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Résumé 
L'objectif de cette étude était de préparer et de caractériser les particules submicroniques 

multifonctionnelles utilisables simultanément pour le diagnostic et le traitement de plusieurs 

maladies mortelles telles que le cancer. Pour ce faire, une étude systématique a été réalisée afin 

de comprendre les mécanismes impliqués et d'optimiser les paramètres du procédé  de double 

émulsion-évaporation de solvant pour la préparation de ces particules. Pour l’imagerie in vitro, 

des nanoparticules polymériques fluorescentes (FluoSpheres®) ont  été encapsulées dans une 

matrice polycaprolactone dégradable en utilisant le procédé de l’émulsion double-évaporation de 

solvant. Pour l’imagerie in-vivo, des nanoparticules d'or colloïdal ont été préparées et 

encapsulées via le même procédé et parfaitement caractérisées. Enfin, pour application 

theranostic, les nanoparticules d'or (comme agent de contraste) et un actif moléculaire 

(hydrophile Nefopam et hydrophobe benzoate de benzyle) ont été encapsulés simultanément 

dans des  particules de polycaprolactone. Ces particules multifonctionnelles ont été caractérisées 

et évaluées in vitro comme model de pénétration cutané. 
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The application of nanotechnology in biomedical field for therapy of various diseases has 

received substantial attention in recent years. It offers a unique approach against fatal diseases like 

cancer, CVS, HIV and diabetes, through early diagnosis, prediction, prevention and personalized 

therapy1,2. It plays a vital role in target-specific drug therapy and techniques for early diagnosis of 

tumor cells. Nanomedicine has potential for revolutionizing cancer therapy and diagnosis by 

developing new biocompatible nanocarrier systems for drug delivery purposes. These nanosystem 

have four unique properties unlike conventional therapeutics.  

(i) It can be attached to targeting ligands, which have high affinity and specificity for target cells. (ii) 

It can themselves possess therapeutic or diagnostic properties and can be utilize to carry therapeutic 

agents. (iii) It can be designed for loading multiple therapeutic agents simultaneously. (iv) It can 

bypass traditional drug resistance mechanism. 

Due to targeting strategies nanocarrier can achieve high drug concentration in tumor cells while 

minimizing toxicity in normal cells, so enhancing the therapeutic effects and reducing systemic 

toxicity3,4. Combining diagnosis and therapy in one process is referred as theranostic, the basic goal 

of theranostic is to target specific tissue selectively, to monitor the response to the treatment, to 

increase drug efficacy and safety, to increase therapeutic and diagnostic accuracy5. This strategy can 

enable us to make the treatment shorter, safer and more efficient for fetal disease like cancer, HIV, 

diabetes etc. Biocompatible theranostic particles for cancer therapy are under development, which 

would accelerate the therapy, reduce the drug toxicity and side effects. Presently, most of the 

research in theranostic has been focused on the management of cancer, since it is the major disease 

and leading cause of mortality. 

Cancer, also known as malignant tumor is a term used for a group of almost 100 diseases. Its 

two main characteristics are uncontrolled growth of the cells in the human body and the ability of 

these cells to migrate from the original site and spread to distant sites of the body through blood or 

lymph, the process is termed as metastasis.  The most common cancers are skin cancer, lung cancer, 

colon cancer, breast cancer (in women), and prostate cancer (in men). Cancer is a major cause of 

mortality worldwide. In United States, one out of every four deaths is from cancer. About 1.2 million 

Americans are diagnosed with cancer annually; more than 500,000 die of cancer annually6. Normally 

cells (the structural and functional unit of life) grow and divide in a controlled way as they are 

needed to keep the body healthy. However, sometime this orderly process goes wrong. When the 

genetic material of cell (DNA) become damaged or abnormal due to the environmental and genetic 
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factors; consequently, there is uncontrolled proliferation of cells. These cells form a mass of tissue 

called "tumor" or neoplasm (new growth). All tumors are not cancerous; tumors are of two types, 

benign and malignant. (i) Benign tumors aren't cancerous. It is slow growing, does not spread or 

invade surrounding tissue, and once it is removed, doesn't usually recur. (ii) Malignant tumors are 

cancerous. Cells in these tumors can invade nearby tissues and spread to other parts of the body. The 

spread of cancer from one part of the body to another is called metastasis. Some cancers do not form 

tumors. For example, leukemia is a cancer of the bone marrow and blood. 

In spite of many advances in conventional cancer therapy such as chemotherapy and 

radiation7, it is still facing many challenges e.g nonspecific systemic distribution of therapeutic 

agents, inadequate drug concentrations reaching the tumor site, unbearable cytotoxicity, poor 

therapeutic drug response monitoring and development of multiple drug resistance8–10. Therefore, 

there is need of innovative technologies development that could overcome these challenges and help 

to properly identify residual tumor cells, outlines of tumor margins and determine whether a tumor 

has been totally removed11. For effective cancer therapy, the key issue is to achieve the appropriate 

concentration of antitumor agent in cancerous tissue with minimal loss of activity in blood 

circulation, and after reaching the target site, drug should have the ability to destroying tumor cell 

selectively with minimum damage to normal cells12,13. The efficacy of the cancer’s treatment and the 

degree of change in the patient's quality of life is directly related to the treatment's capability to target 

and to kill the tumor cells while affecting as few healthy cells as possible. With this idea, it is 

essential to fabricate a single agent that could contribute potentially in cancer prevention, detection 

and treatment. Various types of tools/carriers have been developed to the date including liposomes, 

polymeric micelles, dendrimers, carbon nanotubes, quantum dots and submicron particles. 

Submicron-size colloidal particles are widely studied due to their numerous applications in 

oncology. Therapeutic and diagnostic agent of interest are encapsulated within their polymeric 

matrix or adsorbed onto the surface of the particle14, and targeted to specific sites by surface 

modifications, to interact with the receptor expressed on tumor cells. By coating the particles with 

polysorbates, they can deliver the drug across the blood-brain barrier, enabling brain targeting after 

intravenous administration of drug. Similarly the efficiency of protein anticancer drug can be 

enhanced by encapsulation of active molecule in polymeric particles and targeting to specific sites. 

Moreover, sub-micron particle can be loaded with multiple types of drugs (both lipophilic and 

hydrophilic) for efficient treatment of tumors , can be loaded with multimodal imaging contrast 
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agents15 and additionally, specific ligands can be attached to their surfaces in order to target surface-

bound molecules on cancer cells. Typically, polymeric theranostic particle can be consisting of three 

main components, i.e. biomedical payload, polymeric carrier, and surface modifier. Biomedical 

“payloads” comprise imaging agents such as, organic dyes, quantum dot, optical contrast agents, 

MRI contrast agents, CT contrast agents, etc and therapeutic agents include anticancer drugs, DNA, 

proteins etc. while, carrier should provide physical support and protection to payload during its 

delivery to specific target. Modifiers are attached to the surface of carrier particle in order to enhance 

its circulation time, increased barrier penetration ability and to provide target specific binding 

abilities16. The submicron carriers can be targeted to cancerous cells by using various targeting 

strategies. The most commonly used approach is to identify a specific biomarker that is aberrantly 

expressed on the surface of cancer cells, and then to load its related binding vector onto carriers to 

achieve recognition and tumor binding.  The unique size scale of the polymeric particles allows 

achievement of an enhanced-permeability-and-retention (EPR) effect in tumor cells targeting. 

Nanoparticle-based imaging and therapy have been widely investigated, which have the 

ability to co-deliver therapeutic and imaging functions. It allows for imaging to be performed not 

only before and after, but also during a treatment regimen. Being non-invasive, imaging techniques 

are considered advantageous over repetitive biopsies of multiple tumor lesions in cancer patients. 

Numerous imaging techniques such as, computed X-ray tomography (CT), optical imaging, magnetic 

resonance imaging (MRI), positron emission tomography (PET), single-photon-emission computed 

tomography (SPECT), and ultrasound have been used for diagnosis of disease including cancer and 

neurodegenerative diseases 5,17,18. These techniques make the visualization of target tissues possible. 

Techniques such as MRI and optical imaging depend on contrast agent to visualize the organ of 

interest, which highlighting the differences between tissues and could augment the efficiency of 

imaging techniques19,20. Iron oxide nanoparticles (IONP), quantum dots, carbon nanotubes, 

fluorescent dyes, gold nanoparticles and silica nanoparticles, have been investigated in the imaging 

setting and are good candidate  for building up nanoparticle-based theranostics.  Gold nanoparticles 

(AuNPs) have also been used as a contrast agent in MRI and other imaging techniques. They possess 

many unique features such as surface plasmon resonance , bioconjugation, chemical stability and 

biocompatibility and have been studied in a variety of imaging field, including, computed tomography 

(CT), photoacoustics and surface-enhanced raman spectroscopy (SERS)21,22. Gold nanoparticles can 

be synthesized in various forms such as, spheres, cubes, rods, cages and wires with accurate quality 
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control and in large capacity. Their particle size and morphology is very important since, it influence 

the physical properties e.g surface plasmon absorption etc of AuNPs23. For example, 10 nm spherical 

Au NPs have maximum absorbance at about 520 nm with characteristic red color, while changing the 

sphere shape to rod-like, on the other hand, can push the absorption to the NIR region (650–900 nm). 

The aim of this work is to prepare sub-micron particle for theranostic applications i.e for 

diagnosis and therapy. For this purpose, initially an optimized particle was prepared by using 

polycaprolactone (PCL) as polymer and polyvinyl alcohol as a stabilizer via double emulsion solvent 

evaporation technique using ultra turrax. All parameters affecting the colloidal property of the 

particles during the process were investigated and optimized. Additionally, the submicron particles 

were also prepared and optimized via double emulsion evaporation technique using power 

ultrasound. In the next step, PCL particles were loaded with fluorescent contrast agent in the 

guidance of the optimized parameters obtained from our previous study, and characterized in term of 

morphology, loading efficiency, size and distribution of fluorescent material in PCL particles. And 

finally gold nanoparticle were prepared to be used as contrast agent and loaded into PCL particles 

along with active drug simultaneously for in-vitro evaluation. 
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General summary 
 

Over the past decade, biodegradable and biocompatible polymers are widely used for

biomedical applications.  Various polymer carriers with different characteristics have been 

developed by different techniques for drug encapsulation but only biodegradable and 

biocompatible polymers are suitable for drug delivery system. Polymeric encapsulation of active 

drug permits enhancement of drug bioavailability, targeted delivery of drug, sustained release of

drug and thus, minimizing the toxicity and side effects. These formulations can protect sensitive 

drug like proteins from degradation when administered via oral route. Thus, they enhance the 

drug efficiency, patient compliance and allow better management of disease. In this review, we

report the commonly used polymers and techniques for micro and nano- encapsulation of active 

molecules, the principal of each technique, their operating conditions and application in drug 

delivery system. 

The choice of technique and selection of suitable polymer is crucial step. It depends on 

the physicochemical properties of the drug to be encapsulated and the polymer to be used. 

Polymers can be either natural or synthetic. Generally, synthetic polymers have more advantages

over natural ones by offering wide range of modifications in properties. The selection criteria of 

polymer for a carrier system depend upon their mechanical properties and degradation rate 

needed for a particular application. Among natural polymers, chitosan, cyclodextrins and dextran

and its derivatives are frequently used. Chitosan is a nontoxic biodegradable polymer and can be 

digested by liposome or chitinases, which are present in human intestine and blood. It has

mucoadhesive properties due to its positive charge that enable it to interact with negatively charged 

mucosal surface. Dextran can also be used for mucosal drug delivery, its nasal microspheres can

release drug for extended period of time due to bioadhesive properties. Cyclodextrins are widely 

used in drug formulations with poor water solubility and poor stability. Synthetic derivatives of

cyclodextrins (amphiphilic cyclodextrins) have been used recently for preparation of 

nanoparticles with high drug-loading capacity and targeting properties. In synthetic biodegradable 

polymers, the polyester-based like poly(lactic acid), poly (glycolic acid), poly(lactic co-glycolic 

acid) (PLGA) and polycaprolactone (PCL) are widely investigated for drug delivery 

applications. PLGA is approved by US FDA for drug delivery systems in humans. It is used to

improve the controlled drug delivery formulations. The degradation time can vary from several 

months to several years depending on the weight and copolymer ratio. For example, lactide is more
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hydrophobic than glycolic acid, so lactide-rich PLGA are more hydrophobic, absorb less water, and 

so degrade more slowly. PCL is a biodegradable polymer first identified in 1973. The surface 

hydrophobicity depends on the molecular weight of PCL, and undergoes slower biodegradation. 

Lipophilic drugs are generally distributed uniformly in the matrix while hydrophilic tends to

remain on the surface of the PCL formulation in adsorbed state. Different techniques have been 

used for encapsulation of active drug via polymers. For example, nanoprecipitation,   emulsion   

diffusion,   double   emulsion   evaporation,   and   spray   drying techniques. 

Nanoprecipitation is a simple, fastest and reproducible method. It require two miscible

phases  i.e   organic  phase  (good  solvent  for  polymer)  and  aqueous  phase  (bad  solvent  for 

polymer), the organic phase containing dissolved polymer is slowly added to the aqueous phase 

under magnetic stirring, which leads displacement of organic solvent from organic solution, 

consequently  results in polymeric suspension at the end. Commonly used solvent for 

nanoprecipitation are ethanol and acetone etc, while frequently studied polymers include PCL, 

PLA and PLGA. For emulsion diffusion method, three liquid phases are required: an organic phase, 

aqueous phase and dilution phase. The organic phase containing hydrophobic drug is homogenized 

with aqueous phase comprising stabilizer, and subsequent addition of large volume of dilution

phase enables the diffusion of organic phase from the dispersed phase, hence results in polymeric 

suspension. 

Double emulsion evaporation (DEE) technique can be used for encapsulation of both 

lipophilic and hydrophilic drugs. There are two types of DEE: water in oil in water emulsion 

(w/o/w) and oil in water in oil emulsion (o/w/o). In case of w/o/w, aqueous solution of hydrophilic

drug is homogenized with organic phase containing polymer to form first emulsion (w/o). This 

step is followed by dispersion of first emulsion into second aqueous phase containing appropriate

stabilize under high shear homogenization or sonication to form w/o/w emulsion. Subsequent 

evaporation of organic solvent from emulsion under ambient temperature or by rotary

evaporator leads to formation of particulate carrier suspension. Spray drying is a very cost 

effective method. In which, polymer containing drug solution is atomized and sprayed into a drying

chamber where droplets are dried by hot air, the subsequent precipitation of polymer leads to

the encapsulation of drug. The evaporation of solvent occurs in a very short period of time so this 

technique can be utilized for encapsulation of heat-sensitive drug molecules.
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ABSTRACT 
Biodegradable and biocompatible polymers are widely used for the encapsulation of drug 
molecules. Various particulate carriers with different sizes and characteristics have been pre-
pared by miscellaneous techniques. In this review, we reported the commonly used preformed 
polymer based techniques for the preparation of micro and nano-structured materials intended 
for drug encapsulation. A description of polymer-solvent interaction was provided. The most 
widely used polymers were reported and described and their related research studies were 
mentioned. Moreover, principles of each technique and its crucial operating conditions were 
described and discussed. Recent applications of all the reported techniques in drug delivery 
were also reviewed. 
 
Keywords: Drug delivery, particles, polymer, encapsulation, carriers, operating conditions 
 
 
 

INTRODUCTION
Particulate carriers have gained tremen-

dous interest during the last decades which 
permitted to deliver many hydrophilic and 
hydrophobic molecules. Obtained particles 
present small size which facilitates their 
absorption. These drug delivery systems 
protect active pharmaceutical ingredients 
from degradation, enhance biopharmaceuti-
cal properties and could provide passive or 
active targeting or sustained delivery. Bio-
medical applications of the developed carri-
ers are continuously growing (Ahmad, 
2013; Soares, 2013; Miladi et al., 2013). 
Although, they present different physico-
chemical properties, the used polymers are 

mainly biocompatible and biodegradable. A 
multitude of techniques are used to obtain 
these particles. These methods differ by 
their principles and the nature of drug mol-
ecules that could be encapsulated. Some 
successfully marketed products led to an 
enlargement of the applications and the in-
terest given by researchers to these drug 
delivery systems. Choice of the technique 
and operating conditions is crucial to obtain 
formulations bearing good properties for in
vitro and in vivo applications. In this re-
view, we will focus on polymeric particles 
and give a scope about the most used poly-
mers. We will also describe the common 
preformed polymer based techniques used 
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for the encapsulation of drug molecules. 
We will also review the major applications 
of the developed particles during the last 
years and their main properties. 

 
1. POLYMER-SOLVENT INTERAC-

TIONS
Many techniques that rely on preformed 

polymers have been used for the prepara-
tion of particulate carriers. Although these 
methods are quite different, they generally 
share a unique principle which is polymer 
precipitation. Precipitation of the polymer 
occurs either when a non solvent is added 
or after subsequent decrease of its solubility 
in a solvent. Many parameters could influ-
ence polymer solubility such as, solvent 
nature, pH, salinity and temperature of the 
dispersion medium. Solubility of polyelec-
trolytes in water, for example, is highly pH 
and salinity dependent (Gennes, 1979), 
while that of poly(alkyl acrylamide) and 
poly(alkyl methacrylamide), is mainly tem-
perature dependent (Elaissari, 2002). In 
fact, nanoprecipitation and emulsion based 
techniques are based on the addition of a 
non solvent to the polymer which causes its 
precipitation. However, ionic gelation tech-
nique, for instance, in which generally a 
polyelectrolyte is used as polymer, is based 
on the addition of a salt or an oppositely 
charged polymer. This results in a change 
in the salinity of the medium and the ap-
pearance of electrostatic interactions and 
thus, leads to polymer precipitation. The 
thermodynamic behavior of the polymer in 
a given solution is highly dependent on the 
Flory -parameter. This parameter is de-
fined as the free energy change per solvent 
molecule (in kBT units) when a solvent-
solvent contact is shifted to a solvent-
polymer contact. It is expressed by the fol-
lowing mathematical equations: 

 

Equation (1) 

where kB and T are Boltzmann constant 
and temperature, respectively; A and  pa-
rameters are defined as follows: 

  Equation (2) 

 Equation (3) 

 
It can be seen that the A parameter is di-

rectly related to entropy changes, whereas  
temperature is a function of both entropic 
and enthalpic variations. When  tempera-
ture = T, the corresponding Flory -
parameter = 1/2, at which the second Virial 
coefficient is equal zero (Elias, 2003). The 
latter can be easily determined from light 
scattering measurements of a diluted poly-
mer solution. At  temperature conditions, 
the binary interactions among constituents 
will be negligible and only the excluded 
volume effects will be predominant. Con-
sequently, the solvent will be a good sol-
vent for the polymer when  < 1/2 and a 
poor one when  > 1/2 (Minost et al., 
2012). 
 
2. COMMONLY USED POLYMERS 

FOR ENCAPSULATION 
Several polymers have been used for 

drug encapsulation but only biodegradable 
and biocompatible ones are suitable for bi-
omedical applications. The biodegradability 
of a polymer is acquired by the presence of 
a labile function such as ester, orthoester, 
anhydride, carbonate, amide, urea or ure-
thane in their backbone. These polymers 
could be of natural (polysaccharides and 
protein based polymers) or synthetic (poly-
esters) nature (Pillai and Panchagnula, 
2001). The most commonly used polymers 
for drug encapsulation are polyesters (lac-
tide and glycolide copolymers, poly- -
caprolactone), acrylic polymers (polymeth-
acrylates) and polyamides (gelatin and al-
bumin). The selection of the right polymer 
is a crucial step to obtain particles that are 
suitable for a well-defined application. In 
fact, polymers’ structures are highly differ-
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ent and their surface and bulk properties are 
highly relevant for the obtaining of the de-
sirable biological application. Copolymers 
could be also used to monitor the hydro-
phobicity of the materials. Some polymers 
are poly(ethyleneglycol) (PEG) copolymer-
ized in order to decrease nanoparticle 
recognition by the reticular endothelial sys-

tem. Table 1 contains examples of the most 
used biocompatible and biodegradable pol-
ymers in encapsulation. Some polymers, 
especially those having mucoadhesive 
properties, could also be used for coating 
the nanocarriers (Mazzaferro et al., 2012; 
Zandanel and Vauthier, 2012).  

 

Table 1: Commonly used polymers 

Materials References 
Polymers 
Natural polymers 
Chitosan Elmizadeh et al., 2013; Fàbregas et al., 2013; Khalil et al., 2012; Konecsni et al., 2012; 

Du et al., 2009; Bernkop-Schnürch et al., 2006; Gan et al., 2005; Asada et al., 2004 
Dextran Liang et al., 2013; Dai et al., 2012; Sajadi Tabassi et al., 2008; Koten et al., 2003 
Dextran derivatives Kanthamneni et al., 2012; Kauffman et al., 2012; Aumelas et al., 2007; Miyazaki et al., 

2006 
Cyclodextrins Çirpanli et al., 2009; Memi o lu et al., 2003; Pariot et al., 2002; Lemos-Senna et al., 

1998 
Gelatin Nahar et al., 2008; Balthasar et al., 2005; Vandervoort and Ludwig, 2004; Bruschi et al., 

2003 
Synthetic polymers 
Biodegradable polyesters 
PLGA Gyulai et al., 2013; Beck-Broichsitter et al., 2012; Morales-Cruz et al., 2012; Beck-

Broichsitter et al., 2011; Nehilla et al., 2008; Song et al., 2008; Budhian et al., 2007; 
Bozkir and Saka, 2005; Fonseca et al., 2002;Yang et al., 1999; Govender et al., 1999 

PLA Bazyli ska et al., 2013; Fredriksen and Grip 2012; Kadam et al., 2012; Kumari et al., 
2011; Ataman-Önal et al., 2006; Lamalle-Bernard et al., 2006; Hyvönen et al., 2005; 
Katare et al., 2005; Chorny et al., 2002; Leo et al., 2000  

PCL Behera and Swain, 2012; Guerreiro et al., 2012; Hernán Pérez de la Ossa et al., 2012; 
Khayata et al., 2012; Arias et al., 2010; Wang et al., 2008; Limayem Blouza et al., 2006; 
Tewa-Tagne et al., 2006; Yang et al., 2006; Le Ray et al., 2003; Chawla and Amiji 2002; 
Raval et al., 2011; Hombreiro Pérez et al., 2000; Benoit et al., 1999; Masson et al., 1997 

Poly(lactide-co-
glycolide-co-
caprolactone) 

Zhang et al., 2006  

Acrylic polymers 
Eudragit  Hao et al., 2013; Das et al., 2010; Eidi et al., 2010; Trapani et al., 2007; Galindo-

Rodríguez et al., 2005; Haznedar and Dortunç 2004; Pignatello et al., 2002 
Others
Polyvinylbenzoate Labruère et al., 2010 
Pegylated polymers 
Chitosan-PEG Seo et al., 2009 
MPEG-PCL Falamarzian and Lavasanifar, 2010; Xin et al., 2010  
PCL-PEG-PCL Suksiriworapong et al., 2012; Huang et al., 2010; Gou et al., 2009  
Poly(caprolactone)-
poly(ethylene ox-
ide)-polylactide 

Hu et al., 2003 

PLA-PEG Sacchetin et al., 2013; Essa et al., 2010; Ishihara et al., 2010; Vila et al., 2005; Vila et al., 
2004; Govender et al., 2000; Huang et al., 1997  

PLA-PEG-PLA Chen et al., 2011; Ruan and Feng 2003 
MPEG-PLA Zheng et al., 2010; Dong and Feng, 2007; Dong and Feng, 2004 
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2.1 Natural polymers 
2.1.1 Chitosan 

Chitosan is obtained by deacetylation of 
chitin, which is the structural element in the 
exoskeleton of crustaceans (crabs, shrimp, 
etc.) and cell walls of fungi. It is a cationic 
and biodegradable polysaccharide consist-
ing of repeating D-glucosamine and N-
acetyl-D-glucosamine units, linked via (1-
4) glycosidic bonds. Chitosan is non toxic 
and can be digested in the physiological 
environment, either by lysozymes or by chi-
tinases, which are present in the human in-
testine and in the blood. These properties 
led to increased interest for this polymer in 
pharmaceutical research and industry as a 
carrier for drug delivery (Mao et al., 2010). 
In addition, chitosan has mucoadhesive 
properties owing to its positive charge that 
allows interaction with the negatively-
charged mucosal surface. Consequently, the 
use of chitosan as a matrix (Patil and 
Sawant, 2011) or as a coating material 
(Mazzarino et al., 2012) in drug encapsula-
tion had become a promising strategy to 
prolong the residence time, to increase the 
absorption of active molecules through the 
mucosa (Mao et al., 2010; Alpar et al., 
2005) and also for targeted delivery (Park et 
al., 2010).  
 
2.1.2 Dextran and its derivatives 

Dextran polymers are produced by bac-
teria from sucrose. Chemical synthesis is 
also possible. These glucose polymers con-
sist predominantly of linear -1,6-
glucosidic linkage with some degree of 
branching via 1,3-linkage. Dextran-based 
microspheres have got much attention be-
cause of their low toxicity, good biocom-
patibility and biodegradability, which are of 
interest for application in biomedical and 
pharmaceutical fields (Mehvar, 2000). 
Many detxran polymers such as Sephadex® 
(cross-linked dextran microspheres) as well 
as Spherex® (cross-linked starch micro-
spheres) were used as carriers for drug de-
livery. Other derivatives of dextran and 

starch including diethyl aminoethyl dextran 
and polyacryl starch have also been used 
for mucosal drug delivery. Illum et al. 
(2001) proposed some mechanisms to ex-
plain absorption enhancement effects of 
cross-linked starch and dextran micro-
spheres intended to nasal delivery which 
are: (1) Deposition of the microspheres in 
the less or non ciliated anterior part of the 
nasal cavity and slower nasal clearance; (2) 
Retention of the formulation in the nasal 
cavity for an extended time period because 
of the bioadhesive properties of the micro-
spheres and (3) The local high drug concen-
tration provided by the gelled system in 
close contact with the epithelial absorptive 
surface (Illum et al., 2001). 
 
2.1.3 Cyclodextrins 

Cyclodextrins (CDs) are cyclic oligo-
saccharides that contain at least six D-(+) 
glucopyranose units which are attached by 

-(1,4) glucosidic bonds. They have been 
widely used for the formulation of drugs 
with bioavailability concerns resulting from 
poor solubility, poor stability and severe 
side effects. There are 3 natural CDs which 
are -, -, and -CDs (with 6, 7, or 8 glu-
cose units respectively) (Challa et al., 
2005). In addition, amphiphilic cyclodex-
trins are synthetic derivatives of natural cy-
clodextrins. Such derivatives are able to 
self-organize in water to form micelles and 
nano-aggregates, which is interesting for 
pharmaceutical applications, mainly, encap-
sulation (Gèze et al., 2002). In fact, am-
phiphilic cyclodextrins have recently been 
used to prepare nanoparticles and nanocap-
sules without surfactants and have shown 
high drug-loading capacity with favorable 
release properties (Lemos-Senna et al., 
1998; Çirpanli et al., 2009; Duchêne, 1999). 
They have also been used for targeting and 
for increasing drug loading (Duchêne et al., 
1999).  
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2.1.4 Gelatin 
Gelatin is a natural polymer that is de-

rived from collagen. It is commonly used 
for pharmaceutical and medical applica-
tions because of its biodegradability and 
biocompatibility in physiological environ-
ments. Gelatin is attractive for use in con-
trolled release due to its nontoxic, bioactive 
properties and inexpensive price. It is also a 
polyampholyte having both cationic and 
anionic groups along with hydrophilic 
groups. Mechanical properties, swelling 
behavior and thermal properties of gelatin 
depend significantly on its crosslinking de-
gree (Young et al., 2005). 
 
2.2 Biodegradable polyesters 

Polyester-based polymers are among of 
the most widely investigated materials for 
drug delivery. Poly(lactic acid) (PLA), 
poly(glycolic acid) (PGA) and their copol-
ymers poly(lactic acid-co-glycolic acid) 
(PLGA) along with poly- -caprolactone are 
some of the well-defined biomaterials with 
regard to design and performance for drug-
delivery applications. 

2.2.1 PLGA 
PLGA, a copolymer of lactic acid and 

glycolic acid, has generated tremendous 
interest due to its excellent biocompatibil-
ity, biodegradability, and mechanical 
strength. PLGA is approved by the US 
FDA and European Medicine Agency 
(EMA) in various drug delivery systems in 
humans. In order to improve the formula-
tion of controlled drug delivery systems, an 
understanding of the physical, chemical, 
and biological properties of polymers is 
helpful. In fact, the polymer is commercial-
ly available with different molecular 
weights and copolymer compositions. The 
degradation time can vary from several 
months to several years, depending on the 
molecular weight and copolymer ratio 
(Danhier et al., 2012). For example, lactic 
acid is more hydrophobic than glycolic acid 
and, therefore, lactide-rich PLGA copoly-

mers are less hydrophilic, absorb less water, 
and subsequently, degrade more slowly 
(Dinarvand et al., 2011). PLGA particles 
are widely used to encapsulate active mole-
cules with a broad spectrum of pharmaceu-
tical applications (Danhier et al., 2012; 
Menei et al., 2005; Singh et al., 2004).  
 
2.2.2 PLA 

PLA is a biocompatible and biodegra-
dable synthetic polyester which undergoes 
scission in the body to monomeric units of 
lactic acid. The latter is a natural intermedi-
ate in carbohydrate metabolism. PLA pos-
sess good mechanical properties and it is 
largely used for the preparation of particles 
(Gupta and Kumar, 2007). 
 
2.2.3 PCL 

It was in 1930s that the ring-opening 
polymerization of PCL was studied. The 
biodegradable property of this synthetic 
polymer was first identified in 1973. PCL is 
suitable for controlled drug delivery due to 
its high permeability to many drugs and 
non-toxicity (Sinha et al., 2004). Molecular 
weight dependent surface hydrophobicity 
and crystallinity of PCL are the causes for 
its slower biodegradation in two distinct 
phases such as random non-enzymatic 
cleavage and enzymatic fragmentation. 
Lipophilic drugs are generally distributed 
uniformly in the matrix while hydrophilic 
drugs tend to move towards the interface 
and remain on the surface of PCL formula-
tion in adsorbed state. Diffusion was de-
scribed as the only possible mechanism by 
which the lipophilic drugs release from 
PCL particles as they were shown to be in-
tact for a much longer duration in vivo. 
However, two phenomena could be impli-
cated in hydrophilic drugs’ release. Highly 
lipophilic drugs that resist complete diffu-
sion are released upon surface erosion by 
enzymatic action while hydrophilic drugs 
that accumulate at the interface during the 
formulation processes are released by de-
sorption at the initial period of release study 
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or dosage intake. This results in a biphasic 
drug release pattern for PCL particles with 
much higher burst release for hydrophilic 
drugs than lipophilic ones (Dash and 
Konkimalla, 2012). 

 
2.3 Pegylated polymers 

Many of the above cited polymers could 
be conjugated to PEG chains, which allows 
the enhancement of their hydrophilicity and 
permits the obtaining of a stealth surface 
that could protect the prepared carriers from 
degradation by the cells belonging to the 
reticuloendothelial system. Conjugation to 
PEG confers also bioadhesive properties for 
the carriers (Yoncheva et al. 2005). 
 
3. Used methods for the encap-

sulation of active molecules 
3.1 Nanoprecipitation 

The nanoprecipitation technique was 
first developed by Fessi et al. in 1986 (De-
vissaguet et al., 1991). The technique al-
lows the obtaining of either nanospheres or 
nanocapsules. The organic phase could be 
added to the aqueous phase under magnetic 
stirring. This one-step process allows the 
instantaneous and reproducible formation 
of monodisperse nanoparticles. Nanopre-
cipitation is simple, is by far the fastest, 
most reproducible, and industrially feasible 
preparation procedure of nanospheres 
(Vauthier and Bouchemal, 2009). Practical-
ly, two miscible phases are required: an or-

ganic solvent in which the polymer is dis-
solved and an aqueous phase (non-solvent 
of the polymer). The most common used 
organic solvents are ethanol and acetone. 
Such solvents are miscible in water and 
easy to remove by evaporation. Some oils 
could be added to these solvents to allow 
the dissolving of the active (Rosset et al., 
2012). As Figure 1 shows, the method is 
based on the addition of one phase to the 
other under moderate magnetic stirring 
which causes the interfacial deposition of a 
polymer after displacement of the organic 
solvent from the organic solution. This 
leads to the formation of a suspension of 
nanoparticles. The organic phase could be a 
mixture of solvents such as, mixture of ace-
tone with water or ethanol etc. Similarly, 
the aqueous phase could consist of a mix-
ture of non-solvents and could contain sur-
factants. Commonly used polymers are bio-
degradable polyesters, especially PCL, PLA 
and PLGA (Rao and Geckeler, 2011). Par-
ticle formation process includes three basic 
steps which are, particle nucleation, molec-
ular growth and aggregation. The rate of 
every step has a crucial impact on the parti-
cle size distribution. Supersaturation is the 
driving force that manages all of these 
steps, namely, particles nucleation rate. Su-
persaturation, itself, is influenced by fluid 
dynamics and mixing. In fact, low stirring 
rate results in low nucleation rates while 
higher mixing rates give high nucleation 
rates (Lince et al., 2008). 

 
Figure 1: The nanoprecipitation technique (Pinto Reis et al., 2006) 

17



EXCLI Journal 2014;13:28-57 – ISSN 1611-2156 
Received: November 05, 2013, accepted: January 25, 2014, published: February 03, 2014 

 

 

34 

Operational parameters that should be 
controlled include the organic phase to non 
organic phase ratio, the concentration of the 
polymer and the stabilizer and the amount 
of the drug. Every one of these parameters 
may exert an impact on the characteristics 
of the obtained nanoparticles (size, uni-
formity and charge). In fact, an increase of 
the polymer amount generally increases 
particles’ size (Chorny et al., 2002; Sim ek 
et al., 2013; Dong and Feng, 2004; Asadi et 
al., 2011). The same effect was obtained 
after increasing the polymer molecular 
weight (Limayem Blouza et al., 2006; Hol-
gado et al., 2012). These findings were ex-
plained by an increase of the viscosity of 
the organic phase which rendered solvent 
diffusion more difficult and thus, led to 
larger nanoparticles’ size. The effect of in-
creasing organic phase volume seems con-
flicting: some studies showed that it causes 
a decrease of the particles size (Dong and 
Feng, 2004) while others showed the oppo-
site phenomenon (Asadi et al., 2011). In-
creasing the water phase amount leads to a 
decrease of the particles size as a result of 
the increased diffusion of the water-
miscible solvent in the aqueous phase and 
thus, the more rapid precipitation of the 
polymer and formation of nanoparticles 
(Budhian et al., 2007). An increase of the 
surfactant amount generally causes a de-
crease of the particles size and reduces size 
distribution (Contado et al., 2013; Siqueira-
Moura et al., 2013). Some studies did not, 
however, found significant change follo-
wing surfactant amount increase (Dong and 
Feng, 2004). The nature of the surfactant 
may also influence the particles’ size (Li-
mayem Blouza et al., 2006). Increasing 
mixing rate decreases the particles size as it 
causes faster diffusion rate (Asadi et al., 
2011). Theoretical drug loading may also 
influence particles size and drug loading 
(Govender et al., 1999). Nanoprecipitation 
is generally designed for the encapsulation 
of hydrophobic drug molecules (Seju et al., 
2011; Katara and Majumdar, 2013; 
Seremeta et al., 2013). Such actives may be 

dissolved within the organic phase. Bilalti 
et al. (2005) described a nanoprecipitation 
technique intended to the encapsulation of 
hydrophilic molecules but the size of the 
obtained particles was not sufficiently uni-
form (Bilati et al., 2005). To further im-
prove the reproducibility of the nanoprecip-
itation technique and make it more conven-
ient for industrial applications, membrane 
contactor and microfluidic technology were 
successfully used (Khayata et al., 2012; Xie 
and Smith, 2010). These techniques allow 
better size control within different batches 
of particles. Table 2 contains some exam-
ples of the applications of the nanoprecipi-
tation technique in drug delivery during the 
last years. It can be concluded that polyes-
ters are among the most used polymers for 
the preparation of the nanoparticles by this 
technique. 

 
3.2 Emulsion diffusion (ESD) 

ESD was first developed by Quintanar-
Guerrero and Fessi (Quintanar-Guerrero et 
al., 1996) to prepare PLA based nano-
spheres. Three liquid phases are needed in 
this technique: an organic phase, an aque-
ous phase and a dilution phase. The organic 
phase generally contains the polymer and 
the hydrophobic drug. The aqueous phase is 
a solution of a stabilizing agent while the 
dilution phase usually consists of a large 
volume of water. Mutual saturation of the 
aqueous and organic phase allows further 
obtaining of a thermodynamically equili-
brated emulsion upon high speed homoge-
nization. Subsequent addition of an excess 
of water enables the diffusion of the organic 
solvent from the dispersed phase resulting 
in precipitation of the polymer and the for-
mation of the particles (Figure 2). Com-
monly used polymers in this method in-
clude PCL, PLA and Eudragit® (Mora-
Huertas et al., 2010). Table 3 shows that the 
technique is mainly used for the encapsula-
tion of hydrophobic molecules. However, 
hydrophilic molecules may also be encap-
sulated by a modified solvent diffusion 
method using an aqueous inner phase (Ma 
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et al., 2001). Operating conditions affecting 
the size of the obtained particles include 
external/internal phase ratio, emulsification 
stirring rate, volume and temperature of wa-
ter for dilution, polymer amount and con-
centration of the stabilizer (Quintanar-
Guerrero et al., 1996; Mora-Huertas et al., 
2010). Influence of high shear homogeniza-
tion and sonication on the particles size was 
assessed and it was found that sonication 
was more efficient for particle size re-
duction. The nature of the surfactant influ-
enced also the particles size. In fact, when 
Pluronic F68 (PF68), didodecyldime-
thylammonium bromide (DMAB) and pol-
yvinylalcohol (PVA) were compared, 
DMAB gave the smallest particles but with 
the lowest encapsulation efficiency (Jain et 
al., 2011). Particles size was also described 
to increase with an increase of initial drug 
amount (Youm et al., 2012), polymer 

amount (Youm et al., 2012; Esmaeili et al., 
2011) and the oil phase volume (Esmaeili et 
al., 2011; Poletto et al., 2008). An increase 
of the surfactant amount resulted in a de-
crease of the size but it seems that above 
some level further significant size reduction 
is no longer possible (Jain et al., 2011; Su-
rassmo et al., 2010). An increase of the ho-
mogenization rate led to a decrease of the 
particles’ size (Jain et al., 2011; Kwon et 
al., 2001; Galindo-Rodríguez et al., 2005). 
Likely, the same effect was obtained fol-
lowing an increase of the temperature and 
the volume of added water (Kwon et al., 
2001; Song et al., 2006). The nature of the 
organic solvent also influenced particle size 
(Song et al., 2006). Table 3 shows some of 
the recent applications of the ESD tech-
nique. 

 

 

Table 2: Applications of the nanoprecipitation technique 
Encapsulated 
molecule 

Polymer  Size (nm) Zeta potential
(mV)

Reference 

Doxorubicin Gelatin-co-PLA-DPPE 131.5-161.1 - Han et al., 2013 
Aceclofenac Eudragit RL 100 75.5-184.4 22.5 - 32.6 Katara and Majumdar, 

2013 
Doxorubicin Dextran-b-

polycaprolactone 
95-123.3 - Li et al., 2013 

Chloroaluminum 
phthalocyanine 

PLGA 220.3-326.3 -17.7-(-40.9) Siqueira-Moura et al., 
2013 

Efavirenz PCL and Eudragit® RS 
100 

89.5 - 173.9 -17.9-53.8 Seremeta et al., 2013 

Paclitaxel PLGA 50 - 150 -15 - (-20) Wang et al., 2013 
Retinoic acid PLA 153.6-229.8 -27.4-(-20.9) Almouazen et al., 2012 
Brimonidine  
Tartrate 

Eudragit® RL 100 123.5 - 140.2 13.1- 20.8 Khan et al., 2012 

Vitamin E PCL 123-320 -24.5-(-1.46) Khayata et al., 2012 
Paclitaxel Hydrophobized pullulan 127.6-253  Lee et al., 2012 
Curcumin PCL, chitosan 104-125 (-0.099)-79.8 Mazzarino et al., 2012 
Diclofenac PCL 152 -50 Mora-Huertas et al., 2012 
Amphotericin B PLGA 86-153 -31.4-(-9.1) Van de Ven et al., 2012 
Epirubicin Poly(butyl cyanoacry-

late) 
217-235 -4.5-(-0.1) Yordanov 2012 

Camptothecin Beta-cyclodextrin 
PLGA 
PCL 

281 
187 
274 

-13 
-0.06 
-19 

C rpanl  et al., 2011 

Naringenin Eudragit® E 90 - Krishnakumar et al., 2011 
Olanzapine PLGA 91.2 -23.7 Seju et al., 2011 
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Figure 2: Emulsion diffusion technique (Pinto Reis et al., 2006) 
 

 
Table 3: Applications of the emulsion diffusion method 

Encapsulated 
molecule 

Polymer  Size (μm) Zeta potential
(mV) 

Reference 

Articaine PCL - - Campos et al., 2013 
Omeprazole Eudragit L 100-55 0.256.3- 0.337 8.92 - 16.53 Hao et al., 2013 
Curcumin  Polyurethane and 

polyurea 
0.216- 4.901 - Souguir et al., 2013 

Matricaria recutita 
L. extract 

PEG-PBA-PEG 0.186- 0.446  - Esmaeili et al., 2011 

Bovine serum 
albumin 

Chitosan  81-98  - Karnchanajindanun et 
al., 2011 

Alendronate PLGA 0.145  -4.7 Cohen-Sela et al., 
2009 

An oligonucleo-
tide 

PLA 0.390  - Delie et al., 2001 

 
 
3.3 Simple Emulsion evaporation 

(SEE)
The SEE technique is widely used in the 

field of particulate carriers’ development. 
This method was first developed by 
(Vanderhoff et al., 1979). It consists on the 
formation of a simple emulsion followed by 
the evaporation of the organic solvent. Sub-
sequent precipitation of the polymer allows 
the obtaining of the particles (Figure 3).
Practically, for oil in water emulsion meth-
od, the polymer is dissolved in a volatile 
and non miscible organic solvent such as 
chloroform, ethylacetate or dichloro-
methane. This organic phase, in which the 
drug and the polymer are dissolved, is then 
dispersed by high speed homogenization or 
by sonication in an aqueous phase contain-
ing a surfactant. Once an oil-in-water (o/w)

emulsion is obtained, the evaporation of the 
organic solvent permits the precipitation of 
the polymer and thus, the formation of the 
particles. As it can be seen in Table 4, SEE 
is generally used for the encapsulation of
hydrophobic drugs (O’Donnell and McGin-
ity, 1997). The evaporation of the organic 
solvent is obtained by moderately stirring 
the emulsion at room temperature or under 
high temperature and low pressure condi-
tions. The obtained particles can be then 
harvested by ultracentrifugation or filtra-
tion, then washed and lyophilized. Mem-
brane technology was also used to prepare 
particles by the simple emulsion technique 
(Doan et al., 2011). Another alternative of 
the technique is the use of water in oil 
emulsion method that is suitable for the en-
capsulation of hydrophilic active molecules. 
Particulate carriers are obtained after evap-
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oration of the water phase which causes the 
precipitation of the hydrophilic polymer 
(Banerjee et al., 2012). Parameters that 
have to be managed include organic phase 
to water phase ratio, nature of the surfactant 
and its concentration, stirring rate, polymer 
amount and evaporation rate. Decreasing 
the organic solvent volume resulted gener-
ally in a decrease of particle size (Budhian 
et al., 2007). Particle size could also be de-
creased by increasing surfactant amount 
(Valot et al., 2009; Manchanda et al., 2010; 
Khaled et al., 2010; Su et al., 2009), increa-

sing stirring rate (Su et al., 2009; Lee et al., 
2012; Avachat et al., 2011; Yadav and 
Sawant, 2010) or increasing aqueous phase 
volume (Adibkia et al., 2011). However, an 
increase of polymer amount generally in-
creases particles’ size (Doan et al., 2011; 
D’Aurizio et al., 2011; Adibkia et al., 2011; 
Agnihotri and Vavia, 2009). Table 4 shows 
the applications of the SEE technique in 
drug delivery. Polyesters were widely used 
for the encapsulation of hydrophobic drugs. 

 

 

Figure 3: Simple emulsion solvent evaporation (Pinto Reis et al., 2006) 
 

Table 4: Applications of simple emulsion solvent evaporation technique 

Encapsulated 
molecule 

Polymer  Size (μm) Zeta potential 
(mV)

Reference 
 

Curcumin PLGA and PLGA-
PEG 

0.161-0.152 - Khalil et al., 2013 

Efavirenz  PCL and Eu-
dragit® RS 100 

0.083-0.219 53 Seremeta et al., 
2013 

Human amylin PCL 0.202 - Guerreiro et al., 
2012 

Azithromycin PLGA 14.11-15.29  - Li et al., 2012 
Teniposide PLGA 0.113-0.135 -36.6-(-23.1) Mo et al., 2012 
Camptothecin PCL-PEG-PCL 4.2-5.4  - Dai et al., 2011 
Naproxen PLGA 352-824 - Javadzadeh et al., 

2010 
Doxorubicin PLGA 0.137-0.164  -12.3-(-9.9) Manchanda et al., 

2010 
Dexamethasone PLGA 5.18-7  - Rawat and Bur-

gess, 2010 
Ibuprofen Eudragit RSPO 14-51.1 - Valot et al., 2009 
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3.4 Double emulsion evaporation 
(DEE)

Double emulsion technique is suitable 
for the encapsulation of hydrophilic mole-
cules (see Table 5 and Figure 4). Generally, 
the method consists on the dispersion of an 
aqueous phase in a non miscible organic 
solvent to form the first emulsion (W1/O). 
This dispersion is performed under high 
shear homogenization or low power soni-
cation for a short time. This step is followed 
by the dispersion of the obtained emulsion 
in a second aqueous phase containing a hy-
drophilic emulsifier. Again, homogeniza-
tion could be carried under high shear ho-
mogenization or with a sonication probe. 
When sonication is used, it must be per-
formed at low power and within a short pe-
riod of time to not break the first emulsion 
(Giri et al., 2013). After the formation of 
the multiple emulsion, evaporation of the 
volatile organic solvent under low pressure 
(by a rotary evaporator) or at ambient tem-
perature allows the obtaining of the particu-
late carriers (Figure 4). There are other 
types of multiple emulsions like w/o/o or 
o/w/o (Giri et al., 2013). A lot of parame-
ters may influence the properties of the ob-
tained particles such as, relative phases’ 
ratio (Khoee et al., 2012), amount of the 
polymer, its nature and molecular weight 
(Zambaux et al., 1998; Péan et al., 1998; 
Van de Ven et al., 2011), nature of the sur-
factants and their amounts (Zhao et al., 
2007; Khoee and Yaghoobian, 2009; Dha-
naraju et al., 2004), homogenization speed 
(Eley and Mathew, 2007; Basarkar et al., 
2007), the composition of the external 
phase (Péan et al., 1998; Tse et al., 2009) 
and evaporation speed (Khoee et al., 2012). 
Operating conditions may also influence 
strongly encapsulation efficiency (Tse et 
al., 2009; Billon et al., 2005; Silva et al., 
2013; Zhou et al., 2013; Karata  et al., 
2009; Hachicha et al., 2006; Al-Kassas, 
2004; Cun et al., 2011; Gaignaux et al., 
2012; Cun et al., 2010). Membrane tech-
nique and microfluidic devices were also 
used to prepare particulate carriers by the 

DES method (Vladisavljevi  and Williams, 
2008; van der Graaf et al., 2005). 

 
3.5 Spray drying 

Spray drying is a simple process which 
gained too much interest due to its cost-
effectiveness and scalability (Sou et al., 
2011). Practically, a polymer containing 
drug solution is atomized and sprayed into a 
drying chamber where droplets are dried by 
heated air (See Figure 5). Reduction of 
droplets’ size that follows atomization al-
lows the obtaining of an enormous surface 
area between droplets and the drying gas. 
The subsequent precipitation of the polymer 
permits the encapsulation of the drug within 
the obtained particulate carriers. The evapo-
ration of the solvent occurs within a very 
short period of time. Consequently, the ma-
terials never reach the inlet temperature of 
drying gas. This is very attractive for en-
capsulating heat-sensitive drug molecules 
like proteins (Cal and Sollohub, 2010; Sol-
lohub and Cal, 2010; Prata et al., 2013). 
Many operating conditions could influence 
the properties of the obtained particles. Pa-
rameters to be controlled include the drying 
air temperature and humidity (Bruschi et 
al., 2003), the rate and fluid dynamics of 
the air flow, the atomization process (Drop-
let size, spray rate, spray mechanism) and 
the composition of ingredients and excipi-
ents in the feeding solution (Rattes and 
Oliveira, 2007). PLA (Baras et al., 2000; 
Gander et al., 1996; Sastre et al., 2007; 
Muttil et al., 2007), PLGA (Wang and 
Wang, 2002; Mu and Feng, 2001; Castelli 
et al., 1998; Bittner et al., 1999; Prior et al., 
2000; Conti et al., 1997), PCL, methacryla-
te polymers (Esposito et al., 2002; Año et 
al., 2011; Cruz et al., 2010; Hegazy et al., 
2002; Raffin et al., 2008) and chitosan (He 
et al., 1999; Giunchedi et al., 2002; Cevher 
et al., 2006) are among the most used po-
lymers in spray-drying method. As Table 6 
shows, the technique allowed the obtaining 
of mainly microparticles bearing better drug 
solubility and sustained release. 
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Table 5: Applications of the double emulsion technique 

Encapsulated molecule Polymer  Size (μm) Zeta potential
(mV) 

Reference 

Vancomycin PLGA 0.450-0.466 -7.2-(-3.5) Zakeri-Milani et al., 2013
Prostaglandin E1 PLGA 7-22.5  - Gupta and Ahsan, 2011 
Deoxyribonuclease I PLGA 0.190-0.349 - Osman et al., 2011 
S. equi antigens PCL 0.242-0.450 -53.1-38.7 Florindo et al., 2009 
Hepatitis B surface antigen PLGA 1-5  0.51-14 Thomas et al., 2009 
Plasmid DNA PLGA 1.9-4.6 -24.6-(-22.9) Tse et al., 2009 
 
 

 
Figure 4: Double emulsion solvent evaporation technique (Giri et al., 2013) 

 
Figure 5: The spray drying method (Pinto Reis et al., 2006) 
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Table 6: Applications of the spray drying technique 

Encapsulated 
molecule 

Polymer  Size (μm) Zeta potential
(mV)

Reference 
 

Nimodipine PLGA 1.9-2.37  - Bege et al., 2013 
Theophylline Eudragit RS30D < 60 - Garekani et al., 2013 
Ofloxacin PLA 2.6-4.9  - Palazzo et al., 2013 
Sodium diclofenac PGA-co-PDL 

PEG-PGA-co-PDL 
and mPEG-co-
(PGA-co-PDL) 

2.3  
3.9  
2.5  

-32.2 
-29.9 
-31.2 

Tawfeek, 2013 

Sodium fluoride Chitosan 3.4-5.3  - Keegan et al., 2012 
Plasmid  Chitosan 2.5-11.7  - Mohajel et al., 2012 
Heparin PLGA 2.5-3.8 -63.5 - (-28.2) Yildiz et al., 2012 
Alendronate  Eudragit® S100 13.8  - Cruz et al., 2010 
Zolmitriptan Chitosan glutamate 

and Chitosan base 
2.6-9.4  - Alhalaweh et al., 

2009 
Triamcinolone PLGA 0.5-1.5  - da Silva et al., 2009 
Acyclovir Chitosan  18.7-34.9  - Stulzer et al., 2009 

 
 
3.6 Supercritical fluid technology (SFT) 

In the recent years, novel particle for-
mation techniques using supercritical fluids 
(SCF) have been developed in order to 
overcome some of the disadvantages of 
conventional techniques that are: (1) poor 
control of particle size and morphology; (2) 
degradation and lost of biological activity 
of thermo sensitive compounds; (3) low en-
capsulation efficiency and (4) low precipi-
tation yield (Santos et al., 2013). Moreover, 
SFT presents the main advantage of not re-
quiring the use of toxic solvents. In fact, 
SCF based technologies have attracted 
enormous interest for the production of mi-
croparticles  and nanoparticles (Table 7), 
since their emergence in the early 1990s 
(Sanli et al., 2012). 

The supercritical state is achieved when 
a substance is exposed to conditions above 
its critical pressure and temperature. In such 
conditions, the fluid will have liquid-like 
density and, thus, solvating properties that 
are similar to those of liquids and, at the 
same time, gas-like mass transfer proper-
ties. Carbon dioxide (CO2) is the most 
commonly used critical fluid. In fact, CO2 
is nontoxic, nonflammable and easy recy-
clable. Moreover, CO2 has moderate critical 
parameters of CO2 (a critical pressure of 7.4 

MPa and a critical temperature of 304.1 K) 
and low price and is highly available which 
makes it very attractive from an economical 
point of view and also for the processing of 
labile compounds (Elizondo et al., 2012). 
Supercritical fluid technology methods can 
be divided in four methods which are rapid 
expansion of supercritical solution (RESS), 
Particles from gas saturated solutions 
(PGSS), gas antisolvent (GAS) and super-
critical antisolvent process (SAS). These 
methods depend on whether CO2 was used 
as a solvent, a solute or an antisolvent. Fig-
ure 6 shows the experimental set up of the 
RESS technique. In the RESS technique, 
the drug and the polymer are first dissolved 
in supercritical CO2 in high pressure cham-
ber. The subsequent passing of the solution 
through a nozzle results in a rapid decrease 
of the pressure and thus, a precipitation of 
the drug particles embedded in the polymer 
matrix and their recovery in the extraction 
unit (Byrappa et al., 2008). Many parame-
ters such as the density of the SCF (Pres-
sure and temperature of supercritical fluid) 
(Kalani and Yunus, 2012), flow rate of 
drug-polymer solution and/or CO2 and for-
mulation variables (Martin et al., 2002) 
could influence the size of the obtained par-
ticles. Table 7 shows that SFT was used for 
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the processing of nanoparticles and micro-
particles mainly based on polyesters. 

 
3.7 Ionic gelation (IG) 

IG method is used mainly with natural 
hydrophilic polymers to prepare particulate 
carriers. These polymers include gelatin, 
alginate, chitosan and agarose. IG has the 
advantage of not using organic solvents. 
The technique is based on the transition of 
the polymer from liquid state to a gel (Fig-
ure 7). For instance, gelatin based particles 
are obtained after the hardening of the drop-
lets of emulsified gelatin solution. The par-
ticles are obtained after cooling gelatin 
emulsion droplets below the gelation point 
in an ice bath. For alginate, however, parti-
cles are produced by drop-by-drop extru-
sion of the sodium alginate solution into the 

calcium chloride solution. Sodium alginate 
is, in fact, a water-soluble polymer that gels 
in the presence of multivalent cations such 
as calcium. Chitosan particles are prepared 
by spontaneous formation of complexes 
between the positively charged chitosan and 
polyanions (tripolyphosphate or gelatin) or 
by the gelation of a chitosan solution dis-
persed in an oil emulsion (Mahapatro and 
Singh, 2011). Figure 7 illustrates the gela-
tion mechanism of polysaccharides. At high 
temperatures, a random coil conformation 
is assumed. With decreasing temperature, 
the aggregation of double helices structure 
forms the physical junctions of gels (Rees 
and Welsh, 1977). Table 8 displays some 
recent applications of IG. This technique 
has been mainly used to prepare chitosan 
nanoparticles. 

Table 7: Applications of the SCF technology 

Encapsulated  
molecule 

Polymer  Size (μm) Zeta poten-
tial

(mV) 

Reference 

Hydrocortisone acetate PLGA 1-5  - Falco et al., 2013 
17 -methyltestosterone PLA 5.4-20.5  13.9 - 67.7 Sacchetin et al., 2013 
Paracetamol PLA 0.301-1.461  - Kalani and Yunus, 2012 
5-fluorouracil PLLA-

PEG/PEG 
0.175  - Zhang et al., 2012 

Human growth  
hormone 

PLGA 93  - Jordan et al., 2010 

Azacytidine  PLA 2  - Argemí et al., 2009 
Bovine serum albumin PLA 2.5  - Kang et al., 2009 
Retinyl palmitate PLA 0.040-0.110 - Sane and Limtrakul, 2009 
Indomethacin PLA 2.35 - Kang et al., 2008 

 

Figure 6: Schematic 
presentation of the 
experimental set up 
for the RESS process 
(Byrappa et al., 2008) 
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Table 8: Some applications of the ionic gelation technique 

Encapsulated 
molecule 

Polymer Size (μm) Zeta potential 
(mV) 

Reference 

Articaine  
hydrochloride 

Alginate/chitosan 0.340-0.550 -22 - (-19) de Melo et al., 2013 

TNF-  siRNA Trimethyl chitosan-
cysteine 

0.146  25.9 He et al., 2013 

Paclitaxel O-carboxymethyl 
chitosan 

0.130-0.180  -30 - (-12) Maya et al., 2013 

pDNA Chitosan 0.153-0.403 46.2-56.9 Cadete et al., 2012 
Gemcitabine Chitosan 0.095  - Derakhshandeh and 

Fathi, 2012 
Dexamthasone 
sodium  
phosphate 

Chitosan 0.256-0.350  - Doustgani et al., 2012 

Itraconazole Chitosan 0.190-0.240  11.5-18.9 Jafarinejad et al., 2012 
5-fluorouracil and 
leucovorin 

Chitosan 0.040-0.097  25.6-28.9 Li et al., 2011 

Insulin Chitosan and  
arabic gum 

0.172-0.245  35.7-43.4 Avadi et al., 2010 

CKS9 peptide 
sequence 

Chitosan 0.226  - Yoo et al., 2010 

3.8 Layer by layer
Polyelectrolyte self assembly is also 

called layer-by-layer (LbL) assembly pro-
cess. The earliest technology was based on 
the assembly of colloidal particles on a sol-
id core (Iler, 1966). From the 1990s, appli-
cations were expanded. LbL allowed, in 
fact, the assembly of polyelectrolyte films 
using biopolymers, proteins, peptides, poly-

saccharides and DNA (Powell et al., 2011). 
This approach was first developed by Su-
khorukov et al. (Sukhorukov et al., 1998). 
Polyelectrolytes are classified according to 
their origin. Standard synthetic polyelectro-
lytes include poly(styrene sulfonate) (PSS), 
poly (dimethyldiallylammonium chloride) 
(PDDA), poly(ethylenimine) (PEI), poly(N-
isopropyl acrylamide (PNIPAM), poly-

Figure 7: Gelation 
mechanism of poly-
saccharides in water 
(Guenet, 1992) 
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(acrylic acid) (PAA), poly (methacrylic ac-
id) (PMA), poly(vinyl sulfate) (PVS) and 
poly(allylamine) (PAH). Natural polyelec-
trolytes include nucleic acids, proteins and 
polysaccharides such as, alginic acid, chon-
droitin sulfate, DNA, heparin, chitosan, cel-
lulose sulfate, dextran sulfate and carbox-
ymethylcellulose (de Villiers et al., 2011). 
The obtained particles are vesicular and are 
called polyelectrolyte capsules. Assembly 
process is based on irreversible electrostatic 
attraction that leads to polyelectrolyte ad-
sorption at supersaturating polyelectrolyte 
concentrations. Other interactions such as, 
hydrogen bonds, hydrophobic interactions 
and Van der Waals forces were also de-
scribed (de Villiers et al., 2011). A colloidal 
template that serves to the adsorption of the 
polyelectrolyte is also needed. The com-
monly used cores for the formulated parti-
cles are derived from stabilized colloidal 
dispersions of charged silica, charged 
poly(styrene) spheres, metal oxides, poly-
oxometalates and conducting liquid crystal-
line polymers. Carrier systems can be func-
tionalized with stimuli-responsive compo-
nents that respond to temperature, pH and 

ionic strength. The polymers/colloids used 
in LbL technique can also be functionalized 
to alter their properties preceding layer by 
layer assembly. Experimental parameters 
that have to be managed include coating 
material concentration, ion concentration 
and the pH of the medium (Vergaro et al., 
2011). Polymer assembly occurs after incu-
bation of the template in the polymer solu-
tion or by decreasing polymer solubility by 
drop-wise addition of a miscible solvent 
(Radtchenko et al., 2002). This procedure 
could be repeated with a second polymer to 
allow sequential deposition of multiple pol-
ymer layers (Figure 8). LbL presents ad-
vantages over several conventional coating 
methods: (1) simplicity of the process and 
equipment; (2) its suitability for coating 
most surfaces; (3) availability and abun-
dance of natural and synthetic colloids; (4) 
flexible application to objects with irregular 
shapes and sizes; (5) formation of stabiliz-
ing coats and (6) control over the required 
multilayer thickness (de Villiers et al., 
2011). Table 9 contains some recent appli-
cations of LbL technique. 

 
 

 

Figure 8: The layer by layer technique based on electrostatic interaction (Ariga et al., 2011) 
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Table 9: Applications of the layer-by-layer technique 

Active Polyelectrolytes Size (μm) Zeta
potential 

(mV) 

References 

Kaempferol Sodium 
Alginate and protamine sulfate 

0.161 - 8.9 Kumar et al., 2012 

Designed pep-
tide DP-2015 

Poly-l-glutamic acid and poly-l-
lysine 

- - Powell et al., 2011 

5-fluorouracil Poly(L-glutamic acid) and  
chitosan 

1  25-40 Yan et al., 2011 

Plasmid DNA Plasmid DNA and reducible hy-
perbranched poly(amidoamine) 
or polyethylenimine 

- - Blacklock et al., 2009 

Artemisinin Alginate, gelatin and chitosan 0.806  -33 Chen et al., 2009 
Insulin Glucose oxidase and catalase  6  - Qi et al., 2009 
Heparin Poly(styrene sulfonate) and chi-

tosan 
1 -10.4 Shao et al., 2009 

Acyclovir Poly(vinyl galactose 
ester-co-methacryloxyethyl tri-
methylammonium chloride) and 
poly(sodium 4-styrenesulfonate) 

- - Zhang et al., 2008a 

Propranolol  
hydrochloride 

Poly(vinyl galactose ester- 
co-methacryloxyethyl trime-
thylammonium 
chloride) and Poly(sodium  
4-styrenesulfonate) 

5-15.6 - Zhang et al., 2008b 

 
 

CONCLUSION 
Encapsulation of active molecules is a 

crucial approach that has been widely used 
for many biomedical applications. It per-
mits enhancement of bioavailability of mol-
ecules, sustained delivery, passive or active 
targeting and decrease of toxicity and side 
effects. These formulations can render 
some active molecules more suitable for a 
specific route such as the delivery of pro-
teins by the oral route or the delivery of 
some drugs via the blood brain barrier. 
Thus, they enhance efficiency, patient com-
pliance and allow successful management 
of diseases. Many biodegradable and bio-
compatible polymers were investigated. 
The choice of the technique and the suitable 
polymer is a crucial step. It depends on the 
physicochemical properties of the drug to 
be encapsulated. The management of oper-
ating conditions is also a hard task to moni-
tor particles’ properties and to enhance drug 
loading. Recent research works are focus-

ing on active targeting by the coating the 
carriers by biomolecules that specifically 
recognize a well-defined cell receptor. One 
can also notice a shift for more ’intelligent’ 
drug delivery systems. Responsive materi-
als, for example, react to a specific physio-
logical stimulus such as a variation of pH to 
release the encapsulated drug. Other ther-
mo-sensitive materials deliver drugs at a 
specific temperature. It can be noted also 
that more attention is paid to safer methods 
that avoid the use of organic solvents 
(RESS) or to techniques that provide better 
reproducibility and easy scalability (micro-
fluidics and membrane emulsification tech-
nology), which could be attractive for in-
dustrial processing.  
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II.2. Encapsulation via double emulsification process 
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Summary 

Double emulsions also termed as multiple emulsion or “emulsions of emulsions” are systems in 

which the droplets of dispersed themselves comprises of one or more smaller dispersed droplets. 

In this system, two liquid phases are separated by a third non miscible liquid phase. They can be 

composed of aqueous droplets encapsulating oil drops, or vice versa. 

The entrapment of water-soluble drug in polymeric micro- and nanoparticles with high loading 

remains a challenge because of rapid diffusion of the compound into the external aqueous 

continuous phase. The double emulsion solvent evaporation technique can be used, in order to 

overcome the problem of inefficient encapsulation of hydrophilic drugs. The most commonly 

used type is W1/O/W2 double emulsion solvent evaporation method, in which emulsification is 

performed in two step. First, the primary emulsion (W1/O) is prepared by homogenization of 

inner aqueous phase (W1) with organic phase (polymer solution). Then, the primary emulsion is 

dispersed in a second aqueous phase containing suitable stabilizer (s) and homogenizes to form 

double emulsion. The formation of emulsion is followed by evaporation of volatile organic 

solvent from the dispersed phase leading to a point of insolubility and precipitation of the 

polymer encapsulating the active material. The outer aqueous phase acts as dispersion medium. 

The volatile solvent may be eliminated by stirring at ambient temperature or under reduced 

pressure by rotary evaporator depending upon the nature of organic solvent.  

The organic solvent used for the encapsulation of drugs via double emulsion method 

should be of low boiling point in order to facilitate the removal of residual solvent from final 

particulate dispersion. Commonly used solvents are: dichloromethane, chloroform, methylene 

chloride, propylene carbonate and ethyl acetate. Among them, methylene chloride and ethyl 

acetate are very frequently used. Compared to the more hydrophobic methylene chloride, ethyl 

acetate usually exerts a less deteriorative effect on bioactivity of the entrapped peptides and 

proteins. Though, most of the researchers still prefer  methylene chloride as the organic solvent 

due to its ability to dissolve huge amounts of biodegradable polymers, low solubility in water 

(2.0%, w/v) and low boiling point (39.8 °C), thus, facilitating its removal by evaporation. 

Conversely, the relatively high solubility in water (8.7%, w/v) and the high boiling point (76.7 

°C) of ethyl acetate limited its application in W1/O/W2 double emulsion technique. The 

comparatively high solubility of ethyl acetate in water contributes to a fast diffusion of ethyl 

acetate from oil droplets into the external aqueous phase during the second step of emulsification 

43



 

process, which leads to polymer precipitation rather than the formation of micro- and 

nanoparticles. 

The performance of the polymeric encapsulation via double emulsion method depends on 

several factors such as biodegradable polymer nature (polymer composition and molecular 

weight), physicochemical properties organic solvents, type and concentration of surfactant, etc. 

Biodegradable polymers have the ability to degrade into nontoxic components; therefore, they 

have been used vastly in drug delivery system for encapsulation of pharmaceuticals and 

pharmaceuticals. Commonly used biodegrade polymers in double emulsion process include, poly 

(lactic acid) (PLA), poly lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL), which are 

being widely researched for encapsulation various active drugs, genes and macromolecules. PCL 

is a nontoxic, biodegradable and biocompatible polymer, and possess low glass transition 

temperature and melting point (60 °C) and its metabolites are eliminated from the body by innate 

metabolic process. It has been widely studied for encapsulation of drugs for control drug delivery 

system due to its compatibility with vast range of drugs and its slow degradation to release drug 

for long time. PLGA is another biocompatible and biodegradable polymers commonly used in 

encapsulation via double emulsion method. After its approval by FDA for use in humans, it has 

been a popular choice for drug delivery. It degrades slowly into the biocompatible products of 

lactic and glycolic acid via hydrolysis and thus releases the encapsulated agents slowly over a 

long period of time.  This polymer is available in different PLGA/PLA ratio. As lactic acid is 

more hydrophobic than glycolic acid and, thus, lactic acid-rich PLGA copolymers are less 

hydrophilic, and degrade very slowly. PLA polymers are also approved by FDA in humans and 

have been frequently used for encapsulation in drug delivery system. It belongs to the most 

promising category of biodegradable polymers having excellent mechanical properties, good 

biocompatibility, and low toxicity. It is semi-crystalline polymer with a melting point of about 

180 °C, glass transition temperature of about 55 °C and tensile strength of 50–70 MPa and 

commonly prepared by ring-opening polymerization (ROP). Beside many advantages of 

biodegradable PLA and PLGA polymers in controlled drug delivery systems, they have certain 

drawbacks such as a risk of toxicity and immunogenicity because of their acidic by-products 

when used for long duration. 

This method has been used widely for encapsulation of different pharmaceuticals and 

biopharmaceuticals. Various types of biomolecules such as nucleic acids proteins and peptides 
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have the challenge of their effective and efficient delivery to the target site without its 

degradation. Due to their water solubility, they tend to diffuse into continuous aqueous phase 

during emulsification process, which leads to low entrapment efficiency of bioactive molecule. 

Moreover, the negative charged biomolecules are unable to pass through the cell membrane 

properly and can be denatured by different enzymes such as proteases and nucleases. Therefore, 

different approaches have been used for encapsulation of nucleic acid in order to protect it 

against degradation, facilitating its intracellular penetration enhancing its delivery to intended 

site and controlling the rate of release. These apaches include, emulsion solvent evaporation, 

coacervation, spray drying and double emulsion techniques. However double emulsion technique 

is considered one of the most appropriate method, especially for encapsulation of hydrophilic 

nucleic acid. This technique is reproducible and can be scale up for large batches. Beside several 

advantages, double emulsion process has a shortcoming of shear force used for homogenization 

of nucleic acid’s solution in the organic phase. Which can damage the integrity of biomolecules, 

thus leads to loss of its bioactivity. Moreover, the organic solvents can damage the structure of 

nucleic acid during emulsification process. This damage can be minimized by condensation of 

nucleic acid with cationic polymers, in order to reduce its size and maintain its supercoiling 

structure, and thus preserve its biological activity. 

Several categories of pharmaceuticals have been encapsulated by double emulsion 

method such as anticancer drugs, antibiotics and anti-inflammatory drugs. The anticancer are 

encapsulated into biodegradable polymer in order to provide prolonged release of drug in 

controlled manner and to target the drug to specific cancerous tissues. Moreover co-delivery of 

both hydrophilic and hydrophobic drug and diagnostic agent simultaneously (theranostic) can be 

possible by this technique. These processes are also useful for effective encapsulation of highly 

water soluble antibiotics and for sustained release of antibiotics. Similarly the anti-inflammatory 

medicaments can be encapsulated in order to diminish their systemic side effects and to reduce 

the chances of possible drug interaction with concurrent medications. During encapsulation of 

various drugs via double emulsion method, the ratio of aqueous phase to oil phase has a 

significant effect on double emulsion stability. It has been established that, an emulsion with 

ratio of 1:10 (water: oil) is more stable than ratio of 1:5 (water: oil). Similarly, the emulsion of 

smaller particle size can be prepared with water: oil ratio of 1:30 as compared to ratio of 1:10 
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(water: oil), however beyond water: oil ratio of 1:20 a decrease in encapsulation efficiency has 

also been observed, thus water: oil ratio in between 1:10 and 1: 20 are widely used. 

Beside many applications in controlled drug delivery and encapsulation of hydrophilic drugs, 

double emulsion has also several applications in theranostics. Theranostic is an approach in 

which agents are developed for simultaneous diagnosis and treatment of various diseases. It has 

been the field of extensive investigations in recent years for biomedical applications. These 

multifunctional theranostic agents allow for feedback mechanism to establish the localization of 

drug, release of drug, disease phase and efficacy of the treatment. For example, Yang et al 

fabricated polymer wormlike vesicles loaded with loaded with superparamagnetic iron oxide 

(SPIO) nanoparticles and anticancer drug doxorubicin (DOX) for targeted cancer therapy and 

MR imaging. The calculated SPIO nanoparticles (NPs) loading content in the vesicles was about 

48.0 wt. %, while The DOX loading level for these vesicles was about 9.0 wt. %. This 

theranostic vesicle nanocarrier system was established to be very efficient, which can provide 

controlled and targeted drug delivery to the tumor as well as it can be used as an efficient MRI 

contrast agent, thus providing targeted cancer therapy and diagnosis simultaneously. 
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Abstract

Double emulsions are complex systems, also called "emulsions of emulsions", in which the 

droplets of the dispersed phase contain one or more types of smaller dispersed droplets 

themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well 

as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on 

double emulsions are commonly used for the encapsulation of hydrophilic molecules, which 

suffer from low encapsulation efficiency because of rapid drug partitioning into the external 

aqueous phase when using single emulsions. The main issue when using double emulsions is 

their production in a well-controlled manner, with homogeneous droplet size by optimizing 

different process variables. In this review special attention has been paid to the application of 

double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic 

anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their 

applications in theranostics. Moreover, the optimized ratio of the different phases and other 

process parameters of double emulsions are discussed. Finally, the results published regarding 

various types of solvents, stabilizers and polymers used for the encapsulation of several active 

substances via double emulsion processes are reported. 

Keywords: Double emulsion, Solvent evaporation, Encapsulation, Theranostics, Control release,

Drug delivery. 
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1. Introduction

Nowadays, scientific advanced technologies are being directed towards evolution of 

innovative pharmaceutical products. The conventional therapies are progressively supplemented 

by more adaptable and well refined drug deliveries by the exploration of these advanced 

diversified technologies. Special focus is paid on tackling the restrictions associated with 

traditional drug delivery. Some of the most common obstacles encountered are the low 

bioavailability, poor stability, bitter taste and unpleasant odor of certain active agents. Here, 

encapsulation plays a vital role in overcoming the aforementioned obstacles. Premature 

degradation of active agents especially of proteins and peptides can be prevented by their 

encapsulation. Furthermore, encapsulation technologies also aid in achieving controlled and 

targeted release formulations. Colloidal carriers find immense applications in biomedical and 

biotechnology field. Various kinds of colloids employed in medicine are dendrimers, block 

ionomer complexes, polymeric biodegradable nanoparticles (NPs), polymeric micelles, 

liposomes (Laouini et al., 2012; Naseer et al., 2014), nanotubes, nanorods  (Wang et al., 2012)

and quantum rods.

Recently, polymers are increasingly used to constitute biodegradable particles. Such 

particles serve as drug reservoirs which bring not only local therapeutic effect but also deliver 

drugs, genes and vaccines to target organs for site specific delivery (Mohsen Jahanshahi, 2008; 

Zafar et al., 2014). Polymers are also employed in regenerative medicines and tissue engineering. 

Polymer selection is primarily based on toxicity and final application of the polymer. 

Biodegradable polymer encapsulated drugs show superb attributes e.g. non-toxicity and stability 

in blood. Moreover, polymeric materials permit modification in a) physicochemical 

characteristics (e.g. hydrophobicity, zeta potential), b) drug release properties (e.g. delayed, 

prolonged, triggered) and c) biological behaviour (e.g. bioadhesion, improved cellular uptake) of 

the NPs (Galindo-Rodriguez et al., 2005; Kumari et al., 2010; des Rieux et al., 2006). Examples 

of commonly used biodegradable polymers for encapsulation include poly (lactic acid), 

poly(glycolic acid), and poly (lactic-co-glycolic acid) (PLGA). Biodegradable polymers have the 

advantage that the release of loaded drug depends mainly on the degradation kinetics of the 

polymers used e.g. the release rate from PLGA carriers can be controlled by altering the lactic 

acid and glycolic acid ratio and molecular weight (Ye et al., 2010). Successful encapsulation of 

drugs like paclitaxel, 9-nitrocamptothecin, cisplatin, insulin, dexamethasone, estradiol, 
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progesterone, tamoxifen, tyrphostins and haloperidol (Kumari et al., 2010) has been done by 

using various natural and synthetic polymers. 

Several encapsulation processes have been used in order to protect and to transport active 

molecules. These techniques can be divided in two major classes: (i) chemistry based processes 

e.g. emulsion polymerization, miniemulsion polymerization and interfacial polymerization, (ii) 

physicochemical processes e.g. multiple emulsion techniques, spray drying, emulsion solvent 

diffusion and layer by layer process. Different pharmaceutical carriers such as microparticles, 

nanoparticles and liposomes can be obtained by these techniques (Miladi et al., 2013).

Microencapsulation by solvent evaporation is mostly used in pharmaceutical industries to get 

controlled release formulations. Different methods are available to use microencapsulation by 

solvent evaporation technique. The selection of a method that will give adequate drug 

encapsulation usually depends on the hydrophilicity or hydrophobicity of the active molecules 

(Li et al., 2008). Oil-in-water (o/w) method is generally adopted for the encapsulation of 

insoluble or poorly water soluble active agents. Few examples of hydrophobic active agents that 

have been encapsulated via this technique include Cisplatin (Verrijk et al., 1992), 5-Fluorouracil 

(Boisdron-Celle et al., 1995), Lidocaine (Chung et al., 2001) and Progesterone (Aso et al., 1994; 

Bums et al., 1993). However, this technique fails when it comes to encapsulation of highly 

hydrophilic agents. This is because the active agent may diffuse into the continuous phase during 

the formulation or it may not get dissolved in the organic solvent. Multiple emulsions play a 

pivotal role in such cases. The most common type of multiple emulsions is water-in-oil (w/o/w) 

emulsion. Most hydrophilic drugs have been encapsulated via (w/o/w) method (Crotts and Park, 

1998; Okochi and Nakano, 2000; Sinha and Trehan, 2003). The water soluble agent is 

solubilized within the inner W1 phase of the emulsion which then shows prolonged drug release, 

lesser toxic effects (Nakhare and Vyas, 1996) and high encapsulation efficiency of the active 

agent. For this reason, proteins have been widely encapsulated by w/o/w emulsion system. The 

stability and release properties of double emulsions can be greatly improved by a change in the 

type and concentration of stabilizer employed in the system. Combining targeted delivery and 

prolonged drug release by using double emulsion system presents tremendous benefits in cancer 

therapy. Many advantages are associated with the use of double emulsion systems. Such systems 

are biocompatible, biodegradable and versatile with respect to different oils and emulsifiers 

being employed. Moreover, both hydrophobic and hydrophilic kinds of drugs can be 
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encapsulated (separately and simultaneously) and protected. However, some difficulties are also 

linked with multiple emulsions such as difficulty in formulation, bulky and susceptibility to 

different routes of physical and chemical degradation. Various attempts have been made by 

researchers to improve the stability of multiple emulsions. Some of these efforts include 

surfactant concentration modulation, interfacial complexation, polymerization gelling, additives 

in different phases, steric stabilization and pro-emulsion approach (Garti, 1997; Garti and Aserin, 

1996; Hino et al., 2000). The objective of this work is to present a comprehensive literature

review on double emulsion technique. The review begins with a brief description of double 

emulsion and a comprehensive history of this technique. It progresses on to discuss the 

mechanism involved in formulation of a double emulsion. This review also reports the different 

polymers, stabilizers, surfactants, drugs encapsulated and average particle size obtained in 

different studies via this technique.

2. What is a double emulsion?

The first paper on double emulsion dates back 89 years (Seifriz, 1924), but detailed 

investigation on double emulsions was started at the end of 1970s. We can find several reviews 

on multiple emulsions, which come primarily from three research groups namely: Florence and 

Whitehill, (Florence and Whitehill, 1981a, 1982), Matsumoto et al. (Matsumoto et al., 1980) and 

Frenkel et al. (Frenkel et al., 1983). Double emulsion also termed as emulsion of emulsion, are 

complex system, in which the droplets of dispersed phase themselves comprises even small of 

dispersed phase (Garti and Bisperink, 1998). Double emulsion (DE) droplets are mostly 

polydispersed in size. In some cases its droplets are big enough containing many small 

compartments with 50-100 droplets in each drop of double emulsion, while on the other hand 

small droplets of DE may consist of one or few droplets. There are two common types of DE; 

water-oil-water (w/o/w) and oil-water-oil (o/w/o). Two step processes are most commonly used 

for preparation of double emulsions, in which for w/o/w DE preparation, the inner aqueous phase 

(W1) is dispersed in oil phase containing lipophilic emulsifier in the first step, which is followed 

by dispersion of the primary emulsion into outer aqueous phase (W2) containing hydrophilic 

emulsifier (Garti and Bisperink, 1998; Schuch et al., 2013).

Florence et al (Florence and Whitehill, 1981b) identified that double emulsion droplets 

could be of three types (A, B, C), which did not exist exclusively in any one system but usually 

one of them is predominant. The type A, was found to be the simplest system consists of 
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relatively small droplets with almost single droplet of the internal aqueous phase (Fig.1 A). The 

droplet size in the type B emulsion system is larger composed of several small droplets (less than 

50) of internal aqueous phase (Fig.1 B). The system became more complex (type C) when 

majority of droplets achieve relatively largest size, encapsulating numerous droplets of internal 

aqueous phase (W1) (Fig.1 C). The system C, showed slow release of entrapped moiety than A or 

B, so system C would expected to be more promising in drug delivery system.

Fig. 1. Types of double emulsion droplets. (Florence and Whitehill, 1981b)

Double emulsion has the ability to prepare polymeric particles, which allow the 

controlled release of active ingredients soluble in the internal aqueous phase or dispersed in the 

polymeric matrix. Its foremost function is regarded as internal reservoir to entrapped active 

ingredients whatever you chose into the inner confined space, which can protect the entrapped 

sensitive ingredient against light, enzymatic degradation, and oxidation.  It also allows the slow 

and sustained release of active ingredients from the internal reservoir to the external dispersion 

media and their key importance is due to their capability to encapsulate some water-soluble 

flavors and active ingredients(Benichou et al., 2004). In cosmetic field, it offers the possibility of 

combining incompatible ingredients in the same formulation to enhance the efficacy. Regarding 

disadvantages of double emulsion, it a complex process and thermodynamically unstable. The 

particles produced by this technique are comparatively heterogeneous and particle size is 

sensitive to various process parameter of double emulsion technique. Few prominent advantages 

and limitation of various techniques for encapsulation of drug are given in the table (Table 1). 

Single emulsion solvent evaporation, double emulsification, nanoprecipitation, emulsion 

diffusion and salting out techniques can be used to encapsulate lipophilic active agents. Double 

emulsion is a unique process encompassing the advantage of encapsulating both lipophilic and 
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hydrophilic drug molecules. Both emulsion diffusion and coacervation techniques are used for 

incorporation of thermosensitive drugs whereas phase inversion temperature method cannot be 

utilized to encapsulate thermolabile actives like peptides and proteins. Techniques that generally 

require high shearing stress and high pressure homogenization include single and double 

emulsification. Moreover, double emulsion generally gives polydisperse particles as compared to 

other techniques. Lastly, the techniques that do not require the use of toxic solvents or organic 

solvents are; emulsion diffusion, microemulsion, nanoprecipitation, high pressure 

homogenization and phase inversion temperature technique. 
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3. Formulated double emulsion based dispersion

The most often used double emulsion technique for preparation of miro- and 

nanoparticle, and encapsulation of active molecules is double emulsion solvent evaporation 

technique. Initially, this technique was used for microencapsulation (Alex and Bodmeier, 1990; 

Pisani et al., 2008). In this method, homogenization is performed in two steps; in the first step, 

water soluble drugs are incorporated in the inner aqueous phase (W1) and polymer/ lipophilic 

drugs are added into oil phase (O), then both phases are homogenize by proper agitation to form 

the primary emulsion (W1/O). Then, the primary emulsion is emulsified with the outer aqueous 

phase containing appropriate stabilizer to form double emulsion (W1/O/W2).  Formation of 

double emulsion (particulate dispersion) is followed by evaporation of the organic solvent (O) 

from the dispersed phase leading to a point of insolubility and consequently, hardening of the 

polymer encapsulating the active material. The solvent may be evaporated under reduced 

pressure via rotary evaporator or by simple stirring at ambient temperature depending upon the 

boiling point of organic solvent. The outer aqueous phase act as dispersion medium and the 

agitation can be provided either by mechanical stirring or sonication depending upon the nature 

of drug to be encapsulated and the intended particle size. 

3.1. Commonly used polymers in double emulsion solvent elimination preparations 

Biodegradable polymers have been used tremendously in drug delivery system for 

encapsulation of pharmaceuticals and pharmaceuticals as they can be degraded into nontoxic 

components. These polymers are consisting of ester, amide and ether functional groups. 

Different polymers such as PLA, PLGA and PCL are being intensively researched for 

encapsulation various active drugs, genes and macromolecules using double emulsion process 

(Badri et al., 2014; Pillai and Panchagnula, 2001; Rosset et al., 2012). PCL is a nontoxic, 

biodegradable and biocompatible polymer; with low glass transition temperature and melting 

point and its metabolites are eliminated from the body by innate metabolic process. It has been 

extensively study for encapsulation via double emulsion process for control drug delivery system 

in several formulations due to its compatibility with wide range of drugs and its slow degradation 

to release drug for extended period of time (Florindo et al., 2008a; Wang et al., 2008a) (Iqbal et 

al., 2014; Lowery et al., 2010). Poly(lactic-co-glycolic acid) is another biocompatible and 

biodegradable polymers commonly used in double emulsion techniques (Hattrem et al., 2014; 

Rizkalla et al., 2006; Takai et al., 2011). After its approval by FDA for use in humans, it has 
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been a popular choice for drug delivery. It degrades gradually into the biocompatible products of 

lactic and glycolic acid via hydrolysis and thus releases the encapsulated agents slowly over a 

long period of time (weeks-months).  This polymer is available in different PLGA/PLA ratio. As 

lactic acid is more hydrophobic than glycolic acid and, thus, lactic acid-rich PLGA copolymers 

are less hydrophilic, and degrade very slowly (Dinarvand et al., 2011). PLGA has been 

investigated for encapsulation of protein, peptides and nucleic acids, and for attachments of 

legends to targeting particle to specific tissues and imaging (McCall and Sirianni, 2013). 

Poly (L-lactic acid) (PLA) polymers are approved by FDA in humans (Zille et al., 2010) 

and have been frequently used for encapsulation in drug delivery system via double emulsion 

process (Hong et al., 2005; Montiel-Eulefi et al., 2014; Nihant et al., 1994). It belongs to the 

most promising category of biodegradable polymers having excellent mechanical properties, 

good biocompatibility, and low toxicity. It is semi-crystalline polymer with a melting point 

of about 180 °C, glass transition temperature of about 55 °C and tensile strength of 50–70 MPa 

and commonly prepared by ring-opening polymerization (ROP) (A. Auras et al., 2010; 

Södergård and Stolt, 2002) . The properties such as crystallinity, hydrophobicity and melting 

point of PLA can be tailor made by copolymerization (random, block, and graft) with other 

comonomers, modification in molecular architecture (hyperbranched, star shaped, or 

dendrimers), functionalization or blending with other polymers. For example, glycolide, ε-

caprolactone, δ-valerolactone, trimethylene and carbonate have been often used to modify its 

thermal properties (GRUVEGÅRD et al., 1998). These modifications also affect drug loaded 

PLA particles properties such as drug release rate, permeability and degradation rate of the 

matrix. Beside many advantages of biodegradable PLA polymers in controlled drug delivery 

systems, they have certain shortcomings such as a risk of toxicity and immunogenicity due to 

their acidic by-products when used for long period of time (Naraharisetti et al., 2005).

The selection of the appropriate polymer during encapsulation of drug is a critical step, 

which depends upon the chemical nature of the drug and polymer and their intended application. 

Table 2 is listing some of the most commonly used biodegradable polymers in encapsulation via 

double emulsion process.  

3.2. Stabilizers

Stabilizers make it possible to maintain the physicochemical state of a dispersion of two 

or more immiscible phases and prevent the separation of phases, thus making emulsion system 
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more stable. The commonly used stabilizers in double emulsion process include PVA, Tween 80 

and Span 80. However, poly vinyl alcohol (PVA) is one of the most frequently used stabilizers in

double emulsion process for encapsulation of different active moieties (Liu et al., 2005a; 

Rizkalla et al., 2006; Yang et al., 2001). It is a well-known hydrophilic, biocompatible polymer 

and possesses good mechanical strength, low fouling potential, and lasting temperature stability 

and pH stability. These properties of PVA make it suitable candidate to be used in encapsulation 

of various pharmaceuticals and biopharmaceuticals (Xia and Xiao, 2012).
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4. Encapsulation of active ingredients

The selection of a specific technique for an efficient drug encapsulation is generally 

determined by the hydrophilicity or hydrophobicity of the drug molecules (Jelvehgari and 

Montazam, 2012). Despite the fact that various techniques have been described in the literature 

as well as successfully employed by researchers to encapsulate hydrophobic agents into 

biodegradable nanoparticles (Ibrahim et al., 2013; Palamoor and Jablonski, 2013, 2014), the 

encapsulation of hydrophilic drugs into such carriers is not facile. This is because the hydrophilic 

compound is pushed out from hydrophobic matrix into the dispersing water phase during 

formulation of the particles (Ibrahim et al., 2013). W/O or O/O emulsion prepared via solvent 

evaporation methods are quite suitable for biologically active substances encapsulation into 

microspheres but certain problems are involved in these techniques e.g. it is difficult to remove 

the large volumes of solvents from the dispersions (Jelvehgari and Montazam, 2012). The 

mineral or vegetable oil used as external phase in both w/o or o/o emulsion makes 

washing/collecting of resultant particles difficult. However, more innovative method to 

encapsulate hydrophilic drugs via emulsion solvent evaporation technique includes double 

emulsions (multiple emulsions) e.g. in w/o/o emulsion type, the problems associated with w/o or 

o/o methods are eliminated. Jelvehgari and Montazam (Jelvehgari and Montazam, 2012) 

prepared theophylline loaded microparticles via emulsion-solvent extraction or evaporation 

techniques to compare the results (Fig. 2). In any case, the formulation should be adapted to the 

chemical nature of used polymer and the chemical stability of the active molecule in the used 

solvent and encapsulation conditions. 
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Fig. 2. Ethyl cellulose loaded microparticles prepared via double emulsification (W/O1/O2)

technique (Jelvehgari and Montazam, 2012).

4.1. Encapsulation of common pharmaceutical molecules by double emulsion solvent 

evaporation process  

Some common pharmaceutical drugs encapsulated into particles by double emulsion 

process such as anticancer drugs, anti-inflammatory and antibiotics are reviewed here. The most 

encapsulated active molecules are anticancer drugs. 

4.1. 1. Anticancer drugs 

Among anticancer drugs, doxorubicin, cisplatin, fluorouracil and epirubicin have been 

encapsulated by this technique (Ji et al., 2012a; Matsumoto et al., 1997; Wang et al., 2010; Zhou 

et al., 2006). Doxorubicin is an antitumor drug and has been frequently incorporated into 

different polymeric particles prepared by double emulsion process (Amjadi et al., 2013; Jiang et 

al., 2011). It is an antibiotic commercially available as a water soluble hydrochloride salt, which 

used in cancer chemotherapy. Tewes et al (Tewes et al., 2007) prepared PLGA particles loaded 

with doxorubicin. The hydrodynamic size of DOX loaded particles was found to be 316 nm and 

its encapsulation efficiency was 67%. The release rate was slow and over a period of 24 hours 

only 1.5% of drug was released, which indicates the controlled release of formulation. Release 

rate depends upon several factors such as water-solubility, dissolution, particles size  and 

   Stirring

EC in solvent system
(acetonitrile and DCM)

Syringe pump
(W/O emulsion)

W/O emulsion Span 80 in liquid 
paraffin (O2)

TH in D.W (W1)
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Filtration and 
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Drying
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thickness of polymeric coating (Pearnchob et al., 2003; Siepmann et al., 2004).In another study, 

Wang et al (Wang et al., 2011) demonstrated that the anti-tumor efficacy of doxorubicin (DOX) 

and paclitaxel (TAX) can be enhanced by its co-delivery strategy. They prepared drug-loaded 

Methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA) nanoparticles by 

double emulsion process.  The hydrophilic doxorubicin was incorporated in inner aqueous phase 

and the hydrophobic paclitaxel in methylene chloride (oil phase) and emulsified by sanitation. 

Average size of drug loaded particles (NPs-DOX-TAX) was measured by DLS and found to be 

243 nm. The in vitro drug release profile was determined in phosphate-buffered saline (PBS) at 

pH 7.4 and pH 4.4 and the release rate of both DOX and TAX were pH dependent (Fig. 3). At 

neutral pH, the release rates of both drugs were slower than acidic pH, and about 90% of drugs 

were released within 300 hours at pH 7.4. 

Fig. 3. Release profiles of DOX and TAX from mPEG-PLGA nanoparticles in PBS at 37 °C at 

pH 4.4 (black, red) and pH 7.4 (blue, purple) (Wang et al., 2011). 

4.1. 2. Anti-inflammatory drugs 

Anti-inflammatory drugs encapsulated by double emulsion process included 

acetaminophen, aceclofenac , diclofenac sodium, aspirin and ketoprofen etc (Bhatnagar et al., 

1995; Lai and Tsiang, 2005; Nagda et al., 2009; Pavanetto et al., 1996). Aspirin is widely utilized 

nonsteroidal anti-inflammatory drug (NSAID). It may be used to reduce pain and swelling in 

conditions such as arthritis, to reduce fever and relieve mild to moderate pain from conditions 

such as muscle aches, toothaches, common cold. Fargnoli et al (Fargnoli et al., 2014)
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encapsulated aspirin and prednisolone drugs in  poly-lactic glycolic acid polymer (PLGA) 

nanoparticles by double emulsion process for cardiac gene therapy. And it was found that aspirin 

particles have large size (323 nm) than prednisolone nanoparticles (234 nm), this difference in 

size was attributable to higher aspirin mass content. Loading Efficiency results were uniform for 

all nanoparticle types, i.e. PLGA 50:50 Prednisolone [88.9 %], PLGA 65:35 Prednisolone [88.2 

%], PLGA 50:50 Aspirin [89 %] and PLGA 65:35 Aspirin [88.8 %]. The control release of drug 

for over a time period of 5 days are shown in Fig. 4. The release rate of aspirin was faster as 

compared to prednisolone as shown in the Fig. 4. 

Fig. 4. PLGA Nanoparticle formulations release analysis. Controlled release study results 

demonstrate that aspirin particles overall release faster than prednisolone types (Fargnoli et al., 

2014). 

4.1. 3. Antibiotic drugs  

Antibiotics such as, erythromycin, gentamicin, norfloxacin, cephalexin, capreomycin 

(Chaisri et al., 2009; Fan et al., 2009; Huang and Chung, 2001) Cefazolin, ciprofloxacin, 

clindamycin, colistin, doxycycline,and vancomycin (Shah et al., 2014) have been encapsulated 

by double emulsion technique. Encapsulation of highly hydrophilic drugs such as gentamicin has 

been performed by many researches via double emulsion method (Virto et al., 2007; Yang et al., 

2001). Gentamicin is the most important aminoglycoside that has been used widely for the 

treatment of osteomyelitis and against a wide range of Gram-positive and Gram-negative 

bacteria (Lecároz et al., 2006). However, a prolonged dosage regimen of antibiotics (4–6 weeks) 

for the treatment of osteomyelitis is needed, which may cause systemic toxicity.  Thus, localized
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drug delivery of gentamicin has been proposed, in order to minimize the side effects by reducing 

administered dose and to reduce probability of drug resistance (Huang and Chung, 2001). The in 

vitro drug release is dependent on the distribution of drug within microsphere, polymer blend 

ratio, polymer degradation pattern, stabilizer and size of microsphere (Faisant et al., 2002; 

Lecomte et al., 2005; Luan et al., 2006, 2006). The high initial burst release of drug is often 

attributed to the associated drug on the particles surfaces (Kassab et al., 1997). On the other 

hand, larger size particle release drug more slowly and for extended period of time compared to 

smaller particles (Berkland et al., 2003).  

In a study conducted by Shah et al (Shah et al., 2014) cefazolin, ciprofloxacin, 

clindamycin, colistin, doxycycline and vancomycin were loaded at 10 wt% and 20 wt% into 

PLGA microparticles using double emulsion solvent evaporation technique. All the antibiotics 

were first solubilized in the inner aqueous phase at 37 C° and then added to the oil phase (PLGA 

dissolved in methylene chloride) at a ratio of 1:5.6 v/v.  The internal phase/oil phase emulsion 

was then homogenized with outer aqueous phase (0.3 wt% PVA solution) at 700 rpm. Finally, 

the solvent was evaporated and the particles were washed. Table 3 shows their loading 

efficiencies. 

Table 3 
Loading Efficiencies of Microparticle Formulations (Shah et al., 2014) 

Loading efficiency of 10 wt% 
antibiotic-loaded PLGA MPs 
(%)

Loading efficiency of 20 wt% 
antibiotic-loaded PLGA MPs 
(%)

Cefazolin 36.4±3.3 51.3±6.1
Ciprofloxacin 86.8±10.9* 38.9±17.8*

Clindamycin 84.9±6.9 89.5±4.0
Colistin 102.0±5.0 105.3±4.4
Doxycycline 71.4±2.3 89.4±0.9
Vancomycin 83.3±4.8 76.9±6.2
Data is presented as mean ± standard deviation, n = 3 per group 

* Indicates significant difference between 10 and 20 wt% loaded for a given antibiotic 

The release kinetics of all of the antibiotics loaded PLGA particles Were determined in 

phosphate buffered saline at pH 7.4. The in vitro release curves are shown in Fig. 5. From the 

release analysis, it was found that during phase-1 (0-1 day), 20 wt % loaded ciprofloxacin 

formulation has greater burst release as compared to 20 wt % clindamycin, cefazolin and 
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doxycycline loaded formulations, while no significant difference was found between 20 wt% 

cefazolin, clindamycin and doxycycline formulations. Most of the loaded drugs were released 

during phase-2 (1-21 days). In this phase, drug release rates were almost same for cefazolin, 

ciprofloxacin, clindamycin, and doxycycline for both 10 wt % and 20 wt % loaded particles. In 

case of colistin and vancomycin loaded particles, the drugs were mainly released during  phase 3 

(24-38 days) and there was no significant difference in release rates between colistin and 

vancomycin loaded particles (Shah et al., 2014). 

Fig. 5. Release curves for (a) cefazolin, (b) ciprofloxacin, (c) clindamycin, (d) colistin, (e) 

doxycycline, and (f) vancomycin loaded PLGA microparticles at 10 and 20 wt%. Significant 

differences between release rates during each phase for the same antibiotic are indicated by 

letters A and B. For colistin loaded PLGA MPs, Phase 2 and Phase 3 are significantly different 

between 10 and 20 wt% loaded MPs (p<0.05). Ciprofloxacin and doxycycline 10 wt% loaded 

MPs demonstrate increased release of antibiotic during Phase 3 compared to 20 wt% loaded 

MPs, and vancomycin loaded MPs demonstrate increased release from 20 wt% MPs compared to 

10 wt% MPs in phase 4 (p<0.05). Cumulative percent release is the same between 10 and 20 

wt% for any antibiotic (p>0.05). The three release phases of cefazolin, ciprofloxacin, 

clindamycin and doxycycline are: phase 1 (0-1d), phase 2 (1-21d), phase 3 (21-49d), and four 

phases of colistin and vancomycin are: phase 1 (0-10d), phase 2 (10-24d), phase 3 (24-38d) and 

phase 4 (38-49d) (Shah et al., 2014).
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4.2. Encapsulation of biopharmaceuticals via double emulsion method 

4.2. 1. Encapsulation of proteins 

Advancement in the field of biotechnology/genetic engineering (Hutchinson and Furr, 

1990) and better understanding of the role of peptides and proteins in the physiology and 

pathology has enhanced the importance of peptides and proteins as therapeutic agents.  However, 

certain hurdles are associated with the therapeutic usage of the available peptides and proteins 

such as their short half-life. Moreover, these can be easily degraded and most peptides possess 

poor passage through biological barriers due to their poor diffusivity and low partition 

coefficient (Lee, 1988). Due to these reasons, during the past two decades, the researchers have 

focused their interest in encapsulation of these agents within colloidal particles by employing 

different biodegradable polymers (Arshady, 1991; Heller, 1993; Jalil and Nixon, 1990; Langer, 

1990; Zhou and Wan Po, 1991). Encapsulation protects these agents from degradation, controls 

their release from site of administration and in some cases, it can also improve the passage 

through biological barriers. Although the double emulsion encapsulation technique is taken as a 

complex process, it is still widely employed to encapsulate hydrophilic agents, particularly 

protein and peptide drugs, into polymeric microspheres resulting in higher encapsulation 

efficiencies (Alonso et al., 1994; Bley et al., 2009; Kreitz et al., 1997; Leach and Mathiowitz, 

1998). Engel et al. (Engel et al., 1968) successfully encapsulated insulin via this technique to 

enhance the efficiency of insulin upon oral administration as well as to facilitate its 

gastrointestinal absorption. 

Protein encapsulation via double emulsion is performed in two steps (Nihant et al., 1994; Tan

and Danquah, 2012): In the primary emulsion formation stage, the aqueous solution of protein is 

added to the polymeric organic solution in the presence of high shearing forces 

(ultrasonication/homogenization). In the second stage, double emulsion (w/o/w) is formed by 

dispersing the primary emulsion in an external aqueous phase containing suitably selected 

stabilizer. Finally, organic solvent removal either by evaporation or extraction results in the 

formation of protein loaded particles (Fig. 6).
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Fig. 6. Double emulsion solvent evaporation method for microencapsulation of proteins (Yeo et 

al., 2001). 

Many proteins have been encapsulated via this technique such as bovine serum albumin 

(Benoit et al., 1999; Lu et al., 1999; Sah et al., 1995; S. R. Jameela, 1996; Yang et al., 2001; 

Youan et al., 1999). Lamprecht et al. (Lamprecht et al., 2000) also prepared BSA based 

nanoparticles via double emulsion pressure homogenization technique with the goal to 

investigate the influence of miscellaneous process control parameters on the obtained 

nanoparticles. Some novels method for the encapsulation of proteins and peptides were also 

introduced such as Viswanathan et al. (Viswanathan et al., 1999) introduced a (water in oil) in oil 

emulsion. They used oil as processing medium to prevent the hydrophilic proteins from diffusing 

out of the microspheres before they harden. Whereas, in another case, BSA loaded PCL 

microparticles were prepared by Lin and Huang, (Lin and Huang, 2001a) via w/o/o/o emulsion 

solvent evaporation method. They utilized two types of homogenizers and investigated the 

influence of solvent evaporation rate on the crystallinity and performance of particles. Another 

study was also performed on similarly prepared particles i.e. via w/o/o/o emulsion technique (Lin 

and Huang, 2001b) to study the effect of pluronics on the BSA loaded microparticles.

A luteinizing hormone-releasing hormone (LHRH) agonist i.e. Leuprolide acetate was 

encapsulated via w/o/w emulsification by Ogawa et al. (Ogawa et al., 1988a) and Okada et al. 

(Ogawa et al., 1988b). Currently this product is available in the market. There are many other 

examples of proteins encapsulated by double emulsion technique and few of these examples are 

listed in the following table (Table. 4).

Protein 
solution 
in water

 

Hardened 
microsphere

Secondary emulsion 
(W/O/W)

Oil

Primary 
emulsion W/O

Water
Solvent removal 
& drying
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Table 4 
Various proteins encapsulated via double emulsion technique using different polymers  

Protein Polymer Encapsulation
efficiency

Initial release
in 1 day

Reference

Carbonic 
anhydrase

PLGA 45-48% < 10% (Lu and Park, 
1995)

BSA PLGA 56-85% 30-50% (Igartua et al., 
1997)

Recombinant 
human growth 
hormone (rhGH)

PLGA 40-66% 20% (Cleland et al., 
1997)

Urease PLGA 17-55% 17-45% (Sturesson and 
Carlfors, 2000)

Leuprolide PLGA 13.4% 10% (Woo et al., 
2001)

Brain derived 
neurotr-ophic factor 
(BDNF)

PLGA,PLL,
PEG

- BDNF delivered 
for longer than 
60 days

(Bertram et al., 
2010)

Vascular 
endothelial growth 
factor (VEGF)

PLGA 46-60% -4ng/mL
-27ng/mL

(Karal-Yılmaz et 
al., 2011)

Alpha-1 antitrypsin 
(α1AT)

PLGA Varies with
copolymer ratio 
of PLGA

- (Pirooznia et al., 
2012)

Lysozyme PEG/PBT
block

89% < 5% (J M Bezemer, 
2000)

Although, this technique is widely used for protein encapsulation, still there are certain 

limitations associated with this method. The drug encapsulation efficiency is not very good and 

the production cost of protein drugs is high. Moreover, the use of toxic organic solvents such as 

dichloromethane and ethyl acetate is also not very favorable. Furthermore, protein drugs tend to 

denature and form aggregates due to various factors like high shearing forces and exposure to 

large interface between aqueous and organic phases. 

4.2. 2. Encapsulation of Nucleic acids 

Nucleic acid is an important biomolecule in our body having many applications in gene 

therapy and diagnostics (Chen et al., 2009). However the major challenge is its effective and 

efficient delivery to the site of interest without its degradation. Different strategies have been 

adopted for this purpose such as, complexation of DNA with polycations (Möbus et al., 2012; 

Putnam, 2006) encapsulation within liposomes (Edwards and Baeumner, 2007; Tsumoto et al., 
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2001), encapsulation via double emulsion (Ibraheem et al., 2013a) and polyelectrolyte capsules 

(Kreft et al., 2006; Shchukin et al., 2004). In modern drug delivery system, it is a challenge to 

administered hydrophilic biomolecules such as nucleic acids. Because of their water solubility, 

they tend to diffuse into continuous aqueous phase during emulsification process (Iqbal and 

Akhtar, 2013; Luo et al., 1999; Perez et al., 2001; Woodrow et al., 2009) which leads to low 

encapsulation efficiency of active moiety (Cun et al., 2011). Additionally, the negative charged 

biomolecules are unable to penetrate the cell membrane appropriately and also labile to 

degradation by different enzymes such as proteases and nucleases (Amidon et al., 1995; Li et al., 

2006; Verdine and Walensky, 2007).In order to overcome these problems, researchers have 

focused on encapsulation of nucleic acid drugs inside biodegradable polymer, because it 

protecting the nucleic acid against degradation, facilitating its intracellular penetration,

minimizing fluctuation in plasma concentration, enhancing the drug delivery to intended site and 

controlling the rate of drug release by diffusion  (Lecomte et al., 2004; Singh et al., 2010; 

Streubel et al., 2006) 

Various approaches have been used for encapsulation of nucleic acids including emulsion 

solvent evaporation, coacervation, spray drying and double emulsion techniques (Oster and 

Kissel, 2005; Tan and Danquah, 2012; Zhao et al., 2014). However double emulsion is technique 

is considered one of the most appropriate method, especially for encapsulation of hydrophilic 

nucleic acid drug inside biodegradable polymer (Jeffery et al., 1991, 1993; Mehta et al., 1996),

this technique is reproducible and can be scale up for large batches (Jorgensen and Nielson, 

2009). Typically in this method, the aqueous solution of nucleic acid is mixed with a solution of 

polymer dissolved in organic solvent by using sonication or homogenization techniques 

(Ducheyne et al., 2011). Beside several advantages, double emulsion process has a drawback of 

shear force used for homogenization of nucleic acid’s solution in the organic phase. Which can 

damage the integrity of biomolecules, thus leads to loss of its biological activity. Moreover, the 

organic solvent can adversely affect the structure of nucleic acid during homogenization. This 

damage can be minimized by condensation of nucleic acid with cationic polymers, in order to 

reduce its size and maintain its supercoiling structure, and thus preserve its biological activity 

(Ducheyne et al., 2011). It has been established that during second step of double emulsion 

emulsification, the applied shearing force disrupts the primary emulsion droplets, thus the inner 

aqueous phase containing nucleic acid mixed with outer aqueous phase, allowing diffusion of 
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nucleic acid into outer aqueous phase. Which may leads to poor loading efficiency, in systems with low 

stability of primary emulsions (Jorgensen and Nielson, 2009). The ratio of aqueous phase to oil phase has 

a significant effect on double emulsion stability. It has been reported that, an emulsion with ratio of 1:10 

(water: oil) is more stable than ratio of 1:5 (water: oil) (Mohamed and van der Walle, 2006). Similarly, 

the emulsion of smaller particle size can be prepared with water: oil ratio of 1:30 as compared to ratio of 

1:10 (water: oil), however beyond water: oil ratio of 1:20 a decrease in encapsulation efficiency has also 

been observed, thus water: oil ratio in between 1:10 and 1: 20 are frequently used (Hsu et al., 1999).
For encapsulation of nucleic acid, both homogenization and sonication process can be used, 

which results in almost same % encapsulation efficiency. Though, homogenization is the most commonly 

used technique. In case of sonication technique, there are concerns regarding scale up of process to 

produce large batches and stability of larger biomolecules (Hsu et al., 1999). The particle size decreases 

with an increase in homogenization speed (Díez and Tros de Ilarduya, 2006). However, this is not ideal 

choice to decrease the particle size, because vigorous homogenization in second step of emulsification 

can disrupt the primary emulsion droplet and consequently, leakage of nucleic acid into the outer aqueous 

phase may occur (Jorgensen and Nielson, 2009). Encapsulation efficiency of nucleic acid can be further 

enhanced by addition calcium phosphate to inner aqueous phase of double emulsion. Dördelmann et al 

(Dördelmann et al., 2014) reported that, by addition of calcium phosphate to inner aqueous phase of 

double emulsion, the encapsulation efficiency of siRNA and DNA was increase by 37% and 52% 

respectively, compared to nanoparticle without calcium phosphate (Fig. 7). They obtained nucleic acid 

loaded PLGA nanoparticles with a diameter of 200 nm and zeta potential of -26 mV, prepared by a 

double emulsion solvent evaporation technique and stabilized with PVA. The addition of 

polyethyleneimine has changed the zeta potential to +30 mV, thus facilitating the cellular uptake of these 

particles. 

 

 

 

 

 

 

 

Fig. 7.  Schematic illustration of the improved loading efficiency of nucleic acids by the addition 
of calcium phosphate nanoparticles. (A) PLGA nanoparticles, (B) Calcium phosphate-PLGA 
nanoparticles (Dördelmann et al., 2014)

    

A. B.. Enhanced loading of biomolecules by 
the addition of calcium phosphate

. Low encapsulation efficiencies 
of hydrophilic biomolecules

Polymeric shell

Loaded bio-
molecules
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4.2. 3. Encapsulation of miscellaneous biopharmaceuticals 

Nanoparticles encapsulating enzymes prepared via w/o or w/o/w emulsifications are quite 

susceptible to denaturation, aggregation, oxidation, cleavage, especially at the aqueous phase 

solvent interface. This obstacle has been overcome by the addition of stabilizers like carriers 

proteins (e.g. albumin), surfactants during primary emulsification or by adding molecules like 

mannitol, trehalose to the protein phase. Three model enzymes i.e. L-asparaginase, catalase and 

glucose oxidase were encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate via w/o/w 

emulsification (Baran et al., 2002) The enzyme activity was increased upon usage of low 

molecular weight PHBV and adjusting second aqueous phase to isoelectric point of proteins 

enhanced the encapsulation yields of catalase and L-asparaginase. L-asparaginase was also 

encapsulated in PLG nanospheres via w/o/w emulsification by (Gasper et al., 1998). They 

investigated the influence of molecular weight of copolymer and presence of carboxyl-end 

groups in copolymer chains on the physicochemical and in vitro release characteristics of the 

nanoparticles. Particles having higher molecular weight PLG displayed larger sizes, higher 

loading and slower release rates than particles made from low molecular weight PLG. Moreover, 

nanoparticles made of PLG with free carboxyl-end groups showed high protein loading (4.86%) 

and continuous delivery of active for about 20 days. α-Chymotrypsin (proteolytic enzyme) was 

encapsulated into PLGA microparticles by w/o/w double emulsion technique (Pérez-Rodriguez 

et al., 2003). It was observed that interface induced protein aggregation and inactivation could be 

reduced by co-dissolving it with maltose and poly ethylene glycol in the primary aqueous phase. 

(Liu et al., 2005c) loaded lysozyme into PLA microparticles by combining Shirasu porous glass 

membrane (SPG) emulsification and w/o/w double emulsification techniques. They observed 

that SPG gave higher encapsulation efficiency than stirring method. In another work, lysozyme 

were loaded into PLGA microparticles via the same w/o/w double emulsion technique to find out 

the effect of emulsification of lysozyme solutions with methylene chloride on the structural 

integrity and recovery of active (van de Weert et al., 2000). Another enzyme Staphylokinase 

variant K35R (DGR) was loaded into PLGA microparticles via double emulsion technique (He 

et al., 2006). Results showed that encapsulation efficiency was enhanced from 7% to 78% upon 

coencapsulation of 2% PVA and introduction of 2.5% NaCl into the external aqueous phase of 

the w/o/w emulsion.

74



 

Double emulsion technique has also been applied to encapsulation of antibodies. Poor 

stability and low efficiency are major hurdles in the formulation of engineered monoclonal 

antibodies (mAbs) for different therapeutic uses, which may be severer for application to 

encapsulation into nanoparticles. Son et al.( 2009) investigated the formulation and stabilizing 

conditions for encapsulation of mAb (3D8 scFv) into PLGA nanoparticles via double emulsion. 

It was concluded that mannitol was the most suitable stabilizer to retain stability and activity of 

3D8 scFv. Immunoglobulin G is an antibody contributing to 75% of serum immunoglobulin in 

humans and it provides protection to fetus in uterus This antibody was encapsulated into PLGA 

microparticles via s/o/w double emulsion technique (Wang et al., 2004). They investigated the 

stabilizing effects of different excipients during the period of protein atomization by spray freeze 

drying and subsequent encapsulation into the particles. They observed that double emulsion 

solvent evaporation process inactivated approximately 80% of the total IgG. More recently 

another monoclonal antibody Anti-Annexin A2 (AnxA2) was encapsulated via w/o/w emulsion 

into microparticles (Gdowski et al., 2015). Nanoparticles were monodispersed, 250 nm in size 

and had encapsulation efficiency of 18.7%. Particles exhibited sustained release and maintained 

their functionality upon release. In one study, malarial antigen SPf66 was encapsulated into 

PLGA microparticles via w/o/w emulsification (Igartua et al., 2008b). They observed the effect 

of gamma-irradiation on the biopharmaceutical properties of the particles and found out that the 

irradiation exposure did not affect the integrity of SPf66. Moreover, in vivo activity of malarial 

antigen was retained for week 27. (Wei et al., 2008) used w/o/w emulsification and premix 

membrane emulsification to encapsulate hepatitis B surface antigen. They observed that usage of 

diblock copolymer PLA-mPEG provided higher encapsulation efficiency as compared to using 

triblock copolymer PLA-PEG-PLA. Double emulsion solvent evaporation technique has been 

applied to encapsulation of other miscellaneous biopharmaceuticals as summarized in Table 5.
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5. Theranostic applications

The development of agents for simultaneous diagnosis and treatment of various diseases 

has gone through extensive investigations in recent years for biomedical applications. These 

multifunctional theranostic agents allow for feedback mechanism to establish the localization of 

drug, release of drug, disease phase and efficacy of the treatment (Ahsan et al., 2013; Eissa, 

2014; McCarthy, 2010). At present most of the researches in theranostic have been focused 

primarily on oncology, since, cancer is one of the most fatal diseases and currently the main 

cause of morbidity and mortality. It is assumed that a by this approach cancer can be managed 

timely with reduced cost (Ahmed et al., 2012a). Though, double emulsion technique has been 

frequently used for encapsulation of proteins, peptides hydrophilic and hydrophobic drugs, 

however limited work has been done in encapsulation of diagnostic agent and therapeutic agent 

simultaneously via double emulsification process, to the best of our knowledge. Some of the 

published studies are summarized here. 

Theranostic particles fabricated from different polymers have been used for better 

diagnosis and improved drug delivery, by several groups of researchers such as Yang et al (Yang 

et al., 2010) fabricated polymer wormlike vesicles loaded with loaded with superparamagnetic 

iron oxide (SPIO) nanoparticles (as MRI contrast agent) and anticancer drug doxorubicin (DOX) 

for targeted cancer therapy and MR imaging. The calculated SPIO nanoparticles (NPs) loading 

content in the vesicles was about 48.0 wt%, while The DOX loading level for these vesicles was 

about 9.0 wt%. This type of nanocarriers has the advantage that the SPIO and DOX loading 

amount can be easily changed by adjusting various process parameter during preparation and by 

changing the chemical structure of the triblock copolymers. This theranostic vesicle nanocarrier 

system was established to be very efficient, which can provide controlled and targeted drug 

delivery to the tumor as well as it can be used as an efficient MRI contrast agent, thus providing 

targeted cancer therapy and diagnosis simultaneously. Similarly,  Park et al (Park et al., 2012) 

incorporated dexamethasone in PLGA  nanoparticles and drug-loaded particles were then 

complexed with (PEI)/siRNA. Co-delivery approach of siRNA and dexamethasone was used in 

the treatment of rheumatoid arthritis. Almost over 50% of dexamethasone was loaded onto 

PLGA NPs. And, Ngaboni et al (Ngaboni Okassa et al., 2005) prepared biodegradable sub-

micron PLGA  particles by double emulsion technique,  loaded with magnetite/maghemite 

nanoparticles (Mag NPs) for intravenous drug targeting. Mag NPs were incorporated in the inner 
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aqueous phase and the final particle size was found to be 268-327 nm with the magnetite 

entrapment efficiency up to 60%. Several biomolecules have been also encapsulated via double 

emulsification for theranostic applications such as Ibraheem et al (Ibraheem et al., 2014b) 

entrapped human albumin protein into biodegrable polymer (PCL) along with fluorescence 

active molecule i.e. FITC-BSA (albumin-fluorescein isothiocyanate labeled bovine serum 

albumin). They incorporated human albumin into inner aqueous phase and emulsified in DCM 

solution containing polycaprolactone polymer using ultra-turrax hominization. The encapsulation 

efficiency of albumin was sufficiently high (up to 95%) and albumin-loaded particle was about 

340 nm. And the confocal microscopy revelled that all the loaded molecules were evenly 

distributed in the polycaprolactone matrix. 

Another study performed by Ahmed et al (Ahmed et al., 2012b) demonstrates the 

effective loading of iron oxide and a hydrophilic model drug (stilbene) into polymeric submicron 

particles for in vivo theranostics. They incorporated the hydrophilic model drug i.e stilbene in the 

inner aqueous phase (W1) of double emulsion and homogenized with polycaprolactone dissolved 

in DCM (oil phase). Subsequently the primary emulsion was dispersed in 0.5 % PVA solution 

(outer aqueous phase). Additionally, organic iron oxide nanoparticles were incorporated in oil 

phase to be used as MRI contrast agent for imaging. The results showed that iron oxide particles 

were proper encapsulated by biodegradable polymeric shell of polycaprolactone and the average 

size of loaded particles were about 300-400 nm.  Such hybrid particles owning the dual 

properties of diagnosis and therapy can be used for co-delivery of multimodal diagnostic agents 

and a variety of drugs in treatment of fatal disease such as cancer. Some examples of theranostic 

particle encapsulated via double emulsion process are listed in Table 6.  

The double emulsion technique has also been used for particle preparation with dual 

targeting ability (magnetic and molecular targeting) and co-delivery of hydrophilic and 

hydrophobic drugs simultaneously. Chiang et al (Chiang et al., 2014b) encapsulated hydrophilic 

doxorubicin (DOX) and hydrophobic paclitaxel (PTX) in nanoparticles along with 

superparamagnetic iron oxide (SPIO), and these particles were further conjugated with 

trastuzumab (monoclonal antibody) in order to specifically target the HER-2 positive cancer 

cells. DOX was added into the inner hydrophilic phase I (2 wt% PVA solution) while PTX was 

added to the hydrophobic phase II (chloroform containing 5 mg SPIO) and sonicated to form the 

primary emulsion (W/O). The primary emulsion homogenized using sonication with 
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hydrophobic phase III to form a double emulsion (W/O/W). Afterward, organic solvent was 

removed and particles were collected by centrifugation at 9000 rpm and redispersed in DI-water. 

The average particles were found to be 174 nm, while the encapsulation efficiency of PTX and 

DOX in PTX-DOX-nanoparticles were 91% and 72% respectively. They reported that HER-2 

positive antigens showed excellent binding ability toward the trastuzumab-conjugated 

nanoparticles, thus, demonstrating the targeting ability of these nanoparticles. When the 

magnetic field was applied on the tumor site, there was an increase in amount of particles 

accumulation. By using magnetic targeting, about 25.8% of PTX and 20% of DOX from the 

initial dose were accumulated in the tumor for trastuzumab-PTX-DOX-nanoparticles, which was 

2.47-fold higher compared to the particle without trastuzumab conjugation. Drug delivery using 

dual targeting may provide a more specific accumulation of drug-loaded particles at the desired 

tumor site, which can contribute to lower drug doses and thus reduce the side effects of cancer 

therapy. Shen et al  (Shen et al., 2013) prepared PLGA nanoparticles by using double emulsion 

technique. Two hydrophilic drugs, doxorubicin and verapamil (VER) were initially combined 

with chitosan shell coated on magnetic nanoparticles (MNPs), which were then incorporated into 

PLGA nanoparticles to be used for cancer therapy through dual-drug delivery system (DDDS). 

Additionally, a tumor-targeting ligand was also conjugated onto the end carboxyl groups on the 

PLGA-NPs. From morphological observations, drug loaded NPs were found to be spherical and 

with a narrow range of distribution of the particle sizes (about 130-140 nm). While, the 

entrapment efficiencies of DOX and VER were about 74.8 and 53.2 wt % respectively. In vitro 

drug release behaviors were evaluated under dialysis condition at 37 °C in a simulative normal 

body fluid (50 mM PBS, pH 7.4) and an acidic environment (50 mM PBS, pH 5.3). The 

cumulative release of DOX and VER at 37 °C was 29.0 and 41.3% respectively at pH 5.3; and 

25.0 and 34.5% respectively at pH 7.4. It was demonstrated that the intelligent DDDS could 

significantly inhibit both, the growth of tumor as well as DOX-induced cardiotoxicity in mice, 

and potentially offer an approach for safe cancer therapy. 
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6. Conclusion

Double emulsions have many potential applications. In biomedical field, it can be used in 

drug delivery systems for encapsulation of both hydrophobic as well as hydrophilic active 

medicaments, cosmetics, foods, imaging agents and other high value products. In modern drug 

delivery system, it is a challenge to administered hydrophilic biomolecules such as nucleic acids 

and proteins. Because of their water solubility, they tend to diffuse into continuous aqueous 

phase during emulsification process. However, the double emulsion technique has been 

extensively used for the encapsulation highly water soluble compounds including protein and 

peptides. Encapsulation of these compounds prevents its degradation, control the rate and extent 

of release and enhances the loading efficiency. Nanoparticles made by double emulsion solvent 

evaporation method are excellent carriers for delivery of hydrophilic molecules such as proteins, 

peptides and variety of pharmaceutical and biopharmaceutical compounds. It offers stability and 

controlled release of encapsulated molecules. Beside several advantages, double emulsion 

process has a drawback of shear force used for homogenization of inner aqueous phase 

containing biomolecules in the organic phase. Which can damage the integrity of biomolecules, 

thus leads to loss of its biological activity. Moreover, the organic solvent can adversely affect the 

structure of biomolecules during homogenization. This damage can be minimized by 

condensation of biomolecules with cationic polymers, in order to reduce its size and preserve its 

biological activity. Consequently, the research works reported in this review give information 

about different polymers, stabilizers and solvents that can be used in this technique, the effects of 

process parameters and the application of this technique in encapsulation of various 

pharmaceutical and biopharmaceuticals. 
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General summary 

Different Polymer-based encapsulation techniques have been widely studied by different 

research groups, including: nanoprecipitation method, emulsion diffusion method, double 

emulsion evaporation method, emulsion coacervation method and layer by layer assembly 

method. In this work, we studied the effects of various parameters on the particle’s properties 

including, particle size, zeta potential and morphology, prepared by emulsion solvent evaporation 

techniques (DESE). Particles were prepared by DESE process in two steps: in first step, inner 

aqueous phase (W1) was homogenized with organic phase (O) containing polymer, to form first 

emulsion.  This  was  followed  by  second  step,  in  which,  first  emulsion  was homogenized 

with outer aqueous phase using high shear ultra-turrax homogenizer for specific time and speed 

to achieve double emulsion (W1/O/W2). Subsequent evaporation of organic solvent from 

dispersed phase has led to particulate suspension at the end. Polycaprolactone (polymer)  

dissolved  in  dichloromethane  (solvent)  was  used  as  organic  phase  (O),  while polyvinyl 

alcohol solution was used as outer aqueous phase (W2). 

As a general tendency, zeta potential of all prepared particles was found to be constant at 

different pH (3, 5, 7, 9 and 11) for all samples, which means that changing of PCL particles 

preparation conditions have no significant effect on the zeta potential. No change in zeta potential 

can be attributed to non-charged character of polycaprolactone particle as already reported in 

literature. The effects of different parameters on particle size was studied and found that: stirring 

speed of homogenizer has significant effect on the particle size in the second step of 

emulsification process and almost small size particles were obtained at high stirring speed; while 

in the first step, there was insignificant effect of stirring speed. 

Similarly, the effect of stirring duration (time) on particle’s size was investigated, and 

results showed that with an increase in stirring time there is significant decrease in particle size 

during  the  second  step;  however  its  effect  was  insignificant  during  the  first  step  of 

emulsification. It was found that the increase in polymer amount leads to large size particles, and 

with increase in outer aqueous phase volume a slight decrease in particles size was reported. The 

decrease in PVA concentration below 0.2% leads to large particle formation, while above 0.2% 

PVA concentration it showed no significant   effect on particle’s size. From SEM images 

observation, it was found that the surface of obtained microparticles can be assumed to be 

spherical with smooth surface, having narrow size distribution. Compare to the results from 
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Laser Diffraction  Particle  Size  Analyses (LS-13  320), the  particles  measured  with  SEM 

were slightly smaller in size this may be due to contraction  induced by drying during evaporation  

of solvent. 
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In the  first  step, inner  aqueous  phase  (W1) was  added to  dichloromethane  (DCM) containing  polycaprolac-

tone  (PCL)  polymer  and  homogenized  to form  primary  emulsion  (W1/O). In  the  second step,  the  primary

emulsion  was  emulsified  in  the outer aqueous phase  (W2) containing  polyvinyl  alcohol  (PVA)  as stabilizer

using  ultra-turrax  to have  double  emulsion  (W1/O/W2). SEM microgram  shows  the  particles  morphology.
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a b  s  t  r  a c t

Preparation  of  polycaprolactone  (PCL) based microparticles  by  double emulsion  solvent  diffusion like

process  was  studied  in  this  work.  The double  emulsion  was  prepared  in  two  steps. In first step, the  inner

aqueous  phase  (W1) was  added to dichloromethane  (DCM)  solution  containing  PCL  and  homogenized  to

form  primary  emulsion  (W1/O). In the  second  step, the primary  emulsion  (W1/O)  was  emulsified  with  the

outer  aqueous  phase  (W2) containing  polyvinyl  alcohol  (PVA)  as  stabilizer using  ultra-turrax  at a specific

speed  and  time in  order  to  achieve the  double emulsion  (W1/O/W2).  Effects  of  various parameters  such

as  stirring  time and speed,  polymer  amount  and the volume  fraction  of  each  phase  on  hydrodynamic

particle  size,  size  distribution  and  zeta potential were  investigated.

As a general  tendency,  zeta potential  of  all prepared  particles  was  found  to be constant irrespective  of

investigated  parameter.  Whereas, the  increase  in  polymer  amount leads  to large particles  size  and  lowest

sizes  were  obtained when high  stirring  speed was  used  during  the second emulsification  step.

© 2014 Published by Elsevier B.V.
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1.  Introduction

The key point for pharmaceutical researches is to fabricate phar-

maceutical drug delivery system that enhance drug efficiency and

diminish the undesirable effects [1,2]. Encapsulation technique is

one  of  the techniques, which are used effectively for achieving

this aim. It can be identified as the technique by  which the active

material is walled or  coated by a  supported material, that shiel-

ding it  from the external environment [3–5]. It has found many

0927-7757/$ – see front matter ©  2014 Published by Elsevier B.V.
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applications in different fields like pharmaceuticals [6,7], cosmet-

ics [8,9], foods [10], diagnoses [11] and printing industries [12]. For

instance, in pharmaceutical field, drug encapsulation can  protect

the active ingredient against harsh biological environment; mask

the unpleasant taste and smell of the drug. Additionally, it can be

used in drug delivery system for targeting the drug to specific site

and to control the drug release [13,14].

Encapsulation technique, based on the method of preparation,

may lead to the formation of spheres or capsules [15]. Generally,

spheres are more stable than capsules. As a result, the drug

liberation from the spheres is slower; therefore, spheres can be

employed when a prolonged drug release is needed [16]. Encap-

sulation can be achieved by using various strategies [17]. Among

these strategies, biopolymer-based encapsulation techniques are

the  most appropriate in pharmaceutical domain [18–20], due to

the  biodegradability and biocompatibility of polymers which is

suitable for in vivo applications [21]. Polymer-based encapsulation

techniques have been well studied and reviewed by various

researcher teams [22–24], including: nanoprecipitation method,

emulsion diffusion method, double emulsification method,

emulsion–coacervation method, polymer-coating method, and

layer-by-layer (LBL) assembly method.

Here we studied particles preparation by double emulsifica-

tion method (multiple emulsion method); as this technique can

be used to encapsulate both hydrophilic and lipophilic substances

[25]. In addition, it is suitable for water-soluble fragile drug mate-

rials which are very sensitive to the high temperatures, such as

nucleic acids and protein [26–28].

Multiple emulsions were described for the first time in 1925

by Seifriz [29], it can be identified as complex [30] polydispersed

systems, in which the dispersed phase is itself an emulsion, that

has inner phase of the same nature of the double emulsion [32].

In double emulsion two types of emulsion (water in oil and oil

in water) are found simultaneously [33] using two types of sur-

factants (lipophilic and hydrophilic) for stabilizing them. Garti has

identified these systems as “emulsions of emulsions” [34]. The pres-

ence of two types of emulsion simultaneously in one system, gives

it  the properties of the two  emulsions. The multiple emulsions may

be  classified into two types: water in oil in water (W/O/W) and oil

in  water in oil (O/W/O) [35], the first type (W/O/W) is frequently

employed for pharmaceutical purposes [36]. The  composition of

double emulsions and their properties make them promising sys-

tems that have potential applications in various fields for example,

in pharmaceutical [37], in food industry and in cosmetics [38]. In

spite of all these important properties, the applications of multiple

emulsions are still limited because of their inherent thermody-

namic instability. In recent years, great efforts have been made to

improve the multiple emulsions properties, especially, increasing

the emulsion stability, decreasing and homogenizing the emulsion

droplets size. Many factors can affect the double emulsion sta-

bility such as, method of preparation, type of oil phase, type and

concentration of emulsifiers and so on [39].

The aim of the present work is to study for the first time the

influence of various parameters on colloidal properties (i.e. parti-

cles size, zeta potential, size distribution and  morphology) of the

final particles prepared by double emulsion solvent diffusion like

process like. The parameters investigated were; polymer content,

concentration of stabilizer (PVA), inner and outer aqueous phase

volumes,  time and speed of stirring in 1st and 2nd steps of emulsi-

fication process.

2.  Materials and methods

2.1.  Materials

Polycaprolactone (PCL) (Mw  = 14,000 g/mol), polyvinyl alcohol

(PVA) (Mowiol® 4-88, Mw = 31,000 g/mol), and dichloromethane

(DCM) were obtained from Sigma–Aldrich, Germany, distilled

water. Ultra-turrax (T-25 basic IKA-WERK), Laser Diffraction Parti-

cle Size Analyzer LS 13 320 (Beckman Coulter, USA). Field Emission

Scanning Electron Microscope (S-800 Hitachi, Japan). Zetasizer

(Nano-ZS, Malvern, UK). Analytical balance (Acculab ALC-110.4)

was supplied by Sartorius Group, Germany.

2.2. Preparation of PVA solution

To be used as outer aqueous phase, 0.5% PVA solution was pre-

pared by adding 2.5 g of PVA in 500 ml  flask and distilled water was

added to make up the volume, and then PVA was dissolved using

magnetic stirrer under heating at 60 ◦C for 40  min  to obtain a clear

PVA solution.

2.3. Preparation of particle by  double emulsion like process

The  microparticles were fabricated by double emulsion solvent

diffusion method. Two-step emulsification process was used; the

primary emulsion (W1/O) was dispersed as small droplets in the

outer aqueous phase (W2) with the help of ultra-turrax stirrer. PVA

was used as emulsion stabilizer in the outer aqueous phase.

2.3.1.  Preparation of primary emulsion (1st step)

In  the first step, in order to make the primary emulsion (W1/O);

3 g of  polycaprolactone (polymer) was dissolved in 12 ml of DCM

and shacked on rolling shaker until form a  clear solution. And then

1.5 ml of distilled water was added in PCL solution, this mixture was

homogenized properly using ultra-turrax (T-25 basic IKA-WERK)

at a  specific speed and for a specific time (Table 2) to have the first

emulsion (W1/O).

2.3.2.  Preparation of double emulsion (2nd step)

In  the second step, the primary emulsion (W1/O) was added in

the outer aqueous phase (W2) containing 0.5% PVA as stabilizer.

This mixture was  homogenized by  using ultra-turrax (T-25 basic

IKA-WERK) at specific speed for specific time (Table 2), to achieve

the double emulsion (W1/O/W2).  Finally, the diffusion of organic

solvent from dispersed primary emulsion droplets to outer aque-

ous phase (W2),  resulted into the formation of solidified suspended

polycaprolactone (PCL) particles. In 2nd step we used excess of

outer aqueous phase (W2) in order to facilitate the diffusion of

organic solvent from PCL particle to outer aqueous phase. Fig. 1

represents the two  steps process for microparticles preparation by

double emulsion solvent diffusion like process.

2.4. Reference emulsion composition

The value of parameters indicated in Table 1 was  used to pre-

pared reference emulsion. A  set of experiments were performed,

Table 1
Composition of reference parameters of double emulsion.

Primary emulsion’s parameters (1st step) Double emulsion’s parameters (2nd step)

Amount of PCL

(g)

Volume of inner

phase  w1 (ml)

Stirrer speed

(rpm)

Stirrer time

(min)

PVA (%, w/v) Stirrer speed

(rpm)

Stirrer  time

(min)

Volume of outer

phase  w2 (ml)

3 1.5 17,500 5  0.5% 21,500 5 150
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Table 2
Parameters (changed and fixed) in different set of experiments. The “bold” values show the  parameters, which were changed in their respective recipes.

Studied parameters Primary emulsion’s parameters

(1st step)

Double  emulsion’s parameters

(2nd  step)

Average  particle

size  (�m)

PCL (g) Inner phase

W1 (ml)

Stirring  time

(min)

Stirring  speed

(rpm)

PVA  (%) Outer phase

W2 (ml)

Stirring  time

(min)

Stirring

speed (rpm)

Stirring speed for 1st

emulsion

3  1.5 5 6500 0.5 150 5 21,500 6.5

3  1.5 5 9500 0.5 150 5 21,500 6.5

3  1.5 5 13,500 0.5 150 5 21,500 6.8

3  1.5 5 17,500 0.5 150 5 21,500 6.7

Stirring  speed for 2nd

emulsion

3  1.5 5 17,500 0.5 150 5 6500 37.9

3  1.5 5 17,500 0.5 150 5 9500 21.8

3  1.5 5 17,500 0.5 150 5 13,500 13.7

3  1.5 5 17,500 0.5 150 5 21,500 7

Stirring  time for 1st

emulsion

3  1.5 2  17,500 0.5 150 5 21,500 7.7

3  1.5 4  17,500 0.5 150 5 21,500 7

3  1.5 6  17,500 0.5 150 5 21,500 7.8

3  1.5 8  17,500 0.5 150 5 21,500 7.3

Stirring  time used for 2nd

emulsion

3  1.5 5 17,500 0.5 150 2 21,500 9.9

3  1.5 5 17,500 0.5 150 4 21,500 8.3

3  1.5 5 17,500 0.5 150 6 21,500 7.7

3  1.5 5 17,500 0.5 150 8 21,500 6.6

Concentration of stabilizer

(PVA)

3  1.5 5 17,500 0.05 150 5 21,500 12.7

3  1.5 5 17,500 0.1 150 5 21,500 8.65

3  1.5 5 17,500 0.2 150 5 21,500 8.5

3  1.5 5 17,500 0.5 150 5 21,500 10.6

3  1.5 5 17,500 1 150 5 21,500 9.1

3  1.5 5 17,500 2 150 5 21,500 10.6

Amount  of polymer used

(PCL)

1  1.5 5 17,500 0.5 150 5 21,500 4.2

2  1.5 5 17,500 0.5 150 5 21,500 6

3  1.5 5 17,500 0.5 150 5 21,500 8.5

4  1.5 5 17,500 0.5 150 5 21,500 11.6

Volume  of inner aqueous

phase  (W1)

3 1  5 17,500 0.5 150 5 21,500 8.7

3  1.2  5 17,500 0.5 150 5 21,500 9.6

3  1.5  5 17,500 0.5 150 5 21,500 9.2

3  2  5 17,500 0.5 150 5 21,500 8.6

Volume  of outer aqueous

phase  (W2)

3 1.5 5 17,500 0.5 50 5 21,500 10.8

3  1.5 5 17,500 0.5 100 5 21,500 7.9

3  1.5 5 17,500 0.5 150 5 21,500 9.8

3  1.5 5 17,500 0.5 200 5 21,500 8.9

to study the effect of different parameters on the characteristics of

the  particles prepared via double emulsification by changing only

one parameter at  a  time and keeping all other parameters fixed.

For example, to study the parameter “polymer amount” four sam-

ples were prepared with different amount of PCL i.e. 1  g,  2 g, 3 g

and 4 g while keeping all other conditions (stirring time, stirring

speed, phase volume, etc.) constant (Table 1);  and particles size

were measured for all samples.

2.5. Particles size measurement

The  particles size and size distribution were studied using Beck-

man  Coulter LS 13 320 Laser Diffraction Particles Size Analyses. The

samples were added drop by drop into the sample cell comprising

continuous phase (deionized water), the pump speed was  adjusted

to 20% for appropriate mixing of sample. When the obscuration

reached 8–9% then sample analysis was started.

2.6. Zeta potential

Zeta  potential was measured at different pH values at 25 ◦C, for

this purpose solution of 1 mM (milli Molar) concentration of NaCl

was prepared and its pH was adjusted to different values like 3, 5,

7,  9 and 11. After that each sample’s zeta potential was measure at

these pH values with help of Zetasizer (Nano-ZS, Malvern).

2.7. SEM observation

Scanning  Electron Microscopy, SEM, was performed with a

Hitachi S800 FEG microscope at the “Centre Technologique des

Microstructures” (CT�) at the University of Lyon (Villeurbanne,

France). A drop of diluted aqueous suspension of microparticles

was deposited on a flat steel holder and dried at  room temperature.

The sample was  finally coated under vacuum by cathodic sputter-

ing with platinum. The samples were observed by SEM under an

accelerating voltage of 15 kV.

3. Results and discussion

The  purpose of this work was  to study the effects of different

parameters such as polymer amount, stabilizer concentration, stir-

ring time and stirring speed used, on the size of  particles prepared

by double emulsion like process. Double emulsion W1/O/W2 was

prepared by a  two-step emulsification process using PVA as stabi-

lizer in the second step.

3.1.  Effects of different parameters on particle size and size

distribution

3.1.1.  Effect of  stirring speed

Since  the emulsion is  a  mixture of two or more immiscible liq-

uids so, in order to make it uniformly dispersed, it is necessary
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Fig. 1.  Schematic illustration of a two-step process in formation microparticles via  double emulsion solvent diffusion like process.

to provide this system with the adequate energy [40], either by

high stirring or by ultrasound system [34]. However, the agitation

used to provide the needed energy should not be very severe, espe-

cially during the second step of emulsion preparation, because it

may  rupture the droplets obtained from the first step [34,36]. Yang

et  al. have found that the stirring speed is a  governing factor in

size determining of the particles prepared via double emulsifica-

tion technique [40]. The work of Yang’s team demonstrates that,

high stirring speed produces very small size particles because of

the  dismantling of second emulsion into smaller droplets. How-

ever, the final particles yield is  low, due to the breaking down of

the resultant microspheres [40]. In this work the necessary energy

was supplied to the system via high stirring using ultra-turrax and

the  influence of stirring speed on the final particles size was stud-

ied in both steps of emulsification. In first step, the stirring speed

used to prepare the first emulsion was changed only, while stirring

speed of second emulsion and other conditions were kept constant

(Table 2). In the second step, contrary to first step was done, it

means that stirring speed of first emulsion with all other parame-

ters were kept constant and only the stirring speed for preparation

Fig. 2. Effect of stirring speed in 1st step and 2nd step  of emulsification on the mean

particle size prepared by double emulsion.

of second emulsion was  changed. The particles size obtained were

measured by using Laser Diffraction Particle Size Analyzer, the final

particles size was in micro range as shown in Fig. 2.

It  is  obvious from Fig. 2 that the change in stirring speed

from 6500 rpm to 9500 rpm during first emulsion preparation has

no influence on the size of final particles. And the particles size

changed slightly when the stirring speed was  further increased

i.e. from 9500 rpm to 13,500 rpm, at  this stirring speed the resul-

tant particles size was 6.8 �m.  By increasing starring speed further

to 17,500 rpm, the particle size decreased to 6.7 �m. Fig. 2 shows

that, the stirring speed used to prepare the first emulsion has no

significant effect on the size of the resulting particles.

In  second step of double emulsion, by increasing the stirring

speed of ultra-turrax and keeping all other parameters constant,

has led to a proportional reduction in the obtained particles size as

shown in Fig. 2. Here, the size of particles was 37.6 �m  at stirring

speed of 6500, and particle size gradually decreased to 21.8 �m,

13.7 �m  and 7.0 �m  at stirring speed of 9500 rpm, 13,500 rpm and

21,500 rpm respectively. The findings of this study proved that the

stirring speed in the second step of double emulsions preparation

is a significant factor in particle size determination, i.e. by increas-

ing the stirring speed in 2nd step of emulsion preparation, the size
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of obtained particles decreased proportionally, Which is in accor-

dance with the results reported by Yang [40].

3.1.2. Effect of stirring time

The  time duration of providing energy is  quite important

because short time of stirring grants insufficient energy to the sys-

tem, while long time of stirring may  lead to break down of the

emulsion, which in turn will lead to low entrapment efficiency. In

this  experiment, the stirring time of  the first emulsion was changed

only, while keeping all other parameters of the recipe constant

(Table 2). Four recipes were prepared with different stirring time

(2  min, 4 min, 6 min  and 8  min) and size of particles achieved were

7.7 �m,  7 �m,  7.8 �m,  7.3 �m respectively (Fig. 3).  These results

demonstrated that the time duration of stirring for the first emul-

sion (W1/O) has no significant effect on the particle size prepared
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via multiple emulsions solvent diffusion like process as shown in

Fig. 3.

The stirring time of the second emulsion was  investigated too,

by changing the stirring time for the second emulsion and keeping

all other conditions unchanged. It was  found that the stirring time

is  an  important and influential factor in determining the final parti-

cles size in double emulsion. Adequate agitation time is  required to

obtain small, mono-dispersed particles and to avoid aggregation of

the  formed particles. However, the stirring time must not exceed

a certain limit in order to avoid emulsion spoilage. Here, differ-

ent stirring time i.e. 2  min, 4  min, 6  min  and 8  min were used in 2nd

step emulsification, which resulted into particulate dispersion with

mean size 9.88 �m,  8.33 �m,  7.7 �m and 6.6 �m,  respectively. Fig. 3

shows that there is a  gradual decrease in particles size as stirring

time increase, this reduction in particle size may  be due to supply

of input power for longer period of time.

3.1.3. Effect of  polymer amount

The  polymer amount may  be an important factor influencing

the particle’s characteristics like encapsulation efficacy and parti-

cle size. In this work, polycaprolactone was  used as polymer and its

effects were investigated at  different amount of polymer (1, 2,  3  and

4  g) by keeping all other conditions constant. The results obtained

(Fig. 4a) implies that at  small amount (1 g) of polymer small par-

ticles were obtained (4.2 �m) but as the amount of polymer was

increased further to 2 g, 3 g and 4 g, the particle size increased sig-

nificantly which were 5.9 �m,  8.5 �m and 11.6 �m,  respectively.

These results revealed that by increasing the amount of polymer,

the particle size also increases and similar results were reported by

Lamprecht et al. [41].

In  order to point out the real effect of  polymer, we deduced the

mathematic relationship between the average particle size (R) and

the polymer amount (M), which is; R = (3/4�dNp)1/3 × (M)1/3 where

(d) is the density of polymer, Np is the number of particles.
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Fig. 8. (a) Particle size distribution of sample prepared using 1  g of PCL. (b) Particle size distribution of sample prepared using 3 g of PCL. (c) Particle size distribution of

sample prepared using 4  g of PCL. (d) Particle size distribution of sample prepared using 0.5% g PVA. (e)  Particle size distribution of sample prepared using 0.05% g  PVA.
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Table 3
Zeta  potential values (in mV)  of different recipes at  different pH.

Parameters Zeta potential (mV) as a function of pH

Name pH = 3  pH = 5 pH = 7  pH = 8  pH = 10

Stirring time in 1st step of

emulsion

2 min −0.70 −2.42  −2.41  −3.21 −1.58

4 min −1.04 −2.41  −2.71  −3.38 −2.01

6 min −1.16 −2.33  −2.64  −2.83 −1.70

8 min −0.993 −2.14 −1.69  −3.01 −1.44

Stirring  time in 2nd step of

emulsion

2 min 1.72 −2.11  −0.65 −2.91 −1.81

4 min −1.22 −2.46  −2.32  −3.28 −2.02

6 min 1.96 −1.38  −0.63 −3.22 −1.33

8 min −1.18 −1.87  −2.13  −3.22 −1.62

PCL  content 1  g −1.88 −2.55 −1.65 −3.55 −1.72

2 g −0.89 −1.82 −2.44 −2.72 −2.10

3 g −1.12  −2.51  −2.37  −3.12 −2.01

4 g −0.62 −3.92  −1.83  −3.25 −1.76

PVA  (wt./v) 0.2%  0.37 −3.59  −2.85  −3.45 −2.03

0.5% −0.98 −2.12  −1.66  −2.23 −2.15

1% −0.88 −3.40 −2.33  −3.26 −1.92

2% −1.05 −2.53  −1.42  −2.83 −1.70

Stirring  speed in 1st step of

emulsion

6500 rpm −0.90 −1.85  −1.52  −1.83 −1.49

9500 rpm −0.89 −2.12  −1.28  −2.40 −0.94

13,500 rpm −1.14 −1.32 −1.59 −2.48 −1.46

17,500 rpm −0.59 −1.79  −1.19  −2.39 −1.86

Stirring  speed in 2nd step

of  emulsion

6500  rpm −1.56 −1.20 −3.14  −2.11 −1.93

9500 rpm −0.82 −1.51  −1.65  −1.35 −0.92

13,500 rpm −0.91 −1.73  −2.25  −2.00 −1.44

21,500 rpm −0.721 −2.79  −1.87  −3.19 −1.30

Inner  (W1)  aqueous phase

volume

1  ml −0.96 −3.38  −1.23  −3.95 −1.77

1.2 ml −1.66  −2.75  −2.66  −2.73 −2.25

1.5 ml −0.97 −2.52  −2.29  −3.59 −2.00

2 ml −1.11 −3.21  −1.59  −3.48 −1.73

Outer  (W2) aqueous phase

volume

50  ml −1.24 −4.67  −3.74  −4.78 −3.32

100 ml  −1.67 −4.12  −3.16  −3.90 −2.43

150 ml −1.02 −3.52  −1.56  −3.57 −2.09

200 ml 1.00  −3.88  −2.98  −3.97 −2.30

In this relationship, if  the number of particles is constant inde-

pendent of the used polymer amount, the slope that represents the

relationship between the particle size and (M)1/3 will be straight.

But in our case it  seems that the slope increases with the increas-

ing of polymer amount in the formulation, as illustrated in Fig. 4b.

Such increase in the slope exhibits that using more polymer amount

leads to increase the number of obtained particles in the forma-

tion. Such increase in the number and in the size of particles can

be attributed to the aggregation of unstable particles that can be

enhanced by increasing the solid content (polymer amount) and

also by low stabilizing efficiency of PVA.

3.1.4. Effects of stabilizer concentration

The addition of suitable stabilizer plays a key role in

liquid–liquid dispersion [42]. The concentration and type of stabi-

lizer affect the stability and formulation of emulsion. The stability

of emulsion is very important because during the evaporation of

solvent, the volume of emulsion can be decreases, which in turn

increase its viscosity. This may  affect the final size of the droplet

and may  results in the coalescence and aggregation of the droplets

during solvent evaporation [43].

The stabilizer stays at  oil/water interface during solvent evap-

oration. In recent times polyvinyl alcohol (PVA) is frequently used

as an emulsion stabilizer [44] and  its concentration in the exter-

nal water phase is considered to be vital factor to influence the

size of microparticles [40]. Since PVA is a  high molecular weight

polymer, the presence of PVA in the outermost water phase (W2)

may  increase the viscosity of the dispersion phase, resulting in an

increased difficulty to reduce the emulsion particles to smaller size

[40,45].

In this study, six samples were prepared with different concen-

tration of PVA in the outer aqueous phase (W2),  it was found that

by increasing PVA concentration (0.05%, 0.1%, and 0.2%) has led to

marked decrease in particle size and minimum size was achieved

at 0.2% PVA which was  8.4 �m (Fig. 5). By  increasing further the

PVA concentration to 0.5%, 1% and 2% the particle size were slightly

increased with some variations, which was  10.6 �m, 9.1 �m and
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Fig. 10. (a) SEM image of PCL particles prepared by double emulsion like method. The scale bar represents 50 �m. (b) Particle size distribution diameter from Laser Diffraction

analysis.

10.6 �m,  respectively. Additionally one sample was prepared with-

out PVA in outer aqueous phase (W2) but in this case no particles

were formed and the emulsion was absolutely unstable. The results

obtained (Fig. 5) showed that 0.2% PVA was more appropriate in

achieving smaller size microparticles in this method.

3.1.5.  Effect of inner aqueous phase volume

In this work, we used different volumes of internal aqueous

phase (W1) including 1 ml,  1.2 ml,  1.5 ml and 2  ml of distilled water

to determine its effects on the final PCL particle prepared by double

emulsion. These volumes were emulsified in 25% solution of poly-

caprolactone in DCM. It was found that the volume of the internal

aqueous phase has no significant effect on the size of the final par-

ticle in double emulsion. By increasing the volume of inner phase

there was insignificant decrease in size of microparticles with some

variations (Fig. 6). Smallest particle size was achieved at  2 ml of

inner  aqueous phase. The smaller particle size at high volume of

inner aqueous phase may  be due to the factor that; the high poly-

mer  amount solution coagulates faster during the second emulsion

and results in tighter structure due to chain entanglement [40]. So

at  high volume ratio of inner aqueous phase (W1),  polymer may

form thin layer over water droplet and  thus a  low probability to

coagulation into large particle.

3.1.6. Effect of outer aqueous phase volume

Four samples were prepared with different volumes of outer

aqueous phase (Table 2) and its effect was  evaluated on the final

PCL particles prepared by double emulsion. It was found that by

increasing the volume of  outer aqueous phase (W2) the size of

the microparticles decreased slightly with some variations (Fig. 7).

Larger  particles were obtained at 50 ml and smallest particles were

achieved at 100 ml volume of the outer aqueous phase in this study.

Fig. 11. (a) SEM image of PCL particles prepared by double emulsion like method. The scale bar represents 5  �m.  (b) SEM image of PCL particles prepared by double emulsion

like method. The scale bar represents 10 �m.
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Fig. 12. (a) SEM image of PCL microparticles prepared using 3 g of PCL. (b) SEM image of PCL microparticles prepared using 1 g of PCL.

This may  be due to decrease in the viscosity of the emulsion at  high

volume of outer phase, so  there is  efficient shearing force to reduce

the particle size.

3.1.7.  Effect on particle size distribution

Particle size distribution for different recipes was investigated

using laser diffraction. Size distribution was found to be large and

ranging from 0.4 to 40 �m revelling incontestably the polydisper-

sity of the prepared dispersions. But for low polymer amount (i.e.

1  g) one single size distribution peak (0.4–20 �m)  was  observed

(Fig. 8a). Whereas, above 1 g of PCL tow peaks were obtained as

shown in Fig. 8b and c.

In case of PVA concentration, particle size distribution ranges

from (0.4 to 40 �m) irrespective of PVA amount with the presence

of two distributions as shown in (Fig. 8d and e).

3.2. Zeta potential

Actually, the value of zeta potential reflects the charge of parti-

cles surfaces and this value depends on three factors, the chemical

nature of the polymer, the surfactant, and medium pH values [22].

In this study, zeta potential was  measured for all samples at

different pH i.e. pH 3, 5, 7, 9  and 11 (Table 3),  and it was  found that

there was  no significant change in the values of  zeta potential of  all

samples (Fig. 9), which means that changing of PCL microparticles

preparation conditions such as changes in polymer concentration,

stabilizer amount, stirring time and  speed, phase volume for 1st and

2nd  emulsion have no  significant effect on the zeta potential. In fact,

the zeta potential was found in between +1 and −4  mV which can

be considered in zero range reflecting the non charge character of

the particles as already reported in the literature [46]. This low zeta

potential can bi attributed to non-charge character of PCL.

Fig. 13. (a) SEM image of PCL microparticles prepared in 0.5% PVA concentration. (b) SEM image of PCL microparticles prepared in  2% PVA concentration.
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Fig. 14. (a) SEM image of PCL microparticles prepared under 4 min stirring. The scale bar represents 5 �m.  (b) SEM image of PCL microparticles prepared under 6  min  stirring.

3.3. Effects of different parameters on the morphology of  the

particles

The  morphology of the PCL microparticles prepared by dou-

ble emulsion technique was observed with help of Field Emission

Scanning Electron Microscope (S-800 SEM Hitachi, Japan). Fig. 10a

shows that the shape of the obtained microparticles can be assume

to be spherical with smooth surface and unimodel size distri-

bution Fig. 11(b). Compare to the results obtained from Laser

Diffraction Particle Size Analyzer, the particles measure with SEM

were slightly smaller this may  be due to contraction induced

by drying during evaporation of solvent. SEM images (Fig. 11a)

show that some particle are observed to connected with each

other, which may  be due to surface tension of water acting on

microparticles during drying which is  in accordance to the results

observed by Wu  et  al. [47]. These images show that all the par-

ticles are rounded shape. Some particles have pores on their

surface, which may  be due to evaporation of solvent during dying

(Fig. 11b).

3.3.1. Polymer amount

The  polymer amount is  significant factor that affects the char-

acteristic of microparticles prepared by double emulsion method

[40].

In this work, we observed two samples prepared with polymer

amount of 1  g and 3 g.  From SEM images observations it was  found

that, the particles obtained with 3 g  polymer (Fig. 12a) having

Fig. 15. (a) SEM image of PCL microparticles prepared under a stirring speed of 9500 rpm for the second emulsion. (b) SEM image of PCL microparticles prepared under a

stirring speed of 21,500 rpm for the  second emulsion. The scale bar represents 5  �m.
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Fig. 16. (a) SEM image of PCL microparticles prepared with 50 ml  of outer aqueous phase. The scale bar represents 2  �m. (b) SEM image of PCL microparticles prepared with

150 ml  of outer aqueous phase. The scale bar represents 10 �m.

narrow size distribution and more regular shape as compare to

particles obtained from 1 g polymer amount as shown in Fig. 12b.

3.3.2. The influence of PVA concentration in the external water

phase

The  significant influence of the concentration of PVA in the

external water phase on  the size of resultant particles is  reported

in many studies [48–50]. In this study, two samples were prepared

with PVA concentration of 0.5% and 2%  in the external water phase

and its influence on the particle morphology was  studied using

SEM. From the SEM images it  is  evident that the particles prepared

with 0.5% PVA has shown good morphology with regular rounded

shape (Fig. 13a) as compare to particles prepared with 2% PVA,

which were clumped together as show in Fig. 13b. This clumping

may  be due excessive PVA, which results in sticking of particles

during drying.

3.3.3.  The influence of time of  agitation

The influence of agitation time for both first and second emul-

sion was studied. For 1st emulsion, particles were papered with

agitation time of 4 min  and 6 min. From the SEM images, it was

found that agitation time of first emulsion has negligible effect on

the  size and morphology of particles.

In second emulsion the particles was prepared with the same

agitation time i.e. 4 min  and 6  min. When the samples of second

emulsion were observed with SEM, it was found that the parti-

cles papered with 6 min  agitation time has regular morphology

(Fig. 14b) on the other hand the particles with 4 min  agitation

time have not well encapsulated the inner water phase and some

Fig. 17. (a) SEM image of PCL microparticles prepared using 1000 �l inner aqueous phase volume. The scale bar represents 10 �m. (b) SEM image of PCL microparticles

prepared using 1500 �l  inner aqueous phase volume. The scale bar represents 50 �m.
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particles have cup shape morphology as shown in Fig. 14a. The

homogeneity of particles size increased when the second emulsion

was agitated for long period of time, these results in accordance

with the results reported by Ayoub et al. [2].

3.3.4. The influence of  stirring speed

The stirring speed is  the vital parameter affecting the particle

size because it supplies the necessary energy to disperse the dis-

persed phase into continuous phase, some researchers reported

that, the second emulsion is preferred to prepare by avoiding sever

mixing because it may  destroy the first emulsion W1/O prepared in

the  first step [34]. From SEM images, it was found that stirring speed

of  first emulsion has no significant influence on the particle shape

and size. In case of second emulsion, SEM study established that the

microparticles prepared with 21,500 rpm have narrow size distri-

bution (Fig. 15b) as compare to particles prepared with 9500 rpm

(Fig. 15a).

3.3.5. Effect of outer water-phase volume

The volume of external water phase is  an important factor that

plays vital role in determining the size, shape and size distribution

of resultant particles.

From  SEM observation, it was found that the particles prepared

by using external water phase 50 ml,  some particles obtained have

cup shape morphology as shown in Fig. 16a. On the other hand the

particles obtained with 150 ml external aqueous phase has regular

rounded shape and narrow size distribution (Fig. 16b).

3.3.6.  Influence of inner water phase (W1)  volume

The  effect of this parameter was studied by comparing the SEM

photographs of two samples, in first one the internal aqueous phase

was1000 �l and in the second it was 1500 �l.

From the SEM images observation, it was found that the particle

obtained with 1000 �l  internal aqueous phase have cracks on their

surfaces with spherical shape Fig. 17a, while the other particles

which are prepared by using 1500 �l as internal aqueous phase

have rounded shape and good morphology.

4. Conclusion

Multiple emulsions are important systems; consisting of two

immiscible phases, this system is  thermodynamically unstable so

suitable emulsifying agent is  added in order to stabilize it.

In  this study the conditions and parameters which influenc-

ing properties especially particle size and morphology of double

emulsion were well studied. Microparticles were prepared by using

two-step emulsification solvent diffusion process. The effect of

different parameters such as Stirring time (of 1st and 2nd step),

stirring speed (of 1st and 2nd step), polymer amount, stabilizer

concentration, phase volume of aqueous passes (inner and outer)

on the partial size was investigated.

The  main finding of this study was that:

There  was no significant effect of stirring speed in double emul-

sion  preparation during step first, but during step 2nd with an

increase  in stirring speed the particle size of emulsion decreased

proportionally.

The  time duration of stirring in first step of double emulsion has

no  significant impact on particle size while during 2nd step longer

stirring  time has led to smaller size particles.

The concentration of polycaprolactone (selected polymer for

encapsulating)  has a  significant influence on the particles size i.e.

particles size proportionately increased when the amount of PCL

were increased. In case of stabilizer concentration it was  concluded

that at  low concentration of PVA (stabilizer) smaller size particle

can  be achieved than at higher concentration.

The relative volumes of  aqueous phases are also an important fac-

tor in double emulsion particle size evaluation; from this study it

is established, that the phase volume of inner aqueous phase (W1)

has  no significant effect on the particle size of double emulsion

while  on the other hand volume of outer aqueous phase (W2)  has

a  prominent effect on the final particle size.

From SEM images observation, it was found that the surface of

obtained  microparticles can be assumed to be spherical with

smooth  surface, having narrow size distribution. Compare to the

results from Laser Diffraction Particles Size Analyses, the particles

measure  with SEM were slightly smaller in size this may be due to

contraction induced by drying during evaporation of solvent.

In this work we study the effects of different parameters affect-

ing the particle size of double emulsion, further evaluation study

have to be performed in order to determine suitable amount of

active ingredient such as proteins to be loaded in the inner aque-

ous phase (W1) and also  to study the release of active medicaments

from these microparticles.
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III.2. Preliminary study of particles preparation via  

double emulsion using power ultrasound 
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General summary 

Recently, polymer-based biodegradable particles got much attention in biomedical field 

due to their special properties and wide application in the drug delivery systems. Biodegradable 

particulate drug delivery has been widely studied mainly for parenteral, aerosol, oral and ocular 

applications. For the preparation of these particles, several methods have been developed but the 

most popular is emulsion solvent evaporation method and its modified version, the double 

emulsion solvent evaporation method. The main challenge of this method is the optimization of 

different process parameters that could be used for preparation of particles with appropriate size 

and size distribution. This study was performed with the aim, to investigate the effects of 

preparation conditions on the particles properties (particle size, zeta potential, morphology etc), 

prepared by double emulsion evaporation method using power ultrasound and to reduce the 

particle size compared to the previous systematic study. Two steps double emulsification method 

(W1/O/W2) was used, in the first step, distilled water was emulsified with organic phase 

(polycaprolactone dissolved in dichloromethane) via sonication to form first emulsion (W1/O), 

followed by addition of first emulsion in the outer aqueous phase (Polyvinyl alcohol solution) to 

form double emulsion. And subsequent evaporation of organic solvent via rotary evaporator from 

dispersed phase resulted in particulate suspension. Polycaprolactone was used as polymer and 

dichloromethane as organic solvent in the first step while, polyvinyl alcohol was used as 

stabilizer in the second step. 

The effects of parameters studied were included; ultrasound exposure time in the first and 

the second step of emulsification, ultrasonic amplitude, stabilizer concentration, polymer amount 

and outer aqueous phase volume. It has been demonstrated that ultrasound emulsification is an 

efficient method to obtained nanoparticles via double emulsion solvent evaporation technique. 

Sonication amplitude has a significant effect on particles size and morphology. In second step, 

smaller size particles were obtained at higher amplitude of ultrasound. It was reported that, 

modification in ultrasound exposure time has no significant impact on mean particle size in the 

first step of emulsification, while during the 2nd step an increased ultrasound exposure time has 

led to smaller size particles. In case of polymer amount, small size (235 nm) nanoparticles were 

obtained when 1 g of polycaprolactone was used as compared to 5g of PCL (748 nm). It was 

concluded that presence of PVA (stabilizer) is compulsory for NPs preparation by this process (in 

absence of stabilizer rapid phase separation were observed), and the particle size decreases by 
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increasing  PVA  concentration  from  0.05%  to 0.2%  and  beyond  this  value  there  was  no 

significant effect on mean particle size. 

Moreover, it was shown that, the particle size decreases significantly with an increase of 

outer aqueous phase volume from 50 ml to 150 ml, and beyond this value, no marked effect were 

observed. From SEM images observation, it was found that the surface of obtained nanoparticles 

can be assumed to be spherical with smooth surface, having broad size distribution but results are 

comparable with other high speed homogenizers. The change in preparation conditions have no 

effect on the zeta potential of polycaprolactone nanoparticle prepared by this technique. This may 

be due to non-charged nature of polycaprolactone. 
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Abstract Polymeric nanoparticles have attracted growing
attention because of their unique properties and extensive
application. In this study, polycaprolactone (PCL) nanopar-
ticles were prepared via double emulsion solvent
evaporation-like process using power ultrasound, and the
effects of various process parameters on particle size, zeta
potential, and morphology were investigated and opti-
mized. Nanoparticles (NPs) were prepared by two-step
emulsification process. In the first step, the inner aqueous
phase (W1) was homogenized with organic phase (PCL in
dichloromethane) to obtain primary emulsion. In the sec-
ond step, the primary emulsion was emulsified with outer
aqueous phase (W2) containing polyvinyl alcohol (PVA) as
stabilizer using power ultrasound, followed by evaporation
of solvent which resulted in a particulate suspension at the
end. Effects of various parameters like ultrasound exposure
time and amplitude, outer aqueous phase volume, PVA
concentration, and PCL content were investigated. It has
been shown that, by increasing ultrasound exposure time,
amplitude, and outer aqueous phase volume, the particle
size decreases. Additionally, particle size was also related
to amount of PCL and PVA concentration. Spherical NPs
with smooth surfaces were observed by scanning electron
microscopy (SEM).

Keywords Double emulsion process . Nanoparticles .

Colloidal properties . Parameters . Size . Ultrasound

Introduction

Recently, nanoparticulate carriers are getting more attraction
due to their potential application in targeted drug delivery
systems, [1] food technologies, and cosmetics [2–4]. There
has been extensive research in processes like double emulsion,
self-assembly, and phase separation for fabrication of colloidal
polymeric nanoparticles with unique shapes and properties
[5]. The preparation method mostly depends on the nature of
drug (hydrophilic or hydrophobic) to be encapsulated [6].
Double emulsion technique is an appropriate method often
used for encapsulation of hydrophilic molecules, in which
first, aqueous phase is dispersed in nonmiscible organic sol-
vent containing polymer to form primary emulsion (W1/O),
followed by the homogenization of primary emulsion into
outer aqueous phase containing emulsifier to get the double
emulsion using high-shear homogenizer or sonotrode. Subse-
quently, the evaporation of organic solvent from emulsion
leads to particulate suspension at the end [7]. Pharmaceutical
researchers are highly interested in fabricating a drug delivery
system that enhances the drug efficiency, bioavailability of
poorly soluble drugs and to minimize the undesirable effects
[8, 9]. Encapsulation of active moiety is one of the vital
techniques to protect the drug from the harsh environment of
the stomach and degradation. Especially for labile moiety like
proteins and DNA, it is essential to avoid their denaturation
during their transport to the site of action. In drug delivery
systems, colloidal carriers like nanoparticles are becoming
more important due to their smaller size, which enables them
to permeate through biological membranes [10–12]. The first
paper on double emulsion dates back 89 years [13]. It can be
identified as complex polydispersed systems and can be clas-
sified into two types: water-oil-water emulsion and oil-water-
oil emulsion. They are usually prepared by two-step emulsi-
fication process [14, 15]. Generally, for emulsion preparation,
we need oily phase, aqueous phase, surfactant, and
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appropriate energy. The type of the resulting emulsion is
determined primarily by type of surfactant used. In emulsions,
smaller size droplets are more stable against creaming, coa-
lescence, and flocculation [16]. Thus, droplet size plays a vital
role in emulsion stability [17, 18].

Double emulsion process is very versatile which can
be used for fabrication of various kinds of polymeric
particles including nanoparticles with hollow structures
[19]. The emulsion droplets can be used as templates for
further processing to form core-shell nanostructures, by
emulsifying the polymer-containing dispersed phase into
outer aqueous phase and then removing the organic sol-
vent via evaporation or diffusion, leaving polymeric dis-
persion [20, 21]. Several authors have prepared nanopar-
ticles by double emulsion solvent evaporation techniques
from different polymers like poly(lactic acid) [22],
polycaprolatone (PCL), and poly(D,L-lactic-co-glycolic
acid) [23, 24]. PCL is a biodegradable polymer with
low glass transition temperature and melting point, and
the polymer metabolites are eliminated from the body by
innate metabolic process [25]. Due to biodegradable,
biocompatible, and nontoxic nature of PCL, it is exten-
sively studied for control drug delivery system in several
formulations including nanoparticles, implants, nanofi-
bers, microspheres, etc. Its compatibility with wide range
of drug and its slow degradation to release drug for
extended period of time (month-years) makes it an ap-
propriate candidate for controlled drug delivery systems.
Moreover, it allows the modification of its physicochem-
ical and mechanical properties by copolymerization,
which in turn affect all other properties of PCL such
as solubility, ionic property, and degradation pattern
[26]. Poly vinyl alcohol (PVA) is one of the most
commonly used and commercially available polymer
stabilizers [27]. It is a well-known hydrophilic, biocom-
patible polymer and has good mechanical strength, low
fouling potential, and long-term temperature and pH
stability. These properties of PVA make it appropriate
stabilizer for nanoparticle preparation for medical and
pharmaceutical applications [28].

Ultrasound emulsification is an efficient method to obtain a
finely dispersed emulsion; typical results are comparable with
those of the best high-pressure homogenizers [29]. The ad-
vantages of ultrasound include lower energy consumption,
production of more homogeneous emulsion, with smaller
droplet size and more stable emulsion compared to a mechan-
ical homogenization with use of less surfactant [30, 31].
However, the mechanism of emulsification using ultrasound-
based technique is not fully known, but it is thought that
emulsification might occur by “transient” acoustic cavitation
produced by ultrasound’s horn. It was proposed that there are
two steps in acoustic emulsification: First, interfacial instabil-
ity at oil-water interface is caused by low-frequency acoustic

waves which are followed by formation of transient cavitation
bubbles in the second step [32]. Cavitation is the formation
and collapse of vapor cavities in the liquid, generated by the
mechanical vibration of sonicator probe. It is an important
phenomenon that occurs during transmission of acoustic pow-
er into liquid system. When liquid is exposed to very low
ultrasonic power and the power is gradually increased, a point
is reached at which the transmitted acoustic energy is suffi-
cient to cause cavitation in the fluid, this minimum energy
needed to form cavitation is termed as cavitation threshold.
Majority of sonochemical effects including emulsification
occurs only at power above the cavitation threshold [18, 33].
Several parameters affect the emulsification process by ultra-
sound including hydrostatic pressure, viscosity of continuous
phase [34], oil/ water ratio, surfactant concentration, position
of ultrasonic horn at oil-water interface, and ultrasonic power
and exposure time [30, 35–37].

With the progress in new emulsification techniques used
for encapsulation and their application in drug delivery sys-
tem, it is essential to understand the mechanism of emulsifi-
cation and process parameters affecting the emulsification
process. Most of the published work in emulsion field is
dealing with pure emulsions consisting of water, oil, and
emulsifier, while there has been very limited work to produce
emulsion with subsequent encapsulation of submicron parti-
cles, in which another component is involved called wall
material (biopolymer). The objective of the present work
was to investigate the most influential process parameters in
preparation of optimal NPs by double emulsion solvent evap-
oration using power ultrasound. These parameters were the
polymer content, concentration of stabilizer (PVA), outer
aqueous phase volume (W2), sonication time, and amplitude.
The influence of these parameters on the particle’s average
hydrodynamic size, zeta potential, and morphology was
studied.

Experimental section

Materials

Polycaprolactone (PCL) (Mw=14000 g/mol), polyvinyl alco-
hol (PVA) (Mowiol® 4–88, Mw=31000 g/mol), and dichlo-
romethane (CH2Cl2, Mw=84.94 g/mol) were obtained from
Sigma-Aldrich, Germany, and used as such. Water was deion-
ized using Aquadem® (Veolia Water, France). Ultrasonic
homogenizer system is “CY-500” ivymen® (500 W,
20 kHz) from SELECTA GROUP, Switzerland. Analyti-
cal balance (Acculab ALC-110.4) was supplied by Sar-
torius group, Germany. S-800 FEG Scanning Electron
Microscope was obtained from Hitachi, Japan. Zetasizer
3000 HSa and Zetasizer Nano-ZS were supplied by
Malvern, UK.
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Methods

Double emulsion solvent evaporation technique

The double emulsion solvent evaporation is a widely used
technique for preparation of nanoparticles [38]. This method
was previously used for the preparation of microparticles [39].
In this technique, the primary emulsion (W1/O) is prepared by
homogenization of inner aqueous phase (W1) with organic
phase (polymer solution). Then, the primary emulsion is
added to external aqueous phase and homogenizes to form
nanoemulsion. Nanoemulsion formation is followed by evap-
oration of organic solvent from the dispersed phase leading to
a point of insolubility and precipitation of the polymer encap-
sulating the active material. The outer aqueous phase acts
as dispersion medium. The solvent may be evaporated by
simple stirring at ambient temperature or under reduced
pressure by rotary evaporator depending upon the nature
of organic solvent.

Preparation of PVA solution in water

PVA solution (0.5%)was prepared in order to be used as outer
aqueous phase (W2), by taking 5 g of PVA in 1000-ml flask,
and sufficient amount of deionized water was added to make
up the volume. PVAwas dissolved under magnetic stirring at
60 °C for 40 min, which resulted in a clear PVA solution.

Preparation of nanoparticles

Nanoparticles were prepared by double emulsion solvent
evaporation-like process using power ultrasound. Double
emulsion was prepared by two-step emulsification process.

In the first step, in order tomake the primary emulsion (W1/
O), 3 g of PCL was dissolved in 12 ml of dichloromethane
(DCM) properly to form a clear solution (oil phase), and
then, 1.5 ml of deionized water (W1) was dispersed in
PCL solution. This mixture was homogenized properly
using ultrasonic homogenizer “CY-500” ivymen® at a
70 % amplitude for 5 min.

In the second step, the primary emulsion (W1/O) was
dispersed in the outer aqueous phase (W2) containing 0.5 %
PVA as stabilizer in 250-ml glass beaker. This mixture was
homogenized via ultrasonic homogenizers at specific ampli-
tude for specific time (Table 1), which produced double emul-
sion (W1/O/W2). The ultrasonic horn was positioned 2 mm
above the oil-water interface in the system and was kept
constant for all experiments. Afterword, the organic solvent
evaporation from dispersed droplets via rotary evaporator has
led to solidified PCL nanoparticles. These dispersed particles
were then recovered by centrifugation at 10,000 rpm for
10 min and washed three times with deionized water properly.
The ultrasonic transducer (homogenizer) used was of 500 W

power and 20-kHz frequency, consisting of titanium alloy
probe (5.6-mm diameter and 60-mm height). The above-
mentioned conditions were to prepare reference recipe, and
in all other experiments, only one parameter was changed
each time, while the rest of the parameters were kept fixed.
The double emulsion solvent evaporation process used to
prepare particles is schematically described (Fig. 1).

Reference emulsion composition

Specific values of different parameters were used to formulate
the reference emulsion as shown (Table 1). Afterward, several
sets of experiments were performed to investigate the effects
of different preparation conditions on the characteristics of the
nanoparticles prepared via double emulsification solvent
evaporation process by changing only one parameter and
keeping all other conditions constant. For example, to
study the parameter “polymer amount effect,” five sam-
ples were prepared with different amount of PCL, i.e., 1,
2, 3, 4, and 5 g while keeping all other conditions
constant as given in table (Table 1).

Hydrodynamic size measurement

After preparation, the average hydrodynamic particles
size was determined by Zetasizer HSa 3000, Malvern.
The mean particle size was the average of three indepen-
dent measurments. Each sample was prepared by adding
one drop of particulate dispersion in about 1.5 ml of
deionized water in quartz cell, and then, the cell was
placed in zetasizer for analysis. Mean particle size was
determined for each preparation.

Zeta potential

The zeta potential of different nanoparticle preparation was
determined by using Nano-ZS Malvern. Measurements were
performed at different pH values (pH 3±0.2, pH 5±0.2, pH 7
±0.2, pH 9±0.2, pH 11±0.2) using Malvern Auto-titrator
MPT-2 in aqueous dispersant (10−3 M NaCl) at 25 °C.

Particle morphology

Scanning electron microscopy (SEM) was performed with
Hitachi S800 FEG microscope at the “Centre Technologique
des Microstructures” (CTμ) at the University of Lyon (Vil-
leurbanne, France). A drop of diluted aqueous suspension of
nanoparticles was deposited on a flat steel holder and dried at
room temperature. The sample was finally coated under vac-
uum by cathodic sputtering with platinum (5 nm). The sam-
ples were observed by SEM under an accelerating voltage of
15 kV. Before deposition on steel holder, all samples of
particle were centrifuged at 1000 rpm for 10 min and washed
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three times with deionized water in order to remove the excess
of PVA.

Results and discussion

Effect of different parameters on the mean particle size
obtained

The effects of different process parameters (for given conditions)
were first investigated in order to point out the relationship
between the used conditions, the colloidal stability, and the
colloidal properties of the formed dispersion, and also the rela-
tionship between different parameters (energy, time, volume,
polymer, stabilizer) and the final hydrodynamic particle size.

Effect of ultrasound exposure time

Ultrasound exposure time is vital parameter affecting ultra-
sonic emulsification process [36]. Exposure time effects were
investigated for both steps of emulsification process in prep-
aration of particles. During investigation of the ultrasonic
exposure time for the first step of emulsion, the ultrasonic

exposure time for the second was 8 min and constant, where-
as, during investigation of the ultrasonic exposure time for the
second emulsion, the exposure time for the first was constant
and equal to 5 min.

In the first step, the inner aqueous phase (W1) was emulsi-
fied with organic phase (PCL and DCM). Five samples of
particle dispersions were prepared with different ultrasonic
exposure time, i.e., 2, 4, 6, 8, and 10 min. The variation in
mean particle size as a function of exposure time (min) is
presented (Fig. 2), which showed that there was no significant
variation in mean hydrodynamic size when exposure time was
increased from 2 to 10 min during the first step of emulsifi-
cation process.

In the second step, several experiments were performed
under sonication of 2, 4, 6, 8, and 10 min using 70 % duty
cycle. It was found that, with increase in ultrasound exposure
time, the hydrodynamic particle size was decreased gradually
as shown in Fig. 2. This may be due to increasing energy
(energy input) with elongated ultrasound exposure time,
which causes more droplet fragmentation and consequently
decreases in final particle size. These results are in agreement
with the reported tendency by Jafari et al. [36]. It was observed
that for efficient homogenization, the tip of ultrasonic horn

Table 1 Reference emulsion composition used for preparation of nanoparticle via double emulsion evaporation process

Primary emulsion’s parameters (first step) Double emulsion’s parameters (second step)

Amount of
PCL (g)

Inner aqueous phase
W1 (ml)

Ultrasound’s
amplitude (%)

Sonication
time (min)

Concentration
of PVA (%)

Ultrasound’s
amplitude (%)

Sonication
time (min)

Outer aqueous phase
W2 (ml)

3 1.5 70 5 0.5 70 8 150

W1/O/W2 
emulsion

SEM image of PCL particles

PVA in 2
nd

aqueous 
phase (W2)

W1/O 
emulsion

PCL in DCM

Particles 
dispersion

2nd Step1st Step

Solvent    , 
evaporation

Aqueous 
phase(W1)

Fig. 1 Schematic illustration of
two-step double emulsion process
for preparation of nanoparticles
using ultrasonic homogenizer. a
The first step: homogenization of
water (W1) with PCL solution in
DCM. b The second step:
dispersion of first emulsion (W1/
O) in to outer aqueous phase
(W2). Subsequently, evaporation
of solvent from W1/O/W2 results
in particulate dispersion. SEM
image scale bare represents
500 nm
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should be at oil-water interface or few millimeters above it,
which supports Cucheval et al. findings [35]. With an increase
in ultrasound exposure time, a corresponding decrease in the
average particle size during the second step and no significant
influence on particle size during the first step was observed.
This could be due to fact that, in the first step, there is only
formation of unstable aqueous droplets, but no polymer par-
ticle solidification occurs; thus, the final particle size may not
be influenced by the first step sonication time. However, in the
second step, the diffusion of organic solvent from dispersed
primary emulsion droplets results in solidification of polymer
particle. As the solidified particle formation occurs during the
second step only, that is why, the second step may be consid-
ered as the size determining step.

Effect of ultrasonic amplitude (second step)

During ultrasonic emulsification, cavitations occur when am-
plitude of applied sound source reaches a certain minimum
value, called cavitation threshold [40]. If the amplitude is
below threshold value, then cavitation and emulsification
would not take place [41]. In the second step of emulsification,
several particle preparations were made using different ampli-
tude of ultrasound. Initially, 50 % amplitude was used for
emulsification of primary emulsion with outer aqueous phase,
but no emulsification occurred at this value. This may be due
to insufficient energy transmission to the system, required to
induce cavitation. Afterword, the amplitude was increased to
60, 70, 80, and 90 % in the next four recipes, which led to
emulsification process and colloidal particulate dispersion.
The average size of final particles with 60, 70, 80, and 90 %

amplitude was found to be 507, 427, 328, and 291 nm, re-
spectively, as shown (Fig. 3).

This trend showed that by increasing amplitude of ultra-
sound homogenizer, there was reduction in mean size of the
dispersion. This is probably due to high-energy dissipation in
the system at high amplitude which results in deformation and
break up of big droplets into small ones [35, 40].

Fig. 2 Hydrodynamic particle size as a function of the ultrasonic
exposure time. During the investigation of the ultrasonic exposure time
for the first emulsion, the ultrasonic exposure time for the second was
8 min and constant, whereas in investigation of the ultrasonic exposure
time for the second emulsion, the exposure time for the first was constant
and equal to 5 min

Fig. 3 Variations of mean particle size as a function of the ultrasound
amplitude (%). All parameters were kept constant except ultrasound
amplitude. Ultrasound amplitude was changed to 60, 70, 80, and 90 %
in different colloidal preparations

b

a

Fig. 4 a Effect of polymer content on the average hydrodynamic particle
size. Only polymer amount was changed in different preparations, which
was 1, 2, 3, 4, and 5 g of PCL, while all other parameters like ultrasound
exposure time, amplitude, phase volume etc., were fixed. b Average
hydrodynamic diameter of particle (nm) versus (PLC content in grams)1/3
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Effect of polymer amount

The polymer amount may be a vital factor influencing the
particle’s characteristics like drug encapsulation efficacy, par-
ticle size, size distribution, and morphology. In this study,
PCL was used as polymer in different amounts (1, 2, 3, 4,
and 5 g). Minimum size was observed (Fig. 4a) when small
amounts (1 g) of PCL were used, whereas, when polymer
amount was increased in different samples, consequently large
particle sizes were obtained. This is in agreement with results

reported by Lamprecht et al. [24]. They stated that an increase
in polymer amount leads to an increase viscosity of primary
emulsion, thus results in less efficient reduction of particle size
during the second step of emulsification process.

In order to know the real effect of polymer amount on the
final particle size and number of particles (Np), theoretical
relationship between the particle size (d) and polymer amount
(M) and the dispersion density (ρ) is expressed as follows:

d=2 ¼ 3=4πρNp

� �1=3� Mð Þ1=3 ð1Þ

According to this basic relationship, if the number of
particle (Np) is constant in the investigated polymer amount
range, then the slope of hydrodynamic diameter particles
versus and (M)1/3 will be linear. But, in our case, it seems that
the slope increases with the increasing amount of polymer in
the formulation, as illustrated (Fig. 4b). This increase in the
slope shows that by increasing polymer amount, the number
of obtained particles also increases. Such increase in the
number and in the size of particles can be attributed to the
possible aggregation of unstable particles enhanced by in-
creasing the solid content (polymer amount) and also by low
stabilizing efficiency of PVA.

Table 2 Different parameters studied with their modified values used
in various experiments, and the obtained average particles sizes are
tabulated

Parameters studied Changed
value

Average particles
size (nm)

Ultrasound exposure time in the 1st
step (min)

2 388

4 371

6 379

8 381

10 344

Ultrasound exposure time in the 2nd
step (min)

2 677

4 521

6 441

8 403

10 351

Ultrasound Amplitude (%) 60 507

70 427

80 328

90 291

PCL amount (gr) 1 235

2 300

3 392

4 591

5 748

Outer aqueous phase volume (W2) 50 521

75 452

100 441

150 378

200 375

250 381

PVA concentration (%) 0.05 1456

0.1 660

0.2 392

0.5 385

1 376

2 354

3 364

Each time, only one parameter was changed, e.g., 1, 2, 3, 4, and 5 g of
PCL were used during study of “PCL amount” effects while other
parameters were kept fixed as given in Table 1

Fig. 5 Hydrodynamic particle size versus outer aqueous phase volume
(W2). Only outer aqueous phase volume was changed in different
samples (i.e., 50, 75, 100, 150, 200, and 250 ml), and all other
conditions were fixed

Fig. 6 Variations of mean particle size as a function of poly vinyl alcohol
concentration (%). The concentrations of PVA used were 0.05, 0.1, 0.2,
0.5, 1, 2, and 3 % in different preparations
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Effect of outer aqueous phase volume

Outer aqueous phase volume is an important parameter affect-
ing the particles and the dispersion properties. Six samples
with different volume of outer phase volume, i.e., 50, 75, 100,
150, 200, and 250 ml (Table 2), were prepared, and its effect
on particle’s mean size and morphology was studied. It was
observed that, when the volume of outer aqueous phase (W2)
increased from 50 to 150 ml, there was a significant decrease
in mean particle size. But, beyond 150ml (i.e., 150 to 250ml),
there was no significant variation in particle size as shown in
figure (Fig. 5). At constant PCL concentration, this increase in
particle size at lower volume of outer aqueous phase can
be attributed to increase in viscosity. The higher the
viscosity, the higher is the attractive forces between the
molecules, and so, higher threshold intensity of ultra-
sound is required for onset of cavitation [29]. In addi-
tion, by decreasing dispersant phase volume, the proba-
bility of collision among particles increases consequent-
ly; coalescence, at a constant amount of PCL amount, is
more probable.

Effects of stabilizer concentration

The addition of suitable stabilizer plays a key role in liquid-
liquid dispersion. The concentration and type of stabilizer
affect the colloidal stability of the prepared dispersion. The
colloidal stability of a given dispersion is very important
because during the evaporation of solvent, the volume of
emulsion can decrease which in turn increases its viscosity.
This may affect the final size of the droplet and may result in
the coalescence and aggregation of the droplets during solvent
evaporation (i.e., before reaching rigid-like polymer particles)
[42, 43].

In this study, seven samples were prepared with different
concentration of PVA in the outer aqueous phase (Table 2),
and average hydrodynamic particle size was measured for
each sample. It was found that initially, an increase in PVA
concentration (0.05, 0.1, and 0.2 %) has led to rapid decrease
in particle size as illustrated (Fig. 6). This result was found to
be in agreement with the results reported by Zambaux et al.
[22], although further increase in the concentration of PVA
beyond 0.2 % has no significant effect on particle size. The

Table 3 Zeta potential of
polycaprolactone particle
dispersions at different pH values

Parameters studied Zeta potential (mV) at different pH

pH=3 pH=5 pH=7 pH=9 pH=11

Ultrasound exposure time in the 1st step (8 min) −0.34 −0.57 −0.71 −1.00 −1.56
Ultrasound exposure time in the 2nd step (10 min) −0.47 −0.73 −0.75 −0.91 −0.84
Ultrasound amplitude (80 %) −0.67 −0.96 −0.97 −1.4 −1.34
PCL amount (3 gr) −0.68 −0.66 −0.84 −1.56 −1.12
Outer aqueous phase (200 W2) −0.32 −0.71 −0.74 −0.86 −0.84
PVA (1 %) −0.12 −0.59 −1.00 −1.40 −0.68

Fig. 7 Zeta potential (mV) of
prepared particles (after DCM
removal) versus pH and in 1 mM
NaCl. Zeta potential was
measured at pH 3, pH 5, pH 7,
pH 9, and pH 11
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increase in PVA concentration enhances the surface coating of
the formed dispersion and also enhances the depletion colloi-
dal stability of the formed droplets before solvent evaporation,
which leads to smaller emulsion droplets and consequently
smaller rigid particles after solvent evaporation [24]. More-
over, one sample was prepared without stabilizer (PVA) in
outer aqueous phase (W2), but in this case, no homogeneous

oil-water dispersion occurred, and rapid phase separation was
observed.

Zeta potential

The zeta potential reflects the charge on the particle surfaces,
and it depends on factors like the chemical nature of the

b

a

Fig. 8 a SEM image of PCL nanoparticles using 1 g of polycaprolactone.
b SEM image of PCL nanoparticles using 3 g of polycaprolactone

b

a

Fig. 9 a Nanoparticles prepared under 60 % ultrasound amplitude in the
second step of emulsification process. b Nanoparticles prepared under
70 % ultrasound amplitude in the second step of emulsification process
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polymer, the used stabilizer, and the pH values of the
dispersant medium (22). The zeta potential of six sam-
ples was measured at different pH values (i.e., 3, 5, 7, 9,
and 11). It was investigated in order to point out the
relationship between the used conditions and the colloi-
dal stability of the formed dispersion. In this study, the

zeta potential was measured as a function of pH (Ta-
ble 3), and it was observed that the pH has no significant
effect on zeta potential of PCL particle prepared at dif-
ferent conditions (Fig. 7). These results reveal that mod-
ification in process parameter like ultrasound exposure
time and amplitude, PVA concentration, PCL amount,

b

a

Fig. 10 a SEM image of nanoparticle prepared with 0.05% PVA in outer
aqueous phase. b SEM image of nanoparticle prepared with 0.5% PVA in
outer aqueous phase

b

a

Fig. 11 a SEM image of PCL nanoparticles with 6-min exposure time
during the first step of emulsification. b SEM image of PCL nanoparticles
with 10-min exposure time during the first step of emulsification
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and phase volume ratio has no significant effect on zeta
potential of PCL particles. The zeta potential was found
in between 0 and −2 mV, which can be considered in
zero range and consequently reflects noncharged particles
due to noncharged nature of PCL. Similar tendency has
been already reported in literature [44].

Morphology of nanoparticles

The morphology of the prepared particles was investigated via
SEM. From these images, the obtained particles were found to
be spherical in shape with smooth and homogeneous surfaces.
SEM images also showed the slight polydisperse property of

b

a

Fig. 12 a SEM image of nanoparticle prepared 4 min of sonication in the
second step of emulsification. b SEM image of nanoparticle prepared
8 min of sonication in the second step of emulsification

b

a

Fig. 13 a SEM image of nanoparticle prepared with 100-ml outer
aqueous phase (W2). b SEM image of nanoparticle prepared with 150-
ml outer aqueous phase (W2)
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the prepared particles as clearly evidenced in Fig. 9a. It is
interesting to notice the contact among particles from the SEM
images; these contacts among particles can be attributed to
PVA, which has sticky nature and is difficult to remove
completely [45].

The effects of modification in different preparation condi-
tions on particle morphology are discussed below:

Effect of PCL amount on nanoparticle morphology

The amount of PCL has a very vital influence on the nano-
particle size, number, and morphology. In this study, when 1 g
of PCL was used for preparation of particle dispersions,
consequently more homogenous and smaller particles were
observed from SEM images with comparatively narrow size
distribution (Fig. 8a); on the other hand, when the PCL
amount was increased to 3 g, then large size particles were
observed (Fig. 8b).

Effect of ultrasound amplitude

Several samples of particles were prepared with different
amplitude of ultrasound in the second step of emulsification
process. From SEM images, it was observed that the recipe
prepared with 60 % amplitude has several populations of
particles as shown in figure (Fig. 9a) with broad size distribu-
tion. On the other hand, the particles prepared with 70 %
amplitude were more uniform as illustrated (Fig. 9b) and of
smaller average particle size (Table 2). This can be attributed
to increase of shearing energy which induced high dispersion
and fragmentation and then decreases the average particle’s
size, as reported by Gaikwad et al. that when the amplitude is
high, smaller sizes were obtained [40].

Effect of PVA concentration

Initially, low PVA amount (i.e., 0.05 %) was used, and the
SEM image shows clearly distinct particles as illustrated
(Fig. 10a). While in subsequent sample, using 0.5 % PVA,
the formed particles appear to be attached to each other
(agglomeration) due to excessive PVA (0.5 %). The observed
phenomenon is due to residual PVAwhich acts as plasticizer.
PVA residues are on surface of the nanoparticles and are very
difficult to remove completely even after washing [45]
(Fig. 11).

Ultrasound exposure time (first step)

Several set of experiments were performed with different
ultrasound exposure time in the first step of nanoparticle
preparation by emulsification. From SEM images of
nanoparticles prepared at 6-min ultrasound exposure time
in the first step of emulsification (Fig. 11a) and nanoparticles

prepared at 10 min (Fig. 11b), it can be concluded that both
samples have almost same morphology and size. The particle
size was also confirmed by light scattering analysis. The
particle average size prepared at 10-min sonication was found
to be 344 nm while particles prepared with 6-min sonication
time was 379 nm.

Ultrasound exposure time (second step)

Similarly, effect of ultrasound exposure time in the second
step of emulsification process on the particle morphology was
also observed. The SEM images showed that the nanoparticles
of both samples are spherical with smooth surfaces, and the
sizes of particle prepared at 4-min sonication exposure are
obviously larger than the particles prepared at 8-min sonica-
tion time (Fig. 12a).

Outer aqueous phase (W2) volume fraction

The outer aqueous phase plays an important role in determi-
nation of size, morphology, and size distribution of nanopar-
ticles. In this part, different volume fractions of outer aqueous
phase were used during preparation of particles. It was shown
from SEM images that, in sample with 100-ml outer aqueous
phase, the particles were somewhat attached to each other and
were oval in shape (Fig. 13a). On the other hand, when 150ml
of outer aqueous phase was used, spherical particles were
observed (Fig. 13b). The high-degree particle attachment in
sample with 100-ml aqueous phase (Fig. 13a) may be due to
addition of low volume of dispersion phase (W2) in this
recipe, which may lead to high chance of collision among
particles due to high viscosity, subsequently resulting in
flocculation.

Conclusions

PCL nanoparticles were successfully prepared at different
conditions by double emulsion solvent evaporation-like pro-
cess using power ultrasound. The influence of different pro-
cess parameters on the nanoparticle characteristics like mor-
phology, zeta potential, and particle size was investigated.
From this systematic study, it has been demonstrated that
ultrasound emulsification is an efficient method to obtain
nanoparticles via double emulsion solvent evaporation tech-
nique. Typical results are comparable with those of high-speed
homogenizers like ultra-turrax. During emulsification process
by power ultrasound, sonication amplitude has a significant
effect on resultant nanoparticle size and morphology. Final
particles have been found to be related to sonication amplitude
in the second step of emulsification process. In the second
step, smaller size particles were obtained at higher amplitude
of ultrasound. It was reported that modification in ultrasound
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exposure time has no significant impact on mean particle size
in the first step of double emulsion process, while during the
second step, an increased ultrasound exposure time has led to
smaller size particles. In case of polymer amount, small size
(235 nm) nanoparticles were obtained when 1 g of PCL was
used as compared to 5 g of PCL (748 nm). It was concluded
that presence of PVA (stabilizer) is compulsory for NP prep-
aration by this process, and the particle size decreases by
increasing PVA concentration from 0.05 to 0.2 %, and beyond
this value, there was no significant effect on mean particle
size. The relative volumes of aqueous phases are also an
important factor in nanoparticle preparation process; from this
study, it was established that the particle size decreases signif-
icantly with an increase of outer aqueous phase volume phase
volume from 50 to 150 ml, and beyond this value, no marked
effect was observed. From SEM image observation, it was
found that the surface of obtained nanoparticles can be as-
sumed to be spherical with smooth surface, having broad size
distribution, but results are comparable with other pressure
homogenizers. Moreover, the change in preparation condition
has no effect on the zeta potential of PCL nanoparticle pre-
pared by this process.

After this systematic studies via power ultrasound, further
evaluation study has to be performed in order to determine
suitable amount of active ingredient such as proteins and
anticancerous molecules to be loaded in the inner aqueous
phase (W1), and also to study the release rate of active medi-
caments from these nanoparticles and its loading efficiency.
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III.3. Encapsulation of fluorescent nanoparticles in poly-
caprolactone particles to be used as contrast agent 
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General summary 

Bioimaging has become a powerful technique in biomedical research recently due to its 

unique abilities to visualize the morphological details of specific cells or tissues. Several imaging 

techniques have been used such as computed tomography, magnetic resonance imaging, positron 

emission tomography, single photon emission CT, ultrasound and optical imaging. These 

techniques   are,   generally,   complementary   rather   than   competitive.    Fluorescence-based 

techniques have been extensively used in biological imaging due to their features of high 

sensitivity, selectivity, convenience, and non-invasive approach. Fluorescence microscopy 

depends upon the inherent property of the fluorophore. When the fluorophore is excited by light 

of specific wavelength (visible light spectrum), it excites electrons from the ground state to a 

higher energy singlet state. The excited state exists for a very short time and return to ground 

state by emitting light of large wavelength. This difference in wavelength is called the Stokes 

shift. The Stokes shift is fundamental to the sensitivity of fluorescence techniques. Most of 

imaging techniques depend on contrast agent to visualize the different tissues, which augment the 

efficiency of imaging techniques by highlighting the differences between tissues. However, most 

of the currently used organic fluorescent dyes (contrast agents) have some limitations, such as: (i) 

They cannot fluoresce continuously for long periods of time for bioimaging observations because 

of their rapid photobleaching (instability). (ii) Majority of organic fluorophores have a relatively 

broad emission spectrum i.e they can overlap with the emission spectra of other fluorophores. 

(iii) They reach in low concentration at target site, which consequently affect image quality.  (iv) 

Faces problem of poor target specificity during diagnosis of diseases. 

Thus, encapsulation of fluorescent contrast agents have overcome many of the limitations 

of conventional contrast agents (organic dyes), it can offer a better fluorescent contrast agent, 

with desired chemical and optical properties, such as, in vitro and in vivo stability, surface 

modification, high photostability, high quantum yield, large stokes shift, resistance to metabolic 

disintegration and non-toxicity, and flexible processability in order to be further conjugated with 

various biomolecules and fluorophores. Moreover encapsulation of fluorescent agent with 

polycaprolactone could provide protective layer of a nontoxic and biocompatible material around 

dye molecules, reducing the penetration of oxygen molecules thus improve it photostability. The 

surface of polycaprolactone polymer can be easily modified to attaché different ligands and 

biomolecules. 
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In this study, the fluorescent polymer nanoparticles (as a model) were encapsulated by the 

modified double emulsion   (W1/O/W2)   solvent   evaporation   technique,   using   two-step   

emulsification   via sonication. A set of formulations were prepared by incorporating different 

concentrations of fluorescent nanoparticles (FluoSpheres®) in the inner aqueous phase (W1). In 

the first step, W1 was then added to polycaprolactone solution in dichloromethane (3 g in 12 ml) 

and homogenized to form primary emulsion. In the second step, the primary emulsion was 

homogenized with 0.5% polyvinyl alcohol solution (as outer aqueous phase). Subsequently, the 

organic solvent evaporation from the dispersion with the help of rotary evaporator has led to the 

formation of solidified fluorescent-loaded polycaprolactone particles. These dispersed particles 

were then recovered by centrifugation at 10000 rpm for 10 minutes and washed three times with 

deionized water properly. The prepared particles were then characterized in term of particle size, 

SEM and TEM morphology, confocal microscopy and % encapsulation efficiency. It was shown, 

that the biodegradable polymer polycaprolactone is a useful nano- and micro carrier for imaging 

agents that can be used in diagnosis of various daisies. It was observed that the presence of 

fluorescent contrast agent in formulation has no significant effect on the colloidal properties of 

the final particles.  Both, fluorescent-loaded particle and blank particles were analyzed for 

average particle size and it was found that the presence of fluorescent agent in particles did not 

affect the particle size when used in different concentrations. As the fluorescent nanoparticles 

were used in very small amount because they are highly sensitive and are effective in very minute 

concentration. Also, zeta potential of various formulations was determined at 25°C, using 

Malvern autotitrator MPT-2, and it was found to be stable at different pH values (pH 3, pH 5, pH 

7, pH 9, and pH 11), which reveals the non-charged nature of the polycaprolactone.  The particle 

morphology was observed under TEM, and the fluorescent-loaded submicron particle was seen to 

be spherical and fairly detached from each other and no impurities were observed in TEM 

images. The SEM images showed that the nanoparticles produced were in submicron size (< 400 

nm) and had spherical shape with smooth texture. The relatively smooth surface of the particle 

supported the assumption that the release of the encapsulated moiety may be caused by matrix 

erosion. The incorporation of fluorescent nanoparticles in different concentrations did not affect 

the morphology of submicron particles. The percentage loading efficiencies of the contrast agent 

were found in-between 84.4 % to 91.4 % in various formulations. The encapsulation efficiency 

was almost same for all the formulations containing various concentrations of contrast. Also, with 
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an increase in concentration of contrast agent, there was insignificant increase in   EE from 

84.4% to 91.4%. Furthermore, CLSM images showed that all particles are labeled and contrast 

agents are dispersed in polymer matrix. Although several fluorescent contrast agents have been 

encapsulated and applied biologically, still further research should be done before they can be 

widely employed as fluorescent probes in clinical trials. With further progresses in design and 

synthesis of high class multifunctional fluorescent particles, their extensive application may be 

expected in theranostics, which could include encapsulation of hydrophilic/hydrophobic or both 

drugs along with one or more fluorescent nanoparticles simultaneously. And, with the help of 

imaging technique, tracking of loaded drug, and drug distribution in target tissues would be 

possible. 
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Fluorescent  materials  have  recently  attracted considerable  attention  due  to  their  unique properties and

high  performance  as  imaging  agent  in  biomedical  fields.  Different  imaging  agents  have  been  encapsulated

in  order  to  restrict  its delivery to a  specific area. In  this  study,  a fluorescent  contrast  agent  was  encap-

sulated  for in  vitro  application  by polycaprolactone  (PCL)  polymer.  The  encapsulation  was  performed

using  modified  double  emulsion  solvent  evaporation  technique  with sonication.  Fluorescent  nanoparti-

cles  (20 nm)  were  incorporated  in  the inner aqueous  phase  of double  emulsion.  A  number  of  samples  were

fabricated  using  different concentrations  of  fluorescent  contrast  agent. The contrast  agent-containing

submicron  particle  was characterized  by  a zetasizer  for  average  particle size,  SEM  and  TEM  for morphol-

ogy  observations  and  fluorescence  spectrophotometer  for  encapsulation  efficiency. Moreover,  contrast

agent  distribution  in  the  PCL  matrix  was  determined by  confocal  microscopy.  The  incorporation  of  con-

trast  agent  in  different concentrations  did  not  affect the physicochemical  properties of PCL  particles  and

the  average size  of  encapsulated  particles  was  found  to  be in  the  submicron  range.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Recently, biomedical imaging has received immense attention

due to its extensive applications in diagnosis of disease at  an

early stage [1,2], tracking of therapeutic carrier, monitoring dis-

ease changes and determining a proper end state to therapy [3].

In many cases, imaging is  performed for diagnosis of a disease

state prior to initiation of therapy. Several imaging techniques such

as,  computed X-ray tomography (CT), optical imaging, magnetic

resonance imaging (MRI), positron emission tomography (PET),

single-photon-emission computed tomography (SPECT), and ultra-

sound are being used for diagnosis of disease including cancer

and neurodegenerative diseases. These are noninvasive techniques

and allow the visualization of target tissues [4,5]. Various imaging

technologies (Magnetic resonance, optical etc) depend on con-

trast agent to visualize the organ of interest [6]. Contrast agents

could augment the efficiency of imaging techniques by highlight-

ing the differences between tissues [3], without contrast agent

∗ Corresponding author.

E-mail address: elaissari@lagep.univ-lyon1.fr (A.  Elaissari).

such information-rich images would be unobtainable. The con-

trast agents currently used for diagnosis faces problems of poor

target specificity, instability and low concentration at target site,

which consequently affect image quality. Thus, it is  essential to

deliver high payload of contrast agent specifically to an organ of

interest in order to obtain beneficial images. Due to their spe-

cific size and shape, submicron particles offer multifunctional

capability. Polymeric particles, incorporated with contrast agents

(polymeric encapsulation of contrast agent) are emerging as a  new

class of imaging agent for detecting human diseases [7]. These

particles have shown many potential benefits, such as, (i) they

restrict the delivery of imaging agent to a  small area thus reduc-

ing the systemic side effects (ii) they can deliver high payload

of imaging agent at  target site selectively (iii) they can travel

through blood vessels and protect the encapsulated agent until

delivery (iv) polymeric particles provide high surface area that

allows the attachment of appropriate targeting agent and enhance

the release properties (v) they can modify the biodistribution of

active agent in controlled manner. Moreover, polymeric materi-

als have the ability to encapsulate different contrast agents and

active molecules in a single particle enabling multifunctional par-

ticles possibilities [6–9], with a  capacity for targeted site imaging

and delivery of therapeutic agents [8]. Standard process allow

http://dx.doi.org/10.1016/j.colsurfb.2015.09.045

0927-7765/© 2015 Elsevier B.V. All  rights reserved.
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for the encapsulation of lipophilic molecules into a  multitude of

particulate materials, however their application to hydrophilic

compounds encapsulation is limited due to uncontrolled leakage

of entrapped compounds during the preparation process [10–12].

However, double emulsion technique is an appropriate method for

the  encapsulation of hydrophilic molecules as well as hydropho-

bic molecules, additionally, it allows flexibility in particle size by

adjusting process parameters, the process is  independent of special

laboratory equipment, the operation costs are low and prefer-

able for low scale production [13,14]. Several polymeric materials

such as polystyrene, dextran, chitosan poly (lactic acid) and poly

(lactic-co-glycolic acid) has been used to develop multi-target and

multifunctional particle loaded with fluorescent agent for optical

imaging [15]. The characteristics (size, surface charges, and struc-

tures) of these particles can be controlled by polymeric backbone

and process parameter during preparation, in order to improve

the fluorescent agent entrapment, blood circulation time, target

site accumulation and target specificity of imaging particles probe

[16,17]. Polycaprolatone is a biodegradable polymer with low glass

transition temperature and melting point and the polymer metabo-

lites are eliminated from the body by innate metabolic process [18].

Due to biodegradable, biocompatible and non-toxic nature of PCL,

it  is extensively studied for control drug delivery system in sev-

eral formulations including nanoparticles, implants, nano-fibers,

microspheres etc. Its compatibility with wide range of drug and

its slow degradation to release drug for extended period of time

(months–years) makes it an appropriate candidate for controlled

drug delivery systems. Moreover, PCL versatility is  due to the fact

that, it allows the modification of its  physicochemical and mechan-

ical properties by copolymerization, which intern affect all other

properties of PCL such as solubility, ionic property and degradation

pattern [19–21]. Though, PCL has been extensive investigate in drug

delivery system [22–24], but its  applications in imaging technolo-

gies are studied too little, especially for encapsulation of contrast

agent in optical imaging techniques.

Confocal laser scanning microscopy (CLSM) can be used as

potential tool for characterization of polymeric particles. It allows

visualization of  structures not only on surface, but also inside the

particles without prior sample destruction and  can be used to visu-

alize the encapsulated compounds. CLSM has ability to acquire

in-focus images from selected depths, allowing three-dimensional

reconstructions of topologically complex objects, by assembling

several coplanar cross sections and already has been used for

evaluation of different formulations [25,26]. Conversely, SEM does

not  allow the visualization of internal structures (encapsulated

phase) of intact particle, and requires mechanical section of par-

ticle to observe the internal structures, which may  result in loss

of encapsulated phase. Moreover, CLSM enable us to evaluate

the encapsulation of fluorescent contrast agent into submicron

particles as well as its  distribution in biological samples. dual

fluorescence technique enable us to record images at two  individ-

ual wavelength couplets (excitation/emission), subsequently the

confocal images of fluorescent particles (visualized under laser

scanning) can be superimposed on images of submicron carrier

particles (under normal observation) using the same sample plane

[27]. Hence, the main goal of this work was to develop a  poly-

meric submicron carrier for fluorescent contrast agent that might

enhance stability, augment the imaging efficiency, and restrict

contrast agent accumulation to specific area and could be used

for delivery of imaging agent and therapeutic agent simultane-

ously. We  studied the encapsulation of contrast agents in/on to

PCL particles using double emulsion evaporation technique. Several

formulations with different concentrations of contrast agent were

characterized regarding particles size, morphology, zeta potential,

encapsulation efficiency etc. Average size of particles was found to

be  in submicron range with smooth surfaces, spherical shapes and

high encapsulation efficiency. We  also evaluated the penetration of

the  particles into excised human skin.

2. Materials and methods

2.1.  Materials

Polycaprolactone (PCL) (Mw  =  14000 g/mol), polyvinyl alcohol

(PVA) (Mowiol® 4–88, Mw = 31000 g/mol), and dichloromethane

(DCM) were obtained from Sigma–Aldrich, Germany and used

as such. Water was  deionized using (Aquadem® from Veolia

Water, France). Ultrasonic homogenizer system “CY-500” ivymen®

(500W, 20 kHz) from SELECTA GROUP, Switzerland. Analytical

balance (Acculab ALC-110.4) was  supplied by Sartorius group,

Germany. Hitachi S-800 FEG Scanning Electron Microscope from

Hitachi Japan, Zetasizer Nano-ZS (Malvern, UK), red fluorescent

(580/605) labeled carboxyl-functionalized polystyrene particles

(FluoSpheres®) was  purchased from Molecular Probes® F-8786

(Oregon, USA). CM 120 Transmission electron microscope was

obtained from Philips, Netherlands. Eppendorf 5415C Centrifuge,

was obtained from Eppendorf, Germany, and Rotary Evapora-

tor (1500 W)  was supplied by Nahita. Cary Eclipse Fluorescence

Spectrophotometer (Fluorometer) was obtained from Agilent Tech-

nologies (Malaysia).

2.2.  Methods

2.2.1. Preparation of submicron particles incorporated with

contrast  agent

The  fluorescent contrast agent was encapsulated by the mod-

ified double emulsion (W1/O/W2) solvent evaporation process,

via two-step emulsification technique using power ultrasound as

described by Iqbal et al. [28]. Briefly, before preparing the first

emulsion, the inner aqueous phase (W1), was  prepared by incor-

porating different concentrations of fluorescent contrast agent

(FluoSpheres®) in deionized water and the volume was made up to

1.5  ml.  Similarly, oil phase was  prepared by  dissolving 3  g of poly-

caprolactone (PCL) in 12 ml of dichloromethane properly to form

a  clear solution. And PVA solution (0.5%) was  prepared to be used

as outer aqueous phase (W2), by taking 5 g of PVA in 1000 ml  flask

and sufficient amount of deionized water was  added to make up

the volume. PVA was dissolved under magnetic stirring at  60 ◦C for

40 min, which resulted in a  clear PVA solution.

Then,  in the first step of emulsification, the inner aqueous phase

(W1) was  added to PCL solution and this mixture was homoge-

nized properly to form a  primary emulsion (W1/O) using ultrasonic

homogenizer “CY-500” ivymen® at a 70% amplitude for 5 min. In

the second step, the primary emulsion (W1/O) was dispersed in

150 ml of the outer aqueous phase (W2) containing 0.5% PVA as

stabilizer in a 250 ml glass beaker. This mixture was  homogenized

by an ultrasonic probe at 70% amplitude for 8 min, to produce a dou-

ble  emulsion (W1/O/W2).  The ultrasonic horn was  positioned 2  mm

above the oil-water interface in the system. This position was kept

constant for all  the experiments. Afterward, the organic solvent

evaporation from the dispersion with the help of rotary evaporator

has led to the formation of solidified PCL particles. These dispersed

particles were then recovered by centrifugation at 10000 rpm for

10 min  and washed three times with deionized water properly. The

ultrasonic transducer (homogenizer) consisting of  titanium alloy

probe (5.6 mm diameter and 60 mm  height) used has power of

500W and frequency of 20 kHz. The above mentioned conditions

were same for all the experiments, only the concentration of fluo-

rescent agent was changed in each formulation.
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2.3. Physicochemical characterization of  submicron particle

2.3.1.  Hydrodynamic size measurement

The hydrodynamic particles size (Dh) of the colloidal dispersions

was determined by dynamic light scattering using zetasizer from

Malvern Instrument at  room temperature (25 ◦C) and in 10−3 M

NaCl concentration. The mean hydrodynamic diameter is calcu-

lated by using the Stokes–Einstein’s equation:

Dh = kT

3��D
(1)

where,  k is the Boltzmann constant, T  is the absolute temperature,

� is the viscosity of the medium, and D is the diffusion coefficient.

Each sample was prepared by adding one drop of submicron par-

ticles dispersion in about 1.5 ml of deionized water in quartz cell

and then the cell was placed in zetasizer for analysis. Mean particle

size was determined at  a  scattering angle of 90◦ using appropri-

ately diluted samples. For each preparation, the mean size of three

determinations was calculated.

2.3.2.  Zeta potential

Prepared  particles were also characterized with respect to elec-

tronic mobility and zeta  potential using a  zetasizer (Nano-ZS,

Malvern). Analysis was performed at  different pH values (pH 3, pH

5,  pH 7, pH 9 and pH 11) at  25 ◦C,  using Malvern autotitrator MPT-

2. All samples were appropriately diluted with 1 mM NaCl aqueous

dispersant in order to maintain constant ionic strength. For each

sample the mean value of three determinations were established.

Electrophoretic mobility is converted into zeta potential by using

Smoluchowski’s equation:

�e = �
4��

ς (2)

where,  � is the dielectric constant, � is  the viscosity of the medium,

and � is the zeta potential.

2.3.3.  Determination of  encapsulation efficiency

The encapsulation efficiency refers to the amount of fluores-

cent contrast agent encapsulated into the PCL polymeric particles as

compared to the total amount of fluorescent material added in for-

mulations. For determination of encapsulation efficiency, indirect

method was used i.e by measuring the amount of fluorescent agent

that was not entrapped and, thus, remained in the supernatant

layer upon centrifugation of particulate dispersion. The encapsu-

lation efficiency of fluorescent contrast agent in PCL particles was

then calculated in triplicate using indirectly method, as follow:

Encapsulation effeciency(%)  = Totat amount FC added −  Amount of recovered in supernatents

Total amount of Fluorescent agent added
×  100 (3)

where, FC is the fluorescent contrast agent. For this purpose, spe-

cific amount of particulate dispersion were centrifuged (Eppendorf

5415C; Eppendorf, Germany) at  14000 for 10 min, and the super-

natant was then analyzed for fluorescent intensity by adding about

2.5 ml  sample into fluorometer’s covet. The excitation and emis-

sion wavelengths used were 580 nm and 605 nm respectively. All

the  samples were measured at  PMT  detector voltage of 600 V, with

emission and excitation slits width of 5 nm for each. Before encap-

sulation efficiency measurement of prepared particles, a  standard

curve was generated by preparing a  series of fluorescent agent

dilutions in deionized water, these dilutions were analyzed for

fluorescence intensity via fluorometer and, the results obtained

were used to produce the standard curve. Afterward, the amount

of fluorescent contrast agent (percent encapsulation efficiency)

in different formulations was quantified by using this standard

curve. When the fluorescence spectra of contrast agent dispersed

in water was analyzed by  fluorometer, their excitation and emis-

sion maxima were obtained at  580 nm and 606 nm respectively,

which is  almost the same as mentioned on  the label of FluoSpheres®

(�ex =  580, �em =  605).

2.3.4.  Particles morphology

Scanning  Electron Microscopy (SEM) and transmission electron

microscopy (TEM) were performed in order to determine the shape

and surface morphology of the fluorescent-containing polymeric

particles. Scanning Electron Microscopy (SEM) morphological eval-

uation was performed with Hitachi S800 FEG microscope at  the

“Centre Technologique des Microstructures” (CT�) at  the Univer-

sity of Lyon (Villeurbanne, France). A drop of diluted aqueous

suspension of submicron particles was deposited on a  flat steel

holder and dried at  room temperature. The sample was  finally

coated under vacuum by cathodic sputtering with platinum (5  nm).

The samples were observed by SEM under an accelerating voltage

of 15 kV. Before deposition on steel holder, all samples of particle

were centrifuged at 1000 rpm for 10 min  and  washed three times

with deionized water. While, the transmission electron microscopy

(TEM) of the fluorescent agent encapsulated particles were done

by a  Philips CM 120 Transmission electron microscope (CMEABG,

Claude Bernard University Lyon 1, France) at an electron accelerat-

ing voltage of 100 kV. A drop of highly diluted sample was deposited

onto a  copper grid covered with a  200 mesh and covered with form-

var carbon membrane and dried at room temperature before TEM

analysis.

2.3.5. Confocal laser scanning microscopy

Confocal laser scanning microscopy (CLSM) is  an  optical imag-

ing technique that can be used to achieve cellular resolution in

real-time and record depth section information of tissue with cel-

lular definition. CLSM allows the inspection of  internal structures

of fluorescent-containing polymeric particles without prior sample

destruction and it  can be used for localization of encapsulated com-

pounds [26,29]. Fluorescence technique enable us to record images

at  two  individual wavelength couplets, subsequently the confocal

images of fluorescent nanoparticles (visualized at  a specific wave-

length) can be overlaid on images of carrier particles (visualized

at white light) obtained in the same sample plane [27]. An ideal

fluorescent agent selected for CLSM might possess good quantum

efficiency, high selectivity for target site, high resistance to photo-

bleaching, least disturbance to the sample and minimum cross-talk

when many contrast agents are used together. When a  fluorescent

agent is  excited by light of specific wavelength, it remains in excited

state for only a few nanoseconds and then relaxes into its ground

state by emitting fluorescence of  longer wavelength. The intensity

of energy emitted by fluorescent agent at  its optimum excitation

wavelength can be described by quantum efficiency value (QE)

value of the fluorescent agent [30,31].

QE = Energy emitted

Energy absorbed
(4)

Several  samples were prepared by incorporating different concen-

trations of fluorescent contrast agent in the inner aqueous phase

(W1) of double emulsion. Additionally, one sample was prepared

without adding contrast agent (blank sample). After preparation

of all formulations, the particulate dispersion was  visualized by

confocal laser scanning microscopy (CLSM).

Confocal microscopy was  performed at the “Centre Tech-

nologique des Microstructures” (CT�) at the University of Lyon
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(Villeurbanne, France), on  the Axiovert 200 LSM 510 Meta micro-

scope (Carl Zeiss, Jena, Germany) using a  63x oil immersion

objective of 1.4 Numeric Aperture (N.A.). The fluorescence emis-

sion was collected with a pinhole at  136 �m, the 543 nm laser was

set up at 70% of its maximum intensity and  the emission was  col-

lected from 560 nm and above. The contrast agent (FluoSpheres®)

used was red fluorescent beads/nanoparticles, maximally excited

at 580 nm and their emission wavelength was 605 nm.  These par-

ticles were supplied as suspensions (2% solids content) in water,

with average diameter of 20 nm.

2.4.  Skin penetration of  particles

Fresh human skins from surgery of healthy Caucasians were

used. The surface was cleaned with water and 100 �l of PCL parti-

cles were deposited. After application for 48 h,  discs of skin, 3  mm in

diameter, were punched out, frozen and embedded in Tissue-Tek®

O.C.T. Cryostat sections (10 �m) perpendicular to the skin surface

were prepared and mounted on poly-lysine coated slides. Tissue

sections were examined by CLSM.

3. Results and discussion

The  physicochemical aspect of colloidal system such as, particle

size and zeta potential, are known to influence the physical sta-

bility of colloids, release rate and their interaction with cells and

biological environment [32]. The particles were characterized on

the basis of morphology, particle size, zeta potential, contrast agent

encapsulation efficiency and their localization.

3.1. Particles size

The  hydrodynamic particle size of each sample was  examined.

Each sample was highly diluted before any analysis. The presented

mean particle size was at least the average of 3  independent

measurements. The size range of particles produced by W1/O/W2

protocol can be adjusted depending on  the amplitude of sonotrode

and time duration of sonication [33]. The prepared particles were

analyzed via zetasizer and, their average size was found to be in

submicron range (Table 1). The presence of fluorescent agent in PCL

particles did not affect the particle size when used in small concen-

trations (F2, F3 and F4), while, at relatively higher concentration

(F6 and F7) there was a slight increase in particle size but it was

insignificant (Table 1).  This can be attributed to the constant vol-

ume  of inner aqueous phase used in the all formulations. And the

results showed that the chemical composition of the inner aqueous

phase has no significant effects on the final particle size.

3.2.  Zeta potential (ZP)

The  zeta potential reflects the strength of the colloidal particles

electrical barrier and is used as a vital parameter in evaluating the

stability of colloidal dispersions [34]. In order to point out the effect

of pH on the particles surface charge density, the zeta potential of

PCL  particles was determined as a  function of pH, with different

concentrations of  contrast agent-containing samples and a  blank

sample. It was measured at  different pH values, and from the results

obtained it has been shown that, the zeta potential of contrast agent

loaded particles varied between 0.1 and −7.4, which could be con-

sidered near to zero. These results demonstrated that there was no

considerable variation in zeta potential of different formulations as

the  pH was increased (Fig. 1),  which can be attributed to uncharged

chemical nature of PCL as already reported in literature [35,36] and

also to the screening effect of PVA. Normally, for charged parti-

cles, the use of non-charged stabilizer leads to the surface charge

Fig. 1.  Zeta potential versus pH of Contrast agent-containing (CA) submicron parti-

cles.

( ) CA free particles, (  )  CA 0.06 �g/g of PCL,  (  ) CA 0.16 �g/g of PCL,  (  )  CA

0.33  �g/g of PCL, (  ) CA 0.50 �g/g of PCL, ( )  CA 0.66 �g/g of PCL, (  ) CA 1.33 �g/g

of  PCL.

screening effect and shift in sleeping plan position far from par-

ticles surface, which induce decreases in the absolute of the zeta

potential.

3.3. Morphology

Scanning electronic microscopy (SEM) was  used to visualize

the morphology of contrast agent-loaded PCL particles prepared

by W1/O/W2 double emulsion evaporation technique at  70% soni-

cation amplitude. Particles were evaluated on the basis of shape,

surface texture, smoothness and presence of inter-particulate

bridging. Under SEM observations, the submicron particles pro-

duced had smooth surfaces and spherical shapes (Fig. 2) with an

average particle size in submicron range. The average particle sizes

were also confirmed by light scattering analysis (Table. 1). The rela-

tively smooth surface of the particle supported the assumption that

the  release of the encapsulated moiety may  be caused by matrix

erosion [37]. Moreover, rarely a split or  broken particles were seen

within all samples. The incorporation of  contrast agent in differ-

ent concentrations did not affect the morphology of submicron

particles. SEM Images showed slight bridging between some par-

ticles, this can be attributed to sticky nature of residual stabilizer

(PVA) used in the formulations; since, it is  difficult to remove PVA

absolutely even after washing [38].

Additionally, TEM was  used to observe the produced particles

formed by double emulsion method. The loading of fluorescent con-

trast  agent in various concentrations into the PCL particle did not

affect the morphology of the particles as shown in Fig. 3.  Under

TEM observations, no  inorganic impurities were found in the sam-

ples and, the submicron particle appeared to be spherical and fairly

detached from each other, as the samples were highly diluted prior

to TEM observation.

3.4.  Encapsulation efficiency (EE)

Encapsulation of fluorescent contrast agents can be of wide

interest in optical imaging, because it decreases photobleaching,

prevent dye aggregation and increases fluorescence per particle

by confining large no of  fluorescent molecule into a  small vol-

ume  [39]. Though once the fluorescent material is incorporated

into polymeric particles, then dispersion medium is  not in direct

contact with fluorescent agent, therefore, medium of dispersion

does not affect the fluorescence spectra [40]. The encapsulation

efficiency of fluorescent contrast agent into PCL submicron particles

was determined by indirect method using cary eclipse fluorescence

spectrophotometer. All the measurements were performed in trip-

licate.
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Table 1
Composition of various formulations for preparation of submicron particle incorporated with fluorescent contrast agent, particles were prepared via  two-step double emulsion

evaporation process. Double emulsion was  homogenized by sonication at 70% amplitude for 5 min  in the  first step, and 8 min in the second step of emulsification. Samples

were prepared by incorporating different concentrations of contrast agent (FluoSpheres®) along with one blank sample (F1)  i.e without contrast agent. The average particle

size and encapsulation efficiency (%) of these formulations are also tabulated.

Run FluoSpheres®(�g/g of PCL) Inner aqueous phase (ml) PCL polymer (g) PVA solution (0.5%, ml)  Particle size (nm) Encapsulation efficiency (%)

F 1 0 1.5 3 150 342  NAa

F 2 0.06 1.5 3 150 346  84.4

F  3 0.16 1.5 3 150 354  86

F  4 0.33 1.5 3 150 347  89.8

F  5 0.50 1.5 3 150 322  88.6

F  6 0.66 1.5 3 150 371  90.2

F  7 1.33 1.5 3 150 375  91.4

a Not applicable.

Fig. 2. SEM images of PCL particles incorporated with different concentrations of contrast agent. (A)  0.06 �g/g of PCL (B) 0.66 �g/g of PCL (C) 1.33  �g/g of PCL (D) blank

formulation. The scale bars represent 1 �m.
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Fig. 3. TEM representative images of contrast agent-containing PCL particles. Contrast agent was incorporated in  different concentrations to various samples. (a) 0.16 �g/g

of  PCL and (b) 0.66 �g/g of PCL. Scale bar in A  represents 0.2 �m,  while in C  it represents 0.5 �m.

The average encapsulation efficiencies of the contrast agent

were found between 84.4% and 91.4% in various formulations

(Table. 1). The percentage encapsulation efficiency of formulation

F2 was found to be 84.4%, which slightly increased to 86%, 89.9%,

88.6%, 90.2% and 91.4% in the other formulations i.e. F3,  F4, F5, F6

and F7 respectively (Table. 1).  These results showed that encapsu-

lation efficiency were almost same for various concentrations of

contrast agent incorporated in different formulations. Also, with

an increase in concentration of contrast agent, there was  slight

increase in EE from 84.4% to 91.4% but it was insignificant. The opti-

cal spectra of fluorescent agents are often affected by the change in

polarity of their medium, which cause change in dipole moment of

fluorescent agent and subsequently shift of  peak maxima [41]. The

background intensity was also measured; which, was  found to be

11  arbitrary units (a.u.) for blank sample, and excluded from final

values. The high encapsulation efficiency may  be due to high affin-

ity of hydrophilic contrast agent (CA) toward inner aqueous phase

(W1). The CA is easily disposable in W1,  and its  homogenization

with PCL solution (in DCM) results in appropriate nanodroplets for-

mation during the first step of emulsification. In the second step of

emulsification, the PCL in DCM solvent rapidly solidifies and encap-

sulating the CA in the inner aqueous phase and  thus, preventing the

leakage of CA from W1 to outer aqueous phase (W2). The PCL pre-

cipitation in the second step is  induced by the diffusion of organic

solvent from dispersed nanodroplets to outer aqueous phase (W2).

3.5.  Confocal laser scanning microscopy

After the encapsulation efficiency of contrast agent analysis

by fluorescence microscopy, the localization and distribution of

contrast agent was observed with respect to PCL particles in the

system (background) with the help of CLSM. Moreover, the influ-

ence of contrast agent concentration on the fluorescence images

(brightness) in different samples was also visualized. The confo-

cal microscopy can be used either in fluorescence mode, which

collect the light generated by a  fluorescence contrast agent or in

reflectance mode (to observe structural and morphological infor-

mation of the background under white light) [42].

All  samples were visualized in fluorescence mode (Fig. 4) and

direct observation; afterward, these images were overlaid with the

help  of Zeiss LSM confocal software. The contrast agent-loaded par-

ticles of size 300-400 nm were easily visible under CLSM when

excited at a proper wavelength (nm) of  light. Fig. 4  shows the distri-

bution of contrast agent (�ex =  580, �em =  605) encapsulated by PCL

particles.  From the overlaid images for the same sample (Fig. 4B3,

C3, D3), one can see that the fluorescent contrast agents are only

localized at  PCL particles positions, which indicate that all parti-

cles are labeled, showing proper encapsulation of contrast agent

by polycaprolactone-based particles. Moreover, from CLSM images,

the fluorescence can be observed quantitatively on  the basis of

images brightness. For example, image 4c is brighter (due to high

fluorescence) than image 4b, which confirmed the high concentra-

tion of fluorescent contrast agent incorporated in 4c formulation

(0.66 �g/g of PCL) as compared to 4b (0.06 �g/g PCL) (Fig. 4). On the

other hand the lack of fluorescence emission in image 4a  (blank for-

mulation) verified the absence of contrast agent in this formulation

(blank sample).

3.6.  Skin penetration of  formulated particles

Several studies using in vitro and ex vivo models have demon-

strated that nanoparticles have the potential to penetrate across

the skin barrier or  the follicular structure [27,43].

Fig. 5 shows the penetration pattern of particles in the skin and

in the hair  follicle. The red fluorescence allowed easy identification

of particles. PLC particles remained on the surface of both stratum

corneum (Fig. 5A) and hair follicle (Fig. 5B). Therefore, under passive

diffusion conditions, no penetration of particles was found.

The  main barrier to cutaneous molecule absorption is the imper-

meability of the stratum corneum. Another important issue is the

mechanical stress applied to the skin when investigating the pene-

tration behavior. In future works, we  will evaluate the impact of the

removal of the stratum corneum and  the application of a mechanical

stimulation.

4. Conclusion

The biodegradable polymer PCL is an extremely useful nano-

and micro carrier for several imaging contrast agents that can be

used for theranostic purpose and targeting of diseased tissue. Here,

PCL submicron particles loaded with imaging contrast agent were

successfully prepared via double emulsion technique in order to

restrict its delivery to a  specific area, prevent contrast agent aggre-

gation and improve its stability, which could enhance the efficiency

of imaging techniques. It was observed that the presence of  fluo-

rescent agent in formulation has no significant influence on the

colloidal properties of the final particles.
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Fig. 4. Representative CLSM images of PCL particles containing different concentrations of fluorescent contrast agent (a) blank formulation (b) 0.06 �g/g PCL (c)  0.66 �g/g

PCL prepared by double emulsion process. All images were taken with 63x oil immersion objective of 1.4 numeric aperture in fluorescence mode (left panel) along with their

corresponding direct observation images (middle panel), afterward, these images were overlaid (right panel). The scale bars represent 10 �m.

Fig. 5. Representative CLSM images of skin treated for 48 h with PCL particles. Images were taken with 20x objective in fluorescence mode along with their corresponding

direct observation images, afterward, these images were overlaid (A: skin; B: follicular region). The scale bars represent 100 �m.

The prepared particles were analyzed for average particle size

and it was found that the presence of fluorescent agent in par-

ticles did not affect the particle size when used in different

concentrations. Also, zeta potential of various formulations was

stable at different pH values.

Under  TEM observation the submicron particle appeared

to be spherical and fairly detached from each other and no
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impurities were observed in TEM images. The SEM images revealed

that nanoparticles produced were in submicron size (<400 nm)

with spherical shape and  smooth surface. The relatively smooth

surface of the particle supported the assumption that the release

of the encapsulated moiety may  be caused by matrix erosion. The

incorporation of contrast agent in different concentrations did not

affect the morphology of submicron particles. The average encap-

sulation efficiencies of  the contrast agent were found in-between

84.4% to 91.4% in various formulations. The encapsulation efficiency

was almost same for all the formulations containing various con-

centrations of contrast. Also, with an  increase in concentration of

contrast agent, there was insignificant increase in EE from 84.4%

to 91.4%. Furthermore, CLSM images showed that all particles are

labeled and contrast agents are dispersed in polymer matrix.

Though,  there has been significant research progress in the

field of synthesis polymeric particle and their imaging application,

but still faces some challenges to be focused like active target-

ing, burst release, toxicity, stability of contrast agent and solubility

of polymeric material. As demonstrated here contrast agent-

containing imaging particles can be prepared by double emulsion

solvent evaporation technique. Furthermore, future application

could include encapsulation of hydrophilic/hydrophobic or  both

drugs along with one or more fluorescent contrast agent can be

incorporated in these particles simultaneously i.e for theranos-

tic purpose. And, with the help of  imaging technique, tracking

of loaded drug, and drug distribution in target tissues would be

possible. Moreover, there could be possibility to add molecu-

lar recognition capability to this particulate system by adding a

targeting agent to the particle scheme. This technique for encapsu-

lation of contrast agent can be extended to other imaging agents,

hydrophilic drugs and hydrophobic drugs.
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III.4. Preparation and characterization of gold nanoparticles 
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General summary 

Preparation of gold nanoparticle and evaluation of its colloidal properties is presently 

a very dynamic area of research. New techniques are cautiously evolving that provide more 

control over the particle size, size distribution and shape of nanoparticles which make these 

particles very attractive for various applications. Gold nanoparticles have been investigated 

for many years because of their extensive use in various applications such as catalysis, 

photonics, electronics, optoelectronics, diagnostic, delivery, chemical, biological and 

biomedical sensing, surface plasmon resonance and surface-enhanced raman scattering 

(SERS) detection. The characteristic red color of the gold nanoparticle is due to the collective 

oscillation of the electrons in the conduction band, called surface plasmon resonance, which 

mainly depend on the shape, size and aggregation of the nanoparticle and dielectric constant 

of the surrounding medium. Classically, gold nanoparticles exhibit a single absorption peak 

in the visible range between 510 nm and 550 nm and with an increase in particle size, the 

absorption peak shifts to a longer wavelength. The width of the absorption spectra usually 

depends on the size distribution of the nanoparticles. The properties such as photostability, 

nontoxicity, surface plasmon resonance (SPR), easy surface functionalization, and their 

biocompatibility make these probes highly advantageous for biological  imaging,  cancer  

therapy,  and  drug  delivery,  immunoassay,  protein  assay,  and detection of cancer cells. 

There are two commonly used approaches for preparation of metallic nanoparticles, 

namely, “the bottom up approach”, which involves the association of atoms to fabricate 

nanoparticles, and “the top down method” which involves the constant division of bulk 

metals into nanoparticles. Currently, various techniques have been used for the preparation of 

gold nanoparticles such as, chemical, electrochemical, irradiation, sonochemical, 

photochemical and laser ablation. However the Turkevich citrate reduction method (reported 

in 1951), is still one of the most applied procedures, in which, sodium citrate reduces 

[AuCl4]- in hot aqueous solution to give colloids of 15-20 nm. In this method the size 

distribution of nanoparticles can be controlled by adjusting ration of gold salt to reducing 

agent, the temperature, and the order of addition of the reagents. Transmission electron 

microscopy (TEM) is the most common technique for characterization in term of average 

gold nanoparticles size and size distribution. Another very useful technique is UV-vis 

spectroscopy, which allows estimation of gold nanoparticles size, concentration, and 

aggregation level. Moreover, UV−vis spectrophotometers are present in most laboratories, 

the analysis does not alter the sample, and the registration of the spectrum requires short 
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times. The extinction spectra of gold particles recorded by this technique can be analyzed 

using the Mie theory. 

In this study, gold nanoparticles were prepared by NaBH4 reduction method. Briefly, 

100 ml of HAuCl4 aqueous solution (0.25 mM) were taken in 250 ml flask with magnetic 

stirring at 750 rpm and 0.1 M reducing agent (NaBH4) solution was added drop by drop with 

continuous stirring. The color of HAuCl4 solution changed from pale yellow to dark red over 

several minutes. Stirring process was continued for another 10 minutes for complete 

homogenization. After preparation of the particles, the dispersions were centrifuge at 14000 

rpm for 15 min and the collected particles were redispersed in deionized water before any 

characterization. Several formulations were prepared by changing the concentration of 

reducing agent only, while all other parameters were kept constant. The average size of gold 

nanoparticles in various formulations were determined via different techniques such as 

dynamic light scattering, transmission electron microscopy, UV spectrum using standard 

curve and particles size calculated by using Mie theory and UV-vis spectrum of gold 

dispersion. Additionally, the polydispersity index was calculated from TEM images and 

effects of reducing agent concentrations were reported. 

 It was found that concentration of reducing agent did not affect the particle size and 

size distribution of gold nanodispersion up to certain limit (6.9 mM), however, when NaBH4  

was used in excess, the particle size was increased with relatively broad size distribution. The 

NaBH4 concentration had slight effect on particle morphology too, and TEM images showed 

that by increasing reducing agent the practice color become darker and also probability of 

aggregations increases due to excessive reduction of gold salt. As the gold nanoparticle size 

increases, the the absorption peak shifts to a longer wavelength and full dark color of gold 

nanoparticle dispersion is the indication of high aggregation tendency of particle. Moreover, 

when the particle size was analyzed by UV standard curve based technique using standard 

curve, the obtained results were in agreement with particle size measured by DLS in samples 

where narrow size distribution. The UV standard curve based technique works better for fully 

monodispersed preparations. The nanoparticle size was found to be smaller when measured 

by TEM as compared to hydrodynamic particle size determined by DLS technique. 

Nanoparticle size was also determined by using Mie theory based approach, optical 

absorption spectra of each sample were fitted using Lorentz equation and the particle size was 

found between 8 nm and 19 nm and almost in good agreement with those deduced from 

standard UV curve and TEM analysis. Thus gold nanoparticles can be prepared by NaBH4

reduction method. And the average gold nanoparticle size can be evaluated by methods based 
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on the fitting of   their   UV−vis   spectra   by   the   Mie   model   for   spheres,   DLS,   TEM   

and   UV-vis spectrophotometer. 
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Abstract

Gold nanoparticles have been used in various applications covering both electronics, 

biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general 

requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized 

by chemical compound of by specific ligands or biomolecules. In this study, gold 

nanoparticles were prepared by using different concentrations of reducing agent (NaBH4) in 

various formulations and their effect on the particle size, size distribution and morphology 

was investigated. Moreover, special attention has been dedicated to comparison of particles 

size measured by various techniques, such as, light scattering, transmission electron 

microscopy, UV spectrum using standard curve and particles size calculated by using Mie 

theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by 

various techniques can be correlated for monodispersed particles and excess of reducing 

agent leads to increase in the particle size.

Keywords: A. Metals; A. Nanostructures: A. optical materials; B. Optical properties; C. 

Transmission electron microscopy 
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1. Introduction 

Over the last three decades, nanoparticles research has received an increasing interest. 

This is due to the unique size dependent properties of nanoparticles, which are often thought 

as a separate and intermediate state of matter between individual atoms and bulk material 

(Schmid, 2006). Metal nanostructures present a wide variety of remarkable physical and 

chemical properties, which can be modified by changing their size, morphology, 

composition, and various preparation parameters (Abdelhalim and M. Mady, 2012; Schmid 

and Corain, 2003). Gold nanostructure have attracted considerable attention for many years 

because of their extensive use in various applications such as catalysis, photonics, 

electronics, optoelectronics, diagnostic, delivery, chemical, biological and biomedical 

sensing, photothermal therapy, surface plasmon resonance and surface-enhanced raman

scattering (SERS) detection (Basu et al., 2012; Doria et al., 2012; Iodice et al., 2016; Kamiar 

et al., 2013; Kaya, 2011; Long et al., 2009; Lu et al., 2012; Sardar et al., 2009). Gold 

nanoparticles (AuNPs) are considered as good candidate for labeling applications due to its 

ability of strong interaction with visible light. Upon interaction with light, the excitation of 

free electrons in gold atoms lead to a state of collective oscillation called surface plasmon 

resonance (SPR), which provide gold the ability to absorb and scatter visible light depending 

upon its size, shape and agglomeration state (Huang et al., 2006; Kumar et al., 2007).

AuNPs can be targeted and accumulated at specific tissue of interest thus enable 

visualization of that area under study. They can be detected by several techniques including 

phase contrast optical microscopy, dark field microscopy, photothermal imaging (Lim et al., 

2011; Roth, 1996) and confocal scanning optical microscopy (Li et al., 2009; Sokolov et al., 

2003). AuNPs have been reported to lack the capability to induce adverse and acute toxicity, 

thus, they are considered biocompatible device for biomedical applications (Connor et al., 

2005; Costa Lima and Reis, 2015; Shukla et al., 2005; Singh et al., 2015). These properties 

of nanoparticles result from the extremely high proportion of surface atoms, this factor is 

directly dependent on the size of the nanoparticle. Indeed, the possibility to control these 

properties by adjusting the size of the nanoparticle, has been the cause of extensive 

investigation. Contrary to bulk materials that have constant physical properties regardless of 

mass, nanoparticles offer unique opportunities to control the electrical, magnetic and optical 

properties by modifying their diameter.

Nanoparticles can be prepared from various materials by relatively simple methods. 

In recent years, several types of methods have been published and reviewed. Currently, there 
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are two kinds of approaches commonly used to prepare nanoparticles, the “top down 

approach”, which involves the constant division of bulk metals into nanoparticles and the 

“bottom-up approach”, which involves the building up of nanoparticles from the atomic 

level (metal ions) (Iqbal et al., 2015; Kaya, 2011; Schmid and Corain, 2003). Various 

techniques such as, chemical, electrochemical, irradiation, sonochemical, solvothermal,

photochemical and laser ablation have been used to prepare nanoparticles from metal ions 

precursors in the presence or absence of a capping agent (Ahmad et al., 2013; Akhavan et 

al., 2010; Fattori et al., 2013; Long et al., 2009; Okitsu et al., 2005; Wender et al., 2011).

Michael Faraday was the first to study the formation of colloidal gold particles from a 

scientific point of view and used phosphorus agent for the reduction of [AuCl4]- ions 

(Faraday, 1857). During the last century, numerous easy to handle reducers were found, 

such as sodium borohydride, thiosulfate, or organic ones like, sodium citrate, ascorbic acid, 

alcohols (polyalcohol) and amines (Li et al., 2011; Lloret et al., 2013; Long et al., 2009; Paul

H. Davis et al., 2008; Salcedo and Sevilla III, 2013; Tabrizi et al., 2009). The Turkevich 

method is still one of the most applied procedures, in which, sodium citrate reduces [AuCl4]-

in hot aqueous solution to give colloids of 15-20 nm (Turkevich et al., 1951). Citrate itself

and its oxidation products can act as protecting agents, even if no other stabilizer is used. 

However one of the most popular methods for preparation of gold nanoparticles of various 

sizes comes from Brust et al. It uses NaBH4 to reduce gold salts in the presence of 

alkanethiols to yield gold particles of 1-3 nm. And, by varying the thiol concentration, the 

particles sizes can be controlled between 2 and 5 nm (Brust et al., 1994).

Characterization methods for analysis and measurement of nanomaterials are essential 

in the development of nanotechnology; as the sizes, shapes, and structures of nanomaterials

influence their physicochemical properties. The most common technique used for 

characterization of metallic nanoparticles is high-resolution transmission electron 

microscopy (HRTEM), which generates a photomicrograph of the core of the nanoparticles, 

providing information regarding the particle size, size distribution and polydispersity of the 

samples. UV-visible (optical) spectroscopy is used for analysis of the intensely colored 

colloidal dispersions having characteristic surface plasmon absorption (Abdelhalim and M. 

Mady, 2012; Ibraheem et al., 2014; Iqbal et al., 2014). In a given preparation of 

nanoparticles, there is usually a mixture of different size particles, which, have characteristic 

surface plasmon resonance peaks and thus their UV-visible spectra are usually significantly 

different, which may help in determining the nanoparticle size (Haiss et al., 2007).
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The aim of this work is to characterize the prepared nanoparticles in terms of 

morphology, size and size distribution. Special attention was dedicated to comparison of 

particles size measured by light scattering, transmission electron microscopy, by UV using 

standard curve and the particles size was calculated using Mie theory and UV spectrum of 

gold dispersion.

2. Materials and methods

2.1. Materials

Gold (III) chloride hydrate (≥99.999%) was purchased from Sigma Aldrich, and 

sodium borohydride (NaBH4), 98+%, was purchased from Acros Organics. Water was 

deionized using (Aquadem® from Veolia Water, France). Nitric acid (68%) and Hydrochloric 

Acid (35%) were obtained from BDH Prolabo-VWR International. 

2.2. Preparation of gold nanoparticles

The preparation of gold nanoparticles was performed by NaBH4 reduction method as 

described in literature (Selvakannan et al., 2003). Briefly, 10 mg of HAuCl4 was dissolved in 

100 ml of deionized water (≈ 0.25 mM), and shaken properly to mix the solution. And, 0.1 M 

solution of reducing agent (NaBH4) was prepared by dissolving 1.891 g of NaBH4 in 500 ml 

of deionized water. Then, 100 ml of HAuCl4 (0.25 mM) were taken in 250 ml flask with 

magnetic stirring at 750 rpm (230 V, IKA® RET, Germany) and the reducing agent solution 

was added drop by drop with continuous stirring. The color of HAuCl4 solution changed from 

pale yellow to dark red over several minutes. Stirring process was continued for another 10 

minutes for complete homogenization. Since the HAuCl4 is corrosive, a glass spatula was 

used to avoid the contact with metal. In the preparation of gold nanoparticles, cleaning of 

glassware is very crucial. Thus, all the glassware and stir magnetic bars were thoroughly 

cleaned in freshly prepared aqua regia (HCl/HNO3 3:1, v/v) and then rinse with distilled 

water and dried, to avoid aggregation of residual gold particle and to avoid unwanted 

nucleation during synthesis. After preparation of the particles, the dispersions were centrifuge 

at 14000 rpm for 15 min and the collected particles were redispersed in deionized water 

before any characterization. All the gold nanoparticles batches were store in the dark to 

minimize the photo induced oxidation.
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Fig. 1. Schematic illustration of gold nanoparticles preparation process using NaBH4 as 

reducing agent

2.3. Physicochemical characterization of nanoparticles.

2.3.1. Hydrodynamic particle size measurement

The hydrodynamic particles size (Dh) of the colloidal dispersions was determined by 

dynamic light scattering (DLS) using zetasizer from Malvern (England) at room temperature 

(25 C°). The mean hydrodynamic diameter is calculated by using the Stokes–Einstein’s 

equation: 

  (1)

Where, k is the Boltzmann constant, T is the absolute temperature, η is the viscosity of the 

medium, and D is the diffusion coefficient. Each sample was prepared by adding 2 ml of the 

prepared nanoparticles dispersion in quartz cell and then the cell was placed in zetasizer for 

analysis. Mean particle size was determined at a scattering angle of 90° for all the samples. 

The particle size was determined in triplicate for all samples, and then averaged.

2.3.2. Transmission electron microscopy morphology and particles size analysis

Transmission electron microscopy (TEM) was performed with a Philips CM120 

microscope at the “Centre Technologique des Microstructures” (CTμ) at the University of 

Lyon (Villeurbanne, France). A small drop of suspension was deposited of a microscope grid 

(copper support covered with carbon) and slowly dried in open air. The dry samples were 

observed by TEM under 120 kV acceleration voltages. The average gold nanoparticles 

diameter and polydispersity index (PDI) were calculated for each sample by averaging 200 
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dispersion 
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particles from the TEM images using ImageJ software (image processing program developed 

at the National Institutes of Health) 

2.3.3. Size determination using reported standard curve

The absorbance of gold nanoparticles dispersions was examined using 

spectrophotometer (UV-1800 Shimadzu, Japan). The washed dispersions were redisposed in 

deionized water and the absorbance was recorded from 190 nm to 750 nm as a function of 

wavelength using quartz cell with a path length of 1 cm. Two major information were 

extracted from the obtained spectrum i.e the maximum wavelength (λmax) and full width at 

half maximum (FWHM). The obtained λmax were used for particle size estimation by using 

standard curve (Ghosh et al., 2004) and the deduced λmax and FWHMused for the calculation 

of particles using Mie theory. Various dispersions of gold nanoparticles were prepared and 

then analyzed by a double beam UV-vis spectrophotometer (Shimadzu UV-1800) in the 

range of 190 nm to 750 nm. From the obtained spectra, maximum wavelength were extracted 

and used to estimate the particle size from the reported standard curve from Ghosh et 

al.(Ghosh et al., 2004) to access to the gold nanoparticle’s size.

Table 1 

Data from Ghosh et al.(Ghosh et al., 2004) in which particle size and maximum wavelengths 

absorption of gold nanoparticles are reported as a function of trisodium citrate concentration.  

Run HAuCl4 solution 
(10mM, mL)

Trisodium 
citrate solut-
ion (1%, mL)

Color λmax Average diameter (nm)

Reported Observed

A 1.25 2.000 Dark red 518 - 8.00

B 1.25 1.600 Red 519 - 10.0

C 1.25 1.300 Red 520 - 13.0

D 1.25 1.000 Red 522 16.0 16.0

E 1.25 0.875 Red 526 - 20.0

F 1.25 0.750 Red 528 24.5 25.0

G 1.25 0.625 Pinkish 
red

529 - 32.0

H 1.25 0.500 Pink 532 41.0 41.0

I 1.25 0.400 Pink 534 - 55.0

J 1.25 0.300 Orange 545 71.5 73.0
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In order to determine the particles size of our samples, the data reported in Table 1 is used to 

establish the standard curve reported in Fig. 2. 

Fig. 2. Standard curve of particle size versus wavelength (nm) deduced from Table 1.

The reported data in Fig. 1 is fitted by the following linear equation: 

d (nm) = 2.511 λmax (nm) - 1294.8. (2)

This equation gives the relation between nanoparticles size and maximum wavelength that 

will be used to estimate the particle size of the gold prepared particles. 

2.3.4. Size determination using UV-vis Spectroscopy and Mie theory

The size, concentration, and, in some cases, aggregation level of AuNP are key points for 

nanoparticles  applications because they determine chemical, optical , electrical and 

biological properties (Amendola and Meneghetti, 2009; Schmid and Corain, 2003). The 

estimation of the average size of gold nanoparticles based on the fitting of their UV-vis 

spectra by the Mie model for sphere was used and explored in this study (Amendola and 

Meneghetti, 2009; Haiss et al., 2007). In fact, the average diameter d of various  noble metal 

(Ag, Au, Pt) can be estimated from electromagnetic theory of Mie (Akbari, 2011; Amendola 

and Meneghetti, 2009; Desai et al., 2012; Prikhodko et al., 2014) using the half-width of 

resonance optical absorption peak and characteristic wave length of plasmon resonance “λp”.

    (3)
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Where “vf” is the electron velocity corresponding to the fermi energy of the metal, “c” is the 

velocity of light, ∆λ is the full width at half maximum of absorption band, λp is the 

characteristic wave length at which SPR occurs (Manikandan et al., 2003) .  In order to find 

all these parameters; (full width at half maximum -FWHM, SPR position, absorbance 

intensity) spectra were fitted to Lorentzians. We have employed “ORIGIN 8.0” software. 

Utilization of the Mie model consists in an estimation of the average radius by fitting the 300-

800 nm spectral regions. 

3. Results and discussion

As above mentioned, various gold nanoparticles samples are prepared using the same 

recipe but not the same amount of reducing agent in order to know the effect of reducing 

agent concentration on particle size, size distribution and morphology. The obtained gold 

dispersions were characterized in term of hydrodynamic particles size, size distribution using 

light scattering. The morphology, the particle size and polydispersity were calculated from 

TEM image. The intrinsic photophysical property of the prepared gold nanoparticles was 

examined by spectrophotometry and the particles size was then examined using reported

standard curve or by using Mie theory. The obtained results are reported in Table 2 as a 

function of used method, approach and recipe. 
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Table 2 

Composition of various formulations for preparation of gold nanoparticles. The concentration 

of HAuCl4 was fixed (0.25mM, 100 ml) for all formulations; only the concentration of 

reducing agent (NaBH4) agent was modified by changing volume of  NaBH4 (0.1M). The 

nanoparticles sizes determined by using different techniques are tabulated.

The physicochemical aspect of colloidal system such as, particle size and zeta potential, are 

known to influence the physical stability of colloids, release rate and their interaction with 

cells and biological environment. The particles were characterized on the basis of 

morphology, particle size and size distribution. 

3.1. Transmission Electron Microscopy morphology analysis

Transmission electronic microscopy (TEM) was performed in order to visualize the 

morphology of nanoparticles prepared by NaBH4 reduction of chloroauric acid solution.

Particles were evaluated on the basis of shape, size, size distribution, and presence of 

interparticles bridging and aggregation. Under TEM observations, the nanoparticles produced 

had spherical shapes (Fig. 4), with an average particle size smaller than 30 nm. The average 

particle sizes were also confirmed by light scattering analysis (Table 2). TEM Images showed 

slight aggregation between some particles (Fig. 4(F7a) and (F7b)), this can be attributed to 

Formula

tion code

Concentra

tion(mM) 

of HAuCl4

Concentrat

ion(mM) of 

NaBH4

λmax 

(nm)

PDI Particle size (nm) calculation versus 

used methods

DLS UV TEM Theore

-tical

F1 0.25 2.9 520 1.034 15.4 10.9 11.4 13.10

F2 0.25 3.8 525 1.059 18.8 23.5 13.7 8.42

F3 0.25 4.7 520 1.054 17.0 10.9 14.6 9.76

F4 0.25 6.5 523 1.035 19.4 18.5 10.1 9.70

F5 0.25 7.4 533 1.044 18.2 43.6 16.2 14.14

F6 0.25 6.9 523 1.049 17.7 18.5 15.6 8.10

F7 0.25 11.5 536.5 1.104 30.3 52.4 22.3 19.22
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excessive reduction of gold salt solution; since comparatively high concentration of reducing 

agent was used in this formulation. However, at low reducing agent concentrations the 

particles were fairly detached and homogeneous (Fig. 4(F6a) and (F6b)).

Fig. 3. TEM micrograph of formulations prepared with different concentration of reducing 

agent (F1) 2.9 mM, (F2) 3.8 mM, (F3) 4.7 mM, (F4) 6.5 mM, (F5) 7.4 mM, (F6a,b) 6.9 mM,

and (F7a,b) 11.5 mM. Scale bars represent 50 nm in F2 and F3, 100 nm in F6a and 20 nm in 

all of the rest.

3.2. Particle size analysis via various methods

3.2.1. Light scattering and TEM Particles size and size distribution analysis 

Different dispersions of gold nanoparticles were prepared using various 

concentrations of reducing agent, while the concentrations of HAuCl4 were kept constant 

F3

F4

F2

F7a

F5 F6a

F6b

F1

F7b
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throughout all formulations. Seven samples (F1, F2, F3, F4, F5, F6, and F7) were prepared by 

using freshly prepared reducing agent solution (NaBH4). From the obtained results, it was 

found that, by increasing the concentration of reducing agent from 2.9 mM (F1) to 7.4 mM 

(F5), there was no significant effect on particle size in all formulations and the average 

particle size was found between 15.4 nm and 19.4 nm when measured by using DLS 

technique (Table 2). However, at high concentration of reducing agent (11.5 mM) the particle 

was increased to 30.3 nm. Similar trend of slight increase in particles size was also found, 

when it was calculated from TEM images. The average particle size calculated from TEM, 

was smaller compare to hydrodynamic particle size as shown in Table 2, which is logical 

because, usually hydrodynamic particle size is larger than TEM particle size. The obtained 

results showed that particle size increases with an increase in reducing agent concentration.

This may be due to aggregation and over reduction of gold salt in the presence of excess of 

reducing agent. Though, Ghosh et al reported a decrease in particle size with an increase in 

reducing agent amount, however, they prepared NP via Frens’ method by using sodium 

citrate as reducing agent instead of NaBH4 with adsorbed pyrene on their surface (Ghosh et 

al., 2004). The polydispersity index (PDI) was calculated for each sample from the TEM 

images using ImageJ software and PDI was found between 1.034 and 1.104 (Table 2). The 

formulation F7 showed relatively high PDI due to slight attachments of particles.

The particle size distribution, which reflects the polydispersity of colloidal system, 

was also examined. It was observed that, with an increasing in NaBH4 concentration, there 

was slight increase is size distribution graph as shown in Fig. 4(C). This is also evident from 

TEM images, which shows some particle aggregation in Fig. 4(F7a) and (F7b). This may be 

due to high degree of gold salt reduction leading to slight aggregation, as no stabilizing agent 

was used in all formulations. Increase in particle size and size distribution by increasing 

reducing agent concentration has been already reported (Tabrizi et al., 2009). The high

surface energy of AuNPs makes them very reactive, which mostly leads to aggregation of 

particles without protection of their surfaces (Guo and Wang, 2007). However, at low 

reducing agent concentration (F6) the size distribution plot was narrow (Fig. 4(A) and (B))

with homogenous particle size.
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Fig. 4. Particle size distribution of various formulations prepared with different concentration 

of reducing agent (A, B and C represent sample F4, F6 and F7 respectively).

3.2.2. Particles size analysis by UV standard curve based method

For determination of particle size of our samples, we used the Eq. 2, which was 

derived from the standard curve (Fig. 2) based on the data taken from Table 1 (Ghosh et al., 

2004). For this purpose, first, the wavelength of maximum absorbance (λmax) for each 

sample of prepared nanoparticle dispersion was determined by using UV spectrophotometer 

(Table 2). Subsequently, the particle size was calculated for each formulation by putting their 

respective λmax values in Eq. 2, which relates the λmax with particle size (diameter).

Each formulation showed specific maximum wavelength (λmax), which reflect their 

photochemical characteristics. The λmax of different formulations was found between 520 

nm and 536.5 nm (Fig. 5), and the particles size calculated were in the range of 10.97 nm to 

52.40 nm (Table 2). A tendency of an increase in absorbance was found as the particle size 

increase, which were in agreement to those previously reported (Iwamoto et al., 2005; Njoki 

et al., 2007). The absorbance increase is due to the progressive increase in particle size; larger 

B 

A 
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particles have larger molar extinction coefficient values(Kuo et al., 2004; Link and El-Sayed, 

1999; Verma et al., 2014). Moreover, the particle size obtained from this calculation was in 

agreement with particle size determined by DLS (Table 2) in case of samples F2, F4 and F6, 

whereas slight deviations are shown in samples F5 and F7. The particle size calculated by this 

technique was large than DLS results, this may be due to partial aggregation of particles, 

especially in sample F7, which can also be seen from TEM images (Fig. 3(F7)). This 

equation (Eq. 2) can be ideal for completely monodispersed preparations and can be used to 

obtain information regarding nanoparticles polydispersity.

Fig. 5. Absorption spectra of gold nanoparticles dispersion prepared with different 

concentration of reducing agent. 

3.2.3. Size determination using UV-vis Spectroscopy and Mie theory

AuNPs show strong plasmon resonance absorption that is dependent on the particle 

size, shape and agglomeration. For almost spherical gold nanoparticles, the plasmon band 

maximum is generally between 520 and 530 nm. (Jana et al., 2001a, 2001b; Shimizu et al., 

2003). In order to determine the particle size, the obtained data of optical absorption spectra 

of each sample were fitted using Lorentz equation as below illustrated in Fig. 6 (for sample 

F6) in which optical absorption spectra was presented and mathematically fitted.
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Fig. 6. Optical absorption spectra of the prepared gold nanoparticle (Lorentz fit of sample F6)

best fit of the optical surface plasmon absorption spectra using Mie equation.

The results of particles size estimation deduced from the best fitting using Mie theory 

are listed in Table 2. The determined diameters are in between 8 nm to 19 nm and almost in 

good agreement with those deduced from standard UV curve and TEM analysis. This method 

is more accurate and more establish theory compared to UV standard-based method. This 

Mie theory based approach has been already examined and totally approved as already 

reported (Haiss et al., 2007). The reported results showed that for the particle size larger than 

25 nm, both the theoretical and experimental peak positions precisely fit better compared to 

particle size smaller than 25 nm. This may be attributed to the proclaimed increase of the 

ratio of the surface atoms to bulk atoms for particle diameter smaller than 20 nm. Amendola 

et al. (Amendola and Meneghetti, 2009) show that the size of free or functionalized gold 

nanoparticles in water and other solvents, with diameters in between 4 and 25 nm, can be 

measured with an accuracy of about 6%. The literature value for Plasmon bands is usually in 

between 520 and 530 nm for spherical gold nanoparticles (Schmid and Corain, 2003). The 

maximum and the bandwidth of the plasmon band are both strongly dependent on the size 

and interactions with the surrounding medium. One can see that the SPR width increases for 

decreasing sizes in the 4-28 nm intervals.

4. Conclusion

In this study, the gold nanoparticles were fabricated that can be used for biomedical 

applications as imaging contrast agent both in vitro and in vivo. The effect of reducing agent 

concentration on the particle size, size distribution and morphology was investigated and also 
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the particle size was determined via different techniques such as, DLS, TEM, UV-vis 

spectrophotometry and Mie theory. It was found that concentration of reducing agent did not 

affect the particle size and size distribution of gold nanodispersion up to specific 

concentration (F6), however, when NaBH4 was used in excess, the particle size was increased 

with relatively broad size distribution at  high concentration of reducing agent.  The reducing 

agent concentration had slight effect on particle morphology too, and TEM images showed 

that by increasing reducing agent the practice color become darker with distinct boundaries of 

particles and also probability of aggregations increases due to excessive reduction of gold 

salt. Moreover, when the particle size was analyzed by UV standard curve based technique 

using standard curve, the obtained results were in agreement with particle size measured by

DLS in samples where low concentration of reducing agent was used, however, at high 

concentration of NaBH4 the particle size calculated was larger than those of DLS technique 

because of slight particles aggregation in the sample as already reported in literature, that UV

standard curve based technique works better for fully monodispersed preparations. The 

nanoparticle size was also determined by using TEM images, and the average particle size 

was found to be smaller as compared to hydrodynamic particle size determined by DLS 

technique. Nanoparticle size was also determined by using Mie theory based approach, 

optical absorption spectra of each sample were fitted using Lorentz equation and the particle 

size was found between 8 nm and 19 nm and almost in good agreement with those deduced 

from standard UV curve and TEM analysis. 

From this study, it was concluded that the gold nanoparticles can be prepared 

successfully by NaBH4 reduction of HAuCl4, and their particle size can be verified through 

different methods. Furthermore, these particles can be used in biomedical imaging techniques 

as contrast agent such as MRI to visualize different tissues both for in vivo and in vitro 

applications and AuNPs can be surface functionalized for other potential applications in 

several field. These particles can be co-encapsulated with anticancer active agent for 

theranostic purpose.  
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Discussion and conclusion 

Nanotechnology has great potential for early detection, accurate diagnosis, and 

personalized treatment of many fetal diseases. Its application in biomedicine has been extensively 

studied over the last decade. Due to their specific size and shape, nanoparticles offer 

multifunctional capability by overcoming the numerous biological, biophysical, and biomedical 

barriers, which may revolutionize diagnosis and treatment of several diseases. It can offer 

unprecedented interactions with various biomolecules both on the surface of and inside the cells, 

and can offer platforms for efficient and targeted delivery of drugs and imaging agents for in 

vitro and ex vivo applications. The first step is the selection of appropriate technique for 

preparation of nanoparticle with required characteristics for intended application. Here, modified 

double emulsion solvent evaporation method was used for preparation of polymeric particle. This 

technique is appropriate for the encapsulation of both hydrophilic drugs and hydrophobic drugs. 

Moreover, it allows flexibility in particle size by adjusting various process parameters, the 

process is independent of special laboratory equipment, cost effective and preferable for low 

scale   production.   Conversely,   single   emulsion   process   allow   for   the   encapsulation   of 

hydrophobic molecules into a multitude of particulate materials, yet their application in 

hydrophilic compounds encapsulation is limited due to uncontrolled leakage of entrapped 

compounds during particles preparation. Polycaprolactone was selected as polymer due to its 

desirable properties such as biocompatibility, biodegradability and non-toxic nature. It has low 

glass transition temperature and melting point (60 °C), and the polymer metabolites are removed 

from the body by innate metabolic process and do not produce acidic environment as in case of 

PLA and PLGA. Its compatibility with variety of drugs, and its slow degradation rate to release 

drug for prolonged period of time makes it a suitable candidate for controlled drug delivery 

systems. Moreover, it allows the modification of its physicochemical and mechanical properties 

by copolymerization, which intern affect all other properties of polycaprolactone including 

solubility, ionic property and degradation pattern. Dichloromethane was chosen as solvent due to 

low boiling point (39.6 °C), immiscibility with water and its ability to dissolve polycaprolactone 

properly. 

As drug carriers, the large surface area of nanoparticles can enhance drug dissolution and 

they are capable to improve controlled release compared to micron-sized drug carriers. Though, 

their tendencies of aggregate are the potential problems to be overcome, therefore an appropriate 
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stabilizer may be needed to avoid aggregations. Poly vinyl alcohol (PVA) is a common stabilizer 

that has been used as an excipient in a wide range of pharmaceutical formulations. Here, PVA 

was used as stabilizer in the second step of emulsification process in order to facilitate 

homogenization and to prevent aggregation. It was used in different concentration in order to 

investigate  the  optimum  concentration  of  PVA,  and  0.5%  concentration  of  PVA  showed 

desirable results. Since, the physicochemical properties of the polymeric particle prepared via 

modified double emulsion are affected by the process parameters therefore various parameters 

were thoroughly investigated and the optimized parameter were used for the encapsulation of 

contrast agents and active drugs.  Polycaprolactone particle were prepared via double emulsion 

process by using two homogenization technique i.e mechanical (ultra-turrax) homogenization and 

sonication homogenization.  In utra-turrax process, the effects of stirring time and stirring speed 

in both, the first step and the second step of emulsification were investigated. Moreover, the 

effects of PCL amount, PVA concentration and outer aqueous phase volume, on particle size, size 

distribution and zeta potential were investigated. The size of obtained particles through this 

technique was in micron range.  Since, our goal was to obtain sub-micron particle therefore, we 

adopted sonication hominization for preparation of double emulsion. And, the effects of 

sonication process parameters were investigated in order to point out the relationship between the 

used conditions and the colloidal properties of obtained dispersion. The studied parameters were 

included, ultrasound exposure time in the first step and the second step of emulsification, 

sonication amplitude, polymer amount, PVA concentration and outer aqueous phase volume 

ratio. The particles obtained via double emulsion sonication homogenization were in submicron 

range (300-500 nm). Ultrasound exposure time is a key parameter affecting ultrasonic 

emulsification process.  In both, the first and the second step of emulsification, 2, 4, 6, 8, and 10 

min sonication time was used. In the first step, sonication time had no significant effect on the 

particle size and morphology while in the second step, the particle size gradually decreased with 

the increase in ultrasound exposure time. The ultrasound amplitudes used in this study were 50%, 

60%, 70%, 80%, and 90%. Initially, when 50% of amplitude was used, no homogenization was 

observed and both, the oily phase and the aqueous phase of double emission were distinctly 

visible. This was probably due to insufficient energy transmitted to the emulsion system to induce 

cavitation. Once cavitation threshold was reached, by increasing amplitude to 60% and above, 

then a proper homogenization of the system was achieved. There was tendency of decrease in 
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particle size with the increase in amplitude and the smallest particles were obtained at 90 % 

sonication amplitude.  Various formulations were prepared with different amount of polymer in 

order to study its effect and we found that by increasing the polymer amount the particle size also 

increases and the particle with good morphology were obtained at 3 g of PLC.  This increase in 

particle size with increase in PCL solid content can be attributed to increased viscosity of the 

primary emulsion, which leads to less particle size reduction during second step of 

emulsification. The addition of suitable stabilizer plays an important role in colloidal dispersions. 

The nature and concentration of stabilizer affect the colloidal stability of the prepared dispersion. 

In this study, concentration effect of PVA in the outer aqueous phase over average hydrodynamic 

particle size and morphology of particles were evaluated. When PVA concentration was 

decreased beyond 0.2% there was drastic increase in particle size, this may be due to coalescence 

of droplets, since, this amount of PVA was insufficient to cover properly the nanoparticles 

surfaces and no homogenization was achieved in the absence of PVA. There was no significant 

effect of PVA concentration above 0.2 %, and optimal morphology of particles was found at 

0.5% of PVA concentration. 

Generally, imaging is performed for diagnosis of a disease state before therapy of several 

diseases like cancer by using proper imaging technique. Several imaging technologies (Magnetic 

resonance, optical etc.) depend on contrast agent, highlighting the differences between tissues 

thus, allows efficient visualization of the tissues of interest. Contrast agents are encapsulated in 

order  to  enhance  their  stability  and  to  deliver  high  payload  of  contrast  agents  to  target 

specifically. In the light of these optimized parameters, the fluorescent contrast agent 

(FluoSpheres®) was loaded into polycaprolactone particles in different concentration. The 

contrast agent-containing submicron particle was characterized in term of average particle size, 

morphology and encapsulation efficiency. Moreover, contrast agent distribution in the PCL 

matrix was determined by confocal microscopy. The incorporation of contrast agent in different 

concentrations did not affect the physicochemical properties of PCL particles and the average 

size of loaded particles was found to be in the submicron range. However, the particles loaded 

with high fluorescent argent concentration showed high fluorescence intensity when visualized 

by confocal microscopy, which show their proper encapsulation into PCL matrix. The average 

size of loaded particle were about 322-375 nm and it was not affected by variation in loaded 

fluorescent agent amount. The encapsulation efficiency was found to be high enough i.e from 
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84% to 91% in different formulations. The skin penetration study was performed and red 

fluorescence allowed easy identification of loaded particles on the surface of skin and hair 

follicles. PLC particles remained on the surface of both stratum corneum and under passive 

diffusion conditions, no penetration of particles was found. Since, impermeability of the stratum 

corneum is the main barrier to cutaneous molecule absorption. Another important issue is the 

mechanical stress applied to the skin when investigating the penetration behavior. Therefore the 

application of a mechanical stimulation to the skin may be used to enhance its permeability. The 

zeta potential was found near to zero this may be due to non-charged nature of the 

polycaprolactone polymer. 

Another contrast agent frequently used for imaging in biomedical applications targeting 

theranostic is gold nanoparticles. They play an important role in in vitro assays, ex vivo and in 

vivo imaging, and drug delivery. A multifunctional platform based on gold nanoparticles have 

several capability such as, targeting , multimodal imaging, delivery of therapeutic moieties, thus,  

holds the promise for a “magic gold bullet” against cancer and other fetal disease. First, gold 

nanoparticles were prepared by NaBH4 reduction technique. 100 ml of HAuCl4 (0.25 mM) 

solution in deionized water was reduced by adding NaBH4 dropwise and stirred via magnetic 

stirring at 750 rpm. The relationship of various NaBH4 concentrations in different formulations, 

with respect to the nanoparticle size and morphology was evaluated. The average sizes of gold 

nanoparticle were about 20 nm at low concentration of NaBH4 (3-7 mM) however at 11.5 mM of 

NaBH4 the particle size was increased to 30 nm and the color of dispersion was changed from 

dark red to dark, which show that over reduction of gold salt leads to aggregation of particle. The 

gold nanoparticle size was measured by using various approaches such as, dynamic light 

scattering, transmission electron microscopy, UV spectrophotometry using standard curve and 

calculated particles size using Mie theory and UV spectrum of gold dispersion and the obtained 

results were compared with each other. 

After well characterization, the prepared gold nanoparticles were then encapsulated by 

polycaprolactone matrix, to be used as MRI or optical contrast agent. And in the next step, the 

PCL submicron particles were loaded with gold nanoparticles as contrast agent, a hydrophilic 

drug (Nefopam) and a lipophilic drug (benzyl benzoate) simultaneous to fabricate a 

multifunctional particle. The encapsulation efficiency of benzyl benzoate was almost 100 percent 
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as it is a lipophilic drug thus, having no affinity of leakage from polymeric matrix to outer 

aqueous phase. 

Perspectives: 

In future, further study will be conducted regarding pharmacokinetic and 

pharmacodynamics  of  the  contrast  agents  and  the  drug  encapsulated  via  double  emulsion 

process. For skin penetration study of contrast agent loaded particle, we will evaluate the impact 

of the removal of the stratum corneum and the application of a mechanical stimulation.  The 

obtained results provide valuable information regarding particles preparation and encapsulation 

via modified double emulsion process and their possible application in cancer therapy. In light of 

this study, various drugs and imaging agent will be encapsulated for different diseases using 

theranostic approach.  It will be applied to other route of administrations.  Since, 

multifunctionality is the key feature of theranostic agents. Therefore, targeting ligands, imaging 

labels, multiple therapeutic drugs, and other functionalities can all be integrated to allow for 

targeted molecular imaging and therapy of various diseases via theranostic approach.  The 

successful achievement of all these goals will be helpful in timely and better management of 

various fetal diseases. 
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Préparation de particules submicroniques pour applications théranostiques: imagerie et 

thérapie 

Résumé 
L'objectif de cette étude était de préparer et de caractériser les particules submicroniques 

multifonctionnelles utilisables simultanément pour le diagnostic et le traitement de plusieurs maladies 

mortelles telles que le cancer. Pour ce faire, une étude systématique a été réalisée afin de comprendre 

les mécanismes impliqués et d'optimiser les paramètres du procédé   de double émulsion-évaporation 

de solvant pour la préparation de ces particules. Pour l’imagerie in vitro, des nanoparticules 

polymériques fluorescentes (FluoSpheres®) ont  été encapsulées dans une matrice polycaprolactone 

dégradable en utilisant le procédé de l’émulsion double-évaporation de solvant. Pour l’imagerie in-

vivo, des nanoparticules d'or colloïdal ont été préparées et encapsulées via le même procédé et 

parfaitement caractérisées. Enfin, pour application theranostic, les nanoparticules d'or (comme agent 

de contraste) et un actif moléculaire (hydrophile Nefopam et hydrophobe benzoate de benzyle) ont été 

encapsulés simultanément dans des  particules de polycaprolactone. Ces particules multifonctionnelles 

ont été caractérisées et évaluées in vitro comme model de pénétration cutané 

Mots clés: Encapsulation, les particules submicroniques, Imaging, Théranostic, Double émulsion, les 

nanoparticules d'or, Agent de contraste. 

 

Preparation of submicron particles for theranostic applications: imaging and therapy 

Summary 
The objective of this study was to prepare and characterize multifunctional submicron particles that 

can be used for diagnosis and therapy of several fatal diseases including cancer (i.e theranostic). For 

this purpose, a systematic study was performed in order to optimize the process parameters for 

preparation of polymeric particle that can be used as a platform for effective delivery of drugs and 

imaging labels. The imaging agent (FluoSpheres®) was encapsulated via double emulsion solvent 

evaporation technique to be used fluorescent contrast agent and their in vitro evaluation was 

performed. Then, gold nanoparticles were prepared by using NaBH4 reduction method, characterized 

and encapsulated by polycaprolactone polymer for in vitro applications. Finally, the gold nanoparticle 

were loaded into polycaprolactone particle along with a hydrophilic drug (Nefopam) and a 

hydrophobic drug (benzyl benzoate) simultaneously. The prepared particles were then characterized 

physicochemically and in vitro skin penetration study was performed. 

Keywords: Encapsulation, Submicron particles, Imaging, Theranostic, Double emulsion, Gold 

nanoparticles, Contrast agent. 

 


