

is subject to an emergent continuous rotation symmetry, which can be lifted via the order by

disorder mechanism. Indeed, thermal [93–95] and quantum [96] fluctuations are known to stabilise

ordered phases in these models. Similar to antiferromagnetic systems, discussed above, we can

study state selection and ordering by impurities in orbital models. This introduces a new family

of frustrated models for probing our scenario of competition between fluctuations and structural

disorder. Furthermore, it gives access to a whole new class of real systems, where a concept of

order by structural disorder can be observed experimentally - doped Mott insulators.

Diluted orbital models were studied numerically in a series of works by Tanaka and collabo-

rators [97–99]. In the classical limit, the long range order was found to be suppressed by dilution

much faster than in the corresponding Heisenberg models. The reason for this is the directional

nature of the couplings and effective dimensional reduction that takes place in the models. This

is especially relevant for the t2g model, where the long-range order state is quasi-one-dimensional

and very susceptible to structural defects.

In this work we study essentially the same systems: randomly diluted classical orbital models.

However, we raise a different and more fundamental question of the possibility of long range

order, stabilised by structural disorder. Surprisingly, the results for eg and t2g models are notably

distinct from the triangular and pyrochlore systems, studied above and also differ from each

other. In section 7.2 we study the low-temperature properties of the eg orbital model. It exhibits

a nontrivial impurity-induced phase, which is stabilised necessarily by both thermal fluctuations

and structural disorder. On the other hand gauge-like symmetries of 2D and 3D t2g models do

not allow the appearance of a new phase. In sections 7.3 and 7.4 we show that impurities restore

the symmetry broken in the nematic phase, so both systems exhibit a reentrant transition a to a

disordered phase at low T .
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7.1 Introduction and physical origins of 120◦ and 90
◦ compass

models

In this chapter we study the effect of random dilution on three different but closely related

frustrated models. They all can be written in a general symmetrical form as

Ĥ = −J
X

i,α

Sα
i S

α
i+eα

, (7.1)

with the crucial common feature: the internal spin degrees of freedom of the models are coupled

to the external spatial ones, so the interaction is directionally dependent. One of the outcomes of

this is that orbital models are highly frustrated, even when the underlying lattice is not, which

opens a new dimension in the field of frustrated systems.

The most basic realisation of directional model, described by the Hamiltonian (7.1) is when

α are Cartesian directions α = {x, y, z}, so that eα correspond to three unit translation vectors

of the cubic lattice in the real space. Pseudospins Sα denote Cartesian components of classical

vector spins. Then the Hamiltonian can be written in the explicit form as

Ĥ = −J
X

i

Sx
i S

x
i+ex

+ Sy
i S

y
i+ey

+ Sz
i S

z
i+ez

, (7.2)

Following the terminology of the review [100], we call this model the 3D 90◦ compass model.

Spins interact with three different components along three Cartesian axes.

Its two dimensional counterpart is defined exactly the same way, with spins being planar

XY -type vectors, residing on a square lattice, so α = {x, y}. This model may be less captivating

from the point of view of direct application, but it is certainly more illustrative and simple, and

in many aspects it behaves similarly to the cubic 3D 90◦ compass model.

In the third considered model α again defines three coordinate axes, which we denote now by

α = {a, b, c}. In the real space they coincide with Cartesian coordinates (ea, eb, ec) = (ex, ey, ez),

while in the spin space they define three equally spaced directions in two dimensions:

Sa = −1

2
Sz +

√
3

2
Sx, Sb = −1

2
Sz −

√
3

2
Sx, Sc = Sz, (7.3)

like it is done in Fig. 7.1 (a). The relative angle between the axes is 2π/3, so the model is called

the 120◦ compass model or the eg model (see below).

Next to motivate our study, we give a brief overview of physical phenomena that are

characterised by compass models. For a more extensive information one can refer to recent

extensive reviews on the models written by Nussinov and van den Brink [100] and Khaliullin

[101]. Compass models are known to describe an orbital degree of freedom of the open d shell of

transition metal ions in different materials. The crystal field from the surrounding atoms split

five d levels into two eg and three t2g levels. Depending on the number of electrons, occupying

the shell, the atomic configuration can be described by an eg or t2g orbital degree of freedom.

Their interaction is directionally dependent due to different spatial extension of five orbitals.

eg :
1√
3

�

3z2 − r2
�

, x2 − y2;

t2g : xy, yz, zx.
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Two-flavour eg and three-flavour t2g orbital states are described by two- and three-component

spinors respectively. Then pseudospin operators S, which generate rotations in the degenerate

orbital states are represented by a vector of Pauli matrices σ or Gell-Mann matrices λ. In the

classical analogues of the models, orbital state is described by a unit vector on a circle or a

sphere, therefore the pseudospins S in the Hamiltonian are two- and three-component classical

unit vectors.

The quantum versions of the compass models emerge from the Hubbard Hamiltonian via

the Kugel-Khomski mechanism [102], which is the direct generalisation of the superexchange

mechanism to orbitally degenerate systems. The multiorbital Hubbard model at half filling in

the limit of strong on-site repulsion can be written in the following form Ĥ = Ĥspin × Ĥorbit.

When spin dynamics is absent, as, for example, in ordered ferromagnets, one is left only with the

pure orbital part, which takes exactly the form of eq. (7.1).

Purely classical models, which are studied in this work arise when one studies lattice-mediated

interaction of orbitals [102, 103]. A selection of a particular orbital state on one site causes a local

lattice distortion around it, which itself leads to coherent deformations around neighbouring ions

and consecutive orbital selection on them. This collective Jahn-Teller effect induces long-range

orbital order at high temperatures. The effect is especially strong for the orbitals of eg symmetry

as they are directed along the ligands (for example, Too = 800K in KCuF3 [104]). At such high

T spin dynamics can be safely integrated out, which authorises the consideration of classical

orbital only models.

120◦ and 90◦ compass models are often called eg and t2g orbital models due to their origin.

But they are also relevant for describing other physical phenomena, such as superconducting

Josephson-junction arrays [105], cold atom systems [106] and magnetic order in some frustrated

magnets [107].

Throughout this chapter we refer to the variables of our model (7.1) as spins in analogy with

the previously studied magnetic systems. However, one has to remember that usually Si describe

orbital degrees of freedom, and not magnetic properties of the compound. Similarly, vacancies in

these systems represent the absence of a free orbital on this site. In practice this is achieved by

doping the compound with electrons or holes. For example, it can be the Cu2+(3d9) → Zn2+(3d10)

substitution, as in KCu1−xZnxF3 [108] or Fe2+(3d6) → Mn2+(3d5) in Fe1−xMnxCrO4 [109].

7.2 Order by structural disorder in 120
◦ model

Substitution of spin projections (7.3) into eq. (7.1), gives the Hamiltonian for the classical 120◦

model

Ĥ = −J
N
X

i=1

�

Sz
i S

z
i+ec

+
1

4
(Sz

i −
√
3Sx

i )(S
z
i+ea

−
√
3Sx

i+ea
) +

1

4
(Sz

i +
√
3Sx

i )(S
z
i+eb

+
√
3Sx

i+eb
)

�

.

(7.4)

Spins Si - are two-component vectors of unit length that are placed on a regular cubic lattice

with translation vectors {ea, eb, ec}. For two-component spins on a regular bipartite lattice the

choice of an overall interaction sign is arbitrary. One can always rotate all spins that belong to

one sublattice by the angle π around the out-of-plane ŷ axis. Such operation is legitimate and



92 Chapter 7. Order by structural disorder in orbital models

transforms Si → −Si for every second spin, it can be viewed as the change of interaction sign.

So for simplicity we have chosen the interaction to be ferromagnetic.

Two dimensional unit spins can be parameterised using a single polar angle ϕi. Then the

Hamiltonian can be rewritten in the simple form

Ĥ = −J
X

i,α

cos(ϕi + γα) cos(ϕi+eα + γα). (7.5)

Three angles γα ∈ {4π
3 , 2π3 , 0} define projections of spins on a, b and c axes (see Fig. 7.1 (a)).

Figure 7.1: (a) A classical 120◦ model consists of two-component unit spins S = (Sz, Sx) with
bond-dependent coupling. A symmetric form of the model (7.1) is written via the interaction of
projections of S on coordinate axes â, b̂ and ĉ. (b) Emergent symmetries of the ground state
of the model: a circle represents U(1) rotation (type (i)). Light blue arrows illustrate discrete
symmetry of type - (ii). S′a arrow shows a reflection of spin across the â direction that can be
done on any eb − ec plane of the cubic lattice. S′b and S′c are defined likewise

Up to an unimportant constant, equation (7.5) can be rewritten as

Ĥ =
J

2

X

i,α

(cos(ϕi + γα)− cos(ϕi+eα + γα))
2 . (7.6)

The last expression is obviously minimised by any constant field ϕi = ϕ0. Therefore, the ground

state of the model is degenerate under U(1) rotations of all spins of the lattice. Throughout this

section we call it degeneracy of type (i).

Interestingly, this does not comprise all ground states of the model. In addition to the

continuous manifold, there exists an infinite number of distinct spin configurations with the same

energy, constructed in the following way. Starting from a state with all ϕi = ϕ0 one chooses

a direction in the real space eα, α ∈ {a, b, c}. Then one reflects simultaneously all spins that

belong to one plane normal to eα across the α direction in the spin space (Fig. 7.1(b)). This

operation keeps the Sα component untouched, but swaps two other projections Sα′ ←→ Sα′′
, so

the energy of the state is preserved. This operation can be performed on any number of planes,

so in a N = L3 cubic lattice there exists 3 · 2L various stratified ground states. In the following

we call it discrete degeneracy of type (ii).

Neither of these two types of degeneracy are true symmetries of the model, but rather belong

to the ground state sector of (7.4). It is known that both of them are lifted via the mechanism of

thermal order by disorder [93], [94]: entropic selection favours the uniform Q = 0 structure (i.e.

with no plane reflections) with ϕi =
πk
3 . The global aim of the study is to answer the following
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question: which (if any) of the degeneracies are lifted by structural disorder and how does it

modify the ordered state at T 6= 0?

7.2.1 Thermal order by disorder

In this subsection we treat analytically a simpler problem of the continuous degeneracy lifting

only. Starting from an arbitrary uniform ground state ϕi = ϕ we derive corrections to free energy

function or mean-field energy, due to thermal and structural disorder. It will be done using the

formalism of the real space perturbation theory, presented in chapter 2 and successfully applied

to the analogous problems of degeneracy lifting in triangular and pyrochlore frustrated magnets.

First, the entropic selection term is derived. We consider a pure classical system at low T ,

therefore, the deviations of spins from the ordered state are purely of thermal nature. Following

the ideas of chapter 2 we decompose the Hamiltonian (7.5) in a series of small perturbations to

the ordered state. In cylindrical coordinates it is convenient to express them in small deviation

of the angle ϕi = ϕ+ ξi.

Ĥ = Ecl + Ĥ0 + V̂1 + V̂2 + · · · ;

Ĥ0 =
h

2

X

i

ξ2i ; h = 3J ; (7.7)

V̂1 =− J

2

X

i,α

(ξi + ξi+eα) sin(2ϕ+ γα);

V̂2 =− J
X

i,α

ξiξi+eα sin2(ϕ+ γα).

In the pure system the linear term V̂1 is absent and we use the cluster technique on a cubic

lattice with interaction V̂2 over an unperturbed Hamiltonian Ĥ0. In the 120◦ model a certain

complication comes from the fact that degeneracy lifting terms only appear in the fourth order

of perturbation theory. The corresponding correction to the free energy equals to

ΔF4 = − hV̂ 4
2 i

24T 3
+

hV̂ 2
2 i2

8T 3
, (7.8)

where only the first term contributes to the lifting of continuous degeneracy. Indeed, the second

order contribution ΔF2 = − hV̂ 2
2 i

2T (and hence the second term in (7.8)) does not depend on the

ground state ϕ. The following correction ΔF3 =
hV̂ 3

2 i
6T 2 also vanishes because regular cubic lattice,

in contrast with the pyrochlore lattice, does not contain triangles. Note that as we got to the

fourth order of perturbation theory, we should have included the corrections to the Hamiltonian

of higher order in perturbations: V̂3 and V̂4. In particular, third order clusters, depicted in Fig.

7.2 (e) lift the continuous ground state degeneracy. But their contribution is essentially of the

higher order in T , so we do not present it in this work.

As follows from the graph technique, described in section 2.1.2, ΔF4 contributes by four types

of coupled clusters. We present them in figure 7.2 (b) - (e), their corresponding combinatorial

prefactors are 1, 6, 24 and 24. Gathering all the elements, we get an expression for the contribution

of the first cluster

ΔF
(1)
4 = − 1

24T 3
hξ4i2

X

i,α

sin8
�

ϕ+ γα
�

. (7.9)
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Figure 7.2: (a) - (d) different types of clusters, constructed from V̂2 fluctuation interaction
that contribute to the degeneracy breaking in the fourth order of thermodynamic real space
perturbation theory. (e) An example of a third order cluster, which also lifts the ground state
degeneracy, but is of higher order in T .

Other three terms are calculated similarly. Simplifying all expressions, we get

ΔF
(1)
4 =

1

72
· TN
128

�

8 cos(6ϕ)− 35
�

, ΔF
(2)
4 =

1

36
· TN
128

�

8 cos(6ϕ)− 35
�

,

ΔF
(3)
4 = − 1

18
· TN
128

�

8 cos(6ϕ) + 19
�

, ΔF
(4)
4 = − 1

54
· TN
128

�

8 cos(6ϕ) + 19
�

.

Summing up all angular dependent terms the total effect on degeneracy breaking is expressed as

ΔF4 = − 7

3456
TN cos(6ϕ), (7.10)

it represents the correction to the free energy due to the thermal fluctuations. Equation (7.10)

manifests the fact that the thermal order by disorder favours six configurations with ϕ0 = kπ/3

from the submanifold of uniform ground states. In the framework of the Jahn-Teller effect they

correspond to positive and negative tetragonal deformations along one of the three crystallographic

axes eα.

7.2.2 Ground state selection by site disorder

Next we tackle the problem of lifting the continuous ground state degeneracy by vacancies.

Again, we consider only a submanifold of uniform ground states ϕi = ϕ and calculate the energy

correction, arising from the reconfiguration of spins, surrounding vacancies.

As in the frustrated triangular and anisotropic pyrochlore models, vacancies are treated in

the weak-impurity model

Si −→ Si(1− ǫpi), Sα
i S

α
i+eα

→ Sα
i S

α
i+eα

[1− ǫ(pi + pi+eα)] . (7.11)

This model as well as the whole procedure of finding the impurity-induced energy correction was

thoroughly described in section 2.2.1, here we apply the procedure for the orbital model. Within

this approximation the Hamiltonian can be rewritten as

Ĥ0 =
h

2

X

i

ξ2i

�

1− ǫpi −
Jǫ

h

X

±α

pi+eα cos2(ϕ+ γα)

�

, (7.12)

V̂1 = −Jǫ

2

X

i

ξi
X

±α

pi+eα sin(2ϕ+ 2γα). (7.13)
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Second sums run over the six neighbours of the site i, so α takes positive and negative values

from α ∈ {±a,±b,±c}. To find the average gain of energy from the spin tiltings this Hamiltonian

is minimised to get

ΔE = −Jǫ2

24

X

i

�
P

±α pi+eα sin(2ϕ+ 2γα)
�2

1− ǫpi − ǫ
3

P

±α pi+eα cos2(ϕ+ γα)
. (7.14)

The series of resulting energy corrections was presented in section 2.2.1. The first one, ΔE(1)

does not lift the continuous degeneracy in the 120◦ model. The following order ΔE(2) = O(n2
imp)

due to the absence of triangular plaquettes on the cubic lattices. So the leading energy correction

ΔE(3) (see eq. (2.38)), arises from the decomposition of the denominator in (7.14) and is equal to

ΔE(3) =
Jǫ3nimpN

96
cos(6ϕ). (7.15)

Therefore, in 120◦ model the gain of energy from spin reconfiguration is the largest from six states

with ϕ = π/6 + πk/3. Similar to the previous models structural disorder favours opposite spin

configurations in comparison to thermal fluctuations. Such an ordered state causes orthorhombic

deformation of the orbitally ordered systems.

7.2.3 Order parameters for numerical study

Ordering in the classical 120◦ model was studied numerically by various groups. In the most

recent study Wenzel and Läuchli [110, 111] performed large scale Monte Carlo simulations and

determined the ordering temperature with great precision Tc = 0.6775(1). Their estimates for the

critical exponents of the model leave a possibility for the transition to the long range order state

to belong to a new universality class, distinct from the anticipated 3D-XY class. Unlike previous

models in this study, good Monte Carlo studies of the 120◦ model with vacancies exist. Tanaka

and Ishihara [97, 99] studied a problem of Tc reduction with defect concentration. They have

found that long range order disappears much faster than in the analogous Heisenberg system,

but persists at least up to reasonably high nc ≃ 20%.

In this work we study exactly the same model with vacancies, but bring up a somewhat more

general question of the ground state degeneracy lifting and the establishment of long range order

in a system with vacancies. The discrete ground state degeneracy (type-(ii)) is of particular

interest, as it was not covered by our analytical research of the previous subsections. The studied

impurity concentrations are well below the critical value nimp < nc from the work [97]. We also

note that with respect to Tc reduction by vacancies, our findings and are consistent with the

results of Tanaka and Ishihara.

The serious complication, brought by the 120◦ model to the numerical simulations is the

difficulty of construction of a good order parameter. Any uniform ordered state has nonzero

magnetisation

m =
q

M2
x +M2

y ; Mα =
1

N

X

i

Sα. (7.16)

In the analogy with the sixfold order parameter, used for pyrochlores (5.39) m6 can be measured

to observe the lifting of the continuous symmetry:

m6 =
Re(Mx + iMy)

6

m5
= m cos 6ϕ. (7.17)
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However, functions m and m6 are valid order parameters only within the subspace of uniform

ground states, outside the Q = 0 sector they take arbitrary values. So one should study order

parameters, which are insensitive to type - (ii) discrete symmetry operations, but display the

lifting of continuous emergent symmetry. Two competing uniform phases with long-range orbital

order can be also identified with the help of the following order parameters:

Mang =
1

N

�

X

i

cos 3ϕi

�2

, M6 =
1

N

X

i

cos 6ϕi, (7.18)

where ϕi = acos(Sz
i ). But contrary to (7.17), Mang and M6 are not affected by the aforementioned

spin flips. Indeed, reflections across three α directions are analogous to transformations ϕ → −ϕ,

ϕ → −ϕ+ 4π/3 and ϕ → −ϕ− 4π/3. Mang was used in the work of Tanaka and Ishihara [99], it

equals to one in the state with ϕi = πn/3 and zero in competing ϕi = π(2n+1)/6 configurations.

The second observable M6, is analogous to the order parameter that was used by Wenzel and

Läuchli to study the critical properties of Eg-clock model [110]. Before presenting our results,

we would like to emphasise the difference between the m6 and M6 parameters. The former is

the sixth harmonic of the overall spin direction of the system and has no sense when type-(ii)

reflections are present. The latter is the average of cos 6ϕi projection of individual spins.

We proceed in the similar way how we did before while studying triangular and pyrochlore

frustrated magnets. In subsection 7.2.4 we present the results of our deterministic search for

ground state using the minimisation algorithm. We show that vacancies lift the continuous

degeneracy, while keeping untouched the discrete one. And in the next subsection 7.2.5 we

consider the competition of thermal order by disorder and energetic selection by vacancies by

the means of classical MC simulations.

Both algorithms are fundamentally similar to the corresponding procedures, used for triangular

and pyrochlore systems. Technically we had to adapt them to the planar nature of spins. The

first major alteration comes from the fact that the local field, calculated in minimisation and

overrelaxation procedures now has to be confined to the spin plane. And the second one is a

restriction of MC single spin moves to a plane – one single trial angle ϕi was used on every move.

7.2.4 Numerical T = 0 ground state minimisation

Figure 7.3 shows the results of our minimisation study for different cluster sizes L and vacancy

concentrations nimp. For all runs M6, averaged over 100 impurity replicas is negative, decreasing

at larger clusters. It suggests that structural disorder favours configurations that are normally

least supported by thermal fluctuations, namely ϕi = π(2n + 1)/6 states within the uniform

nonstratified configurations. We note, however, that structure distortions are somewhat stronger

than in frustrated systems, studied before: already nimp = 5% of vacancies significantly reduces

|M6|, from unity.

Another important obtained result is the absence of selection of the wave vector. In Fig. 7.4

(a) we plot a histogram of m at the global minima points for different realisations of impurities for

nimp = 3% and L = 14. We have sampled about 5 · 103 impurity realisations and 4 · 103 random

initial conditions for each vacancy replica. One can clearly see seven clusters of minima, which

correspond to different branches of degenerate ground states with different numbers of flipped
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Figure 7.3: Results of the numerical energy minimisation for the 120◦ model with different
concentrations of impurities. Data points and error bars are obtained from the statistical
averaging over 100 impurity replicas. Negative values of M6 evidence for the stabilisation of the
states with ϕi = π(2n+ 1)/6.

spin planes. This histogram does not suggest any type of selection of specific plane-flip patterns,

showing a rather smooth distribution of minima over different branches of degenerate ground

states. The distribution is qualitatively consistent with the relative volumes that these branches

have in the phase space: for a cubic cluster of size L there are 3CL
k ways to flip k spin planes,

each configuration has the same value of m. We note that the last branch, which corresponds to

uniform spin configuration, is fully or almost absent on this histogram. While this may indicate

that a Q = 0 structure is disfavoured by impurities, we do not approve this scenario. We believe

that this fact is due to a very low statistical weight of uniform ground states, as (i) the same

effect is also observed on a clean system, and (ii) one finds global minima with m ≃ 1 when some

imposed starting uniform spin configuration are added to the random initial configurations.

In this section we have presented the results of our numerical minimisation procedure. It is
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Figure 7.4: Distribution of order parameters in the global minima of the system with nimp = 3%
of static vacancies randomly set over a cubic lattice with linear size L = 14 at T = 0. (a)
Multi-peak structure of p(m) exhibits the absence of breaking of a discrete symmetry of type
(ii), while (b) a narrow distribution of a sixfold order parameter M6 shows that minima with
ϕ = π/6 + πk/3 are robustly selected by vacancies. Histograms are plotted upon 5 · 103 different
impurity replicas.



98 Chapter 7. Order by structural disorder in orbital models

unlikely that in our simulations we have always found a true state with the minimum of energy

due to the huge phase space of classically degenerate ground states and the roughness of the

energy landscape, generated by impurities. However, based on the presented results: (a) negative

M6, which decreases with growing L and number of sampled initial random conditions and (b)

absence of preferred pattern of flipped spin planes, we state that vacancies in the 120◦ model lift

the continuous degeneracy of type-(i) in favour of states with ϕi ∈ π/6 + nπ/3, but leave the

discrete degeneracy of type-(ii) intact.

7.2.5 Finite temperature classical Monte Carlo simulations

In this section we present the results of our MC simulations. We focus on the low-T region of

parameter range and probe dilution rates surely below the critical value nimp ≤ 10% < nc = 17%,

found by Tanaka and Ishihara [97]. We show that vacancies induce an additional phase transition

into the phase with Q = 0 and ϕi = π/6 + nπ/3.

The general scheme of the MC algorithm, used in this study was presented in section 3.1,

and exact values of the simulation parameters are listed in table 3.1. Here we note two main

features, distinct from the previous simulations: presence of discrete symmetry greatly increases

the volume of low-energy phase space that has to be probed. Moreover, different branches of

degenerate states with different flipped planes are very weakly interconnected. So we increased a

number of independent runs, made for each impurity replica, in order to compensate this phase

space enlargement and to better probe the low-energy states of the system. Secondly, for the MC

simulations of the compass models we used both periodic (PBC) and screw-periodic boundary

conditions (SBC). The latter are known to significantly reduce finite size effects and improve
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Figure 7.5: Finite-size behaviour of four order parameters (7.16) - (7.18). 120◦ model with
nimp = 1% of impurities was studied by the hybrid Monte-Carlo algorithm with periodic boundary
conditions. Mang and M6 show the transition to the low-T ordered phase with ϕ = π

6 + πk
3 . It is

a uniform state with Q = 0, as follows from the finite size analysis of m.
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scaling in orbital models [110, 112, 113]. On the other hand, SBC support Q = 0 ordering on

the boundaries. Therefore, as one of the questions under study was the selection of the ordering

vector by impurities, we concentrated on simulations with the usual periodic boundaries.

Figures 7.5 (a) - (d) show various order parameters (7.16) - (7.18) for different cluster sizes

L ≤ 30 in the presence of nimp = 1% of vacancies. Negative values of the multipole parameter M6

at T → 0 clearly indicate breaking of the continuous symmetry into a state with ϕi = π/6+nπ/3.

We also note good agreement between finite-T values of the order parameter and its limiting

values in Fig. 7.3. Unfortunately, one cannot rely on M6 at higher temperatures. An order

parameter, constructed as
P

cos(kϕi) can only be used if at any moment the distribution of

angles p(ϕ) is not too wide (modulo spin flips). For example, the Gaussian-like distribution of

angles should have 2kσ(ϕ) < π. In our model at high T thermal fluctuations are so strong that

M6 = 0 far inside the phase with actually broken continuous degeneracy. The same considerations

are valid for Mang, we suppose that it is the reason why no finite size effects were observed in

Ref. [99].

Nevertheless, at lower temperature Mang evidences the presence of both ordered phases at

nimp = 1%. The intermediate conventional phase, stabilised by thermal order by disorder at

high T is confirmed by m6 → 1. This order parameter, however, should be used with care, as it

assumes a Q = 0 structure, otherwise if some spin plane flips are present, m6 may take arbitrary

values.

The main order parameter m converges smoother to unity for larger clusters. A dip in m close

to the low-T phase transition was also observed in Ref. [99] and is, indeed, a finite cluster size

effect. The fact that it monotonically disappears at high L and is completely absent for the runs
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Figure 7.6: Dependence of order parameters (7.16) - (7.18) on impurity concentration at finite
temperatures. Monte Carlo simulations were performed on systems with L = 20 and periodic
boundary conditions. The boundary to the new phase with ϕ = π

6 + πk
3 shifts to higher

temperatures with the strength of disorder. The first-order phase transition at low T gets
significantly smeared by impurities.
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with SBC (see below) supports our statement that dilution, while competing with conventional

order by disorder in breaking the continuous U(1) symmetry, does not destroy Q = 0 long-range

order, or induce any other spin pattern.

Similarly to the triangular and pyrochlore antiferromagnets, presented above, the vacancy

induced phase transition is a first order phase transition. Like before for small nimp this

reconfigurational transition is rather abrupt. Larger concentration of impurities smear out this

first order transition very quickly. The results of MC simulations of more disordered systems are

shown in figs. 7.6 (a) - (d). Stronger finite size effects are observed in more diluted systems, m

and m6 are mainly affected. On the other hand, panels (c) and (d) show that the sequence of

phases should stay the same at least up to nimp = 7%.

For completeness in figure 7.7 we present the results of the runs with the screw-periodic

boundary conditions. They show that suppression of finite size effects results in a more robust

Q = 0 structure. As a result even m6 has negative values and shows an onset of a ϕi = π/6+nπ/3

phase (we emphasize the difference between panels (b) of Fig. 7.6 and 7.7). The multipole order

parameters M6 and Mang are only weakly affected by SBC and show the same sequence of phases

as before.
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Figure 7.7: Results of Monte Carlo simulations with L = 20 and screw-periodic boundary
conditions. SBC support the Q = 0 structure and increase the effective lattice size, which results
in a better convergence of m and m6 order parameters.

To sum up we have shown the appearance of a new phase at low temperatures inside the

long-range order region of the classical 120◦ model. The main feature of this phase is that

it requires the presence of both thermal and structural order by disorder, which is somewhat

different from what is observed in the triangular or pyrochlore antiferromagnets. Dilution leaves

discrete degeneracy intact, and thermally-induced Q = 0 structure is retained. On the other hand

impurities compete with thermal order by disorder in breaking the continuous U(1) symmetry.

At low T it prevails and stabilises a structure with ϕi = π/6 + nπ/3.
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7.3 Reentrant transition due to impurities in 2D 90
◦ compass model

The behaviour of t2g models is slightly different from the eg case studied above. First, we analyse

a simpler 2D model, which is described by the Hamiltonian

Ĥ = −J
X

i

Sx
i S

x
i+ex

+ Sy
i S

y
i+ey

. (7.19)

S - are 2D vectors of unit length with components Sx
i = cosϕi and Sy

i = sinϕi, sitting on a

regular square lattice. The overall sign if the interaction is not important as it can be gauged

away by the rotation in the xy plane (see discussion below eq. (7.4)), so for simplicity we choose

the ferromagnetic interaction between the spins J > 0.

The analysis of ordered phases should start with the discussion of symmetries of the Hamil-

tonian, which are nontrivial in all compass models. This system remains invariant under the

following two transformations: (I) a Z2 symmetry of reflection across the [110] direction, which

results in (Sx → Sy, Sy → Sx) transformation. And (II) changing sign of Sy (Sx) component of

each spin that belongs to any one column (row) of the lattice. This 1D spin flip transformation

is somewhat similar to the discrete type-(ii) symmetry, of the previous section. But we would

like to emphasise, though, that in the 90◦ model it is the true symmetry of the model, while in

the 120◦ model it emerged in the ground state sector only. We illustrate these two symmetries of

the model in Fig. 7.8 (a) and (b).

Figure 7.8: True symmetries of the 2D 90◦ compass model: (a) global Z2 coordinate permutation
and (b) 1D gauge-like independent spin flips of different columns and rows. (c) Nematic states,
stabilised by thermal order by disorder, with broken Z2 symmetry. (d) Spin configuration,
favoured by structural disorder.

Symmetry (I) is a discrete global symmetry, so it can be broken at finite temperature in 2D.

This will be equivalent to C4 → C2 transition in terms of lattice rotations. On the contrary the

1D nature of the gauge-like symmetry (II) prevents it from being broken at any finite temperature,

as follows from the Elitzur’s theorem [114, 115]. The important consequence of this fact is that

conventional magnetic order with the order parameter MQ =
P

Siexp(iQ · ri) for any wave

vector Q is prohibited at T > 0.

Each spin has only one degree of freedom, and we can rewrite the Hamiltonian in the

trigonometric form

Ĥ = −J
X

i

cosϕi cosϕi+ex + sinϕi sinϕi+ey . (7.20)

This function is minimised by any constant spin configuration ϕi = ϕ. So the ground state

sector of the model is invariant under U(1) rotations. This degeneracy, however, is accidental
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and can be lifted when fluctuations around a ground state or relaxation of the structure due

to vacancies is taken into account. In the following two subsections, working in the manifold of

uniform configurations and employing the formalism of real space perturbation theory, we derive

state selection terms.

7.3.1 Thermal order by disorder

Fluctuations of spins around an arbitrary uniform ground state can be described by a set of

small angles ξi = ϕi − ϕ. Substituting them into eq. (7.20) and decomposing trigonometric

functions in series of small ξi, we get

Ĥ = Ecl + Ĥ0 + V̂1 + V̂2 + · · · ;

Ĥ0 = −h

2

X

i

(1− ξ2i ); h = 2J ;

V̂1 =
J

2

X

i

(ξi + ξi+ex − ξi − ξi+ey) sin 2ϕ;

V̂2 = −J
X

i

ξiξi+ex sin
2 ϕ+ ξiξi+ey cos

2 ϕ.

One can easily see that the linear term V̂1 vanishes in the pure system, which is consistent with

the fact that we make a decomposition around a ground state. However, we include this term as

it will give the principal correction in the case of the system with quenched disorder.

Now we can use the thermodynamic perturbation theory to calculate the entropy of ground

states. In this system accidental continuous degeneracy is lifted already in the second order, the

correction to the free energy is ΔF (2) = − hV̂ 2
2 i

2T and results in a degeneracy lifting term

ΔF (2) = −TN

32
cos 4ϕ. (7.21)

Thermal fluctuations favour the configurations with ϕ0 = πk
2 or spin ordering along the bonds of

the square lattice. It is easy to show that in the Ginzburg-Landau expansion this term would

correspond to a fourth order invariant δF = −A(T )[m4
x +m4

y]. The main features of such states

is that application of chain flip symmetry of type - (II) splits four possible fluctuation-stabilised

uniform configurations in two families of stratified states with no mixing between them. In figure

7.8 (c) we show these classes of configurations with ϕ = 0,π and ϕ = π
2 ,

3π
2 by different colours.

Therefore, thermal fluctuations lift the accidental continuous degeneracy of ground states via

term δF = −A(T )[m4
x +m4

y] and stabilise the nematic state with spontaneously broken Ising

symmetry of type-(I).

7.3.2 Order by structural disorder

As we have shown before, introduction of weak random dilution to a model generates a nonzero

linear term in the Hamiltonian. We can parameterise the projections of spins on coordinate axes

via the phase angles γα = {0,π/2}, like it was done in eq. (7.5). Then V̂1 takes exactly the same

form (7.13), as in the 120◦ model

V̂1 =
Jǫ

2
sin 2ϕ

X

i

ξi

4
X

j=1

pje
2iγij . (7.22)
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Like before to obtain the selection from local energy optimisation around impurities, we

minimise the Hamiltonian Ĥ0 + V̂1 over the spin deviations ξi. A linear in nimp nontrivial energy

correction is obtained already at the leading correction of the type (2.35):

ΔE(1) =
JNnimpǫ

2

8
(cos 4ϕ− 1) . (7.23)

This fourfold anisotropy has an opposite sign to the conventional order by disorder term (7.21)

and competes with it in state selection. Accordingly, the corresponding invariant differs by a

prefactor δF = B(nimp)[m
4
x +m4

y].

The striking difference with the entropically selected states is that ordering along the diagonals

of the lattice preserves the Z2 symmetry (I). Figure 7.8 (d) illustrates this fact with a dark

arrow, depicting a uniform ϕ = π/4 state and lighter arrows illustrating the direction of rows or

columns in stratified states. Thus a state, favoured by (7.23), has the same symmetry as the

paramagnetic state and is smoothly connected to it. This situation is similar to the anticollinear

state, stabilised by vacancies in J1 − J2 model [24].

7.3.3 Numerical results and reentrant phase transition

The classical 2D 90◦ compass model was extensively studied numerically by Monte Carlo

simulations. Mishra and collaborators [95] were the first to observe the low-T phase transition to

the nematic state at Tc/J = 0.147. They also predicted the 2D Ising universality class of the

transition, which was later confirmed by Wenzel and Janke [116] in their thorough numerical

study. In addition to this, Tanaka and Ishihara [98] studied decrease of TC by dilution in the 2D

compass model on a square lattice by the means of both classical and quantum Monte Carlo

simulations.

Due to the effective one-dimensional nature of the ordered state, orbital compass models

exhibit extremely strong finite size effects and nonregular scaling behaviour [112]. That is why

periodic boundary conditions are avoided in numerical studies in favour of fluctuating [95] or

screw-periodic boundaries [112]. As this model does not allow the breaking of translational

symmetry, we are no longer interested in considering all stratified patterns on equal footing. So

our MC simulations of 90◦ model were also made with screw-periodic boundary conditions. They

are technically defined by

(x, y + 1) =

(

(x, y + 1) if y < L,

([x+ S] mod L, 1) if y = L;

(x+ 1, y) =

(

(x+ 1, y) if x < L,

(1, [y + S] mod L) if x = L;
(7.24)

where (x, y + 1) denotes the nearest neighbour of site i = (x, y). S - is a screw parameter, which

determines the deformation of the torus on the boundaries. We took S = 1, which was found to

be an efficient choice for the screw parameter [112].

Directional ordering is traced by the order parameter M2, constructed in analogy with (7.18):

�

�M2

�

� =
1

N

�

�

�

X

i

cos 2ϕi

�

�

�
=

1

N

�

�

�

X

i

�

Sx
i
2 − Sy

i
2
�

�

�

�
. (7.25)
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This observable was also used in the work [95]. The exact transition temperature was determined

using its Binder cumulant UB(|M2|). Moreover, to illustrate the nature nature of the ordered

states we used a fourfold correlation function M4 = 1/N
P

cos 4ϕi. Finally, to be able to compare

our results with numerical works by Wenzel et al [112, 116], we also measured the nonlocal

directional order parameter D = J/N |
P

(Sx
i S

x
i+ex

− Sy
i S

y
i+ey

)|, but did not plot it in our figures.

Our results are summarised in figures 7.9 and 7.10. The former shows the finite size analysis

for nimp = 2% of vacancies, and the latter illustrates suppression of the order with impurity

concentration. On both figures the reentrant transition to the paramagnetic phase with the

restored symmetry is clearly seen by the decrease of
�

�M2

�

� order parameter. We note that the

low-T feature in the specific heat C (panels (b)) is more pronounced in this model than in other

observed systems, where the reconfigurational transition was observed. It is also interesting that

M4 (Fig. 7.9, panel (d)) has a nonzero value above Tc in the paramagnetic region. Therefore,

this correlator can not be used as an order parameter, and the low-T phase with negative M4

has only short range correlations and is not a true phase of the system. Otherwise, the nematic

order is, indeed, very quickly suppressed from above in agreement with the work of Tanaka and

Ishihara [98].
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Figure 7.9: Finite size scaling for the classical 2D 90◦ model with nimp = 2% of impurities. Data
from Monte Carlo simulations of the square lattice with screw-periodic boundary conditions.
Vacancies cause a reentrant phase transition to the paramagnetic phase at T ≃ 0.02J as can be
seen from the decrease of |M2| (panel (a)) and a peak in the specific heat C (panel (c)). Binder
cumulant U(|M2|) is used for the precise determination of the high-T phase transition. Negative
values of the correlation function M4 evidence the positive sign of the disorder-induced energy
correction (7.23).
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Figure 7.10: Suppression of the nematic phase by vacancies, studied by Monte Carlo with L = 60
and SBC. Nematic order is suppressed by already 5% of vacancies. Broad maxima in the order
parameter |M2| and specific heat C are finite size effects.

Finally, in order to illustrate the nature of states in figure 7.11 we present typical MC snapshots

of the 10 × 10 periodic system with and without impurities. The left column corresponds to

nematic phase at T/J = 0.05, the right column shows the system at T/J = 0.005. Two different

system behaviours at low T are clearly visible. Different impurity placement - distant and nearby,

- on the contrary, has little effect on the system.

We showed that in addition to severe decrease of Tc, the ordered phase is bound from below

by the effect of order by structural disorder, realised by the energy correction (7.23) and the

model exhibits reentrant behaviour below Tc.
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Figure 7.11: Snapshots from MC simulation with L = 10 and periodic boundaries taken at
T = 0.05J and T = 0.005J (Tc = 0.147J in the clean system). Top row is the simulation of
the clean system, middle and bottom rows correspond to nimp = 2% with different impurity
placement.
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7.4 Reentrant behaviour in 3D compass model

Finally, we consider a 3D t2g orbital model of interacting classical spins of unit length on a cubic

lattice:

Ĥ = −J
X

i

Sx
i S

x
i+ex

+ Sy
i S

y
i+ey

+ Sz
i S

z
i+ez

. (7.26)

The symmetries of the 90◦ compass model highly resemble its 2D analogue and constitutes its

extension to higher dimension. (I) First, the system is invariant under all operations of the

S3 coordinate permutation group. The Hamiltonian is preserved if one interchanges any pair

coordinates of all spins of the system Sα ←→ Sβ , α,β ∈ {x, y, z}. (II) And second, it is possible

to reflect one coordinate Sα
i → −Sα

i , of all spins i that belong to one chain parallel to the same

cubic direction eα. The other two coordinates of these spins are left untouched Sβ
i → Sβ

i . Any

number of such operations can be performed independently on different rows and columns of the

cubic lattice.

The local 1D symmetry of type-(II) cannot be broken at any finite temperature [114]. On the

other hand, nothing prevents a global symmetry (I) from being broken. We will see that thermal

fluctuations stabilise nematic order along one of the cubic axes thus lowering the symmetry

S3 → S2. Also, to avoid confusion, we note that the quantum 3D 90◦ compass model is less

symmetric than its classical counterpart. It possesses only a (Z2)
3L subset of planar 2D gauge-like

flips from the aforementioned (Z2)
3L2

symmetry, present for the classical spins [100, 105].

Up to an unimportant constant the Hamiltonian (7.26) can be rewritten as

Ĥ = −J

2

X

i,α

�

Sα
i − Sα

i+eα

�2
, (7.27)

so Ĥ is obviously minimised by any uniform spin configuration. This suggests that on top of spin

reflections the ground state sector of the model is additionally symmetric under the S2-sphere

rotations. This operation does not correspond to any symmetry of the model, and in the following

section we show that such accidental degeneracy is lifted by thermal fluctuations and structural

disorder. Moreover, the first mechanism additionally triggers lifting of permutation symmetry (I)

and stabilisation of nematic order, while the second does not.

7.4.1 Ground state selection by thermal fluctuations and impurities

We consider a uniform ground state, which can be described by two polar angles (θ,ϕ) and a

local reference frame, related to it. Coordinate transform to the local frame is done with the

rotation matrix R(θ,ϕ) = Rẑ(ϕ)Rŷ(θ). We explicitly denote the spin coordinates in the new

reference frame by Sα, so that S = RTS with

RT =







cosϕ cos θ − sinϕ cosϕ sin θ

sinϕ cos θ cosϕ sinϕ sin θ

− sin θ 0 cos θ






. (7.28)

In the new frame deviations of spins from a ground state are described by nonvanishing small Sx

and Sy. The Hamiltonian (7.26) can be rewritten as a familiar real space expansion series in
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spin fluctuations Ĥ = Ecl + Ĥ0 + V̂1 + V̂2 + . . .. The noninteracting fluctuation part has a usual

simple form

Ĥ0 =
h

2

X

i

h

S
x
i
2 + S

y
i
2
i

, h = 2J. (7.29)

The interaction terms, on the contrary are more complicated, but they are all expressed via the

products of the elements of rotation matrix (7.28).

Like in the two-dimensional 90◦ compass model, thermal fluctuations lift the continuous

ground state degeneracy already at the lowest order of perturbation ΔF = hV̂ 2
2 i/2T via the simple

single-bond graphs. Like always, average of square of spin fluctuations equals to hSα2i = T/h, so

the total free energy correction can be written as

ΔF (2) = −TN

8

h

cos4 ϕ cos4 θ + sin4 ϕ+ sin4 ϕ cos4 θ + cos4 ϕ+ sin4 θ + cos2 θ sin2 2ϕ
i

.

This expression can be simplified using the components of the order parameter

m = (cosϕ sin θ, sinϕ sin θ, cos θ):

ΔF = −TN

8

�

m4
x +m4

y +m4
z + 1

�

. (7.30)

From the last expression it is clear that free energy is minimised when the spins are directed along

one the cubic axes. In the analogy with the 2D model, considered in the previous subsection,

such states form three distinct families of states with the spontaneously broken S3 symmetry of

the type (I). Thermal fluctuations stabilise the nematic ordered state at low temperatures. Such

state, predicted by Mishra et al. [95] was observed numerically only recently in the Monte Carlo

simulations by Gerlach and Janke [113].

We now switch to the breaking of the continuous degeneracy of the mean-field ground states

by impurities in the weak-vacancy limit. Due to the local relief of frustration, surrounding spins

deviate from the former equilibrium configurations and gain energy. This average energy gain can

in principle be different for various degenerate states. We determine it for the whole continuous

manifold by minimising the spin Hamiltonian Ĥ0 + V̂1 and calculating the new energy. Already

the leading minimisation correction produces an anisotropic energy gain

ΔE(1) = −1

2

J2ǫ2nimpN

2h

h

cos4 ϕ sin2 2θ+ sin2 2ϕ sin2 θ+ sin4 ϕ sin2 2θ+ sin2 2ϕ sin2 θ+ sin2 2θ
i

.

Reparameterising this expression in terms of the order parameter, we obtain

ΔE =
Jǫ2nimpN

2

�

m4
x +m4

y +m4
z + 1

�

. (7.31)

The opposite states are favoured by this term with eight minima along the diagonals of the cube

Si = (±
√
2/2,±

√
2/2,±

√
2/2). Consideration of all possible stratified states, constructed from

uniform configurations restores the discrete S3 permutation symmetry of the Hamiltonian. So

much like in the previous 2D compass model, the configuration, stabilised by vacancies is not a

long range order state.

7.4.2 Numerical results and reentrant phase transition

A combination of frustration with dimensional reduction, typical for the orbital models, makes

them very difficult to study numerically. It is especially relevant for the 3D models, where the
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number of sites grows quickly with the characteristic length scale of the lattice N = L3. Only

recently the 3D 90◦ compass model was analysed numerically in an impressive Monte Carlo study

by Gerlach and Janke [113]. They report the transition to the ordered phase at Tc/J = 0.098.

The transition was found to be of the first order; however, due to very strong finite size effects,

its discontinuous nature appears only at very large cluster sizes.

Here we investigate the 3D t2g model with vacancies by the Monte Carlo method. Our

principal aim is to study the competition of two anisotropies (7.30) and (7.31) at lowest T .

Additionally, we describe the decrease of Tc with impurity concentration.

The ordered state of the pure model has all the spins aligned along one of the three cubic

axes, parallel or antiparallel. It breaks the S3 symmetry of the Hamiltonian. Such state can be

characterised by an order parameter q2, constructed from the quadrupole tensors

q2 =
3

2
tr
h

�

Qαβ
�2
i

; Qαβ =
1

N

X

i

�

Sα
i S

β
i − 1

3
δαβ

�

. (7.32)

q2 is normed to unity in the perfect nematic state. In the opposite state, favoured by impurities

all the spins are directed along the diagonals of the cube. Furthermore, every spin might take
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Figure 7.12: Monte Carlo simulations of the 3D 120◦ model with impurities on a L3 cubic lattice
with SBC. The nematic order parameter, its Binder cumulant and magnetic specific heat are
plotted. (a) - (c) Suppression of the nematic phase by vacancies, for L = 20 clusters. Long range
order disappears around nimp = 3%, slightly earlier than in the 2D model. (d) - (f) Finite size
analysis of the nimp = 2% case.
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any of the eight orientations. This state has a nonzero octupole moment, but the diagonal of

Qαβ , hence q2 is zero. We emphasise the fact that the octupole state does not constitute a true

phase of the system because it does not break the symmetry of the Hamiltonian. So we do not

calculate the octupole tensor in our calculations, as it is not an order parameter of the system.

Our numerical results are presented in figure 7.12. The behaviour of the order parameters

resembles the one of the 2D model. Nematic order gets suppressed very quickly by impurities, it

is already absent at nimp = 3%. At low T there is a reentrant transition to the paramagnetic

phase, caused by vacancies.

Both observed transitions appear like the continuous ones, even though both are expected to

be of the first order. However, our cluster sizes are not large enough to unambiguously say that

it happens due to the effect of impurities alone.

The results of our numerical simulations confirm the analytic predictions that at low T

structural disorder selection (7.31) takes over the thermal fluctuations (7.30). It results in a

reentrant phase transition and restricts the nematic ordered phase from below.

7.5 Summary

In this chapter classical frustrated 120◦ and 90◦ compass models with emergent continuous ground

state degeneracy were studied. In particular, we examined the order by structural disorder effect,

which was found to always compete in continuous degeneracy lifting with the ordering by thermal

fluctuations, similar to spin models, considered before.

At the same time, completely new effects were observed in orbital models. First, discrete

emergent symmetries of the ground state of 120◦ model were found to be not affected by disorder.

Therefore, the low-T phase is stabilised by essentially both fluctuations and defects. The former

are necessary to preserve the Q = 0 structure, and the latter select a particular state from a

continuous manifold. The situation is different in both 2D and 3D 90◦ models, in these systems

translational symmetry cannot be broken by fluctuation or disorder. Instead, a collinear nematic

phase, which is stabilised by fluctuations, breaks the discrete reflection symmetry. But its

anticollinear counterpart, selected by vacancies does not. So at low T both models undergo a

reentrant transition to a PM state, which bounds the nematic phase from below in addition to a

strong decrease of TC by vacancies.

Our findings have direct relevance for the Mott insulators, which order through the cooperative

Jahn-Teller effect. The observed first order transition between the ordered phases in the 120◦

model is manifested by the tetragonal to orthorhombic transition in these systems. In particular,

we predict the appearance of a new orthorhombic phase at low T in diluted KCu1−xTxF3 when

Cu is substituted by Zn [108] or Mg [117].

From the theoretical perspective, consideration of other types of randomness, bond disorder

above all, as well as a study of diluted spin-orbital model may reveal further intriguing effects of

quenched disorder. Moreover, it is likely to provide additional materials for the experimental

observation of order by structural disorder effect. Finally, orbital models give a rare possibility

to compare classical and quantum diluted frustrated systems. Study of the order by structural

disorder effect by quantum Monte Carlo is an interesting and feasible challenge in these systems

as, thanks to ferromagnetic interaction sign, the task is not plagued by the minus sign problem.
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Conclusion

In this work we have examined diverse frustrated systems, which have a continuously degenerate

lowest energy state. And we have studied the interplay of various mechanisms of lifting this mean-

field degeneracy: entropic ordering from internal thermal or quantum zero-point fluctuations,

random modification of the structure by quenched disorder and tunable additional interaction,

such as Zeeman interaction with an external magnetic field.

Each of these processes is capable of selecting certain states from the degenerate manifold

and thus establishing long range order. Additional interactions break the degeneracy already

on the mean-field level. Chapter 6, devoted to frustrated pyrochlore system in the external

magnetic field provides an example of such process. The demonstrated phase diagrams for

different directions of the magnetic field are of obvious importance as they can be directly applied

to the description of Er2Ti2O7 in the external field. However, we would like to emphasise another

interesting and less apparent aspect of the study. The presented results are illustrations of the

interplay between ordering due to fluctuations and energetic selection of states. The observed

phase boundaries are completely missing in the mean-field description of the magnetic structure

because the Z6 zero-field anisotropy, which is an essential element of the transitions, is produced

by fluctuations. An interesting consequence of such transitions is that if observed, they would

allow to directly quantify the strength of fluctuation effect.

Somewhat less obvious is the idea that random structural disorder can also participate in the

establishment of long range order. When a small amount of impurities is added to the system,

magnetic structure relaxes to a slightly distorted configuration, around one of the pure mean-field

ground states. The order by structural disorder effect is realised by the fact that only this local

distortion, but not an overall spin pattern, depends on the specific impurity replica.

States favoured by different mechanisms need not be the same, so the interplay usually results

in a complex phase diagram with several phase transitions. The configurations stabilised via the

order by disorder mechanism are usually well characterised and observed in real systems. Other

states were reported in this work for the first time, so below we recapitulate some of our main

results

In triangular antiferromagnets structural disorder favours the least collinear spin configurations

from the continuously degenerate manifold of mean-field ground states. In the isotropic Heisenberg

system it corresponds to the conical or umbrella state. When noncoplanar states are prohibited

by anisotropy, the anti-Y or a fan configuration is established. In the XY anisotropic pyrochlore,
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on the contrary, impurities favour the most collinear mx2−y2 (ψ3) configuration. For all these

models we derived corrections to energy from dilution in the form of effective anisotropies, acting

on the degenerate manifold. The corresponding long range ordered phases were then observed in

our numerical simulations in the low-T parameter region.

In contrast to the studied antiferromagnets in classical 120◦ and 90◦ compass models the

states that are selected by impurities do not break any symmetry of the model. Therefore,

structural disorder cannot set a long range ordered phase solely by itself. Still, the observed

sequence of phase transitions in the 120◦ model shows both phases: the configuration, stabilised

by fluctuations, and its antipode, favoured by defects. The latter, however, is only present at

T > 0 when the breaking of the translational symmetry is assured by thermal order by disorder.

On the other hand, 2D and 3D 90◦ compass models have only one phase with nematic order.

Its low-T anticollinear counterpart is smoothly connected to the paramagnetic phase, and a

corresponding transition is a reentrant phase transition.

All these findings of the work make up a rather wide variety of realisations of basically

the same phenomenon. Structural defects, and in particular dilution, have an opposite effect

on degenerate ground states, compared to thermal and quantum fluctuations. Structural and

fluctuational ordering compete in selecting a particular state. And this competition results in

appearance of a first order reconfigurational phase transition at low T , where structural disorder

eventually overcomes the effect of fluctuations

The results that were presented in this work raise several natural questions. What is the

fundamental reason of the similarity between quantum and thermal order by disorder? How

universal is the scenario of competition of fluctuations and vacancies and can it be generalised for

the other types of disorder? Finally, what is the impurity concentration when the effect breaks

down and gives way to the (presumably) glassy phase?

One of the possible ways to tackle these problems is to investigate more complex frustrated

systems, like the ones that appeared in orbital models. Another road is the numerical study of

the same systems, but with the other types of structural disorder, such as bond disorder, mobile

vacancies, etc. We showed that in most of the models real space perturbation theory predicts

the same effect from the bond disorder as from dilution. However, numerical verification of this

hypothesis was left out of the scope of this work. Description and understanding of the behaviour

of the above models with bond disorder remains an interesting and important problem. It is

additionally motivated by studies of the neighbouring frustrated systems with bond disorder

that predicted the absence of the ordered state in the BCT antiferromagnets [21] or a spin-glass

transition in the Heisenberg pyrochlore [118].

More challenging is the highly diluted limit of the considered (and other) frustrated systems. It

requires the application of different methods, both analytical and numerical, including those used

for studying spin glasses. As the absence of a small disorder parameter makes the perturbation

inherently unreliable, while in the numerics large impurity concentration leads to extremely

rough energy surface and smeared phase boundaries.

Also, prediction of phase boundaries for real systems is highly complicated by the necessity

of calculation of spin-wave corrections around a structure, distorted by impurities. In this work

we circumvented it by calculating quantum effects separately on pure system and neglecting
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all possible interplay of zero point fluctuations with dilution. The lack of a good quantitative

description motivates the effort in this direction. A semiclassical method of calculating harmonic

spin-wave corrections around classically unstable states was proposed in Ref. [119]. One may

try to adapt this scheme to spin configurations, slightly distorted by weak impurities. Another

possibility is to use the methods, employed for spin-wave calculations of the frustrated [120]

or nonfrustrated [11, 14] antiferromagnets with a single impurity. Alternatively, the order by

structural disorder effect can be studied numerically by the means of Quantum Monte Carlo

simulations in orbital models, which are not affected by the minus sign problem owing to the

ferromagnetic interaction of pseudospins.

Finally, experimental studies of diluted frustrated systems are highly demanded. In this work

we have discussed various classes of compounds, where order by structural disorder effect can

be observed experimentally. The most straightforward is the insulating pyrochlore Er2Ti2O7,

especially considering the fact that studies of the diluted compound Er2−2xY2xTi2O7 have already

been reported [90].

The other class of systems, perspective for experimental observation are triangular antiferro-

magnets. Their main advantage is that a rather large variety of compounds that exhibit fingertips

of ordering by fluctuations have been discovered. In spin systems structural disorder has to

overcome the effect of quantum fluctuations, which scales as 1/S. So among all candidates the

high-spin magnets are the most perspective ones for detecting vacancy-induced ordered phases.

These include a S = 7/2 triangular antiferromagnet GdPd2Al3 [121] and a number of S = 5/2

magnets, such as RbFe(MoO4)2 [3, 4], Ba3MnSb2O9 [66] etc.

Lastly, under a different disguise of tetragonal to orthorhombic structural transition the

studied order by structural disorder effect may appear in the physics of doped Mott insulators.

In KCuF3 and LaMnO3 orbital degrees of freedom order via the collective Jahn-Teller effect, and

when diluted, we expect these materials to undergo an additional transition to an orthorhombic

phase when the temperature is decreased. In comparison with quantum magnets, the orbital order

in such systems is not enhanced by quantum zero-point fluctuations. Therefore, a substantially

smaller dilution rate should be enough for the observation of the effect.
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[11] A. Lüscher and O. P. Sushkov, Long-range dynamics of magnetic impurities coupled to a

two-dimensional Heisenberg antiferromagnet, Phys. Rev. B 71, 064414 (2005).

[12] S. Eggert et al., Universal Alternating Order around Impurities in Antiferromagnets,

Phys. Rev. Lett. 99, 097204 (2007).

[13] J. Engel and S. Wessel, From enhanced to reduced quantum antiferromagnetism by tuning

a magnetic impurity, Phys. Rev. B 80, 094404 (2009).



116 Bibliography
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