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In the context of global warming and increasing climatic variability, a major uncertainty that hampers effective pest management is related to the thermal characteristics of agricultural landscapes, which are known to have profound effects on insect pest dynamics. Moreover the spatial mismatch between the size of organisms and the scale at which climate data are collected and modelled is also a major barrier to better understand and predict pest distribution and dynamics.

In this thesis, we addressed the issue of considering microclimates experienced by crop pests in their environments with the main objective to infer their spatiotemporal distribution. Therefore, we focused on the following questions: 1) How to bridge the gap between the predictions of coarse-scale climatic models and the fine-scale climatic reality experienced by organisms (i.e. microclimates), 2) How to develop innovative technological approaches such as thermal infrared cameras and unmanned aerial vehicle as a tool for the study of crop pest thermal ecology, 3) to what extent the fine spatiotemporal variability in thermal heterogeneity of natural and agricultural landscapes is useful to understand pest dynamics, and 4) how to integrate microclimatic data in models predicting the interrelation between pest organisms and the microclimate of their environments. This work revealed that microclimate substantially affects pest dynamics in agrosystems and may offer them opportunities to enhance their performances, as well as to buffer global warming effects within only few centimetres. Consequently, this thesis stresses the need of a better incorporation of microclimatic data into models of species distribution (and vulnerability to climate change) and evidences that microclimates might provide new insights towards agro-ecological pest management.
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RÉSUMÉ

Ce travail montre que les microclimats conditionnent partiellement la dynamique des ravageurs des cultures dans les agrosystèmes et peuvent leur fournir des opportunités pour améliorer leur performances (et atténuer les effets du changement climatique) dans quelques centimètres carrées seulement. Par conséquent, cette thèse a montré l'importance d'une meilleure prise en compte des microclimats dans les modèles de distribution d'espèces (et de vulnérabilité face au changement climatique). Finalement, ce travail a révélé que l'étude des RÉSUMÉ $ microclimats pourrait ouvrir de nouvelles voies de lutte intégrée agro-écologiques contre les ravageurs des cultures.

Mots clés: microclimats, agrosystems Andins, ravageurs des cultures, caméra thermique, drone, indices spatiaux de paysages thermiques.
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-2012: International workshop and summer course on Advances in non-homogeneous environmental turbulences. Talk: Thermal landscape dynamics in agricultural systems of the High Andes. 12-16 th of June 2012. Villanova, Spain. The phenotype of living organisms is highly influenced by their environment [START_REF] Gillooly | Effects of size and temperature on metabolic rate[END_REF], Angilletta 2009, Kingsolver 2009): environmental features substantially drive organism's traits. The physiology, behaviour, abundance and distribution of organisms are shaped by dozens of environmental variables that can be classified into three main components (Andrewartha & Birch 1960): weather (temperature, solar radiation…), ressource (predation, food availability…), and species interactions (intra-and interspecific, such as competition, parasitism…), which all define a place where to live (i.e. the habitat). Even though organisms might be influenced by a high number of variables, usually only a few account for most of the variability observed in life-history patterns and population dynamics (Andrewartha & Birch 1960[START_REF] Wilson | The diversity of life[END_REF]). In the case of ectothermic organisms, which constitute the vast majority of terrestrial biodiversity [START_REF] Wilson | The diversity of life[END_REF], Brown et al. 2004), temperature is a key environmental factor [START_REF] Gillooly | Effects of size and temperature on metabolic rate[END_REF], Bale et al. 2002, Angilletta INTRODUCTION 22 a. Thermal performances in fluctuating environments Organisms' responses to environmental variables are commonly depicted by performance curves (Huey & Stevenson 1979, Angilletta 2009) that describe performance along a continuous environmental gradient. Angilletta (2009) defines performance as "any measure of an organism's capacity to function, usually expressed as a rate or a probability." Nonexhaustively, these performances include locomotion (e.g., [START_REF] Mcconnell | How fast can a cockroach run[END_REF][START_REF] Hirano | Jumping performance of frogs (Rana pipiens) as a function of temperature[END_REF][START_REF] Weinstein | Effects of temperature and water loss on terrestrial locomotor performance in land crabs: integrating laboratory and field studies[END_REF], Dillon et al. 2012), immune function (e.g., [START_REF] Mondal | In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis[END_REF], sensory perception (e.g., [START_REF] Stevenson | The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake[END_REF], Dillon et al. 2012), foraging ability (e.g., [START_REF] Ayers | Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota[END_REF], courtship (e.g., [START_REF] Navas | Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus[END_REF], and rates of feeding, growth, survival, reproduction and development (e.g., Huey & Stevenson 1979[START_REF] Kingsolver | Thermal sensitivity of growth and feeding in Manduca sexta caterpillars[END_REF][START_REF] Frazier | Thermodynamics constrains the evolution of insect population growth rates: ''Warmer is better[END_REF][START_REF] Crespo-Pérez | Modeling temperaturedependent survival with small datasets: insights from tropical mountain agricultural pests[END_REF][START_REF] Logan | Natural selection on thermal performance in a novel thermal environment[END_REF].

All these variables respond rapidly (and usually reversibly) to changes in temperature (Angilletta 2009).

In the case of responses to temperature, these curves are commonly referred to as thermal performance curves (TPCs). TPCs are characterized by key properties, including an unimodal shape, a negative skewness at one of their tail, and a finite breadth (Angilletta 2009) and are commonly described with several metrics (Fig. 1): TPC rises with temperature (of the environment or body organism) from a minimum critical temperature (CTmin) to an optimum temperature (Topt) at which performance is maximal (Pmax). Then it drops to a critical thermal maximum (CTmax). Critical temperatures, CTmin and CTmax, operationally define the performance limits or thermal tolerance of an organism (see [START_REF] Lutterschmidt | The critical thermal maximum: history and critique[END_REF] for a review). The thermal breadth (Tbr) or performance breadth is the range of temperatures over which performance is greater than, or equal to, an arbitrary level of performance, usually expressed as a percentage of the maximal performance level (e.g. 50% in Fig. 1). performance is greater than zero, Tbr is thermal breath and Pmax is maximal performance at the optimum temperature. Adapted from Huey & Stevenson (1979).

TPCs describe the direct effect of temperature on organism fitness (Huey & Stevenson 1979[START_REF] Angilletta | The evolution of thermal physiology in ectotherms[END_REF][START_REF] Frazier | Thermodynamics constrains the evolution of insect population growth rates: ''Warmer is better[END_REF] and can be fitted mathematically to obtain performance models that relate specific performances to temperature. For a given species, TPCs differ in their thermal optimum, breadth and limits depending on the type of performance assessed (Huey & Stevenson 1979). Thus, thermal performance models provide a physiological framework for ecologists to understand the responses of organisms to environmental temperatures.

A drawback of TPCs is that they are generally built under stable temperature conditions along a defined gradient [START_REF] Barbour | Construction and performance of a temperaturegradient bar and chamber[END_REF], Huey & Stevenson 1979[START_REF] Angilletta | Estimating and comparing thermal performance curves[END_REF]), while most organisms experience fluctuating temperature conditions in their environment (Geiger 1965). Because of the variability of the climatic environment experienced by organisms (see paragraph I.2.), TPCs are difficult to build from field measurements and are usually defined in the laboratory, along a gradient of constant temperatures in closed apparatus [START_REF] Barbour | Construction and performance of a temperaturegradient bar and chamber[END_REF]. Temperature heterogeneity in time and in space has been shown to strongly modulate the performances of ectothermic organisms [START_REF] Wu | Development of insects under fluctuating temperature: a review and case study[END_REF][START_REF] Vázquez | Ecological and evolutionary impacts of changing climatic variability[END_REF]. For instance, [START_REF] Gilchrist | Specialists and generalists in changing environments .1. Fitness Landscapes of Thermal Sensitivity[END_REF] found that performance breadth was strongly modified by the stability of the thermal environment within generations. [START_REF] Estay | The role of temperature variability on insect performance and population dynamics in a warming world[END_REF] showed that population growth rate depends on the interaction between mean temperature and thermal variability (i.e., the standard variation). Finally, [START_REF] Vasseur | Increased temperature variation poses a greater risk to species than climate warming[END_REF] pointed that temperature-dependent growth rates of 38 ectothermic invertebrate species calculated with mean temperature changes alone differ substantially from those incorporating changes to both mean and variation. Existing predictions of performance models based on insect responses measured under constant temperatures may therefore yield different and less realistic results than predictions of models that include the effect of temperature fluctuation on organism's biology (Gilbert et al. 2004). Therefore, as pointed out by [START_REF] Bozinovic | The mean and variance of environmental temperature interact to determine physiological tolerance and fitness[END_REF], to predict organism's responses to their environments, ecologists must understand the patterns of thermal variation and the mechanisms by which animals cope with such variation within their environment.

b. Thermoregulation strategies

Organisms have evolved many strategies to face the thermal heterogeneity of their environment (Angilletta 2009). These strategies can be placed in a general conceptual framework defined by two dimensions (Fig. 2). The first dimension describes the degree to which an organism's performance depends on its temperature (i.e., the thermal sensitivity), ranging from organisms whose performance depends strongly on temperature (thermal specialists) to organisms that perform well over a broad range of temperature (thermal generalists). The second dimension describes the degree to which an organism regulates its INTRODUCTION 25 temperature (i.e., thermoregulation), ranging from organisms that maintain a nearly constant body temperature (perfect thermoregulators) to organisms that conform to their environmental temperature (perfect thermoconformers). In this framework, endotherms (from the Greek "endon" = "within" and "thermē" = "heat") are thermal specialists (which depend strongly on temperature) that thermoregulate precisely. Endotherms rely predominantly on the heat from internal metabolic processes [START_REF] Cossins | Temperature Biology of Animals[END_REF][START_REF] Prinzinger | Body temperature in birds[END_REF]): they maintain their body at a metabolically favourable temperature, largely by the use of the heat released by their internal body functions. For instance, human beings are perfect thermoregulators and specialist with a body temperature stabilized at 37.5°C.

On the other hand, ectotherms (from the Greek "ektós" = "outside" and "thermē" = "heat") rely on environmental heat sources, which permit them to operate at very economical metabolic rates, i.e., with low energetic costs (Sears & Angilletta 2015). Their internal physiological sources of heat are relatively small or quite negligible in controlling body temperature (e.g., plants, small insects; Huey & Stevenson 1979[START_REF] Cossins | Temperature Biology of Animals[END_REF], Brown 2004). Therefore, ectotherms regulate their body temperature making use of their abiotic environments. Within ectothermy, tremendous variations occur in terms of thermosensitivity and thermoregulation. For instance, most reptiles are specialists as their performance strongly depends on temperature, but their thermoregulation depends on behavioural capacities (see below, [START_REF] Dawson | On the physiological significance of the preferred body temperatures of reptiles[END_REF][START_REF] Gilchrist | Specialists and generalists in changing environments .1. Fitness Landscapes of Thermal Sensitivity[END_REF]. Insects can be found everywhere within this conceptual diagram from thermoregulators such as honeybees [START_REF] Harrison | Achievement of thermal stability by varying metabolic heat production in flying honeybees[END_REF] to strict thermoconformers such as Drosophila melanogaster [START_REF] Dillon | Thermal preference in Drosophila[END_REF]. Remarkably, the same species can even shift from one position to another within thermoregulation. Indeed, an individual may be a perfect thermoregulator during its diapause and a thermoconformer for the rest of its life cycle [START_REF] Danks | Seasonal adaptations in arctic insects[END_REF]). Likewise, nocturnal moths are thermoconformers, but shift to thermoregulators during the pre-flight and flight activity periods, because they warm up by contracting their wing muscles before flying [START_REF] Heath | Regulation of heat production by large moths[END_REF][START_REF] Heinrich | The hot-blooded insects: strategies and mechanisms of thermoregulation[END_REF]).
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For example, [START_REF] Briscoe | Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals[END_REF] showed how the arboreal koala Phascolarctos cinereus copes with extreme heat events in south-eastern Australia via a behavioural thermoregulation mechanism: during warm events koalas enhance conductive heat losses (see below paragraph I.2.b.) by hugging tree trunks that are substantially cooler than ambient air temperature (Fig. 3).

Figure 3: Thermal image of a koala hugging the cool lower limb of a tree, illustrating a posture typically observed during hot weather in Australia. From [START_REF] Briscoe | Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals[END_REF].
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The ability of many ectotherms to avoid potentially lethal body temperatures and to increase the time spent at optimal temperatures has obvious and profound effects on its physiology and fitness (Kingsolver 2009, Dillon et al. 2012). While endotherms thermoregulate their body temperatures using their own metabolic processes regardless of their environmental temperatures (Fig. 5), many ectotherms thermoregulate throughout a combination of physiological and behavioural mechanisms that allow them to deal with the spatial and temporal heterogeneity of their environment (e.g., to avoid the risk of thermal death or to maximize diverse performance traits). In this thesis, we will focus on ectothermic insect pests that are perfect thermoconformers and possess a body temperature closely related to the temperature of their environment (see Fig. 5). Temperature is a critical parameter that influences a variety of biological and environmental processes. Environmental temperatures shape the thermally-dependent performances of organisms and consequently condition their occurrences and distributions.

Therefore, organisms have evolved many physiological and behavioural strategies to cope with the thermal heterogeneity of their environment. Ectothermic organisms face the environmental conditions by taking advantage of its spatiotemporal variability. Thus, understanding the functioning of the spatiotemporal heterogeneity of the thermal environment available for a study organism (i.e., its microclimates) and the mechanisms by which organisms cope with such variation relative to their physiological sensitivities is primordial for an accurate comprehension of organism occurrence, fitness and distributions.

Indeed, forecasting the impacts of climate on organisms requires that we understand the details of how microhabitats filter environmental fluctuations, and whether heterogeneity at small scales is sufficient to allow organisms to find and exploit optimal and favourable conditions.

Microclimates a. Definition and use in the scientific community

The study of the relationships between organisms and climate is a classic question in ecology and has a long history (e.g., Cloudsley-Thompson 1962, Geiger 1965[START_REF] Woodward | Climate and Plant Distribution[END_REF], Jones 1992[START_REF] Pielke | Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate[END_REF]. Microclimate is usually defined as the climate experienced by an organism in its habitat. While Geiger (1965) initially defines microclimate as "the climate near the ground", it is now more braodly defined as the result of a combination of biophysical processes shaped by the surrounding environment, which causes climatic conditions to differ from macroclimates (Kearney et al. 2014, Storlie et al. 2014). Ecologists and agronomists were first interested in what temperatures should be considered among the variety of temperatures that occur at fine spatial scales (Fig. 6), and then in what features of the environment shaped the microclimates. Microclimates reflect the filtering of global climatic conditions by abiotic and biotic structures present in the environment (e.g., rocks of different sizes, soils of different compositions, topography of the ground surface, moisture, canopy density, etc.). This filtering happens through biophysical processes that involve environmental factors including air and surface temperatures, precipitation, radiation, and wind speed (Geiger 1965, Gates 1980, Jones 1992, Hannah et al. 2014).

To illustrate the evolution of microclimates in scientific research, we searched and collected in the ISI Web of Science database, the number of published papers (i.e., papers, letters, editorials and reviews only) per year since 1940, that included the keyword topics "TS= (Microclimate* OR Microclimatic)". Then, we refined the query using studies written The flow of heat between organisms and their environment occurs through a variety of physical processes, which depend on the environment considered (Gates 1980). In the case of an ecothermic terrestrial organism, four physical processes contribute significantly to the microclimate experienced by an organism: radiation, conduction, convection, and evaporation (Fig. 8). Each component that composes the habitat of the organism (e.g. plants, ground, rocks, water elements, living organisms, air) relies on these processes and will experience heat exchange among each other.

Radiation. The insect depicted in Fig. 8 gains heat mainly from the radiation absorbed by its body surface. Incoming radiations include the short-wave radiations from the sunbeam that reach the body surface directly (i.e. direct radiations; [START_REF] Porter | Thermodynamic equilibria of animals with environment[END_REF]. Part of the sunbeam (mainly UV and blue radiations between 270 and 450 nm) is scattered in terms of quantity, spectral properties and angular distribution by particles in the atmosphere. Reflected radiations are all radiations coming from the sunbeam that are mirrored by terrestrial objects such as rocks, soils, vegetation and clouds. The other part is composed by long-wave radiations emitted by all other surroundings (i.e., thermal radiations from 7.5 to 14 µm, Jones 1992). Infrared thermal radiations are also emitted by the body surface of the terrestrial ectotherm and are thus responsible for the radiative losses (heat loss by radiation; [START_REF] Church | Heat loss and the body temperatures of flying insects II. Heat conduction within the body and its loss by radiation and convection[END_REF], Bakken et al. 1989) itself dependent on the physical properties of organism's body (e.g. its emissivity; Rubio et al. 1997).

Conduction. It is the heat transfer within a body or between the organism and the surrounding objects that occurs only through physical contact. The transfer of heat by conduction occurs through microscopic diffusion and collisions of particles within the body (Gates 1980, Bakken 1992). Therefore, heat transfers through conduction increase with increasing contact between the body and other solid elements, principally the ground. In the case of thermal conduction, heat spontaneously flows from a warmer to a colder body or part of the body. Therefore, thermal conduction within the body reduces differences in temperature between the body surface (that receives the radiations) and the inner and cooler body parts [START_REF] Church | Heat loss and the body temperatures of flying insects II. Heat conduction within the body and its loss by radiation and convection[END_REF].

Convection. Convective heat transfer (or convection) is the transfer of heat from one place to another by the movement of fluids (mainly air in this case). Convection is caused by the variation in density of the air when temperatures are dissimilar. When the air is in contact with a warmer surface (e.g., the body), its molecules separate and scatter, causing the air to be less dense. As a consequence, this warm air is displaced while the cooler air (denser) sinks. The warmer part of the air transfers heat towards the cooler one, thereby decreasing organism's body temperature (Gates 1980). Convection heat transfers is reversible (depending on the thermal difference between air and body) and dependent on the body surface in contact with the air [START_REF] Vogel | Convective cooling at low airspeeds and the shapes of broad leaves[END_REF], Jones 1992). Small ectotherms loose less heat by convection than bigger organisms.

Evaporation. Evaporative cooling (e.g., sweating) happens when water from body surfaces evaporates, changing from liquid to gas. The energy needed to evaporate the water is taken from the body in the form of heat. In the case of an insect in a warm environment, if the heat needed for evaporation can be drawn from the body, body temperature can be prevented from increasing or even lowered below that of the environment [START_REF] Porter | Thermodynamic equilibria of animals with environment[END_REF][START_REF] Prange | Evaporative cooling in insects[END_REF]. However, an insect in a hot environment would be gaining heat from its surroundings at the same time it is attempting to cool down. Despite their relatively impermeable exoskeletons some minimal level of evaporation from an insect occurs at warm temperatures. The rate of evaporation increases with increasing body surface area and by the movement of the air over the surface. As the amount of steam (water at the gas phase) that air can hold increases non-linearly with temperature, water loss is likely to be greater at higher temperatures (Gates 1980). Additionally a high difference between the two temperatures induces strong evaporative cooling, which is the unique way for organisms to decrease their body temperature when the temperature of the environment is higher than the body temperature (Jones 1992). Adapted from Angilletta (2009) and Kearney et al. (2014).

Temperature of an organism determines the capacity for heat to flow between the organism and its environment (Angilletta 2009). Under environmental conditions, the heat flows between the body and the environment occur simultaneously in gains and losses. This relationship relies on the biophysical interaction of the thermal properties of the body (e.g., size, shape, solar reflectance) and the environmental factors including air and surface temperature, humidity, precipitation, radiation, and wind speed as defined by its habitat (e.g., slope, aspect, shading; Bakken 1992, Kearney et al. 2014). The organism will heat or cool until it reaches a steady-state temperature. At this steady state, the organism continues to exchange heat with its environment, but gains and losses cancel each other. c. Operative temperatures: linking microclimatic heterogeneity and biotic responses Given the complexity of processes controling climatic conditions experienced by an organism in its environment, the concept of operative temperature is used to understand how environmental conditions influence the body temperature of an organism. The operative temperature is the steady-state temperature of an organism in a particular microclimate in the absence of metabolic heating and evaporative cooling (Bakken 1992, Angilletta 2009). This temperature characterizes the thermal environment as perceived by the organism, independently of any physiological thermoregulation. Thus, operative temperatures deliver a thermal index that allows a single-number representation of the complex thermal environment. They can be measured directly using various biophysical figurines of the study organism (Bakken 1992): temperature sensors installed in figurines that mimic the key biophysical characteristics of the organism's body (e.g., with the same external properties of the animal such as size, colour and matter, Helmuth & Hofmann 2001[START_REF] Seebacher | Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method[END_REF][START_REF] Langer | Ways to measure body temperature in the field[END_REF] or in freshly dead bodies (Kingsolver 1985, Kemp & INTRODUCTION 39 Krockenberger 2002). For example, biophysical models of frogs made of gelatine (i.e., agaragar) and tinted with the same colour of the studied organism that include a precise thermometer are used to mimic frog body and record operative temperatures in a specific environment (Fig. 9). Biophysical figurines permit to explore the thermal environment at the same spatial scale experienced by organism, and can be replicated relatively easily to measure conditions at multiple sites. However, these empirical measurements should to be made at relevant spatiotemporal scales. The temperature experienced by organisms in their environments can be totally different from the conditions measured by a conventional weather station placed 2 m above ground level (defined by the World Meteorological Organisation). Worldwide a large body of literature has acknowledged that weather stations can misrepresent the thermal environment of living organisms (Cloudsley-Thompson 1962, Holmes & Dingle 1965, Geiger 1965[START_REF] Weiss | Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha[END_REF], Jones 1992, Bennie et al. 2008, Angilletta 2009, Scherrer & Koerner 2010, Sears et al. 2011, Sears & Angilletta 2015, Suggitt et al. 2011, Dobrowski 2011[START_REF] Graae | On the use of weather data in ecological studies along altitudinal and latitudinal gradients[END_REF][START_REF] Buckley | Can terrestrial ectotherms escape the heat of climate change by moving[END_REF], Hannah et al. 2014, Kearney et al. 2014, Scheffers et al. 2014a,b, Woods et al. 2016). Therefore, it is important to consider the climatic heterogeneity experienced by organisms at different temporal and spatial scales.

i. Temperature variations in time

Time has a significant effect on temperature variations at both macro-and micro-scales. The motion of the earth combined with the radiation from the sun drives a continuous redistribution of heat throughout the planet within time. Thus, living organisms must deal with thermal changes on a variety of temporal scales (Wang & Dillon 2014). First, environmental temperatures cycle daily because of the periodic exposure to solar radiation due to the rotation of the earth around its axis (Rojas et al. 2014). Second, environmental temperatures change seasonally because of the tilt of the earth as it orbits the sun. Third, environmental temperatures change quickly and unpredictably with atmospheric conditions (wind speed, cloud cover, etc.). Consequently, mean temperatures alone do not provide a complete understanding of these periodic patterns [START_REF] Camacho | Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures[END_REF]. By concentrating on climate means, the actual impact of climate on biological systems and organisms is probably being seriously mis-estimated [START_REF] Paaijmans | Temperature variation makes ectotherms more sensitive to climate change[END_REF][START_REF] Thornton | Climate variability and vulnerability to climate change: a review[END_REF]. Climate variability and extreme events are not only of critical importance for understanding the biological responses of living organisms [START_REF] Easterling | Climate extremes: observations, modelling, and impacts[END_REF][START_REF] Rhines | Frequent summer temperature extremes reflect changes in the mean, not the variance[END_REF] but also are expected to be exacerbated by climate change [START_REF] Karl | Trends in high-frequency climate variability in the twentieth century[END_REF], IPPC 2014), with strong implications for predicting species performances in a changing environment (e.g., [START_REF] Sheldon | The impact of seasonality in temperature on thermal tolerance and elevational range size[END_REF][START_REF] Vasseur | Increased temperature variation poses a greater risk to species than climate warming[END_REF].

ii. Thermal heterogeneity at different spatial scales

In addition to the temporal variability, the spatial heterogeneity is also one of the main issues of microclimate research. Spatial scale at which climatic data are studied and modelled ranged from the global scale, the regional scale, the local scale, to the organism's scale. At the regional scale: Capturing fine-grain environmental patterns at regional scales cannot be accomplished easily using conventional sampling techniques (i.e., standard weather stations) because of the structural complexity of the landscape [START_REF] Lookingbill | Spatial estimation of air temperature differences for landscape-scale studies in montane environments[END_REF] and the resulting thermal heterogeneity. Therefore, studies at the regional scale usually combine empirical fine-grain monitoring of climate (with a large number of miniaturized thermometers evenly distributed in space) with correlative models based on landscape features [START_REF] Chuanyan | Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China[END_REF][START_REF] Ashcroft | A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix[END_REF]. Elevation, topography and slope are some of the main landscape features that influence the drivers of climate heterogeneity at the regional scale (Dobrowski 2011). These topoclimatic effects (i.e., spatial estimates of climate as it varies with topographic position in the landscape) result mainly from differences in slope orientation and angle towards solar radiation and wind (Bennie et al. 2008). Therefore, solar radiation is commonly used as a predictor variable in modelling temperature in complex terrain at the regional scale (Fig. 11). 

At the local scale:

The local scale is an intermediate between the regional scale (that might extent from one to hundreds of square kilometres) and the organism scale (basically the environment of an organism, i.e., from few millimetres to meters). Thermal heterogeneity at the local scale could be defined as the environment experienced by a study organism along its life cycle. Therefore the local scale mainly depends on the body size of the focal organism and its capacities to move within the environment: a spatial scale of 1 m 2 may be long for a 1mg ant but short for a 1-kg lizard (Sears et al. 2011, Sears & Angilletta 2015). However, assessing microclimates at the local scale is not straightforward because of the variety of abiotic and biotic elements making up this scale: topography and macroclimate interactions but also micro-topography of the ground surface, vegetation and plant canopy structure, nearby organism interactions, areas of water, rocks or other local objects (Woods et al. 2016).

All elements interact with each other and with macroscale conditions thereby leading to a fine-scale mosaic of climate (Fig. 12). Among all the spatial scales of microclimates, the local scale has been the least studied (e.g., Sears et al. 2011, Sears & Angilletta 2015, Woods et al. 2016) mainly because of methodological limitations in climate heterogeneity quantification.

At the organism scale: Organism scale corresponds to the spatially restricted extent in which an organism occurs at a defined time. This scale is one of the most studied by biophysical researchers who seek understanding organism-environment interactions throughout thermal budgets [START_REF] Vogel | Convective cooling at low airspeeds and the shapes of broad leaves[END_REF], Gates 1980, Kingsolver 1985, Jones 1992, Kingsolver 2009[START_REF] Saudreau | Experimental study of fruit temperature dynamics within apple tree crowns[END_REF]. For instance, Pincebourde & Casas (2006a,b) studied the modifications of the thermal environment inside a mine of an apple tree leaf by the leafmining insect Phyllonorycter blancardella (Lepidoptera: Gracillariidae). Schematic cross section of a mine and determinants of heat transfer. Adapted from Pincebourde & Casas (2006a).

Plant tissue modifications by the miner alter leaf solar radiations absorbance and gas exchange (Fig. 13), which results in an increase of 5°C in temperature inside the mined leaf compared to intact leaves (Pincebourde & Casas 2006a). These organism-modified microclimates influence in turn the performances of leaf-dwelling insects [START_REF] Pincebourde | Leaf miner-induced changes in leaf transmittance cause variations in insect respiration rates[END_REF]. Studying the microclimates at such fine scales is relatively accessible due to the variety of technologies available (e.g., thermometer, thermocouple, distributed temperature optic fibre, automatized greenhouse or climate chamber) and because most of the experiments can be performed under controlled conditions. e. Scale mismatch and methods to study ecologically-relevant microclimates Scale gap in thermal ecology: Potter et al. (2013) recently highlighted the spatial mismatch between the size of organisms and the resolution at which climate data are collected and modelled (Fig. 14). The majority of living organisms on earth are smaller than a few centimetres [START_REF] May | How many species are there on earth?[END_REF] whereas the spatial resolution of climate data used in species distribution models is often of one to many kilometres. In their meta-analysis, Potter et al. (2013) showed that the resolutions of the climate grids used in species distribution models are, on average, 10,000-fold larger than studied animals, and 1,000-fold larger than studied plants. Interestingly, the mismatch between insect body length and the climatic grid length is one of the largest of all. Strikingly, their study also revealed that two climatic database were predominantly used in species distribution models (the two peaks in the grid-size density plots in Fig. 14): the grid scales of 1 and 10 km 2 which correspond to the resolution of one of the most widely used and readily available climate database, the WorldClim (Hijmans et al. 2005). [START_REF] May | How many species are there on earth?[END_REF]paper [(May, 1988), Figure 6], which represents his estimate of the body size distribution of all terrestrial animals. Density plots of the rest of the terrestrial data are shown at the bottom for comparison. Adapted from Potter et al. (2013). occurrences and distribution. Consequently, several methodologies have been developed to study microclimates and their effects on organisms and species. Stochastic weather generators (e.g., the Worldclim) produce synthetic time series of weather data for a location, based on the statistical characteristics of observed weather at that location [START_REF] Furrer | Generalized linear modeling approach to stochastic weather generators[END_REF]. Therefore, combined with operative temperatures recorded in the field, stochastic weather generators allow modelling microclimates. This method has proven a powerful interpolative tool for defining and projecting climatic envelopes (Guisan & Thuiller 2005, Elith & Leathwick 2009). However, such correlative microclimatic models are not well suited for obtaining a detailed understanding of the climatic constraints limiting species distributions, since processes are only captured implicitly [START_REF] Dormann | Correlation and process in species distribution models: bridging a dichotomy[END_REF]. Moreover, statistical correlative models may not be extrapolated over other extents because they can only be applied to the conditions under which they were fitted.

Another way to accurately model the microclimatic conditions experienced by an organism is using mechanistic models (Kearney & Porter 2009, Buckley et al. 2010).

Complex mathematical functions based on the fine analyses of the biophysical processes between the structural properties of the environment and the body allow assessing and estimating both microclimates and body temperatures (Gates 1980). These mechanistic models, known as thermal budgets or energy budgets, use fundamental knowledge of the interactions between process variables to define the model structure. Therefore, they do not require much data for model development and validation. This kind of models can be interpolated over large landscapes (when inputs data are available) to assess spatial and temporal variations of microclimatic conditions at wider scales. Recently, Kearney et al. (2014) developed the microclim model that quantifies key microclimatic parameters at macroscales (i.e., continental) for all terrestrial landmasses, with a relatively fine spatial (15 km 2 ) and temporal resolution (hours). However, the model requires a large amount of specific
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Microclimates are driven by interactions between complex biophysical processes, the structural composition of the environment and the macroclimate features. Consequently, the heterogeneity of microclimates creates complex thermal mosaics that change across time and space. Temperatures gathered from weather stations are unlikely to represent biologicallyrelevant operative temperatures. Quantifying these spatiotemporal heterogeneities of temperature can be made through statistical and mechanistic models or empirically at various spatial scales from large (global and regional) to fine (local and organism) scales with diverse resolutions. Since spatial heterogeneity in the thermal environment as perceived by a given organism is likely to have important consequences on its occurrence and performances, one might conclude that quantifying the thermal heterogeneity of microclimates constitutes a major challenge for researchers interested in predicting responses of organism to their environment at a relevant scale. The same concern arises when considering agricultural landscape and crop pests. Indeed, by the variety of plant phenologies and structures, agricultural landscapes provide ectothermic inhabitants, including crop pests, with a massive but still poorly studied, heterogeneity of microclimates. INTRODUCTION 53 crop fields increased light interception (enhancing the photosynthesis process) and decreased the evapotranspiration rate. [START_REF] Batugal | Intercropping potato with maize in lowland Philippines[END_REF] showed that intercropping potatoes with corns provided partial shade to the potato plants during strong radiation events, thereby reducing air and ground temperatures (temperature reducing systems), and improving tuber production. [START_REF] Sharaiha | Dinitrogen fixation of faba bean as affected by intercropped systems with[END_REF] reported that both air and soil temperatures required for fava bean nitrogen fixation were significantly more optimal when fava bean was planted in association with peas or lettuce as compared with fava bean monocultures. [START_REF] Smart | Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A review[END_REF] showed that plant canopy structure enhanced grapevine yield and quality by modifying radiation interception rate and moisture. Moreover, microclimate beneath tree canopy in agroforestry systems protected crop plants (such as coffee) against extreme climatic events by providing shades and lower air temperatures than the above tree canopy air temperatures [START_REF] Hardwick | The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate[END_REF]. Tompkins et al. (1993) and Suh et al. (2002) showed how agronomic practices and canopy closure influenced the infestation of crop diseases and pests by modifying the components of the in-field microclimates (Septoria sp in wheat field and Trichogramma exiguum in cotton field, respectively). Also, Willmer et al. (2008) reported how intra-field microclimates constrained the distribution patterns of raspberry beetle (Byturus tomenfosus). Until recently, most studies focused on multiple point measurements of microclimates rather than continuous assessments of microclimates that occur at larger scales.

Therefore, and unfortunately, these descriptors carried limited information about the spatial heterogeneity of temperatures in agricultural landscapes.

b. Contributions of precision agriculture

The recent and topical development of precision agriculture and remote sensing domains has brought new insights for the assessment of the thermal heterogeneity across agricultural landscapes. In particular, the development of thermal infrared cameras has opened new opportunities to quantify the spatial heterogeneity of microclimates in agrosystems (Inagaki et al. 2008, Meron et al. 2010[START_REF] Agam | Spatial distribution of water status in irrigated olive orchards by thermal imaging[END_REF][START_REF] Bellvert | Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle[END_REF][START_REF] Petach | Monitoring vegetation phenology using an infrared-enabled security camera[END_REF].

Infrared thermography is an imaging method that records infrared waves emitted by an object in the electromagnetic spectrum within the range of light -from 7.5 to 14 µm (Fig. 16).

Radiation readings are converted into surface temperature by the thermal infrared camera taking into account the ambient conditions and emissivity (Rubio et al. 1997). Thermal infrared images allow the study of surface temperature patterns over a large spatial extent and are widely applied to precision agriculture issues. Thermal remote sensing is the capture of thermal infrared images from aircraft-based or satellite-based sensors. These images provide spatially distributed estimations of land surface temperatures over large-scale areas [START_REF] Anderson | Upscaling flux observations from local to continental scales using thermal remote sensing[END_REF], Kuenzer & Dech 2013). Surface temperatures are measured by satellite sensors such as Landsat, AVHRR, MODIS and ASTER [START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF]. Once the atmospheric component corrections performed (e.g., particles and water vapour, Quattrochi & Luval 1999[START_REF] Glenn | Integrating remote sensing and ground methods to estimate evapotranspiration[END_REF], thermal remote sensing provides accurate values of surface temperatures (i.e., an accuracy of less than ±1°C, see [START_REF] Hook | Land surface temperature measured by ASTER First results[END_REF], [START_REF] Jacob | Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[END_REF] and [START_REF] Coll | Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[END_REF] for details). Thermal remote sensing in precision agriculture yields continuous measurements of surface thermal heterogeneity of agricultural landscapes (Kuenzer & Dech 2013) and allows quantifying crop indices based on temperatures [START_REF] Moran | Opportunities and limitations for imagebased remote sensing in precision crop management[END_REF][START_REF] Glenn | Integrating remote sensing and ground methods to estimate evapotranspiration[END_REF][START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF]. For instance, evapotranspiration and soil moisture or Crop Water Stress Index (CWSI) can be spatially estimated through remotely sensed crop surface temperatures [START_REF] Soer | Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures[END_REF][START_REF] Moran | Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[END_REF], Berni et al. 2009, Meron et al. 2010).

Even more recently, thermal remote sensors placed on unmanned aerial vehicles (UAVs) provide low-cost approaches to meet the critical requirements of fine spatial and temporal resolutions over agricultural landscapes (Plate 1). Autonomously operated, flying low and slow, UAVs offer scientists new opportunities for scale-appropriate measurements of the thermal landscapes. Few recent studies illustrated the use of this novel technology for resolving agronomical issues: crop water stress index is the first coming output from highresolution thermal infrared images as it allows to map the spatial variability in water status across agricultural landscapes at very fine spatial resolutions (Fig. 17, Zarco-Tejada et al. 2012[START_REF] Gonzalez-Dugo | Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard[END_REF][START_REF] Bellvert | Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle[END_REF]). UAV's thermal imaging has also been used as an indicator of field's infestation by diseases [START_REF] Calderón | Detection of downy mildew of opium poppy using high-resolution multispectral and thermal imagery acquired with an unmanned aerial vehicle[END_REF]. The spatial resolution of the thermal infrared maps obtained in those studies were at best of 20,30,40 and 49 cm per pixel on a spatial extent of 0.2, 11, 1.2, 42 ha for [START_REF] Calderón | Detection of downy mildew of opium poppy using high-resolution multispectral and thermal imagery acquired with an unmanned aerial vehicle[END_REF], INTRODUCTION 57 thermal responses is crucial for understanding their occurrence and dynamics [START_REF] Travis | Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches[END_REF]. However, pests' responses to temperature may differ if exposed to constant or fluctuating temperature regimes (Gilbert et al. 2004[START_REF] Davis | Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae)[END_REF][START_REF] Wu | Development of insects under fluctuating temperature: a review and case study[END_REF][START_REF] Vázquez | Ecological and evolutionary impacts of changing climatic variability[END_REF]. Thus, pest population dynamics in highly variable environmental conditions may differ from those in more constant ones. This may be especially the case in environments, like complex agricultural landscapes of the Tropical Andes, where temperatures tend to vary within a 30°C range within a day (Dangles et al. 2008) and where the spatial composition of the landscape favours the spatial heterogeneity of temperatures.

Under fluctuating (in time) temperature regimes, [START_REF] Davis | Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae)[END_REF] found that aphid Myzus persicae (Sulzer) had higher optimal and upper developmental thresholds (Fig. 18). The relationship between experienced temperatures and the developmental rate of pests is crucial for understanding a variety of biological processes that occur in agricultural landscapes (e.g., pest infestation in the field). To accurately estimate this relationship, the thermal component of pests' ecological niches is of major interest to understand both patterns and processes of their occurrence and distribution dynamics in agricultural landscapes.
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Microclimate has long been studied throughout an agricultural perspective. Many works have depicted the relationship between one-location microclimate and various crop factors (e.g., yield, growth). Then, the apparition of thermal remote sensing has permitted to study the spatiotemporal thermal heterogeneity within agricultural landscapes. Very recently, thermal sensor on-board unmanned aerial vehicles brought new insights for the study of microclimates at spatiotemporal scales relevant for the study of crop related phenomena.

These new technical innovations would permit agronomists to bridge the gap between the body lengths of the studied organism (e.g., plants or insects) and the spatiotemporal resolution of the climatic data of their studies. Therefore, quantifying the heterogeneity of the thermal environment experienced by ectothermic pests becomes accessible and repeatable at the extent of agricultural landscapes (i.e., the local scale) and offer news approaches for studying pest issues in thermal agroscapes. Because crop pests are ectothermic organisms that respond to the rules of temperature dependency for their performances, the thermal environment in which they evolved plays a key role in shaping population dynamics.

II. Thesis justification

Based on the literature review presented above, we identified three key remaining challenges to be overcome for improving our general understanding of microclimate patterns. These challenges are particularly relevant in agrosystems but could also be of interest to other types of ecosystems.

Microclimates and climate change

Climate change affects ecological and evolutionary responses of living organisms represents across multiple biomes and organizational scales. Indeed, climate warming will modify ecosystem structure and functioning, lead to the extinction of the populations of some species [START_REF] Parmesan | Ecological and evolutionary responses to recent climate change[END_REF] while increasing levels and distribution ranges of others, such as crop pests and disease vectors [START_REF] Chakraborty | Climate change, plant diseases and food security: an overview[END_REF][START_REF] Luck | Climate change and diseases of food crops[END_REF]. As it has been widely projected that global warming would yield an increase in climate variability (IPCC 2014) leading to novel global climatic landscapes, efforts have started to focus on predicting how species, and their distributions, will respond to future climates [START_REF] Bale | Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[END_REF][START_REF] Parmesan | Ecological and evolutionary responses to recent climate change[END_REF][START_REF] Buckley | Can terrestrial ectotherms escape the heat of climate change by moving[END_REF][START_REF] Paaijmans | Temperature variation makes ectotherms more sensitive to climate change[END_REF], Hannah et al. 2014[START_REF] Kingsolver | Climate variability slows evolutionary responses of Colias butterflies to recent climate change[END_REF]. To assess species' response to climate change, mapped environmental data coarsely resolved in time and space are commonly used. However, coarsely resolved temperature data are typically inaccurate for predicting temperatures in microhabitats used by an organism (see above paragraph I.2.d.ii). Consequently, climatic niches and species distribution models based on the coarse-scale climatic data for forecasting the species' response to climate change are likely to misestimate of species biogeographical shifts (Storlie et al. 2014). Moreover, microclimates have recently been studied for their capacities to buffer organism's exposure to climate change [START_REF] Scherrer | Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming[END_REF][START_REF] De Frenne | Microclimate moderates plant responses to macroclimate warming[END_REF], Hannah et al. 2014, Scheffers et al. 2014a, Woods et al. 2014[START_REF] Maclean | Microclimates buffer plant community responses to climate change[END_REF] and even to hamper evolutionary responses (i.e., adaption and acclimation) in the face of climate change [START_REF] Buckley | Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change[END_REF][START_REF] Kingsolver | Climate variability slows evolutionary responses of Colias butterflies to recent climate change[END_REF]. For instance, [START_REF] Lenoir | Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe[END_REF] suggested that fine-grained thermal variability over tens of metres (i.e., spatial microclimate) exceeds much of the climate warming expected for the coming decades. Such spatial variability in temperature provides local buffering to mitigate future climate-change impacts within one square kilometre only. Consequently, accurately predicting how organisms will respond to climate change requires deepening our knowledge about the thermal heterogeneities in space and time that occur in the environment experienced by an organism, thereby radically reducing the mismatch between the spatial scales of climatic data and the body size of the organism studied.

Methods for characterizing thermal heterogeneity at relevant spatial scales and resolutions in agricultural landscapes

One of the main challenges in microclimatic studies concerns climatic data collection (Potter et al. 2013). Sampling microclimates perceived by a given species at relevant scales and resolutions is of critical importance for future research on microclimate issues. However, predicting temperature heterogeneity at fine resolutions over large areas is not straightforward using existing methods such as thermal remote sensing. Indeed, a fundamental requirement for providing useful remote sensing products is the capacity to combine both high spatial resolution (the closest possible to the organism body size) and temporal resolution adapted for the target organism or crop [START_REF] Moran | Opportunities and limitations for imagebased remote sensing in precision crop management[END_REF], Kuenzer & Dech 2013). Current thermal imaging satellite-based products have limited application in crop management due to the low spatial resolutions provided: microbolometer sensors used in remote sensing commonly offer c.a. 100 m pixel size thermal images (ASTER and Landsat images, [START_REF] Kalma | Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[END_REF], Berni et al. 2009, Kuenzer & Dech 2013), a spatial resolution that is impractical for site-specific agricultural applications, thereby limiting the usefulness of remote sensing products for finescale thermal agricultural landscape studies. Alternatives based on airborne sensors can deliver higher spatial resolutions and are more flexible in terms of repeatability. Airborne remote sensing has demonstrated capabilities for vegetation climatic condition monitoring due to high spatial thermal resolutions used, ranging between 1 and 2 metres per pixel, enabling for instance the detection of water-stressed trees in orchards for site-specific field management (Berni et al. 2009). However, the high operating costs and long turnaround times due to high volume of data acquired have so far intensively limited the use of airborne and satellite data for research activities. Additionally, the spatial resolution provided by these technological means is still far from the fine-scale spatial resolution needed over large spatial areas such as agricultural landscapes.

Microclimates for understanding pest occurrence and distribution in agricultural landscapes

Despite centuries of effort, we are still far from a complete integrate pest management of insect pests [START_REF] Chakraborty | Climate change, plant diseases and food security: an overview[END_REF], Bebber et al. 2014[START_REF] Sakschewski | Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?[END_REF].

Global population is increasing, and projections suggest that a system that currently keeps a billion people hungry will have to feed an extra three billion within the next 50 years [START_REF] Birch | How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems[END_REF]. If future world demand is to be met, food production must virtually double by the year 2050 [START_REF] Tilman | Global food demand and the sustainable intensification of agriculture[END_REF]. One potential approach of meeting this demand is the control of pests, which globally consume (pre-and post-harvest) the amount of food sufficient to feed more than 1 billion people [START_REF] Birch | How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems[END_REF], Oerke 2006). In the context of global warming and increasing climatic variability, a major uncertainty that hampers effective pest management is that related to the thermal characteristics of agricultural landscapes, which a are known to have profound effects on insect pest dynamics (e.g., Dangles et al. 2008).

Therefore, comprehending the impacts of microclimates available in agricultural landscapes on pest performances and small-scale distribution is of prime importance to further integrate those relationships in performance and species distribution models.

The thesis was developed in the context of thermal agricultural landscapes and pest temperature-dependent performances that we presented above. The microclimatic challenges exposed here acted as drivers of this work, and can be retrieved throughout the entire thesis.

For improving our general understanding of microclimate patterns and their consequences on ectothermic organisms, the agrosystems of the tropical Andes provide a perfect and relevant study site in regards to these microclimatic challenges, for various reasons that are explained in the following part. In the sections that follow, we firstly present the study region and study site where our experiments were set up, and then expose the main objectives of this thesis. The tropical Andes are located in South America and extend over 1.5 million km 2 (area over 1000 m a.s.l.) from 11°N to 23°S, i.e. from west Venezuela to north Chile and Argentina, encompassing Colombia, Ecuador, Peru and Bolivia (Fig. 19; [START_REF] Tovar | Diverging responses of tropical Andean biomes under future climate conditions[END_REF]. It is the longest and widest mountainous region in the tropics worldwide, occupying an elevation range from 1000 m up to 6768 m a.s.l. (Mt. Huascarán in Peru). The Tropical Andes are primarily composed by parallel high mountain chains (two in Venezuela, Ecuador, South Peru and Bolivia, and three in Colombia) with a large number of snow-capped peaks (96 summits), and a vast mountain plain, the Peruvian-Bolivian Altiplano [START_REF] Josse | Physical geography and ecosystems in the tropical Andes. Climate change and biodiversity in the tropical Andes[END_REF].

The Andes are the result of the Cenozoic (i.e., ~ 65.5 million years ago) tectonic shortening of the South American plate margin caused by the subduction of oceanic crust, the Nazca plate (Fig. 19; [START_REF] Sobolev | What drives orogeny in the Andes?[END_REF][START_REF] Capitanio | Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline[END_REF]. While the compression of the western rim of the South American plate is the primary cause of the Andes rise, volcanic activity (as a result of subduction of the Nazca plate), is also a significant phenomenon in the building of the Andes [START_REF] Stern | Active Andean volcanism: its geologic and tectonic setting[END_REF]). Indeed, the Andes are the world's second highest orogenic belt and include at least 200 active quaternary volcanoes, occurring in four separate segments referred to as the Northern, Central, Southern, and Austral Volcanic Zones (Fig. 19).

b. Climate settings

Unlike temperate zones, seasonal variations in temperature are small in the tropics (Fig. 20-A.) and seasonal markers such as day length variation are absent. Seasonality, as defined by [START_REF] Bonebrake | Climate heterogeneity modulates impact of warming on tropical insects[END_REF], is the intra-annual standard deviation of mean monthly temperature. These authors consider areas with low (or absent) seasonality as any area with a measure of seasonality below 4°K, which roughly corresponds to tropical and subtropical global isotherms [START_REF] Legates | Mean seasonal and spatial variability in gaugecorrected, global precipitation[END_REF]. Seasonality in temperature is strongly dependent upon latitude with the most seasonal areas occurring at high northern latitudes (Fig. 20-A.). In the study area, seasonality measured across a 4 year sampling of air temperature was evaluated at 1°K (see appendix 6 of Chapter I). Even though the tropical Andes lack a clear seasonality in temperature, this region does present temporal variability in precipitation: precipitation patterns mainly result from a combination of events such as El Niño Southern Oscilation event which causes annual or sometimes decadal oscillations leading to increases of rain or draught depending on the location [START_REF] Poveda | Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots[END_REF]) and the easterly flow of moisture from the Amazon Basin [START_REF] Vizy | Relationship between Amazon and high Andes rainfall[END_REF][START_REF] Poveda | Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots[END_REF]. Roughly, precipitation patterns in the tropical Andes are quite complex and difficult to predict and contribute to the high heterogeneity of the landscapes. Although displaying a lack of seasonality, the tropical Andes are characterized by strong spatial gradients in climatic variables mainly associated with changes in elevation [START_REF] Young | Andean land use and biodiversity: Humanized landscapes in a time of change[END_REF][START_REF] Josse | Physical geography and ecosystems in the tropical Andes. Climate change and biodiversity in the tropical Andes[END_REF]. Spatial heterogeneity at the regional scale in tropical Andean landscapes is indeed remarkable (mountaintops can exceed 6000 m.a.s.l. with adjacent valley bottoms reaching 3000-4000 m below) and is probably the most important feature that shapes climates and natural ecosystems (McCain 2007[START_REF] Young | Andean land use and biodiversity: Humanized landscapes in a time of change[END_REF]. Consequently, by dividing the regional scale spatial heterogeneity of temperature with the measure of seasonality, [START_REF] Bonebrake | Climate heterogeneity modulates impact of warming on tropical insects[END_REF] showed that the spatial heterogeneity in temperature strongly exceeds seasonality in the tropical Andes, illustrating the relevance of this region for studying spatial-temperature-related patterns (Fig. 20-B.). Moreover, due to the high elevation of this region and its tropical location, diurnal temperatures vary more within days (up to 30°K variation) than within months and years (less than 1°K): the pattern of hot days and cold nights overshadows temperature variations through the year (Dangles et al. 2008).

c. Implications for agriculture

The specific spatiotemporal climatic patterns occurring in the tropical Andes have led to particular land uses [START_REF] Otero | Landscape structure and live fences in Andes Colombian agrosystems: upper basin of the Cane-Iguaque River[END_REF]. Indeed, unlike high altitude landscapes in temperate regions, which are commonly regarded as relatively pristine places, tropical mountains have a long history of human occupation and impact [START_REF] Young | Andean land use and biodiversity: Humanized landscapes in a time of change[END_REF]. Agriculture is one of the first consequences of this anthropogenic implantation. Agricultural systems are organised in agroecological belts along the gradients of elevation and climate [START_REF] Becker | Ecological and land use studies along elevational gradients[END_REF], ranging from low elevations up to 4500 m a.s.l. Numerous crops are cultivated in these belts of the tropical Andes [START_REF] Millones | Patterns of land use and associated environmental problems of the Central Andes: an integrated summary[END_REF][START_REF] Knapp | Andean ecology: adaptive dynamics in Ecuador[END_REF]: in the lowlands (from 1000 to 2000 m a.s.l.) the major crops are banana (Musa acuminate L.), coffee (Coffea arabica L.), cacao (Theobroma cacao L.), rice (Oryza sativa L.), sugar cane (Saccharum angustifolium L.), african palm, tomato (Solanum lycopersicum L.) and tropical fruits such as mango (Mangifera indica L.), avocado (Persea americana L.), naranjilla (Solanum quitoense L.), pineapple (Ananas comosus L.), coconut (Cocos nucifera L.), etc. The major crops in the highlands (from 2000 to 4500 m a.s.l.) are potato (Solanum tuberosum L.), corn (Zea mays L.), broad bean (Vicia faba L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), pea (Pisum INTRODUCTION 67 sativum L.), soybean (Glycine max L.), quinoa (Chenopodium quinoa L.), lupin (Lupinus mutabilis L.), alfalfa (Medicago sativa L.) and cultivated grasses for farm animal breeding.

Due to the lack of seasonality in the region, crops can be planted, grown and harvested all year round (as illustrated by the steady CO 2 assimilation by plants throughout the year in Ecuador, Fig. 21), thereby creating agricultural landscapes made up of a wide variety of crops at different phenological stages (stages of maturation). This is a critical advantage for studying microclimates in agricultural landscapes because at the same time and over small area, all vegetation-based microclimates are encountered (see below). 

Agricultural landscapes of the study site

The main study site of this work was located 115 km south from the equatorial line (01°01'36"S, 78°32'16"W) in the Cotopaxi province of Ecuador (Fig. 22). It spreads out on a 20-km 2 elevation transect ranging from 2,600 to 3,800 m a.s.l., which broadly corresponds to the elevation belt of potatoes in Ecuador (Pumisacho & Sherwood 2002). The gradient had a southwest exposure and an average slope of 9.5° (±5.2). The study area is marked by an altitudinal gradient in temperature with mean monthly air temperature roughly decreasing by 0.6°K every 100 m of elevation (McCain 2007), featured by a mean monthly air temperature of 13.26 ±0.4°C at 2800m, 10.86 ±0.6°C at 3200m, and 9.36 ±0.4°C at 3600 m a.s.l.

In this study area, agriculture is the main component of the economy with many people depending directly or indirectly on agricultural activities (MAGAP, Ministerio de Agricultura, Ganadería, Acuacultura y Pesca de Ecuador, 2014). Agriculture activity is mainly based on small farm units with most fields < 1 Ha (Fig. 23). Agricultural productivity faces many challenges associated with climate change and extreme events, limited access to technology and infrastructure (related to both elevated costs and remoteness of many sites), low margins of gains faced by the volatile market prices, lack of people's education, and institutional changes that weaken the internal social organization and cause cultural erosion in the Andean society (Perez et al. 2010, FAO Food andAgriculture Organisation 2014). Like other tropical mountain regions, Ecuadorian Andean landscapes have been intensely fragmented by long-term human influences, mainly related to agricultural practices [START_REF] Young | Andean land use and biodiversity: Humanized landscapes in a time of change[END_REF]) that have transformed the region into a complex mosaic of cultivated fields, housing, and roads (Fig. 23 and24). These intensively humanized landscapes, dominating the altitudinal belt between 2600 and 3800 m, are typically composed by field crops of potato (Solanum tuberosum), broad bean (Vicia faba), corn (Zea mays), alfalfa (Medicago sativa), and pastures, natural grasslands (called paramos) and a few forest patches (Fig. 24). This cultivated mosaic, emerging from the steady climatic conditions of the region and the organization of cropping systems by farmers, is characterized by the spatial arrangement of the fields. A variety of practices such as soil tillage, sowing, weeding, fertilization, harvest and the farmer objectives of crop production will contribute in shaping the agricultural landscapes [START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations?[END_REF]. Within the study area, landscape heterogeneity in composition and structure evolve following the studied gradient: lower elevations are dominated by small fields (0.36 ±0.1Ha) of potato, corn, broad bean, and pasture while the higher elevations had larger fields (0.76 ±0.3 Ha) of mainly potato and pasture for breeding (Fig. 24). This cultivated mosaic is not just heterogeneous in space but also strongly dynamic (i.e., temporal heterogeneity) due to crop phenology, and the cropping system (i.e., crop rotations). Several factors drive the temporal organisation of the cropping system by farmers.

Among them, environmental factors (i.e., soil, slope, exposure, elevation), production resources (work capacity, available equipment) and the accessibility to the fields (i.e., the spatial configuration of field patterns, distance and scattering of fields in relation to the farm building) are crucial in choosing crop practices and rotations. The steadiness of the macroclimatic conditions combined with an altitudinal gradient and a high complexity of the landscape structure (crop types and phenologies) make this study region highly relevant for the study of microclimates at the local scale (see below paragraph . This spatiotemporal heterogeneity provides the opportunity to study the crop-based microclimates during vegetation growth and over small area under identical macroclimates.

In summary, the spatiotemporal organization of agricultural practices, determined by various driving factors, specifically environmental characteristics of fields, on-farm resources and logistic constraints, lead to complex spatiotemporal agricultural landscapes in the Ecuadorian Andes. This spatiotemporal heterogeneity provides the opportunity to study the crop-based microclimates during vegetation growth and over small area under identical macroclimates. Moreover, the spatiotemporal heterogeneity of composition and structure in agricultural landscapes will be decisive for insect population distribution and persistence [START_REF] Benton | Farmland biodiversity: is habitat heterogeneity the key?[END_REF][START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF][START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF][START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations?[END_REF].

Pests a. Overview of pests in the study site

The emergence and propagation of agricultural pests constitute important threats to agriculture in the region and worldwide (Bebber et al. 2014). Losses caused by pests are estimated to approach 60-70% in available crop production and storage in developing countries (Thomas 1999, Oerke 2006[START_REF] Nwilene | Impact of integrated pest management on food and horticultural crops in Africa[END_REF]. In Ecuador, agricultural landscapes offer a wide variety of crops at different stages of maturation, implying that a great diversity of crop pests can be found all year round (Instituto Nacional de Investigaciones Agropecuarias del Ecuador INIAP, Brader 1982[START_REF] Young | Andean land use and biodiversity: Humanized landscapes in a time of change[END_REF]. In this thesis, we focused on the potato crop pests because of the economic importance of this crop in the study region and worldwide (Pumisacho & Sherwood 2002). Indeed, after cereals, potato is the most important cultivated crop in the world. Potatoes are produced in almost every country and each year more than 320 million metric tons are produced [START_REF] Hijmans | Global distribution of the potato crop[END_REF][START_REF] Harris | The potato crop: the scientific basis for improvement[END_REF]. In Ecuador, potatoes constitute a central element of household and national economies, contributing with more than 7 % of the country's Gross Domestic Product (GDP; [START_REF] Devaux | Ecuador y Perú)[END_REF].

Although the tropical Andes are the centre of origin of potatoes, they contribute with only 1.38 % of world production. Recently, production has increased in this region, but yields are still considerably lower than the world average: 7 t/ha in Ecuador while the average yields in developed countries reach 42 to 88t/ha [START_REF] Hijmans | Global distribution of the potato crop[END_REF], Pumisacho & Sherwood 2002).

Andean farmers face constant problems with potato production, some of them related to climate (such as frost, hail or draught) or market prices, but mainly to pests and diseases which have been estimated to cause losses in production of 32% in the country (Pumisacho & Sherwood 2002[START_REF] Keller | Integrated Pest Management of the Potato Tuber Moth in Cropping Systems of Different Agroecological Zones[END_REF].

In the study region, the major potato pests and diseases (Plate 2) are fungus such as Phytophthora infestans L. (potato late blight; [START_REF] Nowicki | Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding[END_REF], Sparks et al. 2014), viruses such as the Potato yellow mosaic begomovirus L. [START_REF] Robert | A new geminivirus infecting potatoes in Venezuela[END_REF][START_REF] Morales | Potato yellow mosaic virus: a synonym of Tomato yellow mosaic virus[END_REF], epitrix such as the tuber flea beetle Epitrix tuberis L. [START_REF] Vernon | Effects of soil type and moisture on emergence of tuber flea beetles, Epitrix tuberis (Coleoptera: Chrysomelidae) from potato fields[END_REF], the Andean potato weevil Premnotrypes spp. L. [START_REF] Alcázar | Taxonomy and bionomics of the Andean potato weevil complex: Premnotrypes spp. and related genera. Impact on a changing world[END_REF][START_REF] Kühne | The Andean potato weevil Premnotrypes suturicallus[END_REF], the leafminer Liriomyza huidobrensis L. [START_REF] Parrella | Biology of Liriomyza[END_REF][START_REF] Huang | Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis[END_REF], the aphid Myzus persicae L. [START_REF] Campbell | Temperature requirements of some aphids and their parasites[END_REF][START_REF] Davis | Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae)[END_REF], thunderflies such as thrips Frankliniella tuberosis L. [START_REF] Gaum | Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)[END_REF], Chaisuekul & Riley 2005), the potato beetle Leptinotarsa decemlineata L. [START_REF] Hare | Ecology and management of the Colorado potato beetle[END_REF][START_REF] Alyokhin | Colorado potato beetle resistance to insecticides[END_REF]) and the potato tuber moth complex (Tecia solanivora Povolny, Symmetrischema tangolias Gyen, Phthorimaea operculella Zeller; Lepidoptera: Gelechiidae; [START_REF] Pollet | Avances en investigacion y manejo integrado de la polilla guatemalteca de la papa, Tecia solanivora[END_REF], Crespo-Perez et al. 2011, Rebaudo & Dangles 2011). All of these pests and diseases are climate-dependent in various or at least one stage of their life development (see their respective references).

Despite the large number of potato pests, this thesis mainly focused on the potato tuber moth (PTM) complex, because it represents an ideal focal group for various reasons. First, PTM are one of the most important threats to potato production worldwide and in the study area, in particular P. operculella (Rondon 2010[START_REF] Pollet | Avances en investigacion y manejo integrado de la polilla guatemalteca de la papa, Tecia solanivora[END_REF]). Indeed, losses in yield caused by these three species in the potato fields of the Ecuadorian Andes are considerable, especially in the poorest regions (Pumisacho & Sherwood 2002, Dangles et al. 2008). Second, PTM are strict thermoconformers that evolved in all potential habitats in agricultural landscapes (i.e., air, vegetation and ground layers and storage structures; Hanafi 1999[START_REF] Keller | Integrated Pest Management of the Potato Tuber Moth in Cropping Systems of Different Agroecological Zones[END_REF][START_REF] Keasar | Spatial and temporal dynamics of potato tuberworm (Lepidoptera: Gelechiidae) infestation in field-stored potatoes[END_REF][START_REF] Sporleder | A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; gelechiidae)[END_REF], Dangles et al. 2008). Additionally, PTM are Lepidoptera that have dispersal capacities that permit them to move within the agricultural landscape up to 250 m (maximum dispersal distance per individual; Rondon 2010, Crespo-Pérez et al. 2011). Last but not least, the PTM complex in the Andes has long been studied by our team which gathered relevant information on temperature related performances (Dangles et al. 2008[START_REF] Herrera | Preferencia de oviposición en tres especies de polillas de la papa (Lepidoptera: Gelechiidae)[END_REF], Dangles et al. 2013, Crespo-Perez et al. 2013), anthropogenic-based pest dynamics in complex agricultural landscapes (Rebaudo et al. 2011, Crespo-Perez et al. 2011), participative and adaptative integrated pest management throughout social organisation (Dangles et al. 2010, Rebaudo & Dangles 2011[START_REF] Rebaudo | An agent-based modeling framework for integrated pest management dissemination programs[END_REF], Rebaudo & Dangles 2015), species interactions [START_REF] Dangles | Crop damage increases with pest species diversity: evidence from potato tuber moths in the tropical Andes[END_REF], Crespo-Pérez et al. 2014) and others (e.g., genetics [START_REF] Puillandre | Genetic bottleneck in invasive species: the potato tuber moth adds to the list[END_REF].

b. Overview of the potato tuber moth complex PTM adult females lay their eggs on rough surfaces such as soil, potato tuber eyes, or leaf under-surfaces. After hatch, larvae of the three species dig into the soil until finding a potato tuber where they burrow deep tunnels in order to feed (Fig. 25). S. tangolias and P.

operculella larvae can also feed on stems and leaves of potato plants. When fully grown, larvae leave their host and pupate in the soil near the bases of plants, in leaf remains, leftover potatoes, near stored potatoes, or in other suitably sheltered sites (see Fig. 25 for a graphic description of PTM life-cycle). Infestation is often highest in traditional potato storage (tubers heaped under a basic shelter), which offers optimal conditions for PTM development and expansion, such as protection from coldest temperatures and against rainfall [START_REF] Keasar | Spatial and temporal dynamics of potato tuberworm (Lepidoptera: Gelechiidae) infestation in field-stored potatoes[END_REF]. Under the climatic settings of the study region and the resulting desynchronized complex agricultural landscapes, PTM can survive and be active all year round since they have constant favourable conditions in terms of climate and food resource. Thus, they thrive and propagate all year round more easily than in temperate countries (Crespo-Perez et al. 2013). These conditions explain why neither diapause nor seasonal rhythms have been reported for these species at any elevation in Ecuador. This implies that their thermal limits and population dynamics are defined spatially rather than seasonally (Dangles et al. 2008). INTRODUCTION 78 An important characteristic of the complex of pest species is that they differ in their physiological responses to temperature, which affects their spatial distribution across climatically heterogeneous landscapes (Dangles et al. 2008). The performance curves representing the temperature dependent survival rate, developmental rate, and fecundity (in number of eggs per female) for these three species are presented in Figure 26. Temperature dependent survival and developmental rates were based on the non-linear thermodynamic model developed by (Sharpe & DeMichele 1977) and modified by (Schoolfield et al. 1981).

Fecundity was based on the Weibull function, as described and fitted in previous studies on these crop pests (Crespo-Pérez et al. 2011, Rebaudo et al. 2011, Rebaudo & Dangles 2011).

Generally, survival along temperature gradients presents an inverted U shape, with low survival at high and low temperatures. Insect development occurs within a definite temperature range, with a lower threshold temperature -near which development asymptotically approaches zero (because insects often survive for long periods at cold temperatures with little or no development, e.g., during diapause) -and an optimum one of fastest development above which it declines abruptly to a lethal maximum temperature. Then, temperature related fecundity has been shown to present a bell shaped curve extending in a minimum and maximum temperature range. These temperature-dependent functions are the basis for modelling the spatiotemporal dynamics of potato tuber moth invasion under thermally heterogeneous environment. In this general scientific context and face to the presented challenges, this thesis focused on improving our general understanding of the microclimate patterns experienced by ectothermic pests in their habitat following three main obectives.

IV. Objectives and thesis plan

The overall objective of this thesis was to quantify thermal microclimates in spatially heterogeneous agricultural landscapes and point out their relevance for the understanding of crop pest dynamics. This overall objective is divided into three specific objectives, each of them corresponding to a chapter of this manuscript.

• Chapter I: Microclimates and in silico pests

In the first chapter of this thesis, we aim at empirically recording microclimate data at fine spatiotemporal scales in complex agricultural landscapes to compare them to global climatic models with coarse-scale resolutions. Our goal was to provide quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic environment experienced by living organisms. Then, the objective was to highlight in silico the consequences of these discrepancies for the modelling and forecast of pest occurrences.

• Chapter II: Methods for assessing thermal heterogeneity in agricultural landscapes While in the Chapter I of this thesis we used standard methods of thermal ecology for pointing out the importance of considering microclimates when evaluating pest performances in agricultural landscapes, the second Chapter focused on the development of new methodologies to better assess the spatiotemporal heterogeneities of microclimatic temperatures in the field at relevant spatial scales and resolutions for studying pests. This part aims at overcoming the challenge of bridging the gap between the coarse-scale resolutions of the climatic dataset used in a majority of species distribution models and the body length of the study organism (Potter et al. 2013). This Chapter is divided in two parts: the first one focuses on a potential pitfall of the use of thermal camera related to the distance between the study organism and the thermal camera and the second part consists in the development of a toolbox for the monitoring and spatial characterization of microclimates considering the results revealed in the Chapter I and Chapter II part 1.

• Chapter III: Microclimates and pests in situ

Finally, the third Chapter of this manuscript endeavours to combine in situ fine scale thermal measurement of crop fields based on the methodologies developed in Chapter II with an infield sampling of crop pest infestations. Indeed, limited by the technical possibilities for studying the spatiotemporal heterogeneity of microclimates in an agricultural context, agronomists still rarely focused on the effects of the spatiotemporal structure and composition of crop microclimates on pest occurrences. The aim of this chapter was precisely to understand the relationship between crop microclimates and pest occurrences in potato fields. 

PLATES

CHAPTER I Microclimates and pests in silico

This first chapter of this thesis addressed the need of quantifying the scale gap between the temperature data modelled at coarse spatial scales and the climatic reality experienced by organisms in their microhabitats and to highlight the consequences of this scale gap onto species performances estimations. We therefore used common techniques of data recording used in ecology (large number of temperature loggers) for measuring fine spatiotemporal scales data of temperatures experienced by crop pest over their life cycles (i.e., air, air-inside canopy and soil temperatures). Then, these empirically recorded temperatures were featured and compared to coarse-scale interpolated temperatures of the WorldClim; thereby providing quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic environment experienced by living organisms.

This study was applied to the tropical agricultural landscape of the study area where we recorded microclimates at 108 localities. In each locality, we documented the crop type, the phenology of the crop with the leaf area index and the elevation. We finally explored the limitations of using the WorldClim to infer the potential performance of a potato crop pest compared to the empirically recorded temperatures. 

Introduction

Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is increasingly recognized as a key issue of climate change biology research [1,2,3,4]. Despite decades of study on microclimates [5,6,7,8] and evidence for habitat-related and topographical variations in local temperatures and their relevance for species ecology [2,9,10,11,12,13], most attempts to understand and model species distributions still do not integrate spatially-explicit fine-scale climatic data (e.g. [14,15,16]). Many work use global model of temperature interpolation to examine species vulnerability to climate change and, doing so, ignore the critical issue of habitat complexity in climate buffering [4,5,17]. Indeed, climate surfaces used in species distribution models (SDMs) are rarely generated or interpolated to a resolution finer than 1 km 2 (e.g. WorldClim database), a resolution that is still very coarse relative to the home ranges or body size of most species [13,18]. For instance, [8] showed that climate grid lengths used in SDMs are, on average, , 10,000-fold larger than studied animals, and , 1,000-fold larger than studied plants. Their meta-analysis showed that the WorldClim was the most widely used climatic dataset in global SDMs. As this commonly used coarse scale climatic data in SDMs overlook the spatiotemporal thermal heterogeneity experienced by organisms, there is an urgent need for a more sophisticated use of these datasets for making inferences about biological processes that are driven by hour to hour operative temperatures of organisms.
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An important yet poorly studied issue in climate change biology is to quantify to what extent climatic conditions differ between widely used 1 km 2 interpolated grid cells of global climatic database and real-world landscapes of similar areas. While it is now well-known that most organisms, especially tiny ectotherms such as insects and other arthropods, do not experience the climatic conditions recorded at weather stations [9,12,18], there is little quantitative information on the spatial and temporal heterogeneity at the landscape scale oflocal climatic conditions (i.e. conditions at biologically relevant scales, e.g., from cm to km for insects) and their consequences for organisms' performance. A better quantification of the climatic conditions of ecologicallyrelevant habitats over relatively large landscape scales (e.g., 1 km 2) is therefore a necessary first step to better incorporate dynamical microclimate into global distribution models.

Here, we investigate the sources of variance between global interpolated and local temperatures by examining 1) how well WorldClim predicts local air temperatures in our study region (the tropical Andes), 2) to what extent temperatures in crop canopies and soils differ from local air temperatures, and 3) how relevant is to use WorldClim to infer the potential performance of an insect crop pest. Addressing these questions is not an easy task as the mosaic of climatic habitats relevant for small ectothermic species at a 1-km 2 scale in real-world landscapes may be outstandingly complex. In this study, we focused on highland agricultural landscapes of the tropical Andes as most prior similar data came from low elevation and temperate agroecosystems. In such systems, most crop pests experience, over their entire life cycle, climatic conditions in three well-defined environmental layers (air, air inside-canopy and soil) and these conditions are remarkably stable over the year [19]. In this context, we firstly decided to map over replicated 1-km 2 climatic grid cells the ecologically relevant local temperatures for ectothermic crop pests in agricultural landscapes, and to compare these maps to interpolated temperature grid cells of the widely used WorldClim database. We used Fourier analysis applied to local temperature time-series as a tool to fit daily variations of temperature and to feature microclimate discrepancies in space and in time (both in terms of amplitude and phase). We then explored the implication of our thermal landscape mapping for pest performance by comparing temperature frequencies in our grid cells with the temperature-dependent growth curve of the potato tuber moth ( Phthorimaea operculella ) a major crop pest species in the region and worldwide.

Materials and Methods

Study area

The Ecuadorian Andes are characterized by a low seasonality, with mean temperatures varying more within days (up to 30 uK variation) than within months and years (less than 0.6 uK and 0.2uK variations, respectively, see [19]). This region exhibits a marked altitudinal gradient in temperatures (between 2000 and 4000 m) with mean monthly air temperature roughly decreasing by 0.6uK every 100 m of elevation [20]. Agricultural landscapes dominate the altitudinal belt between 2600 and 3800 m, and are typically composed by small field crops (mainly potato Solanum tuberosumL., broad bean Vicia faba L., corn Zea maysL., alfalfa Medicago sativaL., and pasture), natural grasslands (pa ´ramos) and a few forest patches [21]. Under the climatic conditions of the region, crops can be planted and harvested all year round, thereby creating a landscape mosaic of a wide variety of crops at different phenological stages.

Our study area was located 115 km south from the equatorial line (01u019360S, 78u329160W) in the Cotopaxi province of Ecuador. It spread out on a 20-km 2 elevation transect (2.356 8.5 km), ranging from 2,600 to 3,800 m a.s.l. The gradient had a Southwest exposure and an average slope of 9.5 u (6 5.2) (based on a 30 m resolution digital elevation model). To investigate the elevation effect on local vs. global interpolated temperature variations, we divided our study area into three 400 m altitudinal belts which correspond to natural floors in the hillside (2,600-3,000 m, 3,000-3,400 m, and3,400-3,800 m) with a mean monthly temperature of 13.2 6 0.4uC, 10.8 6 0.6uC, and9.36 0.4uC, respectively. Beyond temperature, these belts also differed in terms oflandscape composition (Appendix S1 in Supporting Information), with lower elevations dominated by small fields (0.3 6 0.1 Ha) of potato, corn, broad bean, and pasture while the higher band had larger fields (0.7 6 0.3 Ha) of mainly potato and pasture. Working in these agricultural landscapes no requires specific permissions expect the kind agreement of the field owner. The presented study did not involve endangered or protected species.

Temperature data collection

In each of the three-altitudinal belts, we measured temperature regimes in six habitats (five crops and natural grasslands) where insect pests can be found. In each habitat, we defined three layers: air, air inside-canopy (referred as ''air canopy'' in the text) and soil. These layers are all used by most insect pests over their life cycle: air layer by adults, air canopy layer by adults and leaf-eating larvae and pupae, soil layer by tuber feeding larvae and pupae. In each layer of each habitat, temperature was recorded with a 1 min time step using data loggers (Hobo U23-001-Pro-V2 internal temperature loggers, Onset Computer Corporation, Bourne, USA) with an accuracy of 6 0.21uK over the 0-50uC range and a resolution of 0.02uK at 25 uC. According to [4], 1) air loggers were fixed on a wooden stake at 1 m high to overstep most crop canopies and sheltered by a 20 cm 2 white plastic roof to minimize solar radiation heating; the roof was itself placed 5 cm above the logger to avoid warming by greenhouse effect, 2) air canopy loggers were placed 0.3 m high inside vegetation 5 cm bellow large leaves to minimize the effect of direct solar radiation and 3) soil loggers were buried 0.1 m into the ground where roots and tubers grow (see Appendix S2 for photographs). In each field, only one logger per layer measured the temperatures. Those triplets ofloggers were located at the centre of the field to avoid edge effect (see Appendix S3 for an analysis of the spatial variability of temperatures within a field and [22]). As vegetation land cover influences microclimate beneath and around plants, see [5,6], we repeated these 54 measurements (3 elevations 6 6 habitats6 3 layers) for three classes ofleaf area index (LAI) [23] defined as follows: 0 (bare soil), 0.01-0.5 for and . 0.5 of LAI. Minimum LAI was fixed to 0.01 to avoid confusion with bare soil and allowed enough leaf area to place the loggers underneath. At each measurement site, LAI values were visually estimated (twice) measuring the ratio ofleaf area within a 1-m 2 quadrant sub-divided into 0.1 m 2 cells delimited by strings. This indirect method did not account for leaves that lie on each other however it relates to shaded areas that influence insidecanopy and soil microclimates [23].

Each of the 162 measurement combinations (3 altitudinal belts 6 6 habitats6 3 layers 6 3 LAI classes) was replicated 1-3 times depending on availability of habitats at a given elevation and phenology stage. In total 324 independent temperature time series were acquired over 15 days between September and December 2011 (data available in Appendices S9, S10 and S11). Importantly, under the climatic conditions of the study area, 15-days time series characteristics did not differ from those obtained over one year (see Appendix S4 for details). At each measurement site, we

Local Temperatures vs. Climatic Grids
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recorded the UTM-WGS84 geographic coordinates with a handheld GPS Garmin Oregon 550 (Garmin, Olathe, USA).

Global solar radiations

Infrared and visible radiations (expressed in Watt/m 2 ) were monitored in each altitudinal belts using a LI-1400 LI-COR datalogger equipped with a LI-200 pyranometer sensor (LI-COR, Lincoln, USA) placed perpendicular to gravity. Between 9:00 AM and 4:00 PM, mean global solar radiations ranged from 500 to 1000 watts/m 2 , with temporal variability mainly induced by shortterm changes in cloud cover. Air and air canopy temperature time series showed extreme events during a few minutes that were certainly due to strong radiations experienced at the study sites 2 these affected loggers recording despite their plastic roofs. Therefore, we found 

Data analyses
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relevant to fit our time series data with a discrete Fourier transform (DFT) at the daily frequency k d (Fig. 1) as this allowed averaging daily minimum and maximum temperatures while limiting the effect of short extremes (mainly for maximum). Moreover fitting temperature time series with the DFT allowed us to circumvent (or partially resolve) the issue of comparing time series with different temporal resolution: a sinusoid built from a daily time step time series will be accurate enough to compare with another sinusoid built from a one minute time step time series (our operative temperatures vs. global climatic models).

DFT analyses allowed us estimating two important descriptors of the time series at the daily frequency k d : the amplitudeA d and the phase w d of the DFT (see Appendix S5 for details). The thermal amplitude allowed us to measure the thermal buffer effect in Kelvin between air and canopy layers and air and soil layers (Fig. 1 and Appendix S5). The phase allowed us to measure the thermal time lag expressed in minute in inside-canopy and soil layers with respect to the air layer (Fig. 1 and Appendix S5). Thermal time lag therefore quantifies the time delay in time series to reach their maximum between air vs. canopy and air vs. soil layers. This is an important climatic parameter to test whether microclimate conditions below canopy (canopy and soil layers) would track air conditions with some time lag depending on habitat characteristics.

We also ran DFT analyses on a four-year monitoring (2008-2012) of air temperatures (recorded at one meter high with half an hour time step with the same shelter process described above) to measure the seasonality. Analyses were performed for the threealtitudinal belts of the study area (2800, 3200, 3600 m) by reading the amplitude at the seasonal frequencies (91, 182 and 364 days, see Appendix S6). On average the Fourier transform amplitudes at 91, 182 and 364 days were 0.14 ( +/ 2 0.01), 0.44 (+/ 2 0.04), 0.97 (+/ 2 0.03)uK indicating that the seasonality was negligible in the study area [24].

All Fourier analyses were performed in MATLAB R2011a (Mathworks, Natick, USA). The effects of habitat, elevation, LAI classes and the interaction ''elevation 6 LAI classes'' on daytime and nigh-time DFT amplitudes and on DFT thermal time lag were assessed using a two-way ANOVA with Bonferroni corrections. When habitat was found significant, we ran post-hoc (6 1uC). The extent and position of each square is equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 0.86 km 2 for the study area. Temperatures in storages were obtained from [26]. doi:10.1371/journal.pone.0105541.g002

Local Temperatures vs. Climatic Grids multiple comparisons using a Tukey HSD test to identify differences among habitats. All statistical analyses were performed in R version 3.0.0 (R Development Core Team 2012).
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Thermal landscape analyses.

To compare local temperatures with global interpolated climate data employed in species distribution models, we considered one of the most widely used and readily available climate database, WorldClim [25]. The WorldClim database is a set of global climate layers (interpolated averages of monthly minimum, maximum and mean 1.5 m high air temperatures from weather stations spread out worldwide) with a spatial resolution of 30 arc seconds. Close to equator, this resolution is equivalent to squares of 0.86 km. In each altitudinal belt, we selected one WorldClim grid cell with homogenous slope (between 5.4 u and 7.9u), micro-topography and exposition (southwest). Based on a digitized municipal cadastre (from the town council of Salcedo, Cotopaxi province) and a 5-m resolution digital orthophoto (Ecuadorian Military Geographical Institute, www.igm.gob.ec/site/index.php), we built the digital landscape of each grid cell in ArcGIS 10.01 (ESRI, Redlands, USA). In addition to the six studied habitats, crop storage infrastructures were also included into the digital maps as they significantly modify air temperature patterns, offering optimal conditions for crop pest development [26]. Outside air vs. inside air storagetemperature relationships for different elevations were derived from measurements made by [26] within the same area with similar temperature data design (see Fig. 1 in Appendix A2 of their paper). Roads and woodlots were also indicated on the maps even if they were not included in the temperature comparison analysis, as they do not constitute relevant habitats for crop pests.

In order to simulate landscape thermal heterogeneity, crop habitats were attributed with one crop type (potato, broad bean, corn, alfalfa or pasture) and one LAI classes (0, 0.01-0.5, . 0.5) based on a survey of 85 sites in the region, in which we quantified landscape composition (% of each crop and LAI classes) in 100-m radius sampling circles (see Appendix S7). For each habitat, we assigned the corresponding air, air canopy and soil temperature values at each elevation. Finally, since we were particularly interested in minimal and maximal values, as they are the most biologically relevant for ectothermic crop pests [4], we focused on minimum and maximum temperatures obtained from the DFT analyses and the WorldClim database.

Afterwards, we decomposed the variance of temperatures between global interpolated grids and local temperatures measured in agricultural landscapes by mapping the differences in minimum and maximum temperatures between the air local temperatures (Air L ) and the WorldClim interpolated temperatures (Air WC ) for the three studied grid cells. Then, to illustrate the part of the variance due to microclimate effects, we mapped the differences in minimum and maximum temperatures between measured local air canopies, soil temperatures (Layer L ) and the air local temperatures (Air L ) for the three studied grid cells.

Pest performance in thermal landscape.

As a final step of our analysis, we explored the implication of our thermal landscape mapping for pest performance by comparing temperature frequencies in our grid cells with the temperature-dependent growth curve of a major crop pest species in the region: Phthorimaea operculella(Lepidoptera: Gelechiidae). This pest is considered one of the most important potato pests worldwide, but also attacks a wide variety of other crops such as tomato ( Solanum lycopersicumL.), eggplant ( Solanum melongenaL.) or tobacco (Nicotiana tabacumL.) (see [27] for a review).P. operculella feeds on different part of the plant (leaves, stems, and tubers) and also tubers in storage structures [26,28]. In agricultural landscapes, P. operculellais abundant in virtually all types of habitats (even far from its host plant) because 1) this pest is able to fly over large distances (100-250 m) to infest suitable host plants [29] and 2) a significant quantity of tubers are left in the field after harvest, and are rapidly colonized by the moth before the following crop is planted. It is therefore common to observe infested potato plants in corn or broad bean fields. These left-over potatoes are well know by farmers and agronomists as significant obstacle to the control of these pests [28].

The temperature-dependent growth rate curve of P. operculella larvae (in day-1) over a 0-40 uC range was obtained using published temperature-response data oflaboratory experiments performed in the Andean region (see [30] for details). PTM development rate data were then modeled with the [31] equation as modified by [32]:

D T ð Þ ~dT 298:16 exp e R 1 298:16 { 1 T 1z exp f R 1 g { 1 T z exp h R 1 i { 1 T ð1Þ 
where T is temperature in Kelvin ( uC +273.15), R = 1.987, and d, e, f, g, h, and i estimated parameters. This model has been widely used to describe the kinetics ofinsect development based on several assumptions about the underlying developmental control Local Temperatures vs. Climatic Grids Local Temperatures vs. Climatic Grids
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enzymes. For instance, it has been used to describe poikilotherms' temperature-dependent development [33].

We then compared the growth rate performance curve of P. operculella for local temperature distribution (canopy and soil layer temperatures) and for global interpolated ones (e.g., Fig. 3 in [3]). Distributions of canopy and soil minimum, maximum and mean temperatures were extracted from the three digitized landscapes using the geostatistical analyst extension of ArcGIS. Canopy and soil temperature frequencies were expressed as the percent of total grid cell area. The growth performance model of P. operculella given by Eqn. 1 was implemented with WorldClim minimum and maximum temperatures and the local minimum, maximum and mean temperature distribution. This allowed estimating insect growth rate within the range of WorldClim and measured field data.

Results

Local vs. global air temperature discrepancies in thermal landscapes

Differences in average minimum and maximum temperatures between local air temperatures and the global coarse grain interpolated air temperatures from the WorldClim ( D Air L -Air WC ) were mapped for the three studied grid cells (Fig. 2). While minimum local air temperatures were cooler than those predicted by WorldClim in 77.5 6 10% of the studied areas (blue areas, average min D Air L -Air WC = 2 2.9uK) maximum local air temperatures were warmer than extrapolated temperatures in 82.16 12% of the studied areas (red areas, average max D Air L -Air WC = +5.6uK). This pattern was not influenced by elevation.

Notably, for all elevations, local mean air temperatures were quite well predicted by the WorldClim ( +/ 2 1uK) as in average 55. 36 3.4% of the studied areas felt in the range of Air L -Air WC # 1uK (Appendix S8).

Temperature discrepancies due to microclimate in agricultural landscapes

Differences in average minimum and maximum temperatures between local canopy and soil temperatures and local air temperatures ( D Layer L 2 Air L ) were mapped for the three studied grid cells (Fig. 3). Overall, canopy and soil areas were always cooler than maximum air temperature and were always warmer than air minimum temperatures resulting in a general buffer effect of minimum and maximum air temperatures by canopy and soil layers. The buffer effect on air temperatures was significantly stronger for soil than for canopy layer (see Fig. 4, Student's t-test,t = 2 27.10 and t = 4.52, P , 0.001 for night-time and daytime, respectively). Interestingly, the buffer effect on air temperatures by soil was higher during night-time than daytime (Fig. 4D) while the opposite pattern was found in crop canopy (Fig. 4A).

Elevation had a significant effect on air temperature buffering in the canopy layer but not in the soil layer (Table 1). Contrastingly, LAI had a highly significant thermal buffering effect in both soils (night and daytime) and canopies (daytime, see Table 1). Buffer effect on air temperatures by bare soil (e.g. without plant cover, LAI = 0) ranged from 2 1.1uK to 2 2.3uK for daytime and from 3.4uK to 4.3 uK for night-time. Crop type had no significant effect on buffering patterns except for potato in which higher buffer effects were recorded (Post-Hoc HSD test, P , 0.05). Overall, thermal time lag was much shorter in canopies (7.56 2.6 min) than in soils (1.5 6 0.3 hours, Fig. 5). LAI classes had a significant positive effect on thermal time lag for both canopy and soil layers (Table 1). On average, thermal time lag increased by 2 min. in canopies and 30 min. in soils between two LAI classes. Similarly, elevation had a significant positive effect on thermal time lag for both canopy and soil layers (Table 1) with an average increase of 2 6 0.3 min. in canopies and of 60 6 31 min. in soil between two altitudinal belts (Fig. 5).

Thermal performance curve using local vs. interpolated temperatures

To assess the implication oflocal vs. global interpolated temperature discrepancies for crop pest performances, we plotted the frequency distribution of the minimum (blue bars), maximum (red bars) and mean local (stripped bars) temperatures and those given by WorldClim (from minimum to maximum temperature, shaded region in the background) with the temperature-dependent growth rate curve of the potato moth P. operculella (Fig. 6). As a general pattern, global interpolated temperature ranges predicted lower growth rates of P. operculella than those predicted by local temperatures at all elevations, in both inside-canopy and soil layers (where the pest lives most of their time). While mean temperature distribution generally fell within the WorldClim min-max range, extreme temperatures (and especially maximum ones) largely exceeded this range. 
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The WorldClim estimations predicted P. operculella growth rates ranging between 0.007 and 0.045 day 2 1 at 2800 m, and between 0 and 0.018 day 2 1 at 3600 m, the maximum rates being slightly lower than those predicted by soil temperatures (0.068 day 2 1 at 2800 m and 0.037 day 2 1 at 3600 m). These differences were exacerbated in canopy layers where estimated maximum growth rates were 2.6-4.3 times higher than those predicted by WorldClim (0.118 day 2 1 at 2800 m and 0.079 day 2 1 at 3600 m). Discrepancies between WorldClim and local temperature-based growth rate estimations were not significantly affected by elevation (One-way ANOVA, F = 7.79, P = 0.219 and F = 1.67, P = 0.419 for canopies and soils, respectively).

Discussion

Accurate predictions of the responses of organisms to climate change using SDMs require knowledge of microclimates at spatial and temporal scales relevant for studied organisms [13,34,35]. To our knowledge, our study is the first to quantify the thermal heterogeneity among a set of agricultural habitats at fine spatial and temporal scales and to compare those thermal microhabitats to the most widely used global climatic dataset in SDMs. By documenting the mosaic of thermal habitats found in tropical agricultural landscapes, our study confirms previous evidence that microclimates strongly differ from nearby macroclimates due to the variability of air motion and solar radiation patterns created by complex topographies with heterogeneous elevation, slope angle, exposure or roughness [1,7,18,36]. Our study therefore supports the view that results from the long tradition of agrometeorological studies on microclimates (e.g. [6,17,22]) have to be revived in the new context of microhabitat modelling for predicting the response of organisms to climate change.

LAI-based and elevation-based climate heterogeneity

In contrast to many previous studies (see [7] for a review), our objective was not to examine the well-documented effect of topography on local temperatures but rather to examine the lessknown effects of habitat types and vegetation land cover on thermal landscape features. We found significant thermal time lag and buffer effects on air temperatures by plant and soil layers below crop canopies during night-time and daytime. The top of canopies reflects and absorbs part of the solar radiation during the day, allowing less energy to reach the layers (plants and soils) below canopies. During the night, infrared heat released from both the ground and plants is partly held back by the canopy above [5]. As a consequence plants and soils limit night-time cooling and daytime warming [6], leading to a significant buffer effect of minimum and maximum temperatures [1,4,17]. That is also why we found a buffer effect on air temperatures by soil higher during 
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night-time than daytime and the opposite pattern for crop canopies.

Our results indicate a strong effect of elevation on thermal buffering and thermal time lag by canopy and soil layers. This could result from the combination of a negative relationship between elevation and air temperature and a positive relationship between elevation and solar radiation exposure, part of which is absorbed by plants and soils [6]. As a result, the difference between air temperature and canopy and soil temperature increased with elevation. Interestingly, the modifications oflocal temperatures by habitats and LAI were of the same magnitude (from 2 2.70 to 4.82uC in average) than that generated by topography-related factors [7,36], supporting the need to better consider habitat effects on microclimates.

Fine scale variations in temperature vs. climatic units

Our findings show that the complex agricultural mosaic resulting from habitat types and LAI classes at the landscape scale was a major modifier of the thermal patterns in the studied tropical highlands. More importantly, our findings revealed that, at best, 55% oflandscape habitats had real mean air temperatures that were well estimated by WorldClim predictions while in average less than 20% of these areas had minimum and maximum air temperatures well estimated. Additional thermal discrepancies between large and fine-scale temperatures resulted from heterogeneity in crop types and phenologies. This strongly supports the view that the common use of the WorldClim database arrayed into 1-km 2 grids may not adequately capture the reality of the climatic environment experienced by living organisms, in particular tiny ectothermic species [2,3,13,18]. It is important to note that to obtain the highest level of thermal heterogeneity we chose a complex mountainous agricultural study area that provided boundary conditions for climate modelling. Indeed, these mountainous areas provide strong climatic gradients and extreme habitat fragmentation which combined with un-seasonal agrosystem make up a mosaic of thermal patches that expanded the difficulties to faithfully assess climatic parameters for modelling [25]. In view of the urgent need offine scale climate data with large extent [2,8,35] more research is necessary to develop accurate up-or down-scaling methods, in mountainous locations where thermal heterogeneity is large, and may be needed to properly describe the ecologically significant microclimates [7,37].

Microclimates and species distribution models

From tiny insects to mega-herbivores, it is well recognized that species ecology is strongly influenced by micro-climatic features of the landscape [2,10,11,12,13] yet quantitative information on how thermal landscape heterogeneity may affect species performance is scarce. Short-scale differences in temperatures may provide opportunities for individual organisms, even with limited dispersal capabilities, to escape unfavourable microclimates or to maximize physiological performances by selecting preferred microclimates [38,39]. Our analysis showed that predictions onP. operculella growth rates strongly differed between Wordclim-based and locally-measured temperatures, suggesting that global species distribution models using global coarse-scale climatic datasets without further microclimate modelling could be strongly limited to accurately predict species occurrence and performance, in particular that of ectotherms living in habitats such as mountain slopes. Such a spatial heterogeneity in thermal patches, where climatic conditions are strongly modified, provides a mosaic of favourable, sub-optimal or lethal thermal habitats that directly influences the performance of natural populations of ectotherms.

Coarse-extent modeling of microclimate is currently one of the major obstacles to predicting how organism will react to their experienced environments and forecast their distribution under climate change [8]. To date, two main types of models have been shown to provide relatively accurate, continent-wide calculations of microclimate: statistical model and mechanistic model [13]. The first one is statistical as the variables are not deterministically but stochastically related. These models perform statistical correlation of species occurrences with climatic data and have proven to be powerful interpolative tools for defining and projecting climatic envelopes [40,41]. A disadvantage of these statistical models is that they can only be applied to the conditions under which they are fitted. On the other hand, mechanistic models of the climatic responses of organisms [13,34] use fundamental knowledge of the interactions between process variables to define the model structure. Therefore they do not require much data for model development and validation. One of them is the Microclim model recently developed by [35,42] for all terrestrial landmasses 2 except Antarctica2 which quantify key microclimatic parameters at macro-scales, with a relatively fine spatial (15 km 2 ) and temporal resolution (hours). The microclimatic parameters such as wind velocity, humidity, and solar radiation allow building energy and mass budgets of organisms, and therefore serve as key inputs for biophysical models of species distributions.

It is important to highlight that a better spatiotemporal resolution in temperature patterns should go in pair with the development of more accurate temperature-based population dynamics models to integrate it [2,13,34,43]. Existing predictions of models based on insect response measured in constant temperatures may yield different and less realistic results than those from predictions of models that include the effect of real temperature fluctuation on insect biology [33]. For example, to date, we still do not know the impact of a few hours of warm temperature for the performance of ectotherm species at longer time scales [33]. In this context, fine-scale spatiotemporal temperature mapping has revealed a key step for any studies aiming at understanding, predicting and managing the responses of species distributions to climate change.
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replicated in 4 fields with area ranging from 596 to 672 m 2 of in order to capture to variability of field size in the study area. Fields were located between 2900 and 3000 m and were composed of fully-grown potatoes. Temperatures were recorded over one month using loggers (Hobo U23-001 Pro V2 internal temperature loggers, Onset Computer Corporation, Bourne, USA, 1 min time step) arranged as described in the main document (see part 2.2).

Figure S3 shows that the discrete Fourier transformed amplitudes at the daily frequency of the one-month temperature time series did not vary among field location for both canopy and soil layers in the 4 replicate fields. 

!!! !!! , k = 0, … , N -1 (eqn 1)
where X k , the Fourier transform complex coefficient, is the frequency domain representation of the signal time series x n at the k th frequency, N is the total number of samples of the time series, and i is the imaginary unit (see [36] for details). The amplitude A d and the phase ϕ d of the DFT are defined by definition (≜) as follows:

A ! ! ≜ ! X ! ! (eqn 2) ϕ ! ! ≜ arg( X ! ! ) (eqn 3)
The thermal amplitude allowed us to measure the thermal buffer effect in Kelvin (see Fig. 1) between air and canopy layers (β p ) and air and soil layers (β s ), by calculating the difference of the DFT amplitudes as follows:

β ! ! ≜ ! A ! ! -! A ! ! β ! ! ≜ ! A ! ! -! A ! ! (eqn 4)
where ! ! ! , ! ! ! and ! ! ! are the DFT amplitudes at the daily frequency for air, air canopy and soil time series, respectively (see equation 2).

As we were interested in amplitude differences between air vs. air canopy and air vs.

soil for maximum and minimum daily temperatures, we then defined the daytime (M) and night-time (m) temperature excursions between air vs. plant canopy (ε !,! ! ) and air vs. soil

(ε !,! !
) as follows:

ε ! ! ! ≜ ! A ! ! -! A ! ! + ! β ! ε ! ! ! ≜ ! A ! ! -! A ! ! + ! β ! (eqn 6) ε ! ! ! ≜ ! A ! ! -! A ! ! ! -! β ! ε ! ! ! ≜ ! A ! ! -! A ! ! ! -! β ! (eqn 7)
with A 0 is the mean DFT value of the time series.

The phase allowed us to measure the thermal time lag ! d expressed in minute in canopy (τ ! ! ) and soil layers (τ ! ! ) with respect to the air layer (see Fig. 1) by calculating the difference of the DFT phases as follows: for storages was obtained from [26]. 

τ ! ! ! ≜ !" !" ϕ ! ! -! ϕ ! ! !τ ! ! ! ≜ !" !" ϕ ! ! -! ϕ ! ! ( eqn 

CHAPTER II Methods for assessing thermal heterogeneity in agricultural landscapes

While in the Chapter I of this thesis, we used standard methods of thermal ecology for pointing out the importance of considering microclimates when evaluating pest performances in agricultural landscapes, this second Chapter focused on the development of new methodologies to better assess the spatiotemporal heterogeneities of microclimatic temperatures at relevant spatial scales.

The first part of this chapter focused on one critical and poorly studied pitfall of the uses of thermal infrared cameras in ecological and biological studies to measure the thermal heterogeneity of species' habitats: we studied how short variation in the shooting distance (i.e., distance between the thermal camera and the study object) could lead to misestimates of the spatial heterogeneity of object surface temperatures. This work was performed in Tours, -TIR and VIS comparaison on the study site. 2014.

Introduction

Surface temperature drives many physical, chemical, biological and ecological processes and is among the most influent factors for life across all biomes including marine, terrestrial and freshwater ecosystems [START_REF] Oke | Boundary layer climates[END_REF], Kingsolver 2009). Several methodologies have been developed to measure surface temperatures. Among them, infrared thermography is the only non-invasive method, and major developments over the past decades significantly improved our understanding of temperature-related patterns in ecological sciences (Quattrochi & Luvall 1999, Cilulko et al. 2013[START_REF] Chapter Ii -Part I Lathlean | Infrared thermography in marine ecology: methods, previous applications and future challenges[END_REF]. Originally, infrared thermography was developed mainly for industrial, medical and military applications [START_REF] Vollmer | Infrared thermal imaging: fundamentals, research and applications[END_REF], and it was first used for ecological research in the late sixties (e.g., studies on seal thermoregulation, Ørtisland 1968, and on white-tailed deer detection, [START_REF] Croon | Infrared scanning techniques for big game censusing[END_REF]).

Over the last four decades, infrared thermography has been increasingly used in various fields of biology including thermal physiology [START_REF] Hill | Jackrabbit ears: surface temperatures and vascular responses[END_REF], Pincebourde et al. 2012, Woods 2013[START_REF] Mccafferty | Emperor penguin body surfaces cool below air temperature[END_REF], marine ecology (Lathlean & Seuront 2014), plant sciences (Jones 2002, 2013[START_REF] Pincebourde | Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf-dwelling organisms[END_REF][START_REF] Caillon | Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods[END_REF], agronomy [START_REF] Jackson | Canopy temperature as a crop water stress indicator[END_REF], Jones 2002, Inagaki et al. 2008, Meron et al. 2010[START_REF] Bellvert | Mapping crop water stress index in a 'Pinot-noir'vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicule[END_REF], Faye et al. 2015), and landscape ecology (Scherrer & Körner 2010[START_REF] Tonolla | Thermal heterogeneity in river floodplains[END_REF].

Infrared thermography is an imaging method that records infrared waves emitted by an object in the electromagnetic spectrum after the visible range of light -from 7.5 to 14 µm -as a result of the molecular motion [START_REF] Vollmer | Infrared thermal imaging: fundamentals, research and applications[END_REF]. The radiation readings are then converted into surface temperature by the Thermal Infra-Red (TIR) camera taking into account the ambient conditions and emissivity. TIR images allow the study of surface temperature patterns over a broad range of spatial scales from sea and land surface satellite mapping [START_REF] Kerr | From space to species: ecological applications for remote sensing[END_REF] to landscape [START_REF] Scherrer | Infra-red thermometry of alpine landscapes challenges climatic warming projections[END_REF] and organism scales [START_REF] Tattersall | Insights into animal temperature adaptations revealed through thermal imaging[END_REF], Pincebourde et al. 2013). Recent advances in thermal imaging technology -increasingly lightweight and hand-held -and a reduction in the cost of thermal cameras have facilitated its uses and opened new area of investigation in ecological sciences (Lathlean & Seuront 2014).

However, despite its increasing use, relatively few studies have addressed or reviewed the potential pitfalls and limits of thermal imaging (Clark 1976, Quattrochi & Luvall 1999[START_REF] Minkina | Uncertainties of Measurements in Infrared Thermography[END_REF], Cilulko et al. 2013[START_REF] Chapter Ii -Part I Lathlean | Infrared thermography in marine ecology: methods, previous applications and future challenges[END_REF]. Weather conditions (e.g. solar radiation and rainfall) are known to affect TIR outputs leading to misinterpretation of organism body temperatures. Also, the emissivity of an object -i.e. the ability of an object to emit thermal radiation -and the viewing angle between the camera and the object can affect the surface temperature measurements (Clark 1976). Last, the distance between the object and the TIR camera is among the main factors supposed to impact temperature values in TIR images (Cilulko et al. 2013). Like any image, TIR images are composed of pixels, and the portion of object surface area included in a single pixel directly depends on the shooting distance -with larger area included in each pixel as shooting distance increases. Then, when the surface is thermally heterogeneous, neighbouring surface patches of different temperature merge together with increasing distance. To our knowledge, however, the net effect of increasing shooting distance on temperature readings by TIR camera has never been quantified. At best, TIR images are acquired at equal distances from the study organism allowing accurate estimates of relative temperature differences between patches (Inagaki et al. 2008[START_REF] Tonolla | Linking fish assemblages and spatiotemporal thermal heterogeneity in a river-floodplain landscape using high-resolution airborne thermal infrared remote sensing and in-situ measurements[END_REF][START_REF] Caillon | Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods[END_REF].

Here, we examined the effect of shooting distance (in the range of 0.3 to 80 m) on TIR thermal metrics that are commonly used to quantify the spatial heterogeneity of object temperatures (e.g., mean temperature, standard deviation, patch richness and aggregation).

The aims of this study were 1) to characterize the relationship between those thermal metrics and the shooting distance, 2) to assess the effect of weather conditions (solar radiation) on this relationship, and 3) to test whether the structural complexity of the studied surface affected this relationship. We first shot the same object surface (a thermal test card corresponding to a regular mosaic of black and white patches) under various global solar radiation levels with two similar TIR cameras placed at different distances. We then shot three object surfaces with different structure under identical global solar radiation with the two TIR cameras placed at various distances. The object surfaces consisted in a thermal test card under constant environmental conditions in the laboratory, a green wall covered by a deciduous woody vine scene, and an oak-beech forest edge offering a more complex scene. Additionally, we performed a TIR close-up shooting (0.3 m) of the plant leaves to assess how actual leaf temperatures shaped the surface temperature distribution from each shooting distance and compare the micro-scale thermal heterogeneity of the leaves to the one of the entire surface.

Generally, we expected that the distance between the thermal camera and the studied object would lead to errors in the absolute surface temperature because of the pixel size effect. We also expected this bias to be more pronounced when the surface is heated by solar radiation.

Finally, under similar abiotic conditions, structurally complex surfaces are supposed to deliver more thermal heterogeneity than simpler ones and we hypothesized that the temperature measurements of these complex surfaces would be more affected by the shooting distance. Based on the TIR images obtained with two thermal cameras, we calculated thermal metrics and compared them among distances for various solar radiation levels and structural surfaces. 

Materials and Methods

The thermal infrared cameras

TIR images were acquired using two similar TIR cameras recording the long-wave infrared radiation emitted by objects in the spectral range from 7.5 to 14 µm. They were equipped with uncooled micro-bolometer sensors and converted the infrared radiation readings into temperatures within the -20 to 120°C calibration range. TIR images were processed assuming an emissivity of 1 for every surface because our interest was to quantify the discrepancies in spatial thermal heterogeneity between TIR images of the same surface taken at different distances -i.e. comparing relative values instead of measuring actual temperature values (Clark 1976, Rubio et al. 1997). Therefore, surface temperature refers to the brightness surface temperature in this work [START_REF] Norman | Terminology in thermal infrared remote sensing of natural surfaces[END_REF]. The first TIR camera (called fixed TIR camera, see below) was equipped with a 320 × 240 pixels micro-bolometer focal plane array (B335, FLIR Systems, Wilsonville, OR, USA). The second TIR camera (called mobile TIR camera, see below) was equipped with a 640 × 480 pixels micro-bolometer focal plane array (HR research 680, VarioCAMs, InfaTec GmbH, Dresden, Germany). These two TIR cameras were similar enough in terms of thermal sensitivity, accuracy, and spatial resolution to compare TIR data among them (Appendix 1).

Experimental design 2.2.1. Thermal test card in different environments

We studied a 1-m 2 thermal test card, made of 400 black and 400 white tiles of 2.5 cm 2 each, which delivered a well-characterized geometry and dimensions resulting in a predictable thermal pattern, with the black tiles reaching higher surface temperatures than the white ones when hit by radiation (Fig. 1). We placed the thermal test card vertically in three different environments that differed in term of abiotic parameters (exposure, temperature and global CHAPTER II -PART I 123 solar radiation). The first environment -the laboratory environment -was a 50 m long corridor without window in our laboratory (Institut de Recherche sur la Biologie de l'Insecte, Tours, France) wherein air temperature and humidity were maintained constant by an aircooling system, thereby resulting in a homogeneous environment along the hall (21.7°C and 63% of humidity; see Appendix 2). Global radiation was generated using two heat lamps (250 watts each) positioned on the ground one meter in front of, and oriented toward, the thermal test card (A.1 and A.2 in Fig. 1).

The second and third environments were outdoor, at the castle named Château de Saché in the Loire Valley, France (49°14'45''N, 0°32'41''E, at a mean elevation of 77 m a.s.l.). In July 2013, when the study took place, mean daily temperature reached 20°C (27.7 and 13.9 °C for mean maximum and minimum respectively) and photoperiod lasted almost 10 hours (Météo France, 2013). Thus, the plants reached their fully-grown phenology with the highest vegetation density in canopies at that time [START_REF] Körner | Phenology under global warming[END_REF]. At this site, we first placed the thermal test card in front of a South-exposed green wall of the castle -the green wall environment -facing a flat area free of any obstacles (B.1 and B.2 in Fig. 1).

Then, we positioned the thermal test card in front of a West-exposed wood edge in the court of the castle -the wood edge environment -facing a flat area free of any obstacles (C.1 and C.2 in Fig. 1).

$

TIR shots at increasing distances

To test whether the distance between the TIR camera and the object had an effect on the thermal metrics of surfaces, we used synchronised shots between the two TIR cameras placed at different distances in each of the three environments (laboratory, green wall and wood edge). Synchronising shots allowed us to compare TIR images taken under exactly the same environmental conditions -i.e. solar radiation and air temperature (Appendix 1) -thus giving the effect of shooting distance directly. The fixed TIR camera was placed at a minimum distance from the surface so that it could capture a large extent: 2 m from the thermal test card in the laboratory, 3 m from the green wall and 10 m from the wood edge. The fixed TIR camera was considered to provide the most accurate absolute values of surface temperatures, and the highest level of thermal heterogeneity, as it was placed at the shortest distance. The mobile TIR camera shot from distances to the fixed camera of 1, 2, and 7 m -i.e. distance at which Δ pixel size ≥ 0 (Appendix 1, Figure 2) -and up to 48, 57 and 70 m in the laboratory, green wall and wood edge environments, respectively. One TIR shot was taken simultaneously with the two IRCs (less than 2 sec. differences between the two cameras, and each shot was repeated twice) at fourteen Δ distances (defined as the distance between the mobile and the fixed TIR cameras, see Appendix 3) along a straight and perpendicular transect to the surface to avoid view angle effects on temperature readings (Clark 1976). In total, we performed eight TIR shooting transects (two for the laboratory environment, three for the green wall environment and three for the wood edge environment) collecting up to 448 TIR images under various abiotic conditions (8 TIR shooting transects × 14 Δ distances × 2 repetitions × 2 IRCs). At the end of each transect for the outdoor environments, we also took TIR images of leaf surfaces with the fixed TIR camera positioned at a 0.3 m distance from the vegetation surface (Appendix 4). Leaf surface temperature was measured for 15 shaded leaves and 15 leaves exposed to direct solar radiation. Initially, the leaves were selected randomly and thereafter the same leaves were measured during each session. TIR cameras were switched on at least ten minutes before the beginning of each shooting to allow sensor stabilization. They were fixed on two professional tripods (MN 190X ProB, Manfrotto, Bassano Del Grappa, Italy) at 1.5 m above the ground to obtain a 90° view angle to the surface (Clark 1976). Simultaneously to each TIR image, we recorded global solar radiation (in W/m 2 ) using a datalogger equipped with a pyranometer sensor facing the sky vault (datalogger LI-200 and pyranometer LI-400, LI-COR, Lincoln, OR, USA).

Differences among surfaces of different structural complexity

To examine whether surface complexity modulated the effect of shooting distance on TIR outputs, we used surfaces differing in their structural complexity: 1) the thermal test card surface was the less structurally complex because of its well-defined two-patches composition in one plan; 2) the fully-grown grape ivy green wall (Parthenocissus tricuspidata) covering the south-exposed wall of the castle -background of the green wall environment -was a more structurally complex surface because of the various inclination angles of the leaves that composed its almost two dimensional layout -the depth of the ivy cover did not exceed 20 cm; 3) the third level of complexity consisted in a fully-grown wood edge composed of oaktrees (Quercus robur L.), beech-trees (Fagus sylvatica L.), and hornbeam-trees (Carpinus betulus L.) -background of the wood edge environment -, which provided a highly complex surface composed of various patches in a three-dimensional configuration with tens of meters in depth that increased the compositional heterogeneity. For each set of outdoor TIR images, we worked on two 1-m² areas: the 1-m² thermal test card (see above) and a 1-m² area of vegetation placed just beside the thermal test card in the green wall and wood edge environments (see TIR images in Appendix 5).

Surface temperature excess

In order to determine the surface temperature excess -i.e. positive or negative deviation between pixel temperature values of the TIR images and ambient air temperature -, we measured ambient air temperatures using a set of temperature loggers (Hobo U23-001-Pro-V2, Onset Computer Corporation, Bourne, USA) placed within 5 cm behind the leaves and the thermal test card. The loggers were always shadowed and homogeneously distributed (20 loggers inside the green wall and the wood edge, and 10 behind the thermal test card, see photographs in Appendix 6). Temperatures were recorded every 10 seconds with an accuracy of ±0.21K and a resolution of 0.02K at 25°C. We standardized the TIR images using these air temperatures, which allowed us direct comparisons of the leaf and the surface temperature excesses in the two outdoor environments, regardless of their absolute temperature dissimilarities.

Data analysis

For each TIR image from the two TIR cameras, we marked the same 1-m² area of the thermal test card and the same 1-m² area of the vegetation surface (Appendix 5). Pixel temperature values on these 1-m 2 surfaces were extracted from raw images with ThermaCam Researcher software (FLIR Systems) and IRBIS 3 software (InfaTec GmbH), for the fixed and the mobile TIR camera, respectively. We then calculated several thermal landscape indices from these pixel temperature matrices using FRAGSTATS (University of Massachusetts, Landscape Ecology Lab, Amherst, MA, USA): 1) mean temperature and standard deviation, providing a descriptive summary of the patch metrics for the entire landscape, 2) patch richness, calculated as the number of patch types present in a landscape and describing its compositional make-up (McGarigal & Marks 1994), 3) the aggregation index, often referred as landscape texture, which quantifies to what extent temperature pixels of the same value were spatially aggregated [START_REF] He | An aggregation index (AI) to quantify spatial patterns of landscapes[END_REF].

To analyse the effect of shooting distance on thermal metrics, we plotted the deviation in mean temperature (Δ T mean in Kelvin), standard deviation (Δ SD in Kelvin), patch richness (Δ patch richness) and aggregation (Δ aggregation in percentage) against the Δ Distance (m) between the two TIR cameras (mobile camera minus fixed camera) for each surface. Those plots were represented for the various solar radiation levels in the three different environments (from 65 to 915 W/m 2 ) and also for the three different surfaces -test card, green wall, wood edge -under similar and stable clear sky conditions (solar radiation of 890 ±133 W/m 2 ).

We then searched for a general pattern in the change of thermal metrics with shooting distance by standardizing surface temperatures according to air temperatures (Appendix 6).

We plotted density curves of surface temperature excess of the thermal test card in the laboratory and in the green wall environment as function of shooting distance, and also of the entire green wall surface and of the entire wood edge surface under clear sky conditions. For the outdoor environments, leaf surface temperature distributions were added to the plots to assess how actual leaf temperatures (i.e., leaf surface temperature distribution at high spatial resolution) shaped the surface temperature distribution from each shooting distance. For this analysis, we used the surface temperature excess matrices -the surface temperature distributions minus the mean ambient air temperature recorded by the temperature loggers behind the leaves at the same time than the TIR images (Appendix 6). Densities were used to leave aside the effect of decreasing pixel number with increasing distance on the distribution curves, since the number of temperature pixels in the focused areas decreased with distance.

As temperature density distributions were normal, they were fitted using Gaussian function in 

! = ! + !!! !!.! ! !" !! ! ! (eqn 1)
where a, b, c, d are parameters, D the density predicted and T ex the temperature excess in K.

The accuracy of the fits (R 2 and standard deviation) of each density curve fitted is given in Appendix 7. We performed an analysis of variance (ANOVA) with the R package 'stats' version 3.1.1 (R Development Core Team 2014) to analyse the effects of the shooting distance, the radiation level and their interactive influences on the surface temperature excess distributions.

Results

Thermal test card in different environments

Overall, the distance between the mobile and the fixed TIR cameras had a significant effect on all thermal metrics for the thermal test card (Δ T mean , Δ SD, Δ Patch richness and Δ Aggregation; Fig. 2). Within the first 20 m separating the two TIR cameras, Δ T mean , Δ SD, and Δ Patch richness strongly decreased, from 0 to -3.4 K, -2.5 K and -1200 patches, respectively. At distances from 20 m to 70 m, this decrease was much less pronounced as it did not exceed -1K, -0.8K, -400 patches for Δ T mean , Δ SD, and Δ Patch richness respectively.

T mean , SD, and Patch richness were therefore increasingly under-estimated as the distance between the two TIR cameras increased. By contrast, indoor TIR measurements on the 1-m 2 thermal test card showed a linear relationship with shooting distance, but thermal metrics were also under-estimated at increasing distances (red squares in Fig. 2). Moreover, global radiation levels influenced the magnitude of this error: for instance at 40 m, mean temperatures were under-estimated by about 3.3K and 1.5 K at radiation levels of 915 ±20 W/m 2 and 65 ±5 W/m 2 , respectively (Fig. 2 A). In other words, the surface temperature of solar-heated objects was more under-estimated than relatively cooler surfaces at the same distance. A similar pattern was found with Δ SD (Fig. 2 B). By contrast, Δ aggregation increased with distance (Fig. 2 D). 

Effect of surface structural complexity

Overall, we found no effect of the surface structural complexity on the relationship between thermal metrics and shooting distance. The same decreasing pattern with increasing distance was found for the three structurally different surfaces (thermal test card surface, green wall vegetation surface and wood edge surface) and for Δ T mean , Δ SD, Δ Patch richness (and a similar increasing pattern for Δ Aggregation). However, under similar solar radiation, surfaces had different TIR responses. The thermal heterogeneity of the wood edge surface, the more structurally complex, was less under-estimated with increasing distance than the green wall and the thermal test card surfaces (Fig. 3 A and B). Therefore, increasing distances caused both an under-estimation of the extreme temperature and a spatial homogenization of the temperatures. We also found that the shooting distance significantly modify the surface temperature distribution in the outdoor environments (ANOVAs in Table 1). Leaf temperature distributions, taken at a distance of 0.3 m from the surface in the outdoors environments (dashed curves in Fig. 4 C, D) showed larger temperature range and lower density maximum than the entire vegetation background in the green wall and wood edge environments. Note that the shooting distance has no significant effect on the temperature distributions for the 1-m 2 thermal test card in the indoor laboratory environment (ANOVA in Table 1, F A. = 0.761, P A. = 0.383). Nevertheless, they shifted downward up to -1K with increasing distance, which is less than for the outdoor surfaces (Fig. 4 A). 

Parameter

Discussion

TIR imagery is widely used to record object/organism surface temperatures and quantify their spatial heterogeneities in ecological studies. However, some key parameters in thermography may strongly impact the TIR outputs. In the present study, we show that the distance between the TIR camera and the object affected the thermal metrics used for featuring thermal heterogeneity of surfaces. Overall, we found that the shooting distance strongly modified the absolute temperature measured by the TIR camera. The relationship found between distance and the mean temperature, standard deviation and patch richness for the outdoors environments was non-linear, indicating a strong effect within the first 20 m and only a slight decrease between 20 to 80 m. As a result, average surface temperatures were underestimated when increasing the shooting distance. Interestingly, increasing the shooting distance homogenised thermal mosaics with a much stronger bias in the warmer than the colder part of the distributions. To our knowledge, this effect of shooting distance has never been quantified before. This quantification is critical for future studies that aim at assessing the thermal heterogeneity available for animals and plants (see below). Below, we explain this shooting distance effects by the lower atmosphere composition, the size of pixels, and the influence of global solar radiation on structurally complex surfaces.

Lower atmosphere composition effect

The underestimation of the mean temperature, standard deviation and patch richness might occur because of the composition of the ambient atmosphere. Recently, [START_REF] Minkina | Uncertainties of Measurements in Infrared Thermography[END_REF] evidenced absorption of the infrared radiation (emitted by objects) by gases and particles present in the lower atmosphere between the object and the TIR camera. For instance, air humidity, fog, snow, and dust can significantly distort the TIR readings [START_REF] Minkina | Uncertainties of Measurements in Infrared Thermography[END_REF]. This effect of atmospheric composition is suggested by the linear negative relationship between the thermal metrics and the distance in the indoor environment, wherein abiotic parameters such as air temperature and humidity were more homogeneous in space and in time (see red squares at 65 W/m 2 in Fig. 2). Indeed, the temperature surface distributions of the TIR images for thermal test card in the laboratory environment shifted downward by no more than 1K from 1 to 50 m, and both the maximum density and the temperature range did not change with distance in this stable environment (Fig. 4 A). By contrast, the lower atmosphere composition in the outdoor environments was probably heterogeneous along our transects. For example, the camera may have received more infrared radiation coming from nearby surfaces at close than at moderate and long distances (boundary layer properties, see [START_REF] Oke | Boundary layer climates[END_REF]. This effect can explain the non linear decrease of thermal metrics in outdoor transects (Fig. 4 shooting distance and the thermal metrics. Indeed, global radiation heat up the small portions of the surface that are perpendicular to the sun position, while the portions at a lower angle to the sun remain close to ambient air temperature, increasing thereby the spatial heterogeneity of surface temperatures. This effect probably amplifies the pixel size effect (see below), leading to an even larger under-estimation of thermal metrics.

Pixel size effect

TIR cameras are equipped with a sized sensor that provides a fixed number of pixels for any shooting distance. Therefore, the pixel size relies upon the shooting distance (Appendix 1):

the further you shoot, the bigger is the pixel size. This change in pixel size with distance inevitably induces modifications of the thermal information recorded by the TIR camera.

Indeed, the physical borders between an object, or a thermal patch, and its surrounding may be included in the same single pixel depending on the shooting distance, and in this case the pixel simply integrates the TIR information coming from both elements -i.e. a combination of sub-pixel temperatures [START_REF] Murphy | Calculating radiant flux from thermally mixed pixels using a spectral library[END_REF]. The integration of sub-pixel temperatures likely reduces the level of heterogeneity in the TIR images. This effect is well illustrated by the response of the aggregation index to shooting distance: thermal patches became more aggregated as shooting distance increased (Fig. 4). The aggregation index relies on the number of pixels composing the landscape (McGarigal & Marks 1994[START_REF] He | An aggregation index (AI) to quantify spatial patterns of landscapes[END_REF].

Indeed, the number of pixels composing a 1-m² surface area decreases with distance, causing thereby an 'apparent' increase in aggregation.

Effect of surface structural complexity

The relationship between shooting distance and thermal metrics was only weakly influenced by the structural complexity of the surfaces (thermal test card, green wall, and wood edge). This is a quite unexpected result as the interaction between a high level of radiation and the roughness of the surface is known to generate a highly diverse mosaic of temperature patches according to simple geometrical rules [START_REF] Oke | Boundary layer climates[END_REF]. We therefore expected a high spatial heterogeneity in surface temperature for the wood edge because of its three dimensional structure. The background of the wood edge, however, corresponded to a deep, shaded part of the wood, which may contribute to homogenize the TIR image. Indeed, under identical weather conditions (including solar radiation) the three structurally different surfaces showed different thermal metric responses (Appendix 8), i.e. a lower thermal heterogeneity for the wood edge surfaces than for the green wall surfaces. We also acknowledge that by starting at a Δ distance of 7 m in the wood edge environment, we may have missed much of the thermal effect. On the contrary, the thermal test card surface, although less structurally complex, showed a higher heterogeneity in temperatures than for the two other surfaces under identical abiotic conditions. The thermal test card is emitting TIR directly as function of incoming energy, while in the case of the green wall and the wood edge environments, the ecophysiology of plant leaves managed radiation loads and modulate their (highest) surface temperatures by transpiring [START_REF] Jones | Plants and microclimate: a quantitative approach to environmental plant physiology[END_REF]. Therefore, the structural composition alone is not sufficient to infer the heterogeneity of surface temperature at local scale.

Guidelines for the use of thermography with regards to shooting distance

We present some major guidelines to minimize inaccuracies due to the distance between studied object and TIR cameras. Firstly, to yield accurate and absolute TIR measurements, emissivity of the object should be fixed in the settings of the camera according to emissivity tables (Clark 1976), and global solar radiation must be recorded while shooting to proceed within similar irradiance conditions. When applicable, IR shots should be taken at low solar irradiance or during night to avoid underestimations of the results. Additionally, to minimize the sub-pixel temperature combination onto the physical borders of the studied surface, we would recommend removing the surface boundary edge -i.e. the boundary pixels -in the TIR image. However, this precaution will not exclude the inaccuracies due to sub-pixel temperature combination onto the thermal patches that composed the surfaces.

Secondly, the relationship between the shooting distance and the accuracy of the TIR images must be considered for data analysis. TIR studies should anticipate the influences of lower atmosphere composition (especially when outdoor) and of the shooting distance-related pixel size. Thus, we recommend reducing the shooting distance at the lowest possible distance (when feasible) to yield more accurate absolute surface temperatures. If not, atmospheric radiative transfer models could be used to correct the surface temperatures depending on atmospheric composition. For instance, MODTRAN®6 (MODerate resolution atmospheric TRANsmission) solves the radiative transfer equation including the effects of molecular and particulate absorption/emission of the atmosphere present between the thermal sensor and the studied object [START_REF] Berk | MODTRAN6: a major upgrade of the MODTRAN radiative transfer code[END_REF].

The size of the body organism is also a key parameter that constrains the use of thermography and the determination of the shooting distance. Indeed, surface temperatures significantly affect the performance of small living organisms mainly (e.g. insects and rocky shore crustaceans, when the heat budget is driven by conduction mainly), while the thermal budget of bigger animals is more influenced by the ambient air properties (convective heat loss). In particular, solar radiation warm up the surface of animal's body, increasing thereby the deviation between internal and skin temperatures. However, these effects are expected to remain minor for small, dry-skin ectotherms with low thermal inertia such as most arthropods, and plant surfaces. Nevertheless, TIR shooting distance should be selected depending on the size of the organism to maximize the number of pixels covering the object. For example, at a distance of 20 m, the pixel size was about 2 cm² with our best TIR camera (Appendix 1). The opportunities for behavioural thermoregulation can therefore only be assessed at 20 m and below for organisms with body size > 2 cm, assuming that the organism itself integrates surface temperatures throughout its whole body [START_REF] Woods | The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change[END_REF].

Conclusion

In conclusion, our study reveals that the distance between the object and the TIR camera is a major modifier of the measured thermal heterogeneity. Shooting distance causes errors and underestimations of the absolute surface temperatures. Researchers should therefore select the shooting distance as the result of a conscious trade-off between body size, the features of their TIR camera (field of view especially), the hypothetical surface temperature (if the object surface temperature is heated), and the level of accuracy of the TIR results they need in their studies. These recommendations apply for any field of research where thermography can be used. For each shooting distance, we performed a Gaussian fit, giving the R², the standard deviation (SD), the t-value and the 95% confidence interval (95%IC below and above).

The second part of Chapter II consists in the development of an integrative and quantitative toolbox for the monitoring and spatial characterization of microclimates across spatial scales. This part aims at overcoming the challenge of bridging the gap between the coarse-scale resolutions of the climatic dataset used in a majority of species distribution models and the body length of the study organism (Potter et al. 2013). In this study, we proposed an integrative toolbox that brings together procedures of unmanned aerial vehicle, thermal imagery, orthomosaic, GIS classification and spatial metrics. We applied this toolbox to the case of the agricultural landscapes in Ecuador for assessing the effect of plant phenology on high-resolution spatial metrics of surface temperatures, with implications for ectothermic pest dynamics. -UAV showcase IRD. 2013.

-Un dron para estudiar los microclimas en los Andes Ecuadorianas. 2015. The quantification of microclimates across spatial scales (from individuals to landscapes) can be potentially revolutionized by the recent development and increased access of unmanned aerial vehicles (UAVs). Autonomously operated, flying low and slow, UAVs offer scientists new opportunities for scale-appropriate measurements of ecological phenomena [START_REF] Watts | Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use[END_REF]Anderson & Gaston 2013;[START_REF] Marris | Fly, and bring me data[END_REF][START_REF] Floreano | Science, technology and the future of small autonomous drones[END_REF]. When equipped with appropriate sensors, UAVs can deliver thermal data with spatial and temporal resoluti ons suited to thermal ecology investigations. This technolog ical innovation has been applied to the study of microclimates in several recent ecological and agronomical studies (Berni et al. 2009;[START_REF] Tonolla | Linking fish assemblages and spatiotemporal thermal heterogeneity in a river-floodplain landscape using high-resolution airborne thermal infrared remote sensing and in-situ measurements[END_REF][START_REF] Haselwimmer | Quantifying the heat flux and outflow rate of hot springs using airborne thermal imagery: case study from Pilgrim Hot Springs, Alaska[END_REF]Dugdale, Bergeron & St-Hilaire 2015). While these studies provide ecologists with some information on UAV technology and use of thermal images, we currently lack an integrative methodological framework for combining up-to-date procedures for UAV systems, thermal imagery, orthophotograph generation, GIS classification and spatial metrics for the c haracterization of ecologically relevant thermal patterns.

Here, we propose a comprehensive methodological framework, from UAV thermal imagery to landscape metrics, for assessing the thermal heterogeneity of natural landscapes across a wide range of spatial scales. Our methodology employs an UAV equipped with visual and thermal infrared (TIR) cameras to yield high-resolution images processed into mapping software to obtain orthorectified visual and thermal images of high resolution. These orthophotographs are processed in a GIS for selecting surfaces ofinterest in the visual and thermal landscape (e.g. soil, vegetation). After the surfaces' emissivities (value of object's ability to emit thermal radiation) have been set at the appropriate value, the thermal matrices of selected surfaces (i.e. temperature values of the pixels belonging to the selectedsurfaces only) are processed within R to generate a variety of thermal landscape metrics (e.g. thermal patch richness and density, thermal aggregation and cohesion index). We applied this methodological framework to the case of agricultura l landscapes in the tropical Andes by assessing the effect of plant phenology on high-resolution spatial metrics of surface temperatures.

Materials and methods

The methods described below follow the different steps summarized in Fig. 1.

S T E P 1 : D A T A A C Q U I S I T I O N W I T H U A V F L I G H T S

The UAV system and sensors High-resolution thermal imagery (e.g. <5 cm) can be acquired by the use of an unmanned aerial vehicle (UAV). We used a multicopter (Drone-RC, PIXTIM, Messein, France) equipped with a DJI Wookong-M autopilot (DJI Inc., Shenzhen, China) with GPS receiver and barometer, a stabilized gimbal and a 900 MHz datalink that allowed a continuous radio link for inflight monitoring and control from computer. The im age acquisition was performed during programmed flight following a flight plan created with a ground station (DJI PC; DJI Inc., Shenzhen, China). Images were acquired in the visual (red, green and blue bands, RGB) and thermal infrared (TIR) spectral ranges using RGB and TIR cameras mounted simultaneously on-board. The RGB camera was a Sony Nex-7 that had a 24-megapixel sensor (Sony Corporation, New York, NY, USA) with a lens fixed to a focal length of 18 mm and operated in autofocus mode. The RGB camera was set to shutter priority with a fast shutter speed of 1/1500 to reduce motion blurs and ISO was set to 200 to limit noise in the images. The aperture adjusted automatically to achieve the desired shutter speed. The RGB camera was triggered by an infrared LED intervalometer (Pclix XT; Visual Effects Inc., Toronto, Canada). The TIR camera (HR research 680; InfaTec, Dresden, Germany) had a 640 9 480pixel uncooled microbolometer sensor recording the long-wave infrared radiation emitted by objects in the spectral range from 7 5 to 14 l m and was equipped with a 30-mm lens. The thermal sensitivity of the TIR camera was better than 0 03 K at 30 °C, and the measurement accuracy was 1 5 K. The TIR camera was switched on at least ten minutes before take-off to allow sensor stabilization. The emissivity was fixed to 1 for TIR image capturing and thereafter adapted to the studied surfaces when processing the images (see step 1-TIR surface emissivity ).

Ground control points

Before flying, we recorded the UTM-WGS84 geographic coordinates of at least three evenly distributed ground control points (GCPs) with a GPS (Garmin Oregon 550; Garmin, Olathe, KS, USA). GCPs allowed improving the scale, the orientation and position of the orthomosaics generated in the next step of the procedure. However, they do not enhance the spatial resolution of the orthomosaics; therefore, a basic GPS is enough for recording GCPs. Because GCPs need to be recognizable in the RGB and TIR spectral ranges, we placed black canvas sheets tenfold larger than the TIR image resolution to ensure their visibility in the infrared spectrum with re cognizable forms (square, circle, triangle, cross and star) on each of the GCPs (Appendix S1).

Meteorological conditions during flights

It is crucial to record meteorologica l conditions while flying in order to measure potential bias on thermal images (Jones 1992;Scherrer & Koerner 2010;Cilulko et al. 2013; for discussion). We recorded global solar radiation (in W/m 2 ) using a datalogger equipped with a pyranometer sensor facing the sky vault (LI-1400, LI-COR, Lincoln, NE, USA) and air temperature using one temperature logger (Hobo U23-001-Pro-V2 internal temperature loggers; Onset Computer Corporation, Bourne, MA, USA). Both loggers were located <50 m from the studied area. As a standard practic e in meteorological measurements, the temperature logger was fixed at 15 m high and sheltered by a 20 cm 2 white plastic roof to minimize so lar radiation heating. The sampling rate for temperature and solar radiation was one and ten seconds, respectively. These measurementswere performed during each flight to ensure stable meteorological conditions while obtaining TIR images. If not (i.e. standard deviation >10%), flight had to be conducted again (Fig. 1 -Data acquisition).

Flight description

Flight planning is a trade-off between the desired final resolution of the images, the site area aimed to cover, the flight time capacity of the UAV and the characteristics (e.g. weight, focal) of the on-board cameras [START_REF] Ballesteros | Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: description ofimage acquisition and processing[END_REF]. From this, trade-off can be defined cruise speed, flight elevation and camera trigger frequency. These parameters will then define the frontal and side overlapping of the images. As the aim here was to maximize the image resolution, we fixed the flight parameters according to the size of the studied area and to the smallest sensor we had on-board: the TIR camera. Therefore, we flew at 60 m above-ground level at a speed of 2 m s 1 with a trigger of 1 s for each camera which delivered a frontal and side overlapping of more than 80 and 70%, respectively, for the TIR images and more than 95 and 90%, respectively, for the RGB images. Moreover, flying at 60 m a.g.l. guaranteed yielding relatively stable and accurate TIR information applied to during-flight height variations (Fig. 2).

TIR surface emissivity

Emissivity, the ability of an object's surface to emit thermal radiation affects temperature readings made by any TIR camera (Rubio, Caselles & Badenas 1997). Therefore, depending on how many surfaces with different emissivity value the study focuses on, one should consider the emissivity of each surface in the analysis. We exemplify this process using two surfaces that have two different values of emissivity (sur-face_1 and surface_2), but the same methodology can be applied forn surfaces. To produce images with the appropriate emissivity for each surface, all TIR images of the origi nal set were replicated into two image sets: one was set to the emissivity of the surface_1 and the other one to the emissivity of the surface_2. We therefore obtained two TIR image data sets corresponding to the emissivity of the two surfaces studied: the surface_1-emissivity-based TIR images and the surface_2emissivity-based TIR images. Late r on, we extracted each surface area on the RGB orthoimage and assigned the appropriate emissivity TIR values (step 3). Emissivity adjustme nts were performed using the IRBIS software (InfaTec, Dresden, Germany). A toolbox for studying thermal heterogeneity 3

S T E P 2 : M A P P I N G

Image geotagging

After a visual pre-selection ( deleting blurred images, i.e. <5% of the total images in our case), coordinates were assigned to the UAV-acquired and emissivity-corrected TIR and RGB images (i.e. geotagging). The UAV flight path (GPS points registered on-board the UAV at logging rate of 1 Hz) was linked to the images taken on-board using the time settings of the cameras, which were synchronized with GPS time of the UAV before flight. We used the GeoSetter software (www.geosetter.de/en/) to write the UAV GPS coordinates into the corresponding RGB and TIR image EXIF headers.

RGB/TIR orthophotographs generation

We used a mapping software (Pix4Dmapper 1.3; Pix4D SA, Lausanne, Switzerland) for generating RGB and TIR orthophotographs from the geotagged UAV-acquired RGB and TIR images (Fig. 1.

-Mapping, and Appendix S2 for details). The mapping process detected and bundled the characteris tic image objects (i.e. tie points) between overlapping images to create a densified point cloud. The georeferencing of the densified point cloud (i.e. the orientation, scale and direction) is enhanced by the use of geotagged images and ground control points. Blending the images based on the point cloud, the software can export an or thophotograph (i.e. a georeferenced aerial image geometrically corrected) and/or a digital surface model (Appendix S2). In our case, we generated one RGB orthophotograph and two TIR orthophotographs (one for each studied surface emissivity) with high resolution (1 and 5 centimetres/pixel, respectively).

S T E P 3 : G

I S W O R K F L O W ( F I G . 1 -G I S W O R K F L O W A N D F I G . 3 )
We then imported the RGB and TIR orthophotographs into ArcGIS 10.1 (ESRI, Redlands, CA, USA). To determine independent surface area (including the two defined studied surfaces) in the TIR orthophotograph, we classified the high-resolution RGB orthophotograph using the Image Classification tool included in the ArcGIS Spatial Analyst extension. We performed an Interactive Supervised Classification based on five training sample polygonsfor each studied surface within the RGB orthophotographs (i.e. five polygons of surface_1 and five polygons of surface_2; see Appendix S3 for parameters of the RGB classification). The result was a cate gorized raster with identified pixels belonging to the respective studied surfaces (areas not assigned to the studied surfaces were left aside). From this raster, we created a shapefile mask of the surface_1 area and another for surface_2 area (using the Raster to polygon tool in the Conversion tools menu). We then used these masks to extract pure surface_1 pixels and pure surface_2 pixels in the corresponding emissivity-based TIR orthophotographs (with the Extract by mask tool in the Spatial Analyst extension). This allowed us to obtain two TIR orthophotographs: one representing only surface_1 surfaces and the other one, only surface_2 surfaces (each with their appropriate emissivity; Fig. 3). Finally, we merged the surface emissivity-based TIR orthophotographs to obtain a complete TIR orthophotograph with the appropriate emissivity for each surface. We assumed therefore that those TIR orthophotographs displayed the correct surface temperatures for surface_1 and surface_2 surfaces (Fig. 3g). Finally, we exported these three T IR orthophotographs into ASCII files (using the Raster to ASCII Conversion tool in ArcGIS, which permits to export raster without formatting options) for further spatial analyses.

S T E P 4 : S P A T I A L

A N A L Y S E S I N R ( F i g . 1 -S p a t i a l A n a l y s i s i n R )
Spatial analyses of the thermal o rthophotographs were performed using the R software version 3.1.2 (R Development Core Team 2014; see Appendix S4 for the R script used in this study). Our script imports the ASCII files of the TIR orthophotographs and converts them into raster files using the R packages RASTER (Hijmans 2014) and MAPTOOLS [START_REF] Bivand | Maptools: Tools for reading and handling spatial objects[END_REF]. Adapted from the class metrics calculated by Fragstats (Mc Garigal & Marks 1994), we used the CLASSSTAT function of the SDM TOOLS package [START_REF] Vanderwal | SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises[END_REF] to quantify the spatial configuration and composition at the landscape level of the thermal raster images (each index was computed as the sum of the index at the class level, weighted by its proportional area in the total landscape, Appendix S4 for details). We propose seven complementary metrics to fully describe the characteristics of the raster thermal landscapes: (i) thermal patch richness (number of patch types, i.e. temperature classes, present in the landscape), (ii) thermal patch density (number of patches per unit area), (iii) thermal aggregation index (quantifies to what extent temperature pixels of a same value are spatially aggregated), (iv) Simpson's thermal diversity index (probability that two pixels selected at random would be d erent temperature classes), (v) Shannon's thermal diversity index (which quantifies the uncertainty in predicting the temperature of one pixel that is taken at random in the thermal landscape), (vi) thermal landscape shape index (standardized measure of the total edge of a given thermal patch) and (vii) the thermal cohesion index (physical connectedness among patches of the same temperature). As a final output, for each of the TIR orthophotographs processed, thermal landscape metrics are automatically concatenated into a single table together with a boxplot display. Additional basic thermal statistics (e.g. mean, standard deviation, maximum, minimum temperature and area) are also provided in the table.

Study case

This toolbox might be applied to various ecologically relevant study cases such as presented in Fig. 4: quantifying the spatiotemporal heterogeneity in thermal environment for dragonflies in ponds, studying the relationship between surface temperature and the spatial structure o ve plant in natural meadows or identifying thermal refuges in palm groves in the semi-arid desert. Here, we applied our toolbox to the study of the spatial heterogeneity in surface temperatures in agricultural landscapes (Faye et al. 2014), with the view to assessing how microscale thermal features of crop fields change across plant phenology. Our study was conducted in an Andean agricultural landscape located in the Cotopaxi province of Ecuador. We selected 12 potato fields (Solanum tuberosumL.) so that they could be evenly distributed into three phenological stages (leaf development, inflorescence and mature stages, Table 1 andAppendix S5).

For each field at a specific phenological stage, we measured the leaf area index (Wilhelm, Ruwe & Schlemmer 2000) by estimating the ratio o f area within a 1 m 2 quadrant subdivided into 0 1 m 2 cells delimited by strings. In February 2014, we performed one RGB and TIR flight per field following the method described above between 11:00 AM and 15:00 PM under clear sky conditions (Table 1). This time window generally showed stable meteorological conditions and allowed reducing the shadow e ects on images due to the zenithal position of the sun. The number of CGPs depended on the field size (Table 1) and meteorological data were recorded during flights to ensure comparisons among TIR images (see the low standard deviation of mean air temperature and mean solar radiations in Table 1). As A toolbox for studying thermal heterogeneity 5 we were interested in the thermal metrics of two surfaces that had different emissivities (soil and plant), we produced two sets of TIR images with the appropriate emissivities (Rubio, Caselles & Badenas 1997) for each surface: the emissivity of plant canopy (0 98) and that of dry bare soil (0 94). Therefore, for each of the twelve fields flown over, we obtained two TIR data sets corresponding to the two emissivity of the surface studied in this study case: the plant emissivity-based TIR images and the soil-emissivity-based TIR images. Once processed in the mapping software we obtained RGB and TIR orthophotographs with resolution of 1 3 and 5 cm per pixel, respectively. After following the GIS workflow as described above, we run spatial analyses of configuration and composition for each phenology on the twelve surface TIR orthophotographs (Appendix S6).

We then plotted frequency histograms of surface temperatures for all fields belonging to the same phenology and for one individual field for each phenological stage. Finally, we plotted across plant phenology four thermal metrics of particular interest for our study (mean temperature, thermal patch richness, thermal aggregation and thermal cohesion index), for soil, plant and entire field surfaces.

Results

Crop phenology was a strong modifier of fine-scale surface temperatures in potato fields as the mean temperature of the whole surfaces (entire fields) decreased as plant growth increased: from 40 3 6 0°C for the 'leaf development stage' fields to 31 8 5 7°C for the 'inflorescence stage' fields, to 22 33 1 66°C for the 'mature stage' fields (Fig. 5). Interestingly, standard deviation of surface temperature strongly decreased with phenology as well. The skewness of the histograms of the frequency classes shifted from left skewed to right skewed distributions according to the phenological stage of the fields (from 0 57 for leaf development stage field to 0 26 for mature stage fields; see Fig. 5).

By decomposing temperature frequency distribution between the studied surfaces, we found that the frequency distributions of surface temperatures were bimodal with mean soil temperatures always exceeding mean plant temperatures by 13-22°C (Fig. 6). As expected, the proportion of each surface area changed over crop phenology: during the 'leaf development' stages, soil temperatures covered a larger area than plant temperatures (Fig. 6a) and vice versa at the mature stage (Fig. 6c). Interestingly, pla nt and soil mean temperatures decreased by 10°C and 12°C, respectively, as crop phenology increased: at the 'leaf development' stages large, surfaces of soil warmed small surfaces of plant while at 'mature stages', small surfaces of soil were cooled by large surface of plants.

Thermal patch richness of plan t and soil surfaces displayed a bell-shaped trend across phenology with a low number of patches at both ends of crop development (Fig. 7-c2). A combined reading of mean temperature and patch richness highlights the fact that the relatively high temperatures of soil surfaces for the mature stage phenology (Fig. 7-c1) did not affect much the mean temperature of the entire surface (Fig. 7-a1, due to its low patch richness index (Fig. 7-c2). Thermal aggregation index rose gradually for the plant surfaces, while it rose steeply at the mature phenology for the combined surfaces (Fig. 7-a3 and b3). This index decreased gradually with increasing phenology for the soil surfaces (Fig. 7-c3). Cohesion index for combined surfaces tended to increase with phenology, as well as for plant surfaces (Fig. 7-a4 andb4). Conversely, the cohesion index in soil surfaces decreased with growth plant phenology (Fig. 7-c4).

Discussion

The proposed toolbox provides a user-friendly, repeatable method for studying ecologically relevant fine-scale thermal patterns in a landscape. We discuss below the several advances and limits of this method in the field of thermal ecology.

Various studies have attempted to reconcile the spatial resolutions of thermal data with the species ecology using mechanistic modelling of microclimates at coarse spatial scale (Hijmans et al. 2005;Kearney, Isaac & Porter 2014), downscaling of climatic models (Fridley 2009;[START_REF] Palmer | Climate forecasting: build high-resolution global climate models[END_REF] or spatial distribution inferen ces of microclimates based on structural landscape characteristics (Bennie et al. 2008;Dobrowski 2011;Sears, Raskin & Angilletta 2011). However, the obtained spatiotemporal resolution is still far from the body size of the studied organisms (Potter, Woods & Pincebourde 2013). Moreover, the optimal spatial resolution of cli- As a topical technological breakthrough, our toolbox used image classification techniques to identify a large number of study surfaces in the visual landscape, based on their spectral components (e.g. different types of vegetation, soil, rock, water). In case of difficulties for separating different surfaces in the RGB orthophotographs because of their similar spectral properties (e.g. different plant species), one could increased the number of training sample polygons for each surface. If still insufficient, the toolbox could be completed with a multispectral sensor recording new spectral bands allowing a finer delimitation of surfaces [START_REF] Liebisch | Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach[END_REF]. Then, the thermal metrics associated to these surfaces can then be analysed separately or as an entity of the entire thermal landscape. Furthermore, our method resolves the current and difficult problem of emissivity associated with object surfaces in thermal images (Rubio, Caselles & Badenas 1997;Cilulko et al. 2013): by selecting surfaces with different emissivity values and creating as many sets of thermal orthophotographs as surfaces selected, our toolbox easily produces thermal orthophotographs with the appropriate emissivity for each considered surface. Consequently, surface temperatures obtained with our toolbox display the correct surface temperatures. Interestingly, our toolbox therefore highlights a poorly used outcome of UAV imagery in thermal ecology: the cross-analysis between RGB and TIR orthophotographs (B ulanon, Burks & Alchanatis 2009). For example, it would be possible to select thermal niches on the thermal orthophotograph suited for a given species (e.g. butterflies in mountainous landscapes, Ashton, Gutierrez & Wilson 2009) and identify the elements that create these refuges in the corresponding visual images, and vice versa. In this context, the metrics developed in our toolbox would allow revisiting some basic landscape ecology issues (e.g. influence of habitat shape index, edge effect, patch distribution and connectivity) from a t hermal point of view, opening new opportunities towards thermal landscape ecology. Still, UAV -TIR measurements provide no information on temperatures of beneath-surface layers (i.e. under canopy, under rock or soil temperatures), which are important for ecological studies. Combining precise climatic time series of these beneath-surface layers (Faye et al. 2014) to UAV-TIR imagery could therefore be a promising route to better understand the landscape scale thermal ecology processes that affect living organism. Our toolbox can also be used for assessing the temporal evolution of the thermal heterogeneity of natural landscape by repeating the data acquisition's step. Indeed, because UAV flights are GPS based and follow a same flight plan, they can be repeated over day and night at short time steps (e.g. each hour) to yield a complete picture of the thermal landscape experienced by organisms during 24 h or more.

The spatial extent at which microclimates can be explored with this methodology is determined by the flight time capacity of the UAV [START_REF] Watts | Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use[END_REF]Anderson & Gaston 2013;[START_REF] Ballesteros | Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: description ofimage acquisition and processing[END_REF], that is at least tens of hectares at once (depending on the resolution needed), or larger if thermal orthophotogra phs are merged. Consequently, our toolbox would be most useful to ecologist interested in exploring the thermal ecology of a vast number of study models such as: the microdistribution of alpine plants (Scherrer & Koerner 2010), the microclimate at the leaf surface in tree canopies [START_REF] Pincebourde | Regional climate modulates the canopy mosaic offavour able and risky microclimates for insects[END_REF], the spatial segregation of terrestrial insects along thermal gradients (Dangles et al. 2008;[START_REF] Wittman | Species interactions and thermal constraints on ant community structure[END_REF], thermally complex urban ecosystems [START_REF] Meineke | Urban warming drives insect pest abundance on street trees[END_REF] or the distribution of desert lizards' thermal refuges (Sears & Angilletta 2015). Moreover, our methodological framework would facilitate the monitoring of microclimates in out-of-reach areas such as top forest canopies or extensive intertidal zones (Helmuth & Hofmann 2001), with appropriate thermal resolution for the study of flora and fauna that live in these remote environments.

The framework proposed here provides a way to link the various mechanisms operating at different spatial scales. On one hand, sophisticated toolboxes are available to compute the body temperatures (e.g. Gates 1980), or the plant surface temperatures (e.g. Jones 1992), from bioclimatological data. These models operate at the scale of the organism or the plant organ, and they integrate eco-physiological knowledge (e.g. transpiration rate of plants) with physical laws of heat transfers. On the other ha nd, remote sensing of surface temperatures taken by satellites (e.g. MODIS, Kuenzer & Dech 2013) operates at very large scale. These data are widely used in macroecological studies, including ecosystem functioning, carbon cycles. Linking fine-scale mechanisms to large-scale processes requires specific tools to describe how the thermal variations at fine-scale translate into detectable surface temperature shifts at coarse scale. Complex biophysical models exist to describe the spatial thermal heterogeneity at regional extent, but these models demand huge effort to be parameterized (Bennie et al. 2008;Dobrowski 2011;Kearney, Isaac & Porter 2014). Our toolbox establishes empirically this link between fine-scale ecophysiological mechanisms and large-scale processes in a straightforward fashion, with interest ultimately for global change biology and ecosystem services studies.

Finally, two constrains might hamper the adoption of this toolbox: first, UAV and TIR systems are cheap but not inex-pensive (e.g. 30 000$ for the all system used in this study) and 6 months of practise will be necessary to gain UAV and mapping proficiency. Secondly, the administrative restrictions such as the governmental approval for flying [START_REF] Watts | Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use[END_REF]Allan et al. 2015;Vincent, Werden & Ditmer 2015), mainly in the United States and Europe for now, are the most time consuming and difficult step to achieve for using UAVs in scientific research.

the images (geometrical correction for standardizing the scales and directions). The orthomosaic of all acquired images is adjusted (brightness, contrast, mesh configuration, etc.) using the Mosaic editor menu. return(matrix(c(Px_TIR,Area_TIR,stats_TIR [2],stats_TIR [3],stats_TIR [4],stats_TIR [5],PR_ TIR,AI_TIR,SHDI_TIR,PD_TIR,SIDI_TIR,LSI_TIR,CI_TIR),dimnames=list(c("Px_TIR","Area_TIR","stats _TIR_mean","stats_TIR_sd","stats_TIR_min","stats_TIR_max","PR_TIR","AI_TIR","SHDI_TIR","PD_TIR ","SIDI_TIR","LSI_TIR","CI_TIR"),c(myAsciiFiles[myAsc])))) }) metrics<matrix(metrics,ncol=length(myAsciiContent),dimnames=list(c("Px_TIR","Area_TIR","stats_TIR_mean ","stats_TIR_sd","stats_TIR_min","stats_TIR_max","PR_TIR","AI_TIR","SHDI_TIR","PD_TIR","SIDI_T IR","LSI_TIR","CI_TIR"),c(myAsciiFiles))) tableLandMetrics<-t(data.frame(metrics,row.names=rownames(metrics)))# convert matrix to table print(tableLandMetrics) write.csv(tableLandMetrics,"tableLandMetrics.csv", quote = FALSE) # save data into a csv file ### [4] graphics pdf(file="BOXPLOT_tableLandMetrics.pdf") par(mfrow=c (4,4),mar=c(4,4,1,1)) sapply( 1 The last Chapter of this thesis is the application in situ of the methods developed in Chapter II in view to understand the relationship between crop microclimates and pest occurrences in potato fields. For this, we assessed the thermal heterogeneity of surface temperatures at the field scale with aerial infrared thermography done at fine spatial resolution. In the same time, a sampling of four major potato pests in the study region was performed in the studied fields.

We then evaluated the fine-scale thermal heterogeneity of crop canopy implications for pest performance and mobility regarding their thermal tolerance for development. Finally, we compared a variety of spatial metrics of the surface microclimates in crops with the pest abundance and richness measured in fields. This work took place on 38 potato fields of the central Ecuadorian Andes and revealed that few centimetres matter when considering optimal thermal environments for pest performances. environment within very short distances. 5-By measuring crop microclimates at fine spatial resolution over entire fields, our study revealed that a few centimetres suffice for providing enough optimal thermal environments for crop pests to enhance their performances.

Introduction

Microclimate effects on ectotherm populations have long been studied from an ecological perspective (Cloudsley-Thompson 1962, Ferro et al. 1979, Willmer 1982[START_REF] Frazier | Thermodynamics constrains the evolution of insect population growth rates: ''Warmer is better[END_REF], Scheffers et al. 2014, Storlie et al. 2014, Rojas et al. 2014). The spatiotemporal heterogeneity of microclimates (Woods et al. 2014, Sears & Angilletta 2015) and the biophysics connecting their properties to those of local macroclimates (Holmes & Dingle 1965, Bakken 1992, Gates 1980, Kearney et al. 2014) are widely recognized for shaping ectotherms distribution and metabolism (Porter et al. 2002, Storlie et al. 2014, Raghu et al. 2014). Body temperature is strongly altered by changes in the organism's physical environment, inducing a direct relationship between environmental parameters and the metabolism of the organism (Sears & Angilletta 2015). The relatively small size of most ectotherms (e.g., insects) allows them to exploit a great diversity of small-scale variations in microclimate that are not available to larger animals (Ashton 2009). Consequently, it is well acknowledged that quantifying the spatiotemporal heterogeneity of the thermal environment as perceived by small organisms (i.e., at the proper scale) is of prime importance for understanding their distribution and biological responses in their microhabitats (Potter et al. 2013, Storlie et al. 2014).

Although the spatiotemporal structure of microclimates has been shown to affect insect populations (Cloudsley-Thompson 1962, Willmer 1982, Porter et al. 2002[START_REF] Raghu | Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly[END_REF], Scheffers et al. 2014, Storlie et al. 2014, Woods et al. 2014), implications in the context of agricultural pests have been poorly explored. Being ectotherms, agricultural pests respond to the rules of thermal dependency for achieving their optimal performances [START_REF] Davis | Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae)[END_REF], Angilletta 2009). That is why precise information on pests' thermal responses is crucial for understanding their occurrence and dynamics [START_REF] Travis | Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches[END_REF]). However, very few studies have focused on the potential effects of microclimates on pest distribution at the field scale (Ferro 1979[START_REF] Juroszek | Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts[END_REF], Sutherst 2014). Tompkins et al. (1993) and Suh et al. (2002) showed how agronomic practices and canopy closure influenced the infestation of crop diseases and pests by modifying the components of the inside field microclimates (Septoria sp in wheat field and Trichogramma exiguum in cotton field, respectively). Also, Willmer et al. (2008) reported how intra-field microclimates constrained the distribution patterns of raspberry beetle (Byturus tomenfosus). But these studies concentrated on punctual measurements of microclimatic parameters rather than a continuous assessment of the spatial heterogeneity of microclimates at fine spatial scale in the field.

Technical limitations in microclimate measurements have long impeded the exploring

to what extent the spatiotemporal heterogeneity in microclimatic conditions can potentially influence crop pest distribution and their damages at the field level. However, recent developments in thermal infrared camera resolution and mobility (e.g., using unmanned-aerial vehicles -UAV) now allow characterizing microclimates experienced by tiny insect pests over large field surfaces (Faye et al. 2015). Here, we used aerial thermal infrared (TIR) cameras (both fixed on UAV and long perches) to yield accurate estimate of the spatiotemporal heterogeneity of surface temperature at the field scale and relate this information with the occurrence of four major potato pests. We sampled 38 potato fields (Solanum tuberosum L.) with aerial thermal infrared and visual imagery (5 mm resolution and 3.2 x 2.4 m extent for the perches based thermal images) to obtain, after a GIS processing, the surface temperatures of crop canopies only. With this methodology we reached an average TIR coverage of 21.41% (±7.91%) of the 38 potato fields. The main objectives of this study were 1) to characterize the intra-field spatiotemporal heterogeneity in surface temperature at a scale relevant for pests (both insects and fungi) living at the leaf surface, and 2) to assess whether such thermal heterogeneity can be related to pest performance and occurrence in various parts of the field. We hypothesized that 1) the range of temperatures available for pests in crop canopies within the field was mostly independent upon the spatial scale considered, 2) daily variations in radiations influence microclimate habitats available for pests, 3) pest performance is affected by thermal heterogeneity in space and time, 4) pests would be found at higher densities in thermal microclimates optimal for them, and 5) higher diversity of microclimates would allow a co-occurrence of higher richness of pest species.

Materials and methods

Data acquisition in the field

Study area. Measurements were carried out during the last two weeks of January 2014 in 38 potato fields located 115 km south from the equatorial line (01°01'36''S, 78°32'16''W) at 2850 +/-135 m.a.s.l. in the Cotopaxi province of Ecuador. The low seasonality occurring in this region (less than 1°K average mean monthly temperature variations) allows potato crops to be planted and harvested all year round, making convenient the study of crops at different growth stages at the same time (Faye et al. 2014). Therefore, the 38 fields provided a variety of potato phenology from leaf development to mature stage (Appendix 1). The studied fields were planted with 1-m spaced rows (±0.16) and with 0.5-m spaced plants (±0.06) within a row. Fields were not irrigated since at least 3 days before sampling. The field areas were relatively small, ranging from 630 to 3072 m 2 (average of 1265 m 2 ). Additional characteristics of studied fields and the dates of measurements are given in Appendix 1.

Solar radiation recordings.

During the period of data acquisition, we recorded in each studied field global solar radiation (in watt/m 2 ) using a pyranometer sensor facing the sky vault (LI-1400, LI-COR, Lincoln, USA). The global solar radiation logger was located nearby the studied field and recorded the global solar radiation for each TIR image taken.

Acquisition of aerial TIR and visible images. Thermal infrared (TIR) images were acquired using a TIR camera (HR research 680, InfaTec, Dresden, Germany) equipped with a 640×480-pixel uncooled micro-bolometer sensor and a 30 mm lens. The TIR camera recorded the long-wave infrared radiation emitted by objects in the spectral range from 7.5 to 14 µm.

The thermal sensitivity of the TIR camera was < 0.03K at 30°C, and the measurement accuracy was ± 1.5K. The TIR camera was switched on at least ten minutes before measurements to allow sensor stabilization. The emissivity was fixed to 0.98, the emissivity of potato plant surface (Rubio et al. 1997). Digital RGB images were acquired with a GoPro (GoPro 3+ black edition, GoPro Inc., USA) that was attached to the thermal camera with both lenses pointing the same direction (Fig. 1). The GoPro camera had a 12-megapixel sensor and was settled in photo mode with a narrow field of view to avoid image distortions.

Both types of images were acquired using either an unmanned aerial vehicle (UAV) or a gutter pipe. We first carried on UAV flights over twelve potato fields to assess the scaledependence of thermal heterogeneity (hypothesis 1), by following the method described in Faye et al. (2015). Briefly, we flew a hexacopter UAV 60 m a.g.l. over 12 fields to yield one TIR and one RGB orthophoto with a resolution of 5 cm 2 and 1.2 cm 2 , respectively. For technical reasons we were not able to fly over all the 38 potato fields using the UAV so we developed an alternative method in which the cameras were mounted on a 6-m long gutter pipe with a +20° angle to the pipe axis. Then, the pipe was tilted by +70° to the ground to obtain perfectly perpendicular TIR and RGB images, as it is the case with UAV acquisition (Fig. 1). At this distance from the ground, the field of view of the TIR camera was 3.2 x 2.4 m with a pixel side of 5 millimetres. Within each field, we evenly selected 10 study points at which microclimatic conditions were recorded following Faye et al. (2014) (see Appendix 5 for details). At each of the ten study points within a field, we simultaneously triggered the TIR and RGB camera at 3 locations around the point: on the front side, at 90° rotation on the left side and at 90° rotation on the right side of the point (corresponding to a total of 1140 TIR and 1140 RGB images acquired, i.e., 10 study points x 3 image locations x 38 fields). The pipe method allowed us an average TIR coverage of 21.41% (±7.91%) in the 38 potato fields (Appendix 1). The thermal heterogeneity recorded by pipe was comparable to that recorded by the UAV (see Fig. 2) Pest assessment. Simultaneously to the microclimate data acquisition, we assessed, in each of the 30 image extents per fields (see above), population levels of most common potato pests and diseases. Pest assessments were made by the same persons (CC and MH), both experts in potato pest identification. They enumerated the following pests: Frankliniella tuberosi (Moulton), Liriomyza huidobrensis (Blanchard), Myzus persicae (Sulzer) and Phytophthora infestans (Mont.). The sampling of adults thrips (F. tuberosi), aphids (M. persicae) and diptera leafminers (L. huidobrensis) was made by plant beating on a white plastic tray (35 cm length × 30 cm width × 5 cm of depth) repeated twice and a direct counting of the remaining insects on the lower leaf surfaces [START_REF] Weisz | Site-specific integrated pest management for high-value crops: impact on potato pest management[END_REF]. Because P. infestans is an oomycete responsible for the potato late blight, its infestation has been measured as the rate of the total plant surfaces affected by the disease. These four pests are among the most damaging pests of potato worldwide and represent alone 70% of the potato pest occurrence in the study area (Pumisacho & Sherwood 2002).

Image treatment and data sets

Image processing. TIR and RGB images were processed following Faye et al. 2015. Briefly, images were paired using the camera's clock and then aligned and geometrically-matched using ArcGIS 10.2 (ESRI, Redlands, USA). Afterward, images were processed in ArcGIS for extracting in the TIR images the surfaces belonging to the plant canopy only. This procedure used RGB image classification (between soil and plant surfaces) to provide a shapefile mask of the plant surface that was used for extracting the plant surfaces in the TIR image. As we were interested in relating microclimatic conditions to pest population levels, and assuming that mobile pests can move independently in all directions from their initial location, we selected the largest circle (1.2 m-radius) that could be drawn within the 3.2 x 2.4 m extent of the TIR images. These circles avoided potential bias in quantifying thermal heterogeneity available for pests as they 'provided' a pest moving further away from its initial location with the same number of pixels in all directions.

Pests' optimal temperatures data. Among all studied pest, four have been intensely studied for their agronomical and economical interests. Consequently, we searched in the literature information on the thermal biology of the adult stages of these four pests. In particular, we gathered minimum and maximum critical temperatures (CTmin and CTmax) to identify growth performance ranges (or thermal tolerance ranges, Huey & Stevenson 1979). The optimal temperature (Topt) at which the growth rate is maximal was either extracted directly from the literature or estimated as the last quartile of the growth performance range. Indeed, thermal performance curves of growth rate for insect are known to display a marked negative skewness and a rapid drop after the Topt, making the Topt likely to be situated within the last quartile of the growth performance range (Huey & Stevenson 1979[START_REF] Frazier | Thermodynamics constrains the evolution of insect population growth rates: ''Warmer is better[END_REF]).

These thermal parameters for each pest growth performance and their related references are given in Table 1.

Table 1: Thermal parameters of the growth performances for the four studied potato pests as identified in the literature. Topt, Tmin-Tmax and Last quartile are expressed in °C.

Data analyses

To assess the effect of the spatial scale on thermal heterogeneity (hypothesis 1), we computed the distance and the difference in surface temperatures between all the pixels of the TIR images and two specifically chosen pixels P1 and P2. These two pixels, different for each image, were chosen to be both the nearest from the central pixel of the image and the closest possible to the mean temperature value of the image. P1 and P2 were selected with various thresholds to ensure the accuracy of their location on the images and the proximity to the selected temperature value (see R script provided in Appendix 2 for details). The temperature value of P1 and P2 was compared to the temperature value of all the pixels of the TIR circle (P1 -Pi). Additionally, the distance separating P1 (and P2) with all of the others pixels of the TIR circle (Pi) was calculated using the Pythagorean theorem and expressed in metre (Appendix 2 for details). Consequently, we obtained the distance (in m) and the Δ temperature (in Kelvin) between each pixel of the image and P1 (and P2). We then computed a bivariate binning of the calculated distance and Δ temperature and plotted it in a hexagonal binning plot. In these plots, hexagonal cells with count > 0 are plotted using a colour ramp in proportion to the counts (i.e., the number of pixels of the image that fall within this cell).

Using this procedure, and following the concepts proposed by Jackson & Fahrig (2015), we assessed how spatial scale affected the thermal heterogeneity of potato crop canopies by selecting five circles of different radius (1.2 m, 6 m, 12 m, 18 m, and 24 m) on the twelve UAV orthophotos (Fig. 2 present this analysis for one of them). All circles were centred onto the middle point of the entire field. All analyses were coded in R (R Core Team, 2014) using various packages (Hexbin, Mass, SP, and Raster; see Appendix 2 for the full code and details).

To assess the effect of radiations on thermal heterogeneity (hypothesis 2), we plotted the relationship between the minimums, maximums, means and standard deviations of the plant surface temperatures versus the global solar radiation for the 1140 TIR images (Fig. 3).

Fit significance was assessed using a Spearman-rank test using Table Curve 5.01 software (Systat Software, Chicago, Illinois).

To explore how thermal spatiotemporal heterogeneity would affect pest performance (hypotheses 3-5), we first plotted the bivariate binning of distance and Δ temperatures and all other pixels included in the last quartile of the thermal tolerance range for pest development depending on radiations classes (Fig. 5). P1 and P2 were chosen to be the closest to the Topt of each pest. We then related pest abundance (i.e., the number of individuals on a given potato plant) with the mean surface temperatures (Fig. 6) and plotted two spatial metrics of thermal landscapes configuration (i.e., Aggregation index and the Shannon's diversity index, see Faye 

Results

Spatiotemporal heterogeneity in crop surface temperatures

Micro-environmental temperatures of potato crop canopies were highly heterogeneous at the field level, in a range comprised between +15ºC and -5ºC when compared to the mean field temperature (Fig. 2). This heterogeneity was poorly affected by the scale considered as the temperature deviation that occurred within 30 repeated 1.2 m TIR circles (total area of 45 m 2 ) ranged from -4.47 to +17.33 K around the mean temperature of the larger TIR circle (in yellow) while the thermal heterogeneity of larger circles (i.e., green circle of 113 m 2 , blue circle of 452 m 2 , pink circle of 1017 m 2 and yellow circle of 1808 m 2 ) spanned between -4.69 to + 17.69 K (Fig. 2 B.). However, a single 1.2-m TIR circle of 4.53 m 2 encompassed a smaller range of temperatures (-2.25 to +8.97 K, red TIR circle in Fig. 2 A.) suggesting that temperature heterogeneity may be affected at very small scales. Thermal spatial metrics (i.e., Patch density, Aggregation index, Shannon's diversity index and Patch connectivity index) were also globally consistent across spatial scales (Table 2). Temporal changes in solar radiations strongly affected thermal patterns in potato field canopies (Fig. 3). Minimum, maximum and mean temperatures all increased at higher radiations (from 10.37, 10.53, 10.60ºC at 120 watt/m 2 to 36.60, 26.37, 23.48ºC at 1500 watt/m 2 , respectively). Interestingly, thermal heterogeneity also varied by 400% between both extreme radiation levels, with highest radiation levels showing highest thermal heterogeneity. 

Thermal microenvironments and crop pests

We found that the range of surface temperatures that a pest can access in crop canopies increased with the distance it travelled from its initial position (Fig. 4). While a pest can always find a wide range of temperature at short distance, these microenvironments are very rare (light grey in Fig. 4). Interestingly, the probability for a pest to find wide range of temperatures not only increases with distance but also with solar radiations. When travelling 0.2 m from its starting point, a pest disposed of a span of high frequency cells of ±1.29 K at the 0-400 watt/m 2 levels while it reached a span of ±3.24 K at 1201-1600 watt/m 2 . When crossing the maximum distance considered (1.2 m from the initial pixel) this temperature range increases from ±2.68 K (0-400 watt/m 2 ) to ±6.93 K (1201-1600 watt/m 2 ). In other words, to access a range of temperatures of ±2.68 K, a pest would have to travel 1.2 m under low radiation conditions, but only 0.11 m under high radiation conditions. When exploring how thermal heterogeneity in potato field surface temperature may potentially affect pest development (here the last quartile of the thermal tolerance range for each pest), we found that the four studied pest had many possibility to stay within their thermal tolerance range by travelling relatively short distances at the surface of crop potato canopy (Fig. 5). As a general pattern, pests under low radiation conditions have more opportunities to find cooler than warmer microenvironments at all distances, but still keep many available pixels to increase their environmental temperature. Only species as M. persicae, with a high optimal temperature for growth performance (34°C), would experience thermal constrains under such conditions (Fig. 5 third row, first column). At high radiation levels, pests with high optimal temperatures (F. tuberosi and M. persicae) would need to travel larger distances to increase their chance of finding warmer microenvironments than cooler ones. The opposite pattern is found for species with low optimal temperature (e.g., L. huidobrensis). We found no association between mean pest abundance and the mean temperature measured in the TIR images (Fig. 6). The four studied pests were not clumped in their supposedly preferred thermal conditions but distributed rather evenly and found in the whole range of mean thermal conditions. However, our study revealed that pest richness significantly increased as thermal aggregation index decreased and thermal Shannon's diversity index increased (Fig. 7). Crop canopies with high thermal aggregation (86%) and low Shannon's diversity (1.42) had poorly diverse species while those with low aggregation (57%) and high Shannon's diversity index (2.48), were those infested by the highest diversity of species. 

Discussion

Thermal heterogeneity at relevant spatial scale for pests

Current species distribution models, based on the concept of ecological niche, integrate principles of biophysical, population and spatial ecology (Kearney & Porter 2009[START_REF] Buckley | Can terrestrial ectotherms escape the heat of climate change by moving[END_REF] to forecast the response of ectotherms to their changing environments. However, despite their sophistication (Kearney et al. 2014), these models fail to take into account the thermal heterogeneity at the scale of the studied organism (Sears et al. 2011, Potter et al. 2013, Scheffers et al. 2014), which fundamentally biases their predictions. Typically, climatic features are considered constant over areas as large as 1 km 2 (Potter et al. 2013) while drivers of microclimates such as micro-topography (Sears et al. 2011) or plant structures (Faye et al. 2014) are known to take place at finer scales. Consequently, a general mismatch between the resolutions of climatic data and organism's processes introduces great uncertainty about the predictions of species performance and occurrences (Potter et al. 2013). The same mismatch occurs for pest in agricultural landscapes [START_REF] Juroszek | Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts[END_REF], Sutherst 2014) and many studies forecast pest distribution based on macroclimates only (e.g., Bebber et al. 2014, Sparks et al. 2014, Crespo-Perez et al. 2015). Moreover, it also exists a gap in the spatial scale at which studies focusing on pest distribution are conducted [START_REF] Juroszek | Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts[END_REF], Sutherst 2014). On one hand, many studies focused on pest distribution at a regional or global scale due to the availability of the data needed to run the models: climatic data such as the WorldClim, land use database such as the one of the Landcover Institute (e.g., [START_REF] Kroschel | Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping[END_REF], Sparks et al. 2014). On the other hand, mechanistic models relying on biophysical processes of pest individual and microclimates (Garcia et al. 2014, and heat balance or thermal budget, Gates 1980) or empirical experiments under controlled conditions (Pincebourde & Casas 2006) are often used to understand pest infestation at the plant scale (Ferro et al. 1979, Willmer 1992, Chaisuekul & Riley 2005). Between these two scales very few studies tried to focus on the plant-pest interactions in relation with the microclimates at the field scale. Notwithstanding, it is at this local scale that the foremost spatiotemporal heterogeneity of microclimatic conditions experienced by pests occurs, and it is at this local scale also that farmers manage their pests (Christensen et al. 1996, Flint & Van den Bosch 2012). Considering this scale gap in the pest-based studies, one might conclude that quantifying thermal heterogeneity at relevant scale for pest organism (i.e., at the local scale) constitutes a major challenge for researchers interested in pest distribution. Our study demonstrated that methodologies exist for characterizing the intra-field spatiotemporal heterogeneity in surface temperature at a scale and resolution relevant for crop pests. Indeed, we showed that integrating 22% of the field area in TIR analysis was enough for accurately estimate the entire field composition and configuration in microclimates (Fig. 2). Therefore, we pinpointed that the thermal heterogeneity available for pests within the field was mostly independent on the spatial scale considered.

Spatiotemporal heterogeneity of microclimates

In crop habitats, thermal heterogeneity is produced spatially through vegetation structure (phenological stages, Faye et al. 2014) and dynamically through differential heating of surfaces as the sun moves across the sky (Wang & Dillon 2014). These patterns of surface temperatures related to solar radiation highlighted the temporal variability of the thermal heterogeneity available for pests in their environment (Fig. 3). Moreover, using high spatial resolution of climatic data in crop fields allowed us to reveal the robust relationship between the spatiotemporal heterogeneity of microclimates available for pests and solar radiation levels. Indeed, it is well known that solar radiation represents an important heat source, and numerous insect species develop thermoregulatory strategies in order to maximise or minimise the amount of radiative heat absorbed according to their thermal needs (Gates 1980, Kingsolver 1985, Rojas et al. 2014, Sears & Angilletta 2015). Therefore, when studying surface temperature, one should take into account the temporal variability of solar radiations to yield a complete panel of the thermal possibilities that are available for crop pests.

Furthermore, the spatial heterogeneity of microclimates in vegetation landscape such as crops is also driven by the 3D structure of the plants. Indeed, the canopy structure of plant determines directly the light interception by leaves and under surfaces elements (soils, shadowed leaves, stems…), which provide insect pests with additional dimensions of microclimates variability to improve their performances or buffer lethal events [START_REF] Saudreau | On the canopy structure manipulation to buffer climate change effects on insect herbivore development[END_REF]. By recordings the temperature within the air, air inside canopies and ground layers simultaneously with the 1140 TIR images, we revealed that the 3D structure of potato crops offered others thermal opportunities for pests (Appendix 5).

Linking microclimates to pest distribution

Assessing the relationship between plant microclimates and pest occurrences and distribution in crop fields is not straightforward due to the fine spatiotemporal scales of microclimate variability and the relative mobility of pests measured in the field. Our study revealed that crop pests have the possibility to regulate the temperature of their environment in a range of various degrees Celsius within very low distances (few centimetres to 1.2 metre) and that this distance depended on radiations levels (i.e., shortened with increasing radiations; Fig. 4 and5). Similarly, [START_REF] Otero | A Few Meters Matter: Local Habitats Drive Reproductive Cycles in a Tropical Lizard[END_REF] showed that "A few meters matter" for the performances of tropical lizards in open and forest landscapes of Puerto Rico regarding their thermal habitats.

Sears & Angilletta 2015 also demonstrated that the fine-scale spatial heterogeneities of climatic conditions experienced by Sceloporus lizards drove their energetic costs of thermoregulation. Likewise, our study revealed that a few centimetres matter in crop microclimates for providing enough optimal thermal environments for pests to use for enhancing their performances. However, pest occurrence is not only the result of the microclimatic conditions but rather the consequence of the integration of various factors: nutrition, reproduction, species interactions (natural enemies, competitiveness) and the conditions of the biotic and abiotic environments (Andrewartha & Birch 1960[START_REF] Juroszek | Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts[END_REF], Sutherst 2014). Among these parameters, farmer practices should be addressed as they can significantly modify pest occurrences in their fields (e.g., uses of chemical insecticides, Flint & Van den Bosch 2012).

An efficient way for studying the plant microclimate -pest interactions is spatially explicit and mechanistic modelling based on relevant biological processes and that include spatiotemporal heterogeneity of microclimates observed in the crop fields or mechanistically estimated (Sutherst 2014). Individual based model of pest traits and movements combined with spatially structured models such as cellular automata representing the spatiotemporal heterogeneity of microclimates would permits to precisely study the effect of crop microclimate aside onto pest distribution (Garcia et al. 2014). This theoretical approach could be a way for studying whether the pests modify their microclimate heterogeneity through mechanical alterations of the plants or whether the microclimate features attract the pests by providing favourable thermal niches. In this thesis, we investigated the effects of microclimates on pest occurrence and distribution, and highlighted the scale gap that currently exists in the spatial resolution between the studied insects and the climatic data used in agro-ecosystems. We also developed innovative methodologies to yield and analyse thermal data and their spatiotemporal dynamics at the appropriated scale and resolution for studying tiny crop pests and diseases. Finally, we integrated all this information for relating the microclimatic landscapes with the occurrence and distribution of pests observed in crop fields. In particular, we showed the importance of microclimates in providing short distance thermal niches that crop pests can take advantage of. In the following, we choose to discuss these main results by following a leaning from 1) theoretical issues, 2) relevance of thermal ecology for agronomical applications and 3) to challenges to put microclimate research into practice in developing countries. This plan adheres to the design of the entire thesis in which we firstly presented the microclimates In silico, methodologies to deal with thermal heterogeneity at fine spatiotemporal scales in agroecological disciplines and the applications of theses methods in situ. Moreover, we present in the discussion additional studies that have been performed during this thesis but that are still under process and analyses. They will be used to illustrate some specific issues.

Appendix 1:

I. Microclimates: Is exactness in the details?

Scale effects in microclimates

The "scale effect" issue has a long history in ecology [START_REF] Wiens | Spatial scaling in ecology[END_REF], Levin1992, Willis & Whittaker 2002, Storch et al. 2007[START_REF] Mcgill | Matters of scale[END_REF], Gillingham et al. 2012, Jackson & Fahrig 2015). In its influencial paper 'On the problem of pattern and scale in ecology', [START_REF] Levin | The problem of pattern and scale in ecology[END_REF] demonstrated that ecological processes act at a variety of spatial and temporal scales.

Later [START_REF] Mcgill | Matters of scale[END_REF] pointed out the scale dependency of ecological patterns. For instance, in a study relating the percentage forest cover to the abundance of 12 wood beetle species, [START_REF] Holland | Determining the spatial scale of species' response to habitat[END_REF] found that, depending on the scale at which forest cover was measured (from 20 to 2000 m radius), the correlation between forest cover and beetle abundance ranged from strongly positive to negligible. Therefore, the scale at which landscape attributes are measured has a strong impact on inferred species-landscape relationships (Jackson & Fahrig 2015). Scales are defined by their resolution and extent (Elith & Leathwick 2009). The extent usually reflects the purpose of the analysis: global change studies tend to be continental to global in scope (e.g., Deutsch et al. 2008), whereas studies targeting detailed ecological patterns tend toward local to regional extents (e.g., Sears & Angilletta 2015). The resolution usually belongs to the data used: i.e., the grid cell size of abiotic variables but also the spatial accuracy of the species records [START_REF] Willis | Species diversity: scale matters[END_REF], Gillingham et al. 2012).

Conceptually, there is no single natural scale at which ecological patterns should be studied [START_REF] Levin | The problem of pattern and scale in ecology[END_REF]. Rather, the appropriate scale is dictated by the study objectives, the study system, and available data (Kearney & Porter 2009).

In terms of climatic data, the effect of the chosen scale might have important consequences on the study issues, such as modifying the estimates of species declines and extinction (Gillingham et al. 2012, Logan et al. 2013). Indeed, global predictions use ambient temperature data gathered from weather stations, but the temperature experienced by ectotherms results from a complex interplay among many biophysical parameters (including convection, conduction, and radiation, see Introduction) and thus consistently deviate from ambient conditions (Bakken, 1992). Our work showed that this might be a key issue in agricultural and mountainous landscapes, where coarse-resolution grid cells (e.g., the WorldClim) may contain a wide variability of thermal environments driven by microtopography (Sears et al. 2011) and plant structure (Faye et al. 2014). Within such a grid square, there is likely a wide range of microclimatic conditions resulting in the presence of locally-suitable conditions for ectotherms (e.g., crop pests but also natural enemies, [START_REF] Bianchi | Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[END_REF][START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF][START_REF] Veres | Does landscape composition affect pest abundance and their control by natural enemies? A review[END_REF] at their thermal margins, the existence of which might not be apparent at a coarser resolution (Storlie et al. 2014). Consequently, it is intuitive that scales in climatic data will influence the results of the study. Gillingham et al. (2012) downscaled spatial climates at four spatial resolutions to explain the abundance of sampled ground beetles over their study area (Fig. 1). In their analysis, different resolutions resulted in different predictions about the abundance of the populations: higher resolution analyses provided more accurate estimates of observed patterns, but also highlighted potential microclimatic refugia for the conservation of species that otherwise might appear to be threatened with regional or global extinction under climate change. Similarly to Gillingham et al. (2012), we predicted potato pest abundance with thermal performance models using different spatiotemporal resolutions of climatic data and compared the results of the models with observed data measured in the field (see paragraph II.3. of this discussion). Generally, our study revealed that microclimatic data (measured at the field scale) were more relevant for predicting crop pest performances and abundance than the coarser scales (Fig. 7 below). Our results highlight the need for incorporating fine-scale climate data for studying ecological patterns that occur at fine spatial scale: e.g., incorporation into pest' performance analyses (Faye et al. 2014). Therefore, a clear understanding of ectotherms occurrence and distribution at the local and regional scale will depend critically on the fine spatial and temporal structure of their thermal environments. In other words, accurate ectotherm forecasts will require biologically relevant measures of thermal heterogeneity.

However, studies with more generalist scopes, such as biogeographic distribution of organisms, range shifts, population dynamics, and extinctions at global scales may not always need such fine-scale resolutions for their climatic data used in models. For instance, Deutsch et al. (2008), estimate the general impact of climate change on insect thermal tolerances across latitude using coarse-scale climatic data. As a general pattern, they concluded (as in [START_REF] Janzen | Why mountain passes are higher in the tropics[END_REF]) that because tropical species generally have narrow tolerance ranges and acclimation capacities compared to temperate species, the greatest extinction risks from global warming may occurs in the tropics. Moreover, some authors defended that the apparent mismatch between the scale of climate data and the size of organisms is implicitly bridged in most species distribution models (SDMs) with the "mean field approximation" [START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF]. They assumed that the grid-cell average climatic variables are statistically meaningful predictors of the probability of species persistence. The mean field approach simply states that macroclimate is a good predictor of the aggregated population-level effect of many individual responses to the spatial and temporal variations in microclimate that influence individual performances [START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF]. Therefore, climatic data at coarse resolution and large extent may also be sufficient to assess main changes in distribution.

So, what is the appropriate scale for climate data?

Predicting how organisms will respond to their environment will require reducing the mismatch between the spatial scales of climatic data used versus organisms [START_REF] Austin | Improving species distribution models for climate change studies: variable selection and scale[END_REF], Potter et al. 2013). But how fine is fine enough? The question of optimal spatial resolution has been debated since the birth of SDMs (Guisan & Thuiller 2005), with some authors suggesting that finer-scaled SDMs provide better predictions (Elith & Leathwick 2009, Hannah et al. 2014, Storlie et al. 2014) and others that do not [START_REF] Guisan | Sensitivity of predictive species distribution models to change in grain size[END_REF][START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF]. Focal organisms and their habitat requirements are a starting point for informing the choice of appropriate scales for climatic data and others type of data (Hannah et al. 2014). Fine-resolution spatial data may be less important for organisms in spatially homogeneous environments or for wide-ranging studies that focus on a general purpose and trends. Also, high temporal resolution data may be less important in environments where diurnal or seasonal variability is limited, at least relative to the environmental tolerances of organisms (Potter et al. 2013). The biological question of the study also influences the choice of climate data: temporal resolution may be more crucial for studies of survival and reproduction and spatial resolution for studies of distribution (Buckley et al. 2010).

For biologists, the greatest challenge resides nowadays in the availability of highresolution climate data, because constructing these surfaces requires new physical modelling skills (Kearney et al. 2014) both with the development of new thermal recording technics (Faye et al. 2015). Lee et al. (2015) presented the new HyspIRI satellite sensor (Hyperspectral InfraRed Imager) that will soon start recording thermal infrared orthoimages within the 4-13 µm range with 60 m spatial resolution and a revisit time of 5 days. For finer spatiotemporal resolution in temperatures, the toolbox presented in this work, Faye et al. (2015), provides an innovative methodological framework to better assess the thermal heterogeneity of natural landscapes at fine spatiotemporal scales. In particular, this toolbox would be of topical interest for ecologists trying to bridge the gap between the resolution of their climatic data and the body size of their study organisms.

Is microclimate enough?

Not only temperatures -While it becomes increasingly admitted that microclimatic conditions, especially temperatures, are critical for the assessment of species' responses to their environments (changing or not), insights on others factors that composed microclimates would be of topical interest too. Indeed, solar radiations, relative humidity, soil moisture, microtopography, wind speed and direction are parameters that shape the microclimatic environment experienced by organisms (Geiger 1965, Gates 1980, Jones 1992). These additional parameters were faintly studied in this thesis as temperatures had been identified as the main factor influencing potato pest dynamics in the tropical Andes (Dangles et al. 2008).

Notwithstanding, as for temperature, theses abiotic variables are also highly heterogeneous in space and in time at very small spatiotemporal scales (Gates 1980, Bakken 1992). Thus, a complete assessment of microclimates in the environment inhabited by species should include a measure of these parameters. However, these additional parameters remain poorly studied and methodologies for measuring them produce a high degree of uncertainty [START_REF] Unwin | Microclimate measurement for ecologists[END_REF], Porter et al. 2002). To address this issue, recent advances in mechanistic models use complex energy balance equations which incorporate spatially mapped variables such as surface albedo, relative humidity, incoming solar radiation and wind speed to generate estimates of microclimate at relatively fine scales (Kearney et al. 2014). This arrangement of highly heterogeneous variables composing the microclimate makes even more complex our understanding of the relationship between organisms and their environments. In other words, species with specific thermal tolerances may exhibit habitat associations for thermal reasons, as well as because of others specific abiotic constraints.

Not only microclimates -Many others environmental variables (not only climatic) may influence species' occurrence and distribution at fine spatiotemporal scales. Certainly, many organisms can disperse through environments that are thermally unsuitable to achieve others essentials requirements (Buckley et al. 2010). Needs in nutrition, reproduction, or species interactions (prey/target, competitiveness, positive interactions) can significantly influence species distribution (Cloudsley-Thompson 1962, Porter et al. 2002). For example, many plants may be limited by patterns of water availability or soil nutrients, rather than temperature (Jones 1992); thus even if insects that rely on these plants are limited by temperature (i.e., because they are ectotherms), they are further constrained by the nutrition requirements of their hosts [START_REF] Huey | Latitudinal pattern of between-altitude faunal similarity: mountains might be" higher" in the tropics[END_REF]. Similarly, pests in agricultural landscapes may be constrained by their microclimatic thermal environment and their relative thermal tolerances, but their distribution will also be driven by other parameters such as plant host quality, natural enemies' occurrences, and chemical insecticide spraying. Consequently, even with all the scientific and technological breakthroughs that appeared over the years, the identification, understanding and integration of the complete array of processes that drive organisms in their microhabitat is still likely to be a challenging endeavour.

Does microclimate reduce tropical mountain passes?

The work presented in this thesis may have broader implications for the study of tropical ectotherms' ecology, as it would allow revisiting some influential concepts on the physiological thermal tolerances of tropical-versus temperate-zone organisms. In 1967, Daniel Janzen published an influential paper entitled "Why mountain passes are higher in the tropics?" Janzen derived a simple climatic-physiological model predicting that tropical mountain passes would be more effective barriers to ectotherms dispersal than would be temperate-zone passes of equivalent elevation [START_REF] Janzen | Why mountain passes are higher in the tropics[END_REF]. This prediction resulted from the recognition that the annual variation in ambient temperature at any site is relatively low in the tropics compare to the temperate-zones. Consequently, altitudinally separated sites in the tropics will have little overlap in their thermal regimes at any given time or even over the course of a full year. Temperate-zones show a strikingly different pattern because both lowand high-altitude sites experience marked seasonal variations in temperature (Fig. 2). As a result, low-and high-altitude sites in the temperate-zones have considerable overlap in thermal regimes, at least computed over a full year. In the tropics, the low variation within sites reduces or even prevents the overlap in thermal regimes between low-and high-altitude sites. Organisms develop physiological adaptations and acclimation capacities that reflect the range of climatic variation typically encountered (Angillettta 2009[START_REF] Sunday | Global analysis of thermal tolerance and latitude in ectotherms[END_REF][START_REF] Sheldon | The impact of seasonality in temperature on thermal tolerance and elevational range size[END_REF]. Thus, temperate-zone organisms possess broad thermal tolerances as well as marked acclimation capacities to cope with the large seasonal changes in climate [START_REF] Bonebrake | Climate heterogeneity modulates impact of warming on tropical insects[END_REF]. In contrast, tropical organisms evolve narrow thermal tolerance and reduced acclimation responses, appropriate to the less variable climate of the tropics (Deutsch et al. 2008[START_REF] Sunday | Global analysis of thermal tolerance and latitude in ectotherms[END_REF]. As a result, Janzen predicted that tropical lowland organisms have narrow tolerances to temperature and were more likely to encounter a mountain pass as a physiological barrier to dispersal [START_REF] Janzen | Why mountain passes are higher in the tropics[END_REF][START_REF] Ghalambor | Are mountain passes higher in the tropics? Janzen's hypothesis revisited[END_REF].

Thus mountain passes are physiological, not topographic, barriers to dispersal: a mountain pass will be a greater physiological barrier if there is relatively little overlap in climate between a low-altitude valley and an adjacent high-altitude pass (Fig. 2). He finally linked these assumptions and predicted that tropical organisms would have greater difficulty in crossing mountain passes (than would temperate-zone organisms) because they would be more likely to encounter a climate to which they were not adapted.

When taking into account the microclimates experienced by organisms as presented in this thesis, two new questions may appear with respect to this hypothesis: 1) do microclimates physically provide organisms with favourable temperatures to "cross" the mountain passes of the tropics? thereby reducing tropical mountain passes, and 2) are the thermal tolerances of an organism influenced by the microclimates it experiences? In both cases, recomputing the Janzen's hypothesis using microclimates (e.g., using operative environmental temperatures rather than ambient temperature, Bakken 1992, Kearney et al. 2014) at a global scale and allowing for the expression of behavioural and other adaptations that buffer variation in ambient temperatures (see Introduction) would permit to detail how much microclimatic patterns influence the evolution of the physiological capacities of organisms [START_REF] Huey | Physiological consequences of habitat selection[END_REF], Logan et al. 2013). Moreover this will be a great opportunity to test the effect of latitude and elevations on the microclimatic patterns (i.e., seasonal variability of microclimates, Scheffers

et al. 2014b).
Using the same graphical illustration of the Janzen's hypothesis, we displayed the potential effect of microclimate temperatures in modifying the thermal regimes and leading to a thermal overlapping between valleys and mountain passes in the tropics (Fig. 3). Thus, tropical organisms would have physical possibilities to cross mountain passes when taking into account microclimates, because they would be more likely to encounter favourable thermal niches. Similarly, in the temperate-zones the overlapping of the thermal regimes will increase if the microclimatic patterns remain constants across latitudes. Actually, high-altitude tropical sites can experience great daily fluctuations in temperature compared to similar altitudes in temperate locations (Dangles et al. 2008). Our work showed that these temperature variations increased by various degree when taking into account the microclimates experienced by organisms (Faye et al. 2014). the species confined to the coldest microclimates will have to move to higher elevations, but the majority of the species will find suitable thermal habitats (as rated by their current thermal tolerance) in a distance of just a few centimetres or metres. In the Chapter III of our work, we found a similar pattern in crop fields in which pests have to move few centimetres only to modulate their thermal environment and find thermal niches that foster their performances.

The large variation of microclimatic conditions in landscapes may buffer the impacts of climate change on biodiversity by offering stepping stones and refugia (Hannah et al. 2014, Scheffers et al. 2014a), rather than forcing all species upslope in order to track climatic warming. In conclusion (and opening for future research), microclimates might both reduce tropical mountain passes and reduce species' vulnerability to climate change.

II. Thermal ecology for agronomists 1. Pest control based on thermal ecology?

Currently, there is a relatively small but growing community of researchers working on thermal ecology. Some of them were gathered at the HeteroClim workshop 'The response of organisms to climate change in heterogeneous environments' that took place in July 2014 in Loches, France (see Appendix S2 for the poster I presented there). This workshop faced the challenges of bringing together scientists from various key disciplines (climate, genetics, physiology, ecology, agronomy, statistics) to promote the interconnections between their different expertise and skills. One of the major outputs of this conference was that interdisciplinary blends would bring innovative solutions to topical issues related to thermal ecology.

Similarly, interdisciplinary studies linking ecological, agronomical and social issues are essentials to build a complete understanding of agrosystems. Indeed, further investigations should focused on the interconnections that occur between farmers, pests and their abiotic environments (Fig. 4). Our team already focused on the Pest -Farmer interactions (Fig. 4.1) and revealed the importance of collaborative actions among farmers for more efficient pest management (Rebaudo & Dangles 2011, Rebaudo et al. 2011, Rebaudo & Dangles 2015).

This thesis opens a new pathway towards thermal agroecology based both on agronomical and thermal ecology processes: indeed, we showed how crop microclimates influenced pest occurrences and how pests modify their environments leading to new microclimatic conditions (Fig. 4.1). Indeed, when pests damage their host plant, they are often modifying the structure and/or composition of the plant (e.g., colour of the leaves, water content of the plants, senescence, leaf area index…). These modifications lead in turn to a modification of the microclimates experienced by the pests (e.g., diminution of shadow, increased emission of thermal radiations). The next step for the development of innovative pest control strategies will be to study how farmer practices can shape the thermal environment of crop pests, which will subsequently hampers crop infestation by pest. Certainly, agricultural practices such as row-or plant-spacing, intercropping, adapted plant prune may turn the microclimates experienced by pest unfavourable regarding their thermal tolerance, thereby limiting their infestation (Fig. 4.3). Based on the outputs shown in this thesis, strategies aiming at enhancing a thermalbased pest control should be explored by setting up spatially explicit models (e.g., cellular automata combined with agent based simulations). Theses simulations implemented at the field or agricultural landscape scales should test the efficiency of specific farmer practices and collaborations for improving pest control. For instance, different kinds of field management (field clustering, heterogeneity in sowing dates, row spacing, intercropping…) should be explored for their impact on microclimate patterns and subsequent effect on pest levels. We could identify specific crop (e.g., corn) that act as a physical obstacle to cross due to its thermal properties (i.e., a thermal barrier) for potato pests. We could also test the efficiency of appropriate landscape manipulations by farmers for hampering infestation by pests (different levels of composition and configuration in space and in time of crops, [START_REF] Veres | Does landscape composition affect pest abundance and their control by natural enemies? A review[END_REF], Schneider et al. 2015) based on the thermal properties of the agricultural landscape (Parsa et al. 2011). The results of these modelling explorations would provide a range of theoretical pest control strategies to be tested under real conditions. Consequently, the next step will be to test these new assumptions under experimental setting or real-world situations.

Moving to experimental approaches

Experimental field manipulation has proven to be an efficient way to test the response of crops to specific treatments or perturbations [START_REF] Mead | Statistical methods in agriculture and experimental biology[END_REF]. It allows randomizing sampling units into treatment and control groups to statistically examine the outcomes between these groups. Contrary to laboratory experiments, hypotheses can be tested "in the real world" with natural settings rather than in a constrained laboratory environment. This kind of experiment might provide great insights for understanding the effects of microclimates on pest distribution. Indeed, experimental field permits to get rid off part of the variability that may influence pests in crop fields: for instance farmers practices can be homogenized (application of chemical insecticides) or modified to test a hypothesis (row spacing, prune, … and see above). In this context, a collaboration with the International Potato Centre (CIP -www.cipotato.org) during my thesis gave me some insights about how to move to more experimental approaches.

Based in Lima, Peru, the CIP is a CGIAR research centre (Consultative Group for International Agricultural Research) that seeks to achieve food security for people in the developing world by improving root and tuber farming and food systems. One of their fields of investigation is to study sweet potato to improve plant tolerance to heat as it could both improve crop productivity and facilitate the use of more marginal heat prone production areas (e.g., in sub-sahelian countries in Africa). To achieve this purpose, the team of Bettina Heider (Fig. 5). This experimental field was replicated in a field aside from the first one, amounting to a total number of 4078 plots spreading over 3 ha.

We collaborated with Bettina's team in this project by flying an UAV equipped with visual and thermal sensors to yield high-resolution visual and infrared orthophotos (Fig. 5, Faye et al. 2015) at two decisive stages of the physiological crop developpement: the root initiation (60 d.a.p. days after planting), the maximum root bulking (90 d.a.p.). The aim of this collaboration was to rapidly conduct a thermal selection of sweet potato plants in experimental fields using remote sensing. Indeed, thermal evaluation of all the repetition units using a thermal infrared ground-based methodology took more than four weeks with four people employed full-time, but only a few hours with the UAV. Additionally, the use of UAV-based assessment greatly increased the accuracy of the thermal and visual measurements. By recording the entire fields in ten minutes compared, the UAV-based methodology significantly reduced the variability of the thermal measurements that is due to solar radiation and weather changes. This experiment allowed us to relate the thermal signature of the plant canopy surface and the vegetation index recorded by the UAV methodology to the effective yield of each plot empirically measured in the field. We also related the worldwide geographical origins of the sweet potato accessions with the thermal responses of plant canopies during extremes heat events.

Pest modelling for agro-ecological purposes

In agronomy, a great variety of temperature-based models (e.g., cohort-based models [START_REF] Logan | Toward an expert system for development of pest simulation models[END_REF], individual-based models Guichard et al. 2012, cellular automata Rebaudo et al. 2011) have been developed to assess pest occurrences across agricultural landscapes. Such models are becoming a key component of pest-risk assessments both under current and predicted climatic conditions [START_REF] Venette | Pest risk maps for invasive alien species: a roadmap for improvement[END_REF], Garcia et al. 2014, and Sutherst et al. 2014 for a review). In view to improve the accuracy of the predictions of these models for farming applications, our group conducted a study on the effect of climate dataset resolution on pest performance models. Our objective was to assess whether microclimate data were more relevant than less accurate climate data in predicting crop pest performances. We therefore compared simulated pest performance of three potato tuber moths (see Fig. 26 and paragraph III.3.b. of the Introduction) using three temperture data set obtained at three different spatial resolutions: i) at the regional scale (mean air temperature data from WorldClim -resolution near 1km 2 ), ii) at the landscape scale (air temperature from weather stations), and iii) at the field scale (microclimate in crops). We then compared these simulations with field data of pest abundance. Interestingly, we found that microclimate datasets were best disposed to predict pest abundances at the local scale and at a fine resolution. Indeed, the microclimate based model was more efficient in predicting pest abundance than the coarser-resolutionbased models (Fig. 6). Consequently, this study quantitatively highlighs the importance of considering microclimates at fine spatial scales when predicting pest performances. environment, data is often scarce and many times incomplete. Moreover, much of the existing information has not been published and has remained as "grey" literature, hardly available for researchers. For our concerns, the low number of weather stations in tropical regions causes climatic data to be even scarcer (Hijmans et al. 2005). This lack of weather data also increases the already high uncertainty of climate change predictions [START_REF] Buytaert | Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management[END_REF].

Additionally, information regarding land-use and agronomy is usually out-dated and existing maps have a very coarse spatiotemporal resolution (Ministerio de Agricultura Ganaderia Acuacultura y Pesca del Ecuador, www.agricultura.gob.ec). Finally, monitoring data on pests is usually completely lacking. Therefore, this shortage of data demands great efforts for researchers either to find existing information or to develop and record it themselves in order to achieve adequate analysis regarding their scientific interests. Below we propose two ways to deal with this shortage of data.

"Big data" insights into pest distribution -The need for a coordinated monitoring system, complemented by robust diagnostic networks and widely accessible information systems on pest and plant diseases, has never been greater [START_REF] Chakraborty | Climate change, plant diseases and food security: an overview[END_REF].

Pest problems are likely to increase in the future (Oerke 2006[START_REF] Garrett | Agricultural impacts: Big data insights into pest spread[END_REF]), so we need to move from a pest specific, short-term and demand-driven approach to the establishment of a general framework of understanding and managing insect pests. available through a web-base interface. This thesis has benefited from such a project mainly through the availability of data on pests and climate monitoring at a regional scale. For instance, long term temperature monitoring in the field with data-loggers in the study site of this thesis were used as a reference for assessing the actual seasonality in the study sites (see Appendices S4 and S6 of Chapter I). Also, pest data issued from this monitoring were used as observed data for validating our modelling outcomes in the work presented in paragraph II.3.

of this discussion (see above). Approaches such as this one to manage and make accessible data constitute important advances towards improving both knowledge about these pests' and the capacity to understand their dynamics in the North Andean Region. 

UAV: Limits and promises for developing countries

Limits of the technology -As claimed by Anderson & Gaston (2013), "drones are on their way to revolutionize spatial ecology" and to become an indispensable device for ecologists [START_REF] Grémillet | Robots in ecology: welcome to the machine[END_REF]. But applying such technologies for research, in particular in developing countries, faces different obstacles that have to be overcome. The price of technologies such as thermal cameras and UAVs, even if constantly decreasing, is still expensive. A complete UAV system (including the drone, the ground control station, the remote control, the data link, etc…) combined with on-board visual and infrared cameras will cost between 10.000 and 50.000 US dollars. After what, the learning of piloting, flight programming, UAV maintenance, thermal and visual image processing, mapping software will last in average for 1 year of practice. Weather conditions are also restricting UAV flights:

wind, rain and thunderstorms are the main factors that can constrain UAV flight and they have to be appreciated by the pilot himself. Generally, wind speeds above 30 km/h will keep the UAV on the ground or force the pilot to return to land. Rain is no flight conditions because it may interfere with the on-board electronic components and also affect data values of the images due to high water content in the light path [START_REF] Jones | Remote sensing of vegetation: principles, techniques, and applications[END_REF]. Ground elevation a.s.l. also hampers the uses of UAVs for research, in particular those of hexacopters (compared to wing shape UAVs which possess more lifting power): indeed, for the purpose of another study interested in glacier melt effects of plant biodiversity, we tried to fly over a glacier snout with a light UAV (<1 kg) and due to the low air density at that altitude, we were not able to hover (Fig. 8). Based on flights performed at various elevations in the tropical Andes, we estimated that the elevation limits for flying with ready-to-fly commercial drones was 3500 m high. Of course, the flying aptitude of the UAV can be adjusted by decreasing the total flying weight, and by increasing the power of the motors and the capacity of the batteries. Additionally, care should be taken when conducting UAV experiments on wild animals because if practised whithout caution UAV flights can disrupt animals' behaviour [START_REF] Ditmer | Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles[END_REF][START_REF] Vas | Approaching birds with drones: first experiments and ethical guidelines[END_REF]. Last but not least, despite a strong interest and enthusiasm from the scientific community for such a promising tool, one critical constrain that still hampers the adoption of UAVs by the scientific community concerns administrative restrictions such as the governmental approval for flying (Allan et al. 2015). For instance, the use of UAV system in this thesis was achieved thanks to the support of the official authorities of Ecuador (IEE -Instituto Espacial Ecuatoriano). As declaimed by Vincent et al. (2015),

"UAV technology will revolutionize ecology, but only if it can be widely and easily implemented". 

Des essais grandeur nature

L'équipe de recherche a testé cette nouvelle méthodologie dans les paysages agricoles andins en Équateur. Dotés d'une caméra infrarouge (enregistrant les températures de surface), des drones ont passé au crible des champs de pommes de terre, qui sont communément attaqués par une grande diversité de ravageurs et maladies (chenilles, pucerons, champignons). Volant à une hauteur de 60 mètres au dessus du sol, ceux-ci ont permis de mesurer précisément sur plusieurs dizaines de mètres carrés la distribution spatiale des températures de surface, à la fois du sol et des plantes. Le tout avec une précision, respectivement pour les images visuelles et infrarouges, de 1 et 5 centimètres !

Mieux représenter les microclimats

La résolution à laquelle les données climatiques étaient collectées jusque-là ne permettait pas de rendre compte des conditions microclimatiques dans les modèles de climat globaux. Or, les microclimats modifient la réponse et la distribution des espèces locales au changement climatique. Leur mauvaise représentation dans les modèles constitue un obstacle majeur à l'étude et aux prévisions des effets climatiques, notamment sur les plantes et les animaux. Les images collectées lors de cette étude soulignent l'urgence de quantifier, selon des échelles spatiales pertinentes, les conditions microclimatiques. Elles ont en effet révélé que le type de cultures et leur stade de croissance modifient fortement la température et les conditions écologiques dans les champs, et donc la dynamique et l'aire de répartition des populations de ravageurs de cultures, comme les teignes ou les charançons.

Partenaires

Institut spatial équatorien (IEE), Université pontificale catholique de l'Equateur (PUCE) dans le cadre du projet ANR ManPest. ! However, very few studies point out the limits of the use of these cameras for featuring thermal landscape with metrics of heterogeneity, composition and configuration.
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! Herein, we investigated the effect of the distance between the studied object and the infrared-camera on thermal metrics at the Chateau de Saché, Loire valley, France. ! We investigated the delta of mean temperature, standard deviation, patch richness and aggregation between the two cameras throughout distance between the studied object and the infrared-camera. Despite its theoretical prominence and sound principles, integrated pest management (IPM) continues to su er from anemic adoption rates in developing countries. To shed light on the reasons, we surveyed the opinions of a large and diverse pool of IPM professionals and practitioners from 96 countries by using structured concept mapping. The rst phase of this method elicited 413 open-ended responses on perceived obstacles to IPM. Analysis of responses revealed 51 unique statements on obstacles, the most frequent of which was " insu cient training and technical support to farmers. " Cluster analyses, based on participant opinions, grouped these unique statements into six themes: research weaknesses, outreach weaknesses, IPM weaknesses, farmer weaknesses, pesticide industry interference, and weak adoption incentives. Subsequently, 163 participants rated the obstacles expressed in the 51 unique statements according to importance and remediation di culty. Respondents from developing countries and high-income countries rated the obstacles di erently. As a group, developing-country respondents rated " IPM requires collective action within a farming community " as their top obstacle to IPM adoption. Respondents from high-income countries prioritized instead the " shortage of well-quali ed IPM experts and extensionists. " Di erential prioritization was also evident among developing-country regions, and when obstacle statements were grouped into themes. Results highlighted the need to improve the participation of stakeholders from developing countries in the IPM adoption debate, and also to situate the debate within speci c regional contexts.

sustainable agriculture | technology adoption | collective action dilemma F eeding the 9,000 million people expected to inhabit Earth by 2050 will present a constant and t challenge in terms of agricultural pest management (1)(2)(3). Despite a 15-to 20-fold increase in pesticide use since the 1960s, global crop losses to pests-arthropods, diseases, and weeds-have remained unsustainably high, even increasing in some cases (4). These losses tend to be highest in developing countries, averaging 40 -50%, compared with 25-30% in high-income countries (5). Alarmingly, crop pest problems are projected to increase because of agricultural n (4,6), trade globalization (7), and, potentially, climate change (8).

Since the 1960s, integrated pest management (IPM) has become the dominant crop protection paradigm, being endorsed globally by scientists, policymakers, and international development agencies (2,(9)(10)(11)(12)(13)(14)(15). The s of IPM are numerous, but all involve the coordinated integration of multiple complementary methods to suppress pests in a safe, , and environmentally friendly manner (9,11). These de nitions also recognize IPM as a dynamic process in terms of design, implementation, and evaluation (11). In practice, however, there is a continuum of interpretations of IPM (e.g.,refs. 14,16,17), but bounded by those that emphasize pesticide management (i.e., "tactical IPM ") and those that emphasize agroecosystem management (i.e.," strategic IPM, " also known as "ecologically based pest management ") (16,18,19). Despite apparently solid conceptual grounding and substantial promotion by the aforementioned groups, IPM has a discouragingly poor adoption record, particularly in developingcountry settings (9,10,(15)(16)(17)(18)(19)(20)(21)(22)(23), raising questions over its applicability as it is presently conceived (15,16,22,24).

The possible reasons behind the developing countries' poor adoption of IPM have been the subject of considerable discussion since the 1980s (9,15,16,22,(25)(26)(27)(28)(29)(30)(31), but this debate has been notable for the limited direct involvement from developing-country stakeholders. Most of the literature exploring poor adoption of IPM in the developing world has originated in the developed world (e.g., refs. 15, 16, 22). An international workshop, entitled " IPM in Developing Countries, " was held at the a Universidad Católica del Ecuador (PUCE) from October 31 to November 3, 2011. Poor IPM adoption spontaneously became a central discussion point, creating an opportunity to address the apparent participation bias in the IPM adoption debate.

It was therefore decided to explore the topic further by eliciting and mapping the opinions of a large and diverse pool of IPM Integrated pest management (IPM) has been the dominant crop protection paradigm promoted globally since the 1960s. However, its adoption by developing country farmers is surprisingly low. This article reports 51 potential reasons why, identi ed and prioritized by hundreds of IPM professionals and practitioners around the world. Stakeholders from developing countries prioritized t adoption obstacles than those from high-income countries. Surprisingly, a few of the obstacles prioritized in developing countries appear to be overlooked by the literature. We suggest that a more vigorous analysis and discussion of the factors discouraging IPM adoption in developing countries may accelerate the progress needed to bring about its full potential.

professionals and practitioners from around the world, including many based in developing countries. The objective was to generate and prioritize a broad list of hypotheses to explain poor IPM adoption in developing-country agriculture. We also wanted to explore differences as influenced by respondents' characteristics, particularly their region of practice. To achieve these objectives, we used structured concept mapping (32), an empirical survey method often used to quantify and give thematic structure to openended opinions (33).

We know of only one other similar study that characterizes obstacles to IPM. It was based on the structured responses of 153 experts, all from high-income countries (30). Our survey was designed to progress from unstructured to structured responses, and to reach a much larger and diverse pool of participants, particularly those from the " Global South. " Considering that the vast majority offarmers live in developing countries (34), it would seem imperative that the voices from this region be heard.

Results

Fig. 1 provides a summary of the study's results. The study began with a brainstorming phase that used an open-ended question that asked participants to identify one obstacle to IPM adoption in developing countries. We received 413 responses, 80% of which came from professionals and practitioners based in developing countries (Table S1 ). Most participants (56.4%) had more than 10 y of experience in developing-country agriculture. They were demographically diverse (Table S1 ), although with an important male bias (75.5%), but nevertheless reflecting the wider discipline of crop protection. After eliminating redundancies and editing for conciseness and clarity, we generated statements on 51 unique obstacles (Table 1), which were then used in subsequent steps of the concept mapping. The obstacle most frequently cited was "insufficient training and technical support to farmers" [coded as "outreach weakness" (OUT)-1; Table 1], accounting for 12.8% of total responses. This was followed by " lack offavorable government policies and support " [coded as " weak adoption incentive" (INC)-1], accounting for 9.4% of total responses. Later, 12 respondents sorted the obstacles into similar groups. Their responses were submitted to multidimensional scaling (MDS) analysis, which identified six distinct clusters (Fig. S1 ) that were designated as follows: FMR, for "farmer weaknesses"; INC, for "weak adoption incentives"; IPM, for "IPM weaknesses "; OUT, for "outreach weaknesses"; PST, for the statement "IPM requires collective action within a farming community" (IPM-3) as the most important obstacle. This rating differed significantly with that from high-income country participants, who rated it 28th of 51 responses for importance (df = 161; F = 12.56; P < 0.01; Fig. 2).

Analyses of ratings by region pointed to overall agreement on the importance and remedial difficulty for most of the 51 obstacles (Table S2 ). However, top-rated statements differed, often significantly (Table 2). For example, high-income countries rated the statement " shortage of well-qualified extensionists" (OUT-9) as one of the two most important obstacles to IPM in developing countries, but there was low agreement on its importance and difficulty across regions (Table 2).

Statistical analyses conducted on obstacle themes (clusters) showed less agreement by region than those conducted on the obstacles themselves (Table 3 andTable S2 ). Nevertheless, regions notably agreed on the importance of "weak adoption incentives, " which was the top-ranked theme for Asia and sub-Saharan Africa (Table 3).

Discussion

Our objective was to elicit and prioritize a broad list of hypotheses to explain relatively low IPM adoption in developing countries. Our list of 51 obstacles to IPM adoption is reasonably comprehensive, but not necessarily exhaustive. For example, the list did not include the argument that, under conditions oflow productivity that are common in developing countries, the yield saved by IPM vs. doing nothing may be too inconsequential to justify adoption (15). According to this argument, IPM is economically justifiable only under conditions of high productivity under which the cost ofinvestment will be covered by increased revenue (15).

A retrospective review of our open-ended responses revealed the statement " . . . in regions with low yields, the economic incentive for IPM is very limited, " which we simplified and coded as " IPM is too expensive " (IPM-4). However, of course, much depends on pest pressure and the extent oflosses incurred by farmers. Even within subsistence systems that have relatively low productivity, a high degree of pest pressure could make IPM important. Indeed farmers may be using practices that help suppress pest numbers without necessarily being aware of the effect.

Given the ambitious scope and reach of our survey, we believe these types of omissions or simplifications are unlikely to substantially influence the outcome of our study. Indeed, many of the points raised in this study have been reported before (16), and should not be surprising. The failure of extension to function as a vehicle providing technical support and training to farmers, the lack ofinvestment in research, and the prominence of pesticide-based solutions have long been put forward as reasons for poor IPM adoption. What is interesting is that these issues have persisted as long as they have. Clearly, all the calls for action that have been expressed since the early IPM adoption studies of the 1980s ( 35) have gone unheard.

However, some obstacle statements in our list appeared to be new to the literature on IPM adoption. Most noteworthy was the statement " IPM requires collective action within a farming community." This was ranked by developing-country respondents as their single most important obstacle to IPM adoption (Fig. 2). The recognition that pest management is most effective when implemented collectively at the regional level precedes IPM itself, and gave rise to the development of area-wide pest management (36) and metapopulation theory (37). Indeed, some pest management decisions are subject to a collective action dilemma (38), whereby the payoffs from adopting a technology depend on whether others adopt it too (39,40). For example, smallholder farmers in Peru are encouraged to plow their previous-season potato fields to kill overwintering weevils before they colonize newly planted fields, but this practice is ineffective if their neighbors do not also plow their fields (41).

This phenomenon may be particularly acute for preventive, as opposed to therapeutic, management tactics, which are in fact the most heavily championed by IPM (13,23). However, collective action may be more important for IPM in developing countries because pests can more easily move between farms that are small and therefore separated by short distances. Aware of the requirement for collective action in IPM, farmer field schools routinely integrate this concept into their otherwise technical training programs, obtaining good results (42,43). It is all the more surprising, therefore, that the literature on IPM adoption appears to have overlooked the collective action dilemma, which is potentially inherent to IPM, as an obstacle to its adoption.

Another key observation is that participants from developing countries often disagree with those from high-income countries on the importance of their own obstacles to IPM adoption (Fig. 2 and Tables 2 and3). As a group, developing-country participants appear to worry significantly more about weaknesses inherent within IPM itself (e.g., IPM-3, IPM-5; Fig. 2), whereas their counterparts in high-income countries appear to worry significantly more about local capacity for implementation (e.g., OUT-5, OUT-9; Fig. 2).

This difference in perspective has not been reported in previous studies on obstacles to IPM adoption, yet is very interesting. The developed world appears to show greater faith in IPM as a desirable approach to crop protection and to consider the issue of nonadoption more to do with the ability of the developing world to implement it. Considering that the adoption of IPM in the developed world has also been questioned (16), this is an intriguing stance. However, in the developing world, this same issue is much less about capacity and more about IPM itself. Differential prioritization is also evident when developingcountry region is taken into account (Table 2) and when obstacles are grouped into themes (Table 3). These findings highlight the value ofimproving the active participation and representation of developing-country experiences and perceptions in the IPM adoption debate.

The intention of this article is not to question the value of IPM for developing-country agriculture. On the contrary, it is because we recognize IPM 's potential merits that its poor adoption seems paradoxical and worth further analysis. Indeed, this study echoes previous ones that have critically explored IPM adoption in the developing world. One is left wondering why the situation has been little improved in the more than 30 y that have passed since the problems of adoption were first raised. After all, IPM is built on some very sound principles (44). All agree that alternatives such as an extensive and unfettered use of pesticides could seriously damage the environment and indeed human health. However, why is it that, after all of the investment in IPM research and substantial promotion by major international agencies as well as national governments, and after all of the warnings about poor adoption, we are still where we are? In the developed world, the tendency has not been to question the practicability of IPM, but maybe there are questions here that need to be asked rather than avoided. We suggest a more vigorous analysis and discussion of the factors discouraging IPM adoption in developing countries may accelerate the progress needed to bring about its full potential.

Materials and Methods

As noted earlier, the survey was conceived and designed during a 4-d international workshop entitled " IPM in Developing Countries, " held in Ecuador, in November 2011. The participants included biological and social scientists with significant experience in developing-country agriculture. Each workshop participant was responsible for both responding to the survey and actively promoting it within his or her own extended network of colleagues. To facilitate its dissemination, the survey was prepared in three languages -English, Spanish, and French -and conducted on the Internet, by using the Web-based platform Survey Monkey.

The concept map had three phases: brainstorming, rating, and sorting. During brainstorming, respondents were asked to use 50 or fewer words to complete the phrase: " One significant obstacle to IPM in developing countries is . . . " We considered the possibility of asking respondents for their own definition of IPM, but the research team decided against it. The authors were, of course, aware that IPM is open to different interpretations (e.g., refs. 14, 16, 17), but, when we reviewed the literature, we found that differences were small, relative to the commonalities, and they were of degree, not of kind. The continuum lies between those who see a legitimate role of pesticides within the IPM " toolbox " (i.e., the " tacticians " ) and those who do not (i.e., the " strategists " ) (16,18).

Not surprisingly, considerable agreement exists over various other IPM components (17). Thus, by not asking each respondent to define IPM, or indeed providing one ourselves, we could cast a wider net for capturing responses to our research question. We presumed a similar rationale that discouraged Wearing (30) from providing a definition for IPM in his survey. In effect, we allowed each respondent to use his or her own vision of IPM, even though these might be complex in terms of what is seen as the central (core) and as the peripheral (desirable but not core) features, when answering questions. Although these would have been interesting to explore in the survey, as they would have provided a frame for addressing the questions, they would have probably increased the process 's complexity. We favored the term " obstacle " over " barrier " because the latter, although more commonly used, is more likely to imply insuperability.

Respondents also provided the following nonidentifying demographic information: country where they are currently based, sex, highest level of education, sector, and years of developing-country IPM experience. The brainstorming session was open for 11 wk (November 7, 2011, through January 13, 2012), eliciting 413 open-ended responses. Twenty-five responses were omitted from analysis because ofincompleteness, incomprehensibility, or other errors. The remaining responses were carefully studied and edited for conciseness and clarity and then consolidated into a list of 51 unique obstacle statements. We carefully chose our words to clearly separate key mechanisms that are often confounded in IPM adoption literature. For example, we included both " farmers are too risk averse " (FMR-3) and " farmers are uninterested in changing their habitual management practices " (FRM-2) to separate risk aversion (i.e., fear of an uncertain payoff) from conservatism (i.e., resistance to revise current practices) in farmer decision-making.

During the rating phase of the survey, participants were asked to rate each of the 51 unique obstacles according to their importance and the difficulty in solving them. We also asked respondents to provide their field of professional expertise, in addition to the demographic descriptors requested during brainstorming. Ratings were based on a scale from 1 to 5 (where 1 indicates " not important at all " or " not difficult to solve " and 5 indicates " extremely important " or " extremely difficult to solve " ). Because this phase of the survey demanded substantially more time to complete than the brainstorming phase, we promoted it for 6.5 mo (March 8, 2012, through September 22, 2012), obtaining 163 responses.

In the final phase of the survey, 12 respondents, including nine authors of the present paper, volunteered to independently sort the obstacle statements into groups that " belong together " or " share a common theme. " They were allowed to create as many or as few groups as they considered appropriate, based on their own criteria. These responses were then structured into an aggregate proximity matrix, which captured how frequently a pair of obstacle statements was placed in the same group [START_REF] Bernard | Research Methods in Anthropology: Qualitative and Quantitative Approaches[END_REF]. The matrix was then submitted to MDS analysis to derive statistically significant clusters. The MDS goodness offit was estimated with a stress function, with values Cluster dissimilarity was further tested by using an analysis of similarities that generated a statistical parameter R, which indicated the degree of separation between groups (where a score of 1 indicated complete separation and a score of 0 indicated no separation). After this analysis, we examined and discussed the obstacle statements within each cluster to identify their unifying theme and propose a suitable cluster name.

To visually examine global patterns within our results, we adopted the World Bank regional classification system for developing countries ( http:// data.worldbank.org/about/country-classifications/country-and-lending-groups ), and consolidated responses from high-income countries into a single group.

We applied one-way ANOVA to iden tify differences in perceptions between high-income countries and developing countries of the importance and difficulty of resolution for each obstacle statement. Responses from South and East Asia and the Pacific were consolidated into a single group, and poorly represented regions were omitted. Multiple regression analyses were th en applied to ident ify differences in ratings of statements and their cluster themes by region, using sex, education, and field of expertise as covariates. Because of an unbalanced representation, all social sciences were grouped into a single expertise category.

  Dans un contexte de changement climatique et d'augmentation de la variabilité du climat, une raison majeure qui freine le développement et l'adoption d'une gestion efficace des ravageurs des cultures est celle des caractéristiques thermiques des paysages agricoles, qui sont reconnues pour leur effet sur la dynamique ces ravageurs. De plus, la différence entre la taille des organismes considérés et les échelles auxquelles les données climatiques sont collectées et modélisées est une problématique clé pour comprendre et prédire la distribution des ravageurs des cultures.
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 1 Figure 1: A typical thermal performance curve as a function of the temperature of the environment or organism's body. Topt is optimum temperature at which performance is maximized, CTmin and CTmax are minimum and maximum temperatures at which

Figure 2 :

 2 Figure 2: Main strategies for coping with thermal heterogeneity include different combinations of thermosensitivity and thermoregulation. I 1, I 2, I 3 indicate different insect species. Coloured areas define the extent of intra-specific variation. A strategic set can change across phenology as exemplified by the arrow connecting two sets for the same species. Modified from Angilletta 2009.
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 5 Figure 5: Relationship between air temperature and body temperature define thermoregulation strategies. Adapted from Angilletta (2009).
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 6 Figure 6: Schematic representation of the spatial heterogeneity of temperatures occurring in a typical ecological landscape. Adapted from Körner (2013).
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  English and sorted the results by research areas available in ISI Web of Science database (Environment & Ecology, Plant sciences, Agriculture, Entomology, Meteorological sciences and others).
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 7 Figure 7: Number of ISI Web of Science publications between 1940 and 2014 referring to microclimates (see text above for definition). Publications (i.e. papers, letters, editorials and reviews only) were sorted by research areas (Environment & Ecology, Plant sciences, Agriculture, Entomology, Meteorological sciences and others). The global rate of published paper per year (+11%, Van Noorden 2014) is displayed as a red curve.
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 8 Figure 8: Schematic representation of the biophysical processes that occurs in the elaboration of the microclimatic environment of a terrestrial ectotherm. Routes of heat exchange between the organism and its environment include radiation, conduction, convection, and evaporation.
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 9 Figure 9: Visual (A.) and thermal infrared (B.) images of frog's biophysical figurines that record operative temperatures in their microenvironment. Surface temperatures ranged from 17 to 30°C. The enclosed-body thermometer appears on the left frog in the visual image. Figurines from Andrés Merino of the Pontificia Universidad Católica del Ecuador. Photos credits: Emile Faye and Sylvain Pincebourde.
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 11 Figure 11: Representation of the influence of landscape position on air diurnal temperature variation. (a) Shaded relief map shows areas of high (warm colours) and low (cool colours) solar insolation with the locations of four temperature-monitored sites. (b) Pattern of diurnal temperature patterns for sites 1 to 4. From Dobrowski (2011).
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 12 Figure 12: Thermal infrared image of an agricultural landscape pinpointing the thermal heterogeneity available for an ectothermic pest at the local scale. The extent of the image is 32 x 24 metres and temperatures range from 12 to 43°C. Blue colours show cold temperatures and red colours show warm temperatures. Photo credits: Emile Faye.
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 13 Figure 13: Microhabitat of the leaf-mining moth Phyllonorycter blancardella. A. The larva develops inside the apple leaf tissues, within a mine (representing a surface of 1 cm 2 ). The feeding activity of a larva results in the formation of feeding windows (FW). Green patches (GP) correspond to intact chlorophyll-containing leaf tissues remaining in the mine. B.
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 14 Figure 14: Lengths of grid cells from published species distribution models (SDMs) compared to the lengths of the animals and plants they studied. Coloured dots indicate the body size of a species from one study; coloured horizontal lines indicate a range of body sizes if the study used multiple species. The corresponding grey dots and lines indicate the grid size (or range of sizes) of climate variables used in that study. The black density plot is a spline fitted to data from[START_REF] May | How many species are there on earth?[END_REF] paper [(May, 1988),Figure 6], which represents his estimate
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 16 Figure 16: Schematic representation of the electromagnetic spectrum. The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of meters down to a fraction of the size of an atom. Thermal infrared correspond to from 750 to 1400 nm.
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 18 Figure 18: Constant and fluctuating temperature dependent development rate observed for the peach tree pest Myzus persicae (Sulzer). Adapted from Davis et al. (2006).
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 19 Figure 19: A. Elevation map of South America. The tropical Andes extend between 11°N to 23°S from western Venezuela to north Chile, and Argentina, encompassing Colombia, Ecuador, Peru and Bolivia. A 30 arc-second digital elevation model was used to build this map within ArcGis (10.2). B. Geological map of South America. Tropical Andes include two volcanic zones: the northern and central one (red circles). From Cauvy-Fraunié (2014).
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 20 Figure 20: A. Seasonality (standard deviation, in °K at 0.58° resolution) within a year, represented globally. B. The log of the non-dimensional ratio of spatial heterogeneity in the thermal environment (standard deviation, in °K at 0.58° resolution), to seasonality plotted globally. Blue regions represent locations where seasonality exceeds spatial heterogeneity and red locations represent regions where spatial heterogeneity exceeds seasonality. Red squares delimit the tropical Andes. Adapted from Bonebrake & Deutsch (2012).
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 21 Figure 21: CO 2 plant assimilation (in Kg/ha/day) throughout time of the year for different latitudes of the northern hemisphere. Simulations are performed under clear sky day for a mature green plant. The green line represents Ecuador. Adapted from Penning & Laar (1982).
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 22 Figure 22: Maps of our main study site. A. Location of the study site in South America and Ecuador. B. Elevation gradient ranging from 2800 to 3600 m a.s.l. within the study area (red square of 20 km 2 ). C. Visual orthophoto of the complex agricultural landscapes of the study site (www.igm.gob.ec). All map were made using ArcGIS (10.2). Elevation gradients in A. and B. are based on a 200 and 30 m digital elevation models, respectively.
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 23 Fig. 23: Agricultural landscapes on the study area are complex humanized spaces relying mainly on family farming systems. Photo credits: IRD -Emile Faye.
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 24 Figure 24: Land uses and cropping systems shape the complex agricultural landscapes in the study area. A. Patchy land uses between crops, pastures, habitation, forest and paramos (natural grasslands in the tropical Andes). B. Focuses on the cropping system at a given time on three 1-km 2 plots. Crops are numbered based on their stages of maturation (phenological stage 1 and 2). All maps were made in ArcGIS 10.2.
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 25 Figure 25: Overview of the potato tuber moth complex. A. Larvae and adults of 1) Phthorimaea operculella 2) Symmetrischema tangolias 3) Tecia solanivora. B. PTM life cycle. C. Tecia solanivora 1) adult in the field, 2) larva living inside a potato tuber, and 3) damaged potato with galleries made by PTM larvae. Photo credits: C.1 -IRD Olivier Dangles and C.2 and C.3 IRD -François Rebaudo.
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 26 Figure 26: Thermal performance curves for adults of the three species of the potato tuber moth complex. Blue, green and red lines represent Tecia solanivora, Symmetrischema tangolias, and Phthorimaea operculella performances, respectively. Based on data from Crespo-Perez et al. (2011) for development and survival rate and Rebaudo & Dangles (2011) for fecundity.

Plate 1 :

 1 Flying UAV with visual and thermal sensors for high-resolution agricultural remote sensing. Top: Flying over an agricultural landscape of the Ecuadorian Andes (2850 m.a.s.l.). Bottom left: densified three-dimensional point cloud reconstruction of the visual scene.Bottom right: piloting UAV with remote control and control partner.

  This work was performed in collaboration with the Entomological laboratory of the Pontificia Universidad Católica del Ecuador and the Mediterranean Institute of Oceanography (MIO), Toulon University, France. This chapter is one publication published in 2014 in Plos one: -Faye, E., Herrera, M., Bellomo, L., Silvain, J. F., & Dangles, O. (2014). Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PloS One, 9(8), e105541. doi:10.1371/journal.pone.0105541.

Figure 1 .

 1 Figure 1. Fit of temperature time series with discrete Fourier transforms at the daily frequency K d . Air temperatures are in blue, crop canopy temperatures are in green and soil temperatures are in brown. doi:10.1371/journal.pone.0105541.g001

Figure 2 .

 2 Figure 2. Maps showing the differences between local air temperatures and the WorldClim interpolated minimum (A) and maximum (B) (D Air L 2 Air WC ). Blue colours indicate D Air L 2 Air WC , 0, i.e. area where local air temperatures are cooler than those gave by WorldClim. Red colours indicate D Air L 2 Air WC . 0, i.e. area where air local temperatures are warmer than the ones gave by the WorldClim. White colours D Air L 2 Air WC = 0 indicate areas where air WorldClim temperatures equate air local temperatures(6 1uC). The extent and position of each square is equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 0.86 km 2 for the study area. Temperatures in storages were obtained from[26]. doi:10.1371/journal.pone.0105541.g002

Figure 3 .

 3 Figure 3. Maps showing the differences between local air canopy and soil temperatures with the air local for minimum (A) and maximum (B) (D Layer L 2 Air L ). Colour code is given in Figure 2. doi:10.1371/journal.pone.0105541.g003

Figure 4 .

 4 Figure 4. Mean thermal buffering from Fourier transforms at the daily frequency for canopy (A, B) and soil temperatures (C, D) as a function of elevation and leaf area index. (A, C) show the daytime temperature excursion with respect to air, whereas (B, D) are the equivalent results for night-time temperatures. The 95% interval of confidence is given between brackets. Blue colours show colder temperatures than air. Red colours show warmer temperatures than air. doi:10.1371/journal.pone.0105541.g004

Figure 5 .

 5 Figure 5. Thermal time lag from Fourier transforms at the daily frequency for canopy (A) and soil temperatures (B) as a function of elevation and leaf area index. The z-axis (log+1 transformed) is expressed in minutes (A) and in hours (B). doi:10.1371/journal.pone.0105541.g005

Figure 6 .

 6 Figure 6. Superimposed plot of the temperature-dependent growth rate curve of the potato moth Phthorimaea operculella (dashed line) and the frequency distribution (% of area) of average minimum (blue), maximum (red) and mean (striped) temperatures for canopy and soil layers at the three studied elevations. Grey (shaded) bands in the background represent the WorldClim minimum and maximum temperature range. doi:10.1371/journal.pone.0105541.g006

Figure S3 :Figure S4 :

 S3S4 Figure S3: Histogram of the DFT amplitudes of air (light blue), canopy (green) and soil (brown) layers in the 4 fields studied.

  °K) from 15 days time series Daily amplitude (°K) from 1 year time series 3600 m 3200 m

Appendix S8 :

 S8 Local and global air mean temperature discrepancies mapping.Differences in mean temperatures between local air temperatures (extracted from the Fourier transform) and the global coarse grain interpolated air temperatures from the WorldClim (Δ Air L -Air WC ) were mapped for the three studied grid cells (Fig.S8). Generally, local air temperatures were 1.4°K warmer than the global interpolated ones. Mean temperature discrepancies were of 0.3 ± 1°K, 1.7 ± 1.6°K and 2.3 ± 1.5°K at 2800 m, 3200 m and 3600 m respectively. For the three studied grid cells minimum of average temperature discrepancies was -2°K and maximum reached +8°K. As a consequence, 44.6 ± 3.4 % of the studied areas were either under-estimated or over-estimated by the global climatic models (+/-1°K).

Figure S8 :

 S8 Figure S8: Maps showing the differences between the measured local air temperatures and the WorldClim interpolated temperatures for mean values (Δ Air Local -Air WorldClim = Δ Air L -Air WC ). Blue colours indicate Δ Air L -Air WC < 0, i.e area where local air temperatures are cooler than the ones gave by WorldClim, red colours indicate Δ Air L -Air WC > 0, i.e. area where air local temperatures are warmer than the ones gave by the WorldClim, and white colours Δ Air L -Air WC = 0 indicate areas where air WorldClim temperatures equate air local temperatures (± 1°C). The extent and position of each square is equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 0.86 km 2 for the study area. Each side of square has a 925 m length. The temperature dataset

  France in collaboration with the 'Institut de Recherche sur la Biologie de l'Insecte' (IRBI) of the François Rabelais University and the French National Center for Scientific Research (CNRS). This first part of the Chapter II is made of one publication currently accepted after major revisions in Journal of Thermal Biology:-Faye, E.,Dangles, O., & Pincebourde, S. (2015). Distance makes the difference in thermography for ecological studies. Journal of Thermal Biology.Doi: 10.1016Doi: 10. /j.jtherbio.2015.11.011. .11.011. Moreover, this study has been presented at the Heteroclim international workshop the 10-14 th of June 2014 with the poster in Appendix S2. Finally, we illustrated the uses of thermal cameras on agricultural landscapes by 2 short movies available at:-TIR/VIS Time lapses of Ecuadorian agricultural landscapes. 2014.

Figure 1 :

 1 Figure 1: RGB images (A.1, B.1, C.1) and TIR images (A.2, B.2, C.2) of the 1-m 2 thermal

Figure 2 :

 2 Figure 2: Scatter plots of the thermal indices' deviation between the mobile and the fixed TIR cameras' images of the 1-m 2 thermal test card under various levels of solar radiation against the ∆ Distance (m) -the distance between the two TIR cameras (mobile minus fixed). Negative values indicate that the metric is under-estimated by the mobile camera. (A) ∆ T mean (K), (B) ∆ SD (K), (C) ∆ Patch richness and (D) ∆ Aggregation (%). Red squares are the indoor TIR shootings at radiation level 65 W/m². Solar radiation varied from 242 W/m 2 to 915 W/m 2 in the outdoor green wall environment.

Figure 3 :

 3 Figure 3: Scatter plots of thermal indices' deviation between the mobile and the fixed TIR cameras' images of the 1-m 2 thermal test card in the green wall environment, and of the 1-m 2 vegetation surface in the green wall and wood edge environments, against the ∆ Distance (m) -distance between the two IRCs (mobile minus fixed). (A) ∆ T mean (K), (B) ∆ SD (K), (C) ∆ Patch richness, and (D) ∆ Aggregation. Solar radiation was 890 ±133 W/m 2 for all points.

3. 3 .

 3 Surface temperature excess distributions vs. distance Overall, temperature excess distributions shifted down to lower values with increasing distance (Fig.4). Under similar radiation levels, this shift was larger for the thermal test card (up to -3 K; Fig.4 B) than for the green wall and the wood edge surfaces (Fig.4 C, D, respectively). The range of excess temperature of the distribution curves -i.e. the spatial variation of temperature -decreased with increasing distances, from 7K at 5 m to 2K at 60 m for the 1-m 2 thermal test card in the green wall environment (Fig.4 B). This diminution was larger for the 1-m 2 thermal test card than for the green wall and the wood edge surfaces under similar solar radiation (Fig.4 B,C,D). As a consequence, the maximum density increased with increasing distance between the surface and the TIR camera. The maximum density at 5 m for the thermal test card outdoor reached 0.18 while it increased up to 0.90 at 60 m (Fig.4 B).

Figure 4 :

 4 Figure 4: Density distribution of the surface temperature excess (K) obtained from TIR images of the mobile TIR camera at various distances for the 1-m 2 thermal test card in the laboratory and in the green wall environments (A. and B. respectively), of the whole surface of the green wall (C.) and of the whole surface of the wood edge (D.) under clear sky conditions. Dashed curves in C. and D. represent the leaf surface temperature distributions from TIR images taken at 0.3 m from individual leaves of the green-wall and the wood-edge respectively (see Appendix 4).

Fig. 4 .

 4 Temperature distributions were obtained from TIR images taken with the mobile TIR camera at various distances for the 1-m 2 thermal test card in the laboratory and in the green wall environments (A. and B. respectively), of the whole surface of the green wall (C.) and of the whole surface of the wood edge (D.). Values in bold indicates significance (P<0.05).

  B). Moreover, concurrently with other studies (Clark 1976, Minkina & Dudzik 2009, Vollmer & Möllmann 2010, Jones 2013), we found that global radiation level altered TIR outputs and therefore modified the relationship between

Figure S1_# 1 :

 1 Figure S1_#1: Scatter plots of the mean temperatures and standard deviation (in °C) of the thermal test card TIR images taken from various distance with the two TIR cameras in the three studied environments. Environmental variations (radiation and/or ambient air temperature) caused sudden fluctuations in the thermal metrics but they did not influence the comparison of the performance between the two cameras.

Figure S1_# 2 :

 2 Figure S1_#2:Scatter plot of pixel size as function of distance for the mobile and the fixed TIR camera. The blue and red lines are the pixel size (or Instantaneous Field Of View) of the mobile and fixed TIR cameras, respectively. Red numbers on the x-axis are the distances at which the fixed TIR camera has been placed during the experiment (2, 3, and 10 m for the laboratory, the green wall and the wood edge environments, respectively). The blue numbers on the x-axis are the respective distances (from the surface) at which the mobile TIR camera has been placed for starting the shooting (3, 5, and 17 m for the laboratory, the green wall and the wood edge environments, respectively). Those distances insured a difference of pixel size between the two cameras positive or equal to zero (Δ pixel size ≥ 0 when the pixel size of the mobile TIR camera exceeded the pixel size of the fixed TIR camera). Therefore the mobile TIR camera started shooting 1 m from the fixed TIR camera in the laboratory, 2 m from the fixed TIR camera in front of the green wall and 7 m from the fixed TIR camera in front of the wood edge.

  This work was performed in collaboration with the 'Instituto Espacial Ecuatoriano' (IEE) and the 'Escuela Politécnica Nacional' del Ecuador (EPN) -Escuela de Formación de Tecnólogos (ESFOT). The second part of this methodological Chapter is one publication accepted and currently in press in Methods in Ecology and Evolution: -Faye, E., Rebaudo, F., Yánez, D., Cauvy-Fraunié, S. & Dangles O. (2005). A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods in Ecology and Evolution. Doi: 10.1111/2041-210X.12488 Moreover, this study has been presented at the 3 rd Global Science conference on Climate Smart Agriculture the 18-23 rd of March 2015 with the poster in Appendix S2. Finally, we illustrated the uses of UAV for studying thermal landscapes by 2 short movies available at:

Fig. 1 .

 1 Fig. 1. Schematic workflow of the entire methodological process to analyse thermal landscapes. Each step is fully detailed in the Methods.

Fig. 2 .

 2 Fig. 2. Unmanned aerial vehicle (UAV)-based TIR information versus flying height. One TIR vertical flight was performed under clear sky conditions from 10 m to 110 m a.g.l. The UAV carried the s ame TIR camera used in this study, triggered e very second with a focus fixed at infinity (i.e. 5 m). The UAV was flying in GPS mode to hover a fixed point with a manual control of the upward speed. (a) The hexapter used in this study with some sample pictures of surface temperatures (note changes in colour with flight height). Mean surface temperatures at different UAV heights were measured for a same area (10 9 6 m). (b) Mean and standard deviation of TIR surface tem peratures plotted vs. the UAV flight height. (c) TIR camera instantaneous field of view (i.e. projected pixel size) in mm versus the UAV flight height in m. © 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution

Fig. 3 .

 3 Fig. 3. GIS workflow of the visual (red-greenblue, RGB) and Thermal InfraRed (TIR) orthophotographs for a studied field. (a) RGB high-resolution orthophotograph of the field; (b and c) emissivity-based TIR orthophotograph of surface_1 (plant surface) and sur-face_2 (soil surface); (d ) classified raster from the RGB orthophotograph including the two surfaces -the green part (surface_1/plant) and the brown part (surface_2/soil) serve to create masks to extract pixels of pure surface_1 and 2 in their respective TIR orthophotographs. (e and f) TIR orthophotographs of surface_1 and 2 at their appropriate emissivity. (g) merged TIR orthophotograph of the entire studied field with the appropriate surface emissivity and therefore the correct surface temperatures. © 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution

Fig. 4 .

 4 Fig. 4. Visual and thermal orthophotographs (column 1 and 2, respectively) of various natural landscapes. (a) Riverbank of a natural pond in Loire, France. (b) Natural pasture s for livestock grazing, Auvergne, France. (c) Palm grove in the semi-arid desert of Piura, North Peru.

Fig. 5 .

 5 Fig. 5. Frequency histograms of TIR surface temperatures for all the studied fields at the three phenological stages: leaf development (red bars), inflorescence (green bars) and mature (blue bars). The skewness of each distribution is given between brackets.

Fig. 6 .

 6 Fig. 6. Plant (green) and soil (brown) temperature frequency histograms from the TIR orthophotograph of a single potato field at each of the three studied phenology stages: leaf development (a), inflorescence (b) and mature (c).

Fig. 7 .

 7 Fig. 7. Boxplots of selected thermal landscape metrics from the TIR orthophoto graphs for entire surface (a), plan t surface (b) and soil surface (c) for the mean temperature (1), patch richness (2), aggregation index (3) and cohesion index (4). Data from the 12 studied potato fields are pooled. Phenological stages are given in abscise where P1 = leaf development stage, P2 = inflorescence stage and P3 = mature stage.

  (myAsciiContent[[myAsc]])# Define a simple binary matrix of the same size and extentstats_TIR<-unlist(ZonalStat(myAsciiContent[[myAsc]], cclmyAsc, FUN = c("mean","sd","min","max"))) # Descriptive statistics at the landscape level land_metrics_TIR<-ClassStat(myAsciiContent[[myAsc]], cellsize = pxsize, latlon =

  This work was performed in collaboration with the 'Instituto Nacional de Investigaciones Agropecuarias' (INIAP) and the 'Escuela Superior Politécnica de Chimborazo', Ecuador. This last Chapter is a manuscript to submit to Journal of Applied Ecology: -Faye, E., Rebaudo, F., Carpio, C., Herrera, M., & Dangles, O. Does heterogeneity in crop canopy microclimate matter for pests? Evidence from aerial high-resolution thermography. To submit in Journal of Applied Ecology.

Figure 1 :

 1 Figure 1: Aerial thermal infrared methodologies used for the experiments. A. Photograph of the UAV and the 6 m high gutter pipe equipped with the TIR and RGB cameras. B. RGB images for three potato fields at different phenologies: B.1. leaf development, B.2. inflorescence, and B.3. mature stages. C. TIR images of the same 3 fields. Dimension of TIR and RGB images: 3.2 x 2.4 m.

  et al. 2015 versus pest richness (Fig. 7, Appendix 3).

Figure 2 :

 2 Figure 2: Effect of spatial scale on surface temperature heterogeneity in potato fields. A. RGB orthophoto acquired from an unmanned aerial vehicle. Red dots represent the ten study points evenly distributed in the field (yellow circle). Coloured surfaces show the TIR pixels of the plant canopy extracted from the TIR orthophoto: orange for the thirty1.2 m-radius circles, and red, green, blue, pink and yellow for 1.2, 6, 12, 18 and 24 m-radius circles, respectively, all centred on the same central point of the field (black cross). B. Hexagonal binning plot of the Δ distance (in m) and Δ temperature (in K) for the different TIR circles with corresponding colours. The black line displayed the contour of the hexagonal binning plot of the largest circle.

Table 2 :

 2 Spatial metrics of the 5 TIR circles and 30 repeated 1.2m TIR circles. Orange are the 30 repeated 1.2m TIR circles, red, green, blue, pink and yellow the TIR circles of 1.2, 6, 12, 18, 24 m radius, respectively. Metrics presented in this table are commonly used metrics for featuring the spatial composition and configuration of landscape, here applied to thermal surface crop canopies (see Faye et al. 2015 for details). PD is Patch density, AI, SHDI and PCI are Aggregation index, Shannon's diversity index and Patch connectivity index, respectively.

Figure 3 :

 3 Figure 3: Squatter plots of the 1140 TIR image temperatures (SD) temperatures versus solar radiations. A. mean (green dots), minimum (blue dots) and maximum (red dots) temperatures versus radiations fitted to a log-model (R 2 = 0.65 for the three fits). B. Standard deviation of the 1140 TIR image temperatures versus the solar radiations.

Figure 4 :

 4 Figure 4: Hexagonal binning plot of the distance (in m) and Δ temperature (in K) for the 1140 TIR images as a function of solar radiation classes (A. R1= 0-400, B. R2= 401-800, C. R3=801-1200 and D. R4=1201-1600 watt/m 2 ). The colour scale shows the occurrence of the TIR pixels that falls into the hexagonal cell. Light grey cells show an occurrence of 1 (the lowest).

Figure 5 :

 5 Figure 5: Hexagonal binning plot of the distance (in m) temperatures included in the last quartile of the thermal tolerance range for each pest species, as a function of solar radiation classes. Optimal temperature for the growth performance for each pest in given in red. The colour scale shows the occurrence of the TIR pixels that falls into the hexagonal cell. Light grey cells show a occurrence of 1 (the lowest).

Figure 6 :

 6 Figure 6: Distributions of mean (± SD) pest abundances (green) and frequency of image pixels (white), as a function of surface mean temperatures in the 1140 TIR images A. Frankliniella tuberosi, B. Liriomyza huidobrensis, C. for Myzus persicae; D. Phytophthora infestans. The red dotted line indicates the last quartile of the thermal tolerance range for growth rate for the respective pests.

Figure 7 :

 7 Figure 7: Boxplots of the pest richness (number of pest species in the plot) vs. the

Figure 1 :

 1 Figure 1: Mean temperature modelled at different spatial scales: a) 5x5, b) 100x100, c) 500x500 and d) 1000x1000 m. This climatic data were used for predicting the species abundance of ground beetles. Adapted from Gillingham et al. (2012).

Figure 2 :

 2 Figure 2: Graphical illustration of Janzen's hypothesis: low seasonal variations of temperature at tropical localities necessarily result in low overlapping in climate between valleys and mountain passes and therefore select for organisms that had narrow tolerances to temperature. On the contrary temperate-zones, marked by strong seasonal variations in temperature, lead to considerable overlaps in thermal regimes between valleys and mountain passes. Consequently, tropical mountain passes are stronger physiological barriers to dispersal than those in temperate-zones.

Figure 3 :

 3 Figure 3: Graphical illustration of Janzen's hypothesis considering the microclimatic patterns.

Figure 4 :

 4 Figure 4: Schematic representation of the interconnections that occurs in agrosystems between farmers, pests, microclimates. The #2 arrows pointed out the integration of this thesis in this triptych.

(

  researcher at the Global Genetic Resources department) implemented a massive field screening of 1973 sweet potato accessions from the CIP Genebank in the semiarid region of Piura, in northern Peru. This area displays a dry and hot climate with an annual mean temperature of 24.4°C and an annual mean precipitation of only 72 mm (Rollenbeck et al. 2015). During summer 2014, the CIP team sowed a total of 2039 accessions of sweet potato (including 1973 sweat potato accessions and 66 additional test clones) within plots of 3.3 m 2

Figure 5 :

 5 Figure 5: UAV thermal and visual orthophotos of a 3 ha experimental field of sweet potato screening for heat tolerance. A. The UAV taking off with visual and infrared thermal camera on-board. B. The visual orthophoto (1.2 cm 2 resolution) yielded from the UAV with the onboard GPS recording flight tracks. C. The infrared orthophoto of the plant canopy only (5 cm 2 resolution) produced with the UAV images.

Figure 6 : 1 .

 61 Figure 6: Comparison of observed and predicted abundances for the four studied sites. Pest abundances are represented by boxplots that correspond to mean pest abundances per month.Letters are for the various study sites.

  This program was developed to improve the capacity of North Andean farmers to fight agricultural pests. This participative monitoring was made of 51 study points spread over Ecuador, Peru and Bolivia (Fig. 7). At each point from 2006 to 2012, climatic data were recorded at a 1-minute time-step using an air temperature and relative humidity logger placed at 1.5 m high. The INNOMIP project also established a participative monitoring of potato tuber moth infestation with pheromone traps, revised by either technicians or farmers every three weeks. Data recorded by this project were

Figure 7 :

 7 Figure 7: Map of the 27 study sites of the INNOMIP pest and climate monitoring over the Ecuadorian Andes. Photographs from top to bottom illustrate the temperature logger, pheromone traps of the three studied pests, and pest enumerating. Photo credits: IRD -Emile Faye and Olivier Dangles.

Figure 8 :

 8 Figure 8: Photographs of a light commercial UAV flying over the glacier snout of the Carihuairazo mountain at 4850 m.a.s.l. (Ecuador). Photo credit: S. Cauvy-Fraunié.

Figure 9 :

 9 Figure 9: Supports and vulgarisation of Sciences and technologies in Ecuador. First row: field training on the uses of different sensors for Thermal ecology with students (June 2015), UAV fieldwork with our Ecuadorian partners (January 2014). Second row: vulgarisation of our researches for the 2015 'Fête de la Sciences' for the school pupils (April 2015). Third row: UAV piloting course at the 'Escuela Politecnica Nactional' in Ecuador (December 2013).
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  EMILE FAYE, FRANÇOIS REBAUDO, D. YANEZ-CAJO, S. CAUVY-FRAUNIE, OLIVIER DANGLES. A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods in Ecology & Evolution, 2015. DOI: 10.1111/2041-210X.12488 (in Watt / m 2 ) have been recorded for each couple of IR shoot using LI-1400 datalogger equipped with a LI-200 pyranometer sensor (LI-COR, 163 Lincoln, USA). Infrared cameras are widely used in thermal ecology research. They provide spatially continuous and instantaneous measurements of surface temperatures with a broad spatial coverage at high spatial and thermal resolution.

  @gmail.comThis work is part of the research conducted within the project Microclimite 'Connecting global and microclimate change' (ANR-10-BLAN-1706-02) and the project MAN-PEST 'Adaptive management in insect pest control in thermally heterogeneous agricultural landscapes' (ANR-12-JSV7-0013-01). It is funded by the AgenceNationale pour la Recherche. ! Test card: 3 thermal metrics strongly decreased with distance in the first 20 m from the fixed camera: Δ T°C Mean (A.), Δ Standard Deviation (B.) and Δ Patch Richness (C.). Above 20 m, the decrease with distance is less marked. These metrics are underestimated by the farther IR camera. On the contrary, Δ Aggregation Index showed a constant increase with the distance, following the pixel size increase relationship (I.). ! Thermal metrics are significantly influenced by solar radiation levels as stronger level of radiation increased the under-estimation by the farther IR camera for A., B. and, C. In other ! We used synchronized shots of the same surfaces from 2 similar thermal cameras at different distances: a Flir B335 fixed at 2 m and an Infratec Variocam HR Research ranging from 2 to 80 m. ! We shouted 3 surfaces with increasing ecological and thermal complexity: a 1m 2 black and white test card (2D, 2 types of patch), a green wall (2D, various patches) and a wood edge (3D, various patches).

!!

  As for test card surfaces, thermal metrics of more ecologically complex areas are under-estimated by the farther IR camera at equal solar radiations (890 watt/m 2 ±133); see E., F. and H. As well as for the Δ Aggregation which increase with increasing distances (G.). Complex surfaces: less complex areas are more under-estimated by the farther IR camera than more complex such as wood edges which are composed of thermal niches. Wood edges were either more thermally homogeneous or colder than the green wall and the test card. Take Home Message: Distance may strongly affect the results of your thermal camera in the first 20 m. Thermal ecologists should take care of this unknown phenomenon in their studies which involve IR absolute temperatures or impose shooting distance such as the use of thermography with U.A.V. surface temperatures are more under-estimated than the cooler ones at equal distance. Poster presented at the 3 rd conference on Climate Smart Agriculture.18 of March 2015. Montpellier, France. Obstacles to integrated pest management adoption in developing countries Soroush Parsa a,1 , Stephen Morse b , Alejandro Bonifacio c , Timothy C. B. Chancellor d , Bruno Condori e , Verónica Crespo-Pérez f , Shaun L. A. Hobbs g , Jürgen Kroschel h , Malick N. Ba i , François Rebaudo j,k , Stephen G. Sherwood l , Steven J. Vanek m , Emile Faye j , Mario A. Herrera f , and Olivier Dangles

Fig. 1 .

 1 Fig. 1. Summary of a concept map identifying obstacles to IPM in developing countries. The world map captures the global participation in developing the concept map. Doughnut charts represent the proportion of open-ended responses that matched one of six obstacle themes or were otherwise assigned to the generic category " others. " The size of the circle inside each doughnut is proportional to the number (labeled in or next to it) of open-ended responses. Bar charts represent ratings on a scale from 1 to 5, ranging from least to most important or difficult obstacle. The number of rating responses is presented in parentheses next to the region 's name. Responses from Europe and Central Asia were omitted from the graph because of poor representation.

Fig. 2 .

 2 Fig.2. Respondents from high-income and developing countries rated 51 unique obstacles in terms of their importance ( A ) and the difficulty ( B) of solving them. Differences in ratings are based on a scale from 1 to 5, ranging from least to most important or difficult obstacle. Solid circles represent obstacles that were rated significantly differently (df = 161; P ≤ 0.05). Labels represent codes for obstacle themes. FMR, farmer weaknesses; INC, weak adoption incentives; IPM, IPM weaknesses; OUT, outreach weaknesses; PST, pesticide i ndustry interference; RCH, research weaknesses.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 Results of the two-way ANOVA with a Bonferroni correction on the effects of habitat, elevation, LAI and elevation6 LAI terms on daytime and nigh-time DFT amplitudes and thermal time lag on inside-canopy and soil temperature time series.

	Canopy
	Effect

Table S6 :

 S6 Mean amplitudes in Kelvin of the discrete Fourier transform at the seasonally frequencies (91, 182 and 364 days) of four year monitoring of air temperatures (recorded at 1 meter high with half an hour time step with the same shelter process describe above between 2008-2012) for the three altitudinal belts of the study area (2 replicates for each elevation).

				8)
	where ϕ ! ! , ϕ ! ! and ϕ ! ! are the DFT phases at the daily frequency for air, air canopy and soil
	time series, respectively (see equation 3).		
	All Fourier analyses were performed in MATLAB R2011a (The Mathworks Inc.,
	Natick, USA).			
	Fourier Transform.			
		Mean amplitude of the discrete Fourier transform (°K)
	Period (days) 2800 m	3200 m	3600 m
	91	0.14 (+/-0.3)	0.15 (+/-0.1)	0.12 (+/-0.2)
	182	0.41 (+/-0.18)	0.49 (+/-0.15)	0.43 (+/-0.13)
	364	0.94 (+/-0.15)	1.01 (+/-0.17)	0.96 (+/-0.11)

Appendix S6: Seasonality measured on four-year air temperature time series with Discrete

Table curve 2D

 curve (V5.01, Systat Software Inc., Chicago, Illinois, USA) as follows:

Table 1 :

 1 Results of ANOVA for the effects of shooting distance, radiation level and their interaction on the density distribution of the surface temperature excess used in

		F value	P value
	Distance	A 0.761 B 49.510	A 0.383 B <0.001
		C 31.742 D 16.843	C <0.005 D <0.01
	Radiation	A 0.079 B 34.372	A 0.778 B 0.047
		C 0.317 D 0.116	C 0.574 D 0.683
	Dist x Rad	A 0.039 B 1.119	A 0.844 B 0.29
		C 2.108 D 1.331	C 0.147 D 0.21

  Woods, H. A., 2013. Ontogenetic changes in the body temperature of an insect herbivore.

	Func. Ecol. 27(6), 1322-1331.
	Woods, H. A., Dillon, E. M., Pincebourde, S., 2015. The roles of microclimatic diversity and
	of behaviour in mediating the responses of ectotherms to climate change. J. therm.
	biol.. DOI: 10.1016/j.jtherbio.2014.10.002.

Appendix 3: Δ distance points used for the fixed and mobile TIR cameras

  

	Appendix 7:								
	Laboratory			Green wall			Wood edge	
	A	B	C	A	B	C	A	B	C
		2	1		5	2			7
		5	3		7	4			10
		7	5		10	7			12
		10	8		15	12			15
		15	13		17	15			17
		17	15		23	20			20
		20	18		25	22			22
	2			3			10		
		22	20		30	27			25
		25	23		35	32			30
		30	28		40	37			35
		35	33		45	42			40
		40	38		50	47			50
		45	43		55	52			60
		50	48		60	57			70
	A = Fixed TIR camera distance from the surface (m). B = Mobile TIR camera distance from
	the surface (m). C = Δ distance (m), distance between the mobile and the fixed TIR cameras.

Accuracy of the fitted density curves used in Fig. 4

  

		Distance (m)	R 2	SD	t-value	95%IC	95%IC
		Distance (m) 0.3 17	R 2 0.9206 0.9642	SD 0.0021 0.0012	t-value 0.0159 1.0809	95%IC -0.0041 -0.0011	0.0042 95%IC 0.0036
		2 20	0.8520 0.9470	0.0025 0.0172	-0.2672 26.1394	-0.0056 0.4159	0.0043 0.4848
	Figure 4 D. Figure 4 A.	5 7 25 30 35 40 50 60 70 80	0.8686 0.8605 0.8523 0.8161 0.8205 0.8344 0.8423 0.9777 0.9789 0.9997 0.9994 0.9972 0.9865 0.9721 -0.9889	0.0023 0.0025 0.0026 0.0029 0.0029 0.0028 0.0027 0.0012 0.0013 0.0001 0.0002 0.0005 0.0008 0.0015 -0.0011	-0.2559 -0.3997 -0.4185 -0.3530 -0.3619 -0.3321 -0.3711 0.3484 0.9455 0.9899 1.0681 0.1728 1.1128 0.0101 -0.0030	-0.0053 -0.0060 -0.0063 -0.0069 -0.0069 -0.0065 -0.0064 -0.0019 -0.0014 -0.0001 -0.0002 -0.0010 -0.0007 -0.0030 --0.0021	0.0041 0.0040 0.0041 0.0048 0.0048 0.0046 0.0044 0.0028 0.0038 0.0003 0.0005 0.0012 0.0024 0.0030 -0.0021
			0.8797	0.0023	-0.3889	-0.0056	0.0038
			0.8806	0.0023	-0.4563	-0.0057	0.0036
			0.8806	0.0023	-0.4563	-0.0057	0.0036
			0.8886	0.0022	-0.4443	-0.0054	0.0035
			0.8755	0.0024	-0.4436	-0.0059	0.0038
		5	0.8653	0.0020	2.8252	0.0017	0.0099
		7	0.9244	0.0017	1.0406	-0.0017	0.0053
			0.9935	0.0009	-0.2942	-0.0020	0.0015
			0.9736	0.0015	0.2365	-0.0027	0.0034
			-	-	-	-	-
	Figure 4 B.		0.4332 0.9999 0.3950 0.9998	0.0100 0.0001 0.0116 0.0002	0.4451 0.5583 0.4073 0.9914	-0.0155 -0.0002 -0.0185 -0.0002	0.0244 0.0003 0.0279 0.0006
			0.9998	0.0002	0.9914	-0.0002	0.0006
			1.0000	0.0000	-1.1185	0.0000	0.0000
			0.8673	0.0052	0.7335	-0.0066	0.0143
			1.0000	0.0000	-1.1304	0.0000	0.0000
			0.9999	0.0001	0.9913	-0.0001	0.0004
		0.3	0.9655	0.0014	-0.6359	-0.0037	0.0019
			0.9902	0.0052	63.9144	0.3194	0.3401
			-	-	-	-	-
			0.9966	0.0005	-0.8143	-0.0014	0.0006
	Figure 4 C.		0.9970 0.9805 0.9785 0.9785	0.0005 0.0012 0.0012 0.0012	-0.8000 -0.4913 -0.5276 -0.5276	-0.0013 -0.0030 -0.0031 -0.0031	0.0006 0.0018 0.0018 0.0018
			0.9789	0.0014	-0.5652	-0.0037	0.0021
			0.9849	0.0011	-0.2813	-0.0025	0.0019
			0.9994	0.0002	-1.0438	-0.0007	0.0002
			0.9935	0.0009	-0.0440	-0.0018	0.0017

Table S7 :

 S7 Statistics of the fits of the Gaussian function used to fit the temperature density distributions versus distance. The distance (m) is the shooting distance of the mobile TIR camera.

Table 1 .

 1 Description of the studied fields and abiotic parameters recorded during unmanned aerial vehicle flights.

	Field	Coordinates (DD a )	Elevation (m.a.s.l. b )	Field area (m 2 )	Phenology	LAI c (%)	Time (h:min)	Flight duration (min:sec)	Mean air temperature (°C)	Mean solar radiations (watt/m 2 )	Mean flight altitude (m.a.g.l. d )	GCPs e
	F1	044475°7	718	926	P1	25	11:47	5:24	26 4 ( 1 2)	1020 ( 24 3) 58 90 ( 2 69) 3
		570443°2									
	F2	026193°7	693	1047	P1	34	13:05	6:55	25 2 ( 0 4)	894 ( 19 6) 61 32 ( 2 42) 5
		566117°2									
	F3	026285°7	697	871	P1	30	14:11	5:38	24 8 ( 1 8)	827 ( 57 3) 60 62 ( 1 32) 4
		566620°2									
	F4	026322°7	695	964	P1	35	14:52	6:55	22 7( 0 7)	732 ( 27 5) 58 92 ( 2 20) 5
		565606°2									
	F5	044334°7	720	929	P2	65	11:23	6:10	26 7 ( 0 9)	936 ( 39 1) 59 90 ( 2 69) 3
		570457°2									
	F6	054945°7	747	985	P2	67	12:48	7 33	29 3 ( 0 3)	1014 ( 8 2)	58 64 ( 3 11) 4
		567388°2									
	F7	012548°7	166	1224	P2	51	14:30	8:28	27 4 ( 1 1)	1091 ( 77 7) 59 58 ( 1 46) 5
		531975°3									
	F8	052141°7	733	1053	P2	60	13:56	7:17	26 2 ( 1 4)	847 ( 61)	62 31 ( 2 81) 4
		570058°2									
	F9	019801°7	742	851	P3	100	11:08	6:43	24 9 ( 0 3)	763 ( 20 6) 60 58 ( 2 37) 3
		556391°2									
	F10	020283°7	742	1176	P3	94	11:44	7:13	25 ( 0 3)	904 ( 31 8) 60 79 ( 1 63) 5
		556352°2									
	F11	019543°7	751	1096	P3	88	14:42	7:37	28 7 ( 0 2)	1023 ( 2 8)	57 87 ( 3 81) 4
		555662°2									
	F12	020596°7	750	1084	P3	92	12:32	5:57	25 7 ( 0 5)	962 ( 15 3) 61 75 ( 1 28) 4
		555491°2									

a Decimal degree (Latitude; Longitude). b Metres above see level.

  Table of the studied field descriptions. Field area is expressed in squared meters, Phenology and Damage were estimated for the entire field and Cov is the TIR coverage of the field in percentage of the field area.

	Name Date	Area Phenol Dam Cov Name Date	Area Phenol Dam Cov
	1	14/01/14 726	C	3	31.7 20	24/01/14 1010 2	22.8
	2	15/01/14 1147 C	3	20.1 21	24/01/14 1604 3	14.4
	3	15/01/14 1292 B	2	17.8 22	24/01/14 958	1	24.1
	4	15/01/14 1454 B	1	15.8 23	24/01/14 1118 3	20.6
	5	16/01/14 2217 A	1	10.4 24	27/01/14 1136 2	20.3
	6	16/01/14 1192 B	3	19.3 25	27/01/14 831	2	27.7
	7	16/01/14 1188 A	1	19.4 26	28/01/14 725	3	31.8
	8	16/01/14 2277 C	3	10.1 27	28/01/14 982	1	23.5
	9	21/01/14 705	C	3	32.7 28	28/01/14 759	1	30.4
	10	21/01/14 1914 A	1	12.0 29	28/01/14 818	3	28.2
	11	21/01/14 850	C	2	27.1 30	29/01/14 1456 3	15.8
	12	22/01/14 861	C	3	26.8 31	29/01/14 1200 2	19.2
	13	22/01/14 924	C	2	24.9 32	29/01/14 1597 2	14.4
	14	22/01/14 1293 B	3	17.8 33	29/01/14 2016 2	11.4
	15	22/01/14 1970 C	3	11.7 34	31/01/14 630	3	36.6
	16	23/01/14 631	C	2	36.5 35	31/01/14 2328 2	9.9
	17	23/01/14 814	B	2	28.3 36	31/01/14 1778 2	13.0
	18	23/01/14 881	C	3	26.2 37	31/01/14 3072 1	7.5
	19	23/01/14 816	B	3	28.2 38	31/01/14 921	1	25.0
	Phenology A = Leaf development, B = Infloresecnce and C = Mature stage

  But the cost of effective surveillance can be high for many developing countries. In this context, the Centre for Agricultural Bioscience International (CABI) has been developing a Global Plant Clinic network where 'plant doctors' provide quality-controlled data for a community surveillance system, leading to early detection of new pests and diseases (http://www.cabi.org). It is nowadays the largest global pest distributions repository available: the CABI features an extensive global coverage of more than 20 000 pests, diseases, weeds and their natural enemies, the crops that are their hosts, and the countries in which they occur. Moreover, the CABI provides up-to-date information on the latest literature on the spread, detection and control of pests and diseases worldwide. Another example of large scale pest monitoring is the INNOMIP project (INNOvative approaches to Manage Insect Pest risks in changing Andes), led by the French Institute for Research and Development (IRD) in collaboration with the Entomology Laboratory of the Pontifical Catholic University of Ecuador (PUCE).

  f,j,k,n a International Center for Tropical Agriculture, Cali, Colombia; b Centre for Environmental Strategy, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; c Fundación para la Promoción e Investigación de Productos Andinos, Cochabamba, Bolivia; d Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom; e Liaison e for Bolivia, International Potato Center, La Paz, Bolivia; f Escuela de Ciencias Biológicas, a Universidad Católica del Ecuador, Quito, Ecuador; g CAB International, Wallingford, Oxon OX10 8DE, United Kingdom; h International Potato Center, Lima, Peru; i International Crop Research Institute for the Semi-Arid Tropic, Niamey, Niger; j Institut de Recherche pour le Développement (IRD), Unité Diversité, Évolution et Écologie des Insectes Tropicaux, Laboratoire Evolution, Génomes et Spéciation, 91198 Gif-sur Yvette Cedex, France; k Université Paris-Sud 11, 91405 Orsay Cedex, France; l Knowledge, Technology and Innovation Group, Wageningen University, Hollandseweg 1, 6706 KN, Wageningen, The Netherlands; m Crop and Soil Sciences, Cornell University, Ithaca, NY 14853; and n Instituto de Ecología, Universidad Mayor San Andrés, La Paz, Bolivia Edited by Hans R. Herren, Millennium Institute, Arlington, VA, and approved January 13, 2014 (received for review July 8, 2013)

Table 2 .

 2 Ratings by region for the most important obstacles to IPM adoption in developing countries SSA P value † HIC Asia LAC SSA P value † OUT-[5][6][7][8][9] 0.821 3.10 3.00 3.08 3.27 0.874 IPM-3 3.12 3.41 4.05 3.54 0.000 2.83 2.71 3.11 2.73 0.085 HIC, high-income countries; LAC, Latin America and the Caribbean; SSA, sub-Saharan Africa. *The statistical significance of the importance and difficulty of an obstacle according to rating by region was derived through multiple regression analyses using sex, education and field of expertise as covariates. Larger P values suggest greater agreement across regions. † The letter coding describes six obstacle themes: FMR, farmer weaknesses; INC, weak adoption incentives; IPM, IPM weaknesses; OUT, outreach weaknesses; PST, pesticide industry interference; RCH, research weaknesses.

		Importance	Difficulty
	Code*	HIC Asia LAC

Table 3 .

 3 Ratings by region for the most important themes of obstacles to IPM adoption in developing countries Code* Importance Difficulty HIC Asia LAC SSA P value † HIC Asia LAC SSA P value † FRM 3.04 2.96 3.26 3.03 0.011 2.70 2.76 2.95 2.75 0.030 PST 3.45 3.31 3.65 3.28 0.001 2.99 3.00 3.38 2.77 0.000 IPM 3.11 3.04 3.21 3.14 0.163 2.79 2.73 2.84 2.63 0.089 OUT 3.31 2.70 3.07 3.21 0.000 2.80 2.25 2.35 2.50 0.000 RCH 3.10 2.71 3.02 3.11 0.000 2.59 2.22 2.34 2.26 0.000 INC 3.36 3.35 3.53 3.44 0.205 2.76 3.10 3.00 2.85 0.006 HIC, high-income countries; LAC, Latin America and the Caribbean; SSA, sub-Saharan Africa. *The statistical significance of the importance and difficulty of an obstacle according to rating by region was derived through multiple regression analyses using sex, education and field of expertise as covariates. Larger P values suggest greater agreement across regions. † The letter coding describes six obstacle themes: FMR, farmer weaknesses; INC, weak adoption incentives; IPM, IPM weaknesses; OUT, outreach weaknesses; PST, pesticide industry interference; RCH, research weaknesses. SUSTAINABILITY SCIENCE close to zero indicating a good fit. The stress value of the six-cluster MDS solution was 0.196, indicating a good fit.
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Title: Does heterogeneity in crop canopy microclimate matter for pests? Evidence from aerial high-resolution thermography

At the global scale: The thermal data collected by weather stations all over the world allow mapping environmental temperatures on a global scale [START_REF] New | A high-resolution data set of surface climate over global land areas[END_REF], Hijmans et al. 2005). To construct such maps, one must convert the extremely patchy distribution of thermal records into a regularly spaced grid (Fig. 10). Temperatures between weather stations are interpolated by fitting regression models to the available data using latitude, longitude, and elevation as independent variables (see Hijmans et al. 2005 for details). Results are "highresolution" coarse-scale models of temperature indices (e.g., monthly mean, minimum, and maximum temperature). The spatial resolution obtained by these global models of interpolation reaches at best 0.86 km 2 . Indeed, the overall low density of available climate stations prevents surface temperature models to capture of all the variation that may occur at a resolution of 1 km, particularly in tropical mountainous areas (Hijmans et al. 2005). For mean temperature, in total 24542 weather stations were used for creating the WordClim database. B. Map of the modelled mean temperatures at a 30 arc second (almost 1 km close to the Ecuador line) resolution. Adapted from Hijmans et al. (2005).
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Appendix S1

Habitat and field size distribution in the three studied altitudinal belts. (PDF)

Appendix S2

Photos of the temperature recording experiment.

(PDF)

Appendix S3 Spatial variability of temperatures within a field. (PDF)

Appendix S4 Comparison of time series analysis outputs using 15 days vs. 1-year temperature data. (PDF)

Appendix S5 Fourier analysis description. Supporting Information of "Faye, E., [START_REF] Faye | Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes[END_REF]. Strong discrepancies between local temperature mapping and interpolated climatic grids in tropical mountainous agricultural landscapes. PLoS ONE 9(8): e105541". Edge effect, micro-topography and LAI variations within a field can strongly change the microclimate of plant and soil layers creating heterogeneous thermal conditions at the field scale [6,17,22]. To address this issue, in a parallel experiment we measured air, air canopy and soil temperatures at six different locations within the same field. Measurements were Appendix S4: Comparison of time series DFT analyses outputs using 15 days vs. 1-year temperature data.

We assessed the relevance of using 15-days temperature time series as a good proxy of climatic conditions occurring over longer time scales (one year) using data from a four-year monitoring (2008)(2009)(2010)(2011)(2012) of air temperatures, at three elevations in the study area. Air temperatures were measured using loggers (Hobo U23-001 Pro V2 internal temperature loggers, Onset Computer Corporation, Bourne, USA), covered by a plastic roof and fixed on a wooden stake 1 m high (see main document part 2.2 for details). Using the same Fourier transform analysis described in the main document, we then compared daily discrete Fourier transform amplitude A d of 15-days air temperature time series vs. 1-year air temperature time series chosen randomly over the 4-year database. We ran between 10 and 50 pairs of time series (15 days vs. a year) for each elevation, the starting for each time series being chosen randomly among the three first years of the four-year air temperature data. We found a highly significant positive relationship between the amplitude of the 15-days and the 1-year Fourier transform at the daily period (see Fig S4). The slope of the 15-days vs. 1-year curve did not significantly differ from the 1:1 slope (ANCOVA, df =114, F = 2.08, p > 0.05). The small variations observed between both slopes are likely the result of sporadic meteorological phenomena such as storms or hails.

Appendix S5: Fourier analysis description.

The Discrete Fourier Transform (DFT) used in this study was defined as follow: 

PART I Abstract

Surface temperature drives many ecological processes and infrared thermography is widely used by ecologists to measure the thermal heterogeneity of species' habitats. However, the potential bias in the temperature readings caused by the shooting distance (between the surface to be measured and the camera) is still poorly acknowledged. We examined the effect of shooting distance from 0.3 to 80 m on a variety of thermal metrics (mean temperature, standard deviation, patch richness and aggregation) to depict the relationship between those metrics and the shooting distance under various weather conditions and for different structural complexity of the studied surface (various surfaces with vegetation). We found that the shooting distance is a key modifier of the absolute temperature measured by thermal infrared camera. A non-linear relationship between shooting distance and mean temperature, standard deviation and patch richness led to a strong under-estimation of the thermal metrics within the first 20 m and then a slight decrease between 20 to 80 m from the object. Also, solar radiation enhanced the bias with increasing distance. Therefore, surface temperatures were underestimated as shooting distance increased and thermal mosaics were homogenised at long distance with a much stronger bias in the warmer than the colder parts of the distributions.

The under-estimation of thermal metrics due to shooting distance was explained by the lower atmosphere composition and the pixel size effect. The structural complexity of the surface had little effect on the surface temperature bias. Finally, we provide general guidelines for ecologists to minimize inaccuracies caused by the distance from the studied surface in thermography.

Keywords: thermography; thermal bias; shooting distance; microclimate; leaf temperature.

Supporting Information of "Faye, E., Dangles, O., & Pincebourde, S. (2015). Distance makes the difference in thermography for ecological studies. Journal of Thermal Biology. : 10.1016/j.jtherbio.2015.11.011. The thermal sensitivity (smallest temperature change or difference that can be detected) of the fixed TIR camera (B335, FLIR Systems, Wilsonville, OR, USA) was < 0.05K at 30°C, and the measurement accuracy (accuracy of the absolute temperature) was ± 2K. An 18 mm lens was used with the fixed camera that resulted in a spatial resolution or Instantaneous Field Of View (IFOV) of 1.35 mrad (i.e. 25 x 19° FOV). The thermal sensitivity of the mobile TIR camera (HR research 680, VarioCAMs, InfaTec GmbH, Dresden, Germany) was < 0.03K at 30°C, and the measurement accuracy was ± 1.5K. A 30 mm lens was used with the mobile camera that resulted in a spatial resolution or IFOV of 0.8 mrad (i.e., 30 x 23° FOV).

Doi

We tested whether the slight technical differences between the two cameras can cause bias in the surface temperature measurements. Both TIR cameras were mobiles in this additional experiment. The two cameras were moved together and TIR images were taken simultaneously at each shooting distance. The differences between the two TIR cameras are small enough to be ignored (Fig. S1_#1). Indeed, in the three environments, the mean temperature measured from the TIR images of the thermal test-card differed between the two cameras by only 0.42 ± 0.27°C on average, and this difference was not altered by shooting distance. Similarly, the standard deviation of temperature from the thermal test card varied by only 0.17 ± 0.12°C between the two cameras along the distance and for the three environments (Fig. S1_#1). We plotted the mean temperature in °C (A), the standard deviation in °C (B), the patch richness (C) and the aggregation index (D) of these surfaces against the absolute distance (m) between the mobile TIR camera and the surface. The thermal test card had a mean temperature exceeding the mean of the green wall by 2.74 (± 0.37 K) on average and exceeding the mean of the wood edge by 10.73 (± 1.36 K) on average. This pattern was found at all distance from 1 m to 80 m from the surface. Patch richness strongly decreased with distance from almost 1800, 1500 and 800 patches for the test card, green wall and wood edge surface respectively to no more than 120 at 60 -80 m, due to the pixel size effect.

PART II

A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics Emile Faye 1,2,3 *, Franc ois Rebaudo 1 , Danilo Y anez-Cajo 4,5 , Sophie Cauvy-Frauni e 1,2 and Olivier Dangles 1,3 A major barrier for the scientific community of climate c hange biologists is the spatial mismatch between the size of organisms and the resolution at which global climate data are collected and modelled. Thus, the development ofintegrative and quantitative tools for the monitor ing and spatial characterizat ion of microclimates across spatial scales is a key issue for climate change ecologists. 2. We proposed an integrative toolbox for quantifying the spatial heterogeneity in surface temperatures by bringing together procedures of unmanned aerial vehicl es, thermal imagery, orthomo saic, GIS classification and spatial metrics. This toolbox permits t o yield high-resolution visual and infrared orthoimages that are processed into a GIS for selecting surfaces ofinterest in the landscap e (e.g. soil, vegetation). Th en, the thermal matrices of selected surfaces (i.e. temperature values of the pixels belonging to the selected surfaces only) are processed within R to generate a variety of thermal landscape metrics (e.g. thermal patch richness and density, thermal aggregation and cohesion index).

3. We applied this toolbox to the thermal characterizati on of mountainous agricultural landscapes in Ecuador with implications for ectothermic pest dynamics. UAV flights at a height of 60 m above-ground level allowed us to acquired high-resolution visual and thermal images (1 and 5 cm/pixel, respectively) for 12 potato fields with a mean surface of 1017 117 m 2 . Landscape metrics on plant and soil surfaces showed that crop phenology drives the spatial patterns of surface temperatures and strongly modifies the overall thermal ecology of crop fields, with potential implications for ect othermic pest occurrence and dynamics. 4. Overall, our toolbox affords a timely and innovative methodological framework to better assess the thermal heterogeneity of natural landscapes across a wide range of spatial scales. In particul ar, this toolbox would be of topical interest for ecologists trying to bridge the gap between the resolution of their climatic data and the body size of their study organisms.

Supporting Information

Additional Supporting Information may be found in the online version of this article. Appendix S4: R script for spatial analysis of thermal raster images 

### This script describes how to use thermal information contained in text files ### exported from a GIS software. The first part specifies the required packages in R. ### The second part specifies how to convert text files into ascii files, then the third ### part how to compute metrics. Please do not hesitate to contact us for any question: ### E. Faye: <ehfaye@gmail.com> ; F. Rebaudo: <francois.rebaudo@ird.fr> ; ### O. Dangles: <olivier.dangles@ird.fr>

wd<-getwd()# working directory (change getwd() for something like "/home/myname/Documents/") myFilesPattern<-"(.txt)$"# text files selection using a regular expression (?regex() for help) NAvalues<-TRUE # TRUE if NA values, FALSE otherwise locNAvalue<-c (1,1) # location of a pixel known to have a NA value (if NAvalues<-TRUE) trans<-1000 # if values need to be transformed: x = x / trans (set to 1 if no transformation) nbDigitsSign<-0 # number of digits for the temperature pxsize<-0.0025 # pixel size in m2 ### The following script will create a CSV file tableLandMetrics.csv which can be read in R ### using read.table("tableLandMetrics.csv",header=TRUE,sep=",") [1] install and load packages ### [2] select text files from working directory and transform to ascii

3] transform to ascii files ### [3] perform metrics on the files imported and return results within a data.frame ### [4] graphics ### [1] ],locNAvalue [2]]]<-NA} ascFile<-round(ascFile/trans,digits=nbDigitsSign) write.asc(ascFile,file=strsplit(x,"\\.")[ [1]] [1]) return(paste("File: ",x," -> ",strsplit(x,"\\.")[ [1]] [1],".asc [ok]",sep="")) }) ### [3] perform metrics on the area of interest and return results within a data.frame myAsciiFiles<-list.files(pattern="(.asc)$") myAsciiContent<-lapply(myAsciiFiles,function(x){read.asc(x)}) metrics<-sapply(seq(length(myAsciiContent)),function(myAsc){ 

Px_TIR<-length (myAsciiContent[[myAsc]][!is.na(myAsciiContent[[myAsc]])])# Number of pixels

CHAPTER III

Microclimates and pests in situ

Abstract 1-A vast majority of agricultural pests and diseases are strongly influenced by microclimatic conditions that affect their performance and distribution. Thermal heterogeneity experienced by crop pests at fine spatial scales is potentially key to understand pest dynamics, yet its study over entire fields has never been performed.

2-

We used aerial infrared thermography to yield fine-resolution measurements ( 5millimetres pixel side) of crop canopy temperatures in 38 potato fields in the Ecuadorian Andes. In each field, we characterized the spatiotemporal thermal heterogeneity of crop canopy and sampled populations of four common potato pests (trips, aphids, dipterans, and fungi) in 30 different plots (total of 1140 thermal images). We then evaluated the fine-scale thermal heterogeneity implications for pest performance and compared a variety of thermal metrics with pest abundance and richness measured in field.

3-We found that the range of temperatures available for pests in crop canopies was mostly independent on scale: pests can access in their close vicinity (1.2 m) most of the thermal microenvironments recorded at the field level. Also, the availability of thermal microenvironments was strongly dependent on solar radiations: with increasing radiation levels, pests have to travel less distance to reach a variety of temperatures.

4-At the plot level, we found no relationship between pest abundance and thermal metrics: the four studied pests were not clumped in their supposedly preferred thermal conditions but distributed rather evenly. However, pest richness was significantly correlated to both thermal aggregation and diversity index: more diverse and distinctly distributed thermal environments presented higher diversity of pest. Finally crop pests always have a wide range of possibilities to regulate the temperature of their Crespo-Pérez, V., Régnière, J., Chuine, I., Rebaudo, F., & Dangles, O. (2015). Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Global Change Biology, 21 (1), 82-96. ### load raster files and compute distances and dif in temperature getDist<function(numPoints=2,temp="insect",tempOptInsect=23,tempMinInsect=22.5,tempMaxInsect=25,myFile s=list.files(pattern="rda"),type="",rangeMinMax=0. c(difTemp,abs(matRaster[matPointsMean[k,1],matPointsMean [k,2]]-tempOptInsect)) myTemp<c (myTemp,matRaster[matPointsMean[k,1],matPointsMean [k,2]]) } selectedTemp<-cbind(selectedTemp,difTemp) selectedTemp<-cbind(selectedTemp,myTemp) while (nrow(matPointsMean) > numPoints) { # limit matPointsMean to 5*numPoints cdists <-selectedTemp[,3] closest <which(cdists == max(cdists)) [1] matPointsMean <-matPointsMean [-closest,] selectedTemp <-selectedTemp[-closest,] } for(j in 1:numPoints){ randomPointCoo<-matPointsMean[j,] print(paste0("XY: ",matPointsMean[j,])) allMyDist<sapply (1:length(pointsIntoRange[,1]),function(ii) {myDist<as.vector(sqrt(((pointsIntoRange[ii,1]-randomPointCoo [1]))^2+ ((pointsIntoRange[ii,2]-randomPointCoo [2]))^2))}) # get distances from the random point in PIXELS allMyTempDif<sapply(1:length(pointsIntoRange[,1]),function(ii){myTempDif<-matRaster[pointsIntoRange [ii,1],pointsIntoRange [ii,2]]-matRaster[randomPointCoo [1],randomPointCoo [2]]}) # get dif in temperature from the random point xx<-c(xx,allMyTempDif[!is.na(allMyTempDif)]) # vector of dif in temperature for all random points numPoints yy<-c(yy,allMyDist[!is.na(allMyTempDif)]) # vector of distances for all random points numPoints } print(paste0(i, ": OK, ",numPoints," selected from ",origin)) } else{ print(paste0(i, ": no ",numPoints," points between ",tempMinInsect," and ",tempMaxInsect," degrees")) } xxx<-c(xxx,xx) yyy<-c(yyy,yy) } return(data.frame(deltaTemp=xxx,deltaCoo=yyy)) } mywdFiles<-getDist(numPoints=2,tempOptInsect=22.5,tempMinInsect=15,tempMaxInsect=30,type="rda"); save(mywdFiles,file= "MywdFiles_R1_Fra.rda"); rm(mywdFiles); 
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DISCUSSION

The broader picture: facing obstacles to IPM

This thesis revealed that thermal ecology might bring relevant insights into our knowledge of agricultural landscape and pest dynamics. We think that the recognition of the effect of landscape microclimatic heterogeneity on pest distribution may afford a valuable contribution to the theory and practice of integrated pest management (IPM). IPM involves the coordinated integration of multiple complementary methods to suppress pests in a safe, cost-effective, and environmentally friendly manner (Ehler 2006, Morse 2009). In this context, both methodological and conceptual issues proposed in this thesis may be added to the IPM toolbox, a viewpoint supported by a recent study performed by our group on IPM obstacles worldwide (Parsa et al. 2014 in Appendix S3). Indeed, an important result of this survey (that involved 96 countries) was that developing-country respondents rated "IPM requires collective action within a farming community" as their top obstacle to IPM adoption. Such recognition of the need of managing pest at the landscape level (and not by individual farms) is totally in phase with the conclusions of our thesis that thermal landscapes heterogeneity may have a key effect on pest dynamics. Moreover, the [START_REF] Parsa | Obstacles to integrated pest management adoption in developing countries[END_REF] survey showed that respondents from developing and developed countries rated the obstacles differently. This difference in perception between actors highlighted for the first time the need to improve the participation of all stakeholders of the developing countries in the debate on adoption of the IPM worldwide. In this context, research on thermal ecology applied to agronomy, to date developed mainly in developed countries, should also involved developing country stakeholders and academics so that the regional and local specificities of tropical agroscapes may be taken into account.