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Abstract

For a battery driven terminal, the power amplifier (PA) efficiency must be optimized. Con-
sequently, non-linearities may appear at the PA output in the transmission chain. To com-
pensate these distortions, one solution consists in using a digital post-distorter based on a
Volterra model of both the PA and the channel and a Kalman filter (KF) based algorithm to
jointly estimate the Volterra kernels and the transmitted symbols. Here, we suggest address-
ing this issue when dealing with uplink cognitive radio (CR) system. In this case, additional
constraints must be taken into account. Since the CR terminal may switch from one sub-
band to another, the PA non-linearities may vary over time. Therefore, we propose to design
a digital post-distorter based on an interacting multiple model combining various KF based
estimators using different model parameter dynamics. This makes it possible to track the
time variations of the Volterra kernels while keeping accurate estimates when those parame-
ters are static. Furthermore, the single carrier case is addressed and validated by simulation
results. In addition, the relevance of the proposed approach is confirmed by measurements
carried on a (300-3000) MHz broadband PA.
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Résumé

Pour un terminal mobile alimenté sur batterie, le rendement de l’amplificateur de puissance (AP) doit être
optimisé. Cette optimisation peut rendre non-linéaire la fonction d’amplification de l’AP. Pour compenser les
distorsions introduites par le caractère non-linéaire de l’AP, un détecteur numérique fondé sur un modèle de
Volterra peut être utilisé. Le comportement de l’AP et le canal étant modélisé par le modèle de Volterra, une
approche par filtrage de Kalman (FK) permet d’estimer conjointement les noyaux de Volterra et les symboles
transmis. Dans ce travail, nous proposons de traiter cette problématique dans le cadre d’une liaison montante
dans un contexte radio intelligente (RI). Dans ce cas, des contraintes supplémentaires doivent être prises en
compte. En effet, étant donné que la RI peut changer de bande de fréquence de fonctionnement, les non-
linéarités de l’AP peuvent varier en fonction du temps. Par conséquent, nous proposons de concevoir une post-
distorsion numérique fondée sur une modélisation par modèles multiples combinant plusieurs estimateurs à
base de FK. Les différents FK permettant de prendre en compte les différentes dynamiques du modèle.
Ainsi, les variations temporelles des noyaux de Volterra peuvent être suivies tout en gardant des estimations
précises lorsque ces noyaux sont statiques. Le cas d’un signal monoporteuse est adressé et validé par des
résultats de simulation. Enfin, la pertinence de l’approche proposée est confirmée par des mesures effectuées
sur un AP large bande (300-3000) MHz.

Ce travail a été publié dans:
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Résumé

Les systèmes de communication sans-fil actuels sont conçus pour fonctionner sur des
bandes de fréquences invariantes (ou allocation statique des fréquences). Ainsi, dans
un contexte de téléphonie mobile, les terminaux sont conçus en tenant compte des
contraintes induites par les bandes de fréquences à utiliser. Cette conception permet
entre autre d’optimiser l’autonomie des terminaux en minimisant leur consommation
d’énergie.

L’élément le plus consommateur d’énergie est l’amplificateur de puissance (PA)
situé juste avant l’antenne à l’émission. Pour satisfaire les contraintes de haut débit
des standards actuels, les PAs doivent fonctionner en mode linéaire, ce qui affecte
leur rendement 1 et augmente la consommation d’énergie. L’allocation statique des
bandes de fréquences à entrainer la saturation du spectre des fréquences “électro-
niquement” utilisables. Cependant, certaines bandes de fréquences étant sous ex-
ploitées, le déploiement des futurs systèmes de communications haut débit sans-fil
passera par la réutilisation de ces dernières. On parle désormais d’allocation dyna-
mique du spectre, c’est le concept de la radio intelligente. Afin de rendre effective
cette gestion dynamique du spectre, les composants de l’étage radio fréquence, no-
tamment le PA 2, et les traitements effectués au niveau de la couche physique des fu-
turs terminaux intelligents doivent être en rupture avec ce qui est fait actuellement.
En effet, l’accès dynamique au spectre laisse la possibilité au terminal intelligent
d’utiliser une bande de fréquence dans une gamme très étendue (de quelques MHz à
plusieurs GHz). De plus, en fonction du débit souhaité au niveau de la communica-
tion secondaire et de la disponibilité du spectre, on attendra du terminal intelligent
qu’il :

1. émette dans des bandes de fréquence qui pourront être discontinues et possi-
blement très éloignées,

2. n’interfère pas avec les utilisateurs primaires,

3. minimise sa consommation d’énergie.

Le PA d’une radio intelligente doit donc être très large bande et à haut rende-
ment. Ces deux conditions impliquent que le PA se comporte comme un système
non-linéaire à mémoire. Notons que ce comportement varie en fonction du triplet
(fréquence porteuse, bande passante, puissance du signal). Dans le cadre de cette

1. Le rendement du PA est défini comme le rapport entre la puissance radio fréquence de sortie
et la puissance d’alimentation du PA.

2. situé juste avant l’antenne à l’émission

2



thèse, nous sommes amenés à traiter deux problématiques liées au traitement nu-
mérique du signal : la modélisation des distorsions induites par le PA d’une part,
le développement d’un algorithme de traitement de signal permettant l’identifica-
tion du modèle suivi par le PA et pouvant contrer ses non-linéarités à la réception,
d’autre part. Ainsi, il s’agit de concevoir un post-distordeur numérique d’un PA
pour la radio intelligente.

Lorsque le PA fonctionne proche du point de compression du gain, l’enveloppe
du signal d’entrée est distordue entraînant l’apparition de nouveaux harmoniques
dans la bande de communication mais aussi en dehors. Afin de modéliser ce compor-
tement, nous avons choisi un modèle non-linéaire à mémoire, le modèle de Volterra.
Nous avons choisi le modèle de Volterra car il est linéaire par rapport à ses para-
mètres et non linéaire par rapport au signal d’entrée ce qui rend son identification
plus simple. De plus, il a l’avantage d’être stable au sens entrée bornée, sortie bor-
née. Les paramètres de ce modèle évoluent en fonction du temps d’autant plus que le
terminal intelligent change de bande. En effet, ces paramètres sont constants lorsque
le terminal intelligen envoie sur une sous-bande et variant dans le temps lorsqu’il
change de bande. En conséquence de quoi, nous introduisons que le PA se comporte
selon plusieurs modes ; constant et variant dans le temps.

L’idée clé du post-distordeur développé est l’identification conjointe des para-
mètres du modèle et du signal d’entrée en utilisant une technique d’estimation.
Dans cette thèse, une approche reposant sur un filtrage optimal de type Kalman a
été choisie. Pour cette technique, la représentation dans l’espace d’état qui traduit
la dynamique du système joue un rôle clé et repose sur un mode donné. Pour relâ-
cher cette contrainte relative au choix du modèle, les approches à modèles multiples
peuvent être envisagées. Plusieurs algorithmes conçus pour l’identification des sys-
tèmes à modèles multiples sont définis dans la littérature, parmi lesquels on peut
citer le GPB1, le GPB2 (Generalized Pseudo Bayesian) et l’IMM (Interacting Mul-
tiple Model). Comme l’IMM offre un bon compromis entre performance et coût
calculatoire, nous l’avons choisi comme une structure de base du post-distordeur
numérique.

Le post-distordeur a été développé pour des communications mono-porteuse.
Pour valider la pertinence de l’approche de modélisation et du post-distordeur pro-
posés, deux méthodes ont été utilisées :

— simulations au niveau système : La conception de l’IMM repose sur trois
paramètres :

3



— le choix du type des modes,
— le choix du nombre de modes,
— le choix de la probabilité de transition entre eux.
Une étude a été menée pour valider la pertinence de cette approche en testant
sa sensibilité à chacun de ces paramètres.

— des mesures sur des PAs réels : un test bench a été mis en œuvre pour repré-
senter les différents modules de la chaine de communication. Le montage se
compose d’un générateur de signaux, d’un PA commercial, d’une alimentation
à courant continu, d’un oscilloscope numérique et d’un ordinateur équipé de
deux logiciels ; Matlab et Labview. Les mesures ont été faites pour différentes
fréquences porteuses et différentes valeurs de puissance du signal d’entrée.

La solution proposée correspond à un compromis entre le coût calculatoire et
le taux d’erreur binaire enregistré. La pertinence de l’approche a été démontrée
sur deux plan ; théorique et pratique. Le travail réalisé a donné lieu à plusieurs
publications dans des revues et des conférences internationales.
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Introduction

The rapid growth of wireless communications has made the problem of spectrum utilization
more and more critical. On the one hand, the increasing diversity and demand for high
quality-of-service (QoS) applications have resulted in an overcrowded allocated spectrum
bands and a data rate decrease. On the other hand, major licensed bands, such as those
allocated for television broadcasting, amateur radio, and paging, are significantly underused.
This leads to spectrum leakage. One solution is to use the cognitive radio (CR) concept
[Gol09]. Its basic idea is that the unlicensed users (also called the cognitive terminals (CTs))
are able to sense the spectrum and then, underlay, overlay or interweave their signals with
those sent by the licensed users (also called the primary users) without impacting their
transmissions. This makes it possible to enhance the spectrum utilization [Gha08] and
increase the spectrum efficiency.

Consequently, CR systems require wideband spectrum sensing. For this reason, the
transceiver analog part which consists of a PA, antennas, converters, filters and low noise
amplifier (LNA) has to be as wideband as possible.

In this thesis, our purpose is to optimize the energy consumption of the mobile terminal
by reducing the consumed power of the transmitter in an uplink CR communication. More
particularly, we focus our attention on the PA as it is inherently the most power consumer
components in the transmitter topology. Furthermore, the PA design usually aims at getting
the lowest possible power consumption to enhance power efficiency. Nevertheless, the power
efficiency is getting higher and higher when the device is driven more and more into its
compression region. In return, this increases the amount of non-linearities [Vuo03]. These
latter generate spectral regrowth, which leads to adjacent channel interference. Moreover, it
causes signal distortions which are frequency dependent.

To avoid the PA non-linear behavior, the PA can be backed off to operate within the
linear portion of its operating curve. However, amplitude modulation schemes have high
peak-to-average power ratios as their envelopes have large fluctuations. This means that the
PA needs to be backed off far from its saturation point, which results in very low efficiencies,
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typically less than 10% [Cri06]. It also means that more than 90% of the DC power is lost
and turns into heat.

To improve the PA efficiency without compromising its linearity, PA linearization is
essential. As the so-called trade-off between PA efficiency and linearity has to be met,
several approaches can be considered such as:

1. designing a linear PA and increasing its efficiency by using an efficiency enhancement
technique,

2. designing a high-efficiency non-linear PA. Then, compensating its distortions by using
a linearization technique.

The first method is generally used when linearity is required and less constraints about the
PA output power are given whereas the second method is useful when the designer aims at
reaching the highest possible output power or the lowest consumed power. In this PhD, we
choose the second way and develop a linearization technique able at once to compensate the
PA distortions and to avoid causing additional energy consumption at the transmitter.

For the recent years, digital linearization techniques have been proposed mainly thanks
to the renewed possibilities offered by digital signal processing (DSP) [Vuo03]. Their key
feature is to build a baseband distorter so that the transfer function of the whole system,
including the PA and this distorter, is linear. There are two main families [Cri02]:

• the digital pre-distortion: in this case, the PA non-linearity is compensated before
the signal transmission. This technique needs a feedback path to bring the image
of the remaining non-linearities from the PA output to the pre-distorter. However,
the feedback path composed of ADCs and mixers should have a large bandwidth,
usually equal to 3 to 5 times the signal bandwidth, in order to pass non-linearity
information (i.e. the 3rd to 5th-order intermodulation products) to the pre-distorter
without overlapping [Zel12]. Hence, this adds extra power consumption.

• the digital post-distortion: it consists in creating a distorter element which is comple-
mentary to the distortion characteristic of the PA. In [Cri02], the authors propose to
compensate the PA non-linearities at the baseband part of the receiver rather than at
the radio frequency (RF) level of the transmitter.

As the spectrum usage and availability in CR may vary over time and depend on the
location, the PA behavior and consequently its distortions change over time. For this reason,
the linearization technique we have to propose must take into account the time-varying PA
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behavior. In this PhD dissertation, we suggest using a digital post-distortion technique.
This choice can be advocated by the following reasons:

• there is no need for feedback path at the transmitter,

• in an uplink communication, the detector calculations are done at the base station
receiver. This decreases the amount of signal processing at the CT,

• as transmitting a non-linearly-amplified signal increases the signal power at the second
and the third-order harmonics which may interfere with other users, the availability of
the spectrum at these frequencies should be guaranteed. In CR systems, this can be
done.

Therefore, our research efforts focus on three areas:

• modeling the PA behavior,

• developing a signal processing-based algorithm to build the post-distortion technique
structure,

• validating the developed technique by measurement-based results.

This thesis is hence organized as follows:

Chapter 1 covers the general theory of RF amplifiers, including PA fundamentals and
nonlinear analysis. The definitions of PA parameters and characteristics are provided. In
addition, an overview of existing linearization procedures including the feedback, the feed-
forward and the digital pre/post-distortion techniques is given. The theoretical concept, the
main advantages and the drawbacks of each of the linearization techniques are then presented
and discussed. A state of the art is also given concerning the PA behavioral model. This
includes non-linear models such as the Volterra model.

In chapter 2, assuming that the PA and the channel can be modeled by a Volterra model,
the digital post-distortion technique we propose consists in jointly estimating the input sig-
nal and the time-varying Volterra kernels. In a single-carrier system, we propose to study
a Kalman filtering based estimator. For this reason, the state space representation (SSR)
of the system is first given. Then, as the estimation issue is non-linear and the model noise
in the SSR is not Gaussian but can be approximated by a sum of Gaussians, we suggest
analyzing the relevance of a Gaussian-mixture extended Kalman filter (GM-EKF), initially
introduced in [Ama11]. However, as the PA behavior may vary over time, the estimator must
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be also able to track the time variations of the Volterra kernels when they occur. As the
GM-EKF cannot meet these requirements, we propose to combine several GM-EKF based
on different Volterra kernel dynamics in a multiple model (MM) structure. This leads to
our first proposed algorithm called GM-EKF based IMM. It should be noted that when an
IMM is used, the so-called transition probability matrix (TPM) which a design parameter
managing the cooperation between the different estimators, is required. In this approach, it
is a priori defined by using the available information that can be found in the CT database
about the mean spectrum availability at a given location.
We study the performance of the algorithm using Matlab simulation and analyze the com-
putational costs of the proposed algorithms.

In chapter 3, we propose an experimental setup and the associated results. Some pa-
rameters which influence the linearization performance in practical applications are studied,
such as the receiver architecture and the non-linearity order of the model.

Finally, conclusions and perspectives are given in the last chapter.
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1.1 Introduction

A radio frequency (RF) transmitter is an important building block of a communications
system. It converts the baseband signals containing the data to be transferred through the
transport medium to the receiver. Figure 1.1 shows a simplified block diagram of a RF
transmitter. The baseband signal processing is performed digitally. Thus, the baseband
signals have first to be digital-to-analog (D/A) converted before being transferred to the
transmitter. The conversion also requires re-construction filters to remove unwanted fre-
quency components after the conversion. Generally, the baseband signals are in quadrature
form, which allows the generation of phase, frequency and amplitude modulated signals. To
combine these signals into a single analog signal for transmission, they are combined and
converted into intermediate frequency (IF) or directly to RF using a quadrature modulator.
This conversion can also be done using frequency and amplitude modulators, depending on
the modulation method [Cri02]. If IF is used, the signal has still to be upconverted to RF.
Then, the signal is amplified with a power amplifier (PA) for transmission and then fed to
the antenna.

Figure 1.1: A simplified block diagram of an RF transmitter.

An amplifier is an electronic device used to increase the power of its input signal. A PA
is an amplifier that is usually the final amplification stage and is designed to give a signal
the necessary power for transmission to reach the receiver.

An ideal PA would have an output signal equal to the input signal multiplied by a scalar,
i.e. would have a linear transfer characteristic. For this PA, the input and output powers
are connected using the following relationship:

Pout = G · Pin (1.1)

where G is the linear power gain of the PA. An example of an ideal transfer characteristic is
illustrated by the curve a in Figure 1.2. The curve b in Figure 1.2 shows the shape of a real
transfer characteristic with three regions: a linear region, where the transfer characteristic



CHAPTER 1. POWER AMPLIFIERS AND NON-LINEARITY 7

is close to the ideal, a saturation region where the output power is constant when the input
power increases and an intermediate region; the compression region, where the output signal
is compressed and not amplified linearly [Vuo03].

Figure 1.2: The PA (AM/AM) input-output characteristic: ideal (a) and real shape (b).

In this thesis, we are interested in the compression region as we will show that the PA get
its maximum efficiency in this operation region. However, operating in this region means also
producing non-linearities. In this chapter, we study the PA characteristics that illustrate its
non-linearity, the effects of these non-linearities as well as the different predefined methods
to deal with them. For this reason, this chapter is organized as follows:
In the second section, the PA characteristics are detailed as well as the so-called PA non-
linearity effects. Further in the third section, we highlight the trade-off between efficiency
and linearity. In the fourth section, we present some of the most commonly used efficiency
enhancement techniques ([Cam15], [Hua15] and [Kim15]) and discuss their limits. Finally,
the fifth section deals with the most famous PA linearization techniques in literature [Ken00]
[Big88] [Kar89], as well as the PA modeling schemes.

1.2 PA characteristics

The main objective of this thesis is to linearize a wideband PA while enhancing its efficiency.
For this reason, we are first interested in studying the PA characteristics such as the power
gain, the efficiency and the linearity.
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1.2.1 Gain

Gain is one of the most important characteristics of a PA. It is a measure of the amplification
degree. There are three main definitions of gain: transducer gain (Gt), power gain (Gp) and
available gain (Ga):

Gt = Pout,d
Pin,av

(1.2)

Gp = Pout,d
Pin,d

(1.3)

Ga = Pout,av
Pin,av

(1.4)

where Pin,av and Pout,av are the available power at the input and output respectively; Pin,d and
Pout,d are the power delivered by the generator and to the load respectively (See Figure 1.3).

Figure 1.3: The PA power profile

The delivered power differs from the available power because of matching imperfections
(See Figure 1.3). Assuming that the matching is perfectly realized. As a result,

Pin,av = Pin,d = Pin

Pout,av = Pout,d = Pout

The transducer gain is commonly used to characterize a PA. The shortened term “gain” is
used with the intended meaning of “transducer gain”. The gain of a PA is simply defined as
the ratio of the output power to the input power:

G = 10 log
(
Pout
Pin

)
= Pout(dBm)− Pin(dBm) (1.5)

where Pin and Pout are the input and output powers expressed in watts, whereas Pin (dBm)
and Pout (dBm) are the input and output power in dBm. The gain is usually expressed in
dB, whereas the power is in dBm.
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1.2.2 Efficiency

The PA efficiency characterizes how much of the direct current (DC) power supply energy
is converted into the RF signal. The efficiency of a PA should be as high as possible in
order to make the PA consume less power. This is particularly important for battery-driven
applications. There are two main definitions of efficiency [Cri06]:

• the DC-to-RF efficiency denoted by η,

• the power added efficiency (PAE).

The DC-to-RF efficiency (or drain efficiency) is the ratio of output power to the consumed
power and is given as:

η = Pout
PDC

(1.6)

The PAE is the ratio between the additional power provided by the PA (the difference
between the output power and the input power) and the consumed power:

PAE = Pout − Pin
PDC

(1.7)

If the gain is high, the PAE and drain efficiency are approximately equal. It can be shown
that:

PAE = η(1− 1
Gt

) (1.8)

Figure 1.4 shows that the efficiency is maximized when the PA operates near the compression
region. Consequently, if we aim at operating at the maximum efficiency, non-linear distor-
tions may appear at the output. Therefore, the PA linearity is also an important criterion
to be studied.

1.2.3 Linearity

In this section, the PA linearity metrics such as the 1-dB compression point (CP1) and the
back-off are presented. Then, the non-linearity effects are discussed.

1.2.3.1 1-dB compression point

The CP1 is one of the major features to characterize the linearity of a PA. By definition, the
1-dB compression point of a PA is the output power level, at which the transfer characteristic
of the PA deviates from the ideal linear transfer characteristic by 1 dB. In terms of gain, the
CP1 is the PA power level, at which the gain decreases by 1 dB with respect to the gain in
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Figure 1.4: PA output power and PAE shapes.

the linear region. The above statements are illustrated in Figures 1.5 and 1.6 . The CP1 is
shown on the gain and output power characteristics respectively. The higher the input 1-dB
compression point (ICP1) is, the more linear the PA is. The output power and the gain at
the 1-dB compression point are denoted by P1dB and G1dB respectively. For the gain, the
relation between the real gain and the linear gain at the CP1 is as follows:

G1dB = GLin − 1dB (1.9)

where GLin is the PA gain in linear mode.

Figure 1.5: PA 1-dB compression point: gain characteristic.
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Figure 1.6: PA 1-dB compression point: Pout characteristic.

1.2.3.2 Back-off

For a PA, the back-off is a measure of how distant the output power is from the saturated
output power Psat (See Figure 1.7). There are two commonly used definitions of back-off:
output back-off and peak back-off (PBO). The output back-off (OBO) is the ratio between
saturated output power Psat and the output power Pout. The OBO is usually expressed in
dB, and can be written as:

OBO(dB) = 10log
[
Psat
Pout

]
= Psat(dBm)− Pout(dBm) (1.10)

The PBO is the ratio between the saturated output power Psat and the peak output power
Poutmax . The PBO can be also expressed as the difference between the OBO and the peak-
to-average power ratio (PAPR):

PBO(dB) = 10log
[
Psat

Poutmax

]
= OBO(dB)− PAPR(dB) (1.11)

where:
PAPR(dB) = 10log

[
Poutmax

Pout

]
(1.12)

Figure 1.7 illustrates the relationships between the OBO, the PBO, the input back-off (IBO)
and the PAPR curve shapes for PAs. The IBO is the ratio between the input power corre-
sponding to Pout = Psat and the input power Pin.
The linearity of a conventional PA is related to its back-off: with an increase of the back-off,
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the linearity of the PA increases and vice versa. Now let us focus on what happens when
the PA is non-linear.

Figure 1.7: Relationships between the output back-off, the peak back-off and the peak-to-
average power ratio for PAs.

1.2.3.3 Memory effects

The PAs distorted output depends not only on the instantaneous input, but on the previous
inputs as well. This phenomenon is called memory effects. They depend on many conditions,
such as the input signal magnitude, the carrier frequency, and the bandwidth. An interesting
question can be: Why PAs exhibit memory effects?

Indeed, any power amplifier topology includes reactive elements like capacitances and in-
ductances. Moreover, the PA active device also has parasitic capacitance in its P-N junctions.
A capacitor is defined by the following differential equation:

iC(t) = C
dvC(t)
dt

(1.13)

where, vC(t) is the voltage applied to the capacitor, iC(t) is the current flowing though the
capacitor, and C is a constant called capacitance. If a capacitor is driven by a current source
iC(t), the voltage between the capacitor nodes can be obtained as the integral of (1.13) from
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τ = −∞ to τ = t:
vC(t) = 1

C

∫ t

−∞
iC(τ)dτ (1.14)

From (1.14) one can notice, that the output voltage depends not only on the instantaneous
input signal, but on the entire past history.
If at some time t0, t0 < t, the value of voltage vC(t0) is known, (1.14) can be re-written using
the integral from t0 to t:

vC(t) = vC(t0) + 1
C

∫ t

t0
iC(τ)dτ (1.15)

As the initial condition vC(t0) summarizes the history until the moment t0, there is no need
in specifying the entire history.

Similarly, an inductor is defined as:

vL(t) = L
diL(t)
dt

(1.16)

Therefore, one has:
iL(t) = iL(t0) + 1

L

∫ t

t0
vL(τ)dτ (1.17)

Equations (1.15)-(1.17) show that reactive elements are able to store energy and hence have
memory. Therefore, power amplifiers exhibit memory due to the presence of reactive elements
in their circuits. Another non-linearity effect, the intermodulation products, is studied in
the next section.

1.2.3.4 Intermodulation products

Operating a PA under wideband signal conditions, when the amplifier operates in the com-
pression region, causes a special kind of distortions in the output signal. They consist in
additional frequencies at the output when an amplifier is excited with n-tone signal where n is
greater than one. These additional frequency products are called intermodulation products.

Let a two tone sinusoidal signal to be applied to the PA input as follows:

u(t) = cos(2πf1t) + cos(2πf2t) (1.18)

where f2 > f1. If a non-linear PA is considered, the output signal of the amplifier, y(t), can
be represented as follows:

y(t) = α0 + α1u(t) + α2u
2(t) + α3u

3(t) + · · · (1.19)

The detailed expression of the PA output can be found by substituting (1.18) into (1.19). If
we consider a non-linearity order equal to 3, it can be seen that when a two tone signal is
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Figure 1.8: Spectrum of intermodulation products when a 2-tone signal (f1, f2) is applied to
a PA with non-linearity order equal to 3.

applied to the power amplifier, the intermodulation products appear at 2f1, 2f2, 3f1, 3f2,
f1 ± f2, 2f1 ± f2, f1 ± 2f2. See Figure 1.8.

(2f1, 2f2) and (3f1, 3f2) are the second and the third harmonics of the power amplifier
respectively. They can be filtered out so the distortion caused by them can be minimized.
The second order intermodulation products, f1 + f2 and ±(f2 − f1), can also be filtered out
since they are far enough from the tones f1 and f2. However, the 3rd-order intermodulation
products, 2f1±f2 and 2f2±f1, fall within the amplifier bandwidth and cannot be filtered out.
Thus, they can cause distortions at the output. These 3rd-order intermodulation products
are important because they are the parameters which limit the dynamic range and the
bandwidth of the amplifier. A mathematical concept is defined as 3rd-order intercept point
in order to define the non-linearity with these parameters [Cri02].

As seen in Figure 1.9, the third-order intercept point (IP3) is the output power level
(OIP3) at which the extended 3rd-order harmonic slope meets that of the fundamental. At
this output power, the fundamental and the 3rd-order harmonic levels are equal even though
operation at the IP3 is impossible since the output power usually saturates below this level.
1 dB decrease in input signal level results in 1dB decrease in fundamental tone level and
3dB decrease in all 3rd-order product levels. This means if the input power is decreased
by one-third of the distance in decibels from IP3 to noise floor, the third intermodulation
drops to the noise level. This output power range for fundamental is called the spurious-free
dynamic range (SFDR). It can be calculated by [Vuo03]:

SFDR(dB) = 2
3[IP3− Pnoise] = 2

3 [IP3 + 174dBm− 10logBW (dB)−NF (dB)−G(dB))]
(1.20)
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where IP3 is the third-order intercept point power(dBm), BW is the PA bandwidth (Hz),
NF is the PA noise figure (dB) and G is the PA gain.

Figure 1.9: PA third-order intercept point.

This shows that the IP3 is a figure of merit for intermodulation suppression. If the IP3
power is high, then the SFDR is high which means undesired intermodulation products are
suppressed. Thus, this is an important figure of merit which characterizes the linearity of a
power amplifier.

1.2.3.5 Spectral regrowth and adjacent channel power ratio

The spectral regrowth is similar to the intermodulation distortion. Indeed, the intermodula-
tion distortion is caused by the non-linearity of the amplifier when n-tone input is applied.
The spectral regrowth can be observed when a modulated signal is given as input. Indeed,
when a modulated signal passes through the non-linear amplifier, its bandwidth is broadened
by the non-linearities (See Figure 1.10). This is caused by the mixing products between the
individual frequency components of the spectrum.

The spectral regrowth leads to adjacent channel interference which is caused by the
unwanted leakage of the adjacent channel. The ACPR is a commonly used figure of merit
to describe linearity in modern telecommunication systems. ACPR is the ratio between
the main channel power to the total adjacent channel power measured over the signal band
[Vuo03]. ACPR can be calculated according to (1.21) [Vuo03]. The main and adjacent
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channel powers are also shown in Figure 1.10.

ACPR = 10 log10

 ∫ fc+W/2
fc−W/2 S(f)df∫ fc+W1/2+∆f

fc−W1/2+∆f S(f)df

 (1.21)

where S(f) is the PA output power spectral density, fc is the input signal carrier frequency,
W is the input signal bandwidth and W1 is the adjacent channel bandwidth. Therefore, the
adjacent channel power ratio (ACPR) is kept low in order to avoid causing adjacent channel
interference.

Figure 1.10: The spectral regrowth.

As it can be seen from the sections 1.2.3.3-1.2.3.5, the linearity is an important parameter
that influences the performance of not only the PA but also the whole communication system.
For this reason, the designer searches for building linear PAs. However, the efficiency of these
PA classes is very low. Hence, another group of high-efficiency PA classes are proposed for
applications where efficiency is required and linearity can be ignored. When a trade-off
between them is required, the waveform engineering family is used.

1.2.4 Power amplification classes

Generally, PAs can be divided into three categories: linear amplifiers, switched amplifiers
or waveform engineering amplifiers [Cri02]. With the linear classes, the signal waveform
is more or less preserved however the efficiency is very low. When designing a switched
PA, the theoretical efficiency may reach 100% but the signal envelop is strongly distorted.
Consequently, when the efficiency increases, the linearity is deteriorated and vice versa. For
this reason, the waveform engineering PAs correspond to a compromise between linearity
and efficiency. More details about these classes are given in the remainder of this section.
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1.2.4.1 Linear classes

The linear PA family includes four main classes: A, AB, B and C. These four types of
PAs have similar circuit configuration, distinguished primarily by biasing conditions. See
Figure 1.11. A class-A PA, in principle, works as a small-signal amplifier. It is probably
the only “true” linear amplifier, since it amplifies over the entire input cycle such that the
output is an exact scaled-up replica of the input without clipping. This “true” linearity
is obtained at the expense of wasting power. To improve efficiency without sacrificing too
much linearity, the concept of “reduced conduction angle” was proposed [Cri02]. The idea is
to bias the active devices with low quiescent current and let the input RF signal to turn on
active devices for part of the cycle. As the conduction angle shrinks, the amplifier is biased
from class-AB, to class-B and class-C. Regardless of conduction angle, active devices are
used as current sources. Therefore, they are often referred to as “transconductance” PAs.

Figure 1.11: A generic topology for class-A, AB, B and C PAs.

where VDD is the DC supply, RFC is the drain output inductor, DCB is the drain output
capacitor and C_par is a parallel capacitor.

1.2.4.2 Switched classes

The main classes within switched amplifiers are D and E.
A class-D amplifier is composed of a voltage controlled switch and a filtering tank. Fig-

ure 1.12 shows a voltage switching class-D amplifier. The output tuned network is tuned
to the fundamental frequency. It will thus have negligible impedance at fundamental fre-
quency and high impedance at harmonic frequencies. The analysis of such an amplifier is
very straightforward due to the simple drain voltage waveform. In an ideal situation, the
drain efficiency of a class-D amplifier reaches 100% as other switching type PAs.
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Figure 1.12: A voltage switching class-D amplifier.

Class-E PA stands out from other highly efficient switching PAs because parasitic capac-
itances of active devices may be absorbed into wave-shaping/matching networks. A simplest
form of class-E PAs is shown in Figure 1.13. In this figure, jX is a drain output impedance.
When the class-E PA is operating, the waveforms of drain current and voltage are shaped
such that they do not overlap. Furthermore, the voltage will decrease gradually to zero
before the active device turns on. This avoids charging/discharging capacitors at the drain,
thus improve the efficiency.

Figure 1.13: A simple class-E amplifier.

1.2.4.3 Waveform engineering classes

The main classes within waveform engineering are F and J.
Class-F is characterized by a load network that has resonance at one or more harmonic

frequencies as well as at the fundamental frequency (Figure 1.14). To the author’s knowledge,
class-F was first proposed to improve the efficiency of overdriven transconductance amplifiers.
Therefore, the active devices typically operate as a transconductor (or a current source) as
those in transconductance amplifiers. However, if the input drive is large, active devices will
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behave as switches just like those in switching amplifiers. In practice, with lumped elements,
it is rare to see class-F amplifiers with tuned harmonics higher than the 5th harmonic, due
to the complexity of a waveform shaping network.

Figure 1.14: A class-F PA with tuned harmonics for waveform shaping.

The class-J amplification is characterized by a complex fundamental impedance combined
with reactive harmonic terminations at the intrinsic drain of the device. It has been shown
[Cri06] that such a configuration can deliver power and efficiency equivalent to the Class-B
case. The consequence of adding a reactive fundamental component and reactive harmonic
terminations manifests itself as an increase in the magnitude of the internal drain voltage
waveform. Waveform engineering solutions also exist, which can exploit the non-linearities
within the device to optimize performance [Moo10]. By only considering the 2nd and 3rd

harmonics, the normalized intrinsic drain voltage waveform can be expressed as follows:

vds = 1 + acos(2πfct) + bsin(2πfct) + csin(2π2fct) + dsin(2π3fct) (1.22)

According to the criteria outlined by Rhodes [Rho03], a family of solutions can be exploited
by updating the fundamental reactive component for a set of harmonic terminations dy-
namically changing across frequency. In practice, difficulty arises in designing a matching
network to avail of the improved performance with 3rd harmonic enhancement across a wide
bandwidth. Provided the normalized 2nd harmonic reactance does not exceed a value of
approximately 1.5 (c = 0.5), maximum efficiency can still be maintained and thus there
would be no gain in control of the 3rd harmonic. It is therefore desirable to provide minimal
impedance across the 3rd harmonic band otherwise it may further increase the amplitude
of the drain voltage and drive the device into breakdown. The effect of presenting a low
impedance 3rd harmonic termination will introduce a 3rd harmonic current component and
distort the ideal half-sinusoidal current waveform.
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Class-J theory make it possible the use the harmonic terminations to obtain high efficiency
across the band of interest [Cri09]. Wright et al. [Wri09] demonstrated at least 60% efficiency
over a 50% bandwidth while Wu et al. [Wu10] obtained more than 60% efficiency over a
42% bandwidth.

1.3 About the trade-off between linearity and

efficiency

Modern wireless communication systems employing digital amplitude modulation schemes
are experiencing continuous evolution towards high efficiency, broad bandwidth and high
data rates. The PA is one of the key components in the RF front end. The PA character-
istics and more particularly the efficiency directly affects the property of the whole system.
High power efficiency leads to lower DC power consumption and heat dissipation, and thus
has a significant impact on the overall power consumption, system stability and the require-
ment of DC supply and cooling system. Candidate systems used in the modern generation
wireless communication systems as Long Term Evolution (LTE), employ a wide-bandwidth
modulated signal, which implies that the design of broadband PA is more important in such
systems.

Meanwhile, when the PA operates at its maximum efficiency, the amplification procedure
is no longer linear and the signal envelop is distorted. One solution is to use the back-off
technique. Once the output power is reduced from its maximum value, both the amount
of amplitude conversions and distortion products is reduced. Unfortunately, the back-off
reduces efficiency, making it an unattractive linearization method for amplifiers.

To summarize, when the PA efficiency is enhanced, the PA linearity is deteriorated and
vice versa. Here, we address the trade-off between linearity and efficiency. To improve the
trade-off linearity-efficiency, there are two ways:

• The PA can be designed to be linear at the expense of efficiency. The required efficiency
level is then reached by means of an efficiency enhancement technique,

• The PA can be designed to reach higher efficiency at the expense of linearity. The
linearity specification is then met by means of external linearization techniques.

In the literature, there are several efficiency enhancement and linearization techniques.
For each category, there are a RF family and a digital family. In this thesis, we choose to
detail and discuss the most commonly used efficiency boosting and linearization techniques
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in order to emphasize our choices. The next sections, deal with the efficiency enhancement
techniques:

• The RF family, such as the envelop tracking, the adaptive bias and the Doherty tech-
niques,

• The digital family: the peak to average power ratio (PAPR) reduction techniques.

Then, we present the linearization techniques.

1.4 Enhancing the PA efficiency

In the efficiency enhancement techniques, there are two families: the RF family and the
digital family. In the RF family, we choose to present the Doherty, the adaptive bias and the
so-called envelop tracking techniques. These techniques have been the focus of many recent
research works [Cam15], [Hua15] and [Kim15]. In the digital family, the PAPR reduction
techniques are discussed.

1.4.1 RF efficiency enhancement techniques

This section describes the most commonly used efficiency enhancement techniques in the
literature. These techniques aims at enhancing the efficiency at low envelope power, thus
increasing the average efficiency.

1.4.1.1 Doherty amplifier

The simplest configuration of a Doherty circuit consists of two amplifiers; “main” or “carrier”
amplifier and the “auxiliary” or “peaking” amplifier. The amplifiers are connected in parallel
with a quarter wave transmission line (impedance inverter), as shown in Figure 1.15.

The basic concept of the Doherty amplifier [Cam15] is to allow the main amplifier to
operate at the maximum efficiency (peak power) while allowing the auxiliary amplifier to
deal with the modulation peaks. When the input drive is low the auxiliary amplifier is shut-
down and the main amplifier operates in the linear mode. For example, if a class-B PA is
used as the main amplifier and the class-C as auxiliary amplifier, the class-C is off because
signal is too small. As the input power increases, the main amplifier starts to saturate and
the auxiliary amplifier starts to supply current. This turn-on point of the auxiliary amplifier
is called the transition point. At the transition point, the efficiency of the overall system
becomes high.
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Figure 1.15: Schematic of Doherty Amplifier.

Figure 1.16: Efficiency versus the output power of Doherty amplifier (continuous line) and
class-B amplifier (dashed line).

The overall efficiency characteristic of the Doherty amplifier as a function of output power
is shown in Figure 1.16. If a class-B PA is used as the main amplifier and the class-C as
auxiliary amplifier, the theoretical maximum efficiency is 78.8% [Cam15]. The small dip in
the efficiency in between the transition point and full power is due to the lower efficiency of
the auxiliary amplifier which operates in large back-off.

The performance of the Doherty topology mainly depends on the class of operation of
the two amplifier blocks. Using the Doherty technique, the efficiency at back-off can be kept
close to that in saturated condition.

A Doherty amplifier is narrow band because of the use of quarter-wave transmission lines
and the requirements of accurate phase matching between the two paths1 [Cri02]. Another

1The dimensions of the quarter-wave transmission lines are conditioned by the signal carrier frequency
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drawback is the poor IMD performance mainly due to the low biasing of the auxiliary
amplifier. However, other linearization scheme can be implemented to improve the linearity
in the Doherty amplifier but this will add the complexity [Cam15].

1.4.1.2 Adaptive bias

The adaptive bias technique [Hua15] was primarily proposed to increase the power added
efficiency of class-A amplifiers when large back-off is used. In this technique, the bias level of
the amplifier is varied with the envelop level to reduce the amount of DC current drawn from
the supply during back-off. When the amount of DC current is reduced, the PA consumed
power decreases and its efficiency increases. The operation of the adaptive bias scheme is
shown in Figure 1.17. The gate bias of the PA is varied proportionally to the signal from
the envelope detector.

Figure 1.17: Schematic of the adaptive bias control.

1.4.1.3 Envelop tracking

In the Envelop tracking (ET) [Kim15], the RF drive contains both the amplitude and the
phase information and the burden of linearity lies on the RF PA itself. This technique
is also called “dynamic drain/collector biasing”. As shown in Figure 1.18, the envelope
detector extracts the envelope information from the RF input signal and uses it to control
the collector/drain voltage of the PA through a supply modulator. The supply modulator
dynamically adjusts the RF PA with just sufficient supply voltage to reduce the DC power
consumption at low power levels, thus increasing the average efficiency of the whole system.
Other advantage is that the linearity of the system does not depend on the bandwidth of
the supply modulator.

Some drawbacks of ET techniques are:

• The theoretical average efficiency is low because of the use of a linear mode PA.
and if it changes,= we need to change the whole design.
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Figure 1.18: Envelope tracking architecture.

• The mismatch of the delays between the two paths (supply and signal paths) degrades
the linearity,

• The power gain of the PA decreases as the supply voltage is reduced.

1.4.2 About the PAPR reduction techniques

The PAPR requires to back-off the PA and thus reduces the power efficiency of the transmit-
ter. Waveforms that exhibit the highest spectrum efficiency such as OFDM tend to have high
PAPR. A PAPR ranging from 5 to 8 dB is a goal to achieve reasonable power efficiency of
the linearized RF stage [Las13], but multicarriers downlink waveforms could exhibit PAPR
greater than 12 dB [Kow11], [Hus08]. One can roughly divide techniques used to reduce the
PAPR into two categories:

• The signal phase modulation category,

• The signal clipping category.

The first one does not degrade the transmitted signal but requires side information. In
this category, one can quote selective mapping and partial transmit sequence [Bax06]. On
the other hand approaches like hardware or software clipping [Las13], and optimization of
the subcarriers power [Nad11] do not require side information but may severely degrade
the error vector magnitude (EVM) and the ACPR. Software clipping or subcarriers power
tuning reduce the PAPR while minimizing the regrowth of both the EVM and the ACPR.
It has been highlighted that software clipping of the magnitude instead of the in-phase and
quadrature components allows better PAPR reduction for a given EVM budget [Las13]. In
[Weg06], the author introduces another method by applying a spectrally shaped “pulse” to
cancel signal peaks. The spectral shape depends on the modulation waveforms and could
accommodate multicarriers and multi-standards transmitted waveforms.
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1.4.3 A summary about efficiency enhancement techniques

Three RF efficiency enhancement techniques were summarized. In the Doherty technique,
the signal separation and the recombination after amplification are a difficult task. In ET
and adaptive bias, the burden of linearity lies on the final PA itself. So the final PA must
be a linear PA and hence the average efficiency is not as high as the Doherty technique.

Another circuit level alternative can be investigated to enhance the PA efficiency, the
class-J PAs, which provides a solution for the non-linear effects of switch-mode amplifica-
tion. Therefore, they theoretically exhibit high efficiency, linearity and wideband behavior
simultaneously. However, the class-J theory is based on high quality passive components
(inductances and capacitances) i.e. low loss and high stability. This kind of passive com-
ponents can be found in gallium (Ga)-based technologies which are high cost technologies.
In the MOS technologies, the passive components have lower quality. Nevertheless, in some
research works, class-J PAs are designed using LDMOS [Par14] and BiCMOS [Sar14] tech-
nologies. Unfortunately, the reached linearity and efficiency performance are considerably
lower than those of the Ga-based technologies. This may lead another time to the need of
using an efficiency enhancement technique.

When many constraints about the PA chip size and cost, and power consumption are
required as it is the case of mobile handsets, a digital efficiency enhancement technique may
be useful. A PAPR reduction technique can be used to improve the PA efficiency without
increasing the PA chip size and eventually it does not depend on the used PA technology.
However, these techniques cause signal distortions that have to be compensated. As a result,
a linearization technique is needed.

1.5 Linearization techniques

Because of the stringent requirement on linearity and the desire to increase battery time for
mobile terminals, several linearization techniques have been developed. [Ken00] has quite
extensive coverage on this topic. Here, some techniques are discussed, from RF to digital
techniques.

1.5.1 RF linearization techniques

In this section, we present the linearization techniques which has been the focus of the
recent research works. Among the RF techniques, the feedback and feedforward techniques
are detailed. These techniques are the most commonly used techniques.
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1.5.1.1 Feedback

The basic structure of feedback circuit is shown in Figure 1.19.

Figure 1.19: General feedback circuit for a PA.

In this structure, the input signal is u(t), the gain of the PA is G, the gain of the feedback
loop is −1/K, and the distortion is d(t) which is added after the gain of the PA. The output
can be obtained directly as:

y(t) = GK

K +G
x(t) + K

K +G
d(t) (1.23)

If we assume that the amplifier gain is much greater than the feedback loop gain, i.e.,
G >> K, (1.23) can be simplified to:

y(t) = Kx(t) + K

G
d(t) (1.24)

From (1.24), we can see that the gain of the signal is lowered from G down to K, and the
distortion will be significantly reduced by K/G.

1.5.1.2 Feedforward

Figure 1.20 shows a feedforward linearization scheme.
In the lower branch of the circuit, a sample of the input is subtracted from a sample of

output of the main amplifier, to generate an error signal, or intermodulation products in the
spectral domain. This error signal is amplified though an error amplifier, to have the same
amplitude as the output error of the main amplifier. A time delay line is inserted between
the two couplers in the upper branch, which make the errors from the two branches have 180
degree phase difference. The errors cancel each other in the last coupler, making the output
linear again.
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Figure 1.20: Feedforward linearization scheme.

1.5.1.3 Limitation of these techniques

In the feedback predistortion, the output signal goes back to the subtractor through the
feedback loop. This will take a certain time. When considering this delay of the feedback
loop, the overall equation is:

y(t) = Gx(t)− G

K
y(t−∆t) + d(t) (1.25)

where ∆t denotes the delay of the feedback loop. It is only when y(t) is equal or near to
y(t − ∆t), that (1.25) can be equal to (1.23). In RF field, a small time delay can cause a
great phase shift. Hence, the difference between y(t) and y(t − ∆t) can be significant in a
RF transmitter. On the other hand, the feedforward technique is limited in terms of power
efficiency. The lower branch amplifier consumes a certain power. However, this output does
not make a positive contribution, but a subtraction from the output of main amplifier. From
the power point of view, the error amplifier is making additional consumption. Practically,
this linearization technique has 20% of power efficiency at best. This compares poorly with
other linearization schemes such as digital pre-distortion, where efficiencies greater than 50%
can be achieved.

1.5.2 Digital techniques

The demand for higher flexibility and lower cost with similar performance as analog lin-
earization schemes leads to the concept of digital linearization techniques. Signal processing
techniques, which can be efficiently implemented using digital hardware such as Digital Signal
Processors (DSPs) and/or Field Programmable Gate Arrays (FPGAs), are used to control
an analog RF-system. The advantage is that a high degree of flexibility is maintained due
to the inherent flexibility of the digital hardware which allows for changes at run-time of
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the system. This is in line with the current trend to Software Defined Radio (SDR), where
the ultimate goal is to define highly reconfigurable radios which can accommodate a variety
of standards and transmission/receive modes, controlled entirely by software. This is only
possible if the inflexible and costly analog circuitry is reduced to a minimum by replacing as
much as possible by reprogrammable digital hardware.

The following sections discuss common digital linearization schemes covered in the lit-
erature. These digital techniques rely on a behavioral modeling of the PA to compensate
its distortions. For this reason, we first introduce the so-called digital pre-distortion and
post-distortion techniques. Then, an overview about the defined PA behavioral models is
given.

1.5.2.1 Digital pre-distortion

The Digital pre-distortion of RF PAs is initiated in the early 1980s with the paper of A. M.
Saleh and J. Salz [Sal83]. This and other early contributions consider data pre-distortion,
i.e., the data symbols are distorted. The pulse-shaping is thus performed after the pre-
distortion stage. The spectral broadening due to the non-linear amplifier cannot be avoided,
but the non-linear distortion of the data is compensated. These contributions [Sal83] consider
non-linear memoryless PAs.

Data pre-distortion considering also memory effects appear in the late 1980s [Big88,
Kar89], using Volterra filters as models for the non-linear channel. The idea of the pre-
distortion is to apply a complementary non-linearity of the PA so that the cascade of the
pre-distorter and the amplifier gives a linear response.

Figure 1.21: Digital pre-distortion principle.
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Besides, the pre-distortion is also a behavioral modeling problem itself since it is neces-
sary to get the reverse function of the amplifier. Figure 1.22 shows a digital pre-distortion
system. Analog-to-digital converters (ADCs) are needed for converting the demodulated
output signal of the transmit path, containing the non-linear PA, to digital. The scheme
presented in Figure 1.22 is a signal pre-distortion scheme, where the transmit-signal, im-
mediately before the upconversion, is pre-distorted. Since the ideal small signal gain of the

Figure 1.22: Digital pre-distortion linearization scheme.

amplifier is constant G, the cascade of the pre-distorter and the non-linear PA gives the
ideal small signal gain G. Therefore, it can be stated that the input of the pre-distorter is
normalized with G as follows:

xinDPD(n) = yn
G

(1.26)

where G is small signal gain, xout is output of the amplifier. After the predistorter, the
output is given in equation (1.26) as;

fDPD

(
yn
G

)
= un (1.27)

The output of the predistorter is input to the amplifier as in equation (1.29);

fPA(un) = yn (1.28)

fPA (fDPD(yn/G)) = yn (1.29)

Here, the function of the pre-distorter fDPD is equivalent to the behavioral modeling of the
PA reverse function obtained by swapping the PA input and output signals with appropriate
small signal gain normalization [Gha09]. After the cascade system of pre-distorter and the
amplifier, the input has a linear relation with the output and the power does not saturate
anymore at the level it used to (Figure 1.21).

Pre-distortion systems rely on exact inverse replication of the non-linearity of the PA,
which means high sensitivity not only to memory effects but to drifting as well. Typically,
some form of slow adaptation is needed for the pre-distorter. Digital pre-distorter is naturally
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more flexible, but it requires a high bandwidth and dynamic range from the digital baseband,
and also all baseband and intermediate frequency filters between the pre-distorter and the
PA contribute to the memory effects. In addition, cascading two non-linear devices leaves a
residue of high-order non-linear products that were absent in the original PA response. A
pre-distorter has not only to linearize the target PA, but also it has to compensate its own
distortions. This aspect of pre-distortion remains an underrated problem, and has all too
often been swept under the carpet by researchers who use carefully chosen spectrum sweep
ranges to display their results. There are two different approaches for the identification of the
pre-inverse of the PA or pre-distortion. One of the main difficulties in extracting the behav-
ioral model of the pre-distortion comes from the fact that the internal signal interconnecting
the pre-distortion and the PA is not known a priori. So in order to identify the pre-distortion
we are restricted by an intermediate step, in which the PA is first identified, and its model
is then used for the extraction of pre-distortion coefficients. This identification approach
is based on a direct learning architecture (DLA) illustrated in Figure 1.23. On the other
hand, the post-inverse of the PA can be more easily identified since the input (PA output)
and the output (linearly amplified version of PA input signal) signals are known. Thus, a
second approach, based on an indirect learning architecture (ILA), has been proposed with
the assumption that the post-inverse can be used as a pre-inverse. This learning architecture
is illustrated in Figure 1.24. In this case, a post-inverse model is directly identified and used
as a pre-distortion.

Figure 1.23: Direct Learning Architecture: DLA.

Identification algorithms differ upon the learning architecture used. In ILA, when the
pre-distortion model can be written as a linear combination of a set of basis functions, the
least squares (LS) technique can be used [Mor14], [Teh10]. In this case the matrix to be
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Figure 1.24: Indirect Learning Architecture: ILA.

inverted may have large condition number and the solutions over system level iterations tend
to be unstable. One of the solutions to this problem is the use of orthogonal polynomials as
in [Rai13]. In [Jia12], a stochastic conjugate gradient algorithm has been proposed which can
smoothly estimate pre-distortion parameters over iterations and optimize the basis functions
used. In [Gua12] the 1-bit ridge regression algorithm has been used to eliminate the ill-
conditioning problem and a method to reduce complexity by reducing the number of samples
used without affecting the condition number. For other model structures, i.e., when the
output depends non-linearly on the coefficients, sophisticated algorithms must be derived
(e.g., [Gha10]).

Many algorithms have been also used for DLA architecture. The main advantage of DLA
is its robustness in presence of noise [Abi12]. An algorithm based on an analytical method to
compute the output of the predistorter using the extracted memory polynomial model of the
power amplifier has been proposed in [4]. This method is highly sensitive to noise, presenting
high instability over system level iterations [Abi12]. Unlike the analytical method, non-linear
filter architectures have been proposed in [Lim00], [Zho07] in which an adaptive algorithm
is used to identify a model for pre-distortion from the extracted parameters of PA. The
algorithms proposed are the Non-linear Filtered-x least mean squares (NFxLMS) [Lim00]
and recursive least squares (NFxRLS) [Zho07] algorithms. The latter has good convergence
properties but the overall computational complexity is relatively high. This limits the use
of DLA over ILA since the latter offers often good compromise between complexity and
performance.
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1.5.2.2 Digital post-distortion

The post-distortion approach to amplifier linearization is similar to the pre-distortion, with
the obvious exception that the linearizing element must be able of handling the full power
capability of the PA output stage. It is therefore inherently less desirable as a linearization
technique due to the restriction this places on the range of available non-linear elements
which may be used in the post-distorter. In addition, the inevitable losses in this block have
a significant effect on the overall efficiency of the amplifier system. Indeed, in many cases it
may be more efficient to provide linearization by back-off rather than to use post-distortion.

An alternative, and rather more interesting, approach is to place the post-distorting
element in the receiver rather than in the transmitter. The signal levels will then be sig-
nificantly lower and the losses (other than if it is placed in the antenna path) much more
reasonable. It also has the advantage in a system with infrastructure, a base station for
example, that the complexity of the mobile terminal is reduced, at the expense of the base
station receiver. Complexity at the base station is usually much more acceptable due to the
increased size and cost which is tolerable in that part of the system. The approach proposed
to allow adjustment of the post-distorters at the base station involves measuring the level
of distortion present in a vacant channel and adjusting the parameters of the post distorters
in the two adjacent channels to eliminate the distortion present in the non-used channel.
When this vacant channel is in use, it should then, theoretically, enjoy almost interference-
free reception. There are a number of inherent disadvantages with this approach, however,
and these will severely limit the available performance. First, the degree of IMD reduction
which can be achieved will be small, largely due to the lack of knowledge of the original
signal in the transmitter which would be required for an adaptation. A linearization scheme
would therefore still be required in the mobile transmitter, although its performance need
not meet the full required mask. This largely removes the complexity reduction advantage
in the mobile terminal.

The system also relies on vacant channels being available in order to adapt its post-
distorters. This may be a problem in a heavily-loaded system and the non-regular frequency
allocations of many systems may make the use of this technique difficult.

Finally, the requirement for an adaptive post-distorter for each channel in the base station
will result in significantly increased complexity in that part of the system. This is only
worthwhile if the cost/size/power consumption of the mobile terminal can be significantly
reduced.
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1.5.2.3 PA behavioral modeling

When dealing with digital pre/post-distortion techniques, it is also necessary to model the
PA behavior in order to be able to build the distorter element.

In narrow band applications, the PA presents negligible memory effects and memoryless
models are sufficient to compensate for the non-linearity. In this case, the static complex
gain function fDPD of the pre-distortion can be estimated using an equivalent baseband
polynomial model. fDPD can be also directly estimated for a finite number of amplitudes on
the whole dynamic range of the input signal and implemented in a look-up table, see [Pre12].

When the input signal bandwidth becomes wider the time span of the PA memory be-
comes comparable to the time variations of the input signal envelope. Thus, the memory
effects of the PA can no longer be considered as short-term. Simplified structures of the
general Volterra model have been predominantly used in this case. In general, the structure
of the model, either for the PA or for the pre-distortion, is defined empirically, i.e., depend-
ing on the PA used, the validity of a predefined structure is determined by an experimental
evaluation of various criteria. For PA modeling evaluation many criteria have been defined in
literature [Isa06], [Lan08], and they can be also used for pre-distortion modeling evaluation
in addition to linearity metrics, EVM and ACPR. Two families of non-linear models with
memory are considered and are based on neural networks (NNs) or non-linear autoregressive
with exogenous input (NARX) models [Leo85]. In the latter family, one particular case is
the polynomial NARX model. It has the advantage of being linear regarding the parame-
ters and non-linear regarding the input and the previous output samples. When the output
only depends on the input, this leads to the Volterra models [Sig12]. Among them, the
memory polynomial (MP) model [Kim01] and the generalized memory polynomial (GMP)
model [Mor14] have good modeling performance when compared to other model structures
[Isa06], [Teh10]. Hammerstein (H), Wiener (W), Hammerstein-Wiener (HW) and Wiener-
Hammerstein (WH) belong also to this category of models and have been evaluated for PA
and PD modeling [Tar15], [Che14b]. Parallel structures like the parallel Hammerstein and
Parallel HW models have been also used recently [Sch14]-[Gha10]. Such models are par-
ticularly interesting for the linearization of highly non-linear PAs.These models represent
simplified versions of the Volterra model.

In the discrete-time domain, the full baseband Volterra series are:

yn =
∑
k

2k + 1!
(k + 1)!k!22k

∑
τ1

· · ·
∑
τ2k+1

h2k+1(τ1 · · · τ2k+1)
k+1∏
i=1

un−τi

2k+1∏
s=k+2

u∗n−τs
(1.30)

From (1.30), it can be seen that the number of coefficients of the Volterra series increases
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exponentially as the memory length and the non-linear order increase. This drawback makes
the Volterra series unattractive for real-time applications. This prompts us to consider sev-
eral special cases of the Volterra series. The special cases considered here include the Wiener
model, the Hammerstein model, the Wiener-Hammerstein model and the memory polyno-
mial. The Wiener model is a linear time-invariant (LTI) system followed by a memoryless
non-linearity (NL) (see Figure 1.25). The both subsystems are given by:

uLn =
T∑
τ=0

aτun−τ (1.31)

yn =
K∑
k=1

bku
L
n |uLn |k−1 (1.32)

where aτ denote the impulse response of the LTI block, bk are the coefficients of the odd-
order polynomial describing the memoryless non-linearity and K and T are respectively the
non-linearity order and the memory depth. Substituting (1.31) into (1.32) gives:

yn =
K∑
k=1

bk

[
T∑
τ=0

aτun−τ

] ∣∣∣∣∣
T∑
τ=0

aτun−τ

∣∣∣∣∣
k−1

(1.33)

The Wiener model was used by Clark et al. [Cla98] to model the PA with memory effects,
where improvements in modeling accuracy were observed when the Wiener model replaces
the memoryless polynomial model.

The Hammerstein model is a memoryless non-linearity followed by an LTI system (see
Figure 1.26). The both subsystems in this model are described by:

uNn =
K∑
k=1

fkun|un|k−1 (1.34)

yn =
T∑
τ=0

gτu
N
n−τ (1.35)

where fk are the coefficients for the memoryless non-linearity and gτ are the impulse response
values of the LTI system. Substitution of (1.34) into (1.35) leads to

yn =
T∑
τ=0

gτ
K∑
k=1

fkun−τ |un−τ |k−1 (1.36)

The Wiener-Hammerstein (W-H) model (see Figure 1.27) is an LTI system followed by a
memoryless non-linearity, which in turn is followed by another LTI system. This configura-
tion is commonly used for satellite communication channels, where the PA at the satellite
transponder is driven near saturation to exploit the maximum power efficiency for the down-
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link [Ben83]. The subsystems in this model are described by

uLn =
T1∑
τ=0

aτun−τ (1.37)

uLNn =
K∑
k=1

bku
L
n |uLn |k−1 (1.38)

yn =
T2∑
τ=0

cτu
LN
n−τ (1.39)

where aτ and cτ denote, respectively, the impulse response values of the LTI systems before
and after the memoryless non-linear block, and bk are the coefficients of the non-linear block.
Combining (1.37), (1.38), and (1.39), we infer:

yn =
T1∑
τ1=0

cτ1

K∑
k=1

bk

 T2∑
τ2=0

aτ2un−τ1−τ2

 ∣∣∣∣∣∣
T2∑
τ2=0

aτ2un−τ1−τ2

∣∣∣∣∣∣
k−1

(1.40)

The memory polynomial model uses the diagonal kernels of the Volterra series and can be
viewed as a generalization of the Hammerstein model. In the discrete-time Volterra series
(1.30), if τ1 = · · · = τ2k+1 = τ , (1.30) becomes:

yn =
K∑
k=1

T−1∑
τ=0

bτkzn−τ |zn−τ |k−1 (1.41)

where bτk = h2k+1(τ, · · · , τ) in (1.30). This model was considered for modeling PAs with
memory effects in [Kim01] and for data pre-distortion of the cascade of a pulse shaping filter
and a memoryless PA in [Cha01].

Figure 1.25: Block scheme representation of the Wiener model.

Figure 1.26: Block scheme representation of the Hammerstein model.

In order to compare their performance, the linearity parameters are used such as the
ACPR which is used in the frequency domain and the EVM in the time domain. Further-
more, the complexity of the models is an important parameter to be compared since the
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Figure 1.27: Block scheme representation of the Wiener-Hammerstein model.

pre/post-distorters are implemented in real systems. Therefore, the linearity performance
and complexity of the model are used for model comparison. The performance of the dig-
ital pre/post-distortion algorithms that does not take the memory effects into account is
severely degraded as the bandwidth of the input signal increases [Kim01]. Therefore, the
linearity performance of the memoryless pre/post-distorters, such as look up table model
pre/post-distorter, is lower than the polynomial ones that take the memory effects into ac-
count. Among the memory pre/post-distorters, the Volterra series and its simplified version
memory polynomial pre/post-distorters are better in linearization. The best performance in
PA behavior reproduction is given by the Volterra series, the others are originated by this
model but their performances are poorer. Choosing the Volterra model to represent the PA
non-linearities and memory effects can be also advocated by the following reasons ([Boy85]):

• it can represent a large class of non-linear systems,

• it is linear regarding the parameters, but non-linear regarding the input signal,

• it is stable in a bounded input-bounded output (BIBO) sense.

1.6 Conclusions

In this chapter, the fundamental parameters of power amplifiers and a non-linear analysis
have been presented. PAs are characterized by their efficiency and linearity, which depend
on the mode of operation. Classes-A, -B, -AB and -C preserve the input signal waveform
and hence offer more linear but less efficient amplification compared to classes-D,-E ,-F and
-J. Unfortunately, efficiency and linearity are trade-off parameters in PAs. Any increase in
the efficiency of a PA occurs at the expense of linearity and vice versa. While efficiency
is required for the power amplifier to increase battery lifetime and to minimize thermal
problems, linearity is required for a spectrally efficient transmission of high date rate signals.

For application in WLAN, the requirement on the PA linearity is very stringent and,
hence, it makes sense to use a linear PA (class A, AB, or B) together with an efficiency-
enhancement technique. PAs exhibit high gain when operated in switched mode (class-D,
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-E -F an -J). The high efficient switch mode PAs can amplify only constant envelope mod-
ulated signal (such as GSM) without distortion. Whereas, spectral efficient high data rate
communication systems currently in use such as LTE needs varying envelope and phase
modulated signal. Thus, modern communication systems require highly linear PAs to avoid
adjacent channel interference and distortion. When dealing with a base station, a lineariza-
tion technique, such as feedback, feedforward and pre-distortion can be used to reach the
required linearity level. However, when dealing with a battery driven mobile terminals,
where more constraints about energy consumption and circuit size are required, a digital
efficiency enhancement technique such as a PAPR reduction technique can be used. In CR
uplink systems, another solution can be followed, the digital post-distortion technique.

In the next chapter, we intend to develop a digital post-distortion technique for a CR-
PA. Indeed, transmitting a non-linearly-amplified signal increases the signal powers at the
second and the third-order harmonics (the power at higher orders can be neglected), which
may interfere with communication systems operating at those frequencies. However, unlike
primary systems, the digital post-distortion technique can be used in a CR context and
more particularly in the uplink context. Indeed, a main feature of CR is the autonomous
exploitation of locally unused frequencies to improve the spectrum utilization [Mit00]. In
addition, a CR is able to adapt the system transmission and reception parameters without
user intervention. Also, it can understand and follow the actions taken and the choices made
by users in order to learn and become more responsive over time. Thus, it is possible to verify
the spectrum state at the second and the third harmonics. For CR uplink communications,
choosing the digital post-distortion technique can also be motivated by the following reasons:
no feedback path is necessary at the CR terminal; in addition, the post-distortion technique
calculations are performed at the cognitive base station receiver. This decreases the amount
of signal processing at the CR terminal. Therefore, energy consumption can be reduced and
the CR-PA efficiency can be improved.

For these reasons, we will first study the requirements of a CR environment (especially
the requirement of a CR-PA behavioral modeling). Second, based on these requirements
a behavioral modeling of a CR-PA will be given. Then, an estimation algorithm will be
developed to compensate the CR-PA distortions at the baseband part of the receiver. The
proposed approach will be presented for the single-carrier modulation. It will be evaluated
by means of system level simulations.
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2.1 Introduction

In uplink cognitive radio (CR) communications, radio frequency (RF) transceivers must
be efficient to save the mobile terminal battery autonomy. Therefore, when designing the
CR power amplifier (CR-PA), an obvious objective is to optimize efficiency over a large
bandwidth. As a consequence, as it is mentioned in the previous chapter, a trade-off between
efficiency and linearity needs to be met. Indeed, the CR-PA operates in its non-linear region
and then frequency-dependent distortions are generated. To solve this problem, we choose to
develop a digital post-distortion and detection technique. It is based on a dynamic Volterra
model to take into account the non-linear behavior of the CR-PA. The key feature of the
proposed technique is the joint estimations of the model parameters and the CR-PA input
samples. For this reason, the proposed digital post-distortion is based on an interacting
multiple model (IMM) algorithm combining various Kalman filter (KF)-based estimators
using different model parameter dynamics. This makes it possible to track the time variations
of the Volterra kernels while keeping accurate estimates when those parameters are static.
Furthermore, the IMM algorithm is governed by a design parameter called the transition
probability matrix (TPM). This parameter can be either a priori defined or recursively
estimated with the input samples and the Volterra kernels. In this work we consider the first
case using a single-carrier signal.

This approach should be a priori interesting when dealing with an uplink communication
as the non-linearity processing is exported to the digital part of the receiver which is the base
station in this case. Another motivation is that the PA can operate freely at its maximum
efficiency in addition to the reduced amount of signal processing at the baseband part of
the mobile transmitter. It should be noted that the digital post-distortion is relevant in the
CR context as the mobile terminal have a database about the radio environment and the
already allocated resources.
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2.2 CR-PA modeling requirements and system model

2.2.1 CR concept

The cognitive radio (CR) and dynamic spectrum access paradigms have emerged as a promis-
ing solution to conciliate the current spectrum demand growth and its underutilization
without changes to the existing legacy wireless systems. The CR enables much higher
spectrum efficiency through opportunistic spectrum access. Therefore, it is an attractive
technology for future wireless communications [Gol09]. The basic idea of CR is to allow
secondary/unlicensed users to access in an opportunistic and non-interfering manner some
licensed bands temporarily unoccupied by primary/licensed users [Gha08].

In the next section, we study the implications of the above statements on the mobile
terminal behavior and more particularly the CR-PA behavior.

2.2.2 Requirements

According to the power efficiency curve depicted in Figure 1.4 (See chapter 1), the PA must
operate in the compression or the saturation region to get the maximum efficiency. However,
this causes signal envelop distortion. Moreover, the compression effects, the non-linearities
and the memory effects vary with the carrier frequency fc as similarly as the PA gain [Liu04].
For traditional-communication standards such as global system for mobile communication
(GSM), universal mobile telecommunications system (UMTS) or long term evolution (LTE),
PAs have narrower bandwidths than the CR-PA ones. Indeed, a CT should be able to access
any available sub-band BW to satisfy its needs of data rate. As the CR-PA behavior depends
on the signal bandwidth and the constellation size, it varies according to the available spectral
resources.
This means that the CR-PA behavior is affected by a couple of correlated factors:

1. the input signal PAPR, which is constellation dependent,

2. the spectrum access which consists in transmitting over an available spectral resource
defined by the couple of parameters (BW , fc).

Then, the key feature to get an accurate behavioral modeling of the CR-PA is to characterize
the following phenomena:

1. the CR-PA non-linearity and the memory effects,
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2. the bandwidth switching mode of a CT: when a primary user begins transmitting
over a spectral resource used by a CT, the latter must switch immediately to another
resource. This switching may be done in another frequency band or may not happen
(for instance when no primary user utilizes the resource). See Figure 2.1.
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Figure 2.1: CT switching regarding available frequency resources

2.2.3 System model

The system model considered in this chapter is depicted in Figure 2.2, where uk denotes the
PA input sample at time k, yk the output sample of the equivalent channel combining the
CR-PA and the channel. nk is an AWGN. zk is the received sample at time k.

Figure 2.2: Baseband equivalent transceiver.

Modeling schemes are required to predict the CR-PA AM-AM characteristic over a very
wide bandwidth by adopting a dynamic model. However, no one can deny the non-linear
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effect of the receiver RF stage components such as the low noise amplifier (LNA) and the
analog to digital converter (ADC). Therefore, according to the state of the art about the
non-linear models with memory that we hold in chapter 1, we have chosen the Volterra series.
It can be written as follows [Rug81]:

yk =
P∑
n=1

 2n+ 1
n


22n

M−1∑
τ1=0

. . .
M−1∑
τn=0

hn(τ1, . . . , τ2n+1, k)
n∏
s=0

u∗k−τs

2n+1∏
r=n+1

uk−τr (2.1)

where hn(τ1, . . . , τ2n+1, k) for n ∈ {0, · · · , P} are the Volterra model kernels. Since they are
time-varying, they depend on k. P is the non-linearity order and M is the memory depth
(M ≤ 2).

After choosing the model, the following step is to estimate the model parameters. In the
next two sections, the joint estimations of the Volterra kernels and the transmitted samples
are addressed. It is based on Kalman filtering.

2.3 Proposed algorithms for CR-PA distortions

compensation in a single-carrier system

2.3.1 Introduction

In a single-carrier case, we consider that the propagation channel is non-frequency selective.
When using a single-carrier signal, the channel can be frequency selective. In this case, the
channel should be estimated using a training sequence and then equalized before carrying
the post-distortion. The general scheme is depicted in Figure 2.2 and adjusted to the single-
carrier is shown in Figure 2.3. In this case, uk represents the transmitted symbol (PSK,
QAM, etc.).

For a traditional-communication system, where the carrier frequency and the bandwidth
a priori are fixed, the PA behavior can be described by a single model. In a KF-based
estimation context, this leads to a single state space representation (SSR) of the system.
However, in a CR context, the PA has to operate with various sets {Bw, fc, Pin}. Switching
from one sub-band to another modifies the PA non-linearity properties and hence causes
sudden variations of the Volterra kernels. So, our purpose is to design an estimator which is
able to provide accurate estimations of the model parameters as well as the input samples
and which is able to track the model parameter modifications.
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Figure 2.3: Baseband equivalent transceiver for a single-carrier transmission.

When modeling the Volterra kernels by random walks with large values of the driving
process variances, the Volterra kernels can be tracked by a Kalman-algorithm based method.
Nevertheless, this assumption is not well-suited during the transmission in a specific sub-
band. Indeed, even if the Volterra kernels do not change, the Kalman-algorithm based
estimates fluctuate much. To avoid the above problem, we propose to use a multiple-model
(MM) based identification. This approach consists in taking advantage of various estimators
based on different a priori models.
Three generations of MM methods have been proposed for the last years:

• in the first one, the estimators run in parallel and independently [Li05],

• the second one aims at introducing a cooperation strategy between the estimators1,

• in the third one, the number of estimators varies in time [Li05]. This includes the
variable-structure MM algorithms such as the likely model set algorithm [Li00].

In the following, we suggest focusing our attention on the second family by using the inter-
acting multiple model algorithm (IMM) combining various KF based estimators. It provides
a trade-off between computational cost and accuracy performance compared to generalized
pseudo Bayesian (GPB) algorithms, GPB1 and GPB2 [Bar01]. Note that the IMM has been
used in a wide range of applications, from global position system (GPS) navigation to target
tracking in radar applications [Fau09, Jil04].

In the following, we present the joint estimations of the Volterra kernels and the input
signal when the behavior of the non-linear equivalent channel is non time varying. The use

1As pointed by Bar-Shalom in [Bar01], using too many estimators does not necessarily improve the
estimation algorithm performance. It also increases the computational cost. Hence, two or three estimators
are usually used in an IMM.
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of the Gaussian mixture extended Kalman filter (GM-EKF) is explained. Then, the CR-PA
case, when the equivalent channel is time varying, is addressed by presenting the IMM based
post-distorter.

2.3.2 SSR and GM-EKF to compensate the distortion of a

non-linear equivalent channel with time invariant behavior

When the behavior of the non-linear equivalent channel does not change over time during
the communication, the Volterra kernels remain constant. In order to estimate the Volterra
kernels and the input signal, let us first focus our attention on the SSR of the resulting
system.

Firstly, we propose to store N Volterra kernels2 in a column vector Ck. In the time-
invariant context, it satisfies:

Ck = Ck−1 (2.2)

The above equation can be written in another way:

Ck = Ck−1 + wk(mst) (2.3)

where wk(mst) is an AWGN with zero-mean and covariance matrix Q(mst) equal to 0N×N .
The index st stands for static behavior. This type of notation will be useful in the rest of
the chapter, especially when dealing with the time-varying behavior of the CR-PA.
Then, let Dk =

[
uk · · · uk−M+1

]T
be the vector storing the M last samples to be esti-

mated (M ≤ 2). It satisfies:
Dk = F′Dk−1 + G′uk (2.4)

where F′ =
 01×M−1 0

IM−1 0M−1×1

 and G′ =
[

1 01×M−1

]T
. When uk is complex the

structure of Dk is as follows:

Dk =
[
Re(uk) · · · Re(uk−M+1) Im(uk) · · · Im(uk−M+1)

]T
As we aim at jointly estimating the Volterra kernels and the input sample uk, the state
vector is defined by:

xk =
 Dk

Ck

 (2.5)

2N depends on the memory depth and the non-linearity order respectively M and P .
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As xk is always real, we present the equations in the real form. Given (2.3)-(2.5), the resulting
SSR of the system is:

xk = Fxk−1 + Gvk(mst) = Fxk−1 +
 G′uk
wk(mst)

 (2.6)

zk = h(xk) + nk = yk + nk

where F =
 F′ 0M×N

0N×M IN

 is the one-step transition matrix, G =
 G′ 0M×N

01×N IN

,
vk(mst) =

 uk

wk(mst)

, nk is a zero-mean white Gaussian noise with variance σ2
n and h(·) is

a non-linear function of the state vector, which illustrates (2.1). For complex constellations,
zk is replaced by zk = [Re(zk) Im(zk]T .
At this stage, if z1:k denotes the set of received samples until time k, two problems must be
addressed:

1. the probability density function (pdf) of the model noise Gvk(mst) should be Gaussian
in order to use a Kalman filter (KF) [Ama11]. Indeed, one can be convinced by the
necessity of this assumption when one derives the Kalman-filter equations by searching
the relationships between the pdf of the state vector p(xk−1|z1:k−1) and p(xk|z1:k−1) on
the one hand, and p(xk|z1:k) and p(xk|z1:k−1) on the other hand [Li00]. Here, this
assumption is not satisfied because of uk which is uniformly distributed on the finite
alphabet γ = {di}i=1,··· ,q with q = 2nb and nb the number of bits per symbol. For
this reason, uk is assumed to have a conditional pdf, denoted by p(uk|z1:k), which is a
sum of q Gaussian distributions. Each one is centred on one value of the constellation
alphabet with a very small variance λ2

i (see Figure 2.4). Thus, we have:

p(uk) =
q∑
i=1

1
q
N (di, λ2

i ) (2.7)

where N (µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2. For
the sake of simplicity, the variances {λ2

i }i=1,··· ,q can be set at the same value λ2. As
a consequence, the resulting model noise Gvk(mst) is Gaussian, zero-mean and with

covariance matrix
 λ2G′G′T 0M×N

0N×M Q(mst)

.
The drawback of this assumption is that the number of EKF is multiplied by q. Indeed,
q Kalman algorithms run in parallel, each one being based on a specific assumption of
the transmitted symbol.
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Figure 2.4: pdf of uk for the BPSK alphabet (q = 2).

2. as the relationship that connects the observation zk to the state vector xk is non-linear,
the standard Kalman filter cannot recursively estimate the state vector. However, there
are various other ways. Particle filtering could be used, as in [Gir10]. Nevertheless, this
type of method leads to a high computational cost that is not suitable to the current
application. As an alternative, the sigma point Kalman filters (SPKFs) can be consid-
ered. They consist in using the so-called sigma points characterizing the state vector
probability density, propagating them through the non-linear function, estimating the
state vector as well as the estimation error covariance matrix by combining the result-
ing sigma points. They include the unscented Kalman filter (UKF), which is based on
the unscented transformation [Wan02], the central difference Kalman filter (CDKF)
which is based on the second-order Sterling polynomial interpolation formula [Ito00],
the cubature Kalman filter [Ara09] and the quadrature Kalman filter (QKF) where the
sigma points are chosen by using the Gauss-Hermite quadrature rule [Cha99]. Another
solution is the EKF. It consists in using the 1st-order Taylor3 expansion of the non-
linear function h(·). This method is popular because its computational cost is smaller
than the SPKF ones and it has the advantage of retrieving the same types of equations
as the standard Kalman filter. For this reason, the proposed algorithm is based on an

3It should be noted that the second order-EKF (SO-EKF) also exists and is based on the second-order
Taylor expansion of the non-linear function [Bar01]. It is rather used if the 1st-order Taylor approximation
is not sufficient to represent the non-linear function.
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EKF.

The resolution of the two above problems leads a Kalman filter variant based on the EKF
principle able to circumvent the non-Gaussianity issue called the GM-EKF.

2.3.2.1 A GM-EKF structure

In the following, let x̂i,stk|k−1 be the a priori estimation, provided by the ith EKF i ∈ {1, · · · , q},
of the state vector xk given the last (k − 1) observations z1:k−1. Then, let us introduce the
Jacobian matrix hi(k). It is the partial derivative of h(·) according to the state vector xk,
which is here evaluated at the a priori estimation x̂i,stk|k−1:

hik = ∂h

∂xk
(x̂i,stk|k−1) with i = 1, · · · , q (2.8)

Thus, given (2.6) and (2.8), and using the Taylor expansion, the observation zk can be
expressed as follows:

zk ≈ h(x̂i,stk|k−1) + hik(xk − x̂i,stk|k−1) + nk with i = 1, · · · , q (2.9)

Thanks to (2.9), the so-called innovation of each EKF can be expressed as:

ei,stk|k−1 = zk − h(x̂i,stk|k−1) ≈ hikx̃
i,st
k|k−1 + nk with i = 1, · · · , q (2.10)

where x̃i,stk|k−1 = xk − x̂i,stk|k−1 is the a priori error of the state estimation for the ith estimator.
Therefore, as done in the standard Kalman filter, the innovation can be expressed linearly
from the a priori estimation error x̃i,stk|k−1 and the measurement noise nk.

Given the above notations, the q EKFs making up the GM-EKF operates with the two
following steps:

• In the prediction step, based on (2.6) and (2.7), the a priori state vector estimate
satisfies:

x̂i,stk|k−1 = E[xk|z1:k−1] =
(2.6)

Fx̂i,stk−1|k−1 + E

 G′uk
wk(mst)


=

(2.7)
Fx̂i,stk−1|k−1 +

 G′

0N×1

 di with i = 1, · · · , q (2.11)

where E[·|z1:k−1] denotes the conditional expectation given the set of observations
z1:k−1. The a priori error covariance matrix Pi,st

k|k−1 is then deduced as follows:

Pi,st
k|k−1 = E[x̃i,stk|k−1(x̃i,stk|k−1)T ]

= FPi,st
k−1|k−1F

T + λ2

 G′

0N×1

 G′

0N×1

T with i = 1, · · · , q (2.12)
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• In the filtering step, the innovation variance (σ2)i is first computed. Then, the Kalman
gain Ki,st

k is defined and given (2.10) the estimation of the state vector is updated with
the innovation weighted by the Kalman gain:

(σ2)i = (hik)TP
i,st
k|k−1h

i
k + σ2

n with i = 1, · · · , q (2.13)

Ki,st
k = Pi,st

k|k−1h
i
k/(σ2)i

x̂i,stk|k = x̂i,stk|k−1 +Ki,st
k ei,stk|k−1

The a posteriori estimation error covariance matrix in the ith EKF at time k can be
obtained as follows:

Pi,st
k|k = (IM+N −Ki,st

k hik)P
i,st
k|k−1 with i = 1, · · · , q (2.14)

At this stage, a hard decision is carried out between the outputs of the q EKFs to decide
which estimate is the output of the GM-EKF. This decision consists in comparing the q
likelihood values:

βi = N (zk;h(x̂i,stk|k−1), (σ2)i), with i = 1, · · · , q (2.15)

where N (zk;µ, σ2) denotes the value of the Gaussian distribution with mean µ and variance
σ2 when the random variable is equal to zk.
If i − max denotes the index so that βi−max = max

i=1,··· ,q
(βi), the final estimate x̂stk|k is equal

to x̂i−max,stk|k , its a posteriori error covariance matrix denoted by Pst
k|k is Pi−max

k|k and the
innovation variance is Sk = (σ2)i−max. In addition, x̂i−max,stk|k−1 is denoted by x̂stk|k−1. This
latter quantity will be useful in the next section. Then, at the next time step, every state
vector estimate {x̂i,stk|k}i=1,··· ,q is set at the same vector, namely x̂i−max,stk|k . In addition, every
a posteriori error covariance matrix {Pi,st

k|k}i=1,··· ,q is set at the same value, namely Pi−max,st
k|k .

It should be noted that the considered decision is instantaneous decision. Therefore, this
approach does not correspond to a classic Viterbi approach. A summary of themst-GM-EKF
steps is given in Figure 2.5.

However, the CR-PA behavior varies over time due to sub-band switching during a com-
munication. See Figure 2.1. Therefore, a GM-EKF based on wk(mst) is not able to track the
Volterra-kernel variations. To solve this issue, we propose to consider at least two GM-EKFs
combined in an IMM algorithm.
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Figure 2.5: mst-GM-EKF for a q-size alphabet.

2.3.3 GM-EKF-based IMM to track the time-varying equivalent

channel and estimate the CR-PA input samples for

single-carrier systems

2.3.3.1 From the GM-EKF to the GM-EKF based IMM

The GM-EKF, proposed in the previous section, is not able to track the Volterra-kernel
variations due to the zero model noise. Furthermore, if the model noise wk in (2.3) is no
longer zero but a zero-mean AWGN with a non-zero variance, the GM-EKF can track these
variations but it does not provide accurate estimates of static parameters. For these reasons,
we propose to consider several GM-EKFs based on different a priori modeling of the time
evolutions of the Volterra kernels. The first GM-EKF is already detailed in the previous
section. For the second GM-EKF, we keep the SSR given in (2.6), but the covariance matrix
of the model noise wk is now defined byQ(mld) where the index ld stands for large dynamics.
We define:

Q(mld) = σ2
wIN
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The algorithm is hence able to track large variations4. Therefore, the static and the time-
varying parameter assumptions can be considered by using the two above GM-EKFs. This
leads to a 2-mode IMM combining the mst-GM-EKF and the mld-GM-EKF.
We can also study what a third GM-EKF could bring into the estimation process. It can be
based on a SSR where the model noise wk is defined by:

Q(msd) = εσ2
wIN

where ε << 1. This leads to a 3-mode IMM which also includes the msd-GM-EKF. Note
that the index sd stands for small dynamics. When introducing this GM-EKF, we aim at
improving the parameter estimate accuracy and consequently the BER performance.

2.3.3.2 About the derivation of the IMM equations

Let us look at the IMM more precisely when three modes are considered i.e. the st, sd and
ld modes. In the remainder of the chapter, {x̂jk|k}j=st,sd,ld denote the a posteriori estimates at
time k provided by the mst-GM-EKF, the msd-GM-EKF and the mld-GM-EKF respectively.
{Pj

k|k}j=st,sd,ld are their corresponding error covariance matrices.
The purpose of the IMM is to estimate the state vector xk given the observations z1:k by
using various SSRs. This amounts to searching for the state vector pdf p(xk|z1:k). In the
IMM algorithm, due to the various modes that can be considered, it is approximated by a
Gaussian mixture:

p(xk|z1:k) ≈
∑

j=st,sd,ld
µjkN (xk; x̂jk|k,P

j
k|k) (2.16)

where µjk is the probability that the system corresponds to the jth mode mj at time k; this
can be rewritten as µjk = Pr{Mk = mj} where mj = mst,msd,mld. Note that µjk is also
called the a posteriori mode probability. Given the approximation (2.16), the IMM state
vector estimate x̂k|k corresponds to a weighted sum of the outputs of the GM-EKFs:

x̂k|k =
∑

j=st,sd,ld
µjkx̂

j
k|k (2.17)

Using (2.17) and the Gaussian mixture formula (See chapter 1 in [Bar01]), the IMM a
posteriori error covariance matrix satisfies:

Pk|k =
∑

j=st,sd,ld
µjk{P

j
k|k + [x̂jk|k − x̂k|k][x̂jk|k − x̂k|k]T}

4for example in the range ±3σw with probability 99.7% at each time step
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Then, the purpose of the IMM is to recursively calculate x̂jk|k, P
j
k|k and µjk. The recur-

sion equations can be deduced by expressing p(xk|z1:k) using Bayes rules and then approx-
imating p(xk−1|z1:k−1,Mk = mj) with j = st, sd, ld by N (xk−1; x̂0j

k−1|k−1,P
0j
k−1|k−1), where

{x̂0j
k−1|k−1}j=st,sd,ld are the so-called merged means taking into account the GM-EKF esti-

mates and the so-called mixing probabilities µl|jk−1|k−1 = Pr{Mk−1 = ml|Mk = mj} where
l, j = st, sd, ld. Introducing this merged mean can be seen as a strategy of cooperation
between the different Kalman algorithms. For the proof and more details, the reader may
refer to [Bar01]. A block scheme about the the whole algorithm is given in Figure 2.6.

Figure 2.6: Proposed post-distorter when three GM-EKFs are used.

To update the mixing probabilities {µl|jk−1|k−1}l,j=st,sd,ld and the a posteriori mode prob-
abilities {µjk}j=st,sd,ld, the system is assumed to be a Markov chain (depicted in Figure 2.7)
with the following transition probabilities between the modes ml at time (k − 1) and mj at
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time k:

Pr{Mk = mj|Mk−1 = ml} = pl,j

where
∑

j=st,sd,ld
pl,j = 1, l = st, sd, ld (2.18)

Figure 2.7: The Markov chain characterizing the switches between modes

Usually, these probabilities are stored in the so-called transition probability matrix (TPM)
denoted by Π:

Π = [pl,j], j, l = st, sd, ld (2.19)

The TPM plays a crucial role in the design of the IMM. Concerning its setting, the TPM is
assumed to be known or chosen a priori. In this case, given the properties of the probability
transition and to ensure the equiprobability between modes in the steady state, the TPM
can be defined by:

Π =


pst,st pst,sd 1− pst,st − pst,sd

1− pst,st − psd,sd − pst,sd + pld,ld psd,sd pst,st + pst,sd − pld,ld
psd,sd + pst,sd − pld,ld 1− psd,sd − pst,sd pld,ld

 (2.20)

The TPM in (2.20) depends on four transition probabilities. Three of them can be deduced
from the mean sojourn time in a state. Indeed, one has:

pj,j = 1− 1
E[tj]

for j = st, sd, ld (2.21)

where tj is the sojourn time in mode j. If one can collect the spectral resource availability in
a data base available at each CT for a given time and localization [Mit00], the mean sojourn
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time in one sub-band can be estimated and pst,st can be deduced. For the sake of simplicity in
this work, it is assumed that the mean sojourn time is the same for all sub-bands. Concerning
psd,sd and pld,ld, the mean sojourn time is assumed to be close to one sampling time to take
into account the fact that the equivalent channel behavior changes instantaneously. The
fourth transition probability namely pst,sd can be set by the practitioner.

Given the last estimated states {x̂jk−1|k−1}j=st,sd,ld provided by each GM-EKF and its
associated error covariance matrices {Pj

k−1|k−1}j=st,sd,ld, the IMM estimator structure consists
of the steps described in Algorithm 1.
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Algorithm 1 An IMM combining GM-EKFs for the joint estimations of the Volterra kernels
and the input samples for single-carrier systems
• Computing the mixing probabilities, for j = st, sd, ld:

µ
l|j
k−1|k−1 = 1

cj
pl,jµ

l
k−1 j, l = st, sd, ld where cj =

∑
l=st,sd,ld

pl,jµ
l
k−1

Deducing the merged means and covariance matrices from the GM-EKF estimates:

x̂0j
k−1|k−1 =

∑
l=st,sd,ld

x̂lk−1|k−1µ
l|j
k−1|k−1 j = st, sd, ld

P0j
k−1|k−1 =

∑
l=st,sd,ld

µ
l|j
k−1|k−1{P

l
k−1|k−1 + [x̂lk−1|k−1 − x̂0j

k−1|k−1][x̂lk−1|k−1 − x̂0j
k−1|k−1]T}

• State prediction and update:
Whereas the input of a GM-EKF used alone is the previous a posteriori estimate,
namely x̂jk−1|k−1 with j = st, sd or ld, the input of the GM-EKF when it is used in
an IMM structure is x̂0j

k−1|k−1. Then, each GM-EKF provides x̂jk|k−1, x̂
j
k|k and Pj

k|k.
In addition, the likelihood functions corresponding to each GM-EKF are obtained as
follows:

Λj
k = N (zk;h(x̂jk|k−1), Sjk) j = st, sd, ld

where h(x̂jk|k−1) is the predicted observation in the mj-GM-EKF by using x̂0j
k−1|k−1 and

the innovation covariance matrix Sjk.

• Updating the mode probabilities:

µjk = 1
c

Λj
kc
j, j = st, sd, ld where c =

∑
l=st,sd,ld

Λj
kc
j

• Mixing the GM-EKFs estimates to get a final state estimate:

x̂k|k =
∑

j=st,sd,ld
µjkx̂

j
k|k

It can be seen as a soft decision between the outputs of the GM-EKFs, i.e. a weighted
sum of the outputs of the GM-EKFs.

2.3.4 Simulations and results in the single-carrier case

2.3.4.1 Simulation protocols

We consider the system model described in Figure 2.3 with a BPSK digital modulation.
The non-linearity order P and the memory depth M of the Volterra model are respectively
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equal to 3 and 2. In addition, an AWGN5 channel nk is considered. Its variance σ2
n is set to

have a given signal-to-noise ratio (SNR) equal to 10 log10
Py

Pn
where Py = 1

Ns

∑Ns
k=1 |yk|2 and

Pn = 1
Ns

∑Ns
k=1 |nk|2 respectively denote the power of the received signal and the noise, with

Ns the number of samples under study. Moreover, the variance λ2 of the Gaussians in the
GM-EKF is set at 10−5. Concerning the parameters defining the random walks, σ2

w = 1 and
ε = 10−2.
Then, let us define the CR-PA model path (CMP). A CMP is a set of Volterra-parameter
values recorded during a communication. In our simulations, we use three scenarios:

• the first scenario is a toy example, where the CMP is generated by a Markov chain
with three states. The parameter sequences are random walks with covariance Q(mst),
Q(msd) or Q(mld). The transition matrix between the states st, sd and ld is the
following: 

0.99 0.006 0.004
0.004 0.4 0.596
0.006 0.594 0.4

 (2.22)

Remark: the matrix defined in (2.22) has the same structure as the TPM introduced
in (2.20) where pst,st, psd,sd, pst,sd and pld,ld are respectively equal to 0.99, 0.4, 0.006
and 0.4. As a consequence, the model parameters can be successively static, slightly
time-varying and strongly time-varying. Every switch between the states is possible.
The properties of the generated signal exactly match the model used at the receiver.
This is a good way to evaluate the performance of our approach in a perfect case. We
can also analyze its limits. The simulations are based on one hundred realizations of
this Markov chain. One of them is depicted in Figure 2.8 (a). For the sake of the figure
clarity, we only present three kernels. For each realization of the model parameters, the
channel equivalent output samples yk are generated and then disturbed by the additive
noise nk for a given SNR.
Note that in the ideal case, the TPM in the post-distorter should be set to the matrix
(2.22). However, this piece of information cannot be known a priori. For this reason,
given the observations generated with this transition matrix, we have then studied the
performance of our algorithm when the TPM is set to another value. This is of interest
to study the sensitivity of the approach to the choice of the TPM.

5If we consider a Rayleigh or Rice channel model, the consequence is an increase in the Volterra model
memory depth M .
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• in the second scenario, the Volterra parameters remain constant during a given period
of time and suddenly switch to another value. Unlike the previous scenario, there is
no possible switch between the sd mode and the ld one. It should be noted that this
CMP could be approximated by a Markov chain where the TPM is defined by:

1− ρ ρ/2 ρ/2
1/(1 + δ) δ/(1 + δ) 0
1/(1 + δ) 0 δ/(1 + δ)

 (2.23)

where (ρ, δ) << 1. See Figure 2.8 (b). In this case, the mean sojourn time to have
static Volterra parameters would be 1/ρ whereas the mean sojourn times to have small
and large variations in time of the Volterra parameters would be equal to 1+δ [Ben15].

• in the third scenario, the CMP is generated by a five-state TPM defined by:

0.99 0.004 0.003 0.002 0.001
0.004 0.496 0.04 0.26 0.2
0.003 0.23 0.497 0.23 0.04
0.002 0.04 0.2 0.498 0.26
0.001 0.23 0.26 0.01 0.499


(2.24)

The variances of the driving process in the random walks are 0, 0.001, 0.05, 0.5 and 1.
Then, at the receiver, the transmitted samples and the Volterra kernels are estimated
using the 3-mode IMM algorithm governed by the TPM defined in (2.22). This scenario
makes it possible to generate the Volterra parameters whose pdf at each time step does
not exactly correspond to the one that can be obtained at the receiver by using an IMM
with 2 or 3 estimators. This tends to be more representative of what could happen in
real cases.

In the next section, the sensitivity of the TPM is addressed based on the first scenario.
Then, we study the algorithm sensitivity to the choice of the number of mode for the three
scenarios.

2.3.4.2 Results

2.3.4.2.1 About the algorithm sensitivity to the TPM choice In Figures 2.9-2.11,
the sensitivity of our approach to some elements of the TPM is studied. For this purpose,
the BER is computed for various SNRs and different values of the transition probabilities.
According to Figure 2.9, the lowest BER is obtained for pst,st = 0.99. However, the BER
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Figure 2.8: CMPs generated for the three scenarios.

does not grossly increase until pst,st = 0.97. It means that there is a tolerable error margin
to set pst,st. In addition, this margin is not sensitive to the SNR according to the simulation
we did. Another margin appears also in Figure 2.10 showing the existence of a tolerable
error margin about the value of psd,sd. The same observation is depicted by Figure 2.11. As
a consequence, in practice, a priori setting the TPM would not be so problematic.

2.3.4.2.2 About the sensitivity of the proposed algorithm to the number of
modes

• Let us first look at the first scenario

We test the proposed algorithm sensitivity by comparing the BER performance between:

· a 2-mode IMM which combines mst-GM-EKF and mld-GM-EKF,

· a 3-mode IMM which combines mst-GM-EKF, msd-GM-EKF and mld-GM-EKF.

The comparison of BERs between the 2-mode IMM and the 3-mode IMM illustrates a trade-
off between computational cost and required QoS. Indeed, Figure 2.12 shows a gain of 2dB
in SNR for a BER= 10−4 with the 3-mode IMM when compared to the 2-mode IMM.
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Figure 2.9: The proposed-algorithm sensitivity to errors on pst,st.
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Figure 2.10: The proposed-algorithm sensitivity to errors on psd,sd.

This can be explained by the impact of the parameter estimate fluctuations on the signal
estimate. Indeed, to compute the estimated state vector we make a soft decision between the
output estimates of each GM-EKF. The contribution of each GM-EKF on the final estimate
is weighted by the mode probability. The contribution of the mld-GM-EKF is 1/2 at the
steady state step in the 2-mode IMM, but it is equal to 1/3 at the steady state step for
the 3-mode IMM. This can reduce the amount of fluctuations on the parameter estimation
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Figure 2.11: The proposed-algorithm sensitivity to errors on pld,ld.

which has a direct impact on the BER since we deal with the joint estimations of the CR-PA
input samples and the Volterra parameters.
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Figure 2.12: BER comparison between the 2-mode IMM and the 3-mode IMM applied to a
toy example. The TPM used for the 3-mode IMM is (2.22).

• Let us now study the second scenario

Here, we suggest comparing amst-GM-EKF alone, amsd-GM-EKF alone, amld-GM-EKF
alone, a 2-mode IMM and a 3-mode IMM. The Volterra parameter tracking performance are
presented in Figure 2.13 for one realization. For the sake of clarity, we present only one
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parameter in the figure.
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Figure 2.13: Volterra parameter tracking performance of the mst-GM-EKF, the msd-GM-EKF,
the mld-GM-EKF, the 2-mode IMM and the 3-mode IMM.

When only using a mst-GM-EKF, the Volterra parameters can be estimated at the be-
ginning but we cannot track their variations. Using small dynamics with a msd-GM-EKF,
the tracking can be done but it requires several observations. Using a mld-GM-EKF, the
parameter tracking is faster but the estimate fluctuates much. The time spent to reach
the new Volterra value and the uncertainties on the estimates increase the BER. These un-
certainties are considerably reduced with a 2-mode IMM. When using a 3-mode IMM, we
obtain both the convergence rapidity and the parameter estimate accuracy. This can also
be seen in Figure 2.14 and Figure 2.15. Indeed, the 3-mode IMM provides the best param-
eter estimates in terms of mean square error (MSE). This impacts the BER performance
(Figure 2.16) calculated at the switching period (or the parameter estimation convergence
period), assumed to be equal to 50 samples in our simulations.
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Figure 2.14: Mean square error comparison of the parameters estimation. The used norm is
the 2-norm.
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Figure 2.15: Mean square error comparison of the parameters estimation. The used norm is
the infinity norm.

The BER performance of mld-GM-EKF is better than mst-GM-EKF but worse than
msd-GM-EKF. However, the mld-GM-EKF has the highest model noise covariance and the
mst-GM-EKF has the lowest one. This means that increasing the covariance of a single
GM-EKF improves the BER but to a certain limit. By inserting a second GM-EKF such as
the case of the 2-mode IMM, the SNR decreases by 1dB when the BER is equal to 10−3. It
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decreases by 2dB when the three GM-EKF are combined together in the 3-mode IMM.
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Figure 2.16: BER comparison applied to the second scenario.

Figure 2.17 illustrates the BER evolution within sampling time for a SNR equal to 12dB.
Here, the 3-mode IMM provides a very small BER in the outer of the switching period which
is not the case of the 2-mode IMM and the msd-GM-EKF. This can be explained by the
weight of the mld-GM-EKF in each IMM algorithm (see Figure 2.18).
Indeed, the msd-GM-EKF cooperates with the mld-GM-EKF at the switching period and
with the mst-GM-EKF outer. As shown in Figure 2.18 the contribution of the mld-GM-
EKF output in the final estimate is less or equal to 1/3 for the 3-mode IMM, while it
is, approximately, 1/2 for the 2-mode IMM. Decreasing the mld-GM-EKF weight in the
final estimate reduces the instantaneous fluctuations of the parameters estimate depicted in
Figure 2.13.

• Let us look now at the third scenario

When what is designed at the receiver does not exactly correspond to what is done at the
transmitter, the MSE is slightly higher. See Figure 2.19. Nevertheless, the IMM is still able
to track the Volterra parameters and to estimate the input signal. See Figure 2.20. The
BER is slightly deteriorated but still close to the theoretical curve.

In this section, we study the limits of the proposed algorithm when the TPM is predefined
and a single-carrier modulation is used. First, the sensitivity of the algorithm to errors made
when calculating the TPM is studied. Then, the sensitivity to the number of the modes is
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Figure 2.17: Comparison of the BER evolution within sampling time SNR = 12dB.
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Figure 2.18: Mode probability evolution within sampling time for 3-mode IMM (left) and
2-mode IMM (right) SNR = 12dB.

evaluated. And finally, the case when the predefined Volterra kernels dynamics number at
the receiver is different from the ones at the transmitter.

2.4 Conclusions

In this chapter, we propose a digital post-distortion algorithm based on an IMM structure
for a CR-PA in an uplink communication. We started with a single-carrier system. The post-
distorter algorithm is an IMM structure combining a bank of GM-EKFs. The simulation
results concerning this case deal with the sensitivity of the proposed algorithm to the fixing
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Figure 2.19: MSE-based analysis of the proposed algorithm sensitivity to the number of the
CMP dynamics.
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Figure 2.20: BER-based analysis of the proposed algorithm sensitivity to the number of the
CMP dynamics.

errors of the TPM when considering a three-state Markov chain. In addition, we analyze,
in terms of BER, the sensitivity of the proposed digital post-distorter to the number of
GM-EKFs chosen for the IMM algorithm.

The originality of our approaches is to transmit a non-linearity amplified signal without
any filtering and then to design a corresponding post-distorter at the receiver. This can
be done in a CR system. One of our motivations is to reduce the consumed power at the
mobile terminal. Indeed, compared to other linearization techniques usually implemented at
the transmitter (i.e. digital pre-distortion, cartesian feedback, polar loop, etc.) the whole
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linearization processing in our case is performed at the receiver. As a consequence, this
is a strong advantage as in uplink the transmitter is battery driven unlike the receiver.
Concerning the estimation algorithm itself, its complexity depends on the number of the
EKFs. For a single-carrier modulation scheme, a i-mode IMM combines i× q EKFs.

In this chapter, the theoretical concept of the proposed post-distorter was validated by
system level simulations. The next chapter deals with the measurement-based validation.
The measurements are carried on a broadband commercial PA.
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3.1 Introduction

In this chapter, we validate the theoretical performance of the proposed post-distortion by
means of experimental results. Then, we answer some remaining questions related to its
relevance:

• how to fix the Volterra non-linearity order and memory depth?

• how to obtain the baseband observation zk which carry the footsteps of the PA output
signal spectrum components?

• does the algorithm have the same BER performance when applied on measured signals
as it is in system level simulations?

• is the proposed approach really able to track the CR-PA behavior variation over time?

For this reason, this chapter presents experimental setup and results for verifying the per-
formance of the digital post-distorter. The experimental investigations are carried out for
a wideband power amplifier (model AAMCS-AMP) from MACOM. The PA is driven into
saturation while the performance without and with the proposed post-distortion are inves-
tigated. Different scenarios of the test signals are considered. The measured results verify
the feasibility of the proposed post-distortion and demonstrate close performance to the
simulation-based results. Therefore, this chapter is organized as follows:
The second section deals with the PA characterization while in the third section the test
bench used to validate the proposed technique is detailed. Then, the measurement results
are discussed.

3.2 PA characterization

3.2.1 Test bench

To characterize the DUT, we use the test bench depicted in Figure 3.1. It consists of:

• a signal generator : Agilent E4428C ESG Analog Signal Generator,

• a wideband attenuator, gain=-30dB,

• a power meter: Power meter HP 435A,

• a DC power supply: Agilent E3646A.
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• the DUT: Power amplifier AAMCS-AMP-300M-3000M,
As it can be seen from the previous chapter, the proposed algorithm is validated by
system level simulations. To confirm these results by measurement, we use a wideband
PA to be able to vary the carrier frequency of the PA input signal. This makes it
possible to study the PA behavior variation and evaluate the proposed approach per-
formance. Hence, the used DUT is able to cover frequencies from 300MHz to 3GHz
and delivers an output power of 26 dBm at 3 GHz. A gain of 26±2dB is achieved over
the entire band and the PA consumes 3.78W from a 15V DC supply. The saturation
power is 30dBm and the 1-dB compression point (CP1) is 26dBm.

Figure 3.1: PA characterization test bench.

At the signal generator level, the PA input signal characteristics are defined:

• the power Pin,

• the carrier frequency fc and bandwidth Bw,

• the shaping filter: rectangular filter.

3.2.2 PA Characterization

3.2.2.1 AM-AM and AM-PM characterization

The AM-AM and AM-PM characteristics of the PA are shown in Figure 3.2 and Figure 3.3.
The 1 dB compression appears at the output power of 27 dBm and input power of 0 dBm at
fc = 2.8GHz. At the same point, the AM-PM modulation is 0.25 degrees. In addition, at
this point, the PAE efficiency is equal to 14%. Although the DUT has high gain (Figure 3.4)
and Pout (Figure 3.2) that enable it to respond to the high level requirements of the majority
of the communications standards, its PAE is very low. This is due to the consumed power.
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Figure 3.2: Measured AM-AM characteristic for fc = 2.8GHz.

Indeed, the needed DC voltage VDC and current IDC to operate the PA are respectively 15V
and 0.252A. In other words, the DC power supply of the PA is 3.78W which is quite high
for an amplifier implemented in a mobile terminal. However, as our purpose is to validate
a theoretical assumption about a wideband PA behavior, this DUT is valid to confirm the
proposed modeling and post-distortion technique relevance.
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Figure 3.3: Measured AM-PM characteristic for fc = 2.8GHz.
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Figure 3.4: Measured Power gain for fc = 2.8GHz.

3.2.2.2 Frequency and input power dependency

Using the same test bench, our purpose is to characterize the PA behavior dependency on
the carrier frequency. For this reason, we show a three dimension representation of the Pout,
PAE and gain in Figures 3.5, 3.6 and 3.7.
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Figure 3.5: AM-AM characteristic evolution with carrier frequency and Pin variations.

On the one hand, the PA performance in terms of Pout, PAE and gain is maximal over
narrower wideband, between 1.6GHz and 1.8GHz. On the other hand, in Figure 3.5, one can
notice that the input compression point at 1dB, OCP1 varies with frequency. This means
that depending on the carrier frequency the PA non-linear amplification starts more or less
early in terms of input power. When we take a look at the values variation of Pout, PAE
and gain, we verify that the PA behavior varies when the carrier frequency is changed which
is coherent with our assumption about the PA behavior variation with carrier frequency.
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Figure 3.6: PAE characteristic evolution with carrier frequency and Pin variations.

This result has been heavily studied and verified in literature [Liu04], [Lan08], [Tar15] and
[Gha10]. Indeed, the PA behavior change not only as a function of the carrier frequency but
also as a function of the input signal bandwidth.
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Figure 3.7: Power gain characteristic evolution with carrier frequency and Pin variations.

3.2.2.3 Non-linear characterization

In order to characterize its non-linear behavior, for this section and the upcoming ones, the
RF signal power level should be high enough to drive the DUT to work in its non-linear zone
at the CP1 which means that the Pin=1.5dBm.

In this section, the classical two-tone analysis is used to quantify the memory effects in
power amplifiers. For this reason, a two-tone input signal with 2 MHz of frequency spacing
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is injected to the PA. This frequency spacing is the highest value that can be reached by
the signal generator. As shown by the table 3.1 and Figure 3.8, the first tone frequency
f1 is 2.799 GHz whereas the second tone frequency f2 is 2.801 GHz. One can notice that
in addition to the amplified versions of f1 and f2, spurious frequencies appear at other
frequencies. To identify these frequencies, we calculate the intermodulation products. As
mentioned in table 3.1, some of these frequencies correspond to the 3rd, 5th, 7th, 9th and 13th

order intermodulation products.

Figure 3.8: PA output spectrum for a two tone input signal.

The higher the intermodulation order is, the lower the power level is. For this reason, it
would be wise [Afs12] to take this into account when trying to model the PA. Indeed, at the
set of frequencies, marked as {3, 6, 7, 10, 11, 13, 14}, the ACPR is lower than -40 dBc. For
instance, this is in concordance with the LTE mask [Hon13]. Therefore, we consider these
products insignificant and we do not take them into account when modeling the DUT. This
result can be exploited when defining the memory depth M and the non-linearity order P of
the Volterra model. These assumptions are based on a modeling metric called the adjacent
channel error power ratio (ACEPR) defined in [Isa06]. This metric is computed to illustrate
the adopted model reproduction of the PA ACPR. It is expressed as follows:

ACEPR =
∫
adj |E(f)|2df∫
ch |Y (f)|df (3.1)
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Table 3.1: PA output spectrum for a two tone input signal

Markers Intermodulation product Frequency (GHz) Amplitude (dBm)
Ref f2 2.80100 16.7
2 f1 2.79900 17.1
3 2f2 − f1 2.80300 -21.8
4 frequency offset 2.80199 -35.8
5 frequency offset 2.79999 -33.8
6 5f1 − 4f2 2.79800 -40.7
7 4f1 − 3f2 2.79297 -65.5
8 3f1 − 2f2 2.79499 -27.4
9 3f2 − 2f1 2.80500 -28.6
10 5f2 − 4f1 2.80901 -65
11 7f2 − 6f1 2.8130 -60.2
12 2f1 − f2 2.79699 -25.2
13 7f1 − 6f2 2.79905 -63.6
14 4f2 − 3f1 2.80701 -62.2

where E(f) is the Fourier transform of en which expresses the difference between the PA
output signal ymeasn and the PA model output signal ymodn :

en = ymeasn − ymodn (3.2)

The more similar a calculated output signal of a model is to an experimental one, the lower
the ACEPR value is, i.e., the model is closer to the PA behavior. By fixing a threshold
equal to 3 dB for this metric, it becomes possible to neglect some intermodulation products
without them the ACEPR still below the threshold. This two tone analysis is done around
several frequencies as it is shown by the Figure 3.9. Based on the results of these tests
and the fixed ACEPR threshold, the non-linearity order is defined for each frequency. The
highest order for all the frequencies is 5. For this reason, the non-linearity order P is fixed
at 5. Then, the memory depth is defined to be equal to 2.

Figure 3.9: Frequency change over time.

Afterwards, the Volterra kernels are identified using a Kalman filter as its is shown by
Figure 3.10. The estimated coefficients are only used to be able to compare system level
simulation based results to the measurement based results. Note that, when applying the
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digital post-distortion on the measured PA amplifier output signal, the obtained a priori
information about the Volterra kernels is not used. The Volterra kernels are assumed to be
unknown and they are jointly estimated with the PA input samples as it has been proposed
in chapter 2.

Figure 3.10: The PA model-parameters extraction procedure.

The extracted Volterra kernels are presented in Figure 3.11. For the sake of the figure
clarity, we only present some of them. As long as the carrier frequency of the PA input signal
varies, the values of the Volterra kernels vary. The test bench used to vary the input signal
and retrieve the PA input and output signal are explained in the upcoming section 3.3.1.

Let us now check to what extent the obtained Volterra model is able to reproduce the PA
power spectral density (PSD). The PSD of the PA output and the Volterra model output
are then calculated to verify the relevance of the above procedure. For this reason, a single-
carrier signal is injected to the PA, the characteristics of which are:

• a QPSK constellation,

• 5MHz of bandwidth W ,

• and a carrier frequency fc fixed at 2 GHz.

3.3 Performance analysis and evaluation

3.3.1 Test bench

The test bench in Figure 3.12 is built to experimentally validate the proposed digital post-
distortion. The test bench consists of the DUT broadband PA (model AAMCS-AMP from
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Figure 3.11: Some of the extracted Volterra kernels.

MACOM) defined in 3.2.1, a serial signal generator (SSG), a digital oscilloscope (DO), a DC
supply and a personal computer (PC) on which the Labview software is installed. In this
section, a detailed review about these devices and software characteristics is given and then
the experimental procedure is explained.

3.3.1.1 Serial signal generator

The SSG used in the test bench is HP ESG-D Series E4433B signal generator. It has random
waveform generator option. This option provides to load baseband signal to the generator
and it carries the baseband signal to the desired carrier frequency. Therefore, in the test
bench the SSG is used:

1. to receive the baseband signal,

2. to convert it to analog like digital to analog converter,

3. to modulate it around the desired carrier frequency.

The baseband input data is generated using Matlab, these I/Q signals are loaded to the SSG.
In the arbitrary waveform generator option, the SSG has sampling clock and reconstruction
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Figure 3.12: Test bench.

Figure 3.13: Bloc diagram of the used test bench.

filter. Their settings are fixed to be the same as those used to generate the baseband signal
using Matlab.

3.3.1.2 Digital oscilloscope

A digital oscilloscope (DO) is an oscilloscope which can store and analyze a digital signal.
It typically provides the advanced trigger, storage, display and measurement features. The
analog input signal is sampled and then converted into a digital record of the signal amplitude
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at each sample time. In addition, the user can define the set of elements such as the RF
filter, the mixer, the I/Q demodulator and the ADCs, that make it possible to obtain the
baseband version of the digitized signal.

3.3.1.3 Labview

The Labview (Laboratory Virtual instrument Engineering Workbench) software is a graph-
ical programmatic software used to control and to simulate the measurement instruments.
Using Labview, it becomes possible to set up a test bench controlled by a PC. The Labview
file extension is VI (like Virtual Instrument). It consists of two windows:

1. to display the measurement results and curves,

2. to detail the program different items and functions represented by a block diagram.

Therefore, we use the Labview software in our test bench to automatically manage and
change the measurement settings. In addition, it makes it possible to retrieve the digitized
signals by the DO and save them in Excel format. This makes it possible to post process
the samples using Matlab. Finally, it allows us to recapture the displayed curves on the DO
screen.

3.3.1.4 Experimental procedure

The test bench described by (Figure 3.12 and Figure 3.13) is designed to be fully automatic
by using Labview software. See Figure 3.14. The complex envelop of the transmitted signal is
generated then modulated by the carrier frequency at the SSG. Then, the signal is transferred
via a GPIB cable to the DO. The SSG is also connected to the PA which is linked to the DO.
The latter is connected to the PC via an ethernet cable. The PA input and output signals
are digitized at the DO. These signals are retrieved at the PC and saved in Excel format
using the Labview software. The digital post-distortion, written in Matlab, is carried on the
PA output signal saved in these files.

The PA input signal corresponds to the one defined in 3.2.2.3.
Let us now describe the way according to which the test bench is controlled by Labview.

As it is mentioned above, the communication between the DO and the PC is an ethernet
communication. When initializing this communication, it becomes possible to set the DO
parameters. Indeed, the DO has several channels and each channel is associated to a given
entry. Hence, the first channel is connected to the SSG and the second channel is linked to
the PA output. This has to be specified from the PC.
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Figure 3.14: Bloc scheme of the Labview VI used to monitor the measurement instruments.

In parallel, the communication between the PC and the SSG is done using USB-GPIB
connector. When initializing this communication it becomes possible to send a set of com-
mands to the SSG in order to generate signals with given amplitude and frequency:

1. the first command indicates the generated signal frequency,

2. the second one indicates the generated signal amplitude,

After this, the signals are recaptured. These signals are the input signals of each DO
channel. The extracted data by the DO are processed and stored thanks to several com-
mands. These commands make it possible to manipulate data and tables. Using these
tables, the PC rebuild the curves figures of the DO. Then, it extract the signal amplitudes
and phases. These data are then stored in tables and exported to Excel files.

Summarizing, we present the programming algorithm used for the performed graphical
program (Algorithm 2).

3.3.1.5 A summary about the used test bench to evaluate the algorithm
performance

The test bench can be summarized, as it is depicted in Figure 3.15, as follows:
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Algorithm 2 Graphic programming algorithm

Main program{

• Initialization of the communication with the DO,

• Initialization of the communication with the SSG,

• For frequencies from 300 MHz to 3 GHz by a step of 200 MHz:{

· retrieve the shape of the input signal,
· calculate the input signal amplitude,
· extract the input signal phase,
· retrieve the shape of the output signal,
· calculate the output signal amplitude,
· extract the output signal phase,
· store the data in Excel tables,

}

• close the communication with the DO,

• close the communication with the SSG,

• display the Excel tables,

}

• the PC generates the baseband version of the PA input signal, apply the proposed
post-distortion technique and retrieve the bitmapped version of the PA output signal,

• the SSG up converts the baseband signal and modulate it by a carrier frequency,

• the DUT is the PA,

• the DO digitizes the PA output signal.

At the PC level, the digitized PA output signal is brought back to the baseband frequency
using a Matlab program the main idea of which is based on the RF front end and receiver
architecture depicted in Figure 3.16. This latter is made up by a classical RF front end
for the fundamental, the 2nd and the 3rd harmonic on three parallel paths. For the sake of
simplicity, this architecture is given for P = 3 in Figure 3.16. For higher orders, we need
supplementary paths. This makes it possible to avoid aliasing after the analog-to-digital
conversion. Then, the digital version of the signal at these frequencies is summed up and
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Figure 3.15: Correspondence between the system model and the test bench.

forwarded to the matched filter. Finally, the matched filter output signal is sampled at the
transmitted symbol rate.

Figure 3.16: The used RF front end to restore the baseband PA non-linearities until the 3rd
order.
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3.3.2 Measurement results

As in the previous chapter, we show that the 3-mode IMM has better performance in terms
of BER and Volterra kernels tracking, it is chosen as the main structure of the post-distorter
evaluated in this section. Also, we choose to a priori define the transition probability matrix
(TPM) as we can calculate its components. In addition the generated signal is the one
specified in 3.2.2.3, a single-carrier signal its characteristics are:

• a QPSK constellation,

• 5MHz of bandwidth W ,

• and a carrier frequency fc fixed at 2 GHz.

Afterwards, in the measurement result part, we first propose and analyze a sophisticated
receiver architecture to obtain the baseband observation zk. Then, in the second part, we
study the algorithm performance regarding the signal constellation retrieving in terms of
EVM. Finally, in the third part, the algorithm tracking of the PA behavior variation is
studied.

3.3.2.1 Receiver architecture validation

Using the signal specified in 3.2.2.3, we compare the BER between several receiver archi-
tectures, one of them is depicted in Figure 3.16. Indeed, the fixed non-linearity order for
the Volterra model is 5. Hence, the receiver architecture need 5 paths to be able to retrieve
the spectrum around the 2nd, the 3rd, the 4th and 5th harmonic. It should be noted that
the calculated BER has no sense without indicating the SNR. However, as in our case it
is not possible to calculate it. Instead, some measurement parameters may help the reader
to carry out similar measurements such as the sampling frequency fs = 1.92MHz and
Pin = ICP1 =1.5dBm.

As this architecture (Figure 3.16) is complicated to be implemented for a high order
non-linearity, we analyze the performance of the post-distortion technique when using five
different receiver architectures:

1. architecture 1: When only the spectrum around the fundamental is retrieved,

2. architecture2: When, in addition to the fundamental, the spectrum version around the
2nd harmonic is brought back to the baseband frequencies,
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3. architecture 3: When, in addition to the fundamental, the spectrum versions around
the 2nd and the 3rd harmonics are brought back to the baseband frequencies,

4. architecture 4 When, in addition to the fundamental, the spectrum versions around
the 2nd, the 3rd and the 4th harmonics are brought back to the baseband frequencies,

5. architecture 5: When, in addition to the fundamental, the spectrum versions around
the 2nd, the 3rd, the 4th and the 5th harmonics are brought back to the baseband
frequencies.

Using the first architecture the BER is quite high but it get lower when the spectrum
around the 2nd order harmonic is also brought back to the baseband frequencies and taken
into account in the observation zk. It also get lower when the 3rd architecture is used to
obtain zk. However, the BER stay constant when the spectrum around the 4th and the 5th

order harmonics are added. This can be explained by two facts:

1. the power around these frequencies is insignificant,

2. the variance of the estimation error which depends on the interferences caused by the
spectra around the harmonics with the fundamental one is higher than the noise power.

According to the above results (illustrated in table 3.2), it might be interesting to consider
the 3rd architecture as it provides less complexity and better BER than the other four
architectures. It should be noted that these results are related to the DUT and might not
be the same for other PAs.

Table 3.2: Recorded BER for different receiver architectures

Scenario BER
Architecture 1 (fc) 10−3

Architecture 2 (fc, 2fc) 1.3 ×10−4

Architecture 3 (fc, 2fc, 3fc) 10−5

Architecture 4 (fc, 2fc, 3fc, 4fc) 10−5

Architecture 5 (fc, 2fc, 3fc, 4fc, 5fc) 10−5

3.3.2.2 Comparison between simulations and measurements: About the signal
constellation

The evaluation is performed by studying the constellation of the PA output signal with and
without post-distortion. Then, the results are compared to the system level simulation based
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results.
In Figure 3.17(a), the rotations and the dispersions of the constellation are due to the

Volterra model, extracted in 3.2.2.3. In Figure 3.18(a), the rotations and the dispersions of
the constellation are due to the PA nonlinearities and memory effects. As it can be seen,
these distortions, of the PA and the Volterra model, are compensated by the proposed digital
post-distortion (Figure 3.17(b) and Figure 3.18(b)).
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Figure 3.17: DUT output signal constellation comparison before and after post-distortion.
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Figure 3.18: Volterra model output signal constellation comparison before and after post-
distortion.

In Figure 3.19, the measured EVM is compared to the simulated one. One can notice that
the measured EVM is 1% higher at Pin = 1.5dBm than the simulated EVM, when applying
the proposed approach on measured signals. This can be explained by the measurement
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impairments and noise that is not taken into account by the algorithm assumptions. However,
the measured EVM is still close to the simulated EVM.
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Figure 3.19: Error vector magnitude comparison between simulations and measurements.

Another common effect of the PA distortion on the constellation is shown via the eye
diagrams, in Figure 3.20 and Figure 3.21, calculated at the compression point using a single-
carrier signal.

The PA distortions, non-linearities and memory effects, appear as closure of the eye
pattern in Figure 3.21. The eye pattern is re-expanded after the post-distortion compensation
(Figure 3.22). This observation is consistent with the previous symbol-constellation results.
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Figure 3.20: Eye diagram of the PA input-signal complex envelop.
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Figure 3.21: Eye diagram of the PA output-signal complex envelop.
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Figure 3.22: Eye diagram of the received signal after post-distortion.

3.3.2.3 Comparison between simulations and measurements: About the
algorithm tracking of the PA behavior variation

Now let us evaluate the algorithm tracking of the PA-behavior change when the carrier
frequency evolves. First, the carrier frequency of the PA input signal is modified several
times. See Figure 3.9. Then, using the test bench defined in 3.3.1, the corresponding PA
output signals are brought back to the baseband frequency using the third architecture
defined in 3.3.2.1. Then, they are concatenated. Finally, the post-distortion is carried on
the resulting signal. From Figure 3.23, one can notice that the PA effect on the constellation
is frequency dependent as it is verified previously in section 3.2.2.2. However, the proposed
method is able to track the PA behavior variation to give a better estimate of the transmitted
signal. See Figure 3.24 which corresponds to the symbol constellation from 0 to T0 = 5.2ms.
This confirms the algorithm capability to track the PA behavior variation when the carrier
frequency evolve over time.
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Figure 3.23: Frequency impact on the PA distortion of the signal constellation at Pin =
ICP1.
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Figure 3.24: Received symbol constellation after the proposed digital post-distortion at Pin =
ICP1.

In Figure 3.25, the estimated Volterra kernels by the post-distorter are presented as well
as the extracted Volterra kernels by the procedure explained in 3.2.2.3. As it is shown, the
post-distorter is able to track the CR-PA behavior variation over time due to the frequency
variation. This is in line with simulation results presented in the previous chapter.
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Figure 3.25: Estimated Volterra kernels.

3.4 Results comparison with literature

As the digital post-distortion for PAs has never been developed for the current communica-
tion systems due to the so-called spectral regrowth and ACPR, there is no existent approach
in literature to be compared with. For this reason, the proposed post-distortion is com-
pared to the digital pre-distortion. Therefore, we select four recently research works based
on Volterra series modeling for wideband PAs. These techniques are briefly described and
compared with our approach in the remainder of this section.

1. In [Feh14a], a digital pre-distortion consisting of derivations of the low-pass equivalent
(LPE) Volterra series is studied.

2. Starting with the passband Volterra-series formulation, a baseband equivalent (BBE)
Volterra-series expression suitable for linearizing PAs driven with intra-band carrier
aggregated signals is derived in [Feh14a]. The BBE Volterra series is inherently com-
pact and reduces the model complexity to its basic essentials without the need for
pruning, which could potentially impact its linearization capacity when dealing with a
wideband PA.
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3. [Che14a] aims at an effective digital pre-distortion that can jointly mitigate the frequency-
dependent I/Q imbalance and PA nonlinearities. As the computational complex-
ity grows up exponentially to describe all the impairments via a Volterra-series pre-
distorter, a modified dynamic-derivation-reduction based (DDR) Volterra series pre-
distorter is proposed to reduce the complexity.

4. The authors in [Feh14b] propose a new transmitter architecture suitable for effective
transmission of interband carrier aggregated signals. For the purpose of illustrating
the concept, only two component carriers will be used. This architecture involves
dual-band crest factor reduction and digital pre-distortion modules which have been
specifically devised to jointly enhance the linearity and efficiency performance of the
transmitter when driven with carrier aggregated signals.

In Table 3.3, a comparison between our work and the aforementioned research works is
proposed. Firstly, let us look at the column of the EVM. As it can be seen, the first, the
second and the fourth technique, provide better EVM than our work. This can be explained
by the high considered non-linearity order P = 5. However, this increases the complexity on
these digital pre-distortions, which makes it difficult to implement them in mobile terminals.
Nevertheless, the reached EVM in our work still acceptable by the current communication
systems [Che14a].

Now, let us take a look at the ACPR column. This ACPR corresponds to the ACPR1
calculated at 5MHz of the main carrier frequency. The proposed post-distortion approach
provide the lowest ACPR= −54dBc. Therefore, the proposed approach is a good compromise
between EVM and ACPR. In addition, the proposed approach is based on fewer Volterra
kernels which makes the estimation procedure simpler.

Table 3.3: EVM and ACPR-based comparison between the proposed post-distortion tech-
nique and recent digital pre-distortion techniques existent in literature

Technique Parameter Number of
coefficients

EVM ACPR1 at
5MHz

1 Classical low-pass equivalent
Volterra series [Feh14a]

P = 7, M = 2 231 2% -48dBc

2 Baseband equivalent Volterra se-
ries [Feh14a]

P = 7, M = 2 91 2.1% -48dBc

3 DPD proposed in [Che14a] P = 5, M = 2 44 4.2% -40dBc
4 DPD proposed in [Feh14b] P = 5, M = 2 44 3.5% -50dBc

This work P = 5, M = 2 44 4% -54dBc
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3.5 Conclusion

In this chapter, the proposed digital post-distortion technique has been applied on a wide-
band PA. First of all, the used DUT has been characterized by means AM/AM and AM/PM
characteristics. Then, the DUT behavior dependency on carrier frequency is demonstrated
validating our assumptions about the CR-PA behavior variation as a function of the carrier
frequency. A non-linear characterization is carried on the PA in order to find a relevant
way to define the Volterra model non-linearity order and memory depth. Besides, a receiver
architecture is proposed and analyzed in order to retrieve the so-called received baseband
observation zk. Based on these interpretations, the algorithm is then applied on the DUT
operating near the compression point to get the maximum efficiency. The distortions gen-
erated by the PA are successfully compensated at the receiver. This can be seen from the
reached EVM which is equal to 4% and ACPR which is equal to -54dBc at 5MHz from the
carrier frequency.

The proposed approach feasibility and performance is verified. This technique makes it
possible for the PA implemented in the mobile terminal to work at the compression region
where the efficiency is the highest possible given that the linearity is met at the digital part
of the receiver (the base station). This may decrease the power consumption of the mobile
terminal transmitter. However, this aspect is not quantified in this thesis but it can be the
subject of further works.
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Conclusions and perspectives

This PhD dissertation deals with enhancing the PA efficiency using a digital post-distortion
for uplink CR systems.

After presenting generalities about CR and giving the state of the art of the different
strategies to meet the trade-off between linearity and efficiency, we suggested designing a
technique based on a dynamic Volterra model of the equivalent channel consisting of the PA
and the channel. The main advantage of the model is its linearity regarding its parameters,
which makes their estimations easier. These parameters are assumed to be time-varying and
to exhibit sudden changes when the CT switches from one sub-band to another. However,
the choice of the model order and its memory plays a key role. Selecting too small values
could not be suited to model the non-linearities, but choosing higher values exponentially
increases the number of the parameters to be estimated and consequently the algorithm
computational cost.

Therefore, according to various tests we did, we have proposed to set the non-linearity
order to P = 3 and the memory depth to M = 2. This corresponds to a “good” compromise
between modeling accuracy, data storage and computational cost. Then, three methods have
been proposed.

As the input samples can be estimated if the Volterra kernels are known, we have proposed
to jointly estimate the Volterra kernels and the input samples. This hence leads to a non-
linear estimation issue that can be solved by using an EKF. This corresponds to a good
compromise in terms of accuracy and computational cost compared to the other non-linear
Kalman-based estimators. However, this type of approach requires Gaussian assumptions
for the model noise and the measurement noise in the state space representation. For this
reason, a Gaussian-Mixture EKF is used in the single-carrier case. As the PA behavior can
remain unchanged or be time-varying, a single model cannot be representative of the way
the Volterra kernels evolve over time. To circumvent this problem, we have proposed to take
into account different assumptions about the time dynamics of the Volterra kernels. Based
on these assumptions, different estimators are combined in a global structure called the IMM
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algorithm to jointly estimate the input samples and track the Volterra parameters.
Using an IMM structure seems to be an attractive solution. Nevertheless, some aspects

must be addressed:

1. The number of estimators in the IMM structure: the IMM algorithms we propose are
based either on two or three estimators. One is based on the assumptions that the
Volterra kernels are constant where the others assume that the Volterra kernels are
random walks. They differ from each other by the variance of the driving process.
Using two Kalman filters has the advantage of reducing the computational cost, but
using three Kalman filters can provide better estimates and lower BER. Considering
more than three estimators combined in an IMM structure would not improve the
estimation accuracy and would increase the whole computational cost.

2. The setting of the TPM: this matrix plays a key role in the IMM structure. In this
PhD, we have proposed two ways to obtain this matrix. On the one hand, we propose
to a priori set the transition probability by taking into account the mean sojourn
time in one model assumption. Nevertheless, this requires some additional information
about the spectrum availability and location that can be found in the CT database.
On the other hand, the TPM is jointly estimated with the input samples and the
Volterra kernels by using [Li05]. In this latter case, the resulting adaptive IMM has
the advantage of being “smart”, but at the price of a higher computational cost. It
should be noted that these recursive algorithms require at least 50 samples at the
receiver to converge to the true values of the Volterra kernels.

The statements mentioned above are studied and analyzed using Matlab simulations. Then,
the relevance of the proposed approaches is confirmed using real signals. The GM-EKF-based
IMM reaches 4% of EVM and -54dBc of ACPR at 5MHz. Given this ACPR, the proposed
algorithm can be also used as the basic structure of a digital pre-distortion technique in a
downlink communication.
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These works can be extended in a number of directions, including:

• The proposed algorithm main structure is based on an IMM structure. This structure
combines two or three Kalman-based estimators each one is based on an assumption
on the Volterra kernel dynamics in order to track the CR-PA behavior. The main
drawback of the proposed approach is its computational cost. To solve this problem,
an adaptive Kalman-based [Hui15] estimator can be used instead.

• In this thesis, we are interested in single carrier-modulations. However, recently, post-
OFDM multicarrier modulation schemes seem to be more suitable for the 5G for ex-
ample. Therefore, it would be interesting to update the proposed algorithm according
to the specifications of these modulation schemes.

• The proposed post-distortion is developed using a behavioral model. Behavioral models
are black box models. They do not take into account the inner phenomena of the
modeled system. It might be interesting to build digital linearization techniques based
on physical models of PAs.

• The main purpose of this thesis is to reduce the power consumption of the mobile
terminal. However, we could not evaluate this power reduction. Also, in literature, no
values about the digital linearization power consumption are given to compare with.
For this reason, we could develop a platform that provides realistic environment includ-
ing the different components of the mobile terminal transceiver. This may facilitate
the evaluation of the power consumption of the different techniques suggested in liter-
ature including this work. Then, it could be of interest to make a comparative analysis
between these techniques based on power consumption.

• In these works, the measurements are based on a commercial wideband PA (300MHz-
3GHz) with low efficiency. However, one of the main purposes of the CRs is to reduce
the energy consumption of the mobile terminal by enhancing the efficiency of the PAs.
According to the recently published literature, the class-J PA seems to be a promising
architecture in terms of efficiency and bandwidth. This topology performance relies on
high quality passive components. This can be achieved by using the recent silicon on
insulator (SOI) technologies. Therefore, it becomes possible to design a fully integrated
wideband class-J PA.
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Appendix A

Kalman filtering

KF, firstly presented in [Kal60] by Rudolf E. Kalman, is based on a state space representation
of the system, described by two equations. When the state space equations are linear and
the noises are additive white zero-mean Gaussian processes, they satisfy:
State equation:

xn = Fnxn−1 + Gwn (A.1)

Measurement equation:
zn = Hnxn + nn (A.2)

where xn is the state vector of size U at time n and zn is the measurement column vector
of size K at time n. The model noise w and the observation noise n are uncorrelated white
zero-mean Gaussian vectors with covariance matrices Q and R, respectively. In addition,
Fn is the transition matrix of size U × U from time n − 1 to n, G is the input gain matrix
of size U × U and Hn is the measurement matrix K × U at time n.

The KF operates in two steps: the prediction step and the filtering step. In the prediction
step, the KF uses the estimated state at the previous instant to deduce the current state,
without taking into account the current observation. This is the so-called a priori estimation
of the state vector defined as follows:

x̂n|n−1 = E[xn|z0, z1, · · · , zn−1] (A.3)

Given (A.1) and (A.3) and as w is a zero-mean AWGN, the a priori estimation of the state
vector can be expressed as follows:

x̂n|n−1 = Fnx̂n−1|n−1 (A.4)

where x̂n|n−1 is the estimation of the state vector at time n− 1 given the set of observations
{z0, z1, · · · , zn−1}.
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Then, let us introduce the a priori estimation error:

x̃n|n−1 = xn − x̂n|n−1 (A.5)

and its corresponding covariance matrix Pn|n−1 defined by:

Pn|n−1 = E[x̃n|n−1x̃Hn|n−1] (A.6)

Given (A.4) and (A.5), the a priori estimation error of the state vector can be rewritten as:

x̃n|n−1 = Fnxn−1 + Gwn − Fnx̂n−1|n−1 (A.7)

= Fnx̃n|n−1 + Gwn (A.8)

Then, the covariance matrix of x̃n|n−1 satisfies:

Pn|n−1 = FnE[x̃n−1|n−1x̃Hn−1|n−1]FHn + GE[wnwH
n ]GH (A.9)

= FnPn−1|n−1FHn + GQGH (A.10)

At this stage, the filtering step uses the current observation to correct the a priori esti-
mated state vector, in order to obtain the a posteriori estimation. The current state can be
estimated by following the kind of update equation obtained in the RLS algorithm:

x̂n|n = x̂n|n−1 + Knz̃n (A.11)

where Kn is the Kalman gain and z̃n is the innovation defined as follows:

z̃n = zn − ẑn|n−1 (A.12)

= zn −Hnx̂n|n−1 (A.13)

= Hnx̃n|n−1 + nn (A.14)

with ẑn|n−1 the prediction of zn based on x̂n|n−1.
Now, let us introduce the a posteriori estimation error at time n:

x̃n|n = zn − x̂n|n (A.15)

= [IU −KnHn]x̃n|n−1 −Knnn (A.16)

Given (A.16), its corresponding covariance matrix Pn|n satisfies:

Pn|n = [IU −KnHn]Pn|n−1[IU −KnHn]H + KnRKH
n (A.17)
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The Kalman gain is defined to obtain the MMSE estimation of the state vector. This means
that:

∂(E[x̂Hn|nx̂n|n])
∂Kn

= ∂tr(Pn|n)
∂Kn

= 0 (A.18)

or equivalently by using (A.17),

∂tr([IU −KnHn]Pn|n−1[IU −KnHn]H + KnRKH
n )

∂Kn

= 0 (A.19)

This leads to:
Kn = (Pxz

n )(Pzz
n )−1 (A.20)

where Pzz
n is the innovation covariance matrix defined as follows:

Pzz
n = HnPn|n−1HH

n + R (A.21)

and Pxz
n is defined as:

Pxz
n = Pn|n−1HH

n (A.22)

Finally by combining (A.11) and (A.20), it can be easily shown that the covariance matrix
of the a posteriori estimation error can be updated as follows:

Pn|n = Pn|n−1 −KnHnPn|n−1 (A.23)

= [IU −KnHn]Pn|n−1 (A.24)

This is another expression of (A.17).
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At this stage, Kalman filter can be summarized in Algorithm 3 as follows:

Algorithm 3 Kalman filter
• Initialize the values x̂0|0 and P0|0,

The prediction step:
• Update the state vector:

x̂n|n−1 = Fnx̂n−1|n−1

• Update the error covariance matrix:

Pn|n−1 = FnPn−1|n−1FHn + GQGH

The filtering step:
• Update the Kalman gain

Kn = Pn|n−1HH
n (HnPn|n−1HH

n + R)−1

• Update the state vector:

x̂n|n = x̂n|n−1 + Kn(zn −Hnx̂n|n−1)

• Update the error covariance matrix:

Pn|n = (I−KnHn)Pn|n−1
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Appendix B

Extended Kalman filtering

When considering a non-linear system, the EKF consists in analytically propagating the
estimation through the system dynamics, by means of a first-order linearization using Taylor
expansion.
The non-linear state space equations that describe the system satisfy:
State equation:

xn = fn(xn−1) + Gwn (B.1)

Measurement equation:
zn = hn(xn) + nn (B.2)

where fn and hn are non-linear functions. As proposed in Appendix A, xn is the state vector
of size U at time n and zn is the measurement vector of size K at time n. The noises wn and
nn are uncorrelated additive white zero-mean Gaussian processes with covariance matrices
Q and R, respectively. In addition, G is the input gain matrix of size U × U .
The first-order Taylor expansion of (B.1) around x̂n−1|n−1 is:

fn(xn−1) ≈ fn(x̂n−1|n−1)∇xfn|x̂n−1|n−1(xn−1 − x̂n−1|n−1)

≈ fn(x̂n−1|n−1) +∇xfn|x̂n−1|n−1xn−1 −∇xfn|x̂n−1|n−1x̂n−1|n−1 (B.3)

where ∇xfn|x̂n−1|n−1 denotes the Jacobian matrix of fn composed of the partial derivatives of
fn regarding x and evaluated for x̂n−1|n−1.
Given (B.3), (B.1) can be rewritten as follows:

xn = fn(x̂n−1|n−1) +∇xfn|x̂n−1|n−1xn−1 −∇xfn|x̂n−1|n−1x̂n−1|n−1 + Gwn (B.4)

Using () and (B.4), the a priori estimation of the state is defined as follows:

x̂n|n−1 = fn(x̂n−1|n−1) +∇xfn|x̂n−1|n−1E[xn−1|z0, · · · , zn−1]−∇xfn|x̂n−1|n−1x̂n−1|n−1

+ GE[wn|z0, · · · , zn−1] (B.5)
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As wn is a white zero-mean Gaussian process, (B.5) can be rewritten as:

x̂n|n−1 = fn(x̂n−1|n−1) +∇xfn|x̂n−1|n−1x̂n−1|n−1 −∇xfn|x̂n−1|n−1x̂n−1|n−1

= fn(x̂n−1|n−1) (B.6)

Thus, given (B.4) and (B.6), the a priori error estimation can be defined as:

x̃n|n−1 = xn − x̂n|n−1

≈ fn(x̂n−1|n−1) +∇xfn|x̂n−1|n−1xn−1 −∇xfn|x̂n−1|n−1x̂n−1|n−1

+ Gwn − fn(x̂n−1|n−1)

≈ ∇xfn|x̃n−1|n−1 + Gwn (B.7)

and its corresponding covariance matrix Pn|n−1 is defined by:

Pn|n−1 = ∇xfn|x̂n−1|n−1Pn−1|n−1∇xfHn |x̂n−1|n−1 + GQGH (B.8)

It should be noted that the a priori estimation of the state vector (B.6) does not depend
on the Jacobian matrix ∇xfn|x̂n−1|n−1 . However, ∇xfn|x̂n−1|n−1 is required to calculate the a
priori error estimation covariance matrix Pn|n−1.
Now, let us focus our attention on the a posteriori estimation of the state vector. For this
purpose, it is necessary to calculate the first-order Taylor expansion of (B.2) around x̂n|n−1

as follows:
hn(xn) ≈ hn(x̂n|n−1)∇xhn|x̂n|n−1(xn − x̂n|n−1) (B.9)

where ∇xhn|x̂n|n−1 denotes the Jacobian matrix of hn composed of the partial derivatives of
hn regarding xandevaluatedforn|n−1.
Then, given (B.2) and (B.9), the innovation can be expressed as:

zn − hn(x̂n|n−1) ≈ hn(xn) + nn − hn(xn) +∇xhn|x̂n|n−1(xn − x̂n|n−1)

≈ ∇xhn|x̂n|n−1(xn − x̂n|n−1) + nn (B.10)

When looking at the linear case, the innovation is defined as follows:

zn − hnx̂n|n−1 = hn(xn − x̂n|n−1) + nn (B.11)

A similarity can be noticed between (B.10) and (B.11). The EKF can be hence easily derived.
Indeed, the way the state vector estimation can be updated and the definition of the Kalman
gain can be obtained similarly as in appendix A, by replacing h(n) by ∇xhn|x̂n|n−1 .
Thus, to obtain the a posteriori estimation of the state vector, one has:

x̂n|n = x̂n|n−1 + Kn(zn − hn(x̂n|n−1)) (B.12)



APPENDIX B. EXTENDED KALMAN FILTERING 99

where Kn is the Kalman gain defined by:

Kn = (Pxz
n )(Pzz

n )−1 (B.13)

where Pzz
n is the innovation covariance matrix defined as follows:

Pzz
n = ∇xhn|x̂n|n−1Pn|n−1∇xhn|Hx̂n|n−1

+ R (B.14)

and Pxz
n is defined as:

Pxz
n = Pn|n−1∇xhn|Hx̂n|n−1

(B.15)

Finally, by combining (B.12) and (B.13), it can be easily shown that the estimation error
covariance matrix is updated as follows:

Pn|n = Pn|n−1 −Kn∇xhn|x̂n|n−1Pn|n−1

= [IU −Kn∇xhn|x̂n|n−1 ]Pn|n−1 (B.16)

EKF is summarized in Algorithm 4:
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Algorithm 4 Extended Kalman filter
• Initialize the values x̂0|0 and P0|0,
• Calculate the Jacobian matrix ∇xfn|x̂n−1|n−1 ,

The prediction step:
• Update the state vector:

x̂n|n−1 = fn(x̂n−1|n−1)

• Update the error covariance matrix:

Pn|n−1 = ∇xfn|x̂n−1|n−1Pn−1|n−1∇xfHn |x̂n−1|n−1 + GQGH

• Calculate the Jacobian matrix ∇xhn|x̂n|n−1 ,
The filtering step:
• Update the Kalman gain Kn

Kn = Pn|n−1∇xhHn |x̂n|n−1(∇xhn|x̂n|n−1Pn|n−1∇xhHn |x̂n|n−1 + R)−1

• Update the state vector:

x̂n|n = x̂n|n−1 + Kn(zn − hn(x̂n|n−1))

• Update the error covariance matrix:

Pn|n = (I−Kn∇xhn|x̂n|n−1)Pn|n−1



101

Appendix C

The numerical integration algorithm

Algorithm 5 The numerical integration algorithm

• Initially, setting the weights p(s)
0 = 1

g

• Updating the weights:

p
(s)
k = µk−1Π(s)Λk

µk−1Π̂k−1Λk

p
(s)
k−1 with s = 1, · · · , q

• Estimating Π: Π̂k = ∑q
s=1 Π(s)p

(s)
k
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