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Chapter 1

Introduction

Feedback effects are unavoidable in fusion plasmas: Maxwell’s equations, describing the evolution
of electromagnetic fields, involve the charge and current densities of the particles. In turn, particles
trajectories are modified by the fields through the equations of motion. Then the cumulative effect
of this feedback loop can lead to plasma deconfinement.

In this work we address the problem of improvement of plasma confinement by control of turbulent
transport and in particular we explore the opportunity of barrier formation. Self-consistent
fluctuations of electromagnetic fields and particle densities lie at the origin of plasma instabilities
and turbulent transport phenomena. In order to understand their underlying mechanisms we
study non-collisional plasma dynamics by applying Hamiltonian tools.

From a general point of view, plasma dynamics can be studied at different levels: in particular,
kinetic and fluid. Both of these admit a Hamiltonian formulation. In the first case for example,
canonical Hamiltonian structure appears while constructing guiding-center model for particle
motion in a six dimensional (p, q) phase space. Such a model permits us to study particle dynamics
in an external electromagnetic field and does not take into account field-particle retroaction. The
second approach, dual to the previous one!, studies the evolution of the particle distribution
function on 6 dimensional phase space. Here a non-canonical Hamiltonian formulation is possible
for retroactive Maxwell-Vlasov model. Finally Hamiltonian structures are known for the group
of fluid models studying evolution of a distribution function on 3 dimensional phase space. The
use of the Hamiltonian approach implies that viscosity and other sources of dissipations are not
taken into account, for example this is a case of Charney—Hasegawa—Mima, two fluid model etc.

1.1 Particle dynamics: guiding center approach

Fusion plasma represents a system with N ~ 10? particles, each of them governed by the
fundamental equation of dynamics mdv/dt = e (E + v x B). Obviously tracking the trajectory
of each particle is totally out of reach. This is why dynamical description at a particular level is
of interest for simplified models when neither interaction between particles nor between fields and
particles is taken into account. Then the motion of a single particle (test-particle) in an external
fields is considered. We will see that such a simplified model allows us to study some concrete
physical effects. This is the case for example of the guiding-center model.

The strong magnetic field approach is relevant for fusion plasmas, this is why at the first
approximation one can neglect fluctuations of magnetic field and consider only electrostatic
turbulence case. In this approach particle motion is multiscale: it consists of fast gyration around
magnetic field lines and the slow drift along the magnetic field lines. The guiding-center approach
arises from separation of the fast dynamics component from its slow one. Such an approach
provides the idea of dynamical reduction.

'Here we imply Eulerian-Lagrangian particle-fluid description duality
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Below we illustrate how the E x B drift model, that is often used by physicists, arises from
the Hamiltonian description for single particle motion inside the electromagnetic field, which is
represented by the electromagnetic potentials (A, V).

E x B model

In canonical variables the autonomous Hamiltonian of the particle in external electromagnetic

fields is given by:

(P —cA(q,7))’
2m

H—

+eVigq,7)+W (1.1)
Then the canonical Poisson bracket has a following expression:

of dg Of g Of g Of dg

{19y =35 3¢ " aq P " owar  arow (1.2)

It was remarked that such a variables are not very practical in use. In fact, canonical momentum
P is not a physical variable of the particle, because it contains coupling with electromagnetic
field. The following transformation permits us to pass from canonical variables to particle local
variables (v, x).

X = q (1.3)
v = (P cA(q) (1.4)
W = K, 7=t (1.5)

(1.6)

Due to such a transformation, the field-particle coupling will be incorporated inside the Poisson
bracket, which is no longer canonical:

1 0f 0g Of O0g
ey = Gy o or v/
eB Of df og  Of 0g
- (avxav“%a‘a% (17)

In order to pass from (1.2) to (1.7) we have used chain rule:

{f. 0tnew =Y _ %{z zj} 99 (1.8)

— old 02
ij

where z; = (r,v,K,t) denotes new phase space variables. The expressions for {z;,z;},,, are
obtained by using the expression for the canonical Poisson bracket:

1
{I‘Z‘,Vj} = —E(S” (19)
e /0A;, OA; e
tvivit = ‘W(aqj ) = B (1.10)
{L,t} =1 (1.11)

Here the magnetic field, that supposed to be constant and uniform is decomposed as follows:
B = Bb. The general case of non-uniform magnetic geometry will be discussed in Chapter 4. In
order to decouple the fast dynamics from the slow one we produce the following decomposition
for the particle position x This induces the second change of variables:
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Figure 1.1: Guiding center

m ~
X = x——b
X ——zbxv
u = v (1.12)
K = W t=r

Note that the ratio m/eB = € here plays the role of a small parameter because of considering
strong magnetic field approach.
Then the Poisson bracket (1.7) transforms into:

_ Yoo (0f0g 0f0g\ Of 0g Of Og
far = b (oia ~axan) Tawar ~ arow
eB ~ ,0f Jg 1~ 0f O0Og

Where we have used tensor analysis notation ab : cd = b-c d-a. The relations for the elementary

brackets between new phase space variables (1.12) are obtained by using the noncanonical Poisson
bracket (1.7):

1 ~
{xi,x;} = _£€ijkbk (1.14)
1 ~ A
eB ~
{w,u;} = _W@ijkbk (1.16)
Wt} =1 (1.17)

Here p = eﬂf) x v denotes the part of the particle position perpendicular to magnetic field that
explicitly depends of fast gyroangle and X denotes the remaining part of the particle position,
which is also called the guiding-center. Let us now consider one simple case when magnetic field
is constant uniform and parallel to z direction B = Be,. The expression for the Poisson bracket
(1.13) becomes:

(f }:L(é’_f@_ﬁ_f@>_§(0f 9 _ of 09)
9= B \ox dy Odyodx/ m?\du, du,  Ouy, du,
1 /0f Og df dg aof dg Of Og
o (Gzau: ~ ouos) T awar  arow (118)

ow ot ot ow

Note that in this simple case with b = e, the final expression for the Poisson bracket is canonical.
The canonically conjugate variables are (z,y), (us, uy), (2, u,) and (t,V). Then the equations of
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motion in the perpendicular to magnetic field plane become:

i = {H,x}:—éiav(g’yy’t) (1.19)
. 10V (x,y,t
g = {Hy}= E% (1.20)

Note that here only the first term of the Poisson bracket (1.18) is used in order to obtain dynamical
equations.
Such a dynamics can be rewritten by introducing E = —VV as follows:

] ExB

T) = (1.21)

Y B2
This is the E x B drift model that permits us in the electrostatic turbulence approximation to
consider one of the possible mechanisms for plasma deconfinement. The fact that such a model
possesses Hamiltonian structure gives us the possibility to implement Hamiltonian control tools

in order to study barrier formation for reduction of such a drift motion and therefore to improve
plasma confinement. It will be implemented in Chapter 2 while studying barrier formation.

Idea of dynamical reduction

On the other hand considering test particle motion in the electromagnetic field is of interest
because of possibility to explicitly illustrate dynamical reduction related to elimination of the fast
scale motion. At the first approximation, we neglect fast dynamics dependence inside the electric
potential:

1 i S
HzémuQ—l—eV(X—l—ebxu;t)+W—>H:§mu2+eV(X;t)+W (1.22)

By separating directions parallel and perpendicular to magnetic field, and by introducing the
coordinates:

u? + u?
_ @ Y 1.23
p=me— (1.23)
¢ = arctan Y (1.24)
uy
we can rewrite the perpendicular velocities part of the Poisson bracket as
eB/Of Og of 0dg e 0fdg Of g
__( . )_> S(ZL29 2L o9, (1.25)
m2 \Ou, Ou,  Ouy Ouy mopo¢  OCou
The variables ;1 and ¢ are canonically conjugate: {y,(} = = (up to a constant factor).
The reduced Hamiltonian is given by:
F=lups tws V( )+ W (1.26)
- 2:“’ 2m uz € x, y7 <3 .
Finally we find that p has a trivial dynamics ;4 = 0, i.e. pu is a constant of motion, and

. e 1
¢ ={H,(} = — = — is the fast gyroangle.
m €
A systematic derivation of the expression for constant of motion at each order of small parameter
¢, as well as geometrical aspects related to the dynamical reduction, will be discussed in Chapter

4.
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1.2 Kinetic approach

Plasma kinetics studies plasma evolution on six dimensional phase space. It is well known that
such an approach is very demanding numerically and needs reduction of number of dynamical
variables. One of the possible way to realize it, is to remove fast gyrophase dependence from
dynamics. Such an approach is named “Gyrokinetics”. Particle numerical simulations based on
the use of nonlinear gyrokinetic equations have experienced an important expansion over the last
several decades. It represents now a powerful tool for studying various aspects of turbulence,
instabilities and its associated anomalous transport.

1.3 Perturbation methods leading to the Gyrokinetic
Maxwell-Vlasov equations

There exists two principal groups of methods that permits us to get reduced dynamical equations
implemented inside those codes. The first one, referred to also as the standard method, consists
in dealing with explicit gyroaveraging of the Vlasov equation expressed in lowest order reduced
(guiding-center) coordinates. This is followed by separation of equilibrium and perturbed parts
of the guiding-center distribution function. One of the serious disadvantages of such a method is
its failure to provide a clear iterative algorithm.

Another group of methods do not deal with Vlasov equation directly, but start with consideration
of a single particle Lagrangian. They use Lie-transform techniques which provide near-identity
coordinate transformations that decouple the gyration from the slower dynamics of interest. Such
a method was formally introduced in [69] and applied for stationary electrostatic turbulence case.
Later its application was expanded on the problem of a single particle motion in an external non-
uniform magnetic [36] and electromagnetic [37] fields as well as to study of mechanics of magnetic
field line flow [39]. Their first advantage with respect to the first group of reduction methods is
that such a transformation is reversible, so the information about the fast dynamics is not lost and
can be recovered when it is needed. The second strong point of such approaches is existence of
a well defined iterative procedure that permits us at each order to derive gyroangle-independent
dynamics. The more general among those methods, is the action-variational Lie perturbation
method. This method deals with the phase-space Lagrangian (Poincaré-Cartan fundamental one-
form), which couples the symplectic structure and the Hamiltonian?:

I'=Ldt=p-dq— Hdt (1.27)

where p and q represents canonical phase space variables. Then the Hamiltonian equations are
obtained according to the variational principle when that the phase space variables are varied
independently of each other:

S =6ép- | dq— a—Hdt —oq- (dp+ a—Halt =0 (1.28)
Jop Jdq
so that 5 5
H H
1= p= T 1.2
Véq, 6p & q op P q (1.29)

2Phase space Lagrangian expression arises from the transition between configuration space and phase space
given by Legendre transformation
dq

L(q7 q; t) = p% - H(paqa t)

where p = 04 L
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Note that the independent variation of the phase space variables here represents the main difference
between the traditional variational principle, when the Lagrangian is defined on configuration
space (q,q), and the variational principle using the phase-space Lagrangian.

In order to obtain gyrophase-independent dynamics one performs a set of transformations given
by:

_ 1 _,0GY
a — g __ .G a 2 a N al 1
T2' =20 =2"+eG{ + ¢ <G2—|—2 lazb)—I—... (1.30)
where z% denotes initial set of non-reduced coordinates and z reduced correspondingly the n-th
order transformation is driven by phase-space vector field G%0/0z%. Such a phase space change
of variables induces phase-space Lagrangian transformation as follows

L=T.'T4+dS=e'Ty+T +ely+e Ty (1.31)

where T, = I',,,dz® — H,dt and the push forward operator T_! = ... exp(—€>£y) exp(—eL)) is
expressed in terms of Lie-derivatives. According to Cartan’s formula, Lie derivative of one-form
yields one-form

Lol =ig-dl +d(ig -T) = G* wypdz® + d(G°T,) (1.32)

here dI' = wqdz® A dz°. Then by applying two first order decomposition for pull-back operator to
the phase-space Lagrangian we obtain the iterative procedure up to the €3

['=exp(—€°£s) exp(—eLy)(e 'To+T1+els+e T)

=(1-€£y) (1—efy + ;{jf) (€'To+T1+ela+ € Ty) (1.33)
then at each order we obtain
el Ty =T, (1.34)
e I =TI, —£Ty+dS, (1.35)
el Ty=Ty— £y — £, + %f)fFo + dS, (1.36)
€2 T3=T3— £3Tg— L2171 — £,y + %ffl“l + £y £1Tg — éi’i’ro (1.37)
This iterative procedure is started with I'y and I'y expressed by:
r— <§A+ (p||13+p¢)) cdx —y mdt = €Ty + T4 (1.38)

where we assume that ¢ = 1 and m~y = \/p? + m?, here p is kinetic particle momentum.

Here the goal is to define the vector fields GG;, components that provides the expression for reduced
set of phase space coordinates according to the expression (1.30).

Further procedure of gyroangle dependence removing is explicitly detailed in [20].

Such a methods are referred as modern gyrokinetic methods. In the Chapter 4, methods developed
by Littlejohn [36, 37, 38] and generalized by Cary and Brizard [20] was implemented during
variational derivation of Gyrokinetic Maxwell-Vlasov equations.

The general structure of the action-variational Lie perturbation method can be summarized in two
principal stages. At the first stage dynamics of a single charged particle moving in a non-uniform
time-independent magnetic field is considered. Then the fast dynamics (gyroangle dependence)is
removed when applying near-identity phase space transformation (guiding-center) resulting from
application of Lie derivatives. At the end of this procedure guiding-center model for reduced
dynamics is obtained.

At the second stage the reduced system is perturbed by electromagnetic fluctuations. These
perturbations reintroduces gyrophase dependence inside it one more time. The goal of a new
phase space transformation (gyrocenter) is to eliminate second time fast dynamical dependence.
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Ones dynamical reduction is accomplished for a single particle motion, the reduced Vlasov equation
can be derived by implementing the pull back transformation. The general idea of such a

transformation is presented on the figure below.

Exact Dynamics

Te=1+ef.+...

Lie
derivative

Reduced Dynamics

Y
(X, 1, ¢ uz)

F=FoT '=T,'F

Push-forward
Tol=1-elc+...

Scalar invariance

Figure 1.2: Lie transform

Then the Maxwell equations are obtained as a result of calculation of zeroth (Poisson equation) and
first (Ampere equation) velocity moments of reduced Vlasov distribution function. It is important
to note that that this reduction procedure preserves energy.

In Chapter 3 we use implementation of the Lie transform perturbation method for the gyrocenter
Hamiltonian. Then the reduced Vlasov-Maxwell equations are derived using a variational principle
with constrained variations that will be explicitly introduced.

1.4 Continuous systems Hamiltonian formalism

Here we propose to consider the problem of Maxwell-Vlasov dynamical reduction from another
point of view, by making use of its non-canonical Hamiltonian structure.

Systems that possess Hamiltonian structure are of special interest in physics. Originally, systems
endowed with a canonical Hamiltonian bracket were recognized. Later, after finding Hamiltonian
structure for such systems as the Korteweg—de Vries equation, the usefulness of non-canonical
variables was realized. More precisely in [66] the idea to introduce Hamiltonian structure on space
of functionals defined over the dynamical variables, appears.

Functional derivative

Here we will employ the notion of the functional derivative. There are some subtitle differences
between its mathematical and physical definition. Traditionally functional derivative appears as
a generalization of the directional derivative. At the place to take derivative in the direction of
a vector, it produces differentiation in the direction of a function. It describes how the entire
functional, F[f(x)] , changes as a result of a small change in the test function ¢(z). The
mathematical definition gives a relationship independently of the choice of the test function ¢
and its variation it is defined as:

<5F [/] S0> _ / SF[f ()]
of of(a)
The physical definition, that we will use in what follows, make choice of the specific test function
as Dirac 6- function. It means that we are varying the test function ¢(z) = é(x — y) only about
some neighborhood of y. Consequently, there is no variation of ¢(z) outside of this neighborhood.

OF[f(x)] Ff(z) +ed(z —y)] - Flf(z)]

—= =1

0fy) =0 2

LEf 4y

o(x') do’ = =

(1.39)

e=0

(1.40)
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During the calculations it is convenient to use the following expression:

Flf(2) + 8(z — )] — FLf(2)] = / o= vy (1.41)

Then we use (1.40) during the derivation of the Maxwell-Vlasov equations as the equations of
motion for the Hamiltonian system defined by (1.56) and (1.57).

1.4.1 Korteweg—de Vries

Korteweg—de Vries equation is a mathematical model of waves on shallow water surfaces.
Up = Uy + Ugpy (1.42)

This equation was at the center of interest for many reasons. First of all it represents an exactly
solvable model, it means that the solutions of such a partial differential equation can be exactly
specified; it possesses solitons solutions; it can be solved by means of inverse scattering transform.
Here we will address our attention to this model because of its Lagrangian (variational) and
Hamiltonian structures. The variational formulation of the eq. (1.42) is given by introducing the
Lagrangian :

1 1 1

then by writing the corresponding Euler-Lagrange equations
oL 0 (8£) 0 <8£>

96 0t \0d, du (144)

and introducing the functional:

= /027T fu,ug)de = /02” (éug — %ui) dx (1.45)

we obtain the eq.(1.42) in the following form:

s = %(%F [u]) (1.46)

The Hamiltonian formulation for the Korteweg—de Vries equation follows from introduction of the
Poisson bracket on the functionals of u:

6Gy [u] 0
G, Gk = / CSu 8x

with Hamiltonian H = F' [u]. Finally, we can rewrite (1.42)in its Hamiltonian form u; = —{H, u}.
Really by applying (1.47) and (1.45) with further integration by parts we obtain w, =
/27r " OF [u] 9 du(x) _ _/Q“Q(SF [u] du(x) _ S(a—1).
0 ou  Ox du(x') o Oz bu du(x’)

We will see that the example of Korteweg-de Vries system was pioneering in discovery of
Hamiltonian Maxwell-Vlasov structure.

5 Gg [u]

2 (1.47)

6(x—a")dz, where we have used that
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1.4.2 Maxwell-Vlasov

In the case of the Maxwell-Vlasov system, one of the principal difficulties was related to the
necessity to describe field-particle interaction, which involves the coupling between fields variables
and the canonical phase space variables P = mq + eA(q).

The principal ideas that lie behind the discovery of Hamiltonian structure for Maxwell-Vlasov
system can be formulated as follows:

e Use of the infinite dimensional phase space realized as space of the functionals F(f, E, B) on
the gauge-invariant (non-canonical) variables: Electromagnetic fields E = E(q), B = B(q)
and Vlasov distribution function f = f(p,q) with p-kinetic particle momentum

e Translation of the field-particle coupling from the phase space inside the Hamiltonian
bracket.

The corresponding non-canonical Hamiltonian structure obtained involving physical intuition and
symplectic geometry methods was presented in [5, 6].

Later the relativistic Hamiltonian formulation of Maxwell-Vlasov equations was proposed by
Bialynicki-Birula in [60]. It uses the Klimontovich (discrete) representation of particle distribution
function: Such a representation expresses each distribution function as a sum of contributions from
isolated particles. Here £4(t) and ma(t) denotes the position and kinetic momentum of the A-th
particle and S, represents the set of particles of type «.

o(Poait) = D 6(a—Ea(t) 6 (p—malt)) (1.48)

A€Sy

The general idea of this work is to obtain the Maxwell-Vlasov Hamiltonian structure using
elementary Poisson bracket relations for the set of non-canonical phase space variables,
composed of electromagnetic fields (E,B) and (&), kinetic particle momentum and position
correspondingly. Then we apply the general rule:

, oG
X', 1.4
Voo (1.49)

The Poisson bracket for electromagnetic field was proposed by Born and Infeld (1935)

{Bi(a),E;(d)} = €y Oxd(d — q) (1.50)

where 0y designs k-th component of spatial gradient. The Poisson brackets that introduces
coupling between fields and particles uses the expression (1.48) for particle distribution function:
This coupling elementary Poisson brackets are

{52»77]5} = 0aB0ij (1.51)
{r'y, 75} = 6AB€A5ijkBk(§A) (1.52)
{mh, EY (@)} = eabi;d(a—Ea) (1.53)

Further generalization to the continuous case of Vlasov distribution function is realized by
replacing the partial derivatives by the functional ones and the sum by an integral in (1.49).

Another important remark that we should make there is about the physical constraints that are
imposed on the phase space in each of the methods leading to the Maxwell-Vlasov Hamiltonian
formulation. As we have mentioned above, in such an approach the phase space is infinity
dimensional, composed by particle distribution function that obey Vlasov equation f(p,q), and
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electromagnetic fields E(q) and B(q). Two physical constraints, expressed by two of Maxwell’s
equations, are imposed on this phase space:

V-B = 0 (1.54)
VE = ¢ / 4% f(p,q) (1.55)

Note that such a constraints are preserved by the time evolution of the system. Two others
Maxwell’s equations play the role of dynamical ones. The observables forms the vector space
of “smooth” functionals over the functions f(p,q), E(q),B(q). Maxwell-Vlasov Poisson bracket
preserves this vector space, so that the observables form a Poisson algebra. In this approach the
interaction between the plasma and the electromagnetic field is introduced entirely through the
following Poisson bracket:

) 0 6F 0 6G 0 6F 0 6G]
F — 3 3 2T
G} //d 1d°p ] [8 57 0a8f 9adf Ipof.

Y PO CPE AR

5B SE OE B
: 1.
o[ [aaany 2 (206 _oriG )
TC P 5p |6f6E ~ SEof

0 6F 0 G

— d?qd B- ——

[ [arear s[5 g

Here fluid approach is used: (p,q) do not undergo time evolution and play the role of labels
permitting to mark degrees of freedom. The first term in this expression represents particle
bracket, the second one-field bracket and the last two terms introduces the retroaction between

fields and particles.
The Hamiltonian is given by the kinetic energy of particles plus the energy of the electromagnetic

fields3: , ,
. E B
niEB = [ [adqatnpom+ [as R (157)
where m~y = y/p? +m? and |B|?> = B - B is the field norm.

Equations of motion

We start by obtaining the expression for the Liouville operator which is derived from the
Hamiltonian (1.57) and the Poisson bracket above (1.56). By taking into account the expressions
for functional derivatives:

oH OH OH

W mY, <& =E, E_B (1.58)
and by integrating by parts, we have
afy\ o
{H} = //d qd p(v Vi+e (E+vxB)- 8p>(5f (1.59)
o 0
//dq VxB =~ VxE- 6_B) (1.60)
30d % my 2L 2

//d qd°pmy op 3E (1.61)

3Here we suppose that ¢ = 1
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Then the Maxwell-Vlasov equations are:

- {H,E}:VXB—/d3pvf (1.62)
B = {HBl=-VxE (1.63)
f = {H f} = v 04f(p,a) —¢ (E+Vv x B) 3,f(p,q) (1.64)

1.5 Hamiltonian perturbation theory

The general idea of our approach is to treat coupling between fields and particles as a perturbation
of some uncoupled motion. Let us consider the system with simplified Hamiltonian:

B 2
mif BBl = [ [a%asy s+ [a% B8 (1.65)

The dynamics of this system possesses one remarkable property: the magnetic field does not

evaluate under the flow generated by the Hamiltonian Hj.

By substituting the expression for the Hamiltonian Hj in the Maxwell-Vlasov Poisson bracket we

obtain:

B = {Hy,,B}=0 (1.66)
E = {HO,E}ZVXB—e/d?’pvf(p,q) (1.67)
fo= {Hof}=—v Lg;’ D _ . (vxB)- Lg; a) (1.68)

where v = p/m~y denotes the relativistic particle velocity.

Another important property of such a system is that the electric field dynamics is now uncoupled
from the particle dynamics. Then now field and particles can be considered separately.

Using Euler-Lagrangian duality we can project particle dynamics on the 6 dimensional phase space
(p,q). The key property that we will use during realization of such a projection is the fact that
magnetic field B is constant under the simplified Hamiltonian flow.

Euler-Lagrange duality

In this thesis we adopt both Eulerian and Lagrangian viewpoints, summarized in Table 1.1.

Discussion

The next step in our perturbative construction is to consider dynamical reduction for particle
motion in a non-uniform external magnetic field B. This problem is considered in Chapter 4
of this dissertation. The next step of such a reduction procedure will consist of perturbative
field-particle coupling reintroduction into the system.



14
Euler Lagrange
Observables
Ff] f(p.q)
Phase space
E(q),B(a),f(p,q) (p,q)
Poisson bracket
Maxwell-Vlasov Gyroscopic
Kinetic energy
/d *q f(p,a)my my
Equation of motion
f=—(v-0q+e (vxB)-d) p=evxB, g=v

Ch. 1. Introduction

Table 1.1: Summary of the Eulerian and Lagrangian descriptions

Overview of the dissertation

The text of this dissertation is organized as follows.
In Chapter 2 Hamiltonian control method is implemented in order to study barrier formation in
E x B drift model. Chapter 3 deals with investigation of momentum transport through derivation

of the momentum conservation law for Maxwell-Vlasov equations.

Chapter 4 explores the fundamental geometrical problems related to the dynamical reduction of
charged particle motion in an non-uniform magnetic field. This work represents an important
step in the construction of the alternative method for dynamical reduction of the Maxwell-Vlasov

system.



Chapter 2

Barriers for the reduction of transport
due to the £ x B drift in magnetized
plasmas

Abstract.

We consider a 1% degrees of freedom Hamiltonian dynamical system, which models
the chaotic dynamics of charged test-particles in a turbulent electric field, across the
confining magnetic field in controlled thermonuclear fusion devices. The external
electric field E = — VYV is modeled by a phenomenological potential V' and the
magnetic field B is considered uniform. It is shown that, by introducing a small
additive control term to the external electric field, it is possible to create a transport
barrier for this dynamical system. The robustness of this control method is also
investigated. This theoretical study indicates that alternative transport barriers can
be triggered without requiring a control action on the device scale as in present Internal
Transport Barriers (ITB).

2.1 Introduction

It has long been recognized that the confinement properties of high performance plasmas with
magnetic confinement are governed by electromagnetic turbulence that develops in microscales
[47]. In that framework various scenarios are explored to lower the turbulent transport and
therefore improve the overall performance of a given device. The aim of such a research activity
is two-fold.

First, an improvement with respect to the basic turbulent scenario, the so-called L-mode (L for
low) allows one to reduce the reactor size to achieve a given fusion power and to improve the
economical attractiveness of fusion energy production. This line of thought has been privileged
for ITER that considers the H-mode (H for high) to achieve an energy amplification factor of 10
in its reference scenario [48]. The H-mode scenario is based on a local reduction of the turbulent
transport in a narrow regime in the vicinity of the outermoster confinement surface [49].

Second, in the so-called advanced tokamak scenarios, Internal Transport Barriers are considered
[48].  These barriers are characterised by a local reduction of turbulent transport with two
important consequences, first an improvement of the core fusion performance, second the
generation of bootstrap current that provides a means to generate the required plasma current in
regime with strong gradients [50]. The research on ITB then appears to be important in the quest
of steady state operation of fusion reactors, an issue that also has important consequences for the
operation of fusion reactors.

15
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The H-mode appears as a spontaneous bifurcation of turbulent transport properties in the edge
plasma [49], the ITB scenarios are more difficult to generate in a controlled fashion [51]. Indeed,
they appear to be based on macroscopic modifications of the confinement properties that are both
difficult to drive and difficult to control in order to optimise the performance.

In this paper, we propose an alternative approach to transport barriers based on a macroscopic
control of the F x B turbulence. Our theoretical study is based on a localized hamiltonian control
method that is well suited for F' x B transport. In a previous approach [52], a more global scheme
was proposed with a reduction of turbulent transport at each point of the phase space. In the
present work, we derive an exact expression to govern a local control at a chosen position in phase
space. In principle, such an approach allows one to generate the required transport barriers in the
regions of interest without enforcing large modification of the confinement properties to achieve
an ITB formation [51]. Although the application of such a precise control scheme remains to
be assessed, our approach shows that local control transport barriers can be generated without
requiring macroscopic changes of the plasma properties to trigger such barriers. The scope of
the present work is the theoretical demonstration of the control scheme and consequently the
possibility of generating transport barriers based on more specific control schemes than envisaged
in present advanced scenarios.

In Section 2.2, we give the general description of our model and the physical motivations for our
investigation. In Section 2.3, we explain the general method of localized control for Hamiltonian
systems and we estimate the size of the control term. Section 2.4 is devoted to the numerical
investigations of the control term, and we discuss its robustness and its energy cost. The last
section 2.5 is devoted to conclusions and discussion.

2.2 Physical motivations and the £ x B model

2.2.1 Physical motivations

Fusion plasma are sophisticated systems that combine the intrinsic complexity of neutral fluid
turbulence and the self-consistent response of charged species, both electrons and ions, to magnetic
fields. Regarding magnetic confinement in a tokamak, a large external magnetic field and a
first order induced magnetic field are organised to generate the so-called magnetic equilibrium
of nested toroidal magnetic surfaces [53]. On the latter, the plasma can be sustained close
to a local thermodynamical equilibrium. In order to analyse turbulent transport we consider
plasma perturbations of this class of solutions with no evolution of the magnetic equilibrium,
thus excluding MHD instabilities. Such perturbations self-consistently generate electromagnetic
perturbations that feedback on the plasma evolution. Following present experimental evidence,
we shall assume here that magnetic fluctuations have a negligible impact on turbulent transport
[54]. We will thus concentrate on electrostatic perturbations that correspond to the vanishing /3
limit, where 3 = p/(B?/2u) is the ratio of the plasma pressure p to the magnetic pressure. The
appropriate framework for this turbulence is the Vlasov equation in the gyrokinetic approximation
associated with the Maxwell-Gauss equation that relates the electric field to the charge density.
When considering the Ton Temperature Gradient instability [55] that appears to dominate the ion
heat transport, one can further assume the electron response to be adiabatic so that the plasma
response is governed by the gyrokinetic Vlasov equation for the ion species.

Let us now consider the linear response of such a dlstrlbutlon functlon f to a given electrostatic
perturbation, typically of the form T, ¢ e_’“’t“k", (where f and ¢ are Fourier amplitudes of
distribution function and electric potential). To leading orders one then finds that the plasma

response exhibits a resonance:

~ w+ w* ~

F= (7—1) ot (2.1)
w— Ky vy !
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Here fe, is the reference distribution function, locally Maxwellian with respect to v and w* is
the diamagnetic frequency that contains the density and temperature gradient that drive the
ITG instability [55]. 7. is the electronic temperature. This simplified plasma response to the
electrostatic perturbation allows one to illustrate the turbulent control that is considered to trigger
off transport barriers in present tokamak experiments.

Let us examine the resonance w — k| v = 0 where k| = (n —m/q)/R with R being the major
radius, g the safety factor that characterises the specific magnetic equilibrium and m and n the
wave numbers of the perturbation that yield the wave vectors of the perturbation in the two
periodic directions of the tokamak equilibrium. When the turbulent frequency w is small with
respect to vy, /(qR), (where vy, = /kpT/m is the thermal velocity), the resonance occurs for
vanishing values of k|, and as a consequence at given radial location due to the radial dependence
of the safety factor. The resonant effect is sketched on figure 2.1. In a quasilinear approach,

= and q = ’"T“ for two different widths, narrow resonances

empedding large scale turbulent transport and broad resonances favouring strong turbulent
transport.

Figure 2.1: Resonances for ¢ =

the response to the perturbations will lead to large scale turbulent transport when the width of
the resonance 6,, is comparable to the distance between the resonances A,,,,+1 leading to an
overlap criterion that is comparable to the well known Chirikov criterion for chaotic transport
Om = (0m 4 O0ms1)/Dmm+1 With 0 > 1 leading to turbulent transport across the magnetic surfaces
and o < 1 localising the turbulent transport to narrow radial regions in the vicinity of the resonant
magnetic surfaces.

The present control schemes are two-fold. First, one can consider a large scale radial electric field
that governs a Doppler shift of the mode frequency w. As such the Doppler shift w — wg has no
effect. However a shear of the Doppler frequency wp, wg = wp + 6rwy will induce a shearing effect
of the turbulent eddies and thus control the radial extent of the mode §,,, so that one can locally
achieve ¢ < 1 in order to drive a transport barrier.

Second, one can modify the magnetic equilibrium so that the distance between the resonant
surfaces is strongly increased in particular in a magnetic configuration with weak magnetic shear
(dg/dr = 0) so that A, .11 is strongly increased, A, ;11 > 0., also leading to o < 1.

Both control schemes for the generation of I'TBs can be interpreted using the situation sketched on
figure 2.1. The initial situation with large scale radial transport across the magnetic surfaces (so
called L-mode) is indicated by the dashed lines and is governed by significant overlap between the
resonances. The I'TB control scheme aims at either reducing the width of the islands or increasing
the distance between the resonances yielding a situation sketeched by the plain line in figure 2.1
where the overlap is too small and a region with vanishing turbulent transport, the I'TB, develops
between the resonances.

Experimental strategies in advanced scenarios comprising Internal Transport Barriers are based on
means to enforce these two control schemes. In both cases they aim at modifying macroscopically
the discharge conditions to fulfill locally the o < 1 criterion. It thus appears interesting to devise
a control scheme based on a less intrusive action that would allow one to modify the chaotic
transport locally by the choice of an appropriate electrostatic perturbation hence leading to a



18  Ch. 2. Barriers for the reduction of transport due to the ¥ x B drift in magnetized plasmas

local transport barrier.

2.2.2 The F x B model

For fusion plasmas, the magnetic field B is slowly variable with respect to the inverse of the Larmor
radius pr, i.e: pr|VInB| < 1. This fact allows the separation of the motion of a charged test
particle into a slow motion (parallel to the lines of the magnetic field) and a fast motion (Larmor
rotation). This fast motion is named gyromotion, around some gyrocenter. In first approximation
the averaging of the gyromotion over the gyroangle gives the approximate trajectory of the charged
particle. This averaging is the guiding-center approximation.

In this approximation, the equations of motion of a charged test particle in the presence of a
strong uniform magnetic field B = Bz, (where z is the unit vector in the z direction) and of an

external time-dependent electric field E = — VV; are:
X
d cE x B c .
ﬁ Y — B2 —EE(X,Y7T)XZ
. -y Vi(X,Y,T)
oxVi(X,Y,T)

where V; is the electric potential. The spatial coordinates X and Y play the role of canonically-
conjugate variables and the electric potential V;(X,Y,T) is the Hamiltonian for the problem. Now
the problem is placed into a parallelepipedic box with dimensions L x ¢ x (27/w), where L and
¢ are some characteristic lengths and w is a characteristic frequency of our problem, X is locally
a radial coordinate and Y is a poloidal coordinate. A phenomenological model [56] is chosen for
the potential:

N
‘/0 COS X'n,m
(XY, T)= — 2.3
1( ) n%;I (n2 + m2)3/2 ( )
where V{ is some amplitude of the potential,
2 2
Xnm = %nX + %mY + Opm — T

w is constant, for simplifying the numerical simulations and ¢, ,, are some random phases
(uniformly distributed).
We introduce the dimensionless variables

(x,y,t) = (2 X/L, 2xY/l, WT) (2.4)

So the equations of motion (2.2) in these variables are:

d [z -0,V (x,y,t)

= = Y 2.

i ( y ) ( 0,V (2. .1) (25)
where V' = ¢(V}/Vp) is a dimensionless electric potential given by

cos (nx + my + ¢pm — t)
(n2 4+ m?2)3/2

V(z,y,t) =¢ Z

n,m=1

Here

e = 4n*(cVy/B)/(Ltw) (2.7)
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is the small dimensionless parameter of our problem. We perturb the model potential (2.6) in
order to build a transport barrier. The system modeled by Eqs.(2.5) is a 1% degrees of freedom
system with a chaotic dynamics [56, 52]. The poloidal section of our modeled tokamak is a
Poincaré section for this problem and the stroboscopic period will be chosen to be 27, in term of
the dimensionless variable ¢.

The particular choice (2.3) or (2.6) is not crucial and can be generalized. Generally, w can be
chosen depending on n, m. This would make the numerical computations more involved. In the
following section, V' is chosen completely arbitrary.

2.3 Localized control theory of hamiltonian systems

2.3.1 The control term

In this section we show how to construct a transport barrier for any electric potential V. The
electric potential V' (z,y, t) yields a non-autonomous Hamiltonian. We expand the two-dimensional
phase space by including the canonically-conjugate variables (w,T),

H:H(m,T;y,w):V(x,y,T)—w (28)

The Hamiltonian of our system thus becomes autonomous. Here 7 is a new variable whose
dynamics is trivial: 7 =1 1i.e. 7 = 79 +¢ and w is the variable (momentum) canonically conjugate
to 7. The Poisson bracket operator in the expanded phase space for any U = U(z, T; y, w) is given

by the expression:
[U} = (0.0)9, — (0,0)0, + (0,U)0 — (0U)0:. (2.9)

Hence {U} is a linear (differential) operator acting on functions of (z,7;y,w). We call Hy = w
the unperturbed Hamiltonian and V' (z,y, 7) its perturbation. We now implement a perturbation
theory for Hy. The operator of the Poisson bracket (4.6) for the Hamiltonian H is

{H} = (0,V)0, — (0,V)0y + 0, + (0:V)0a (2.10)

So the equations of motion in the expanded phase space are:

T {H}x = -0,V (z,y,7) (2.12)
b = {Hjw=0V(ey7) (2.13)
7 = {H}r=1 (2.14)
We want to construct a small modification F' of the potential V' such that
IA{TEV(a:,y,T)+F(:Jc,y,T)—wzﬁ(x,yﬂ')—w (215)
has a barrier at some chosen position z = xy. So the control term
F = ‘7(1?7?/77—) - V(:E7ya7_) (216)

must be much smaller than the perturbation (e.g., quadratic in V). One of the possibilities is:
V=V(e+0,f(y.7),y.7) (2.17)

where

fly,7) = /OT V(xo,y,t)dt

Indeed we have the following theorem:
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Theorem 1 The Hamiltonian H has a trajectory x = xo+ 0, f(y, T) acting as a barrier in phase
space.

Proof

Let the Hamiltonian H = exp({f})H be canonically related to H. (Indeed the exponential of any
Poisson bracket is a canonical transformation.) We show that H has a simple barrier at © = xy.
We start with the computation of the bracket (4.6) for the function f. Since f = f(y,7), the
expression for this bracket contains only two terms,

{f} = 0. + fOu (2.18)
where '
ff=0,fand f=0.f (2.19)
which commute: _
Now let us compute the coordinate transformation generated by exp({f}):
exp({f}) = exp(—f'da) exp(fo), (2.21)

where we used (2.20) to separate the two exponentials.
Using the fact that exp(bd,) is the translation operator of the variable x by the quantity b:
[exp(b0,)W](x) = W (x + b), we obtain
o = g = MV (z,y, ) — o
= Vie—fy71) — <w + f)
= V(I’—l-f/ - f/ayaT) - V(-ran?T) —w
V(ZL‘7 Y, T) - V(l’o, Y, T) —w (222)
This Hamiltonian has a simple trajectory x = 9, w = wp, i.e. any initial data x = o, y = yo,w =
wy, T = Ty evolves under the flow of H into x = xg,y = y;, w = wo, T = 79 + t for some evolution
y; that may be complicated, but not useful for our problem. Hamilton’s equations for x and w
are now
i = {Hyae=0,[V(zo,y.7) = V(z,y,7) (2.23)
i = {H}yw=0,[V(zo,y,7) = V(w,y,7) (2:24)

so that for z = xg, we find & = 0 = w. Then the union of all points (z,y,w,T) at z = xg w = wy:

Zo
y

Bo= | o (2.25)
Y,T,Wo e

is a 3-dimensional surface T? x R, (T = R/2xZ) preserved by the flow of H in the 4-dimensional
phase space. If an initial condition starts on By, its evolution under the flow eXp(t{]:I }) will
remain on By. R

So we can say that B act as a barrier for the Hamiltonian H: the initial conditions starting inside
By can’t evolve outside By and vice-versa. R

To obtain the expression for a barrier B for H we deform the barrier for H via the transformation

exp({f}). As ~ R
H=eWH (2.26)
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and exp({f}) is a canonical transformation, we have
{H} = {e T H} = e U H}el?
Now let us calculate the flow of H:
MY — (e VIH{HEY YY) {1} H{H} {1}

Indeed: . s )
e {metn) < e VI{H el h)m
€ ( ) = Z n!

n=0

For instance when n = 2:

e VHHY VN = e U HYel e U H) el

2~ Y el

and so

~ O no—{fHf Finif N
iy e ey

|
et n!
As we have seen before:
x x—f
Al Y| = vy
w w—f
T T
ZTo i
oHH} Yy _ Yt
Wo Wo
T T+

Multiplying (2.28) on the right by e~/ we obtain:
MHY ) o lf) )

Zo Zo + f/(y7 T)
MY~y | Y| = i Yy
Wo wo + f(yv 7_)
T T
and
To Zo
oAttty | Y — o in Yt
Wo Wy
T T+
zo + f'(yr, 7+ 1)
_ Y
wo + f(ye, 7+ 1)
T+

So the flow exp(t{H}) preserves the set
Zo + f,<y7 T)

Y

B = :
Ul ws o

!
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(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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B is a 3 dimensional invariant surface, topologically equivalent to T? x R into the 4 dimensional
phase space. ‘B separates the phase space into 2 parts, and is a barrier between its interior and
its exterior. 9B is given by the deformation exp({f}) of the simple barrier B.

The section of this barrier on the sub space (z,y,t) is topologically equivalent to a torus TZ.

This method of control has been successfully applied to a real machine: a traveling wave tube to
reduce its chaos [65].

2.3.2 Properties of the control term

In this Section, we estimate the size and the regularity of the control term (2.16).

Theorem 2 For the phenomenological potential (2.6) the control term (2.16) verifies:

3
< N2 (2.36)

1 1
NN 47

£

if € is small enough, i.e. if |e] < % where N is the number of modes in the sum (2.6).

Proof The proof of this estimation is given in [57] and is based on rewriting

F= V(I + f,) - V(l’) - /0 ds accv(x + Sf/7y7 T)f/<y7 T)
= O(? (2.37)

and then use Cauchy’s Theorem.

2.4 Numerical investigations for the control term

In this Section, we present the results of our numerical investigations for the control term F.
The theoretical estimate presented in the previous section shows that its size is quadratic in the
perturbation. Figure 2.2 shows the contour plot of V(x,y,t) and V(z,y,t) (V =V + F) at some
fixed time ¢, for example ¢ = 7. One can see that the contours of both potentials are very similar.
But the dynamics of the systems with V and V are very different.

For all numerical simulations we choose the number of modes N = 25 in (2.6). In all plots the
abscissa is x and the ordinate is y.

2.4.1 Phase portrait for the exact control term

To explore the effectiveness of the barrier, we plot (in Fig. 2.3) the phase portraits for the original
system (without control term) and for the system with the exact control term F. We choose
the same initial conditions. The time of integration is 7' = 2000, the number of trajectories:
Nire; = 200 (number of initial conditions, all taken in the strip —1 —7 <z < —m; 0 < y < 2m)
and the parameter ¢ = 0.9. We choose the barrier at position zy = 2. To get a Poincaré section,
we plot the poloidal section when t € 27Z. Then we compare the number of trajectories passing
through the barrier during this time of integration for each system. We eliminate the points after
the crossing. For the uncontrolled system 68% of the initial conditions cross the barrier at zq = 2
and for the controlled system only 1% of the trajectories escape from the zone of confinement.
The theory announces the existence of an exact barrier for the controlled system: these escaped
trajectories (1%) are due to numerical errors in the integration. One can observe that the barrier
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Figure 2.2: Uncontrolled and controlled potential for € = 0.6, t = 7, o = 2.

S
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Figure 2.3: Phase portraits without control term and with the exact control term, for ¢ = 0.9,
2o = 2, Niyqj = 200.

for the controlled system is a straight line. In fact this barrier moves, its expression depends on
time:

v =0+ 'y, 1) (2.38)

But when ¢ € 277 its oscillation around z = ¢ vanishes: f'(y,2kmr) = 02]” 0,V (xg,y,t)dt = 0.
This is what we see on this phase portrait. In fact we create 2 barriers at position z = xy, and
r = xo — 27 (and also at xy + 2nm) because of the periodicity of the problem. We note that the
mixing increases inside the two barriers. The same phenomenon was also observed in the control
of fluids [58], where the same method was applied.

2.4.2 Robustness of the barrier

In a real Tokamak, it is impossible to know an analytical expression for electric potential V. So we
can’t implement the exact expression for F'. Hence we need to test the robustness of the barrier
by truncating the Fourier decomposition (for instance in time) of the controlled potential.
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Fourier decomposition

Theorem 3 The potential (2.17) can be decomposed as V = Y okeZ Vi, where

Vi=c¢ Z 3/2 cos (n + kO + (k — 1)) (2.39)
with
Mm(Y) = nx+my+ ¢pm+nek, (2.40)
N
m cos(Kp, my)
Fely) = Zl TR (2.41)
N :
m sin(Ky m,y)
Fily) = Zl T (2.42)
Kiny = nxo+my+ dpm (2.43)
and Jy is the Bessel’s function
1 [7 .
Tr(np) = —/ cos (ku — npsinu) du (2.44)
T™Jo
Proof We rewrite explicitly the expression (2.17) for our phenomenological controlled potential
V(x,y,t):
_ N cos(n(@ + f'(y, 1) +my + Gm — 1)
Viz,y,t) = . (2 T )i (2.45)
with
/ N m (COS Koy — cos( Ky my — t))
fy,t) = ) EE (2.46)
With the definition (2.41) and (2.42) we have:
f'(y,t) =e(F.(y) (1 —cost) — Fi(y) sint) (2.47)
Let us introduce
p=e(F?+ F})'? (2.48)
and © by
psin® = —eF.(y) pcos© = —cF(y) (2.49)
so that
al (n—t+npsin(© + 1))
Z CESTE (2.50)
Using Bessel’s functions properties [59]
cos(psin®) = ij ) cos kO (2.51)
keZ
sin(psin ©) = Z Ji(p) sin k© (2.52)

keZ
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we get
cos (n —t+ npsin(© + 1)) Z Jr(np) cos ( (2.53)
keZ

where £ =1+ kO + (k — 1)t, and we finally obtain (2.39). The theorem is proved. B
During numerical simulations we truncate the controlled potential by keeping only its first 3
temporal Fourier harmonics:

Vtr—az Ao+ Ajcost + Bysint + Ay cos 2L + By sin 2t

s (2.54)

n,m=1

Jo(np) cos(n + ©)
Jo(np) cosn + Ja(np) cos(n + 20)
(np)
)

Jo(np)sinn — Jo(np) sin(n + 20)
Js(np) cos(n + 30) — Ji(np) cos(n — O)
32 = —jg(n )sin(n + 30) — J1(np) sin(n — O)

Figure 2.4 compares the two contour plots for the exact control term and the truncated control
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Figure 2.4: Exact Control Term and Truncated Control Term with ¢ = 0.6,¢ = 7.

term (2.54). Figure2.5 compares the two phase portraits for the system without control term and
for the system with the above truncated control term (2.54). The computation of V,, on some grid
has been performed in Matlab and the numerical integration of the trajectories was done in C. One
can see a barrier for the system with the truncated control term. As for the system with the exact
control term we create two barriers at positions r = xg and x = r¢y — 27 and the phenomenon of
increasing the mixing inside the barriers persist.

2.4.3 Energetical cost

As we have seen before, the introduction of the control term into the system can reduce and even
stop the diffusion of the particles through the barrier. Now we estimate the energy cost of the
control term F' and the truncated control term F;, =V, — V.

Definition 1 The average of any function W = W (x,y, ) is defined by the formula:

2m 2m 27
< |W]| >:/ d:v/ dy/ dt |W(x,y,t)| (2.55)
0 0 0
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Figure 2.5: € = 0.3, T' = 2000, N¢yq; = 50.

Table 2.1: Squared ratios of the amplitudes of the control term and the uncontrolled electric
potential (.., (;-; ratios of electric energy of the control term and the uncontrolled electric potential
Nea> Nir; for the system with exact and truncated control term.

€ Cez Ctr Nex Ner

0.3 0.1105 0.1193 0.6297 0.1431

0.4 0.1466 0.1583 0.7145 0.2393

0.5 0.1822 0.1967 0.8161 0.3550

0.6 0.2345 0.2137 0.9336 0.4883

0.7 0.2518 0.2716 1.0657 0.6375

0.8 0.2858 0.3038 1.2119 0.8014

0.9 0.3191 0.3439 1.3722 0.9796

1.5 0.5052 0.5427 2.6247 2.3037

Now we calculate the ratio between the absolute value of the truncated control (electric potential)
or the exact control and the uncontrolled electric potential:

(o =< |F* >/ < |V]? >

and
Ctr =< ’Ftr’2 > / < ’V|2 >

We also compute the ratio between the energy of the control electric field and the energy of the
uncontrolled system in their exact and truncated version

New =< |[VF|*> | < |[VV]* >

and
N =< |VF,|? >/ < |VV]* >

for different values of . Results are shown in Table 2.1.

One can see that the truncated control term needs a smaller energy than the exact control term.
In Table 2.2, we present the number of particles passing through the barrier in function of e, after
the same integration time.
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Table 2.2: Number of escaping particles without control term Nyithous, and for the system with
the exact control term M. 4+ and the truncated control term N, .

€ N’without Nexact Mr
04  22% 0% 6%
0.5 26% 0%  18%
0.9 68% 1%  44%
1.5 72% 1% 54%

Table 2.3: Difference AN of the number of particles passing through the barrier and difference of
relative electric energy An for the controlled and uncontrolled system.

e AN  Ap
0.3 8% 0.49
0.4 16% 0.47
0.5 8% 0.46
09 24% 0.39
1.5 18% 0.32

Let AN = Nyithour — Ni be the difference between the number of particles passing through the
barrier for the system without control and with the truncated control and An = 7., — 1 the
difference between the relative electric energy for the system with the exact control term and the
system with the truncated control term. In Table 2.3 we present AN and An for differents values
of e.

For € below 0.2 the non controlled system is rather regular, there is no particles stream through
the barrier, so we have no need to introduce the control electric field. For ¢ between 0.3 and 0.9
the truncated control field is quite efficient, it allows to drop the chaotic transport through the
barrier by a factor 8% to 24% with respect to the uncontrolled system and it requires less energy
than the exact control field. For € greater than 1 the truncated control field is less efficient than
the exact one, because the dynamics of the system is very chaotic. For example when ¢ = 1.5,
there are 72% of the particles crossing the barrier for the uncontrolled system and 54% for the
system with the truncated control field. At the same time the energetical cost of the truncated
control field is above 70% of the exact one, which allows to stop the transport through the barrier.
So for € > 1 we need to use the exact control field rather than the truncated one.

2.5 Discussion and Conclusion

In this article, we studied a possible improvement of the confinement properties of a magnetized
fusion plasma. A transport barrier conception method is proposed as an alternative to presently
achieved barriers such as the H-mode and the ITB scenarios. One can note, that our method
differs from an I'TB construction. Indeed, in order to build-up a transport barrier, we do not
require a hard modification of the system, such as a change in the g-profile. Rather, we propose
a weak change of the system properties that allow a barrier to develop. However, our control
scheme requires some knowledge and information relative to the turbulence at work, these having
weak or no impact on the I'TB scenarios.

2.5.1 Main results

First of all we have proved that the local control theory gives the possibility to construct a transport
barrier at any chosen position x = ¢ for any electric potential V' (z,y,t). Indeed, the proof given
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in section 2.3 does not depend on the model for the electric potential V. In Subsection 2.3.1, we
give a rigorous estimate for the norm of the control term F', for some phenomenological model
of the electric potential. The introduction of the exact control term into the system inhibits the
particle transport through the barrier for any £ while the implementation of a truncated control
term reduces the particle transport significantly for e € (0.3, 1.0).

2.5.2 Discussion, open questions
Comparison with the global control method

Let us now compare our approach with the global control method [52] which aims at globally
reducing the transport in every point of the phase space. Our approach aims at implementing
a transport barrier. However, one also observes a global modification of the dynamics since the
mixing properties seem to increase away from the barriers.

Furthermore, in many cases, only the first few terms of the expansion of the global control term
[52] can be computed explicitly. Here we have an explicit exact expression for the local control
term.

Effectiveness and properties of the control procedure

In subsection 2.2.2, we have introduced the dimensionless variables (2.4) and defined a
dimensionless control parameter ¢ = 47%(cVy/B)/(L{w). In the simplifying case where | = L =
27 /k is the characteristic length of our problem, we have ¢ = ck?Vy/(wB). Let us consider
a symmetric vortex, hence with characteristic scale 1/k. Let us now consider the motion of a
particle governed by such a vortex. The order of magnitude of the drift velocity is therefore
vg = kcVy/B and the associated characteristic time Tgrr, Terr = 1/(kvg), is the eddy turn over
time. Let w be the characteristic evolution frquency of the turbulent eddies, here of the electric
field, then the Kubo number K is K = 1/wrgpy. This parameter is the dimensionless control
parameter of this class of problems, and we remark that in our case K = ¢. It is also important to
remark that the parameter K also characterises the diffusion properties of our system. Indeed, let
0 be a step size of our particle in a random walk process and let 7 be the associated characteristic
time, the diffusion coefficient is then D = §?/7. Since one can relate the characteristic step and
time by the velocity, 6 = vg7, on also finds:

(vpT)? KAV 1 K?

T = —wT (2.56)

D = —
T B2 T k:QT%TT k2

We also introduce the reference diffusion coefficient D = k~%w, so that:
D/D = K*wr (2.57)

They are two asymptotic regimes for our system. The first one, is the regime of weak turbulence,
characterised by wrgrr > 1 and therefore K < 1. In this regime, the electric potential evolution
is fast, the particle trajectories only follow the eddy geometry on distances much smaller than
the eddy size. The steps 6 are small and the characteristic time 7 of the random walk such that
wt ~ 1. The particle diffusion (2.57) is then such that:

D/D~K?* for wrprr > 1 (2.58)

The second asymptotic regime is the regime of strong turbulence, with wrgrr < 1 and K > 1.
Particles then explore the eddies before decorrelation and the characteristic time of the random
step is typically 7 &~ 7gprr and:

D/D~K for wrprr < 1 (2.59)
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The first regime corresponds to the weak turbulence limit with weak Kubo number and particle
diffusion and the second to strong turbulence and large Kubo number and particle diffusion. The
control method developed in this article does not depend on K = e. There is always a possibility
to construct an exact transport barrier. However for the numerical simulations, we have remarked,
that for small € one can observe a stable barrier without escaping particles, and for € close or more
than 1 there is some leaking of particles across the barrier. The barrier is more difficult to enforce.
Also when considering the truncated control term, one finds that the control term is ineffective in
the strong turbulence limit.

Let us now consider the implementation of our method to turbulent plasmas where the turbulent
electric field is consistent with the particle transport. The theoretical proof of an hamiltonian
control concept is developped provided the system properties at work are completely known. For
example the analytic expression for the electric potential. This is impossible in a real system,
since the measurements take place on a finite spatio-temporal grid. This has motivated our
investigation of the truncated control term by reducing the actually used information on the
system. As pointed out previously, one finds that this approach is ineffective for strong turbulence.
Another issue is the evolution of the turbulent electric field following the appearance of a transport
barrier. This issue would deserve a specific analysis and very likely updating the control term on a
trasnport characteristic time scale. An alternative to such a process would be to use a retroactive
Hamiltonian approach (a classical field theory) [60] and to develop the control theory in that
framework.
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Chapter 3

Maxwell-Vlasov conservation law

3.1 Introduction and physical motivations

The Maxwell-Vlasov gyrokinetic approach represents a powerful tool for the investigation of
turbulent behavior of low-frequency strongly magnetized plasmas. It is well known that one of
the possible ways for investigating the properties of a physical system is to derive its conservation
laws. Noether’s theorem plays a fundamental role in theoretical physics by relating conservation
laws and symmetries. For example, the energy conservation law is associated with symmetries
under infinitesimal time translation ¢ — ¢ 4 6t and momentum conservation law is associated
with the symmetries under infinitesimal spatial translations x — x + 6x. Generally Noether
method for fluids and plasmas can be presented for Euler-Lagrangian (E-L) and Euler-Poincaré
(E-P) variational principles which differ by their treatment of fields variations. In fact, the
essential difference between these variational principles is to consider dynamical fields to be varied
independently (E-L) or not. In what follows we deal with Euler-Poincaré variational principle for
Maxwell-Vlasov system. We remark here that one of the serious advantages of Noether’s method
for derivation of gyrokinetic Maxwell-Vlasov system conservation laws is that this method permits
us to obtain exactly conserved properties even for systems with asymptotically reduced dynamics.
The gyrokinetic energy conservation law was recently obtained in [23]. The goal of our study here
is to derive an exact gyrokinetic Vlasov-Poisson momentum conservation law. This investigation
can have an important field of applications. First of all an exactly conserved quantity can
be implemented as a numerical simulations verification. In the other hand, interpreted like a
momentum transport equation, momentum conservation law can also be used for investigation of
intrinsic plasma rotation phenomena, which play an important role in fusion plasma stabilization.
Further it can also be considered as a potential tool for plasma control by investigation of transport
barrier creation.

In fact, transport barrier creation represents the results of one of the self-consistent field-particle
interaction. For example energy and momentum exchange between particles and fields in plasma.
More precisely, energy exchange leads to plasma heating, and momentum exchange leads to current
drive, so both phenomena can be considered as one of the sources for the transport barrier creation.
Conservation laws guarantee a proper exchange between particles and fields and then permits us
to explore self-consistent mechanisms that govern plasma behavior.

3.2 Maxwell-Vlasov equations and variational principles

Due to their large applicability Maxwell-Vlasov equations of ideal plasma dynamics has a long
history and was studied extensively. It was firstly used in their simpler form known as Poisson-
Vlasov equations by Jeans [2]for investigation of structure formation on stellar and galactic scales
and even before by Poincaré [3] in his work on determination of stability conditions for stellar

31



32 Ch. 3. Maxwell-Vlasov conservation law

configurations. On the other hand Poisson-Vlasov equation can be also applied in order to study
self-consistent dynamics of electrostatic collisionless plasma whereas Maxwell-Vlasov equations
permits us to study self-consistent colisionless dynamics of plasma in electromagnetic field case.
In order to prepare the study of stability of plasma equilibrium, Low in 1956 has presented
his variational principle for Maxwell-Vlasov system. Low’s action is expressed in mixture of
Lagrangian particle variables and Eulerian fields variables. Since then a variety of variational
formulations for Maxwell-Vlasov equations have appeared. Particular attention was payed to
the formulation of the particle part of the action. For example its mixed Fulerian-Lagrangian
formulation was used in Hamiltonian-Jacobi action presented in [4, 7, 8, 4] and [9]. A purely
Eulerian formulation was proposed in [10, 13] through the introduction of two functions known
as Clebsch potentials introduced in [11, 12] and appropriate action principle with Clebsch action.
The leaf action variational principle introduced by Ye and Morrison in [14] uses a single generating
function as the dynamical variable for describing the particle distribution and represents a link
between Lagrangian and Eulerian representations for actions. A more systematic derivation for
a different Eulerian variational principle was presented by Cendra et al in [15]. It is obtained
by following the reduction procedure of Low variational principle, much as one does in the
corresponding derivation of non-canonical Poisson bracket in the Hamiltonian formulation for
the Maxwell-Vlasov system. Similarly to ideal fluid Eulerian variational principle, constrained
variations on six dimensional phase space was introduced in this work. Finally, a new Eulerian
variational principle that uses constrained variations on extended eight dimensional phase space
was presented by A.J. Brizard in [16]. The transition from the six-dimensional phase space to
the eight dimensional phase space permits us to express Vlasov distribution variation in terms of
canonical Poisson bracket and a single scalar field 65 which generate a virtual displacements on
the extended phase space :Z% — Z*+6Z%, where 6Z% = {Z“,6S}. In what follows we show how
this variational principle can be applied for derivation of conservation laws for perturbed Maxwell-
Vlasov system and gyrokinetic Maxwell-Vlasov system in the case of electrostatic fluctuations.

3.3 Variational principle for perturbed Maxwell-Vlasov

This section is dedicated to the derivation of momentum conservation law in the case of the
perturbed Maxwell-Vlasov system. In particular we consider that magnetic field is given by
B = By + ¢eB; where By = V x Ay denotes the background time-independent equilibrium
component, and B; = V x A; its fluctuation. At the same time the electric field contains
only a fluctuating part E; = —V®, — ¢ 10,A,.

In order to represent particle part of dynamics in extended eight dimensional phase space, first
of all we introduce an extended Hamiltonian H = H — w where H is a Hamiltonian of a charged
particle in an external perturbed electromagnetic field By, E;:

1 e

where A = Ay + €A, Then we introduce extended Vlasov distribution function
F(Z)=cd(w— H)F(p,x) (3.2)

where F'is the Vlasov distribution function on 6 dimensional phase space. This definition insures
that the extended Hamiltonian H satisfies the physical constraint H = w. Here w is a variable
that is canonically conjugate to ¢t and the Poisson bracket is an extended canonical Poison bracket:

oG OF oF 0G O0F 0G
FG}epy=VF+-——-— - VG+ — - — — — - — 3.3
U G op ap 0t ow  ow oi (3.3)
Note that the dynamical variables in this approach are: electromagnetic fluctuating fields By, E;
and extended Vlasov distribution function F. Now we give an expression for action functional
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corresponding to our system and then we use it order to write corresponding Hamilton’s action
principle 6.4 = 0:

4
A= —/dSZ}“(Z)H(Z;QJl,Al) +/Cé—: (E1|* — By + €By|*) = /£d4x (3.4)

Note that the extended phase space integration in the expression below is defined by d®Z =
c dtd®zd*p where d*p = ¢ 'd®pdw. In order to proceed with writing of Hamilton’s action principle

6A = /d4x 6L =0 (3.5)

we need first to obtain the Eulerian variation of Lagrangian density L.

3.3.1 Eulerian variations

The Eulerian variation of the Lagrangian density given by expression (3.4) is expressed as:
6L = — / (6FH + 6HF)d'p + 4i (¢ 6E, - E; — € 6B, - B) (3.6)
T

Here By is excluded as a variational field (since it is time independent). Eulerian electromagnetic
field variations are naturally related to the electromagnetic potential variations as follows

By = V&P, — crO0A, (3.7)
6B1 =V X(SAl (38)

they satisfy the constraints given by two of Maxwell’s equations

106B,
V6B, = 0 (3.10)

The Eulerian variation for the extended distribution function (3.2) is obtained by using the
fundamental relation between Eulerian (6F) and Lagrangian AF variations:

-  OF u oF
6F = AF — 02" 50 = ~{ 2" S}ewr 5

— = (S, Fous (3.11)

It preserves the Vlasov constraint [ Fd®Z = 0 under a virtual canonical transformation Z* —
Z%4 62" in extended phase space (as a result of integration of an exact Poisson bracket over phase
space). To obtain the expression (3.11) we use two facts. The first one is that the virtual canonical
transformation is generated by the extended scalar field S: 6Z2¢ — Z¢ + 62 The second one
is that the Lagrangian variation of extended distribution function F is equal to zero. This is a
direct consequence of the fact that the distribution function is constant along any trajectory in
the phase space (Liouville’s theorem). Finally the Eulerian variation of the extended Hamiltonian
OH is given by: s s
H H

OH = 6D, 55, +0A; - AL (3.12)
Now our goal is to rewrite the expression for Lagrangian variation density (3.6) so that the
variation generators (S,8®;,0A ) appear explicitly !. This will give us the possibility to derive

You can find a detailed calculation that permits us the passage between the general expression for Maxwell-
Vlasov Lagrangian density to the equations of motion and Noether’s terms in Appendix 6



34 Ch. 3. Maxwell-Vlasov conservation law

the equations of motion and at the same time to obtain the Noether terms necessary for the
derivation of conservation laws.

OA € 4 OH
6L = (EJFV-F)JF&(I)I [EV'EI_/CZPEF] (3.13)
OE,;

(OB _ gy O _/ 4
+ 6A, |:47TC<6 g cVXB) /dp6A1 F} SA{F , H}euxt d°p

where the Noether fields A and IT" are given by

2
A = /d4p SF— -~ 6A,-E, (3.14)
41 ¢
2
r = /d4p S Fr — i—ﬂéAl x B, (3.15)

with x = {x, H} representing the particle velocity. Note that here the Noether space-time
divergence terms OA /0t + V - T' do not contribute to the variational principle.

Now we introduce this expression into Hamilton’s action principle (3.5). Here each term that is
multiplied by the generators of the variations will give us corresponding equations of motion. All
the other terms are expressed as divergence and exact time-derivative, and so do not influence
the dynamics of the system. These are the Noether terms, which contribute to the derivation of
conservation laws. We remark that this expression is general and gives the possibility to obtain
the equations of motion and Noether terms for any system of Maxwell-Vlasov equations (reduced
or not).

3.3.2 Perturbed Maxwell-Vlasov equations

In this section we deal with perturbed Maxwell-Vlasov system, so we use (3.1) in order to obtain

corresponding equations of motion. The functional derivatives % and gTHl are given by:
OH
Rt 3.16
50, ¢ (3.16)
oH €e e e
— = ——- ——(A A ) =e- 1
0A, mc (p c< o+ cAr) Ecv (3.17)
So finally the perturbed Maxwell equations are given by the following expression:
eV-E, = 47Te/d4p]: (3.18)
B = ¢-——+4 — 1
V x ecat—l—ﬂe/dpfc (3.19)
Then the extended Vlasov equation is given by:
{Fa H}ext =0 (320)

In order to obtain the Vlasov equation we perform the integration over the energy coordinate [ dw

of the extended Vlasov equation (see for details Appendix 6.2.2).
oF oF 0H oF
— +{FH} = — F-——-VH-— =0 3.21
or TN HY = Gp A VIS = VH o (3.21)

and then the perturbed Maxwell equations of motion become
eV-E; = dre / d’p F (3.22)

10E
VxB = e——1+47re/d3pFX (3.23)
c Ot c
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3.4 Momentum conservation law

In this section we use Noether method in order to derive exact momentum conservation law for
perturbed Maxwell-Vlasov system. The Noether’s theorem states that for each symmetry of the
Lagrangian density £ there corresponds a conservation law (and vice versa). When the Lagrangian
is invariant under a time translation, a space translation, or a spatial rotation, the conservation
law involves energy, momentum, or angular momentum conservation respectively. The formal
proof of this statement can be found in [42].

After substituting the perturbed equations of motion (3.21,3.22,3.23) into the expression for
Eulerian variation of the Lagrangian density (3.14), we obtain Noether equation:

5£:%+V-I‘ (3.24)
ot
Now the variations (S, 0®1,0A) are no longer consider arbitrary but are generated by infinitesimal
space-time translations correspondingly to the conservation law that we derive. Before we proceed
with the derivation of the conservation laws, we note that the Noether components (A,T') are
defined up to the following transformations:

A=A+V.q (3.25)

_ on

r=r-— 2
at—i—VXU (3.26)

where n and o are arbitrary vector fields. These vector fields will be used in order to obtain
conservation laws in gauge-independent form. Note that these transformations are obtained
naturally. In fact one can add and then sustain to the Noether equation (3.24) the following
quantity: Vo = 0,Vn. Another vector field that we note o can be added to I' component due
to the fact that V- (V x ¢) = 0 for any vector field o.

3.4.1 Constrained variations
Constrained variations for electromagnetic potentials

The variations of electromagnetic potentials generated by infinitesimal space-time translations can
be expressed in terms of Lie-derivative £s, where 6x represents an infinitesimal translation in the
four-dimensional phase space. In general theory the expression for constrained variations of the
Eulerian variational principle in terms of Lie-derivative appears when the equivalence between
Lagrangian and Eulerian variational principle is discussed. On the other hand, one can interpret
this fact only by geometrical considerations, using the fact that the Lie -derivative can be viewed
as a simple generalization of directional derivative. In this section we deal with geometrical tools
in order to obtain the expression for electromagnetic field constrained variations.

We start with choice of the metric, here we deal with space-like or Minkowski type of metric:

-1 0 0 0

0 1 00
[ 2

0 0 01

We chose also the following definition of covariant and contravariant components: A, = (Ao, 4;)
and A* = g" A, = (— A", A"). Infinitesimal space-time variations are represented by the vector:
bat = (—cét, 6x") and covariant differentiation is given by: 9, = (—c¢1d;, ;) where 9; = 9/0x".
Then we can write an expression for one-form electromagnetic four potential.

A=A dxt = —c Ay dt + A -dx (3.28)
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Using the Cartan formula for Lie-derivative we have:
LA =gy - dA + d(ng . A) (329)

where the inner product operator is, acts as follows on one (A = A, dz*) and two (0, A,dz" Ndz")
forms:

d(is, - A) = da¥0, (A,b62") = da¥'d, [—c Ag 6t + A;6a"] (3.30)
isy - dA = 0, A, 62" dz¥ — 0, A, dat 6" = 62V F,, dz” (3.31)
then
LszA = (02"F,, + 0,(A,02")) dx” = —6A,dx” (3.32)
Then the variation of electromagnetic potential component:
5/40 = —(S.TZFZ(] + 0_1815 (—A066t + Aj(SIj) (333)
By substituting the components of antisymmetric field tensor Fy; = —8;49 — ¢ '0,A and
Fji = 0;A; — 0;A; we obtain:
0Ay = —ox- VAy— ot 0, A (3.35)
0A = —6x-VA -0t oA (3.36)

We note here that ® = Ay and 6® = 6 Ag, then
6® = —62" 0;® — 6t 0, (3.37)

Another possibility to deal with covariant and contravariant vectors in this place is to suppose
that A° = ® and Ay = —® then the sign does not appear inside the definition of covariant
and contravariant components of vector potential A, = (Ap, A;) and A* = (A% A"). The
infinitesimal space-time variations vector is 6z* = (62, 6z") with 62" = ¢6t and 9, = (0y, Os,)
with Ozg = ¢ 10;. Then A = A, dz* = Agdz® + A - dx and using the Eq. (3.32) we obtain:

5140 = —(SZ'ZEO — 80 (Aoé[lfo -+ A - dX) (338)

§A; = —6x-VA —6to,A (3.41)

Replacing now Ag = —® we obtain (3.37)

Constrained variations for Lagrangian density

By analogy with constrained variations for electromagnetic potentials, using the Cartan formula
for Lie derivative, we can obtain the variation for Lagrangian density. In fact, let us consider
four-form L) where €2 is the oriented space-time volume element, then

LY=L (L Q) (3.42)
Using the Cartan formula we obtain
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The second term in this expression is equal to zero because (d (d*z) = 0), the first term can be
rearranged as follows:

d (ise (L Q) = (0uL 6z%) Q (3.44)
here we use that:
ise [dx® A da® A da? A dat] = 6x (dz® A da” A dxt) (3.45)
and
d (L i5,8) = 0, LOx (dxCY A dzP A dz? A dmc) = (0. L 62%) Q (3.46)

By substituting the formula (3.44) into the expression (3.42) we obtain:
L =—0, (6a" L) (3.47)

Due to the fact that in our approach we decompose the initial magnetic field into its dynamical
part B; and its background part By we should take it into account when defining the Eulerian
variation of Lagrangian density. In order to do that, we correct the expression for variation
0L by subtracting from 0,L the derivative of the Lagrangian density with respect to the space-
time variables while all the dynamical fields are held constant. Then only the background fields
contribute. We indicate such a derivative by 9, L. So finally

5L = —627 (DL — DIL) + 6t (O,L — IL) (3.48)

3.4.2 Noether method

In order to obtain the momentum conservation law for the perturbed Maxwell-Vlasov system, we
use the Noether equation (3.24) and consider infinitesimal space translations x — x+6x generated

by:

S = (p.)-0x

60, = —6x-V&, =6x-(E;+c ! OA) (3.49)
A, = —6x-VA, =6xxB; - VA, éx ’
oL = —ox-(VL-V'L)

where the expression for canonical particle momentum p, will be discussed below. The expression
for variations of electromagnetic fields 6®,,6A;, 6L are obtained from the general theory as the
spatial component of the Lie derivative 6A = 6A,dz" = —£5xA and 6L Q = —Lsx (L Q). Here
the notation V'L in the expression for £ denotes the explicit spatial gradient of the Lagrangian
density £ with dynamical fields Eq, B, F' held constant. Since we consider the case of spatially
uniform background magnetic field By, we have

oL B OH
VL=VBy — =—-VBy- [ — Fe—d .
£ " 0B, 0 (47r+ oB," " ) (3:50)

where the first term denotes the contribution from the Maxwell part £y, = (€2|E;|? — |B|?)/87 of
the Lagrangian density while the second term involves the magnetization contribution associated
with the background magnetic field [21]. Then the second term is formally equal to zero while we
still work in canonical variables. In fact, in our case the particle Hamiltonian (3.1) is expressed
in terms of electromagnetic potential A = Ag + €A, and not magnetic field By = V x Ay,.
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Primitive momentum conservation law

By inserting the variations (3.49) into the Noether equation (3.24), we obtain the primitive
momentum conservation law

2
—(VL-V'L) = 815 [/f p—4€—(5x><B1—V5X1) }

e
2

106
+ V- |i f p* 5X) Xd4p — 4— ((SX E1 + - p afl) E1

_E (6x x By — V1) x B] (3.51)

where we have introduced a gauge-dependent field 6x; = A - 6x and rewrite the variations (3.49)
as displayed. Consequently to that this primitive form of the momentum conservation law is not
gauge invariant.

Gauge-independent momentum conservation law

In order to remove the gauge-dependent term in expression (3.51), we use the transformations
(3.26), with n = (€2/4m ¢)(A; - 6x)E; and o = (¢/4m)(A; - 6x) B (the details of this calculation
are given in the Appendix). Finally the gauge-independent momentum conservation law is

oP oL
or TV I= VB (3.52)

According to the Noether theorem, the component of the gyrokinetic momentum in the direction
of the background magnetic field By field spatial symmetry is conserved.
Here the momentum density, after integrating over energy variable [ dw, is

2
P— / F (p* _ 69A1> Pp+ ——F; x B, (3.53)
c dre

and the canonical momentum-stress tensor is

T < (I + B, ) Boff]y 1 (E,E, + ¢B,B)
= |— ——— | I—— (€ €
8 ! ! 8 47 L !
+ /F[xp*—ef(v Al)} &p (3.54)
C

Note that we take into account the Vlasov condition F'H = 0 in extended phase space when
evaluating the derivative VL, so only the Maxwell part of Lagrangian density will give the
contribution in IT.

3.4.3 Proof of Momentum conservation

In this section we give an explicit proof of the momentum conservation law (3.52). We will see
that the momentum conservation yields the dynamics of the system. We start by taking partial
time derivative of the perturbed momentum density (3.53):

%—Et) = / l%—f (p* - e§A1> + F% (p* - €§A1>:| d*p

62 8E1 8B1
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By substituting into the expression below the Maxwell-Vlasov equations (3.22 , 3.23) and the
Vlasov equation in the phase-space divergence form:

oF 0
- (AFX)— — . (Fp) = )
BN + V- (Fx) p (Fp)=0 (3.56)
we have:
oP . e €2 1
E =-V- |:/ Fx (p* - GE A1) d3p—|— 8_7'(' (|E1|2 + ‘B1|2) - E (6 BlB + €2E1E1)
€ d e v :
~ = VBy-By +/ F [% <p* _ 65A1> e (E1 + = Bl)} &p (3.57)
where p 5
e e e

The detailed calculation that permits us the transition between the Eq.(3.55) to the Eq. (3.57) is
given in the appendix 7. Now we add V - II to the result of the explicit time differentiation of the
perturbed momentum density 0P /0t, where IT is defined by the Eq. (3.54). So the momentum
conservation law (3.52) becomes:

oP oL
0 = 3 TV-T- VB oo (3.59)

— /F{%(p*—egAl)—6€<E1+%XB1)1d3p

Therefore, the last equation yields the perturbed canonical momentum equation:

d

p (p* - eg A1> =ce <E1 + % X B1> (3.60)

The equation (3.60) can be used to define the perturbed canonical momentum p, that intervenes
when defining the generating function of spatial translations (3.49). We remark that we can
replace the momentum conservation law for the perturbed Maxwell-Vlasov system (3.52) by the
equation for perturbed canonical momentum in the particle phase space (3.60). This connection is
analogous to the standard connection between the momentum conservation law and the equation
for the particle canonical momentum in the case of the non-perturbed Maxwell-Vlasov system.

3.4.4 Particle canonical momentum

In previous section we have obtained the equation for the perturbed canonical momentum p,. We
now discuss its properties by comparing with the case of the unperturbed Maxwell-Vlasov system.
In general theory [16] for the full Maxwell-Vlasov system when magnetic field is not divided into
its equilibrium (non-dynamical part) and perturbed (dynamical) part, the generating function S
for the derivation of the momentum conservation law is given by the particle canonical momentum
p=mv+ A,

Let see now what changes for the perturbed Maxwell-Vlasov system, when the electromagnetic
fields E = ¢E; = —®; — ¢ '9;A; and B =By +¢B; = V x (Ag + €A;) are expressed in terms of
background fields (0, Bg) and perturbation fields (E;, B;). In this case the corresponding particle
canonical momentum should be expressed as p = mv+<Ay+e£A; and the corresponding equation
of motion that can be directly derived from the Hamiltonian (3.1) is (see for details 8):

% (p — ZAO — €ZA1> =e <e E, + % x (B + € B1)> (3.61)
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Let now compare this equation to the equation (3.60) for the perturbed canonical momentum p..
First we can remark that the magnetic part of the Lorentz force in r.h.s of the equation (3.60)
does not contain the contribution coming from the equilibrium magnetic field By, there is only
the contribution coming from the dynamical electromagnetic fields By and E;. We remark that
such an equation can be derived from the Hamiltonian (3.1) after performing on it the gauge
transformation A — A’ = A — Vx where the gauge field is chosen such that Vy = Ag

1 2
H=— (p - (—:EA1> +eedy (3.62)
2m c
Then in order to be coherent, p, should be defined as follows
P« =mv + EEAI (3.63)

It represents a mixed-canonical momentum (i.e., it is a kinetic momentum in the absence of the
magnetic field perturbation generated by the vector field A;). We can see that the generating
function S for the perturbed Maxwell-Vlasov system contains only the dynamical part of the
vector potential.

Now we use the expression for the mixed-canonical momentum p, (3.63) in order to simplify
the expressions for the momentum density (3.53) and the momentum canonical tensor (3.54).
Finally we obtain the expressions for the momentum density and the momentum stress tensor
with symmetrized Vlasov part:

2
P - / Fvdp+-—E; xB (3.64)
4dme

mo= (S e eam - B0 L enE )
8 8 A7

+ /Fmvv d*p (3.65)

3.4.5 Momentum conservation law in background separated form

In this section we show how the momentum conservation law can be used in order to study the
momentum exchange between the background field and plasma. For doing this we rewrite the
momentum conservation law in its background separated form. We define

P = P:/de?’p (3.66)
&
_ B. |2
II = H—I—’ o I—i—iBrBo:
8 4

2

1
86_7T [(‘E1’2 + ‘Bl’Q)} I- E (€2E1E1 —+ 6B1B1>

+ /Fmvv d*p (3.67)
Then the momentum conservation law (3.52) became:
opP 1
— II=—1JyxB 3.68
ot v Ar 70 St (3.68)
where we make appear the background component of current J, = (V x By), we use that

V-(B1By) — VBy:-B; = (V xBg) x B;. Let us now consider the equation (3.68), its l.h.s.
contains purely plasma contributions into the momentum density P and the momentum stress
tensor II, the r.h.s. contains the coupling between the background magnetic field By, represented
by background current Jj, and the plasma magnetic field B;. So we can say that momentum
conservation law describes exchange between the background fields and plasma.
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3.5 Gyrokinetic variational principle

In sections 3.3 and 3.4 we have considered derivation of momentum conservation law for perturbed
Maxwell-Vlasov system. In this section we will deal with derivation of momentum conservation
law in the case of reduced (by using the Lie-transform method [1]) Maxwell-Vlasov system.
Note that differently from the perturbed Maxwell-Vlasov system case, here we consider only
the electrostatic fluctuations with dynamical electric field E; = —V®; and the non-dynamical
background magnetic field By = V x A,. The case of the electromagnetic fluctuations represents
a part of the future work.

Previously, several works dealt with variational formulation of reduced Maxwell-Vlasov system.
For example Sugama in [22] has presented Lagrangian variational principle, in which an action
functional for gyrocenter particles was derived from the Low Lagrangian formalism. Here we still
use the Eulerian variational principle proposed by A.J. Brizard in [16] and then adapted by him
in [17] for the case of the reduced Maxwell-Vlasov system.

Here we generally follow the same schema for momentum conservation law derivation that in the
case of the perturbed Maxwell-Vlasov system.

Gyrokinetic action functional for electrostatic perturbation

In order to prepare the introduction of gyrokinetic electrostatic Maxwell-Vlasov action functional,
we first present extended reduced (gyrocenter) Hamiltonian H,, and Vlasov distribution function
Fyy- Accordingly to the Lie-transform phase space method for gyrokinetic dynamical reduction
[19], the gyrocenter Hamiltonian is given by

2

€
Hyy (X.p it 1) = oo (Xop o) + (e ) = S e (£000) (369

where (...) denotes the gyroangle-averaging operation, the unperturbed gyrocenter Hamiltonian
is defined as the guiding-center Hamiltonian H,. = B —i—p2H /2m, the effective first-order guiding-
center potential in electrostatic turbulence case is

(I)lgc == T;cl(pl (370)

where T;cl denotes push-forward gyrocenter operator. The second order ponderomotive potential
in Eq. (3.69) is expressed in terms of the gyrocenter Lie-derivative £, [23], which is defined for
a general function G in electrostatic turbulence case as

e ~
"€9yG = ﬁ{wlgca G}gc (371)

where {. ,.},. represents the guiding-center Poisson bracket [18] and @196 is defined from the
following equation:

AUy = Dy = € (Prge — (Prge)) (3.72)

0 = eBy/mc denotes the Larmor frequency. We remark that while the gyroangle-averaged
potential (¢q4.) contributes to the linear (first order) perturbed gyrocenter Hamiltonian
dynamics, the gyroangle-dependent potential Cflgc contributes to the (second-order) gyrocenter
ponderomotive Hamiltonian in Eq.(3.69). The extended gyrocenter Hamiltonian

Hyy (X, ot w; @1) = Hey (X, p 1, t;91) —w (3.73)

is expressed in terms of the time-dependent gyrocenter Hamiltonian given by Eq. (3.69) and the
gyrocenter energy coordinate w. The extended Vlasov distribution function

Fou(2) = FXsp, p,t) ¢ 6(w — Hyy) (3.74)
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ensures that the gyrocenter Hamiltonian dynamics satisfies the physical constraint H,, = 0. Now
we have all the elements to give the expression for the electrostatic gyrokinetic action functional
A,y and to the corresponding Hamilton’s action principle 6.A,, = 0.

d*x
Agy = —/dSZ Foy (Z2) Hyy (Z; q>1)+/§ (IE1f” — By E/ Ly, d'z (3.75)

Note that now the integration is realized over the extended reduced phase space d®Z = dt d>X d*p,
where d*p = ¢ l'dw d3®p and d®p = 27 m B} dpy dp. Here 2 m B represents the Jacobian of
the guiding-center transformation.

3.5.1 FEulerian variations

The general expression for Eulerian variation of Lagrangian density in the case of gyrokinetic
Maxwell-Vlasov system L, is given by:

§H,
8L,y = i {(5131 "E)) — / 8F yy Hyy + € (5@1 Wf) fgy] (3.76)

where By is a non-dynamical field and the constrained Eulerian variation for electric field
0E; = —V®; preserves the constraint ¢V x ¢E; = 0. The Eulerian variation for the extended
gyrocenter Vlasov distribution is

6F gy = {Sgy: Fy}e (3.77)

where {.,.}. denotes the extended guiding-center Poisson bracket. Similarly to previous case
this Eulerian variation preserves the Vlasov constraint [ 6F,,d®*Z = 0 under a virtual canonical
transformation Z — Z 4 62 in extended phase space. Now the virtual canonical transformation
is generated by the extended scalar field S,,: 6Z2% = {Z%, Sy, }

Gyrocenter Hamiltonian functional derivative

In this subsection we give some details about evaluation of functional derivative 6Hg, /6P (x).
Before starting this calculation we have to make some remarks.

Due to the gyrokinetic dynamical reduction one have to pay attention to the fact that the
electromagnetic fields & = ®;(x), Ay = Ay(x) and the particle (gyrocenters) X are now evaluated
at different spatial positions. The fields are still evaluated at the full particle position x while
the positions of the gyrocenters are X = x — pg where the difference between them is p, which
denotes the Larmor radius. To give the link between the electric field evaluated in the position x
and the gyrocenter electric field evaluated into the reduced (gyrocenter) position, we introduce the
guiding-center delta function 630 = 6% (X + po — x). It indicates that the gyrocenter contribution
at a fixed point x only comes from gyrocenters located on the ring X = x — pg. Then

(Dlgc = /dgfl' 630 CI)1<X) (378)

The variation of the gyrocenter Hamiltonian (3.69) is given by:

€2 e?

(SHgy = € €<6(I)1gc> — W

(8% 150 Prgelge + {Wrge, 6Prgege) (3.79)
Accordingly to the Eq.(3.78), functional derivative of the first order gyrocenter Hamiltonian is

<5q)190>
6P (x)

=6, (3.80)
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In order to evaluate functional derivative of the second order correction to the gyrocenter
Hamiltonian, we integrate it by parts with ®1,. = JgW 1.

-~ - ~ Uy, 06U, ~
(130 Paehae) = ({0100 =5 ) = =% ek
- _<{6q)lgcv \Ijlgc}96> - <{\1119076q)190}96> (3‘81)
Then )
O0H, € e, ~ . _
6@155() =€ €<630> o T<{\Ijlgm 630}QC> = <Tgcl(sgc> (382)

Here we make appear the push-forward gyrocenter operator Tg_c1 = 1—e€Lgy, (up to the first order).
Following the schema presented for perturbed Maxwell-Vlasov system we rewrite the expression
(3.76) for Eulerian variations of £, so that the variations generators (Sy,, 6®;) appears explicitly:

OA
6Ly = (a +V- F) - / Sgy{}—gya Hgy}s d4p

2
+ 6D, [i—ﬂV-El—ee / Fo (T 183 Vd'p d* X (3.83)

gc ~gc

here we have used Eq.(3.82) and Eq.(3.77). The Noether fields A and T' that does not contribute
to the variational principle

A

/ SouFayd'p (3.84)

r

2

/ Syy Foy X d'p — i—é(l)l E, (3.85)
T

with X = {X, Hyy} 4 representing the gyroangle-independent gyrocenter velocity.

3.5.2 Gyrokinetic Maxwell-Vlasov equations

After substituting the variation (3.83) into the variational principle [ §L,,d*x = 0 for arbitrary

variation generators (Sg,, 0®1), we obtain the gyrokinetic Vlasov equation

{Foy, Hgye =0 (3.86)

and the gyrokinetic Poisson equation:
eV-E =4re / Foy(Tpe 620d *p d*X (3.87)
Performing the integration over the energy coordinate ([ dw) on the extended gyrokinetic Vlasov

equation (3.86) we obtain the gyrokinetic Vlasov equation (see for details Appendix 6.2.2).

oF oF .
— F H c=— +X-VF+7p
ot +{ ) gy}g ot + +D)

OF

——=0 3.88
) (3.88)

and the gyrokinetic Poisson equation

eV -E =4re / FA(T,62)d%pd*X (3.89)
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3.6 Gyrokinetic momentum conservation law

Following the procedure for deriving the momentum conservation law that was established for
the perturbed Maxwell-Vlasov system case, we now substitute the gyrokinetic Vlasov-Poisson
equations (3.88) and (3.89) into the variational equation (3.83), we obtain the corresponding
Noether equation

A
5Lq = %—t +V-T (3.90)

where A and I' are defined up to the transformation (3.26).

3.6.1 Noether Method

Comparing to the expressions (3.49) for the variations generated by infinitesimal space translations
X — X + 6x in the case of the full perturbed Maxwell-Vlasov system, the variations (Sg,, ®;) for
the gyrokinetic electrostatic Vlasov-Maxwell system are now given by:

Sgy = Pgy- 0X (3.91)
8Ly = —6%-(VLgy — V'Ly,) (3.93)

where Sy, is the gyrocenter generating scalar field for the virtual spatial translation éx contains
gyrocenter canonical momentum pg, its expression will be discussed below. The expressions for
electric field variation and Lagrangian density variation are obtained following the same procedure
that was presented in Section 3.4.1. Note that comparing to the Eq. (3.50) for the derivative of
the Lagrangian density with respect to the background magnetic field By we should replace £ by
Ly, and H by Hg,:

/ _ 8Egy _ By aHgy 3
V'Ly = VBy- 5t = —VBy- (E*/ F5ped’p (3.94)

We note also that in the absence of the perturbed magnetic field B; the momentum conservation
law that we derive is directly gauge independent:

, 0
—ox - (VEgy -V Egy) = ot {/ Fay (<ng> - 0%) d4p1 (3.95)
) 2
+ V- [/ Foy ((Pgy) - 0%) Xy d'p — i—ﬂéx . ElEl}

Note that while deriving this momentum conservation law we have used only the gyroaveraged
part of the generating function Sy, = (p,,). In fact it is necessary in order to be coherent with
dynamics generated by the gyrocenter gyroangle-independent Hamiltonian (3.69). For example
the gyrokinetic Poisson equation (3.89) is driven only by the gyroaveraged part of the gyrokinetic
charge density pge = [ F (T,,'6;,.)d *p. In what concerns the gyrokinetic Vlasov equation (3.88),
it is obtained by assuming supplementary that 9pF = 0 (see appendix 6.2.2).

Then we rewrite the expression (3.94) as

oP,,
ot

0L,
0By

+V'Hgy:VBO'

= 0L, (3.96)

Then by performing the integration over the energy coordinate [ dw, the gyrokinetic momentum
density is

Py, = / F (pg,) °p (3.97)
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and the gyrokinetic momentum stress tensor is

1 €2 -
Iy, = — ( 62|El|2 - |B0|2) I-—EE +/ ' Xgy <pgy> d3p (3.98)

8w 47
where X,, = {X, Hyy}4e

3.6.2 Proof of Gyrokinetic Momentum conservation

As in previous case we give an explicit proof of the gyrokinetic momentum conservation law (3.96).
We begin with the partial time derivative of the gyrokinetic momentum density (3.97):

oP OF o(p
o =[5 oo+ 1222 4 (3.99)

By substituting corresponding gyrokinetic Vlasov equation in its phase-space divergence form (see
for details appendix 6.2.2)

(F, Hyylge = ;rv. (Bﬁ X F) +Bi|* % (Bip) F) (3.100)
after integration by parts we obtain
agtgy :/ F G0 Poy) ;fgy) %~ V- U FX,, <pgy>} d% (3.101)
where
Yo ) _ o) 4 10, Hiyghoe (3.102)

dt ot
Due to the fact that we have taken only the gyroaveraged part of the generating function S,
in order to derive the gyrokinetic momentum conservation law and only (p,,) intervene into our
calculations, we have:

Bi{(pgy), Hoytge =V - (Bﬁ (Pgy) ng) + %H (Bﬁ (Pgy) P11 (3.103)

Now we use the gyrokinetic Poisson equation (3.89) and the electrostatic constraint V x E; = 0
in order to perform the electrostatic Maxwell part of the gyrokinetic momentum stress divergence
Vv 11,

€2 1 €
EV : <§‘E1’2 — ElEl) = E (El X (V X E1> -V E1 El)

= €e / (T gylég’c E\)d’pd?r=ce / F{ Elgc *p (3.104)
Using the expression below we add and we subtract - (%|E1| — E1E1)
by the Eq. (3.94)to the r.h.s. of the Eq.(3.101) we obtaln
P, oL
0 = v-11,,=VB 9y
ot 9 " 0B,
dgy (Pgy) . 0H 3
~ / F [% —ce{Ty, Baye) + VBy - 5 % (3.105)

which yields the electrostatic gyrocenter canonical momentum equation:

0H,,
0B

o P} _ 71,y VB, .

3.106
o (3.1006)
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3.6.3 Gyrokinetic particle canonical momentum

In the section 3.4.4 we have discussed the expression of the perturbed particle canonical momentum
that generate the momentum conservation law for perturbed Maxwell-Vlasov system. We have
seen that the momentum conservation law was generated by a mixed-canonical momentum :

e
P« = mv + —A;, which simply becomes in the electrostatic perturbation case the particle kinetic
c

momentum.

Let us now analyze the equation (3.106) for electrostatic canonical momentum. We can deduce
by analogy with the non-reduced case, which p,, now represents kinetic gyrocenter canonical
momentum pgy, = ngy.

Due to the fact that Hy, given by Eq. (3.69) does not depend on the gyroangle coordinate and
supposing that in the first approximation, the Jacobian of the guiding-center transform does not
depend on the gyroanlge (J = 2rmB}} = 2rmB}|(X,,) = 2rmB.(Xg,) - bo(X)), according to the
gyrocenter equations of motion given in the Appendix (6.2.2), we have ng = (ng). Then the
expressions for Py, and II,, become

P,, :/ Fm X, d®p

1 62 .
I, = o (@B = [Bo) - BBt [ F iy, X, '

(3.107)

3.7 Applications of the gyrokinetic momentum
conservation law

In this section we explore the possible ways for applications of the gyrokinetic momentum
conservation law (3.60). In particular here we consider the parallel and toroidal gyrokinetic
momentum transport equation, derived in the axisymmetric magnetic geometry from this general
gyrokinetic momentum conservation law. These two equations are often considered as the same
assuming that the background magnetic field is mainly in the toroidal direction. This is true only
for a simple tokamak geometry, when the background magnetic field is considered as a toroidal
magnetic field, but is invalid for spherical tokamak geometries, for example. So the consideration
of this both equations can be useful.

3.7.1 Gyrokinetic momentum conservation law in background
separated form

In order to study the momentum exchange between plasma and the background magnetic field,
let us first rewrite the momentum conservation law (3.60) in its background separated form:

OP _ OH,
a;’y +V-1I,, = -VB, / d*p aBg;/ (3.108)
where
P, = P, = / FmX,, dp (3.109)
_ 1 . )
0, = - (CIEPI-2EE) + / FmX,, X, dp (3.110)

Let us now consider the terms in the r.h.s. of the equation (3.108) that represent the exchange
between plasma and background field. At the lowest order in €, we obtain the guiding-center
magnetization 0H,,/0By = pby.
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For higher-order terms in 0H,,/0B,, in the first approximation, we take the limit where
the background magnetic field is uniform. Details of the calculations for the higher - order
gyrocenter contributions can be found in the appendix 9. For example the first order
correction € O(¢p14.)/0By involves the divergence of the perpendicular perturbed electric field

E(gblgc) = 5 NQQIA)O (V EIL) Where V ElL = IL VEl
0

3.7.2 Parallel momentum conservation law

Let us now project the equation (3.108) on the direction of the background magnetic field bo

oP _
atH bO (V Hgy) =

1 .
Yor (riglgen) o) e

where P = P- bo, and we have used that: with By = Bof)o and VB = VBOBO—I—BO Vf)o, we have
bo - VBg - by = by - VBy + Bybg - Vby - by because of V(bo bo) = 0. Here the terms in the r.h.s.
—

(3.111)

of this equation represents the polarizgmtion due to the background magnetic field. At the lowest
order we obtain the guiding-center mirror-force density and at the first order in electrostatic
perturbation we have proportional to the perpendicular part of the gyrokinetic charge density
pr =V -E; term.

3.7.3 Toroidal gyrokinetic momentum conservation law

According to Noether’s theorem, the component of the gyrokinetic momentum in the direction
of a spatial symmetry of the unperturbed magnetic field is conserved. In axisymmetric tokamak
geometry, for example, where the background magnetic field is independent of the toroidal angle

0 0B J'Ly,
¢ (i.e. 8—; VB, = a—¢0 = 0 and then —— 8(;5 =0 ), the Lh.s. of the equation (3.96) vanish and the
toroidal gyrokinetic momentum density P, = P, - 8 5 satlsﬁes the toroidal gyrokinetic transport
equation 2
8P¢ ox —
—f . 10 3.112

3.7.4 Intrinsic plasma rotation mechanisms identification

The problem of the identification of intrinsic rotation mechanism represents one of the relevant
problems for magnetically confined plasmas. In fact, plasma rotation plays an important
role in turbulence stabilization and transport reduction, therefore in improvement of tokamak
performance both in stability and confinement. In present-day machines, rotation is usually driven
by external sources, such as neutral beam injection. The problem is that such a rotation mechanism
generators can become unavailable in a future fusion devices as ITER for example, due to their
large size and high plasmas densities. In the same time one possible issue seems to be indicated by
the system itself. It was observed in various fusion devices, such as Alcator C-Mod [31], DIII-D [29]

ox
2Note here that there is no ambiguity related to the contraction —— (V Hgy) because the gyrokinetic
3¢>
momentum stress tensor Hgy is the second rank tensor and then V -1l is a vector, so there is no difference

between the left and right contraction with the basis vector —

5(;15
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and NSTX (National Spherical Torus Experiment)[30] that the plasma rotation has a spontaneous
(intrinsic) component. As a consequence of these observations, numerous theoretical works on the
establishing physical mechanisms of the non-diffusive momentum transport have been stimulated.
In fact, the turbulent momentum stress tensor IT (called flur term in the general theory for
transport equation), plays the role of the key physics quantity for the identification of the plasma
rotation mechanism. In general theory it can be decomposed as follows [35]:

0x
d¢

where Y, is the turbulent diffusivity, V' is the convective (pinch) velocity and IT? represents
residual stress tensor. The two last terms both represents a non-diffusive contributions. The
turbulent diffusivity is studied now since 20 years [64] while pinch and residual stress tensor
mechanism were actively studied only in the last 3 years [35, 32, 33]. Special attention was payed
to the residual stress investigation [35, 27, 26]. In fact the diffusive and convective mechanisms
have an analogue in particle transport, while the residual stress tensor has not. As a consequence,
the residual stress can be viewed as a candidate for treating the field-particle exchange [35].

The non-diffusive mechanisms listed in the r.h.s. of the equation (3.113) can certainly be detailed
and completed. Let see for example the pinch mechanism. Initially the origin of the pinch term
was shown to be connected with E x B shear mechanism in [33] and [32]. On the other hand in
[34] a novel complementary to the E x B shear, pinch mechanism was identified originated from
the symmetry breaking due to the magnetic field curvature. This is why it can be interesting to
go into the depth of new non-diffusive momentum transport mechanisms identification.

Let us now analyze the momentum stress tensor (momentum flux) derived from the gyrokinetic
variational principle. After a simple projection (on the right) to the parallel or toroidal direction
we can identify the pinch term, proportional to the parallel or toroidal velocity, and the residual
stress tensor that is simply represented by the Maxwell tensor Ey,FE; | where a represents the 3
spatial coordinates.

X :
O,=11- - = —Xd,a—?f’ + VX, + 17 (3.113)

Iy, - by =11
€2 . .
= = (IBiPby — 2 Bufy ) + /dap F X, X, (3.114)
\_:‘,/_./

Comparing with the toroidal momentum conservation equation with vanishing r.h.s. due to the
background magnetic field symmetry, the parallel momentum transport equation possesses some
source terms which originate from background gyrokinetic magnetic field magnetization. Such a
terms show the connection between plasma and the background field and should also be considered
as a momentum transport mechanisms. Investigation of such terms represents an opportunity for
future work.

3.7.5 Toroidal momentum evolution equation

Let us now consider the toroidal momentum evolution equation. We suppose that the poloidal
component of the background magnetic field can be neglected with respect to the toroidal
component of the background magnetic field By > By, it permits us in the first approximation to
identify the parallel and the generalized unit toroidal direction with by = V¢.3 By consequence
we can use the toroidal gyrokinetic momentum transport equation (3.112) rather then parallel
gyrokinetic momentum transport equation (3.111).

3Here V¢ = %V}ﬁ and then the covariant parallel component of any vector C is related to its toroidal components
as CH = 1/R C¢
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The details about toroidal projection of gyrokinetic momentum stress tensor in arbitrary
axisymmetric geometry are presented in the appendix 10. % Then the toroidal gyrokinetic
momentum conservation law in cylindrical geometry is given by:

) _0X L, 0X
< ——
anormal diffusion
0X* OX® 1.
&Pp |F X — Xt = 3.115
m/p |<0z+0R+R ) (3.115)

pinch velocity

g2 g0k g, 2" gr EE
M{(“& &)+<'8R em)+R ']

Here we have defined
/d3pF (R X¢) = /d3pFX|| EPH (3.116)

Let us now analyze the equation (3.116) by comparing it to the equation (3.113) (appearing as Eq.2
in [35]). We remark that in our case we can similarly identify 3 principal groups of mechanisms
responsible for intrinsic plasma rotation.

The first one contains terms proportional to the parallel velocity (the pinch velocity). The second
one contains terms proportional to the gradient of the parallel velocity, such a terms are referred
to the abnormal diffusion mechanisms®. The last group is classified as a group containing the
Maxwell tensor components, called residual stress terms.

Now we compare the momentum transport equation (3.116) to the momentum transport equation
derived from the first moment for the gyrokinetic Vlasov equation given in [27]. In both cases
ElaElb
oy®
be treated as a part of the residual stress tensor. However the origins of this term are different
for each method mentioned here. Following the method presented in this chapter that uses the
gyrokinetic Maxwell-Vlasov variational principle, the gyrokinetic Maxwell stress tensor originates
directly from the expression for the gyrokinetic Maxwell-Vlasov action functional (3.4). In what
concerns the second method used in [27], the same term appears as a result of the violation of the

gyrocenter quasi neutrality at the second order of the electrostatic perturbation.

The gyrokinetic variational principle provides an exact momentum conservation equation at
the third order, the momentum conservation equation given in [27] contains the highest order
corrections to the residual stress tensor.

the r.h.s. of these equations contains the gyrokinetic Maxwell stress tensor that can

3.8 Summary

In this chapter the derivation of an exact gyrokinetic momentum conservation law using the
gyrokinetic variational principle, presented in [16], is done in the cases of the full perturbed

4We use the expression (10.63) in the case of the cylindrical geometry, where we identify coordinates of general
axisymmetric geometry (¢, 6, ¢) to coordinates (R, z,¢). Here the metric tensor coordinates are grr = 1, ggp =
R?,g.. =1 the Jacobian J = R and 8‘7 =0, ‘g—}g =1

5Here the term abnormal means that the diffusion processus is driven by turbulence (for example, random walk
of a particle driven by fluctuations of electromagnetic fields) and not by collisions leading to the dissipation. This

type of diffusion is possible in the Hamiltonian framework.
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Maxwell-Vlasov and the electrostatic gyrokinetic Maxwell-Vlasov system. This chapter is
organized so that the derivation of the momentum conservation law for the full perturbed Maxwell-
Vlasov system prepare the derivation of the momentum conservation law in the case of the
gyrokinetically reduced Maxwell-Vlasov system. In the first case only the effects resulting from
the background magnetic field separation are considered. For example, the adaptation of the
Eulerian variations for the Lagrangian density is discussed in the section 3.4.1. Then in Section
3.4.4 its influence on the particle canonical momentum p and therefore on the generating function
S = p - 6x is compared to the full Maxwell-Vlasov system case.

Further in 3.5 electrostatic gyrokinetic Maxwell-Vlasov system with background separated
magnetic field is considered. The corresponding expression for the particle canonical momentum
is discussed in 3.6.3.

Finally, one of the possible applications of the gyrokinetic momentum conservation law, the
investigation of momentum transport phenomena, is considered in Section 3.7, and the toroidal
momentum conservation and parallel momentum transport equations are derived. In the latter
case the terms related to the exchange between plasma and background magnetic field are
presented in (3.111). The identification of the intrinsic plasma rotation mechanisms resulting
from the momentum conservation equation is done in the cylindrical geometry case (3.116).

In previous works [26, 28], the derivation of the gyrokinetic momentum transport equation was
realized by using moments of the gyrokinetic Vlasov equation, which suffer from the standard
gyrokinetic closure problem. In the same time the presented method for the gyrokinetic momentum
conservation law derivation provide an exact statement which depends on the nonlinear gyrokinetic
physics included in the gyrokinetic action functional.

Exploring the momentum conservation law derivation and its further physical interpretation
in the electromagnetically perturbed gyrokinetic Maxwell-Vlasov system represents one of the
perspectives of the future research.



Chapter 4

Intrinsic guiding center theory

In this chapter we address the problem of the dynamical reduction for the motion of a charged
particle in a non-uniform slowly varying external magnetic field. The general purpose of our work
is to face up to the problems related to some geometrical obstructions that were encountered
previously.

The main idea for the dynamical reduction arises from consideration of the elementary problem
of charged particle motion in a uniform magnetic field, for example B = Byz. In this case (when
the component of initial velocity parallel to the magnetic field line is different from zero), the
particle follows a helical orbit (otherwise the motion of the particle is confined to a circle in the
plane perpendicular to the magnetic field line). Such a motion is multiscale: it consists of the
slow uniform drift along the magnetic field line and the fast uniform rotation (gyration) around
the magnetic field line. The frequency of this fast uniform rotation (gyrofrequency) expressed as
2 = eB/mc is called also the Larmor frequency. The radius of the gyration motion (gyroradius)
p= b x v2 /Q explicitly depends on the fast variable (gyroangle) ¢. The component of velocity
parallel to the magnetic field v = v - b is constant. At the same time the kinetic energy and the
modulus of velocity v = (v - v)/? = (vf + v})"/? are conserved. This yields the invariance of the
following quantity u = m v, /2B. In other words we can say that p denotes a dynamical invariant
of this system.

The guiding-center theories developed since Northrop [41] provide modifications to this elementary
dynamics in order to expand its properties (separation of scales of motion and existence of
dynamical invariants) in the case of slowly varying strong magnetic field. Here the slow variance
of the magnetic field is defined with respect to the particle motion: we assume that its length scale
Lp is large compared to scales of the particle motion: the modulus of the gyroradius p = v, /Q
and the distance v}/ traveled by the particle in one gyroperiod parallel to the magnetic field line.
However, in the case of the non-uniform magnetic field for example, one should pay attention to
the fact that the gyrofrequency, €2, is no longer a constant but becomes dependent on the spatial
coordinate r. Then some estimate of Larmor frequency, for example 2 = sup, Q(r), has to be
made when defining the length scales.

The main idea of this approach is based on the physical intuition: in the case of slowly varying
magnetic field the particle dynamics should approximately be the same as that in the case of the
constant magnetic field.

Let us first consider the kinetic energy of the particle. It will still be conserved because the modulus
of the particle velocity is still conserved, but the ratio between parallel and perpendicular velocity
components can now vary. This leads to the fact that x4 is no more a constant but a slowly varying
quantity (an adiabatic invariant).

It was showed by Alfven (1940) and recently remind in [20] that the magnetic moment

e [Td¢ op  mui
,u—m/_ﬂ%T[mv—ireA(X—l—p)] o= 2B

(4.1)
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is an adiabatic invariant associated with the fast gyromotion of a charged particle (with mass
m and the charge e¢) moving in a slowly varying magnetic field. Here the particle position r is
decomposed into its slowly varying component X, called the guiding center, and its rapidly varying
component, represented by the gyroradius p.

The general purpose of finding some adiabatic invariant is the possibility to make an appropriate
change of variables that permits us to consider such a slowly varying quantity as one of the
variables of the phase space. Then the variable associated to its fast variable will be treated as
an ignorable one. Such a procedure permits us to simplify the dynamical description of the initial
system.

Finding an adiabatic invariant can be used as a starting point for providing some procedure that
yields the series for its high order corrections.

In the first part of this chapter the problem of such a series construction is considered on local
particle phase space.

The common point of the guiding center theories developed previously is the introduction of
the slowly varying guiding-center position defined by removing the gyroradius vector from the
particle position X = r — p. Such a transformation leads to the de-correlation between the
positions in which electromagnetic fields (full position (x)) and virtual particles (guiding-centers)
(reduced position(X)) are evaluated. In the previous chapter, we have considered the gyrokinetic
Maxwell-Vlasov equations, derived using reduced phase space coordinates obtained from the Lie-
transform perturbation method. We observed that such a decorrelation was expressed through
the appearance of the 6 = §(x — p) function within the reduced equations. One of the principal
differences of our method is to not make use of such a reduced position but directly deal with the
particle position.

Another important point that will be discussed here concerns the gyrophase definition. This
question has been the subject of reflection for a number of plasma physicists since the development
of guiding-center theories, from the early work of Hagan and Frieman [63], through that of
Littlejohn [40] to the recent work of Sugiyama [43].

In the case of the constant and uniform magnetic field no ambiguity related to the gyrophase
appears. It can be defined in the plane perpendicular to the magnetic field line as an angle between
some constant perpendicular direction, (that can be conventionally taken as x, for example) and
the gyroradius vector p. The situation become more complex in the case of the nonuniform
magnetic field. Here it is no longer possible to choose a constant reference direction in the
perpendicular plane to represent the gyrophase origin.

The usual procedure proposes to measure this fast angle with respect to some fixed basis in the
plane perpendicular to magnetic field, that we will note as (f)l, 62) Due to the spatial dependence
of the magnetic directional vector, (f)l,f)g) must also be dependent on the spatial coordinate.
Then at each space point a different basis will be defined. That is not all. Another difficulty
lies inside the fact that the vectors 131, b, are not defined uniquely. The requirement of forming
an orthogonal basis with the magnetic field directional vector b leaves open the opportunity for
rotation in the perpendicular plane about b by some arbitrary angle, the gyrogauge angle. The
core of the problematic here lies in a fundamental geometrical effect: anholonomy of a basis field
in curved spaces.

The natural question which arises at this point is whether or not a “privileged” choice exists for
(f)l, Bg) A suggestion that is often made is to make use of the normal and binormal vectors to the

b-Vb . FO
ﬁ, by = b x b;. This choice has some advantages and disadvantages.

On the one hand, the vectors by, b, are tied to the physical vector b. On the other hand such a
basis is undefined in the case of straight field lines and becomes discontinuous at field line twisting
points. In the first part of this chapter we make use of this natural basis when deriving general
expressions for dynamical equations in local coordinates.

field line, i.e. b, =

~
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At the same time, when implementing these general dynamical equations in the particular case of
axisymmetric magnetic field geometry, we will operate with a more practical choice for calculations
by taking in place of the curvature vector Bl, the magnetic flux coordinate V.

In the second part of this chapter an approach that does not involve use of some fixed basis in
order to measure the gyrophase angle is presented. Moreover, no gyrophase is used in order to
represent rotation in the plane perpendicular to magnetic field. The description of rotations is
made on a more abstract level involving intrinsic so(3) Lie structure. A detailed construction for
intrinsic gyroaveraging operator is also presented.

In what follows we will refer our results to the guiding-center theory resulting from the Lie-
transform perturbation method [36, 37, 20, 18|

4.1 Noncanonical Hamiltonian structure

It is well known that dynamics of a charged particle (of mass m and charge e) in an external
non-uniform magnetic field B = Bb, (where B is the magnitude of the magnetic field and b
is its direction) has a Hamiltonian structure. Such a Hamiltonian structure admits different
formulations. The traditional one uses the gauge-dependent electromagnetic potential formalism
B = V x A; in this case the corresponding Hamiltonian structure is canonical. The phase
space consists of the canonically conjugate coordinates: the canonical particle position q and the
canonical particle momentum following from the minimal coupling principle P = mq + eA.!
Another possibility is to use a field formalism that has the advantage to be gauge independent.
Here the corresponding Hamiltonian structure is non-canonical because now it contains the
coupling between fields and particles. The corresponding phase space consists of non-canonically
conjugated variables: a local particle position r and the particle kinetic momentum p = mr.
Such phase space variables represent physical coordinates of the particle and so are better
adapted to highlight the underlying physical properties of the system, as for example dynamical
scale separation, necessary to realize dynamical reduction. For this purpose, the noncanonical
Hamiltonian formulation was used for the first time by Littlejohn in [36].

Note that both Hamiltonian representations are related by the mapping:

r = q (4.2)
p = P—cA (4.3)
4.4)

In what follows, we consider the free relativistic particle Hamiltonian:
1
H=(m*+p[’)? = my (4.5)

and the corresponding non-canonical Poisson bracket given by:

_Of 99 Of 9y of 99
{f’g}_ap or Or Op B apxap (4.6)

Then the suitable equations of motion in the non-canonical variables (r, p) are:

i = {Hr}="2 (4.7)

my

p = {H,p}:m%@xB) (4.8)

where we have used that |p|> = p - p and 0, H = p/m~.

Tn this chapter we assume that ¢ =1
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4.2 Dynamical reduction

As mentioned above, in order to proceed with dynamical reduction, one should explore the
underlying properties of the dynamical system. The first obvious simplification that one can
bring into the dynamical description of our system is to remark that the modulus of the particle
kinetic momentum p = /p - p is a trivial constant of motion. In fact, it immediately arises from
the expression (4.5) for particle relativistic Hamiltonian, a trivial function of p. 2 Due to this fact,
we make another change of variable:

— f):

g , (4.9)

p

p=(p-p)*
with the following decomposition of the particle kinetic momentum p = p p, where p denotes
the unit momentum vector tangent to the particle orbit. Note that here we do not introduce the
guiding center of the particle but work directly with its position. This is one of the principle
differences with the earlier work of Littlejohn [36].

4.2.1 Rescaled Hamiltonian dynamics

Let us now consider the dynamics generated by the Hamiltonian that is equal to the norm of the
particle kinetic momentum p. By using the Poisson bracket defined in (4.6), and the definition
p = p/p we obtain:

r = {pr}=p
P = {p,p} =D xeB. (4.10)
Note that such a rescaling of the Hamiltonian,
my = +/p?>+m? — p, (4.11)

is equivalent to the change of the time scale

t = Py (4.12)
my

This dynamics in the new phase space (r, p, p) is given by:

r = {p,r}=p
B 1 .
p = {p,p}—z—)(p x e B) (4.13)
p =0
Here we have used 3
op 1 L dp )
o _ 1 4 P _ s 414
op p( pp) , op P (4.14)

2Moreover this constant of motion is unstable with respect to the perturbation of the system by an electric field.
Our goal here is to obtain a constant of motion that can resist such a perturbation.
3In writing these expressions, we make use the fundamental identities of vector calculus: a- (b x ¢) =c- (b x ¢),

thenf):{p7f)}:—ap<€BX 6€>:f)>< B

op op
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The next step in the investigation of this system will depend on the way that we deal with the
vector p.

The essential point is the choice of the basis for its decomposition and the manner to proceed
with the dynamical reduction. In the two following subsections we shortly discuss the difficulties
associated with these aspects.

4.2.2 Gyrogauge transformation

One of the possible ways to deal with unit momentum vector p (tangent to the particle trajectory)
is to decompose it in the basis associated with the magnetic field line by introducing two scalar
dynamical variables p-pitch angle and (-gyroangle locally. Such a procedure consists of two steps.
At the first stage we introduce a fixed frame, composed of the tangent to the magnetic field line
vector b = B /B and two vectors (f)l, 62) in a perpendicular plane. The pitch angle ¢ measures
the projection of the unit momentum parallel to the magnetic field and is defined as cosp = p- b.
In order to define the gyrophase ( we have to introduce two rotating vectors:

p(x,¢) = by(x)cos — by(x)sin( (4.15)
1(x,¢) = —by(x)sin¢ — by(x)cos( (4.16)

The problem is that the fixed frame vectors (61, 152) are not unique. This frame is defined up to
rotations through the angle &:

b, = bycosé —bysiné (4.17)
b, = —bysiné —bycosé (4.18)

Such a transformation does not affect the spatial variable x’ = x. In order to keep the rotating
frame vectors invariant, the translation of the gyrophase ¢ on some angle £ = £(x) should be taken
into account:

(= =0+¢ (4.19)

Finally the result of two transformations (4.18) and (4.19), named the gyrogauge transformations
do not change the ro}:ating vectors. After simple substitution and some trigonometry we obtain
px, () =px¢), L, () =L(x,().

However, the dynamics of the system is not invariant with respect to the transformations (4.18)
and (4.19). It was shown by Littlejohn [37] that in order to guarantee the gyrogauge invariance of
the theory, the rotation of the fixed frame must be included inside the dynamical equations. This
is why the gyrogauge vector R = Vb - 62, which designs such a rotation, should be encountered
during the derivation of the equations of motion.

The Lie-transform method presented by R. Littlejohn (1981) [37] and developed by A.J. Brizard in
[46, 20, 18] offers an iterative procedure that guarantees the independence of the reduced parallel
dynamics on the gyrogauge function 1) = 1(x) at any order. At the same time, the reduced
gyrophase variable will still to be dependent on the vector R. In what follows we will see that the
same situation occurs for our method for both the exact and gyroaveraged dynamical equations
of motion.

The problem of the gyrogauge independence for guiding center theories indicated and resolved by
Littlejohn was recently re-evoked in the work of Sugiyama [43] which provoked an active discussion
inside the gyrokinetics community [44, 45].

It was repeated [43] that the crux point of the guiding center theories is hidden inside the definition
of the gyrophase. Moreover it was emphasized that the anholonomy of the fixed basis vectors that
occurs in the general 3 dimensional magnetic field configuration, due to its non-zero torsion, can
lead to breaking down of the gyrogauge vector R and failure of perturbative series expansion at
the second order. To assure a globally consistent definition of the vector R the serious restriction
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Figure 4.1: Gyrogauge transformation.

on the magnetic configuration to be torsion free was indicated. However Krommes [44] argued
that in any case the guiding center theories does not explore the global properties of the magnetic
geometry because of the failure of the adiabatic invariant before the moment when the particle
starts to be affected by global magnetic field properties.

4.2.3 Constant of motion and Hamiltonian normal form

The phase space variables, canonical or non-canonical are never completely independent. In
autonomous systems case, they are related by the Hamiltonian stationary condition H = H (r,p) =
0. In our case this condition is expressed as p = 0.

Let us now consider the dynamics generated by the rescaled Hamiltonian p of (4.10). Then after
the change of variables (4.9), the rescaled Hamiltonian p represents one of the independent phase
space variables (r,p,p) and the equations of motion become (4.13). If we now suppose that
our system possesses a constant of motion A, it can then be viewed as A = A(r,p,p), or by
inverting the functional dependencies, the rescaled Hamiltonian p can be viewed as a function of
the constant of motion p = p(r,p,.A). This idea leads to two approaches that we implement in
this chapter in order to deal with the dynamical reduction of our Hamiltonian system (4.5) and
(4.6).

The first one, composed of two principal steps, starts with construction of a constant of motion.
It consists in using the corresponding stationary condition 0 = A = {A, H} that yields a partial
differential equation for A. Due to the separation of dynamical scales suitable for our system,
there will be an opportunity to find one of its physical solutions in a small parameter series

n

decomposition A(r, p,p) = Z A;i(r,p, p) " where A; satisfy the stationary condition at the i-th
i=0

order.

At the first step, dynamics of the system will be reduced on the hyperplane defined by the
functional phase-space dependence of the constant of motion A = A(r, p,p). Then at each order
of its series decomposition, the constant of motion can be used to control the precision of the
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dynamical reduction by considering its time variation. This opportunity will be exploited in the
section 4.4 while exploring trapped particle trajectories.

The next step consists in inverting the functional dependence between the new constant of motion
A and the initial phase space variables (r,p, p) in order to include it in the set of the new phase
space variables (r,p,.A). Finally, by rewriting the system dynamics (the Hamiltonian and the
Poisson bracket) as the functions of A , we obtain the system for which one of their equations
of motion is A = 0. The procedure of expressing the Hamiltonian as a function of the constant
of motion A leads to construction of its Hamiltonian normal form. Due to the fact that the
constant of motion A in our case, can be decomposed in small parameter series, we can build the

corresponding Hamiltonian series in the form: H(r,p,.A) = Z H,(r,p) A" &
i=0

In fact, to know the reduced dynamics of a Hamiltonian system we need to know the Hamiltonian
normal form series decomposition.

This is why the second approach deals directly with the Hamiltonian normal form series, without
passing through the first stage of the construction of the constant of motion. From the beginning
we work on the phase space (r,p,.4) and we consider the rescaled Hamiltonian as a function on
this phase space p = p(r, p, .A) that satisfies the stationarity condition p = 0. In fact this condition
has to be satisfied independently of the choice of the phase space variables. Moreover it gives the
partial differential equation for p that leads to its series decomposition in the new phase space
variables.

In the following we consider the problem of dynamical reduction by applying these two approaches.
In the first part of this chapter, we pass through the constant of motion construction in order
to derive reduced dynamics in the local coordinates. Such coordinates will be dependent on the
choice of the fixed basis (by, by) associated to the magnetic field line. Our goal here is to present
and to illustrate, in a particular case of axisymmetric magnetic geometry, the local dynamical
reduction without introducing the guiding-center position.

In the second part, we proceed to the intrinsic (independent of the fixed basis (by, b)) dynamical
reduction. Here we will pass directly to the Hamiltonian normal form construction.

4.3 Local dynamical reduction

4.3.1 Fixed and dynamical basis

Here we start with introduction of the right-handed set of the fixed vectors (130, by, 62), where
BO B/B is the unit tangent to the magnetic field line vector at some space point r,
151 = k*IBO . VBO denotes the unit vector in the direction of the magnetic curvature (with
k= ]f)o . Vf)o|), and by = by x by. Then we introduce the momentum-space coordinates (p,, ),
where p is the norm of particle momentum defined in (4.2), while the pitch angle ¢ and the
gyroangle ¢ are given by:

~ ~

b -b
© = arccos 0 ¢ = arctan Ly (4.20)
p p- by
This permits us to decompose the unit momentum vector p tangent to the particle orbit as follows:
p= P_ cos ¢ by — sin (sin{ by + cos ¢ Bz) (4.21)
p
and its associated orthogonal vectors
Jp - . .
p1 = 3_p = —sinp by — cos ¢ (sin( by + cos bg) (4.22)
®
1 0p ~ ~
p: = P _ cos ¢ by —sin( by (4.23)

~ sing 8¢
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According to expressions above the dynamical set of the vectors (P, P1, P2) can be obtained from
the fixed set (b, by, by) by rotation through the angles ¢ and (. These relations can be expressed
by multiplication by the matrix:

cosy  —sinpsin( —singcos(
U= —sinp —cospsin( —cosycos( (4.24)
0 cos C —sin ¢

Some remarks about dependence and independence of the phase space variables

It is important to note that the new phase - space variables (x, p, ¢, (), where x is the new particle
position, must be considered as independent from each other. An ambiguity can appear due to the
fact that the coordinate transformation (p — (¢, ¢)) does not affect the particle position. However
the main difference between new and old phase space coordinates is their spatial dependence. To
avoid this inconvenience, in what follows we will distinguish two particle positions: r for the old
variables and x for the new variables.

Note that for fixed basis vectors the spatial dependence is considered to be the same in the old
and new variables:

by = ba(r) = ba(x) (4.25)

where a € {0,1,2}. This can lead to two different situations: the variables that were initially
defined as independent become spatially dependent after passing from r to x and vice versa.

For example, the initial phase space variables (p,r) are considered to be independent of each other,
then the particle kinetic momentum p is independent of the particle position r. After the change
of variables the kinetic particle momentum p = p p is decomposed accordingly to the Eq.(4.21)
and thus becomes dependent on the new space variable x through the spatial dependence of the
vectors (by(x), by(x), by(x)).

On the other hand, the pitch angle variable ¢ and the gyrophase variable ( are independent in
the new phase space variables and according to Eq.(4.21) they become spatially dependent when
returning to the phase space variables (p,r) through the basis vectors (bo(r), by (r), by(r))

We will need to carefully use this information when obtaining equations of motion in the new
variables.

4.3.2 Local Poisson bracket

In order to proceed with the derivation of the equations of motion on the new phase space,
(x,p,p, () we need to find the corresponding expression for the Poisson bracket (4.6).

There are two possibilities to proceed. The first one is to make the change of variables inside the
2-form that corresponds to the non-canonical bracket of (4.6)

oc=dxAdp —e B dx® Bdx (4.26)

where B = eijkf)j. There are two stages: the first one consists of making the change of variables for
1-forms dx, dp. The second one consists of inverting the corresponding symplectic matrix. Such
a procedure is similar to one used in the Lie-transform perturbation method [20]. Here we will
exploit another possibility by making the change of variables directly inside the Poisson bracket.
To realize this transformation we use the chain rule:

af dg

{fvg}new = — 8—21 {Zia Zj}old a—Z] (427)

where z; = (x,p, ¢, () represent the new phase space variables and {...},q is the Poisson bracket
expressed in initial variables (r, p).
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Note that this formula appears naturally when applying the chain rule:

0 9x0 969 9D  Opd

or  orox orde oroc | orop (4.28)

and

g 0x 0 L9 oy 0 S oc 9 9p 0

(9p ap ox op 8¢ op 6( 8p ap
Then the expression for the canonical part of the Poisson bracket in new variables appears when
developing the expression:

9. 9_0 06 _
op or Or Op

0 0 0 0 0 0 0 0
(o) (g5~ xm) € (e ) + 02 (a—a—‘—a—>+
0 0 0 0 o 0 0 0
091 (53~ apas) + 0 (o~ acap) + 199 (acos ~ o

Generalized Frenet-Serret equations

(4.29)

\/Q}
—~
N
w
=

During the derivation of the Poisson bracket we will need to deal with spatial derivatives of the
fixed basis vectors (bg, by, bs). Such a derivatives can be expressed in the following compact
bi-vector form *

Vb,=M-B, (4.31)

Note that this relation does not change when passing from the old space variable r to the new
space variable x because of the assumption (4.25) on the invariance of the spatial dependence of
the basis vectors.

The bi-vector M is defined as follows®:

M = (Vbyg - by) by + (Vb, - by) by + (Vb - by) by (4.32)

and B, = €k f)aj denotes the bi-vector with components given by the operator “the vector
product with the basis vector b.”.

In order to prove (4.31) we use the fact that Vb, - Bg = —Vlsg -b,, and Vb, - b, = 0.

The expression for basis vector derivatives can be also interpreted as generalized Frenet-Serret
equations.

Curvature-torsion

The generalized Frenet-Serret equation (4.31) yields an expression for the curvature-torsion of the
fixed (in time) basis vectors: ) K

VXxby=by - (M—-1:M) (4.33)
where I = f)of)o + Blf)l + BQBQ denotes the identity tensor in the fixed basis. Then the curvature-
torsion coefficients are expressed as:

V x BD = — (Mll + MQQ) f)o + M01 61 + M02 62 (434)
V x b1 = MIO b() — (MOO + Mgg) b1 + Mlg b2 (435)
V xby = My by + Myb; — (Moo + M) by (4.36)

4In what follows we use the Greek indices to indicate the different basis vectors (f)o, 617 52) and the Latin indices
in order to indicate its coordinates
5Note that the bi-vector M explicitly depends on the gyrogauge vector R = Vb - by
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where M;; = B M - f) the coefficients of the bi-vector M in the fixed basis.
Note that some of the curvature-torsion coefficients may be equal to zero accordingly to the choice
of the vectors b1 and b2 For example, in our case the coefficient My; = —bo Vbo b2 =k b1 b2
0. Then we obtain:
VXBOZTBO—I—I{?BQ (437)

with the torsion coefficient 7 = BO -V X Bo = —MH — M22 = —61 : VBQ : E)O — f)z : VBO 'A}A)l
and the curvature coefficient, that we have defined before as the norm of the vector bi:

k’E’60'VBQ|:BO'VBO'f)l:BQ'VXBDZMOQ.

Derivatives of the phase space variables

To proceed with the calculation of the Poisson bracket in the new variables we have first find the
coefficients of the Jacobian matrix that corresponds to our change of variables

9 (x,p,¢.¢)
J = :
9 (r,p) )
e X
= = =
or op 0
o, w_
or 8p_p0
(4.38)
Op . I
M. R
or P2 op p
o M-p (S S >
or sin op psin @

where we have used the generalized Frenet-Serret equations.
Then by using (4.38) and (4.36) we can obtain the old brackets (4.6) evaluated on the new phase
space variables: {z;, 2; }oua:

1

nx} = po {%X}:%, (Cx)=—

psing
{p,o} = —Po-M pa=—ps-V X Py (4.39)
1 eB R 1 R . eB .
.} = — ( M+—> "P1 = —— (Pl-VXp0+—'p1)
sin ¢ P sin D
1 eB
{¢, 0} = ( “M-p1+p2-M-py——- po) =
psin ¢ P
1 eB .
. (Po V X pg——- po)
psing p

Here we should consider that the coefficients of the bi-vector M in the dynamical basis p; - M - p;
are the functions of the new phase space variables, then the momentum variables (p, g, () are
considered to be independent of the spatial variable x. According to the definitions (4.23) and
the expression for the curvature-torsion for the fixed basis vectors (4.33) the curvature-torsion for
the dynamical basis vectors is®

V X Pa = Pa - (M —T1: M) (4.40)

6Note that the coefficients of the bi-vector M in the dynamical basis (Po, p1, P2) and in the fixed basis (E)o, b1, 62)
are related by rotation transformation M = UT MU
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where the unit tensor is now represented in dynamical basis I = popo + P1P1 + P2D2-
Then for the coefficients p; - M - p,; we have:

po-M-p = p1-V X Do
Po-M-py = p2 -V X Po (441)
P M- -pr+p2-M-p= —pPo-V XPo

Then the Poisson bracket in new variables is given by

Bo <3f dg Of @)_i_f)l (3f dg Of 89)+

Jdp Ox 0x Op p \Jy 0x Ox Op

P2 of dg 9Of 9y
( psingp) (8§ ox  0x 8() i (442)
1 R N e . of 0dg Of Jg
Siw( Pr VX Do pB pl) (5 ¢ o¢ 8p>+
. R af 99 Of 9g
( P vxPO) (5’p dp Oy @p)+

1 . . e . of dg 0 f g
_ .V X — —-B- 2 2 _ <
psing ( P P po) (@C dp  0C Dy
By implementing the momentum gradient, defined by using the chain rule and the expressions for

phase space variables derivatives (4.38):

0 _0p0 9p0 0609 0 P0d D O (4.43)

op oOpdp Opdy 0p 9 'op ' pop psing O

We realize that first three terms in the expression (4.42) represent the canonical part of the local
Poisson bracket in the new variables, while the last three terms give the non-canonical part:

of of . of
e B, - <8p 8p) eB- <%x%> +pV Xpg- (8_ 8p> (4.44)

B* =B + (p/e)V x Po. (4.45)

{f, 9}

where

In fact, with

op sin dp 0C 0C Op

aof dg Of 8g
P VXpO((% dp Dy Op N
psin @

pfo)o-(ﬁ 8p> = 7p1‘v><p0(8f 9% of, ag)-i-

aC dp A Iy

and

8f _ e <B~p)(af dg Of (99)

op " ap p sing ap ¢ I ap

e of 9dg Of OJg
) (55 4
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we obtain the expression for the noncanonical part of the Poisson bracket expressed in the new

variables (4.44).

Finally, in the new phase space variables (x; p, ¢, () the local Poisson bracket (4.6) has the following
0 f dg 0 f 8g

expression:
of
- _J - I B*
U9 =35 ax " ap ox op ap
where the modified magnetic field is given by (4.45) and the momentum gradient is defined in
(4.43).

(4.48)

4.3.3 Local equations of motion

Using the expression (4.48) for Poisson bracket in the new local phase space variables, and the
physical Hamiltonian H (4.5) we obtain the corresponding equations of motion.

x = {Hx}= n% Po (4.49)
p = {Hp;=0 (4.50)
) = {H,p} = _%f)z (V xpo) = —n% ((f)o - Vpy) - f)l) (4.51)
. B, R )
C - {H C} - e m’}/]S?ngO (pl ' (V x pO))

o e Bo p . R R

 omy " my sin ¢ ((po Vo) 'pQ) (4.52)

where we have used py = pg X p1 and Vpg - pg = 0.

First of all we realize that the introduction of the new phase space variables (x,p, ¢, () is well
suitable for the dynamical description of the considered system because it reveals its underlying
separation of scales of motion. We emphasize that here x denotes an exact particle position and
not the guiding-center position, as was used previously in [36] and [19]. Then we can conclude that
the introduction of the guiding center (reduced particle position) is not obligatory for showing
separation of the scales of motion.

To represent the system in a more suitable way for numerical simulations, we rewrite the system
(4.52) in dimensionless variables, resulting in the appearance of the small parameter:

e=p./Lp < 1, (4.53)

which is the ratio between the particle Larmor radius (also called the “gyroradius”) p, = p/eBy
and the nonuniformity length scale of the magnetic field Lg”. For fusion plasma this ratio satisfies
(4.53) 8. Then the dimensionless equations of motion are ?
€ Po
_ 0 (4.54)
—e P2 (V X Pg) = —¢ (Po- VDo) - P1

3 3
= 1- (Vxpo)=1+— ((Po-VPo) P

p1 - ( Po) + Sin ¢ ((Po - VPo) - P2)

Ve T ST R D
Il

sin @

“For example, in numerical simulations we take the nonuniformity length scale Lg = 1m, a value is comparable
to the small tokamak radius of the tokamak Tore Supra

8Note that here, as opposed to the Lie-transform perturbation analysis presented in [18], we deal with the
macroscopic limit, when the macroscopic length Lp is finite and the Larmor radius pr < Lp is small. The
microscopic limit consists of interpreting the inequality (4.53) inversely, by assuming that the Larmor radius py,
is finite and the macroscopic length is large Lp > pr. In the microscopic limit ¢ ~ e~!, while in the macroscopic
limit e ~1/Lp

9Note that here it is more convenient to use the physical Hamiltonian H rather then the rescaled Hamiltonian
p to derive the equations of motion because it permits us to highlight the physical small parameter €
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where the spatial coordinate is now dimensionless x — x/Lg. Now we can easily remark that the
gyrophase angle ( is the fast variable of our system and the others variables of the local particle
phase space correspond to its slow dynamics.

The second remark that we make here is about the gyrogauge dependence of these non-reduced
equations of motion projected onto the natural magnetic field basis.

Such a dependence is essentially geometrical in origin. It was shown in [37] when applying the Lie-
transform perturbation method, that it is possible to remove the gyrogauge vector R = Vb, - by
dependence from the averaged guiding-center variables (X, pjj, ). The exception is the gyroangle
¢ that still depends on gyrogauge because its modification would bring back rapid oscillation into
the reduced system.

This procedure is explicitly shown in [18]. There, the method of bringing the parallel dynamics
into the gyrogauge invariant from is based on the fact that the curl of the gyrogauge vector, is
invariant:

VxR =V x (R+Vy)=VxR. (4.55)

As a consequence, the curl of the modified gyrogauge vector R* = R+ 7/ 2b, with 7 =b -V x f),
is also gyrogauge invariant, because the correction 7/ 2b is independent of the derivatives of the
fixed basis. Such an invariant quantity appears in the corresponding reduced equations of motion
for parallel dynamics through its dependence on the modified magnetic field B*, which contains
the correction V x R* at the second order of the perturbative expansion. Then the gyrogauge
invariance of the parallel reduced dynamics is guaranteed. As was announced in [37], the only
variable that still has gyrogauge dependent dynamics is the gyroangle, which contains the vector
R* explicitly. K
If now we reintroduce the vectors p = b, cos( — b, sin( and L = —by sin( — b, cos ( in (4.55),
we find: R R

Po=bgcosp+ L sing, Py =—bysing+ L cosp, ps=p (4.56)

Then the gyrogauge vector R = VAR p= Vb, -b, appears in the equation of motion for gyrophase:

p = —cpo- (vi : Bo> (4.57)

. 6 N A R " .

¢ = 1+_—(p0'Vb0-p cose+po-R sm<p) (4.58)

sin

This means that the rotation of the fixed vector basis 131,52 is involved in the non-reduced
dynamical equations. Similarly to the Lie-transform method, here the parallel averaged and
even non-reduced dynamics (x, ¢, p) will still be gyrogauge invariant. The gyrophase dynamics
naturally depends on the gyrogauge because the gyrophase itself is not gyrogauge invariant(4.19).
Such a result, emphasizes once again, that the gyrogauge dependence is not a consequence of the
dynamical reduction, but of the choice of the local basis on which the dynamics is projected.

4.3.4 Iterative construction of the constant of motion

Now we have all the elements to start the iterative procedure for construction of the constant of
motion for our system.

First of all, the constant of motion, which we denote by A here, has to satisfy the condition
A= {A, H} = 0, which can be made explicit as:

(0 A) =~ (0x A) X~ (9, A) . (4.59)

The separation of scales of motion permits us to obtain an iterative procedure for solution of this
equation with following series decomposition:

A=Y (AN p @) e+ > Au(x,p,,¢) e, (4.60)
n=0 n=0
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here (A) denotes the gyroaveraged part of the function, and correspondingly A denotes its
gyroangle-dependent part. To start the iterative procedure, we suppose that at the lowest order
the constant of motion is independent of the fast gyrophase variable (. Here are the three first
steps of the iterative procedure:

e’ 1 oAy =0 (4.61)

61 . aC Al = —]30 (8x .Ao) + (f)o : Vf)()) : f)l (ap .AQ) (462)
L. -

e 1 OAy = Tsing (Po - VDo) - P2 (0; A1) (4.63)

—Po (Ox A1)+ (Po- VDo) - P1 (0, A1) (4.64)

where we have used the dimensionless equations of motion (4.55).

Operators of gyroaveraging, gyrofluctuation

As follows from the system (4.64), at each step of the iterative procedure that leads to the
construction of the constant of motion A we have to invert the operator d;. In order to construct
the corresponding inverse operator, that we will call G, we first introduce the complementary
operators of the gyroaveraging R and gyrofluctuation N\:

1 v
R:%/ﬂdg, N=1-R (4.65)

Applying these operators, each observable f = f(x,p,¢,() can be decomposed into f =
R f+N f={(f)+ f, such a decomposition is similar to the Fourier series decomposition,
where the zero-harmonic is given by application of the operator R to the observable fo =R f. In
the following we indicate the action of the gyroaverage operator R with (...).

Then the left-inverse operator G can be defined as follows: G 0, = N and G R = 0. In fact
the operator G acts as an indefinite integral operator over the variable ¢ on the observables that
depend on ¢ and vanish the observables that do not depend on gyroangle (. Then the operator G
has a kernel composed by the gyroaveraged part of the observables. It can be represented as:

¢
. 0,n=0
g —X(n)/ d¢ with x(n) —{ 1 0 (4.66)
where n designs harmonics in (. For example
sin n¢

G(1) =0, and G(cosn() =

(4.67)

We apply the operators R and G at each step of the iterative procedure. At each stage the
application of the operator R permits us to obtain the gyroaveraged part of the coefficient (A4; 1)
and the application of the operator G leads to the expression for the fluctuating part of the next
order coefficient A;.

For example at the first order of the intrinsic procedure we have:

R . 0 = _8x A0< f)0> + ap .A0<(IA)U . Vf)o) . 131> (468)
G : A=NA=-0,40G (Po) + 0, Ao G ((Po - VDo) - P2) (4.69)

The first equation yields the differential equation for gyroaveraged part of the zeroth-order
coefficient (A;). Then the second equation gives the fluctuating part of the first-order coefficient

A
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By applying the operator of the gyroaverage to the second order equation (4.64), we will find the
first order partial differential equation for the gyroaveraged part of the coefficient A; :

(02} Bo ) + (9,041 ((Bo - Vo) - 1) ) = (4.70)
(0 Do)+ (0 A (B0~ Vo) - B1) ) — (0 (ﬁ(ﬁo - Vbo) - m) )

Note that this equation will occur at all the following stages of the iterative procedure, such that at
the stage number 7 + 1 it will permit us to obtain the gyroaveraged part of the coefficient A;. The
same procedure will be implemented in the following section when constructing the Hamiltonian
normal form in intrinsic basis.

Zeroth order constant of motion A,

Here we deal with the solution of the first order partial differential equation (4.68) that leads
to the first order of the constant of motion Ag. After explicit evaluation of the gyroaverage
(Do) = bg cos and (pPy - (V X Pg)) = 1/2 sinp (V - bg) this equation becomes:

1 by - VA

—tanp 0, Ag = ————— 4.71

P T .
here we have also used the condition V - by = —by - VB resulting from the electromagnetic

constraint : V- B = 0. Then we apply the method of separation of variables, by supposing that
Ao(%, ¢) = g(x) h(p) we have
1 dh B by-Vyg
—— tanp = —= . =
by - VB g

4.72
2h dy ¢ (472)

where C' is a constant. By integrating each equation separately we obtain

sin g

o) = (Gt )QC, 9(%) = B(x) (4.73)

Then following the physical intuition that led to the expression for the adiabatic invariant g (4.1),
we set the constant C' = 1. Then by choosing the constant of integration equal to the modulus of
the kinetic momentum p, we have:

Ay = p?sin? o
B
Here we do not proceed with the evaluation of the higher order corrections for the constant of
motion A. The explicit calculation up to the second order is realized in Section 4.5 when applying
the intrinsic formalism for Hamiltonian normal form construction. In what follows we explore
some possible applications of the local particle dynamics.

= 2m o (4.74)

4.4 Investigation of trapped particles trajectories.

In this section we present one of the possible applications for the derivation of particle dynamics in
local phase-space variables (x, p, ¢, (). In particular we deal with investigation of trapped particles
trajectories in the axisymmetric magnetic field geometry. Such an investigation is of interest for
understanding fast ions (v > wvy,) confinement.

In previous studies [61, 62] the constant-of-motion (COM) 3 dimensional phase space was used.
The invariance of its variables: the kinetic energy E = muv?/2, zeroth-order magnetic moment
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to = mv, /2B and toroidal canonical momentum P, = (e/c)y — mRvBy/B was supposed. It
was also mentioned that such an approximation is suitable only for low 8 < 10% '°, while for high
[ a correct description can be obtained using guiding-center equations integration.

Here the exact dynamical equations will be integrated. At the same time the variation of the
adiabatic invariant po will be presented for different values of the small parameter ¢ = p/eB.
It will give a possibility to make an estimation of error that can be produced when using the
adiabatic invariant as one of the phase space variables.

This work is organized as follows. The subsection 4.4.1 is devoted to derivation of the exact
dynamical equations in the general axisymmetric magnetic field geometry. In particular, the
equations of motion for bi-cylindrical coordinate case will be explicitly obtained in 13.1. its
numerical integration will be realized by using the package Mathematica. Then in the subsection
4.4.2 particle trajectories analysis will be exposed.

4.4.1 Dynamics in axisymmetric magnetic field
Magnetic surfaces

To describe a magnetic field configuration it is convenient to use coordinates defined by the field
itself. The definition of a magnetic configuration corresponding to plasma confinement device is
closely related to existence of the magnetic surfaces.

“A two dimensional surface defined by a function f(x) = const is said to be magnetic surface if
at any point the magnetic field lies within the surface, i.e. B -V f =0"

R.B. White “The Theory of Toroidally Confined Plasmas”

For example in the magnetohydrodynamical approach (MHD) fusion plasma can be considered as
magnetized fluid characterized by its kinetic pressure p and current density j. Then the plasma
equilibrium is defined by the condition j x B = Vp its implies that the magnetic surfaces are the
isobars B - Vp = 0.

A magnetic field, possessing an axial symmetry, suitable for a tokamak, represents one of the 3
possible types of plasma equilibria for which the magnetic surfaces are globally known. Intuitively
the existence of closed magnetic surfaces should be one of the conditions for a good plasma
confinement. It is well known that in this case their topology consists of nested tubes (tori) of
flux. Then it is natural to associate to them a system of general curvilinear coordinates (1,0, ¢).
Where the condition ©)=const defines one of the magnetic surfaces, §=const corresponds to the
general poloidal angle and ¢=const introduce generalized toroidal direction. Consequently, it
is more natural to use the contravariant representation for basis vectors(V¢, VO, V) that are
defined as a normal vectors to the corresponding surfaces.

General axisymmetric coordinates

Coordinate definition Here we deal with a general axisymmetric coordinates construction.
We start by considering the cylindrical coordinates (R, ¢, Z), where the radial coordinate R
measure the distance from the general axis to the center of a tokamak, the angle ¢ represents

10The quantity 3 is the normalized plasma pressure defined as follows

p
’= B2 /po’

where pg = 47+ 10~ Hm ™! denotes the permittivity of free space. The 3 represents a ratio of the plasma pressure
to magnetic pressure. It is a measure of the efficiency with which the magnetic field confines the plasma. The
high (§ is of interest for an economic power balance in the reactor, but difficult to achieve because of plasmas
instabilities. A combination of engineering and nuclear physics constraints has shown that a fusion plasma must
achieve a temperature T' ~ 15 keV, a pressure p ~ 7 atm, a plasma 3 ~ 8% and an energy confinement time
T~ 1s.



4.4. Investigation of trapped particles trajectories. 67

Figure 4.2: General axisymmetric geometry

toroidal angle and the coordinate Z permits us to complete the definition of the position in a
poloidal machine section. In the second step we pass from the coordinates (R, Z) that define the
position in the poloidal plane of a tokamak to the coordinates associated with magnetic surfaces
(1,0). We suppose that there exist the functions R = R(,0),Z = Z(1,0) that are invertible
v =19v(R,Z),0 =0(R,Z). Note that the toroidal direction V¢ is not affected by this change of
variables.

The total transformation can be expressed in Cartesian coordinates as
x = R(1Y,0) singx+ R(1,0) cospy + Z(1),0) z (4.75)

In order to be sure that such a transformation is well defined, we need to suppose that the
Jacobian of the direct transformation J cannot be infinite, or that the Jacobian J ! of the
inverse transformation can not be equal to zero. Because our transformation consist of two stages,
we can write

i:dethd% (1,0, 9) deta(R,G,Z) 11

J d(z,y, 2) OR.0,.2)  Ow.y,z)  Tude

(4.76)

It is well known that the Jacobian of the transformation from cylindrical to Cartesian coordinates
J.~!is different from zero, then to be sure that the total transformation from general to Cartesian
coordinates is well defined, it is sufficient to consider the Jacobian of the second part of the
transformation:

Ory Oz O
L et J:00) e O 070 0 | = |V x V6| = |Vi||V6) (4.77)
a a( I 7¢) O O 1

Then we need to suppose that the product of the vector norms |V||V6| > 0.

The second supposition on transformation (R, Z, ¢) — (v, 0, ¢) is that we make here is the metric
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tensor is diagonal, with:

V| = Vg¥ = = (4.78)

Vo] = Vg" = = ! (4.79)

1
Vol = Vg?=—+=

(4.80)

Note that accordingly to the (4.76) the Jacobian of the total transformation is equal to the product
1 1
of the basis vectors norms 7 R V||V

Due to the assumption of basis vector orthogonality Vi - VO = 0, the variable y, that permits
us to define the transition between the basis vectors in a form of a rotation, can be defined as
follows!!:

— = ——— =tany (4.81)
Then the relation between the basis vectors (VR,VZ) and (Vi, V) can be written as follows:

VR = cos XW — sin X@

_ _ (4.82)
V7 = sin xV + cos xV0
and conversely
V¢ = sinyxVZ + cos Y\VR
v X X (4.83)
V= cosxVZ —sinyVR
~ Vi I \Y, . . . : .
where Vi = W and VO = |V—9] define the unit vectors in generalized radial and poloidal
directions.
To obtain the relations (4.82), first we have to express the basis vectors (VR,VZ) in new
coordinate: 5 5
R Z
_ p _ ¥
e (B0 w2 () »

Then by using the normalized vectors w, V0 defined in (4.80) we have:

0uR —  OpR =

VR =0,R Vi + 0yR VO = Vi + Vo
v v V 9y V900

Z —_— Z —~

NVZ =0,7 Vip + 0,2 VO = 8’”—% L 92 Gy

v Gy \/ 900

then with (4.81) and due to the trigonometry identities cos? y = 1/(1 + tanx?) and sin?y =
tan? x/(1 + tan x?) we can define:

cosy = %2 _ OB (4.85)
goo /Gy
A
siny = — it _ 0uZ (4.86)
VYoo \/Gyy

HNote that in the case of bi-cylindrical coordinates when the magnetic surfaces are defined as the set of concentric
circles R = Ry + v cos 0, Z = ¢ sin @, the variable x coincide with generalized poloidal coordinate 6
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Then finally we obtain the relation (4.82) between the basis vectors.
Note here that the expressions for derivatives 0,y and dpx that will be useful for curvature tensor
definition, follow from (4.85),(4.86) by using the symmetry of the second derivatives d,,0p R and
O0y0pZ
Doy =~ VI g DT (4.87)
VYoo V9

Curvature tensor In order to derive the equations of motion for axisymmetric magnetic field
configuration with basis y* = (¢, 0, @), we need to know its curvature tensor VVy'.
We start with calculation of the curvature tensor for cylindrical coordinates.

Cylindrical coordinates The transformation from Cartesian coordinates to cylindrical is given
by
x(R,0,Z) =R sinpx+ R cos¢py+ Z z (4.88)

Then the metric tensor is diagonal ¢** = 1/¢4,, with

Jaa = (489)

o O =

0
R2
0

_ o O

We express the contravariant vectors (VR, V¢, VZ) as the functions of cylindrical coordinates:

sin ¢ 1 — Cos ¢ 0
VR=| cos¢ |,Vo=— sin ¢ VZ =10 (4.90)
0 B\ o 1

The gradient in cylindrical coordinates is given by:

0 0
— — Z— 4.91
V= VR8R+V¢8¢+V (4.91)
0 —
with — ay =g:Vy -V = Vi Vy' -V
Then the curvature tensor for cylindrical coordinates is:
1~ —~
VVR = RV¢Vop= EV(bV(b (4.92)
_ 1 —~
VV¢p = —V¢VR = —EV(;SVR (4.93)
VWVZ = 0 (4.94)

General axisymmetric coordinates The gradient in axisymmetric coordinates is given by:

V= w—¢ + veg + v¢> 5 (4.95)

By applying operator V to the equation (4.82) that gives the relation between axisymmetric basis
vectors and cylindrical basis vectors , then by using the expressions (4.87) for derivatives of the

variable x, we obtain the curvature tensor for w, Vo 12

12To be coherent in notations here we write \/gsp rather then R?
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TV = — VI Gyh 1+ VIO Gagg 4 VI Gy (4.96)
v/ 966 Vv V 9y
= OO == O, 90V Gss o o
VYo = VoV — VI GG+ VoV 4.97
V900 vVe V9% v V900 Ve 0

Finally for normalized toroidal vector %, the corresponding curvature tensor is obtained by
transforming the equation (4.93) for its curvature tensor VV¢ in cylindrical coordinates to
axisymmetric coordinates using the relation (4.93).

Vg = — VI GG - CVIR Gy (4.98)
\/ 960 V9
The expression for curvature tensor can be rewritten in more suitable form as:
4.
VVL/J VwaszZJjLVH V¢+V¢6¢V@ZJ (4.99)

where the coefficients for basis (Vi, V6, V) decomposition are

Gy 0 == Oy\/Goo 7 06 =
= V V = V \Y 4.100
AR Y e e m—w oo
Similarly, for V0 and @ we find:
0 =
VvV = Vi ¢v9+ve89v9+v¢ 5 2 (4.101)
—~ 0 — ~ Opr/Gog —— —~ Oy

O Gy VI OGy_ Ouningy 0 Gy DGy (4.102)

o0 V900 o0 N dp NG
VVé = Vi ¢v¢+v03v¢+v¢ 5 Vo (4.103)

) =~ 0= 0 =~ O0\/Ios= Op\/Tpo=—

—V = —V =0, —V = — Vo — V 4.104

Bi-cylindrical coordinates Let us now consider the situation when the magnetic surfaces are
given by the set of concentric circles. Here transition from cylindrical to the magnetic coordinates
is given by:

R=Rg+1cosb, Z =1sinf (4.105)

It generate the orthogonal set of vectors Vi, V& and the corresponding diagonal covariant metric
tensor is given by:

gy = 1, Goo = w, 9o = RO + w cos (4106)
So the coefficient of the curvature tensor are given by:

0 = 0=— = 0=
&DV#} 0, va =V, ng = cos QVQS (4.107)

0 = 0 = 0 =
— 0—0 0=— — V6 = —sinf 4.108
8¢V aev Vw, a¢v sin V(]§ ( )

0 = 0 = 0 — —_— o~

—Vd) = —V¢ =0, =—V¢ = —cosOV +sin VO (4.109)

B 9
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Magnetic field

Now we consider a configuration with axisymmetric magnetic field geometry. We start with
definition of the direction of magnetic field with unit vector:

b = cos (1), 9)% + sin (1), 9)6\0 (4.110)

where the function 7(1, §) defines the angle between its toroidal and poloidal components:

—~

<
ASS
o>

cotan n(, ) = (4.111)

V0-b
In the particular case, when n = n(1)), the expression (4.111) defines the function often called the
“g-profile” or “safety factor profile”. The plasma “q” denotes the number of times a magnetic
field line turns around a torus in the toroidal direction for each time it comes around its short
(poloidal) direction. In a typical tokamak ¢ ranges from near unity in the center of plasma to
2 — 8 at the edge. This function is named the safety factor because larger values are associated
with higher ratios of toroidal field to poloidal field generated by plasma current. Consequently
the risk of current-driven plasma instabilities is less for higher values of q.

Here we consider some characteristic for a tokamak “g-profile”, quadratic with respect to the
magnetic(radial) coordinate :

q(v) = qo + Z—sz (4.112)

For example in Semi-Lagrangian Gyrokinetic code GYSELA, sq = 0.854 and ¢y = 2.184
Note that the direction b and the norm B of magnetic field B cannot be chosen totally
independently of each other because they are related through the magnetic constraint:

V-B=0 (4.113)

So if we start the definition of magnetic field by introducing its direction 13, we should pay attention
to the condition (4.113) when choosing its norm. In the case of general axisymmetric geometry,
when the norm of magnetic field is supposed to be independent of toroidal coordinate ¢, it can be
found from the differential equation:

0 .
=5 (BO0) 9 (6,03 900, 0) sinn(v,0) ) = 0 (4.114)
Then one of its possible solutions, obtained from the separation of variables method, is:

F(v)
\/gd“/) (1/}7 9) \/g¢¢(w> 9) sin 77(7% 9)

where F'(1)) represents an arbitrary function of radial coordinate ), that for simplicity we
will take equal to unity. Moreover, in what follows, we consider the case, in which the
ratio function 7 depends only on the radial coordinate 1 and then coincide with the g¢-
profile: cotan 7(v)) = ¢(v). Finally, the magnetic field in the bi-cylindrical coordinates case

(V/9ss = R(¥,0) = Ry + 1 cos b, /gyy = 1) is given by

B, 0) = (4.115)

_ Bo <
- R(1,0)sinn(¢)

B cos n(@b)% + sin n(@b)@) =Bb (4.116)

where By is value of magnetic field, measured in Teslas.
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Equations of motion

In order to study trapped particles trajectories in axisymmetric magnetic configurations
(bi-cylindrical coordinates), we decompose equations of motion in the corresponding basis
(V,VO,Vp). Then we integrate this equations by using Mathematica package. The calculation
leading to equations of motion in bi-cylindrical geometry is presented in the Appendix 13.

4.4.2 'Trajectories
Within the standard approach the particles inside a tokamak are divided into two groups

e passing particles whose trajectories follow the magnetic field lines

e trapped particles bouncing between two local magnetic mirrors ( defined by maxima of
magnetic field intensity)

The shape of the latter ones is such that when projected on a poloidal cross section, resembles a
banana with width 8, ~ €,q(1)pr, where €, = 1/ R is the local aspect ratio of the toroidal magnetic
surface with radius ¢ and the major radius R = Rg+1) cos ¢, pp, = v, /€ is the ion Larmor radius.
Note that such an approximation fails near the magnetic axis when passing into the potato regime
[62].

The fast trapped ions appears in tokamaks as a results of auxiliary plasma heating, such as neutral
beam injection and radio frequency heating, and production of alpha particles.

In the neoclassical transport theory, which studies the transport due to the Coulomb collisions
and takes into account the effects of toroidal geometry, the transport that arises from the small
population of the trapped particles dominates the transport resulting from the majority of passing
(i.e. untrapped) particles.

Moreover, it was remarked in [61] (1984) and then in [62] (2001) that additionally to the the
standard approximation, that divides the particle into the passing and trapped, there exist some
special orbits that give rise to new interesting effects, among them orbits for which the times of
precessional and bounce motion became comparable. As was mentioned in both of these works,
it can have an important consequences on the plasma stability.

Our further investigation here consists of several parts. The goal here is to explore the possible
trapping process characteristics: the conditions, region, orbit topology modification during the
trapping/untrapping process, curvature magnetic field effects.

First of all we compare the behavior of the particle for different values of the small dimensionless
parameter £ that presents the ratio between the modulus of the kinetic particle momentum and
the magnitude of magnetic field B.

On the figure 4.3 is presented an overview of the trapped/untrapped particles according to the
position of the magnetic surface in the poloidal section of our virtual machine. The value of
the small parameter in the left figure is larger then its value in the right figure: ¢ = 3.5 * 1072
and € = 2.1 % 1072 correspondingly. The left figure illustrate the case of weak particle trapping
with ¢ = 3.5 % 1072 and the right one of the strong particle trapping with ¢ = 2.1 * 1072, The
interpretation of such a particle behavior is straightforwardly related to the interpretation of
variation of the small parameter €.

The small parameter € can increase in two situations: when the intensity of magnetic field grows
and when the particle slows down. In both cases the trapping is strong: the particles are more
tied up to the field lines. If now the velocity of the particle grows or the intensity of the magnetic
field decrease, then the particle possesses more freedom to derive between the magnetic surfaces
or to become passing. This is the case of weaker trapping.

Another observation that could be made here is about the distribution of trapped/untrapped
particles as a function of the radii of the magnetic surface. For instance we can just remark that



4.4. Investigation of trapped particles trajectories. 73

eak trapping: v=3.5+10"2;0=7/6; $0=0.31; Lo=n/3;00=1;50= ng trapping: v=2.1+10"%; @o=n/6; $o=0.481; {o=n/3;q0=1;s
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Figure 4.3: Weak and strong trapping

the passing particles occurs in the center rather then in the edge of machine. Such a behavior is
exploited and confirmed within the following study.

The particle is trapped when its pitch angle passes through the value 7/2. This corresponds to
the moment when the parallel component of the particle velocity vanishes.

The next question that we address here is about the ratio of the trapped/untrapped trajectories
as the function of initial values of the pitch angle g in different regions of the poloidal section.
From the top to down: we pass from the center to the edge of the machine with different values
for initial pitch angle ¢y € [0,7]. Here we use the red color to mark the passing trajectories
and we color in blue the trapped trajectories. In order to follow the evaluation of the number
of trapped/untrapped trajectories in different regions of the poloidal section. On the figure 4.4
we color in cyan the first trajectory that is trapped on the middle magnetic surface 1) = 0.5 (for
Y € [0,1]). We remark that the cyan trajectory belongs to the passing region in the center of
machine and the same trajectory lies within and no longer limits the trapped region in the edge.
Then there are more trapped particles in the edge than in the center of the machine. Dynamics
of the pitch angle ¢ can be used as a criterium of a particle behavior. In these plots, captured
particles (pitch angle passes through 7/2) are in red, passing ¢ € (7/2, 7] and co-passing particles
¢ € [0,7/2) are in blue.

These two studies confirm that, there are less captured particles at the center that near the edge
of machine because of the diameter of magnetic surfaces: smaller is the diameter, more difficult it
is for the particle to bounce between its two points, more natural become to turn around following
the passing trajectory.

On the figures 4.5,4.6 below we focuss on the trajectories topology changing when trapping and
untrapping process and give an overview of barely trapped particles or limiting orbits. Such a
transition process can be observed while changing different parameters of the system:

e The position of the magnetic surface for given initial values of the pitch angle ¢g = 7/6,
poloidal angle 6y = 7/3, small parameter € = 3.5 * 1072 and magnetic parameters ¢y = 1
and so = 4. Here the trapping process is obtained when varying ¢ € [0.34,0.4].

e Magnetic field configuration characteristics; ¢-profile parameters: gy and sy, here in order to
observe the trapping process we have modulate the shear parameter sy in interval [4, 6] for
qo = 2. We can remark that for smaller values of sy the trapping of the particle was deeper.
Note that here a large value of the parameter is considered e = 10.2 * 1072 in order to span
the transition zone in a relatively short integration time. Here we can also remark that the
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Figure 4.4: Pitch angle for different regions of tokamak: center ¢y = 0.2,middle ¥y = 0.5, edge
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trajectories are shifted with respect to the field lines. This effect is due to the drift velocity,

that in our case possesses only the contributions related to the magnetic curvature. In the
2

muj| + o B

i B x VB.

limit § < 1 it can be approximated by the expression vp =

e Another possibility to span the transition region is to change the values for initial condition
of the pitch angle ¢g(as in the previous study) or the initial poloidal angle 6, (that will be
considered in the next step).

We observe that there are 4 main different shapes of trajectory that can occur through the trapping
process. It can be classified as follows: tied to the magnetic surface passing trajectory, possessing
a cumulative (stagnation) point near the axe, cusp orbit; possessing inner and outer loops: pinch
orbit and finally banana orbit. The untrapping process passes through the same stages in the
opposite way. The more particular among the mentioned orbits, is the cusp orbit. As was noticed
in [62] the cusp orbits are characterized by algebraical divergency of the bounce time. It appears
when the inner loop of the pinch orbit degenerates into a pinch point. In the other words, when
the trapped particle became almost untrapped. The same situation was observed in our case while
integrating the exact particle equations of motion. The integration time considerably increases
when passing between the shape 2 and the shape 3.

Another interesting observation that can be made here concerns an asymmetry that occurs in
trapping processes for the particles with positive and negative initial parallel velocity (pitch angle
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Figure 4.5: Barely trapped particles: trapping.

o) condition'3. In the case of the trajectories that passes around magnetic surfaces the terms of
co-passing (v < 0) and counter-passing (v > 0) are employed for it designation.

Accordingly to the sign of g particle trajectory will be positioned with respect to the magnetic
surface. The inner manner when ¢y < 0 and in outer manner when ¢, > 0. On the two figure
below the co-passing (co-trapped) particle is colored in blue and the counter-passing (counter-
trapped) in green. Here we consider the different particle trajectories as a function of initial
poloidal angle 6y: On 4.7 the figures in the left column represent inner and outer trajectories with
initial poloidal angle §, € [0, 7 — ¢] and the figure in the right column represents inner and outer
trajectories with 0y € [+ 0, 2m —6y]. We remark that in the first case the outer trajectories (green
curve) are naturally less trapped then the co-passing ones (blue curve). The situation is inverse
for initial poloidal angles 8y = 2w — 6. The exchange happens in the region of 6 € (7w — 6, 7 + ).
This region is zoomed on the figure 4.8. One can remark that there exists initial condition for
which the passing particle still be trapped and the co-passing is untrapped (6p = 0.97), then the
both trajectories become untrapped and separated by the magnetic surface (6p = 0.977). In the
position ¢y = 7 the mixing of inner and outer trajectories takes place. Finally for the initial
condition 6y = 1.17 the exchange in accomplished: now the inner particle becomes less trapped
then the outer. Such an asymmetry can be explained as one of the effects of the magnetic field
curvature.

13 Assuming the all others initial conditions coincides
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Untrapping

Figure 4.6: Barely trapped particles: untrapping.

Moreover we remark that a similar transition for inner and outer trajectories occurs when changing
magnetic configuration parameters. On the figures 4.9 and 4.10 an example with larger Larmor
radius is considered in order to observe in details the evaluation of orbit topology (here the inner
trajectory is colored in cyan and and the outer trajectory in blue):

The transition of the inner trajectory from trapped to passing occurs in the interval of shear
parameter s, € [2.8,2.95]; while the same transition for the outer trajectory takes place for
Sp € [6, 62]

The last study that was realized here concerns the variation of the adiabatic invariant on the orbits
of the particle for different values of the small parameter €. Here the we compute the relative
variation of the adiabatic invariant using the following formula

5 o
oo _ ., (max(uo) m_m(uo)) (4.117)
fo max(ftp) + min(4p)

where minimal and maximal values of yy are computed with using the package Mathematica.

The results of such an investigation are summarized in the following table.

Here we compute the variation of adiabatic invariant for two groups of values of small parameter
. The first group, including the 3 first values, was used in our numerical simulations. The second
group of parameters represents the values of € that are usually taken in gyrokinetic numerical
simulations produced by GYSELA [70]. We are close to the first of them with ¢ = 2.1 % 1072, but
we can not deeply explore the particle behavior for smallest ones because the integration time
becomes too long in the vicinity of the barely trapped trajectories. We remark that in the case
of large value of ¢ = 10.29 * 1072, that we have chose for zoom the effects of particle trajectory
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fig.1 ©@=0.37 fig.2 @g=27—0.37

Figure 4.7: Asymmetry in trapping process for passing and co-passing particles: as a function of initial

poloidal angle 6.

€ [ b1/ 110

10.29 % 1072 || 55.92%
3.5 %1072 14.87%
2.1 %1072 8.68%

Table 4.1: Variation of the adiabatic invariant pg as a function of small gyrokinetic parameter ¢ = L”—é in our

simulations with ¢qg =1 and sp =4

€ H 610/ tho
1/64 6.04%
1/128 || 2.98%
1/256 1.48%
1/1024 || 0.36%

Table 4.2: Variation of the adiabatic invariant pg as a function of small gyrokinetic parameter ¢ = f_]L; in
GYSELA with gg = 0.854, sg = 2.184

transitions, the variation of pug is rather important 6y = 55.92%. Therefore such a calculation
could be imprecise in the case of the COM phase space.

On the other hand, in the case of values of ¢ used in the GYSELA code, the fluctuation of the
adiabatic invariant pg lies between 0.36% and 6.04%.
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Figure 4.8: Asymmetry in trapping process for passing and co-passing particles: transition region.
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Figure 4.9: Asymmetry in trapping process for passing and co-passing particles. Large Larmor radius
case |.
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Figure 4.10: Asymmetry in trapping process for passing and co-passing particles. Large Larmor radius
case |I.
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Figure 4.11: Variation of the adiabatic invariant p along orbits for values of magnetic field profile
parameters ¢ and so used in our simulations (in blue) and in GYSELA (in violet)

The summary of the relative variation of the adiabatic invariant dpg /o along orbit of the particles
is presented on the fig.4.11. Here the blue markers represent the variation corresponding to
parameters ¢ = 1 and sy = 4 used in our simulations and the violet markers represent the
variation corresponding to parameters gy = 0.854 and sy = 2.184 corresponding to the GYSELA
simulations.

In further work it will be interesting to proceed with exploration of particle trajectories in a more
realistic magnetic geometry. Moreover, understanding the topology of particle trajectories is not
only the subject of interest for laboratory fusion plasmas, but also in the case of astrophysical
plasmas. This can open new opportunities for consideration of different magnetic configurations.
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4.5 Intrinsic dynamical reduction

In the previous section the problem of local dynamical reduction for charged particle motion in
an external non-uniform magnetic field was considered. In this section a more abstract approach,
which does not involve the use of the fixed basis vectors and therefore the problems related to
the gyrogauge dependence of the dynamics, is presented. Previously, in the local coordinate case
an iterative procedure for the constant of motion A was obtained. Now we will directly proceed
with a Hamiltonian normal form construction. As was explained in 4.2.3, from the beginning we
consider the constant of motion A as an independent variable of the new phase space, therefore
we pass from (p,p,r) to (A, p,x). As in the local dynamical reduction case, here r = x.

Note that it suffices to obtain the expression for the rescaled Hamiltonian p in the new phase space
variables (x, p,.A). Consequently, it is more convenient to deal here with the rescaled Hamiltonian
dynamics (4.13).

At this stage an explicit expression for A = A(r,p,p) is not known. By changing the functional
dependence p = p(p, p,r) — p = p(A, p,x) directly inside the equations of motion (4.13), we will
obtain an implicit expression for dynamics in the new phase space:

r=7p X= p

. pxeB(r) . pxeB(x)

- ’ S| p= BEE2T 4118
p(r, p, p) p(x,p,A) ( )
p=20 A=0

4.5.1 Hamiltonian normal form

As was mentioned above, in order to obtain a partial differential equation that leads to the
expression of the rescaled Hamiltonian p as a function of the new phase space variables, we should
use the stationarity condition!! p =0 for p = p (x,p, A):

p=%X-Op+D-0pp+Adap=0 (4.119)

Then by substituting into (4.119) the equations of motion in the new variables (4.118), the general
equation for Hamiltonian normal form becomes:

p ) = — o A . A
Ep-axp— [(pxb) Op | P (4.120)

The goal of our further work is to solve this differential equation.

4.5.2 Intrinsic basis

To start the solution of the equation (4.120) we need to introduce some basis in order to make a
decomposition of the vector p. As mentioned above, one goal of this work is to not use the fixed
basis associated to the magnetic field line. As in the case of local dynamical reduction, we start
by projecting the unit momentum vector p onto the magnetic field direction b=B /B.

~

p-b=-cosp, (4.121)

4Tn what follows we deal with vectors (covariant objects) and we use the canonical Euclidian basis in order
to express coordinates, for example the gradient V = 0y is viewed as a vector with the following coordinates:
Vi = Ox:. Note that use of such a canonical basis allows our description still to be intrinsic. In fact e; - Ve; =0
because the vectors e; are independent of particle position x. Here - denotes the tensor contraction (scalar product
in the case of the vectors).
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which defines the pitch angle ¢ This relation couples spatial dependence and momentum
dependence, so that ¢ = p(x,p).

Then in order to project p into the plane perpendicular to the magnetic field direction, we proceed
with the direct construction of the dynamical basis obtained by using only the physical vectors b
and p as follows:

b x p b x p
p = =P _ ks (4.122)
b x p| 1—(b-p)?
- . bxp . b x P
1 = bx 2P py 2XP (4.123)
b>p 1~ (b-p)?

where we have used a corollary of the (4.121):

bxpl=1/1—(b-p)2 (4.124)

The essential difference between this method and the previous one is that here we do not introduce
an explicit definition of the gyrophase angle (. It is hidden inside the rotating vectors L and p.
In fact an explicit definition of the gyrophase angle ( inevitably involves the introduction of the
fixed basis vectors by and by (4.21).

The orientation of the intrinsic dynamical basis is organized so that:
bxl=p bxp=—1. (4.125)

Finally, the unit momentum vector p can be represented as follows:
p=bcosp+ Lsing (4.126)

To elucidate functional dependence, let us consider the whole phase space (x,p,.4) change of
variables that arises from the decomposition of the unit momentum vector p into the rotating
frame (4.126):

X/
X
p ib (4.127)
1
A w
with x =x" and A = A'.
As in the local approach, we assume that the spatial dependence of the unit magnetic field vector
b is invariant under this transformation: b(x) = b(x’).
The table below displays the functional dependencies of variables before and after the introduction

of the rotating frame:

Jacobian: space part

The Jacobian matrix of the corresponding transformation appeared when deriving the Poisson
bracket in local coordinates. Here only the spatial derivatives will be involved in further
calculations, so we need to find dyxp and OyL.

Proposition 1 K R
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(x,p,4) || (x,p, A
© = p(x,p) -independent
1= j-(X, p) 1-independent
V =0y V' = 0 + Oxp0, + O0xL - 0;

Table 4.3: Comparison of the functional phase space variable dependence before and after introducing the
intrinsic rotating frame.

Proof 1 )
¢ = arccos(b - P) — Vp=——F——or (Vb-f)—I—Vf)-b)
1—(b-p)?

with Vp =0, p = beosp + Lsing and /1 — (b-p)? =singp

Vgp:—Vf)-j_.
[
Proposition 2
VL = —(Vb-1)b—a (Vb- p) (4.129)
Vp = —(Vb-p)b+® (Vb-p) L (4.130)

where & = cotan ¢
Proof 2 With p = b cos ¢ + 1 sin ¢, Vp =0 and Vp = —Vb - L we have:
VL=(Vb-1)(®L—-b)—dVb (4.131)

Now we project the expression on the right on the basis vectors (B,i,ﬁ), we use the following
properties: Vé - e = 0 because V(e - &) = 0 for any unit vector € and Vé; - &, = —Véy - &;, for
two different basis vectors, this property is the consequence of the fact that the basis vectors are
perpendicular.

e VL.-b=—(Vb-1)
eVl - 1=®Vb-L—®Vb-L=0 (trivial)
eVL-p=-dVb-p

Now we contract the matriz VL on the right with unit dyadic matriz and the use the equations
obtained below:

VL=VLl-(bb+1l+pp)=
(VL-B)b+ (VL - L)L+ (VL-p)p=—(Vb-L)b—® (Vb-p)p

So we have (4.129). In order to obtain (4 130), we proceed similarly. We contract the bi-vector
V p with the unit dyadic matriz, use Vp - b=-Vb- p, and vli- p=-Vp- 1=0Vb- p, so

Vp=—(Vb-p)b+® (Vb-p) L. (4.132)

Thus the expression (4.130) is also obtained.
|
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4.5.3 Intrinsic gyroaveraging

The next step in the procedure for obtaining of the general normal form equation (4.120), is to

make use of a separation into natural scales of motion that permits us to treat the fast dynamics

separately from the slow. For this purpose in an earlier section, when constructing an iterative
s

procedure for the constant of motion series, the operation of gyroaveraging R = 7 / d¢ has
™ —Tr

been introduced. Here we will proceed with the introduction of a suitable gyroaveraging
operator in an intrinsic basis.

15

Fixed-basis-independent rotations

Until now we have used the most natural way to represent the rotation of some vector p € R?
around some other vector noncollinear with it, b € R?, we defined two angles: ¢ = arccos (p - b)
that represent rotation in the plane that contains the vector b and ¢ = arctan(b1 p/ b, - p)
denoting the angle of rotation in the plane perpendicular to b. The definition of the first one
involves only the initial rotating momentum vector p and directional magnetic field unit vector
b. However, the definition of the seond angle needs the introduction of some basis in the plane
perpendicular to the directional vector b. For a general magnetic geometry such a basis cannot
be defined uniquely and this leads to the problem of gyrogauge dependence.

To avoid the use of these arbitrarily chosen vectors, we consider the definition of rotation on a
more abstract level. In the two following subsections we recall the definition of the operation of
rotation around some direction in b € R? on some angle «, defined only by the choice of this
direction.

Rotations in R® Tt is well known that the generators of rotations form the Lie algebra so(3).
Its representation on R? can be given by skew-symmetric matrices. In this case the corresponding
Lie bracket is the matrix commutator.

The basis of rotation generators can be presented in matrix form as:

00 O 0 01 0 -1 0
A,=1 0 0 -1 A, = 0 00 A,=11 0 0 (4.133)
01 0 -1 0 0 0 1 0
The commutation relations of these basis elements satisfy:
A, A=A, [A,A] =4, [A,A]=A4A, (4.134)

By using this basis, a generator of rotation about some unit vector 1 € R? can be represented as
follows:

0 —a. q,
U=1, A+, A+, A, =| 0. 0 -1, (4.135)
—a, 0, 0

At the same time this expression can also be rewritten using the Levi-Civita tensor
U= €ijk ﬁj (4136)

Equating the expressions (4.135) and (4.136), yields an isomorphism between the skew-symmetric
matrix representation of so(3) and R*. Two things follow:

150ne of the L. Sugiyama remarks in [43] is about the problems related to the existence of a globally consistent
definition for the standard gyroaveraging operator (4.65). She states that in the case of a non-trivial 3-dimensional
magnetic geometry, due to the presence of non-closed magnetic surfaces, the application of the (4.65) can lead to
the integration over a cumulative angle, and then the operation of gyroaveraging is not well defined.
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e Any skew-symmetric matrix can be conveniently identified with a vector

0 —-u, uy u,
U= u, 0 — U, = €k0; < U= u, (4137)
-, u, 0 u,

e The skew-symmetric matrix commutator can be identified with the vector product'®

UV =UV - VU=t x V) — axv (4.138)

As a consequence R?, will be endowed with a Lie structure represented by the cross product.
We remark that an operator U can be interpreted also a “cross product with the unit vector 0"
acting on R3.

UVv=1uxvV (4.139)

Such a notation will be often used.

Operator B Let us now consider the action of the operator B = eijk.l;)j, on the rotating basis
vectors L and p.
Its action is cyclic:

Bp = bxp=—1 (4.141)

Then the operator B? acts as projector on perpendicular to the magnetic field line direction,
IL =1 — bb:

Bl = -1 (4.142)

B*p = —p. (4.143)
The operator B? acts as an operator —B:

Bl = —p (4.144)

Bp = 1. (4.145)

This property give us the possibility of introducing the operator of rotation trough an angle «
around the direction b (in other words to pass from the algebra to the group) as follows:

e =1+ (1 —cosa) B*>+ (sina) B (4.146)

16Here U = €i;x0; and V = €,,,V,. We have

UV)ip = €ijrervpQVy = €rijerp;V, = (0i0jp — 0ip0j) WV, = Vill, — 8;,0;V;

(VZ/[)Hk = euvpepjk‘/}l/ﬁj = ((5Mj(5yk - §Mk6w-) \All,ﬁj = lAl/_,‘\Alk — (Suk‘}iﬁi

Then the matrix commutator is

[Z/[, V] = \Afiﬁp — ﬁi\Afp = €lip€lmlc‘7mﬁk
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To prove the formula (4.146) we just need to decompose the operator e*® into a Taylor series and
then use (4.143), (4.145) to sum the series,

e“Z

n=0

2n+1
+Z R (4.147)

From the properties (4.143) and (4.145), we obtain

Bt = (—-1)" B (4.148)
B* = (-1)"" B2 (4.149)
So
) o0 2n+1
=1 e . 4.1
+ Z i Z; ETE B (4.150)
71‘crosa 7 :;i;a ’
Operator D

To deal with separation of scales of motion, we need to define an operator that acts on observables
(functions on phase space) by rotating its arguments in a plane perpendicular to the magnetic
direction b.

Operator D. Action on the intrinsic basis vectors Consider the scalar differential operator
(p x b) -9 = D. (4.151)

Such an operator appears on the r.h.s.of the general Hamiltonian normal form equation (4.120).
Moreover the procedure for solution of this equation comes down to inversion of the operator D.
Thus it is important to learn the proprieties of this operator. R

Let us start by considering the action of the operator D on the basis vectors (B, p,L).

Proposition 3

Dp = L (4.152)
DL = —p (4.153)
Proof 3 Here (4.122):
X b x p
Dp=(pxb) o | ———mte (4.154)
Vi-6opy
We need to calculate the following derivative
g’fi Y p— bj' Dk (4.155)
Pi 1- (bn f)n)Q
1 - 1

I- (bn Pn)2 (1 - (bn ﬁn)2) sinp p;
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Second, with (4.125) we remark that

pxb=1xbsing=—-py/1—(b-p)? (4.156)

Finally ) ) K
D pAZ = —€l5j ﬁl b] = —€i bj ﬁl - lz (4157)

[ |

It follows that the action of the operator D on the basis vectors is cyclic and similar to the action

of the operator —B = —¢;;;b; the “cross product with vector b”:
DL = -Dp=-1 (4.158)
Dp = DL=-p (4.159)
DL = -DLl=p (4.160)
Dp = —-Dp=—1. (4.161)

Another interesting property of the operator D is summarized in the following proposition.

Proposition 4
D=(pxb) dp=(pxb) dp=(Lxb) 0; (4.162)

Proof 4 Because

o 9p 0 _0p 0

— = 7 4.163
obr Obr 91, O Op (4:165)
By using the formula (4.155)
ap ik b by p
Ph _ Gk Di | g 2LP (4.164)
Op; sing sin ¢
then we have
D = (px f)) - Op = — P €k Bj 7 (4.165)
k
= —ubipdp =(pxb)-0p=1-0,
By analogy, we can prove that:
D=(Lxb)-d;=p-9; (4.166)

Then we can say that the action of the operator D on the observables involves only the derivatives
of the vectors (L, p) perpendicular to the magnetic field.

Operator D. Intuitive definition To give some intuition for the operator D, let us return for
a while to the local momentum coordinates (p, () given by Eq.(4.21) involving some fixed basis
vectors (f)l, 152) How the operator D in this case is expressed?

The transition between the intrinsic phase space variables and the local phase space variables is
given by:

(4.167)

p o
!
:l;zf\r‘g bl
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with x = X and A = A. Now the unit momentum vector is presented as

p=bcos¢+ Lsing (4.168)

~

and the expressions for rotating vectors (L, p) are taken to be the same as in (4.16): L =
—by sin ¢ — b, cosC and p = b, cos( — by sin C.

This local rotating basis has the same organization, bxl= P, b x p= —j_, as the intrinsic
basis defined in (4.123). To obtain the expression for the operator D in local coordinates, we first
proceed with the differential operator 0/0p, by applying the chain rule:

o 08 9o OAD  0X D

. 4.169
op  0pos  0poc T opai  0pox (4.169)
According to the basis definition, the local momentum coordinates are expressed as
o j_ B A
¢ = arctanrj . ( = arctan — IA) (4.170)
p-b by - p
Then its derivatives of the unit momentum variable are
Do+ . ¢ p
=1 —-b — =— : 4.171
b Cos sin @, o Sin g ( )

Due to the fact that the change of variables (4.167) maps A = A . x = X and because of the
independence of the variables A, x on p, the last two terms in the expression (4.169) are equal to
7Zero.

Using this information we have:

o  p 0

1 b — 4.172
5 = (Lcosp — smgp)a(p S C (4.172)
Then with p x b=-— psin g, the operator D can be expressed as follows:
. 0 o 0 0
(P xb)-9p = (—psing) - |(Lcosp — bsing)=— P = (4.173)

dp sinpdC|  O¢

Finally, we find that the scalar differential operator D in local momentum coordinates is equal to
the derivative with respect to the gyroangle (.

Note that the expression of the operator D = 9/9¢ does not depend on choice of the fixed basis
(6061, 132), we emphasize that the definition of the angle ¢ would be dependent on this choice. By

9
analogy with operator e*P one can introduce an operator e*?¢ that acts similarly.

Operator exp (a D). Action on the observables By analogy with the operator of rotation
e®® defined in (4.146), we now introduce the operator e .

As was shown i 1n 4.5.3, the operator D is equivalent to the operator —B. Due to that we obtain

the action of e*” on (_L p,b):

e*P? p=(1-(cosa—1) D* —sina D) p=cosap—snal=eBp (4.174)

P ] = (1= (cosaw— 1) D* —sina D) 1 =cosal +sinap=e*bFl (4.175)
Similarly to €5, the operator e*? does not affect the magnetic field vector b:

e®? be* b = b. (4.176)
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Due to the relation (4.162) between the operators D and B

D=p B- 8A —=p-B- 9

_=1-B-—, 4177
9p oL 4.17)
the operator D can be treated as a generator of dilatations.

Then the action of exp(a D) on an observable f(x,p,.4) can be expressed as:

exp (f) -B- J > f(x,p,A) = f(x,e*Fp, A). (4.178)

op
This means that when applied to an observable f(x,P,.A), the operator e*? affects only the
arguments depending on p, L or p. Its action comes down to rotation of these vectors through
the angle —a around the direction b.

The proof of this property can be realized by decomposing an observable into a series as follows:

o L On

F) =+ > =

007" flig (4.179)

> . . o0 €aD (JA_“ . j—in>
e f(L)=f(0) +Z_; . [812,1 c%inf] = (4.180)

- > €OCDJA_Z' Ce €aDj_in
= f( 0 ) + ; 1 oy [aj-ﬁ .. (’9Lnf] |i:6 (4.181)

— > 670[8_12‘1 - eiaBj_in - —wB
n=1
In order to pass from formula (4.180) to (4.181) we must prove that:

(17" = (2P L)®n (4.183)

To do this, we iterate the Leibnitz rule for scalar differentiation D. Each tensor can be considered
as a collection of scalars. We will prove the property (4.183) for two scalars—to expand this proof
for tensors it is sufficient to apply it to each component of a tensor. Let f and g be two tensors,
where f; and g are their coordinates with respect to the canonical basis in RY, we need to verify
the next relation

eP(f®g)=ePf®ePy. (4.184)
In coordinates
e (fi gr) = P fi g (4.185)
with the series expansion
S @Dy =33 @Dy i (aDy g, (4.156)
n=0 n! n=0 m=0 m! (n - m)'

now it is sufficient to prove by induction that

(aD)"(fi ge) = Y Cp (aD)" f; (aD)" "g, (4.187)

m=0
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forn - n+1

Cg;rl (aD)™ f; (OzD)”—mHgk =(n+1)! (aD) (%(a@)mfi |(aD)”_mgk) (4.188)

(n—m)!
this property can be obtained immediately by direct differentiation and then using the property
of binomials C**t = C" | 4+ Cn.

The main idea for formula (4.179) is described in the box below.
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Series decomposition for an analytic function in a fully symmetric tensor space

Let Ex be an N-dimensional vector space with € its basis vectors. To start, let us consider a
second order direct product of this space with itself Exy ® Ey = (E,)?. The basis in such a space
can be constructed from the direct product of basis vectors €; ® €;. Then the direct product
of any vector v € Ey that lies inside the fully symmetric subspace of (Ex)? with basis vectors
éi\/éj Eél®éj+éj®éz
VRV = Z ﬁvz Uj éZ V éj (4189)

is Iterating the r-th power of v, which lies within the symmetric subspace of (Ey)" with basis,
gives

€;, A\VARREAV] e, = Z o éiléig C éir- (4190)

all elements € P,

Here the sum is taken over all the elements in the group P, and o is its group operation of
permutation. In the full symmetric basis definition, all the permutations (ordered or not) are
taken with the sign +. The components of (v)®" with respect to the bases are of the form
(v) ... (N )V, with 71 +...jy = 7. Thus

v =y < > (vl)jl...(vN)jN> &, Ve,V Ve . (4.191)

all elements €P, \j1+Jj2...iN=T

The polynomials (v;)7' ... (vx)?¥ form a basis for the set of all analytic functions defined on Ey.
An analytic function can be represented by its power series expansion. Let f(v) = f(vy,...,vy)
be a real valued, analytic scalar function (an observable). Thus

FO) = F(0) +0: [0 fl g + vivy [0000f] lyg+- .- (4.192)
[0,00,0,, ... f]
+ v Vi Vvt 1 ‘v:@
n!

In vector terms this formula can be rewritten as follows:

A%

o VE" fly_o, (4.193)

) =10+

n

where V = 0, and the operation o represents the operation of n - tensor contraction.

Operator R of intrinsic gyroaveraging. The introduction of the operator exp(aD) permits
us to define the operation of intrinsic gyroaveraging.

In fact to perform a gyroaverage means to sum over all possible rotations around the magnetic
field direction b. This action can be expressed by the operator:

1 s
R = %/ da exp(aD). (4.194)

Taking this integral formally and considering D as the integration parameter, gives

B sinh 7D

R D

(4.195)
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Note that this expression is not zero

sinh7D 7D+ (1/3!)(7D)* + O(D°)

_ 4.196
D D ( )

From here, it is easy to see that RD = DR = 0, because
sinh7#D =0 (4.197)

In fact the last formula can be interpreted geometrically as the difference between rotations of the
argument of an observable through an angle ( and —(, i.e.

sinh 7D f(X, i, ©, ./4) = |:67TD - €—7rD:| f(X7 —La 2 “4)
= f(x,e 7™ L 0, A) = f(x,e™L, o, A). (4.198)

Moreover according to the formula, (4.146) e ™1 = ¢™P1 = — 1, so we have (4.197).
On the other hand, the properties (4.196) and (4.197) permit us to prove that the operator R is
a projector. It is sufficient to show that R? = R, but

D — sinth) 0

R(1 —R) =sinhnD ( =

(4.199)

Now we can also introduce a complement to R, the projector ' =1 —R.

Finally, the application of the operator R to any observable f(x,p,.A) gives its gyroaveraged part
(f(x, go,j_,.A)) and application of the operator N to the same observable, gives its fluctuating
partf(x, ®, j_, A). By considering these operators as a complementary projectors on the set of the
averaged and fluctuating parts of the observables, we can make the following decomposition:

Fx, L(x), p(x), A) = Rf(x, L(x), p(x), A) + N f(x, L(x), p(x), A)

1
= (f(x p(x); A) + f(x, L(x), p(x), A) (4.200)
Pseudo-inverse operator G As seen in the previous paragraph, the operator D has a non-zero
kernel DR = 0, composed of all the observables that do not depend on L and p. So it can not be
inverted on the set of all the observables defined on the phase space (x, L(x), ¢(x),.A). However
its left inverse G can be defined as follows: GD =N =1 — R.

Now using the spectral expression for the operator N, we have formally:

7D — sinh D

GD=N. =G =" (4.201)

This formal expression for the operator G can be also rewritten into the integral form.

Theorem 4

1 s
g= 2—/ da (o — wsigna) exp(aD). (4.202)
Tr —TT
We can then define its action on the basis vectors
GL = p (4.203)
Gp = —L. (4.204)

Note that the action of the intrinsic operator G on rotating basis vectors 1s similar to the action
of the operator G of (4.66) in the non-intrinsic case. In fact with 1=-b sin( — b, cos ¢ and
p= b, cos( — bzslng,

¢ ¢ .
/ d¢ L =p and / ¢ p=—1. (4.205)
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4.6 Intrinsic Hamiltonian normal form equation

Let us now return to consideration of the general Hamiltonian normal form equation (4.120). Now
we will make use of the intrinsic tools introduced above for its resolution.

First we rewrite the r.h.s. of (4.120) by introducing the scalar differential operator'” D =
(f) X b) : 8f,:

4

e p-Vp __ Dp (4.206)
slow variables derivative fast variable derivative

After the introduction of the intrinsic basis in coordinates (x’, ¢, 1A ) this becomes,

% (E(X’) sin g 4 L cos <p> : <8x/ + O Dy + Oy L - 8i) p=—(L xb)d; (4.207)

which can be also interpreted by using the variables (x, ¢(x, )L(x)) as:

% (B(x) sin p(x) + L(x) cos gp(x)) - Oep = — (P x b(x)) - pp. (4.208)
e
The operator D involves only the derivatives perpendicular to magnetic field directions (j_, p). As
we can see in (4.5.3), D is a fixed-basis-independent representation of the differentiation over the
gyroangle. In intrinsic basis it becomes:
o A . 0

D= (pr)-aﬁ: (J.xb)@l c———=> a_C (4209)
Moreover we remark that the Lh.s. of the equation (4.206) contains the small parameter ¢ = p/eB.
The separation of dynamical scales thus appears naturally.

4.6.1 Solution

Similarly to the general equation for the constant of motion in the non-intrinsic case (4.59), an
iterative procedure for the resolution of (4.206) can be implemented by using the intrinsic operators
R defined in (4.194) and G defined in (4.202).

Iterative procedure Application of the operator R to the r.h.s. and the Lh.s. of (4.206) gives
us the equation for the averaged part of rescaled Hamiltonian p :

p .
R (L0 vp) =0 4.210
P Vp (4.210)
Note that this equation can be interpreted as a solvability condition of the general equation (4.206).
Application of the operator G to the r.h.s. and the Lh.s. of (4.206) gives us the equation for the

fluctuating part of p :
Np=G (% B Vp) (4.211)

The first step of the iteration leads to the expression for the gyroaveraged part of p at order n.
The second step consists of obtaining the fluctuating part of p at the order n + 1. As in the local
case, we suppose that the rescaled Hamiltonian p is independent of the gyroangle ( at the zeroth
order of e.

At any following order, we suppose that

~

p= )X, 9) + P, 9, 1) — p = ) (x,9(x)) + B(x, (%), L(x)) (4.212)

"In what follows we define the differential operator V as: V = 0x = Oy + Ox O0p + (9xj_ -0p
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Then the corresponding iterative procedure can be organized as follows:

e :Dpy =0 (4.213)
e —Dp :f—;p-vpo (4.214)
g2 . —Dp, :f—éﬁ-vpﬁ%ﬁ-vm (4.215)

+f—;p Vi1 + f—;p V{p1). (4.216)

In what follows all the spatial derivatives will be taken over the variable x, then the rotating frame
vectors and the pitch angle will be supposed dependent on x.

First order solution

In previous section the zeroth order constant of motion Ay = (Ap) was obtained by applying
the separation of variables method to the first order partial differential equation (4.59).
In order to make connection with the familiar expression for the magnetic moment py =
(p*sin?) /2B = 2mAy, we start our series decomposition for the Hamiltonian p in the new
variables (x, p(x), L(x),.A) with!8

AB(x) ny
~———e¢
sin p(x)

where o = p(x) is some function of the space coordinate. This will be needed in order to obtain
the second order terms. Its nature will be discussed below.

Note that the implementation of such an ansatz into the iterative procedure (4.216) for the rescaled
Hamiltonian p leads to a series expansion in powers of the variable A'/2. In what follows, we deal
with construction of its two first orders, i.e. we find the terms in A4'/? and A.

By introducing py into the general equation (4.206) for the Hamiltonian normal form, at the first
order, we have

po = po(x, 6(x), L(x)) = : (4.217)

Po .
L — _Dp,. 4.218
5P Vo p1 ( )

By expanding Vpq

VAB VB Vp A
_ —0/2 2 L ®dVb- L 4.219
Vo sin @ ¢ ( 2B 2 Tev ) ( )
and then by substituting it into (4.218) we have:
Po . Ae @ - A VB Vo PN
2 5. = b 1 N == ——+DdVb -1 |. 4.220
eB P VPo e sin’ cp( cos + Lsing) < 2B 2 eV ( )

This equation give us the possibility to obtain the fluctuating part, which we call p; for the first
order in A Hamiltonian. The averaged part of the first order Hamiltonian (p;) can be obtained
when considering the second order equation. This calculation is considered in the following section.
Here we deal with the solution of the first order equation. Due to the fact that RD = 0, the
gyroaverage of the r.h.s. of the equation (4.206) is always equal to zero. This implies the necessity
to verify that the gyroaverage of the 1.h.s. of the same equation is also equal to zero. Gyroaveraging
both parts of the (4.220) leads to a condition for the function p:

b-Vo=0. (4.221)

8Here we have inverted the functional dependence of the zeroth order constant of motion and the zeroth order
Hamiltonian:

sin )2 vAB
Ao = L ) —Po=
B sin ¢
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In fact, with R (L L) =1/2 (L L+ p p) and Vb-b = 0, we obtain:

Po . -
R <€—B b Vp0> - (4.222)
Ae® [ b-VB _b-Vo 1_ .o - .
d —~® ~® (bb+ 11 +pp): Vb |.
esingp( 2B 2 +2 (bb + +PP):V >

After using the electromagnetic constraint V-B = V - (BB) = 0, which can be rewritten as
- b-VB

V-b=—
The next step is to apply the operator G to the both parts of the equation (4.220), in order to
obtain the fluctuation of the Hamiltonian p; at the first order:

, we obtain the condition (4.221).

~ (P _
P o= G(eBp Vpo) (4.223)
Ae™? N N 1 VB 1 N A «
—®? pb:Vb——p-(— — ——d(plL+1p):Vb
esM( pb:vh- 1o (N2 o) Lo (ol Lp) v)

Here we have used Gp = 1,61 = P, GL1 = 1/4 (ﬁj_ -+ j_ﬁ)

At this stage the fluctuating part of the first order solution p; has been obtained. Now we proceed
with the second order differential equation, in order to find the gyroaveraged part of the first order
Hamiltonian (p;).

Obtaining (p;). Solution of the second order averaged equation

The procedure of intrinsic gyroaveraging applied to Eq. (4.216) leads to the partial differential
equation ¥ 20

. 1 .
cosp b Oy (pr) — 5 sing (V-b) Op(p1) =

ASQ {%2 [f) (V x (b - Vf))) — <B X VQ) (b vf))} (4.224)
+i [(BXV)-B] [v.ﬁ]] '

The details of this calculation can be found in the Appendix 12.1.

Now we are looking for a solution in the following form?!:

Ae e
(p1) = Csin o P w(x). (4.225)
In this case
~ Ae 0 9 ¢
cosp b-Ox(p1) = O° b - Oyw(x) (4.226)
: Ae @ 9
sing Oy, (p1) = o w(x) (20° +1) . (4.227)

This ansatz permits us to separate the terms of the equation according to the power of ®. Each
group of terms give us an independent equation. Two groups of terms appears.

YHere we continue to distinguish two spatial positions x and x’, before and after the projection on the intrinsic
basis. Recall that V = 0x = Oxr + 0xp0, + OxL - 0}

20Such an equation is consistent with the first order differential equation for the constant of motion A (4.70)

2INote that this is one possible solutions. Probably another solution is more suitable, but this opportunity will
not be exploited here.
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The first one is the group of the terms multiplied by ®°, which leads to an expression for w(x)
1 ~ ~
@(x) = 5 [(b X V) - b] . (4.228)

The following group of a terms, multiplied by ®? give us a second condition for the function o

% (b (b-VB)) - Vo= b duw(x) + (V- b) w(x) - % b-(Vx(b-Vb) (4220
(B x (B.VB)) NVo=V- ([(f) x V)-B} B) b (v x (B-VB)) (4.230)

Finally:
(pr) = % ® [(B X V) - f)] . (4.231)

4.6.2 Final result for second order solution

The first and the second order (in powers of square root of the constant of motion v/A)
decomposition of the Hamiltonian normal form are given by:

e N 1 B
A (—@2 pb:Vb—p. VB _ Vg)) (4.232)

>
>
—_

—@ ~ ~ ~
LAt g {(be)~b—§(1+¢,§):Vb1 +0O (A7)

where the function ¢ = p(x) must satisfy two following conditions:

~

b-Vox) = 0 (4.233)

~ ~

by Vo(x) = V- (((BxV)-b)b) —b- (VX (B-VB)) =0 (4.234)

where by = b x (b-Vb)/k and k = |b - Vb| denotes the curvature of magnetic field.

In fact this is two conditions on the the directional derivatives of the function p in the two
perpendicular directions.

From the first order equation, we know that in the direction parallel to the magnetic field, its
derivative is equal to zero. From the second order equation, we obtain that its derivative in the
directions perpendicular to the magnetic field b x (15 : VB) must be equal to some quantity o.
Such a quantity can be expressed using only the second order derivatives of the magnetic field
direction b. These two conditions may be interpreted as solvability conditions. We can suppose
here, that we have an ordering in magnetic field line derivatives, so that, the second condition
must be taken into account when solving the general equation at the next order.

4.6.3 Discussion
First of all we remark that the conditions on the function o obtained just above are similar to the
condition imposed by Littlejohn [37] on the gyrogauge function:

b-VE=-b-Vxb+b-R. (4.235)

1
2
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Such a condition allows the removal of geometrical terms from the guiding-center Hamiltonian
H=upB+1/2 pﬁ.

The crucial difference here is that no fixed basis vectors b; and b, were used when arriving at the
conditions (4.233) and (4.234). Therefore no derivatives of the fixed basis vectors are involved in
the expression for the function ¢ and then the gyrogauge vector R does not appear explicitly.
Here we discuss several issues relating to the function £ = £(x).

The first one is to deal with solution of the system of directional differential equations (4.233) and
(4.234) in order to find the corresponding solution for . Further discussion of solvability of such
a system of differential equations will be needed. For example it will be necessary to verify some
Newcomb - like condition?? on the function o. Note that it was shown by Hagan and Frieman
that in the case of the Littlejohn equation for the gyrogauge function &, the Newcomb condition
is violated. However no inconsistency within the general method occurs because of the angle-like
nature of the gyrophase function (.

Another opportunity is to impose a standard gyrokinetic ordering on the magnetic field derivatives
Ly Vb ~ e, where Lpg represents a characteristic length scale for magnetic field variation. Then
the function o containing second order magnetic field derivatives, can be omitted at the first order
and will need to be considered at the second order.

The other way to treat the function £ is to set it equal to zero. In this case the first condition will
be automatically satisfied, and no inconsistency in solution of the zeroth order differential equation
will appear, because py = V.AB / sin ¢ satisfies the first order differential equation (4.218).

Then the second condition should be treated as a geometrical restriction for magnetic field:

V- (((BxV)~B) B) :B-(VX(B-VB)). (4.236)

Such a condition is satisfied in slab geometry by the vanishing of both sides of this equation. For
a general magnetic geometry, such a condition adds a supplementary constraint on the magnetic
field and the solubility of the iterative procedure (4.216).

This way to proceed with conditions (4.233) is similar to those proposed by Sugiyama in [43] when
discussing the solvability of the Littlejohn condition (4.235) on the gyrogauge function. As was
shown by Hagan and Frieman, this equation does not possess any single valued solution because
of violation of Newcomb’s condition.

Due to this fact, in order to find another manner to obtain a single - valued solution of the
Eq.(4.235), Sugiyama claimed that each of the terms 7 = b -V x b and Ty = b-R on the r.hs. of
the Eq. (4.235) must be equal to zero. This implies the serious restriction on the magnetic field
that it be torsion free.

On the other hand, it was remarked by Brizard in [24] that there is no inconsistency in the fact that
the solution of Eq. (4.235) cannot be single valued. Because the function ¢ is angle-like in nature
and therefore multi-valued. Finally as Littlejohn said in his work on phase anholonomy in the
classical adiabatic motion [40], “there will inevitably occur terms depending on the perpendicular
unit vectors which cannot be transformed away, and that it is best to live with these terms and
to understand their gauge dependence”. Perturbative Lie-transform theory introduced in [37],
developed in [20] and explicit in [18] possesses a perturbation expansion, based on gyrogauge
invariant Lie generators, that leads to gyrogauge invariant equations for parallel dynamics and
to the gyrophase dynamical equation that explicitly depends naturally on the gyrogauge vector
R. The geometrical origin of R insures the validity of this approach. The difference between
our method and the Lie-transform approach is that no explicit dependence on the fixed unit
vectors (51, Bl) appears during the dynamical reduction procedure. The constraints imposed on

22The Newcomb condition states that the differential equation b- V& = o possesses a single valued solution if

the following condition is accomplish: 7{ 5= 0, where the integral is taken around the closed magnetic field line
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the function ¢ are defined only by the magnetic field itself. On the other hand, further discussion
of the solvability conditions (4.233) and (4.234) as well as an alternative manner for dealing with
the second order partial differential equation (4.224) will be necessary in the following in order to
make sure the solvability of the intrinsic iterative procedure is satisfied at any order.

4.7 Summary

New abstract methods for the guiding-center dynamical reduction have been introduced in this
work. The rigorous derivation does not rely on the definition of the basis vectors in the
perpendicular plane and thus is free from the gyrogauge and “Sugiyama” problems. The derivation
presented in this work may result in the formulation of a gyrokinetic theory that is accurate and
includes consistently all terms associated with the non-uniformity of the magnetic field.



Chapter 5

Conclusions and discussion

In this thesis a theoretical investigation into improvement of fusion plasma confinement by plasma
control, with possible barrier formation, was undertaken from different points of view.

In Chapter 2 Hamiltonian control tools were applied for considering transport reduction for the
E x B drift model suited for test particles. Then, in Chapter 3 an investigation of intrinsic plasma
rotation mechanisms was pursued through the derivation of the momentum conservation law for
the gyrokinetic Maxwell-Vlasov model. Here the dynamical reduction for the Maxwell-Vlasov
equations was realized by using Lie-transform perturbation methods and a suitable constrained
variational principle. There are some important remarks to make about these two studies.

First of all, in both cases electrostatic turbulence (coupling particle motion with electric field)
was considered. Such an approach is well suited to magnetically confined plasmas and is widely
used by physicists. However it would be interesting in the future to explore the problem of barrier
formation and to reveal intrinsic rotation mechanisms in the case of electromagnetic turbulence.
This could provide an opportunity to go into depth in the understanding of effects related to the
self-consistency of field-particle interaction.

Concerning the implementation of the Hamiltonian control tools for the Ex B model, an important
step was the implementation of methods of abstract Hamiltonian theory for the concrete physical
problem. The analytical expression for electric potential used here is well suited to the theoretical
investigation presented in [67]. In such a situation, the corresponding control term possesses also
an analytical expression. In order to obtain a transport barrier that completely stops particle
diffusion at a chosen position, the control term must be implemented at each point of the poloidal
section of a machine. In a real situation, the electric field can be measured at a finite number
of points and the implementation of the control term is limited by engineering features like for
example restriction on the number and position of the actuators that control the electric field.
The first step in exploration of the robustness of such a control term by truncation of Fourier
series was explored in this dissertation. We saw that for a rather chaotic system,by inducing only
the two first Fourier harmonics the turbulent transport throughout the barrier could be halved.
On the other hand, one of the powerful points of this method is its low additional cost of energy.
Moreover, the experimental realization of this control in a Traveling Wave Tube (PIIM laboratory,
Marseille, [65]), opens the possibility to practically achieve the control of a wide range of systems.
In such a device, the interaction between electrons and electrostatic waves was considered. An
interesting final issue for application of this method could be its implementation in a fusion device
taking into account all experimental constraints. Presently there is a work in progress by the
Non-Linear Dynamics team (Marseille) concerning its implementation for the linear device Vineta,
Greifswald; the corresponding results will be published in [68].

Concerning the derivation of gyrokinetic momentum conservation law through a constrained
variational principle for the full and electrostatic gyrokinetic Maxwell-Vlasov system, the strong
point of this method is providing an exact statement that depends on the nonlinear gyrokinetic
physics. General mechanisms of intrinsic plasma rotation were identified for the electrostatic
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turbulence case. Currently an article in collaboration with A. J. Brizard is in preparation. Its
goal is to derive the momentum conservation law in the case of the gyrokinetic electromagnetic
Maxwell-Vlasov system and to identify new intrinsic rotation mechanisms that lie behind it.

At the same time, these investigations were accompanied by construction of an alternative
dynamical reduction method for the Maxwell-Vlasov system by applying Hamiltonian perturbation
tools. As was previously remarked, for the Maxwell-Vlasov system the electric field plays the role
of the mechanism that couples fields and particles. Then, as in the case of the Lie-transform
perturbation method, the first stage in the strategy consists of dynamical reduction for a particle
moving in an external non-uniform magnetic field in a six-dimensional phase space. As shown in
Chapter 4, those problem reveals fundamental questions related to the geometry of the magnetic
field configuration. For example, concerning the definition of gyroangle, necessary for separating
the scales of motion, the gyrogauge dependence of dynamics is induced.

In order to encompass these problems, an intrinsic formalism for construction of constants of
motion, in the case of an uncoupled system is built in Chapter 4 of this dissertation. Such a
procedure does not involve the definition of the gyroangle and thereby avoids the problems related
to the gyrogauge dependence. Here some questions related to the iterative construction strategy
for the resolution of the final system of partial differential equations will need to be discussed.
The next step of such a reduction procedure consists of reintroduction of a perturbative field-
particle coupling into the system.

Then at each order, by introducing a small modification into the system, the constant of motion
should be reconstituted. One of the possible issues is to use the general Hamiltonian control
method for this purpose. Finally, the perturbative field-particle coupling series for the constant
of motion of the full Maxwell-Vlasov system should be constructed. This part of the work is still
presently being undertaken.



Chapter 6

Eulerian variations for Maxwell-Vlasov
action

This Appendix deals with a detailed decomposition of the general expression for the Eulerian
variation of the Maxwell-Vlasov Lagrangian density (3.6) in its Noether’s part and its dynamical
part (3.14).

6A = /d% 6L = /d% (5L'M—|—/d4x §Ly (6.1)

N J/

E(S.A]u E(S.AVI

6.1 FEulerian variation for Maxwell part of action

In this Section we consider the perturbed Maxwell-Vlasov equations and the contribution to the
Noether terms of Maxwell’s part of action. The Eulerian variation of Maxwell’s part of Lagrangian
density is given by:

1
6L = o~ (¢ 6E; - E; — € 6By - B) (6.2)
T
We use that
E, =-V®, - ¢ '9,A, (6.3)
and 0E; = —V6®; — ¢ 19,6A, in order to rearrange the electrostatic part of the variation:
1 1 1
6E1 . E1 = V(S(bl : V(I)l + EV(S(I)l . 8tA1 + Eé?tcSAl : V(pl + g@téAl . 6,5A1 (64)

Then we apply the Leibnitz rule on each term in this expression in order to separate it in the full
derivative and the terms multiplied by the variations (6®1,5A4). For example, for the first term
we have:

6V, - V&, =V - (60,VD,) — 60, V>D, (6.5)

Similarly proceeding with the rest three terms, and using the relation6.3, we can rewrite the
electrostatic part of the variation as:

1 (OE
+ 821 (V E1) +0A- (8—;) (6.7)

The next step consists in rearranging similarly the magnetic part of the variation. We need to use
the following tensor relation:

(VxC)-D=V-(CxD)+C-(V xD) (6.8)

101
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for any tensors C and D. Then we obtain:

By combining the rearranged expressions for the variations od electric and magnetic field (6.3) and
(6.9), we can group Noether’s terms and dynamic terms (multiplied by the variations (6®q,0A;):

1 10
(SEM = E {—V . (626@1 E1 + € (SAl X B) — E& (626A1 . El):|

™

+ 4i |:€26(I)1 (V : El) + 5A1 . (62% &5 E1 — € (V X B)):| (610)

The two first terms represents contribution to the Noether’s terms from Maxwell’s part of
Lagrangian density. The two last terms will be considered during derivation of the Maxwell-
Vlasov perturbed equations. The latter calculation is discussed in the general part of this text,
see Section (3.3.2).

6.2 FEulerian variation for Vlasov part of action

This section deals with detailed decomposition of the term Ay, = — [d®*Z H {S, F}eu in its
dynamical part and its Noether’s part.! By using the Leibnitz rule for the extended canonical
Poisson bracket, we can write:

/ BZHAS, Flew = / d*Z {SH, Flew + / d*Z S {F, H} ews
= —/d4x SLN — /d4x 5Ly, (6.11)

The first term here is an exact bracket, so we will group it to others Noether’s components. The
second term will give us Vlasov equation (see Appendix 6.2.2 for details). In two following sections
we give details about each of these terms.

6.2.1 Noether’s term for Vlasov part

Our work in this subsection is related to the rearrangement of the first term into the expression
6.11. First, we rewrite the Poisson bracket as follows:

B _OF ,O(SH) 0 9 "
{SHa-}r}ext - _{‘F7 SH}echt - _0Z“J 8Zb - 82“ (f @ (SH)) J
82(5H) ab
f WJ (612)
—_————

=0

the latter term here is equal to zero because of symmetry of second derivative and antisymmetry
of the extended Poisson matrix J, further we multiply and we divide our expression by the
Jacobian 7, and we apply one more time the Leibnitz rule:

L0 0 ab _ _ i 0 ab a
J oz (f @(SH))j == Zoz: (T J F{Z SH})  (6.13)

=0

)*7@(

J/

'Note that the following decomposition can also be applied to the case of reduced gyrocenter dynamics. One
should replace the extended Poisson bracket by the reduced gyrocenter bracket.
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where we use the Liouville identity for Poisson bracket and that J 8(85;:) = {2 SH}eut
Finally we obtain that:
1 0
S . Zo 8 6.14
{SH, Flewr = ~ 7oz (J F{2* 5H}) (6.14)

The integral over all extended phase space of an exact Poisson bracket is equal to zero. It suffice
to prove it in the canonical coordinates, by integrating by parts. To translate this proof in the
case of the reduced phase space we have to use the fact the there is a diffeomorphism between the
canonical coordinates and the guiding-center (gyrocenter) coordinates.

In order to obtain the contribution of the integral f d®Z {SH, F}ews to the Noether part of the
Lagrangian density variation, we should first integrate over momentum part of the phase space
and then evaluate all non-vanishing terms

/ B2 {SH, Fon (6.15)

/d T /d *p et dw 782@(J]~"{Z“ SH}) =0
here we use that d®*Z = d*z d*p = d*zd®p ¢! dw Further we remark that:
(2% SH Yo = S {Z% H}uws + H {2, S}om (6.16)

and we apply the physical constraint H = 0 in order to vanish the second term, so only the first
term will contribute:

0 = /d?’pdwi(j]: S{Z% H}eut)

_ /fmm(%ﬂYfﬁwHD+
- / dp du (aix ;:5{;;}>+2( 7 F S{et, H}))

— 8%:,, (/dBp dw (.77:5{551'77'[})>

+ gt ( / &p dw (T F S{ct, H})) (6.17)

With {ct,H}ert = ¢ and {x,H}exs = X ? we have the following expression for Noether’s part of
Vlasov Lagrangian density :

0
o (T F ()

S/

MZVVZZ_%/#p}"S—V-/dA‘pFXS (6.18)

6.2.2 Vlasov equation on a 6 dimensional phase space

Here we present details about obtaining the Vlasov equation on a 6 dimensional phase space from
the relation of commutation on extended phase space between the extended Vlasov distribution
function and the extended Hamiltonian: [dw {F, H}e,w = 0. First we explicitly rewrite this
expression into the canonical variables *:

OH OF U (0]-"87—( 0.7-"87—[)

(P e =VF -5 =5 ot dw  ow ot

% ~ 7o (6.19)

2This expression in the case of gyrocenter reduced dynamics is replaced by {X, H,y}e = ng where {X, Hgy}c
is an extended guiding center bracket, X is the guiding-center position and Xy, is the gyrocenter position

3This proof will be also convenient in the case of the reduced gyrocenter dynamics due to the diffeomorphism
between the canonical variables and the gyrocenter variables [19]
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We rearrange each term by using the Leibnitz rule V- (AB) = (V-A)B+ A -VB:
OH 07'{) (8?‘()
VF-— = V- |\ F — | - — 6.20
op ( Ip P (6:20)
oF 0
- . = —. 21
p VH p (F VH) — VH) (6.21)
OF OH 0 OH 0
ot dw ot (f %) -7 (ataw) (6:22)
OF OH 0 OH O*H
ow ot dw (f E) -7 <8w8t> (6:23)
Then we obtain the following expression for the extended Poisson bracket:
OH 0 0 OH 0 OH
= — ] - = - = — — .24
7 Pyt (f ap) op VI " (f Ow ) ow (f ot ) (6.24)

Now we should integrate this expression over variable w by substituting the expression for the
extended Vlasov distribution function F = §(w— H) F and the extended Hamiltonian H = H —w

/dw {F H}ew = /dw o(w—H) {%}; + V. (F %—Is) 8(?) (F VH)] (6.25)

Note that here we exchange the derivative and the integral over independent variables (x, p) and
we use that: 0, H = —1. The key moment of this proof is vanishing of the integral:

/ dwF 8w — H) (H — w) = 0 (6.26)

in fact [dw 6(w — H) = 1 if and only if H = w, and then automatically the integral is equal to
zZero.
By rearranging terms into the expression 6.25 according to the Leibnitz rule:

0H oH OH
F—) = VF-—+F — 2
V. ( 8p) \Y p +F V- p (6.27)
0 oF 0
— - (FVH) = — -VH+F —-VH 2
Ip (FVH) p -VH + p -V (6.28)
and according to the Hamilton principle, we obtain:
oF OH OF oF
= — F-——— .- VH=—+{F H 2
0 5 +V o Op -V 5 +{ } (6.29)

Gyrokinetic Vlasov equation on a 6 dimensional phase space

In the case of electrostatic gyrokinetic Maxwell-Vlasov model considered in the section 3.5 , the
Poisson bracket in the expression (6.29) is the guiding-center Poisson bracket defined on the
reduced guiding-center phase space z* = (X, p |, 0, j1):

QO (OF 0G OF 0G
_ -1°" - = 20 =
(PGl = &' <a(9 o o 80) (6.30)
B* oG OF h
+ N R va) A *G) ¢ V*EF x V*G
B; < dpy Ipy “eDy ( )

where V* =V 4+ R 9/00, R* =VL-p+1/2(b-V x b) b and

' Pllg .t
B'=B+e¢B—Vxb+... 6.31
Teb TV X bt (6.31)
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from which B = B*- b.
To obtain the gyrokinetic Vlasov equation we use the phase-space divergence form of the guiding-
center Poisson bracket: oy

{F, Hgy}gc = B 020 ( *||F {4, Hgy}90> (6.32)
[

where Hy, is the electrostatic gyrocenter gyrophase-independent Hamiltonian

2
p €2
Hyy = uBo+ 3o+ € e{®ge) — 3 € ({Tige, Prgee) (6.33)

with pW1g. = ;13190. Using the gyrocenter equations of motion *

: B* 0H, cb
X = — %4 H .34
B p) +eB*HXV 9y (6.34)
: B*
. Q2 O0H, B* 0H
Hf = — =% (R 6.36
B mL+B]< @H) (6.36)
, Q2 0H,,
- —0 )
K B 00 (6.:37)
with dyF = 0 we obtain that
{FH}cziW%@¥XF)+i_——wnaF) (6.38)
) gy Sy B|*\ I B|*\ apH I
Then taking into the account the Liouville identity
LD
B_‘T@ (BH z ) == 0 (639)
we can rewrite the gyrokinetic Vlasov equation as
oF . oF
= _X.VF—p, — 6.40
BT VE=Di g, || (6.40)

Note that in the case of time-independent background magnetic field By phase-space diverge form

of the Vlasov equation is
8(B|*|F)

ot

+V-@ﬁXF>+@ﬂ(ﬁmHF):O (6.41)

4Note that by supposing that all the fields here B*|, by and R* are evaluated into the gyrocenter position, the
corresponding gyrocenter dynamic is completely independent of the gyroangle coordinate. We have for example
X = (X)



Chapter 7

Proof of Momentum conservation

In this Appendix we give an explicit proof of momentum conservation. More precisely we show
how to simplify the eq.(3.55) by using the equations of motion for the perturbed Maxwell-Vlasov
system. We start with the first term in the r.h.s. of the expression (3.55). We substitute the
Vlasov equation in its phase-space divergence form (3.56) and then we apply the Leibnitz rule.

[ o iain= [ 2 (s (o cn))
- v-/ (Fx (p*—e§A1>>d3p (7.1)
+ /Fx-v(p*—egAl) d3p+/Fp%(p*—e§A1)d3p

The first term in the r.h.s. of this equation is equal to zero as an integral over momentum part of
the phase space (d*p) of momentum divergence d,. The two latter terms can be rewritten as

0
/ Fx-V (p* - EEAl) d3p+/ Fp- 2 (p* - 65A1> dp (7.2)
c op c
- —/ F {(p* —65A1> H}d% (7.3)
c
We now continue the simplification of the equation (3.55) by considering Maxwell terms 9, E; x By

and E; x 0;B;. The first term transforms according to the perturbed Ampere equation (3.23) and
the tensor identity above combined with the electromagnetic constraint V- B = 0

(VxC)xD = V-(DC)—(V-D)C—(VC)-D (7.4)
OB B - (VxB)xB, - /F(XxB>d3
dme Ot YT 4n Loee c 1)er

€ 62 €
= —-VBy'Bi— _V(B,-B))+ -V (B, B)

- ee/F (% x B1> &p (7.5)

The second term transforms according to the perturbed Poisson equation (3.22) and the second
electromagnetic constraint 0;By; = —¢ (V x E).

€ 0B, €
E - ‘g E
4 ¢ L ot 4 X (VX B
2 2
— _OYE B+ V(B B —ee/ FE, dp (7.6)
8w 41
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here we have also applied the tensor identity (7.4). Finally we can rewrite the Maxwell part of
the eq.(3.55) as

€ 62 €
= ——VBy,-B;— —V(|E{/|*+ |B{|?) + —V - (BB + ¢E,E
1 B0 B 87rv(| "+ 1|)+47TV (BB + ¢E{ E,)

_ ce / F ((%xBl)+E1) &p (7.7)

By combining equations (7.7,7.5 and 7.6) we obtain the equation 3.57.
In order to obtain the eq.(3.60) we use

0Ly 1 1 €
VBo- 55 = 35 (VBo-B) = o=V (Bo- Bo) + o~ VB, - By (7.8)

where L£;; denotes the Maxwell part of Lagrangian density. Then we remark that

OL s
V-, — VB, - =
M 0 o8B,
€ 62 €
— —VB,-B,— —V(|E{?+|B{?) + —V - (BB + ¢E,E .
47TV 0B 87rv(| 1"+ | 1|)+47TV (B1B + ¢E Ey) (7.9)

where IT; denotes the Maxwell part of the canonical momentum stress tensor (3.54).

By substituting the fundamental relation v = x = {H, x} into the Vlasov part of the canonical
momentum stress tensor (3.54), we can associate with V - Iy, with V- [ (F X (p* — e%Al)) d®p
from eq. (7.2), then we obtain

oP 0Ly 0Ly
—=-V-II By - VBy - 7.10
ot VB ap VB 5! (7.10)
d e A% oL
+ / F {—% (p* _ EEAl) Yee (E1 2% B1> _VB, - 8B‘;l] &p

H

here we add and we subtract %éw = — / d’p F % in order to complete the expression above
0 0

up to the eq.(3.60).



Chapter 8

Particle canonical equation of motion

In this Appendix we show how to derive the fundamental dynamical equation for particle moving
into external electromagnetic fields. The Hamiltonian in canonical variables (p, x)

:%(p—EA)—i—e@ (8.1)

then the Hamiltonian equations (with using the canonical Poisson bracket) are

_ oH 1 e\
OH e
» = — =-VA - v— 0} .
p o CV v — eV (8.3)
) ) d 0
Then we substitute the eq.(8.2) in the Lh.s. of the eq.(8.3) and we use that priae +v-V
dv e e 10
— =-VA.-v—-v-VA B v4 i pe— } A4
m— \CV v CVV +6(V =5 1) (8.4)
- EV x B =
c
here we have used that
(VD)-C—-(C-V)D=C x (V xD) (8.5)

and B=V xA, E=-V® — ¢ '9,A. Then we obtain the equation of motion driven by the
Lorenz force

m—ze(%xB—i—E) (8.6)
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Chapter 9

Gyrocenter magnetization

In this Appendix, we derive the first-order gyrocenter contribution to the partial derivative:

a1l'—[gy o a1T—[gc 8<¢1gc>
9B, 9B, " 0B,

T 9.1)

of the gyrocenter Hamiltonian (3.69).

9.1 Functional dependence on B

Hy,
0By

all, here we take into account the fact that the magnetic momentum g is an independent of By
phase space variable and the Larmor frequency €2 is expressed as ) = %.
So in further calculations:

2,u BD N
= 9.2
Po=\l" 5 P (9.2)

Before starting the calculation of , we need to emphasize some important details. First of

then

We remark also that

S _ - NN _-L 9.6
0By By By By (9:6)
9.2 H,
P
H,.=uB — )
g W Do + om (9 7)
here By = (By - Bg)'/? is the norm of the background magnetic field. so
H,. B -
Oy _  Bo bo (9.8)

oB, B, "
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9.3 € <§b1gc>

Ch. 9. Gyrocenter magnetization

In order to realize this calculation, we make a series expansion on the guiding center Larmor radius

po for scalar electric potential ¢ 4.:

P1gc = P1(X + po) = @1 (X) + po - V1 (X )+;Popo VV@ (X) +

<¢1gc> - ¢1( )

a<¢190>
0By

Using the fact that E; = —V¢; and

L :VE, = (pp+L1l): VE, =

we have:

) (pp+L1): VVi(X) +

2pp+L1): VYV =

b0 (ﬁﬁ +11): vV,

(p-V)(Er-p)+(L-V)(E:-L1) =

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)



Chapter 10

Gyrokinetic momentum conservation
application

Gyrokinetic momentum conservation law in axisymmetric geometry In this Appendix we give
a detailed projection of the gyrokinetic momentum conservation law (3.96) in axisymmetric
geometry. Following [25] we start with introducing some generalities about the curvilinear
coordinates.

10.1 Curvilinear coordinates

It is well known that the convenient choice of coordinates plays an important role in classical
physics. Let us discuss here the procedure of introduction of the curvilinear coordinates.

In general case any three quantities, which in follows will be denoted as (y', y?,3?), can be used as
coordinates if they are well-behaved (diffeomorphism) functions of the Cartesian coordinates and
vice versa. The functions that give the direct transformation (from curvilinear to Cartesian) are:

= x(ylij’yS) (101)
= yly'v* %) (10.2)
2 = ylyhv' ) (10.3)

The inverse transformation (from curvilinear to Cartesian) can be obtained by solving the above
system of equations for the arguments (y*, 32, v%):

yl - yl(x,y,z) (104)
v = yi(z,y,2) (10.5)
v = iz, 2) (10.6)

A given point x € R? may be described by specifying either the set (z,y, z) or (y',y? 3®). Each
of the equations y* = y'(z,y, z), that define the inverse transformation (10.6), describes a surface
in the new coordinates and the intersection of three such surfaces locates the point in the three-
dimensional space. The surfaces y* = const are called the coordinate surfaces; the space curves
formed by their intersection in pairs are called the coordinate lines. The coordinate axes are
determined by the tangents to the coordinate lines at the intersection of three surfaces. They are
not in general fixed directions in space, as is true for simple Cartesian coordinates. The quantities
(yt, 5%, y3) are the curvilinear coordinates of a point x.
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Then the Jacobian of the direct transformation:

oyl Oy?’ Oy

0(x,9,2) _ 4| 94 9y 9y

= det ——2 D20 =7 27
J=de d(y',v%,v°) oyt oy*’ Oy?

(10.7)

9 02 0:
oy’ Oy?’ Oy’

cannot be infinite. Note that the expression for the Jacobian J can be rewritten as (here we use
the decomposition of the Jacobian matrix by the first column)

ox ox o0x
=" (= x= 10.
J oyt (01/2 . 8y3) (10.8)

that represents an elementary volume.
The Jacobian of the inverse transformation:

oyt oyt oyt

9r’ Ay’ 0z

Oy YY) _ g | 7 002 0y

et 22217/ - 7 ZJ
J ¢ d(z,y,2) or’ dy’ 0z

(10.9)

oy 0z oy?

Oz Dy’ 0z

cannot be correspondingly equal to zero. Similarly to direct transform case, this relation can be
rewritten as (here we use the decomposition of the Jacobian matrix by the first line)

T =y (Vy* x Vy°) (10.10)

where Vy' = (9,y",0,y", 0.y")

10.1.1 Covariant and contravariant representation

Basis vectors are usually associated with a coordinate system by two methods:
e they can be built along the coordinate axes (collinear to axes), tangent vectors dx/dy*

e they can be built to be perpendicular (normal) to the coordinate surfaces given by gradient
of three coordinates Vi

In the first case we deal with the covariant basis vector representation and in the second case with
the contravariant basis vector representation: They are related by the orthogonality relation

Vy* — =4 (10.11)
The corresponding relation for the Jacobian is

ox ox ox 1
7= g5 (e o) = (90 (9 9) e
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Cylindrical coordinates

Direct coordinate transformation:

xX(R,0,7) = Rsing X+ Rcosopy + Z z (10.13)

with Cartesian unit vectors: (x,y,z). Note that here we do not make a difference between
. . . ox .

covariant and contravariant Cartesian vectors, for example: — = V& = X, because the

x
corresponding metric tensor is equal to the identity tensor in the both cases.
The covariant (tangent) vectors in the new coordinates (r, ¢, Z)

ox sin ¢ ox c0S & ox
— = cos¢p |,=— =R | —sing |,—=1 0 (10.14)
OR o ) 09 0 92 \1

The contravariant vectors in new coordinates

sin ¢ 1 —Ccos ¢ 0
VR=| cos¢ |,Vop=— sin ¢ VZ =10 (10.15)
R
0 0 1
The covariant vectors in old (Cartesian) coordinates
ox 1 . ox y ox 0
T v (0 RE vl Sl BVl B (10.16)
Vaertyr\ g ) 99 0 1
and the contravariant vectors
1 v 1 Y 0
VR=——1|vy |, Vo=—F5—>| -2 | ,VZ=| 0 (10.17)
Vattyt | o AV o 1
0 R
Here R = /22 + y? and tan ¢ = T
y OyR
10.1.2 Metric tensor
The metric tensor in the covariant and the contravariant representations is given by
ox Ox
=" — 10.18
Gab aya 8yb ( )
g? = Vy* - Vb (10.19)

In what follows we will consider axisymmetric coordinates system (¢, 0, 1) where ¢ = 3! denotes
the toroidal coordinate and # and 1 corresponds to two remaining orthogonal directions, which
we will represent for instance as y*, where a € {2, 3}.

When the basis vectors are orthogonal, the metric tensor is diagonal

ges 0 0
Gab = 0 g O (10.20)
0 0 gyp
g¢¢ 0 0
g*=1 0 ¢” 0 (10.21)

0 0 gww
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where the coefficients are given by

2

_Ox Ox |ox|T
=36 56 |ow| =
ox 0Ox ox|?
=56 96 |98
_ox Ox ox |?
=55 %~ |ov
g¢¢zv¢.v¢:’v¢|2:1/a_x2_i
0¢ R?
geezw)-vezweﬁzy%z
00
gww:vw-vwzlvwzl/a—"Q
oY

The Jacobian

det(gan) = Goo 900 G = T°

det(g™) = g? g% g*¥ = T2

Coeflicients transformation

(10.22)
(10.23)

(10.24)

(10.25)
(10.26)

(10.27)

(10.28)
(10.29)

The correspondence between the coefficients of the tensor C' in the covariant and the contravariant

representations
ox ox
C= Ca ¢ C =(C"— Cd)—
Vy* +Cy Vo e + 29

is given by the metric tensor C, = g,,C°, C® = ¢*C,

10.1.3 Dyadic identity tensor and gradient

The covariant basis vectors

ox 0Ox 0x
o9’ 00 O
with their norm 5 5 5
X X X
90| = V96 = R, 20| = V0o '@‘ =9y
So the dyadic tensor has a form
[ LOx0x 1 0x0x 1 0xx
 R2000¢  geg 00 00 gy O O
Note also that 9
V= ox
SO 5 9
X
9 " "9

Finally into the covariant basis

V_I V_i% 2 _}_ia_x 2 _I_La_x
T R206\0¢) g D0 \90) " gy OO

9
2z

)

(10.30)

(10.31)

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)
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For the contravariant basis decomposition:

1 1
Vol = VO] = V| = (10.37)

vt N

So the dyadic tensor

1 1 1
I= g%ww + ﬁveve + QWWW = R*V¢V¢ + gooVOVO + gy, V)V (10.38)

1 0 1 0 1 0
Vp-V=—— V0. V=—— V. V=—-—, 10.39
¢ R20¢’ oo 00 v Gy OY ( )
And finally
0
— — — 10.4
V= v¢a¢+ve *Waw (10.40)

10.2 Momentum conservation law projection

In this Section we consider toroidal gyrokinetic momentum conservation equation (3.112).
The gyrokinetic momentum stress tensor in the electrostatic perturbation case (10.38) has a dyadic
form. Here we evaluate

ox _

5 V-1, = (10.41)
e Ox 2 1 € Ox

87375 Vo ([EPI) - 4—a—¢ V- (EE)

/ m a_¢ Ve (F Xy Xyy) dp (10.42)

In what follows we use the next formula for projection of the divergence of the dyadic tensor CC
on the toroidal direction 9x/0¢

Ox 1 W00 o (0C, 0C,\ 10 . s

% V-(CC) = C¢(jaa(j0) (%) C (aya a¢) ¢(CC + CyC?) (10.43)
ox )

10.2.1 8—¢-V-|E1\ I

First we need to identify the covariant and the contravariant coordinates for the tensor |Eq|*I.
Following the equation (10.36) for covariant representation of the dyadic identity tensor, we
identify its coordinates in the covariant basis :

E[*T=

(Bl Bl 5 + |E1!¢1_ZEIE1!¢%%+|E1!\/%§—ZIE1|\/%§—Z)

~ C= mqégz |E1|\/1_g§ |E1|\/%§—Z (10.44)
N C¢:|E1|E, ca=|E1|\/% (10.45)
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At the same time using the eq.(10.38)for contravariant representation of the dyadic identity tensor,
we identify its coordinates in the contravariant basis :

E "I =

ox ox ox ox
(]E1| RNGE| BV + [Eil\/goo 5Bl Vg00 55 + \Eﬂ\/gw@IEl\\/m%)

~ C=[E\|RVé + |Ei|\/amV8 + |Ei| /oo Ve (10.46)
= C¢ = |E1‘R7 Ca - ’E1|\/ Gaa (1047)

0
Now we can apply the formula (10.43) in order to obtain =y, |E, L.

00
1 0 oC?
Cd)(ja a(jC“)+a—¢> =

1218 (45 (71812=) ) + 0210) (57 (J|Er¢%)> BIRE o ]

! 2
N (ag (Ry/Guu|E|) + (R\/gT\ED) + §a—¢\E| (10.48)

L(8C, 90\
¢ <3y"’ B 0¢>> B

B 1 (8(!E!R)_8(|E|\/979)>_|E| 1 <8(]E]R)_0(|E|‘/g¢¢))
V900 o0 ol N oY 0o
1 O(|E|R) 1 O(|E|R) @ 0|E|?
= —|E|l— —|E 10.49
Blo=" g~ IFl="0 + a5 (10.49)
10 " 8 10, 5
294 (CaC®+ CuC%) = 26¢|E| (10.50)
So finally we obtain:
Jx or
90 V- E T = (10.51)
1 |EPR 0 9
W ( 25 V9w +81/1\/QT)+8_¢|E1’
10.2.2 ox V- -EE
2. 0¢ 1

Here we deal with the second term in the expression (10.42). By applying the formula (10.43) we

obtain:
1 0 " oC?
Co (?a ST+ 0¢>
T R OE*
_Eqﬁ(jae(jE))—}_E(b(jaw(jE )>+E¢a¢

OE' OB 0T 0T\ | OB
E¢ a0 +E¢a¢ j(E + F a¢>+E¢a¢ (1052)
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. [(0Cy  0C,
¢ (f)y”’ 3¢>

0F 0F oF oF
20 + 90 90 + 90 (10.53)
10 10
- a oy — — 2 2
259 (C.C* + CyC?) 26¢|E1| (10.54)
Note that
E? E 0 (Ey E?
g, 2E" _ pe0Bs _ (Eo?) (10.55)
9¢ 99 9¢
because
1
E,=R*E® E® = T E,E® = E°F, (10.56)
and
oT
A 10.
96 0 (10.57)
Then finally the blue terms gives the derivative of the norm of £
oE? OE* OEY  10|E)?
E,—+Ey—+F == 10.
¢a¢+ 98¢+ ¢a¢ 2 00 (10.58)
Lastly, for the second term we have:
ox
OE° 0F, oEY oF 1 N4 oJ 0
Ey—— — E'=22 By —EY=—"2 ) 4+ Z B, ( B’ + BYZ2 ) + —|Fy|?
(‘Ww 89)+(¢a¢ aw)+3¢< 96 " aw)*w' il
10.2.3 Vlasov term
Here we will need to use the following tensor relation:
X v.(fce)=fZ.v. oo, v (10.60)
By Y ¢ ‘
where f is some scalar function.
then we apply this formula on order to project the Vlasov part of eq. (10.42).
Using the eq.(10.43) we obtain:
. ) CGNG) ¢
3 _ 3 0 ¢
m/dpFXX—m/dpF <X¢89 X 80) (10.61)
. OXY ., 0X 1o (00T  u0T\ 0 .
X XV 2 ) 4 X, (XS XV ) 4+ X 10.62
+<¢aw (91/)>+J¢( o0 * aw)*w"] 10.62

+m / &p X, (X : VF)

here X = X,
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10.2.4 Final result: general axisymmetric geometry

By combining the equations (10.51),(10.59),(10.63) we have:

g(b v (10.63)

SWIM ( 2 \/—9) _ ;a% By + (10.64)
o) () ()]

+m / d*p F (X¢a;§9 X(’a(;z ) (10.65)

+ <X¢% - X¢3§D¢) 42 X¢ (XQ%‘Z + Xwai) |X|2] (10.66)

+m/d3p X, (X : VF)

10.2.5 Final result:cylindrical geometry

In the case of cylindrical geometry ¢ = grr = ¢?Z = gz7 = 1 and g4y = R?, then J = R
In this case the result of the projection on the toroidal direction for momentum conservation law
has the following form:

ox _

[0 OE? OF OE" OF 1
2R+ E Sy o E ~ERZZ2) 4 —p,ER
47?[3¢| 1|+(¢az az) (¢aR orR ) TR
. Z ‘Z .
+m/d3pFX¢ 8(3?(2 + XR a;; +X.-VF /d3pF [Xzaiju—pq?}




Chapter 11

Local Poisson bracket

11.1 Calculation of the brackets {z;, z;}oa

Here is presented the calculation which leads to the expression (4.39)

o¢ ox p
foxp = 5 =P
Jop Or psin
oy L P2.0% B
2T 9p o p
dp 0 dp 0 0 0 Do - M - p . D
oy = .0 O 00 gop 06 PoMibi g P2 )
op Or Or Op op Op sin psin
5 - M - D 5 5 - M - D bo - 5 - M - D B
! 'M Po_eB_ P1 __b M po_eBbo.p1:_p1 ‘ p0+€_
sin psin sin psin @ sin P
gp 9 Op Oy dp  O¢ . . Po X P1
- . X T  BExE— 5 M- —eB [ 22
{p790} ap 8[‘ ar ap € 8p X ap Po P2 € D
. . b - P . .
—Ppo-M-py—eB . p22_P0 M - py

(b = K02 % 00 p (K 0

psin psin psing p
. . . . eB cos
(pl-M-p1+pz-M-pz— g0)

121



Chapter 12

Series decomposition for Hamiltonian
normal form.

12.1 Second order

Here we proceed with detailed calculation which leads to the second order partial differential
equation for the Hamiltonian normal form. This equation provides the averaged part of the first
order correction (p;) and the fluctuating part of the second order correction p,

Dp, = —f—; (f)cosw+isincp> -V ({p1) + p1)

((p1) + 1)

B <f)cosgp—|—j_sin<p) - Vo (12.1)

We start with deriving Vp;

—0 R R ) R ) ) R )
Vi = e“‘ls‘:“w (—vqﬂﬁ b: Vb — ®2(Vb) - (Vb) - p— b -VVb - p— 32 b, (9; by) (9; pr)
1. (VB 1. 8B 1 -
1 ~ A ~ N
~ {%(Vp-Vb-L+VL Vb p)
1. - ~A 1. ~ - A
— JO(L-VVb-p+p-VVb- L) = 20(L; 0, b ) pi+ ps 05 bi 0; L)
. . . . _. 1. VB 1

Obtaining (p;).Second order averaged equation

In this subsection we show how to get the gyroaveraged part of the first order correction of our
Hamiltonian, which we express as (p;). First we apply the operator R to both parts of the

equation (12.1). Here (p1) = (p1)(x, ¢(x)), but V(p1) = V(p1)(x, o(x), L(x)). Due to the fact
that b = b(x), we can identify operators V and Ox.

&cosgoR(b v (p1>>1+5—;Sin@R<i'v <p1>> +p—;cosg07€(f)- V@)g

eB
» ) : ()
+ eBsm<pR<J_ Vp1)4+ B cosz(b Vp()) + — B smng(J_ Vpo)
+ Cosz(f—éf)-Vpo)7+smg0R( BJ_ Vpo)8:0 (12.4)

123
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Theorem 5 The second order gyroaveraged equation is given by

cosg b - dy(py) — % sin ¢ (V : B) Oy (1) (12.5)
= A [T [ (x5 VB) = (b Vo) (5] + 1[5 x V) 5] [v-5]]
Proof 5

In what follows we treat each term of this equation. First of all we remind the expression for the
spatial derivative V = 0y in new coordinates (x’, ¢, L)

V = Ou+0kp0p+0el-0; (12.6)
— ax,—i-axf)a@—[(vﬁ-i)m@(vﬁ-ﬁ)ﬁ} 0;

term 1

f—;cosw R (E) \% <p1)> = 5—23(30590 (B 8x<p1>> (12.7)

term 2 Here we need to use:
1

R(ii):2

(i L1+p ﬁ) (12.8)
(LL+pp+bb):Vb=1:Vb=V-b (12.9)
Note that due to the Leibnitz rule, b-Vb-b = 0, so we can add this term anywhere we need.
p—osingoR(i -V <p1>> = &simpR <i-8x (p)—1-Vb-1 0y <p1)>
el eB
Y L (V : B) (12.10)

term 3 The evaluation of this term contains several steps. The first one consists to prove the
following theorem.

Theorem 6 R(b - Vp;)=0

Proof 6 We know that the average of the monomials containing odd number of vectors ﬁ,i I8
equal to zero. So we will only evaluate the terms containing monomials with even number of these
vectors.

First of all we present a short list of the key proprieties necessary for this proof.

R(,}BLB);VBVB:R(in );vaB:o (12.11)

In fact
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The derwative of the norm of an unit vector is equal to zero, Leibnitz rule give us some useful
iformation in this case.

& (b;b;) =2 (0, b)b; =0 = (Vb)-b=0 (12.14)
Here we note ® = cot ¢, so by applying the chain rule, we have V® = —(1 + ®*)Vyp =

(1+ ®?) Vb - L. In what follows we group the terms according to the key property which we
use for it canceling. The first key property concerns the 3 following terms:

R(B~(V<I>2)ﬁf):vf>> - 2<I>(1+<I>2)R(ﬁf)if)> ‘VbVb=0  (12.15)

similarly
R (@2 b; by (0 i) (9 pr)) = R (Bi (3 bi) by (95 Ba ) o L)
- ¥R (113,36 :VBVB) =0 (12.16)
and
R
-7 R (b-(Vp)-(Vb)-J_er-(VJ_)-(Vb)-p)
d A R
- <R <(Lbﬁb +ﬁbJ_b)§Vbe) ~0 (12.17)

The second key property is useful for the 3 following terms. First it permit us to cancel two of this
terms together.

1_(: _. VB K PR -\ (OB
_§R<b'VP’(F_vQ)> = _Ebywy bn)R<an—k>(F_ak Q)
(LA o OB -
- _Z (pnlk_ npk> <%_akg) bj aj bn:
®/,. _ - .\ (VB
= — ((b Vb)xb)-(?—Vg) (12.18)
o . . (VB B -\ (OB
-5 R ((J-b Vb) p ((7—V0>) = —5 b (9b,) R (-I-n Pk) (?—@c@)

_ % ((B .V b) x 15) : (% - VQ) (12.19)

In fact, the sum of (12.18) and (12.19) is equal to zero. Finally for the third term we have:

P . S .
b . . A
= —3 R (ﬁk L+ Ly ﬁj) b; 0; by (12.20)
= —g( i Lk — L Pk+J-kPj—Pklj)biaibk:0
The latter property is applied to the following term:

d /- A . . A .
7 (s 21 B0) (b 9, i) + (6 05 B (b, 9, 1)) (12.21)

——

=0

i3
S

o
N
>

The average of all the other terms obtained as a result of contraction bV p1 1s equal to zero

~

because of containing the odd number of vectors L, p.

Finally the term 3 does not give the contribution to the (12.4).
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term 4

Theorem 7

S Aee [ 32 ) P - .
R(L-VA) = 2 wa [—7 (30 b1 9 by) (9, be) = — (qjk by (b; 9)) aj)bk
1. 1 [. (VB
+ [(be) b] {b'(?—v(g)]
o .
+ ((b X V) g) ~ (b : %)] (12.22)
Proof 7

We start this proof with listing the proprieties which will be useful here. the first one:
R(pl) = 5(pl - 1p) (12.23)

Further we remark that:
pxL=0bxLl)xL=-1Lx(bxl)=-b (12.24)
Each time when it is possible we reorganize the vectors as follows:
pr (L) =Ly (ps 0)=—(pxL)xV=bxV (12.25)

Using the proprieties below (12.24,12.25) permits to evaluate the gyroaverage of the following
terms:

-R (‘DQia‘ (0; bi) (9 by) ﬁk) = —0*R(pyL;) (0, b:) (0 D) =

O O
= 5 (BeLy = Lipy) (95 bi) (9 br) = ——-(ej by ; bi) (3 bi)
20 7 NI 2] ST e 1A N
-R (‘I’ b;L; (0;0; by) Pk:) = —®"R(pr L;)(0;0; bx) b; = — (Pl = L1p;)(9;0br) by
d2 PN N
= _?Eljk bl (bz 81) 8]' bk (1226)

< . VB 1 “ o Ok
R <J_ v )-(F—vg> - SR (LJ (8, By) by bk> (?—m)) -
1. R -~ (0,8
1 (oL =Ly pj) (9 by) by (% - 3k9)
1 - oxB
- Z(Q]l bz aj bl) bk (% - akg
1 . . (VB
= ;(bxV)-bb (? - vg> (12.27)
(132 R (j_ . VQ ﬁ B . VB) == @2 R ((ij @g) E)l 8, Bk ﬁk) = @2 R (ﬁkij) 8jg f)z 82 f)k
¥ o
= ? < k-l-] - J—k j) a]g bz 6@ bk:
o2 /. - .
- = ((b X V) g) : ( -Vb> (12.28)



12.1. Second order 127

1 < . VB 1/, - . opB
§R<_L Vop ?> = Z(pkl] —J-kpj)ajgf
1/~ VB
= 3 ((b x V)g) S (12.29)
d; pr = —(0; b)) pr by + @ (9; by) pr Ly, (12.30)
Using the Leibnitz rule, (12.14) we have
R (=02 bi (2 b1) L; (95 0)) = ~®* R (L;0; p) bi 6 by
— R (lj (9,51) b Bk) b, 8; by, (12.31)
= &R (f?l i]) (9; by) b; (8; by) by =0
™

Because of the symmetry of the second derivative 0,0;,B = 0;0,B , 0,B0;B = 0;B0,B and
Ok0i0 = 0i0r0

1 0,3
—5R <J_kpi> (ak 0 akg) (12.32)
1o 0,3
- -3 (J_k pi — P J_Z-> (ak = —8k0ig) —0 (12.33)

The gyroaverage of the four latter terms containing the odd number of vectors ﬁ,j_ is equal to
zero. To obtain this result, we need to use the following property, which can be easily obtained
by computing the gyroaverage:

R(ﬁiii+if)ii):—R(ﬁi[)ﬁ—ﬁiii> (12.34)

R(plll+lpll)—Z(pppl—plpp)+1<pplp—lppp>
L/ non o s L/~ o o on
+ Z(lﬁll—Lllﬁ>+Z(ﬁlll—J_J_/}J_) (12.35)

Then we remark that for tensor VbVb the two following contractions give the same result:

aaca VbVb=caaa VbVb (12.36)
because one can always exchange the place of two scalars:
aaca; VbVb = [aj @Bk ck] [ai 81-671 an] =

[ai o;b,, an] [bj 8j13k ck} =caaa VbVb (12.37)

replacing a and b by p and 1 correspondingly, we will see that all the terms in the expression
(12.35) will be canceled.
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1 - . A .

—1(1+<1>2)7z(¢¢ Vb (pLl+1p) Vb>:

1 o N
—Z(1+©2)R<LLﬁL+LLLﬁ> : Vb Vb = 0 (12.38)

Using the following expressions for derivatives of basis vectors which we have obtained in the
previous chapter:

; b (12.39)
0; pr. = —(0; by) pn b +® (9; by) P Ly (12.40)

and keeping only the terms with even number of vectors j_, p, we obtain:

> . o o )
- 4R (J-j (9; L) pr +L; (0; pr) J—l) (Or by)
O )
= _ZR <J—j (95 by) Pn Pr Pr— L (0; by) pr Li L) (O by)
O e ) S '
= -4 R < i (0; by) Pn] [Pk (Ok bl)Pl] — |:J'J (9; bn) P [J-k (O br) Ly ])
- ——R ( pL v ] [pp Vb} . [pJ_ Vb] [J_J_ Vb]>
H2 “ A “ PN
= —ZR(f)ﬁﬁJ_—J_J_ﬁJ_] Vbe): (12.41)
The similar procedure is applied for the next non-zero average term:
o - R A L )
~S R (L0050 Ly 05 1) + 61 (0:By) Ly (0 L) =
1 . I .
—Zq>27z<,u,3ﬁ—ﬁlll) : VbVb = 0 (12.42)
o P .
- R ((J_J_ Vh)(p L+ 1 p) Vb) -
1 J .
—Z@3R<ﬁJ_J_J_+J_ﬁJ__L> 'VbVb = 0 (12.43)

The remaining terms in R(i - Vp1) have a gyroaverage equal to zero because of containing the

odd number of the vectors L, p
[

term 5 and term 6 This terms cancels due to the choice b - 0 = 0 which we have made in the
previous order of the perturbative expansion.

Theorem 8 Contribution of the term 7 cancels the contribution of term 8.
Proof 8

We start with consideration of the term 7.
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term 7 The result of its gyroaveraging is given by:

cosp R (% bV p0> (12.44)
e

® A>B=> 5 (. (VB .
= e 20 - . .
T s ¢ (bx(B V@)) (b-vb)

To obtain this result we start with the following expansion:

~ 3 1
~ 2 B732
(ﬂb.vpo) :LQZQ%QX

el sin” ¢
. | B A
02 pb vh—2p (LB v, ——@(ﬁJ_JrJ_ﬁ) VbVb | x
2 B
b-VB b-Vp . .
. ®1b:Vh 12.4
<2B =+ V> (12.45)

~ 3 1
P11 ¢ Az B2 3
R |[—Db- = — ¢ 12.46
(eB Vpo) sin2g0 ¢« ( )
.. ® (VB Vo\ [+ -
_®3 RS (et
R( pbLb VbYb— 5 ) <zB 2>(_Lb Vb>
bp0a ~ ~- -
bp0b
by - S N - VB Vo
~sl(pL+1p) ] {b'(—zg—T)D
b;gc

Now we proceed with consideration of each term in the latter expression:

R(p0a)=0 (12.47)

due to the property (12.11,12.12) that we have used during the calculation of the gyroaverage
of the term 3

R(bp 0 b) = % <13 x (% - vg)) : (E) : vB) (12.48)

e Finally, with (12.23) it is evident that R(Lp+ p L) = 0, and we obtain that the average of
the latter term is equal to zero:

R(bp0c)=0 (12.49)

So finally, we obtain the result (12.45). W
Now we proceed with gyroaveraging of the term 8
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term 8
smng(f—lf) Vpg):
> A2B2 s, (- (VB -
7 et (bx (- (b b> 12.
4 sing c ( X(B vQ)) ( \ (12.50)
~ 3 1
~ 2 B2
(ﬂl vp(]):'A%g o3y
e sin” ¢
. 1 B R
(—qﬂﬁb Vb—éﬁ-(%—Vg)——QD(ﬁJ_JrJ_ﬁ) Vbe)x

Here the terms that will contribute to the gyroaverage are

]3/1 N A% Bié 3
R |—1- = —— ¢ 2°¢ 12.51
(eB Vpo) sin2cp ¢ 8 ( )
P - ~ VB Vp 1 VB Vo ~ VB
J— 2 . —_— — — —_— —_— — — [
R q)[pb v}[l (23 2)] 2[ (23 2)][ B}
l%a i;r()b

2B 2 5
i;rOc j_pOd
A o’ [ (VB N e e
R(Lp0a)=— ((? - vg> x b) : <b : Vb) (12.52)

The contribution of the terms L p 0 b and 1 p 0 ¢ is canceled:

~ 1 -\ VB
. 1 N VB

Using the property (12.35,12.36,12.37) we obtain that the gyroaverage of the latter term 1 p0d
is equal to zero

R(Lp0d) =0 (12.55)

And we have the result (12.50). We remark that the contributions of the terms 7 and 8 into the

gyroaveraged equation 12.4 are canceled.
[ |

Finally we obtain the equation 12.6.



Chapter 13

Equations of motion in axisymmetric
magnetic geometry

In this Appendix we resume the main steps for obtaining the local particle equations of motion
in a general axisymmetric magnetic geometry. In this case the magnetic surfaces represent a
set of a nested curves, which possesses an analytical expression (diffeomorphism) in cylindrical
coordinates. Then we consider an example of a bi-cylindrical geometry, when the magnetic surfaces
represent a set of a nested concentric circles. We integrate the equations of motion in this particular
case with Mathematica package in order to study trapped particle trajectories presented in 4.4.1.

13.1 General axisymmetric geometry

The transformation from the Cartesian coordinates to the general axisymmetric coordinates is
given by eq. (4.75). To simplify the following expressions, here we rename the norms of the basis
vectors as VY| ™! = \/gyy = Qu(v,0) and [VO| ™ = \/ge9 = Qu(1,0), [V|™" = /956 = R(¥,0).!
We start with a definition of the fixed basis associated to the vector of magnetic field direction b
given by (4.110). Note that there is some freedom while choosing the basis vectors b, and b in a
perpendicular to magnetic field line plane. This leads to the gyro-gauge dependence of dynamics
(the gyro-gauge vector is defined as R = Vby - 62) One of the possible issues to make dynamics
gyro-gauge independent is presented in 4.5.

For example in the case of a general magnetic geometry discussed in the section 4.3, the curvature
vector b - Vb is chosen as one of the basis vectors by while deriving the corresponding equations
of motion. In an axisymmetric geometry, while the vector b has only the toroidal and poloidal
components, a more simple choice is possible. One can simply take the vector b, equal to the
third (radial) basis vector V.

b= sinn@ + cos n%, by = —W, by =b x by = cosn@ — sinn% (13.1)

where we have assumed that the coordinate vectors are organized as follows: Vo x @ = %
Note that we consider that the function n = 7(¢) is only the function of the radial coordinate,
so that cotan n(y)) = ¢(¢), the particular choice of the g-profile will be made just before the
integration of the equations of motion.

Now we decompose the unit kinetic momentum vector in the basis (V¢, VO, Vi) as

= AV + BoVo + CoVi (13.2)

IThe same notations are used in the Mathematica code
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with the coeflicients:

Ay = cosn cosp+sinn sinp cos( (13.3)

By = sinn cosp — cosn siny cos( (13.4)

Co = sinyp sin (13.5)

Then we can obtain the three first equations of motion for the spatial coordinates: x = ¢ p in

axisymmetric geometry. Here we introduce the small parameter ¢ = L, which represents the
€bo

ratio between the modulus of the particle kinetic momentum p and the characteristic magnitude
of the magnetic field By (4.116). Note that such a ratio has a length dimension. In order to obtain
dimensionless small parameter, we can introduce a characteristic length scale, which can be given

by the small tokamak radius a, which is equal to 1 m for Tore Supra, for example. Then we have

X 1
X— —, = P Note that with assumption ¢ = 1 which we have made in the beginning, this
a aeBy

operation will lead to dimensionless equations of motion.

b = g%b.x_g% (13.6)
: Vo . By
0 = 69—9 ‘X =c Q (13.7)
W Gy
v = €Q¢ ‘X =c¢ a2, (13.8)

Two other momentum basis vectors (p;, p2) can be defined as follows:

pr = AVé+ BV + iV (13.9)
By = 811g0 AV + By + GV (13.10)
with
A = %—iﬁ = —cosn sing +sinn cos e cos( (13.11)
B, = aa—io = —cosn cosy cos( +sinn sin (13.12)
C, = %—io = cos sin( (13.13)
and
Ay = % = —siny singp sin( (13.14)
By, = % = —cos7 singp sin( (13.15)
Cy = % =sing cos( (13.16)

The fundamental object which we need to calculate in order to obtain the equations of motion for
momentum part of the phase space (i, (), is the vector of momentum curvature p - Vp. First we
decompose the scalar differential operator p - V in the axisymmetric basis with

V= —w + ve3+—w

5+ 03 (13.17)

O
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then
. Ay O By 0 Cy 0

p'vzﬁa—¢+g—6%+9waw (13.18)

By applying this differential operator to the expression (13.2) for decomposition of the unit

momentum vector p in the basis (%, 6\9, W), and then by using the expressions for derivatives
of the basis vectors in a general axisymmetric magnetic case obtained in 4.4.1 we have:

ByOR Cy0OR 0A Co (0Ap\ ]
pVP = W{ (Qeafﬂwaw)* (ae)+_(w)
LTh [_ Al OR N By (830 Cy 899) (aBo Co 8Qw)
RQy 00 Qw O Qy Qy 00 (13.19)
[ RO o (00, 5020 Go (06, B30
RQ, 00 Qp O Qw Qg 00
=V 7)¢+V9P9+VZZJP¢

Now by using the above expression for the momentum curvature and the equations (13.9),(13.10)
for the axisymmetric decomposition of the momentum basis vectors (p;,ps2) , we obtain the
equations of motion for pitch angle and gyrophase in a general axisymmetric geometry:

p = c((0-VD) 1) =¢(Py AL+ Py Bi+ Py C1) (13.20)
: 1 1,
¢ = Fsmp ¢ smw«p'vp) Pz) =
1 1
= —€ (Py Ay + Py By + Py Cy) (13.21)

R sinn sin? ¢

The next step is to chose a particular example of axisymmetric coordinates by defining the

functions R(¢’ 9)7 Q¢ (wv 9)7 Q@ (wv 9)

13.2 Bi-cylindrical coordinates

In what follows we deal with a bi-cylindrical system of coordinates, for which
R=Ry+1cosb,Z =1sinf (13.22)

the corresponding norms of the basis vectors

Qy = \/&pRQ + awZQ =1 (13.23)
Qo = VOR?>+ 0yZ? =1 (13.24)

Note that the equations of motion for space coordinates of the phase space are not affected by
the calculation of the momentum curvature vector. It can be directly obtained from (13.8) by
substituting the expression above for the norms of the basis vectors. We remark here that in the
bi-cylindrical geometry case the dynamics is totally independent of toroidal angle ¢, so only the
equation for radial and poloidal coordinates will be necessary.

In order to obtain the equations of motion for momentum part of the phase space we substitute
the expressions for (R, €y, €) in (13.19). First, we obtain momentum curvature vector in our
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particular case: 2

. . 0Ag 1 0A]
Po- Vpo = qu [AOE (Cocos — Bysinf) + Cop— 0 Bo¢ 390
0By 0By |
V9 A2—81H9+B < —{—C’)—I—C
{ R “w\oo ") 0y | (13.25)
0Cy 0Cy |
a2l B —
—I—V@b{ Rsm9+ 01#(89 ) Coaw
= PyVo + PyVO + PV

Then similarly to the general axisymmetric geometry, we obtain the corresponding equations of
motion for the pitch angle variable ¢ and the gyrophase variable (.
In what follows we use the g-profile defined as 3:

cotan n(v)) = qo + so ° (13.26)

Then by substituting the next expression into the equations of motion by using
Mathematicapackage

. 2
sinn = , Ccosn = b (13.27)
VI (qo+ 50 07 V1 (@0 + 50 92)?
we obtain:
_ cosp — (g0 + 50 9*) cos ( singp (13.28)
¥ /14 (g0 + 50 ¥?)?
¢ =sin( sinf (13.29)

o= (v (14 (@+507?) (Bo+ v cosd))  x

[sin ¢ (Ro (qo + so1b?) cos ¢ sin¢ + so ¢* (Ro + 1 cosf) sin(2()

—p /T (go + 50 92)2 cos?( sin 9) (13.30)
—cos ¢ ((Ro+1 (1 + (o + s0 ©*)?) cos0) sin¢

¥ (qo + so ¥*) \/1 (qo + s ¥?)? COSCSineﬂ

In order to increase the integration time in numerical simulations, we implement lowest order
equation of motion for gyrophase:

V14 (qo+ so ¥?)?

¢= Ry + 1 cos6

(13.31)

The full dynamical equation for gyrophase coordinate, which includes the momentum curvature
contribution is also obtained.

In what follows we integrate with Mathematica the equations (13.28),(13.28),(13.30),(13.30),
(13.31) in order to study trapped particle trajectories.

2This calculation is realized analytically and then is verified by realizing the substitution of the bi-cylindrical
geometry coefficients with Mathematica
3Note that in numerical simulations we use the values of the parameters s; = 1 and ¢ = 4.
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