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ABSTRACT 

In the context of global warming and increasing climatic variability, a major uncertainty that 

hampers effective pest management is related to the thermal characteristics of agricultural 

landscapes, which are known to have profound effects on insect pest dynamics. Moreover the 

spatial mismatch between the size of organisms and the scale at which climate data are 

collected and modelled is also a major barrier to better understand and predict pest 

distribution and dynamics. 

 In this thesis, we addressed the issue of considering microclimates experienced by 

crop pests in their environments with the main objective to infer their spatiotemporal 

distribution. Therefore, we focused on the following questions: 1) How to bridge the gap 

between the predictions of coarse-scale climatic models and the fine-scale climatic reality 

experienced by organisms (i.e. microclimates), 2) How to develop innovative technological 

approaches such as thermal infrared cameras and unmanned aerial vehicle as a tool for the 

study of crop pest thermal ecology, 3) to what extent the fine spatiotemporal variability in 

thermal heterogeneity of natural and agricultural landscapes is useful to understand pest 

dynamics, and 4) how to integrate microclimatic data in models predicting the interrelation 

between pest organisms and the microclimate of their environments. 

This work revealed that microclimate substantially affects pest dynamics in 

agrosystems and may offer them opportunities to enhance their performances, as well as to 

buffer global warming effects within only few centimetres. Consequently, this thesis stresses 

the need of a better incorporation of microclimatic data into models of species distribution 

(and vulnerability to climate change) and evidences that microclimates might provide new 

insights towards agro-ecological pest management. 

Keywords: microclimates, pest performances, Andean tropical agrosystems, thermal camera, 

unmanned aerial vehicle, thermal landscapes metrics.
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RÉSUMÉ 

Dans un contexte de changement climatique et d’augmentation de la variabilité du climat, une 

raison majeure qui freine le développement et l’adoption d’une gestion efficace des ravageurs 

des cultures est celle des caractéristiques thermiques des paysages agricoles, qui sont 

reconnues pour leur effet sur la dynamique ces ravageurs. De plus, la différence entre la taille 

des organismes considérés et les échelles auxquelles les données climatiques sont collectées et 

modélisées est une problématique clé pour comprendre et prédire la distribution des ravageurs 

des cultures. 

Dans ce travail de thèse, nous explorons la prise en compte des microclimats ressentis 

par les ravageurs des cultures dans leur environnement afin de mieux déduire leur distribution 

spatiotemporelle. Par conséquent, cette thèse s’est intéressée à: 1) réduire les différences 

d’échelles entre les prédictions des modèles climatiques globaux et la fine échelle 

spatiotemporelle des microclimats vécus par les organismes, 2) développer des approches 

techniques innovantes, comme la combinaison de caméras thermiques avec des drones 

aéroportés, pour faciliter l’étude de l’écologie thermique des ravageurs des cultures dans leur 

milieu, 3) déterminer dans quelle mesure la caractérisation de l’hétérogénéité thermique 

spatiotemporelle des paysages agricoles est utile pour comprendre les dynamiques des 

ravageurs des cultures et 4) comment intégrer les microclimats dans les modèles de prédiction 

des ravageurs des cultures. 

 Ce travail montre que les microclimats conditionnent partiellement la dynamique des 

ravageurs des cultures dans les agrosystèmes et peuvent leur fournir des opportunités pour 

améliorer leur performances (et atténuer les effets du changement climatique) dans quelques 

centimètres carrées seulement. Par conséquent, cette thèse a montré l’importance d’une 

meilleure prise en compte des microclimats dans les modèles de distribution d’espèces (et de 

vulnérabilité face au changement climatique). Finalement, ce travail a révélé que l’étude des 
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microclimats pourrait ouvrir de nouvelles voies de lutte intégrée agro-écologiques contre les 

ravageurs des cultures. 

 

Mots clés: microclimats, agrosystems Andins, ravageurs des cultures, caméra thermique, 

drone, indices spatiaux de paysages thermiques. 
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I. Thermal ecology from individual to landscapes 

1. Thermal ecology of organisms: basics concepts 

The phenotype of living organisms is highly influenced by their environment (Gillooly et al. 

2001, Angilletta 2009, Kingsolver 2009): environmental features substantially drive 

organism’s traits. The physiology, behaviour, abundance and distribution of organisms are 

shaped by dozens of environmental variables that can be classified into three main 

components (Andrewartha & Birch 1960): weather (temperature, solar radiation…), ressource 

(predation, food availability…), and species interactions (intra- and interspecific, such as 

competition, parasitism…), which all define a place where to live (i.e. the habitat). Even 

though organisms might be influenced by a high number of variables, usually only a few 

account for most of the variability observed in life-history patterns and population dynamics 

(Andrewartha & Birch 1960, Wilson 1992). In the case of ectothermic organisms, which 

constitute the vast majority of terrestrial biodiversity (Wilson 1992, Brown et al. 2004), 

temperature is a key environmental factor (Gillooly et al. 2001, Bale et al. 2002, Angilletta 

2009, Bonebrake & Deutsch 2012). Temperature drives most biological and ecological 

processes from organisms’ energetics, growth dynamics, survival, and reproduction (Cossins 

& Bowler 1987, Kingsolver & Woods 1997, Savage et al. 2004, Frazier et al. 2006) to spatial 

patterns of population density, richness and biogeographical distribution (Brown et al. 2004, 

Gilbert 2004, Bonebrake & Deutsch 2012, Estay et al. 2014). The importance of temperature 

in affecting life at many levels lies on its influence on biochemical reaction rates, metabolic 

rates, and nearly all other rates of biological activity (Gillooly et al. 2001, Pörtner 2002, 

Brown et al. 2004). Since the beginning of the twentieth century, thousands of studies on the 

temperature effects on biological processes have been published and this thematic has 

resurfaced in the last decades due to the growing importance of research on global climate 

change effects. 
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a. Thermal performances in fluctuating environments 

Organisms’ responses to environmental variables are commonly depicted by performance 

curves (Huey & Stevenson 1979, Angilletta 2009) that describe performance along a 

continuous environmental gradient. Angilletta (2009) defines performance as “any measure of 

an organism’s capacity to function, usually expressed as a rate or a probability.” Non-

exhaustively, these performances include locomotion (e.g., McConnell & Richards 1955, 

Hirano & Rome 1984, Weinstein 1998, Dillon et al. 2012), immune function (e.g., Mondal & 

Rai, 2001), sensory perception (e.g., Stevenson et al. 1985, Dillon et al. 2012), foraging 

ability (e.g., Ayers & Shine 1997), courtship (e.g., Navas & Bevier 2001), and rates of 

feeding, growth, survival, reproduction and development (e.g., Huey & Stevenson 1979, 

Kingsolver & Woods 1997, Frazier et al. 2006, Crespo-Pérez et al. 2013, Logan et al. 2014). 

All these variables respond rapidly (and usually reversibly) to changes in temperature 

(Angilletta 2009). 

In the case of responses to temperature, these curves are commonly referred to as 

thermal performance curves (TPCs). TPCs are characterized by key properties, including an 

unimodal shape, a negative skewness at one of their tail, and a finite breadth (Angilletta 2009) 

and are commonly described with several metrics (Fig. 1): TPC rises with temperature (of the 

environment or body organism) from a minimum critical temperature (CTmin) to an optimum 

temperature (Topt) at which performance is maximal (Pmax). Then it drops to a critical 

thermal maximum (CTmax). Critical temperatures, CTmin and CTmax, operationally define 

the performance limits or thermal tolerance of an organism (see Lutterschmidt & Hutchison 

1997 for a review). The thermal breadth (Tbr) or performance breadth is the range of 

temperatures over which performance is greater than, or equal to, an arbitrary level of 

performance, usually expressed as a percentage of the maximal performance level (e.g. 50% 

in Fig. 1). 
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Figure 1: A typical thermal performance curve as a function of the temperature of the 

environment or organism’s body. Topt is optimum temperature at which performance is 

maximized, CTmin and CTmax are minimum and maximum temperatures at which 

performance is greater than zero, Tbr is thermal breath and Pmax is maximal performance at 

the optimum temperature. Adapted from Huey & Stevenson (1979). 

 

TPCs describe the direct effect of temperature on organism fitness (Huey & Stevenson 

1979, Angilletta 2002, Frazier et al. 2006) and can be fitted mathematically to obtain 

performance models that relate specific performances to temperature. For a given species, 

TPCs differ in their thermal optimum, breadth and limits depending on the type of 

performance assessed (Huey & Stevenson 1979). Thus, thermal performance models provide 

a physiological framework for ecologists to understand the responses of organisms to 

environmental temperatures. 

A drawback of TPCs is that they are generally built under stable temperature 

conditions along a defined gradient (Barbour & Racine 1967, Huey & Stevenson 1979, 

Angilletta 2006), while most organisms experience fluctuating temperature conditions in their 

environment (Geiger 1965). Because of the variability of the climatic environment 

experienced by organisms (see paragraph I.2.), TPCs are difficult to build from field 
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measurements and are usually defined in the laboratory, along a gradient of constant 

temperatures in closed apparatus (Barbour & Racine 1967). Temperature heterogeneity in 

time and in space has been shown to strongly modulate the performances of ectothermic 

organisms (Wu et al. 2014, Vázquez et al. 2015). For instance, Gilchrist (1995) found that 

performance breadth was strongly modified by the stability of the thermal environment within 

generations. Estay et al. (2014) showed that population growth rate depends on the interaction 

between mean temperature and thermal variability (i.e., the standard variation). Finally, 

Vasseur et al. (2014) pointed that temperature-dependent growth rates of 38 ectothermic 

invertebrate species calculated with mean temperature changes alone differ substantially from 

those incorporating changes to both mean and variation. Existing predictions of performance 

models based on insect responses measured under constant temperatures may therefore yield 

different and less realistic results than predictions of models that include the effect of 

temperature fluctuation on organism’s biology (Gilbert et al. 2004). Therefore, as pointed out 

by Bozinovic et al. (2011), to predict organism’s responses to their environments, ecologists 

must understand the patterns of thermal variation and the mechanisms by which animals cope 

with such variation within their environment. 

 

b. Thermoregulation strategies 

Organisms have evolved many strategies to face the thermal heterogeneity of their 

environment (Angilletta 2009). These strategies can be placed in a general conceptual 

framework defined by two dimensions (Fig. 2). The first dimension describes the degree to 

which an organism’s performance depends on its temperature (i.e., the thermal sensitivity), 

ranging from organisms whose performance depends strongly on temperature (thermal 

specialists) to organisms that perform well over a broad range of temperature (thermal 

generalists). The second dimension describes the degree to which an organism regulates its 
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temperature (i.e., thermoregulation), ranging from organisms that maintain a nearly constant 

body temperature (perfect thermoregulators) to organisms that conform to their environmental 

temperature (perfect thermoconformers). 

 

 

 

 

Figure 2: Main strategies for coping with thermal heterogeneity include different 

combinations of thermosensitivity and thermoregulation. I1, I2, I3 indicate different insect 

species. Coloured areas define the extent of intra-specific variation. A strategic set can change 

across phenology as exemplified by the arrow connecting two sets for the same species. 

Modified from Angilletta 2009. 

 

 

In this framework, endotherms (from the Greek “endon” = "within" and “thermē” = 

"heat") are thermal specialists (which depend strongly on temperature) that thermoregulate 

precisely. Endotherms rely predominantly on the heat from internal metabolic processes 



INTRODUCTION 

 
 
26 

(Cossins & Bowler 1987, Prinzinger et al. 1991): they maintain their body at a metabolically 

favourable temperature, largely by the use of the heat released by their internal body 

functions. For instance, human beings are perfect thermoregulators and specialist with a body 

temperature stabilized at 37.5°C. 

 

On the other hand, ectotherms (from the Greek “ektós” = “outside” and “thermē” = 

"heat") rely on environmental heat sources, which permit them to operate at very economical 

metabolic rates, i.e., with low energetic costs (Sears & Angilletta 2015). Their internal 

physiological sources of heat are relatively small or quite negligible in controlling body 

temperature (e.g., plants, small insects; Huey & Stevenson 1979, Cossins & Bowler 1987, 

Brown 2004). Therefore, ectotherms regulate their body temperature making use of their 

abiotic environments. Within ectothermy, tremendous variations occur in terms of 

thermosensitivity and thermoregulation. For instance, most reptiles are specialists as their 

performance strongly depends on temperature, but their thermoregulation depends on 

behavioural capacities (see below, Dawson 1975, Gilchrist 1995). Insects can be found 

everywhere within this conceptual diagram from thermoregulators such as honeybees 

(Harrison et al. 1996) to strict thermoconformers such as Drosophila melanogaster (Dillon et 

al. 2009). Remarkably, the same species can even shift from one position to another within 

thermoregulation. Indeed, an individual may be a perfect thermoregulator during its diapause 

and a thermoconformer for the rest of its life cycle (Danks 2004). Likewise, nocturnal moths 

are thermoconformers, but shift to thermoregulators during the pre-flight and flight activity 

periods, because they warm up by contracting their wing muscles before flying (Heath & 

Adams 1967, Heinrich 1993). 
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Additionally, an individual may use behavioural and physiological mechanisms, or 

both, to regulate its temperature within a narrower (or larger) range than the range of 

environmental temperatures (Bartholomew 1966, Smith 1979, Huey 1974, Kearney et al. 

2009). Physiological thermoregulation includes heat production by metabolism or muscles 

activity (Benzinger et al. 1961, Harrison et al. 1996), evaporative cooling (i.e., by heat 

cutaneous loss, panting, salivation or sweating, Heinrich 1993, Prange 1996), control of blood 

flow into body appendage (Steen & Steen 1965, Smith 1979), and control of heart-beating 

rate (Heinrich 1993, Fleisher et al. 1996). Behavioural thermoregulation is used by a wide 

range of organisms, from tiny insects to mega-herbivores, for selecting environmental 

temperatures that maximize physiological performances or that buffer extreme events 

(Kearney et al. 2009). Those behaviours encompass seasonal adaptation for specific 

performances (Danks 2004), habitat choice through locomotion and dispersion (Kinahan et al. 

2007, Dillon et al. 2012, Briscoe et al. 2014, Sears & Angilletta 2015 and see Fig. 3), postural 

adjustments of the body or parts of the body (Huey 1974, Kingsolver 1985, Heinrich 1990, 

1993, Kemp & Krockenberger 2002 and see Fig. 4), social behaviour (Gilbert et al. 2008, 

Kadochová & Frouz 2013), environmental engineering (Korb 2003), and body part abscission 

(Pincebourde et al. 2013).  
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For example, Briscoe et al. (2014) showed how the arboreal koala Phascolarctos 

cinereus copes with extreme heat events in south-eastern Australia via a behavioural 

thermoregulation mechanism: during warm events koalas enhance conductive heat losses (see 

below paragraph I.2.b.) by hugging tree trunks that are substantially cooler than ambient air 

temperature (Fig. 3). 

 

 

 

Figure 3: Thermal image of a koala hugging the cool lower limb of a tree, illustrating a 

posture typically observed during hot weather in Australia. From Briscoe et al. (2014). 

  



INTRODUCTION 

 
 
29 

 

As another example, Kingsolver (1985) illustrated the reflectance basking phenomena 

used by Pierid butterflies (Lepidoptera: Pieridae) as a behaviour that involves the use of the 

wings as solar reflectors, which direct solar radiation into the body to increase their thoracic 

temperature (Fig. 4). Pierid butterflies orient the inclination of their wings toward the sun 

(i.e., a thermoregulatory posture) to increase thoracic temperatures through radiative heat (see 

below paragraph I.2.b.), in order to reach their optimal temperature for taking off and flying 

(between 29 and 40°C), even when the temperature of their environment is lower. 

 

 

Figure 4: Butterfly wing posture classifications as a behavioural thermoregulation 

mechanism for the regulation of thoracic temperatures. Adapted from Kingsolver (1985) and 

Kemp & Krockenberger (2002). 
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The ability of many ectotherms to avoid potentially lethal body temperatures and to 

increase the time spent at optimal temperatures has obvious and profound effects on its 

physiology and fitness (Kingsolver 2009, Dillon et al. 2012). While endotherms 

thermoregulate their body temperatures using their own metabolic processes regardless of 

their environmental temperatures (Fig. 5), many ectotherms thermoregulate throughout a 

combination of physiological and behavioural mechanisms that allow them to deal with the 

spatial and temporal heterogeneity of their environment (e.g., to avoid the risk of thermal 

death or to maximize diverse performance traits). In this thesis, we will focus on ectothermic 

insect pests that are perfect thermoconformers and possess a body temperature closely related 

to the temperature of their environment (see Fig. 5). 

 

 

 

 

Figure 5: Relationship between air temperature and body temperature define 

thermoregulation strategies. Adapted from Angilletta (2009). 
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Temperature is a critical parameter that influences a variety of biological and 

environmental processes. Environmental temperatures shape the thermally-dependent 

performances of organisms and consequently condition their occurrences and distributions. 

Therefore, organisms have evolved many physiological and behavioural strategies to cope 

with the thermal heterogeneity of their environment. Ectothermic organisms face the 

environmental conditions by taking advantage of its spatiotemporal variability. Thus, 

understanding the functioning of the spatiotemporal heterogeneity of the thermal 

environment available for a study organism (i.e., its microclimates) and the mechanisms by 

which organisms cope with such variation relative to their physiological sensitivities is 

primordial for an accurate comprehension of organism occurrence, fitness and distributions. 

Indeed, forecasting the impacts of climate on organisms requires that we understand the 

details of how microhabitats filter environmental fluctuations, and whether heterogeneity at 

small scales is sufficient to allow organisms to find and exploit optimal and favourable 

conditions. 
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2. Microclimates 

a. Definition and use in the scientific community 

The study of the relationships between organisms and climate is a classic question in ecology 

and has a long history (e.g., Cloudsley-Thompson 1962, Geiger 1965, Woodward 1987, Jones 

1992, Pielke et al. 1998). Microclimate is usually defined as the climate experienced by an 

organism in its habitat. While Geiger (1965) initially defines microclimate as “the climate 

near the ground”, it is now more braodly defined as the result of a combination of biophysical 

processes shaped by the surrounding environment, which causes climatic conditions to differ 

from macroclimates (Kearney et al. 2014, Storlie et al. 2014). Ecologists and agronomists 

were first interested in what temperatures should be considered among the variety of 

temperatures that occur at fine spatial scales (Fig. 6), and then in what features of the 

environment shaped the microclimates. 

 

 

Figure 6: Schematic representation of the spatial heterogeneity of temperatures occurring in a 

typical ecological landscape. Adapted from Körner (2013). 
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Microclimates reflect the filtering of global climatic conditions by abiotic and biotic 

structures present in the environment (e.g., rocks of different sizes, soils of different 

compositions, topography of the ground surface, moisture, canopy density, etc.). This filtering 

happens through biophysical processes that involve environmental factors including air and 

surface temperatures, precipitation, radiation, and wind speed (Geiger 1965, Gates 1980, 

Jones 1992, Hannah et al. 2014). 

To illustrate the evolution of microclimates in scientific research, we searched and 

collected in the ISI Web of Science database, the number of published papers (i.e., papers, 

letters, editorials and reviews only) per year since 1940, that included the keyword topics 

“TS= (Microclimate* OR Microclimatic)”. Then, we refined the query using studies written 

in English and sorted the results by research areas available in ISI Web of Science database 

(Environment & Ecology, Plant sciences, Agriculture, Entomology, Meteorological sciences 

and others). 

 

Figure 7: Number of ISI Web of Science publications between 1940 and 2014 referring to 
microclimates (see text above for definition). Publications (i.e. papers, letters, editorials and 
reviews only) were sorted by research areas (Environment & Ecology, Plant sciences, 
Agriculture, Entomology, Meteorological sciences and others). The global rate of published 
paper per year (+11%, Van Noorden 2014) is displayed as a red curve. 
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The number of published works involving microclimatic issues has increased 

exponentially since 1940 (Fig. 7). Results showed that the strong increase in microclimate-

focused studies (from <10 in 1950 and >650 in 2014) is mainly due to an intensification of 

works in the ecology, plant sciences and agriculture areas. These three last research areas 

represent 40, 22, and 15% of published works in 2014, respectively. Contrastingly, studies 

focusing in microclimates in entomology have shown a low rate of increase (low increased of 

blue bars in Fig. 7). However, these increasing trends are to be nuanced for two reasons (see 

Van Noorden 2014 for details): academic databases such as the ISI Web of Science increased 

their coverage by 3% a year (i.e., no database captures everything) and the global scientific 

output increased by 8-9% every year. 
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b. Organism – environment interactions: the microclimate components 

The flow of heat between organisms and their environment occurs through a variety of 

physical processes, which depend on the environment considered (Gates 1980). In the case of 

an ecothermic terrestrial organism, four physical processes contribute significantly to the 

microclimate experienced by an organism: radiation, conduction, convection, and evaporation 

(Fig. 8). Each component that composes the habitat of the organism (e.g. plants, ground, 

rocks, water elements, living organisms, air) relies on these processes and will experience 

heat exchange among each other. 

 

  



INTRODUCTION 

 
 
36 

Radiation. The insect depicted in Fig. 8 gains heat mainly from the radiation absorbed 
by its body surface. Incoming radiations include the short-wave radiations from the sunbeam 
that reach the body surface directly (i.e. direct radiations; Porter & Gates 1969). Part of the 
sunbeam (mainly UV and blue radiations between 270 and 450 nm) is scattered in terms of 
quantity, spectral properties and angular distribution by particles in the atmosphere. Reflected 
radiations are all radiations coming from the sunbeam that are mirrored by terrestrial objects 
such as rocks, soils, vegetation and clouds. The other part is composed by long-wave 
radiations emitted by all other surroundings (i.e., thermal radiations from 7.5 to 14 µm, Jones 
1992). Infrared thermal radiations are also emitted by the body surface of the terrestrial 
ectotherm and are thus responsible for the radiative losses (heat loss by radiation; Church 
1960, Bakken et al. 1989) itself dependent on the physical properties of organism’s body (e.g. 
its emissivity; Rubio et al. 1997). 

 
Conduction. It is the heat transfer within a body or between the organism and the 

surrounding objects that occurs only through physical contact. The transfer of heat by 
conduction occurs through microscopic diffusion and collisions of particles within the body 
(Gates 1980, Bakken 1992). Therefore, heat transfers through conduction increase with 
increasing contact between the body and other solid elements, principally the ground. In the 
case of thermal conduction, heat spontaneously flows from a warmer to a colder body or part 
of the body. Therefore, thermal conduction within the body reduces differences in 
temperature between the body surface (that receives the radiations) and the inner and cooler 
body parts (Church 1960). 

 
Convection. Convective heat transfer (or convection) is the transfer of heat from one 

place to another by the movement of fluids (mainly air in this case). Convection is caused by 
the variation in density of the air when temperatures are dissimilar. When the air is in contact 
with a warmer surface (e.g., the body), its molecules separate and scatter, causing the air to be 
less dense. As a consequence, this warm air is displaced while the cooler air (denser) sinks. 
The warmer part of the air transfers heat towards the cooler one, thereby decreasing 
organism’s body temperature (Gates 1980). Convection heat transfers is reversible (depending 
on the thermal difference between air and body) and dependent on the body surface in contact 
with the air (Vogel 1970, Jones 1992). Small ectotherms loose less heat by convection than 
bigger organisms. 

 
Evaporation. Evaporative cooling (e.g., sweating) happens when water from body 

surfaces evaporates, changing from liquid to gas. The energy needed to evaporate the water is 
taken from the body in the form of heat. In the case of an insect in a warm environment, if the 
heat needed for evaporation can be drawn from the body, body temperature can be prevented 
from increasing or even lowered below that of the environment (Porter & Gates 1969, Prange 
1996). However, an insect in a hot environment would be gaining heat from its surroundings 
at the same time it is attempting to cool down. Despite their relatively impermeable 
exoskeletons some minimal level of evaporation from an insect occurs at warm temperatures. 
The rate of evaporation increases with increasing body surface area and by the movement of 
the air over the surface. As the amount of steam (water at the gas phase) that air can hold 
increases non-linearly with temperature, water loss is likely to be greater at higher 
temperatures (Gates 1980). Additionally a high difference between the two temperatures 
induces strong evaporative cooling, which is the unique way for organisms to decrease their 
body temperature when the temperature of the environment is higher than the body 
temperature (Jones 1992). 
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Figure 8: Schematic representation of the biophysical processes that occurs in the elaboration 

of the microclimatic environment of a terrestrial ectotherm. Routes of heat exchange between 

the organism and its environment include radiation, conduction, convection, and evaporation. 

Adapted from Angilletta (2009) and Kearney et al. (2014).  
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Temperature of an organism determines the capacity for heat to flow between the 

organism and its environment (Angilletta 2009). Under environmental conditions, the heat 

flows between the body and the environment occur simultaneously in gains and losses. This 

relationship relies on the biophysical interaction of the thermal properties of the body (e.g., 

size, shape, solar reflectance) and the environmental factors including air and surface 

temperature, humidity, precipitation, radiation, and wind speed as defined by its habitat (e.g., 

slope, aspect, shading; Bakken 1992, Kearney et al. 2014). The organism will heat or cool 

until it reaches a steady-state temperature. At this steady state, the organism continues to 

exchange heat with its environment, but gains and losses cancel each other. 

 

c. Operative temperatures: linking microclimatic heterogeneity and biotic 

responses 

Given the complexity of processes controling climatic conditions experienced by an organism 

in its environment, the concept of operative temperature is used to understand how 

environmental conditions influence the body temperature of an organism. The operative 

temperature is the steady-state temperature of an organism in a particular microclimate in the 

absence of metabolic heating and evaporative cooling (Bakken 1992, Angilletta 2009). This 

temperature characterizes the thermal environment as perceived by the organism, 

independently of any physiological thermoregulation. Thus, operative temperatures deliver a 

thermal index that allows a single-number representation of the complex thermal 

environment. They can be measured directly using various biophysical figurines of the study 

organism (Bakken 1992): temperature sensors installed in figurines that mimic the key 

biophysical characteristics of the organism’s body (e.g., with the same external properties of 

the animal such as size, colour and matter, Helmuth & Hofmann 2001, Seebacher & Shine 

2004, Langer & Fietz 2014) or in freshly dead bodies (Kingsolver 1985, Kemp & 
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Krockenberger 2002). For example, biophysical models of frogs made of gelatine (i.e., agar-

agar) and tinted with the same colour of the studied organism that include a precise 

thermometer are used to mimic frog body and record operative temperatures in a specific 

environment (Fig. 9). Biophysical figurines permit to explore the thermal environment at the 

same spatial scale experienced by organism, and can be replicated relatively easily to measure 

conditions at multiple sites. However, these empirical measurements should to be made at 

relevant spatiotemporal scales. 

 

 

 

 

 

Figure 9: Visual (A.) and thermal infrared (B.) images of frog’s biophysical figurines that 

record operative temperatures in their microenvironment. Surface temperatures ranged from 

17 to 30°C. The enclosed-body thermometer appears on the left frog in the visual image. 

Figurines from Andrés Merino of the Pontificia Universidad Católica del Ecuador. Photos 

credits: Emile Faye and Sylvain Pincebourde. 
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d. Scales in microclimates. 

The temperature experienced by organisms in their environments can be totally different from 

the conditions measured by a conventional weather station placed 2 m above ground level 

(defined by the World Meteorological Organisation). Worldwide a large body of literature has 

acknowledged that weather stations can misrepresent the thermal environment of living 

organisms (Cloudsley-Thompson 1962, Holmes & Dingle 1965, Geiger 1965, Weiss et al. 

1988, Jones 1992, Bennie et al. 2008, Angilletta 2009, Scherrer & Koerner 2010, Sears et al. 

2011, Sears & Angilletta 2015, Suggitt et al. 2011, Dobrowski 2011, Graae et al. 2012, 

Buckley et al. 2013, Hannah et al. 2014, Kearney et al. 2014, Scheffers et al. 2014a,b, Woods 

et al. 2016). Therefore, it is important to consider the climatic heterogeneity experienced by 

organisms at different temporal and spatial scales. 

 

i. Temperature variations in time 

Time has a significant effect on temperature variations at both macro- and micro-scales. The 

motion of the earth combined with the radiation from the sun drives a continuous 

redistribution of heat throughout the planet within time. Thus, living organisms must deal 

with thermal changes on a variety of temporal scales (Wang & Dillon 2014). First, 

environmental temperatures cycle daily because of the periodic exposure to solar radiation 

due to the rotation of the earth around its axis (Rojas et al. 2014). Second, environmental 

temperatures change seasonally because of the tilt of the earth as it orbits the sun. Third, 

environmental temperatures change quickly and unpredictably with atmospheric conditions 

(wind speed, cloud cover, etc.). Consequently, mean temperatures alone do not provide a 

complete understanding of these periodic patterns (Camacho et al. 2015). By concentrating on 

climate means, the actual impact of climate on biological systems and organisms is probably 

being seriously mis-estimated (Paaijmans et al. 2013, Thornton et al. 2014). Climate 
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variability and extreme events are not only of critical importance for understanding the 

biological responses of living organisms (Easterling et al. 2000, Rhines & Huybers 2013) but 

also are expected to be exacerbated by climate change (Karl et al. 1995, IPPC 2014), with 

strong implications for predicting species performances in a changing environment (e.g., 

Sheldon & Tewksbury 2014, Vasseur et al. 2014). 

 

 

ii. Thermal heterogeneity at different spatial scales 

In addition to the temporal variability, the spatial heterogeneity is also one of the main issues 

of microclimate research. Spatial scale at which climatic data are studied and modelled ranged 

from the global scale, the regional scale, the local scale, to the organism’s scale. 
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At the global scale: The thermal data collected by weather stations all over the world 

allow mapping environmental temperatures on a global scale (New et al. 2002, Hijmans et al. 

2005). To construct such maps, one must convert the extremely patchy distribution of thermal 

records into a regularly spaced grid (Fig. 10). Temperatures between weather stations are 

interpolated by fitting regression models to the available data using latitude, longitude, and 

elevation as independent variables (see Hijmans et al. 2005 for details). Results are “high-

resolution” coarse-scale models of temperature indices (e.g., monthly mean, minimum, and 

maximum temperature). The spatial resolution obtained by these global models of 

interpolation reaches at best 0.86 km2. Indeed, the overall low density of available climate 

stations prevents surface temperature models to capture of all the variation that may occur at a 

resolution of 1 km, particularly in tropical mountainous areas (Hijmans et al. 2005). 

 

Figure 10: A. Distribution map of the air temperature weather stations available worldwide. 

For mean temperature, in total 24542 weather stations were used for creating the WordClim 

database. B. Map of the modelled mean temperatures at a 30 arc second (almost 1 km close to 

the Ecuador line) resolution. Adapted from Hijmans et al. (2005). 
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At the regional scale: Capturing fine-grain environmental patterns at regional scales 

cannot be accomplished easily using conventional sampling techniques (i.e., standard weather 

stations) because of the structural complexity of the landscape (Lookingbill & Urban 2003) 

and the resulting thermal heterogeneity. Therefore, studies at the regional scale usually 

combine empirical fine-grain monitoring of climate (with a large number of miniaturized 

thermometers evenly distributed in space) with correlative models based on landscape 

features (Chuanyan et al. 2005, Ashcroft et al. 2012). Elevation, topography and slope are 

some of the main landscape features that influence the drivers of climate heterogeneity at the 

regional scale (Dobrowski 2011). These topoclimatic effects (i.e., spatial estimates of climate 

as it varies with topographic position in the landscape) result mainly from differences in slope 

orientation and angle towards solar radiation and wind (Bennie et al. 2008). Therefore, solar 

radiation is commonly used as a predictor variable in modelling temperature in complex 

terrain at the regional scale (Fig. 11). 

 

Figure 11: Representation of the influence of landscape position on air diurnal temperature 

variation. (a) Shaded relief map shows areas of high (warm colours) and low (cool colours) 

solar insolation with the locations of four temperature-monitored sites. (b) Pattern of diurnal 

temperature patterns for sites 1 to 4. From Dobrowski (2011). 
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At the local scale: The local scale is an intermediate between the regional scale (that 

might extent from one to hundreds of square kilometres) and the organism scale (basically the 

environment of an organism, i.e., from few millimetres to meters). Thermal heterogeneity at 

the local scale could be defined as the environment experienced by a study organism along its 

life cycle. Therefore the local scale mainly depends on the body size of the focal organism 

and its capacities to move within the environment: a spatial scale of 1 m2 may be long for a 1-

mg ant but short for a 1-kg lizard (Sears et al. 2011, Sears & Angilletta 2015). However, 

assessing microclimates at the local scale is not straightforward because of the variety of 

abiotic and biotic elements making up this scale: topography and macroclimate interactions 

but also micro-topography of the ground surface, vegetation and plant canopy structure, 

nearby organism interactions, areas of water, rocks or other local objects (Woods et al. 2016). 

All elements interact with each other and with macroscale conditions thereby leading to a 

fine-scale mosaic of climate (Fig. 12). 

 

Figure 12: Thermal infrared image of an agricultural landscape pinpointing the thermal 

heterogeneity available for an ectothermic pest at the local scale. The extent of the image is 

32 x 24 metres and temperatures range from 12 to 43°C. Blue colours show cold temperatures 

and red colours show warm temperatures. Photo credits: Emile Faye. 
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Among all the spatial scales of microclimates, the local scale has been the least studied 

(e.g., Sears et al. 2011, Sears & Angilletta 2015, Woods et al. 2016) mainly because of 

methodological limitations in climate heterogeneity quantification. 

 

At the organism scale: Organism scale corresponds to the spatially restricted extent in 

which an organism occurs at a defined time. This scale is one of the most studied by 

biophysical researchers who seek understanding organism-environment interactions 

throughout thermal budgets (Vogel 1970, Gates 1980, Kingsolver 1985, Jones 1992, 

Kingsolver 2009, Saudreau et al. 2009). For instance, Pincebourde & Casas (2006a,b) studied 

the modifications of the thermal environment inside a mine of an apple tree leaf by the leaf-

mining insect Phyllonorycter blancardella (Lepidoptera: Gracillariidae). 

 

 

Figure 13: Microhabitat of the leaf-mining moth Phyllonorycter blancardella. A. The larva 

develops inside the apple leaf tissues, within a mine (representing a surface of 1 cm2). The 

feeding activity of a larva results in the formation of feeding windows (FW). Green patches 

(GP) correspond to intact chlorophyll-containing leaf tissues remaining in the mine. B. 

Schematic cross section of a mine and determinants of heat transfer. Adapted from 

Pincebourde & Casas (2006a). 
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Plant tissue modifications by the miner alter leaf solar radiations absorbance and gas 

exchange (Fig. 13), which results in an increase of 5°C in temperature inside the mined leaf 

compared to intact leaves (Pincebourde & Casas 2006a). These organism-modified 

microclimates influence in turn the performances of leaf-dwelling insects (Pincebourde & 

Casas 2006b). Studying the microclimates at such fine scales is relatively accessible due to 

the variety of technologies available (e.g., thermometer, thermocouple, distributed 

temperature optic fibre, automatized greenhouse or climate chamber) and because most of the 

experiments can be performed under controlled conditions. 

 

e. Scale mismatch and methods to study ecologically-relevant microclimates 

Scale gap in thermal ecology: Potter et al. (2013) recently highlighted the spatial mismatch 

between the size of organisms and the resolution at which climate data are collected and 

modelled (Fig. 14). The majority of living organisms on earth are smaller than a few 

centimetres (May 1988) whereas the spatial resolution of climate data used in species 

distribution models is often of one to many kilometres. In their meta-analysis, Potter et al. 

(2013) showed that the resolutions of the climate grids used in species distribution models 

are, on average, 10,000-fold larger than studied animals, and 1,000-fold larger than studied 

plants. Interestingly, the mismatch between insect body length and the climatic grid length is 

one of the largest of all. Strikingly, their study also revealed that two climatic database were 

predominantly used in species distribution models (the two peaks in the grid-size density plots 

in Fig. 14): the grid scales of 1 and 10 km2 which correspond to the resolution of one of the 

most widely used and readily available climate database, the WorldClim (Hijmans et al. 

2005). 
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Figure 14: Lengths of grid cells from published species distribution models (SDMs) 

compared to the lengths of the animals and plants they studied. Coloured dots indicate the 

body size of a species from one study; coloured horizontal lines indicate a range of body sizes 

if the study used multiple species. The corresponding grey dots and lines indicate the grid size 

(or range of sizes) of climate variables used in that study. The black density plot is a spline 

fitted to data from May’s 1988 paper [(May, 1988), Figure 6], which represents his estimate 

of the body size distribution of all terrestrial animals. Density plots of the rest of the terrestrial 

data are shown at the bottom for comparison. Adapted from Potter et al. (2013). 
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Woods et al. (2016) have proposed a conceptual framework to link macro- and 

microscales (Fig. 15). Macroclimates interact with living and non-living objects in the 

environment to produce a complex mosaic of microclimates. Organisms, such as small mobile 

ectothermic pests, that experience such fine-scale mosaics, may actively thermoregulate by 

sampling the local microclimatic heterogeneity of their environment. Finally, the physiology 

of ectotherms transduces thermal experiences into performances (as described above), which 

in turn influences demographic parameters (i.e., rates of growth and survival). 

 

Figure 15: Diagram of the connections between macroclimate, microclimates and the 

performances of a population of ectotherms. Adapted from Woods et al. (2016). 

 

Current methods for bridging the scale gap: modelling and empirical monitoring. Assessing 

the spatiotemporal thermal heterogeneities that occur at relevant scale for the study 

organism is a major issue for everyone who want to accurately estimate organism 
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occurrences and distribution. Consequently, several methodologies have been developed to 

study microclimates and their effects on organisms and species. Stochastic weather 

generators (e.g., the Worldclim) produce synthetic time series of weather data for a location, 

based on the statistical characteristics of observed weather at that location (Furrer & Katz 

2007). Therefore, combined with operative temperatures recorded in the field, stochastic 

weather generators allow modelling microclimates. This method has proven a powerful 

interpolative tool for defining and projecting climatic envelopes (Guisan & Thuiller 2005, 

Elith & Leathwick 2009). However, such correlative microclimatic models are not well 

suited for obtaining a detailed understanding of the climatic constraints limiting species 

distributions, since processes are only captured implicitly (Dormann et al. 2012). Moreover, 

statistical correlative models may not be extrapolated over other extents because they can 

only be applied to the conditions under which they were fitted. 

Another way to accurately model the microclimatic conditions experienced by an 

organism is using mechanistic models (Kearney & Porter 2009, Buckley et al. 2010). 

Complex mathematical functions based on the fine analyses of the biophysical processes 

between the structural properties of the environment and the body allow assessing and 

estimating both microclimates and body temperatures (Gates 1980). These mechanistic 

models, known as thermal budgets or energy budgets, use fundamental knowledge of the 

interactions between process variables to define the model structure. Therefore, they do not 

require much data for model development and validation. This kind of models can be 

interpolated over large landscapes (when inputs data are available) to assess spatial and 

temporal variations of microclimatic conditions at wider scales. Recently, Kearney et al. 

(2014) developed the microclim model that quantifies key microclimatic parameters at macro-

scales (i.e., continental) for all terrestrial landmasses, with a relatively fine spatial (15 km2) 

and temporal resolution (hours). However, the model requires a large amount of specific 
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values as inputs such as air temperature, wind speed, relative humidity and cloud cover, soil 

properties (such as conductivity, specific heat, density, solar reflectivity, emissivity, surface 

wetness of the soils), as well as the elevation, slope and aspect of the surface. Mechanistic 

predictions of local microclimates, hourly, across continental scales, create new opportunities 

for understanding how organisms respond to their environments (Hannah et al. 2014). 

 

Global mechanistic models of microclimates such as the one developed by Kearney et 

al. (2014) allows providing key parameters of microclimates, but the spatial resolution is still 

far from the empirical interpolation-based models (e.g., 15 square kilometres for Kearney et 

al. (2014), compared to 1 square kilometre for Hijmans et al. 2005), and even further from the 

resolution at which organisms experience their environment. Despite their sophistication these 

models still fail to accurately portray environments in terms of the magnitude of climatic 

variables and their heterogeneity through space and time, which are important for the 

performance of individuals.   



INTRODUCTION 

 
 
51 

 

 

Microclimates are driven by interactions between complex biophysical processes, the 

structural composition of the environment and the macroclimate features. Consequently, the 

heterogeneity of microclimates creates complex thermal mosaics that change across time and 

space. Temperatures gathered from weather stations are unlikely to represent biologically-

relevant operative temperatures. Quantifying these spatiotemporal heterogeneities of 

temperature can be made through statistical and mechanistic models or empirically at various 

spatial scales from large (global and regional) to fine (local and organism) scales with 

diverse resolutions. Since spatial heterogeneity in the thermal environment as perceived by a 

given organism is likely to have important consequences on its occurrence and 

performances, one might conclude that quantifying the thermal heterogeneity of 

microclimates constitutes a major challenge for researchers interested in predicting responses 

of organism to their environment at a relevant scale. The same concern arises when 

considering agricultural landscape and crop pests. Indeed, by the variety of plant phenologies 

and structures, agricultural landscapes provide ectothermic inhabitants, including crop pests, 

with a massive but still poorly studied, heterogeneity of microclimates. 

  



INTRODUCTION 

 
 
52 

3. Microclimates in agrosystems: from agro-climatology to thermal agroscapes 

a. History of microclimate research in agriculture 

Climates and microclimates have long been studied within an agricultural perspective (see 

yellow bars in Fig. 7) and the existence of specific journals on these thematic highlights the 

strong interests of agronomists for this issue (e.g., Journal of Agricultural Meteorology first 

published in 1943, Journal of Applied Meteorology and Climatology in 1962, and 

Agricultural and Forest Meteorology in 1964). Agroclimatology aims at studying the 

interaction between local climate features (e.g., temperature, humidity, wind, radiations) and 

agricultural variables (e.g., growth rate, yield, leaf development). The main objective is to use 

climatological information to improve farming practices and increase agricultural productivity 

in both quantity and in quality. Previous studies that related the physical components of 

climate with crop production (Leopold 1964, Monteith & Elston 1971, Chang 1974, Jones 

1992) showed that crop growth and yield were sensitive to temperature in various ways (e.g., 

Watson & Baptiste (1938) on plant weight, Cooper (1964) and Peacock (1975) on leaf 

development, Langridge & McWilliam (1967) on photosynthetic rate). However, most crop 

microclimate studies before 1970, such as Broadbent (1950) for potatoes, Waterhouse (1955) 

for grasslands, Stoskopf & Klinck (1966) for oats, Rosenberg (1966) for sugar beets and 

Colville (1968) for corns, were performed on plants under controlled environments rather 

than in the field. 

Later, various studies focused on the interactions between microclimates and crops in 

situ (i.e., within the field in real conditions, Baldocchi et al. 1983). Colville (1968), Stigter & 

Baldy (1995) and Sharaiha & Battikhi (2002) showed that the spatial arrangements of the 

plants within a field (i.e., plant spacing, intercropping rows of various species) strongly 

affected the microclimates experienced by plants and may lead to increases in crop yields, 

compared to single crop farming (i.e., monoculture). Indeed, relevant spatial arrangements in 
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crop fields increased light interception (enhancing the photosynthesis process) and decreased 

the evapotranspiration rate. Batugal et al. (1990) showed that intercropping potatoes with 

corns provided partial shade to the potato plants during strong radiation events, thereby 

reducing air and ground temperatures (temperature reducing systems), and improving tuber 

production. Sharaiha & Kluson (1994) reported that both air and soil temperatures required 

for fava bean nitrogen fixation were significantly more optimal when fava bean was planted 

in association with peas or lettuce as compared with fava bean monocultures. Smart (1985) 

showed that plant canopy structure enhanced grapevine yield and quality by modifying 

radiation interception rate and moisture. Moreover, microclimate beneath tree canopy in 

agroforestry systems protected crop plants (such as coffee) against extreme climatic events by 

providing shades and lower air temperatures than the above tree canopy air temperatures 

(Hardwick et al. 2014). Tompkins et al. (1993) and Suh et al. (2002) showed how agronomic 

practices and canopy closure influenced the infestation of crop diseases and pests by 

modifying the components of the in-field microclimates (Septoria sp in wheat field and 

Trichogramma exiguum in cotton field, respectively). Also, Willmer et al. (2008) reported 

how intra-field microclimates constrained the distribution patterns of raspberry beetle 

(Byturus tomenfosus). Until recently, most studies focused on multiple point measurements of 

microclimates rather than continuous assessments of microclimates that occur at larger scales. 

Therefore, and unfortunately, these descriptors carried limited information about the spatial 

heterogeneity of temperatures in agricultural landscapes. 
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b. Contributions of precision agriculture 

The recent and topical development of precision agriculture and remote sensing domains has 

brought new insights for the assessment of the thermal heterogeneity across agricultural 

landscapes. In particular, the development of thermal infrared cameras has opened new 

opportunities to quantify the spatial heterogeneity of microclimates in agrosystems (Inagaki et 

al. 2008, Meron et al. 2010, Agam et al. 2014, Bellvert et al. 2014, Petach et al. 2014). 

Infrared thermography is an imaging method that records infrared waves emitted by an object 

in the electromagnetic spectrum within the range of light – from 7.5 to 14 µm (Fig. 16). 

Radiation readings are converted into surface temperature by the thermal infrared camera 

taking into account the ambient conditions and emissivity (Rubio et al. 1997). 

 

Figure 16: Schematic representation of the electromagnetic spectrum. The electromagnetic 

spectrum extends from below the low frequencies used for modern radio communication to 

gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths 

from thousands of meters down to a fraction of the size of an atom. Thermal infrared 

correspond to from 750 to 1400 nm. 

 

Thermal infrared images allow the study of surface temperature patterns over a large 

spatial extent and are widely applied to precision agriculture issues. Thermal remote sensing 

is the capture of thermal infrared images from aircraft-based or satellite-based sensors. These 

images provide spatially distributed estimations of land surface temperatures over large-scale 



INTRODUCTION 

 
 
55 

areas (Anderson et al. 2007, Kuenzer & Dech 2013). Surface temperatures are measured by 

satellite sensors such as Landsat, AVHRR, MODIS and ASTER (Kalma et al. 2008). Once 

the atmospheric component corrections performed (e.g., particles and water vapour, 

Quattrochi & Luval 1999, Glenn et al. 2007), thermal remote sensing provides accurate 

values of surface temperatures (i.e., an accuracy of less than ±1°C, see Hook & Prata (2001), 

Jacob et al. (2004) and Coll et al. (2005) for details). Thermal remote sensing in precision 

agriculture yields continuous measurements of surface thermal heterogeneity of agricultural 

landscapes (Kuenzer & Dech 2013) and allows quantifying crop indices based on 

temperatures (Moran et al. 1997, Glenn et al. 2007, Kalma et al. 2008). For instance, 

evapotranspiration and soil moisture or Crop Water Stress Index (CWSI) can be spatially 

estimated through remotely sensed crop surface temperatures (Soer 1980, Moran et al. 1994, 

Berni et al. 2009, Meron et al. 2010). 

Even more recently, thermal remote sensors placed on unmanned aerial vehicles 

(UAVs) provide low-cost approaches to meet the critical requirements of fine spatial and 

temporal resolutions over agricultural landscapes (Plate 1). Autonomously operated, flying 

low and slow, UAVs offer scientists new opportunities for scale-appropriate measurements of 

the thermal landscapes. Few recent studies illustrated the use of this novel technology for 

resolving agronomical issues: crop water stress index is the first coming output from high-

resolution thermal infrared images as it allows to map the spatial variability in water status 

across agricultural landscapes at very fine spatial resolutions (Fig. 17, Zarco-Tejada et al. 

2012, Gonzalez-Dugo et al. 2013, Bellvert et al. 2014). UAV’s thermal imaging has also been 

used as an indicator of field’s infestation by diseases (Calderón et al. 2014). The spatial 

resolution of the thermal infrared maps obtained in those studies were at best of 20, 30, 40 

and 49 cm per pixel on a spatial extent of 0.2, 11, 1.2, 42 ha for Calderón et al. (2014), 
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Bellvert et al. (2014), Zarco-Tejada et al. (2012) and Gonzalez-Dugo et al. (2013), 

respectively. 

 

Figure 17: Map of the Crop Water Stress Index (CWSI) of an orchard landscape in 

southeastern Spain. CWSI was built from thermal infrared images yielded from a UAV 

platform. From Gonzalez-Dugo et al. (2013). 

 

c. Pest performances in thermal agroscapes 

Being ectotherms, pests respond to the rules of physiological and behavioural 

thermoregulation and temperature dependency of their performances (development, fecundity 

and survival) as presented in paragraph I-1. Maximal pest growth occurs under optimal 

temperature ranges, but when a pest is exposed to extreme low or high temperatures, 

development rates are reduced, reproduction fails, and if exposed sufficiently long enough, 

death occurs (see paragraph I-1 and Fig. 18). That is why precise information on pests’ 
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thermal responses is crucial for understanding their occurrence and dynamics (Travis et al. 

2011). However, pests’ responses to temperature may differ if exposed to constant or 

fluctuating temperature regimes (Gilbert et al. 2004, Davis et al. 2006, Wu et al. 2014, 

Vázquez et al. 2015). Thus, pest population dynamics in highly variable environmental 

conditions may differ from those in more constant ones. This may be especially the case in 

environments, like complex agricultural landscapes of the Tropical Andes, where 

temperatures tend to vary within a 30°C range within a day (Dangles et al. 2008) and where 

the spatial composition of the landscape favours the spatial heterogeneity of temperatures. 

Under fluctuating (in time) temperature regimes, Davis et al. (2006) found that aphid Myzus 

persicae (Sulzer) had higher optimal and upper developmental thresholds (Fig. 18). 

 

Figure 18: Constant and fluctuating temperature dependent development rate observed for 

the peach tree pest Myzus persicae (Sulzer). Adapted from Davis et al. (2006). 

 

The relationship between experienced temperatures and the developmental rate of pests is 

crucial for understanding a variety of biological processes that occur in agricultural 

landscapes (e.g., pest infestation in the field). To accurately estimate this relationship, the 

thermal component of pests’ ecological niches is of major interest to understand both patterns 

and processes of their occurrence and distribution dynamics in agricultural landscapes.  
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Microclimate has long been studied throughout an agricultural perspective. Many 

works have depicted the relationship between one-location microclimate and various crop 

factors (e.g., yield, growth). Then, the apparition of thermal remote sensing has permitted to 

study the spatiotemporal thermal heterogeneity within agricultural landscapes. Very recently, 

thermal sensor on-board unmanned aerial vehicles brought new insights for the study of 

microclimates at spatiotemporal scales relevant for the study of crop related phenomena. 

These new technical innovations would permit agronomists to bridge the gap between the 

body lengths of the studied organism (e.g., plants or insects) and the spatiotemporal 

resolution of the climatic data of their studies. Therefore, quantifying the heterogeneity of 

the thermal environment experienced by ectothermic pests becomes accessible and 

repeatable at the extent of agricultural landscapes (i.e., the local scale) and offer news 

approaches for studying pest issues in thermal agroscapes. Because crop pests are 

ectothermic organisms that respond to the rules of temperature dependency for their 

performances, the thermal environment in which they evolved plays a key role in shaping 

population dynamics. 
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II. Thesis justification 

Based on the literature review presented above, we identified three key remaining challenges 

to be overcome for improving our general understanding of microclimate patterns. These 

challenges are particularly relevant in agrosystems but could also be of interest to other types 

of ecosystems. 

 

1. Microclimates and climate change 

Climate change affects ecological and evolutionary responses of living organisms represents 

across multiple biomes and organizational scales. Indeed, climate warming will modify 

ecosystem structure and functioning, lead to the extinction of the populations of some species 

(Parmesan 2006) while increasing levels and distribution ranges of others, such as crop pests 

and disease vectors (Chakraborty & Newton 2011, Luck et al. 2011). As it has been widely 

projected that global warming would yield an increase in climate variability (IPCC 2014) 

leading to novel global climatic landscapes, efforts have started to focus on predicting how 

species, and their distributions, will respond to future climates (Bale et al. 2002, Parmesan 

2006, Buckley et al. 2013, Paaijmans et al. 2013, Hannah et al. 2014, Kingsolver & Buckley 

2015). To assess species’ response to climate change, mapped environmental data coarsely 

resolved in time and space are commonly used. However, coarsely resolved temperature data 

are typically inaccurate for predicting temperatures in microhabitats used by an organism (see 

above paragraph I.2.d.ii). Consequently, climatic niches and species distribution models based 

on the coarse-scale climatic data for forecasting the species’ response to climate change are 

likely to misestimate of species biogeographical shifts (Storlie et al. 2014). Moreover, 

microclimates have recently been studied for their capacities to buffer organism’s exposure to 

climate change (Scherrer & Körner 2011, De Frenne et al. 2013, Hannah et al. 2014, 

Scheffers et al. 2014a, Woods et al. 2014, Maclean et al. 2015) and even to hamper 

evolutionary responses (i.e., adaption and acclimation) in the face of climate change (Buckley 
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et al. 2015, Kingsolver & Buckley 2015). For instance, Lenoir et al. (2013) suggested that 

fine-grained thermal variability over tens of metres (i.e., spatial microclimate) exceeds much 

of the climate warming expected for the coming decades. Such spatial variability in 

temperature provides local buffering to mitigate future climate-change impacts within one 

square kilometre only. Consequently, accurately predicting how organisms will respond to 

climate change requires deepening our knowledge about the thermal heterogeneities in space 

and time that occur in the environment experienced by an organism, thereby radically 

reducing the mismatch between the spatial scales of climatic data and the body size of the 

organism studied. 

 

2. Methods for characterizing thermal heterogeneity at relevant spatial scales and 

resolutions in agricultural landscapes 

One of the main challenges in microclimatic studies concerns climatic data collection (Potter 

et al. 2013). Sampling microclimates perceived by a given species at relevant scales and 

resolutions is of critical importance for future research on microclimate issues. However, 

predicting temperature heterogeneity at fine resolutions over large areas is not straightforward 

using existing methods such as thermal remote sensing. Indeed, a fundamental requirement 

for providing useful remote sensing products is the capacity to combine both high spatial 

resolution (the closest possible to the organism body size) and temporal resolution adapted for 

the target organism or crop (Moran et al. 1997, Kuenzer & Dech 2013). Current thermal 

imaging satellite-based products have limited application in crop management due to the low 

spatial resolutions provided: microbolometer sensors used in remote sensing commonly offer 

c.a. 100 m pixel size thermal images (ASTER and Landsat images, Kalma et al. 2008, Berni 

et al. 2009, Kuenzer & Dech 2013), a spatial resolution that is impractical for site-specific 

agricultural applications, thereby limiting the usefulness of remote sensing products for fine-

scale thermal agricultural landscape studies. Alternatives based on airborne sensors can 
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deliver higher spatial resolutions and are more flexible in terms of repeatability. Airborne 

remote sensing has demonstrated capabilities for vegetation climatic condition monitoring due 

to high spatial thermal resolutions used, ranging between 1 and 2 metres per pixel, enabling 

for instance the detection of water-stressed trees in orchards for site-specific field 

management (Berni et al. 2009). However, the high operating costs and long turnaround times 

due to high volume of data acquired have so far intensively limited the use of airborne and 

satellite data for research activities. Additionally, the spatial resolution provided by these 

technological means is still far from the fine-scale spatial resolution needed over large spatial 

areas such as agricultural landscapes. 

 

3. Microclimates for understanding pest occurrence and distribution in 

agricultural landscapes 

Despite centuries of effort, we are still far from a complete integrate pest management of 

insect pests (Chakraborty & Newton 2011, Bebber et al. 2014, Sakschewski et al. 2014). 

Global population is increasing, and projections suggest that a system that currently keeps a 

billion people hungry will have to feed an extra three billion within the next 50 years (Birch et 

al. 2011). If future world demand is to be met, food production must virtually double by the 

year 2050 (Tilman et al. 2011). One potential approach of meeting this demand is the control 

of pests, which globally consume (pre- and post-harvest) the amount of food sufficient to feed 

more than 1 billion people (Birch et al. 2011, Oerke 2006). In the context of global warming 

and increasing climatic variability, a major uncertainty that hampers effective pest 

management is that related to the thermal characteristics of agricultural landscapes, which a 

are known to have profound effects on insect pest dynamics (e.g., Dangles et al. 2008). 

Therefore, comprehending the impacts of microclimates available in agricultural landscapes 

on pest performances and small-scale distribution is of prime importance to further integrate 

those relationships in performance and species distribution models. 
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The thesis was developed in the context of thermal agricultural landscapes and pest 

temperature-dependent performances that we presented above. The microclimatic challenges 

exposed here acted as drivers of this work, and can be retrieved throughout the entire thesis. 

For improving our general understanding of microclimate patterns and their consequences on 

ectothermic organisms, the agrosystems of the tropical Andes provide a perfect and relevant 

study site in regards to these microclimatic challenges, for various reasons that are explained 

in the following part. In the sections that follow, we firstly present the study region and study 

site where our experiments were set up, and then expose the main objectives of this thesis. 

 

 

Figure 19: A. Elevation map of South America. The tropical Andes extend between 11°N to 

23°S from western Venezuela to north Chile, and Argentina, encompassing Colombia, 

Ecuador, Peru and Bolivia. A 30 arc-second digital elevation model was used to build this 

map within ArcGis (10.2). B. Geological map of South America. Tropical Andes include two 

volcanic zones: the northern and central one (red circles). From Cauvy-Fraunié (2014). 
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III. Study site 

1. Tropical Andes 

a. Geography and geology 

 

The tropical Andes are located in South America and extend over 1.5 million km2 (area over 

1000 m a.s.l.) from 11°N to 23°S, i.e. from west Venezuela to north Chile and Argentina, 

encompassing Colombia, Ecuador, Peru and Bolivia (Fig. 19; Tovar et al. 2013). It is the 

longest and widest mountainous region in the tropics worldwide, occupying an elevation 

range from 1000 m up to 6768 m a.s.l. (Mt. Huascarán in Peru). The Tropical Andes are 

primarily composed by parallel high mountain chains (two in Venezuela, Ecuador, South Peru 

and Bolivia, and three in Colombia) with a large number of snow-capped peaks (96 summits), 

and a vast mountain plain, the Peruvian-Bolivian Altiplano (Josse et al. 2011). 

 

The Andes are the result of the Cenozoic (i.e., ~ 65.5 million years ago) tectonic 

shortening of the South American plate margin caused by the subduction of oceanic crust, the 

Nazca plate (Fig. 19; Sobolev & Babeyko 2005, Capitanio et al. 2011). While the 

compression of the western rim of the South American plate is the primary cause of the Andes 

rise, volcanic activity (as a result of subduction of the Nazca plate), is also a significant 

phenomenon in the building of the Andes (Stern 2004). Indeed, the Andes are the world’s 

second highest orogenic belt and include at least 200 active quaternary volcanoes, occurring 

in four separate segments referred to as the Northern, Central, Southern, and Austral Volcanic 

Zones (Fig. 19). 
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b. Climate settings 

Unlike temperate zones, seasonal variations in temperature are small in the tropics (Fig. 20-

A.) and seasonal markers such as day length variation are absent. Seasonality, as defined by 

Bonebrake & Deutsch (2012), is the intra-annual standard deviation of mean monthly 

temperature. These authors consider areas with low (or absent) seasonality as any area with a 

measure of seasonality below 4°K, which roughly corresponds to tropical and subtropical 

global isotherms (Legates & Willmott 1990). Seasonality in temperature is strongly dependent 

upon latitude with the most seasonal areas occurring at high northern latitudes (Fig. 20-A.). In 

the study area, seasonality measured across a 4 year sampling of air temperature was 

evaluated at 1°K (see appendix 6 of Chapter I). Even though the tropical Andes lack a clear 

seasonality in temperature, this region does present temporal variability in precipitation: 

precipitation patterns mainly result from a combination of events such as El Niño Southern 

Oscilation event which causes annual or sometimes decadal oscillations leading to increases 

of rain or draught depending on the location (Poveda et al. 2011) and the easterly flow of 

moisture from the Amazon Basin (Vizy & Cook 2007, Poveda et al. 2011). Roughly, 

precipitation patterns in the tropical Andes are quite complex and difficult to predict and 

contribute to the high heterogeneity of the landscapes. 
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Figure 20: A. Seasonality (standard deviation, in °K at 0.58° resolution) within a year, 

represented globally. B. The log of the non-dimensional ratio of spatial heterogeneity in the 

thermal environment (standard deviation, in °K at 0.58° resolution), to seasonality plotted 

globally. Blue regions represent locations where seasonality exceeds spatial heterogeneity and 

red locations represent regions where spatial heterogeneity exceeds seasonality. Red squares 

delimit the tropical Andes. Adapted from Bonebrake & Deutsch (2012). 

 

Although displaying a lack of seasonality, the tropical Andes are characterized by 

strong spatial gradients in climatic variables mainly associated with changes in elevation 

(Young 2009, Josse et al. 2011). Spatial heterogeneity at the regional scale in tropical Andean 

landscapes is indeed remarkable (mountaintops can exceed 6000 m.a.s.l. with adjacent valley 

bottoms reaching 3000-4000 m below) and is probably the most important feature that shapes 
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climates and natural ecosystems (McCain 2007, Young 2009). Consequently, by dividing the 

regional scale spatial heterogeneity of temperature with the measure of seasonality, 

Bonebrake & Deutsch (2012) showed that the spatial heterogeneity in temperature strongly 

exceeds seasonality in the tropical Andes, illustrating the relevance of this region for studying 

spatial-temperature-related patterns (Fig. 20-B.). Moreover, due to the high elevation of this 

region and its tropical location, diurnal temperatures vary more within days (up to 30°K 

variation) than within months and years (less than 1°K): the pattern of hot days and cold 

nights overshadows temperature variations through the year (Dangles et al. 2008). 

 

c. Implications for agriculture 

The specific spatiotemporal climatic patterns occurring in the tropical Andes have led to 

particular land uses (Otero & Onaindia 2008). Indeed, unlike high altitude landscapes in 

temperate regions, which are commonly regarded as relatively pristine places, tropical 

mountains have a long history of human occupation and impact (Young 2009). Agriculture is 

one of the first consequences of this anthropogenic implantation. Agricultural systems are 

organised in agroecological belts along the gradients of elevation and climate (Becker et al. 

2007), ranging from low elevations up to 4500 m a.s.l. Numerous crops are cultivated in these 

belts of the tropical Andes (Millones 1982, Knapp 1991): in the lowlands (from 1000 to 2000 

m a.s.l.) the major crops are banana (Musa acuminate L.), coffee (Coffea arabica L.), cacao 

(Theobroma cacao L.), rice (Oryza sativa L.), sugar cane (Saccharum angustifolium L.), 

african palm, tomato (Solanum lycopersicum L.) and tropical fruits such as mango (Mangifera 

indica L.), avocado (Persea americana L.), naranjilla (Solanum quitoense L.), pineapple 

(Ananas comosus L.), coconut (Cocos nucifera L.), etc. The major crops in the highlands 

(from 2000 to 4500 m a.s.l.) are potato (Solanum tuberosum L.), corn (Zea mays L.), broad 

bean (Vicia faba L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), pea (Pisum 
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sativum L.), soybean (Glycine max L.), quinoa (Chenopodium quinoa L.), lupin (Lupinus 

mutabilis L.), alfalfa (Medicago sativa L.) and cultivated grasses for farm animal breeding. 

Due to the lack of seasonality in the region, crops can be planted, grown and harvested 

all year round (as illustrated by the steady CO2 assimilation by plants throughout the year in 

Ecuador, Fig. 21), thereby creating agricultural landscapes made up of a wide variety of crops 

at different phenological stages (stages of maturation). This is a critical advantage for 

studying microclimates in agricultural landscapes because at the same time and over small 

area, all vegetation-based microclimates are encountered (see below). 

 

 

 

Figure 21: CO2 plant assimilation (in Kg/ha/day) throughout time of the year for different 

latitudes of the northern hemisphere. Simulations are performed under clear sky day for a 

mature green plant. The green line represents Ecuador. Adapted from Penning & Laar (1982). 
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2. Agricultural landscapes of the study site 

The main study site of this work was located 115 km south from the equatorial line 

(01°01’36”S, 78°32’16”W) in the Cotopaxi province of Ecuador (Fig. 22). It spreads out on a 

20-km2 elevation transect ranging from 2,600 to 3,800 m a.s.l., which broadly corresponds to 

the elevation belt of potatoes in Ecuador (Pumisacho & Sherwood 2002). The gradient had a 

southwest exposure and an average slope of 9.5° (±5.2). The study area is marked by an 

altitudinal gradient in temperature with mean monthly air temperature roughly decreasing by 

0.6°K every 100 m of elevation (McCain 2007), featured by a mean monthly air temperature 

of 13.26 ±0.4°C at 2800m, 10.86 ±0.6°C at 3200m, and 9.36 ±0.4°C at 3600 m a.s.l. 

 

In this study area, agriculture is the main component of the economy with many 

people depending directly or indirectly on agricultural activities (MAGAP, Ministerio de 

Agricultura, Ganadería, Acuacultura y Pesca de Ecuador, 2014). Agriculture activity is 

mainly based on small farm units with most fields < 1 Ha (Fig. 23). Agricultural productivity 

faces many challenges associated with climate change and extreme events, limited access to 

technology and infrastructure (related to both elevated costs and remoteness of many sites), 

low margins of gains faced by the volatile market prices, lack of people’s education, and 

institutional changes that weaken the internal social organization and cause cultural erosion in 

the Andean society (Perez et al. 2010, FAO Food and Agriculture Organisation 2014). 
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Figure 22: Maps of our main study site. A. Location of the study site in South America and 

Ecuador. B. Elevation gradient ranging from 2800 to 3600 m a.s.l. within the study area (red 

square of 20 km2). C. Visual orthophoto of the complex agricultural landscapes of the study 

site (www.igm.gob.ec). All map were made using ArcGIS (10.2). Elevation gradients in A. 

and B. are based on a 200 and 30 m digital elevation models, respectively.  
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Fig. 23: Agricultural landscapes on the study area are complex humanized spaces relying 

mainly on family farming systems. Photo credits: IRD – Emile Faye. 

 

Like other tropical mountain regions, Ecuadorian Andean landscapes have been 

intensely fragmented by long-term human influences, mainly related to agricultural practices 

(Young 2009) that have transformed the region into a complex mosaic of cultivated fields, 

housing, and roads (Fig. 23 and 24). These intensively humanized landscapes, dominating the 

altitudinal belt between 2600 and 3800 m, are typically composed by field crops of potato 

(Solanum tuberosum), broad bean (Vicia faba), corn (Zea mays), alfalfa (Medicago sativa), 

and pastures, natural grasslands (called paramos) and a few forest patches (Fig. 24). 

This cultivated mosaic, emerging from the steady climatic conditions of the region and 

the organization of cropping systems by farmers, is characterized by the spatial arrangement 

of the fields. A variety of practices such as soil tillage, sowing, weeding, fertilization, harvest 
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and the farmer objectives of crop production will contribute in shaping the agricultural 

landscapes (Vasseur et al. 2013). Within the study area, landscape heterogeneity in 

composition and structure evolve following the studied gradient: lower elevations are 

dominated by small fields (0.36 ±0.1Ha) of potato, corn, broad bean, and pasture while the 

higher elevations had larger fields (0.76 ±0.3 Ha) of mainly potato and pasture for breeding 

(Fig. 24). This cultivated mosaic is not just heterogeneous in space but also strongly dynamic 

(i.e., temporal heterogeneity) due to crop phenology, and the cropping system (i.e., crop 

rotations). Several factors drive the temporal organisation of the cropping system by farmers. 

Among them, environmental factors (i.e., soil, slope, exposure, elevation), production 

resources (work capacity, available equipment) and the accessibility to the fields (i.e., the 

spatial configuration of field patterns, distance and scattering of fields in relation to the farm 

building) are crucial in choosing crop practices and rotations. 
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Figure 24: Land uses and cropping systems shape the complex agricultural landscapes in the 

study area. A. Patchy land uses between crops, pastures, habitation, forest and paramos 

(natural grasslands in the tropical Andes). B. Focuses on the cropping system at a given time 

on three 1-km2 plots. Crops are numbered based on their stages of maturation (phenological 

stage 1 and 2). All maps were made in ArcGIS 10.2. 
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 The steadiness of the macroclimatic conditions combined with an altitudinal gradient 

and a high complexity of the landscape structure (crop types and phenologies) make this study 

region highly relevant for the study of microclimates at the local scale (see below paragraph 

III-2). This spatiotemporal heterogeneity provides the opportunity to study the crop-based 

microclimates during vegetation growth and over small area under identical macroclimates. 

 

 

In summary, the spatiotemporal organization of agricultural practices, determined by 

various driving factors, specifically environmental characteristics of fields, on-farm resources 

and logistic constraints, lead to complex spatiotemporal agricultural landscapes in the 

Ecuadorian Andes. This spatiotemporal heterogeneity provides the opportunity to study the 

crop-based microclimates during vegetation growth and over small area under identical 

macroclimates. Moreover, the spatiotemporal heterogeneity of composition and structure in 

agricultural landscapes will be decisive for insect population distribution and persistence 

(Benton et al. 2003, Bianchi et al. 2006, Fahrig et al. 2011, Vasseur et al. 2013). 
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3. Pests 

a. Overview of pests in the study site 

The emergence and propagation of agricultural pests constitute important threats to 

agriculture in the region and worldwide (Bebber et al. 2014). Losses caused by pests are 

estimated to approach 60-70% in available crop production and storage in developing 

countries (Thomas 1999, Oerke 2006, Nwilene et al. 2008). In Ecuador, agricultural 

landscapes offer a wide variety of crops at different stages of maturation, implying that a great 

diversity of crop pests can be found all year round (Instituto Nacional de Investigaciones 

Agropecuarias del Ecuador INIAP, Brader 1982, Young 2009). In this thesis, we focused on 

the potato crop pests because of the economic importance of this crop in the study region and 

worldwide (Pumisacho & Sherwood 2002). Indeed, after cereals, potato is the most important 

cultivated crop in the world. Potatoes are produced in almost every country and each year 

more than 320 million metric tons are produced (Hijmans 2001, Harris 2012). In Ecuador, 

potatoes constitute a central element of household and national economies, contributing with 

more than 7 % of the country’s Gross Domestic Product (GDP; Devaux et al. 2010). 

Although the tropical Andes are the centre of origin of potatoes, they contribute with only 

1.38 % of world production. Recently, production has increased in this region, but yields are 

still considerably lower than the world average: 7 t/ha in Ecuador while the average yields in 

developed countries reach 42 to 88t/ha (Hijmans 2001, Pumisacho & Sherwood 2002). 

Andean farmers face constant problems with potato production, some of them related to 

climate (such as frost, hail or draught) or market prices, but mainly to pests and diseases 

which have been estimated to cause losses in production of 32% in the country (Pumisacho & 

Sherwood 2002, Keller 2003). 

In the study region, the major potato pests and diseases (Plate 2) are fungus such as 

Phytophthora infestans L. (potato late blight; Nowicki et al. 2012, Sparks et al. 2014), viruses 
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such as the Potato yellow mosaic begomovirus L. (Robert et al. 1986, Morales et al. 2001), 

epitrix such as the tuber flea beetle Epitrix tuberis L. (Vernon & Thomson 1993), the Andean 

potato weevil Premnotrypes spp. L. (Alcázar & Cisneros 1997, Kühne 2007), the leafminer 

Liriomyza huidobrensis L. (Parrella 1987, Huang 2007), the aphid Myzus persicae L. 

(Campbell et al. 1974, Davis et al. 2006), thunderflies such as thrips Frankliniella tuberosis 

L. (Gaum et al. 1994, Chaisuekul & Riley 2005), the potato beetle Leptinotarsa decemlineata 

L. (Hare 1990, Alyokhin et al. 2008) and the potato tuber moth complex (Tecia solanivora 

Povolny, Symmetrischema tangolias Gyen, Phthorimaea operculella Zeller; Lepidoptera: 

Gelechiidae; Pollet et al. 2004, Crespo-Perez et al. 2011, Rebaudo & Dangles 2011). All of 

these pests and diseases are climate-dependent in various or at least one stage of their life 

development (see their respective references). 

Despite the large number of potato pests, this thesis mainly focused on the potato tuber 

moth (PTM) complex, because it represents an ideal focal group for various reasons. First, 

PTM are one of the most important threats to potato production worldwide and in the study 

area, in particular P. operculella (Rondon 2010, Pollet et al. 2004). Indeed, losses in yield 

caused by these three species in the potato fields of the Ecuadorian Andes are considerable, 

especially in the poorest regions (Pumisacho & Sherwood 2002, Dangles et al. 2008). Second, 

PTM are strict thermoconformers that evolved in all potential habitats in agricultural 

landscapes (i.e., air, vegetation and ground layers and storage structures; Hanafi 1999, Keller 

2003, Keasar et al. 2005, Sporleder et al. 2004, Dangles et al. 2008). Additionally, PTM are 

Lepidoptera that have dispersal capacities that permit them to move within the agricultural 

landscape up to 250 m (maximum dispersal distance per individual; Rondon 2010, Crespo-

Pérez et al. 2011). Last but not least, the PTM complex in the Andes has long been studied by 

our team which gathered relevant information on temperature related performances (Dangles 

et al. 2008, Herrera & Dangles 2012, Dangles et al. 2013, Crespo-Perez et al. 2013), 
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anthropogenic-based pest dynamics in complex agricultural landscapes (Rebaudo et al. 2011, 

Crespo-Perez et al. 2011), participative and adaptative integrated pest management 

throughout social organisation (Dangles et al. 2010, Rebaudo & Dangles 2011, Rebaudo & 

Dangles 2013, Rebaudo & Dangles 2015), species interactions (Dangles et al. 2009, Crespo-

Pérez et al. 2014) and others (e.g., genetics Puillandre et al. 2008). 

 

b. Overview of the potato tuber moth complex 

PTM adult females lay their eggs on rough surfaces such as soil, potato tuber eyes, or leaf 

under-surfaces. After hatch, larvae of the three species dig into the soil until finding a potato 

tuber where they burrow deep tunnels in order to feed (Fig. 25). S. tangolias and P. 

operculella larvae can also feed on stems and leaves of potato plants. When fully grown, 

larvae leave their host and pupate in the soil near the bases of plants, in leaf remains, leftover 

potatoes, near stored potatoes, or in other suitably sheltered sites (see Fig. 25 for a graphic 

description of PTM life-cycle). Infestation is often highest in traditional potato storage (tubers 

heaped under a basic shelter), which offers optimal conditions for PTM development and 

expansion, such as protection from coldest temperatures and against rainfall (Keasar et al. 

2005). Under the climatic settings of the study region and the resulting desynchronized 

complex agricultural landscapes, PTM can survive and be active all year round since they 

have constant favourable conditions in terms of climate and food resource. Thus, they thrive 

and propagate all year round more easily than in temperate countries (Crespo-Perez et al. 

2013). These conditions explain why neither diapause nor seasonal rhythms have been 

reported for these species at any elevation in Ecuador. This implies that their thermal limits 

and population dynamics are defined spatially rather than seasonally (Dangles et al. 2008). 
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Figure 25: Overview of the potato tuber moth complex. A. Larvae and adults of 1) 

Phthorimaea operculella 2) Symmetrischema tangolias 3) Tecia solanivora. B. PTM life cycle. 

C. Tecia solanivora 1) adult in the field, 2) larva living inside a potato tuber, and 3) damaged 

potato with galleries made by PTM larvae. Photo credits: C.1 – IRD Olivier Dangles and C.2 

and C.3 IRD – François Rebaudo. 
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An important characteristic of the complex of pest species is that they differ in their 

physiological responses to temperature, which affects their spatial distribution across 

climatically heterogeneous landscapes (Dangles et al. 2008). The performance curves 

representing the temperature dependent survival rate, developmental rate, and fecundity (in 

number of eggs per female) for these three species are presented in Figure 26. Temperature 

dependent survival and developmental rates were based on the non-linear thermodynamic 

model developed by (Sharpe & DeMichele 1977) and modified by (Schoolfield et al. 1981). 

Fecundity was based on the Weibull function, as described and fitted in previous studies on 

these crop pests (Crespo-Pérez et al. 2011, Rebaudo et al. 2011, Rebaudo & Dangles 2011). 

Generally, survival along temperature gradients presents an inverted U shape, with low 

survival at high and low temperatures. Insect development occurs within a definite 

temperature range, with a lower threshold temperature – near which development 

asymptotically approaches zero (because insects often survive for long periods at cold 

temperatures with little or no development, e.g., during diapause) – and an optimum one of 

fastest development above which it declines abruptly to a lethal maximum temperature. Then, 

temperature related fecundity has been shown to present a bell shaped curve extending in a 

minimum and maximum temperature range. These temperature-dependent functions are the 

basis for modelling the spatiotemporal dynamics of potato tuber moth invasion under 

thermally heterogeneous environment.  
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Figure 26: Thermal performance curves for adults of the three species of the potato tuber 

moth complex. Blue, green and red lines represent Tecia solanivora, Symmetrischema 

tangolias, and Phthorimaea operculella performances, respectively. Based on data from 

Crespo-Perez et al. (2011) for development and survival rate and Rebaudo & Dangles (2011) 

for fecundity. 

 

In this general scientific context and face to the presented challenges, this thesis 

focused on improving our general understanding of the microclimate patterns experienced by 

ectothermic pests in their habitat following three main obectives. 
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IV. Objectives and thesis plan 

The overall objective of this thesis was to quantify thermal microclimates in spatially 

heterogeneous agricultural landscapes and point out their relevance for the understanding 

of crop pest dynamics. This overall objective is divided into three specific objectives, each of 

them corresponding to a chapter of this manuscript. 

 

• Chapter I: Microclimates and in silico pests  

In the first chapter of this thesis, we aim at empirically recording microclimate data at fine 

spatiotemporal scales in complex agricultural landscapes to compare them to global climatic 

models with coarse-scale resolutions. Our goal was to provide quantitative information on the 

limitation of coarse-scale climate data to capture the reality of the climatic environment 

experienced by living organisms. Then, the objective was to highlight in silico the 

consequences of these discrepancies for the modelling and forecast of pest occurrences. 

 

• Chapter II: Methods for assessing thermal heterogeneity in agricultural 

landscapes 

While in the Chapter I of this thesis we used standard methods of thermal ecology for 

pointing out the importance of considering microclimates when evaluating pest performances 

in agricultural landscapes, the second Chapter focused on the development of new 

methodologies to better assess the spatiotemporal heterogeneities of microclimatic 

temperatures in the field at relevant spatial scales and resolutions for studying pests. This part 

aims at overcoming the challenge of bridging the gap between the coarse-scale resolutions of 

the climatic dataset used in a majority of species distribution models and the body length of 

the study organism (Potter et al. 2013). This Chapter is divided in two parts: the first one 

focuses on a potential pitfall of the use of thermal camera related to the distance between the 
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study organism and the thermal camera and the second part consists in the development of a 

toolbox for the monitoring and spatial characterization of microclimates considering the 

results revealed in the Chapter I and Chapter II part 1. 

 

• Chapter III: Microclimates and pests in situ 

Finally, the third Chapter of this manuscript endeavours to combine in situ fine scale thermal 

measurement of crop fields based on the methodologies developed in Chapter II with an in-

field sampling of crop pest infestations. Indeed, limited by the technical possibilities for 

studying the spatiotemporal heterogeneity of microclimates in an agricultural context, 

agronomists still rarely focused on the effects of the spatiotemporal structure and composition 

of crop microclimates on pest occurrences. The aim of this chapter was precisely to 

understand the relationship between crop microclimates and pest occurrences in potato fields.
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Plate 1: Flying UAV with visual and thermal sensors for high-resolution agricultural remote 

sensing. Top: Flying over an agricultural landscape of the Ecuadorian Andes (2850 m.a.s.l.). 

Bottom left: densified three-dimensional point cloud reconstruction of the visual scene. 

Bottom right: piloting UAV with remote control and control partner. 



PLATES 

 
 
86 

 

  Plate 2: Major potato pests and diseases present in the study area. 
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This first chapter of this thesis addressed the need of quantifying the scale gap between the 

temperature data modelled at coarse spatial scales and the climatic reality experienced by 

organisms in their microhabitats and to highlight the consequences of this scale gap onto 

species performances estimations. We therefore used common techniques of data recording 

used in ecology (large number of temperature loggers) for measuring fine spatiotemporal 

scales data of temperatures experienced by crop pest over their life cycles (i.e., air, air-inside 

canopy and soil temperatures). Then, these empirically recorded temperatures were featured 

and compared to coarse-scale interpolated temperatures of the WorldClim; thereby providing 

quantitative information on the limitation of coarse-scale climate data to capture the reality of 

the climatic environment experienced by living organisms. 

 This study was applied to the tropical agricultural landscape of the study area where 

we recorded microclimates at 108 localities. In each locality, we documented the crop type, 

the phenology of the crop with the leaf area index and the elevation. We finally explored the 

limitations of using the WorldClim to infer the potential performance of a potato crop pest 

compared to the empirically recorded temperatures. 

This work was performed in collaboration with the Entomological laboratory of the 

Pontificia Universidad Católica del Ecuador and the Mediterranean Institute of Oceanography 

(MIO), Toulon University, France. This chapter is one publication published in 2014 in Plos 

one: 

- Faye, E., Herrera, M., Bellomo, L., Silvain, J. F., & Dangles, O. (2014). Strong 

discrepancies between local temperature mapping and interpolated climatic grids in tropical 

mountainous agricultural landscapes. PloS One, 9(8), e105541. 

 doi:10.1371/journal.pone.0105541. 
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Abstract
Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is a
key issue of climate change biology research. While it is now well known that most organisms do not experience the
climatic conditions recorded at weather stations, there is little information on the discrepancies between microclimates and
global interpolated temperatures used in species distribution models, and their consequences for organisms’ performance.
To address this issue, we examined the fine-scale spatiotemporal heterogeneity in air, crop canopy and soil temperatures of
agricultural landscapes in the Ecuadorian Andes and compared them to predictions of global interpolated climatic grids.
Temperature time-series were measured in air, canopy and soil for 108 localities at three altitudes and analysed using
Fourier transform. Discrepancies between local temperatures vs. global interpolated grids and their implications for pest
performance were then mapped and analysed using GIS statistical toolbox. Our results showed that global interpolated
predictions over-estimate by 77.56 10% and under-estimate by 82.16 12% local minimum and maximum air temperatures
recorded in the studied grid. Additional modifications oflocal air temperatures were due to the thermal buffering of plant
canopies (from 2 2.7uK during daytime to 1.3uK during night-time) and soils (from 2 4.9uK during daytime to 6.7uK during
night-time) with a significant effect of crop phenology on the buffer effect. This discrepancies between interpolated and
local temperatures strongly affected predictions of the performance of an ectothermic crop pest as interpolated
temperatures predicted pest growth rates 2.3–4.3 times lower than those predicted by local temperatures. This study
provides quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic
environment experienced by living organisms. In highly heterogeneous region such as tropical mountains, caution should
therefore be taken when using global models to infer local-scale biological processes.

Citation: Faye E, Herrera M, Bellomo L, Silvain J-F, Dangles O (2014) Strong Discrepancies between Local Temperature Mapping and Interpolated Climatic Grids in
Tropical Mountainous Agricultural Landscapes. PLoS ONE 9(8): e105541. doi:10.1371/journal.pone.0105541

Editor: Michael Sears, Clemson University, United States of America

Received March 12, 2014; Accepted July 24, 2014; Published August 20, 2014

Copyright: 2014 Faye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All temperature time-series used in this work
are within the Supporting Information files of the paper.

Funding: This work was partly conducted within the project ‘‘Adaptive management in insect pest control in thermally heterogeneous agricultural landscapes’’
(ANR-12-JSV7-0013-01) funded by the Agence Nationale pour la Recherche (ANR, http://www.agence-nationale-recherche.fr/). A financial supportof the McKnight
Foundation (http://www.mcknight.org/) to EF during the fieldwork of this study is greatly acknowledged. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ehfaye@gmail.com (EF); olivier.dangles@ird.fr (OD)

Introduction

Bridging the gap between the predictions of coarse-scale climate
models and the fine-scale climatic reality of species is increasingly
recognized as a key issue of climate change biology research
[1,2,3,4]. Despite decades of study on microclimates [5,6,7,8] and
evidence for habitat-related and topographical variations in local
temperatures and their relevance for species ecology
[2,9,10,11,12,13], most attempts to understand and model species
distributions still do not integrate spatially-explicit fine-scale
climatic data (e.g. [14,15,16]). Many work use global model of
temperature interpolation to examine species vulnerability to
climate change and, doing so, ignore the critical issue of habitat
complexity in climate buffering [4,5,17]. Indeed, climate surfaces

used in species distribution models (SDMs) are rarely generated or
interpolated to a resolution finer than 1 km2 (e.g. WorldClim
database), a resolution that is still very coarse relative to the home
ranges or body size of most species [13,18]. For instance, [8]
showed that climate grid lengths used in SDMs are, on average,
, 10,000-fold larger than studied animals, and, 1,000-fold larger
than studied plants. Their meta-analysis showed that the
WorldClim was the most widely used climatic dataset in global
SDMs. As this commonly used coarse scale climatic data in SDMs
overlook the spatiotemporal thermal heterogeneity experienced by
organisms, there is an urgent need for a more sophisticated use of
these datasets for making inferences about biological processes that
are driven by hour to hour operative temperatures of organisms.
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An important yet poorly studied issue in climate change biology
is to quantify to what extent climatic conditions differ between
widely used 1 km2 interpolated grid cells of global climatic
database and real-world landscapes of similar areas. While it is
now well-known that most organisms, especially tiny ectotherms
such as insects and other arthropods, do not experience the
climatic conditions recorded at weather stations [9,12,18], there is
little quantitative information on the spatial and temporal
heterogeneity at the landscape scale oflocal climatic conditions
(i.e. conditions at biologically relevant scales, e.g., from cm to km
for insects) and their consequences for organisms’ performance. A
better quantification of the climatic conditions of ecologically-
relevant habitats over relatively large landscape scales (e.g., 1 km2)
is therefore a necessary first step to better incorporate dynamical
microclimate into global distribution models.
Here, we investigate the sources of variance between global

interpolated and local temperatures by examining 1) how well
WorldClim predicts local air temperatures in our study region (the
tropical Andes), 2) to what extent temperatures in crop canopies
and soils differ from local air temperatures, and 3) how relevant is
to use WorldClim to infer the potential performance of an insect
crop pest. Addressing these questions is not an easy task as the
mosaic of climatic habitats relevant for small ectothermic species
at a 1-km2 scale in real-world landscapes may be outstandingly
complex. In this study, we focused on highland agricultural
landscapes of the tropical Andes as most prior similar data came
from low elevation and temperate agroecosystems. In such
systems, most crop pests experience, over their entire life cycle,
climatic conditions in three well-defined environmental layers (air,
air inside-canopy and soil) and these conditions are remarkably
stable over the year [19]. In this context, we firstly decided to map
over replicated 1-km2 climatic grid cells the ecologically relevant
local temperatures for ectothermic crop pests in agricultural
landscapes, and to compare these maps to interpolated temper-
ature grid cells of the widely used WorldClim database. We used
Fourier analysis applied to local temperature time-series as a tool
to fit daily variations of temperature and to feature microclimate
discrepancies in space and in time (both in terms of amplitude and
phase). We then explored the implication of our thermal landscape
mapping for pest performance by comparing temperature
frequencies in our grid cells with the temperature-dependent
growth curve of the potato tuber moth (Phthorimaea operculella) a
major crop pest species in the region and worldwide.

Materials and Methods

1. Study area
The Ecuadorian Andes are characterized by a low seasonality,

with mean temperatures varying more within days (up to 30uK
variation) than within months and years (less than 0.6uK and
0.2uK variations, respectively, see [19]). This region exhibits a
marked altitudinal gradient in temperatures (between 2000 and
4000 m) with mean monthly air temperature roughly decreasing
by 0.6uK every 100 m of elevation [20]. Agricultural landscapes
dominate the altitudinal belt between 2600 and 3800 m, and are
typically composed by small field crops (mainly potatoSolanum
tuberosumL., broad bean Vicia faba L., corn Zea maysL., alfalfa
Medicago sativaL., and pasture), natural grasslands (pa´ramos) and
a few forest patches [21]. Under the climatic conditions of the
region, crops can be planted and harvested all year round, thereby
creating a landscape mosaic of a wide variety of crops at different
phenological stages.
Our study area was located 115 km south from the equatorial

line (01u019360S, 78u329160W) in the Cotopaxi province of

Ecuador. It spread out on a 20-km2 elevation transect
(2.356 8.5 km), ranging from 2,600 to 3,800 m a.s.l. The gradient
had a Southwest exposure and an average slope of 9.5u (6 5.2)
(based on a 30 m resolution digital elevation model). To
investigate the elevation effect on local vs. global interpolated
temperature variations, we divided our study area into three
400 m altitudinal belts which correspond to natural floors in the
hillside (2,600–3,000 m, 3,000–3,400 m, and 3,400–3,800 m) with
a mean monthly temperature of 13.26 0.4uC, 10.8 6 0.6uC, and
9.36 0.4uC, respectively. Beyond temperature, these belts also
differed in terms oflandscape composition (Appendix S1 in
Supporting Information), with lower elevations dominated by
small fields (0.36 0.1 Ha) of potato, corn, broad bean, and pasture
while the higher band had larger fields (0.76 0.3 Ha) of mainly
potato and pasture. Working in these agricultural landscapes no
requires specific permissions expect the kind agreement of the field
owner. The presented study did not involve endangered or
protected species.

2. Temperature data collection
In each of the three-altitudinal belts, we measured temperature

regimes in six habitats (five crops and natural grasslands) where
insect pests can be found. In each habitat, we defined three layers:
air, air inside-canopy (referred as ‘‘air canopy’’ in the text) and soil.
These layers are all used by most insect pests over their life cycle:
air layer by adults, air canopy layer by adults and leaf-eating larvae
and pupae, soil layer by tuber feeding larvae and pupae. In each
layer of each habitat, temperature was recorded with a 1 min time
step using data loggers (Hobo U23-001-Pro-V2 internal temper-
ature loggers, Onset Computer Corporation, Bourne, USA) with
an accuracy of6 0.21uK over the 0–50uC range and a resolution
of 0.02uK at 25uC. According to [4], 1) air loggers were fixed on a
wooden stake at 1 m high to overstep most crop canopies and
sheltered by a 20 cm2 white plastic roof to minimize solar
radiation heating; the roof was itself placed 5 cm above the logger
to avoid warming by greenhouse effect, 2) air canopy loggers were
placed 0.3 m high inside vegetation 5 cm bellow large leaves to
minimize the effect of direct solar radiation and 3) soil loggers were
buried 0.1 m into the ground where roots and tubers grow (see
Appendix S2 for photographs). In each field, only one logger per
layer measured the temperatures. Those triplets ofloggers were
located at the centre of the field to avoid edge effect (see Appendix
S3 for an analysis of the spatial variability of temperatures within a
field and [22]). As vegetation land cover influences microclimate
beneath and around plants, see [5,6], we repeated these 54
measurements (3 elevations6 6 habitats6 3 layers) for three classes
ofleaf area index (LAI) [23] defined as follows: 0 (bare soil), 0.01–
0.5 for and . 0.5 of LAI. Minimum LAI was fixed to 0.01 to avoid
confusion with bare soil and allowed enough leaf area to place the
loggers underneath. At each measurement site, LAI values were
visually estimated (twice) measuring the ratio ofleaf area within a
1-m2 quadrant sub-divided into 0.1 m2 cells delimited by strings.
This indirect method did not account for leaves that lie on each
other however it relates to shaded areas that influence inside-
canopy and soil microclimates [23].
Each of the 162 measurement combinations (3 altitudinal belts

6 6 habitats6 3 layers6 3 LAI classes) was replicated 1–3 times
depending on availability of habitats at a given elevation and
phenology stage. In total 324 independent temperature time series
were acquired over 15 days between September and December
2011 (data available in Appendices S9, S10 and S11). Importantly,
under the climatic conditions of the study area, 15-days time series
characteristics did not differ from those obtained over one year
(see Appendix S4 for details). At each measurement site, we

Local Temperatures vs. Climatic Grids
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recorded the UTM-WGS84 geographic coordinates with a
handheld GPS Garmin Oregon 550 (Garmin, Olathe, USA).

3. Global solar radiations
Infrared and visible radiations (expressed in Watt/m2) were

monitored in each altitudinal belts using a LI-1400 LI-COR
datalogger equipped with a LI-200 pyranometer sensor (LI-COR,
Lincoln, USA) placed perpendicular to gravity. Between 9:00 AM
and 4:00 PM, mean global solar radiations ranged from 500 to

1000 watts/m2, with temporal variability mainly induced by short-
term changes in cloud cover.

4. Data analyses
4.1. Times series analyses using Fourier

transforms. Air and air canopy temperature time series showed
extreme events during a few minutes that were certainly due to
strong radiations experienced at the study sites2 these affected
loggers recording despite their plastic roofs. Therefore, we found

Figure 1. Fit of temperature time series with discrete Fourier transforms at the daily frequency Kd. Air temperatures are in blue, crop
canopy temperatures are in green and soil temperatures are in brown.
doi:10.1371/journal.pone.0105541.g001

Local Temperatures vs. Climatic Grids
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relevant to fit our time series data with a discrete Fourier transform
(DFT) at the daily frequencykd (Fig. 1) as this allowed averaging
daily minimum and maximum temperatures while limiting the
effect of short extremes (mainly for maximum). Moreover fitting
temperature time series with the DFT allowed us to circumvent (or
partially resolve) the issue of comparing time series with different
temporal resolution: a sinusoid built from a daily time step time
series will be accurate enough to compare with another sinusoid
built from a one minute time step time series (our operative
temperatures vs. global climatic models).
DFT analyses allowed us estimating two important descriptors

of the time series at the daily frequencykd: the amplitudeAd and
the phasewd of the DFT (see Appendix S5 for details). The
thermal amplitude allowed us to measure the thermal buffer effect
in Kelvin between air and canopy layers and air and soil layers
(Fig. 1 and Appendix S5). The phase allowed us to measure the
thermal time lag expressed in minute in inside-canopy and soil
layers with respect to the air layer (Fig. 1 and Appendix S5).
Thermal time lag therefore quantifies the time delay in time series
to reach their maximum between air vs. canopy and air vs. soil

layers. This is an important climatic parameter to test whether
microclimate conditions below canopy (canopy and soil layers)
would track air conditions with some time lag depending on
habitat characteristics.
We also ran DFT analyses on a four-year monitoring (2008–

2012) of air temperatures (recorded at one meter high with half an
hour time step with the same shelter process described above) to
measure the seasonality. Analyses were performed for the three-
altitudinal belts of the study area (2800, 3200, 3600 m) by reading
the amplitude at the seasonal frequencies (91, 182 and 364 days,
see Appendix S6). On average the Fourier transform amplitudes at
91, 182 and 364 days were 0.14 (+/ 2 0.01), 0.44 (+/ 2 0.04), 0.97
(+/ 2 0.03)uK indicating that the seasonality was negligible in the
study area [24].
All Fourier analyses were performed in MATLAB R2011a

(Mathworks, Natick, USA). The effects of habitat, elevation, LAI
classes and the interaction ‘‘elevation6 LAI classes’’ on daytime
and nigh-time DFT amplitudes and on DFT thermal time lag
were assessed using a two-way ANOVA with Bonferroni
corrections. When habitat was found significant, we ran post-hoc

Figure 2. Maps showing the differences between local air temperatures and the WorldClim interpolated minimum (A) and
maximum (B) (D Air L 2 Air WC). Blue colours indicate D Air L 2 Air WC , 0, i.e. area where local air temperatures are cooler than those gave by
WorldClim. Red colours indicate D Air L 2 Air WC . 0, i.e. area where air local temperatures are warmer than the ones gave by the WorldClim. White
colours D Air L 2 Air WC= 0 indicate areas where air WorldClim temperatures equate air local temperatures (6 1uC). The extent and position of each
square is equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 0.86 km2 for the study area. Temperatures in
storages were obtained from [26].
doi:10.1371/journal.pone.0105541.g002

Local Temperatures vs. Climatic Grids

145501e|8eussI|9emuloV|4102tsuguA4gro.enosolp.www|ENOSOLP

93



Figure 3. Maps showing the differences between local air canopy and soil temperatures with the air local for minimum (A) and
maximum (B) (D Layer L 2 Air L). Colour code is given in Figure 2.
doi:10.1371/journal.pone.0105541.g003
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multiple comparisons using a Tukey HSD test to identify
differences among habitats. All statistical analyses were performed
in R version 3.0.0 (R Development Core Team 2012).

4.2. Thermal landscape analyses. To compare local
temperatures with global interpolated climate data employed in
species distribution models, we considered one of the most widely
used and readily available climate database, WorldClim [25]. The
WorldClim database is a set of global climate layers (interpolated
averages of monthly minimum, maximum and mean 1.5 m high
air temperatures from weather stations spread out worldwide) with
a spatial resolution of 30 arc seconds. Close to equator, this
resolution is equivalent to squares of 0.86 km. In each altitudinal
belt, we selected one WorldClim grid cell with homogenous slope
(between 5.4u and 7.9u), micro-topography and exposition (south-
west). Based on a digitized municipal cadastre (from the town
council of Salcedo, Cotopaxi province) and a 5-m resolution
digital orthophoto (Ecuadorian Military Geographical Institute,
www.igm.gob.ec/site/index.php), we built the digital landscape of
each grid cell in ArcGIS 10.01 (ESRI, Redlands, USA). In
addition to the six studied habitats, crop storage infrastructures
were also included into the digital maps as they significantly
modify air temperature patterns, offering optimal conditions for
crop pest development [26]. Outside air vs. inside air storage-
temperature relationships for different elevations were derived
from measurements made by [26] within the same area with

similar temperature data design (see Fig. 1 in Appendix A2 of their
paper). Roads and woodlots were also indicated on the maps even
if they were not included in the temperature comparison analysis,
as they do not constitute relevant habitats for crop pests.
In order to simulate landscape thermal heterogeneity, crop

habitats were attributed with one crop type (potato, broad bean,
corn, alfalfa or pasture) and one LAI classes (0, 0.01–0.5,. 0.5)
based on a survey of 85 sites in the region, in which we quantified
landscape composition (% of each crop and LAI classes) in 100-m
radius sampling circles (see Appendix S7). For each habitat, we
assigned the corresponding air, air canopy and soil temperature
values at each elevation. Finally, since we were particularly
interested in minimal and maximal values, as they are the most
biologically relevant for ectothermic crop pests [4], we focused on
minimum and maximum temperatures obtained from the DFT
analyses and the WorldClim database.
Afterwards, we decomposed the variance of temperatures

between global interpolated grids and local temperatures mea-
sured in agricultural landscapes by mapping the differences in
minimum and maximum temperatures between the air local
temperatures (AirL ) and the WorldClim interpolated temperatures
(Air WC ) for the three studied grid cells. Then, to illustrate the part
of the variance due to microclimate effects, we mapped the
differences in minimum and maximum temperatures between
measured local air canopies, soil temperatures (LayerL ) and the air
local temperatures (AirL ) for the three studied grid cells.

4.3. Pest performance in thermal landscape. As a final
step of our analysis, we explored the implication of our thermal
landscape mapping for pest performance by comparing temper-
ature frequencies in our grid cells with the temperature-dependent
growth curve of a major crop pest species in the region:
Phthorimaea operculella(Lepidoptera: Gelechiidae). This pest is
considered one of the most important potato pests worldwide, but
also attacks a wide variety of other crops such as tomato (Solanum
lycopersicumL.), eggplant (Solanum melongenaL.) or tobacco
(Nicotiana tabacumL.) (see [27] for a review).P. operculella feeds
on different part of the plant (leaves, stems, and tubers) and also
tubers in storage structures [26,28]. In agricultural landscapes,P.
operculellais abundant in virtually all types of habitats (even far
from its host plant) because 1) this pest is able to fly over large
distances (100–250 m) to infest suitable host plants [29] and 2) a
significant quantity of tubers are left in the field after harvest, and
are rapidly colonized by the moth before the following crop is
planted. It is therefore common to observe infested potato plants
in corn or broad bean fields. These left-over potatoes are well
know by farmers and agronomists as significant obstacle to the
control of these pests [28].
The temperature-dependent growth rate curve ofP. operculella

larvae (in day-1) over a 0–40uC range was obtained using
published temperature-response data oflaboratory experiments
performed in the Andean region (see [30] for details). PTM
development rate data were then modeled with the [31] equation
as modified by [32]:
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where T is temperature in Kelvin (uC+273.15), R = 1.987, and d,
e, f, g, h, and i estimated parameters. This model has been widely
used to describe the kinetics ofinsect development based on
several assumptions about the underlying developmental control

Figure 4. Mean thermal buffering from Fourier transforms at
the daily frequency for canopy (A, B) and soil temperatures (C,
D) as a function of elevation and leaf area index. (A, C) show the
daytime temperature excursion with respect to air, whereas (B, D) are
the equivalent results for night-time temperatures. The 95% interval of
confidence is given between brackets. Blue colours show colder
temperatures than air. Red colours show warmer temperatures than air.
doi:10.1371/journal.pone.0105541.g004
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enzymes. For instance, it has been used to describe poikilotherms’
temperature-dependent development [33].
We then compared the growth rate performance curve ofP.

operculella for local temperature distribution (canopy and soil
layer temperatures) and for global interpolated ones (e.g., Fig. 3 in
[3]). Distributions of canopy and soil minimum, maximum and
mean temperatures were extracted from the three digitized
landscapes using the geostatistical analyst extension of ArcGIS.
Canopy and soil temperature frequencies were expressed as the
percent of total grid cell area. The growth performance model of
P. operculella given by Eqn. 1 was implemented with WorldClim
minimum and maximum temperatures and the local minimum,
maximum and mean temperature distribution. This allowed
estimating insect growth rate within the range of WorldClim
and measured field data.

Results

1. Local vs. global air temperature discrepancies in
thermal landscapes
Differences in average minimum and maximum temperatures

between local air temperatures and the global coarse grain
interpolated air temperatures from the WorldClim (D Air L – Air
WC ) were mapped for the three studied grid cells (Fig. 2). While

minimum local air temperatures were cooler than those predicted
by WorldClim in 77.56 10% of the studied areas (blue areas,
average min D Air L – Air WC = 2 2.9uK) maximum local air
temperatures were warmer than extrapolated temperatures in
82.16 12% of the studied areas (red areas, average maxD Air L –
Air WC = +5.6uK). This pattern was not influenced by elevation.
Notably, for all elevations, local mean air temperatures were quite
well predicted by the WorldClim (+/ 2 1uK) as in average
55.36 3.4% of the studied areas felt in the range of AirL –
Air WC # 1uK (Appendix S8).

2. Temperature discrepancies due to microclimate in
agricultural landscapes
Differences in average minimum and maximum temperatures

between local canopy and soil temperatures and local air
temperatures (D Layer L2 Air L ) were mapped for the three
studied grid cells (Fig. 3). Overall, canopy and soil areas were
always cooler than maximum air temperature and were always
warmer than air minimum temperatures resulting in a general
buffer effect of minimum and maximum air temperatures by
canopy and soil layers. The buffer effect on air temperatures was
significantly stronger for soil than for canopy layer (see Fig. 4,
Student’s t-test,t= 2 27.10 and t=4.52, P , 0.001 for night-time
and daytime, respectively). Interestingly, the buffer effect on air
temperatures by soil was higher during night-time than daytime
(Fig. 4D) while the opposite pattern was found in crop canopy
(Fig. 4A).
Elevation had a significant effect on air temperature buffering in

the canopy layer but not in the soil layer (Table 1). Contrastingly,
LAI had a highly significant thermal buffering effect in both soils
(night and daytime) and canopies (daytime, see Table 1). Buffer
effect on air temperatures by bare soil (e.g. without plant cover,
LAI = 0) ranged from 2 1.1uK to 2 2.3uK for daytime and from
3.4uK to 4.3 uK for night-time. Crop type had no significant effect
on buffering patterns except for potato in which higher buffer
effects were recorded (Post-Hoc HSD test, P, 0.05).

Overall, thermal time lag was much shorter in canopies
(7.56 2.6 min) than in soils (1.56 0.3 hours, Fig. 5). LAI classes
had a significant positive effect on thermal time lag for both
canopy and soil layers (Table 1). On average, thermal time lag
increased by 2 min. in canopies and 30 min. in soils between two
LAI classes. Similarly, elevation had a significant positive effect on
thermal time lag for both canopy and soil layers (Table 1) with an
average increase of 26 0.3 min. in canopies and of 606 31 min. in
soil between two altitudinal belts (Fig. 5).

3. Thermal performance curve using local vs. interpolated
temperatures
To assess the implication oflocal vs. global interpolated

temperature discrepancies for crop pest performances, we plotted
the frequency distribution of the minimum (blue bars), maximum
(red bars) and mean local (stripped bars) temperatures and those
given by WorldClim (from minimum to maximum temperature,
shaded region in the background) with the temperature-dependent
growth rate curve of the potato mothP. operculella (Fig. 6). As a
general pattern, global interpolated temperature ranges predicted
lower growth rates ofP. operculella than those predicted by local
temperatures at all elevations, in both inside-canopy and soil layers
(where the pest lives most of their time). While mean temperature
distribution generally fell within the WorldClim min-max range,
extreme temperatures (and especially maximum ones) largely
exceeded this range.

Figure 5. Thermal time lag from Fourier transforms at the daily
frequency for canopy (A) and soil temperatures (B) as a
function of elevation and leaf area index. The z-axis (log+1
transformed) is expressed in minutes (A) and in hours (B).
doi:10.1371/journal.pone.0105541.g005
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The WorldClim estimations predicted P. operculella growth
rates ranging between 0.007 and 0.045 day2 1 at 2800 m, and
between 0 and 0.018 day2 1 at 3600 m, the maximum rates being
slightly lower than those predicted by soil temperatures (0.068
day2 1 at 2800 m and 0.037 day2 1 at 3600 m). These differences
were exacerbated in canopy layers where estimated maximum
growth rates were 2.6–4.3 times higher than those predicted by
WorldClim (0.118 day2 1 at 2800 m and 0.079 day2 1 at 3600 m).
Discrepancies between WorldClim and local temperature-based
growth rate estimations were not significantly affected by elevation
(One-way ANOVA, F = 7.79, P= 0.219 and F = 1.67, P= 0.419
for canopies and soils, respectively).

Discussion

Accurate predictions of the responses of organisms to climate
change using SDMs require knowledge of microclimates at spatial
and temporal scales relevant for studied organisms [13,34,35]. To
our knowledge, our study is the first to quantify the thermal
heterogeneity among a set of agricultural habitats at fine spatial
and temporal scales and to compare those thermal microhabitats
to the most widely used global climatic dataset in SDMs. By
documenting the mosaic of thermal habitats found in tropical
agricultural landscapes, our study confirms previous evidence that
microclimates strongly differ from nearby macroclimates due to

the variability of air motion and solar radiation patterns created by
complex topographies with heterogeneous elevation, slope angle,
exposure or roughness [1,7,18,36]. Our study therefore supports
the view that results from the long tradition of agrometeorological
studies on microclimates (e.g. [6,17,22]) have to be revived in the
new context of microhabitat modelling for predicting the response
of organisms to climate change.

1. LAI-based and elevation-based climate heterogeneity
In contrast to many previous studies (see [7] for a review), our

objective was not to examine the well-documented effect of
topography on local temperatures but rather to examine the less-
known effects of habitat types and vegetation land cover on
thermal landscape features. We found significant thermal time lag
and buffer effects on air temperatures by plant and soil layers
below crop canopies during night-time and daytime. The top of
canopies reflects and absorbs part of the solar radiation during the
day, allowing less energy to reach the layers (plants and soils)
below canopies. During the night, infrared heat released from both
the ground and plants is partly held back by the canopy above [5].
As a consequence plants and soils limit night-time cooling and
daytime warming [6], leading to a significant buffer effect of
minimum and maximum temperatures [1,4,17]. That is also why
we found a buffer effect on air temperatures by soil higher during

Figure 6. Superimposed plot of the temperature-dependent growth rate curve of the potato moth Phthorimaea operculella
(dashed line) and the frequency distribution (% of area) of average minimum (blue), maximum (red) and mean (striped)
temperatures for canopy and soil layers at the three studied elevations. Grey (shaded) bands in the background represent the WorldClim
minimum and maximum temperature range.
doi:10.1371/journal.pone.0105541.g006
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night-time than daytime and the opposite pattern for crop
canopies.
Our results indicate a strong effect of elevation on thermal

buffering and thermal time lag by canopy and soil layers. This
could result from the combination of a negative relationship
between elevation and air temperature and a positive relationship
between elevation and solar radiation exposure, part of which is
absorbed by plants and soils [6]. As a result, the difference between
air temperature and canopy and soil temperature increased with
elevation. Interestingly, the modifications oflocal temperatures by
habitats and LAI were of the same magnitude (from2 2.70 to
4.82uC in average) than that generated by topography-related
factors [7,36], supporting the need to better consider habitat
effects on microclimates.

2. Fine scale variations in temperature vs. climatic units
Our findings show that the complex agricultural mosaic

resulting from habitat types and LAI classes at the landscape
scale was a major modifier of the thermal patterns in the studied
tropical highlands. More importantly, our findings revealed that,
at best, 55% oflandscape habitats had real mean air temperatures
that were well estimated by WorldClim predictions while in
average less than 20% of these areas had minimum and maximum
air temperatures well estimated. Additional thermal discrepancies
between large and fine-scale temperatures resulted from hetero-
geneity in crop types and phenologies. This strongly supports the
view that the common use of the WorldClim database arrayed into
1-km2 grids may not adequately capture the reality of the climatic
environment experienced by living organisms, in particular tiny
ectothermic species [2,3,13,18]. It is important to note that to
obtain the highest level of thermal heterogeneity we chose a
complex mountainous agricultural study area that provided
boundary conditions for climate modelling. Indeed, these moun-
tainous areas provide strong climatic gradients and extreme
habitat fragmentation which combined with un-seasonal agrosys-
tem make up a mosaic of thermal patches that expanded the
difficulties to faithfully assess climatic parameters for modelling
[25]. In view of the urgent need offine scale climate data with
large extent [2,8,35] more research is necessary to develop
accurate up- or down-scaling methods, in mountainous locations
where thermal heterogeneity is large, and may be needed to
properly describe the ecologically significant microclimates [7,37].

3. Microclimates and species distribution models
From tiny insects to mega-herbivores, it is well recognized that

species ecology is strongly influenced by micro-climatic features of
the landscape [2,10,11,12,13] yet quantitative information on how
thermal landscape heterogeneity may affect species performance is
scarce. Short-scale differences in temperatures may provide
opportunities for individual organisms, even with limited dispersal
capabilities, to escape unfavourable microclimates or to maximize
physiological performances by selecting preferred microclimates
[38,39]. Our analysis showed that predictions onP. operculella
growth rates strongly differed between Wordclim-based and
locally-measured temperatures, suggesting that global species
distribution models using global coarse-scale climatic datasets
without further microclimate modelling could be strongly limited
to accurately predict species occurrence and performance, in
particular that of ectotherms living in habitats such as mountain
slopes. Such a spatial heterogeneity in thermal patches, where
climatic conditions are strongly modified, provides a mosaic of
favourable, sub-optimal or lethal thermal habitats that directly
influences the performance of natural populations of ectotherms.

Coarse-extent modeling of microclimate is currently one of the
major obstacles to predicting how organism will react to their
experienced environments and forecast their distribution under
climate change [8]. To date, two main types of models have been
shown to provide relatively accurate, continent-wide calculations
of microclimate: statistical model and mechanistic model [13]. The
first one is statistical as the variables are not deterministically but
stochastically related. These models perform statistical correlation
of species occurrences with climatic data and have proven to be
powerful interpolative tools for defining and projecting climatic
envelopes [40,41]. A disadvantage of these statistical models is that
they can only be applied to the conditions under which they are
fitted. On the other hand, mechanistic models of the climatic
responses of organisms [13,34] use fundamental knowledge of the
interactions between process variables to define the model
structure. Therefore they do not require much data for model
development and validation. One of them is the Microclim model
recently developed by [35,42] for all terrestrial landmasses2
except Antarctica2 which quantify key microclimatic parameters
at macro-scales, with a relatively fine spatial (15 km2) and
temporal resolution (hours). The microclimatic parameters such
as wind velocity, humidity, and solar radiation allow building
energy and mass budgets of organisms, and therefore serve as key
inputs for biophysical models of species distributions.
It is important to highlight that a better spatiotemporal

resolution in temperature patterns should go in pair with the
development of more accurate temperature-based population
dynamics models to integrate it [2,13,34,43]. Existing predictions
of models based on insect response measured in constant
temperatures may yield different and less realistic results than
those from predictions of models that include the effect of real
temperature fluctuation on insect biology [33]. For example, to
date, we still do not know the impact of a few hours of warm
temperature for the performance of ectotherm species at longer
time scales [33]. In this context, fine-scale spatiotemporal
temperature mapping has revealed a key step for any studies
aiming at understanding, predicting and managing the responses
of species distributions to climate change.
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Appendix S1: Habitat and field size distribution in the three studied altitudinal belts. 

 

 

 

Figure S1: Habitat mapping of the three studied 1-km2 grid cells at their respective elevations 

(2800, 3200 and 3600 m) and the corresponding frequency distribution histograms of field 

areas.  
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Appendix S2: Photos of the temperature recording experiment. 

 

         

 
 

 

Figure S2: Photos of the temperature recording experiment. Photograph A. 20 cm2 white 

plastic shelter placed 5 cm above the air logger fixed on a wooden stake at 1 m high in a fully-

grown potato field. Photograph B. Air canopy logger (Hobo U23-001 Pro V2 internal 

temperature loggers, Onset Computer Corporation, Bourne, USA) placed 0.3 m high inside 

vegetation 5 cm bellow large leaves in a fully-grown broad bean field. Photograph C. Soil 

logger (Hobo U23-001 Pro V2 internal temperature loggers, Onset Computer Corporation, 

Bourne, USA) placed 10 cm inside ground before burial.  
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Appendix S3: Spatial variability of temperatures within a field. 

Edge effect, micro-topography and LAI variations within a field can strongly change the 

microclimate of plant and soil layers creating heterogeneous thermal conditions at the field 

scale [6, 17, 22]. To address this issue, in a parallel experiment we measured air, air canopy 

and soil temperatures at six different locations within the same field. Measurements were 

replicated in 4 fields with area ranging from 596 to 672 m2 of in order to capture to variability 

of field size in the study area. Fields were located between 2900 and 3000 m and were 

composed of fully-grown potatoes. Temperatures were recorded over one month using 

loggers (Hobo U23-001 Pro V2 internal temperature loggers, Onset Computer Corporation, 

Bourne, USA, 1 min time step) arranged as described in the main document (see part 2.2). 

Figure S3 shows that the discrete Fourier transformed amplitudes at the daily frequency of the 

one-month temperature time series did not vary among field location for both canopy and soil 

layers in the 4 replicate fields. 

 

 

 

Figure S3: Histogram of the DFT amplitudes of air (light blue), canopy (green) and soil 

(brown) layers in the 4 fields studied.  
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Appendix S4: Comparison of time series DFT analyses outputs using 15 days vs. 1-year 

temperature data. 

 

We assessed the relevance of using 15-days temperature time series as a good proxy of 

climatic conditions occurring over longer time scales (one year) using data from a four-year 

monitoring (2008-2012) of air temperatures, at three elevations in the study area. Air 

temperatures were measured using loggers (Hobo U23-001 Pro V2 internal temperature 

loggers, Onset Computer Corporation, Bourne, USA), covered by a plastic roof and fixed on a 

wooden stake 1 m high (see main document part 2.2 for details). Using the same Fourier 

transform analysis described in the main document, we then compared daily discrete Fourier 

transform amplitude Ad of 15-days air temperature time series vs. 1-year air temperature time 

series chosen randomly over the 4-year database. We ran between 10 and 50 pairs of time 

series (15 days vs. a year) for each elevation, the starting for each time series being chosen 

randomly among the three first years of the four-year air temperature data. We found a highly 

significant positive relationship between the amplitude of the 15-days and the 1-year Fourier 

transform at the daily period (see Fig S4). The slope of the 15-days vs. 1-year curve did not 

significantly differ from the 1:1 slope (ANCOVA, df =114, F = 2.08, p > 0.05). The small 

variations observed between both slopes are likely the result of sporadic meteorological 

phenomena such as storms or hails. 
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Figure S4: Scatter plot of Fourier transform amplitude for the daily frequency of a 15 days air 

temperature time series vs. a 1-year air temperature time series at three elevations.   
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Appendix S5: Fourier analysis description. 

The Discrete Fourier Transform (DFT) used in this study was defined as follow: 

!! != !
! ! !!!!!!!"

!
!!!!

!!! , k = 0,… ,N− 1   (eqn 1) 

where Xk, the Fourier transform complex coefficient, is the frequency domain representation 

of the signal time series xn at the kth frequency, N is the total number of samples of the time 

series, and i is the imaginary unit (see [36] for details). The amplitude Ad and the phase ϕd of 

the DFT are defined by definition (≜) as follows: 

A! !≜ ! X!!    (eqn 2) 

ϕ! !≜ arg(X!!)  (eqn 3) 

The thermal amplitude allowed us to measure the thermal buffer effect in Kelvin (see 

Fig. 1) between air and canopy layers (βp) and air and soil layers (βs), by calculating the 

difference of the DFT amplitudes as follows: 

β! !≜ !A!! − !A!!
β! !≜ !A!! − !A!!

   (eqn 4) 

where !!! , !!!  and !!!  are the DFT amplitudes at the daily frequency for air, air canopy and 

soil time series, respectively (see equation 2). 

As we were interested in amplitude differences between air vs. air canopy and air vs. 

soil for maximum and minimum daily temperatures, we then defined the daytime (M) and 

night-time (m) temperature excursions between air vs. plant canopy (ε!,!! ) and air vs. soil 

(ε!,!! ) as follows: 

ε!! !≜ !A!! − !A!! + !β!
ε!! !≜ !A!! − !A!! + !β!

   (eqn 6) 

ε!! !≜ !A!! − !A!! !− !β!
ε!! !≜ !A!! − !A!! !− !β!

   (eqn 7) 

with A0 is the mean DFT value of the time series. 

The phase allowed us to measure the thermal time lag !d expressed in minute in 



CHAPTER I 

 
 
108 

canopy (τ!!) and soil layers (τ!! ) with respect to the air layer (see Fig. 1) by calculating the 

difference of the DFT phases as follows: 

τ!! !≜
!"
!" ϕ!! − !ϕ!!

!τ!! !≜ !"
!" ϕ!! − !ϕ!!

   (eqn 8) 

where ϕ!! , ϕ!!and ϕ!! are the DFT phases at the daily frequency for air, air canopy and soil 

time series, respectively (see equation 3). 

All Fourier analyses were performed in MATLAB R2011a (The Mathworks Inc., 

Natick, USA). 

 

 

 

Appendix S6: Seasonality measured on four-year air temperature time series with Discrete 

Fourier Transform. 

                       Mean amplitude of the discrete Fourier transform (°K) 

Period (days) 2800 m  3200 m  3600 m 

        91 0.14 (+/- 0.3)  0.15 (+/- 0.1)  0.12 (+/- 0.2) 

        182 0.41 (+/- 0.18)  0.49 (+/- 0.15)  0.43 (+/- 0.13) 

        364 0.94 (+/- 0.15)  1.01 (+/- 0.17)  0.96 (+/- 0.11) 

 

Table S6: Mean amplitudes in Kelvin of the discrete Fourier transform at the seasonally 

frequencies (91, 182 and 364 days) of four year monitoring of air temperatures (recorded at 1 

meter high with half an hour time step with the same shelter process describe above between 

2008-2012) for the three altitudinal belts of the study area (2 replicates for each elevation).  
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Appendix S7: Crop habitat composition survey in the study area. 

Crop habitat composition in the study area was measured in 85 independent locations at 

different altitudes between 2008 and 2012. The relative area of each crop type (in %) was 

visually estimated by two observers in a 100-m radius circle around each location. The mean 

of the two observations was then calculated. The phenological stage of each crop was also 

recorded. 

Elevation Potato Broad bean Corn Alfalfa Pasture 

2800 m 20.9  13.4  18.4  16.5  30.8  

3200 m 24.1  13.3  15.9  12.5  34.2  

3600 m 27.3  9.1  6.6  7.6  49.4  

 

Table S7: Mean crop composition (%) at three altitudes used to parameterize thermal 

landscape mapping (see Fig. 2 & 3 in the main document). The number of independent 

location were N = 43, 25, 17 at 2800, 3200, and 3600 m, respectively.  
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Appendix S8: Local and global air mean temperature discrepancies mapping. 

Differences in mean temperatures between local air temperatures (extracted from the Fourier 

transform) and the global coarse grain interpolated air temperatures from the WorldClim (Δ 

Air L - Air WC) were mapped for the three studied grid cells (Fig. S8). Generally, local air 

temperatures were 1.4°K warmer than the global interpolated ones. Mean temperature 

discrepancies were of 0.3 ± 1°K, 1.7 ± 1.6°K and 2.3 ± 1.5°K at 2800 m, 3200 m and 3600 m 

respectively. For the three studied grid cells minimum of average temperature discrepancies 

was -2°K and maximum reached +8°K. As a consequence, 44.6 ± 3.4 % of the studied areas 

were either under-estimated or over-estimated by the global climatic models (+/- 1°K). 

 

 

Figure S8: Maps showing the differences between the measured local air temperatures and 

the WorldClim interpolated temperatures for mean values (Δ Air Local – Air WorldClim = Δ 

Air L – Air WC). Blue colours indicate Δ Air L – Air WC < 0, i.e area where local air 

temperatures are cooler than the ones gave by WorldClim, red colours indicate Δ Air L – Air 

WC > 0, i.e. area where air local temperatures are warmer than the ones gave by the 

WorldClim, and white colours Δ Air L – Air WC = 0 indicate areas where air WorldClim 

temperatures equate air local temperatures (± 1°C). The extent and position of each square is 

equal to the spatial resolution of the WorldClim database: 30-arc sec that is the equivalent of 

0.86 km2 for the study area. Each side of square has a 925 m length. The temperature dataset 

for storages was obtained from [26]. 
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While in the Chapter I of this thesis, we used standard methods of thermal ecology for 

pointing out the importance of considering microclimates when evaluating pest performances 

in agricultural landscapes, this second Chapter focused on the development of new 

methodologies to better assess the spatiotemporal heterogeneities of microclimatic 

temperatures at relevant spatial scales. 

The first part of this chapter focused on one critical and poorly studied pitfall of the 

uses of thermal infrared cameras in ecological and biological studies to measure the thermal 

heterogeneity of species' habitats: we studied how short variation in the shooting distance 

(i.e., distance between the thermal camera and the study object) could lead to misestimates of 

the spatial heterogeneity of object surface temperatures. This work was performed in Tours, 

France in collaboration with the ‘Institut de Recherche sur la Biologie de l’Insecte’ (IRBI) of 

the François Rabelais University and the French National Center for Scientific Research 

(CNRS). This first part of the Chapter II is made of one publication currently accepted after 

major revisions in Journal of Thermal Biology: 

- Faye, E., Dangles, O., & Pincebourde, S. (2015). Distance makes the difference in 

thermography for ecological studies. Journal of Thermal Biology. Doi: 

10.1016/j.jtherbio.2015.11.011. 

 

Moreover, this study has been presented at the Heteroclim international workshop the 10-

14th of June 2014 with the poster in Appendix S2. Finally, we illustrated the uses of thermal 

cameras on agricultural landscapes by 2 short movies available at:  

- TIR/VIS Time lapses of Ecuadorian agricultural landscapes. 2014. 

- TIR and VIS comparaison on the study site. 2014.  
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Abstract 

Surface temperature drives many ecological processes and infrared thermography is widely 

used by ecologists to measure the thermal heterogeneity of species' habitats. However, the 

potential bias in the temperature readings caused by the shooting distance (between the 

surface to be measured and the camera) is still poorly acknowledged. We examined the effect 

of shooting distance from 0.3 to 80 m on a variety of thermal metrics (mean temperature, 

standard deviation, patch richness and aggregation) to depict the relationship between those 

metrics and the shooting distance under various weather conditions and for different structural 

complexity of the studied surface (various surfaces with vegetation). We found that the 

shooting distance is a key modifier of the absolute temperature measured by thermal infrared 

camera. A non-linear relationship between shooting distance and mean temperature, standard 

deviation and patch richness led to a strong under-estimation of the thermal metrics within the 

first 20 m and then a slight decrease between 20 to 80 m from the object. Also, solar radiation 

enhanced the bias with increasing distance. Therefore, surface temperatures were under-

estimated as shooting distance increased and thermal mosaics were homogenised at long 

distance with a much stronger bias in the warmer than the colder parts of the distributions. 

The under-estimation of thermal metrics due to shooting distance was explained by the lower 

atmosphere composition and the pixel size effect. The structural complexity of the surface had 

little effect on the surface temperature bias. Finally, we provide general guidelines for 

ecologists to minimize inaccuracies caused by the distance from the studied surface in 

thermography. 

 

Keywords: thermography; thermal bias; shooting distance; microclimate; leaf temperature.  
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1. Introduction 

Surface temperature drives many physical, chemical, biological and ecological processes and 

is among the most influent factors for life across all biomes including marine, terrestrial and 

freshwater ecosystems (Oke 1987, Kingsolver 2009). Several methodologies have been 

developed to measure surface temperatures. Among them, infrared thermography is the only 

non-invasive method, and major developments over the past decades significantly improved 

our understanding of temperature-related patterns in ecological sciences (Quattrochi & Luvall 

1999, Cilulko et al. 2013, Lathlean & Seuront 2014). Originally, infrared thermography was 

developed mainly for industrial, medical and military applications (Vollmer & Möllmann 

2010), and it was first used for ecological research in the late sixties (e.g., studies on seal 

thermoregulation, Ørtisland 1968, and on white-tailed deer detection, Croon et al. 1968). 

Over the last four decades, infrared thermography has been increasingly used in various fields 

of biology including thermal physiology (Hill et al. 1980, Pincebourde et al. 2012, Woods 

2013, McCafferty et al. 2013), marine ecology (Lathlean & Seuront 2014), plant sciences 

(Jones 2002, 2013, Pincebourde & Woods 2012, Caillon et al. 2014), agronomy (Jackson et 

al. 1981, Jones 2002, Inagaki et al. 2008, Meron et al. 2010, Bellvert et al. 2013, Faye et al. 

2015), and landscape ecology (Scherrer & Körner 2010, Tonolla et al. 2010). 

Infrared thermography is an imaging method that records infrared waves emitted by an 

object in the electromagnetic spectrum after the visible range of light – from 7.5 to 14 µm –as 

a result of the molecular motion (Vollmer & Möllmann 2010). The radiation readings are then 

converted into surface temperature by the Thermal Infra-Red (TIR) camera taking into 

account the ambient conditions and emissivity. TIR images allow the study of surface 

temperature patterns over a broad range of spatial scales from sea and land surface satellite 

mapping (Kerr & Ostrovsky 2003) to landscape (Scherrer & Korner 2010) and organism 

scales (Tattersall & Cadena 2010, Pincebourde et al. 2013). Recent advances in thermal 
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imaging technology – increasingly lightweight and hand-held – and a reduction in the cost of 

thermal cameras have facilitated its uses and opened new area of investigation in ecological 

sciences (Lathlean & Seuront 2014). 

  However, despite its increasing use, relatively few studies have addressed or reviewed 

the potential pitfalls and limits of thermal imaging (Clark 1976, Quattrochi & Luvall 1999, 

Minkina & Dudzik 2009, Cilulko et al. 2013, Lathlean & Seuront 2014). Weather conditions 

(e.g. solar radiation and rainfall) are known to affect TIR outputs leading to misinterpretation 

of organism body temperatures. Also, the emissivity of an object – i.e. the ability of an object 

to emit thermal radiation – and the viewing angle between the camera and the object can 

affect the surface temperature measurements (Clark 1976). Last, the distance between the 

object and the TIR camera is among the main factors supposed to impact temperature values 

in TIR images (Cilulko et al. 2013). Like any image, TIR images are composed of pixels, and 

the portion of object surface area included in a single pixel directly depends on the shooting 

distance – with larger area included in each pixel as shooting distance increases. Then, when 

the surface is thermally heterogeneous, neighbouring surface patches of different temperature 

merge together with increasing distance. To our knowledge, however, the net effect of 

increasing shooting distance on temperature readings by TIR camera has never been 

quantified. At best, TIR images are acquired at equal distances from the study organism 

allowing accurate estimates of relative temperature differences between patches (Inagaki et al. 

2008, Tonolla et al. 2012, Caillon et al. 2014). 

Here, we examined the effect of shooting distance (in the range of 0.3 to 80 m) on TIR 

thermal metrics that are commonly used to quantify the spatial heterogeneity of object 

temperatures (e.g., mean temperature, standard deviation, patch richness and aggregation). 

The aims of this study were 1) to characterize the relationship between those thermal metrics 

and the shooting distance, 2) to assess the effect of weather conditions (solar radiation) on this 



CHAPTER II – PART I 

 
 
120 

relationship, and 3) to test whether the structural complexity of the studied surface affected 

this relationship. We first shot the same object surface (a thermal test card corresponding to a 

regular mosaic of black and white patches) under various global solar radiation levels with 

two similar TIR cameras placed at different distances. We then shot three object surfaces with 

different structure under identical global solar radiation with the two TIR cameras placed at 

various distances. The object surfaces consisted in a thermal test card under constant 

environmental conditions in the laboratory, a green wall covered by a deciduous woody vine 

scene, and an oak-beech forest edge offering a more complex scene. Additionally, we 

performed a TIR close-up shooting (0.3 m) of the plant leaves to assess how actual leaf 

temperatures shaped the surface temperature distribution from each shooting distance and 

compare the micro-scale thermal heterogeneity of the leaves to the one of the entire surface. 

Generally, we expected that the distance between the thermal camera and the studied object 

would lead to errors in the absolute surface temperature because of the pixel size effect. We 

also expected this bias to be more pronounced when the surface is heated by solar radiation. 

Finally, under similar abiotic conditions, structurally complex surfaces are supposed to 

deliver more thermal heterogeneity than simpler ones and we hypothesized that the 

temperature measurements of these complex surfaces would be more affected by the shooting 

distance. Based on the TIR images obtained with two thermal cameras, we calculated thermal 

metrics and compared them among distances for various solar radiation levels and structural 

surfaces.  
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Figure 1: RGB images (A.1, B.1, C.1) and TIR images (A.2, B.2, C.2) of the 1-m2 thermal 

test card placed in the three environments (laboratory A., green wall B. and wood edge C.) – 

Photos credits: Emile Faye (IRD) and Sylvain Pincebourde (CNRS). 
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2. Materials and Methods 

2.1. The thermal infrared cameras 

TIR images were acquired using two similar TIR cameras recording the long-wave infrared 

radiation emitted by objects in the spectral range from 7.5 to 14 µm. They were equipped with 

uncooled micro-bolometer sensors and converted the infrared radiation readings into 

temperatures within the -20 to 120°C calibration range. TIR images were processed assuming 

an emissivity of 1 for every surface because our interest was to quantify the discrepancies in 

spatial thermal heterogeneity between TIR images of the same surface taken at different 

distances – i.e. comparing relative values instead of measuring actual temperature values 

(Clark 1976, Rubio et al. 1997). Therefore, surface temperature refers to the brightness 

surface temperature in this work (Norman 1995). The first TIR camera (called fixed TIR 

camera, see below) was equipped with a 320 × 240 pixels micro-bolometer focal plane array 

(B335, FLIR Systems, Wilsonville, OR, USA). The second TIR camera (called mobile TIR 

camera, see below) was equipped with a 640 × 480 pixels micro-bolometer focal plane array 

(HR research 680, VarioCAMs, InfaTec GmbH, Dresden, Germany). These two TIR cameras 

were similar enough in terms of thermal sensitivity, accuracy, and spatial resolution to 

compare TIR data among them (Appendix 1). 

 

2.2. Experimental design 

2.2.1. Thermal test card in different environments 

We studied a 1-m2 thermal test card, made of 400 black and 400 white tiles of 2.5 cm2 each, 

which delivered a well-characterized geometry and dimensions resulting in a predictable 

thermal pattern, with the black tiles reaching higher surface temperatures than the white ones 

when hit by radiation (Fig. 1). We placed the thermal test card vertically in three different 

environments that differed in term of abiotic parameters (exposure, temperature and global 
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solar radiation). The first environment – the laboratory environment – was a 50 m long 

corridor without window in our laboratory (Institut de Recherche sur la Biologie de l’Insecte, 

Tours, France) wherein air temperature and humidity were maintained constant by an air-

cooling system, thereby resulting in a homogeneous environment along the hall (21.7°C and 

63% of humidity; see Appendix 2). Global radiation was generated using two heat lamps (250 

watts each) positioned on the ground one meter in front of, and oriented toward, the thermal 

test card (A.1 and A.2 in Fig. 1). 

The second and third environments were outdoor, at the castle named Château de 

Saché in the Loire Valley, France (49°14’45’’N, 0°32’41’’E, at a mean elevation of 77 m 

a.s.l.). In July 2013, when the study took place, mean daily temperature reached 20°C (27.7 

and 13.9 °C for mean maximum and minimum respectively) and photoperiod lasted almost 10 

hours (Météo France, 2013). Thus, the plants reached their fully-grown phenology with the 

highest vegetation density in canopies at that time (Körner & Basler 2010). At this site, we 

first placed the thermal test card in front of a South-exposed green wall of the castle – the 

green wall environment – facing a flat area free of any obstacles (B.1 and B.2 in Fig. 1). 

Then, we positioned the thermal test card in front of a West-exposed wood edge in the court 

of the castle – the wood edge environment – facing a flat area free of any obstacles (C.1 and 

C.2 in Fig. 1). 

$

2.2.2. TIR shots at increasing distances 

To test whether the distance between the TIR camera and the object had an effect on the 

thermal metrics of surfaces, we used synchronised shots between the two TIR cameras placed 

at different distances in each of the three environments (laboratory, green wall and wood 

edge). Synchronising shots allowed us to compare TIR images taken under exactly the same 

environmental conditions – i.e. solar radiation and air temperature (Appendix 1) – thus giving 
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the effect of shooting distance directly. The fixed TIR camera was placed at a minimum 

distance from the surface so that it could capture a large extent: 2 m from the thermal test card 

in the laboratory, 3 m from the green wall and 10 m from the wood edge. The fixed TIR 

camera was considered to provide the most accurate absolute values of surface temperatures, 

and the highest level of thermal heterogeneity, as it was placed at the shortest distance. The 

mobile TIR camera shot from distances to the fixed camera of 1, 2, and 7 m – i.e. distance at 

which Δ pixel size ≥ 0 (Appendix 1, Figure 2) – and up to 48, 57 and 70 m in the laboratory, 

green wall and wood edge environments, respectively. One TIR shot was taken 

simultaneously with the two IRCs (less than 2 sec. differences between the two cameras, and 

each shot was repeated twice) at fourteen Δ distances (defined as the distance between the 

mobile and the fixed TIR cameras, see Appendix 3) along a straight and perpendicular 

transect to the surface to avoid view angle effects on temperature readings (Clark 1976). In 

total, we performed eight TIR shooting transects (two for the laboratory environment, three 

for the green wall environment and three for the wood edge environment) collecting up to 448 

TIR images under various abiotic conditions (8 TIR shooting transects ×�14 Δ distances × 2 

repetitions�× 2 IRCs). At the end of each transect for the outdoor environments, we also took 

TIR images of leaf surfaces with the fixed TIR camera positioned at a 0.3 m distance from the 

vegetation surface (Appendix 4). Leaf surface temperature was measured for 15 shaded leaves 

and 15 leaves exposed to direct solar radiation. Initially, the leaves were selected randomly 

and thereafter the same leaves were measured during each session. 

 TIR cameras were switched on at least ten minutes before the beginning of each 

shooting to allow sensor stabilization. They were fixed on two professional tripods (MN 190X 

ProB, Manfrotto, Bassano Del Grappa, Italy) at 1.5 m above the ground to obtain a 90° view 

angle to the surface (Clark 1976). Simultaneously to each TIR image, we recorded global 
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solar radiation (in W/m2) using a datalogger equipped with a pyranometer sensor facing the 

sky vault (datalogger LI-200 and pyranometer LI-400, LI-COR, Lincoln, OR, USA). 

 

2.2.3. Differences among surfaces of different structural complexity 

To examine whether surface complexity modulated the effect of shooting distance on TIR 

outputs, we used surfaces differing in their structural complexity: 1) the thermal test card 

surface was the less structurally complex because of its well-defined two-patches composition 

in one plan; 2) the fully-grown grape ivy green wall (Parthenocissus tricuspidata) covering 

the south-exposed wall of the castle – background of the green wall environment – was a 

more structurally complex surface because of the various inclination angles of the leaves that 

composed its almost two dimensional layout – the depth of the ivy cover did not exceed 20 

cm; 3) the third level of complexity consisted in a fully-grown wood edge composed of oak-

trees (Quercus robur L.), beech-trees (Fagus sylvatica L.), and hornbeam-trees (Carpinus 

betulus L.) – background of the wood edge environment –, which provided a highly complex 

surface composed of various patches in a three-dimensional configuration with tens of meters 

in depth that increased the compositional heterogeneity. For each set of outdoor TIR images, 

we worked on two 1-m² areas: the 1-m² thermal test card (see above) and a 1-m² area of 

vegetation placed just beside the thermal test card in the green wall and wood edge 

environments (see TIR images in Appendix 5). 

 

2.2.4. Surface temperature excess 

In order to determine the surface temperature excess – i.e. positive or negative deviation 

between pixel temperature values of the TIR images and ambient air temperature –, we 

measured ambient air temperatures using a set of temperature loggers (Hobo U23-001-Pro-

V2, Onset Computer Corporation, Bourne, USA) placed within 5 cm behind the leaves and 
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the thermal test card. The loggers were always shadowed and homogeneously distributed (20 

loggers inside the green wall and the wood edge, and 10 behind the thermal test card, see 

photographs in Appendix 6). Temperatures were recorded every 10 seconds with an accuracy 

of ±0.21K and a resolution of 0.02K at 25°C. We standardized the TIR images using these air 

temperatures, which allowed us direct comparisons of the leaf and the surface temperature 

excesses in the two outdoor environments, regardless of their absolute temperature 

dissimilarities. 

 

2.3. Data analysis 

For each TIR image from the two TIR cameras, we marked the same 1-m² area of the thermal 

test card and the same 1-m² area of the vegetation surface (Appendix 5). Pixel temperature 

values on these 1-m2 surfaces were extracted from raw images with ThermaCam Researcher 

software (FLIR Systems) and IRBIS 3 software (InfaTec GmbH), for the fixed and the mobile 

TIR camera, respectively. We then calculated several thermal landscape indices from these 

pixel temperature matrices using FRAGSTATS (University of Massachusetts, Landscape 

Ecology Lab, Amherst, MA, USA): 1) mean temperature and standard deviation, providing a 

descriptive summary of the patch metrics for the entire landscape, 2) patch richness, 

calculated as the number of patch types present in a landscape and describing its 

compositional make-up (McGarigal & Marks 1994), 3) the aggregation index, often referred 

as landscape texture, which quantifies to what extent temperature pixels of the same value 

were spatially aggregated (He et al. 2000). 

To analyse the effect of shooting distance on thermal metrics, we plotted the deviation 

in mean temperature (Δ Tmean in Kelvin), standard deviation (Δ SD in Kelvin), patch richness 

(Δ patch richness) and aggregation (Δ aggregation in percentage) against the Δ Distance (m) 

between the two TIR cameras (mobile camera minus fixed camera) for each surface. Those 
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plots were represented for the various solar radiation levels in the three different 

environments (from 65 to 915 W/m2) and also for the three different surfaces – test card, 

green wall, wood edge – under similar and stable clear sky conditions (solar radiation of 890 

±133 W/m2). 

We then searched for a general pattern in the change of thermal metrics with shooting 

distance by standardizing surface temperatures according to air temperatures (Appendix 6). 

We plotted density curves of surface temperature excess of the thermal test card in the 

laboratory and in the green wall environment as function of shooting distance, and also of the 

entire green wall surface and of the entire wood edge surface under clear sky conditions. For 

the outdoor environments, leaf surface temperature distributions were added to the plots to 

assess how actual leaf temperatures (i.e., leaf surface temperature distribution at high spatial 

resolution) shaped the surface temperature distribution from each shooting distance. For this 

analysis, we used the surface temperature excess matrices – the surface temperature 

distributions minus the mean ambient air temperature recorded by the temperature loggers 

behind the leaves at the same time than the TIR images (Appendix 6). Densities were used to 

leave aside the effect of decreasing pixel number with increasing distance on the distribution 

curves, since the number of temperature pixels in the focused areas decreased with distance. 

As temperature density distributions were normal, they were fitted using Gaussian function in 

Table curve 2D (V5.01, Systat Software Inc., Chicago, Illinois, USA) as follows: 

! = ! + !!! !!.! !!"!!
!

!

  (eqn 1) 

where a, b, c, d are parameters, D the density predicted and Tex the temperature excess in K. 

The accuracy of the fits (R2 and standard deviation) of each density curve fitted is given in 

Appendix 7. We performed an analysis of variance (ANOVA) with the R package ‘stats’ 

version 3.1.1 (R Development Core Team 2014) to analyse the effects of the shooting 
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distance, the radiation level and their interactive influences on the surface temperature excess 

distributions. 

 

3. Results 

3.1. Thermal test card in different environments 

Overall, the distance between the mobile and the fixed TIR cameras had a significant effect 

on all thermal metrics for the thermal test card (Δ Tmean, Δ SD, Δ Patch richness and Δ 

Aggregation; Fig. 2). Within the first 20 m separating the two TIR cameras, Δ Tmean, Δ SD, 

and Δ Patch richness strongly decreased, from 0 to -3.4 K, -2.5 K and -1200 patches, 

respectively. At distances from 20 m to 70 m, this decrease was much less pronounced as it 

did not exceed -1K, -0.8K, -400 patches for Δ Tmean, Δ SD, and Δ Patch richness respectively. 

Tmean, SD, and Patch richness were therefore increasingly under-estimated as the distance 

between the two TIR cameras increased. By contrast, indoor TIR measurements on the 1-m2 

thermal test card showed a linear relationship with shooting distance, but thermal metrics 

were also under-estimated at increasing distances (red squares in Fig. 2). Moreover, global 

radiation levels influenced the magnitude of this error: for instance at 40 m, mean 

temperatures were under-estimated by about 3.3K and 1.5 K at radiation levels of 915 ±20 

W/m2 and 65 ±5 W/m2, respectively (Fig. 2 A). In other words, the surface temperature of 

solar-heated objects was more under-estimated than relatively cooler surfaces at the same 

distance. A similar pattern was found with Δ SD (Fig. 2 B). By contrast, Δ aggregation 

increased with distance (Fig. 2 D). 



CHAPTER II – PART I 

 
 
129 

 

 

Figure 2: Scatter plots of the thermal indices' deviation between the mobile and the fixed TIR 

cameras' images of the 1-m2 thermal test card under various levels of solar radiation against 

the ∆ Distance (m) – the distance between the two TIR cameras (mobile minus fixed). 

Negative values indicate that the metric is under-estimated by the mobile camera. (A) ∆ T 

mean (K), (B) ∆ SD (K), (C) ∆ Patch richness and (D) ∆ Aggregation (%). Red squares are 

the indoor TIR shootings at radiation level 65 W/m². Solar radiation varied from 242 W/m2 to 

915 W/m2 in the outdoor green wall environment. 

 

3.2. Effect of surface structural complexity 

Overall, we found no effect of the surface structural complexity on the relationship between 

thermal metrics and shooting distance. The same decreasing pattern with increasing distance 

was found for the three structurally different surfaces (thermal test card surface, green wall 

vegetation surface and wood edge surface) and for Δ Tmean, Δ SD, Δ Patch richness (and a 
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similar increasing pattern for Δ Aggregation). However, under similar solar radiation, 

surfaces had different TIR responses. The thermal heterogeneity of the wood edge surface, the 

more structurally complex, was less under-estimated with increasing distance than the green 

wall and the thermal test card surfaces (Fig. 3 A and B). 

 

 

 

 

Figure 3: Scatter plots of thermal indices' deviation between the mobile and the fixed TIR 

cameras' images of the 1-m2 thermal test card in the green wall environment, and of the 1-m2 

vegetation surface in the green wall and wood edge environments, against the ∆ Distance (m) 

– distance between the two IRCs (mobile minus fixed). (A) ∆ T mean (K), (B) ∆ SD (K), (C) 

∆ Patch richness, and (D) ∆ Aggregation. Solar radiation was 890 ±133 W/m2 for all points. 
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3.3. Surface temperature excess distributions vs. distance 

Overall, temperature excess distributions shifted down to lower values with increasing 

distance (Fig. 4). Under similar radiation levels, this shift was larger for the thermal test card 

(up to -3 K; Fig. 4 B) than for the green wall and the wood edge surfaces (Fig. 4 C, D, 

respectively). The range of excess temperature of the distribution curves – i.e. the spatial 

variation of temperature – decreased with increasing distances, from 7K at 5 m to 2K at 60 m 

for the 1-m2 thermal test card in the green wall environment (Fig. 4 B). This diminution was 

larger for the 1-m2 thermal test card than for the green wall and the wood edge surfaces under 

similar solar radiation (Fig. 4 B,C,D). As a consequence, the maximum density increased with 

increasing distance between the surface and the TIR camera. The maximum density at 5 m for 

the thermal test card outdoor reached 0.18 while it increased up to 0.90 at 60 m (Fig. 4 B).  

 

Figure 4: Density distribution of the surface temperature excess (K) obtained from TIR 
images of the mobile TIR camera at various distances for the 1-m2 thermal test card in the 
laboratory and in the green wall environments (A. and B. respectively), of the whole surface 
of the green wall (C.) and of the whole surface of the wood edge (D.) under clear sky 
conditions. Dashed curves in C. and D. represent the leaf surface temperature distributions 
from TIR images taken at 0.3 m from individual leaves of the green-wall and the wood-edge 
respectively (see Appendix 4). 
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Therefore, increasing distances caused both an under-estimation of the extreme 

temperature and a spatial homogenization of the temperatures. We also found that the 

shooting distance significantly modify the surface temperature distribution in the outdoor 

environments (ANOVAs in Table 1). Leaf temperature distributions, taken at a distance of 0.3 

m from the surface in the outdoors environments (dashed curves in Fig. 4 C, D) showed larger 

temperature range and lower density maximum than the entire vegetation background in the 

green wall and wood edge environments. Note that the shooting distance has no significant 

effect on the temperature distributions for the 1-m2 thermal test card in the indoor laboratory 

environment (ANOVA in Table 1, FA. = 0.761, PA. = 0.383). Nevertheless, they shifted 

downward up to -1K with increasing distance, which is less than for the outdoor surfaces (Fig. 

4 A). 

Parameter   F value   P value 

Distance   A 0.761 B 49.510   A 0.383 B <0.001 

  C 31.742 D 16.843   C <0.005 D <0.01 

Radiation   A 0.079 B 34.372   A 0.778 B 0.047 

  C 0.317 D 0.116   C 0.574 D 0.683 

Dist x Rad   A 0.039 B 1.119   A 0.844 B 0.29 

  C 2.108 D 1.331   C 0.147 D 0.21 

 

Table 1: Results of ANOVA for the effects of shooting distance, radiation level and their 

interaction on the density distribution of the surface temperature excess used in Fig. 4. 

Temperature distributions were obtained from TIR images taken with the mobile TIR camera 

at various distances for the 1-m2 thermal test card in the laboratory and in the green wall 

environments (A. and B. respectively), of the whole surface of the green wall (C.) and of the 

whole surface of the wood edge (D.). Values in bold indicates significance (P<0.05).  
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4. Discussion 

TIR imagery is widely used to record object/organism surface temperatures and quantify their 

spatial heterogeneities in ecological studies. However, some key parameters in thermography 

may strongly impact the TIR outputs. In the present study, we show that the distance between 

the TIR camera and the object affected the thermal metrics used for featuring thermal 

heterogeneity of surfaces. Overall, we found that the shooting distance strongly modified the 

absolute temperature measured by the TIR camera. The relationship found between distance 

and the mean temperature, standard deviation and patch richness for the outdoors 

environments was non-linear, indicating a strong effect within the first 20 m and only a slight 

decrease between 20 to 80 m. As a result, average surface temperatures were underestimated 

when increasing the shooting distance. Interestingly, increasing the shooting distance 

homogenised thermal mosaics with a much stronger bias in the warmer than the colder part of 

the distributions. To our knowledge, this effect of shooting distance has never been quantified 

before. This quantification is critical for future studies that aim at assessing the thermal 

heterogeneity available for animals and plants (see below). Below, we explain this shooting 

distance effects by the lower atmosphere composition, the size of pixels, and the influence of 

global solar radiation on structurally complex surfaces. 

 

4.1. Lower atmosphere composition effect 

The underestimation of the mean temperature, standard deviation and patch richness might 

occur because of the composition of the ambient atmosphere. Recently, Minkina & Dudzik 

(2009) evidenced absorption of the infrared radiation (emitted by objects) by gases and 

particles present in the lower atmosphere between the object and the TIR camera. For 

instance, air humidity, fog, snow, and dust can significantly distort the TIR readings (Minkina 

& Dudzik 2009). This effect of atmospheric composition is suggested by the linear negative 
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relationship between the thermal metrics and the distance in the indoor environment, wherein 

abiotic parameters such as air temperature and humidity were more homogeneous in space 

and in time (see red squares at 65 W/m2 in Fig. 2). Indeed, the temperature surface 

distributions of the TIR images for thermal test card in the laboratory environment shifted 

downward by no more than 1K from 1 to 50 m, and both the maximum density and the 

temperature range did not change with distance in this stable environment (Fig. 4 A). By 

contrast, the lower atmosphere composition in the outdoor environments was probably 

heterogeneous along our transects. For example, the camera may have received more infrared 

radiation coming from nearby surfaces at close than at moderate and long distances (boundary 

layer properties, see Oke 1987). This effect can explain the non linear decrease of thermal 

metrics in outdoor transects (Fig. 4 B). Moreover, concurrently with other studies (Clark 

1976, Minkina & Dudzik 2009, Vollmer & Möllmann 2010, Jones 2013), we found that 

global radiation level altered TIR outputs and therefore modified the relationship between 

shooting distance and the thermal metrics. Indeed, global radiation heat up the small portions 

of the surface that are perpendicular to the sun position, while the portions at a lower angle to 

the sun remain close to ambient air temperature, increasing thereby the spatial heterogeneity 

of surface temperatures. This effect probably amplifies the pixel size effect (see below), 

leading to an even larger under-estimation of thermal metrics. 

 

4.2. Pixel size effect 

TIR cameras are equipped with a sized sensor that provides a fixed number of pixels for any 

shooting distance. Therefore, the pixel size relies upon the shooting distance (Appendix 1): 

the further you shoot, the bigger is the pixel size. This change in pixel size with distance 

inevitably induces modifications of the thermal information recorded by the TIR camera. 

Indeed, the physical borders between an object, or a thermal patch, and its surrounding may 
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be included in the same single pixel depending on the shooting distance, and in this case the 

pixel simply integrates the TIR information coming from both elements – i.e. a combination 

of sub-pixel temperatures (Murphy et al. 2014). The integration of sub-pixel temperatures 

likely reduces the level of heterogeneity in the TIR images. This effect is well illustrated by 

the response of the aggregation index to shooting distance: thermal patches became more 

aggregated as shooting distance increased (Fig. 4). The aggregation index relies on the 

number of pixels composing the landscape (McGarigal & Marks 1994, He et al. 2000). 

Indeed, the number of pixels composing a 1-m² surface area decreases with distance, causing 

thereby an 'apparent' increase in aggregation. 

 

4.3. Effect of surface structural complexity 

The relationship between shooting distance and thermal metrics was only weakly influenced 

by the structural complexity of the surfaces (thermal test card, green wall, and wood edge). 

This is a quite unexpected result as the interaction between a high level of radiation and the 

roughness of the surface is known to generate a highly diverse mosaic of temperature patches 

according to simple geometrical rules (Oke 1987). We therefore expected a high spatial 

heterogeneity in surface temperature for the wood edge because of its three dimensional 

structure. The background of the wood edge, however, corresponded to a deep, shaded part of 

the wood, which may contribute to homogenize the TIR image. Indeed, under identical 

weather conditions (including solar radiation) the three structurally different surfaces showed 

different thermal metric responses (Appendix 8), i.e. a lower thermal heterogeneity for the 

wood edge surfaces than for the green wall surfaces. We also acknowledge that by starting at 

a Δ distance of 7 m in the wood edge environment, we may have missed much of the thermal 

effect. On the contrary, the thermal test card surface, although less structurally complex, 

showed a higher heterogeneity in temperatures than for the two other surfaces under identical 
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abiotic conditions. The thermal test card is emitting TIR directly as function of incoming 

energy, while in the case of the green wall and the wood edge environments, the eco-

physiology of plant leaves managed radiation loads and modulate their (highest) surface 

temperatures by transpiring (Jones 2013). Therefore, the structural composition alone is not 

sufficient to infer the heterogeneity of surface temperature at local scale. 

 

4.4. Guidelines for the use of thermography with regards to shooting distance 

We present some major guidelines to minimize inaccuracies due to the distance between 

studied object and TIR cameras. Firstly, to yield accurate and absolute TIR measurements, 

emissivity of the object should be fixed in the settings of the camera according to emissivity 

tables (Clark 1976), and global solar radiation must be recorded while shooting to proceed 

within similar irradiance conditions. When applicable, IR shots should be taken at low solar 

irradiance or during night to avoid underestimations of the results. Additionally, to minimize 

the sub-pixel temperature combination onto the physical borders of the studied surface, we 

would recommend removing the surface boundary edge – i.e. the boundary pixels – in the 

TIR image. However, this precaution will not exclude the inaccuracies due to sub-pixel 

temperature combination onto the thermal patches that composed the surfaces. 

Secondly, the relationship between the shooting distance and the accuracy of the TIR 

images must be considered for data analysis. TIR studies should anticipate the influences of 

lower atmosphere composition (especially when outdoor) and of the shooting distance-related 

pixel size. Thus, we recommend reducing the shooting distance at the lowest possible distance 

(when feasible) to yield more accurate absolute surface temperatures. If not, atmospheric 

radiative transfer models could be used to correct the surface temperatures depending on 

atmospheric composition. For instance, MODTRAN®6 (MODerate resolution atmospheric 

TRANsmission) solves the radiative transfer equation including the effects of molecular and 
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particulate absorption/emission of the atmosphere present between the thermal sensor and the 

studied object (Berk et al. 2014). 

The size of the body organism is also a key parameter that constrains the use of 

thermography and the determination of the shooting distance. Indeed, surface temperatures 

significantly affect the performance of small living organisms mainly (e.g. insects and rocky 

shore crustaceans, when the heat budget is driven by conduction mainly), while the thermal 

budget of bigger animals is more influenced by the ambient air properties (convective heat 

loss). In particular, solar radiation warm up the surface of animal's body, increasing thereby 

the deviation between internal and skin temperatures. However, these effects are expected to 

remain minor for small, dry-skin ectotherms with low thermal inertia such as most arthropods, 

and plant surfaces. Nevertheless, TIR shooting distance should be selected depending on the 

size of the organism to maximize the number of pixels covering the object. For example, at a 

distance of 20 m, the pixel size was about 2 cm² with our best TIR camera (Appendix 1). The 

opportunities for behavioural thermoregulation can therefore only be assessed at 20 m and 

below for organisms with body size > 2 cm, assuming that the organism itself integrates 

surface temperatures throughout its whole body (Woods et al. 2015). 

 

4.5. Conclusion 

In conclusion, our study reveals that the distance between the object and the TIR camera is a 

major modifier of the measured thermal heterogeneity. Shooting distance causes errors and 

underestimations of the absolute surface temperatures. Researchers should therefore select the 

shooting distance as the result of a conscious trade-off between body size, the features of their 

TIR camera (field of view especially), the hypothetical surface temperature (if the object 

surface temperature is heated), and the level of accuracy of the TIR results they need in their 
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studies. These recommendations apply for any field of research where thermography can be 

used. 
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Appendix 1: Features of the two TIR cameras used in the study 

The thermal sensitivity (smallest temperature change or difference that can be detected) of the 

fixed TIR camera (B335, FLIR Systems, Wilsonville, OR, USA) was < 0.05K at 30°C, and 

the measurement accuracy (accuracy of the absolute temperature) was ± 2K. An 18 mm lens 

was used with the fixed camera that resulted in a spatial resolution or Instantaneous Field Of 

View (IFOV) of 1.35 mrad (i.e. 25 x 19° FOV). The thermal sensitivity of the mobile TIR 

camera (HR research 680, VarioCAMs, InfaTec GmbH, Dresden, Germany) was < 0.03K at 

30°C, and the measurement accuracy was ± 1.5K. A 30 mm lens was used with the mobile 

camera that resulted in a spatial resolution or IFOV of 0.8 mrad (i.e., 30 x 23° FOV).  

 We tested whether the slight technical differences between the two cameras can cause 

bias in the surface temperature measurements. Both TIR cameras were mobiles in this 

additional experiment. The two cameras were moved together and TIR images were taken 

simultaneously at each shooting distance. The differences between the two TIR cameras are 

small enough to be ignored (Fig. S1_#1). Indeed, in the three environments, the mean 

temperature measured from the TIR images of the thermal test-card differed between the two 

cameras by only 0.42 ± 0.27°C on average, and this difference was not altered by shooting 

distance. Similarly, the standard deviation of temperature from the thermal test card varied by 

only 0.17 ± 0.12°C between the two cameras along the distance and for the three 

environments (Fig. S1_#1). 
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Figure S1_#1: Scatter plots of the mean temperatures and standard deviation (in °C) of the 

thermal test card TIR images taken from various distance with the two TIR cameras in the 

three studied environments. Environmental variations (radiation and/or ambient air 

temperature) caused sudden fluctuations in the thermal metrics but they did not influence the 

comparison of the performance between the two cameras. 
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Figure S1_#2: Scatter plot of pixel size as function of distance for the mobile and the fixed 

TIR camera. The blue and red lines are the pixel size (or Instantaneous Field Of View) of the 

mobile and fixed TIR cameras, respectively. Red numbers on the x-axis are the distances at 

which the fixed TIR camera has been placed during the experiment (2, 3, and 10 m for the 

laboratory, the green wall and the wood edge environments, respectively). The blue numbers 

on the x-axis are the respective distances (from the surface) at which the mobile TIR camera 

has been placed for starting the shooting (3, 5, and 17 m for the laboratory, the green wall and 

the wood edge environments, respectively). Those distances insured a difference of pixel size 

between the two cameras positive or equal to zero (Δ pixel size ≥ 0 when the pixel size of the 

mobile TIR camera exceeded the pixel size of the fixed TIR camera). Therefore the mobile 

TIR camera started shooting 1 m from the fixed TIR camera in the laboratory, 2 m from the 

fixed TIR camera in front of the green wall and 7 m from the fixed TIR camera in front of the 

wood edge.  
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Appendix 2: Abiotic conditions for the three environments during the main experiment 

 

 

Figure S2: Scatter plot of mean air temperature in the three environments during the main 

experiment. Thin dotted lines show the mean ambient air temperature of the three 

environments, thick black lines the night-time air temperatures and thick coloured lines the air 

temperatures during the IR shooting sessions in their respective environment. For each TIR 

shooting set, we measured shadowed air temperature and relative humidity every 10 seconds 

using a thermo-hygrometer (Thermo-hygro clock AW-1, TC direct, Hillside, IL, USA) and 

global solar radiation (in W/m2) using a datalogger equipped with a pyranometer sensor 

facing the sky vault (datalogger LI-200 and pyranometer LI-400, LI-COR, Lincoln, OR, 

USA) in each environment. 

 

Environment 
TIR shooting 

transects 
Air T 

(°C ±SD) 
Relative Humidity 

(% ±SD) 
Radiation 

(W/m2 ±SD) 

Laboratory 
1 21.7 ±0.5 63 ±0 65 ±5 
2 21.7 ±0.5 63 ±0 65 ±5 

Green wall 
1 26.2 ±0.4 59 ±2.2 242 ±80 
2 28.3 ±0.5 48 ±2 915 ±21 

3 29.1 ±1.2 49 ±6 660 ±140 

Wood edge 

1 29.8 ±0.8 44 ±12 680 ±180 

2 28.3 ±1 51 ±4.2 866 ±215 
3 29.7 ±0.7 47 ±2.4 884 ± 49 

                 Table S2: Abiotic conditions during the TIR shootings  
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Appendix 3: Δ distance points used for the fixed and mobile TIR cameras 

 

Laboratory  Green wall  Wood edge 

A B C  A B C  A B C 

2  

2 1  

3 

5 2  

10 

17 7 

5 3  7 4  20 10 

7 5  10 7  22 12 

10 8  15 12  25 15 

15 13  17 15  27 17 

17 15  23 20  30 20 

20 18  25 22  32 22 

22 20  30 27  35 25 

25 23  35 32  40 30 

30 28  40 37  45 35 

35 33  45 42  50 40 

40 38  50 47  60 50 

45 43  55 52  70 60 

50 48  60 57  80 70 

A = Fixed TIR camera distance from the surface (m). B = Mobile TIR camera distance from 

the surface (m). C = Δ distance (m), distance between the mobile and the fixed TIR cameras. 
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Appendix 4: High resolution TIR shooting of leaf surfaces 

We determined the leaf surface temperature heterogeneity at high spatial resolution (close 

up). We shot 15 identified leaves in the two vegetation surfaces (green wall and wood edge) 

with the mobile TIR camera at 0.03 m distance right after each of the 6 shooting sessions 

performed in the outdoor environments. Half of these leaves were shadowed and half of them 

were sunny. As for the main experiment, air temperature, relative humidity and solar 

radiations have been recorded during each leaf shot. 

 

 

 

Photographs S4: A- TIR shooting of leaf surfaces at high spatial resolution in the green wall 

environment. B and D are visual and infrared images, respectively, of the leaf #15 in the 

green wall environment. This leaf was one of the sunny leaves. C- TIR image of one of the 

shadowed leaves in the forest edge environment. The contour of the leaves has been drawn in 

the TIR image analysis software.  

A. B. 

C. D. 
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Appendix 5: 1-m2 studied areas on the TIR images in the green wall and the wood edge 

environments. 

 

 

 

Photographs S5: False coloured TIR images of the thermal test card and the vegetation 

surface areas taken simultaneously with the fixed (A and C) and the mobile TIR cameras (B 

and D). A- is a TIR image taken with the fixed TIR camera at 3 m from the thermal test card 

and the green wall surfaces. B- is the simultaneous TIR image taken with the mobile TIR 

camera at 7 m from the fixed camera (i.e. at 10 m from the green wall surface). C- is a TIR 

image taken with the fixed TIR camera at 10 m from the thermal test card and the wood edge 

surfaces. D- is the simultaneous TIR image taken with the mobile TIR camera at 70 m from 

the fixed TIR camera (i.e. at 80 m from the wood edge surface) zoomed in at 600% for visual 

convenience. Black delimitations are the 1-m² areas used for analysis in the main study, for 

thermal test card and vegetation surfaces respectively. 
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Appendix 6: Photographs showing the exact locations of the loggers recording the air 

ambient temperature in the three studied environments. 

 Thermal test card 

 Green wall 

 Wood edge 
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Appendix 7: Accuracy of the fitted density curves used in Fig. 4 
 

 

 
 

 Distance (m) R2 SD  t-value 95%IC 95%IC 
Fi

gu
re

 4
 A

. 

2 0.8520 0.0025 -0.2672 -0.0056 0.0043 
5 0.8686 0.0023 -0.2559 -0.0053 0.0041 
7 0.8605 0.0025 -0.3997 -0.0060 0.0040 
10 0.8523 0.0026 -0.4185 -0.0063 0.0041 
15 0.8161 0.0029 -0.3530 -0.0069 0.0048 
17 0.8205 0.0029 -0.3619 -0.0069 0.0048 
20 0.8344 0.0028 -0.3321 -0.0065 0.0046 
22 0.8423 0.0027 -0.3711 -0.0064 0.0044 
25 - - - - - 
30 0.8797 0.0023 -0.3889 -0.0056 0.0038 
35 0.8806 0.0023 -0.4563 -0.0057 0.0036 
40 0.8806 0.0023 -0.4563 -0.0057 0.0036 
45 0.8886 0.0022 -0.4443 -0.0054 0.0035 
50 0.8755 0.0024 -0.4436 -0.0059 0.0038 

Fi
gu

re
 4

 B
. 

5 0.8653 0.0020 2.8252 0.0017 0.0099 
7 0.9244 0.0017 1.0406 -0.0017 0.0053 
10 0.9935 0.0009 -0.2942 -0.0020 0.0015 
15 0.9736 0.0015 0.2365 -0.0027 0.0034 
17 - - - - - 
20 0.4332 0.0100 0.4451 -0.0155 0.0244 
25 0.9999 0.0001 0.5583 -0.0002 0.0003 
30 0.3950 0.0116 0.4073 -0.0185 0.0279 
35 0.9998 0.0002 0.9914 -0.0002 0.0006 
40 0.9998 0.0002 0.9914 -0.0002 0.0006 
45 1.0000 0.0000 -1.1185 0.0000 0.0000 
50 0.8673 0.0052 0.7335 -0.0066 0.0143 
55 1.0000 0.0000 -1.1304 0.0000 0.0000 
60 0.9999 0.0001 0.9913 -0.0001 0.0004 

Fi
gu

re
 4

 C
. 

0.3 0.9655 0.0014 -0.6359 -0.0037 0.0019 
15 0.9902 0.0052 63.9144 0.3194 0.3401 
17 - - - - - 
23 0.9966 0.0005 -0.8143 -0.0014 0.0006 
25 0.9970 0.0005 -0.8000 -0.0013 0.0006 
30 0.9805 0.0012 -0.4913 -0.0030 0.0018 
35 0.9785 0.0012 -0.5276 -0.0031 0.0018 
40 0.9785 0.0012 -0.5276 -0.0031 0.0018 
45 0.9789 0.0014 -0.5652 -0.0037 0.0021 
50 0.9849 0.0011 -0.2813 -0.0025 0.0019 
55 0.9994 0.0002 -1.0438 -0.0007 0.0002 
60 0.9935 0.0009 -0.0440 -0.0018 0.0017 
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Distance (m) R2 SD t-value 95%IC 95%IC 

Fi
gu

re
 4

 D
. 

0.3 0.9206 0.0021 0.0159 -0.0041 0.0042 
17 0.9642 0.0012 1.0809 -0.0011 0.0036 
20 0.9470 0.0172 26.1394 0.4159 0.4848 
25 0.9777 0.0012 0.3484 -0.0019 0.0028 
30 0.9789 0.0013 0.9455 -0.0014 0.0038 
35 0.9997 0.0001 0.9899 -0.0001 0.0003 
40 0.9994 0.0002 1.0681 -0.0002 0.0005 
50 0.9972 0.0005 0.1728 -0.0010 0.0012 
60 0.9865 0.0008 1.1128 -0.0007 0.0024 
70 0.9721 0.0015 0.0101 -0.0030 0.0030 
80 0.9889 0.0011 0.0030 -0.0021 0.0021 

 

Table S7: Statistics of the fits of the Gaussian function used to fit the temperature density 

distributions versus distance. The distance (m) is the shooting distance of the mobile TIR 

camera. For each shooting distance, we performed a Gaussian fit, giving the R², the standard 

deviation (SD), the t-value and the 95% confidence interval (95%IC below and above). 
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Appendix 8: Thermal heterogeneity of the studied surfaces 

 

Figure S8: Under similar solar radiation level (890 ±133 W/m2), we shot with the mobile TIR 

camera the 1-m2 thermal test card, the 1-m2 green wall surface and 1-m2 wood edge surfaces. 

We plotted the mean temperature in °C (A), the standard deviation in °C (B), the patch 

richness (C) and the aggregation index (D) of these surfaces against the absolute distance (m) 

between the mobile TIR camera and the surface. The thermal test card had a mean 

temperature exceeding the mean of the green wall by 2.74 (± 0.37 K) on average and 

exceeding the mean of the wood edge by 10.73 (± 1.36 K) on average. This pattern was found 

at all distance from 1 m to 80 m from the surface. Patch richness strongly decreased with 

distance from almost 1800, 1500 and 800 patches for the test card, green wall and wood edge 

surface respectively to no more than 120 at 60 - 80 m, due to the pixel size effect. 
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The second part of Chapter II consists in the development of an integrative and 

quantitative toolbox for the monitoring and spatial characterization of microclimates across 

spatial scales. This part aims at overcoming the challenge of bridging the gap between the 

coarse-scale resolutions of the climatic dataset used in a majority of species distribution 

models and the body length of the study organism (Potter et al. 2013). In this study, we 

proposed an integrative toolbox that brings together procedures of unmanned aerial vehicle, 

thermal imagery, orthomosaic, GIS classification and spatial metrics. We applied this toolbox 

to the case of the agricultural landscapes in Ecuador for assessing the effect of plant 

phenology on high-resolution spatial metrics of surface temperatures, with implications for 

ectothermic pest dynamics. 

This work was performed in collaboration with the ‘Instituto Espacial Ecuatoriano’ 

(IEE) and the ‘Escuela Politécnica Nacional’ del Ecuador (EPN) - Escuela de Formación de 

Tecnólogos (ESFOT). The second part of this methodological Chapter is one publication 

accepted and currently in press in Methods in Ecology and Evolution:  

-  Faye, E., Rebaudo, F., Yánez, D., Cauvy-Fraunié, S. & Dangles O. (2005). A toolbox 

for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle 

imagery to landscape metrics. Methods in Ecology and Evolution. Doi: 

10.1111/2041-210X.12488 

 

Moreover, this study has been presented at the 3rd Global Science conference on Climate 

Smart Agriculture the 18-23rd of March 2015 with the poster in Appendix S2. Finally, we 

illustrated the uses of UAV for studying thermal landscapes by 2 short movies available at: 

- UAV showcase IRD. 2013. 

- Un dron para estudiar los microclimas en los Andes Ecuadorianas. 2015.  

  



A toolbox for studying thermal heterogeneity across
spatial scales: from unmanned aerial vehicle imagery
to landscapemetrics
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Olivier Dangles 1,3

1UMR EGCE, IRD-247 CNRS-UP Sud-9191, 91 198 Gif-sur-Yvette Cedex, France; 2Sorbonne Universit es, UPMCUniv Paris
06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France; 3Pontifica Universidad Cat olica del Ecuador, Facultad de Ciencias
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Summary

1. A major barrier for the scientific community of climate c hange biologists is the spatial mismatch between the
size of organisms and the resolution at which global climate data are collected and modelled. Thus, the develop-
ment ofintegrative and quantitative tools for themonitor ing and spatial characterizat ion ofmicroclimates across
spatial scales is a key issue for climate change ecologists.
2. We proposed an integrative toolbox for quantifying the spatial heterogeneity in surface temperatures by
bringing together procedures of unmanned aerial vehicles, thermal imagery, orthomosaic, GIS classification and
spatial metrics. This toolbox permits t o yield high-resolution visual and infrared orthoimages that are processed
into a GIS for selecting surfaces ofinterest in the landscap e (e.g. soil, vegetation). Th en, the thermal matrices of
selected surfaces (i.e. temperature values of the pixels belonging to the selected surfaces only) are processedwithin
R to generate a variety of thermal landscapemetrics (e.g. thermal patch richness and density, thermal aggregation
and cohesion index).
3. We applied this toolbox to the thermal characterizati on of mountainous agricultural landscapes in Ecuador
with implications for ectothermic pest dynamics. UAV flights at a height of 60 m above-ground level allowed us
to acquired high-resolution visual and thermal images (1 and 5 cm/pixel, respectively) for 12 potato fields with a
mean surface of 1017 117 m2. Landscape metrics on plant and soil surfaces showed that crop phenology
drives the spatial patterns of surface temperatures and strongly modifies the overall thermal ecology of crop
fields, with potential implications for ect othermic pest occurrence and dynamics.
4. Overall, our toolbox affords a timely and innovative methodological framework to better assess the thermal
heterogeneity of natural landscapes across a wide range of spatial scales. In particul ar, this toolbox would be of
topical interest for ecologists trying to bridge the gapbetween the resolution of their climatic data and the body
size of their study organisms.

Key-words: ectotherm, high-resolution thermal imagery, microclimate, plant phenology, spatial
metrics, temperature heterogeneity, UAV

Introduction

The study ofmicroclimate has recently triggered renewed inter-
est as it is a major issue to connect global and local climate
change and forecast species’ physiological responses and distri-
butions in the future (Gillingham et al. 2012; Potter, Woods &
Pincebourde 2013; Woods, Dillo n & Pincebourde 2014; Sears
& Angilletta 2015). Microclimatic conditions can deviate
substantially from those represented by gridded climatic layers
(Faye et al. 2014; Hannah et al. 2014; Scheffers et al. 2014b)
and might offer opportunities to modify biotic responses to

global warming (Scheffers et al. 2014a; Storlie et al. 2014;
Pincebourde & Casas 2015). There is therefore an urgent need
to better quantify microclimates across spatial scales so that
mechanistic models at the individual levels can be better
incorporated into models of species distribution and vulnera-
bility to climate change (Potter, Woods & Pincebourde 2013).
However, monitoring microclimates at relevant scales for
organism is not an easy task. The spatial and temporal patterns
of microclimatic variation are highly heterogeneous, and
climate change at global scale generates even more complex
variability to predict climatic conditions at local scales
(Woods, Dillon & Pi ncebourde 2014).
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The quantification of microclimates across spatial scales
(from individuals to landscapes) can be potentially revolution-
ized by the recent development and increased access of
unmanned aerial vehicles (UAVs). Autonomously operated,
flying low and slow, UAVs offer scientists new opportunities
for scale-appropriate measurements of ecological phenomena
(Watts, Ambrosia & Hinkley 2012; Anderson & Gaston 2013;
Marris 2013; Floreano & Wood 2015). When equipped with
appropriate sensors, UAVs can deliver thermal data with
spatial and temporal resoluti ons suited to thermal ecology
investigations. This technolog ical innovation has been applied
to the study of microclimates in several recent ecological and
agronomical studies (Berni et al. 2009; Tonolla et al. 2012;
Haselwimmer, Prakash &Holdmann 2013; Dugdale, Bergeron
& St-Hilaire 2015). While these studies provide ecologists with
some information on UAV technology and use of thermal
images, we currently lack an integrativemethodological frame-
work for combining up-to-date procedures for UAV systems,
thermal imagery, orthophotograph generation, GIS classifica-
tion and spatial metrics for the characterization of ecologically
relevant thermal patterns.
Here, we propose a comprehensive methodological frame-

work, from UAV thermal imagery to landscape metrics, for
assessing the thermal heterogeneity of natural landscapes
across a wide range of spatial scales. Our methodology
employs an UAV equipped with visual and thermal infrared
(TIR) cameras to yield high-resolution images processed into
mapping software to obtain orthorectified visual and thermal
images of high resolution. These orthophotographs are pro-
cessed in a GIS for selecting surfaces ofinterest in the visual
and thermal landscape (e.g. soil, vegetation). After the sur-
faces’ emissivities (value of object’s ability to emit thermal radi-
ation) have been set at the appropriate value, the thermal
matrices of selected surfaces (i.e. temperature values of the
pixels belonging to the selectedsurfaces only) are processed
within R to generate a variety of thermal landscape metrics
(e.g. thermal patch richness and density, thermal aggregation
and cohesion index). We applied this methodological frame-
work to the case of agricultura l landscapes in the tropical
Andes by assessing the effect of plant phenology on high-reso-
lution spatial metrics of surface temperatures.

Materials andmethods

The methods described below follow the different steps summarized in
Fig. 1.

STEP 1 : DATA ACQUIS I T ION WITH UAV FL IGHTS

The UAV system and sensors

High-resolution thermal imagery (e.g. <5 cm) can be acquired by
the use of an unmanned aerial vehicle (UAV). We used a multi-
copter (Drone-RC, PIXTIM, Messein, France) equipped with a
DJI Wookong-M autopilot (DJI Inc., Shenzhen, China) with GPS
receiver and barometer, a stabilized gimbal and a 900 MHz data-
link that allowed a continuous radio link for inflight monitoring
and control from computer. The im age acquisition was performed

during programmed flight following a flight plan created with a
ground station (DJI PC; DJI Inc., Shenzhen, China). Images were
acquired in the visual (red, green and blue bands, RGB) and ther-
mal infrared (TIR) spectral ranges using RGB and TIR cameras
mounted simultaneously on-board. The RGB camera was a Sony
Nex-7 that had a 24-megapixel sensor (Sony Corporation, New
York, NY, USA) with a lens fixed to a focal length of 18 mm and
operated in autofocus mode. The RGB camera was set to shutter
priority with a fast shutter speed of 1/1500 to reduce motion blurs
and ISO was set to 200 to limit noise in the images. The aperture
adjusted automatically to achieve the desired shutter speed. The
RGB camera was triggered by an infrared LED intervalometer
(Pclix XT; Visual Effects Inc., Toronto, Canada). The TIR camera
(HR research 680; InfaTec, Dresden, Germany) had a 640 9 480-
pixel uncooled microbolometer sensor recording the long-wave
infrared radiation emitted by objects in the spectral range from 7 5
to 14 l m and was equipped with a 30-mm lens. The thermal sensi-
tivity of the TIR camera was better than 0 03 K at 30 °C, and the
measurement accuracy was 1 5 K. The TIR camera was switched

Fig. 1. Schematic workflow of the entire methodological process to
analyse thermal landscapes. Each step is fully detailed in theMethods.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution
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on at least ten minutes before take-off to allow sensor stabilization.
The emissivity was fixed to 1 for TIR image capturing and there-
after adapted to the studied surfaces when processing the images
(see step 1-TIR surface emissivity ).

Ground control points

Before flying, we recorded the UTM-WGS84 geographic coordinates
of at least three evenly distributed ground control points (GCPs) with a
GPS (Garmin Oregon 550; Garmin, Olathe, KS, USA). GCPs allowed
improving the scale, the orientation and position of the orthomosaics
generated in the next step of the procedure. However, they do not
enhance the spatial resolution of the orthomosaics; therefore, a basic
GPS is enough for recordingGCPs. BecauseGCPs need to be recogniz-
able in the RGB and TIR spectral ranges, we placed black canvas
sheets tenfold larger than the TIR image resolution to ensure their visi-
bility in the infrared spectrum with recognizable forms (square, circle,
triangle, cross and star) on each of the GCPs (Appendix S1).

Meteorological conditions during flights

It is crucial to record meteorologica l conditions while flying in order to
measure potential bias on thermal images (Jones 1992; Scherrer &
Koerner 2010; Cilulko et al. 2013; for discussion). We recorded global
solar radiation (in W/m 2) using a datalogger equipped with a pyra-
nometer sensor facing the sky vault (LI-1400, LI-COR, Lincoln, NE,
USA) and air temperature using one temperature logger (Hobo U23-
001-Pro-V2 internal temperature loggers; Onset Computer Corpora-
tion, Bourne, MA, USA). Both loggers were located <50 m from the
studied area. As a standard practic e in meteorological measurements,
the temperature logger was fixed at 15 m high and sheltered by a
20 cm2white plastic roof tominimize solar radiation heating. The sam-
pling rate for temperature and solar radiation was one and ten seconds,
respectively. These measurementswere performed during each flight to
ensure stable meteorological conditions while obtaining TIR images. If
not (i.e. standard deviation >10%), flight had to be conducted again
(Fig. 1 –Data acquisition).

Flight description

Flight planning is a trade-off between the desired final resolution of the
images, the site area aimed to cover, the flight time capacity of the
UAV and the characteristics (e.g. weight, focal) of the on-board
cameras (Ballesteros et al. 2014). From this, trade-off can be defined
cruise speed, flight elevation and camera trigger frequency. These
parameters will then define the frontal and side overlapping of the
images. As the aim here was tomaximize the image resolution, we fixed
the flight parameters according to the size of the studied area and to the
smallest sensor we had on-board: the TIR camera. Therefore, we flew
at 60 m above-ground level at a speed of 2 m s 1 with a trigger of 1 s
for each camera which delivered a frontal and side overlapping ofmore
than 80 and 70%, respectively, for the TIR images and more than 95
and 90%, respectively, for the RGB images. Moreover, flying at 60 m
a.g.l. guaranteed yielding relatively stable and accurate TIR informa-
tion applied to during-flight height variations (Fig. 2).

TIR surface emissivity

Emissivity, the ability of an object’s surface to emit thermal radiation
affects temperature readingsmade by any TIR camera (Rubio, Caselles
& Badenas 1997). Therefore, depending on how many surfaces with
different emissivity value the study focuses on, one should consider the
emissivity of each surface in the analysis. We exemplify this process
using two surfaces that have two different values of emissivity (sur-
face_1 and surface_2), but the same methodology can be applied forn
surfaces. To produce images with the appropriate emissivity for each
surface, all TIR images of the origi nal set were replicated into two
image sets: one was set to the emissivity of the surface_1 and the other
one to the emissivity of the surface_2. We therefore obtained two TIR
image data sets corresponding to the emissivity of the two surfaces
studied: the surface_1-emissivity-based TIR images and the surface_2-
emissivity-based TIR images. Late r on, we extracted each surface area
on the RGB orthoimage and assigned the appropriate emissivity TIR
values (step 3). Emissivity adjustme ntswere performedusing the IRBIS
software (InfaTec, Dresden, Germany).

)b()a( (c)

Fig. 2. Unmanned aerial vehicle (UAV)-based TIR information versus flying height. One TIR vertical flight was performed under clear sky condi-
tions from 10 m to 110 m a.g.l. The UAV carried the s ame TIR camera used in this study, triggered e very second with a focus fixed at infinity (i.e.
5 m). The UAV was flying in GPS mode to hover a fixed point with a manual control of the upward speed. (a) The hexapter used in this study with
some sample pictures of surface temperatures (note changes in colour with flight height). Mean surface temperatures at different UAV heights were
measured for a same area (10 9 6 m). (b) Mean and standard deviation of TIR surface tem peratures plotted vs. the UAV flight height. (c) TIR cam-
era instantaneous field of view (i.e. projected pixel size) inmmversus the UAV flight height inm.
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STEP 2 : MAPP ING

Image geotagging

After a visual pre-selection ( deleting blurred images, i.e. <5% of
the total images in our case), coordinates were assigned to the
UAV-acquired and emissivity-corrected TIR and RGB images (i.e.
geotagging). The UAV flight path (GPS points registered on-board
the UAV at logging rate of 1 Hz) was linked to the images taken
on-board using the time settings of the cameras, which were syn-
chronized with GPS time of the UAV before flight. We used the
GeoSetter software (www.geosetter.de/en/) to write the UAV GPS
coordinates into the corresponding RGB and TIR image EXIF
headers.

RGB/TIR orthophotographs generation

We used a mapping software (Pix4Dmapper 1.3; Pix4D SA, Lau-
sanne, Switzerland) for generating RGB and TIR orthophotographs
from the geotagged UAV-acquired RGB and TIR images (Fig. 1. –
Mapping, and Appendix S2 for details). The mapping process
detected and bundled the characteristic image objects (i.e. tie points)
between overlapping images to create a densified point cloud. The
georeferencing of the densified point cloud (i.e. the orientation, scale
and direction) is enhanced by the use of geotagged images and

ground control points. Blending the images based on the point
cloud, the software can export an orthophotograph (i.e. a georefer-
enced aerial image geometrically corrected) and/or a digital surface
model (Appendix S2). In our case, we generated one RGB
orthophotograph and two TIR orthophotographs (one for each
studied surface emissivity) with high resolution (1 and 5 centime-
tres/pixel, respectively).

STEP 3 : G IS WORKFLOW (F IG . 1 – GIS WORKFLOW AND

F IG . 3 )

We then imported the RGB and TIR orthophotographs into ArcGIS
10.1 (ESRI, Redlands, CA, USA). To determine independent surface
area (including the two defined studied surfaces) in the TIR orthopho-
tograph, we classified the high-resolution RGB orthophotograph using
the Image Classification tool included in the ArcGIS Spatial Analyst
extension. We performed an Interactive Supervised Classification based
on five training sample polygonsfor each studied surface within the
RGB orthophotographs (i.e. five polygons of surface_1 and five
polygons of surface_2; see Appendix S3 for parameters of the RGB
classification). The result was a cate gorized raster with identified pixels
belonging to the respective studied surfaces (areas not assigned to the
studied surfaces were left aside). From this raster, we created a shapefile
mask of the surface_1 area and another for surface_2 area (using the
Raster to polygon tool in the Conversion toolsmenu). We then used

(b)

(d)

(e)

(g)

(f)

(c)

(a)

Fig. 3. GIS workflow of the visual (red-green-
blue, RGB) and Thermal InfraRed (TIR)
orthophotographs for a studied field. (a) RGB
high-resolution orthophotograph of the field;
(b and c) emissivity-based TIR orthopho-
tograph of surface_1 (plant surface) and sur-
face_2 (soil surface); (d ) classified raster from
the RGB orthophotograph including the two
surfaces – the green part (surface_1/plant) and
the brown part (surface_2/soil) serve to create
masks to extract pixels of pure surface_1 and 2
in their respective TIR orthophotographs. (e
and f) TIR orthophotographs of surface_1
and 2 at their appropriate emissivity. (g)
merged TIR orthophotograph of the entire
studied field with the appropriate surface
emissivity and therefore the correct surface
temperatures.
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these masks to extract pure surface_1 pixels and pure surface_2 pixels
in the corresponding emissivity-based TIR orthophotographs (with the
Extract by mask tool in the Spatial Analyst extension). This allowed us
to obtain two TIR orthophotographs: one representing only surface_1
surfaces and the other one, only surface_2 surfaces (each with their
appropriate emissivity; Fig. 3). Finally, we merged the surface emissiv-
ity-based TIR orthophotographs to obtain a complete TIR orthopho-
tograph with the appropriate emissivity for each surface. We assumed
therefore that those TIR orthophotographs displayed the correct
surface temperatures for surface_1 and surface_2 surfaces (Fig. 3g).
Finally, we exported these three T IR orthophotographs into ASCII
files (using the Raster to ASCII Conversion tool in ArcGIS, which per-
mits to export raster without formatting options) for further spatial
analyses.

STEP 4 : SPAT IAL ANALYSES IN R ( F ig . 1 – Spa t i a l Ana l y s i s

i n R )

Spatial analyses of the thermal o rthophotographs were performed
using the R software version 3.1.2 (R Development Core Team
2014; see Appendix S4 for the R script used in this study). Our
script imports the ASCII files of the TIR orthophotographs and
converts them into raster files using the R packages RASTER (Hij-
mans 2014) and MAPTOOLS (Bivand & Lewin-Koh 2014). Adapted
from the class metrics calculated by Fragstats (Mc Garigal &
Marks 1994), we used the CLASSSTAT function of the SDM TOOLS

package (VanDerWal et al. 2014) to quantify the spatial configura-
tion and composition at the landscape level of the thermal raster
images (each index was computed as the sum of the index at the
class level, weighted by its proportional area in the total landscape,
Appendix S4 for details). We propose seven complementary metrics
to fully describe the characteristics of the raster thermal landscapes:
(i) thermal patch richness (number of patch types, i.e. temperature
classes, present in the landscape), (ii) thermal patch density (number
of patches per unit area), (iii) thermal aggregation index (quantifies
to what extent temperature pixels of a same value are spatially
aggregated), (iv) Simpson’s thermal diversity index (probability that
two pixels selected at random would be d erent temperature
classes), (v) Shannon’s thermal diversity index (which quantifies the
uncertainty in predicting the temperature of one pixel that is taken
at random in the thermal landscape), (vi) thermal landscape shape
index (standardized measure of the total edge of a given thermal
patch) and (vii) the thermal cohesion index (physical connectedness
among patches of the same temperature). As a final output, for
each of the TIR orthophotographs processed, thermal landscape
metrics are automatically concatenated into a single table together
with a boxplot display. Additional basic thermal statistics (e.g.
mean, standard deviation, maximum, minimum temperature and
area) are also provided in the table.

Study case

This toolbox might be applied to various ecologically rele-
vant study cases such as presented in Fig. 4: quantifying
the spatiotemporal heterogeneity in thermal environment
for dragonflies in ponds, studying the relationship between
surface temperature and the spatial structure o ve
plant in natural meadows or identifying thermal refuges in
palm groves in the semi-arid desert. Here, we applied our
toolbox to the study of the spatial heterogeneity in surface

temperatures in agricultural landscapes (Faye et al. 2014),
with the view to assessing how microscale thermal features
of crop fields change across plant phenology. Our study
was conducted in an Andean agricultural landscape located
in the Cotopaxi province of Ecuador. We selected 12 potato
fields (Solanum tuberosumL.) so that they could be evenly
distributed into three phenological stages (leaf development,
inflorescence and mature stages, Table 1 and Appendix S5).
For each field at a specific phenological stage, we measured
the leaf area index (Wilhelm, Ruwe & Schlemmer 2000) by
estimating the ratio o f area within a 1 m 2 quadrant
subdivided into 0 1 m2 cells delimited by strings. In Febru-
ary 2014, we performed one RGB and TIR flight per field
following the method described above between 11:00 AM
and 15:00 PM under clear sky conditions (Table 1). This
time window generally showed stable meteorological condi-
tions and allowed reducing the shadow e ects on images
due to the zenithal position of the sun. The number of
CGPs depended on the field size (Table 1) and meteorologi-
cal data were recorded during flights to ensure comparisons
among TIR images (see the low standard deviation of mean
air temperature and mean solar radiations in Table 1). As

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Fig. 4. Visual and thermal orthophotographs (column 1 and 2, respec-
tively) of various natural landscapes. (a) Riverbank of a natural pond
in Loire, France. (b) Natural pasture s for livestock grazing, Auvergne,
France. (c) Palm grove in the semi-arid desert of Piura, North Peru.
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we were interested in the thermal metrics of two surfaces
that had different emissivities (soil and plant), we produced
two sets of TIR images with the appropriate emissivities
(Rubio, Caselles & Badenas 1997) for each surface: the
emissivity of plant canopy (0 98) and that of dry bare soil
(0 94). Therefore, for each of the twelve fields flown over,
we obtained two TIR data sets corresponding to the two

emissivity of the surface studied in this study case: the plant
emissivity-based TIR images and the soil-emissivity-based
TIR images. Once processed in the mapping software we
obtained RGB and TIR orthophotographs with resolution
of 1 3 and 5 cm per pixel, respectively. After following the
GIS workflow as described above, we run spatial analyses
of configuration and composition for each phenology on

Table 1. Description of the studied fields and abiotic parameters recorded during unmanned aerial vehicle flights.

Field
Coordinates
(DD a)

Elevation
(m.a.s.l. b)

Field area
(m2) Phenology

LAI c

(%)
Time
(h:min)

Flight
duration
(min:sec)

Mean air
temperature
(°C)

Mean solar
radiations
(watt/m2)

Mean flight
altitude
(m.a.g.l. d) GCPs e

F1 1 044475°
78 570443°

2718 926 P1 25 11:47 5:24 26 4 ( 1 2) 1020 ( 24 3) 58 90 ( 2 69) 3

F2 1 026193°
78 566117°

2693 1047 P1 34 13:05 6:55 25 2 ( 0 4) 894 ( 19 6) 61 32 ( 2 42) 5

F3 1 026285°
78 566620°

2697 871 P1 30 14:11 5:38 24 8 ( 1 8) 827 ( 57 3) 60 62 ( 1 32) 4

F4 1 026322°
78 565606°

2695 964 P1 35 14:52 6:55 22 7( 0 7) 732 ( 27 5) 58 92 ( 2 20) 5

F5 1 044334°
78 570457°

2720 929 P2 65 11:23 6:10 26 7 ( 0 9) 936 ( 39 1) 59 90 ( 2 69) 3

F6 1 054945°
78 567388°

2747 985 P2 67 12:48 7 33 29 3 ( 0 3) 1014 ( 8 2) 58 64 ( 3 11) 4

F7 1 012548°
78 531975°

3166 1224 P2 51 14:30 8:28 27 4 ( 1 1) 1091 ( 77 7) 59 58 ( 1 46) 5

F8 1 052141°
78 570058°

2733 1053 P2 60 13:56 7:17 26 2 ( 1 4) 847 ( 61) 62 31 ( 2 81) 4

F9 1 019801°
78 556391°

2742 851 P3 100 11:08 6:43 24 9 ( 0 3) 763 ( 20 6) 60 58 ( 2 37) 3

F10 1 020283°
78 556352°

2742 1176 P3 94 11:44 7:13 25 ( 0 3) 904 ( 31 8) 60 79 ( 1 63) 5

F11 1 019543°
78 555662°

2751 1096 P3 88 14:42 7:37 28 7 ( 0 2) 1023 ( 2 8) 57 87 ( 3 81) 4

F12 1 020596°
78 555491°

2750 1084 P3 92 12:32 5:57 25 7 ( 0 5) 962 ( 15 3) 61 75 ( 1 28) 4

aDecimal degree (Latitude; Longitude).
bMetres above see level.
cLeaf area index.
dMetres above-ground level.
eGround control points.

Fig. 5. Frequency histograms of TIR surface
temperatures for all the studied fields at the
three phenological stages: leaf development
(red bars), inflorescence (green bars) and
mature (blue bars). The skewness of each dis-
tribution is given between brackets.
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the twelve surface TIR orthophotographs (Appendix S6).
We then plotted frequency histograms of surface tempera-
tures for all fields belonging to the same phenology and for
one individual field for each phenological stage. Finally, we
plotted across plant phenology four thermal metrics of par-
ticular interest for our study (mean temperature, thermal
patch richness, thermal aggregation and thermal cohesion
index), for soil, plant and entire field surfaces.

Results

Crop phenology was a strong modifier of fine-scale surface
temperatures in potato fields as the mean temperature of the
whole surfaces (entire fields) decreased as plant growth
increased: from 40 3 6 0°C for the ‘leaf development stage’
fields to 31 8 5 7°C for the ‘inflorescence stage’ fields, to
22 33 1 66°C for the ‘mature stage’ fields (Fig. 5). Interest-
ingly, standard deviation of surface temperature strongly
decreased with phenology as well. The skewness of the his-
tograms of the frequency classes shifted from left skewed to
right skewed distributions according to the phenological stage
of the fields (from 0 57 for leaf development stage field to
0 26 formature stage fields; see Fig. 5).
By decomposing temperature frequency distribution

between the studied surfaces, we found that the frequency dis-
tributions of surface temperatures were bimodal with mean
soil temperatures always exceeding mean plant temperatures
by 13–22°C (Fig. 6). As expected, the proportion of each sur-
face area changed over crop phenology: during the ‘leaf devel-
opment’ stages, soil temperatures covered a larger area than
plant temperatures (Fig. 6a) and vice versa at the mature stage
(Fig. 6c). Interestingly, pla nt and soil mean temperatures
decreased by 10°C and 12°C, respectively, as crop phenology
increased: at the ‘leaf development’ stages large, surfaces of soil
warmed small surfaces of plant while at ‘mature stages’, small
surfaces of soil were cooled by large surface of plants.
Thermal patch richness of plan t and soil surfaces displayed

a bell-shaped trend across phenology with a low number of
patches at both ends of crop development (Fig. 7-c2). A
combined reading of mean temperature and patch richness
highlights the fact that the relatively high temperatures of soil
surfaces for the mature stage phenology (Fig. 7-c1) did not
affect much themean temperature of the entire surface (Fig. 7-
a1, due to its low patch richness index (Fig. 7-c2). Thermal
aggregation index rose gradually for the plant surfaces, while it
rose steeply at themature phenology for the combined surfaces
(Fig. 7-a3 and b3). This index decreased gradually with
increasing phenology for the soil surfaces (Fig. 7-c3). Cohesion
index for combined surfaces tended to increase with phenol-
ogy, as well as for plant surfaces (Fig. 7-a4 and b4).
Conversely, the cohesion index in soil surfaces decreased with
growth plant phenology (Fig. 7-c4).

Discussion

The proposed toolbox provides a user-friendly, repeatable
method for studying ecologically relevant fine-scale thermal

patterns in a landscape. We discuss below the several advances
and limits of this method in the field of thermal ecology.
Various studies have attempted to reconcile the spatial

resolutions of thermal data with the species ecology using
mechanistic modelling of microclimates at coarse spatial scale
(Hijmans et al. 2005; Kearney, Isaac & Porter 2014),
downscaling of climatic models (Fridley 2009; Palmer 2014) or
spatial distribution inferen ces of microclimates based on
structural landscape characteristics (Bennie et al. 2008;
Dobrowski 2011; Sears, Raskin & Angilletta 2011). However,
the obtained spatiotemporal resolution is still far from the
body size of the studied organisms (Potter, Woods & Pince-
bourde 2013). Moreover, the optimal spatial resolution of cli-

Fig. 6. Plant (green) and soil (brown) temperature frequency his-
tograms from the TIR orthophotograph of a single potato field at each
of the three studied phenology stages: leaf development (a), inflores-
cence (b) andmature (c).
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matic data to be used depends on the body size and the ability
to move of the study organism: 1-m resolution might be plenty
enough for trees and mobile animals, but is too coarse for tiny
insects or small reptiles (Hannah et al. 2014; Sears & Angilletta
2015). Technical solutions, su ch as spacecraft or aircraft
remote-sensing TIR imagery, are nowadays expensive and
limited to the medium resolution of microbolometer sensor,
which commonly offers c.a. 100 m resolution thermal images
(ASTER and Landsat images, Kuenzer & Dech 2013; but see
Lee et al. 2015) and c.a. 1 m resolution for aircraft TIR
imagery. Our method surpassed this technical limitation by
delivering maps of surface temperatures with centimetre
resolution, allowing the study of the heterogeneity of thermal
natural landscapes at spatial resolution relevant for the studied
organism (Anderson & Gaston 2013; Potter, Woods &
Pincebourde 2013).
As a topical technological breakthrough, our toolbox used

image classification techniques to identify a large number of
study surfaces in the visual landscape, based on their spectral
components (e.g. different types of vegetation, soil, rock,
water). In case of difficulties for separating different surfaces in
the RGB orthophotographs because of their similar spectral
properties (e.g. different plant species), one could increased the
number of training sample polygons for each surface. If still
insufficient, the toolbox could be completed with a multispec-
tral sensor recording new spectral bands allowing a finer delim-
itation of surfaces (Liebisch et al. 2015). Then, the thermal

metrics associated to these surfaces can then be analysed sepa-
rately or as an entity of the entire thermal landscape. Further-
more, our method resolves the current and difficult problem of
emissivity associated with object surfaces in thermal images
(Rubio, Caselles & Badenas 1997; Cilulko et al. 2013): by
selecting surfaces with different emissivity values and creating
as many sets of thermal orthophotographs as surfaces selected,
our toolbox easily produces thermal orthophotographs with
the appropriate emissivity for each considered surface.
Consequently, surface temperatures obtainedwith our toolbox
display the correct surface temperatures. Interestingly, our
toolbox therefore highlights a poorly used outcome of UAV
imagery in thermal ecology: the cross-analysis between RGB
and TIR orthophotographs (B ulanon, Burks & Alchanatis
2009). For example, it would be possible to select thermal
niches on the thermal orthophotograph suited for a given
species (e.g. butterflies in mountainous landscapes, Ashton,
Gutierrez &Wilson 2009) and identify the elements that create
these refuges in the corresponding visual images, and vice
versa. In this context, the metrics developed in our toolbox
would allow revisiting some basic landscape ecology issues
(e.g. influence of habitat shape index, edge effect, patch distri-
bution and connectivity) from a t hermal point of view, opening
new opportunities towards thermal landscape ecology. Still,
UAV -TIR measurements provide no information on tempera-
tures of beneath-surface layers (i.e. under canopy, under rock
or soil temperatures), which are important for ecological

Fig. 7. Boxplots of selected thermal landscape metrics from the TIR orthophoto graphs for entire surface (a), plan t surface (b) and soil surface (c)
for the mean temperature (1), patch richness (2), aggregation index (3) and cohesion index (4). Data from the 12 studied potato fields are pooled.
Phenological stages are given in abscisewhere P1= leaf development stage, P2 = inflorescence stage and P3 = mature stage.
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studies. Combining precise climatic time series of these
beneath-surface layers (Faye et al. 2014) to UAV-TIR imagery
could therefore be a promising route to better understand the
landscape scale thermal ecology processes that affect living
organism. Our toolbox can also be used for assessing the
temporal evolution of the thermal heterogeneity of natural
landscape by repeating the data acquisition’s step. Indeed,
because UAV flights are GPS based and follow a same flight
plan, they can be repeated over day and night at short time
steps (e.g. each hour) to yield a complete picture of the thermal
landscape experienced by organisms during 24 h ormore.
The spatial extent at which microclimates can be explored

with this methodology is determined by the flight time capacity
of the UAV (Watts, Ambrosia & Hinkley 2012; Anderson &
Gaston 2013; Ballesteros et al. 2014), that is at least tens of
hectares at once (depending on the resolution needed), or
larger if thermal orthophotogra phs are merged. Consequently,
our toolbox would be most useful to ecologist interested in
exploring the thermal ecology of a vast number of study mod-
els such as: the microdistribution of alpine plants (Scherrer &
Koerner 2010), the microclimate at the leaf surface in tree
canopies (Pincebourde et al. 2007), the spatial segregation of
terrestrial insects along thermal gradients (Dangles et al. 2008;
Wittman et al. 2010), thermally complex urban ecosystems
(Meineke et al. 2013) or the distribution of desert lizards’ ther-
mal refuges (Sears & Angilletta 2015). Moreover, our method-
ological framework would facilitate the monitoring of
microclimates in out-of-reach areas such as top forest canopies
or extensive intertidal zones (Helmuth & Hofmann 2001), with
appropriate thermal resolution for the study of flora and fauna
that live in these remote environments.
The framework proposed here provides a way to link the

various mechanisms operating at different spatial scales. On
one hand, sophisticated toolboxes are available to compute
the body temperatures (e.g. Gates 1980), or the plant sur-
face temperatures (e.g. Jones 1992), from bioclimatological
data. These models operate at the scale of the organism or
the plant organ, and they integrate eco-physiological knowl-
edge (e.g. transpiration rate of plants) with physical laws of
heat transfers. On the other hand, remote sensing of surface
temperatures taken by satellites (e.g. MODIS, Kuenzer &
Dech 2013) operates at very large scale. These data are
widely used in macroecological studies, including ecosystem
functioning, carbon cycles. Linking fine-scale mechanisms
to large-scale processes requires specific tools to describe
how the thermal variations at fine-scale translate into
detectable surface temperature shifts at coarse scale. Com-
plex biophysical models exist to describe the spatial thermal
heterogeneity at regional extent, but these models demand
huge effort to be parameterized (Bennie et al. 2008;
Dobrowski 2011; Kearney, Isaac & Porter 2014). Our tool-
box establishes empirically this link between fine-scale eco-
physiological mechanisms and large-scale processes in a
straightforward fashion, with interest ultimately for global
change biology and ecosystem services studies.
Finally, two constrains might hamper the adoption of this

toolbox: first, UAV and TIR systems are cheap but not inex-

pensive (e.g. 30 000$ for the all system used in this study) and
6 months of practise will be necessary to gain UAV and map-
ping proficiency. Secondly, the administrative restrictions such
as the governmental approval for flying (Watts, Ambrosia &
Hinkley 2012; Allan et al. 2015; Vincent, Werden & Ditmer
2015), mainly in the United States and Europe for now, are the
most time consuming and difficult step to achieve for using
UAVs in scientific research.
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Appendix S1: Example of a ground control point (GCP) for RGB and TIR orthophoto. A. 

Photograph of the 1m2 black square canvas sheet placed on the CGP location. B. The GCP 

identified in the RGB orthophoto. C. The GCP identified in the TIR orthophoto. The white 

crosses show the GPS position of the GCP measured on field before flying. The white bars 

are scale bars of 80 cm. 
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Appendix S2: RGB and TIR orthophotos aligned with the digital surface model exported 

from the mapping software for one of the studied field. A. The 3D RGB orthophoto. B. The 

3D TIR orthophoto. C. Simple 2D TIR cross-section of the length of the studied field. Red 

and blue colours show temperature gradient. 

 

Generally, the mapping process starts with the selection of the photographs with sufficient 

overlap from multiple positions. Next, an image feature recognition algorithm (similar to the 

one described by Lowe 2004) is used to automatically detect and match the tie points between 

overlapping images, i.e. characteristic image objects. After a bundle adjustment on the 

matched features (Triggs et al. 2000), using the image position, orientation and the camera 

parameters, the software creates a densified point cloud based on multi-view stereo 

algorithms (Furukawa & Ponce 2009).$The georeferencing of the densified point cloud (i.e. 

the orientation, scale and direction) in the coordinate system defined by the user is enhanced 

by the use of geotagged images and ground control points. Then based on this densified point 

cloud, the aerial images are gridded into a digital surface model, which is used to orthorectify 
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the images (geometrical correction for standardizing the scales and directions). The 

orthomosaic of all acquired images is adjusted (brightness, contrast, mesh configuration, etc.) 

using the Mosaic editor menu. 

 

References appendix S2: 

Furukawa, Y., & Ponce, J. (2009). Accurate & camera calibration from multi-view stereo and 

bundle adjustment.  International Journal of Computer Vision, 84(3), 257-268. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Journal of 

International Computer Vision, 60, 91–110. 

Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (2000). Bundle adjustment - a 

modern synthesis. Lecture Notes in Computer Science, 1883, 298–372. 
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Appendix S3: RGB orthophoto classification. Histograms showing the spectral signature of 

the ten training polygons - sample areas in the RGB image that represent different surfaces in 

the interactive supervised classification, i.e. 5 for plant and 5 for soil surfaces-, for each band 

of the RGB orthophoto. Theses polygons were used to check the separability (low 

overlapping) and distribution of the training samples to classify the rest of the pixels of the 

orthophoto using the classification tool in ArcGIS. 
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Appendix S4: R script for spatial analysis of thermal raster images 

#!/usr/bin/env RScript 
########################################################################################### 
### Supplementary Information                                                           ### 
### A toolbox for studying fine-scale spatial thermal heterogeneity: from unmanned      ### 
### aerial vehicle imagery to landscape metrics                                         ### 
### E. Faye, F. Rebaudo, D. Yanez, S. Cauvy-Fraunié, O. Dangles                         ### 
########################################################################################### 
 
### This script describes how to use thermal information contained in text files  
### exported from a GIS software. The first part specifies the required packages in R.  
### The second part specifies how to convert text files into ascii files, then the third  
### part how to compute metrics. Please do not hesitate to contact us for any question:  
### E. Faye: <ehfaye@gmail.com> ; F. Rebaudo: <francois.rebaudo@ird.fr> ;  
### O. Dangles: <olivier.dangles@ird.fr> 
 
########################################################################################### 
### environmental variables 
########################################################################################### 
wd<-getwd()# working directory (change getwd() for something like "/home/myname/Documents/") 
myFilesPattern<-"(.txt)$"# text files selection using a regular expression (?regex() for help) 
NAvalues<-TRUE           # TRUE if NA values, FALSE otherwise 
locNAvalue<-c(1,1)       # location of a pixel known to have a NA value (if NAvalues<-TRUE) 
trans<-1000 # if values need to be transformed: x = x / trans (set to 1 if no transformation) 
nbDigitsSign<-0          # number of digits for the temperature 
pxsize<-0.0025           # pixel size in m2 
### The following script will create a CSV file tableLandMetrics.csv which can be read in R 
### using read.table("tableLandMetrics.csv",header=TRUE,sep=",") 
########################################################################################### 
 
### [1] install and load packages 
### [2] select text files from working directory and transform to ascii 
###   [2.1] set working directory 
###   [2.2] select files 
###   [2.3] transform to ascii files 
### [3] perform metrics on the files imported and return results within a data.frame 
### [4] graphics 
 
### [1] install and load packages 
pkgCheck <- function(x){ # check for a package, install and load 
 if (!require(x,character.only = TRUE)){ 
  install.packages(x,dependencies=TRUE) 
  if(!require(x,character.only = TRUE)) { 
   stop() 
  } 
 } 
} 
pkgCheck("SDMTools") 
pkgCheck("raster") 
pkgCheck("sp") 
pkgCheck("maptools") 
 
### [2] select Text files from working directory and transform to ascii 
# [2.1] set working directory 
setwd(wd) 
# [2.2] select files 
myTextFiles<-list.files(pattern=myFilesPattern) 
print(myTextFiles) 
 
# [2.3] transform to ascii files 
lapply(myTextFiles,function(x){ 
  rasterFile<-raster(x) 
  ascFile<-asc.from.raster(rasterFile) 
  if(NAvalues==TRUE){ascFile[ascFile==ascFile[locNAvalue[1],locNAvalue[2]]]<-NA} 
  ascFile<-round(ascFile/trans,digits=nbDigitsSign) 
  write.asc(ascFile,file=strsplit(x,"\\.")[[1]][1]) 
  return(paste("File: ",x," -> ",strsplit(x,"\\.")[[1]][1],".asc [ok]",sep="")) 
}) 
 
### [3] perform metrics on the area of interest and return results within a data.frame 
myAsciiFiles<-list.files(pattern="(.asc)$") 
myAsciiContent<-lapply(myAsciiFiles,function(x){read.asc(x)}) 
metrics<-sapply(seq(length(myAsciiContent)),function(myAsc){ 
 Px_TIR<- length (myAsciiContent[[myAsc]][!is.na(myAsciiContent[[myAsc]])])# Number of 
pixels 
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 Area_TIR<-Px_TIR*pxsize                          # Area (m2) 
 cclmyAsc<- ConnCompLabel(myAsciiContent[[myAsc]])# Define a simple binary matrix of the 
same size and extent 
 stats_TIR<-unlist(ZonalStat(myAsciiContent[[myAsc]], cclmyAsc, FUN = 
c("mean","sd","min","max")))  # Descriptive statistics at the landscape level  
 land_metrics_TIR<-ClassStat(myAsciiContent[[myAsc]], cellsize = pxsize, latlon = 
FALSE)# landscape metrics 
 PR_TIR<- sum (land_metrics_TIR [,2])             # Patch Richness 
 AI_TIR<- sum(land_metrics_TIR [,34]*land_metrics_TIR [,4])# Aggregation Index at 
Landscape level 
 SHDI_TIR<- -sum(land_metrics_TIR [,4]*log(land_metrics_TIR [,4]))# Shanon Diversity 
Index 
 PD_TIR<- PR_TIR/Px_TIR                           # Patch density 
 SIDI_TIR<- 1 - sum (land_metrics_TIR [,4]*land_metrics_TIR [,4])# Simpon's Diversity 
Index 
 LSI_TIR <- sum (land_metrics_TIR [,8]*land_metrics_TIR [,4])# Landscape shape index 
 CI_TIR <- sum((replace(land_metrics_TIR [,38],is.na(land_metrics_TIR 
[,38]),0))*land_metrics_TIR [,4]) # Landscape cohesion index 
 return(matrix(c(Px_TIR,Area_TIR,stats_TIR[2],stats_TIR[3],stats_TIR[4],stats_TIR[5],PR_
TIR,AI_TIR,SHDI_TIR,PD_TIR,SIDI_TIR,LSI_TIR,CI_TIR),dimnames=list(c("Px_TIR","Area_TIR","stats
_TIR_mean","stats_TIR_sd","stats_TIR_min","stats_TIR_max","PR_TIR","AI_TIR","SHDI_TIR","PD_TIR
","SIDI_TIR","LSI_TIR","CI_TIR"),c(myAsciiFiles[myAsc])))) 
}) 
 
metrics<-
matrix(metrics,ncol=length(myAsciiContent),dimnames=list(c("Px_TIR","Area_TIR","stats_TIR_mean
","stats_TIR_sd","stats_TIR_min","stats_TIR_max","PR_TIR","AI_TIR","SHDI_TIR","PD_TIR","SIDI_T
IR","LSI_TIR","CI_TIR"),c(myAsciiFiles))) 
tableLandMetrics<-t(data.frame(metrics,row.names=rownames(metrics)))# convert matrix to table 
print(tableLandMetrics) 
write.csv(tableLandMetrics,"tableLandMetrics.csv", quote = FALSE) # save data into a csv file 
 
### [4] graphics 
pdf(file="BOXPLOT_tableLandMetrics.pdf") 
 par(mfrow=c(4,4),mar=c(4,4,1,1)) 
 sapply(1:length(tableLandMetrics[1,]), 
function(x){boxplot(tableLandMetrics[,x],xlab=colnames(tableLandMetrics)[x],main="")}) 
dev.off() 
pdf(file="HIST_tableLandMetrics.pdf") 
 par(mfrow=c(4,4),mar=c(4,4,1,1)) 
 sapply(1:length(tableLandMetrics[1,]), 
function(x){hist(tableLandMetrics[,x],xlab=colnames(tableLandMetrics)[x],main="")}) 
dev.off() 
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Appendix S5: Potato crop phenological stages’ used in the main document. The figure shows 

images of potato crop fields in the visual (column #1) and thermal infrared (column #2) 

spectral range at the A. Leaf development, B. Inflorescence, and C. Mature growth stage. The 

white scale bars represent 1-meter length. 
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Appendix S6: Boxplots of the spatial metrics performed on TIR orthophotos across plant 

phenology for all the studied fields for A. all surfaces, B. Plant surfaces and C. Soil surfaces. 

Phenological stages are given in abscise where P1 = leaf development stage, P2 = 

inflorescence stage and P3 = mature stage. The acronym AOI refers to area of interest. 
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The last Chapter of this thesis is the application in situ of the methods developed in Chapter II 

in view to understand the relationship between crop microclimates and pest occurrences in 

potato fields. For this, we assessed the thermal heterogeneity of surface temperatures at the 

field scale with aerial infrared thermography done at fine spatial resolution. In the same time, 

a sampling of four major potato pests in the study region was performed in the studied fields. 

We then evaluated the fine-scale thermal heterogeneity of crop canopy implications for pest 

performance and mobility regarding their thermal tolerance for development. Finally, we 

compared a variety of spatial metrics of the surface microclimates in crops with the pest 

abundance and richness measured in fields. This work took place on 38 potato fields of the 

central Ecuadorian Andes and revealed that few centimetres matter when considering optimal 

thermal environments for pest performances. 

 

This work was performed in collaboration with the ‘Instituto Nacional de 

Investigaciones Agropecuarias’ (INIAP) and the ‘Escuela Superior Politécnica de 

Chimborazo’, Ecuador. This last Chapter is a manuscript to submit to Journal of Applied 

Ecology: 

 

- Faye, E., Rebaudo, F., Carpio, C., Herrera, M., & Dangles, O. Does heterogeneity in 

crop canopy microclimate matter for pests? Evidence from aerial high-resolution 

thermography. To submit in Journal of Applied Ecology. 
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Abstract 

1- A vast majority of agricultural pests and diseases are strongly influenced by 

microclimatic conditions that affect their performance and distribution. Thermal 

heterogeneity experienced by crop pests at fine spatial scales is potentially key to 

understand pest dynamics, yet its study over entire fields has never been performed. 

2- We used aerial infrared thermography to yield fine-resolution measurements (5 

millimetres pixel side) of crop canopy temperatures in 38 potato fields in the 

Ecuadorian Andes. In each field, we characterized the spatiotemporal thermal 

heterogeneity of crop canopy and sampled populations of four common potato pests 

(trips, aphids, dipterans, and fungi) in 30 different plots (total of 1140 thermal 

images). We then evaluated the fine-scale thermal heterogeneity implications for pest 

performance and compared a variety of thermal metrics with pest abundance and 

richness measured in field. 

3- We found that the range of temperatures available for pests in crop canopies was 

mostly independent on scale: pests can access in their close vicinity (1.2 m) most of 

the thermal microenvironments recorded at the field level. Also, the availability of 

thermal microenvironments was strongly dependent on solar radiations: with 

increasing radiation levels, pests have to travel less distance to reach a variety of 

temperatures. 

4- At the plot level, we found no relationship between pest abundance and thermal 

metrics: the four studied pests were not clumped in their supposedly preferred thermal 

conditions but distributed rather evenly. However, pest richness was significantly 

correlated to both thermal aggregation and diversity index: more diverse and distinctly 

distributed thermal environments presented higher diversity of pest. Finally crop pests 

always have a wide range of possibilities to regulate the temperature of their 
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environment within very short distances. 

5- By measuring crop microclimates at fine spatial resolution over entire fields, our study 

revealed that a few centimetres suffice for providing enough optimal thermal 

environments for crop pests to enhance their performances.  

 

Introduction 

Microclimate effects on ectotherm populations have long been studied from an 

ecological perspective (Cloudsley-Thompson 1962, Ferro et al. 1979, Willmer 1982, Frazier 

et al. 2006, Scheffers et al. 2014, Storlie et al. 2014, Rojas et al. 2014). The spatiotemporal 

heterogeneity of microclimates (Woods et al. 2014, Sears & Angilletta 2015) and the 

biophysics connecting their properties to those of local macroclimates (Holmes & Dingle 

1965, Bakken 1992, Gates 1980, Kearney et al. 2014) are widely recognized for shaping 

ectotherms distribution and metabolism (Porter et al. 2002, Storlie et al. 2014, Raghu et al. 

2014). Body temperature is strongly altered by changes in the organism’s physical 

environment, inducing a direct relationship between environmental parameters and the 

metabolism of the organism (Sears & Angilletta 2015). The relatively small size of most 

ectotherms (e.g., insects) allows them to exploit a great diversity of small-scale variations in 

microclimate that are not available to larger animals (Ashton 2009). Consequently, it is well 

acknowledged that quantifying the spatiotemporal heterogeneity of the thermal environment 

as perceived by small organisms (i.e., at the proper scale) is of prime importance for 

understanding their distribution and biological responses in their microhabitats (Potter et al. 

2013, Storlie et al. 2014). 

Although the spatiotemporal structure of microclimates has been shown to affect 

insect populations (Cloudsley-Thompson 1962, Willmer 1982, Porter et al. 2002, Raghu et al. 

2004, Scheffers et al. 2014, Storlie et al. 2014, Woods et al. 2014), implications in the context 
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of agricultural pests have been poorly explored. Being ectotherms, agricultural pests respond 

to the rules of thermal dependency for achieving their optimal performances (Davis et al. 

2006, Angilletta 2009). That is why precise information on pests’ thermal responses is crucial 

for understanding their occurrence and dynamics (Travis et al. 2011). However, very few 

studies have focused on the potential effects of microclimates on pest distribution at the field 

scale (Ferro 1979, Juroszek & Von Tiedemann 2013, Sutherst 2014). Tompkins et al. (1993) 

and Suh et al. (2002) showed how agronomic practices and canopy closure influenced the 

infestation of crop diseases and pests by modifying the components of the inside field 

microclimates (Septoria sp in wheat field and Trichogramma exiguum in cotton field, 

respectively). Also, Willmer et al. (2008) reported how intra-field microclimates constrained 

the distribution patterns of raspberry beetle (Byturus tomenfosus). But these studies 

concentrated on punctual measurements of microclimatic parameters rather than a continuous 

assessment of the spatial heterogeneity of microclimates at fine spatial scale in the field. 

Technical limitations in microclimate measurements have long impeded the exploring 

to what extent the spatiotemporal heterogeneity in microclimatic conditions can potentially 

influence crop pest distribution and their damages at the field level. However, recent 

developments in thermal infrared camera resolution and mobility (e.g., using unmanned-aerial 

vehicles – UAV) now allow characterizing microclimates experienced by tiny insect pests 

over large field surfaces (Faye et al. 2015). Here, we used aerial thermal infrared (TIR) 

cameras (both fixed on UAV and long perches) to yield accurate estimate of the 

spatiotemporal heterogeneity of surface temperature at the field scale and relate this 

information with the occurrence of four major potato pests. We sampled 38 potato fields 

(Solanum tuberosum L.) with aerial thermal infrared and visual imagery (5 mm resolution and 

3.2 x 2.4 m extent for the perches based thermal images) to obtain, after a GIS processing, the 

surface temperatures of crop canopies only. With this methodology we reached an average 
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TIR coverage of 21.41% (±7.91%) of the 38 potato fields. The main objectives of this study 

were 1) to characterize the intra-field spatiotemporal heterogeneity in surface temperature at a 

scale relevant for pests (both insects and fungi) living at the leaf surface, and 2) to assess 

whether such thermal heterogeneity can be related to pest performance and occurrence in 

various parts of the field. We hypothesized that 1) the range of temperatures available for 

pests in crop canopies within the field was mostly independent upon the spatial scale 

considered, 2) daily variations in radiations influence microclimate habitats available for 

pests, 3) pest performance is affected by thermal heterogeneity in space and time, 4) pests 

would be found at higher densities in thermal microclimates optimal for them, and 5) higher 

diversity of microclimates would allow a co-occurrence of higher richness of pest species. 

 

Materials and methods 

Data acquisition in the field 

Study area. Measurements were carried out during the last two weeks of January 2014 in 38 

potato fields located 115 km south from the equatorial line (01°01’36’’S, 78°32’16’’W) at 

2850 +/-135 m.a.s.l. in the Cotopaxi province of Ecuador. The low seasonality occurring in 

this region (less than 1°K average mean monthly temperature variations) allows potato crops 

to be planted and harvested all year round, making convenient the study of crops at different 

growth stages at the same time (Faye et al. 2014). Therefore, the 38 fields provided a variety 

of potato phenology from leaf development to mature stage (Appendix 1). The studied fields 

were planted with 1-m spaced rows (±0.16) and with 0.5-m spaced plants (±0.06) within a 

row. Fields were not irrigated since at least 3 days before sampling. The field areas were 

relatively small, ranging from 630 to 3072 m2 (average of 1265 m2). Additional 

characteristics of studied fields and the dates of measurements are given in Appendix 1. 

 



CHAPTER III 

 
 
185 

Solar radiation recordings. During the period of data acquisition, we recorded in each studied 

field global solar radiation (in watt/m2) using a pyranometer sensor facing the sky vault (LI-

1400, LI-COR, Lincoln, USA). The global solar radiation logger was located nearby the 

studied field and recorded the global solar radiation for each TIR image taken. 

 

Acquisition of aerial TIR and visible images. Thermal infrared (TIR) images were acquired 

using a TIR camera (HR research 680, InfaTec, Dresden, Germany) equipped with a 

640×480-pixel uncooled micro-bolometer sensor and a 30 mm lens. The TIR camera recorded 

the long-wave infrared radiation emitted by objects in the spectral range from 7.5 to 14 µm. 

The thermal sensitivity of the TIR camera was < 0.03K at 30°C, and the measurement 

accuracy was ± 1.5K. The TIR camera was switched on at least ten minutes before 

measurements to allow sensor stabilization. The emissivity was fixed to 0.98, the emissivity 

of potato plant surface (Rubio et al. 1997). Digital RGB images were acquired with a GoPro 

(GoPro 3+ black edition, GoPro Inc., USA) that was attached to the thermal camera with both 

lenses pointing the same direction (Fig. 1). The GoPro camera had a 12-megapixel sensor and 

was settled in photo mode with a narrow field of view to avoid image distortions.  

Both types of images were acquired using either an unmanned aerial vehicle (UAV) or 

a gutter pipe. We first carried on UAV flights over twelve potato fields to assess the scale-

dependence of thermal heterogeneity (hypothesis 1), by following the method described in 

Faye et al. (2015). Briefly, we flew a hexacopter UAV 60 m a.g.l. over 12 fields to yield one 

TIR and one RGB orthophoto with a resolution of 5 cm2 and 1.2 cm2, respectively. For 

technical reasons we were not able to fly over all the 38 potato fields using the UAV so we 

developed an alternative method in which the cameras were mounted on a 6-m long gutter 

pipe with a +20° angle to the pipe axis. Then, the pipe was tilted by +70° to the ground to 

obtain perfectly perpendicular TIR and RGB images, as it is the case with UAV acquisition 
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(Fig. 1). At this distance from the ground, the field of view of the TIR camera was 3.2 x 2.4 m 

with a pixel side of 5 millimetres. Within each field, we evenly selected 10 study points at 

which microclimatic conditions were recorded following Faye et al. (2014) (see Appendix 5 

for details). At each of the ten study points within a field, we simultaneously triggered the 

TIR and RGB camera at 3 locations around the point: on the front side, at 90° rotation on the 

left side and at 90° rotation on the right side of the point (corresponding to a total of 1140 TIR 

and 1140 RGB images acquired, i.e., 10 study points x 3 image locations x 38 fields). The 

pipe method allowed us an average TIR coverage of 21.41% (±7.91%) in the 38 potato fields 

(Appendix 1). The thermal heterogeneity recorded by pipe was comparable to that recorded 

by the UAV (see Fig. 2) 

 

 

Figure 1: Aerial thermal infrared methodologies used for the experiments. A. Photograph of 

the UAV and the 6 m high gutter pipe equipped with the TIR and RGB cameras. B. RGB 

images for three potato fields at different phenologies: B.1. leaf development, B.2. 

inflorescence, and B.3. mature stages. C. TIR images of the same 3 fields. Dimension of TIR 

and RGB images: 3.2 x 2.4 m. 
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Pest assessment. Simultaneously to the microclimate data acquisition, we assessed, in each of 

the 30 image extents per fields (see above), population levels of most common potato pests 

and diseases. Pest assessments were made by the same persons (CC and MH), both experts in 

potato pest identification. They enumerated the following pests: Frankliniella tuberosi 

(Moulton), Liriomyza huidobrensis (Blanchard), Myzus persicae (Sulzer) and Phytophthora 

infestans (Mont.). The sampling of adults thrips (F. tuberosi), aphids (M. persicae) and 

diptera leafminers (L. huidobrensis) was made by plant beating on a white plastic tray (35 cm 

length × 30 cm width × 5 cm of depth) repeated twice and a direct counting of the remaining 

insects on the lower leaf surfaces (Weisz et al. 1996). Because P. infestans is an oomycete 

responsible for the potato late blight, its infestation has been measured as the rate of the total 

plant surfaces affected by the disease. These four pests are among the most damaging pests of 

potato worldwide and represent alone 70% of the potato pest occurrence in the study area 

(Pumisacho & Sherwood 2002). 

 

Image treatment and data sets 

Image processing. TIR and RGB images were processed following Faye et al. 2015. Briefly, 

images were paired using the camera’s clock and then aligned and geometrically-matched 

using ArcGIS 10.2 (ESRI, Redlands, USA). Afterward, images were processed in ArcGIS for 

extracting in the TIR images the surfaces belonging to the plant canopy only. This procedure 

used RGB image classification (between soil and plant surfaces) to provide a shapefile mask 

of the plant surface that was used for extracting the plant surfaces in the TIR image. As we 

were interested in relating microclimatic conditions to pest population levels, and assuming 

that mobile pests can move independently in all directions from their initial location, we 

selected the largest circle (1.2 m-radius) that could be drawn within the 3.2 x 2.4 m extent of 

the TIR images. These circles avoided potential bias in quantifying thermal heterogeneity 
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available for pests as they ‘provided’ a pest moving further away from its initial location with 

the same number of pixels in all directions. 

 

Pests’ optimal temperatures data. Among all studied pest, four have been intensely studied 

for their agronomical and economical interests. Consequently, we searched in the literature 

information on the thermal biology of the adult stages of these four pests. In particular, we 

gathered minimum and maximum critical temperatures (CTmin and CTmax) to identify 

growth performance ranges (or thermal tolerance ranges, Huey & Stevenson 1979). The 

optimal temperature (Topt) at which the growth rate is maximal was either extracted directly 

from the literature or estimated as the last quartile of the growth performance range. Indeed, 

thermal performance curves of growth rate for insect are known to display a marked negative 

skewness and a rapid drop after the Topt, making the Topt likely to be situated within the last 

quartile of the growth performance range (Huey & Stevenson 1979, Frazier et al. 2006). 

These thermal parameters for each pest growth performance and their related references are 

given in Table 1. 

 

 

Table 1: Thermal parameters of the growth performances for the four studied potato pests as 

identified in the literature. Topt, Tmin-Tmax and Last quartile are expressed in °C. 
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Data analyses 

To assess the effect of the spatial scale on thermal heterogeneity (hypothesis 1), we computed 

the distance and the difference in surface temperatures between all the pixels of the TIR 

images and two specifically chosen pixels P1 and P2. These two pixels, different for each 

image, were chosen to be both the nearest from the central pixel of the image and the closest 

possible to the mean temperature value of the image. P1 and P2 were selected with various 

thresholds to ensure the accuracy of their location on the images and the proximity to the 

selected temperature value (see R script provided in Appendix 2 for details). The temperature 

value of P1 and P2 was compared to the temperature value of all the pixels of the TIR circle 

(P1 – Pi). Additionally, the distance separating P1 (and P2) with all of the others pixels of the 

TIR circle (Pi) was calculated using the Pythagorean theorem and expressed in metre 

(Appendix 2 for details). Consequently, we obtained the distance (in m) and the Δ 

temperature (in Kelvin) between each pixel of the image and P1 (and P2). We then computed 

a bivariate binning of the calculated distance and Δ temperature and plotted it in a hexagonal 

binning plot. In these plots, hexagonal cells with count > 0 are plotted using a colour ramp in 

proportion to the counts (i.e., the number of pixels of the image that fall within this cell). 

Using this procedure, and following the concepts proposed by Jackson & Fahrig (2015), we 

assessed how spatial scale affected the thermal heterogeneity of potato crop canopies by 

selecting five circles of different radius (1.2 m, 6 m, 12 m, 18 m, and 24 m) on the twelve 

UAV orthophotos (Fig. 2 present this analysis for one of them). All circles were centred onto 

the middle point of the entire field. All analyses were coded in R (R Core Team, 2014) using 

various packages (Hexbin, Mass, SP, and Raster; see Appendix 2 for the full code and 

details). 

To assess the effect of radiations on thermal heterogeneity (hypothesis 2), we plotted 

the relationship between the minimums, maximums, means and standard deviations of the 
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plant surface temperatures versus the global solar radiation for the 1140 TIR images (Fig. 3). 

Fit significance was assessed using a Spearman-rank test using Table Curve 5.01 software 

(Systat Software, Chicago, Illinois). 

 

To explore how thermal spatiotemporal heterogeneity would affect pest performance 

(hypotheses 3-5), we first plotted the bivariate binning of distance and Δ temperatures and all 

other pixels included in the last quartile of the thermal tolerance range for pest development 

depending on radiations classes (Fig. 5). P1 and P2 were chosen to be the closest to the Topt 

of each pest. We then related pest abundance (i.e., the number of individuals on a given potato 

plant) with the mean surface temperatures (Fig. 6) and plotted two spatial metrics of thermal 

landscapes configuration (i.e., Aggregation index and the Shannon’s diversity index, see Faye 

et al. 2015 versus pest richness (Fig. 7, Appendix 3). 
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Figure 2: Effect of spatial scale on surface temperature heterogeneity in potato fields. A. 

RGB orthophoto acquired from an unmanned aerial vehicle. Red dots represent the ten study 

points evenly distributed in the field (yellow circle). Coloured surfaces show the TIR pixels of 

the plant canopy extracted from the TIR orthophoto: orange for the thirty1.2 m-radius circles, 

and red, green, blue, pink and yellow for 1.2, 6, 12, 18 and 24 m-radius circles, respectively, 

all centred on the same central point of the field (black cross). B. Hexagonal binning plot of 

the Δ distance (in m) and Δ temperature (in K) for the different TIR circles with 

corresponding colours. The black line displayed the contour of the hexagonal binning plot of 

the largest circle. 
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Results 

Spatiotemporal heterogeneity in crop surface temperatures 

Micro-environmental temperatures of potato crop canopies were highly heterogeneous at the 

field level, in a range comprised between +15ºC and -5ºC when compared to the mean field 

temperature (Fig. 2). This heterogeneity was poorly affected by the scale considered as the 

temperature deviation that occurred within 30 repeated 1.2 m TIR circles (total area of 45 m2) 

ranged from -4.47 to +17.33 K around the mean temperature of the larger TIR circle (in 

yellow) while the thermal heterogeneity of larger circles (i.e., green circle of 113 m2, blue 

circle of 452 m2, pink circle of 1017 m2 and yellow circle of 1808 m2) spanned between -4.69 

to + 17.69 K (Fig. 2 B.). However, a single 1.2-m TIR circle of 4.53 m2 encompassed a 

smaller range of temperatures (-2.25 to +8.97 K, red TIR circle in Fig. 2 A.) suggesting that 

temperature heterogeneity may be affected at very small scales. Thermal spatial metrics (i.e., 

Patch density, Aggregation index, Shannon’s diversity index and Patch connectivity index) 

were also globally consistent across spatial scales (Table 2). 

 

Table 2: Spatial metrics of the 5 TIR circles and 30 repeated 1.2m TIR circles. Orange are the 

30 repeated 1.2m TIR circles, red, green, blue, pink and yellow the TIR circles of 1.2, 6, 12, 

18, 24 m radius, respectively. Metrics presented in this table are commonly used metrics for 

featuring the spatial composition and configuration of landscape, here applied to thermal 

surface crop canopies (see Faye et al. 2015 for details). PD is Patch density, AI, SHDI and 

PCI are Aggregation index, Shannon’s diversity index and Patch connectivity index, 

respectively. 
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 Temporal changes in solar radiations strongly affected thermal patterns in potato field 

canopies (Fig. 3). Minimum, maximum and mean temperatures all increased at higher 

radiations (from 10.37, 10.53, 10.60ºC at 120 watt/m2 to 36.60, 26.37, 23.48ºC at 1500 

watt/m2, respectively). Interestingly, thermal heterogeneity also varied by 400% between both 

extreme radiation levels, with highest radiation levels showing highest thermal heterogeneity. 

 

 

 

 

Figure 3: Squatter plots of the 1140 TIR image temperatures (SD) temperatures versus solar 

radiations. A. mean (green dots), minimum (blue dots) and maximum (red dots) temperatures 

versus radiations fitted to a log-model (R2 = 0.65 for the three fits). B. Standard deviation of 

the 1140 TIR image temperatures versus the solar radiations. 
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Thermal microenvironments and crop pests 

 We found that the range of surface temperatures that a pest can access in crop 

canopies increased with the distance it travelled from its initial position (Fig. 4). While a pest 

can always find a wide range of temperature at short distance, these microenvironments are 

very rare (light grey in Fig. 4). Interestingly, the probability for a pest to find wide range of 

temperatures not only increases with distance but also with solar radiations. When travelling 

0.2 m from its starting point, a pest disposed of a span of high frequency cells of ±1.29 K at 

the 0-400 watt/m2 levels while it reached a span of ±3.24 K at 1201-1600 watt/m2. When 

crossing the maximum distance considered (1.2 m from the initial pixel) this temperature 

range increases from ±2.68 K (0-400 watt/m2) to ±6.93 K (1201-1600 watt/m2). In other 

words, to access a range of temperatures of ±2.68 K, a pest would have to travel 1.2 m under 

low radiation conditions, but only 0.11 m under high radiation conditions. 

 



CHAPTER III 

 
 
195 

 

Figure 4: Hexagonal binning plot of the distance (in m) and Δ temperature (in K) for the 

1140 TIR images as a function of solar radiation classes (A. R1= 0-400, B. R2= 401-800, C. 

R3=801-1200 and D. R4=1201-1600 watt/m2). The colour scale shows the occurrence of the 

TIR pixels that falls into the hexagonal cell. Light grey cells show an occurrence of 1 (the 

lowest). 

 

 When exploring how thermal heterogeneity in potato field surface temperature may 

potentially affect pest development (here the last quartile of the thermal tolerance range for 

each pest), we found that the four studied pest had many possibility to stay within their 

thermal tolerance range by travelling relatively short distances at the surface of crop potato 

canopy (Fig. 5). As a general pattern, pests under low radiation conditions have more 

opportunities to find cooler than warmer microenvironments at all distances, but still keep 

many available pixels to increase their environmental temperature. Only species as M. 
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persicae, with a high optimal temperature for growth performance (34°C), would experience 

thermal constrains under such conditions (Fig. 5 third row, first column). At high radiation 

levels, pests with high optimal temperatures (F. tuberosi and M. persicae) would need to 

travel larger distances to increase their chance of finding warmer microenvironments than 

cooler ones. The opposite pattern is found for species with low optimal temperature (e.g., L. 

huidobrensis). 

 

 

 

Figure 5: Hexagonal binning plot of the distance (in m) temperatures included in the last 

quartile of the thermal tolerance range for each pest species, as a function of solar radiation 

classes. Optimal temperature for the growth performance for each pest in given in red. The 

colour scale shows the occurrence of the TIR pixels that falls into the hexagonal cell. Light 

grey cells show a occurrence of 1 (the lowest). 
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Figure 6: Distributions of mean (± SD) pest abundances (green) and frequency of image 

pixels (white), as a function of surface mean temperatures in the 1140 TIR images A. 

Frankliniella tuberosi, B. Liriomyza huidobrensis, C. for Myzus persicae; D. Phytophthora 

infestans. The red dotted line indicates the last quartile of the thermal tolerance range for 

growth rate for the respective pests. 

 

We found no association between mean pest abundance and the mean temperature 

measured in the TIR images (Fig. 6). The four studied pests were not clumped in their 

supposedly preferred thermal conditions but distributed rather evenly and found in the whole 
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range of mean thermal conditions. However, our study revealed that pest richness 

significantly increased as thermal aggregation index decreased and thermal Shannon’s 

diversity index increased (Fig. 7). Crop canopies with high thermal aggregation (86%) and 

low Shannon’s diversity (1.42) had poorly diverse species while those with low aggregation 

(57%) and high Shannon’s diversity index (2.48), were those infested by the highest diversity 

of species. 

 

 

 

 

Figure 7: Boxplots of the pest richness (number of pest species in the plot) vs. the 

Aggregation Index (AI) and the Shannon’s Diversity Index (SHDI) of the thermal patches of 

the 1140 TIR circles. AI = 100% when the TIR circle consists in a single patch. SHDI = 0 

when the TIR circle contains only 1 thermal patch (i.e., no diversity). 
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Discussion 

Thermal heterogeneity at relevant spatial scale for pests 

Current species distribution models, based on the concept of ecological niche, integrate 

principles of biophysical, population and spatial ecology (Kearney & Porter 2009, Buckley et 

al. 2013) to forecast the response of ectotherms to their changing environments. However, 

despite their sophistication (Kearney et al. 2014), these models fail to take into account the 

thermal heterogeneity at the scale of the studied organism (Sears et al. 2011, Potter et al. 

2013, Scheffers et al. 2014), which fundamentally biases their predictions. Typically, climatic 

features are considered constant over areas as large as 1 km2 (Potter et al. 2013) while drivers 

of microclimates such as micro-topography (Sears et al. 2011) or plant structures (Faye et al. 

2014) are known to take place at finer scales. Consequently, a general mismatch between the 

resolutions of climatic data and organism’s processes introduces great uncertainty about the 

predictions of species performance and occurrences (Potter et al. 2013). The same mismatch 

occurs for pest in agricultural landscapes (Juroszek & Von Tiedemann 2013, Sutherst 2014) 

and many studies forecast pest distribution based on macroclimates only (e.g., Bebber et al. 

2014, Sparks et al. 2014, Crespo-Perez et al. 2015). Moreover, it also exists a gap in the 

spatial scale at which studies focusing on pest distribution are conducted (Juroszek & Von 

Tiedemann 2013, Sutherst 2014). On one hand, many studies focused on pest distribution at a 

regional or global scale due to the availability of the data needed to run the models: climatic 

data such as the WorldClim, land use database such as the one of the Landcover Institute 

(e.g., Kroschel et al. 2013, Sparks et al. 2014). On the other hand, mechanistic models relying 

on biophysical processes of pest individual and microclimates (Garcia et al. 2014, and heat 

balance or thermal budget, Gates 1980) or empirical experiments under controlled conditions 

(Pincebourde & Casas 2006) are often used to understand pest infestation at the plant scale 

(Ferro et al. 1979, Willmer 1992, Chaisuekul & Riley 2005). Between these two scales very 
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few studies tried to focus on the plant-pest interactions in relation with the microclimates at 

the field scale. Notwithstanding, it is at this local scale that the foremost spatiotemporal 

heterogeneity of microclimatic conditions experienced by pests occurs, and it is at this local 

scale also that farmers manage their pests (Christensen et al. 1996, Flint & Van den Bosch 

2012). Considering this scale gap in the pest-based studies, one might conclude that 

quantifying thermal heterogeneity at relevant scale for pest organism (i.e., at the local scale) 

constitutes a major challenge for researchers interested in pest distribution. Our study 

demonstrated that methodologies exist for characterizing the intra-field spatiotemporal 

heterogeneity in surface temperature at a scale and resolution relevant for crop pests. Indeed, 

we showed that integrating 22% of the field area in TIR analysis was enough for accurately 

estimate the entire field composition and configuration in microclimates (Fig. 2). Therefore, 

we pinpointed that the thermal heterogeneity available for pests within the field was mostly 

independent on the spatial scale considered. 

 

Spatiotemporal heterogeneity of microclimates 

In crop habitats, thermal heterogeneity is produced spatially through vegetation structure 

(phenological stages, Faye et al. 2014) and dynamically through differential heating of 

surfaces as the sun moves across the sky (Wang & Dillon 2014). These patterns of surface 

temperatures related to solar radiation highlighted the temporal variability of the thermal 

heterogeneity available for pests in their environment (Fig. 3). Moreover, using high spatial 

resolution of climatic data in crop fields allowed us to reveal the robust relationship between 

the spatiotemporal heterogeneity of microclimates available for pests and solar radiation 

levels. Indeed, it is well known that solar radiation represents an important heat source, and 

numerous insect species develop thermoregulatory strategies in order to maximise or 

minimise the amount of radiative heat absorbed according to their thermal needs (Gates 1980, 
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Kingsolver 1985, Rojas et al. 2014, Sears & Angilletta 2015). Therefore, when studying 

surface temperature, one should take into account the temporal variability of solar radiations 

to yield a complete panel of the thermal possibilities that are available for crop pests. 

Furthermore, the spatial heterogeneity of microclimates in vegetation landscape such 

as crops is also driven by the 3D structure of the plants. Indeed, the canopy structure of plant 

determines directly the light interception by leaves and under surfaces elements (soils, 

shadowed leaves, stems…), which provide insect pests with additional dimensions of 

microclimates variability to improve their performances or buffer lethal events (Saudreau et 

al. 2013). By recordings the temperature within the air, air inside canopies and ground layers 

simultaneously with the 1140 TIR images, we revealed that the 3D structure of potato crops 

offered others thermal opportunities for pests (Appendix 5).  

 

Linking microclimates to pest distribution 

Assessing the relationship between plant microclimates and pest occurrences and distribution 

in crop fields is not straightforward due to the fine spatiotemporal scales of microclimate 

variability and the relative mobility of pests measured in the field. Our study revealed that 

crop pests have the possibility to regulate the temperature of their environment in a range of 

various degrees Celsius within very low distances (few centimetres to 1.2 metre) and that this 

distance depended on radiations levels (i.e., shortened with increasing radiations; Fig. 4 and 

5). Similarly, Otero et al. 2015 showed that “A few meters matter” for the performances of 

tropical lizards in open and forest landscapes of Puerto Rico regarding their thermal habitats. 

Sears & Angilletta 2015 also demonstrated that the fine-scale spatial heterogeneities of 

climatic conditions experienced by Sceloporus lizards drove their energetic costs of 

thermoregulation. Likewise, our study revealed that a few centimetres matter in crop 

microclimates for providing enough optimal thermal environments for pests to use for 
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enhancing their performances. However, pest occurrence is not only the result of the 

microclimatic conditions but rather the consequence of the integration of various factors: 

nutrition, reproduction, species interactions (natural enemies, competitiveness) and the 

conditions of the biotic and abiotic environments (Andrewartha & Birch 1960, Juroszek & 

Von Tiedemann 2013, Sutherst 2014). Among these parameters, farmer practices should be 

addressed as they can significantly modify pest occurrences in their fields (e.g., uses of 

chemical insecticides, Flint & Van den Bosch 2012). 

 An efficient way for studying the plant microclimate – pest interactions is spatially 

explicit and mechanistic modelling based on relevant biological processes and that include 

spatiotemporal heterogeneity of microclimates observed in the crop fields or mechanistically 

estimated (Sutherst 2014). Individual based model of pest traits and movements combined 

with spatially structured models such as cellular automata representing the spatiotemporal 

heterogeneity of microclimates would permits to precisely study the effect of crop 

microclimate aside onto pest distribution (Garcia et al. 2014). This theoretical approach could 

be a way for studying whether the pests modify their microclimate heterogeneity through 

mechanical alterations of the plants or whether the microclimate features attract the pests by 

providing favourable thermal niches. 

 

Acknowledgements 

This work was part of the project “Adaptive management in insect pest control in thermally 

heterogeneous agricultural landscapes” (MAN-PEST) funded by the Agence Nationale pour 

la Recherche (ANR-12-JSV7-0013-01). We are grateful to all farmers who collaborated with 

us during fieldwork. We thank Sylvain Pincebourde for lending us the pyranometer. We thank 

the Instituto Ecutoriano Especial (IEE), and particularly Danilo Yanez and Patricio Salazar 



CHAPTER III 

 
 
203 

Benavides, for their collaboration in obtaining permits for UAV studies. We thank Sophie 

Cauvy-Fraunié for her help in UAV piloting. 

 
References 

Andrewartha, H. G., & Birch, L. C. (1960). Some recent contributions to the study of the 

distribution and abundance of insects. Annual Review of Entomology, 5, 219-242. 

Angilletta, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford 

University Press. 

Ashton, S., Gutierrez, D., & Wilson, R. J. (2009). Effects of temperature and elevation on 

habitat use by a rare mountain butterfly: implications for species responses to climate 

change. Ecological Entomology, 34(4), 437-446. 

Bakken, G. S. (1992). Measurement and application of operative and standard operative 

temperatures in ecology. American Zoologist, 32(2), 194-216. 

Bebber, D. P., Holmes, T., & Gurr, S. J. (2014). The global spread of crop pests and 

pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. 

Chaisuekul, C., & Riley, D. G. (2005). Host plant, temperature, and photoperiod effects on 

ovipositional preference of Frankliniella occidentalis and Frankliniella fusca 

(Thysanoptera: Thripidae). Journal of Economic Entomology, 98 (6), 2107-2113. 

Christensen, N. L., Bartuska, A. M., Brown, J. H., Carpenter, S., D'Antonio, C., Francis, R., ... 

& Woodmansee, R. G. (1996). The report of the Ecological Society of America 

committee on the scientific basis for ecosystem management. Ecological applications, 

6 (3), 665-691. 

Cloudsley-Thompson, J. L. (1962). Microclimates and the distribution of terrestrial 

arthropods. Annual Review of Entomology, 7 (1), 199-222. 



CHAPTER III 

 
 
204 

Crespo‐Pérez, V., Régnière, J., Chuine, I., Rebaudo, F., & Dangles, O. (2015). Changes in the 

distribution of multispecies pest assemblages affect levels of crop damage in warming 

tropical Andes. Global Change Biology, 21 (1), 82-96. 

Davis, J. A., Radcliffe, E. B., & Ragsdale, D. W. (2006). Effects of high and fluctuating 

temperatures on Myzus persicae (Hemiptera: Aphididae). Environmental Entomology, 

35(6), 1461-1468. 

Faye, E, Herrera, M, Bellomo, L, Silvain, J-F, Dangles, O. (2014). Strong discrepancies 

between local temperature mapping and interpolated climatic grids in tropical 

mountainous agricultural landscapes. PLoS ONE, 9(8), e105541. 

doi:10.1371/journal.pone.0105541 

Faye, E., Rebaudo, F., Yánez, D., Cauvy-Fraunié, S. & Dangles O. (2015). A toolbox for 

studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle 

imagery to landscape metrics. Methods in Ecology and Evolution, In press. 

Ferro, D. N., Chapman, R. B., & Penman, D. R. (1979). Observations on insect microclimate 

and insect pest management. Environmental Entomology, 8 (6), 1000-1003. 

Flint, M. L., & Van den Bosch, R. (2012). Introduction to integrated pest management. 

Springer Science & Business Media. 

Frazier MR, Huey RB, & Berrigan D. (2006). Thermodynamics constrains the evolution of 

 insect population growth rates: ‘‘Warmer is better.’’ The American Naturalist, 168, 

512–520.  

Garcia, A., Cônsoli, F. L., Godoy, W. A. C., & Ferreira, C. P. (2014). A mathematical 

approach to simulate spatio-temporal patterns of an insect-pest, the corn rootworm 

Diabrotica speciosa (Coleoptera: Chrysomelidae) in intercropping systems. Landscape 

Ecology, 29 (9), 1531-1540. 

Gates, D. M. (1980). Biophysical ecology. Springer-Verlag. 



CHAPTER III 

 
 
205 

Holmes, R. M., & Dingle, A. N. (1965). The relationship between the macro-and 

microclimate. Agricultural Meteorology, 2 (2), 127-133. 

Huey, R. B., & Stevenson, R. D. (1979). Integrating thermal physiology and ecology of 

ectotherms: A discussion of approaches. American Zoologist, 19, 357-366. 

Jackson, H. B., & Fahrig, L. (2015). Are ecologists conducting research at the optimal scale?. 

Global Ecology and Biogeography, 24(1), 52-63. 

Juroszek P, & Von Tiedemann, A. (2013). Plant pathogens, insect pests and weeds in a 

changing global climate: a review of approaches, challenges, research gaps, key 

studies and concepts. Journal of Agricultural Science, 151, 163–188. 

Kearney, M. R., Shamakhy, A., Tingley, R., Karoly, D. J., Hoffmann, A. A., Briggs, P. R., & 

Porter, W. P. (2014). Microclimate modelling at macro scales: a test of a general 

microclimate model integrated with gridded continental‐scale soil and weather data. 

Methods in Ecology and Evolution, 5 (3), 273-286. 

Kingsolver, J. G. (1985). Thermal ecology of Pieris butterflies (Lepidoptera: Pieridae): a new 

mechanism of behavioral thermoregulation. Oecologia, 66 (4), 540-545. 

Kroschel, J., Sporleder, M., Tonnang, H. E. Z., Juarez, H., Carhuapoma, P., Gonzales, J. C., & 

Simon, R. (2013). Predicting climate-change-caused changes in global temperature on 

potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using 

phenology modeling and GIS mapping. Agricultural and Forest Meteorology, 170, 

228-241. 

Lanzoni, A., Bazzocchi, G. G., Burgio, G., & Fiacconi, M. R. (2002). Comparative life 

history of Liriomyza trifolii and Liriomyza huidobrensis (Diptera: Agromyzidae) on 

beans: effect of temperature on development. Environmental Entomology, 31 (5), 797-

803. 

McGarigal, K. & Marks, B.J. (1994) Fragstats: Spatial Pattern Analysis Program for 



CHAPTER III 

 
 
206 

Quantifying Landscape Structure. Oregon state university, Forest science department, 

Corvallis.  

Otero, L. M., Huey, R. B., & Gorman, G. C. (2015). A Few Meters Matter: Local Habitats 

Drive Reproductive Cycles in a Tropical Lizard. The American Naturalist, 186(3), 

E72-E80. 

Pincebourde, S., & Casas, J. (2006). Leaf miner-induced changes in leaf transmittance cause 

variations in insect respiration rates. Journal of Insect Physiology, 52 (2), 194-201. 

Porter, W.P., Sabo, J.L., Tracy, C.R., Reichman, O.J. & Ramankutty, N. (2002). Physiology 

on a landscape scale: plant-animal interactions. Integrative and Comparative Biology, 

42, 431–453. 

Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic challenges in 

global change biology. Global Change Biology, 19 (10), 2932-2939. 

Pumisacho, M., & Sherwood, S. (2002). El cultivo de la papa en Ecuador. INIAP and CIP, 

Quito, Ecuador. 

Raghu, S., Drew, R. A., & Clarke, A. R. (2004). Influence of host plant structure and 

microclimate on the abundance and behavior of a tephritid fly. Journal of Insect 

Behavior, 17 (2), 179-190. 

Rojas, J. M., Castillo, S. B., Folguera, G., Abades, S., & Bozinovic, F. (2014). Coping with 

daily thermal variability: behavioural performance of an ectotherm model in a 

warming world. Plos One, DOI: 10.1371/journal.pone.0106897 

Rubio E., Caselles V., Badenas C. (1997). Emissivity measurements of several soils and 

vegetation types in the 8–14 mm wave band: analysis of two field methods. Remote 

Sensing of Environment, 59 (3), 490–521. 

Saudreau, M., Pincebourde, S., Dassot, M., Adam, B., Loxdale, H. D., & Biron, D. G. (2013). 

On the canopy structure manipulation to buffer climate change effects on insect 



CHAPTER III 

 
 
207 

herbivore development. Trees, 27 (1), 239-248. 

Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., & Evans, T. A. (2014). 

Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 

20 (2), 495-503. 

Sears, M. W., & Angilletta Jr, M. J. (2015). Costs and benefits of thermoregulation revisited: 

both the heterogeneity and spatial structure of temperature drive energetic costs. The 

American Naturalist, 185(4), E94-E102. 

Sears, M. W., E. Raskin, & M. J. Angilletta (2011). The world is not flat: defining relevant 

thermal landscapes in the context of climate change. Integrative and Comparative 

Biology, 51, 666–675.  

Sparks, A. H., Forbes, G. A., Hijmans, R. J., & Garrett, K. A. (2014). Climate change may 

have limited effect on global risk of potato late blight. Global Change Biology, 20 

(12), 3621-3631. 

Storlie, C., Merino-Viteri, A., Phillips, B., VanDerWal, J., Welbergen, J., & Williams, S. 

(2014). Stepping inside the niche: microclimate data are critical for accurate 

assessment of species' vulnerability to climate change. Biology Letters, 10 (9), 

20140576. 

Suh, C. P. C., Orr, D. B., Van Duyn, J. W., & Borchert, D. M. (2002). Influence of cotton 

microhabitat on temperature and survival of Trichogramma (Hymenoptera: 

Trichogrammatidae) within cardboard capsules. Environmental Entomology, 31 (2), 

361-366. 

Sutherst, R. W. (2014). Pest species distribution modelling: origins and lessons from history. 

Biological Invasions, 16 (2), 239-256. 

Tompkins, D. K., Fowler, D. B., & Wright, A. T. (1993). Influence of agronomic practices on 

canopy microclimate and Septoria development in no-till winter wheat produced in the 



CHAPTER III 

 
 
208 

Parkland region of Saskatchewan. Canadian Journal of Plant Science, 73(1), 331-344. 

Wang, G., & Dillon, M. E. (2014). Recent geographic convergence in diurnal and annual 

temperature cycling flattens global thermal profiles. Nature Climate Change, 4, 988-

992. 

Weisz, R., Fleischer, S., & Smilowitz, Z. (1996). Site-specific integrated pest management for 

high-value crops: impact on potato pest management. Journal of Economic 

Entomology, 89 (2), 501-509. 

Willmer, P. G. (1982). Microclimate and the environmental physiology of insects. Advances 

in Insect Physiology, 16, 1-57. 

Willmer, P. G., Hughes, J. P., Woodford, J. A. T., & Gordon, S. C. (2008). The effects of crop 

microclimate and associated physiological constraints on the seasonal and diurnal 

distribution patterns of raspberry beetle (Byturus tomentosus) on the host plant Rubus 

idaeus. Ecological Entomology, 21(1), 87-97. 

Woods, H. A., Dillon, M. E., & Pincebourde, S. (2014). The roles of microclimatic diversity 

and of behavior in mediating the responses of ectotherms to climate change. Journal 

of Thermal Biology. doi:10.1016/j.jtherbio.2014.10.002 

  



CHAPTER III 

 
 
209 

Supporting Information of “Faye, E., Herrera, M. A., Carpio, C., Rebaudo, F., & Dangles, 

O. Does heterogeneity in crop canopy microclimate matter for pests? Evidence from aerial 

high-resolution thermography. To submit in Journal of Applied Ecology”. 

 

Appendix 1: Table of the studied field descriptions 

Appendix 2: R script used in this study 

Appendix 3: Boxplots of the spatial metrics versus pest richness on the 1140 TIR circles 

Appendix 4: Schematic interpretation of the Aggregation Index and the Shannon’s Diversity 

Index 

Appendix 5: Spatial heterogeneity of crop microclimates in three-dimensional layers 

  



CHAPTER III 

 
 
210 

Appendix 1: Table of the studied field descriptions. Field area is expressed in squared meters, 

Phenology and Damage were estimated for the entire field and Cov is the TIR coverage of the 

field in percentage of the field area. 

 

Name Date Area Phenol Dam Cov Name Date Area Phenol Dam Cov 

1 14/01/14 726 C 3 31.7 20 24/01/14 1010 2 2 22.8 

2 15/01/14 1147 C 3 20.1 21 24/01/14 1604 3 2 14.4 

3 15/01/14 1292 B 2 17.8 22 24/01/14 958 1 1 24.1 

4 15/01/14 1454 B 1 15.8 23 24/01/14 1118 3 2 20.6 

5 16/01/14 2217 A 1 10.4 24 27/01/14 1136 2 1 20.3 

6 16/01/14 1192 B 3 19.3 25 27/01/14 831 2 1 27.7 

7 16/01/14 1188 A 1 19.4 26 28/01/14 725 3 2 31.8 

8 16/01/14 2277 C 3 10.1 27 28/01/14 982 1 3 23.5 

9 21/01/14 705 C 3 32.7 28 28/01/14 759 1 1 30.4 

10 21/01/14 1914 A 1 12.0 29 28/01/14 818 3 1 28.2 

11 21/01/14 850 C 2 27.1 30 29/01/14 1456 3 3 15.8 

12 22/01/14 861 C 3 26.8 31 29/01/14 1200 2 2 19.2 

13 22/01/14 924 C 2 24.9 32 29/01/14 1597 2 1 14.4 

14 22/01/14 1293 B 3 17.8 33 29/01/14 2016 2 2 11.4 

15 22/01/14 1970 C 3 11.7 34 31/01/14 630 3 2 36.6 

16 23/01/14 631 C 2 36.5 35 31/01/14 2328 2 2 9.9 

17 23/01/14 814 B 2 28.3 36 31/01/14 1778 2 2 13.0 

18 23/01/14 881 C 3 26.2 37 31/01/14 3072 1 1 7.5 

19 23/01/14 816 B 3 28.2 38 31/01/14 921 1 2 25.0 

 Phenology A = Leaf development, B = Infloresecnce and C = Mature stage 
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Appendix 2: R script used in this study 

#!/usr/bin/env RScript 
################################################### 
### 
### Script to compute the difference between points in terms of temperature and distance. 
### 
### This script is part of the publication Does heterogeneity in crop canopy microclimate 
### matter for pests?  
### Evidence from aerial high-resolution thermography. Faye, E., Herrera, M. A., Carpio, C., 
### Rebaudo, F., & Dangles, O.  
### Contacts : E. Faye: <ehfaye@gmail.com>; F. Rebaudo: <francois.rebaudo@ird.fr>;  
### O. Dangles: <olivier.dangles@ird.fr> 
### September 2015 
### 
################################################### 
 
### working directory 
mywd<-"/home/my/working/directory/" 
# mywd<-"D:/SYNC_UMSA/_PAPIERS_/EF_FR_OD_Tube/" 
setwd(mywd) 
### packages 
pkgCheck <- function(x){ # check for a package, install and load 
 if (!require(x,character.only = TRUE)){ 
  install.packages(x,dependencies=TRUE) 
  if(!require(x,character.only = TRUE)) { 
   stop() 
  } 
 } 
} 
pkgCheck("MASS") 
pkgCheck("sp") 
pkgCheck("raster") 
pkgCheck("hexbin") 
 
### load raster files and compute distances and dif in temperature 
getDist<-
function(numPoints=2,temp="insect",tempOptInsect=23,tempMinInsect=22.5,tempMaxInsect=25,myFile
s=list.files(pattern="rda"),type="",rangeMinMax=0.1,useOnlyTmean=FALSE){ 
 xxx<-NULL 
 yyy<-NULL 
 for (i in myFiles){ 
  if(type=="rda"){ 
   load(i) # load raster file 
   matRaster<-as.matrix(Plant_rast) # convert to matrix 
  }else{ 
   matRaster<-as.matrix(read.table(i,skip=6,na.strings = -9999)/1000) 
   if(temp=="mean"){ 
    tempOptInsect<-mean(matRaster,na.rm=TRUE) 
    tempMinInsect<-tempOptInsect-rangeMinMax*tempOptInsect 
    tempMaxInsect<-tempOptInsect+rangeMinMax*tempOptInsect 
   } 
  } 
  meanRast<-mean(matRaster,na.rm=TRUE) # get mean temperature 
  sdRast<-sd(matRaster,na.rm=TRUE) # get sd temperature 
   
  if(useOnlyTmean==TRUE){ 
   tempOptInsect<-meanRast 
   print(paste0("Tmean: ",meanRast)) 
  } 
  # [1] matPointsMean = coordinates of all points with temperature between 
tempMinInsect and tempMaxInsect 
  matPointsMean<-which(matRaster<=tempMaxInsect & matRaster>=tempMinInsect, 
arr.ind=TRUE) 
  pointsIntoRange<-matPointsMean 
  origin<-length(matPointsMean[,1]) 
  if(length(matPointsMean[,1])>1000*numPoints){# 
   for(z in seq(from=0.01,to=0.9,by=0.005)){ 
    getMax<-tempMaxInsect-tempMaxInsect*z 
    getMin<-tempMinInsect+tempMinInsect*z 
    if(getMax<tempOptInsect+0.05){getMax<-tempOptInsect+0.05} 
    if(getMin>tempOptInsect-0.05){getMin<-tempOptInsect-0.05} 
     
    matPointsMeanAltMAX<-which(matRaster<=getMax & 
matRaster>=getMin, arr.ind=TRUE) 
    if(length(matPointsMeanAltMAX[,1])>1000*numPoints){ 
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     matPointsMean<-matPointsMeanAltMAX 
    } 
   } 
  } 
  numPointsGood<-length(matPointsMean[,1]) 
  print(paste0(i,": ",numPointsGood, " / ", origin)) 
  if(length(matPointsMean[,1])>10000*numPoints){ 
   for(z in seq(from=0,to=100,by=0.05)){ 
    getMax<-tempMaxInsect-z 
    getMin<-tempMinInsect+z 
    if(getMax<tempOptInsect+0.05 & getMin>tempOptInsect-0.05){break} 
    if(getMax<tempOptInsect+0.05){getMax<-tempOptInsect+0.05} 
    if(getMin>tempOptInsect-0.05){getMin<-tempOptInsect-0.05} 
     
    matPointsMeanAltMAX<-which(matRaster<=getMax & 
matRaster>=getMin, arr.ind=TRUE) 
    if(length(matPointsMeanAltMAX[,1])>1000*numPoints){ 
     matPointsMean<-matPointsMeanAltMAX 
    } 
   } 
  } 
  numPointsGood<-length(matPointsMean[,1]) 
  print(paste0(i,": ",numPointsGood, " / ", origin)) 
  xx<-NULL 
  yy<-NULL 
  myX<-1:length(matRaster[,1]) 
  myY<-1:length(matRaster[1,]) 
  centralPoint<-c(length(myX)/2,length(myY)/2) 
  distToCentralPoint<-sqrt((centralPoint[1]-
matPointsMean[,1])^2+(centralPoint[2]-matPointsMean[,2])^2) 
   
  if (numPointsGood>=numPoints){ 
   # [2] matPointsMean = coordinates of (100 * numPoints) points close to 
the center of the matrix  
   while (nrow(matPointsMean) > (100*numPoints)) { # limit matPointsMean to 
numPoints*100 
    cdists <- distToCentralPoint 
    closest <- which(cdists == max(cdists))[1] 
    matPointsMean <- matPointsMean[-closest,] 
    distToCentralPoint <- distToCentralPoint[-closest] 
   } 
   # [3] matPointsMean = coordinates of (5 * numPoints) points close to the 
center of the matrix and closest to tempOptInsect 
   selectedTemp<-matPointsMean 
   myTemp<-NULL 
   difTemp<-NULL 
   for(k in 1:length(selectedTemp[,1])){ 
    difTemp<-
c(difTemp,abs(matRaster[matPointsMean[k,1],matPointsMean[k,2]]-tempOptInsect)) 
    myTemp<-
c(myTemp,matRaster[matPointsMean[k,1],matPointsMean[k,2]]) 
   } 
   selectedTemp<-cbind(selectedTemp,difTemp) 
   selectedTemp<-cbind(selectedTemp,myTemp) 
   while (nrow(matPointsMean) > numPoints) { # limit matPointsMean to 
5*numPoints 
    cdists <- selectedTemp[,3] 
    closest <- which(cdists == max(cdists))[1] 
    matPointsMean <- matPointsMean[-closest,] 
    selectedTemp <- selectedTemp[-closest,] 
   } 
   for(j in 1:numPoints){ 
    randomPointCoo<-matPointsMean[j,] 
    print(paste0("XY: ",matPointsMean[j,])) 
    allMyDist<-
sapply(1:length(pointsIntoRange[,1]),function(ii){myDist<-
as.vector(sqrt(((pointsIntoRange[ii,1]-randomPointCoo[1]))^2+((pointsIntoRange[ii,2]-
randomPointCoo[2]))^2))}) # get distances from the random point in PIXELS 
    allMyTempDif<-
sapply(1:length(pointsIntoRange[,1]),function(ii){myTempDif<-
matRaster[pointsIntoRange[ii,1],pointsIntoRange[ii,2]]-
matRaster[randomPointCoo[1],randomPointCoo[2]]}) # get dif in temperature from the random 
point 
    xx<-c(xx,allMyTempDif[!is.na(allMyTempDif)]) # vector of dif in 
temperature for all random points numPoints 
    yy<-c(yy,allMyDist[!is.na(allMyTempDif)]) # vector of distances 
for all random points numPoints 
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   } 
   print(paste0(i, ": OK, ",numPoints," selected from ",origin)) 
  } else{ 
   print(paste0(i, ": no ",numPoints," points between ",tempMinInsect," and 
",tempMaxInsect," degrees")) 
  } 
  xxx<-c(xxx,xx) 
  yyy<-c(yyy,yy) 
 } 
 return(data.frame(deltaTemp=xxx,deltaCoo=yyy)) 
} 
mywdFiles<-
getDist(numPoints=2,tempOptInsect=22.5,tempMinInsect=15,tempMaxInsect=30,type="rda"); 
save(mywdFiles,file= "MywdFiles_R1_Fra.rda"); rm(mywdFiles); 
 
hist((mywdFiles$deltaCoo)*0.005) 
bin<-hexbin (mywdFiles$deltaCoo,mywdFiles$deltaTemp, xbnds = 
c(min(mywdFiles$deltaCoo),max(mywdFiles$deltaCoo)), ybnds 
=c(min(mywdFiles$deltaTemp),max(mywdFiles$deltaTemp))) 
plot(bin)$
 

 

Appendix 3: Boxplots of the spatial metrics versus pest richness on the 1140 TIR circles 
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Appendix 4: Schematic interpretation of the Aggregation Index and the Shannon’s Diversity 

Index (SHDI) 

 

Aggregation Index – Metric of landscape configuration 

 

 

 

Shannon’s Diversity Index – Metric of landscape composition 

 

 

Adapted from McGarigal & Marks (1994) 
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Appendix 5: Spatial heterogeneity of crop microclimates in three-dimensional layers (Air, 

Surface, Air inside canopy and ground). 

 

Within each of the ten study points per fields, we recorded microclimatic temperatures 

in the layers potentially experienced by crop pests along their life cycle: temperature in the air 

above canopy, air inside canopy and soil (see Faye et al. 2014 for details). Within each field, 

we recorded microclimatic temperatures using three temperature loggers (Hobo U23-001-Pro-

V2 internal temperature loggers, Onset Computer Corporation, Bourne, USA) fixed on 

wooden sticks in the three layers following the method described in Faye et al. (2014). The 

time-step recording was 10 seconds for the 30 temperature loggers located in each field. In the 

figure S5 above, plant surface temperatures were obtained from the 1140 TIR circles and the 

Air, Air inside canopy and ground layer temperatures have been recorded at the same time of 

the TIR image shots with temperature loggers. 
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In this thesis, we investigated the effects of microclimates on pest occurrence and distribution, 

and highlighted the scale gap that currently exists in the spatial resolution between the studied 

insects and the climatic data used in agro-ecosystems. We also developed innovative 

methodologies to yield and analyse thermal data and their spatiotemporal dynamics at the 

appropriated scale and resolution for studying tiny crop pests and diseases. Finally, we 

integrated all this information for relating the microclimatic landscapes with the occurrence 

and distribution of pests observed in crop fields. In particular, we showed the importance of 

microclimates in providing short distance thermal niches that crop pests can take advantage 

of. In the following, we choose to discuss these main results by following a leaning from 1) 

theoretical issues, 2) relevance of thermal ecology for agronomical applications and 3) to 

challenges to put microclimate research into practice in developing countries. This plan 

adheres to the design of the entire thesis in which we firstly presented the microclimates In 

silico, methodologies to deal with thermal heterogeneity at fine spatiotemporal scales in agro-

ecological disciplines and the applications of theses methods in situ. Moreover, we present in 

the discussion additional studies that have been performed during this thesis but that are still 

under process and analyses. They will be used to illustrate some specific issues. 

 

I. Microclimates: Is exactness in the details? 

1. Scale effects in microclimates 

The “scale effect” issue has a long history in ecology (Wiens 1989, Levin1992, Willis & 

Whittaker 2002, Storch et al. 2007, McGill 2010, Gillingham et al. 2012, Jackson & Fahrig 

2015). In its influencial paper ‘On the problem of pattern and scale in ecology’, Levin’s 

(1992) demonstrated that ecological processes act at a variety of spatial and temporal scales. 

Later McGill (2010) pointed out the scale dependency of ecological patterns. For instance, in 

a study relating the percentage forest cover to the abundance of 12 wood beetle species, 
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Holland et al. (2004) found that, depending on the scale at which forest cover was measured 

(from 20 to 2000 m radius), the correlation between forest cover and beetle abundance ranged 

from strongly positive to negligible. Therefore, the scale at which landscape attributes are 

measured has a strong impact on inferred species–landscape relationships (Jackson & Fahrig 

2015). Scales are defined by their resolution and extent (Elith & Leathwick 2009). The extent 

usually reflects the purpose of the analysis: global change studies tend to be continental to 

global in scope (e.g., Deutsch et al. 2008), whereas studies targeting detailed ecological 

patterns tend toward local to regional extents (e.g., Sears & Angilletta 2015). The resolution 

usually belongs to the data used: i.e., the grid cell size of abiotic variables but also the spatial 

accuracy of the species records (Willis & Whittaker 2002, Gillingham et al. 2012). 

Conceptually, there is no single natural scale at which ecological patterns should be studied 

(Levin 1992). Rather, the appropriate scale is dictated by the study objectives, the study 

system, and available data (Kearney & Porter 2009). 

In terms of climatic data, the effect of the chosen scale might have important 

consequences on the study issues, such as modifying the estimates of species declines and 

extinction (Gillingham et al. 2012, Logan et al. 2013). Indeed, global predictions use ambient 

temperature data gathered from weather stations, but the temperature experienced by 

ectotherms results from a complex interplay among many biophysical parameters (including 

convection, conduction, and radiation, see Introduction) and thus consistently deviate from 

ambient conditions (Bakken, 1992). Our work showed that this might be a key issue in 

agricultural and mountainous landscapes, where coarse-resolution grid cells (e.g., the 

WorldClim) may  contain a wide variability of thermal environments driven by 

microtopography (Sears et al. 2011) and plant structure (Faye et al. 2014). Within such a grid 

square, there is likely a wide range of microclimatic conditions resulting in the presence of 

locally-suitable conditions for ectotherms (e.g., crop pests but also natural enemies, Bianchi et 
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al. 2006, Fahrig et al. 2011, Veres et al. 2013) at  their thermal margins, the existence of 

which might not be apparent at a coarser resolution (Storlie et al. 2014). Consequently, it is 

intuitive that scales in climatic data will influence the results of the study. Gillingham et al. 

(2012) downscaled spatial climates at four spatial resolutions to explain the abundance of 

sampled ground beetles over their study area (Fig. 1). In their analysis, different resolutions 

resulted in different predictions about the abundance of the populations: higher resolution 

analyses provided more accurate estimates of observed patterns, but also highlighted potential 

microclimatic refugia for the conservation of species that otherwise might appear to be 

threatened with regional or global extinction under climate change. 

 

Figure 1: Mean temperature modelled at different spatial scales: a) 5x5, b) 100x100, c) 

500x500 and d) 1000x1000 m. This climatic data were used for predicting the species 

abundance of ground beetles. Adapted from Gillingham et al. (2012). 
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Similarly to Gillingham et al. (2012), we predicted potato pest abundance with thermal 

performance models using different spatiotemporal resolutions of climatic data and compared 

the results of the models with observed data measured in the field (see paragraph II.3. of this 

discussion). Generally, our study revealed that microclimatic data (measured at the field 

scale) were more relevant for predicting crop pest performances and abundance than the 

coarser scales (Fig. 7 below). Our results highlight the need for incorporating fine-scale 

climate data for studying ecological patterns that occur at fine spatial scale: e.g., incorporation 

into pest’ performance analyses (Faye et al. 2014). Therefore, a clear understanding of 

ectotherms occurrence and distribution at the local and regional scale will depend critically on 

the fine spatial and temporal structure of their thermal environments. In other words, accurate 

ectotherm forecasts will require biologically relevant measures of thermal heterogeneity. 

However, studies with more generalist scopes, such as biogeographic distribution of 

organisms, range shifts, population dynamics, and extinctions at global scales may not always 

need such fine-scale resolutions for their climatic data used in models. For instance, Deutsch 

et al. (2008), estimate the general impact of climate change on insect thermal tolerances 

across latitude using coarse-scale climatic data. As a general pattern, they concluded (as in 

Janzen 1967) that because tropical species generally have narrow tolerance ranges and 

acclimation capacities compared to temperate species, the greatest extinction risks from 

global warming may occurs in the tropics. Moreover, some authors defended that the apparent 

mismatch between the scale of climate data and the size of organisms is implicitly bridged in 

most species distribution models (SDMs) with the “mean field approximation” (Bennie et al. 

2014). They assumed that the grid-cell average climatic variables are statistically meaningful 

predictors of the probability of species persistence. The mean field approach simply states that 

macroclimate is a good predictor of the aggregated population-level effect of many individual 

responses to the spatial and temporal variations in microclimate that influence individual 
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performances (Bennie et al. 2014). Therefore, climatic data at coarse resolution and large 

extent may also be sufficient to assess main changes in distribution. 

 

So, what is the appropriate scale for climate data? 

Predicting how organisms will respond to their environment will require reducing the 

mismatch between the spatial scales of climatic data used versus organisms (Austin & Van 

Niel 2011, Potter et al. 2013). But how fine is fine enough? The question of optimal spatial 

resolution has been debated since the birth of SDMs (Guisan & Thuiller 2005), with some 

authors suggesting that finer-scaled SDMs provide better predictions (Elith & Leathwick 

2009, Hannah et al. 2014, Storlie et al. 2014) and others that do not (Guisan et al. 2007, 

Bennie et al. 2014). Focal organisms and their habitat requirements are a starting point for 

informing the choice of appropriate scales for climatic data and others type of data (Hannah et 

al. 2014). Fine-resolution spatial data may be less important for organisms in spatially 

homogeneous environments or for wide-ranging studies that focus on a general purpose and 

trends. Also, high temporal resolution data may be less important in environments where 

diurnal or seasonal variability is limited, at least relative to the environmental tolerances of 

organisms (Potter et al. 2013). The biological question of the study also influences the choice 

of climate data: temporal resolution may be more crucial for studies of survival and 

reproduction and spatial resolution for studies of distribution (Buckley et al. 2010). 

For biologists, the greatest challenge resides nowadays in the availability of high-

resolution climate data, because constructing these surfaces requires new physical modelling 

skills (Kearney et al. 2014) both with the development of new thermal recording technics 

(Faye et al. 2015). Lee et al. (2015) presented the new HyspIRI satellite sensor 

(Hyperspectral InfraRed Imager) that will soon start recording thermal infrared orthoimages 

within the 4-13 µm range with 60 m spatial resolution and a revisit time of 5 days. For finer 
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spatiotemporal resolution in temperatures, the toolbox presented in this work, Faye et al. 

(2015), provides an innovative methodological framework to better assess the thermal 

heterogeneity of natural landscapes at fine spatiotemporal scales. In particular, this toolbox 

would be of topical interest for ecologists trying to bridge the gap between the resolution of 

their climatic data and the body size of their study organisms. 

 

2. Is microclimate enough? 

Not only temperatures – While it becomes increasingly admitted that microclimatic 

conditions, especially temperatures, are critical for the assessment of species’ responses to 

their environments (changing or not), insights on others factors that composed microclimates 

would be of topical interest too. Indeed, solar radiations, relative humidity, soil moisture, 

microtopography, wind speed and direction are parameters that shape the microclimatic 

environment experienced by organisms (Geiger 1965, Gates 1980, Jones 1992). These 

additional parameters were faintly studied in this thesis as temperatures had been identified as 

the main factor influencing potato pest dynamics in the tropical Andes (Dangles et al. 2008). 

Notwithstanding, as for temperature, theses abiotic variables are also highly heterogeneous in 

space and in time at very small spatiotemporal scales (Gates 1980, Bakken 1992). Thus, a 

complete assessment of microclimates in the environment inhabited by species should include 

a measure of these parameters. However, these additional parameters remain poorly studied 

and methodologies for measuring them produce a high degree of uncertainty (Unwin 1980, 

Porter et al. 2002). To address this issue, recent advances in mechanistic models use complex 

energy balance equations which incorporate spatially mapped variables such as surface 

albedo, relative humidity, incoming solar radiation and wind speed to generate estimates of 

microclimate at relatively fine scales (Kearney et al. 2014). This arrangement of highly 

heterogeneous variables composing the microclimate makes even more complex our 
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understanding of the relationship between organisms and their environments. In other words, 

species with specific thermal tolerances may exhibit habitat associations for thermal reasons, 

as well as because of others specific abiotic constraints. 

 

Not only microclimates – Many others environmental variables (not only climatic) 

may influence species’ occurrence and distribution at fine spatiotemporal scales. Certainly, 

many organisms can disperse through environments that are thermally unsuitable to achieve 

others essentials requirements (Buckley et al. 2010). Needs in nutrition, reproduction, or 

species interactions (prey/target, competitiveness, positive interactions) can significantly 

influence species distribution (Cloudsley-Thompson 1962, Porter et al. 2002). For example, 

many plants may be limited by patterns of water availability or soil nutrients, rather than 

temperature (Jones 1992); thus even if insects that rely on these plants are limited by 

temperature (i.e., because they are ectotherms), they are further constrained by the nutrition 

requirements of their hosts (Huey, 1978). Similarly, pests in agricultural landscapes may be 

constrained by their microclimatic thermal environment and their relative thermal tolerances, 

but their distribution will also be driven by other parameters such as plant host quality, natural 

enemies’ occurrences, and chemical insecticide spraying. Consequently, even with all the 

scientific and technological breakthroughs that appeared over the years, the identification, 

understanding and integration of the complete array of processes that drive organisms in their 

microhabitat is still likely to be a challenging endeavour. 
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3. Does microclimate reduce tropical mountain passes? 

The work presented in this thesis may have broader implications for the study of tropical 

ectotherms’ ecology, as it would allow revisiting some  influential concepts on the 

physiological thermal tolerances of tropical- versus temperate-zone organisms. In 1967, 

Daniel Janzen published an influential paper entitled “Why mountain passes are higher in the 

tropics?” Janzen derived a simple climatic-physiological model predicting that tropical 

mountain passes would be more effective barriers to ectotherms dispersal than would be 

temperate-zone passes of equivalent elevation (Janzen 1967). This prediction resulted from 

the recognition that the annual variation in ambient temperature at any site is relatively low in 

the tropics compare to the temperate-zones. Consequently, altitudinally separated sites in the 

tropics will have little overlap in their thermal regimes at any given time or even over the 

course of a full year. Temperate-zones show a strikingly different pattern because both low- 

and high-altitude sites experience marked seasonal variations in temperature (Fig. 2). As a 

result, low- and high-altitude sites in the temperate-zones have considerable overlap in 

thermal regimes, at least computed over a full year. In the tropics, the low variation within 

sites reduces or even prevents the overlap in thermal regimes between low- and high-altitude 

sites. 
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Figure 2: Graphical illustration of Janzen’s hypothesis: low seasonal variations of 

temperature at tropical localities necessarily result in low overlapping in climate between 

valleys and mountain passes and therefore select for organisms that had narrow tolerances to 

temperature. On the contrary temperate-zones, marked by strong seasonal variations in 

temperature, lead to considerable overlaps in thermal regimes between valleys and mountain 

passes. Consequently, tropical mountain passes are stronger physiological barriers to dispersal 

than those in temperate-zones. 

 

Organisms develop physiological adaptations and acclimation capacities that reflect 

the range of climatic variation typically encountered (Angillettta 2009, Sunday et al. 2011, 

Sheldon & Tewksbury 2014). Thus, temperate-zone organisms possess broad thermal 

tolerances as well as marked acclimation capacities to cope with the large seasonal changes in 

climate (Bonebrake & Deutsch 2012). In contrast, tropical organisms evolve narrow thermal 

tolerance and reduced acclimation responses, appropriate to the less variable climate of the 

tropics (Deutsch et al. 2008, Sunday et al. 2011). As a result, Janzen predicted that tropical 

lowland organisms have narrow tolerances to temperature and were more likely to encounter 

a mountain pass as a physiological barrier to dispersal (Janzen 1967, Ghalambor et al. 2006). 
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Thus mountain passes are physiological, not topographic, barriers to dispersal: a mountain 

pass will be a greater physiological barrier if there is relatively little overlap in climate 

between a low-altitude valley and an adjacent high-altitude pass (Fig. 2). He finally linked 

these assumptions and predicted that tropical organisms would have greater difficulty in 

crossing mountain passes (than would temperate-zone organisms) because they would be 

more likely to encounter a climate to which they were not adapted. 

 

When taking into account the microclimates experienced by organisms as presented in 

this thesis, two new questions may appear with respect to this hypothesis: 1) do microclimates 

physically provide organisms with favourable temperatures to “cross” the mountain passes of 

the tropics? thereby reducing tropical mountain passes, and 2) are the thermal tolerances of an 

organism influenced by the microclimates it experiences? In both cases, recomputing the 

Janzen’s hypothesis using microclimates (e.g., using operative environmental temperatures 

rather than ambient temperature, Bakken 1992, Kearney et al. 2014) at a global scale and 

allowing for the expression of behavioural and other adaptations that buffer variation in 

ambient temperatures (see Introduction) would permit to detail how much microclimatic 

patterns influence the evolution of the physiological capacities of organisms (Huey 1991, 

Logan et al. 2013). Moreover this will be a great opportunity to test the effect of latitude and 

elevations on the microclimatic patterns (i.e., seasonal variability of microclimates, Scheffers 

et al. 2014b). 

Using the same graphical illustration of the Janzen’s hypothesis, we displayed the 

potential effect of microclimate temperatures in modifying the thermal regimes and leading to 

a thermal overlapping between valleys and mountain passes in the tropics (Fig. 3). Thus, 

tropical organisms would have physical possibilities to cross mountain passes when taking 

into account microclimates, because they would be more likely to encounter favourable 
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thermal niches. Similarly, in the temperate-zones the overlapping of the thermal regimes will 

increase if the microclimatic patterns remain constants across latitudes. Actually, high-altitude 

tropical sites can experience great daily fluctuations in temperature compared to similar 

altitudes in temperate locations (Dangles et al. 2008). Our work showed that these 

temperature variations increased by various degree when taking into account the 

microclimates experienced by organisms (Faye et al. 2014). 

 

Figure 3: Graphical illustration of Janzen’s hypothesis considering the microclimatic 

patterns. 

 

In the context of climate change, Janzen’s hypothesis is relevant as it corresponds to 

change in ambient temperatures. Scherrer & Koerner (2011) exemplify how a shift in 2 K 

warmer of the surface temperature distribution will result in the loss of less than 3% of the 

microclimates observed within one kilometre-squared area [see Fig. 6 of their paper]. Only 

the species confined to the coldest microclimates will have to move to higher elevations, but 

the majority of the species will find suitable thermal habitats (as rated by their current thermal 
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tolerance) in a distance of just a few centimetres or metres. In the Chapter III of our work, we 

found a similar pattern in crop fields in which pests have to move few centimetres only to 

modulate their thermal environment and find thermal niches that foster their performances. 

The large variation of microclimatic conditions in landscapes may buffer the impacts of 

climate change on biodiversity by offering stepping stones and refugia (Hannah et al. 2014, 

Scheffers et al. 2014a), rather than forcing all species upslope in order to track climatic 

warming. In conclusion (and opening for future research), microclimates might both reduce 

tropical mountain passes and reduce species’ vulnerability to climate change. 

 

II. Thermal ecology for agronomists 

1. Pest control based on thermal ecology? 

Currently, there is a relatively small but growing community of researchers working on 

thermal ecology. Some of them were gathered at the HeteroClim workshop ‘The response of 

organisms to climate change in heterogeneous environments’ that took place in July 2014 in 

Loches, France (see Appendix S2 for the poster I presented there). This workshop faced the 

challenges of bringing together scientists from various key disciplines (climate, genetics, 

physiology, ecology, agronomy, statistics) to promote the interconnections between their 

different expertise and skills. One of the major outputs of this conference was that 

interdisciplinary blends would bring innovative solutions to topical issues related to thermal 

ecology.  

 Similarly, interdisciplinary studies linking ecological, agronomical and social issues 

are essentials to build a complete understanding of agrosystems. Indeed, further investigations 

should focused on the interconnections that occur between farmers, pests and their abiotic 

environments (Fig. 4). Our team already focused on the Pest – Farmer interactions (Fig. 4.1) 

and revealed the importance of collaborative actions among farmers for more efficient pest 
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management (Rebaudo & Dangles 2011, Rebaudo et al. 2011, Rebaudo & Dangles 2015). 

This thesis opens a new pathway towards thermal agroecology based both on agronomical 

and thermal ecology processes: indeed, we showed how crop microclimates influenced pest 

occurrences and how pests modify their environments leading to new microclimatic 

conditions (Fig. 4.1). Indeed, when pests damage their host plant, they are often modifying 

the structure and/or composition of the plant (e.g., colour of the leaves, water content of the 

plants, senescence, leaf area index…). These modifications lead in turn to a modification of 

the microclimates experienced by the pests (e.g., diminution of shadow, increased emission of 

thermal radiations). The next step for the development of innovative pest control strategies 

will be to study how farmer practices can shape the thermal environment of crop pests, which 

will subsequently hampers crop infestation by pest. Certainly, agricultural practices such as 

row- or plant-spacing, intercropping, adapted plant prune may turn the microclimates 

experienced by pest unfavourable regarding their thermal tolerance, thereby limiting their 

infestation (Fig. 4.3). 

 

Figure 4: Schematic representation of the interconnections that occurs in agrosystems 

between farmers, pests, microclimates. The #2 arrows pointed out the integration of this thesis 

in this triptych. 
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Based on the outputs shown in this thesis, strategies aiming at enhancing a thermal-

based pest control should be explored by setting up spatially explicit models (e.g., cellular 

automata combined with agent based simulations). Theses simulations implemented at the 

field or agricultural landscape scales should test the efficiency of specific farmer practices and 

collaborations for improving pest control. For instance, different kinds of field management 

(field clustering, heterogeneity in sowing dates, row spacing, intercropping…) should be 

explored for their impact on microclimate patterns and subsequent effect on pest levels. We 

could identify specific crop (e.g., corn) that act as a physical obstacle to cross due to its 

thermal properties (i.e., a thermal barrier) for potato pests. We could also test the efficiency of 

appropriate landscape manipulations by farmers for hampering infestation by pests (different 

levels of composition and configuration in space and in time of crops, Veres et al. 2013, 

Schneider et al. 2015) based on the thermal properties of the agricultural landscape (Parsa et 

al. 2011). The results of these modelling explorations would provide a range of theoretical 

pest control strategies to be tested under real conditions. Consequently, the next step will be 

to test these new assumptions under experimental setting or real-world situations. 

 

2. Moving to experimental approaches 

Experimental field manipulation has proven to be an efficient way to test the response of 

crops to specific treatments or perturbations (Mead et al. 2002). It allows randomizing 

sampling units into treatment and control groups to statistically examine the outcomes 

between these groups. Contrary to laboratory experiments, hypotheses can be tested “in the 

real world” with natural settings rather than in a constrained laboratory environment. This 

kind of experiment might provide great insights for understanding the effects of 

microclimates on pest distribution. Indeed, experimental field permits to get rid off part of the 

variability that may influence pests in crop fields: for instance farmers practices can be 



DISCUSSION 

 
 
233 

homogenized (application of chemical insecticides) or modified to test a hypothesis (row 

spacing, prune, … and see above). In this context, a collaboration with the International 

Potato Centre (CIP - www.cipotato.org) during my thesis gave me some insights about how to 

move to more experimental approaches. 

Based in Lima, Peru, the CIP is a CGIAR research centre (Consultative Group for 

International Agricultural Research) that seeks to achieve food security for people in the 

developing world by improving root and tuber farming and food systems. One of their fields 

of investigation is to study sweet potato to improve plant tolerance to heat as it could both 

improve crop productivity and facilitate the use of more marginal heat prone production areas 

(e.g., in sub-sahelian countries in Africa). To achieve this purpose, the team of Bettina Heider 

(researcher at the Global Genetic Resources department) implemented a massive field 

screening of 1973 sweet potato accessions from the CIP Genebank in the semiarid region of 

Piura, in northern Peru. This area displays a dry and hot climate with an annual mean 

temperature of 24.4°C and an annual mean precipitation of only 72 mm (Rollenbeck et al. 

2015). During summer 2014, the CIP team sowed a total of 2039 accessions of sweet potato 

(including 1973 sweat potato accessions and 66 additional test clones) within plots of 3.3 m2 

(Fig. 5). This experimental field was replicated in a field aside from the first one, amounting 

to a total number of 4078 plots spreading over 3 ha.  

We collaborated with Bettina’s team in this project by flying an UAV equipped with 

visual and thermal sensors to yield high-resolution visual and infrared orthophotos (Fig. 5, 

Faye et al. 2015) at two decisive stages of the physiological crop developpement: the root 

initiation (60 d.a.p. days after planting), the maximum root bulking (90 d.a.p.). The aim of 

this collaboration was to rapidly conduct a thermal selection of sweet potato plants in 

experimental fields using remote sensing. Indeed, thermal evaluation of all the repetition units 
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using a thermal infrared ground-based methodology took more than four weeks with four 

people employed full-time, but only a few hours with the UAV.  

 

Figure 5: UAV thermal and visual orthophotos of a 3 ha experimental field of sweet potato 

screening for heat tolerance. A. The UAV taking off with visual and infrared thermal camera 

on-board. B. The visual orthophoto (1.2 cm2 resolution) yielded from the UAV with the 

onboard GPS recording flight tracks. C. The infrared orthophoto of the plant canopy only (5 

cm2 resolution) produced with the UAV images. 
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Additionally, the use of UAV-based assessment greatly increased the accuracy of the 

thermal and visual measurements. By recording the entire fields in ten minutes compared, the 

UAV-based methodology significantly reduced the variability of the thermal measurements 

that is due to solar radiation and weather changes. This experiment allowed us to relate the 

thermal signature of the plant canopy surface and the vegetation index recorded by the UAV 

methodology to the effective yield of each plot empirically measured in the field. We also 

related the worldwide geographical origins of the sweet potato accessions with the thermal 

responses of plant canopies during extremes heat events. 

 

3. Pest modelling for agro-ecological purposes 

In agronomy, a great variety of temperature-based models (e.g., cohort-based models Logan 

1988, individual-based models Guichard et al. 2012, cellular automata Rebaudo et al. 2011) 

have been developed to assess pest occurrences across agricultural landscapes. Such models 

are becoming a key component of pest-risk assessments both under current and predicted 

climatic conditions (Venette et al. 2010, Garcia et al. 2014, and Sutherst et al. 2014 for a 

review). In view to improve the accuracy of the predictions of these models for farming 

applications, our group conducted a study on the effect of climate dataset resolution on pest 

performance models. Our objective was to assess whether microclimate data were more 

relevant than less accurate climate data in predicting crop pest performances. We therefore 

compared simulated pest performance of three potato tuber moths (see Fig. 26 and paragraph 

III.3.b. of the Introduction) using three temperture data set obtained at three different spatial 

resolutions: i) at the regional scale (mean air temperature data from WorldClim - resolution 

near 1km2), ii) at the landscape scale (air temperature from weather stations), and iii) at the 

field scale (microclimate in crops). We then compared these simulations with field data of 

pest abundance. Interestingly, we found that microclimate datasets were best disposed to 

predict pest abundances at the local scale and at a fine resolution. Indeed, the microclimate 
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based model was more efficient in predicting pest abundance than the coarser-resolution-

based models (Fig. 6). Consequently, this study quantitatively highlighs the importance of 

considering microclimates at fine spatial scales when predicting pest performances. 

 

 

 

 

Figure 6: Comparison of observed and predicted abundances for the four studied sites. Pest 

abundances are represented by boxplots that correspond to mean pest abundances per month. 

Letters are for the various study sites. 
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III. Putting thermal ecology into practices in developing countries 

1. The importance of data in the tropics 

$
Working with scarce data – Data from ecological monitoring, including pest distribution and 

climate, are scarce in many developing countries located in the tropical region. This shortage 

of data hinders the development of pest distribution understandings in these regions. Due to 

less developed scientific research information concerning insects’ responses to their 

environment, data is often scarce and many times incomplete. Moreover, much of the existing 

information has not been published and has remained as “grey” literature, hardly available for 

researchers. For our concerns, the low number of weather stations in tropical regions causes 

climatic data to be even scarcer (Hijmans et al. 2005). This lack of weather data also increases 

the already high uncertainty of climate change predictions (Buytaert et al. 2010). 

Additionally, information regarding land-use and agronomy is usually out-dated and existing 

maps have a very coarse spatiotemporal resolution (Ministerio de Agricultura Ganaderia 

Acuacultura y Pesca del Ecuador, www.agricultura.gob.ec). Finally, monitoring data on pests 

is usually completely lacking. Therefore, this shortage of data demands great efforts for 

researchers either to find existing information or to develop and record it themselves in order 

to achieve adequate analysis regarding their scientific interests. Below we propose two ways 

to deal with this shortage of data. 

 

“Big data” insights into pest distribution – The need for a coordinated monitoring 

system, complemented by robust diagnostic networks and widely accessible information 

systems on pest and plant diseases, has never been greater (Chakraborty & Newton 2011). 

Pest problems are likely to increase in the future (Oerke 2006, Garrett 2013), so we need to 

move from a pest specific, short-term and demand-driven approach to the establishment of a 

general framework of understanding and managing insect pests. But the cost of effective 
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surveillance can be high for many developing countries. In this context, the Centre for 

Agricultural Bioscience International (CABI) has been developing a Global Plant Clinic 

network where ‘plant doctors’ provide quality-controlled data for a community surveillance 

system, leading to early detection of new pests and diseases (http://www.cabi.org). It is 

nowadays the largest global pest distributions repository available: the CABI features an 

extensive global coverage of more than 20 000 pests, diseases, weeds and their natural 

enemies, the crops that are their hosts, and the countries in which they occur. Moreover, the 

CABI provides up-to-date information on the latest literature on the spread, detection and 

control of pests and diseases worldwide. 

 Another example of large scale pest monitoring is the INNOMIP project (INNOvative 

approaches to Manage Insect Pest risks in changing Andes), led by the French Institute for 

Research and Development (IRD) in collaboration with the Entomology Laboratory of the 

Pontifical Catholic University of Ecuador (PUCE). This program was developed to improve 

the capacity of North Andean farmers to fight agricultural pests. This participative monitoring 

was made of 51 study points spread over Ecuador, Peru and Bolivia (Fig. 7). At each point 

from 2006 to 2012, climatic data were recorded at a 1-minute time-step using an air 

temperature and relative humidity logger placed at 1.5 m high. The INNOMIP project also 

established a participative monitoring of potato tuber moth infestation with pheromone traps, 

revised by either technicians or farmers every three weeks. Data recorded by this project were 

available through a web-base interface. This thesis has benefited from such a project mainly 

through the availability of data on pests and climate monitoring at a regional scale. For 

instance, long term temperature monitoring in the field with data-loggers in the study site of 

this thesis were used as a reference for assessing the actual seasonality in the study sites (see 

Appendices S4 and S6 of Chapter I). Also, pest data issued from this monitoring were used as 

observed data for validating our modelling outcomes in the work presented in paragraph II.3. 
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of this discussion (see above). Approaches such as this one to manage and make accessible 

data constitute important advances towards improving both knowledge about these pests’ and 

the capacity to understand their dynamics in the North Andean Region. 

 

 

 

Figure 7: Map of the 27 study sites of the INNOMIP pest and climate monitoring over the 

Ecuadorian Andes. Photographs from top to bottom illustrate the temperature logger, 

pheromone traps of the three studied pests, and pest enumerating. Photo credits: IRD – Emile 

Faye and Olivier Dangles. 
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2. UAV: Limits and promises for developing countries 

Limits of the technology – As claimed by Anderson & Gaston (2013), “drones are on their 

way to revolutionize spatial ecology” and to become an indispensable device for ecologists 

(Grémillet et al. 2012). But applying such technologies for research, in particular in 

developing countries, faces different obstacles that have to be overcome. The price of 

technologies such as thermal cameras and UAVs, even if constantly decreasing, is still 

expensive. A complete UAV system (including the drone, the ground control station, the 

remote control, the data link, etc…) combined with on-board visual and infrared cameras will 

cost between 10.000 and 50.000 US dollars. After what, the learning of piloting, flight 

programming, UAV maintenance, thermal and visual image processing, mapping software 

will last in average for 1 year of practice. Weather conditions are also restricting UAV flights: 

wind, rain and thunderstorms are the main factors that can constrain UAV flight and they 

have to be appreciated by the pilot himself. Generally, wind speeds above 30 km/h will keep 

the UAV on the ground or force the pilot to return to land. Rain is no flight conditions 

because it may interfere with the on-board electronic components and also affect data values 

of the images due to high water content in the light path (Jones & Vaughan 2010). Ground 

elevation a.s.l. also hampers the uses of UAVs for research, in particular those of hexacopters 

(compared to wing shape UAVs which possess more lifting power): indeed, for the purpose of 

another study interested in glacier melt effects of plant biodiversity, we tried to fly over a 

glacier snout with a light UAV (<1 kg) and due to the low air density at that altitude, we were 

not able to hover (Fig. 8). Based on flights performed at various elevations in the tropical 

Andes, we estimated that the elevation limits for flying with ready-to-fly commercial drones 

was 3500 m high. Of course, the flying aptitude of the UAV can be adjusted by decreasing the 

total flying weight, and by increasing the power of the motors and the capacity of the 

batteries. Additionally, care should be taken when conducting UAV experiments on wild 
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animals because if practised whithout caution UAV flights can disrupt animals’ behaviour 

(Ditmer et al. 2015, Vas et al. 2015). Last but not least, despite a strong interest and 

enthusiasm from the scientific community for such a promising tool, one critical constrain 

that still hampers the adoption of UAVs by the scientific community concerns administrative 

restrictions such as the governmental approval for flying (Allan et al. 2015). For instance, the 

use of UAV system in this thesis was achieved thanks to the support of the official authorities 

of Ecuador (IEE – Instituto Espacial Ecuatoriano). As declaimed by Vincent et al. (2015), 

“UAV technology will revolutionize ecology, but only if it can be widely and easily 

implemented”. 

 

Figure 8: Photographs of a light commercial UAV flying over the glacier snout of the 

Carihuairazo mountain at 4850 m.a.s.l. (Ecuador). Photo credit: S. Cauvy-Fraunié. 

 

Transferring UAV knowledge and methodology – Knowledge diffusion is one of the 

most important challenges for global development (Hoekman et al. 2005). The transfer of 

skills, knowledge, technologies and methods among scientists worldwide is a key step for 

making it accessible to a wide range of stakeholders who can further develop and exploit 

theses knowledge. A trustful collaboration with southern partners is decisive for addressing 

the international development issues; and researchers from developed countries should not 
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monopolize new technologies such as UAVs and thermal cameras. That is why during this 

thesis, we collaborated with scientific partners of Ecuador, Peru and Bolivia and tried to 

transfer UAV knowledge and technology through various talks, workshops and training in 

universities as well as scientific vulgarisation in schools (Fig. 9). 

 

Figure 9: Supports and vulgarisation of Sciences and technologies in Ecuador. First row: field 

training on the uses of different sensors for Thermal ecology with students (June 2015), UAV 

fieldwork with our Ecuadorian partners (January 2014). Second row: vulgarisation of our 

researches for the 2015 ‘Fête de la Sciences’ for the school pupils (April 2015). Third row: 

UAV piloting course at the ‘Escuela Politecnica Nactional’ in Ecuador (December 2013). 
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3. The broader picture: facing obstacles to IPM 

This thesis revealed that thermal ecology might bring relevant insights into our knowledge of 

agricultural landscape and pest dynamics. We think that the recognition of the effect of 

landscape microclimatic heterogeneity on pest distribution may afford a valuable contribution 

to the theory and practice of integrated pest management (IPM). IPM involves the coordinated 

integration of multiple complementary methods to suppress pests in a safe, cost-effective, and 

environmentally friendly manner (Ehler 2006, Morse 2009). In this context, both 

methodological and conceptual issues proposed in this thesis may be added to the IPM 

toolbox, a viewpoint supported by a recent study performed by our group on IPM obstacles 

worldwide (Parsa et al. 2014 in Appendix S3). Indeed, an important result of this survey (that 

involved 96 countries) was that developing-country respondents rated “IPM requires 

collective action within a farming community” as their top obstacle to IPM adoption. Such 

recognition of the need of managing pest at the landscape level (and not by individual farms) 

is totally in phase with the conclusions of our thesis that thermal landscapes heterogeneity 

may have a key effect on pest dynamics. Moreover, the Parsa et al.’s (2014) survey showed 

that respondents from developing and developed countries rated the obstacles differently. This 

difference in perception between actors highlighted for the first time the need to improve the 

participation of all stakeholders of the developing countries in the debate on adoption of the 

IPM worldwide. In this context, research on thermal ecology applied to agronomy, to date 

developed mainly in developed countries, should also involved developing country 

stakeholders and academics so that the regional and local specificities of tropical agroscapes 

may be taken into account. From theory to practices, training a new generation of agro-

ecologists with the most recent knowledge and methodologies available for the survey of pest 

dynamics should be one of the best bet to address food security problems in a context of 

climate change and variability. 
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Appendix S1: Press communications – Sciences au sud – November 2013 
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Figaro magazine – January 2014 
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E U R E K A

Les droncs au
service de la science

Si, aujourd'hui, les drones ont une vocation militaire
-affirmée, ils ne sont cependant pas réserves aux for-
ces armées. Ces aéronefs sans pilote, commandes à
distance et dotés de toutes sortes de capteurs (caméras

visibles ou à infrarouge, radars, détecteurs de pollution ou de ra-
diation...) sont en voie de conquérir le monde civil, mais égale-
ment le milieu scientifique. Simples d'emploi et accessibles finan-
cièrement, ils sont utilisés dans de nombreuses disciplines. Le
plus souvent, il s'agit de drones dits tactiques ou de minidrones
(moins de 25 kilos), voire de microdrones (moins de 2 kilos), qui
transmettent des informations en temps réel, exploitables rapide-
ment. Ainsi, le Centre national d'études spatiales (Cnes) expéri-
mente, sur le site de Cessales, en Haute-Garonne, un microdrone
de surveillance dont les photos et les vidéos sont diffusées en di-
rect par satellite, partout dans le monde. L'objectif visé est de pré-
venir incendies et inondations. De son côté, l'Institut de recherche
pour le développement (IRD) a acquis un drone multirotor dédié
à l'étude de la dynamique de la biodiversité. Il permettra de mesu-
rer précisément révolution de la température du sol et des plantes
dans les Andes tropicales, en Equateur.
Plus faciles à déployer qu'un satellite et volant à basse altitude, les
drones offrent une définition d'image inégalée. Et leur champ
d'action semble illimité. Au Danemark, des chercheurs de l'uni-
versité de Copenhague testent l'utilisation des drones pour repé-
rer les mauvaises herbes envahissant les terres agricoles. Les
données sont envoyées à des robots déployés au sol qui se dépla-
cent et traitent la zone affectée avec, pour résultat, une consom-
mation de pesticides réduite de moitié. Les archéologues ont aussi
recours à l'outil. Un drone quadricoptère a permis de découvrir
des constructions mayas, au Mexique. D'autres ont pour fonction
d'étudier l'atmosphère à proximité des cyclones, la qualité de la
glace en Antarctique ou de prélever des échantillons de gaz toxi-
ques dans des fumerolles volcaniques... D'ores et déjà, des scienti-
fiques lui prédisent un rôle majeur.

PAR MARTINE BETTI-CUSSO
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Sciences au sud – September 2014 
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Roots, Tubers and Bananas Annual Report of the CGIAR – December 2014 
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understand the genetic diversity of the crop and tap its potential 
for food security.” 

For Rick Miller, professor of biological sciences at Southern 
Louisiana University, field trials can be combined with genetic 
approaches to identify characteristics like drought resistance 
in populations of the Batatas complex from around the world 
to be used for sweetpotato breeding. “This may sound like an 
ambitious goal, but for many crop species, like tomato, corn and 
rice, it is a reality,” he said.

Both studies were undertaken as part of the project on “Adapting 
agriculture to climate change: collecting, protecting and 
preparing crop wild relatives,” managed by the Global Crop 
Diversity Trust, Germany and the Millennium Seed Bank of the 
Royal Botanic Gardens at Kew in the UK.

Castañeda-Álvarez NP, de Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC, Bernau 
V, Salas A, Heider B, Simon R, Maxted N, Spooner DM (2015). Ex situ conservation 
priorities for the wild relatives of potato (Solanum L. section Petota). PLOS ONE 

Khoury CK, Heider B, Castañeda-Alvarez NP, Achicanoy HA, Sosa CC, Miller RE, 
Scotland RW, Wood JR, Rossel G, Eserman LA, Jarret RL, Yencho G, Bernau V, Juarez H, 
Sotelo S, de Haan S and Struik PC (2015). Distributions, ex situ conservation priorities, 
and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas 
(L.) Lam., I. series Batatas]. Front. Plant Sci. 6:251. doi: 10.3389/fpls.2015.00251

Germplasm Reveals that CIP Genebank Holds 
Many Heat-Tolerant Clones
Scientists in CIP’s Global Program for Genetic Resources 
undertook a mass field screening of 1,973 sweetpotato 
accessions from the CIP Genebank in the lowlands of northern 
Peru that resulted in the identification of 146 accessions that 

and habitat destruction abounds, it is essential that in-situ 
reserves are established. In-situ conservation is complementary 
to genebanks and can support ongoing evolution and adaptive 
shifts in population genetics.”

Scientists from CIP and CIAT led genebank gap analyses with 
partners around the world to identify gaps in potato and 
sweetpotato collections and geographic areas were further 
collecting is needed. A total of 32 species of potato wild relatives 
(43.8% of those studied) were assigned high priority status 
due to significant gaps in genebank collections.  In the Andean 
highlands specifically – potato’s center of origin – potato crop 
wild relatives are threatened as their habitats are impacted by 
climate change, land use intensification and the construction of 
roads and villages. The researchers recommended immediate 
action on both ex situ and in situ conservation. 

The gap analysis for crop wild relatives of sweetpotato yielded 
even more dramatic results: a total of 78.6% of the species 
considered in the study were assessed as high priority for further 
collecting and conservation in ex situ collections. The research 
findings, published in the journal Frontiers in Plant Science, 
also indicate that diversity gaps in ex situ collections largely 
align with the geographic distribution of species richness of 
sweetpotato CWR, such as “hotspots” in central Mexico and 
Central America, and in the extreme southeastern USA. Further 
collecting of CWR germplasm should consequently be focused 
on these regions. 

“Not only do we need more germplasm collecting activities,” 
said Bettina Heider, a genetic resources specialist at CIP and co-
lead author of the scientific paper, “we also need more research 
on sweetpotato overall, including its wild relatives, to better 

Harnessing Genetic Resources Developing Improved Varieties  |  RTB Annual Report 2014 
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performed well under heat-stress conditions. The results show 
that CIP has ample genetic material for breeding improved 
sweetpotato varieties for marginal regions or the extreme 
conditions predicted under climate change.

“We knew that sweetpotato was a robust crop, but the results 
of this study show that it is very heat tolerant,” said researcher 
Bettina Heider, who led the field screening. 

She explained that the accessions were planted in Peru’s 
northern desert, near the city of Piura, for two cropping cycles: 
the southern winter of 2013 and summer of 2014. Summer 
temperatures near Piura can reach highs of 40 °C during the 
day and between 20 °C and 30 °C at night. Warm soil at night 
typically causes sweetpotato to produce “pencil roots” with little 
or no value. At the end of each cycle, the researchers recorded 
details for each accession such as total yield, root conditions, 
leaf and vine biomass and any pest problems detected.

At least 21 of the accessions showed high yields and early 
bulking under heat-stress conditions, which makes them 
good candidates for further selection and breeding efforts. 
Heider noted that the test site has poor, sandy soil and some 

plants suffered drought stress, which means the accessions that 
performed well have real potential for relieving hunger and 
malnutrition on marginal lands.

“This is really promising because we now know that we have 
germplasm that we can send to areas that suffer heat and related 
stress. In many areas of Africa and Asia, all the good farmland is 
already dedicated to other crops, and as the population grows, 
farmers are moving into marginal areas,” Heider said.

She explained that her team separated accessions according to 
know traits such as roots with high beta-carotene, or that are 
sweet or not sweet, which scientists in different countries are 
already breeding for. She added that the accessions in the CIP 
genebank are from all over the world, and some of the ones that 
performed best under heat stress are from Asia.

“The idea is that this information strengthens the breeding 
program,” she said. “The next step is to send the accessions that 
performed well for multiple testing in other regions.”

In addition to producing useful information for CIP’s genebank 
and sweetpotato breeding program, the field study was 
innovative in its use of remote sensing data, thanks to a 
collaboration with the IRD office in Ecuador, a member of RTB’s 
global partnership with French organizations. Information from 
remote sensing has not only enhanced the sweetpotato mass 
screening, it will strengthen the future use of this type of data for 
evaluation of sweetpotato in the field.

 “The good news is that enough of the clones performed well that 
we have a lot of germplasm that could be used in marginal areas 
or under climate change conditions. If you look at the clones that 
performed well under both the heat-stress and winter scenarios, 

© G. Rossel/CIP
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Pix4D webpage – Study case – November 2014 
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Actualité scientifique IRD n°488 – November 2015 

Climat':'des'drones'au'service'de'la'biodiversité'
'

'
Survol d’un champ de pommes de terre en Equateur (© IRD / E. Faye) 
 
 
Pour étudier la réponse du vivant au changement climatique, il est nécessaire 
de considérer les conditions écologiques de vie des espèces animales et 
végétales. Pour la plupart de ces organismes (insectes, reptiles, plantes…), les 
observations doivent être conduites à des échelles de l'ordre du centimètre. 
Comment effectuer des mesures environnementales à de si petites échelles 
sur de grandes surfaces ? Des chercheurs de l'IRD et leurs partenaires 
équatoriens viennent de publier une méthodologie complète pour répondre à 
cette question. Celle-ci combine l'usage de drones, de capteurs thermiques, de 
logiciels de cartographie et de traitement statistique. Il s'agit d'une avancée 
méthodologique majeure pour améliorer les prévisions des effets du climat, 
notamment des variations de température, sur la biodiversité. 
 
 
 
Bon à savoir 
Un drone, de l'anglais « faux-bourdon », désigne un aéronef sans pilote. Depuis 10 
ans, les progrès technologiques permettent une utilisation de plus en plus aisée des 
drones pour effectuer de nombreuses tâches de manière autonome, notamment 
l'acquisition d'informations sur les terres et les mers. Les limites à leur déploiement 
sont devenues plus réglementaires que techniques. 
 
 
 



GENERAL APPENDICES 

 
 
272 

De plus en plus accessibles, les drones constituent une révolution technique pour l’acquisition de 
données scientifiques. Surtout lorsque les mesures in situ s’avèrent difficiles avec des moyens 
traditionnels, ou dans des domaines pour lesquels les satellites et les avions n’offrent pas la 
même souplesse d’utilisation ni une résolution spatiale suffisante – un mètre au mieux pour les 
images satellites infrarouges. 
Des « paysages thermiques » en 3D

 
Plusieurs études récentes ont documenté les applications de 
ces aéronefs sans pilote, en particulier pour les recherches 
en écologie et en agronomie. Equipés d’une caméra 
thermique embarquée, ils fournissent notamment des 
données sur la température locale, à des échelles spatiales 
et temporelles adaptées. Cependant, il restait à définir un 
cadre méthodologique permettant d’exploiter ces données. 
C’est ce que viennent de proposer des chercheurs de l’IRD 
et leurs partenaires équatoriens dans la revue Methods in 
Ecology & Evolution. Ils y offrent une « boîte à outils » complète, permettant d’intégrer des 
images prises par des drones dans des logiciels de cartographie et de traitement statistique 
appropriés. Au final, cela permet de reconstituer en 3D le relief des zones survolées et d’y 
superposer un paysage thermique en haute résolution. 
 
Des essais grandeur nature

 
L’équipe de recherche a testé cette nouvelle méthodologie dans les paysages agricoles andins 
en Équateur. Dotés d’une caméra infrarouge (enregistrant les températures de surface), des 
drones ont passé au crible des champs de pommes de terre, qui sont communément attaqués 
par une grande diversité de ravageurs et maladies (chenilles, pucerons, champignons). Volant à 
une hauteur de 60 mètres au dessus du sol, ceux-ci ont permis de mesurer précisément sur 
plusieurs dizaines de mètres carrés la distribution spatiale des températures de surface, à la fois 
du sol et des plantes. Le tout avec une précision, respectivement pour les images visuelles et 
infrarouges, de 1 et 5 centimètres ! 
 
Mieux représenter les microclimats

 
La résolution à laquelle les données climatiques étaient collectées jusque-là ne permettait pas de 
rendre compte des conditions microclimatiques dans les modèles de climat globaux. Or, les 
microclimats modifient la réponse et la distribution des espèces locales au changement 
climatique. Leur mauvaise représentation dans les modèles constitue un obstacle majeur à 
l’étude et aux prévisions des effets climatiques, notamment sur les plantes et les animaux. 
Les images collectées lors de cette étude soulignent l’urgence de quantifier, selon des échelles 
spatiales pertinentes, les conditions microclimatiques. Elles ont en effet révélé que le type de 
cultures et leur stade de croissance modifient fortement la température et les conditions 
écologiques dans les champs, et donc la dynamique et l’aire de répartition des populations de 
ravageurs de cultures, comme les teignes ou les charançons. 
 
Partenaires 
Institut spatial équatorien (IEE), Université pontificale catholique de l’Equateur 
(PUCE) dans le cadre du projet ANR ManPest. 
 
Références 
EMILE FAYE, FRANÇOIS REBAUDO, D. YANEZ-CAJO, S. CAUVY-FRAUNIE, OLIVIER 
DANGLES. A toolbox for studying thermal heterogeneity across spatial scales: 
from unmanned aerial vehicle imagery to landscape metrics. Methods in Ecology 
& Evolution, 2015. DOI: 10.1111/2041-210X.12488  
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Appendix S2: Posters 

Poster presented at the Heteroclim workshop the 10-14 of June 2014. Loches, France. 
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UR 072 Biodiversity and evolution plant/insect - pest/antagonist complexes (BEI) 

2 Centre national de la Recherche Scientifique (CNRS), 
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INTRODUCTION 

METHODS 

Soleil 

RESULTS 

Global solar radiations (in Watt / m2) 
have been recorded for each couple of 
IR shoot using LI-1400 datalogger 
equipped with a LI-200 pyranometer 
sensor (LI-COR, 163 Lincoln, USA). 

Distance makes the difference  
in thermography for ecological studies 

80 m 60 40 20 0 

!  Infrared cameras are widely used in thermal ecology research. They provide spatially continuous and 
instantaneous measurements of surface temperatures with a broad spatial coverage at high spatial and 
thermal resolution. 

 

!  However, very few studies point out the limits of the use of these cameras for featuring thermal landscape with 
metrics of heterogeneity, composition and configuration. 

 

!  Herein, we investigated the effect of the distance between the studied object and the infrared-camera on 
thermal metrics at the Chateau de Saché, Loire valley, France. 

320 x 240 px 
0.05 K res. at 30°C 
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This work is part of the research conducted within the project Microclimite ‘Connecting global and microclimate 
change’ (ANR-10-BLAN-1706-02) and the project MAN-PEST ‘Adaptive management in insect pest control in thermally 
heterogeneous agricultural landscapes’ (ANR-12-JSV7-0013-01). It is funded by the Agence Nationale pour la Recherche. 

!  Test card: 3 thermal metrics strongly decreased with distance in the first 20 m from the 
fixed camera: Δ T°C Mean (A.), Δ Standard Deviation (B.) and Δ Patch Richness (C.). 
Above 20 m, the decrease with distance is less marked. These metrics are under-
estimated by the farther IR camera. On the contrary, Δ Aggregation Index showed a 
constant increase with the distance, following the pixel size increase relationship (I.). 

 
!  Thermal metrics are significantly influenced by solar radiation levels as stronger level of 

radiation increased the under-estimation by the farther IR camera for A., B. and, C. In other   

! We used synchronized shots of the same surfaces from 2 similar thermal cameras at 
different distances:     a Flir B335 fixed at 2 m and     an Infratec Variocam HR 
Research ranging from 2 to 80 m. 

 

! We shouted 3 surfaces with increasing ecological and thermal complexity: a 1m2 black 
and white test card (2D, 2 types of patch),  a green wall (2D, various patches) and a 
wood edge (3D, various patches). 

! We investigated the delta of mean temperature, standard deviation, patch richness and 
aggregation between the two cameras              throughout distance between the 
studied object and the infrared-camera.  
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!  As for test card surfaces, thermal metrics 
of more ecologically complex areas are 
under-estimated by the farther IR 
camera at equal solar radiations (890 
watt/m2 ±133); see E., F. and H. As well 
as for the Δ Aggregation which increase 
with increasing distances (G.).  
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!  Complex surfaces: less complex areas are more under-estimated 
by the farther IR camera than more complex such as wood edges 
which are composed of thermal niches. Wood edges were either 
more thermally homogeneous or colder than the green wall and 
the test card.  

Take Home Message: Distance may strongly affect the results of 
your thermal camera in the first 20 m.  Thermal ecologists should take care 
of this unknown phenomenon in their studies which involve IR absolute 
temperatures or impose shooting distance such as the use of 
thermography with U.A.V. 

Emile FAYE
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AgroParisTech Engineer

Lab  072 IRD c/o CNRS – Biodiversity and 
evolution of plant-pest complex

Mail:          EHFaye@gmail.com
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words, warmer surface temperatures 
are more under-estimated than the 
cooler ones at equal distance. 
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Poster presented at the 3rd conference on Climate Smart Agriculture.18 of March 2015. 

Montpellier, France. 
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Despite its theoretical prominence and sound principles, integrated
pest management (IPM) continues to su er from anemic adoption
rates in developing countries. To shed light on the reasons, we
surveyed the opinions of a large and diverse pool of IPM profes-
sionals and practitioners from 96 countries by using structured con-
ceptmapping. The rst phase of this method elicited 413 open-ended
responses on perceived obstacles to IPM. Analysis of responses re-
vealed 51 unique statements on obstacles, the most frequent of
which was “ insu cient training and technical support to farmers. ”
Cluster analyses, based on participant opinions, grouped these
unique statements into six themes: research weaknesses, outreach
weaknesses, IPMweaknesses, farmer weaknesses, pesticide industry
interference, and weak adoption incentives. Subsequently, 163 par-
ticipants rated the obstacles expressed in the 51 unique statements
according to importance and remediation di culty. Respondents
from developing countries and high-income countries rated the
obstacles di erently. As a group, developing-country respondents
rated “ IPM requires collective action within a farming community ”
as their topobstacle to IPMadoption. Respondents fromhigh-income
countries prioritized instead the “shortage of well-quali ed IPM
experts and extensionists. ” Di erential prioritization was also evi-
dent among developing-country regions, and when obstacle state-
ments were grouped into themes. Results highlighted the need to
improve the participation of stakeholders from developing countries
in the IPM adoption debate, and also to situate the debate within
speci c regional contexts.

sustainable agriculture | technology adoption | collective action dilemma

Feeding the 9,000 million people expected to inhabit Earth by
2050 will present a constant and t challenge in terms

of agricultural pest management (1–3). Despite a 15- to 20-fold
increase in pesticide use since the 1960s, global crop losses to
pests—arthropods, diseases, and weeds—have remained unsus-
tainably high, even increasing in some cases (4). These losses
tend to be highest in developing countries, averaging 40–50%,
compared with 25–30% in high-income countries (5). Alarm-
ingly, crop pest problems are projected to increase because of
agricultural n (4, 6), trade globalization (7), and,
potentially, climate change (8).
Since the 1960s, integrated pest management (IPM) has be-

come the dominant crop protection paradigm, being endorsed
globally by scientists, policymakers, and international development
agencies (2, 9–15). The s of IPM are numerous, but all
involve the coordinated integration of multiple complementary
methods to suppress pests in a safe, , and environ-
mentally friendly manner (9, 11). These de nitions also recog-
nize IPM as a dynamic process in terms of design, implementation,
and evaluation (11). In practice, however, there is a continuum of

interpretations of IPM (e.g., refs. 14, 16, 17), but bounded by
those that emphasize pesticide management (i.e., “tactical IPM ”)
and those that emphasize agroecosystem management (i.e.,“stra-
tegic IPM, ” also known as “ecologically based pest management” )
(16, 18, 19). Despite apparently solid conceptual grounding and
substantial promotion by the aforementioned groups, IPM has
a discouragingly poor adoption record, particularly in developing-
country settings (9, 10, 15–23), raising questions over its applica-
bility as it is presently conceived (15, 16, 22, 24).
The possible reasons behind the developing countries’ poor

adoption of IPM have been the subject of considerable discussion
since the 1980s (9, 15, 16, 22, 25–31), but this debate has been
notable for the limited direct involvement from developing-coun-
try stakeholders. Most of the literature exploring poor adoption of
IPM in the developing world has originated in the developed world
(e.g., refs. 15, 16, 22). An international workshop, entitled “ IPM in
Developing Countries, ” was held at the a Universidad
Católica del Ecuador (PUCE) fromOctober 31 toNovember 3, 2011.
Poor IPM adoption spontaneously became a central discussion
point, creating an opportunity to address the apparent participa-
tion bias in the IPM adoption debate.
It was therefore decided to explore the topic further by eliciting

and mapping the opinions of a large and diverse pool of IPM

Integrated pest management (IPM) has been the dominant
crop protection paradigm promoted globally since the 1960s.
However, its adoption by developing country farmers is sur-
prisingly low. This article reports 51 potential reasons why,
identi ed and prioritized by hundreds of IPM professionals and
practitioners around the world. Stakeholders from developing
countries prioritized t adoption obstacles than those
from high-income countries. Surprisingly, a few of the obsta-
cles prioritized in developing countries appear to be over-
looked by the literature. We suggest that a more vigorous
analysis and discussion of the factors discouraging IPM adop-
tion in developing countries may accelerate the progress needed
to bring about its full potential.
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professionals and practitioners from around the world, including
many based in developing countries. The objective was to generate
and prioritize a broad list of hypotheses to explain poor IPM
adoption in developing-country agriculture. We also wanted to
explore differences as influenced by respondents’ characteristics,
particularly their region of practice. To achieve these objectives,
we used structured concept mapping (32), an empirical survey
method often used to quantify and give thematic structure to open-
ended opinions (33).
We know of only one other similar study that characterizes

obstacles to IPM. It was based on the structured responses of 153
experts, all from high-income countries (30). Our survey was
designed to progress from unstructured to structured responses,
and to reach a much larger and diverse pool of participants,
particularly those from the “Global South. ” Considering that the
vast majority offarmers live in developing countries (34), it
would seem imperative that the voices from this region be heard.

Results
Fig. 1 provides a summary of the study’s results. The study began
with a brainstorming phase that used an open-ended question
that asked participants to identify one obstacle to IPM adoption

in developing countries. We received 413 responses, 80% of
which came from professionals and practitioners based in de-
veloping countries (Table S1 ). Most participants (56.4%) had
more than 10 y of experience in developing-country agriculture.
They were demographically diverse (Table S1 ), although with an
important male bias (75.5%), but nevertheless reflecting the
wider discipline of crop protection. After eliminating redun-
dancies and editing for conciseness and clarity, we generated
statements on 51 unique obstacles (Table 1), which were then
used in subsequent steps of the concept mapping. The ob-
stacle most frequently cited was “ insufficient training and tech-
nical support to farmers” [coded as “outreach weakness” (OUT)-1;
Table 1], accounting for 12.8% of total responses. This was fol-
lowed by “ lack offavorable government policies and support ”
[coded as “weak adoption incentive” (INC)-1], accounting for
9.4% of total responses. Later, 12 respondents sorted the obsta-
cles into similar groups. Their responses were submitted to mul-
tidimensional scaling (MDS) analysis, which identified six distinct
clusters (Fig. S1 ) that were designated as follows: FMR, for
“ farmer weaknesses” ; INC, for “weak adoption incentives” ; IPM,
for “ IPM weaknesses ” ; OUT, for “outreach weaknesses” ; PST, for
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Fig. 1. Summary of a concept map identifying obstacles to IPM in developing countries. The world map captures the global participation in developing the
concept map. Doughnut charts represent the proportion of open-ended responses that matched one of six obstacle themes or were otherwise assigned to the
generic category “ others. ” The size of the circle inside each doughnut is proportional to the number (labeled in or next to it) of open-ended responses. Bar
charts represent ratings on a scale from 1 to 5, ranging from least to most important or difficult obstacle. The number of rating responses is presented in
parentheses next to the region ’s name. Responses from Europe and Central Asia were omitted from the graph because of poor representation.
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“pesticide industry interference” ; and RCH, for “research weak-
nesses” (Table 1).
A total of 163 participants (74.8% of whom were from de-

veloping countries) rated each obstacle according to importance
and remediation difficulty. Participants in the rating phase of con-
cept mapping were roughly similar to those in the brainstorming

phase, except for an increased proportional representation from
Latin America and the Caribbean ( Table S1 ). Statistical analyses
conducted on the responses showed significant differences between
ratings of participants originating from high-income countries and
those from developing countries, particularly for ratings on diffi-
culties (Fig. 2). As a group, developing-country participants rated

Table 1. Frequencies of 51 unique obstacles to IPM adoption in developing countries discovered by reviewing 413 free-listed
statements on obstacles

Code* Obstacle Frequency

OUT-1 Insufficient training and technical support to farmers 53
INC-1 Lack offavorable government policies and support 39
FMR-1 Farmers have low levels of education and literacy 22
IPM-1 IPM too difficult to implement compared with conventional management with pesticides 18
PST-1 Powerful influence of pesticide industry 16
INC-2 Shortage offunding for IPM, especially long-term funding 16
OUT-2 Limited access to IPM inputs, like resistant cultivars and biopesticides 15
OUT-3 Limited access to IPM extension publications and knowledge 13
IPM-2 Costs of IPM are much more apparent than benefits 13
FMR-2 Farmers uninterested in changing habitual management practices 11
OUT-4 IPM too difficult to explain and understand 10
RCH-1 Shortage ofinterinstitutional collaboration in IPM; e.g., between universities and private sector 9
OUT-5 Shortage of well-qualified IPM experts 9
FMR-3 Farmers are too risk averse 8
IPM-3 IPM requires collective action within farming community 8
INC-3 Lack of market incentives for farmers to adopt IPM, consumers want high quality at lowest price 8
RCH-2 Insufficient IPM research 7
IPM-4 IPM too expensive 7
RCH-3 IPM research poorly oriented to needs offarmers 7
OUT-6 Shortage of IPM training programs in universities and other training institutions 7
OUT-7 Lack of IPM guidelines for many pests and diseases, both old and emerging 6
PST-2 Pesticides promoted too heavily by salespeople 5
OUT-8 Shortage of IPM guidelines focused on crop health instead of specific pests 5
IPM-5 Shortage of practices and products as effective as chemical pesticides 5
OUT-9 Shortage of well-qualified extensionists 5
IPM-6 Conventional management with pesticides responds well to needs offarmers 4
OUT-10 Farmers unaware of IPM 4
FMR-4 Farmers have limited understanding of unintended effects of pesticides 4
IPM-8 IPM too labor-intensive 4
IPM-7 IPM unsuitable for smallholder agriculture because farmers grow too many crops, each demanding unique IPM program 4
RCH-4 Shortage ofinterdisciplinary collaboration in IPM; e.g., between pathologists and rural sociologists 4
PST-3 Access to pesticides too easy and unrestricted in rural areas 3
IPM-10 Farmers become disillusioned with IPM because experts overestimate its benefits 3
IPM-11 IPM combines many practices but farmers want just the single best 3
OUT-13 IPM extension publications are difficult to understand for farmers 3
OUT-11 Poor understanding of mechanisms behind successful extension programs 3
OUT-12 Shortage of pest identification services 3
IPM-9 Benefits of pesticides are much more apparent than their negative effects 3
RCH-6 Experts underestimate legitimate role of pesticides in IPM 2
IPM-12 Farmers cannot make IPM priority, have more important problems to address 2
RCH-7 Insufficient attention to biological control 2
RCH-8 Insufficient attention to host plant resistance 2
RCH-5 Insufficient attention to participatory methods 2
IPM-13 IPM not very effective when pest populations are very high 2
RCH-9 Many IPM recommendations are not evidence-based or research-based 2
PST-4 Weak regulation of pesticide industry 2
RCH-10 Insufficient attention to cultural practices, like crop rotations and intercropping 1
RCH-12 Insufficient attention to decision-support tools 1
RCH-13 Insufficient attention to gender issues 1
RCH-11 Insufficient attention to traditional and local knowledge 1
OUT-14 IPM guidelines not location-specific 1

Twenty-five of the 413 free-listed statements were omitted due to incompleteness, incomprehensibility, or other errors.
*Letter coding describes the key themes grouping the obstacles: FMR, farmer weaknesses; INC, weak adoption incentives; IPM, IPM weaknesses; OUT,
outreach weaknesses; PST, pesticide industry interference; RCH, research weaknesses. The numbers refer to the rank order of the statement within its group
(i.e., lower numbers indicate greater frequency).
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the statement “ IPM requires collective action within a farming
community” (IPM-3) as the most important obstacle. This rating
differed significantly with that from high-income country partici-
pants, who rated it 28th of 51 responses for importance (df = 161;
F = 12.56; P < 0.01; Fig. 2).
Analyses of ratings by region pointed to overall agreement

on the importance and remedial difficulty for most of the 51
obstacles (Table S2 ). However, top-rated statements differed,
often significantly (Table 2). For example, high-income countries
rated the statement “shortage of well-qualified extensionists”
(OUT-9) as one of the two most important obstacles to IPM in
developing countries, but there was low agreement on its im-
portance and difficulty across regions (Table 2).
Statistical analyses conducted on obstacle themes (clusters)

showed less agreement by region than those conducted on the
obstacles themselves (Table 3 and Table S2 ). Nevertheless, regions
notably agreed on the importance of “weak adoption incentives,”
which was the top-ranked theme for Asia and sub-Saharan Africa
(Table 3).

Discussion
Our objective was to elicit and prioritize a broad list of hy-
potheses to explain relatively low IPM adoption in developing
countries. Our list of 51 obstacles to IPM adoption is reasonably
comprehensive, but not necessarily exhaustive. For example, the
list did not include the argument that, under conditions oflow
productivity that are common in developing countries, the yield
saved by IPM vs. doing nothing may be too inconsequential to
justify adoption (15). According to this argument, IPM is

economically justifiable only under conditions of high pro-
ductivity under which the cost ofinvestment will be covered by
increased revenue (15).
A retrospective review of our open-ended responses revealed

the statement “ . . . in regions with low yields, the economic in-
centive for IPM is very limited, ” which we simplified and coded
as “ IPM is too expensive ” (IPM-4). However, of course, much
depends on pest pressure and the extent oflosses incurred by
farmers. Even within subsistence systems that have relatively low
productivity, a high degree of pest pressure could make IPM
important. Indeed farmers may be using practices that help sup-
press pest numbers without necessarily being aware of the effect.

Given the ambitious scope and reach of our survey, we believe
these types of omissions or simplifications are unlikely to sub-
stantially influence the outcome of our study. Indeed, many of
the points raised in this study have been reported before (16),
and should not be surprising. The failure of extension to function
as a vehicle providing technical support and training to farmers,
the lack ofinvestment in research, and the prominence of pes-
ticide-based solutions have long been put forward as reasons for
poor IPM adoption. What is interesting is that these issues have
persisted as long as they have. Clearly, all the calls for action that
have been expressed since the early IPM adoption studies of the
1980s (35) have gone unheard.
However, some obstacle statements in our list appeared to

be new to the literature on IPM adoption. Most noteworthy was
the statement “ IPM requires collective action within a farming
community.” This was ranked by developing-country respond-
ents as their single most important obstacle to IPM adoption
(Fig. 2). The recognition that pest management is most effective
when implemented collectively at the regional level precedes
IPM itself, and gave rise to the development of area-wide pest
management (36) and metapopulation theory (37). Indeed,
some pest management decisions are subject to a collective ac-
tion dilemma (38), whereby the payoffs from adopting a tech-
nology depend on whether others adopt it too (39, 40). For
example, smallholder farmers in Peru are encouraged to plow their
previous-season potato fields to kill overwintering weevils before
they colonize newly planted fields, but this practice is ineffective if
their neighbors do not also plow their fields (41).
This phenomenon may be particularly acute for preventive, as

opposed to therapeutic, management tactics, which are in fact
the most heavily championed by IPM (13, 23). However, col-
lective action may be more important for IPM in developing
countries because pests can more easily move between farms that
are small and therefore separated by short distances. Aware of
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Fig. 2. Respondents from high-income and developing countries rated 51
unique obstacles in terms of their importance ( A ) and the difficulty ( B) of
solving them. Differences in ratings are based on a scale from 1 to 5,
ranging from least to most important or difficult obstacle. Solid circles
represent obstacles that were rated significantly differently (df = 161; P ≤
0.05). Labels represent codes for obstacle themes. FMR, farmer weak-
nesses; INC, weak adoption incentives; IPM, IPM weaknesses; OUT, out-
reach weaknesses; PST, pesticide i ndustry interference; RCH, research
weaknesses.

Table 2. Ratings by region for the most important obstacles to
IPM adoption in developing countries

Code*

Importance Difficulty

HIC Asia LAC SSA P value † HIC Asia LAC SSA P value †

OUT-5 3.78 3.29 3.47 3.27 0.228 3.41 2.71 2.51 2.65 0.000
OUT-9 3.78 3.24 3.22 3.73 0.064 3.34 2.53 2.51 3.12 0.001
IPM-9 3.32 3.82 3.55 3.15 0.106 3.20 3.35 3.05 2.73 0.306
INC-2 3.68 3.41 3.48 3.85 0.821 3.10 3.00 3.08 3.27 0.874
IPM-3 3.12 3.41 4.05 3.54 0.000 2.83 2.71 3.11 2.73 0.085

HIC, high-income countries; LAC, Latin America and the Caribbean; SSA,
sub-Saharan Africa.
*The statistical significance of the importance and difficulty of an obstacle
according to rating by region was derived through multiple regression analyses
using sex, education and field of expertise as covariates. Larger P values sug-
gest greater agreement across regions.
†The letter coding describes six obstacle themes: FMR, farmer weaknesses;
INC, weak adoption incentives; IPM, IPM weaknesses; OUT, outreach weak-
nesses; PST, pesticide industry interference; RCH, research weaknesses.
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the requirement for collective action in IPM, farmer field schools
routinely integrate this concept into their otherwise technical
training programs, obtaining good results (42, 43). It is all the
more surprising, therefore, that the literature on IPM adoption
appears to have overlooked the collective action dilemma, which
is potentially inherent to IPM, as an obstacle to its adoption.
Another key observation is that participants from developing

countries often disagree with those from high-income countries
on the importance of their own obstacles to IPM adoption (Fig. 2
and Tables 2 and 3). As a group, developing-country participants
appear to worry significantly more about weaknesses inherent
within IPM itself (e.g., IPM-3, IPM-5; Fig. 2), whereas their
counterparts in high-income countries appear to worry signifi-
cantly more about local capacity for implementation (e.g., OUT-5,
OUT-9; Fig. 2).
This difference in perspective has not been reported in pre-

vious studies on obstacles to IPM adoption, yet is very interest-
ing. The developed world appears to show greater faith in IPM
as a desirable approach to crop protection and to consider the
issue of nonadoption more to do with the ability of the devel-
oping world to implement it. Considering that the adoption of
IPM in the developed world has also been questioned (16), this
is an intriguing stance. However, in the developing world, this
same issue is much less about capacity and more about IPM
itself. Differential prioritization is also evident when developing-
country region is taken into account (Table 2) and when obstacles
are grouped into themes (Table 3). These findings highlight the
value ofimproving the active participation and representation of
developing-country experiences and perceptions in the IPM
adoption debate.
The intention of this article is not to question the value of IPM

for developing-country agriculture. On the contrary, it is because
we recognize IPM ’s potential merits that its poor adoption seems
paradoxical and worth further analysis. Indeed, this study echoes
previous ones that have critically explored IPM adoption in the
developingworld. One is left wonderingwhy the situation has been
little improved in the more than 30 y that have passed since the
problems of adoption were first raised. After all, IPM is built on
some very sound principles (44). All agree that alternatives such as
an extensive and unfettered use of pesticides could seriously
damage the environment and indeed human health. However, why
is it that, after all of the investment in IPM research and substantial
promotion by major international agencies as well as national
governments, and after all of thewarnings about poor adoption, we
are still where we are? In the developed world, the tendency has

not been to question the practicability of IPM, but maybe there are
questions here that need to be asked rather than avoided. We
suggest a more vigorous analysis and discussion of the factors
discouraging IPM adoption in developing countries may acceler-
ate the progress needed to bring about its full potential.

Materials and Methods
As noted earlier, the survey was conceived and designed during a 4-d in-
ternational workshop entitled “ IPM in Developing Countries, ” held in
Ecuador, in November 2011. The participants included biological and social
scientists with significant experience in developing-country agriculture. Each
workshop participant was responsible for both responding to the survey and
actively promoting it within his or her own extended network of colleagues.
To facilitate its dissemination, the survey was prepared in three languages —
English, Spanish, and French —and conducted on the Internet, by using the
Web-based platform Survey Monkey.

The concept map had three phases: brainstorming, rating, and sorting.
During brainstorming, respondents were asked to use 50 or fewer words to
complete the phrase: “One significant obstacle to IPM in developing coun-
tries is . . . ” We considered the possibility of asking respondents for their
own definition of IPM, but the research team decided against it. The authors
were, of course, aware that IPM is open to different interpretations (e.g.,
refs. 14, 16, 17), but, when we reviewed the literature, we found that dif-
ferences were small, relative to the commonalities, and they were of degree,
not of kind. The continuum lies between those who see a legitimate role of
pesticides within the IPM “ toolbox ” (i.e., the “ tacticians ” ) and those who do
not (i.e., the “ strategists ” ) (16, 18).

Not surprisingly, considerable agreement exists over various other IPM
components (17). Thus, by not asking each respondent to define IPM, or
indeed providing one ourselves, we could cast a wider net for capturing
responses to our research question. We presumed a similar rationale that
discouraged Wearing (30) from providing a definition for IPM in his survey.
In effect, we allowed each respondent to use his or her own vision of IPM,
even though these might be complex in terms of what is seen as the central
(core) and as the peripheral (desirable but not core) features, when an-
swering questions. Although these would have been interesting to explore
in the survey, as they would have provided a frame for addressing the
questions, they would have probably increased the process ’s complexity. We
favored the term “ obstacle ” over “ barrier ” because the latter, although
more commonly used, is more likely to imply insuperability.

Respondents also provided the following nonidentifying demographic
information: country where they are currently based, sex, highest level of
education, sector, and years of developing-country IPM experience. The
brainstorming session was open for 11 wk (November 7, 2011, through
January 13, 2012), eliciting 413 open-ended responses. Twenty-five responses
were omitted from analysis because ofincompleteness, incomprehensibility,
or other errors. The remaining responses were carefully studied and edited
for conciseness and clarity and then consolidated into a list of 51 unique
obstacle statements. We carefully chose our words to clearly separate key
mechanisms that are often confounded in IPM adoption literature. For ex-
ample, we included both “ farmers are too risk averse ” (FMR-3) and “ farmers
are uninterested in changing their habitual management practices ” (FRM-2)
to separate risk aversion (i.e., fear of an uncertain payoff) from conservatism
(i.e., resistance to revise current practices) in farmer decision-making.

During the rating phase of the survey, participants were asked to rate each
of the 51 unique obstacles according to their importance and the difficulty in
solving them. We also asked respondents to provide their field of professional
expertise, in addition to the demographic descriptors requested during
brainstorming. Ratings were based on a scale from 1 to 5 (where 1 indicates
“ not important at all ” or “ not difficult to solve ” and 5 indicates “ extremely
important ” or “ extremely difficult to solve ” ). Because this phase of the
survey demanded substantially more time to complete than the brain-
storming phase, we promoted it for 6.5 mo (March 8, 2012, through Sep-
tember 22, 2012), obtaining 163 responses.

In the final phase of the survey, 12 respondents, including nine authors of
the present paper, volunteered to independently sort the obstacle state-
ments into groups that “ belong together ” or “ share a common theme. ”
They were allowed to create as many or as few groups as they considered
appropriate, based on their own criteria. These responses were then struc-
tured into an aggregate proximity matrix, which captured how frequently
a pair of obstacle statements was placed in the same group (45). The matrix
was then submitted to MDS analysis to derive statistically significant clusters.
The MDS goodness offit was estimated with a stress function, with values

Table 3. Ratings by region for the most important themes of
obstacles to IPM adoption in developing countries

Code*

Importance Difficulty

HIC Asia LAC SSA P value † HIC Asia LAC SSA P value †

FRM 3.04 2.96 3.26 3.03 0.011 2.70 2.76 2.95 2.75 0.030
PST 3.45 3.31 3.65 3.28 0.001 2.99 3.00 3.38 2.77 0.000
IPM 3.11 3.04 3.21 3.14 0.163 2.79 2.73 2.84 2.63 0.089
OUT 3.31 2.70 3.07 3.21 0.000 2.80 2.25 2.35 2.50 0.000
RCH 3.10 2.71 3.02 3.11 0.000 2.59 2.22 2.34 2.26 0.000
INC 3.36 3.35 3.53 3.44 0.205 2.76 3.10 3.00 2.85 0.006

HIC, high-income countries; LAC, Latin America and the Caribbean; SSA,
sub-Saharan Africa.
*The statistical significance of the importance and difficulty of an obstacle
according to rating by region was derived through multiple regression
analyses using sex, education and field of expertise as covariates. Larger
P values suggest greater agreement across regions.
†The letter coding describes six obstacle themes: FMR, farmer weaknesses;
INC, weak adoption incentives; IPM, IPM weaknesses; OUT, outreach weak-
nesses; PST, pesticide industry interference; RCH, research weaknesses.
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close to zero indicating a good fit. The stress value of the six-cluster MDS
solution was 0.196, indicating a good fit.

Cluster dissimilarity was further tested by using an analysis of similarities
that generated a statistical parameter R , which indicated the degree of
separation between groups (where a score of 1 indicated complete sepa-
ration and a score of 0 indicated no separation). After this analysis, we ex-
amined and discussed the obstacle statements within each cluster to identify
their unifying theme and propose a suitable cluster name.

To visually examine global patterns within our results, we adopted the
World Bank regional classification system for developing countries ( http://
data.worldbank.org/about/country-classifications/country-and-lending-groups ),
and consolidated responses from high-income countries into a sin-
gle group.

We applied one-way ANOVA to iden tify differences in perceptions
between high-income countries and developing countries of the im-
portance and difficulty of resolution for each obstacle statement.
Responses from South and East Asia and the Pacific were consolidated

into a single group, and poorly represented regions were omitted.
Multiple regression analyses were th en applied to ident ify differences in
ratings of statements and their cluster themes by region, using sex, ed-
ucation, and field of expertise as covariates. Because of an unbalanced
representation, all social sciences were grouped into a single expertise
category.
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