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Abstract

The Statistical Fate of Genomic DNA: Modelling Match Statistics in

Different Evolutionary Scenarios

by Florian Massip

In this thesis, we study the length distribution of maximal exact matches within

and between eukaryotic genomes.These distributions strongly deviate from what

one could expect from simple probabilistic models and, surprisingly, present a

power-law behavior. To analyze these deviations, we develop mathematical frame-

works taking into account complex evolutionary mechanisms and that reproduce

the observed deviations. We also implemented in silico sequence evolution models

that reproduce these behaviors. Finally, we show that we can use our framework

to assess the quality of sequences of recently sequenced genomes and to highlight

the importance of unexpected biological mechanisms in eukaryotic genomes.

Keywords: Duplications, Scale Free Distributions, Evolutionary Models, Stati-

stical Properties of Genomes

Le but de cette thèse est d’étudier la distribution des tailles des répétitions au sein

d’un même génome, ainsi que la distribution des tailles des appariements obtenus

en comparant différents génomes. Ces distributions présentent d’importantes

déviations par rapport aux prédictions des modèles probabilistes existants. Éton-

namment, les déviations observées sont distribuées selon une loi de puissance.

Afin d’étudier ce phénomène, nous avons développé des modèles mathématiques

prenant en compte des mécanismes évolutifs plus complexes, et qui expliquent

les distributions observées. Nous avons aussi implémenté des modèles d’évolution

de séquences in silico générant des séquences ayant les mêmes propriétés que les

génomes étudiés. Enfin, nous avons montré que nos modèles permettent de tester

la qualité des génomes récemment séquencés, et de mettre en évidence la prévalence

de certains mécanismes évolutifs dans les génomes eucaryotes.

Mots-clefs: Propriétés statistiques des génomes, loi de puissance, duplications,

modèles d’évolution

http://www.u-psud.fr/fr/index.html
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1.1.1.4 Distribution des Longueurs d’Appariement . . . . . 15

1.1.2 Des processus d’évolution plus complexes . . . . . . . . . . . 16
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Chapter 1

Introduction

In this Chapter we present twice the same concepts, first in French and then in

English. Readers should read one of the two only.

1.1 Version française de l’introduction

Dans cette thèse, nous allons étudier la distribution des tailles des répétitions

au sein d’un même génome, ainsi que la distribution des tailles des appariements

obtenus en comparant les génomes de différentes espèces. Ces distributions présen-

tent d’importantes déviations par rapport aux prédictions des modèles probabilistes

existants et semblent correspondre à une loi de puissance. Nous allons montrer

que des modèles évolutifs simples permettent d’expliquer ces déviations. Dans cette

introduction, nous commencerons par montrer, par le biais d’exemples historiques,

que la mise en évidence et l’explication de certaines propriétés statistiques des

génomes ont permis des avancées majeures dans la compréhension des processus

génétiques. L’approche scientifique que nous développerons dans cette thèse est

héritée de ces exemples historiques. Dans un second temps, nous introduirons

certains processus biologiques que nous étudierons plus particulièrement.

1



Chapter I Introduction 2

1.1.1 Les propriétés statistiques des génomes

Le génome d’un organisme est défini comme la totalité du matériel génétique

qu’il possède. Il contient toutes les informations permettant à un individu de

se développer et se différencier depuis le stade unicellulaire, et de se reproduire.

L’information génétique est transmise d’une génération à la suivante au cours de

la reproduction.

Le support de l’information génétique est un long polymère, l’acide désoxyribonu-

cléique (l’ADN), composé d’un enchainement de quatre unités de bases appelées

nucléotides. Chaque nucléotide est lui-même composé d’un sucre, d’un groupe-

ment phosphate, et d’une base azotée. Les quatre différentes sortes de nucléotides

sont toutes composées du même sucre et du même groupement phosphate, mais

diffèrent au niveau des bases azotées, pour lesquelles il existe quatre formes chi-

miques possibles. Les quatre bases azotées possible, l’Adenine (A), la Cytosine

(C), la Guanine (G) et la Thymine (T), sont elles-mêmes divisées en deux groupes

chimiques, les purines (A et G), qui sont constituées de deux cycles aromatiques,

et les pyrimidines (C et T) qui n’en possèdent qu’un, et sont, pour cette raison,

plus petites (la forme chimique complète des quatre bases azotées est détaillée

en figure 1.1). Les cellules des organismes vivants ont la capacité d’interpréter

les informations complexes contenues dans l’ADN afin de produire des molécules

d’ARN (au cours d’un procédé appelé la transcription), qui pourront elles-mêmes

être traduites par la cellule afin de former des protéines. Ce sont ces dernières qui

effectuent réellement la plupart des fonctions biologiques des cellules. Pour cette

raison, l’ADN est souvent comparé à un livre de recettes, écrit dans un alphabet

de quatre lettres, et dont la langue serait le code génétique (code qui permet la

traduction de molécules d’ARN en protéines).

1.1.1.1 La première règle de parité de Chargaff

Dès les début de la génétique, et avant même que la fonction de l’ADN ait été

formellement établie, les scientifiques se sont intéressés aux propriétés statistiques
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Figure 1.1: La classification des mutations en transversions (en rouge)
et transitions (en bleu). La structure chimique complète des quatre bases
est aussi présentée. Cette image a été emprunté au site internet Rosalind
(http://www.rosalind.info).

de l’ADN, dans le but de mieux comprendre son fonctionnement.

Une des premières, et probablement des plus importantes de ces propriétés a été

observée par Erwin Chargaff. En étudiant les proportions de chaque nucléotide

présent dans les cellules de nombreuses espèces, Chargaff a découvert que ces

proportions obéissaient à une règle simple (règle que l’on appelle aujourd’hui la

première règle de parité de Chargaff), à savoir que [1]:
nA
nT

= 1

nC
nG

= 1

(1.1)

où na représente le nombre d’occurrence du nucléotide a. Le tableau 1.1 présente

des exemples du nombre de bases obtenu par Chargaff pour différentes espèces.

C’est à l’aide de cette observation et des images de cristallographie aux rayons X

de l’ADN obtenues par Franklin et Gosling [2] que la structure de l’ADN a été

http://www.rosalind.info
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% de bases Ratios

Espèce A G C T A/T G/C %GC

ψX174 24.0 23.3 21.5 31.2 0.77 1.08 44.8

Mäıs 26.8 22.8 23.2 27.2 0.99 0.98 46.1

Poulpe 33.2 17.6 17.6 31.6 1.05 1.00 35.2

Poulet 28.0 22.0 21.6 28.4 0.99 1.02 43.7

Rat 28.6 21.4 20.5 28.4 1.01 1.00 42.9

Humain 29.3 20.7 20.0 30.0 0.98 1.04 40.7

Table 1.1: Ce tableau présente un échantillon des données récoltées par Char-
gaff en 1952, et représente les compositions dans les quatre nucléotides obtenues
pour les génomes de différentes espèces. Le tableau original provient de Bansal
[5].

découverte par Watson et Crick [3]. Selon leur modèle, les molécules d’ADN (aussi

appelés brins d’ADN) sont associées dans les cellules par paires complémentaires,

de manière à ce que chacun des nucléotides d’un brin soit couplé à un nucléotide

du brin complémentaire. Les deux molécules d’ADN ainsi associées sont liées l’une

à l’autre par des interactions chimiques entre les nucléotides appariés. Du fait de

contraintes stériques, les appariements de deux purines ou de deux pyrimidines

stabilisent beaucoup moins l’ADN que les appariements entre une purine et une

pyrimidine. Il y a donc quatre appariements possibles: A avec T, A avec C, C avec

G, et C avec T. Par ailleurs, d’autres interactions chimiques (interactions pi-pi

et liaisons hydrogènes [4]) favorisent l’association de A avec T d’une part et de C

avec G de l’autre. De ce fait, dans les cellules vivantes, les nucléotides d’adénine

sont toujours appariés à des thymines, et les cytosines sont toujours appariées à

des guanines. Pour cette raison, dans toutes les cellules vivantes, les proportions

en A et en T d’une part ainsi que les proportions en C et en G sont toujours

égales, ce qui explique la première règle de parité de Chargaff.

L’appariement des molécules d’ADN par paires joue un rôle central dans un

grand nombre de processus biologiques vitaux pour les cellules. De ce fait, la

découverte de la structure de l’ADN a permis des avancés significatives dans la
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compréhension du fonctionnement des cellules vivantes. Par exemple, à cause

des règles d’appariement des nucléotides, les deux brins d’ADN appariés sont

complémentaires et contiennent la même information. Ainsi, à partir d’un seul

des deux brins, il est possible de totalement reconstruire le brin complémentaire.

Cette propriété est utilisée par la cellule pour la réplication de l’ADN. Grâce à

des protéines spécifiques, la cellule sépare les deux brins complémentaires, de sorte

que chacun des deux brins peut ensuite servir de modèle à la production d’une

nouvelle molécule. Une fois les deux nouvelles molécules produites, la cellule con-

tient deux dimères d’ADN et peut alors se diviser pour donner naissance à deux

cellules contenant des molécules d’ADN identiques.

Le processus que nous venons de décrire permet à l’ADN de se répliquer avec une

très grande fidélité. Toutefois, il arrive que des erreurs se produisent au cours de

ce processus. Notamment, au cours de la réplication, une base peut être introduite

par erreur à la place d’une autre. Dans ce cas, la nouvelle molécule d’ADN diffère

de la molécule parentale au niveau d’une position (ou locus). Comme ce type

d’événement, appelé mutation ponctuelle, peut affecter n’importe quelle base, et

la remplacer par l’une des trois autres, il y a douze sortes de mutations possi-

bles. Ces mutations sont relativement rares, et ont, la plupart du temps, des effets

délétères pour la cellule. Toutefois, sur le long terme, elles sont aussi le moteur de

l’évolution des espèces permettant aux organismes de s’adapter aux changements

de leur environnement. Par ailleurs, ce type de mutation ne se produit pas unique-

ment pendant la réplication de l’ADN, et différents processus chimiques peuvent

entrainer la transformation d’une base en une autre au cours de la vie de la cel-

lule. Étant donné que les bases azotées appartenant à un même groupe chimique

sont similaires entre elles, et assez différentes des deux autres bases, les quatre

mutations qui transforment une purine en une autre purine ou une pyrimidine en

une autre pyrimidine (ces quatre mutations sont appelées transitions, voir Fig. 1.1)

sont plus probables que les 8 autres mutations (que l’on appelle des transversions).

Lorsqu’une telle mutation se produit sur l’un des deux brins, au niveau du nucléotide

qui vient d’être inséré, les deux bases azotées ne sont plus correctement appariées,

et la structure de l’ADN est modifiée localement. Certaines protéines présentes
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dans les cellules sont capables de repérer ces mis-appariements, et de les réparer

en échangeant l’un des deux nucléotides. Toutefois, la plupart du temps, la cellule

n’est pas capable de distinguer lequel des deux nucléotides a subi une transforma-

tion. Ainsi, l’un des deux nucléotides est remplacé au hasard afin que les deux

nucléotides soient à nouveau correctement appariés. Ainsi, la moitié seulement

des mutations sont réparées, tandis qu’une fois sur deux, la mutation est intégrée.

1.1.1.2 Modéliser les séquences d’ADN

Les génomes des individus d’une même espèces sont très similaires, de sorte qu’il

est possible de construire ce que l’on appelle le génome de référence d’une espèce,

représentant le génome typique d’un individu. La taille des génomes varie forte-

ment d’une espèce à l’autre, allant de quelques centaines de millier de paires de

bases (kbps) pour les plus petits génomes à une centaine de milliard de paires de

base (Gbps) pour les plus grands. La taille typique du génome d’un mammifère

est de l’ordre de plusieurs Gbps (3.2 Gbps pour le génome humain par exemple),

ce qui est comparable, en terme de nombre de lettre, à la taille totale de la version

française de Wikipédia (qui selon Wikipédia elle-même, était constituée d’environ

4.2 milliards de lettre en Juin 2015). Toutefois, à la différence de Wikipédia, dont

chaque lettre appartient à un mot ayant un sens, seule une petite fraction des

génomes des eucaryotes est porteuse de sens. Par exemple, on estime que 1%

seulement du génome humain est véritablement fonctionnel (bien que les fonc-

tions potentielles du reste du génome soient l’objet d’un débat passionné au sein

de la communauté scientifique [6–8]). Le fait qu’une grande partie des génomes

soit non-fonctionnelle permet ainsi d’expliquer pourquoi la taille des génomes varie

tant d’une espèce à l’autre, ainsi que la faible corrélation qui a été observée entre

la taille du génome d’un organisme et son apparente complexité.

Les génomes sont donc des objets de grande taille, composés d’unités répétées (les

nucléotides), ce qui en fait des objets d’étude idéaux pour l’analyse statistique. On

peut par exemple chercher à identifier dans les génomes des petits segments (que

l’on appellera des mots par la suite) particulièrement rares ou particulièrement

https://fr.wikipedia.org/wiki/Mod%C3%A8e:Wikip%C3%A9dia_sur_papier
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fréquents dans un génome, dans l’idée que ces fréquences exceptionnelles sont la

signature de fonctions biologiques [9–11]. Ainsi, on s’attend à ce que certains

mots encodant des fonctions particulièrement importantes (comme par exemple

les mots qui marquent le point départ de la transcription) soient particulièrement

fréquents, tandis que d’autres mots, ayant des conséquences délétères, seraient

extrêmement rares, voire totalement absents. Mais pour décider si la fréquence

d’un mot est exceptionnelle ou non, il est tout d’abord nécessaire de développer un

modèle neutre avec lequel il sera possible de comparer les observations faites dans

les génomes réels. Dans les paragraphes qui suivent, nous allons décrire certains

des modèles qui ont été développés dans ce but.

Séquences aléatoires — On peut donc représenter une séquence d’ADN S =

(s1, ..., sL) par une chaine de L lettres appartenant à l’alphabet A = {A,C,G,T}.

Dans ce cas, le modèle le plus simple (appelé le modèle iid pour indépendant et

identiquement distribué) consiste à choisir toutes les lettres si indépendamment

les unes des autres, en considérant que la probabilité d’apparition fa d’une base a

est la même à chaque position de la séquence. Ce modèle a donc 5 paramètres, qui

sont L la longueur de la séquence, ainsi que la fréquence d’apparition de chacune

des quatre bases fA, fT , fC et fG. Dans ce cas, on peut écrire:

P (si = a) = fa, avec a ∈ {A,C,G,T}, ∀i ∈ 1, . . . , L. (1.2)

Un mot de k-lettres, W (aussi appelé un k-mer), est défini comme une sous-

séquence de k lettres consécutives. Une séquence de taille L possède L − k + 1

mots de longueur k. Si l’on définit Wi = (si, . . . , si+k−1) comme le k-mer dont

la première lettre se situe à la position i, la probabilité de trouver un k-mer

W = (w1, ..., wk) à la position i d’une séquence de longueur L dans le modèle iid

est simplement égale à

P (Wi = W ) =
k∏
j=1

P (si+j−1 = wj) =
k∏
j=1

fwj . (1.3)
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En utilisant cette formule, on peut montrer que nk, défini comme le nombre

d’occurrences d’un mot de taille k donné (toujours dans une séquence de longueur

L) vaut

nk = (L− k + 1)
k∏
j=1

fwj . (1.4)

Modèles de Markov — Cette section s’inspire grandement du livre ADN,

mots et modèles [12] où l’on trouvera davantage de détails sur la modélisation

de séquence d’ADN par des chaines de Markov.

Afin de répondre aux besoins grandissants de l’analyse statistique des séquences

biologiques, des modèles plus sophistiqués ont été développés, et ont permis des

avancées majeures dans la compréhension des lois régissant le fonctionnement des

génomes. Parmi tous les modèles développés, les chaines de Markov ont été par-

ticulièrement utilisées, et seront pour cette raison l’objet de cette section. Les

modèles utilisant des chaines de Markov permettent de modéliser un grand nom-

bre de phénomènes, et ont fait l’objet de nombreuses études (voir notamment

Karlin and Taylor [13] pour une discussion plus générale à propos de ces modèles).

Les chaines de Markov du premier ordre, qui sont les châınes de Markov les plus

simples, sont des processus dans lesquels l’état de l’élément i dépend uniquement

de l’état de l’élément i− 1, et est indépendant de tous les autres états. En appli-

quant ce modèle au cas d’une séquence d’ADN, on modélise la séquence comme

une chaine de L lettres où la valeur si de la lettre présente à la position i dépend

uniquement de la valeur de son voisin de gauche, si−1. Comme il y a quatre valeurs

(ou états) possibles pour chaque base si, il y a 16 couples (si−1, si) possibles et on

définit donc 16 probabilités de transitions pa→b de passer d’une base a ∈ A à une

base b ∈ A par

pa→b = P (si = b|si−1 = a). (1.5)

Dans une séquence d’ADN donnée, il est possible d’estimer ces probabilités en uti-

lisant la méthode du maximum de vraisemblance. La vraisemblance d’un modèle

est définie comme la probabilité d’observer une série d’événements dans un modèle
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donné. Ainsi, la valeur des paramètres qui maximisent la valeur de la vraisem-

blance donnent des estimateurs de bonne qualité des paramètres, si tant est que

le modèle soit correct. Dans le modèle défini précédemment, les estimateurs des

probabilités de transition calculés à l’aide du maximum de vraisemblance sont

donnés par:

pa→b =
nab∑

c∈A
nac

, (1.6)

où nab est défini comme le nombre d’occurrences du mot de deux lettres W = ab.

Ainsi, ce modèle prend comme paramètres les fréquences de tous les di-nucléotides,

et est une extension du modèle précédent dans lequel les seuls paramètres étaient

les fréquences des mots de une lettre (on notera qu’à partir des fréquences des

mots de deux lettres, on peut aisément calculer les fréquences des mots d’une

seule lettre). En suivant la même procédure, on peut aussi définir une chaine de

Markov d’ordre m, dans laquelle la valeur d’un nucléotide si dépend des valeurs

des m nucléotides situés en amont. On définit dans ce cas 4m probabilités de

transition, et on peut montrer que les estimateurs du maximum de vraisemblance

dépendent des fréquences des mots de taille m+ 1. Ainsi, plus l’ordre de la châıne

de Markov est élévé, plus le nombre de paramètres est élevé et plus la séquence

d’ADN est précisément décrite.

Toutefois, la qualité d’un modèle ne se mesure pas toujours à son degré de précision.

Ces modèles ont été développés dans le but de calculer la fréquence attendue

des mots de tailles k afin de différencier les mots exceptionnels de ceux dont la

fréquence est proche de celle qui est attendue. De ce fait, si l’on modélise la

séquence d’ADN à l’aide d’une châıne de Markov d’ordre k, on ne pourra trouver

aucun mot de taille k dont la fréquence est exceptionnelle. Une autre manière de

se rendre compte qu’un modèle trop précis peut être inutile est de considérer le cas

extrême consistant à modéliser une séquence de taille L par une châıne de Markov

d’ordre L−1. Dans ce cas, la chaine de Markov reproduit simplement la séquence

à l’aide de laquelle les paramètres ont été calculés et sera ainsi totalement inutile.
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Chaines de Markov hétérogènes — Dans tous les modèles de Markov que

nous avons décrits, les probabilités de transitions sont les mêmes dans toute la

séquence (on les appelle pour cette raison des châınes de Markov homogènes).

Toutefois, nous avons vu aussi que seule une petite proportion des génomes eu-

caryotes est fonctionnelle. Or les régions fonctionnelles et non-fonctionnelles ne

sont pas soumises aux mêmes contraintes, et les chaines de Markov homogènes

ne permettent donc pas de modéliser cette hétérogénéité des séquences d’ADN.

Pour prendre en compte cette propriété, des chaines de Markov hétérogènes, dans

lesquelles les probabilités de transition changent d’une région à une autre, ont

été développées. Dans le cas de la modélisation des séquences d’ADN, une sous

classe de chaines de Markov hétérogènes, les chaines de Markov cachées, sont par-

ticulièrement employées, et sont notamment utilisées pour prédire la position des

régions codantes des génomes à l’aide de la séquence uniquement [14].

Modéliser l’évolution des séquences d’ADN — Les chaines de Markov sont

également souvent employées pour décrire l’évolution d’un processus au cours du

temps. Dans le cas de l’évolution au cours du temps d’une molécule d’ADN,

on suppose le plus souvent que les différents nucléotides d’une même séquence

évoluent indépendamment les uns des autres, et on utilise des chaines de Markov

du premier ordre. Cela revient à considérer que le taux de mutation à une position

donnée de la séquence dépend du nucléotide observé à l’instant présent, et n’est pas

influencé par les états des nucléotides à cette même position dans le passé. Cette

hypothèse est réaliste compte tenu du fait que dans les génomes, ces informations

(les différents états du nucléotide dans le passé) ne sont pas conservées.

Pour modéliser l’évolution d’une séquence S(t) = (s1(t), ..., sL(t)) au cours du

temps, on utilise alors une châıne de Markov en temps continu. Dans un tel

modèle, on peut décrire l’évolution du système à l’aide de l’équation maitresse

suivante:
δ

δt
ρa(t) =

∑
b6=a

ρb(t)Qba − ρa(t)
∑
b 6=a

Qab (1.7)
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où (a, b) ∈ A2 sont des nucléotides etQab est le taux de substitution d’un nucléotide

a par un nucléotide b de sorte qu’en un temps infinitésimal δt, la probabilité d’une

substitution de a vers b est Qabδt.

On peut alors simplifier l’écriture de ces équations à l’aide de l’écriture matricielle

et on obtient:
δ

δt
ρ = ρ(t)Q (1.8)

avec ρ(t) un vecteur ligne de dimension 4 tel que:

ρ(t) =
(
ρA(t), ρC(t), ρG(t), ρT (t)

)
(1.9)

et Q une matrice carrée de dimension 4 définie par:

Q =


• QCA QGA QTA

QAC • QGC QTC

QAG QCG • QTG

QAT QCT QGT •

 (1.10)

où les termes de la diagonale, notés • , sont définis de sorte que la somme de

chaque colonne soit nulle, c’est à dire:

Qaa = −
∑
a6=b

Qab. (1.11)

La solution de ces équations différentielles est connue et est telle que:

ρ(t) = ρ0P (t) (1.12)

où

P (t) = exp(Qt) =
∞∑
n=0

(Qt)n

n!
, (1.13)

où Pab(t), la valeur prise par P (t) aux coordonnées a, b, est la probabilité qu’un

nucléotide passe de l’état a à l’état b pendant un intervalle de temps fini t, et ρ0

est la valeur de ρ(t) à l’instant initial t = 0.
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Il nous faut donc calculer la valeur de exp(Qt). Une manière simple de calculer

cette quantité est de diagonaliser Q, c’est à dire de trouver deux matrices A et D

satisfaisant la relation Q = ADA−1 où D est une matrice diagonale. Dans ce cas,

on peut montrer que:

eQt = AeDtA−1. (1.14)

Comme D est une matrice diagonale, on a (eD)aa = e(D)aa , et on peut donc facile-

ment calculer eD. Ainsi, on dispose d’une formule simple permettant de calculer

la probabilité qu’un nucléotide soit présent à un instant t en fonction de son état

à l’instant initial, et des taux de mutation. Il nous reste donc à définir un modèle

pour ces taux de mutation.

L’hypothèse la plus simple consiste à considérer que toutes les mutations se pro-

duisent avec la même probabilité q/4. Dans ce modèle, connu sous le nom de

modèle de Jukes et Cantor [15], la matrice Q est définie par:

Q = q


−3/4 1/4 1/4 1/4

1/4 −3/4 1/4 1/4

1/4 1/4 −3/4 1/4

1/4 1/4 1/4 −3/4

 . (1.15)

Après diagonalisation de la matrice Q, on peut appliquer l’équation (1.14) et on

trouve alors pour P (t):

Pab(t) =


1

4
(1− e−qt), for a 6= b

1

4
+

3

4
e−qt, for a = b.

(1.16)

En utilisant les mêmes arguments, on peut aussi résoudre des modèles plus généraux

dans lesquels les taux de mutations varient d’une substitution à l’autre.
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1.1.1.3 La seconde règle de parité de Chargaff

Une quinzaine d’année après la découverte de la structure de l’ADN, Chargaff et ses

collègues ont observé une autre propriété intéressante des séquences d’ADN. Après

avoir séparé les deux brins d’ADN du génome d’une bactérie, Bacillus subtilis, ils

ont observé que sur chacun des deux brins, les proportions en A et T d’une part,

et les proportions en G et C de l’autre étaient, là aussi, à peu près égales [16], de

sorte que:  nA ∼ nT

nC ∼ nG
(1.17)

où na représente ici le nombre de bases a sur un brin d’ADN.

Cette propriété (que l’on appelle la seconde règle de Chargaff, ou PR2) a été

observée chez la majorité des génomes connus [17, 18]. À la différence de la

première loi de Chargaff toutefois, des exceptions à cette règle ont été identifiées,

notamment dans des génomes de mitochondrie [18]. À la fin des années 1990 ,

Lobry et Lobry [19] ont démontré mathématiquement que lorsque les mutations

affectent les deux brins de la même manière (condition appelée “no strand bias

condition” [20]), les séquences évoluent vers un état d’équilibre dans lequel la

seconde loi de Chargaff est respectée. Comme nous l’avons vu précédemment,

lorsqu’une mutation se produit et n’est pas réparée, elle affecte les deux brins de la

séquence. Par exemple, si un A est remplacé par un C sur l’un des deux brins, alors

un T va être remplacé par un G à la même position sur le brin complémentaire.

Ainsi, si les mutations affectent indifféremment sur les 2 brins, les taux associés

à une mutation de A vers C et de T vers G seront égaux. De ce fait, chaque

mutation ayant une mutation équivalente sur le brin complémentaire, six taux de

mutation sont suffisants pour décrire l’évolution d’une séquence. Dans ce cas, la
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matrice des taux instantanés est donnée par:

Q =


• µGT µCT µAT

µAC • µCG µAG

µAG µCG • µAC

µAT µCT µGT •

 (1.18)

où • est encore une fois défini de manière à ce que la somme de toutes les valeurs

d’une colonne soit nulle. On peut montrer que l’évolution d’une séquence selon

une châıne de Markov utilisant une matrice de taux instantanés prenant la forme

précédente évolue vers un état d’équilibre dans lequel la seconde règle de parité de

Chargaff est toujours vérifiée [19]. Comme cette règle est vérifiée dans la plupart

des génomes, on peut en conclure que, dans la majorité des espèces, les taux de

mutation sont les mêmes sur les deux brins de l’ADN.

Toutefois, cette seconde règle n’est pas aussi absolue que la première, notamment

parce qu’elle correspond à un état d’équilibre de la séquence. Ainsi, il a été observé

que dans certains génomes, et plus particulièrement dans des petites régions de

certains génomes, cette règle n’était pas validée, indiquant que dans ces régions,

les mutations n’affectent pas les deux brins de manière équivalente [21–24]. Par

la suite, l’étude des dérogations à PR2 ont permis de mettre en évidences des

caractéristiques variées de certaines régions des génomes [25], comme par exemple

la position des origines de réplications [26].

La seconde loi de Chargaff constitue ainsi un exemple intéressant qui démontre

l’intérêt de la modélisation en biologie. Dans un premier temps, expliquer des

propriétés statistiques simples permet d’appréhender des mécanismes biologiques

généraux se déroulant à l’échelle globale. Dans un second temps, les modèles

simples peuvent servir de cadre général à partir desquels on peut identifier des

déviations, notamment à des échelles plus localisées. L’analyse de ces déviations

peut alors permettre d’identifier des phénomènes nouveaux et de de développer une

vision plus précise des processus biologiques qui façonnent les objets biologiques.
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1.1.1.4 Distribution des Longueurs d’Appariement

Dans cette thèse, nous allons étudier différents mécanismes biologiques qui engen-

drent de longues répétitions dans les génomes, mécanismes qui ne sont pas pris

en compte dans les modèles que nous avons présentés jusqu’à maintenant. Afin

d’étudier ces mécanismes, nous allons analyser la distribution de la longueur des

appariements exacts (c’est à dire des segments d’ADN partageant exactement la

même séquence), qui sont maximaux (qui ne sont pas inclus dans des appariements

plus grands) que l’on notera M(.). On peut calculer ce type de distribution soit

à partir de la comparaison d’un génome avec lui-même, soit à partir de la compa-

raison des génomes de deux espèces distinctes.

Si l’on calcule cette distribution pour des séquences aléatoires obtenues à l’aide du

modèle iid, on peut établir que cette distribution est géométrique, et est donnée

par:

Miid(r) =
1

2
L1L2(1− p)2pr, (1.19)

où L1 et L2 sont les tailles des deux génomes à comparer et où p représente la

probabilité que deux nucléotides choisis aléatoirement soient identiques, d’où:

p = f
(1)
A f

(2)
A + f

(1)
C f

(2)
C + f

(1)
T f

(2)
T + f

(1)
G f

(2)
G , (1.20)

avec f
(i)
a la fréquence du nucléotide a dans la séquence i. On pourra par ailleurs

remarquer que le maximum de cette fonction, (qui correspond au plus long ap-

pariement attendu entre deux séquences aléatoires), suit la loi de Gumbel qui est

utilisée pour tester la probabilité qu’un appariement entre deux séquences soit dû

au hasard [27, 28].

Toutefois, la distribution que l’on obtient lorsque l’on réalise la même expérience

sur des génomes eucaryotes (que l’on compare des génomes entre eux ou que l’on

compare un génome avec lui-même) est nettement différente de la distribution

théorique. Plus précisément, pour de vrais génomes, on obtient largement plus

d’appariements de grande taille que ce à quoi l’on s’attend selon le modèle iid. Plus

surprenant, on observe que M(r), le nombre d’appariements obtenus en fonction
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de leur taille r, est distribué selon une loi de puissance, c’est à dire que M(r) =

C rα où α est l’exposant de la distribution, et C une constante de normalisation.

L’exposant α de cette distribution varie en fonction des cas, et le but de cette

thèse sera d’expliquer mathématiquement ces observations et de montrer comment

différents mécanismes biologiques, et notamment de duplications, sont à l’origine

de ces différentes distributions.

1.1.2 Des processus d’évolution plus complexes

Jusqu’à présent, nous avons discuté des modèles dont les principes généraux étaient

relativement simples, ne prenant en compte que les propriétés les plus basiques du

fonctionnement de l’ADN, et négligeant de nombreux processus plus complexes,

dont l’importance au cours de l’évolution des espèces est aujourd’hui pleinement

reconnue (bien que pas toujours totalement élucidée). Dans cette partie, nous

allons présenter certains de ces processus, que nous étudierons dans la suite de

cette thèse.

1.1.2.1 Les éléments transposables

Les éléments transposables (ET), que l’on désigne aussi sous le nom d’éléments

répétés, ou de transposons, sont de petites séquences d’ADN, dont la taille va de

quelques centaines de paires de bases à plusieurs kilopaires de bases (kbps), et

qui ont la capacité de se dupliquer par elle-même dans les génomes. Ces éléments

constituent une part importante (et fortement variable d’une espèce à l’autre)

des génomes eucaryotes. On estime par exemple qu’environ 50% du génome hu-

main est constitué de ce type d’éléments [29], tandis qu’ils représentent environ

85% du génome du mäıs [30] et seulement 14% du genome de l’organisme modèle

Arabidopsis thaliana [31].

Il a été établi que les duplications de transposons se déroulent par vagues, chacune

s’étendant sur un court laps de temps pendant lequel un très grand nombre de

duplications se produisent, jusqu’au moment où l’organisme hôte développe un
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mécanisme empêchant d’autres duplications de se produire. À partir de ce moment

là, les séquences de ces transposons restent inertes dans le génome et évoluent,

accumulant des mutations progressivement, comme tout le reste de l’ADN non

codant. Il existe de nombreux types de transposons différents, qui sont classifiés

en familles partageant le même mode de duplication, ou des analogies de séquence.

La famille d’éléments répétés la plus représentée (en terme de nombre de copies)

dans le génome humain est la famille des éléments Alu [32, 33], un petit transposon

d’environ 300 paires de base dont on peut trouver plus d’un million de copies

dans le génome humain (pour un aperçu complet des connaissances concernant

ces éléments, voir Batzer and Deininger [34] ou Deininger and Batzer [35]).

La plupart du temps, les ETs sont considérés comme des séquences égöıstes, en-

vahissant le génome de leur hôte, et dont les insertions ont des conséquences

délétères. Notamment si une de ces insertions se produit au sein d’un gène, la

séquence de ce gène va être perturbée, risquant ainsi de le rendre non fonctionnel.

Par ailleurs, on les considère aussi souvent comme des vecteurs de l’instabilité des

génomes [36].

Toutefois, de nombreuses études ont également souligné les effets positifs de l’insertion

de ces éléments pour les génomes hôtes. Par exemple, il a été mis en évidence que

près de 25% des promoteurs (des petites régions situées au début d’un gène per-

mettant à l’ARN polymérase de se fixer à l’ADN, et ainsi au gène de s’exprimer) du

génome humain contiennent des séquences apparentées à des ETs [37, 38]. Dans

le même ordre d’idées, 7.8% des gènes exprimés dans le génome d’Arabidopsis

thaliana contiennent une région dont la séquence partage un haut degré de si-

milarité avec la séquence d’un transposon [39]. Par ailleurs, certaines vagues de

duplications d’ETs ont été associées à des évènements de spéciations (une inser-

tion massive de ces éléments a par exemple eu lieu au moment de la formation des

primates [40]), ainsi qu’à des mécanismes d’évolutions adaptatifs. Il a par exemple

été observé dans le génome de certaines plantes (et dans une moindre mesure chez

certaines drosophiles) une nette augmentation du taux d’insertions d’ETs après

qu’elles aient été soumises à des conditions de stress important [37]. Toutefois, des
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preuves directes reliant une vague de duplications d’ETs à une vague d’innovations

dans les génomes n’ont pas été identifiées.

Enfin, la séquence, ainsi que le mode de duplication des transposons varient forte-

ment d’une espèce à l’autre, et il est donc très probable qu’un grand nombre

d’éléments de ce type (particulièrement dans les génomes d’espèces n’ayant pas

fait l’objet de recherches approfondies) soient encore à découvrir. Le séquençage

des génomes de nouvelles espèces, ainsi que l’amélioration de la qualité des génomes

déjà séquencés à l’aide de nouvelles technologies va ainsi permettre dans les années

à venir de mieux comprendre l’histoire évolutive de ces éléments, ainsi que leur

impact sur l’évolution des génomes.

1.1.2.2 Les répétions possédant un petit nombre de copies

Les duplications de gène — À la différence des transposons qui sont de petites

séquences répétées un nombre très élevé de fois, les génomes possèdent également

des séquences dupliquées un petit nombre de fois. Ces séquences, qui ne possèdent

pas, elles, la capacité de se dupliquer par elles-mêmes, sont le résultat d’erreurs

ayant lieu à différents stades de la vie d’une cellule. On appelle deux séquences

homologues issues d’un tel événement des paralogues (par opposition aux ortho-

logues, qui sont des séquences homologues résultant de la divergence de deux

espèces).

L’importance évolutive de ces duplications à petit nombre de copies (DPNCs),

qui a été popularisé par l’intermédiaire du livre de Susumu Ohno Evolution by

Gene Duplication [41] est aujourd’hui largement reconnue. Dans ce livre, Ohno

développe l’idée qu’une seule copie d’un gène est suffisante pour remplir une fonc-

tion. Ainsi, lorsqu’un gène est dupliqué, les contraintes empêchant la séquences

d’accumuler des mutations ne restreignent l’évolution que d’une seule des deux

copies seulement, de sorte que la seconde peut accumuler des mutations librement.

La plupart du temps, les mutations affectant le plus libre des deux gènes auront

pour conséquence la perte de fonction du gène en question (on parle alors de pseu-

dogénisation). Toutefois, il peut arriver que ces mutations permettent aux gènes
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d’acquérir une nouvelle fonction. Le destin des gènes à la suite d’un événement de

duplication est une question très complexe, et qui fait encore aujourd’hui l’objet

de nombreuses études. Leur devenir peut être décrit par l’un des trois scénario

suivants [42, 43]:

− Le premier scénario possible est la pseudogénisation d’une des deux copies,

qui va accumuler des mutations jusqu’à devenir totalement inactivée, tandis que

l’autre copie restera inchangée.

− Dans un second scénario, appelé néofonctionnalisation, l’une des deux copies

acquiert une nouvelle fonction, tandis que l’autre continue à remplir la fonction

originale du gène avant la duplication.

− Le dernier scénario possible est la subfonctionnalisation des deux gènes. Dans

ce cas, les deux copies perdent une partie de leur fonction à la suite de muta-

tions, jusqu’à atteindre le point où les fonctions conjuguées des deux gènes seront

équivalentes à celle du gène unique avant la duplication. Un cas particulier de

subfonctionnalisation se produit lorsque le gène ancestral possède plusieurs fonc-

tions. Dans ce cas, chacune des copies peut se spécialiser et améliorer l’une de ces

fonctions (et notamment aux dépens d’une autre fonction qui est maintenue par

la seconde copie).

Dans la suite, nous allons présenter trois mécanismes biologiques différents ayant

pour conséquence la formation de DPNCs et que l’on étudiera au cours de cette

thèse.

Les duplications segmentaires — Les duplications segmentaires (DSs) sont

classiquement définies comme de longs (> 1kb) segments d’ADN partageant une

identité de séquence très élevée (> 95%) [44]. Ces segments constituent une part

importante des génomes eucaryotes (5.5% du génome humain et 5% du génome

de la souris par exemple [44, 45]). Ces duplications peuvent avoir lieu à la

suite de nombreux mécanismes biologiques différents, et sont, le plus souvent, la

conséquence d’une erreur ayant lieu suite à des cassures double brin (ou “double-

strand breaks”) de l’ADN. Un de ces mécanismes nécessite la recombinaison de
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segments non homologues de l’ADN, et se produit ainsi par l’intermédiaire de du-

plications pré-existantes (par exemples d’autres DSs, ou bien même des éléments

répétés tel que ceux de la famille Alu [46, 47]), et la probabilité qu’un événement

de ce type se produise est proportionnelle au degré de similarité existant entre les

deux copies servant d’intermédiaire. D’autres mécanismes générant des duplica-

tions ont été mis en évidence, telles que les jonctions non homologues [48, 49] (qui

se produisent principalement dans les télomères) ou encore les FoSTES (pour “fork

stalling and template switching”). Pour un aperçu plus complet de ces différents

mécanismes, voir Hastings, Lupski, Rosenberg, and Ira [50].

Comme les DSs sont, la plupart du temps, des effets secondaires ayant lieu à la

suite d’erreurs dans les mécanismes de réparation de l’ADN, ces duplications ne

sont pas distribuées équitablement le long des génomes, et sont sur-représentées

dans les régions instables. Ainsi, les centromères, et dans une moindre mesure les

télomères sont particulièrement enrichis en DSs [49]. Par exemple, 31% de tous

les nucléotides dupliqués du génome humain sont situés à moins de 5 Mbps des

centromères, ce qui est 6 à 7 fois plus que ce qui serait attendu dans le cas où les

duplications seraient réparties équitablement dans le génome [51].

Enfin, il est intéressant de noter que, même si les duplications de gènes font l’objet

d’un grand nombre d’études, les duplications ne ciblent pas prioritairement les

gènes. Notamment, la fréquence avec laquelle une séquence est dupliquée n’est que

faiblement corrélée au fait que cette séquence contienne un gène. Cette corrélation

est par ailleurs plus probablement une conséquence d’un plus fort taux de rétention

des DSs contenant des gènes plutôt que d’un taux plus élevé de duplication dans

les régions contenant un grand nombre de gènes.

Rétroduplications — Un autre processus bien connu induisant des répétitions

dans les génomes est le processus de rétroduplication. Dans ce cas, une molécule

d’ARNm est tout d’abord retrotranscrite en ADN, et est ensuite intégrée dans le

génome. Les duplications qui en résultent ont des propriétés différentes des DSs.
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Tout d’abord, la plupart des gènes sont constitués d’une alternance de séquences

codantes (les exons) et de séquences non-codantes (introns). Ainsi, bien que le

gène tout entier soit transcrit en ARN, après l’épissage, les introns sont exclus, et

l’ARNm mature n’est constitué que d’exons. Cet ARNm mature est ainsi nette-

ment plus court que le gène entier, de sorte que les retroduplications produisent

des duplications partielles qui sont, en moyenne, plus courtes que les DSs.

Par ailleurs, les duplications ainsi produites ne ciblent que les exons, et, de ce fait,

copient pas les séquences régulatrices (et notamment les promoteurs), qui sont

indispensables au fonctionnement d’un gène (et à sa transcription en particulier).

Ainsi, les séquences produites par rétroduplication sont, la plupart du temps, des

séquences non codantes hautement similaires à des gènes et sont appelées des

pseudogènes processés [52, 53]. Toutefois, il a été démontré que certains de ces

pseudogènes étaient effectivement fonctionnels de sortes que leur rôle dans les

génomes est toujours débattu, voir notamment Kaessmann, Vinckenbosch, and

Long [53] et Okamura and Nakai [54]. Mais il semble bien que, dans la majorité

des cas, les pressions de sélection s’appliquant à ces séquences ne sont pas suffi-

santes à leur maintien dans les génomes, et leur destin consiste à disparaitre par

l’accumulation de mutations délétères.

Enfin, comme nous l’avons vu, seuls les exons peuvent-être rétrodupliqués (tan-

dis que les DSs peuvent cibler n’importe quelle région du génome). Il a même

été démontré que la probabilité qu’une molécule d’ARNm soit rétrodupliquée est

proportionnelle à son niveau d’expression (et donc à la quantité de cette molécule

d’ARNm dans la cellule) [55, 56].

En conséquence, à la différence des SDs, où les deux copies sont globalement

équivalentes, lors de rétroduplications, il est possible de distinguer la séquence

originale (ou séquence mère) de celle qui a été dupliquée (séquence fille), et ces

deux séquences ont des propriétés nettement différentes. En particulier, après la

duplication, la séquence mère pourra être l’objet d’autres duplications, mais cela

ne sera pas le cas de la séquence fille (parce qu’elle n’est pas transcrite).
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Les duplications de génome entier — Les deux processus que nous venons

de décrire affectent les génomes relativement fréquemment, et ciblent un petit

nombre de nucléotides. Il arrive toutefois que des duplications à de nettement

plus grandes échelles se produisent, entrainant par exemple la duplication d’un

chromosome entier, voir de tout le génome d’un individu (DGE).

Ces événements, ont, bien évidemment, des conséquences beaucoup plus impor-

tantes pour les génomes que ceux décrits précédemment, et sont pour cette raison

beaucoup plus rares. Mais lorsqu’ils se produisent, ils ont pour conséquence la mise

à disposition d’une vaste quantité d’ADN plus ou moins libre d’évoluer, permet-

tant ainsi des innovations génétiques, et ils pourraient être à l’origine de nombreux

événements de spéciations [57]. Par exemple, 15% (resp. 31%) des événements

de spéciations des plantes à fleur (resp. des fougères) seraient associés à des DGE

[58]. Il a par ailleurs été observé que dans la plupart des cas, à la suite de ces

événements, on observait de nombreuses délétions dans les génomes [59], ce qui a

pour conséquence de compliquer l’étude et la mise en évidence de ces événements.

Notamment, il a été postulé il y a plus de 40 ans que deux événements de DGE

auraient eu lieu à l’origine de la lignée des vertébrés, mais le débat autour de cette

question dans la communauté scientifique reste toujours ouvert.

1.1.3 Plan de la Thèse

Le but de cette thèse est d’étudier la distribution des tailles des répétitions dans les

génomes eucaryotes. Le chapitre 2, détaille certaines de nos expériences, ainsi que

des modèles mathématiques que nous utiliserons par la suite. Dans le chapitre 3,

nous nous intéresserons aux cas des comparaisons de génomes avec eux-même.

Nous commencerons par expliquer le cadre mathématique que nous utiliserons

ensuite tout au long de cette thèse, l’appliquerons à différents mécanismes de du-

plication, et discuterons les implications des déviations par rapport à notre modèle

observées dans les génomes de deux primates. Le chapitre 4 porte sur l’analyse

des distributions obtenues en comparant différents génomes, et aura pour but

de montrer que les distributions obtenues dans ce cas sont la conséquence des
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variations du taux de mutation le long des génomes. Au cours du chapitre 5,

nous nous intéresserons aux conséquences des duplications de génomes entiers, qui

nécessitent de faire appel aux résultats des deux chapitres précédents. Enfin, dans

le chapitre 6, nous étudierons le cas particulier des comparaisons des séquences

codantes des génomes, et montrerons que les modèles développés jusqu’ici ne per-

mettent pas d’expliquer les résultats obtenus dans ces cas là.

La majeure partie des résultats présentés au cours de cette thèse ont été publiés

dans des revues scientifiques à comité de lecture. Le modèle le plus simple, qui ne

s’intéresse qu’aux duplications segmentaires (Section 3.2) est l’objet d’un article

publié dans Physical Review Letters [60]. La généralisation à d’autres mécanismes

de duplication, (Section 3.3 et 3.4) ainsi qu’aux comparaisons de génomes (Sec-

tion 4.4.1) est présenté dans un article du journal Molecular Biology and Evolution

[61]. Enfin, les calculs relatifs aux propriétés des arbres de Yule est l’objet d’un

article dans Plos One [62]. Les détails développés dans cette dernière publication

sortent du cadre de cette thèse. Pour cette raison, seuls quelques résultats de

cette publication sont discutés dans le présent document, et l’article est présenté

en appendice (voir Appendice C).
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1.2 English Version of the Introduction

In this thesis, we study the length distribution of maximal repeats in eukaryotic

genomes, and more generally the length distribution of maximal exact matches

between genomes of different species. Indeed, these distributions strongly deviate

from what one could expect from simple probabilistic models and present a power-

law behavior. We will show that simple evolutionary models are able to account

for these deviations. In the Introduction, we first review some simple statistical

properties of DNA sequences, and show that deciphering these properties have ini-

tiated significant progress in the field of genetics and evolution. The scientific

approach we developed is inherited from these seminal historical studies. We will

then introduce some biological processes and mathematical concepts that will be

studied more specifically later on.

1.2.1 Statistical Properties of Genomes

The genome of an organism is defined as the entire genetic material it carries. It

contains all the information that an individual needs to develop from a single cell,

to grow and to reproduce. This information is transmitted from an organism to

its progeny during reproduction. The genetic information is encoded in a long

molecule, the Deoxyribonucleic Acid (DNA), which is a polymer of four different

monomers called nucleotides. Each of these monomers are composed of a sugar,

a phosphate group and a nitrogenous base. The sugar and the phosphate groups

are the same in all four nucleotides, but there are four possible nitrogenous bases.

These four bases (Adenine (A), Guanine (G), Cytosine (C), Thymine (T)) are

classified into two groups of molecules, the purines (A and G), and the pyrimidines

(C and T). Bases belonging to the same group share a high chemical similarity.

The purine bases are composed of two aromatic compounds while the pyrimidine

bases are composed of only one aromatic cycle, and are thus smaller (see Fig. 1.2

for the full chemical structure of the four nucleotides).
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Cells of all living organisms possess the ability to interpret the complex information

encoded in the DNA to produce RNA molecules (via a process called transcription)

that are then translated into proteins, which in turn perform the essential functions

of living cells. For this reason, DNA is often described as the cookbook of an

organism, written in an alphabet of four letters.

Figure 1.2: The classification of mutations into transversions (in red)
and transitions (in blue). The full chemical structure of the four nu-
cleotide bases are also represented. Picture taken from the Rosalind website
(http://www.rosalind.info).

1.2.1.1 Chargaff’s First Parity Rule

Early on in the history of genetics, while it had not yet been established that

genetic information is encoded in the DNA, scientists started to study statistical

features of DNA, in order to understand its properties.

A basic but yet historically very important property has been highlighted by Erwin

Chargaff. Chargaff studied the proportion of each nucleotide in the DNA of the

cell of many species, and found what is today known as Chargaff’s first parity rule

http://www.rosalind.info
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[1]: 
nA
nT

= 1

nC
nG

= 1

(1.21)

where na stands for the number of nucleotides a. Examples in different species

from Chargaff’s experiment are shown in Table 1.2. This property — together with

X-ray pictures of DNA that we owe to Franklin and Gosling [2] — led to the dis-

covery of DNA structure by Watson and Crick [3]. Watson and Crick’s model for

the structure of DNA states that DNA molecules (or strands) are linked by pairs,

and that each nucleotide on one strand is associated to a nucleotide on the com-

plementary strand. This link is made possible by chemical interactions between

nucleotides. Due to steric constraints, purine-purine and pyrimidine-pyrimidine

association are much less stabilizing than purine-pyrimidine pairing. The four

possible associations left are thus A - T, A - C, C - G, and C - T. But stabilizing

chemical interactions (π-stacking and hydrogen bounds [4]) preferentially occur

between A and T on the one hand and C and G on the other. Thus, in double

stranded DNA, A are always paired to T and C are always paired to G. These

preferential associations result in the fact that in each cell, the proportions of A

and T as well as proportions of C and G are always equal, and thus to Chargaff’s

first parity rule.

Many fundamental processes involving DNA rely on the association of DNA strands

by pairs. Thus, its discovery pave the way to a better understanding of how life

works. Due to the pairing rule, both associated strands are complementary and

contain the same information, such that the knowledge of one of the two strands

is enough to fully reconstruct its complementary strand. Thanks to this property,

DNA can also easily replicate. The cell machinery first separates the two com-

plementary strands and each of them then serves as a template to produce a new

DNA molecule. At the end of the process, the cell contains two identical pairs of

DNA, and it can thus divide into two daughter cells containing the same DNA

content.

DNA replicates with a very high fidelity. Sometimes however, errors occur during
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% of bases Ratios

Source A G C T A/T G/C %GC

ψX174 24.0 23.3 21.5 31.2 0.77 1.08 44.8

Maize 26.8 22.8 23.2 27.2 0.99 0.98 46.1

Octopus 33.2 17.6 17.6 31.6 1.05 1.00 35.2

Chicken 28.0 22.0 21.6 28.4 0.99 1.02 43.7

Rat 28.6 21.4 20.5 28.4 1.01 1.00 42.9

Human 29.3 20.7 20.0 30.0 0.98 1.04 40.7

Table 1.2: This table represents a sample of Chargaff’s 1952 data, listing the
nucleotide composition of DNA of several organisms. Table reproduced from
Bansal [5].

the replication process. For instance, one base can be mistakenly inserted in place

of another. As a result, the newly produced double stranded molecules are exactly

identical to the original molecule at all positions (or loci) but one. This event is

called a point mutation. As point mutations can result of the change of any of

the four possible nucleotide in any of the three others, there are twelve possible

mutations. Although rare and sources of deleterious effects, these errors also allow

species to evolve and to adapt to their changing environment. These changes in

DNA do not only happen during replication, and the alteration of a nucleotide

can also occur at another step of the cell life. And since nucleotides belonging to

the same chemical group are more closely related to one-another than to the two

others, the four mutations that change a purine into another purine or a pyrimidine

into another pyrimidine (called transitions, see Fig. 1.2) occur much more often

than the eight others (called transversions).

When a mutation occurs on one strand, a newly inserted nucleotide and its ho-

mologous base on the other strand are not anymore paired according the pairing

rule of Watson and Crick’s model. This results in an alteration of the structure of

the DNA, that can be identified by the repair machinery present in the cell, whose

function is to repair the error. However, most of the time, the cell has no way to

identify which base is in the unaltered state, and which base has been changed.
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Thus, one of the two bases is randomly replaced so that the two bases are properly

associated. Then, half of the time, the mutation is repaired, and half of the time

the mutation gets fully integrated.

1.2.1.2 Modelling DNA Sequences

Different individuals belonging to the same species share very similar genomes.

For this reason, one can build a reference genome for each species, representing

the typical genome of one individual. The size of genomes is highly variable from

one species to another, ranging from several hundreds of kilobase pairs (kbps), to

hundreds of gigabase pairs (Gbps), while the size of typical mammalian genomes is

of the order of several Gbps (3.2 Gbps for the Human). To give a comparison, the

french Wikipedia was composed of roughly 4.2 billion letters in total in June 2015

according to wikipedia itself. Unlike Wikipedia however, the entire Human genome

(as well as other eukaryotic genomes) cannot be directly interpreted. Indeed, only

a small percentage of eukaryotic genomes codes for proteins (this proportion is of

the order of 1% in the Human genome), while most of the genome (the non-coding

DNA) is thought to be mostly non-functional (although the potential function

of the non-coding DNA is the subject of a lively and passionated debate in the

scientific community [6–8]). This explains why the size of genomes varies so much

from one species to another, and why the complexity of an organism does not

correlate well with the size of its genome.

Studying objects of such a large size and composed of repeated units (here nu-

cleotides) allows to perform statistical analysis. One of the first statistical analy-

sis performed on genomes aimed at identifying short sequences of nucleotides (or

words) that were either exceptionally frequent or rare, with the idea that these ex-

ceptional events would be the signature of a biological significance of these words

[9–11]. Words of particular biological importance, such as for instance motifs rec-

ognized as transcription start sites by transcription factors are expected to be

overrepresented in the sequence, while certain types of motif might be deleteri-

ous, and thus avoided. But in order to identify exceptional words one first needs

https://fr.wikipedia.org/wiki/Mod%C3%A8e:Wikip%C3%A9dia_sur_papier
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to develop a random model, to differentiate events that occur “by chance” from

biologically meaningful events.

Random sequences — One can model a DNA sequence S = (s1, ..., sL) as a chain

of L letters, where each letter belongs to the four letter alphabet A = {A,C,G,T}.

The simplest possible way to model a DNA sequence, is the random independent

and identically distributed (iid) model. In this framework, all base pairs si are

independent from each other, and the probability of each nucleotide to be observed

is constant at all positions of the sequence. The parameters of the model are the

length of the sequence L, and the frequency of each of the four base pairs fA, fT ,

fC and fG. In that case we have:

P (si = a) = fa, with a ∈ {A,C,G,T}, ∀i ∈ 1, . . . , L. (1.22)

k-letter words W are defined as subsequences of k consecutive letters (and are for

this reason also termed k-mers). In a sequence of size L, there are L−k+ 1 words

of length k, and the word starting at position i is defined as Wi = (si, . . . , si+k−1).

The probability of a given word W = (w1, ..., wk) of length k to appear in a

sequence of size L at the position i is then:

P (Wi = W ) =
k∏
j=1

P (si+j−1 = wj) =
k∏
j=1

fwj , (1.23)

from which it follows that a word of length k appears in a sequence of length L

on average nk times, with

nk = (L− k + 1)
k∏
j=1

fwj . (1.24)

Markov Models — This section borrows heavily from Robin, Rodolphe, and

Schbath [12], where one can find broader developments of the topic discussed below.

More sophisticated models have been developed and have been shown to be pow-

erful tools to understand biological processes that shape genomes. One such class
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of models which has been widely used are Markov chain models. Such models

have been applied to a broad range of fields (for general discussions about Markov

Chains, see Karlin and Taylor [13] for instance). The most simple Markov chains

(also called first order Markov chains) are processes where events at step i only

depend of the state of the chain at step i − 1, and is independent from all other

previous states.

In the case of DNA, the value of each letter si depends only on the value of its

left neighbor si−1. There are 16 possible couples of letters (si−1, si), and thus 16

transition probabilities. The transition probabilities pa→b from a letter a ∈ A to

letter b ∈ A is defined as

pa→b = P (si = b|si−1 = a). (1.25)

These probabilities can be estimated from an observed DNA sequence using the

maximum likelihood method. The likelihood of a model is defined as the proba-

bility to obtain a set of data given the model. Then, the values of the parameters

that maximize the likelihood give accurate estimators of the parameters.

In the present case, the maximum likelihood estimators (MLE) of the transition

probabilities are:

pa→b =
nab∑

c∈A
nac

, (1.26)

where nab is defined as the count of the 2-letter word W = ab. In that sense,

this model is an extension of the iid model where the parameters were the single

nucleotide frequencies only. Following a similar procedure, one can build m−order

Markov chains, where the letter si depends on the m previous letters. In this

case, one has to define 4m transition probabilities, whose MLE will depend on the

frequencies of words of length m + 1. Thus, the number of parameters increases

with the order of the Markov chain. Hence, the higher the order of the Markov

chain, the more accurately it describes the DNA sequence.

However, regarding modeling, more accurate does not always mean better. Recall

that one of the motivation to model DNA was to produce a random model in
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order to differentiate exceptional words from those occurring just by chance. For

instance, one cannot expect to find exceptional words of length k in a sequence

using a k-order Markov chain model. An extreme case of evidently pointless model

consists in representing a sequence of length L using a L− 1-order Markov chain.

Heterogenous Markov Chains — So far, we only described homogeneous

Markov chain models. In these models, transition probabilities are the same all

along the sequence. But we have already seen that only a small fraction of eukary-

otic genomes is coding for proteins. As the coding potential of a region constraints

its statistical properties, such features are not taken into account in homogeneous

Markov chains. To deal with these irregularities, heterogeneous Markov chains

have been introduced. In these models, the transition probabilities are different

from one region to another. One subclass of heterogeneous Markov chains of par-

ticular interest for DNA modeling are the hidden Markov models. These models

have been widely used, notably to detect coding regions in genomes [14].

Modeling the Evolution of Sequences — One can also use Markov chains to

model the evolution of DNA in time. In these models, it is assumed that each

site evolves independently. In this case, it is realistic to use a first order Markov

model, that is, to consider that the mutation rate of a nucleotide depends on the

present letter only, and not on the letter that could be found at the same position

in the past. Indeed, in real genomes, informations regarding the nucleotides that

could be found at given positions in the history of a species are not stored.

To model the evolution of a sequence S(t) = (s1(t), ..., sL(t)) in time, one uses

a continuous time Markov chain. In such a model, the probability ρa(t) that a

nucleotide si(t) = a is given by a Master equation:

δ

δt
ρa(t) =

∑
b6=a

ρb(t)Qba − ρa(t)
∑
b 6=a

Qab (1.27)

where (a, b) ∈ A2 are nucleotides and Qab is the substitution rate from state a to

state b such that the probability that a nucleotide a mutates to b in an infinitesimal



Chapter I Introduction 32

small time δt is Qabδt. One can write these equations using matrices and find:

δ

δt
ρ = ρ(t)Q (1.28)

where ρ(t) is a row vector of dimension 4 :

ρ(t) =
(
ρA(t), ρC(t), ρG(t), ρT (t)

)
(1.29)

and Q a 4× 4 matrix defined as:

Q =


• QCA QGA QTA

QAC • QGC QTC

QAG QCG • QTG

QAT QCT QGT •

 (1.30)

where the diagonal terms denoted by • are defined such that columns sum up to

zero i.e.:

Qaa = −
∑
a6=b

Qab. (1.31)

The solution of these differential equations is given by:

ρ(t) = ρ0P (t) (1.32)

with

P (t) = exp(Qt) =
∞∑
n=0

(Qt)n

n!
, (1.33)

where Pab(t), the abth coordinate of P (t) is the probability that a site changes from

state a to state b during a finite time interval t, and where ρ0 is the value of ρ at

the initial time t = 0.

An easy way to calculate the value of exp(Qt), is to diagonalize Q, that is, to find

two matrices A and D such that Q = ADA−1, D being a diagonal matrix. Then,

one obtains:

eQt = AeDtA−1. (1.34)
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As D is diagonal, it follows that (eD)aa = e(D)aa , which is easy to calculate.

Using this framework, the simplest possible model is the Jukes and Cantor model

[15], where all mutations occur with the same probability q/4, such that the matrix

Q is defined as:

Q = q


−3/4 1/4 1/4 1/4

1/4 −3/4 1/4 1/4

1/4 1/4 −3/4 1/4

1/4 1/4 1/4 −3/4

 . (1.35)

Diagonalizing Q using Eq. (1.34), we find for the probability matrix P (t):

Pab(t) =


1

4
(1− e−qt), for a 6= b

1

4
+

3

4
e−qt, for a = b.

(1.36)

1.2.1.3 Chargaff’s Second Parity Rule

Later on, Chargaff and his coworkers separated the two strands of the DNA of

the model bacterium Bacillus subtilis, and calculated the proportions of each base

pair independently in the two strands. They found that even in a single strand,

the proportion of A and T on the one hand, and the proportion of G and C on

the other were approximately equal [16] :

 nA ∼ nT

nC ∼ nG
(1.37)

where na here represents the number of nucleotides a on one strand. Although this

statistical property of DNA — today known as Chargaff’s second parity rule (or

PR2) — suffers from some exceptions, notably in mitochondria [18], it is fulfilled

in a wide range of species [17, 18]. The formal explanation for this rule has

been found 20 years ago, when Lobry and Lobry [19] showed analytically that

this property could be simply explained under the no-strand bias condition [20],
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which states that mutations affect similarly both strands of DNA. As we have seen

before, whenever a mutation occurs, nucleotides on both strand are changed. For

instance, if an A is replaced by a C on one strand, then a T will be replaced by a

G at the same position on the complementary strand. It follows that under this

no-strand bias condition, the mutation rate associated to these two mutations has

to be the same. Similarly, each of the twelve possible mutations has one equivalent

mutation, and thus 6 mutation rates are enough to model the evolution of DNA,

such that the instantaneous rate matrix is given by:

Q =


• µGT µCT µAT

µAC • µCG µAG

µAG µCG • µAC

µAT µCT µGT •

 (1.38)

where • is once again defined such that the sum over each column is equal to zero.

One can show analytically that the evolution of a sequence according to a Markov

model with such an instantaneous rate matrix reaches a stationary state where

Chargaff’s second parity rule always holds [19]. The fact that this rule is fulfilled

in the genome of the majority of species indicates that most of the time, genomes

evolve according to the no-strand bias condition.

Unlike the first parity rule however, the second parity rule is not exact. Although

this rule is most of the times fulfilled on the global scale (when a large portion of

genome is considered), deviations have been found at the local scale, indicating

that in some regions of the genome, the mutations do not affect both strand

symmetrically [21–24]. Studying the deviation from PR2 has revealed itself a

powerful tool to highlight a wide amount of features of specific regions [25], as for

instance the position of replication origins [26].

Chargaff’s second parity rule gives a good example of the two major interests

of simple models in biology. First, while understanding simple statistical fea-

tures, one can get insight into global and basic properties of biological processes.
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Secondly, they offer a global framework from which one can identify local and pe-

culiar deviations. Analyzing and explaining these deviations can help to identify

new phenomena and to develop a refined view of biological processes.

1.2.1.4 Match Length Distributions

The goal of this thesis is to study biological processes that generate long repeated

segments in DNA sequences, and that are not taken into account in the models

we have presented so far. To study these biological processes, we focus on the

distribution M(.) of the length of exact matches (segments with an identical se-

quence) which are maximal (i.e. they cannot be extended on either side). Such

distributions can be obtained for either a self-alignment (by aligning a genome

against itself), or for a comparative alignment (by aligning two different genomes

without allowing for gaps and mismatches).

For sequences generated with the iid model, this distribution is given by an geo-

metric distribution:

Miid(r) =
1

2
L1L2(1− p)2pr, (1.39)

where L1 and L2 are the length of the two sequences and p is the probability that

two nucleotides match, namely:

p = f
(1)
A f

(2)
A + f

(1)
C f

(2)
C + f

(1)
T f

(2)
T + f

(1)
G f

(2)
G , (1.40)

where f
(i)
a represents the frequency of the nucleotide a in the sequence i. Note

that this geometric distribution leads to the well-known Gumbel distribution for

longest matches in an alignment of iid sequences, which is commonly used to assess

the significance of local alignments [27, 28].

In eukaryotic genomes one observes large deviation from this theoretical distri-

bution, either when comparing different genomes, or when computing the self-

alignment of a genome. Namely, one finds more matches of long length than

would be expected under the iid model. Interestingly, these deviations exhibit a

power-law tail, that is M(r) = C rα, where α is the exponent of the distribution,
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and C a normalization constant. Therefore the goal of this thesis is to understand

mathematically these power-law behaviors, and to show that different duplication

mechanisms have left various footprints in genomes.

1.2.2 Complex Processes of Genome Evolution

The underlying hypotheses of the models we have discussed up to this point are

quite simple and take into account the very basic features of DNA. However,

many more complex evolutionary processes have been identified. The importance

of these different processes on the evolution of species has been well established

and is, in many cases, not fully understood. In the next section, we review some

of these processes.

1.2.2.1 Transposable Elements

Transposable elements (TE), which are also called transposons or repetitive ele-

ments, consist in small DNA sequences, ranging from a few hundred bps to several

kbps, and which have the ability to duplicate themselves in genomes. The content

of eukaryotic genomes in transposable elements is highly variable. For instance,

TE cover roughly 50% of the Human genome [29], 85% of the maize genome [30]

but only 14% of the genome of Arabidopsis thaliana [31]. Duplications of trans-

posons are thought to occur in short bursts, which last until the host organism

finds a way to repress their duplication.

After such a burst, the existing sequences remain in the genome and neutrally fade

away into the genomic background due to mutations. There exists several families

of transposons, which are classified according to their duplication mechanisms and

their sequence. The most common type of TE in the Human genome is the Alu

element [32, 33], a roughly 300 bps TE which has duplicated more than a million

times in the Human genome (for reviews about Alu and other retroelements, see

Batzer and Deininger [34] and Deininger and Batzer [35]).
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TE are most of the time regarded as selfish DNA elements invading the genome

of their host species, and their insertion has often been associated to deleterious

effects. For instance, if a transposon inserts into a gene and disrupts its sequence,

it can often result in a loss of function. It has also been found that they strongly

contribute to genomic instability [36].

However, evidences of their positive contribution to the evolution of species have

also been found. For instance, almost 25% of human promoter regions (whose role

is to recruit a RNA polymerase, and thus initiate the expression of a gene) contain

sequences derived from TE [37, 38]. Similarly, in Arabidopsis thaliana, 7.8% of ex-

pressed genes contain a region with close similarity to a known TE sequence [39].

Bursts of transposable elements have also been associated to speciation events (as

a mass insertion event occurred during the formation of primates [40]), and to

adaptive evolution, notably because significant changes in the rate of TE transpo-

sitions have been identified following biotic and abiotic stress conditions in plants,

and, to a lesser extent in Drosophila [37]. However, direct evidences of adaptative

effects of TE bursts have not yet been found.

Interestingly, the sequence and the mode of duplication of TE is highly variable

from a species to another. For this reason, it is likely that a high number of these

elements have not been identified yet, and that the sequencing of new species, or

the improvement of the quality of genomes which have already been sequenced,

will allow to get more insight into the evolutionary history of these elements, and

into their impact on the evolution of genomes.

1.2.2.2 Low Copy Number Repeats

Gene Duplication — While transposable elements are short sequences that can

be found an immense number of times in genomes, the latter also exhibit sequences

duplicated a few number of times. Unlike transposable elements, these low copy

number repeats do not possess the ability to duplicate themselves, and result

from errors that occurred during different processes of genomic evolution. Two
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homologous sequences that result from a duplication event are named “paralogs” in

contrast to orthologous sequences which result from the divergence of two species.

The importance of these low copy number repeats (LCNRs) on the evolution

of species, which first appeared in Susumu Ohno’s influential book Evolution by

Gene Duplication [41] has been widely recognized ever since. In this book, Ohno

presented the idea that a single copy of a gene is enough to fulfill a function,

and thus, when a gene duplication occurs, the constraints that prevented genes

to evolve would apply to one of the two copies only, leaving the other one free

to mutate. While most of the time these mutations would result in the loss of

function of the gene (an event called pseudogenization), the “free” gene might

also sometimes gain a new function. The fate of genes following duplication is a

complex matter that remains under investigation and their evolution is thought

to result into one of the three following scenarios [42, 43]:

− The first possible scenario is pseudogenization. In this case, one of the two

copies accumulates degenerative mutations and gets silenced.

− In a second scenario (neofunctionalization), one of the two copies gains a new

advantageous function, while the other copy retains the original function.

− The last possible scenario is the subfunctionalization of the two genes. In this

scenario, both copies become partially inactivated due to mutations. Both copies

accumulate mutations up to the point where the conjugated function of the two

duplicates is equivalent to the one of the ancestral gene before the duplication

event. A special case of subfunctionalization can occur if the ancestral gene is

performing several functions. In that case, each copy can specialize and improve

one of the several functions at the expense of the other function (that is maintained

by the second copy).

In the following, we present 3 different types of LCNRs that will be studied in this

thesis.
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Segmental Duplications — Segmental duplications (SDs) are usually defined

as long (> 1kbp) segments of duplicated DNA sharing a high sequence similarity

[44]. SDs cover a significant proportion of eukaryotic genomes, and notably 5.5%

of the Human genome and 5% of the Mouse genome [44, 45]. SDs can occur

through various biological mechanisms and are most of the time the consequence of

aberrant repair following double strand breaks. One suggested mechanism involves

the recombination of non homologous segments during meiosis, and is mediated by

pre-existing long repeated segments (either Alu elements [46, 47] or pre-existing

SDs), and the probability that such an event occurs has been shown to increase

with the similarity between the repeats mediating the event. Another mechanism

is known as non homologous end joining (NHEJ) [48, 49], which mostly occurs

in subtelomeric regions. Other mechanisms generating SDs have been identified,

such as fork stalling and template switching (FoSTeS) [63]. For a detailed review

of the different mechanisms leading to the formation of SDs, see Hastings, Lupski,

Rosenberg, and Ira [50].

As SDs are mostly side effects of errors in DNA repair mechanisms, they are

not randomly distributed in genomes, and exhibit a higher frequency in regions of

known instability. For instance, centromeres and, to a lesser extent, close to telom-

eres, are significantly enriched in SDs [49]. Notably, 31% of all duplicated bases

of the Human genome are located in the 5Mb regions surrounding centromeres,

resulting in a 6− 7 fold enrichment compared to other regions of the genome [51].

Interestingly, although the fate of duplicated genes is most of the time discussed,

mechanisms generating segmental duplications do not target specifically genes.

Only a small correlation has been found between the frequency of SDs and the

gene content, but it is most likely a consequence of a higher rate of retention for

SDs containing genes than of a higher rate of duplications in gene rich regions.

As SDs occur through processes involving mostly DNA, we will refer to these

LCNR as DNA-mediated duplications.
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Retroduplications — Segmental duplication is not the only biological process

that produces LCNR in eukaryotic genomes. Retroduplication is another well

known biological mechanism which consists in the reverse-transcription of a ma-

ture mRNA molecule into DNA which is then reintegrated in the genome. The

duplicated sequences generated by reverse-transcription exhibit different features

compared to SDs.

First, most genes are composed of a mosaic of coding sequences (exons) and non-

coding sequences (introns). Hence, after the transcription of the entire gene into

an mRNA molecule, its introns are spliced to produce a mature mRNA, which

is much shorter than the full gene sequence. Mature mRNAs which are reverse-

transcribed in genomes thus result in partial duplicates, which are on average

shorter than duplicates produced by DNA-mediated mechanisms.

Second, retroduplicants consist in exonic sequences only, and thus do not contain

regulatory elements and promoters that would allow them to be transcribed. For

this reason, they mostly produce non-coding copies highly similar to the gene

transcript, commonly known as processed pseudogenes [52, 53]. Note however

that functions have been found for such processed pseudogenes, and the debate

about their potential role is still open, see for instance Kaessmann, Vinckenbosch,

and Long [53] or Okamura and Nakai [54]. Still, it seems that most of the time,

they result in non-functional evolutionary dead-ends.

Third, only genes can be reverse-transcribed, while all sequences can be dupli-

cated through SDs. Moreover, it was shown that the probability that a gene gets

retroduplicated is proportional to its expression level (i.e. to the number of mRNA

molecules to which it gives rise) [55, 56].

The consequence of these three main differences is that unlike SDs, where the two

duplicates are more or less equivalent after the duplication event, the original gene

and its retroduplicate copy have different properties and can most of the time be

told apart. Notably, while duplicates produced by DNA-mediated mechanisms can

potentially duplicate in turn, retroduplicates will not give rise to retroduplicates

because they are not transcribed.
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Whole Genome Duplication — The two first processes we described are thought

to occur relatively frequently and to affect a small number of nucleotides. But

genomes are sometimes subjected to large scale duplication events. These large

scale events can lead to the duplication of a complete chromosome, or even to

whole genome duplications (WGD).

Of course, these large scale events have more dramatic effects on the genome they

affect. When they occur, they create a large quantity of genetic material free to

evolve, and have for this reason been postulated to be an important mechanism

permitting genomic innovation. They might be responsible of many speciation

events [57]; for instance they are associated to 15% (resp. 31%) of such events

in flowering plants (resp. in ferns) [58]. It has also been noticed that most of

the time, these events are followed by a large number of deletions [59]. This last

property makes these events difficult to study and to evidence. While it has been

postulated more than 40 years ago that two rounds of whole genome duplications

took place at the base of vertebrate lineage, this hypothesis is still debated.

1.2.3 Thesis Outline

The goal of this thesis is to study the lentgh distribution of repeated words in

eukaryotic genomes. Chapter 2 lists and details the experimental procedures and

mathematical models used in subsequent chapters. It can be read section by sec-

tion, depending on the requirements, while reading the other chapters. In Chap-

ter 3 we study the length distributions in the case of genome self-alignments. We

first explain the mathematical framework that will be used all along the thesis,

apply it to several duplication mechanisms, and discuss some deviations from our

model observed in two primate genomes. In Chapter 4 we investigate the case

of genome comparison and show that in this experiment, the deviations from the

random model are generated by a distribution of mutation rates along different

genomes. In Chapter 5, we analyze the distribution obtained in the self-alignment

of genomes after a whole genome duplication event, that necessitates ingredients

from both self-alignments and comparative alignments. Finally in Chapter 6, we
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study the comparison of coding sequences only, and show that the simple processes

introduced in the previous chapters are not enough to explain the deviations ob-

served for these regions.

Most of the results presented in this thesis have been published in peer reviewed

journals. The simplest model that only takes into account random segmental du-

plications (Section 3.2) has been published in Physical Review Letters [60]. The

generalization to Yule tree like processes (Section 3.3), to processed pseudogenes

(Section 3.4) as well as to comparative alignments (Section 4.4.1) appeared in

Molecular Biology and Evolution [61]. Finally the detailed calculation of the num-

ber of leaves at a given distance on a Yule tree is the subject of an article in Plos

One [62]. Since some of the results of this last paper are beyond the scope of this

thesis, it is attached as an appendix at the end of this document (Appendix C).



Chapter 2

Materials and Methods

In this chapter, we introduce tools and concepts related to genome analyses and

modeling that were defined and developed in previously by others and that will be

used in the course of this thesis.

2.1 Computing MLDs

To find all identical matches (both in the case of self and comparative alignments),

we used the mummer pipeline [64] (version 3.0), which allows to find all maximal

exact matches between a “query” and a reference sequence using a computationally

efficient suffix tree approach. For our analyses, we used the following options:

• -maxmatch such that mummer searches for all matches regardless of their unique-

ness (by default, only matches unique in the query sequence are retrieved).

• -n that states that only “A”, “T”, “C” and “G” can match (any other character

always results in a mismatch).

• -b such that mummer searches for matches on both strands. To do so, the reverse

complement sequence of the query file is computed, and mummer searches matches

between the two forward sequences, as well as matches between the forward se-

quence of the reference and the reverse complement sequence of the query.

43
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• -l 20 to filter out matches smaller than 20 (default value). Most of the time we

used the default value of 20.

Mummer’s output consists in a file with three columns representing for each match its

position in the query sequence, its position in the reference sequence and its length.

The number of matches expected for a random iid sequence grows quadratically

with L (3.5 1018 matches of length 2 when one compares two sequences of length

L = 109 bps, see Eq.(1.39)), which explains why one has to define a minimum

match length in mummer when comparing entire eukaryotic genomes. Depending on

the length of the sequences to compare, we might vary the value of this threshold.

Computing a MLD from a mummer output is then straightforward. One needs

to count the number of matches obtained for each length. To make the MLD

computation available to anyone interested, we developed an online tool integrated

in Galaxy. Our tool takes as input a sequence to self-align (or two sequences

to compare if one wants to compute a comparative alignment), and gives as an

output the MLD represented using a logarithmic binning. The user can choose

the threshold for the minimum match length of mummer, as well as the value of

the multiplicative factor of the logarithmic binning (see Section ). In order to

compute the MLD from length one, we slightly modified mummer source code so

that it outputs directly the MLD. We used this version only in few cases.

2.2 Power-Law Distributions

General Properties — Power-law distributions are distributions of the form

p(x) = C xα (2.1)

where α, the exponent of the distribution, is negative and where C is a normalizing

constant such that
∫
p(x)dx = 1. The value of C thus depends on the value of α.

As p(x) obviously diverges in x = 0, there must be a lower bound xmin from which

the power-law behavior starts. This explains why power-laws often appear in the
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tail of distributions, i.e. for values larger than a certain lower bound. If x takes

values from xmin to infinity, it follows that

C =

(∫ ∞
xmin

xα dx

)−1
= − α + 1

(xmin)α−1
, (2.2)

when α < −1. Distributions with α ≥ −1 are not normalizable, and need to be

bounded by a maximal value. The distributions we study in this thesis all have

an exponent α < −1, so we disregard this case in the following and always assume

that α < −1.

Several features of these distributions can explain why they have attracted a wide

interest in the scientific community. Notably, these distributions have a “heavy

tail”, meaning that the probability of extreme events is much higher than for

other classical probability distributions, such as the normal distribution. Another

interesting property of power-laws is that these distributions do not depend on the

scale one looks at it. Notably, one can establish that

p(bx) = g(b)p(x) ∀x, (2.3)

meaning that if we ”zoom in” or ”zoom out” (for instance by changing the unit in

which the distribution is measured), the shape of the distribution stays unchanged.

Let us explain this with a small example. Let p(x) stands for the number of

scientific papers which have been cited x times (a quantity that has been shown

to be power-law distributed [65]), and suppose that we find that there are 10

times more articles that have been cited twice than papers that have been cited

4 times (i.e. g(2) = 1/10). Then, we would also find that there are 10 times

more articles that have been cited 20 times than papers that have been cited 40

times. Interestingly, power-law distributions are the only distributions to fulfill

the relationship defined in Eq. (2.3). For this reason power-laws are said to be

”scale free” or ”scale invariant” distributions.

A tremendous amount of phenomenon have been reported to follow power-law like

distributions, such as the frequency of words in human languages, the frequency
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of use of names in most cultures, the number of species in a biological taxa or the

magnitude of earthquakes to cite only a few examples (for a review on the topic,

see Newman [66]). In genomic studies as well, many power-law distributions have

been identified [67–69]. As the number of phenomenon found to follow power-law

distributions was growing, attempts to unify all different processes under a few

mechanistic models, and to explain why such distributions were so common have

emerged [70–72].

As a consequence, questions regarding the inherent interest of these distributions,

together with the claim that many reported power-laws were lacking good statis-

tical support have also emerged [73, 74], together with the development of appro-

priate mathematical frameworks to study these distributions [74].

The goal of this thesis is not to participate in this wide and passionated debate.

We can note however that in many cases, valuable insight to the understanding of

biological processes, for instance to genome evolution, has been gained from the

understanding of these power-laws such that it remains worth studying [72, 75–77].

Representing Power-Laws — To illustrate the properties of power-law distribu-

tions, we show a synthetically generated dataset following a power-law distribution

on Fig. 2.1(a). This figure was reproduced from Newman [66] (see this article for

detail explaining how to synthetize such a set). As simulated data are continuous,

to compute an histogram, one has to generate bins and to count the number of

data points observed in each of these bins. The histograms of Fig. 2.1(a) and (b)

are generated using a constant bin size.

Taking the logarithm of both side of Eq. (2.1), one finds that:

ln (p(x)) = α ln(x) + ln(C ), (2.4)

and it follows that, represented on a log-log scale, a power-law distribution appears

as a straight line, whose slope is equal to α. This behavior can be observed on

Fig. 2.1 panel (b).
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Z xk

xk�1

pðxÞ dx ¼ C

Z xk

xk�1

x�a dx

¼ C
aa�1 � 1

a� 1
ðxmina

kÞ�aþ1:

ð2Þ

Thus, so long as a4 1, the number of samples per bin goes

down as k increases and the bins in the tail will have more

statistical noise than those that precede them. As we will see

in the next section, most power-law distributions occurring

in nature have 24a4 3, so noisy tails are the norm.

Another, and in many ways a superior, method of

plotting the data is to calculate a cumulative distribution

function. Instead of plotting a simple histogram of the data,

we make a plot of the probability P(x) that x has a value

greater than or equal to x:

PðxÞ ¼
Z 1

x

pðx0Þ dx0: ð3Þ

The plot we get is no longer a simple representation of the

distribution of the data, but it is useful nonetheless. If the

distribution follows a power law p(x)=Cx – a, then

PðxÞ ¼ C

Z 1

x

x0�a
dx0 ¼ C

a� 1
x�ða�1Þ: ð4Þ

Thus the cumulative distribution function P(x) also follows

a power law, but with a different exponent a – 1, which is 1

less than the original exponent. Thus, if we plot P(x) on

logarithmic scales we should again get a straight line, but

with a shallower slope.

But notice that there is no need to bin the data at all to

calculate P(x). By its definition, P(x) is well defined for

every value of x and so can be plotted as a perfectly normal

function without binning. This avoids all questions about

what sizes the bins should be. It also makes much better use

of the data: binning of data lumps all samples within a

given range together into the same bin and so throws out

Figure 3. (a) Histogram of the set of 1 million random numbers described in the text, which have a power-law distribution

with exponent a=2.5. (b) The same histogram on logarithmic scales. Notice how noisy the results get in the tail towards the

right-hand side of the panel. This happens because the number of samples in the bins becomes small and statistical

fluctuations are therefore large as a fraction of sample number. (c) A histogram constructed using ‘logarithmic binning’. (d) A

cumulative histogram or rank/frequency plot of the same data. The cumulative distribution also follows a power law, but

with an exponent of a – 1=1.5.
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Figure 2.1: In this figure, we show four different representations of the same
data. Data were synthetically generated to follow a power-law distribution with
an exponent α = −2.5. (a) Representation on a linear scale (b) Representation
on a log-log scale (c) Representation on a log log scale using logarithmic binning
(d) The cumulative distribution. Figure reproduced from Newman [66]

This property makes it really convenient to detect power-law distributions. Note

however that one should not only rely on the impression that raw data is a straight

line on a log-log plot to conclude that data are power-law distributed [73, 74].

Similarly, it has been noted that evaluating the exponent of the power-law by

fitting a straight line to the data on a log-log plot was a biased method [66, 78].

Logarithmic Binning — Power-laws appear in the tail of distributions, meaning

that they are associated to rare events, which are thus subject to strong variations.

The high impact of noise in the tail of the distribution – making the assessment

of the exponent of the distribution difficult – can be observed on the synthetic set

represented on Fig.2.1 (b). A way to resolve this issue is to increase the size of

the bins with the value of x. Of course, such procedure introduces a bias in the

distribution, and one then has to normalize the data. Namely, the value observed

for each bin is divided by the size of the bin. The most common choice to do
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this is known as the logarithmic binning procedure, which consists in increasing

the size of the bin by a constant factor. For instance, if the first bin is of size 0.2

and the multiplying factor is set to 2, then the second bin will be of size 0.4, the

third of size 0.8, the fourth of size 1.6, and so on. Note that by doing this, one

dramatically reduces the number of data points. Such a procedure was used to

generate Fig. 2.1 panel (c). On this figure, one can see that it nicely reduces the

noise, and makes the power-law behavior much clearer. Note that binning induces

a loss of information, as one aggregates different data points together in the same

bin (as data with different values are summarized together as one data point), so

that it is often useful to consider both representations.

Another procedure to reduce the noise in the tail of the distribution consists in

representing the cumulative distribution P (.), which is defined as:

P (x) =

∫ ∞
x

p(a) da =

∫ ∞
x

C aα da

=
C

α− 1
xα+1. (2.5)

The cumulative distribution also follows a power-law distribution (although with

an exponent α + 1). As can be seen on Fig. 2.1 panel (d), this procedure also

efficiently reduces the noise, and is often reported as superior to the logarithmic

binning (notably by Newman [66]). However, in the case of discrete power-law dis-

tribution, logarithmic binning still seems more efficient [79]. As we study discrete

distributions in this thesis, we chose to always represent data using the logarithmic

binning procedure.

Once the power-law behavior is established, a method to obtain an estimate of the

value of α, is to compute the maximum likelihood estimator. The estimator α̂ is

then the value of α that maximizes the log likelihood L:

L =
n∑
i=1

[
ln(α− 1)− ln(xmin)− α ln

(
xi
xmin

)]
, (2.6)
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such that

α̂ = −1− n

[
n∑
i=1

ln

(
xi
xmin

)]−1
, (2.7)

while the value of xmin has to be determined visually. This estimator is also

sometimes referred to as the Hill estimator [80].

The power-law distributions that we analyze in this thesis span roughly one order

of magnitude (from length 20 to 200 roughly). Notably, for most of the distri-

butions we study, the very tail of the distribution exhibits a faster decrease than

expected for a power-law. Such behavior are sometimes modeled with an expo-

nential cutoff, that is:

p(x) = C xα exp(−λx). (2.8)

The MLE, that does not take this cutoff into account, is a biased estimator of the

value of the exponent.

More generally, the goal of the thesis is to try to understand large deviations of

match length distributions from the random iid model (see Section 1.2.1.4). It

might be that more complex distributions, comprising features such as an expo-

nential cutoff, more accurately describe our data. Our aim is to develop mecha-

nistic models that result in deviations similar to those observed in our data, and

that are biologically meaningful, not to claim that the data we observe are power-

law distributed. As power-law distributions seem to be fair approximations of

the distributions we observe, we will in the following, for simplicity (and maybe

sometimes abusively) describe them as power-law distributions.

2.3 Yule Trees

A Yule tree [81] (also known as a birth death tree) is the result of a branching

process with constant birth and death rate. As one of the simplest stochastic

models for branching processes, it is often used to model the evolution of families

of species or of families of genes that evolve from a common ancestor. A Yule tree

is defined as follow. At the beginning of the process (at t = 0), the tree consists of
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only one individual. During each infinitesimal time interval dt, this individual can

either give birth to a new individual (with probability λdt) or die (with probability

δdt). λ and δ are defined as the birth and death rate of the process respectively.

We show an example of such a tree on Fig. 2.2.

Depending on T , the total time elapsed from the beginning of the process (also

called the height or the age of the tree), one can calculate several useful quantities,

that we will use in Section 3.3. Let P (Z|T ) be the probability that there are Z

leaves on a tree of age T . Following [82], as long as the birth rate is larger than

the death rate, the average number of leaves in a Yule tree grows exponentially

with the age of the tree and is simply given by:

E(Z|T ) = exp [(λ− δ)T ] . (2.9)

We can also write the probability that no individual (Z = 0) survives through to

time T , that is:

P (Z = 0|T ) = 1− λ− δ
λ− δe(δ−λ)T

. (2.10)

Finally, for z > 0 we have [82]:

P (Z = z|T ) =
λ− δ

λ− δe−(λ−δ)T

[
1− 1− e−(λ−δ)T

1− δ
λ
e−(λ−δ)T

][
1− e−(λ−δ)T

1− δ
λ
e−(λ−δ)T

]z−1
. (2.11)

2.4 Simulating the Evolution of DNA Sequences

To simulate our evolutionary models, we used the following process. A sequence of

nucleotides S = (s1, . . . , sL) of length L with si ∈ {A,C,G,T} is evolved through

time using small time intervals ∆t. Time intervals ∆t are small enough such

that for any evolutionary process e of the model occurring with rate ρe, we have

ρeL∆t � 1. At each step, a random number (uei per position i and per possible

evolutionary process e is drawn from a uniform distribution. The event e then
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Figure 2.2: An example of a rooted Yule tree of height T with 5 leaves. The
pairwise evolutionary distance between two leaves (green path) is denoted by τ .
The first branching event occurs after time T1 and the two resulting subtrees
possess Z1 and Z2 leaves. Small horizontal lines represent dead leaves. The
horizontal dimension is meaningless.

occurs at position i if uei < ρe∆t. These steps are repeated until the desired time

t has elapsed.

2.5 Bioinformatic Procedures

Genomes — Unless otherwise stated, all genomes and their specific annotations

(such as repeated elements and exons) were downloaded from the ensembl web-

site [83]. For Human, we use GRCh37 release. Arabidopsis thaliana is the only

species we studied whose genome is not available on the ensembl website, and we

downloaded it from the TAIR website [84].

Phylogenetic Tree of Pseudogenes — As an example of Human processed

pseudogenes, we analyzed in Section 3.4 the behavior of the familly of processed

pseudogenes that results from the retroduplications of the RPL21 gene, a gene that

retroduplicated many times in the human genome. To define the subset of RPL21

ensembl.com
https://www.arabidopsis.org/index.jsp
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pseudogenes, we searched the set of all human pseudogenes (downloaded from the

pseudogene database), for all sequences homologous to the RPL21 transcript using

BLAST algorithm [85]. We kept only the sequences with an alignment score larger

than half of the length of the RPL21 transcript. This resulted in 117 sequences. We

computed the multiple alignment of all these sequences using the MAFFT program

[86] in the most accurate mode (linsi). Afterwards, we cleaned the alignments

to keep only the most reliable positions of the alignment with the trimAl program

[87] in automatic mode. To calculate the distance matrix summarizing all the

pairwise distances between the different pseudogenes, we used the package phylip

[88]. Four sequences were excluded due to their large distances to other sequences.

After calculating the distances, all pseudogenes were ranked according to their

average distance to other pseudogenes, from small to large. Then we assumed

that the topology of the phylogenetic tree is such that the gene is retroduplicated

to the first pseudogene in the ranking and then to the second one, etc., resulting in

a ladder tree, as shown in the next Chapter on Fig. 3.10. The tree was built using

the same phylip package but with a fixed topology (that is the one discussed

in the previous sentence). For this procedure, we used the F84 model [89] for

nucleotides substitutions.

RepeatMasker — The RepeatMasker [90] pipeline is a tool that screens DNA se-

quences to identify repetitive elements and low complexity DNA sequences (which

are simple repeated sequences, such as “GTGTGTGTGTGTGTGT...” for in-

stance). Using the Smith-Waterman-Gotoh algorithm [91, 92], it searches the

query DNA sequences for regions that share a high similarity to previously iden-

tified repetitive elements, which are listed in the RepBase database [93]. It then

produces a “RepeatMasked” sequence, which is similar to the query sequence, but

where all letters that have been identified to be part of a repetitive element have

been replaced by an “N”. RepeatMasked version of eukaryotic genomes can also

be directly downloaded from the ensembl database [83].

pseudogene.org


Chapter 3

Self-alignment

In this Chapter, we explain the different power-laws observed in the Match Length

Distributions of the self-alignment of eukaryotic genomes, and demonstrate why

different evolutionary scenarios give rise to power-laws with different exponents.

We first discuss the general mathematical framework that we will use in the thesis

(Section 3.1) , and then apply this framework to three evolutionary scenarios. In

the first and simplest scenario (Section 3.2), we consider segmental duplications as

a random and continuous process. We then extend our result to two more complex

and more biologically relevant scenarios. In the first of these two, a particular

sequence segment and its duplicated offspring duplicate again and again, giving

rise to a family of duplicated genes (Section 3.3). The second scenario is meant

to represent the duplication through the reverse-transcription of the mRNA of a

gene, giving rise to many pseudogenes (Section 3.4).

53
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Figure 3.1: A toy example of the self-alignment of a small sequence and its
corresponding MLD. Black lines in the grid represent exact matches and values
in the red circles represent the length of maximal exact matches in number of
base pairs.

3.1 Preliminary Considerations

3.1.1 The Match Length Distribution of the Self-Alignment

of a Genome

The goal of this thesis is to explain a set of puzzling statistical properties of eukary-

otic genomes that was first described by Gao and Miller [94] (see also Sindi [95],

Csűrös, Noé, and Kucherov [96] or Salerno, Havlak, and Miller [97] for related

analysis). The authors of this article studied a statistical property of Repeat-

Masked genomes. Namely, they aligned each genome against itself to retrieve all

identical matching segments. We will refer to this experiment as the self-alignment

of a genome in the following. For their analyses, they only took into account ex-

act gapless matches which are maximal, in the sense that these matches cannot
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be extended on either side (i.e. they are not included in longer matches). They

then counted the number of matches observed for each length to obtain the Match

Length Distribution (MLD), see Fig 3.1 for a simple example of the procedure

on an 11 bps sequence. We reproduce this experiment for the RepeatMasked hu-

man genome, and for a sequence produced from the concatenation of all human

exons (also called the exome) in Fig. 3.2. To retrieve all matches, we used the

Mummer pipeline [64], see Section 2.1 for details. Note that all maximal matches

are considered here, regardless of their uniqueness.

For small matching segments of lengths r < 20, the MLD follows the expected

distribution miid(r) = L2pr(1− p)2, obtained for a random iid sequence (see Sec-

tion 1.2.1.4). However, for longer matches, one observes many more matches than

expected: given the length of the human genome, we expect no match longer than

30 bps. Even more surprisingly, the distribution for these long matches follows a

power-law distribution with exponent α = −3.

In the following, we study the behavior of what we call the tail of the MLD,

that we define as the distribution in the range where the power-law behavior is

observed. The “lower bound” rmin of this tail is the shortest length for which the

distribution exhibits a power-law behavior. rmin depends both on the intercept

of the power-law distribution and on the number of randomly expected matches

(which itself mainly depends on the total length of the analyzed sequence), and is

equal to rmin = 20 in a typical eukaryotic genome.

3.1.2 The Stick Breaking Process on Evolutionary Time

Scale

In this chapter, we want to show that this power-law distribution can arise from

the neutral evolution of segmental duplications. Before studying the Match Length

Distribution at the genomic scale, let us focus on the evolution of a single segmental

duplication. Just after its generation, a segmental duplication will consist in two

100% identical sequences of length K, resulting in one match of length K. As
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Figure 3.2: The match length distribution (MLD) computed from the self-
alignment of the RepeatMasked human genome and the RepeatMasked human
exome. The red dotted lines represent the distribution obtained when repeating
the same experiment on a random iid sequence with same length and equal
nucleotide frequencies. The dashed lines represent the power-law functions L/r3

and 3Lex/r
3, where L is the length of the RepeatMasked human Genome (we

do not count the Ns), Lex is the length of the human exome and where r is the
match length. Both MLDs are represented using logarithmic binning to reduce
the sampling noise, see Section 2.2 for a discussion on this subject.

time passes, this match will be disrupted by mutations. When a match of length

r is broken by a mutation, two smaller matches of length r1 and r2 such that

r = r1 + r2 + 1. For simplicity, we assume that the stick length r is a continuous

parameter and that mutations only break a stick without shortening it (i.e. r1 +



Chapter III. Self-Alignment 57

r2 = r). We also performed similar analyses for the discrete case, and obtained

similar results, see Appendix A. Here we focus on neutrally evolving DNA. In

this case, all mutations have the same probability of fixation, and thus occur

randomly at any position of one of the two copies of the duplicated sequence.

This fragmentation process of matching sequence segments can be mathematically

described by the stick-breaking process, a process that was first introduced to

understand the fragmentation of long polymer chains [98]. In this framework, a

match resulting from a segmental duplication is considered to be one full length

stick, which is then broken up by mutations into several smaller sticks.

Following Ziff and McGrady [99], the dynamics of the length distribution of frag-

mented sticks in time can be described by a differential equation. If we define τ

as the evolutionary distance (also called the divergence) between the two dupli-

cates, and m(·, τ) the length distribution of sticks (or matches) for a divergence τ

between the two duplicates, then it fulfills:

∂m(r, τ)

∂τ
= −2µrm(r, τ) + 4µ

∫ ∞
r

m(s, τ) ds. (3.1)

The first term represents the loss of matches of length r due to mutations. These

mutations occur with rate µ, and can break any of the m(r, τ) matches at any

of the r positions of each of the two copies, so this event occurs with probability

−2µrm(r, τ). The second term describes the gain of matches of length r result-

ing from a mutation in a longer match. In any match of length s > r, there

are 4 positions (2 in each copy) where the occurrence of a mutation results in a

match of length r (and a match of length s − r), so this event has a probability

4µ
∫∞
r
m(s, τ) ds. At time t = 0 we start with one stick of length K, so we have

the initial condition: m(r, 0) = δ(r,K), where δ(r,K) denotes the Kronecker delta

(i.e. the function which is equal to zero everywhere except for r = K, where

it takes the value 1). The analytical time dependent solution of this differential
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equation with this initial condition is known to be [99]:

m(r, τ) =


[2τ + τ 2(K − r)] exp(−τr), for 0 < r < K,

exp(−Kτ)δ(r,K), for r = K,

0 otherwise.

(3.2)

For large τ and small r this is basically an exponential function in r.

Note that in real genomes, point mutation is not the only mechanism that can

disrupt (or break) a match in several smaller matches. Indeed, insertion and

deletions of DNA segments also break matches. Unfortunately, our framework

does not allow to differentiate between these different mutational processes and

to infer the relative contributions of each of these processes. For this reason we

always consider the mutation rate as an effective rate subsuming effects of different

biological processes. Note that we use an infinite allele model: in reality, a mutated

loci can mutate a second time and return to its previous state (this process is called

reverse mutation). When it occurs, a formerly broken match is reconstructed. We

neglect this effect.

3.1.3 A Mathematical Framework to Calculate Match Length

Distributions

From the previous section, we have an equation describing the evolutionary fate

of a single segmental duplication. In a eukaryotic genome there are many such

duplications. In this section, we develop a mathematical framework to describe

the MLD resulting of many segmental duplications.

When a duplication occurs, it generates two identical DNA segments which then

evolve independently from each other. Then, any of the two duplicated sequences

can duplicate again, giving rise to a family of sequences. The evolution of such a

family can be well described by a branching process, giving rise to a phylogenetic

tree. On such a tree, leaves represent paralogous DNA segments that share a

common ancestor.
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Any two leaves of the tree are separated by an evolutionary distance τ from each

other. This distance depends on the real time since the duplication event, and

on the mutation rate along all branches separating the two duplicates. Thus,

the dimensionless evolutionary time (or divergence) separating a pair of leaves is

defined as

τ =
∑
i

µiTi, (3.3)

where the sum runs over all the branches along the evolutionary path between the

two leaves and Ti and µi are the length (in real time) and the mutation rate of

branch i respectively. Recall that by mutation, we mean any event that disrupts

a match (including single nucleotide substitutions, short insertions and deletions).

For any tree j, we can define Nj(τ) the number of pairs of duplicated segments

separated by an evolutionary time τ . After the first duplication event, the tree

has only two leaves, and Nj(τ) is the simple function:

Nj(τ) =

 1 for τ = τd,

0 otherwise,
(3.4)

where τd is the divergence between the two duplicates. For larger trees, the func-

tional form of Nj(τ) depends on τ and on the topology of the tree, as we will

discuss in Sections 3.3 and 3.4.

A genome is composed of many active duplicating segments, that gives rise to

many families, each represented by one tree. The total value of N(τ) for a genome

is then defined as the sum of all Nj(τ) such that:

N(τ) =
∑
j

Nj(τ). (3.5)

Furthermore, from the previous subsection, we have a theoretical formula for the

number of identical sequence matches of length r for a pair of sequences of length

K separated by an evolutionary distance τ , see Eq. (3.2). Thus, the match length

distribution from the self-alignment of a genome, M , can be simply obtained by
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integrating over all pairs of duplicated segments:

M (r) =

∫ ∞
0

m (r, τ)N (τ) dτ. (3.6)

In the following, we study the value of N(τ), and the resulting MLD for different

evolutionary scenarios.

3.2 The Simplest Case: Random Duplications

3.2.1 Theoretical Calculations

Before studying more general scenarios, we start by focusing on a simplified sce-

nario, and set the three following assumptions.

− (H1): We assume that duplications occur uniformly in space, i.e. that duplica-

tions have the same probability to occur at any position of the genome.

− (H2): We further assume that all duplicated segments have the same length K,

and that K is negligible compared to the length of the studied genome L, meaning

that duplications do not change the size of the genome. The combination of these

first two assumptions yield that the probability that a given region is duplicated

more than once is negligible.

− (H3): Finally, we assume that the duplication rate is constant (i.e. there are no

burst of segmental duplication and no long period without any such event).

Taken together, these three assumptions lead to the fact that on average, for

any given evolutionary time τ , there is a constant number of pairs of duplicates

separated by an evolutionary distance τ from each other, i.e.:

N(τ) = N0, ∀ τ (3.7)

where N0 is a constant.
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Replacing the value of N(τ) in Eq. (3.6), we obtain that M(r), the number of

exact matches of length r obtained in the self-alignment of a genome is equal to:

M(r) =

∫ ∞
0

N0m(r, τ) dτ. (3.8)

Replacing m(r, τ) by its value given in Eq. (3.2), we obtain for 0 < r < K:

M(r) = N0

∫ ∞
0

2τ exp(−τr) dτ +N0

∫ ∞
0

τ 2(K − r) exp(−τr) dτ. (3.9)

Integrating by parts on the second term gives:

M(r) = N0

∫ ∞
0

2τ exp(−τr) dτ +N0

[
0 +

2(K − r)
r

∫ ∞
0

τ exp(−τr) dτ
]

= N0
2K

r

∫ ∞
0

τ exp(−τr) dτ. (3.10)

Integrating by parts again leads to:

M(r) =
2N0K

r

[
0 +

∫ ∞
0

exp(−τr)
r

dτ

]
. (3.11)

And finally, we get:

M(r) =
2KN0

r3
(3.12)

for 0 < r < K, which is a power-law with an exponent α = −3, as observed in the

MLD of real genomes. For r = K, we simply get:

M(K) =

∫ ∞
0

exp(−τK)dτ

=
N0

K
. (3.13)

Note that this function exhibits a non-continuous peaks in r = K. We observed

this peak in simulated data (data not shown). In real genomes however, it is

expected that the length of segmental duplications (SDs) is not constant, such

that we do not observe this peak.

Thus, the power-law observed in the self-alignment of eukaryotic genomes can be
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simply explained by the interplay of segmental duplications and point mutations.

The appearance of a scale-invariant distribution in a process that is observed at

different time points is not unexpected [100]. Surprisingly, in this integrated stick-

breaking model the exponent is universal in the sense that it does not depend on

the microscopic details of the model, namely the mutation and duplication rates,

the length of a duplication K or the total length of the sequence L. For a more

detailed discussion about the integrated version of the broken stick model, see also

Ben-Naim and Krapivsky [101].

The Stationary State with Continuous Duplications — To deduce the

correct normalization factor N0 for the distribution M given by (3.12), we consider

a stick-breaking process in which, according to our evolutionary model, segmental

duplications of length K are continuously generated with rate λ per site. The

dynamics of Eq. (3.1) for the distribution m(r, τ) then gains a third term on the

right hand side which describes the influx of new matches of length K in a genome

of total size L:

∂M(r, τ)

∂τ
= −2µrM(r, τ) + 4µ

∫ ∞
r

M(s, τ) ds+ λLδ(r,K). (3.14)

In this setting we are interested in the stationary state distribution M∞(r) and

solve the differential Eq. (3.14) for ∂M∞/∂τ = 0.

Let us assume that our solution is of the form:

M∞(r) =


N0/r

3 for r < K,

B for r = K,

0 otherwise.

(3.15)

As there are no matches longer than K, for r = K, Eq.(3.14) becomes:

0 = −2µK B + λL (3.16)
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and so:

B =
λL

2µK
. (3.17)

For r < K, we have to split the second term of the equation to calculate it:

4µ

∫ ∞
0

M(s, τ) ds = 4µ

(∫ K

0

M(s, τ) ds+

∫ ∞
K

M(s, τ) ds

)
(3.18)

so that the full equation results in:

0 = −2
N0µ

r2
+ 2µ

(
N0

r2
− N0

K2

)
+ 4µB (3.19)

which finally leads to the solution

M∞(r) =
λK

µ

L

r3
(3.20)

for r < K and M∞(r) = λL/(2µK) for r = K. We can fit our observations

even better by considering a discrete version of the stick-breaking model, see Ap-

pendix A. In essence these considerations yield a finite size correction to the power-

law behavior in Eq. (3.20) for small r. However, we note that this correction is

always negligible in the regime r > 20, which is the only regime where the power-

law can be observed in real genomes.

From Eq. (3.20), one can also notice that the dependency of the MLD M in

the length of duplicated segments, K, is purely linear. Thus, we can relax the

assumption on the fixed length of the duplicated sequences with no qualitative

changes on the MLD. To be able to apply our framework, as we assumed above

that matches where all smaller than the length of duplicated segments K, we need

the lengths of most segmental duplications to be longer than the length rone where

the power-law tail has value one, i.e. :

(
λKL

µ

)1/3

= rone. (3.21)
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If D denotes the length of duplicated segments, this results in:

P (D < rone) ' 0. (3.22)

In that case, we retrieve the same solution for M than the one stated in Eq. (3.20),

where K is now the mean length of a segmental duplication.

3.2.2 Simulations

To confirm our theoretical results, we performed simulations. We introduce a se-

quence evolution model that includes two basic evolutionary processes: point mu-

tations and duplications of sequence segments. Both processes act on a sequence

of nucleotides S = (s1, . . . , sL) of L nucleotides taking values in {A,C,G,T}L.

Mutations — The mutation process induces a change in the sequence S → S ′ at

one random position p, such that S ′ = (s′1, . . . , s
′
L) is given by:

s′i =

 s′ with s′ 6= si for i = p,

si otherwise.
(3.23)

This process happens with rate µ per site, i.e. in an infinitesimal small time interval

dt it occurs with probability µLdt.

Duplications — The second process in our model generates segmental duplica-

tions. A random segment of K � L consecutive nucleotides starting at a random

position c in S, (sc, . . . , sc+K−1), is copied and pasted to a random position v. The

rest of the sequence stays unchanged; the new sequence S ′ is given by:

s′i =

 si−v+c for i with v ≤ i < v +K,

si otherwise.
(3.24)
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This process overwrites the K preexisting nucleotides sv+k for 0 ≤ k < K at the

target sites, and the total sequence length L stays constant, to simplify the com-

putational procedure. This is equivalent to coupling any duplication to a deletion

of a sequence of the same size. We also implemented a version where duplica-

tions are added at the end of the sequence, and do not overwrite the preexisting

nucleotides. The self-alignements computed from sequences generated with the

two different versions of the model exhibited similar MLDs. For simplicity we

also assumed periodic boundary conditions and identify s1 with sL+1, in order to

avoid any border effect. Segmental duplications occur with rate λ per site, and we

assume that λ� µ.

Results — Given the above processes, it is easy to simulate sequences and to per-

form a self-alignment to find exactly repeated segments. We start each simulation

with a random iid sequence with equal nucleotide frequencies. This sequence is

then subjected to the above dynamics for a time longer than t0, which is defined

as the time at which on average, each nucleotide has been mutated and duplicated

more than once. After such a time, we reach a stationary state for the MLD.

We then computed the MLD of the generated sequence. For more details on the

simulation process, see section 2.4.

On Fig. 3.3, we show the MLDs obtained for several simulations with different

values of the mutation rate µ and the duplication rate λ for sequences of length

L = 106 and with a duplication length K = 1000. All distributions share the same

behavior for small lengths (r . 20). That part of the distribution is dominated

by small random matches which are exponentially distributed, as described in

Eq. (1.39), as shown on Fig. 3.3.

For longer lengths (r > 20), we observe many more exact matches than expected

for random sequences. As expected from the previous calculations, the length

distributions of long matches follow a power-law distribution with exponent α =

−3. Moreover, we retrieve all the predictions from our theoretical calculations (see
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Fig. 3.3): the distributions we obtain fit our prediction exactly, and the shape of

the distribution does not depend on the values of the parameters (λ, µ, L and K).

Finally, we also simulated the case where the length of segmental duplicated seg-

ments, K, is not constant, but instead distributed according to a normal distribu-

tion with mean K and standard deviation 100. As expected, the MLD obtained

in that case is equivalent to the one obtained with a fixed duplication length, if

we replace the value of K of Eq. (3.20) by the mean duplication length.

3.2.3 Discussion

In this section, we introduced a simple model of genome evolution accounting for

segmental duplications and mutations that gives us insights into the occurrence

of a power-law tail in the length distribution of exact matches in self-alignments

of genomic sequences. Using an extended version of the stick-breaking process for

fragmentation, we correctly deduced the empirically observed exponent, namely,

α = −3 of this power-law distribution.

For the human genome, this tail comprises exact matching sequences of lengths

varying from 25 to about 1000 bps, see Fig. 3.2. From our analysis we estimate that

a total of about 5 Mbps (approximately 1.6% of the human genome) is part of at

least one such match. The longest matching sequence segments are about 5000 bps

in length, suggesting that the majority of segmental duplications probably spawn

a few kbps, as reported in previous studies [44, 102].

From Eq. (3.20), one can define the prefactor of the MLD A = λK/µ so that

Eq. (3.20) becomes:

M∞(r) =
λK

µ

L

r3
=
A

r3
L. (3.25)

From the value of A, one can derive the value of the longest exact match rmax

expected in the neutral case,

rmax ' (AL)1/3 (3.26)



Chapter III. Self-Alignment 67

+
+

+
+

+

+

+

+
++++++++++++++++++

+++

+
+

+
+

+

+

+

+

++++++++++++

++ +
++

+
+

+
+

+

+

+

+

+++++++
++++++

+
+ +++

+
+

+
+

+

+

+
++++++++++++++++++

++++

+
+

+

+

+

+

+

+
+

+
+

+
+

+
+

+ +
+ +

+
+ +

++
++

++
+

1 2 5 10 20 50 100 200 500 2000

10−2

100

102

104

106

108

1010

Match length

N
um

be
r 

of
 m

at
ch

es
+
+
+
+
+

µ = µ0, λ = λ0
µ = µ0, λ = 10λ0
µ = µ0/10, λ = λ0
µ = 10µ0, λ = λ0
µ = µ0, λ = λ0/10
random matches
continuous solution
discrete solution

Figure 3.3: The match length distribution computed for the self-alignment of
sequences simulated using the model described in section 3.2.2 with different
values of the duplication rate λ and of the mutation rate µ, with λ0 = 10−3

and µ0 = 10−1. As expected, sequences with the same value of A = λK/µ
exhibit very similar distributions. The red dotted line represent the expected
distribution obtained when computing the same experiment on a random iid
sequence of the same length and with the same nucleotide frequencies. For
small lengths, the MLD is consistent with the random expectation. The dashed
line represents the theoretical distribution calculated for 3 different values of
the prefactor A = 100 ,10 and 1 in the continuous case (black) or in the discrete
case (gray). All MLDs are represented using logarithmic binning.

if (AL)1/3 ≤ K and rmax = K otherwise. In the human genome, as A ≈ 1 (see

Fig. 3.2), as L, the length of the genome after RepeatMasking, is of the order

of 1 Gbp and as the typical size of a segmental duplication, K, is of the order of
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10 kbps, the length of the longest expected exact match is rmax ' 1000 bps. In a

random sequence of the same length the value of rmax would only be about 30 bps.

Note that rmax is not very sensitive to the values of A and L. For instance, in a

genome of the same length but with A = 0.1, the value of rmax would just change

twofold, resulting in rmax ' 500.

This prefactor A = λK/µ can be interpreted as the ratio of the number of nu-

cleotides affected by duplications compared to the number of nucleotides affected

by mutations. For the human genome this factor is close to one. This indicates

that the amount of information that is “backed up” by segmental duplications is

on average equal to the amount that is lost due to mutations. Note, however, that

the spatial distribution of segmental duplications in the human genome is very

complex and not specific to coding sequences. Therefore, this process might not

save coding sequences from deterioration per se. For present day biological evolu-

tion, natural selection is probably a more powerful force to maintain and evolve

genomic information over long periods of time.

Furthermore, one can also derive an estimate of the value of the duplication rate

λ from the value of the prefactor A. Assuming that mutations occur with a rate

of about 1.5 per billion years [44, 103] we can easily derive that about 4.5 Mbps

of DNA per million years is duplicated in the human lineage. Assuming further

that a typical duplication is 10 kbps long, we find that the duplication rate λ is of

the order of 1.5× 10−13 per bp and per year. These estimates agree with the ones

given by Bailey and Eichler [44].

Interestingly, when restricting our analysis to the exons of the human genome, we

find the same power-law tail with exponent α = −3 in the MLD, see Fig. 3.2. This

is quite surprising as one would expect that mutations do not occur randomly in

exons, due to all the evolutionary constraints that shape the evolution of exons.

For instance, the third positions of any exon have a higher mutation rate than

the first two positions, due to the redundancy of the genetic code. Some small

domains of proteins [104] are also known to be of particular importance, and

are, for this reason, under higher evolutionary constraint than the rest of the
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protein. Thus, the region of the exon coding for this domain shows a smaller

mutation rate than the rest of the exon. For all these reasons, one would expect

that the random stick breaking process cannot be applied to the evolution of

exons. However, it might be that, over all exons, various local biases compensate

for each others. More importantly, here we only study mutations in duplicated

exons, which are a subgroup of all exons (representing roughly 50% of the total

exome). Especially, mutational constraints are known to change dramatically when

a gene is duplicated. Many scenarios are feasible, notably one (referred to as

pseudogenization) where constraints on one of the two copies are totally relaxed,

and the relaxed copy then evolves according to our model (see for instance Lynch

and Conery [42] and see Section 3.4 for a wider discussion on this topic). Note also

the different values of the prefactor (A ' 3 compared to A ' 1 in the complete

genome) in the MLD computed from the self-alignment of exons (see Fig. 3.2).

This is most likely due to a lower nucleotide substitution rate in these regions of

the human genome.

Finally, we remark that in contrast to three-dimensional objects, which also show

scale-invariant behavior in their fragment size distribution when broken [105], our

one-dimensional objects, segmental duplications, need to be continuously gener-

ated and broken up to give rise to the observed power-law tail as a superposition

of exponential distributions for different degrees of fragmentations. This condi-

tion of continuity seems to be sufficiently met for segmental duplications in the

human lineage. This is not true for repetitive elements, which have been copied

into our genome in irregular bursts. Therefore match length distributions of the

non-repeat masked genome, which is clearly dominated by inter-repeat matches,

does not have a power-law tail with exponent α = −3, see Appendix B.

3.2.4 Limitations of the Simple Model

Although this model explains well the behavior observed in several genomes we

analyzed, it does not account for all our observations. First, in the genome of

several species, the MLD does show a power-law behavior, but with an exponent
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α = −4, (see for instance the MLD computed from the zebrafish, the rabbit, or

the arabidopsis thaliana genome on Fig. 3.4). As one characteristic of our model is

that the exponent α is always equal to −3, these distributions clearly deviate from

our simple model. In some other genomes, the MLD exhibit a totally different

behavior (as for instance the genome of the Orangutan, as well as many others),

see Fig. 3.15 in Section 3.5.2 or Taillefer and Miller [106].

Second, even for the genomes where our model seems correct, we notice that

the assumption that each match has exactly two occurrences is often violated.

Indeed, it has been shown that some regions of the human genome (also called

duplication hotspots) are much more prone to duplicate than others (duplication

coldspots), see for instance Linardopoulou, Williams, Fan, Friedman, Young, and

Trask [49], Zhang, Lu, Chung, Yang, and Li [107]. Similarly, the assumption

that duplications occur continuously in time might also be an oversimplification.

Notably, a burst of segmental duplication events has been reported in the recent

history of the hominid lineage, see Marques-Bonet et al. [108].

To quantify the importance of these phenomena in eukaryotic genomes, we used

self-alignments to perform a different analysis. For each base of the genome, we

retrieved the number of maximal exact matches (MEMs) longer than 20 bps in

which this base pair was involved (see Fig. 3.5 for an example) referred to as the

“coverage” of a base pair in the following, and computed the coverage distribution

(CD). We show the CD computed on the RepeatMasked genomes of four species,

Human, Rabbit, Arabidopsis thaliana and Zebrafish in Fig. 3.6.

If our assumptions of Section 3.2 were fulfilled, we would expect all base pairs to be

involved in either 0 or 2 matches. Interestingly, in the genome of the four species

we analyzed, we observed that these distributions again exhibit a fat tail. Namely,

many base pairs exhibit a very high coverage. This indicates that our previous

assumptions leading to N(τ) = N0 ∀τ are violated, and that the probability that

segments that have already duplicated duplicate again is not negligible.

Moreover, we observe that both the rabbit and zebrafish genomes, have many more

bases with a high coverage than the human genome (even though the genome of
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Figure 3.4: The match length distribution (MLD) computed for the self-
alignment of different species. The dashed lines represent the power-law func-
tions L/r3 (black) and L/r4 (red) where r is the match length. All the curves
are represented using logarithmic binning. The self-alignment of the Repeat-
Masked genome of: (A) the Zebbrafish (Danio rerio), (B) Arabidospis thaliana
(C) the Rabbit (Oryctolagus cuniculus) and (D) the Mouse (Mus musculus)
genome excluding the Y chromosome.

the Zebrafish is much smaller, and the genome of the Rabbit is of the same size

than the human genome). This is also true for Arabidopsis thaliana, although

to a lesser extent. However, arabidopsis genome is much smaller (roughly 10

time smaller) than the human genome, and thus the total number of duplicated

base pairs is much lower in Arabidopsis than in Human. Normalizing by the

genome length, the proportion of matches with more than two occurrences is much
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8 

Figure 3.5: The self-alignment of 25kbps on the human chromosome X. Black
dots in the grid represent exact matches longer than 20bps. Counting the num-
ber of time a base pair is involved in a match is equivalent to counting the
number of time the red vertical line crosses a black line. To get the full CD,
we repeat the same procedure for all base pairs of a genome, and on the entire
self-alignment grid.

higher in Arabidopsis than in Human, and the deviation from our hypothesis

of Section 3.2 seems stronger for the arabidopsis genome than for the human

genome. Thus, this phenomenon might explain why we observe different behaviors

for the MLDs of these three species. In the following, we relax the assumptions on

N(τ) and calculate N (τ) and the resulting M (r) for different biologically relevant

evolutionary scenarios.
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Figure 3.6: The coverage distribution computed from the self-alignment
of four RepeatMasked genome: Zebrafish, Human, Rabbit and Arabidopsis
thaliana.

3.3 Yule Trees

3.3.1 Theoretical Calculation

In this section, we study an evolutionary scenario where a particular sequence

segment and its duplicated offsprings duplicate again with a fixed duplication

rate. With this process, we want to model the case where a particular segment of

DNA, or a particular region, has a higher probability to duplicate than the rest of
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the genome, and to study whether such a process could lead to the power-laws with

an exponent α = −4 observed in the MLD of several genomes. This would allow

certain regions to be duplicated more than once, and could shape a CD similar

to the one observed in real genomes, where several segments are duplicated many

times. In this section, we assume that after a duplication, both duplicates can

duplicate again, and do so with the same probability. We consider the case where

only one of the two duplicates can duplicate in Section 3.4.

According to this process, a segment of length K of the genome, as well as all its

offsprings, duplicates again and again with a constant duplication rate per bp λ,

such that the duplication rate per segment is λK. The mutation rate per bp µ is

the same all over the genome. According to this process, one particular segment

at time t = 0 gives rise to a family of segments. The evolutionary history of such

a family can be well described by a Yule tree (see example in Fig. 2.2), and its

size grows exponentially in time.

To calculate the theoretical MLD in this Yule tree scenario, we have to compute

the distribution of pairwise distances N(τ) on such a tree. Let us focus on the case

where we start from one ancestral sequence segment, as exemplified in Fig. 2.2.

Let us consider a segment that has evolved according to this process for a time T .

Pairs of leaves, separated by an evolutionary time in the interval [τ, τ + dτ ], have

branched out in the time interval [T − τ+dτ
2µ

, T − τ
2µ

]. Now consider the branching

process as illustrated in Fig. 2.2. The first branching happened at time T1 and

the two resulting subtrees encompass, say, M1 and M2 leaves, respectively. If we

define the number of pairs of leaves separated by an evolutionary time τ on a Yule

tree given a total time T as N(τ |T ), it follows that:

N (τ |T ) = 2N (τ |T − T1) +M1M2δ (τ − 2µ (T − T1)) I(0≤τ≤2Tµ). (3.27)

The first term on the right hand side counts the number of pairs at a distance τ

inside each subtree, using the fact that any subtree of a Yule tree is also a Yule

tree with the same birth rate. The second term on the right hand side of Eq. (3.27)

counts the expected number of pairs at a distance τ from each other between the
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two subtrees. The function I is the indicator function defined by:

I
(condition)

=

1 if condition holds

0 otherwise,

(3.28)

and δ(x) is the Dirac delta function. Averaging over M1, M2 (using Eqs. ((2.10)

and (2.11)) with time T − T1 and death rate δ = 0) and then T1, which follows an

exponential distribution with mean 1/λ, one obtains:

N (τ |T ) = 2λ

∫ ∞
0

N (τ |T − T1) e−λT1dT1 +
λ

2µ
e3λτ/(2µ)−λT I(0≤τ≤2µT )

=
λK

2µ
eλKT eλKτ/2µ (3.29)

for 0 < τ < 2T and N(τ |T ) = 0 otherwise. For a detailed and more general

derivation of this and other quantities on Yule trees, see Sheinman, Massip, and

Arndt [62] in Appendix C .

Substituting Eq. (3.29) in Eq. (3.6) one obtains for the MLD:

M(r) =
λK

2µ
exp(λKT )

∫ ∞
0

[
2τ + τ 2(K − r)

]
exp

[(
λK

2µ
− r
)
τ

]
I(0≤τ≤2µT ) dτ.

(3.30)

This integral can also be explicitly calculated, and we find

M(r) =
4 exp(KλT )Kλµ

(Kλ− 2µr)3

{
K(λ− 2µ) + exp(KλT − 2µrT )× (3.31)[

−K(λ− 2µ) +K(λ− 2µ)(Kλ− 2µr)T + µ(K − r)(Kλ− 2µr)2T 2
] }
.

In the limit rTµ� 1 and λK/(2µ)� r < K, it leads to:

M (r) =
λK2eλKT

µ

1

r3
. (3.32)



Chapter III. Self-Alignment 76

Note that the condition rTµ � 1 is quite natural as we are interested in long

matches (i.e. r � 1) and in the behavior of the stationary distribution (i.e.

after a long time). The second condition implies that the value of the prefactor

A = λK/µ stays small, which is what we observe in real genomes.

In this scenario, the size of the genome grows exponentially in time, and L =

K exp(λKT ). Replacing the value of L in Eq. (3.32) we find:

M (r) =
λKL

µr3
. (3.33)

Surprisingly, this is exactly the result found in the previous section (see Eq. (3.20)).

Above we focused on the case where, at the beginning of the process, only one

segment of the genome can duplicate. We can easily extend our calculation to

the case where any segment of the genome can be duplicated. For a single Yule

tree, the total length of the segments after time T is given by KeλKT on average.

We now assume that the genome is composed of n duplicating non-homologous

segments, and that each segment i evolves independently according to the process

described above. If we then denote the duplication rate of the sequence i by λi,

the total number of matches in the self-alignment of one genome is given by:

M (r) =
n∑
i=1

λiK
2eλiKT

µ

1

r3
=

K

µr3

n∑
i=1

λiKe
λiKT . (3.34)

The total length of the genome at time T is given by:

L =
n∑
i=1

KeλiKT . (3.35)

If all segments have the same duplication rates λi = λ, we can substitute Eq. (3.35)

in Eq. (3.34), and obtain:

M (r) =
λKL

µ

1

r3
= A

L

r3
, (3.36)
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with A = λK/µ. And again, we retrieve exactly the solution obtained in the

previous section, see Eq. (3.20).

3.3.2 Simulations

To confirm our theoretical results, we simulated sequences evolving according to

the process described above. In this version, we start with one random iid se-

quence of length K. Compared to the previous model, the mutation process stays

unchanged, and we denote by µ the mutation rate per bp. We start our proce-

dure by duplicating this first segment to the site adjacent to the right, such that

the starting position of the duplicated segment is c = 0 and it gets copied to the

position v = K. The total number of segments, n, of the sequence is then n = 2.

For subsequent duplication events, we choose one of the n pre-exiting segments,

copy it at the end of the sequence, i.e. at position v = nK and increment n by one

afterwards. The duplication rate per gene is λK so that the duplication rate per

bp is, like in the first model, equal to λ. Note that in this version, the size of the

sequence L grows exponentially with time, so we cannot reach a stationary state,

and we stop the procedure after a fixed evolutionary time T . Another difference

with the preceding model is that duplications can only occur at some fixed posi-

tions 0, K, 2K, ..., nK corresponding to the beginning of a gene. This does not

change the expected behavior of the MLD, but allows us to reconstruct easily the

relationships between the different genes. The last position of each gene is set to

always be an “N” and cannot mutate, so that we do not create chimeric matches

spanning the end of one gene and the beginning of its neighbor.

We show the pairwise distance matrix and the corresponding tree for one family

generated using this process on Fig. 3.7. The MLD of sequences simulated using

this process are in good agreement with our theoretical calculations, see Fig. 3.8.
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Figure 3.7: Tree and distance matrix of a family of simulated sequences for
the case where all sequences duplicate with the same duplication rate, λ, and
mutate with the same rate, µ, giving rise to a Yule tree. Small distances are
depicted in blue, and large distances are in red.

3.3.3 Discussion

Surprisingly, using the MLD alone, one cannot distinguish between the two sce-

narios, in which either all sequence segments duplicate randomly or only a subset

of sequences duplicate presumably many times. Moreover, if the duplication rates

of the different duplicating segments of the Yule tree scenario (i.e. the duplica-

tion rates in different gene families) are similar, even the prefactor of the MLD

are equal in both scenarios. However, the two models differ on the number of

occurrences they predict for each match. The model developed in section 3.2 pre-

dicts that all matches have 2 occurrences, or at least that the number of matches

with more than 2 occurrences is extremely low, while most of the matches of the

Yule model have a larger number of occurrences. This second case is probably

closer to reality, as argued in Sindi, Hunt, and Yorke [68] and Kim et al. [47].

Such a model could also be consistent with the result of our coverage experiment
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Figure 3.8: The MLD computed for the self-alignment of sequences simulated
using the model described in section 3.3.2 with different values of the ratio λ/µ,
10−2,10−3 and 10−4. All three curves result from the simulation of 100 families
with K = 1000, for a time T = 5. All MLDs are represented using logarithmic
binning.

shown on Fig. 3.6. However, CD obtained from the self-alignment of sequences

simulated using the Yule model with parameters that fulfill the conditions where

the power-law is observed (i.e. λK/2µ � r) exhibit few bases with a really high

coverage. Moreover, the CD decreases exponentially, and thus much faster than

what we observe in the CDs of real genomes. Increasing the ratio λK/2µ leads to

a CD consistent with empirical observations, but to a MLD which does not exhibit

a power-law distribution anymore. Thus, a more detailed analyses of these CD

could help understanding the α = −4 power-laws observed.
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Note that in this scenario, the branching process we considered is a pure birth

process. We can further consider a process where DNA segments are also deleted

with a rate δ per bp. In that case, our model becomes a birth death process. Using

arguments similar to the one used in the pure birth case, we can calculate the value

of N(τ |T ) for this process. Interestingly, as long as the death rate stays smaller

than the birth rate, the value of N(τ |T ) in the birth death process is equivalent

to the value found for a pure birth process with a birth rate equal to λ− δ, such

that:

N(τ |T ) = K
λ− d

2µ
exp((λ− δ)KT ) exp

(
(λ− δ)Kτ

2µ

)
, (3.37)

see Appendix C for the detail of the calculation. Thus, only the prefactor of the

MLD would change, and the exponent of the power-law distribution would still be

α = −3.

In this section, we have shown that allowing duplicates to duplicate again does

not change the exponent α of the power-law obtained in the MLD of the self-

alignment of a genome. Thus, we still have no explanation for the observation

of MLDs with a different exponent obtained from several genomes (see Fig. 3.4).

In the next section, we study another mechanism of gene duplication. We show

that this mechanism leads to a different topology of the gene family tree, and that

it can explain the observation of MLDs exhibiting power-laws with an exponent

α 6= −3.

3.4 The Case of Retroduplication

3.4.1 Theoretical Calculations

Segmental duplication is not the only biological process that produces duplications

in eukaryotic genomes. Retroduplication is a well known biological mechanism

which consists in the reverse-transcription of a mature mRNA molecule (i.e. after

splicing of its introns), into the genome. For this reason, it generates partial dupli-

cates. As retroduplicants also do not contain regulatory elements and promoters,
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they mostly produce non-functional copies, highly similar to the gene transcript,

commonly known as processed pseudogenes [52, 53]. Various functions have been

found for several such processed pseudogenes, and the debate about the potential

role of these duplicates is still open, see for instance Kaessmann, Vinckenbosch,

and Long [53] or Okamura and Nakai [54], but it seems that most of the time,

they result in non-functional evolutionary dead-ends.

To study the relationship between the sequences resulting from such process, we

focused on the large family of 113 processed pseudogenes stemming from the

retroduplication of the gene coding for the ribosomal protein RPL21 in the human

genome. We present the resulting pairwise distance matrix and a compatible phy-

logenetic tree in Fig. 3.9 (see details in Section 2.5). In contrast to the previous

scenario which generates Yule trees (Section 3.3), our results on RPL21 suggest

that all these pseudogenes were actually generated by reverse-transcription of a

single functional transcript.

Figure 3.9: Distance matrix representing all pairwise distances computed from
the 113 processed pseudogenes of the RPL21 gene and the corresponding phylo-
genetic tree. The rows and the columns of the distance matrix are sorted with
respect to their average. The resulting order is used to constrain the topology of
the phylogenetic tree (see details in Section 2.5). Small distances are depicted
in blue and large distances in red.

According to this mechanism, a gene of length K duplicates with rate λK, while

its duplicates (processed, non-transcribed pseudogenes) do not duplicate. Since

the selective pressure is expected to be much weaker on pseudogenes (if any) than

on the gene, we assume that the gene exhibits a much lower effective mutation rate

than its pseudogenes. This results in a tree similar to the one shown in Fig. 3.10.
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τ

2T
1T

Figure 3.10: An example of the rooted tree of a pseudogene family (filled
circles) stemming from one gene (open circle). The gene evolves much slower
than its pseudogenes, and the pseudogenes do not duplicate. The evolutionary
distance between two leaves (green path) is the sum of the evolutionary distance
covered by each pseudogene since its retroduplication event and the evolutionary
distance covered by the gene between the two retroduplication events. All circles
represent contemporary sequence segments.

The evolutionary time that separates two leaves on such a tree is a sum of three

evolutionary times: the evolutionary time elapsed after the first retroduplication

event, the evolutionary time elapsed after the second retroduplication event and

the evolutionary time elapsed in the source gene between the two retroduplications

(see the green path on the tree of Fig. 3.10). Defining µ as the mutation rate of a

pseudogene and µS as the mutation rate of the source gene, the evolutionary time

separating two randomly chosen retroduplicants is given by:

τ = µ (T − T1) + µ (T − T2) + µS |T1 − T2| , (3.38)

where T1 and T2 are the times of the two retroduplications. Assuming a uniform

distribution of T1 and T2 between 0 and T , the density of pairs of pseudogenes

separated by an evolutionary time τ after time T is given by averaging Eq. (3.38)

over T1 and T2:

N (τ) =

∫ T

0

∫ T

0

dT1
T

dT2
T
δ (τ − [µ (T − T1) + µ (T − T2) + µS |T1 − T2|]) , (3.39)

where δ denotes the Dirac function. This integral is easy to calculate and results

in :
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N(τ) =


λ2K2

2µ2

1

1 + a
τ for 0 ≤ τ ≤ (1 + a)µT

λ2K2

2µ2

−1

1− a
(τ − 2µT ) for (1 + a)µT ≤ τ ≤ 2µT,

(3.40)

where a = µS/µ and is assumed to be smaller than one.

This is a continuous piece-wise linear function, which vanishes for τ = 0, namely

N(0) = 0. It increases linearly with τ for small values of τ , reaches a maximum

at τ = (1 + a)µT and then decreases linearly with τ , vanishing for τ ≥ 2µT . Such

a qualitative trend can be observed in the data for RPL21 pseudogenes shown on

Fig. 3.9: the number of entries showing a small distance in the distance matrix

is small, it increases with the distance, reaches a maximum around 0.12 and then

decreases for higher distances.

Substituting Eq. (3.40) in Eq. (3.6), one obtains in the limit of rTµ � 1 and

0 < r � K the following distribution for the tail of the MLD:

M (r) =
3K3λ2

(1 + a)µ2

1

r4
, (3.41)

i.e. a power-law with exponent α = −4.

This result suggests that the self-alignment of processed pseudogenes (retrodupli-

cants) is expected to generate an MLD distributed as a power-law with exponent

α = −4. To confirm this prediction, we concatenated all the annotated processed

pseudogenes of the human genome, to construct the so-called human ”processed

pseudogenome”.

First, we downloaded the sequence of all 16889 known pseudogenes of the human

genome from the pseudogene database [109]. We then filtered these sequences

according to their annotation in this database, keeping only those annotated as

processed pseudogenes (9053 pseudogenes left). Using the positions of these dif-

ferent pseudogenes in the genome, we ensured that the different pseudogenes were

not overlapping in the human genome. When this was the case (only 25 times),

we concatenated the two sequences into one longer sequence overlapping the two
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pseudogenes. We then concatenated all the remaining sequences into one long

sequence of 6433 kbps. To separate the different pseudogenes, we added a letter

’N’ between each pseudogene, to avoid creating artificial and irrelevant matches.

Finally, we computed the MLD from the self-alignment of this processed pseu-

dogenome. It shows a good agreement with the prediction of Eq. (3.41), see

Fig. 3.11, although we can observe a significant deviation from the prediction at

the very end of this MLD. This deviation could be explained either by subsequent

segmental duplications of retroduplicated loci or by selective constraints on the

retroduplicates making them more conserved than expected by our neutral model.

3.4.2 Simulations

To confirm our theoretical results, we simulated sequences evolving according to

the process described above. In this version, we first create one random iid gene

sequence Sg of length K. Point mutations in this gene occur with a mutation rate

µS.

We start our procedure by duplicating this first gene to create a new pseudogene

sequence, Sp. Point mutations in the pseudogene sequence occur with a mutation

rate µ. The gene sequence is the only one able to duplicate. When a duplication

occurs, a copy of the gene is added after the last position of the pseudogene

sequence, i.e. v = nK, and we increase n, the number of pseudogenes of the

sequence, by one. As in the Yule tree version, the length of the pseudogene

sequence L increases with time, but in the present case, the growth is linear in

time. We stop the procedure after a fixed evolutionary time T . Again, the last

position of the gene is set to always be an “N” and cannot mutate, so that we do

not create matches spanning the end of one gene and the beginning of its neighbor.

At the end of the simulation, we only retrieve the pseudogene sequence Sp and

discard the gene.

We show the distance matrix representing the pairwise distances between all pairs

of pseudogenes and the resulting tree for one simulated sequence on Fig. 3.12 . As
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Figure 3.11: The MLD computed from the self-alignment of the human pro-
cessed pseudogenome. The total length of this genome is L = 6, 433, 368 bps.
The red dotted line represents the expected distribution for a random sequence
of the same length, and the red and black dashed lines represent power-laws
with exponent α = −4 and α = −3 respectively.

expected, the tree and the distance matrix are in good agreement with the em-

pirical experiment conducted on the RPL21 pseudogene family shown on Fig. 3.9.

We show the MLD resulting from 100 iterations, and for different parameters on

Fig. 3.13. The simulated MLDs show a good agreement with our theoretical cal-

culations, and the MLD computed from the self-alignment of the human processed

pseudogenome.
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Figure 3.12: Tree and distance matrix of a family of simulated sequences for
a simple case using model of section 3.4.2 and with the mutation rate in the
gene µ is set to 0. Small distances are depicted in blue, and large distances are
in red.

3.4.3 Discussion

In this section, we have shown that a sequence duplicating through retroduplica-

tion exhibits a particular gene tree topology. Calculating the value of N(τ) on

such a tree, we have shown that the MLD of genomes where this process is active

exhibit an α = −4 power-law distribution.

In real genomes, both processes (segmental duplication and retroduplication) are

active, and the behavior of the MLD observed in any genome depends only on

the dominating duplication process. If most of the duplicates of a genome are

retroduplicates (i.e. if the retroduplication rate is higher than the segmental du-

plication rate), we expect the MLD of the self-alignment of this genome to exhibit

an α = −4 power-law, while if they are segmental duplicates, we expect an α = −3

power-law. Note that for equal rates, as r−4 � r−3, the segmental duplication is

supposed to dominate, especially for long lengths. Hence, for the retroduplication

process to dominate, it requires the retroduplication rate to be much higher than

the SD rate.
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Figure 3.13: The MLD computed for the self-alignment of sequences simulated
using the model described in section 3.4.2 with different values of the duplication
rate λ and of the mutation rate µ . For simplicity, the mutation rate in the
gene is set to be µs = 0 in these simulations. All MLDs are represented using
logarithmic binning. Each MLD was obtained by averaging over 100 simulations
with λ = 1 per unit of time, T = 100 and K = 1000.

However many duplication scenarios could lead to an α = −4 power-law, as we

will show in the next chapter. For this reason, the appearance of an α = −4

power-law in the self-alignment of a genome does not automatically imply a high

retroduplication rate in this genome.

Among the possible scenarios, two of particular biological relevance are the si-

lencing of the segmental duplication process in recent evolution of a genome, or a
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recent whole genome duplication (Chapter 5).

3.5 Biological Insights from our Models

3.5.1 Using the MLD to Infer Information on Different

Duplication Mechanisms

We have shown that the appearance of a power-law in the distribution of the num-

ber of exact maximal matches obtained from the self-alignment of a genome could

be explained by the interplay of two basic and neutral evolutionary mechanisms,

point mutations and duplications. We have also shown that the exponent of the

distribution depends on the properties of the dominant duplication mechanism at

work.

Interestingly, the MLD obtained from the human (or mouse) self-alignment (see

Figs. 3.2 and 3.4) agrees well with an α = −3 power-law distribution, indicat-

ing that over all processes generating self-similarities in the human (and Mouse)

genome, the dominant mechanism is the segmental duplication of random se-

quences of the genome. This observation also implies that this process occurred

continuously and with a constant rate in the history of these species, and is an

ongoing process. As the exponent of the MLD only depends of the dominating

duplication process, the observation of an α = −3 power-law does not mean that

other duplication processes – such as retroduplication – are not at work as well

in these genomes. Indeed, we were able to isolate a subset of the human genome

where the retroduplication process was dominant, and whose MLD exhibits an

α = −4 power-law.

In contrast to Human and Mouse, the MLD computed from the self-alignment

of the rabbit genome exhibits an α = −4 power-law. This could be due to a

higher rate of retroduplication in this particular genome. However and as stated

previously, many duplication scenarios could lead to an α = −4 power-law, and
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further analysis are requirred to decide which one is responsible for this behavior.

One possible scenario could be the silencing of the segmental duplication process

in recent evolution of a genome.

A power-law with exponent α = −4 has also been observed in the MLD com-

puted from the self-alignment of the Zebrafish and of the plant model organism,

Arabidopsis thaliana. However, it has been shown already that a whole genome

duplication event occurred recently in those genomes [110, 111]. Such events could

have important consequences on the MLD, as we will show in the Chapter 5.

MLDs computed from the self-alignment of many genomes have been presented by

Taillefer and Miller [106]. These MLDs exhibit power-laws with various exponent

(from α = −2 to α = −4.5), and some are exponentially distributed. However,

genomes with long and highly similar sequences, which are generated by segmen-

tal duplications, and especially tandem duplications, are not easy to sequence and

assemble when using short read obtained from next generation sequencing tech-

nologies (where the typical size of a read is of the order of one hundred bps). As

the power-law behavior only holds for long matches — typically longer than the

read length — such power-law behavior often remains highly questionable unless

the quality of the genomic assembly is high, i.e. comparable to the one of the hu-

man and Mouse genomes. When computing a MLD for a new genome, one would

expect to obtain a distribution close to an α = −3 power-law. Any deviation from

this behavior could in principle be interpreted as a lack of proper repeat-masking

(notably if one observes peaks for certain lengths in the MLD), a prevalence of

another biological process (if one observes a power-law with a different exponent)

or a poor assembly quality (if one observes a strong deviation from the power-law

behavior). Computing the MLD of a genome, which is a simple and fast com-

putational procedure, can in this sense be of great help in order to understand

the biological processes that shape the evolution of this genome, and to assess the

quality of its assembly and of its RepeatMasking, as we show with the example of

two primate genomes (Orangutan and Macaque) in the following subsections.
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3.5.2 Assessing the Quality of the Assembly: Orangutan

Example

The MLD obtained from the self-alignment of the Orangutan genome (see Fig. 3.15)

has a clearly different behavior than the other species we have studied: the dis-

tribution exhibits an exponential decay. According to the broken stick model, an

exponential distribution is expected to appear in the distribution computed from

one stick which underwent many breaks, (or from a mixture of many sticks which

underwent the same number of breaks). In a genomic context, such a distribution

could be indicative of a burst of duplications at one particular time point in the

evolutionary history of a genome, if the duplications that occurred during this

particular period dominates the distribution we observe.

However, results on the MLD of the Orangutan genome should be viewed with

caution, as the quality of the assembly of primate’s recently sequenced genomes

might be quite poor. More specifically, we believe that a few small regions, where

the duplication rate is really high, are responsible for the signal we observe. These

regions, as well as tandem duplications (duplications where the two matching seg-

ments are next to each other in the sequence) are really difficult to assemble [112].

To get rid of biases due to missassembled tandem duplications, we filtered out from

our analyses tandem duplications. To do so, we computed the physical distance

D, defined as the number of nucleotides separating the two matching segments,

for all matches of the orangutan genome which are on the same chromosome.

For matches on different chromosome, we set D = ∞. We then removed all the

matches whose value of D was below a fixed threshold Dmax. This is equivalent to

removing all matches which are close to the principal diagonal on a dot plot, as

presented on Fig. 3.14. For this reason, we refer to matches close to one another

as matches of the “extended diagonal” in the following.

We then computed MLDs for different values of Dmax. Interestingly, when we

removed the extended diagonal of the orangutan self-alignment, for Dmax > 5kbps,

we retrieved the expected α = −3 power-law, see fig 3.15. On the other hand, the
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Figure 3.14: The Dot plot of a small region (500kbps) on chromosome 19 of
the Orangutan RepeatMasked genome. Black dots represent matches with the
forward strand, and blue dots matches with the reverse strand. The region we
excluded from our analysis lies between the two red dashed lines. Here, the
distance Dmax separating the two red lines is equal to 10kbps.

MLD computed for matches belonging to the extended diagonal only exhibits a

clear exponential distribution (for Dmax up to 10 kbps).

As the Orangutan is the only species whose genome exhibit such a shift, one can

wonder whether this signature is due to a specificity in the mechanisms generating

duplications in this species, or whether assembly artifacts generate these long well

conserved matches. Deciding between these hypotheses from the analyses of the

sequence only is not easy (especially as this genome was sequenced quite recently
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[113]). Note that in some other genomes (as for instance the chicken genome or

the coelacanth genome (Latimeria chalumnae)) where the MLDs did not exhibit

a power-law distribution (most likely because the sequence quality is too low in

these genomes), using the same procedure did not change the shape of the MLD.
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Figure 3.15: MLD from the self-alignment of the Orangutan genome where
the matches belonging to the extended diagonal have been removed for different
values of D. The exponential behavior of the MLD vanishes when we remove
matching segment for which D < 5kbps.
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Figure 3.16: MLD computed from the self-alignment of the Macacque genome.
Here we present the distribution without logarithmic binning to underline the
high values obtained for eight specific lengths. These eight outliers are depicted
in red.

3.5.3 Assessing the Quality of the RepeatMasking:

Example from the Macaque Genome

TE are known to cover an important part of eukaryotic genomes. As we are

not interested in the behavior of repetitive elements here, it is crucial for our

analysis that the genome we study have their repetitive elements carefully masked.

Unfortunately, repeats differ from one species to another, and might not have been
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well identified in recently sequenced genomes.

TE are also known to duplicate by bursts [40]. This happens when one repetitive

element, the so-called master sequence, suddenly gets the ability to duplicate itself

massively in its host genome. For this reason, all duplicates stemming from one

such event have roughly the same age.

When we analyzed the MLD of the self-alignment of the Macaque genome, we

obtained an α = −3 power-law distribution (see Fig. 3.16). However, we noticed a

deviation from the power-law behavior for eight lengths: the distribution exhibits

several peaks in the number of matches of these lengths. Namely, the number of

matches for these eight lengths was from 2 to 3 times higher than the number of

matches with one more or one less nucleotide (for instance there are 1342 matches

of length r = 293, but only 508 and 516 matches of length r = 292 and r = 294).

We then retrieved the sequences associated to these matches. For each of these

lengths, we found that one sequence (or in some cases two highly similar sequences,

that differs on one or two bps only) was responsible of roughly two third of the

matches of that length. Moreover, these eight sequences were also highly similar to

each others (the smaller sequences being in almost all the cases a subsequence of

the longest one) and we found that they all mapped to a single repetitive element

(namely MacERV2 LTR1) identified by Han et al. [114] in 2007. For an unknown

reason, this element has not been carefully masked in the RepeatMasked version

of the Rhesus Macaque genome that can be found in the Ensembl database [83].

We then computed a MLD from the self-alignment of the Rhesus Macaque genome

where we manually masked this element and obtained almost the same distribution

without the eight peaks mentioned above (see Fig. 3.16).

3.5.4 Conclusion

In this Chapter, we have shown that different duplication processes that occur in

eukaryotic genomes could shape the power-law distributions observed in the MLD
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computed from the self-alignment of these genomes. We detailed how different

biological mechanisms resulted in power-laws with different exponents.

MLDs can also be computed from the comparison of genomes of different species,

and, fascinatingly, also exhibit power-law distributions. While it may be tempting

to link these power-laws to the one observed in the self-alignment of genomes, we

will show in the next chapter that they stem from a different evolutionary process,

independent of any duplication mechanism.





Chapter 4

Comparative Alignment

In this Chapter, we study the properties of Match Length Distributions computed

from the comparative alignment of distinct organisms.

We first show that these MLDs also exhibit a power-law distribution for a wide

range of comparisons. We show that these power-laws are not linked to any dupli-

cation process, and show that the variation of substitution rate along genomes is a

necessary condition of the appearance of such a power-law.

4.1 MLDs of Comparative Alignments

To compute MLDs from the comparison of genomes of two distinct organisms, as

for self-alignment, we first retrieve all exact matches between the genomes, using

the mummer software [115]. Interestingly, the MLD computed from the alignment

of different eukaryotic species also results in power-law distributions, as first re-

ported by Salerno et al. [97] (see also Gao and Miller [116]). We reproduce such

inter-species comparisons on Figs. 4.1 and 4.2. The power-law behavior holds for

the comparison of a wide range of species, although not for all comparisons. From

the empirical data, we note that if species are very closely related (as exempli-

fied on Fig. 4.1(A) by the comparison of the Human genome to the Chimpanzee

genome), the MLD exhibits an exponential distribution. For the comparison of

97
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more distantly related species (Human and Mouse, Human and Coelacanth as well

as many other pairs, see Fig. 4.2), the MLD exhibits a clear power-law with expo-

nent α = −4. Finally, when the distance between the two species gets really large

(as exemplified by the comparison of Human and Fly genomes, see Fig. 4.1 (D)),

we observe few matches whose length distribution is not a power-law anymore.

The goal of this Chapter is to discuss models of evolution that could explain the

behavior observed for all these comparative alignments.

In this Chapter and as in previous Chapters, we refer to all changes that affect the

DNA sequence of a genome, i.e point mutation, short insertion or deletion etc., as

“mutations”. As from now on we focus on the comparison of genomes of different

species, we only consider changes that are fixed in the population of a species. In

this sense, the mutation rates we discuss in the following are effective mutation

rates, taking into account events that are fixed in the population only.

4.2 Pseudogene Hypothesis

We have already described in Section 3.4 a duplication mechanism that results in

an α = −4 power-law distribution. Our first working hypothesis was that the com-

parative α = −4 power-laws were related to the one observed in retropseudogenes.

Especially, if some genes are highly similar in both species and retroduplicating in

at least one of the two species, the comparison of the two sets of retroduplicated

genes is expected to produce an α = −4 power-law.

However, when we compared the two ”processed pseudogenomes” (that are both

constructed from the concatenation of all reported human and mouse pseudogenes,

see Section 3.4.1 for more details) of Human and Mouse, we found only a few

exactly conserved sequences, and no match longer than 100 bps, as shown on

Fig. 4.3. Moreover, the MLD computed from this comparison is not shaped as

an α = −4 power-law. Additionally, it has been shown that some genes were

more prone to be reverse-transcribed than others [117]. Comparing the sequences

of these genes in Human and Mouse, as for instance the RPL21 gene, we found
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Figure 4.1: The MLD computed for the comparison of the human Repeat-
Masked genome to different genomes. The dashed lines represent power-laws
with exponent α = −3 and α = −4. All the empirical data are represented using
logarithmic binning (see Section 2.2 for details). (A) The comparative align-
ment of human and chimp genomes. (B) The comparative alignment of human
and mouse genomes. (C) The comparative alignment of human and coelacanth
genomes. (D) The comparative alignment of human and fly genomes.

that these genes have already accumulated several independent mutations in both

genomes. For instance, the longest match between the human and mouse RPL21

genes is of length 35 bps (see Fig. 4.4). For this reason, this process cannot

explain the appearance of long matches in the Human/Mouse comparison and

the α = −4 power-law observed in the Human/Mouse comparative MLD. More

generally, a deep analysis of processed ribosomal proteins has shown that there is
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Figure 4.2: The MLD computed for the comparison of several pairs of Re-
peatMasked genomes. The dashed lines represent power-laws with exponent
α = −3 and α = −4. All the empirical data are represented using logarithmic
binning (see Section 2.2 for details). (A) The comparative alignment of rat and
chimp genomes. (B) The comparative alignment of dog and chimp genomes. (C)
The comparative alignment of mouse and dog genomes. (D) The comparative
alignment of mouse and rat genomes

almost no preservation of these pseudogenes between rodent and the human lineage

[118]. The results we obtain suggests that this statement could be extended to all

pseudogenes, regardless of their parent gene.
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Figure 4.3: The MLD computed for the comparative alignment of the Hu-
man and Mouse processed pseudogenomes, constructed using the procedure of
Section 3.4.1. Dashed lines represent power-law with exponent α = −3 and
α = −4. The MLD is represented using logarithmic binning (see Section 2.2 for
details).

4.3 Ladder of Trees

For evolutionary distant organisms, the existence of any long match in the com-

parative alignment is due to long conserved elements. Such long conserved ele-

ments have been found in vertebrates and are referred to as ultraconserved el-

ement (UCE) [119]; for a review on this topic, see Dermitzakis, Reymond, and
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Figure 4.4: The screenshot of a blast alignment of the two transcripts of the
RPL21 genes of Human and Mouse. Each transcript is 483 bps long. Although
these two transcripts are very closely related, the longest exact match between
the two sequences is 35 bps long only.

Antonarakis [120]. In this section, we develop a model that could explain the ap-

pearance of the α = −4 power-law distribution through the interplay of sequence

conservation and segmental duplication of conserved elements.

According to this model, long exact matches observed in comparative alignments

could be the result of two different phenomena. The first class of matches would

result from non mutating elements (denoted NMEs in the following), i.e. segments

of the genome that have not been subject to any mutation in both species since

their split. The second class would result from recent segmental duplications of

a non mutating elements (denoted DoNMEs in the following). Let us assume

that DoNMEs mutate with a constant mutation rate µ, and that both NMEs and
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DoNMEs duplicate with the same duplication rate λ. Thus, the evolution of one

DoNME family is well described by a Yule tree (see Chpater 2.3). We further

assume that duplications and mutations occur independently in both species. In

this case, DoNMEs are clustered into families, and each family is linked to one par-

ticular NME. We show the evolution of one DoNME family and its corresponding

NME in the two species as a tree on Fig. 4.5.

2
T

1
T TT

Species A Species B 

NME NME 

Figure 4.5: The evolution of a DoNME family in two distinct genomes (left
and right Trees). Each black circles represent a member of the DoNME family,
and blue circle represent the same NME in the two different genomes. The
vertical dimension represent the evolutionary time, and the horizontal dimension
is meaningless. As NMEs do not mutate, they do not move in the vertical
dimension. The green path highlight the evolutionary distance between two
DoNMEs that stem from the duplication of the same NME, but in two different
genomes.

As each DoNME family can be described by a Yule tree, from Eq. (2.9) we know

that there are eλ(T−T1) leaves in each DoNME family, with T1 being the time of the

pioneering duplication event. Then, if the total evolution time since the split is

equal to T , one gets that the average density of pairs separated by an evolutionary

distance τ is given by

N (τ |T ) =

∫ T

0

dT1dT2e
λ(T−T1)eλ(T−T2)δ(τ − µ[(T − T1) + (T − T2)]), (4.1)

where T1 and T2 represent the time of the duplication event in each genome. After

integration over T1 and T2 one gets

N (τ |T ) =


λ2e

λτ
µ

µ2
τ for 0 ≤ τ ≤ Tµ

λ2e
λτ
µ

µ2
(2Tµ− τ) for Tµ ≤ τ ≤ 2Tµ.

(4.2)
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Combining this equation with Eq. (3.6) for T sufficiently large, we find :

M(r) =
6λ2

µ2

K − λ
µ(

r − λ
µ

)4 . (4.3)

Therefore, assuming that the MLD for the comparative alignment of two distant

species mainly results from DoNMEs and NMEs, it is expected to follow Eq. (4.3),

that is an α = −4 power-law.

To verify our hypothesis, we reconstructed the different DoNME families. To do

so, we first created a library containing the sequences of all exact matches between

the two species. Then, we compared each of these sequences to the other sequences

of the library. Whenever two sequences shared one or more exact matches longer

than 20 bps, we grouped the two sequences in the same family. If one or both

sequences already belonged to a family, we merged the two families. Note that

this way, we may miss old duplication events (if the two duplicated sequences have

already highly diverged). As we want to explain the appearance of a power-law

for matches longer than 20 bps, these old events cannot be responsible for the

statistical property we want to explain.

We then computed the MLD of each set to obtain one MLD for unique matches

(we filtered out all matches that belong to a family of size larger than one) and

one MLD for non-unique matches (we filtered out all unique matches). The MLD

containing duplicated matches exhibits the expected behavior, but surprisingly,

the MLD constructed only with unique matches also exhibits a power-law with

exponent α = −4 (see Fig. 4.6). Moreover, more than two third of the matches

are unique and are not linked to any other match. This indicates that unique

matches quantitatively dominate the comparative MLD, and that the power-law

observed in comparative alignment does not stem from a duplication process. This

disproved our working hypothesis and leads us to the next model where all matches

are unique.
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Figure 4.6: The MLD computed from the comparative alignment of the human
and mouse genomes. Here, we filtered out all the matches that share similarity
(i.e. at least one exact match longer than 20 bps ) with another match of the
comparative alignment. To do so, we first retrieved the sequences of all the
matches obtained from the comparative alignment of the human and mouse
genomes. We then compared each of these sequences to all the other sequences.
Any similarity found between the two sequences indicates that a part of this
sequence is present in more than one copy in at least one of this two genomes,
and we filtered it out of our analysis. Doing so, we removed approximately one
third of the matches obtained in the comparative alignment. The MLD after
filtering still exhibits a −4 power-law distribution.

4.4 The Evolution of Conserved Regions

4.4.1 Theoretical Calculations

Comparing Species Shortly after the Split — Shortly after a speciation event,

the genomes of the two resulting species, denoted by A and B, are almost identical.
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As a consequence, the alignment of the two genomes exhibits many long and exact

matches, which are either orthologs (along the main diagonal of the alignment

grid) or paralogs (off diagonal matches on the alignment grid). The latter are the

reminiscences of segmental duplication in the genome of the common ancestor of

A and B, and are quantitatively less important than orthologous matches (see

previous section). The MLD obtained when comparing these two genomes has

always an exponential tail, which stems from orthologous matches. For short

evolutionary times we can assume that mutations happen at random positions

along the two genomes and, therefore, the MLD is qualitatively described by the

stick breaking model where the initial stick length (now denoted by C) is the

length of the alignable orthologous part of the two genomes. In that sense, what

we observe is the result of one stick breaking experiment where the length of the

stick is the length of an entire genome. The tail of such a MLD is therefore

exponentially distributed and follows (see Section 3.1.2):

m (r, τ) =
[
2τ + τ 2 (C − r)

]
exp (−τr) . (4.4)

Indeed, an exponential distribution is observed in empirical data, for instance for

a Human-Chimp comparison (see Fig. 4.1(A) and [116]).

The comparison of Distantly Related Species — Following the latter simple

process, the number of long matches decreases fast with the divergence between the

two species. For this reason, this process alone would not result in long matches

in an alignment of genomes of highly divergent species, like, for instance, Human

and Mouse. As the divergence between Human and Mouse is of the order of 25%

[121], according to the stick breaking model, the length of the longest expected

match between these two genomes would be r = 72 bps (if we assume that both

RepeatMasked genomes are of length 1 Gbp), see Eq. (4.4). However, when com-

paring Human and Mouse, we obtained 820 exact matches of length 72 bps, and

the length of the longest exact match is r = 781 bps. Moreover, the MLD ob-

served for Human-Mouse alignment exhibits a heavy tail, shaped as a power-law

with an exponent α = −4 (see Fig. 4.6). This distribution stems from the many
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well conserved regions that are shared by the Human and the Mouse. In total,

we obtained more than 6 · 105 exact matches longer than 25 bps, and all together,

they span more than 22 Mbps.

If we assume that such a high degree of conservation is the consequence of some

biological functionality, it follows that there are regions that evolve at their own

(slow) speed, i.e. with a lower mutation rate (see Fig. 4.7). As each such region

can play a different role in the two considered genomes, the mutation rate may be

different for the same region in the two different genomes. This leads us to assume

that the evolutionary distances between orthologous regions are not constant, but

are drawn from some distribution. In the following, we assume that each genome

is organized in regions of mean size C, that the mutation rate in each region is

constant, and that the different values of the mutation rate along the different

regions are drawn from some continuous distribution. We demonstrate that this

assumption leads to a qualitative change in the shape of the MLD.

Calculating N(τ), the Number of Regions at a Distance τ from each

others — The evolutionary distance between a pair of orthologous sequences is

given by

τ = τA + τB, (4.5)

where τA is the evolutionary distance separating a region in A to its orthologous

region in the last common ancestor of A and B, likewise for τB (see Fig. 4.7 for

an illustration). If we assume that the mutation rates are independent in each

genome, for a given evolutionary distance τ , the two distances τA and τB can take

different values, still satisfying Eq. (4.5). Namely, we have:

P (τA + τB = τ) =

∫ τ

0

P (τA = x)P (τB = τ − x) dx, (4.6)

and the number of sequence regions separated by the evolutionary distance τ is

therefore given by:

N(τ) =

∫ τ

0

NA(τ − τB)NB(τB) dτB, (4.7)
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where NA(τ) is the number of sequences in species A separated by the evolutionary

distance τ from its orthologous sequence in the last common ancestor of A and B,

likewise for NB(τ) (see Fig. 4.7). Since the divergence τAi between each sequence

i of species A and its homologous sequence in the common ancestor of A and B is

simply given by:

τAi = µAiT. (4.8)

thus, NA(τ) is directly proportional to the number of sequences whose mutation

rate is µAi = τ/T , that is, to the distribution of mutation rate in genome A.

For simplicity in the following, we refer equivalently to NA (resp. NB) or to the

distribution of mutation rates in genome A (resp. B).

τAi
τBi

A B
i i

Figure 4.7: An example of the evolution of two divergent genomes. Different
regions of the two species A and B evolve with different rates. The evolutionary
distance separating two orthologous regions i (green path) is the sum of the
evolutionary distance covered by this genomic region in both species since their
split.

In general, following Eqs. (3.2) and (3.6), and replacing the mean length of a

duplication K by the mean length of a conserved region C, the MLD is given by

M (r) =

∫ ∞
0

[
2τ + τ 2 (C − r)

]
exp (−τr)N (τ) dτ (4.9)

for r < C. Long matches correspond to sequences at small evolutionary distances

τ . Thus, the distribution M(.) for long length (i.e. r � 1) is controlled by the
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integration over small values of τ in Eq. (4.9). For such small values of τ the

function N(τ) can be expanded in a Taylor series next to τ = 0:

N(τ) = N(0) +
dN(τ)

dτ

∣∣∣∣
τ=0

τ +O
(
τ 2
)
. (4.10)

Eq. (4.7) implies that N(0) always vanishes, such that the next term, N ′(0)τ

linear in τ , becomes dominant. It follows that:

M (r) '
∫ ∞
0

[
2τ + τ 2 (C − r)

]
exp (−τr) τ N ′(0) dτ

=

∫ ∞
0

2τ 2 exp (−τr)N ′(0)dτ +

∫ ∞
0

τ 3 (C − r) exp (−τr)N ′(0) dτ

(4.11)

Applying the integration by parts technique to the second term gives:

M(r) = N ′(0)

∫ ∞
0

2τ 2 exp(−τr) dτ +N ′(0)

[
0 +

3(C − r)
r

∫ ∞
0

τ 2 exp(−τr) dτ
]

= N ′(0)
3C − r
r

∫ ∞
0

τ 2 exp(−τr) dτ. (4.12)

Integrating by parts again finally leads to:

M(r) = N ′(0)
6C − 2r

r4
, (4.13)

in the regime 1� r < C, in agreement with the observed MLD between distantly

related genomes. It follows that the match length distribution exhibits an α = −4

power-law unless the first derivative dN(τ)/dτ |τ=0 also vanishes. We can apply

Leibniz rule of derivation (see Flanders [122]) to Eq. (4.7) to calculate the value

of the first derivative, which results in:

dN(τ)

dτ
= NA(0)NB(τ) +

∫ τ

0

N ′A(τ − τB)NB(τB)dτB, (4.14)

and thus
dN(τ)

dτ

∣∣∣∣
τ=0

= NA(0)NB(0). (4.15)
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The pre-factor of the MLD in this case depends both on C and on the value of

NA(0) and NB(0), which are the number of regions which have not mutated since

the split of species A and B.

4.4.2 Simulations

In order to illustrate our results, we simulated a model that belongs to the class

where dN(τ)/dτ |τ=0 6= 0. For these simulations, we let a synthetic genome evolve

according to two simple processes, point mutations and segmental duplications.

The duplication process is similar to the one described in the simple model of Sec-

tion 3.2.2. As previously, the duplication rate is denoted by λ and the duplication

length is constant equal to K.

For the mutation process, the genomes are first divided into small regions of con-

stant length C. For each region, we independently draw a mutation rate from

an exponential distribution with mean 1. We chose the exponential distribution

because it is the distribution that minimizes a priori information when only its av-

erage is known, but we obtained equivalent results using a uniform distribution, in

agreement with the results of our theoretical results showing that only the value of

the mutation rate distribution in 0 affects the MLD. For each region, the mutation

rate is constant in time all over the simulation.

As in the previous cases, we start with a random iid sequence S0. We first let the

sequence evolve for an initiation time t0 to obtain the ancestor sequence SI . We

then model a divergence event. We copy SI to obtain two sequences, SA and SB,

and redraw independently from the same distribution the mutation rates for each

region of each species. We then let both sequences evolve independently according

to our model for the same time t1. For more details on the simulation procedure,

see Section 2.4.

In Fig. 4.8, we present the MLD computed from simulated sequences for a self-

alignment (equivalent to divergence time t1 = 0), and for different divergence

times t1 = 0.01, t1 = 0.2 and t1 = 5. Qualitatively, these simulations exhibit
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the same behavior as the self-alignment of the human genome, the comparison

between human and chimpanzee genomes (for t1 = 0.01), the comparison between

human and mouse genomes (for t1 = 0.2) and the comparison between the human

and fruit-fly genomes (for t1 = 5), respectively, see Fig 4.1 panel (B), (C) and (D).

Note that the mutation rate in this model is constant over small regions of length

of the order of the longest expected match (in the simulations we presented, C =

1000). In the extreme case where the mutation rate is independently chosen for

each base pair, i.e. with regions of length C = 1, the power-law behavior is never

observed, and the MLD shift directly from an exponential distribution for closely

related species to no match for distantly related genomes (data not shown).

4.4.3 Discussion

In this Chapter we have shown that only certain evolutionary scenarios are able to

account for empirical power-law behaviors in the MLDs of the comparative align-

ment of two distantly related genomes. The only evolutionary process involved in

these scenarios is point mutations, and the power-law distribution results from the

fact that the mutation rate is not constant all over the genome. This reflects the

existence of neutrally evolving regions (fast evolving regions) and well conserved

regions of the genomes, as for instance ultra-conserved elements (slow evolving

regions).

The Distribution of Mutation Rates —

To obtain a power-law in the comparative MLD, it is essential that the mutation

rate is continuously distributed. For instance, if all regions of the genome have

the same mutation rate, then NA(τ) (resp. NB(τ)) is zero for all value of τ 6= µt

and thus N(τ) = Iτ=2µtΛ, where Λ is a constant. In this case we cannot write the

Taylor expansion of Eq. (4.10), and it follows from Eq. (4.9) that the MLD is a

simple exponential distribution. Similarly, a model that would only consider two

classes of regions – well conserved and fastly evolving – would not result in this
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Figure 4.8: The match length distribution computed for simulated sequences
with various divergence times. In all panels, the red dotted line represents
the theoretical distribution obtained when computing the same experiment on
random iid sequences with the same length and the same nucleotide frequencies
than the simulated sequences. The dashed lines represent power-law functions
proportional to 1/r3 (black) and 1/r4 (red), where r is the match length. All
empirical data are represented using logarithmic binning. Each plot shows the
histogramm obtained for 104 sequences of length 106 bps. For all simulations,
the duplication rate per bp λ = 10−3, the length of a duplication K = 1000 bps
and the length of a mutating region C = 1000 bps. (A) The self-alignment of
the common ancestor after t1 = 0. (B,C,D) The comparative alignment of two
sequences with divergence time t1 = 0.01 (B), t1 = 0.2 (C) and t1 = 5 (D).

α = −4 power-law. To sum up, to obtain a power-law tail with α = −4 up to a

certain length rmax in the MLD computed from the comparative alignment of two

genomes requires three conditions on the mutation rates in both species:
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− The mutation rate is constant inside well conserved DNA regions of mean length

C, with C > rmax.

− The distribution of mutation rate across well conserved regions is smooth (at

least differentiable) in both species, such that we can write the Taylor expansion

of N(τ).

− The distributions of mutation rate in both species, NA and NB, do not vanish at

zero, meaning that it exists, in each genome, non-mutating regions. Importantly,

these non-mutating regions do not need to be orthologous.

These conditions are quite general and can be fulfilled by a wide range of models

[123]. Therefore, the observation of a MLD exhibiting an α = −4 power-law alone

does not allow to decide which of these models describes best the actual biological

mechanisms responsible for the mutation rate variation.

The role played by C, the mean length of well conserved regions, in comparative

alignment, is equivalent to the role played by K, the mean length of segmental

duplications, in the case of self-alignment such that the discussion on the distribu-

tion of K in Section 3.2.1 on page 62, also apply to C. Thus, if C is not constant,

it does not affect the power-law shape of the MLD, as long as C � rmax. Note

that the prefactor of the MLD here depends on C and on the values of NB(0) and

NB(0), namely the number of regions which have not mutated yet in the species A

and species B genomes. As all these 3 parameters are unknown, we cannot use our

analysis to estimate any of them. However, the length up to which the power-law

behavior holds gives a lower bound for the value of C. For example, the MLD

computed from the Human-Mouse comparison exhibits a power-law behavior up

to a length of r = 300 bps (see Fig. 4.6), indicating that C > 300 bps in both

genomes.

Note that there is an apparent paradox in the fact that the prefactor of the MLD

is higher for the comparison of the Human and Dog genome (see Figs. 4.2 (D)

and 4.1 (B)) show) than for the comparison between Human and Mouse, while

Human and Mouse are more closely related than are Human and Dog (the split
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between Human and Dog occurred after the split between Human and rodents).

Still, the mutation rate in rodent genomes is known to be roughly 3 times higher

than in both Human and Dog genomes ([124]). Thus, the absolute evolutionary

distance between Human and Dog is smaller than between Human and Mouse,

which explains why we find more matches when comparing Human and Dog than

when we compare Human and Mouse. A similar behavior can be observed for the

triplet of species Rat-Dog-Chimpanzee (see Fig. 4.2, panel (A) and (B)).

The case of Paralogs — As mentioned in section 4.3, in the comparative align-

ment of any two species, the majority of matches are unique. In that sense, these

matches ”dominate” the distribution. One can artificially remove these unique

matches from the alignment. The remaining paralogous (off-diagonal) DNA seg-

ments are expected to exhibit an α = −3 power-law for closely related species,

because in this case the comparative alignment is similar to the self-alignment of

one of the species. However, as the divergence between the two species increases,

the value of N(τ) close to zero decreases and vanishes. Thus, the α = −3 power-

law is expected to slowly switch to an α = −4 power-law, similarly to the MLD

of unique sequences. Such a trend was observed recently [116].

Power-laws in MLDs of other Comparisons — In Section 3.4, we described

an other α = −4 power-law, that stemmed from the self-comparison of segments

duplicated via reverse-transcription of mRNA molecules. In that case, we were

able to calculate the exact functional form of N(τ), namely:

N(τ) =


λ2K2

2µ2

1

1 + a
τ for 0 ≤ τ ≤ (1 + a)µT

λ2K2

2µ2

−1

1− a
(τ − 2µT ) for (1 + a)µT ≤ τ ≤ 2µT.

(4.16)

Interestingly, in this case as well, N(0) = 0 and dN(τ)/dτ |τ=0 > 0. More generally,

if N(τ) scales as τβ (with β ∈ N) for small values of τ , the exponent of the

expected power-law is α = −(3+β). Therefore, different integer power-laws could

be observed if different derivatives in the Taylor expansion of N(τ) vanish. For
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example, we compared the human and mouse exomes. The resulting MLD exhibits

a power-law tail with an exponent α = −5 suggesting that in this case, the first

derivative N ′(0) = NH(0)NM(0) vanishes. The analysis of this distribution is the

subject of Chapter 6. This result also indicates that the comparative α = −4

power-law is not a feature of coding sequences. Indeed, the MLD computed from

the comparison of the non coding part of Human and Mouse also exhibits an

α = −4 power-law.

In conclusion, we have shown that the distribution of match lengths in a ge-

nomic alignment of two species goes through qualitatively different regimes as

the genomes diverge (Fig. 4.1). Notably, the distribution of the mutation rate

along the genomes of the two species generates a power-law distribution with an

exponent α = −4 in the distribution of exact matches. Such a power-law there-

fore occurs naturally in the MLD of two diverging genomes and is a signature of

differences in functional constraints and it is therefore not occurring neutrally.





Chapter 5

At the Crossing Between Self and

Comparative Alignments: The

Case of Whole Genome

Duplication

In Chapter 3, we have studied duplication events that occur frequently and at small

scale compared to the genome size. However, genomes are also subject to large

scale duplications, that range from single chromosome duplication to whole genome

duplications. In this Chapter, we study the MLD computed from the self-alignment

of a genome in the case of WGD, where the entire genetic information of an

organism is duplicated. We show that depending on the time elapsed since the

WGD event, this MLD can be assimilated either to a comparative MLD or to a

self-alignment MLD.

117
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5.1 The Fate of a Genome after a Whole Genome

Duplication

In the following, let us denote by genome I the genome just before the WGD. Im-

mediately after the WGD event, the genome consists of two identical sub-genomes,

sub-genome A and sub-genome B, both identical to genome I. We assume that

both sub-genomes evolve independently after the WGD event, as would two dis-

tinct species.

We present four schematic dot plots describing the fate of a Genome after a WGD

event at four different time point on figure 5.1. Just after the WGD (shown on

panel (A) of Fig. 5.1), sub-genome A and B are exactly identical. It follows that

qualitatively, the MLD obtained from the self-alignment of this genome is similar

to the one obtained from the self-alignment of the sequence before its duplication,

the only difference being that the prefactor is 4 times higher after the WGD. No-

tably, we obtain two very long matches corresponding to the match of the entire

sub-genome A against the entire sub-genome B. We will refer to these matches

as matches of the “second diagonal”. Then, each of the two sub-genomes will

start to accumulate mutations independently, breaking exact similarities between

the two sub-genomes. As a consequence, the length of the matches stemming

from ancient segmental duplications will decrease. At the same time, the break-

ing down of the second diagonal matches will result in several very long matches

(Fig. 5.1, panel (B)). As mutations accumulates, the second diagonal will be bro-

ken in smaller pieces resulting in more and more matches, while the similarities

resulting from ancient segmental duplications will dramatically decrease (Fig. 5.1,

panel (C)). Finally, the two sub-genomes will reach a point where similarities due

to the WGD have completely disappeared, and where the MLD results only of

segmental duplications that occurred after the WGD (Fig. 5.1, panel (D)).

The MLD computed from the self-alignment of the entire genome after the WGD

can be separated in 2 parts: the first part results from the self-comparison of sub-

genome A and the self-comparison of sub-genome B (squares (2) and (3) on the
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Figure 5.1: Schematic dot plot representation of the evolution of exact similar-
ities after the occurrence of a WGD. Sub-genome A and sub-genome B denote
the two sub-sequences that result from the WGD. Any line of the dot plot grid
represent an exact match. On the dot plot grid, we represent segmental dupli-
cations that occured before the WGD in green, the trivial match of the whole
genome against itself in red (first diagonal), the matches stemming from the sec-
ond diagonal in blue and post WGD segmental duplications in black. Orange
lines depict point mutations. (A) Just after the WGD, the two sub-genomes A
and B are identical. (B) Shortly after the WGD, each sub-genome begins to
accumulate independent point mutations. (C) After a longer evolutionary time,
remains from ancient segmental duplications have almost disappeared, while the
second diagonal give rise to a lot of matches. (D) Long after the WGD. There
remains nothing from the old WGD and similarities only stem from recent SDs.

self-alignment grids of Fig. 5.1), and the second part from twice the comparison

of A and B (namely the comparison of A to B (square (1) of Fig. 5.1) plus the

comparison of B to A (square (4) of Fig. 5.1)). If the two sub-genomes evolve
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independently, both self-alignments of A and B are expected to result in an α = −3

power-law, similarly to what we observe for single species self-alignment. On the

other hand, the comparison of A and B behaves as a comparative alignment of

two divergent species, and thus, its MLD results in an α = −4 power-law. For

this reason, the MLD obtained when self aligning a genome after a WGD event is

a mix of the two previously discussed cases.

Depending on the time elapsed since the last WGD event, these two processes

will have different quantitative importance. If the WGD event occurred recently,

then matches obtained from the comparison of A and B will dominate, and we

expect an α = −4 power-law. However, if the WGD occurred a long time ago,

the evolutionary distance separating the two sub-genomes will be high, and the

comparison of A and B will result in few matches. In that case, the dominating

signal stems from segmental duplications that occurred in any of the two sub-

genomes after the WGD. Thus, the MLD is expected to exhibit an α = −3 power-

law, like in the case of a simple self-alignment.

For this reason, after a whole genome duplication, the MLD computed from a

self-alignment will result in a power-law with an exponent α equal to either −3 or

−4, depending on the time elapsed since the WGD. We define tc as the time point

where the transition between the two regimes occurs. In the following, we want

to calculate tc given the mutation and segmental duplication rates.

5.2 The Transition Between the Two Regimes

As we have seen, we expect to observe a transition between two power-law following

a WGD event. In this section, we try to calculate the time tc at which this

transition occur. Note that this time is a decreasing function of the length rc one

considers.

Let us assume that, like in the model of section 4.4.1, the mutation rate is constant

in regions of length C on average and that the WGD occurred at time t = 0. Let us
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also assume that the mutation rate per bp in region i, µi, is distributed according

to an exponential distribution of mean µ. If L is the total size of the genome after

the WGD, there are

R =
L

2C
(5.1)

regions in each sub-genome.

If we further assume that segmental duplications still occur in the genome after

the WGD event, that K is the mean length of a segmental duplication, and that

the duplication rate per bp is λ, following Eq. (4.13) and Eq. (3.12), the MLD

obtained from the self-alignment of one genome after a WGD event is then:

M(r) =
λKL

µ

1

r3
+ 2

dN(τ)

dτ

∣∣∣∣
τ=0

6C − 2r

r4
. (5.2)

Assuming C � r, it follows that

M(r) =
λKL

µ

1

r3
+ 2

dN(τ)

dτ

∣∣∣∣
τ=0

6C

r4
. (5.3)

From Eq. (4.15) we also know that

dN(τ)

dτ

∣∣∣∣
τ=0

= NA(0)NB(0). (5.4)

If we assume that mutations occur independently inside each region, the first

mutation occurs on average in each region i after time t = 1/(Cµi) where µi is the

mutation rate in region i. Since the mutation rate is exponentially distributed,

with mean µ, we can then explicitly calculate the value of NA(0) which is the

number of regions in sub-genome A which have not mutated yet at time t:

NA(0) = P (tµiC < 1)R = P (µi < 1/(Ct)) R

=
(
1− e−1/(Ctµ)

) L

2C
(5.5)

Thus

M(r) =
λKL

µ

1

r3
+
L2

C

3

r4
(
1− e−1/(Ctµ)

)2
, (5.6)
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so the term in r−4 dominates if

λK

µ
� L

C

1

r

(
1− e−1/(Ctµ)

)2
. (5.7)

From the last equation, we obtain that at any time t, the α = −4 power-law

regime holds for length up to rc(t), with

rc(t) =
µL

λKC

(
1− exp[−1/(Ctµ)]

)2
. (5.8)

Similarly, if the α = −4 power-law behavior holds up to a length r, we can calculate

the time tc elapsed since the WGD event as:

tc = −

{
Cµ log

[
1−

(
rλKC

µcL

)1/2
]}−1

. (5.9)

Surprisingly, the value of tc decreases with the mean size C of a region. This is

due to the fact that the most important parameter here is the number of regions.

As the size of regions increases, the number R of regions decreases (if the length

of the genome stays the same).

5.2.1 Simulations

Using a model similar to the one described in Section 4.4.2, we simulated sequences

undergoing a WGD event. We started from an iid sequence of length L/2. We

then let the sequence evolve for a time t0 according to the model of Section 3.2.2

to generate genome I. We then duplicated this genome to produce genome A

and B, and simulated the divergence between the two sub-genomes as if they were

independent genomes, according to model of Section 4.4.2 for a time t1. At the end

of the simulation, we concatenated the two sub-genomes and computed the MLD

from the self-alignment of the full genome. We show the results of our simulations

for different time t1 of evolution on Fig. 5.2
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The results obtained on sequences simulated this way agree well with our calcula-

tion for the time of transition between the two regimes. Notably, one can see on

fourth panel of Fig. 5.2 that the transition for a length rc = 200 occurs at time

tc = 1.
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Figure 5.2: The MLD computed for the self-alignment of sequences simulated
with the model described in Section 5.2.1 for different evolution times t1. For
all simulations, parameters are λ = 10−5, µ = 1, K = 1000, C = 1000 and
initiation time t0 = 1. The dashed lines represent power-laws with exponent
α = −3 and α = −4. All the empirical data are represented using logarithmic
binning.
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5.3 Discussion and Limitations

In this section, we have shown that after a WGD, the MLD computed from the

self-alignment of a genome can result in an α = −4 power-law. Interestingly,

we have shown on Fig. 3.4 (on page 71) that the MLD computed from the self-

alignment of several species did result in an α = −4 power-law. Indeed, for two

of these “−4”-species (Arabidopsis thaliana and Zebrafish), many evidences for a

recent WGD have been described [125, 126].

Note that for the estimation of the transition point between the two regimes,

we used several strong hypotheses. Especially, as stated in the last section, we

cannot estimate the value of C (we can only estimate a lower bound for C). More

importantly, we need an hypothesis on the distribution of mutation rates over

different regions to try to estimate the value of NA(0). From our analysis, we

cannot estimate these parameters for real genomes.

If we however apply our formula to try to estimate tc using Eq. (5.9) in the human

genome, using common estimates for the mean mutation rate (µ = 1.5 10−9 per

bp per year) and for the mean length of a segmental duplication (K = 104 bps),

our estimate from Chapter 3 for the segmental duplication rate (λ = 1.5 10−13),

and the lower bound for C from Section 4.4.3 (C > 300 bps), we can estimate

an upper bound for the value of tc < 4 108 years for matches of length r = 100

bps. According to various studies reviewed in Kasahara [127], 2 rounds of WGD

occurred between 450 and 550 million years ago, in the early history of vertebrates,

in good agreement with our estimate.

However, WGD events are known to strongly impact the evolution of genomes.

Notably, they are often associated to speciation events [58, 128]. Thus, they are

often associated with complex functional evolutionary processes that might not be

well described by our model. For instance, after a WGD, many duplicated genes

are lost in a process known as fractionation, and it has been found that one of these

loss occurred preferentially in one of the two subgenomes, see Thomas, Pedersen,

and Freeling [59], Woodhouse, Schnable, Pedersen, Lyons, Lisch, Subramaniam,
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and Freeling [129]. More generally, it has been reported that WGD events were

followed by extensive chromosomal rearrangements [130–133], and that the two

sub-genomes might not evolve independently [134, 135]. In our model, we do not

take into account all these complex behaviors.





Chapter 6

Comparison of Coding Sequences

In this Chapter, we study only the coding part of genomes, namely, the exomes.

We show that the MLDs computed from the comparisons of the exomes of two

distinct species exhibit a different behavior as the one computed from the compar-

ative alignment of full genomes, that is, an α = −5 power-law. We then discuss

possible models that might explain these observations, and that should be further

investigated.

6.1 Comparing the Exome of Different Species

While comparing the RepeatMasked genomes of several species, we observed that

MLDs were shaped as α = −4 power-laws for a wide range of comparisons (see

Chapter 4). Interestingly, when we compared the non-coding part of any two

genomes, we obtained highly similar distributions, and we found that the majority

of matches obtained when comparing genomes were part of the non-coding regions

of both genomes. We then computed the comparative alignment of the coding part

of both genomes (namely, we concatenated all exons of each genome in one long

sequence, the exome, and computed the MLD from the comparison of these two

sequences). To avoid creating irrelevant matches, exons were separated by ”N”s

in this sequence.

127
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Fascinatingly, the MLD computed from this comparison results again in a power-

law distribution, but this time, the exponent of the power-law is α = −5. As in the

case of comparative alignment discussed in Chapter 4, the distance between the two

species has to be large enough so that the distribution is observed. The closest pair

for which we found the α = −5 power-law was the Human/Mouse pair, while the

two most distantly related pairs were Mouse and Chicken (see Fig. 6.1 and Fig. 6.2).

As in the case of whole genome comparison, this distribution is not observed in

the comparisons of species which are too close to each other (namely, for the pairs

Human/Chimp, Mouse/Rats but also, Human/Dog). For these pairs, the number

of matches decreases exponentially with the length of matches. Compared to the

distribution described in Chapter 4, the exponential behavior is observed for a

broader range of pairs. For instance, the MLD of the Mouse/Rat full genome

comparison exhibits a power-law tail while its exome counterpart is exponential,

and similarly for the Human/Dog pair. Like in the case discussed in Chapter 4,

the power-law behavior is lost when the two species are too distantly related (see

Fig. 6.1 and Fig. 6.2 ), and the distance from which no power-law can be observed

seems roughly the same for both cases. To sum up, as for full genome comparisons,

we observe 3 regimes for the exome comparisons, but the range of distances where

the α = −5 power-laws holds is more narrow.

Of course, it is not totally unexpected to observe different results for the com-

parison of the exome and the comparison of non-coding sequences. Notably, due

to the degeneracy of the genetic code, the mutation rate in exons is known to be

much higher (roughly 10 times) at the 3rd position than at 1st and 2nd positions

of a high number of codons. The first consequence of this property of exons is that

we observe much more exact matches of length r = 3n+ 2 than matches of length

r = 3n + 1 and r = 3n (with n ∈ N), such that the distribution show a periodic

pattern, with periodicity 3. One cannot observe this trend on data represented

with the logarithmic binning because bins overlap several lengths. The periodicity

can be observed on Fig. 6.3 representing the Human/Mouse exome comparison

without the logarithmic binning.
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Figure 6.1: MLD computed from the comparison of the human exome of
with the exome of several species. The four species are chosen to represent
the three different states described in the main text. In all four panels, dashed
lines represent power-law distribution with exponent α = −3, α = −4 and
α = −5, and empirical data are represented using logarithmic binning. MLDs
represented are computed from the comparison of the exomes of (A) Human and
Dog (B) Human and Mouse (C) Human and Turkey (D) Human and Zebrafish

To understand the impact on the MLD of the fact that the mutation rate varies

at the bp level, we generated 3 sets of sequences from the exome of both Human

and Mouse, that were defined as follow: we first downloaded from the Ensembl

database only the transcripts that were known to be translated into a protein.

Using these transcripts, we concatenated all first, second and third base pairs

separately in 3 different chimeric sequences (designed by SeqPos1, SeqPos2 and
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Figure 6.2: MLD computed from the comparison of the exome of several
species. In all four panels, dashed lines represent power-law distribution with
exponent α = −3, α = −4 and α = −5, and empirical data are represented using
logarithmic binning. MLDs represented are computed from the comparison of
the exomes of (A) Mouse and Rat (B) Mouse and Rabbit (C) Mouse and Chicken
(D) Mouse and Turkey.

SeqPos3 respectively in the following). This way, we obtained 3 sequences where

the variation of the mutation rate at the base pair level has been eliminated. From

these sequences, we computed the MLD from the comparison of each sequence to

its homologous in the other species. These 3 MLDs are shown on panels (A,B

and C) of Fig. 6.4. Surprisingly, the comparison of the third positions of exomes

exhibits an α = −5 power-law, while in the two other comparisons, the number



Chapter VI. Non Random Breaking 131

15 50 100 200

100

102

104

106

+

+

+

+
+

+
+

+
++++++++++++

+++++++++++++++

+

+
+++
+
+

+
+
++
+

+

++++

++
++
+++++++++

+
+ +

+

+

+
+

+
+

++
+
+
++++

++++++
+++++

+
++
+
++
+++
+++

++
+

+++

+

+

+
+
++

+++
+
+++++ +

+

+
+

+
+

++++
+++++++++++++++++++++

+
+++++

+++++
++++
+

+
++++
+++

+
+

+
+
+++
+
++

+++

++

++++++++ ++

+
+
+

matches of length 3n
matches of length 3n+1
matches of length 3n+2
r−3

r−4

r−5

Figure 6.3: MLD computed from the comparison of human and mouse exome,
represented without logarithmic binning. 3 different colors are used to represent
matches of length 3n, 3n+1 and 3n+2. In all four panels, dashed lines represent
power-law distribution with exponent α = −3, α = −4 and α = −5.

of matches decay exponentially with the length of the matches. As expected,

the dominant divergence process between the exomes is the mutation occurring

at the third position of exons. From this experiment, we can conclude that the

only relevant mutational process in the case of exome comparison are mutations

occurring in the third base pairs of codons.
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Figure 6.4: MLD computed from the comparison of :(A) SeqPos1 of Human
and SeqPos1 of Mouse, (B) SeqPos2 of Human and SeqPos2 of Mouse (C)
SeqPos3 of Human and SeqPos3 of Mouse. These 3 MLDs are represented
using a logarithmic binning. (D) The MLD computed from the comparison of
the full Human and Mouse exome, represented without logarithmic binning. In
all four panels, dashed lines represent power-law distributions with exponent
α = −3, α = −4 and α = −5.

6.2 Theoretical Application of the Divergence

Model

In this subsection, we apply the model developed in Section 4.4.1 to the case of

exome comparison. In theory, the fact that we now consider only exons, and not
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the full genome should not impact our calculations of N(τ), such that Eq. (4.7)

still holds:

N(τ) =

∫ τ

0

NA(τ − τB)NB(τB)dτB. (6.1)

As we are interested in long matches, and as long matches mostly stem from the

comparison of sequences which exhibit a small divergence, we compute the Taylor

expansion of N(τ) next to 0. Assuming that the third derivative of N(τ) and the

Taylor expansion exists, we find:

N(τ) = N(0) +
dN(τ)

dτ

∣∣∣∣
τ=0

τ +
d2N(τ)

dτ 2

∣∣∣∣
τ=0

τ 2

2!

+
d3N(τ)

dτ 3

∣∣∣∣
τ=0

τ 3

3!
+O(τ 4). (6.2)

Using Leibniz formula to calculate the first three derivatives ofN(τ) from Eq. (6.1),

it follows that:

N(τ) = 0 +NA(0)NB(0)τ + [N ′A(0)NB(0) +NA(0)N ′B(0)]
τ 2

2!

+ [N ′′A(0)NB(0) +N ′A(0)N ′B(0) +NA(0)N ′′B(0)]
τ 3

3!
+O(τ 4). (6.3)

In this case again, we can apply Eqs. (3.2) and (3.6), and replacing the mean

length of a duplication K by the mean length of a conserved region C. Note that

in that case, the value of C is constrained by the length of exons (see Section 6.5

for a discussion on this parameter). Then, integrating by parts, it follows that the

MLD is given by:

M(r) = NA(0)NB(0)
6(C − r + 2)

r4
+ [N ′A(0)NB(0) +NA(0)N ′B(0)]

12(C − r + 2)

r5

+ [N ′′A(0)NB(0) +N ′A(0)N ′B(0) +NA(0)N ′′B(0)]
20(C − r + 2)

r6
+O(r−7).

(6.4)

Depending on which term dominates the sum in Eq. (6.4), one can predict which

power-law tail will be observed in the MLD of the comparative alignment.

In the case of comparative alignment of whole genomes one clearly observes the
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power-law with an exponent α = −4. This indicates that the term NA(0)NB(0) is

dominant. This is expected because of the existence of ultra-conserved elements

in genomes, such that the distribution of mutation rate does not vanish at zero,

and thus NA(0)NB(0) > 0.

In exons however, due to the redundancy of the genetic code, the mutation rate

is much higher at the third position of exons than in the rest of the sequence.

Thus, we do not expect to observe non-mutating sequences, i.e. NA(0) ' 0 and

NB(0) ' 0. In that case, the term in r−4 of Eq. (6.4) vanishes. But in that case,

the term in r−5 also vanishes, and we switch directly to an α = −6 power-law.

Thus, according to our theoretical calculations, we should never observe an α = −5

power-law.

Still, it might be that constraints on the exons are strong enough so that NA(0) > 0

or NB(0) > 0, but that we still expect an α = −5 power-law. In that case, we

can calculate conditions that would result in N(τ) ∼ τ 2, and that would imply

M(r) ∼ r−5.

6.3 Theoretical Calculation of the Value of N(τ )

Symmetrical Mutation Rate Distributions — Let us first assume that the

mutation rate distribution is the same in the exome of both species (i.e. NA = NB).

In this case, Eq. (6.4) becomes:

M(r) = NA(0)2
6(C − r + 2)

r4
+ 2 [N ′A(0)NA(0)]

12(C − r + 2)

r5

+
[
2N ′′A(0)NA(0) +N ′A(0)2

] 20(C − r + 2)

r6
+O(r−7). (6.5)

We have already seen that if the term in r−4 vanishes, then the term in r−5 also

vanishes and we expect an α = −6 power -law.
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If NA(0) 6= 0, we could obtain an α = −5 power-law behavior if the term in r−5

dominates the term in r−4 and the term r−6 , namely if: (i) 2NA(0)N ′A(0) r−1 � NA(0)2

(ii) 2NA(0)N ′A(0)� [2N ′′A(0)NA(0) +N ′A(0)2] r−1.
(6.6)

Condition (i) is equivalent to NA(0) � 2N ′A(0)r−1 for all values where the α =

−5 power-law holds, i.e. for r ∈ [20, 200]. If N ′′A(0) > 0 then it follows from

condition (ii) that NA(0)� N ′A(0)r−1 for r ∈ [20, 200] and the two conditions are

contradictory. Thus, again, we expect the exponent of the power-law to be either

equal to −4 or to −6.

If N ′′A(0) < 0, condition (ii) results in N ′′A(0) � rN ′A(0)
[
1− N ′

A(0)

2NA(0)r

]
, and using

condition (i) we get:

N ′′A(0)� −N ′A(0)
N ′A(0)

2NA(0)
� −rN ′A(0), ∀ r ∈ [20, 200] (6.7)

which implies strong constraints on the distribution of NA in the neighborhood of

τ = 0. Recall that NA(τ) represents the number of sequences in species A which

are at an evolutionary distance τ from their common ancestor, which is equivalent

to the distribution of mutation rates accross the different exons of sequence A.

The condition (6.7) implies strong constraints on the mutation rate. Although we

cannot rule out such constraints, there is no simple biological reason that would

justify them, especially as they should apply on the mutation rate in exons, and

not in the non-coding part of the genome.

Asymmetrical Mutation Rates Distribution — However, the α = −5 power-

law could also result from the asymmetry of mutation rates. In this case, we would
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have that NA 6= NB, and thus condition Eq. (6.6) turns into:
(iii) [NB(0)N ′A(0) +NA(0)N ′B(0)] r−1 � NA(0)NB(0)

(iv)NA(0)N ′B(0) +N ′A(0)NB(0)� N ′′A(0)NB(0) +N ′A(0)N ′B(0) +N ′′B(0)NA(0)

r
(6.8)

If we now consider a simple scenario where NB(0) = 0 and NA(0) 6= 0, condition

(iii) is trivial and condition (iv) results in: r >
N ′
A(0)

NA(0)
+

N ′′
B(0)

N ′
B(0)

. Again, there is no

obvious reason that could lead to such properties of mutation rate distributions,

but one cannot rule it out.

However, assuming an asymmetry between species leads to a contradiction. It is

easy to see it in the case where NA(0) = 0 while NB(0) > 0. Let us introduce a

third species, species C. Then, either NC(0) = 0 or NC(0) > 0. In the first case,

only the comparison of B and C is supposed to result in an α = −5 power-law

while the comparison of A to C would be an α = −6 power-law. In the second

case however, only the comparison of C to A would follow an α = −5 power-law,

while the comparison of B to C would be an α = −4 power-law. Hence, in both

cases, we expect the comparisons A/C and B/C to give different results. This

contradicts empirical data. Indeed we found many triplets of species where all

one-to-one exome comparisons exhibit an α = −5 power-law (see for instance all

comparisons from the species Human, Mouse, Chicken and Rabbit on Figs. 6.1

and 6.2). Thus, the α = −5 power-law does not result from an asymmetry in the

distribution of mutation rates between species.

6.4 Investigating Different Exon Subclasses

As the simple models developed did not succeed at explaining the observations

obtained from the comparison of the exome of different species, we investigated

the contributions of the different classes of exons on the shape of the MLD.
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In eukaryotic genomes, some genes are composed of a single exon (single exon

genes) while some are composed of several exons (also called multi-exon genes).

In the latter case, the entire gene is transcribed, and the primary mRNA molecule

is then spliced to remove introns. When this is the case, depending on vari-

ous physiological conditions of the cell, some exons can also be spliced. This

phenomenon, know as alternative splicing, is a way for the organism to produce

different proteins, depending on the function of the cell.

As a consequence, the constraints that shape the evolution of an exon might be

different if it belongs to a single exon gene, or to a multiple exon gene. In the

latter case, whether an exon is the first, the last or located in the middle of a gene

might also affect its evolution.

In the following, for simplicity, we focus only on the Human/Mouse exome compar-

ison. To see whether these structural properties have an impact on our analyses,

we constructed different sets of exons:

− Set 1: Exons which come from Single exon genes,

− Set 2a: Exons which come from multi-exons genes and which are the first exon

of the gene,

− Set 2b: Exons which come from multi-exons genes and which are the last exon

of the gene,

− Set 2c: Exons which come from multi-exons genes and which are neither the

first nor the last exon of the gene (we also refer to them as middle exons).

We build each different sets in both species, and then concatenated all the exons

of each set (separating them with an “N” letter) to obtain 4 different sequences

for each species. We then computed the MLDs from the comparison of the same

set from different species (“parallel comparison”), Fig. 6.5 and of different sets

from different species (“cross comparisons”), see Fig. 6.6.

Surprisingly, we observed that these different comparisons did not all result in

an α = −5 power-law. Indeed, for parallel comparisons, only the comparison of
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Human Mouse

Length Percentage Length Percentage

Single Exons 10.6 Mbps 10.3% 6.7 Mbps 8.2%

Middle Exons 65.4 Mbps 63.8% 48.3 Mbps 59.2%

First Exons 19.7 Mbps 19.2% 17.4 Mbps 21.3%

Last Exons 6.8 Mbps 6.7% 9.2 Mbps 11.2%

Total 102.6 Mbps 100% 81.6 Mbps 100%

Table 6.1: This table summarize the length and proportion of the full exome
of sequences constructed on all four subsets in each species

middle-exons exhibits this behavior. Interestingly, this set is by far the largest

in terms of number of base pairs in both species (see Table 6.1), and the parallel

comparison of this set in both species is responsible of most of the matches. These

observations raise the question of whether, a peculiar feature of middle-exon genes

is responsible for the behavior we observe. On the other hand, the MLDs obtained

from the first and last exons seem to exhibit an α = −4 power-law, in agreement

with the model developed about comparative MLD of non-coding DNA, while the

MLD computed from the comparison of single exons seems to exhibit an even

higher exponent. Note however that while extracting subsets of the exome, we

dramatically (especially for sets 1, 2a and 2b) reduce the size of the two sequences

to compare, and, as a consequence, the number of matches. Thus, there might

not be enough matches left to observe clean power-law distributions, which could

explain the apparent strange behaviors we obtain.

Another important feature of exons that might affect mutation rates is the number

of copies in which each exon is present. Indeed, several processes specific to du-

plicated genes are known to affect their evolutionary fate (such as gene conversion

or subfunctionalization [42, 136]).

To classify exons according to this property, we repeated the procedure of Sec-

tion 4.3 on Human and Mouse exomes: using the self-alignments of both Human

and Mouse exomes, we separated the exons in two sets. In the “paralog” set, we
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Figure 6.5: MLD computed from the parallel comparisons of the different
subsets constructed on the Human and Mouse Exomes.

only kept exons that match (matches are defined as exact match of length r ≥ 20)

with another exon in the same genome. All other exons are unique, and we put

them in the “unique set”. For both species, the size of each subset is roughly

half the size of the full set (the unique sets are of length 50 Mbps and 55 Mbps

while the paralog sets are of length 32 Mbps and 48 Mbps for Mouse and Human

respectively).

We then again computed the MLDs from the comparison of sequences produced

from the concatenations of each set. Here again, we compute both “parallel”
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Figure 6.6: MLD computed from the cross comparisons of the different subsets
constructed on the human and mouse Exomes. (A) Human first exons against
all the other sets of exons in Mouse (B) Human last exons against all the other
sets of exons in Mouse (C) Human middle Exons against all the other sets in
Mouse (D) Human last exons against all the other sets of exons in Mouse.

and “crossed” comparison, and show the resulting MLDs on Fig. 6.7. In terms

of matches, the largest contribution comes from the comparison of the two non-

unique sets (397000 matches) while the comparison of the two unique sets results

in 148000 matches and the sum of two cross comparisons in 143000 in total.

In all comparisons, the MLD seems to exhibit a power-law with exponent α = −5

although, as in the previous case, the small size of the sets might not allow to draw

clear conclusion about the distribution we observe, and the comparison that results
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Figure 6.7: MLD computed from the parallel and cross comparisons of the
unique set and the paralog set of human and mouse exomes.

in the highest number of matches is also the one where the α = −5 power-law

behavior is the clearest.

6.5 Conclusions

From all the observations that have been reported in this Chapter, we still cannot

explain why the comparison of exomes results in an α = −5 power-law distribution.
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Nevertheless, given our observations, we can point three ingredients that could

explain our observations.

Hypotheses Regarding N(τ) — The first set of hypothesis involves the value

of N(τ). Assuming that (i) due to the high mutation rate on the third base pair

of codons, the distribution of mutation rate vanishes in zero in both species, and

that (ii) the mutation rate distribution is the same in both species, we reached

the conclusion that we expect the MLD to be distributed as an α = −6 power-

law. We have seen that we could explain the observation of an α = −5 power-law

distribution by relaxing one or both of these hypotheses. However, both (i) and

(ii) seem to be natural and biologically valid hypotheses, that we have not been

able to disprove up to now. We were even able to show that supposing that

the α = −5 MLD power-law was explained by the asymmetry of mutation rates

distribution between the species could not explain all our observations.

Hypotheses Regarding m(r, τ) — In this thesis, we assumed that mutations

were, on average, distributed uniformly and independently along sequences. As

a consequence, the number of matches expected between 2 sequences follows the

broken stick model expectation given by Eq. (3.2). If point mutations in exons are

not (on average), uniformly distributed (if, for instance, mutations do not occur

independently from each others), it could be that the stick breaking model does

not apply. Let us assume that the distribution of the number of matches of length

r for two sequences exhibiting a divergence τ is equal to me(r, τ), and that

me(r, τ) 6= (2τ + (C − r)τ 2) exp(−rτ). (6.9)

In this case, Eq. (3.6) still applies, such that we have:

M (r) =

∫ ∞
0

me (r, τ)N (τ) dτ. (6.10)

In that case, several models could lead to an α = −5 power-law. Supposing that

N(τ) ∼ τ 3, as expected for the comparison of the exome of diverging species, we
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would have

M (r) =

∫ ∞
0

me (r, τ) τ 3dτ. (6.11)

Now if for instance

me(r, τ) =
m(r, τ)

τ
=

(2τ + (C − r)τ 2) exp(−rτ)

τ
, (6.12)

then we would have

M(r) =

∫ ∞
0

N(τ)me(r, τ) dτ =

∫ ∞
0

τ 2m(r, τ)dτ

∼ r−5, (6.13)

according to our observations. However, many different values of me(r, τ) could

lead to the same result, and one would need to justify these distributions. Note

that we tried to measure an empirical value of the distribution of me(r, τ) and the

results we have obtained were always in agreement with the distribution expected

under the stick breaking model. Moreover, we have seen in Section 6.1 that the

MLD computed from the comparison of third positions of the codons, which are

supposed to evolve more or less neutrally, still exhibited the same α = −5 power-

law. While one could imagine that mutations that affect sequences under strong

evolutionary constraints are not uniformly and independently distributed, the non-

uniformity of mutations that occur at the third base pair of codons seems much

more unlikely.

Hypotheses Regarding the Exon Length Distribution — The last parame-

ter we have not discussed yet, and that could impact the shape of the distribution

is the length distribution of exons themselves. While in the case of full genome

comparisons, C was representing the length of a region of constant mutation rate,

in the case of exome comparison, C is constrained by the length of the exons. In

the present case, we assumed that all exons are of the same length C. We have

seen that this simplistic modeling has no consequence on the expected shape of the

MLD since the relationship between M(.) and C is always purely linear. However,
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we always assumed that the length of matches was smaller than the value of C.

As many exons are small (and especially, smaller than the length of the longest

match), the value of C might play a more important role here. For instance, one

fifth of exons are longer than 300 bps in Human, and exons longer than 300 bps

account for half of the total length of the exome. To test the importance of this

parameter, we restricted our set of exons to a smaller range of length in both

species (i.e. we kept only exons longer or shorter than a certain threshold in both

species), and then computed the MLD from the comparison of these subsets. All

the MLDs we computed this way still exhibit the α = −5 power-law (data not

shown). This would indicate that the distribution of C does not influence the

shape of the MLD. Note however that when comparing two sequences, the true

value of C is the length of the longest homologous subsequence between the two,

which can very well be different from the length of the two compared sequences.

Although we can use the length distribution of exons in both species as a proxy

for the distribution of C, we cannot completely rule out the hypothesis that the

distribution of C has an impact on the MLD we study.

Finally, we observed that, depending on their position in the genes, the distribu-

tions obtained from the comparison of exons exhibited different behaviors. This

could be indicative of more complex dynamics affecting either the mutation rate

distribution in exons, or the interaction between mutations (and thus the value of

me(r, τ)), and that might explain that we observe a MLD shaped as an α = −5

power-law.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we have studied properties of match length distributions computed

for a various sets of experiments. We developed simple evolutionary models that

could successfully explained the deviations from the expected distributions.

In the case of self-alignments, we showed that these deviations were simply result-

ing from the neutral evolution of duplicated DNA, and that, depending on the

mechanism of duplication which is predominant in a genome, different MLDs were

expected. In the case of comparative alignments, we found that the deviations

were the result of a totally different mechanism. We showed that in compara-

tive alignments, the distribution of mutation rates in the two compared genomes

generates the observed power-law MLDs. Thus, unlike in the self-alignment case,

these deviations do not result from the neutral evolution of genomes. Finally,

trying to apply our evolutionary framework to the comparison of the coding part

of genomes, we observed that the processes taking place in the exome of species

are more complex, and that additional ingredients – that we have not been able

to identify yet – are necessary to explain these deviations.
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Table 7.1 summarizes the different power-law behaviors we observed for the MLD

when comparing various genomic sequences. It also provides the corresponding

evolutionary models we proposed to explain these behaviors.

Experiment Observed MLD Model

Self-Alignment

Human not RepeatMasked Exponential Bursts of TEs

RepeatMasked
Power-law
α = −3

Simple SD model
Section 3.2

Processed Pseudogenome
Power-law
α = −4

Retroduplication Model
Section 3.4

Exome
Power-law
α = −3

Simple SD Section 3.2

Rabbit / Arabidopsis Thaliana/
Zebrafish

Power-law
α = −4

Retroduplication*/WGD*
Section 3.4/ Chapter 5

Comparative Alignments

closely related species Exponential
Simple Stick Breaking

Section 4.4.1

distantly related species
Power-law
α = −4

Mutation Rate Distribution
Section 4.4.1

Exome
Power-law
α = −5

Unknown*
Chapter 6

Table 7.1: A table that summarize the result we obtained. A * indicates
that the link between the model and the observation has not been formally
established. SD stands for segmental duplication, TE for transposable element
and WGD for whole genome duplication.

7.2 Perspectives

As discussed in the introduction, once a model is built, studying deviations from

the model can be very useful to get insight on complex behavior, and then to

propose new models that fit better the data. With the analysis done in this thesis,

we have reached this objective, as we have developed models that explain the most

commonly observed MLDs both in self-alignment and in comparative alignments.

We have also detected some puzzling behaviors (power-laws with exponent α = −4
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in the self-alignment of several genomes, or power-laws with exponent α = −5 in

the comparative alignments of exomes). The next step would then be to identify

the biological processes that give rise to these distributions. As the number of

genomes available is still constantly growing, more deviations of this kind are

expected to be found. Notably, computing a MLD could be used to spot that the

quality of the assembly of a genome is poor, and that some transposable elements

present in a genome have not been identified.





Appendix A

Extension to the Discrete Case

In this thesis we considered the continuous version of the stick breaking process.

In this formalization the stick length r was continuous and the dynamics was

described as an integro-differential equation, see Eq. (3.1) in Section 3.1. An

equivalent discrete version of the stick breaking model is also known [137]. The

size distribution of pieces of a single broken stick is again given by a geometric

distribution. The same model, including a continuous generation of new sticks of

size K, can also be considered and analytically solved. The solution yields finite

size corrections to the power-law behavior for small lengths.

If M(r, t) denotes the number of matching sequences of length r (now discrete) at

time t, then we have

∂M(r, t)

∂t
= −2µrM(r, t) + 4µ

∑
s>r

M(s, t) + λLδ(r,K). (A.1)

The first term on the right hand side expresses the loss of segments due to muta-

tions (∝ µ) in any position in one of the two matching segments (∝ 2r). Mutations

in matches may also lead to a gain of matches of length r, if a match of longer

length s > r is mutated (∝ µ) at position s + 1 or r − s in one of its two copies

(∝ 4). This is represented by the second term in Eq. (A.1). In this formulation we

disregard the effect that a mutation of one nucleotide in a match of length s leaves

behind two matches, which in total have length s− 1. The third term represents
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the gain of matches with length K and with rate λ anywhere along the sequence;

δ(r,K) is the Kronecker delta (i.e. the function which is equal to zero everywhere

except for r = K, where it takes the value 1).

We are interested in the stationary properties of this model and solve the differen-

tial Eq. (A.1) for the stationary state, i.e. ∂M∞(r, t)/∂t = 0. For r > K we have

M∞(r) = 0 and for r = K and r = K − 1:

M∞(K) =
λ

2µ

L

K
(A.2)

M∞(K − 1) =
λ

µ

L

(K − 1)K
. (A.3)

For r < K − 1 we can deduce the following recursion relation:

M∞(r) =
2

r

∑
s>r

M∞(s) (A.4)

=
2

r

(
M∞(r + 1) +

∑
s>r+1

M∞(s)

)
(A.5)

=
r + 3

r
M∞(r + 1) (A.6)

where we used Eq. (A.4) with r → r+ 1 to substitute the sum in Eq. (A.5). With

this recursion we then compute:

M∞(r) =
r + 3

r

r + 4

r + 1

r + 5

r + 2
· · · K + 1

K − 2

1

K − 1

L

K

λ

µ

=
λ

µ

L(K + 1)

r(r + 1)(r + 2)
. (A.7)

The stationary M∞(r) has clearly a r−3 asymptotics for large r. The finite size

corrections in the denominator are most relevant for small match length r, a regime

of the distribution that is anyway dominated by random matches as described by

Eq. (1.39) in the main text.

The differential Eq. (A.1), neglects some contributions, e.g. the loss of matches

due to subsequent segmental duplications into a previously duplicated region as

well as the additional gain of matches due to the duplication of a sequence that
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already contains matches. These two processes occur with probability proportional

to the rate λ but compensate each other. Further terms we neglect involve squares

and higher powers of rates or lengths much smaller than K and L.

From these considerations we can also deduce that it would be possible to formulate

the sequence evolution model such that segmental duplications extend the existing

sequence instead of overwriting an already exiting sequence segment. In this case,

λK would also be the growth rate of the sequence. However, one has to take special

care to define the stationary MLD for the growing system. Only if nucleotides

are more frequently changed by mutations than newly generated by segmental

duplications, i.e. if µ > λK, a stationary MLD will be reached and the steadily

growing version of the model would produce a similar power-law tail.
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Non RepeatMasked MLD
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Figure B.1: The match length distribution (MLD) computed from the self-
alignment of the RepeatMasked human chromosome 2, with (red) and without
(blue) RepeatMasking. The red dotted lines represent the distribution obtained
when repeating the same experiment on a random iid. sequence with same
length and equal nucleotide frequencies. The dashed lines represent the power-
law functions L/r3, where L is the length of the RepeatMasked human Genome
(we do not count the Ns). Both MLDs are represented using logarithmic bin-
ning, see Section 2.2 for a discussion on this subject. One can see that the
power-law behavior is lost when the data are not RepeatMasked. Similar behav-
ior are observed when computing the same experiment on other chromosomes,
or on the entire genome.
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Abstract
A Yule tree is the result of a branching process with constant birth and death rates. Such a

process serves as an instructive null model of many empirical systems, for instance, the

evolution of species leading to a phylogenetic tree. However, often in phylogeny the only

available information is the pairwise distances between a small fraction of extant species

representing the leaves of the tree. In this article we study statistical properties of the pair-

wise distances in a Yule tree. Using a method based on a recursion, we derive an exact, an-

alytic and compact formula for the expected number of pairs separated by a certain time

distance. This number turns out to follow a increasing exponential function. This property of

a Yule tree can serve as a simple test for empirical data to be well described by a Yule pro-

cess. We further use this recursive method to calculate the expected number of the n-most

closely related pairs of leaves and the number of cherries separated by a certain time dis-

tance. To make our results more useful for realistic scenarios, we explicitly take into account

that the leaves of a tree may be incompletely sampled and derive a criterion for poorly sam-

pled phylogenies. We show that our result can account for empirical data, using two families

of birds species.

Introduction
The speciation process in evolution can be regarded as a branching process. One of the simplest
stochastic models for a branching process is the so called Yule process [1, 2]. In this model
branches are assumed to split with a constant rate and both resulting branches will evolve inde-
pendently in time. Starting from one branch, a tree will grow, such that the number of leaves
on average increases exponentially in time. In a more general version of the Yule tree each
branch can also die and get extinct with a constant rate.

Despite its simplicity, many phenomena in different fields of science have been successfully
modeled using the Yule process [3, 4]. Particular examples include statistical properties of the
number of species in a genus [1], the number of members in protein and gene families [5, 6]
and phoneme frequencies in languages [7]. In stochastic modelling of biological evolution, the
Yule process is often useful as an instructive null hypothesis [8–11], even when its assumptions
are clearly violated.

PLOSONE | DOI:10.1371/journal.pone.0120206 March 31, 2015 1 / 17

a11111

OPEN ACCESS

Citation: Sheinman M, Massip F, Arndt PF (2015)
Statistical Properties of Pairwise Distances between
Leaves on a Random Yule Tree. PLoS ONE 10(3):
e0120206. doi:10.1371/journal.pone.0120206

Academic Editor: Arndt von Haeseler, Max F. Perutz
Laboratories, AUSTRIA

Received: October 10, 2014

Accepted: January 20, 2015

Published: March 31, 2015

Copyright: © 2015 Sheinman et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.



As an illustrative example of the branching process we present the reconstructed phyloge-
netic tree of species in the Siilvidae family of birds in the left panel of Fig. 1. The basis of such a
reconstructed tree is pairwise distances between individual species. The color-coded matrix of
such distances for the species is shown in the right panel of Fig. 1. The statistical properties of
such a matrix for a Yule tree is the focus of our article.

Statistical properties of Yule trees have been intensively studied and much is already known.
One of the most useful results is the distribution of the number of leaves on a Yule tree [12].
This exact analytical result is widely exploited, in particular, for reconstruction of phylogenetic
trees and for estimation of rates of speciation and extinction [10, 11, 13]. Other discrete proper-
ties have been studied in Refs. [14–17] as well as properties of the distribution of branch
lengths [18, 19].

Often the pairwise distances between all pairs of species in a group of species is the only
available information useful for reconstruction of the evolutionary history of the group. For ex-
ample, in phylogeny reconstruction, one can estimate the pairwise distance in time between
two species (twice the time to their last common ancestor) using the molecular clock approach,
together with morphological considerations and information about the fossil record [20]. Mo-
tivated by observations of mitochondrial DNA sequences with no recombination, the distribu-
tion of pairwise distances has been studied in Ref. [21] for a tree with discrete generations and
a given number of leaves. In this study, the authors use a sort of mean-field approach, ignoring
fluctuations in the number of leaves during the growth of the tree, to derive an approximate
formula for the pairwise distances distribution on a tree.

Here we present a general method to derive the distribution of pairwise distances and other
statistical properties on a continuous random Yule tree of a certain height with given birth and
death rates. Using our method, we obtain exact, analytic, closed, non-recursive and compact
formulas for the pairwise distance distribution, the distribution of distances to the closest
neighbour, the distance distribution in so-called cherries, as well as a more general formula for
the distribution distance to the n-th closest neighbour.

Fig 1. One of the reconstructed trees for the Siilvidae family of species, taken from [28] (left) and its distancematrix (right). The tree includes only
the branches which lead to survived and observed leaves.

doi:10.1371/journal.pone.0120206.g001
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Often, in biological context, one does not have an access to data about all existing species
(i.e. leaves of a phylogenetic tree) [22]. Instead, species are incompletely sampled, or might
have been subject to a recent massive extinction event [23]. As long as the extinction of species
is random, both scenarios are equivalent on macroevolutionary timescales. In our study, we
take the incomplete sampling explicitly into account, which allows us to make statements
about the fraction of sampled species, using only the available data.

In the next section we will start with a formal definition of the Yule process and then derive
the above mentioned distributions of pairwise distances. For illustrative purposes we also pres-
ent numerical simulations perfectly matching our expectations. At the end of our article we
apply our theoretical consideration to empirical data and analyze the speciation process in two
families of birds for which data on speciation times and pairwise distances is available. One ad-
vantage of our approach is that we do not need to reconstruct a phylogenetic tree but can solely
work with data on pairwise distances.

A Yule tree with constant branching and extinction rates and
incomplete sampling of leaves

Definition of the Yule Tree
A Yule tree is defined as follows [1, 2]. At time t = 0 there is one individual. As time progresses,
this individual can branch and give birth to another individual. In an infinitesimally short time
interval [t, t+dt], all individuals can give birth to another one, each with the probability λdt.
The probability of an individual to die in the same time interval is μdt. We consider an ensem-
ble of trees of age (height) T, referring to all existing individuals at this time as leaves. To make
the model more realistic, we assume that due to incomplete sampling (or a short massive ex-
tinction event) just before the time T, each leaf is observed with a certain probability 0� σ� 1.
The described process is illustrated in Fig. 2. We assume that the incompleteness of the sam-
pling is random and ignore possible biases due to different sampling schemes [24].

A Few Useful Results for Random Trees Generated by a Yule Process
Consider a Yule tree with birth rate λ and death rate μ, that have been grown for total time
(height) T. In the case where all leaves are sampled (σ = 1), let P(MjT, σ = 1) be the probability
that there areM leaves on a tree of age T. Following [25], we can then write the probability that
no individual (M = 0) survives through to time T as

P M ¼ 0jT; s ¼ 1ð Þ ¼ 1� l� m
l� me�ðl�mÞT : ð1Þ

ForM> 0 we have

P MjT; s ¼ 1ð Þ ¼ l� m
l� me�ðl�mÞT 1� 1� e�ðl�mÞT

1� m
l e

�ðl�mÞT

� �
1� e�ðl�mÞT

1� m
l e

�ðl�mÞT

� �M�1

: ð2Þ

We can derive corresponding equations also for the case where species are sampled incom-
pletely. In this case, the probability that no species is observed is

P M ¼ 0jTð Þ ¼ Pð0jT;s ¼ 1Þ þ
X1
m¼1

m
0

� �
s0ð1� sÞm�0PðmjT;s ¼ 1Þ ¼ emTðm� lþ slÞ � elTms

emTðm� lþ slÞ � elTls
ð3Þ
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and forM> 0

P MjTð Þ ¼
X1
m¼M

m
M

� �
sMð1� sÞm�MPðMjT; s ¼ 1Þ ¼ eTðm�lÞ � 1½ �M�1lM�1ðl� mÞ2sMeMTðl�mÞ

ls� lþ m� lseTðl�mÞ½ �Mþ1 : ð4Þ

Despite these complicated expressions, the average number of observed leaves in a tree of
age T is simply given by

hMðTÞi ¼
X1
m¼0

mPðmjTÞ ¼ seðl�mÞT ð5Þ

and the average total number of pairs is

X1
m¼0

mðm� 1Þ
2

PðmjTÞ ¼ s2l
l� m

eðl�mÞT eðl�mÞT � 1
� �

: ð6Þ

Fig 2. An example of the rooted Yule tree of age T. Filled circles (1, 3, 5, 7 and 8) denote observed leaves. Empty circles (2, 4 and 6) denote survived
but not observed leaves. Short horizontal lines denotes an extinction event. Long, dashed horizontal lines denote the origin of the tree, the first branching
event and the time of sampling the tree, from top to bottom. After the first branching at time T1 the two resulting subtrees both encompassM1 =M2 = 4 leaves.
However, the number of observed leaves is 2 (leaves 1 and 3) for the left subtree and 3 (leaves 5, 7 and 8) for the right one. The thick green line denotes the
pairwise evolutionary distance between the two observed leaves 5 and 7. The horizontal dimension is meaningless. In this example for leaf 1 the first closest
observed leaf is 3, the second (as well as the third and the fourth) is 5 (or 7 or 8). The tree has two observed cherry pairs: (1, 3) and (7, 8).

doi:10.1371/journal.pone.0120206.g002
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The total length of all branches in a Yule tree is given by the integral:Z T

0

hMðTÞidt ¼
Z T

0

eðl�mÞtdt ¼ 1

l� m
eðl�mÞT � 1
� �

: ð7Þ

To derive a corresponding expression for a a tree reconstructed only from incompletely
sampled leaves, we note that the average number of branches at time t with at least one ob-
served descendant at time T is given by

hMðt;TÞi ¼ eðl�mÞt 1� Pð0jT � t; sÞ½ �: ð8Þ

In the case where t = T, we have that hM(T, T)i = σhM(T)i. The average total branch length on
the tree of length T excluding the branches which do not lead to an observed leaf is then given
by Z T

0

hMðt;TÞi dt ¼ seTðl�mÞ

m� lþ sl
ln

lsþ ðl� sl� mÞeTðm�lÞ

l� m
: ð9Þ

In the limit of no extinction, μ! 0, and exhaustive sampling, σ! 1, Equation (9) is identical
to Equation (7). We turn now to calculations of the statistical properties of pairwise distances,
using the above formulas.

The Distribution of Pairwise Distances
In a biological context the available data often consist of the pairwise distances separating any
pair in a group of species. Commonly these distances are used to reconstruct a phylogenetic
tree representing the evolutionary history of a group of species. From such a tree one can then
try to estimate rates of speciation and extinction [10, 11]. Here we propose another approach
of analysing such data on pairwise distances circumventing the reconstruction of a phylogenet-
ic tree, provided that the pairwise distances between the leaves are properly estimated.

Let N(tjT)dt be the average number of pairs of leaves on a tree of length (evolution time) T,
separated by a time distance in the interval [t, t+dt], i.e. their last common ancestor lived in the
time interval [T−t/2−dt/2, T−t/2]. Now consider the branching process as illustrated in Fig. 2.
The first branching happened at time T1 and the two resulting subtrees encompass, say,M1

andM2 leaves, respectively. In this situation one can derive the following recursion relation

NðtjTÞ ¼ 2NðtjT � T1Þ þ s2M1M2 d t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þ½ �e�mT1 ð10Þ

where the first part in the summation on the right hand side counts the pairs inside each of the
two subtrees and the second one counts the pairs between them. The common multiplicative
factor, e�mT1 , expresses the probability that the first branch survives to the time T1 (otherwise, N
(tjT) = 0). The function I is the indicator function, defined by:

IðconditionÞ ¼ 1 if condition holds

0 otherwise
ð11Þ

�

and δ(x) is the Dirac delta function. Averaging overM1,M2 (using Equations (3, 4) with time T
−T1) and then T1, which follows an exponential distribution with mean 1/λ, one obtains:

NðtjTÞ ¼ 2l
Z 1

0

NðtjT � T1Þe� l�mð ÞT1dT1 þ
s2l
2

elte� lþmð Þ T�t=2ð ÞI 0 � t � 2Tð Þ: ð12Þ
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In Laplace space one gets:

NðtjSÞ ¼ 2l
NðtjSÞ

Sþ lþ m
þ s2l

2

elt�St=2

Sþ lþ m
; ð13Þ

where S is the Laplace conjugate variable of T. Solving and inverting the Laplace transform one
finally gets the solution:

NðtjTÞ ¼ s2l
2

e l�mð ÞT e l�mð Þt=2 ð14Þ

for 0� t� 2T and zero otherwise. Fascinatingly, this distribution is a simple exponential func-
tion in t. The distribution is cut off at t = 2T because in a tree of age T two leaves cannot be sep-
arated by a time larger than 2T. In Fig. 3(a) we show this distribution of pairwise distances for
several parameter values together with results of numerical simulations, which match perfectly
our theoretical expectations. This result, applied for trees of DNA sequences can account for
statistics of exact sequence matches in genomes of eukaryotes [26].

One can also derive the same result (14) using the following simple arguments. Pairs, sepa-
rated by a time in the interval [t, t+dt], branched at the time interval [T−t/2−dt/2, T−t/2]. The
average number of branches in this interval is given by λe(λ−μ)(T−t/2) dt/2. The average number

Fig 3. Comparison of the analytic results with numerical simulations.Markers indicate numerically obtained data using the following parameters set.
T = 1, λ = 6, μ = 0 or 3 (circles or squares) and σ = 1 or 0.1 (empty or filled symbols). Lines represent the analytic formulas. (a) Density of number of pairs
separated by a certain time, t. Lines were obtained using Equation (14). (b) Density of number of leaves separated by a certain time, t with their closest leaf.
Lines were obtained using Equation (17) or Equation (20) with n = 1. (c) Density of number of leaves separated by a certain time, t with their next-closest leaf.
Lines were obtained using Equation (33) or Equation (20) with n = 2. (d) Density of number of cherries separated by a certain time, t. Lines were obtained
using Equation (21).

doi:10.1371/journal.pone.0120206.g003
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of observed pairs from a branch at this time is given by (σe(λ−μ)t/2)2. Multiplying the two factors
one gets Equation (14). However, for other quantities, derived below, the recursive equation
approach is more effective.

The Distribution of the Minimal-Distance to Other Leaves
Using the recursive method from the previous Section one can also compute other interesting
quantities. For instance, in certain situations, the distance separating a leaf to its most closely
relative may be estimated more precisely than its distance to other leaves in the tree. Thus, we
might be interested in N1(tjT)dt—the average number of leaves on the tree of age T, separated
by the time distance between t and t+dt from their most closely related leaf. Interestingly, cal-
culating this quantity lets us make certain statements on the value of the sampling rate σ.

To calculate this distribution, we can again write a recursion relation, assuming that the first
branching occurred at time T1. In this case one gets the distribution of the minimal distance
time in the form

N1ðtjTÞ ¼ f2N1ðtjT � T1Þ þ 2Pð1jT � T1Þ 1� Pð0jT � T1Þ½ �d t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þge�mT1 ; ð15Þ

where P(MjT) is the probability to observeM leaves after time T, as computed in Equations (3) and (4). In con-

trast to the recursion relation for the distribution of all pairwise distances, we count a branching point only if

M1 = 1 andM2 > 0 orM1 > 0 andM2 = 1, as expressed by the product 2P(1jT−T1)[1−P(0jT−T1)] in

Equation (15).

Averaging Equation (15) over T1, one gets:

N1ðtjTÞ ¼ 2l
Z 1

0

N1ðtjT � T1Þe�ðlþmÞT1dT1 þ
e�ðlþmÞTþ 3l=2þmð Þtlðl� mÞ3s2

e
lt
2ls� e

mt
2ðm� lþ slÞ

h i3 I 0 � t � 2Tð Þ: ð16Þ

The solution of this equation is given by

N1ðtjTÞ ¼
e
lt
2þlTþmt�mTlðl� mÞ3s2

e
lt
2ls� e

mt
2ðm� lþ slÞ

h i3 ð17Þ

for 0� t� 2T and 0 otherwise. Results of numerical simulations perfectly match our theoreti-
cal expectations (see Fig. 3(b)). Interestingly, the function N1(tjT) from Equation (17) possesses
a maximum only if

s <
1

3
1� m

l

� �
� 1

3
ð18Þ

and the position of the maximum

t1max �
2

l� m
ln

lð1� sÞ � m
2ls

ð19Þ

is in the range [0, 2T]. This result is useful for a quick estimation of the data completeness. In
particular, a maximum in the distribution of the minimal distance implies that the sampling of
the considered tree is not complete and σ< 1/3.

By similar arguments we can also derive expressions for the distributions of second minimal
distances, N2(tjT) (see Appendix) and of the n-th minimal distance Nn(tjT) (see Appendix) to
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other leaves. The latter quantity is computed to be

NnðtjTÞ ¼
nð1þ nÞðm� lÞ3sðlsÞn

2

e
1
2tðm�lÞ � 1

� �n�1
e
ntl
2 þTlþtm�Tm

e
tm
2ðm� lþ slÞ � e

tl
2ls

h inþ2 ð20Þ

for 0� t� 2T and 0 otherwise. In Appendix we also calculate the distribution of distances in
“cherries”. Cherries are adjacent pairs of leaves, such that they are reciprocal closest neighbors
to each other (see Fig. 2 for illustration of cherries):

NLðtjTÞ ¼
lðl� mÞ4s2

2

e
tl
2þTlþ3tm

2 �Tm

e
tm
2ðm� lþ slÞ � e

tl
2ls

h i4 ð21Þ

for 0� t� 2T and 0 otherwise. The function NΛ(tjT) from Equation (21) possesses a maxi-
mum only if

s <
1

4
1� m

l

� �
� 1

4
ð22Þ

and the position of the maximum

tLmax �
2

l� m
ln

ð1� sÞl� m
3ls

ð23Þ

is in the range [0, 2T]. This result is useful for a quick estimation of the data completeness. In
particular, a maximum in the distribution of the distance between cherries implies that the
sampling of the considered tree is not complete and σ< 1/4.

For illustration purposes we show the distributions for the second minimal distance in
Fig. 3(c) and, for cherries, in Fig. 3(d).

Beyond the Averages
Above results are average expectations. For instance, in The Distribution of Pairwise Distances
Section we derive N(tjT), defined as the average density number of pairs, separated by a certain
time distance t, on a tree of length T. The average is over many realizations, say Smany, of the
Yule trees with a given set of parameters λ, μ, σ and T. Namely,

NðtjTÞ ¼ hNsðtjTÞis ¼ lim
S!1

1

S

XS

s¼1

NsðtjTÞ; ð24Þ

where Ns(tjT) is the density number of pairs separated by a time distance in the interval [t, t
+dt] in an individual sample tree number s. In reality one often possesses information only
about one specific tree s = 1, i.e. N1(tjT). Therefore, we are interested not only in the derived av-
erages of N(tjT), Nn(tjT), NΛ(tjT) etc. but also their distributions in finite time intervals. The
last becomes especially important in the maximum likelihood fitting and model testing. In the
discussion below we refer to the distribution of the number of pairs separated by a certain time,
N1(tjT). However, the same arguments can be applied to other quantities, like the n-th minimal
distance or the distance in cherries, which we mention above.

Consider an infinitesimal (in practice very small) interval, [t, t+dt], such that N(tjT)dt� 1.
The number of pairs N1(tjT)dt in this interval is distributed with the mean N(tjT)dt. However,
in the considered small bin limit, the mean does not represent well the typical value because
the distribution of N1(tjT)dt is not well peaked but possesses a very small probability of having
any positive value, while probability of having zero is almost one (see Appendix).
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Pairs separated by the time in the interval [t, t+dt] branched at the time interval [T−t/2−dt/
2, T−t/2]. The probability to have a branch in this interval is given by λe(λ−μ)(T−t/2) dt/2. Given
that there is a branching point in this interval it can lead to different number of leaves. The
probability that no observed pairs survive from this branching is given by 1−[1−P(0jt/2)]2,
where P(MjT) is the probability to observeM leaves on a tree of age T and is given in Equations
(3, 4). Therefore, the probability that there are no observed pairs separated by the time in the
interval [t, t+dt] is given by

Pr N1ðtjTÞdt ¼ 0ð Þ ¼ 1� leðl�mÞðT�t=2Þdt=2f1� 1� Pð0jt=2Þ½ �2g: ð25Þ
In sum, in the small bin limit it is convenient to break the full distribution in two distribu-

tions: One comprising only the peak at zero and a second representing all samples with N1(tjT)
dt 6¼ 0. The total average can be broken as follow:

NðtjTÞdt ¼ 0�Pr N1ðtjTÞdt ¼ 0ð Þ þ ~N ðtjTÞdt � 1�Pr N1ðtjTÞdt ¼ 0ð Þ½ �: ð26Þ

Here ~N ðt j TÞ is the average of N1(tjT) over the tree realizations with N1(tjT)> 0. It can be
computed to be:

~N ðtjTÞ ¼ lim
S!1

PS
s¼1 N

sðtjTÞ
~SðtÞ ¼ NðtjTÞ

1�Pr N1ðtjTÞdt ¼ 0ð Þ ¼
1

dt
1þ sl

e
l�m
2 t � 1

l� m

 !2

; ð27Þ

where ~SðtÞ ¼PS
s¼1 1� dNsðtjTÞ;0

h i
is the number of samples with N1(tjT)> 0. Since, 1−Pr

(N1(tjT)dt = 0)� 1, the value of N(tjT)dt is not representative of the expected empirical aver-

age of N1(tjT)dt for finite S and, in particular, S = 1. However, the value of ~N ðt j TÞ, derived
above (see Equation (27)), is representative of the expected empirical average of positive values
of Ns(tjT)dt. We illustrate this in Fig. 4

Constrains on the sampling fraction
One can easily see that all the derived above results do not depend explicitly on the parameters
λ, μ and σ, but only on their combinations: λ−μ and σλ. Therefore, one cannot estimate the
sampling fraction, σ, based on fitting the empirical data to the derived formulas (see examples
in the next Section). The same loss of information in reconstructed trees was reported, based
on an analysis of the density of bifurcation times in the reconstructed tree [27].

However, the information about the values of λ, μ and, most intriguingly, σ is not lost
completely. For instance, observing a maximum in the distribution of the minimal distances
one can deduce that σ< 1/3 (see Equation (18)). Observing a maximum in the distribution of
the distances between cherries one can deduce that σ< 1/4 (see Equation (23)). It is of an inter-
est to construct other distributions which, possessing a maximum, provide information about
the value of the sampling fraction, σ.

Consider an average density of pairs of leaves with the following property. Given that the
first (second) leaf of the pair has a nearest neighbor at a distance (if a leaf is alone in the tree we
define the distance to its nearest neighbor as twice the height of the tree) t1 (t2) the quantity
min(t1, t2) is given by t. We denote this density by Nmin2(tjT). The recursive equation for this
quantity is given for a given time of first bifurcation, T1 by

Nmin2ðtjTÞ ¼ 2Nmin2ðtjT � T1Þ þ 2 seðl�mÞðT�T1Þ �
R t

0
N1ðt0jT � T1Þdt0

� �
N1ðtjT � T1Þ

� 	
e�mT1 ð28Þ
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After average over T1 the solution is given by

Nmin2ðtjTÞ ¼
2l2s3ðl� mÞ4eTðl�mÞ

3l� m
2letðl�mÞ þ ðl� mÞe�1

2tðlþmÞ þ ðm� 3lÞe12tðl�mÞeTðl�mÞ

ls� lþ m� lse12tðl�mÞ� �5 : ð29Þ

This function possesses a maximum only if

s <
1

5
1� m

l

� �
� 1

5
ð30Þ

Therefore, observing a maximum in the distribution of the minimal distance to the closest
neighbors between two leaves one can deduce that σ< 1/5. Using our recursive method one
can calculate different distributions (say, the minimal distance to the closest neighbor among
three leaves etc.) which, exhibiting a maximum, provide direct information about an upper
limit on the sampling fraction.

Comparison of the derived results to empirical data
In this Section we demonstrate the relevance of the obtained analytic formulas to empirical
data, studying the pairwise distances between species in families of the evolutionary tree. For
comparison with the derived results we choose N(tjT), Nn(tjT) with n = 1, 2, 3, 4 and NΛ(tjT).
The results are presented in Fig. 5 for the Siilvidae family of birds (see one of the reconstructed
trees for this family and its distance matrix in Fig. 1) and for the Tyrannidae family of birds in

Fig 4. The benefit to use Ñ (tjT) instead ofN(tjT) to estimate the parameters of the evolution process
in a case of a small dataset. In this plot T = 1, λ = 11, μ = 5, σ = 0.01 and dt = 0.005. After average over many
samples (S* 106 in this particular case) empirical averages of bothN(tjT) (full circles) and ~Nðt j TÞ (open
circles) converge nicely to the analytic formulas. The last are given in Equations (14) and (27), respectively,
and are denoted by the lines in the figure (see the legend). However, for a single random tree, S = 1, the
values of N1(tjT) (diamonds) are highly dispersed (most intervals show zero counts and do not show up in the
semilogarithmic plot), such that their fit to the analytic formula ofN(tjT) is not expected to lead to a good
estimation of the model’s parameters. In contrast, the values of N1(tjT), ignoring the bins whereN1(tjT) = 0,
are well distributed around ~Nðt j TÞ, although in this example the tree possesses only 19 observed leaves,
such that the data is very poor (only 171 pairs in total).

doi:10.1371/journal.pone.0120206.g004
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Fig. 6. For every family we analyze Bayesian sampling of 1000 trees downloaded from the data-
base [28]. Namely, we collect pairwise distances, n-minimal distances and distances between
cherries of all 1000 trees and plot the histograms of these distances (with the y-axis divided by
1000) in Figs. 5 and 6. We fit all the points in a figure using the iterative reweighted least
squares algorithm [29] in Matlab. Unfortunately, the explicit dependencies on λ and μ in Equa-
tions (14, 20, 21) are insufficient to estimate all parameters. Instead one can estimate from the
fit only the effective growth rate, λ−μ and λσ. The value of σ can be obtained assuming a certain
ratio μ/λ. In the captions of Figs. 5 and 6 we present the obtained estimates for σ for different
assumptions about the ratio μ/λ.

Over all, the fits to empirical data look satisfactory and result in a reasonable set of parame-
ters, which roughly agree with the ones given in [28]. This indicates that certain statistical
properties of speciation can be well captured by a simple Yule process. However, in some cases,
deviations can be observed. For example, for the Sylviidae family the pairwise distances distri-
bution deviates from the prediction for t> 30 Myr, while for the Tyrannidae family we observe
a clear deviation for distances around 55 Myr in all our estimates. This indicates a massive radi-
ation event in the considered family of birds around 27.5 Myr ago, as already reported in [28],
or other violation of the Yule process assumptions.

Interestingly, we can state that the Sylviidae family of birds is currently not well sampled. In
fact, the estimator for the upper limit of the sampling fraction σ is 30% (see Fig. 5).

Summary and concluding remarks
In this paper we present a novel method to calculate statistical properties of Yule trees. The
method is based on a recursive equations which can be solved using the Laplace transform. We
demonstrate the strength of our method deriving formulas for (i) average number of pairs sep-
arated by a certain time (Equation (14)), (ii) the number of most closely related pairs separated
by a certain time (Equation (17)), (iii) the number of next-most closely related pairs separated
by a certain time (Equation (33)), (iv) the number of n-most closely related pairs separated by
a certain time (Equation (20)) and (v) the number of cherries separated by a certain time
(Equation (21)).

Our results can be compared to empirical data using only the information about pairwise
distances between leaves of a considered tree. We assume that the estimation of the pairwise
distances is precise enough. If the distances are estimated using genetic divergence, this assume
that the molecular clock reflect adequately the real time distance. If this holds the reconstruc-
tion of the tree structure is not required. This is a particular strength of our method because
the reconstruction of such trees for a large number of leaves is sometimes problematic. In such
cases one often considered a posterior distribution of trees which is generated by Bayesian sam-
pling [30, 31]. Such a distribution of trees can still be easily analyzed using our method, based
on recursive equations. Analyzing such ensembles of trees we use only their distance matrices.

We demonstrate the relevance of our results to statistical properties of pairwise evolutionary
time distances between biological species. We find that in some cases the speciation process is
well described by the Yule model. Significant deviations from the derived distributions are ex-
pected to be indicative for massive extinction or radiation events. In the case where the as-
sumptions of the Yule process are justified, we expect our results to be useful for estimation of
the incompleteness of the data sampling, i.e. the fraction of observed leaves out of all existing
leaves, σ. However, similarly to the method developed in Ref. [11], all the derived results de-
pend only on three parameters: λ−μ, λσ and σe(λ−μ)T. Therefore, even knowing those three pa-
rameters one cannot estimate the values of the four unknown parameters: the rates λ, μ, the
height of the tree, T and the sampling fraction, σ, without an additional assumption about one
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of these parameters, for instance the fraction μ/λ. After estimation of (λ−μ) and (λσ) one can
get an upper bound for the sampling fraction in the form (note that μ� 0)

s � ðslÞ
ðl� mÞ : ð31Þ

If the death rate is known to be much smaller than the birth rate, 0� μ� λ, the upper bound
is expected to be a good estimate for σ.

Fig 5. Comparison of analytic predictions to the pairwise distances data of Sylviidae family withM = 75 species taken from the database [28] with
t� 0.6 × 108Myr. The markers represent the empirical data, while the lines represent the analytic formulas with fitted parameters. (a) Pairwise distance
distribution. (b) Minimal distance distribution.(c-e) n-minimal distance distribution. (d) Cherries distance distribution. The lines are based on following set of
parameters: λ−μ = 15.2 × 10−8yr−1 and λσ = 4.6 × 10−8yr−1. For μ = 0, 0.2, 0.4, 0.6, 0.8 × λ this corresponds respectively to σ = 0.3, 0.24, 0.18, 0.12, 0.06.

doi:10.1371/journal.pone.0120206.g005
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If it is known that the sampling is perfect, σ = 1, one can estimate both the birth and the
death rate. However, in contrast to Ref. [11], the method presented here does not require the
reconstruction of the tree, but is solely based on statistical properties of pairwise distances be-
tween the leaves of the tree.

In the general case, one can get an upper limit for the sampling fraction and a lower limit
for the birth rate by setting μ/λ = 0. These bounds are expected to be useful for analysis of expo-
nentially growing trees. Such trees can appear in phylogeny when analyzing the evolution of
taxa, but also in population genetics, for instance, when considering an exponentially growing
sub-population under the influence of a positive selection.

Fig 6. Comparison of analytic predictions to the pairwise distances data of Tyrannidae family withM = 460 species taken from the database [28]
with t� 0.8 × 108Myr. The markers represent the empirical data, while the lines represent the analytic formulas with fitted parameters. (a) Pairwise distance
distribution. (b) Minimal distance distribution. (c-e) n-minimal distance distribution. (d) Cherries distance distribution. The fit is performed for all points in the
figure with t� 0.5 to avoid clear break down of the Yule tree assumptions for larger distances (see text). The lines are based on following set of parameters: λ
−μ = 8 × 10−8yr−1 and λσ = 6.4 × 10−8yr−1. For μ = 0, 0.2, 0.4, 0.6, 0.8 × λ this corresponds respectively to σ = 0.8, 0.64, 0.48, 0.32, 0.16.

doi:10.1371/journal.pone.0120206.g006
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Appendix

Simulation details
To simulate Yule process for the generation of phylogenetic trees we use a Kinetic Monte Carlo
algorithm. For a given birth rate λ, death rate μ, and sampling fraction σ, the system is initiated
with one “alive” lineageM = 1 at time t = 0. The system is then iteratively propagated to the
time t = T. In each iterative step one alive lineage is chosen at random and either either split
into two alive lineages (with probability λ/(λ+μ)) or killed (with probability μ/(λ+μ)). In each
step the time is incremented by an amount Δt that is exponentially distributed with mean 1/(M
(λ+μ)), whereM is the number of alive lineages. After the time t = T has been reached, alive
lineage are kept in the set of sampled leaves with probability σ.

During the whole simulation the complete tree—especially information about all branching
points and branching times—are kept in memory. This way the distribution of pairwise dis-
tances or other quantities described in the text can easily be computed. To obtain the mean of
such distributions we usually generated at least 106 trees and computed the averages.

Second-minimal-distance distribution
Let N2(tjT)dt be the average number of leaves on the tree of length T, separated by the time dis-
tance t from their second-most closely related leaf. Then, if the first branching occurs at time
T1 and the two resulting subtrees possessM1 andM2 leaves, respectively, one gets the distribu-
tion of the minimal distance time in a form

N2ðtjTÞ ¼ 2N2ðtjT � T1Þe�mT1

þ 2 2Pð2jt=2Þ 1� Pð0jt=2Þð Þ þ Pð1jt=2Þ 1� Pð0jt=2Þ � Pð1jt=2Þð Þ½ �
� d t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þe�mT1 :

ð32Þ

After average over T1 and solving the resulting equation one obtains

N2ðtjTÞ ¼
3l2ðl� mÞ3s3 e

tl
2 � e

tm
2

� �
e
tm
2ðm� lþ slÞ � e

tl
2ls

h i4 etl2þTlþtm�Tm ð33Þ

for 0� t� 2T. Similarly, one can obtain any third-minimal distance distribution forth- etc.
The general formula for the n-minimal-distance distribution is calculated in the following.

n-minimal-distance distribution
Let Nn(tjT)dt be the average number of leaves on the tree of length T, separated by the time dis-
tance t from their n-most closely related leaf. This notation means that 1-most closely related
leaf is the closest one, 2-most closely related leaf is the second-most closest one etc. Then, if the
first branching happens at time T1 and the two resulting subtrees possessM1 andM2 leaves, re-
spectively, one gets the distribution of the minimal distance time in a form

NnðtjTÞ ¼ 2NnðtjT � T1Þe�mT1

þ2 nPðnjt=2ÞP>ð0jt=2Þ þ ðn� 1ÞPðn� 1jt=2ÞP>ð1jt=2Þ þ :::þ Pð1jt=2ÞP>ðn� 1jt=2Þ½ �
�d t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þe�mT1

¼ 2NnðtjT � T1Þ þ 2d t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þ
Xn
k¼1

k Pðkjt=2ÞP>ðn� kjt=2Þ
" #

e�mT1 :

ð34Þ
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Here

P>ðkjTÞ ¼
skþ1ðm� lÞlk eTðm�lÞ � 1½ �k eTll� eTmmð ÞkeTl
eTmðm� lþ slÞ � eTlls½ �kþ1 l� eTðm�lÞm½ �k

ð35Þ

is the probability to observe more than k leaves on a tree of age T and P(njT) is given in Equa-
tions (3, 4). After average over T1 and solving the resulting equation one obtains

NnðtjTÞ ¼
nð1þ nÞðm� lÞ3sðlsÞn

2

e
1
2tðm�lÞ � 1

� �n�1
e
ntl
2 þTlþtm�Tm

e
tm
2ðm� lþ slÞ � e

tl
2ls

h inþ2 ð36Þ

for 0� t� 2T and 0 otherwise, resulting in Equation (20).

Cherries-distance distribution
A cherry is a pair of adjacent tips on a tree (see Fig. 2). Let NΛ(tjT)dt be the average number of
cherry pairs on the tree of length T, separated by the time distance t. Then, if the first branch
splits at time T1 and the two resulting subtrees possessM1 andM2 leaves, respectively, one gets
the distribution in the form

NLðtjTÞ ¼ 2NLðtjT � T1Þ þ P2ð1jT � T1Þd t � 2 T � T1ð Þð ÞI 0 � t � 2Tð Þ½ �e�mT1 : ð37Þ
After average over T1 and solving the resulting equation one obtains

NLðtjTÞ ¼
lðl� mÞ4s2

2

e
tl
2þTlþ3tm

2 �Tm

e
tm
2ðm� lþ slÞ � e

tl
2ls

h i4 ð38Þ

for 0� t� 2T and 0 otherwise, resulting in Equation (21).

The distribution of N1(t|T)dt
In this Appendix we derive the distribution of N1(tjT)dt. Consider an infinitesimal (in practice
very small) interval, [t, t+dt], such that N(tjT)dt� 1. The number of pairs N1(tjT)dt in this in-
terval is distributed with the mean N(tjT)dt. The full distribution can be derived using the
following arguments.

Pairs, separated by the time in the interval [t, t+dt], branched at the time interval
[T−t/2−dt/2, T−t/2]. The probability to have a branch in this interval is given by λe(λ−μ)(T−t/2)

dt/2. Given that there is a branching point in this interval it can lead to different number of
leaves and, therefore, pairs separated by the time in the interval [t, t+dt]. The probability that
no observed pairs survive from this branching is given by 1−[1−P(0jt/2)]2, where P(njT) is the
probability to observe n leaves on a tree of age T and is given in Equations (3, 4). The probabili-
ty that there are no observed pairs separated by the time in the interval [t, t+dt] is given by
Equation (25). The probability that there are n> 0 observed pairs separated by the time in the
interval [t, t+dt] is given by

Pr N1ðtjTÞdt ¼ nð Þ ¼ leðl�mÞðT�t=2Þdt=2
Xn

n1 ;n2¼1

Pðn1jt=2ÞPðn2jt=2Þdn1n2 ;n

¼ leðl�mÞðT�t=2Þdt=2
X
n1 jn

Pðn1jt=2ÞPðn=n1jt=2Þ:

ð39Þ

The last sum runs over all divisors of n, including 1 and n. One can see the comparison of
Equations (25) and (39) to numerical results in Fig. 7.
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[79] S. Milojević, “Power law distributions in information science: Making the

case for logarithmic binning,” Journal of the American Society for Informa-

tion Science and Technology 61, 2417 (2010).



Bibliography 181

[80] B. M. Hill et al., “A simple general approach to inference about the tail of

a distribution,” The annals of statistics 3, 1163 (1975).

[81] G. U. Yule, “A mathematical theory of evolution, based on the conclusions of

dr. jc willis, frs,” Philosophical Transactions of the Royal Society of London.

Series B, Containing Papers of a Biological Character pp. 21–87 (1925).

[82] D. G. Kendall, “Stochastic processes and population growth,” Journal of the

Royal Statistical Society. Series B (Methodological) 11, 230 (1949).

[83] F. Cunningham, M. R. Amode, D. Barrell, K. Beal, K. Billis, S. Brent,

D. Carvalho-Silva, P. Clapham, G. Coates, S. Fitzgerald, et al., “Ensembl

2015,” Nucleic Acids Research 43, D662 (2015).

[84] P. Lamesch, T. Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan,

R. Muller, K. Dreher, D. L. Alexander, M. Garcia-Hernandez, et al., “The

arabidopsis information resource (tair): improved gene annotation and new

tools,” Nucleic Acids Research 40, D1202 (2012).

[85] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
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