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Résumé: Aujourd’hui, les progrès dans le

développement d’appareils mobiles et des capteurs

embarqués ont permis un essor sans précédent

de services à l’utilisateur. Dans le même temps,

la plupart des appareils mobiles génèrent, enreg-

istrent et de communiquent une grande quantité

de données personnelles de manière continue. La

gestion sécurisée des données personnelles dans les

appareils mobiles reste un défi aujourd’hui, que

ce soit vis-à-vis des contraintes inhérentes à ces

appareils, ou par rapport à l’accès et au partage

sûrs et sécurisés de ces informations. Cette thèse

adresse ces défis et se focalise sur les traces de

localisation. En particulier, s’appuyant sur un

serveur de données relationnel embarqué dans des

appareils mobiles sécurisés, cette thèse offre une

extension de ce serveur à la gestion des don-

nées spatio-temporelles (types et operateurs). Et

surtout, elle propose une méthode d’indexation

spatio-temporelle (TRIFL) efficace et adaptée au

modèle de stockage en mémoire flash. Par ailleurs,

afin de protéger les traces de localisation person-

nelles de l’utilisateur, une architecture distribuée

et un protocole de collecte participative préser-

vant les données de localisation ont été proposés

dans PAMPAS. Cette architecture se base sur des

dispositifs hautement sécurisés pour le calcul dis-

tribué des agrégats spatio-temporels sur les don-

nées privées collectées.

Title: Efficient Management and Secure Sharing of Mobility Traces

Key words: spatio-temporal data, indexing, flash storage, mobile devices, privacy-preserving, par-

ticipatory sensing.

Abstract: Nowadays, the advances in the devel-

opment of mobile devices, as well as embedded

sensors have permitted an unprecedented number

of services to the user. At the same time, most

mobile devices generate, store and communicate

a large amount of personal information continu-

ously. While managing personal information on

the mobile devices is still a big challenge, whether

on account of the inherent constraints of these de-

vices, or towards the safe and secure access and

share of these information. This dissertation ad-

dresses these challenges while focusing on the loca-

tion traces. In particular, relying on an embedded

relational data server in secure mobile devices, we

offer an extension to spatio-temporal data man-

agement (types and operations). More impor-

tantly, we also propose an efficient indexing tech-

nique for spatio-temporal data (TRIFL) designed

for flash storage. Besides, in order to protect the

user’s personal mobility traces, a distributed ar-

chitecture and a privacy-aware protocol for partic-

ipatory sensing, have been proposed in PAMPAS.

PAMPAS relies on secure hardware solutions for

distributed computing of spatio-temporal aggre-

gates on the collected private data.





Summary

Nowadays, the advances in the development of mobile devices, as well as embedded

sensors have permitted an unprecedented number of services to the user. At the same

time, most mobile devices generate, store and communicate a large amount of personal

information continuously. While managing personal information on the mobile devices is

still a big challenge, sharing and accessing this information in a safe and secure way is

always an open and hot topic. Personal mobile devices may have various form factors such

as mobile phones, smart devices, stick computers, secure tokens or etc. It could be used to

record, sense, store data of user’s context or environment surrounding him/her. The most

common contextual information is the user’s location. Personal data generated and stored

on these devices is valuable for many applications or services to users, but it is sensitive

and needs to be protected in order to ensure the individual privacy. In particular, most

mobile applications have access to accurate and real-time location information, raising

serious privacy concerns for their users.

In this dissertation, we dedicate the two parts to manage the location traces, i.e., the

spatio-temporal data on mobile devices. In particular, we offer an extension to spatio-

temporal data types and operators for embedded environments. These data types recon-

cile the features of spatio-temporal data with the embedded requirements by offering an

optimal data presentation called Spatio-temporal object (STOB) dedicated to embedded

devices. More importantly, in order to optimize query processing, we also propose an effi-

cient indexing technique for spatio-temporal data called TRIFL designed for flash storage.

TRIFL stands for TRajectory Index for Flash memory. It exploits unique properties of

trajectory insertion and optimizes the data structure for the behavior of flash and the

buffer cache. These ideas allow TRIFL to archive much better performance in both Flash

and magnetic storage compared to its competitors.

Additionally, we also investigate the protection of user’s sensitive information in the

remaining part of this thesis by offering a privacy-aware protocol for participatory sensing

applications called PAMPAS. PAMPAS relies on secure hardware solutions and proposes

a user-centric privacy-aware protocol that fully protects personal data while taking advan-

tage of distributed computing. To that end, we also propose a partitioning algorithm and
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an aggregate algorithm in PAMPAS. This combination drastically reduces the overall costs

making it possible to run the protocol in near real-time at a large scale of participants,

without any personal information leakage.



Résumé

Aujourd’hui, les progrès dans le développement d’appareils mobiles, ainsi que des cap-

teurs embarqués ont permis un développement sans précédent de services à l’utilisateur.

Dans le même temps, la plupart des appareils mobiles génèrent, stockent et de commu-

niquent une grande quantité de données personnels de manière continue. Tandis que la

gestion des données personnelles dans les appareils mobiles est encore un grand défi, le

partage et l’accès à ces informations d’une manière sûre et sécurisée est aussi un sujet

largement ouvert. Les appareils mobiles personnels peuvent avoir différents facteurs de

forme tels que les téléphones mobiles, les objets intelligents, tokens sécurisés, etc. Ces

objets peuvent être utilisés pour enregistrer, capter, et stocker des données du contexte

de l’utilisateur ou de l’environnement qui l’entourent. L’information contextuellela plus

courante est l’emplacement de l’utilisateur. Les données personnelles générées et stock-

ées dans ces appareils sont précieuses pour de nombreuses applications ou de services à

l’utilisateur, mais ellessont aussi sensibles et doivent être protégées afin d’assurer la vie

privée des individus. En particulier, la plupart des applications mobiles ont accès à des

informations précises et en temps réel sur la localisation de l’utilisateur, ce qui préoccupe

graves les utilisateurs.

Dans cette thèse, nous consacrons ses deux parties à la gestiondes traces de locali-

sation, i.e., les données spatio-temporelles des appareils mobiles. En particulier, nous

proposons une extension d’une base de données pour les environnements embarqués in-

cluant des types de données spatio-temporelleset des opérateurs spécifiques. Ces types de

données réconcilient les caractéristiques des données spatio-temporelles avec les contraintes

matérielles des appareils mobiles. Plus important encore, afin d’optimiser le traitement des

requêtes, nous proposons également une technique d’indexation efficace pour les données

spatio-temporelles appelée TRIFL conçus pour le stockage de type mémoire NAND flash.

TRIFL exploite les propriétés uniques des données de trajectoire et optimise la structure

de données pour le comportement de la mémoire flash. Ces optimisations permettent à

TRIFL d’avoir unebien meilleure performance en mémoire flash et aussi pour les disques

magnétiques par rapport à ses concurrents.

Dans la deuxième partie de cette thèse, nous étudions également la protection des in-
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formations sensibles de l’utilisateur par un protocole sécurisé (appelées PAMPAS) pour

les applications de collectes participatives. PAMPAS repose sur des solutions matérielles

sûres et propose une architecture centrée sur l’utilisateur qui protège pleinement les don-

nées personnelles tout en profitant descalculs distribués. Pour ce faire, nous proposons un

algorithme de partitionnement de l’espace d’observation pour la collecte. Cette combinai-

son permet de réduire drastiquement les coûts globaux de calcul permettant d’exécuter

le protocole en temps quasi réel à grande échelle des participants, sans aucune fuite

d’informations personnelles.



Acknowledgement

Though only my name appears on the cover page, many people have significantly and

insightfully contributed to this dissertation. Without the direct or indirect support from

those people, I would have never completed my thesis. Therefore this acknowledgement is

to express my thankfulness to all of them.

My first deepest gratitude is to my advisor, Prof. Karine ZEITOUNI. It has been an

honor for me to be one of her PhD students. I really appreciate all her great contribution in

time, ideas and funding during my PhD thesis. I can’t image how my thesis goes without

her excellent and conscientious guidance. It would be one of the most exciting experiences

in my life to work more than 3 years in such friendly, open and excellent research team

headed by Prof. Karine where I have been always trusted and freed to explore on my

own. I will also never forget how she encouraged me when I was down, her patient and

insight support significantly helped me overcome many crisis situations and finish this

dissertation. If I have a wish to come true in the future, then I wish to be a nice, friendly,

successful and talented scientist and professor like her.

To my co-advisor, associate Prof. Iulian SANDU POPA, I would like to express my

heartfelt gratitude for everything he has taught me in both research and life. It was an

amazing fortune for me to have a change to work tightly with one of the most young and

talented research scientist like him. At first, I would like to acknowledge him for putting

my first foot step on the research-life by opening my mind in every aspects of research

career. I would also like to sincerely thank to him for his solid and insightful contribution

in both ideas and writing to this dissertation. I greatly thank to him for always being

on my side and spending many weekends in the office in order to help me to overcome

the hardest parts of my thesis. Also, I am very grateful to him for his changing my own

definition about the ”supervisor” due to his kindness, friendliness and conscientiousness he

has been to me during the time we have worked together. Actually, it’s hard to memorize

all of meaningful advice he has been given to me in both professional and personal life. If

there is only one sentence for me to describe my gratitude to him then it should be ”to be

one of his first PhD students would be always my great honor and proudness”.

It is a big shortcoming if I don’t mention about the help of the members in SMIS (INRIA)

v



vi

team. At first, I am grateful to Prof. Benjamin NGUYEN for his recommendation of me

to my advisors. His kindness support has changing my life since it put me in front of a

big opportunity to work and study in PRISM laboratory. Second, I would like to thank to

Prof. Philippe PUCHERAL, the leader of SMIS team, for his fruitful comments and his

indirect contribution to this thesis through KISS project. Third, special thanks are due to

Prof. Luc BOUGANIM for fruitful discussions related to Flash storage that significantly

improve the first part of this dissertation. I am also thankful to Mr. Alexei TROUSSOV

for very interesting discussions and for his precious advice in my implementation during my

internship. Many thanks to Dr. Nicolas ANCIAUX, Dr. Tristan ALLARD, Dr. Quoc-

Cuong TO, Saliha LALLALI, Paul TRAN-VAN, Athanasia KATSOURAKI and other

members in SMIS team for their fruitful talks and cheerful moments.

I gratefully acknowledge Prof. Cristian BORCEA and Prof. Vincent ORIA for the short-

duration collaboration we have had and for their meaningful contribution to the second

part of this thesis. I would also specially thank to Mr. Paul ZEITOUNI for his very

friendly and conscientious instruction in the implementation part of my demonstration.

To all my friends in PRISM laboratory: Dr. Naila Bouchemal, Dr. Ahmed Kharrat, Dr.

Fatiha Amanzougarene, Dr. Qingfeng Fan, Wenjun Yuan (Clement), Hanane Ouksili, Kim

Tam Huynh, Dr. Isma Sadoun, Kenza Menouer, Maria Koutraki, Dr. Mohamed-Amine

Adouane, Dr. Zakaria Bendifallah, Ali Masri, Raef Mousheimish, Ticiana Linhares and

other PhD students, I am very grateful for all their cheerfulness and friendship. Thank you

for all their friendly help, their understanding and their encouragement in many moments

of crisis. It was my great pleasure to know all of them and be a friend with these very

nice, young and talented people. I would also like to thank for the excellent and friendly

atmosphere they have contributed to our research and living environment that made me

be free to explore on my own. Wherever and whatever I will be in the future, we are

always friends and I will keep with me these funny and exciting memories we have had in

PRISM laboratory.

I would sincerely thank to the other members in ADAM team: Prof. Mokrane Bouzghoub,
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Chapter 1

Introduction

1.1 Context

In the last decade, we have witnessed an explosion in the adoption of mobile devices

(e.g., mobile phones, smartphones, tables, smartwatches, etc.) by users. The trend is

clear and indicates that mobile devices are steadily replacing desktops and even laptop

computers at least for personal usage and activities. For instance, in the Unites States

the percentage of users owning a smartphone increased from 35% in 2011 to 64% in 2014,

while for tablets the market grew from 8% to 42% during the same period [88]. Meanwhile,

the desktop and laptop computers have maintained a steady rate, at best, of around 80%.

Similar trends have been also observed in other developed or developing countries [86],

[87], [89]. The success of mobile devices is predicted to last, sustained by the continuous

advances in hardware technology and the myriad of new applications currently being

developed. Moreover, the arrival of the Internet of Things [4] can only be beneficial to the

generalization of mobile devices and to increasing their diversity.

An important consequence of this massive adoption of mobile devices is the exponential in-

crease in the personal data production and consumption [120]. There are two main reasons

to explain this phenomenon. First, mobile devices are mostly connected to the internet

allowing users to conduct their typical online activities (e.g., mailing, web browsing, social

networking, e-commerce). Second, mobile devices such as smartphones are equipped with

sensors (e.g., GPS, camera, microphone, temperature, accelerometers) or can be easily

connected to other portable smart sensors (e.g., smartwatch or other sensors enabling the

quantified self [65], [102], [119]). All these sensors permit automatic or manual acquisition

of quality data at high rates. Also, an important observation is that the GPS sensor is a

first class citizen among the sensors embedded in mobile devices. Indeed, all daily personal

data (e.g., pictures, the environmental noise or pollution, tweet, posts in a social network)

can be geolocalized and timestamped with GPS sensor.

1
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This profusion of personal data represents an unprecedented potential for applications and

business, which led the World Economic Forum to affirm that ”personal data is the new

oil” [121]. However, with great opportunities come also important challenges. We highlight

here two of them. The first challenge is related to the management (i.e., storage, indexing,

querying and sharing) of large amounts of (spatio-temporal) personal data. The data

management has to consider the specificities of spatio-temporal data and the advances in

the hardware technology (e.g., new storage devices based on Negative-AND Flash memory

(NAND flash memory)). For instance, in many cases, the data is produced and consumed

in stream (e.g., traffic or pollution data) requiring to be processed, indexed and queried in

real-time. Also, the data can be sent in the Cloud (i.e., to a remote service) or kept at the

user-side, leading to centralized, decentralized or hybrid architectures. If stored locally,

the data management has to take into account the hardware constraints of the specific

user’s device (e.g., limited RAM and CPU power, battery consumption, specific storage

such as NAND flash).

The second important challenge in this context is privacy. Until now, the enthusiasm for

new opportunities brought by this massive creation of personal data, has thwarted privacy

concerns. Nevertheless, the risk of a backlash is growing as new devices and new services

bring us closer to the dystopias described in the science fiction literature. This risk is well

documented and the nature of the solution appears to be consensual, i.e., it is necessary

to increase the control of the individuals over their personal data [21], [120], [73]. In this

context, the World Economic Forum indicated the need for a data platform that allows

individuals ”to manage the collection, usage and sharing of data in different contexts and

for different types and sensitivities of data” [121].

At the same time, the protection of users’ privacy should not hinder the development

of new applications that are beneficial for both users and the society. We believe that

the advent of secure smart objects (e.g., secure smart card) holds the promise of offering

tangible security guarantees to users’ mobile devices. Such tamper-resistant devices are

flourishing today, e.g., Mobile Security Card (produced by Giesecke & Devrient), Personal

Portable Security Device (produced by Gemalto and Lexar), Multimedia SIM card or

Secure Portable Token [10], [111], and can be used to securely manage personal data [11].

1.2 Motivation

Integrating mobile technology and positioning devices has led to the production of large

amounts of spatio-temporal data every day. A wide range of applications such as traffic

management and location-based services (LBS), rely on these data. The generated spatio-

temporal data streams are meaningful for many applications such as traffic analysis, cus-

tomized insurance (pay-as-you-drive), reconstructing the circumstances of an accident in



1.2. Motivation 3

road safety, mobility and population exposure analysis, etc. Spatio-temporal streams may

be saved for legal reasons (e.g., to provide an evidence for the insurance), or for individual

use (e.g., experience sharing, individual gas consumption monitoring or eco-driving).

In this thesis, we focus on two major aspects related to the management of spatio-temporal

data streams. The first aspect is motivated by the generalization of storage devices based

on NAND flash. Due to several important features, such as high performance, low power

consumption and shock resistance, NAND flash has become the most popular stable stor-

age medium for mobile devices and sensor. Also, Solid State Drives (SSDs) built on flash

are replacing magnetic disk drives (HDDs) in laptop and desktop computers, and even

in high-end enterprise servers. However, despite its many advantages, NAND flash has

also peculiar characteristics compared with traditional magnetic disks (e.g., asymmetric

read-write performance, erase-before-write mechanism). Moreover, the characteristics and

performance dramatically change when comparing low-end flash devices (e.g., SD cards)

with high-end flash devices (e.g., SSDs). Therefore, to fully benefit from the high per-

formance of flash storage devices, we need to reconsider the spatio-temporal indexing

techniques that have been designed for magnetic hard-disks in the context of flash storage.

The second aspect is motivated by the fact that geolocation data is inherently sensitive

since it may reveal private information about the personal activities and behaviors [26],

[47]. There exist many approaches in the area of location privacy [40]. For example, some

approaches aim at preserving the current location, essentially in the scenario of LBS, while

the other relies on the whole trajectory anonymization [71]. Different solutions have been

proposed in the literature which use or not a trusted anonymizer, cryptography or location

perturbation/generalization. However, to the best of our knowledge, there is no solution

adapted to the context of secure mobile devices.

Secure personal hardware has paved a new way by using a user-centric architecture [8],

[111], [113] as an alternative approach to the typical server-centric architecture. A decen-

tralized, user-centric architecture exhibits better properties than a centralized architecture

in terms of privacy (i.e., no need to trust a central server) and security (i.e., due to decen-

tralization). Nevertheless, dealing with data management in the decentralized architecture

also raises several challenges. A first important challenge comes from the severe hardware

constraints of the secure portable devices. Such devices offer state-of-the-art security guar-

antees (i.e., they are tamper-resistant). But, this security comes at a price, e.g., a low

power CPU and a tiny RAM (at most 100KB). Therefore, we need to devise adapted data

management techniques that take into account both the hardware constraints of secure

mobile devices and the specificity of spatio-temporal data. Such techniques will allow

users to manage their personal data locally in their devices. At the same time, users may

want to share their data or participate in global computations that can benefit the entire

community (e.g., behavioral or epidemiological studies, participatory sensing). Hence, we
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also need to devise secure global computation protocols to aggregate data from a large

number of users and thus, to reestablish all the global treatments that can be done in a

centralized architecture. Again, the challenge here comes from the limited resources and

availability of users’ secure devices, and also from the fact that these global computations

have to be performed while preserving users’ privacy.

Finally, this thesis work is also motivated and strongly related to the ANR KISS (Keep

your personal Information Safe and Secure) project [3] (detailed in Chapter 6). The idea

promoted in KISS is to embed, in trusted devices, software components capable of ac-

quiring, storing and managing securely various forms of personal data (e.g., salary forms,

invoices, banking statements, geolocation data) depending on the applications. These soft-

ware components form a Personal Data Server which can remain under the holder’s con-

trol. The scientific challenges include: embedded data management issues tackling regular,

streaming and spatio-temporal data (e.g., geolocation data), crypto-protected distributed

protocols to implement private communications and secure global computations.

1.3 Contributions

There are three main contributions in this thesis, listed in the order they are introduced

in the thesis, as following:

� We propose TRIFL, an efficient and generic TRajectory Index for FLash. TRIFL

is designed around the key requirements of trajectory indexing and flash storage.

TRIFL is generic in the sense that it is efficient for both simple flash storage devices

such as the SD cards and more powerful devices such as the solid state drives.

In addition, TRIFL is supplied with an online self-tuning algorithm that allows

adapting the index structure to the workload and the technical specifications of the

flash storage device to maximize the index performance. Moreover, TRIFL achieves

good performance with relatively low memory requirements, which makes the index

appropriate for many application scenarios.

� We propose PAMPAS, a Privacy-Aware Mobile PArticipatory Sensing system based

on secure mobile probes. Mobile participatory sensing could be used in many ap-

plications such as vehicular traffic monitoring, pollution tracking, or even health

surveying. However, its success depends on finding a solution for querying large

numbers of users which protects user location privacy and works in real-time. PAM-

PAS is a privacy-aware mobile distributed system for efficient data aggregation in

mobile participatory sensing. In PAMPAS, mobile devices enhanced with secure

hardware, called secure probes, perform distributed query processing, while prevent-

ing users from accessing other users’ data. Secure probes exchange data in encrypted
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form with help from a supporting server infrastructure. PAMPAS uses two efficient,

parallel, and privacy-aware protocols for location-based aggregation and adaptive

spatial partitioning of secure probes. Our experimental results and security analysis

demonstrate that these protocols are able to collect, aggregate and share statistics

or derived data in real-time, without any privacy leakage.

� We implemented a prototype in the context of the secure Personal Data Server.

This prototype has two major components that were embedded in a secure portable

token. The first component is an extension of an embedded relational database

engine (i.e., PlugDB [82]) to deal with spatio-temporal data. This extension consists

in new data types and new operators allowing to locally manage spatio-temporal

data in conjunction with the classical data types and operations in the relational

model. The second component is a secure global aggregation protocol based on

PAMPAS and applied to the context of traffic monitoring using secure devices. We

call this component PPTM (Privacy-aware Participatory Traffic Monitoring). The

implementation of PPTM can be executed in many secure tokens in parallel and

shows the feasibility of doing privacy-preserving participatory sensing using secure

mobile devices.

1.4 Organization of the thesis

The thesis is organized in nine chapters that are grouped in three parts. Figure 1.1 outlines

the organization of this thesis. The document starts with the current chapter, in which

we introduce the general context, the motivation and the contributions of the thesis.

The first part of this document is composed by two Chapters (i.e., Chapters 2 and 3)

related to indexing spatio-temporal data. Specifically, in Chapter 2, we study the state-of-

the-art on the relevant indexing methods in both magnetic disks and flash storage. Then,

we analyze the limitations of existing methods when considered in the combined context

of trajectory data and flash storage by pointing out the specificities of spatio-temporal

data and flash storage. Following the challenges described in Chapter 2, we introduce

in Chapter 3 an indexing method (i.e., TRIFL) dedicated to spatio-temporal trajectory

indexing in Flash storage. We present in detail the structure of TRIFL and its cost model,

before evaluating it in comparison with relevant state-of-the-art indexing methods.

The seconds part covers Chapters 4 and 5 and deals with global computations that preserve

the user location privacy. In Chapter 4, we discuss the related work relevant to user

location privacy and in particular, the systems related to mobile participatory sensing

applications and their respective limitations. Then, we present PAMPAS, a privacy-aware

mobile distributed system for efficient and secure data aggregation in mobile participatory

sensing, in Chapter 5.
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Figure 1.1: Organization of the thesis

The third part comes as a result of the first two parts and covers Chapters 6, 7 and 8. In

this last part, we present the implementation of a prototype using use-cases inspired by

real applications. Chapter 6 gives an overview of the ANR KISS project that inspired and

guided the work in this thesis. We also point out our contributions in the implementation of

the Personal Data Server promoted in KISS. We demonstrated the usefulness of PAMPAS

in the real scenario of online traffic monitoring in Chapter 7 (i.e., PPTM: Privacy-Aware

Participatory Traffic Monitoring Using Mobile Secure Probes). Lastly, in Chapter 8, we

present the implementation and evaluation of a spatial-temporal database extension for

secure hardware.

Finally, we conclude the thesis in Chapter 9 by summarizing the contributions and indicate

some interesting directions of future work resulting from this thesis.
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Trajectory Indexing for Flash
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Chapter 2

State of the Art

In this Chapter, we present the context and motivation of the proposed TRajectory Index

for Flash storage (TRIFL), as well as the relevant state-of-the-art. Specifically, this Chap-

ter has the following structure. The issue of trajectory indexing for TRIFL is discussed

in Section 2.1. We define the problem statement and list the contributions in Section 2.2.

Finally, Section 2.3 is dedicated to the related works.

It is worth noticing that the contributions of this thesis, and especially TRIFL, can be

included in the area of spatio-temporal databases, or more specifically, in the field of

moving objects databases [45]. The works in this field started more than two decades

ago, motivated by the need to store, model, and query spatio-temporal data, i.e., data

related to both space and time (e.g., such es the trajectories of moving objects and their

interactions). Beside, spatio-temporal databases can be seen as the follow-up of spatial

databases [42] (e.g., allowing to query spatial data such as points, lines and regions) and

temporal databases [80], [105] (e.g., allowing to query time-varying data and to record

efficiently the changes in data over time). Today, spatio-temporal databases are a mature,

well established branch in the databases area and a detailed presentation of the works in

this field would be rather counter productive. Instead, we focus and present in details only

the related work relevant to the contributions of this thesis.

2.1 Trajectory indexing in Flash memory

The convergence of mobile computing, wireless communications, and sensors has led to

an exponential production and consumption of data in the last years. In many cases, the

data are geo-localized and time-stamped [22], [52]. This results in a massive flow of spatio-

temporal data to be inserted and queried. Many applications have been flourishing as a

consequence of this massive data production in different domains such as location-based

services [45], [20], participatory sensing [81], or traffic management [38], [57], [109].

9
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The database research community has actively supported the development of such appli-

cations that are built on spatio-temporal data by providing technical solutions ranging

from the data integration and indexing level to the data visualization and mining level.

Probably one of the most active topics in this area is the spatio-temporal data indexing.

Mokbel and colleagues [69] listed around 35 spatio-temporal access methods proposed up

to 2003 and the list has not stopped growing ever since [72]. There are several reasons

to this profusion of indexing techniques. First, spatio-temporal indexing covers several

types of data, e.g., historical trajectory data that is mainly static [16], [19], [55], [95],

[106], trajectory flows that continuously add new data [24], [84], [96], or moving object

tracking that only considers the current and estimated near-future positions of the moving

objects [68], [117], [107], [83]. Second, there are many types of queries related to mobility

[68], e.g., range queries, nearest neighbors (NN), reverse NN, spatio-temporal join. Third,

the type of movement itself leads to different indexing approaches, as the moving object

(MO) can be free (e.g., pedestrians, animals) [16], [19], [24], [55], [106] or constrained by

a transportation network (e.g., vehicles, trains) [25], [95].

Since a few years a new fundamental parameter has made its entry on the database scene:

the NAND flash storage. Due to several important features, such as high performance, low

power consumption and shock resistance, NAND flash has practically become the most

popular stable storage medium for embedded devices and sensor networks. Moreover,

Solid State Drives (SSDs) built on flash are replacing magnetic disk drives (HDDs) in

personal computers. And with the capacity increasing every year and prices continuing

to drop, SSDs appear as a viable alternative to HDDs even for large enterprise servers.

Meanwhile, SSDs are already integrated between the main memory and secondary storage

in the architecture of enterprise servers to extend and improve the database caching.

The advent of flash storage has had an important impact on databases [29]. The reason is

simple: NAND flash has peculiar characteristics compared with traditional magnetic disks

(e.g., fast random read, asymmetric read-write performance, erase-before-write mecha-

nism, etc.) as described in the next section. Therefore, to fully benefit from the high

performance of flash storage devices, many of the data storage and indexing techniques

that have been designed for magnetic hard-disks in the last forty years have to be recon-

sidered in the context of flash storage.

2.2 Problem statement and contributions

The adaptation of databases to flash storage started more than a decade ago and many

solutions have been proposed ever since [6], [61], [93], [122], [123], [64]. While a significant

number of these works focus on data indexing, to our knowledge, none of the existing

works addresses the problem of indexing trajectory data in flash.
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In this Chapter we tackle the fundamental problem of indexing trajectory flows in flash

storage. A flow of trajectories can be seen as a dataset that expands continuously through

data insertions and is queried simultaneously. The proposed method can optimize both

range queries and NN queries, which are the base types of queries over trajectory data.

The proposed index works for both free and constrained trajectory flows.

Why is this problem challenging? The first key challenge is related to trajectory data.

Some of the existing indexing methods for magnetic disks can be used in conjunction

with the existing flash-aware B+-tree indexes to index trajectory flows (see Section 2.3).

Whereas this type of approach represents a straightforward solution, the resulting indexes

will have suboptimal performance. The reason is that the specific features of trajectory

data are not considered by the existing tree indexing techniques for flash, which focus on

typical data indexing (i.e., primary or secondary key indexing). In particular, trajectory

datasets are characterized by massive insertions, while deletions and modifications of the

existing data are rare. Indeed, new (parts of) trajectories can be added continually by

logging the individual updates coming from tracking a group of moving objects or as

periodical large batches of insertions. Therefore, the data insertions can be timely (i.e.,

trajectories transmitted in real time) or deferred (i.e., recorded trajectories transmitted

at a latter point in time). In both cases, the index should be able to handle the insertions

efficiently, while processing the users’ queries. Also, the index performance should not

degrade in time as a consequence of this massive updating.

The second key challenge is related to flash storage. NAND flash is an electronic memory

and unlike magnetic disks has no mechanical movement (i.e., no seek and rotational de-

lays). Therefore, the latency of random reads (RRs) is similar to the latency of sequential

reads (SRs) in flash and RRs can be up to two orders of magnitude faster in flash than in

HDDs [75]. However, flash memory badly supports fine-grain data writes. The memory is

organized in blocks containing a number of pages (e.g., typical values are 64 or 128 pages).

The write granularity is a page, but a page cannot be rewritten without erasing first the

block that contains it (i.e., the erase-before-write mechanism). In addition, the pages must

be written in sequential order in an erased block. Also, the number of times a block can

be erased before it wears out is limited (e.g., 104 erase cycles). As a result, random writes

(RWs) can be up to two or even three orders of magnitude more costly than sequential

writes (SWs) at least in basic flash devices such as the SD cards [99].

In addition, flash memory is used in several types of storage devices that cover a large

spectrum of physical specifications. For instance, only for the SD cards devices the ratio

RW/SW can vary from one to three orders of magnitude, while the ratio RW/RR can

extend even further [99]. Furthermore, recent SSD devices (e.g., SSD OCZ [75]) manage

to overcome the major drawback of flash memory, i.e., very costly random writes, through

a combination of internal parallelism, large DRAM cache and complex software imple-
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menting the Flash Translation Layer (FTL). For such devices, the RW latency is similar

to the SW latency. Therefore, the typical optimizations that are based only on reducing

the number of RWs are less useful in this case. Instead, the index should take advantage

of the highly efficient large granularity I/Os in flash, i.e., transform the RWs into large

granularity SWs. Thus, the second major challenge is to have a generic index structure,

i.e., the index should be capable of adapting to the wide range of physical specifications

of flash devices.

Finally, the third important challenge concerns the index memory requirements. The

typical approach [76], [101], [61] for indexing insert intensive data is to buffer the updates

in memory and to commit them in batch in order to amortize the cost of individual updates.

Such an approach, which was employed in the context of magnetic disks [76], [101] becomes

even more relevant in the context of flash storage [61], [6] since flash memory, unlike

magnetic disks, badly supports in-place updates. On the other hand, typical trajectory

indexing techniques partition the space before indexing the data in each partition [16],

[19], [24], [95]. As a consequence, numerous low level indexes have to be maintained in

parallel. However, buffering the new index entries for each index component can require

an important amount of cache memory that may not always be available. Memory is still

an expensive resource as even in the case of enterprise servers many applications share the

same cache buffer pool. Besides, memory limitation is obvious in the case of embedded

devices such as smart phones, smart objects and sensors. With the advent of Internet of

Things, the usage of such embedded devices is generalizing since they offer an increased

environmental sustainability by avoiding energy consuming data transfers between smart

objects and remote servers especially when large amounts of often seldom used data are

concerned [64], [116], [118]. For such devices, it is thus important to lower the index

memory footprint without significant performance loss.

To respond to these three key challenges, we propose TRIFL, a generic TRajectory Index

for FLash storage. TRIFL is generic in two senses. First, the global structure of TRIFL

is based on well-established state-of-the-art index structures for trajectory data on HDD

storage. These methods adaptively partition the space and then index the temporal dimen-

sion of the trajectories in each partition with a B+-tree. TRIFL reuses this idea of spatial

partitioning and temporal indexing, but replaces the B+-tree indexing with alternative

indexing methods that are adapted to flash devices. However, different from the existing

methods that consider only the query load in the space partitioning computation,TRIFL

computes an optimal spatial partitioning of the data by considering both the queries and

the insertions in the workload.

Second, TRIFL is supplied with a cost model and an online algorithm that allow TRIFL

to be self-tunable with respect to the characteristics of the flash storage device and of the

workload. Moreover, TRIFL combines a physical and a logical partitioning of the data,
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which makes the index structure adapted to both basic flash devices (e.g., SD cards) and

powerful flash-based devices (e.g., SSDs). Interestingly enough, as a byproduct, TRIFL

surpasses the existing indexes even with HDD storage. Finally, TRIFL provides high

performance with relatively low memory requirements, which makes it appropriate for a

wide range of scenarios.

Specifically, the contributions of our TRIFL are as following:

� We propose a low-level index structure combining a novel type of Append-Only B+-

trees and Time Interval Indexes to index the temporal dimension of trajectories in

flash. These structures drastically reduce the number of RWs in flash, while opening

the way for large granularity write I/Os.

� We alternate between a logical and a physical partitioning of the trajectory data to

further benefit from the fast large-granularity I/Os in flash by transferring almost

small-granularity I/Os into large granularity I/Os.

� We provide the index structure with a cost model and an online algorithm to make

it self-tunable with respect to the performance specifications of the flash storage and

the index workload.

� We experimentally evaluated TRIFL in comparison with four state-of-the-art indexes

on two flash devices having different characteristics and on a HDD device. The

results show that TRIFL provides throughput values that are on average one order

of magnitude higher than its competitors depending on the insert/query ratio and

the type of insertions in the workload.

2.3 Related work

In this section1 we present existing work related to trajectory indexing and to flash index-

ing. First, we focus on the trajectory indexing problem and present the existing approaches

with an emphasis on the space partitioning methods. Then, we discuss the typical ap-

proaches for tree indexing in flash.

2.3.1 Trajectory indexing on magnetic disks

Spatio-temporal indexing is a hot research topic since the mid-90. The initial works [16],

[19], [25], [55], [95], [106] focused on indexing large, but mainly static, historical trajectory

datasets. With the increased possibility of tracking MOs and obtaining their trajectories

in real-time (or offline in large batches), subsequent methods [24], [84], [96] considered the

1All figures in this section are taken from the cited references with the permissions of the authors.
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problem of indexing trajectory flows. This is a particularly hard problem to solve, since the

index structure has to be capable of integrating continuously a large number of incoming

trajectory data, while accelerating the users’ queries over the indexed data. Moreover, as

the continuous data insertion may degrade the query performance, the index should also

be able of self-tuning to keep up the near-optimal performance of the structure. Many

different types of queries, e.g., range queries, nearest neighbors (NN), reverse NN, spatio-

temporal join or aggregate queries, are optimized by these access methods. However, a

great majority of the existing works [16], [19], [24], [25], [55], [84], [95], [96], [106] focus on

range and NN queries, since these are the most frequent queries over trajectory data.

There are two main approaches to indexing trajectory data. A first group of techniques are

based on data partitioning [25], [55], [84], [106]. These methods use multidimensional R-

tree-like or R-tree-based structures to index both the spatial and the temporal dimensions

of trajectory data. A second group of methods are based on space partitioning [16],

[19], [24], [95], [96]. Such methods partition first the space and then index only the time

dimension of the trajectories in each partition with a B+-tree. Arguably, it was shown [16],

[19], [24], [95], [96] that space partitioning methods are globally more efficient than data

partitioning methods. Space partitioning indexes offer superior query performance than

data partitioning indexes since trajectory datasets exhibit large amounts of overlapping in

both the spatial and the temporal dimensions. And the difference in performance becomes

even more important in the case of indexing trajectory flows. The main reason is that

B+-trees are more update efficient than R-trees and also work better in a concurrent

environment that combines queries and updates. We describe below in more detail the

methods using space partitioning, since the global structure of TRIFL is based on these

methods.

We present some well-known spatio-temporal indexing methods based on space partition-

ing.

SETI, a Scalable and Efficient Trajectory Index. SETI [19] was proposed to parti-

tion the 2D space with a uniform grid or grid-like structure. In particular, at the first level

the space is partitioned by non-overlapping cells in order to classify the trajectory segment

into these cells. This means each segment mainly located belongs to this cell. Then, in

the second level the trajectory segments (also called trajectory units) belonging to one cell

are clustered and indexed on the time dimension with a B+-tree or a 1D R-tree. However,

this method suffers from two main drawbacks. First, using a uniform space partitioning

does not consider the fact that trajectory data have skewed distributions both in space

and in time, which leads to high variability of the execution time of queries. Second, they

do not provide analytical models to compute the optimal number of cells of the grid with

respect to the data size and the query workload, which leads to suboptimal performance

of the index.
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Figure 2.1: Examples of PARINET index structure

Figure 2.2: Examples of TPARINET index structure

TrajStore, PARINET and T-PARINET. More recent methods [95], [24] fix these

previous shortcomings by employing an adaptive grid partitioning of the space, where the

cell size depends on the local density of the data. In addition, these methods are supplied

with a cost model that allows to compute the optimal cell size for a given query workload.

Another important observation is that in many cases the movement of the objects is

constrained by a transportation network. In such cases, it is more efficient to represent

and index the trajectories with reference to a network space instead of a 2D space [25].

Besides, the queries are generally formulated relatively to the network space for constrained

MOs. The problem of indexing in-network trajectory flows is considered in [96], where the

T-PARINET index is proposed. Figure 2.1 and 2.2 show the index structure of PARINET

and T-PARINET respectively. As in the above mentioned methods, T-PARINET proceeds

by partitioning the graph network into network regions. The size of the regions depends on

the spatio-temporal density of the data and on the query workload. Then, the trajectory

units in each region are indexed on time with a B+-tree.

To the best of our knowledge, all the existing methods for trajectory indexing are devised

for HDD storage and do not consider the peculiar characteristics of flash memory. There-

fore, they will offer suboptimal performance if used directly on flash storage. Moreover,
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the existing methods that provide tuning algorithms to compute an optimal partitioning of

the space, consider only the queries in their cost models. However, the insert performance

of the index is essential in the case of trajectory flows (given the high insertion rate),

especially when a basic flash device is used for storage (given the poor RW performance).

TRIFL uses the global idea of space partitioning and time indexing of the existing meth-

ods, but modifies the low level storage and time indexing with structures that are adapted

to flash storage. In addition, the spatial partitioning of TRIFL considers both the query

cost and the insert cost of the index workload.

2.3.2 Tree indexing in NAND Flash

The first works to adapt the classical databases techniques to flash storage initiated more

than a decade ago. Since then, many solutions regarding the data storage [58], [64],

the data indexing [6], [61], [93], [122], [123] and the data caching have been devised for

flash storage. The existing works cover different application domains ranging from sensor

networks [64], [118] to embedded database systems [6], [123], [116] or large databases

stored on SSDs [61], [93]. A majority of the existing works focus on indexing and within

this majority many papers propose alternatives to the B+-tree index that are fitted to

flash storage [6], [61], [93], [122], [123]. We focus on these works in the remainder of this

section, since a flash-aware B+-tree may be used for indexing the temporal dimension of

trajectory data.

The first works that propose flash-aware B+-tree indexes [6], [58], [64], [122], [123] focus

on the poor random write performance of flash devices. Therefore, the key idea in these

approaches is to buffer the updates in log structures that are written sequentially and to

leverage the fast (random) read performance of flash memory to compensate the loss of

optimality of the lookups.

BFTL. The architecture of BFTL [122] is shown in Figure 2.3. In particular, BFTL [122]

stores the index entries of a node in multiple physical pages and maintains a logical B-tree

with the help of an in-memory table, which maps each node to the physical pages. This

means B-Tree index services requested by higher level are handled by BFTL with the help

of its small reservation buffer and node translate table (in-memory) before generate real

requests to Flash Translation Layer (FTL) by using an efficient commit policy in order

to reduce the random write as well as maximal the large granularity IOs. However, this

approach leads to a significant degradation of the search performance, since many flash

accesses are required to search a single tree node. Also, BFTL requires additional RAM

memory to store the mapping table. For trajectory indexing, the memory consumption of

a B-tree plays an important role, as the index partitioning entails a large number of trees

belonging to the same global structure.

Lazy Adaptive-tree (LA-tree). Similar to BFTL, LA-Tree [6] shares the same idea of
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Figure 2.3: The architecture of BFTL

Figure 2.4: The LA-Tree

delay the changes a longer a possible. An example of LA-Tree is shown in Figure 2.4.

LA-tree uses flash-resident buffers, which are attached to various levels of the B+-tree

to log the updates. The updates are integrated in the B+-tree only when the leaf level

buffers become full. The benefit of lazy updates is that they reduce the total number

of flash accesses since they are done in batch. Also, LA-tree uses an online algorithm

that adapts the size of the buffers to the type of the index workload. Larger buffers are

used for update-intensive workloads, whereas smaller buffer are more efficient in case of

lookup-intensive workloads.

MicroHash and MicroGridFile. The work in [64] proposes two index structures,
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MicroHash and MicroGridFile, for efficiently indexing temporal environmental and geo-

graphical data recorded by flash-based sensors. The main idea in these structures is to

completely eliminate the need for RW operations in flash. Trajectory data indexing is pos-

sible with these methods, but the supported queries are only temporal or spatial predicates

and not spatio-temporal range or NN queries.

FAST. FAST [97], [98] proposes a generic framework that can be applied on top of data

partitioning tree indexes to boost their performance on flash storage without changing the

underlying index structures. FAST uses an in-memory buffer for the updates, which are

intelligently flushed to reduce the write cost in flash. However, the focus in FAST is on the

flushing policies and the efficient implementation of a crash recovery mechanism, which is

mainly complementary to this work.

MILo-DB. MILo-DB [10] is an embedded relational DBMS engine for mass-storage

portable tokens. MILo-DB is designed to cope with the conflicting constraints of NAND

flash and scarce RAM of portable devices. To tackle such constraints, MILo-DB proposes

a log-only based storage and indexing scheme to avoid any RWs. To obtain scalability,

MILo-DB reorganizes periodically the indexes, as it is done in TRIFL. However, since

MILo-DB targets selection and join indexes for RDBMSs, the proposed techniques are less

relevant in the context of trajectory flows.

FD-Tree. A common drawback of the above listed methods is that the proposed opti-

mizations are limited to only reducing the number of random write operations. The very

high latency of RWs remains a valid hypothesis for basic flash devices such as the SD

cards [99]. However, current SSDs [75] can handle RWs as fast as SWs by leveraging the

internal parallelism of such devices. In addition, large granularity reads and writes also

benefit from this internal parallelism and enable a throughput that is up to one order of

magnitude larger than with the page granularity I/Os. Consequently, more recent propos-

als of flash-aware B+-trees were designed to exploit such features. Among the most generic

tree indexes for flash, there is FD-tree [61] whose design includes both the reduction of

RWs and the support for large granularity I/Os. FD-tree uses the idea of a log-structured

merge-tree (LSM-tree) [76] and adapts it to SSDs. FD-tree consists of a small B+-tree

on top of several levels of sorted runs of increasing size (see Figure 2.5). All the RWs are

limited to the head B+-tree which is normally cached in the main memory. Whenever

the head tree becomes full, it is merged with the sorted runs below. Hence, the RWs are

transformed into SWs. Besides, the merge operations are performed using large granular-

ity I/Os. Also, compared with the LSM-tree, FD-Tree improves the search performance

of the range queries since the sorted runs allow retrieving several key entries in one I/O.

Other B+-trees for SSDs focus only on exploiting the internal parallelism of such devices.

For instance, Parallel IO B-tree [93] combines the large granularity I/Os with the parallel

execution of a set of I/O requests to improve the performance of the B+-tree on SSDs.
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Figure 2.5: An example of FD-Tree

However, such optimizations are mostly orthogonal with the index structure and can be

applied to other database structures.

LSM-tree and bLSM-tree. We also mention the works in [76], [101] that propose a

log-structured merge-tree. Although, these index structures are designed for magnetic

disks, they share some common points with the flash-aware structures (e.g., FD-tree [61])

and TRIFL. The LSM-tree [76] is an efficient index structure for workloads having high

insertion rates. The LSM-tree consists in one in-memory B-tree component to buffer

the updates and one on-disk B+-tree component that indexes the disk resident data.

Periodically, the two components are merged to integrate the in-memory data and free

the memory. The benefit of such an approach is twofold. First the updates are integrated

in batch, which amortizes the write cost per update. Second, the merge operation uses

sequential I/Os, which reduces the disk arm movements and thus, highly increases the

throughput. If the indexed dataset becomes too large, the index disk component can be

divided into several disk components of exponentially increasing size to reduce the write

amplification of merges. bLSM [101] fixes several limitations of the LSM-tree. Among

the improvements, the main contribution is an advanced merge scheduler that bounds

the index write latency without impacting its throughput. TRIFL also employs a merge

mechanism. However, the logged updates are stored directly on flash to reduce the memory

consumption. In addition, the merge process is optimized by the use of large granularity

I/Os and does not consider arm movements, which is proper to magnetic disks and not to

flash devices. All this leads to different storage and index structures in TRIFL.

The existing flash-aware B+-tree structures represent a straightforward solution for in-

dexing trajectory flows. Nevertheless, such solutions may be suboptimal as they do not

consider the important particularities of trajectory indexing. First, a trajectory index

has to integrate efficiently a continuous and massive flow of new data without letting the

lookup performance degrade much. Second, trajectory indexes perform a spatial partition-

ing beforehand [16], [19], [24], [96], which implies that a high number of temporal indexes

has to be efficiently managed at the same time. Therefore, the main memory footprint of

each local index has to be very small to satisfy this constraint. But this requirement is
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conflicting with the existing flash indexes that have to buffer the updates in memory in

order to avoid costly RWs or to execute large granularity I/Os.



Chapter 3

TRIFL: A Generic Trajectory

Index for Flash Storage

In this Chapter, we present the global framework of TRIFL. We first describe the trajectory

data model and the query model supported by TRIFL in Section 3.1. Then we introduce

the global index structure of TRIFL in Section 3.2. Note that the framework introduced

in this section is generic and independent of the type of used storage. The cost models

of TRIFL as well as an online self-turning algorithm are also addressed in Section 3.3.

Section 3.4 evaluates the performance of TRIFL and details the comparison of TRIFL

with its competitors. Finally, We summary our designed principles in Section 3.5 before

concluding this Chapter in Section 3.6.

3.1 Scope of TRIFL

3.1.1 Data model

TRIFL is designed to continuously index flows of MOs’ trajectories up to the current

time and to efficiently process the spatio-temporal queries over the recorded history. A

trajectory is defined as a sequence of trajectory units. A unit is generated between two

consecutive location updates belonging to the same MO and the time intervals of the units

are not necessarily of equal size. An update contains the identifier of the trajectory, the

location and the associated time instant: (trid, loc, t). Each unit is recorded as a tuple

in the database: (trid, [loc1, loc2] , [t1, t2]). Within each unit, it is assumed that the MO

moves at constant speed, i.e., a linear interpolation is considered over each interval, which

is common to the existing trajectory indexes.

TRIFL indexes trajectories generated by both free MOs and constrained MOs. Only the

representation of the location is different between the two types of movement. In the case

21
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of free MOs [16], [24], the location is represented by the 2D coordinates, i.e., loc = (x, y).

As for constrained movement [25], [96], the location is represented with reference to a

network space (usually represented as a directed graph), i.e., loc = (rid, pos), where rid is

the road (or edge) identifier and pos is the relative position on the road as measured from

start point of a road. Both the free and the constrained movement representations have

been extensively studied in previous works [16], [24], [25], [96].

3.1.2 Query model

TRIFL can index two types of queries, i.e., range queries and point nearest neighbor

queries, which are the classical queries over trajectory data. Typical examples of range

queries are: ”which are the trajectories that crossed that region between 10am and 11am

today?” or ”find the number of MOs that traversed a given road section at a certain time

(interval)”. While a nearest neighbor query example is: ”which were the three closest MOs

to the indicated location at 12am today?”

A query is composed of a spatial part and a temporal part: Q = (QS , Qt, k). The parame-

ter k applies only to NN queries and indicates the number of requested nearest neighbors.

Qt is a time interval, which can degenerate to a point (a time instant). QS depends on

the query type and on the movement type. In the case of a range query, QS indicates a

spatial interval. For free MOs, QS is a 2D region (e.g., a rectangle). For constrained MOs,

QS is a set of road sections, i.e., QS = (rs1, rs2, ...rsn), where rsi =
(
ridi,

[
posi11, pos

i
11

])
and the road sections are disjoint. In the case of a nearest neighbor query, QS indicates a

location either in the 2D space or a network space.

3.1.3 The global index structure of TRIFL

The global structure of TRIFL is inspired from the existing index structures that employ a

space partitioning (conform to Section 2.3.1 in Chapter 2). The reasons are two-fold. First,

space partitioning index structures are more efficient for both the search [16], [95], [19] and

the update operations [96]. Trajectory data exhibit large amounts of overlapping in both

the spatial and the temporal dimensions, which greatly affects the search effectiveness of

multi-dimensional indexes [16], [95] that are typically based on the classical R-tree or its

variants. In addition, the update operations are more costly in the R-tree [56] that in the

B-tree [59] especially in a concurrent environment that combines queries and updates [69].

The reasons for this claim are manifold: (i) in addition to the split propagation when a

node overflows as in B-trees, R-trees have to recursively update the ancestor keys in case

a leaf’s minimum bounding rectangle (MBR) changes; (ii) to account for the strategies

aiming to minimize the overlap of the MBRs of the nodes, many leaves may be visited

which increases the cost; (iii) the split of an overflowing node in an R-tree is more complex
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Figure 3.1: Examples of 2D and network space partitioning in TRIFL

than in a B-tree due to the lack of linear ordering among the keys. Hence, since the cost

of updates and the potential impact it has over different nodes in R-trees are higher than

in B-trees, the execution of a mixed workload with updates and queries will likely perform

better with a B-tree based index than with those using R-trees, whatever the technique for

concurrency is. All this makes space partitioning methods an obvious choice for indexing

trajectory flows. Second, these methods are more easily tunable, i.e., are provided with

algorithms that compute the space partitioning offering an optimal lookup performance

with respect to a data load and a query workload.

Given a flow of trajectories, a TRIFL index is created to index the incoming trajectory

data belonging to a time interval [ti, ti+1], where ti corresponds to the index creation time

and ti+1 corresponds to the closing time of the index and depends on the data flow rate.

At ti+1 a new TRIFL structure is created to store and index the flow and this process

continues indefinitely. We provide in Section 3.3.2.2 a cost model to compute the time

interval |Ti| = ti+1 − ti of a TRIFL index.

TRIFL partitions first the indexed space into n partitions by using either an adaptive grid

partitioning for free trajectories or a network partitioning for constrained trajectories (see

figure 3.1). TRIFL uses a specific cost model (see Sections 3.3.1 and 3.3.2) to compute the

space partitioning. In short, the space partitioning algorithm of TRIFL takes into account

the spatial data distribution to produce spatial regions that are balanced with respect to

the amount of data in each region. Therefore, the spatial partitioning can periodically

adapt to the temporal changes of the MO distribution in space. Then, for each grid cell

or network region, TRIFL builds a dedicated index structure that stores the trajectory

units in that partition and indexes the units on the time dimension (see figure 3.2).This

structure is composed of a novel Append Only B+-tree and of a Time Interval Index,

which are presented in Section 3.2.
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Figure 3.2: The global structure of TRIFL

Figure 3.3: Temporal partitioning in TRIFL

3.1.3.1 Temporal partitioning of TRIFL

A trajectory data flow is generally bounded in space (i.e., the data is generated in a

predefined observed 2D region or road network), but not necessarily bounded in time (i.e.,

the data harvesting can extend over long periods of time). As indicated above, a TRIFL

index has a bounded time span [ti, ti+1] (see figure 3.3). In this section we discuss the

benefit of the temporal partitioning for trajectory flow indexing. The detailed algorithm

used in TRIFL to compute the length of the time interval covered by a TRIFL index is

given in Section 3.3.2.2.

Only a few methods [96], [63] for indexing trajectories propose a temporal index parti-

tioning. BBx-tree [63] proposes very short time span indexes, i.e., covering only 1.5 times

the maximum time interval of a trajectory unit. Also, the lifespans of two consecutive

indexes overlap significantly. Consequently, the queries intersect several indexes and their

performance is significantly degraded. T-PARINET [96] also proposes a temporal index

partitioning. However, the cost model that computes the partitioning is designed for B+-

trees on magnetic disks and is not relevant to our context. As for the ”general” purpose

index methods that propose multi-component indexes [76], [101] or multi-level indexes [61],

their approach is to create indexes of exponentially increasing size to obtain a trade-off

between the query and the insert cost. This type of approach is not appropriate in our



3.2. Detailed structure of TRIFL 25

case since it deteriorates the insert performance without improving the query performance.

Therefore, we propose in Section 3.3.2.2 a temporal partitioning algorithm that is adapted

to the specific structure of TRIFL.

3.1.3.2 Query processing

TRIFL supports all the typical index operations, i.e., search, insertion, deletion and up-

date. Given a range query Q = (Qs, Qt), the data lookup in TRIFL is performed in three

steps. First, TRIFL identifies the spatial partitions that that intersect Qs, i.e., the spatial

filtering step. Then, it uses the time indexes in the selected partitions to get all the trajec-

tory units that intersect Qt, i.e., the temporal filtering step. Finally, a refinement step is

required to eliminate the false positives, which consists intesting the exact spatio-temporal

intersection between the candidate units and Q. The update operations are discussed in

Section 3.2.2.

NN queries are evaluated in two steps, which can be repeated several times. In the first

step, the indicated location is expanded to a spatial window, i.e., a square or a network

region depending on the trajectory type, centered in the search point. Therefore, the

initial NN query is transformed into a rage query. In the second step, the obtained range

query is evaluated. If the number of returned MOs is superior or equal to k, no additional

search is necessary. The list of MOs’ identifiers is sorted based on the distance to the

query position and the top k MOs are returned as the final result. Otherwise, the spatial

window is expanded and a new range query is generated. Note that the spatial part of the

new query is computed as the difference between the previous and the current expansion

to avoid a repetitive search over the same spatial regions. The returned MOs are added

to the current set of MO identifiers. The algorithm stops when the set contains at least

k MO identifiers. Assuming that the spatio-temporal distribution of the indexed data is

known, the expansion size can be set inversely proportional to the spatial and temporal

density of the data observed at the query location and the query time interval. Higher data

densities indicate a higher probability to find the NN closer to the query point location

and vice-versa.

3.2 Detailed structure of TRIFL

In this section we present the detailed structure of TRIFL. We present first the index

design principles. Based on these principles, we introduce the data structure in TRIFL.

Finally, we describe the mechanisms that allow TRIFL to support large granularity I/Os.
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3.2.1 Design principles

TRIFL is designed around five principles. The first two principles are related to the

problems of trajectory indexing, the following two principles consider the characteristics

of flash devices, whereas the last principle covers both aspects.

P1. Efficiently process the data insertions. Indexing trajectory flows incurs a high number

of data insertions. Typically, the index workload comprises both lookup queries and trajec-

tory insertions with a much higher rate of the latter. Therefore, it is necessary to process

efficiently the insertions even at the cost of moderate query performance degradation.

P2. Low buffer cache memory requirement. The data partitioning (typically employed

by trajectory indexes) incurs a high number of local indexes that need to be handled

simultaneously. Therefore, for increased efficiency (i.e., to decrease the number of RRs

and RWs for data insertions) a local index should have low cache memory requirements,

as the buffer cache is shared among many indexes. In other words, the typical strategy

consisting in buffering in memory a large number of updates before integrating them in

batch in the index (e.g., FD-tree [61], LSM-tree [76]) may be inefficient with many indexes

and limited cache size.

P3. Favor the sequential writes over the random writes. The index structure should avoid

as much as possible the RWsand favor instead the SWs, since RWs are poorly supported

by flash memory, which is reflected in the performance of flash devices (especially with

basic devices such as the SD cards).

P4. Favor large granularity I/Os over page granularity I/Os. Multiple pages I/Os are much

more efficient than single page I/Os especially for devices that have internal parallelism

such as the recent SSDs. Therefore, the index structure should exploit this feature for

increased performance.

P5. Endow the index structure with self-tuning to keep up the near-optimal performance.

The continuous insertion of new data may lead to a degradation of the lookup performance.

The index should be able to automatically detect and correct the loss in performance over

time.

Note that some of these principles are conflicting. For example, a large buffer cache may

be required to reduce the number of RWs and satisfy P3, P4 and P5, which is conflicting

with the requirement of P2. Also, with a small buffer cache, many in-place updates may be

required to process the insertions as requested by P1, which is conflicting with P3. The

existing methods (see Section 2.3.1 in Chapter 2) and their straightforward adaptation

(see Section 2.3.2 in Chapter 2) do not comply with all the above listed principles. On the

one hand, the methods that are optimized for HDD storage do not consider the P3 and

P4 principles that are mostly related to flash storage. For example, the insertions in the

B+-tree are executed as in-place updates at a page granularity. On the other hand, the
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methods that are optimized for flash (cf. with P3 and P4) and also optimize the insertions

(cf. with P1) require buffering many insertions in memory before committing in block to

the disk (e.g., FD-tree [61]). While this is not an issue in case of a single index structure,

it may become problematic when a large number of such indexes are simultaneously active

and the cache memory is limited (cf. with P2).

To reconcile all these principles, TRIFL uses appropriate low-level index structures that

permit to maintain the index as a log. The benefit is manifold. Logs are known to be insert

efficient structures (as required by P1) since all the modifications are directly appended

to the log storage area. Hence, RWs are avoided and replaced with SWs (as required by

P3). The second important consequence is that large granularity SWs can be employed

to update the index structure (as required by P4) at the cost of a small buffer cache.

The index structures in TRIFL are also designed to have a small and adaptive memory

footprint (as required by P2), i.e., it requires only a few cache pages per index partition.

Lastly, TRIFL structures leverage the fast large granularity I/Os in flash to periodically

reorganize the index structure and compensate the loss in the search performance of a

log-like structure (as required by P5).

3.2.2 Storage and indexing in TRIFL

TRIFL partitions the trajectory data on the space dimension and then clusters and in-

dexes the trajectory units in each partition on the time dimension. TRIFL considers the

peculiarity of the time dimension, i.e., the time takes monotonically increasing values, and

the fact that the data can be obtained either in real-time, i.e., from tracking a set of MOs,

or offline, i.e., as a batch of previously recorded trajectories. We refer to the first type

of insertions as timely insertions and to the second type as deferred insertions. To han-

dle the timely insertions, TRIFL uses an Append-Only B+-tree (BAO+-tree), which is a

novel B+-tree-like structure optimized for the insertions of monotonically increasing keys

in flash. To handle the deferred insertions, TRIFL uses a Time Interval Index (TII) struc-

ture. Both structures are designed in accordance with the principles P1-P4. Note that

we do not make any assumption with regard to the ratio between the timely and deferred

insertions, as TRIFL can handle timely or deferred insertions mixed in any proportion.

3.2.2.1 BAO+ − tree

The BAO+-tree (see figure 3.4) is a modified B+-tree that supports only the search and the

insert operations. In addition, a new key can be inserted in a BAO+-tree only if it is larger

than all the already inserted keys. Thus, all the insertions take place in the right-most

leaf of the tree. The BAO+-tree indexes the t2 time instant of the trajectory units (cf.

Section 3.1). The data units are stored in the leaf nodes of the index.
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Figure 3.4: Basic example of BAO+-tree

The tree consist of two parts: a stable part containing most of the tree nodes, which cannot

be affected by new insertions (in black in figure 3.4), and an unstable part containing the

right-most path from the root to the right-most leaf, which is continuously modified by

the incoming data (in red in figure 3.4). Note that the unstable part of the tree contains

at most h nodes, where h is the height of the tree (typically equal to two or three). A

tree node is written to the stable part only when it is full. To accelerate the temporal

range search, a new leaf node is back-chained with the foregoing leaf before being written

to the stable part. Hence, the stable part requires only SWs (cf. our design principle P3),

while all the RWs are limited to only a few nodes (cf. P2 and P3), which are typically

amortized by the buffer cache.

The append-only feature of the BAO+-tree makes it much more insert efficient than the

classical B+-tree, but also more search efficient since the fill factor is 100% for the BAO+-

tree. Given a time interval Qt = [t1, t2] of a spatio-temporal query, we search first the

leaf containing t2 and then use the backward chaining to retrieve all the leaves containing

units that overlap in time with Qt. In addition, if the tree is physically clustered (i.e., the

tree is stored in a contiguous area on flash), the scanning of the leaf nodes can be done

with large granularity I/Os to increase the search efficiency.

3.2.2.2 Time Interval Index (TII)

All the deferred insertions in a partition are stored within a second structure (see fig-

ure 3.5). A TII is a set of disjoint and adjacent time intervals that cover the current time

span of the index. The number of time intervals is established at the index creation based

on the cost model presented in Section 3.3. Each time interval is associated with a linked

list of data pages, which contain trajectory units that overlap with the time interval. A

trajectory unit that overlaps with more than one interval is duplicated and inserted in all

the overlapping intervals. Similar to the BAO+-tree, the TII has a stable part containing
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Figure 3.5: Basic example of a TII

full data pages and an unstable part containing one TII descriptor page and at most one

non-full data page for each interval. All the writes in the stable part are sequential. The

descriptor of the TII stores the physical addresses of the last stable data page in each in-

terval as well as the temporal distribution of the units (required by the TII reorganization

as described below). The new data pages are inserted as the head of the interval lists.

When a new unstable page is filled, it becomes stable and it is appended at the end of the

stable zone. Given Qt, all the page chains of the intervals that overlap with Qt have to be

searched.

Note that new time intervals are appended to the TII with the extension of the lifespan of

the index. Note also that the stable and the unstable parts of the indexes use two different

storage areas in flash to increase the write efficiency. Specifically, in our implementation,

the stable and unstable parts of the indexes are stored in distinct files. We use two files to

store the stable parts of the index (see Section 3.2.4) and one file for the unstable parts of

the index. To physically separate the storage areas of the two types of files, we partition

the flash storage device and store each type of file on a different partition.

TRIFL also supports delete and update operations. TRIFL processes deleted trajectory

units as deferred insertions, i.e., it inserts the deleted data in the TII. The updates are

executed as the deletion of the old value followed by the insertion of the new value. At the

search time, the deleted units that match the query will be loaded first and will be kept

in memory to filter the ”ghost” units in the BAO+-tree and in the TII. Nevertheless, the

delete and update operations are uncommon for applications using trajectory data and

should not play a significant role in the overall index performance.

3.2.3 Two-level local index reorganization

The BAO+-tree and the TII structures conform to the above stated principles P1-P3. We

explain in Section 3.2.4 the mechanism used by TRIFL to implement the principle P4. The
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trade-off for having very efficient insertion, low memory requirement, and fast sequential

writes, is the loss in the optimality of the search operations. The reason is the suboptimal

search performance over the data stored in the TII. However, TRIFL limits and controls

the degradation of the search performance (as requested by the design principle P5) by

means of two restructuring index operations (see figure 3.2).

The first operation is merging the BAO+-tree and the TII into a new BAO+-tree. The

idea is to integrate the TII data into the BAO+-tree, since the latter offers better search

performance. The process consists in reading all the data from the BAO+-trees and the

TIIs, sorting, merging and writing it back to new BAO+-trees (see Section 3.3.1). Never-

theless, since the merge uses only block reads and writes, it is highly efficient in flash. The

merge also permits the index to absorb the deleted data. In addition, the merge leads to

a physical data clustering in each partition, which allows for improved query performance

(see Section 3.2.4).

The second operation is the TII reorganization that is performed after each merge opera-

tion. The TII reorganization consists in changing the number of time intervals of the TII

in a partition and keeping balanced the lengths of each time interval in order to reduce

the cost of sequential searching in TII’s time intervals. A higher number of intervals leads

to better lookup performance, but decreases the insertion performance, since more inter-

vals increase the probability of duplicating the data units overlapping with two intervals.

More intervals require also more cache memory to efficiently manage the unstable part of

the TII. Hence, the best value for the number of intervals depends on the insert/query

ratio. A detailed cost model and an online algorithm that automatizes these operations

are provided in Section 3.3.

3.2.4 Supporting large granularity I/Os

All the read and write operations over the index structure as presented up here are exe-

cuted at a flash page granularity. TRIFL employs two mechanisms to increase the index

performance by leveraging the (much) more efficient large granularity I/Os of flash devices.

3.2.4.1 Trading cache for block sequential writes

The insertion of new data units requires the creation of new index pages. Such pages are

associated first to the hot-data buffer containing the index pages of all the unstable parts

of the index. Once such a page becomes full, it is committed and appended at the end of

the stable part of the index. Thus, the pages are written sequentially in the stable part.

TRIFL alters a part of the available cache memory by using it as a buffer that stores tem-

porarily full index pages before appending them in block to the end of the stable index.

TRIFL computes the size of the temporal buffer (TB) that maximizes the index perfor-
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mance, based on three factors: the buffer cache size, a function that indicates the write

performance of the flash device with variable block sizes, and an empirically determined

function that indicates the index performance with the buffer cache size (see figure 3.6).

3.2.4.2 Logical versus physical clustering

The spatial data partitioning of TRIFL implies the clustering of the trajectory units of the

same partition. To optimize the index performance, TRIFL alternates between a logical

and a physical clustering of the data. TRIFL divides the stable index storage area in

two parts: logically clustered and physically clustered. Typically, there is one data file

associated to each storage area. The first stable storage area is used for the initial insertion

of the data. All the write operations in this area are done at large granularity (see Section

3.2.4). However, the read operations of the search queries cannot benefit from the same

optimization, since the data pages of different partitions are interleaved (i.e., a logical

clustering).

The physically clustered1 area is engendered by the BAO+-tree and TII merges (cf. Sec-

tion 3.2.3) when all the data in the logically clustered and physically clustered areas are

merged and rewritten into a new physically clustered part. During this operation, all the

reads and writes are done at large granularity using the TB. Since these merge operations

are triggered sequentially among partitions (cf. Section 3.3.1), the data are physically

clustered by partition. Hence, the index uses large granularity I/Os for the lookup oper-

ations in this area. In particular, the leaf nodes of a clustered BAO+-tree are fetched in

block when doing a range search. The size of the block is dynamically determined based

on the temporal selectivity of the query and the number of index entries at query time.

3.3 Cost models of TRIFL

We introduced in Section 3.2.3 two index operations that enable TRIFL to contain the

degradation of the search performance by integrating periodically the TII data into the

BAO+-tree and by reorganizing the TII. In this section, we present first a cost model and

an online algorithm that permit TRIFL to have a self-tunable structure. The cost model

introduces the formulas that estimate the index performance for a given configuration

and workload. The online algorithm uses this cost model to automatically trigger the

index optimize operations. Then, we discuss the algorithms used to compute the spatial

partitioning and the temporal time span of a TRIFL index.

1The term ”physically clustered” denotes a block of data pages having consecutive addresses. Since
only the Flash Translation Layer (FTL) has access to the physical addresses of the flash device, the page
addresses can only be consecutive with respect to the FTL addressing. Nevertheless, this type of ”physical
clustering” is sufficient to benefit from increased I/O performance.



32 3. TRIFL: A Generic Trajectory Index for Flash Storage

Parameters Description

RR Random page read latency in flash

SR(B) Sequential page read latency by block of B pages

SW (B) Sequential page write latency by block of B pages

Ip Current number of TII intervals in partition p

Tp
Current index time span in partition p (measured in time
units)

PagesTIIp Number of pages of the TII in partition p

PagesBAOp Number of pages of the BAO+-tree in partition p

M Number of pages of the buffer cache

np Number of partitions in the index

|T̃unit| Average time length of the inserted trajectory units

|Q̃t|
Average time length of time interval of the queries in the
workload (average temporal selectivity of the queries)

Table 3.1: Notations used in this Chapter

3.3.1 Online self-tuning algorithm

To assess the degradation of the query performance, we estimate the query execution time

for a given index configuration. The total execution time is computed as the sum of the

execution time of all the I/Os that are required to answer the query. We neglect the CPU

and the main-memory operation costs. The notations used in this section are listed in

Table 3.1.

3.3.1.1 Query cost

Given a range query Q = (Qs, Qt), the execution time tQ is the sum of the search time in

each partition p that intersects with Qs.

tQ =
∑
P∩Qs

tQp (3.3.1)

In a partition p, the index retrieves all the data pages that overlap with Qt from both the

BAO+-tree and the TII, i.e.

tQp = tBAOp + tTIIp (3.3.2)
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The search in the BAO+-tree requires a few RRs to reach the first leaf node from the root,

followed by a number of reads of the leaf nodes. Therefore,

tBAOp = RR.hBAOp +Read.PagesBAOp .
|Qt|
|Tp|

(3.3.3)

where Read = RR if the BAO+-tree is logically clustered or Read = SR(B) if the BAO+-

tree is physically clustered.

The search in a TII requires one RR to retrieve the TII descriptor, followed by a number

of reads to retrieve all the data pages of the intervals that overlap Qt. Thus,

tTIIp = RR+Read.
PagesBAOp

Ip
.

(
1 + Ip.

|Qt|
|Tp|

)
(3.3.4)

where:Read has the same meaning as above.
PagesBAO

p

Ip
represents the average number of

data pages per time interval, while
(

1 + Ip.
|Qt|
|Tp|

)
indicates the average number of inter-

sected intervals considering that |Qt| < |Tp|.

TRIFL uses these formulas to measure the query performance degradation, i.e., the dif-

ference in the query cost between the actual index configuration and the optimized index

configuration (see Section 5.2).

3.3.1.2 Merge cost

To merge the BAO+-tree and the TII in a partition, we apply a typical sort-merge algo-

rithm, i.e., the TII is first sorted on t2 and then merged with the BAO+-tree. The cost of

the merge operation in each partition p is:

tmergep = [RR+ SW (B)].
(
dlogM

(
PagesTIIp

)
e.PagesTIIp + PagesBAOp

)
, ifM < PagesTIIp

(3.3.5)

Or

tmergep = [RR+ SW (B)].
(
PagesTIIp + PagesBAOp

)
(3.3.6)

To benefit from the high performance block reads, TRIFL employs also an opportunistic

”merge” of the BAO+-tree, even if the TII is empty. To this end, the BAO+-tree is copied

from the insertion (logically clustered) storage area to the physically clustered storage

area. In this case, the cost of the opportunistic merge is:

tmergep = [RR+ SW (B)].
(
PagesBAO(1)

p + PagesBAO(2)
p

)
(3.3.7)
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Where Pages
BAO(1)
p and Pages

BAO(2)
p indicate the number of index pages in the first area

and the second area respectively.

Note that in most cases (i.e., even for moderate to low query rates) the merge is triggered

frequently due to its relatively low cost. Therefore, the reads in Formulas (3.3.6) and

(3.3.7) are usually executed in block, i.e., Read = SR(B), since all the unclustered data

can be accommodated in the buffer cache.

3.3.1.3 Choosing the number of intervals of the TII

TRIFL uses a TII structure in each partition to index the deferred data insertions and

the data deletions. A TII consists in a number of time intervals that is initialized at the

index creation. The number of intervals of the TII in a partition can be changed after

executing a merge in that partition. As indicated in Section 3.2.3, putting more intervals

leads to better lookup performance, but decreases the insert performance. Given a mix

of insertions and queries, we determine below the number of intervals that maximizes the

index throughput.

LEMMA 1. The number of intervals of the TII of a partition that maximizes the index

throughput over an index lifespan Tp and a workload containing α queries with an average

temporal selectivity of Q̃t is:

Ip = min


√√√√√√

|Tp|

|T̃unit|

(
|Q̃t|
|T̃p|

+
2.SW (B)

α.RR

) ;
M

np
− h̃BAO


(3.3.8)

PROOF. The query cost over the TII in a partition is computed by Formula (4), assuming

that there are PagesTIIp data pages and Ip intervals. Note that the number of written

data pages PagesTIIp is higher than the actual number of pages Pages0
TII
p received by the

index, because of the duplication of the data units (cf. Section 3.2.2):

PagesTIIp = Pages0
TII
p .(1 +DuplicateProbability) (3.3.9)

where DuplicateProbability =
|T̃unit|
|T̃interval|

=
|T̃unit|.Ip
|T̃p|

.

Thus, the cost of insertion is: tins = SW (B).PagesTIIp . The total cost of the workload

over the time period Tp is: twork = α.tQ+tins, where α is the number of queries. Assuming

a uniform distribution of the queries in time, we obtain:



3.3. Cost models of TRIFL 35

twork = α.

[
RR+

1

2
.RR.

PagesTIIp

Ip
.

(
1 + Ip.

|Q̃t|
|T̃p|

)]
+ SW (B).PagesTIIp (3.3.10)

where

PagesTIIp = Pages0
TII
p .

(
1 +
|T̃unit|.Ip
|T̃p|

)
(3.3.11)

and the 1
2 factor accounts for the fact that the queries ”see”on average only half of PagesTIIp

in the interval Tp. If we consider twork as a function of Ip and combine Formulas 3.3.10

and 3.3.11, then twork is minimized when Ip is equal to the first value in Formula 3.3.8 in

Lemma 1.

The insert cost tins above considers the ideal case in which the unstable pages of a TII

can be buffered in cache before being written to the stable TII. This assumption holds

if the buffer cache can accommodate all the hot data pages of the index, i.e. M ≥
np.
(
h̃BAO + Ĩ

)
, where h̃BAO and Ĩ indicate the average height of the BAO+-trees and

the average number of the TIIs’ intervals in the index. On the other hand, the number of

RWs increases rapidly when the size of M decrease and M < np.
(
h̃BAO + Ĩ

)
(see Figure

3.6). Therefore, to avoid increasing the number of RWs and maintain the high level of

the insert performance, we limit the number of intervals in a partition to
M

np
− h̃BAO,

which corresponds to the second value in Formula 3.3.8. Obviously, the system assigns

the minimum value of 1 to Ip whether
M

np
− h̃BAO is less than 1.

3.3.1.4 Online self-tuning algorithm

TRIFL implements a self-tuning algorithm that is based on the above cost model and a few

statistics about the index structure, which are collected and updated continuously. The

online algorithm (see Algorithm 1) monitors several index structure parameters. These

parameters are then used to estimate the benefit and the cost of the merge in each index

partition. However, the reorganizing operations are triggered for the entire index (line 6

in Algorithm 1) to benefit from the large granularity I/Os and reduce the reorganization

cost (see Section 3.3.1). The benefit of the merge in a partition p is computed as the

difference between the total actual query cost since the last merge tQp
lm

and an optimal

(hypothetical) query cost tQp
opt

considering that all insertions are integrated directly in

a clustered BAO+-tree. The algorithm triggers the index reorganization if the benefit in

hindsight of the merge operation outweighs the operation cost (first condition at line 5

in Algorithm 1). After each merge, the algorithm recomputes the number of intervals Ip

(with Formula 3.3.8) in each partition to adapt the TIIs to the index workload (line 7 in

Algorithm 1).

Another issue is that the query degradation is caused by the data inserted since the last
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ALGORITHM 1. Online Self-Turning Algorithm

Monitored parameters in each partition: α, Q̃t, T̃unit, Tp, Pages
TII
p , PagesBAOp

1. while (true)

2. update the monitored parameters

3. for each partition p do

4. compute tQp
lm
, tQp

opt
and tmergep

5. if
(∑

p∈partitions

(
tQp

lm
− tQp

opt
)
>
∑

p∈partitions t
merge
p

OR

∑
p∈partitions t

Q
p
lm∑

p∈partitions t
Q
p
opt > querythdeg

 then

6. execute merge (BAO+
p -tree, TIIp), ∀p ∈ partitions

7. compute Ip, ∀p ∈ partitions

merge. However, the cost of the merge is directly proportional to the global indexed data

size. Hence, the merge cost continuously increases as more data is inserted into the index.

This means that, assuming an approximately constant query rate, the query degradation

increases over time with the increase of the merge cost. The self-tuning algorithm uses a

user-defined parameter that defines an upper bound of the admitted query degradation,

i.e.,querythdeg. An index merge is also triggered if the ratio between the actual and the

optimal query cost is larger than the query degradation threshold (second condition at

line 5 in Algorithm 1).

3.3.2 Partitioning in TRIFL

This section presents the spatial and the temporal partitioning in TRIFL.

3.3.2.1 Spatial partitioning

As with the existing space partitioning indexes (see Section 2.3.1 in Chapter 2), TRIFL

partitions the space before indexing the trajectory units in each partition on time. A few

of the trajectory indexes for magnetic disks [16], [24], [96] propose cost models to compute

the best spatial partitioning with respect to a query workload. Yet, these methods do not

consider the insert performance in the computation of the spatial partitioning. This is an

important limitation in our context that combines the flash memory (having poor random

write performance) and trajectory flows (implying a large number of insertions). Therefore,

TRIFL computes the spatial partitioning by taking into account both the queries and the

insertions in the workload. In this part, we discuss the spatial partitioning only in the

case of road networks. Nonetheless, a most similar approach can be employed to partition

a 2D space by using an adaptive grid partitioning as in [16], [24]. Also, the cost model we
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Figure 3.6: Write-amplification depending on the cache size and the number of partitions

introduced above is independent of the type of the indexed space.

The spatial partitioning of a road network in TRIFL sums up to finding the number

of partitions np that minimizes an index workload. This is due to the fact that the

partitioning of the graph network into np network regions can be easily computed by the

existing graph partitioning algorithms [53]. Hence, the number of partitions np is sufficient

as input to compute the actual network partitioning, i.e., which network edge belongs to

which partition. Highly efficient implementations of such partitioning algorithms are also

available. We employed METIS [41] to compute the spatial partitioning in TRIFL. Also,

if a spatio-temporal distribution of the data is provided, the partitioning takes it into

account and produces network regions that are balanced with respect to the amount of

data in each region (see figure 3.1).

Let ρ̃ be the average temporal density of the indexed trajectory flow (i.e., number of

inserted data units per time unit). Let
{
Qi
}

be the set of queries composing the query

load. Let |Ti| be the length of the index time span (see Section 3.3.2.2). Then, the total

insert cost is:

tins = ρ̃.|Ti|.
[
SW (B)

BS
+ wacache(np,M).(RW +RR)

]
(3.3.12)

BS is the block size (number of entries) of the data pages (leaf nodes in the BAO+-trees

or data pages in the TII). We do not consider the cost of writing the non-leaf nodes of

the BAO+-trees in each partition since this part is negligible in the overall cost. wacache is

a write-amplification factor that indicates the probability for a data unit in the hot data

buffer to be temporarily written in flash before being flushed in the stable part of the

index, depends on the number of partitions np and the size of the buffer cache M (see

figure 3.6). As indicated in Section 3.2.2, the newly inserted data units are temporarily

stored in the hot data buffers of the corresponding partition. Once a hot data page is

filled, it is flushed in the stable area of the index. Each partition has only a few hot data
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pages (in red in figures 3.3 and 3.4). If the number of partitions np is small, all these hot

data pages can be accommodated in the buffer cache and the write-amplification wacache

is equal to 0. Conversely, for a large number of partitions and/or a small buffer cache M ,

some of the hot data pages will be evicted from the buffer cache before being filled and

written to the stable area. At worst, a data page has to be read into the buffer cache

and evicted from the buffer cache for each newly inserted data unit in that page (i.e., a

wacache equal to 1). Therefore,the insertion cost is minimized with a number of partitions

np ≤ npwa=0, where npwa=0 is the maximum number of partitions for which wacache is

equal to 0.

The total query cost for a query load
{
Qi
}

is:

tquery =
∑

Q∈{Qi}

tQ (3.3.13)

where

tQ =
∑
p
⋂
QS

(
RR.hBAOp + SR(B).

ρ̃

np
.|Qt|

)
(3.3.14)

The first term in Formula 3.3.14 corresponds to the cost of traversing the BAO+-tree in

each partition intersected by the query spatial window. The second term corresponds to

the cost of scanning the leaf data pages intersected by the query temporal interval. |Qt|
is the length of the query time interval. Here we consider that each partition consists

in a clustered BAO+-tree since the unclustered BAO+-tree and the TII are temporary

structures that are absorbed and clustered through index merges. Similar to the insert

cost, the number of partitions influences the query cost. By increasing np, the spatial

extent of the partitions decreases. This can increase the number of partitions to be visited

by the queries, leading to a higher cost of the first term in Formula 3.3.14. At the same

time a large np decreases the data volume in each partition, which lowers the cost of the

second term in Formula 3.3.14).

The best value for np is the value that minimizes the global index workload, i.e. twork(np) =

tins(np) + tquery(np). To find the best np value, TRIFL simply estimates twork for several

np values in a given range (see Algorithm 2), e.g., from 1 to 1000 partitions with a step of

10, before the index creation and picks the np with the smallest twork. The upper bound

of the np depends on the extent of the indexed space and on the density of the data flow,

i.e., larger spaces and denser data flows typically require more partitions.
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ALGORITHM 2. Spatial Partitioning Algorithm

Input:
{
Qi
}
, ρ̃, |Ti|,max np network graph NG

1. np = 1; tworkmin = twork(1);

2. for p = 2 to max np do

3. compute spatial partitioning GraphPartitioning(p,NG);

4. compute twork(p);

5. if
(
tworkmin < twork(p)

)
then

6. np = p; tworkmin = twork(p);

7. return GraphPartitioning(np,NG);

3.3.2.2 Temporal partitioning

We present in this section the algorithm that computes the timespan of an index component

in TRIFL. In Section 3.1.3 we discussed the benefit of a temporal partitioning of the index

structure. TRIFL triggers periodically a merge operation when the query performance

degrades (see Algorithm 1). Since the cost of the merge is directly proportional to the

global indexed data size, the cost continuously increases as more data is inserted into

the index. Therefore, the temporal index partitioning limits the merge cost of an index

component assuming that the volume of data collected in a bounded time interval is also

limited.

At the same time, the temporal partitioning increases the query cost of the queries having

query time intervals Qt that overlap with two index components (see figure 3.3) for two

reasons. First, these queries have to visit two indexes instead of one, which can double

the index access cost (i.e., the first term in equation 3.3.14). Second, a more subtle issue

regarding the queries is caused by the fact the data is scanned using large granularity I/Os

in a partition (i.e., the second term in equation 3.3.14). Recall that the index merge leads

to a physically clustered index, which allows data pages to be efficiently fetched in block

when doing a range search (see Section 3.2.4). The size of the block (i.e., number of data

pages) is dynamically determined based on the temporal selectivity of the query and the

number of index entries at query time, i.e., B = ρ̃
np .|Qt| from equation 3.3.14. Typically,

larger block sizes lead to better query performance. Therefore, the index scan cost (i.e., the

second term in equation 3.3.14) is also increasing for the overlapping queries since the data

is fetched in two smaller blocks instead of one large block. Assuming a uniform distribution

of the query time interval, for the index component i having a timespan length |Ti|, the

ratio of queries that overlap with two indexes is r = |Q̃t|
|Ti| , where |Q̃t| indicates the average

length of the query time intervals. To have a small impact on the query performance,

the ratio r has to be small, i.e., r � 1. In our implementation we empirically assigned a

value of 0.05 to r, which is sufficiently small to have only a marginal effect on the query
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performance. This imposes a minimum timespan of an index component of

|Tmini | = |Q̃t|
r

(3.3.15)

From the index reorganization cost perspective, the timespan of an index component

should be as shorter as possible to reduce the cost of index merges. Therefore, taking

into account the above reasoning about the query performance, we set the timespan of a

TRIFL index component i to |Tmini | = |Q̃t|
r , where |Q̃t| is the observed average length of

the query time intervals and r is a user defined parameter (0.05 in our implementation).

3.4 Experimental evaluation

We present in this section the experimental evaluation of the TRIFL framework in com-

parison with the representative indexing techniques in magnetic disk and flash storage.

The experimental setup is described in Section 3.4.1. In Section 3.4.2 we analyze the

detailed insert and query performance of the tested methods. The global index perfor-

mance for different workloads is discussed in Section 3.4.3. We detail the scalability of

TRIFL* in comparison with other methods in section 3.4.4. Then, Section 3.4.5 compares

the robustness of the tested methods with the cache size. In Section 3.4.6 we discuss the

importance of the spatial and temporal partitioning for indexing trajectory flows. Section

3.4.7 presents the evaluation of the cost models. Finally, we sum up the experimental

results in Section 3.4.8.

3.4.1 Experimental setup

All the experiments have been conducted on a workstation having an Intel Core(TM)

i5-2400 3.1GHz CPU with 2GB of main memory (note: the experiments do not require

so much memory) running Windows XP. Trajectory indexing within an SD card could

be of interest (e.g. for sensor devices [64]). However, in a majority of the expected use-

cases, modern SSDs will be the prevalent flash storage medium. Hence, we selected a

commodity SSD having representative characteristics of contemporary SSDs and consider

this storage device as the baseline. At the same time, TRIFL is designed to be generic for

any type of flash storage. Therefore, to fully assess the properties of TRIFL, we consider

in our experiments an SD card, but also an HDD. The rationale is that, compared against

each other, these three devices exhibit quite different behaviors (see the next section) and

permit evaluating the importance of all the optimizations in TRIFL (e.g., reduction of

RWs, usage of large granularity I/Os, index memory footprint, etc.).
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3.4.1.1 Selected storage devices

We selected one SD card (i.e., Kingston Ultimate XX 233X SDHC 8GB), one SSD (i.e.,

OCZ Vertex 4 128GB) and one HDD (i.e., Western Digital 1TB SATA 7200RPM) as

representative storage devices. The SD card was accessed via a USB 2.0 adapter, while

the SSD and the HDD were connected by a SATA interface. These storage devices have

very different I/O performance as indicated in Figure 3.7. We measured the average

performance with both random I/Os, which by definition are executed at a page (2KB)

granularity, and sequential I/Os executed both at a page granularity (i.e., 2KB) and

at a block granularity (i.e., 512KB). The SD card exhibits the asymmetric read-write

performance. The read operations (i.e., RRs and SRs(2KB)) in the SD card are 10 times

faster than the SWs(2KB) and 35 times faster than the RWs. On the other hand, the RWs

in the SSD are at the same cost as the SWs executed at a page granularity (i.e., 2KB).

The large granularity I/Os improve significantly the throughput of all the devices. The

speedup due to large I/Os is about a factor of 10 for the reads and writes in the SSDs and

the reads in the SD card. Moreover, large I/Os are particularly beneficial for the writes

in the SD card as the speedup is about a factor of 100.

The selected HDD shares a common characteristic with the flash devices, i.e., increased

throughput with sequential large granularity I/Os. Nevertheless, compared with the two

tested flash devices, the HDD has peculiar characteristics (see Figure 3.7). On the one

hand, with the HDD the random write has a similar (lower) cost to the random read as

with the SSD. On the other hand, the page sequential I/Os are much more efficient than

the random I/Os in the HDD, while there is very little difference between random and

sequential page I/Os in the flash devices. Finally, the large I/Os significantly improve the

sequential writes in the HDD (by a factor of 20) as in the SD card (a factor of 100), while

for the SSD the improvement is relatively low (a factor of 5).

3.4.1.2 Tested methods

We implemented in C the global framework of TRIFL introduced in Section 3.1. The

framework employs the standard OS file system facilities for storage. However, to achieve

accurate performance measurements, we used file access primitives that bypass the file

system caching. Therefore, all I/Os are immediately flushed to disk and are not buffered

before in the OS queue of the disk controller. To stress the importance of the index

tuning, we measured the performance of TRIFL with and without the online self-tuning

algorithm. We denote hereafter by TRIFL and TRIFL* the proposed index structures.

The only difference between the two instances is that TRIFL* includes the online self-

tuning algorithm, which triggers the index reorganization operations.

We also implemented four alternative data storage and indexing methods to TRIFL. Since
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Figure 3.7: Measured throughput of the tested storage devices for I/Os at page or block
granularities

the main novelty of TRIFL is the local, low level data indexing, we use the same spatial

partitioning with three of the alternative tested methods and replace only the local in-

dexing method. The fourth competitor [25] uses a specific type of spatial partitioning as

described below. The first alternative to the proposed index is based on the classical B+-

tree, as in the state-of-the-art trajectory indexes [16], [19], [24], [96]. Similar to TRIFL,

these methods partition first the space and then index the data in each partition on time

with a B+-tree. The second alternative replaces the B+-tree by a representative flash-

aware tree index, i.e., the FD-tree [61]. We chose FD-tree for two main reasons. First,

FD-tree offers excellent performance in flash compared with other flash-aware trees and to

the B+-tree [61]. Second, the design of FD-tree (see Section 2.3.2 in Chapter 2) is generic

as it considers both the asymmetric R/W performance and the large granularity I/Os in

flash, which makes it more adapted to our context that considers the wide range of flash

devices. The third alternative uses the LSM-tree [76]. Although designed for magnetic

disks, the LSM-tree has a few characteristics that make it an interesting candidate for

indexing data flows in flash (see Section 2.3.2 in Chapter 2). LSM-tree buffers all the

updates in RAM and commits them in batch when the RAM is filled. This precludes any

random writes, amortizes the cost of individual updates, and allows for large granularity

I/Os. Hence, LSM-tree is very efficient for processing insert oriented workloads.

Finally, we also consider an index structure for road network trajectories, i.e., the MON-

tree [25], that is based on the multi-dimensional R-tree. MON-tree is a combination of

a 2D R-tree (called the top R-tree) used for indexing the network roads and a set of 2D

R-trees (called the bottom R-Trees) for indexing the objects’ movements along the roads.

Therefore, MON-tree uses a bottom 2D R-tree for each road in the network. MON-tree

considers two kinds of possible roads: an edge-oriented model (in which each network edge

is a road) and a route-oriented model (in which a road covers several concatenated edges,
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i.e., a path in the network).We implemented MON-tree with the route-oriented model (see

the details in Section 3.4.1.3) since this configuration leads to better index performance

[25].

We implemented the B+-tree and the LSM-tree and used the available implementation

of the FD-tree [62]. We implemented MON-tree using the online implementation of R-

tree (available at superliminal.com/sources/sources.html). We also implemented an Least

Recently Used (LRU) buffer cache that was used for all the tested methods.

3.4.1.3 Index workload

We used the generator of moving objects in networks proposed in [17], [67] to create syn-

thetic datasets that are representative enough in terms of trajectory variety and data size.

The results reported in the part are based on a trajectory flow generated in the road net-

work of Stockton (San Joaquin County, CA), which is an average size road network having

24123 segments and 18496 nodes. We generated a trajectory flow containing 4.15 million

units from 50 thousand vehicles over a period of 1000 time units, which contains sufficient

data to cover the life span of a TRIFL index. Based on this dataset, we simulate three

types of insertion loads that contain 100% deferred insertions, 100% timely insertions, and

a mixed 50% timely - 50% deferred insertions. Each workload includes also the random

deletion of 5% of the trajectories.

We generated a set of 500 range and NN queries that are placed randomly in space and in

time. The query set contains for two-thirds range queries and for one-third NN queries.

Also, half of the range queries are 2D queries, i.e., Qs is a 2D square window, while for

the other half of the range queries Qs is a path in the network. The spatial and the time

interval were fixed to 2.5%, 5% and 10% of the total space and time of the dataset for

the 2D queries with equal probability. For the path queries the spatial interval is 0.25%,

0.5% and 1% respectively of the total number of roads in the network, while the time

interval was fixed to the same size as for the 2D queries, i.e., 2.5%, 5% and 10% of the

total time of the dataset. The resulting average selectivity of the queries in number of

selected trajectories varies from 0.03% to 0.44% for the 2D queries and from 0.32% to

1.44% for the path queries. The selectivity of the NN queries is set to 25, 50 and 100

nearest neighbors for a time interval 2.5%, 5% and 10% respectively of the total time of

the dataset.

Based on the trajectory dataset and query set, we generated workloads having insert/query

ratios varying from 1 to 10000, 1 corresponding to a query intensive workload and 10000

corresponding to an insert intensive workload. However, to confine the execution time of

the tests to a reasonable amount of time, we had to limit the maximum number of queries

in the workloads to 50000. Therefore, for the workloads that have the ratios 1 and 10,

we inserted first 98% and 85% of the data and then measured the index performance for
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the remaining mix of inserts and queries. We consider the query/insert ratio of 100 as

the baseline, since a single trajectory object requires many insertions. For example, the

average length of a trajectory in our dataset has 83 units.

For each workload, each tested method and each tested storage device, we measured the

total time required to solve the workload as well as the detailed I/Os executed by the

indexes (i.e., the number of RRs, RWs, SR(B)s, SW(B)s). We used the typical value of the

page size in flash, i.e., 2KB. The default cache size was fixed to 10MB (i.e., approximately

5% of the maximum index structure size) for all the methods mostly because the competing

methods (B+-tree, FD-tree and LSM-tree) require a relatively large cache to have good

performance with many local indexes. However, TRIFL* works also well with lower cache

sizes (see more details in Section 3.4.3). With a cache size of 10MB, the spatial partitioning

algorithm (see Algorithm 2) partitions the network space in 500 partitions2. Also, the

number of intervals of the TIIs for TRIFL/TRIFL* is equal to 10 as computed by Formula

3.3.8 (see Section 3.3.1) in this configuration. Similar to the FD-tree, the data insertions

and the restructuring operations in TRIFL are executed at large granularity I/Os, i.e., in

blocks of 256 pages, since this granularity offers the best index performance. Furthermore,

since MON-tree performs better on a route-oriented model, we concatenated the segments

of the above Stockton road network to generate long routes. From the 24123 segments

of Stockton, we generated 6039 routes using a direction-based partitioning as proposed in

[25]. Then, a 2D R-tree was created to index the trajectory units contained by each route

since a trajectory unit can be seen as a two-dimensional segment. Specifically, in a 2D

R-tree the first dimension indexes the time interval of the unit, while the second dimension

indexes the relative positions on the respective route.

3.4.2 Insertion and query performance

Figure 8 shows the average I/O insert performance (left) and I/O query performance

(right) with the three types of insertion flows and an insert/query (i/q) ratio of 100. We

observed similar trends at different i/q ratios. TRIFL and TRIFL* have by far the best

insert performance, which is also constant across the range of the insertion flows. TRIFL

optimizes the data insertions by buffering in cache the hot index pages and by committing

these pages in batch when they become stable. At the same time, TRIFL creates only a

small number of hot pages for each local index, which limits the total cache requirements

and increases the insertion efficiency. LSM-tree and FD-tree also try to buffer the data

before writing them in batch to flash. However, the LSM-tree merges the in memory

index pages with the on disk pages at each RAM flush, which increases the insertion

cost. Differently, TRIFL* only triggers an index merge whenever the query performance

2To simplify the experimentation, we took the number of partitions (i.e., 500) that offer near-optimal
performance for both the SD card and the SSD as indicated by the cost model.
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Figure 3.8: I/O insert (left) and query (right) performance of tested methods at 100 i/q
ratio

degrades significantly. Similar to TRIFL, LSM-tree has stable insert performance for the

three types of insertion flows.

FD-tree uses a relatively small head B+-tree of 512KB to buffer the updates before flushing

them in batch to subsequent index levels. For optimal insert performance, the head tree

has to be entirely located in cache. Nevertheless, given the large number of local indexes

and the limited amount of cache, i.e., 10MB, the insert performance of the FD-tree is

degraded and similar to the insert performance of the B+-tree, which is not particularly

optimized for high insertion rates. MON-tree has similar insert performance with the B+-

tree with deferred and mixed insertion workloads, but is significantly worse with timely

insertions.

As expected, varying with the cache locality of the insert workload, the B+-tree, the

MON-tree and the FD-tree have the best insert performance with timely insertions and

the worse performance with deferred insertions, and intermediate performance with mixed

insertions. With the timely updates all the insertions take place in the right-most leaf

node of the B+-trees or the head B+-trees of the FD-tree. Given the very low number

of nodes affected by updates, there is a high probability for a cache hit when modifying

these nodes, which in turn massively reduces the number of random I/Os. Oppositely,

the deferred workload inserts data randomly and therefore any index leaf node can be

affected by an update. Therefore, the probability of a cache hit drastically reduces with

the deferred insertions, which greatly increases the number of random I/Os.

On the other hand, the query performance of TRIFL varies with the type of the insertion

flow, since the deferred insertions go into the TII. The more deferred insertions there are,

the larger the number of I/Os is for TRIFL. TRILF* overcomes this query performance

variability with the help of the self-tuning algorithm. The price to pay is a slightly higher

insertion cost. However, the I/O increase in the insertion cost is largely compensated

by the I/O decrease of the query cost. Indeed, TRIFL* has the best query performance

measured in the number of I/Os. The reason is that for the part of the data that is
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physically clustered through index merges, the queries are evaluated using large granularity

I/Os, which reduces the number of I/Os to process queries. The FD-tree also uses large

granularity I/Os for query processing and exhibits low query costs. But in an FD-tree,

the data are split among several index levels, which decreases the efficiency of retrieving

the data in large blocks. The B+-tree and the LSM-tree require a high number of I/Os

to process queries since these methods do not use large granularity I/Os. In addition, an

LSM-tree has several index components, which increases even more the query processing

costs compared with the B+-tree.MON-tree has the poorest query performance. The

trajectory data exhibit large amounts of overlapping in both the spatial and the temporal

dimensions, which requires searching several paths from the root to the leaves in the R-

trees of the MON-tree. The query performance of the MON-tree is also sensitive to the

type of the workload and degrades significantly with deferred insertions.

3.4.2.1 Detailed I/O performance

The number of I/Os plays an important role in the overall index performance. But the

type of I/Os is even more important for flash devices since an I/O can contain many pages.

Figure 3.9 details the total number of pages that have to be read/written by each method

to solve the mixed workload, as well as the type of these page accesses. Figure 3.10 gives

the total the number of I/Os executed by each method with the same mixed insertion flow.

TRIFL requires only a few SW(B) for insertions and is the most efficient method for data

insertions. The rest of the methods have comparable insert performance if we consider

the total number of pages read and written (Figure 3.9, left). However, the differences

in insert performance become prominent if we consider the total number of I/Os (Figure

3.10, left). Most of the page access of TRIFL* are executed using large granularity I/Os,

which are very efficient in flash and also in the HDD. Hence, the insert performance of

TRIFL* is similar to TRIFL. LSM-tree and FD-tree also use large granularity I/Os for

data insertion processing. However, these methods still require a significant number of

RRs and RWs compared with TRIFL*. The B+-tree and the MON-tree have the worst

insert performance since all the I/Os are done at a page granularity.

Nevertheless, if we consider the number of I/Os (Figure 3.10, right) and not the number

of accessed pages, TRIFL* is the most efficient method since most of the accessed pages

are retrieved in block. FD-tree also uses large granularity I/Os to process queries, but the

number of block I/Os is only a small percentage from the total number of disk accesses.

3.4.2.2 Insert and query time

Figure 3.11 presents the insertion time (left) and the query time (right) on the three

test storage devices. In general, the insert and query time are related to the number of
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Figure 3.9: Detailed insert (left) and query (right) performance of the tested methods for
the mixed insertion flow (in number of pages)

Figure 3.10: Detailed insert (left) and query (right) performance of the tested methods
for the mixed insertion flow (in number of I/Os)

executed I/Os (and not the number of accessed pages). Regarding the insertion, TRIFL

and TRIFL* exhibit (much) better performance than their competitors on all the tested

devices. LSM-tree also offers very good insert performance that is not affected by the type

of the insertion flow. As expected, the B+-tree, the MON-tree and the FD-tree have good

insert performance with timely data due to the workload cache locality, but offer poor

insert performance with deferred and mixed data flows. The reason is that these methods

require a very large buffer cache for processing random data inputs over a high number of

local indexes; otherwise many random reads and writes will be generated.

The query execution time changes the ranking between the methods. TRIFL* offers by

far the best query performance for every kind of workloads and devices. The FD-tree

comes next having better query execution time than TRIFL and the B+-tree.The main

reason is that TRIFL* and FD-tree use large granularity I/Os to process the queries (96%

for TRIFL* and 22% for FD-tree). In contrast, TRIFL and B+-tree exhibit lower query

performance, which also varies with the type of the data insertion flow. For example,
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Figure 3.11: Insertion (left) and query (right) time for the tested methods on the SD card,
the SSD and the HDD at i/q ratio of 100

TRIFL requires a smaller amount of time for query processing than the B+-tree for timely

and mixed insertions but consumes more time than the B+-tree with deferred insertions

where most of the inserted data go into the TII. The LSM-tree has stable query time with

different types of insertion loads, while the MON-tree has the most variable query time

with changing workloads. However, both methods exhibit poor query performance.

Overall, TRIFL proves to have the best insert performance, but not the best query perfor-

mance which also depends on the type of insertions (i.e., timely or deferred). In contrast,

compared with TRIFL, TRIFL* slightly trades insert performance to obtain significant

gains in query performance. TRIFL* also shows much better performance compared with

all four tested methods for both insertions and queries.
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3.4.3 Index throughput

The main challenge in indexing the trajectory flows is to efficiently process the massive

index insertions, while processing the queries over the indexed data. Hence, the index

throughput, i.e., the number of operations processed by the index in a time unit (e.g.,

one second), is the main indicator of the global index performance. Figure 3.12 shows

the relative throughput of the tested methods for the deferred and the timely insertion

flows at different insert/query ratios. For better readability of these graphs, we take the

throughput of the B+-tree as a base line, and show for each method the ratio between its

throughput and the throughput of the B+-tree. The first general observation is that the

throughput of each method increases with the increase of the i/q ratio. This is normal since

an insert operation is much cheaper than a query. The second general observation is that

TRIFL* offers the best throughput no matter the values of the testing parameters. This is

as expected since TRIFL* has both excellent query and insert performance as discussed in

Section 3.4.2. Also, the performance differences between TRIFL* and the other methods

are higher with the deferred data flows. TRIFL delivers comparable throughput values

with TRIFL* only for workloads having large i/q ratios, i.e., for insert-oriented workloads,

which indicates the importance of the tuning process. The FD-tree has throughput values

comparable to TRIFL* only on the SSD device and low i/q ratios. Similarly, the LSM-tree

is competitive only with the SD card device and large i/q ratios. The performance of the

B+-tree is comparable to that of the FD-tree and the LSM-tree. The B+-tree manages to

be more efficient than the FD-tree and the LSM-tree on the SSD and HDD for the highest

i/q ratio. Given both the poor insert and query performance, MON-tree has the lowest

throughput in most cases and for this reason, we do not include MON-tree in following

remaining parts of the evaluation.

To sum up, on the SD card, TRIFL* offers a throughput that is 3.3X to 334X (for deferred

insertions) and 3.4X to 27X (for timely insertions) larger than FD-tree,4.5X to 12X and

5.7X to 15X larger than LSM-tree, and 7.1X to 379X and 6.6X to 51.7X larger than B+-

tree, for i/q ratios between 1 and 10000. Similarly, on the SSD the throughput of TRIFL*

is 1.7X to 81.8X and 2X to 12.8X larger than FD-tree, 4.8X to 21.3X and 5X to 31.5X

larger than LSM-tree, and 3.1X to 84.4X and 2.5X to 6.7X larger than B+-tree. Even

on the HDD the throughput of TRIFL* is 3.9X to 270X and 4.6X to 21.9X larger than

FD-tree, 13.5X to 70.4X and 11.9X to 70.2X larger than LSM-tree, and 9.9X to 283X and

16.5X to 10.1X larger than B+-tree. Compared with TRIFL, the throughput of TRIFL*

is on average 5X (for deferred insertions) and 2.5X (for timely insertions) higher than

TRIFL on SD Card, 3X and 1.6X on SSD, and 10X and 4.8X on HDD. Overall, TRIFL*

provides a throughput that is on average 31X higher than its competitors depending on

the i/q rate and the type of insertions.
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Figure 3.12: Relative throughput for the tested methods on the SD card, the SSD and the
HDD at different i/q ratios and types of insertions (deferred and timely)

3.4.4 Scalability with the road network size and the data density

In this section, we analyze the scalability of TRIFL* in comparison with the other tested

methods, i.e., the B+-tree, the FD-tree, the LSM-tree and the basic TRIFL (without self-

tuning). In particular, we seek to respond to the following two questions: (i) what is the

impact of the road network size on the index performance? And (ii) what is the impact

of the average temporal density ρ̃ of the indexed data (see Section 3.3.2.1) on the index

performance? The network size can influence the query performance since the query size

may be proportional with the network size as it is the case in our query loads (see Section

3.4.1.3). The data density reflects the traffic density (i.e., number of moving objects at a

certain time instant in the network) and may influence both the insert performance and

the query selectivity.

To measure the index scalability, we proceed as follows. We use two road networks: (i)

a ”small” network, i.e., the road network of Stockton city, which has 24123 segments
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and 18496 nodes (the same was used in all the above experiments); and (ii) a ”large”

network, which is also based on the road network of Stockton, but covering a larger area

and having 52738 segments and 48576 nodes. The larger Stockton map was generated

with the MNTG generator [Mokbel et al. 2013] (available at mntg.cs.umn.edu). Then,

we generate [17] on each road network two datasets: (i) a ”small” dataset containing 50

thousand trajectories with 4.1 million units over a period of 1000 time units; and (ii) a

”large” dataset containing 100 thousand trajectories with 8.7 million units over a period of

1000 time units. Therefore, the data density in the larger dataset is twice the density of the

smaller dataset since the global temporal interval is the same for the two datasets. In the

following graphs, we identify each of the four experimental settings by: (i) SN-SD (small

network - small dataset); (ii) SN-LD (small network - large dataset); (iii) LN-SD (large

network - small dataset); (iv) LN-LD (large network - large dataset). For each setting,

we use the mixed insertion workload that combines timely and deferred insertions and an

i/q ratio of 100. We used the same queries as in the previous experiments (see Section

3.4.1.3)with the small network and generated new queries with the same properties (i.e.,

same relative spatial and temporal extent) for the larger network.

We discuss the index scalability by showing directly the speedup of TRIFL* in comparison

with the other tested methods, since TRIFL* has in general much better performance.

Figure 3.13 shows the query time speedup of TRIFL* compared with the other tested

methods, i.e., the ratio between the query time of each of the four competing methods

(B+-tree, FD-tree, LSM-tree and normal TRIFL) and the average query time of TRIFL*.

A first observation (not shown in Figure 3.13) that applies to all methods is that the query

cost is practically independent of the network size and only depends on the temporal data

density. The query cost depends on the number of intersected partitions and the amount of

data retrieved in each partition. Since in our tests the query size is relative to the network

size, the number of intersected partitions by the queries is similar with the two networks.

Therefore, the variation in the query cost is mainly determined by the variation of the

temporal data density. The higher the density is, the larger the amount of scanned data in

each partition is. The second observation is that TRIFL* has in general much better query

scalability with larger data densities than the other competing methods. The explanation

is that TRIFL* uses large granularity I/Os to process queries and the size of the block is

proportional to the amount of scanned data in a partition. This allows TRIFL* to keep

the query cost low even when the data density increases. Among the competitors, the

FD-tree is the only method that also uses large granularity I/Os to process queries and

has similar query scalability with TRIFL*. However, the query cost with the FD-tree is

about twice the query cost with TRIFL*.

Figure 3.14 shows the insert time speedup of TRIFL* compared with the other methods,

i.e., the ratio between the insert time of the other methods and the average insert time
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Figure 3.13: Average speedup of the query time of TRIFL* compared with the other
methods with different network sizes and data densities

Figure 3.14: Average speedup of the insertion time of TRIFL* compared with the other
methods with different network sizes and data densities

of TRIFL*. As with the queries, the map size does not have any influence on the insert

performance of any method (not shown in Figure 3.14). Only the temporal data density,

i.e., the number of trajectory units inserted over a time interval, affects the insert perfor-

mance. The insert performance remains the same with the larger dataset for the B+-tree

and TRIFL and it decreases for FD-tree,LSM-tree and TRIFL*. The explanation is that

FD-tree,LSM-tree and TRIFL* periodically (re)merge the indexed data, and the cost of

the merge increases with the index size. Nevertheless, the increased query performance

compensates the merge cost for TRIFL* and the FD-tree. Also, the increase of the merge

cost is marginally larger for TRIFL* than for the FD-tree. Regardless the decrease of

the insertion speedup, TRIFL* still has much better insert performance, while the query

scalability is slightly better than in FD-tree. Besides, with increasingly sized datasets, the

merge cost in TRIFL* is bounded by the temporal partitioning as discussed in Section

3.4.6.2.

Figure 3.15 shows the throughput speedup of TRIFL* compared with the other methods,

i.e., the ratio between the average throughput of the other methods and the average

throughput of TRIFL*. The throughput results sum up the query and the insertion costs

presented above. On the SD card, the speedup of TRIFL* compared with the LSM-tree
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Figure 3.15: Average speedup of the throughput of TRIFL* compared with the other
methods with different network sizes and data densities

and TRIFL slightly increases with the larger dataset, while it slightly decreases compared

with the B+-tree and the FD-tree. On the SSD, the speedup of TRIFL* compared with the

LSM-tree and TRIFL increases with the larger dataset, it remains approximately constant

compared with the B+-tree, and it slightly decreases compared with the FD-tree. Overall,

TRIFL* exhibits good scalability with both the map size and the data density, and it

offers a significantly larger throughput compared with the other methods.

3.4.5 Index performance with various cache sizes

Indexing trajectory flows in flash raises conflicting challenges. On the one hand, the high

insertion rate and the potentially high RW cost in flash require buffering many updates

in cache before committing them in batch for increased efficiency. On the other hand, to

effectively process queries the data has to be partitioned (see Section 3.4.6.1), which leads

to a large number of indexes that are concurrently accessed. In this section, we analyze

the robustness of the index performance with smaller cache sizes. We use a workload with

an i/q ratio of 100 and mixed insertions and vary the cache size from 256KB to 10MB.

For each cache size, we compute the number of partitions of the index with the cost model

presented in Section 3.3.2.1. Typically, for a given cache size the insert performance of

TRIFL* largely depends on the number of partitions (see Figure 3.6 in Section 3.2.4). If

the number of partitions is large, the write amplification becomes greater than 0, which

greatly increases the insert cost.

Figure 3.16 indicates the measured throughput for the tested methods for a given cache

size. The number of partitions corresponding to each cache size is also indicated in Fig-

ure 3.16. Overall, TRIFL* performs significantly better than the other tested methods.

Without surprise, the efficiency of all the methods decreases with the reduction of the

cache size. However, TRIFL* manages to be more robust to the cache size reduction.

The explanation is that the reduction of the cache size leads to a lower number of index

partitions. This decreases the spatial filtering efficiency of the indexes which in turn in-
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Figure 3.16: Throughput as a function of the cache size

creases the query processing cost. TRIFL* compensates the loss of the spatial filtering

by employing larger granularity I/Os in the temporal filtering step. For instance, the

throughput of TRIFL* is practically the same with cache sizes from 2MB to 10MB with

the SSD device. The FD-tree also uses large granularity I/Os and has a good performance

with the SSD storage. However, the poor insert performance makes that the FD-tree is

much less efficient overall than TRIFL*.

3.4.6 Importance of spatio-temporal partitioning in TRIFL

3.4.6.1 Spatial partitioning

All the competing methods (i.e., the FD-tree, the LSM-tree and the B+-tree) suffer from

poor insert performance with a few exceptions (i.e., the LSM-tree works well on the SD

card, and the FD-tree and the B+-tree work well with timely insertions). The poor insert

performance significantly degrades the global throughput of these methods especially for

insert-oriented workloads. Interestingly, the FD-tree and the LSM-tree are particularly

tuned to have good insert performance. However, these methods require a minimum

amount of cache to attain their optimal performance (e.g., 256 pages for the FD-tree).

Taken in the context of a trajectory index, the cache memory requirement explodes because

of the spatial partitioning which incurs a large number of local indexes.

Therefore, given the conflicting requirements between cache and multiple indexes, one

idea could be to give up the index partitioning and create a single global index on the

time dimension of the dataflow. The obvious drawback is that the index search efficiency

decreases since there is no more spatial filtering. Hopefully, this should be overcompen-

sated by the gain in the insert efficiency. Figure 3.17 shows the relative throughput of

the tested methods without spatial partitioning on SD card and SSD with the mixed in-

sertion workload and an i/q ratio of 100 and 10MB of cache. We take the throughput of

the B+-tree as a base line for the comparison. We also add the throughput of the par-

titioned TRIFL* (TRIFL* multi) to point out the importance of the spatial partitioning

for trajectory indexing.
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Figure 3.17: Relative throughput with mono-partition indexes versus TRIFL*

Globally, the throughput of TRIFL* multi is much larger than the mono partition in-

dexes. Actually, the gap between TRIFL* multi and the competing methods increases in

general (except for the largest i/q ratio workload) showing that the spatial partitioning

is more important in the overall performance than the cache size. TRIFL* mono is the

only method that has comparable performance with TRIFL* multi. The large granular-

ity I/Os of TRIFL* manage to partially compensate the loss of the spatial filtering in

TRIFL* mono. However, the query performance is significantly better with partitioning

even for TRIFL*.

3.4.6.2 Temporal partitioning

Trajectory flows are potentially unbounded in time. In Section 3.1.3.1 we discussed the

importance of having a temporal index partitioning in the TRIFL framework. We also

proposed a temporal partitioning model in Section 3.3.2.2. In this section we evaluate

the temporal partitioning in TRIFL. To this end, we compare the performance of a multi-

component TRIFL* with a single-component TRIFL* with a large trajectory flow contain-

ing up to 17,5 million data units arriving in a window of 5000 time units. The temporal

partitioned TRIFL* creates a new index component after each 1000 time units. Figure

3.18 details the throughput of the multi-component TRIFL* and the single-component

TRIFL* on the SD card and the SSD. For this test, we used an i/q ratio of 100, mixed

insertions and a 10MB cache size.

With both flash devices, the multi-component TRIFL* has nearly stable throughput while

the throughput of the single-component TRIFL decreases significantly with the increase of

the indexed data volume. The reason is that TRIFL* with temporal partitioning limits the

index reorganization cost, while the merge cost of TRIFL* without temporal partitioning

linearly increases over time. On the other hand, the query cost in the multi-component

TRIFL* is higher than in the single-component TRIFL* since some of the queries require

searching in two index components. However, the increase of the search cost is small, i.e.,

less than 5% in our setting, and is not significant in the overall index performance.
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Figure 3.18: Multi-component TRIFL* versus single-component TRIFL*

Figure 3.19: Insert and merge cost model evaluation

3.4.7 Cost model evaluation

In Section 3.3, we presented a cost model that allows TRIFL* to tune its structure. The

cost model proposes estimations for insert, merge and query costs. These estimations are

then used to self-tune the index structure of TRIFL*. In particular, the online self-tuning

algorithm (Algorithm 1 in Section 3.3.1) compares the merge cost with the query cost to

automatically trigger a merge operation in TRIFL*. Moreover, the spatial partitioning

algorithm (Algorithm 2 in Section 3.3.2) uses the estimated workload cost (i.e., the sum of

the query cost and the insertion cost) to determine the best spatial partitioning for a new

TRIFL component index. Given the importance of the cost model in TRIFL, we evaluate

in this section the accuracy of the proposed model. To this end, we compare the real costs

of insertions, merges and queries with the estimated costs, as computed by the cost model.

We test the cost model in four different settings, i.e., the same settings used in Section

3.4.4, since these tests vary the road network, the insert workload and the query workload.

In Figure 3.19, we compare the real costs of the insertions and merges with the estimated

values as computed by Formulas 3.3.6 and 3.3.12 with different index configurations and

workloads. The results indicate that both the insertion cost and the merge cost are

estimated accurately by the cost model. With the SD card, the estimated insertion cost is

on average 84% accurate in the four experiments, while the estimated merge cost is 99%
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Figure 3.20: Query cost model evaluation

accurate. Similarly, with the SSD, the estimated insertion cost is on average 69% accurate,

while the estimated merge cost is 97% accurate with the SSD. Mainly, the estimation error

of the insert cost is produced by the write-amplification factor, i.e., wacache (see Section

3.3.2.1). wacache indicates the probability for a data unit in the hot data buffer to be

temporarily written in flash before being flushed in the stable part of the index and its

value is also estimated based on the cache size and the number of index partitions (see

Figure 3.6). Although the estimated values for the wacache are fairly accurate, even small

deviations can introduce significant errors in the insert cost since the wacache is multiplied

with the RR and RW costs (see Equation 3.3.12), which are typically much larger than

the SW(B) cost (see Figure 3.7).

Figure 3.20 shows the average estimated time as computed by Formulas 3.3.1 to 3.3.4 and

the average real time of queries in the four experiments and with the two flash devices.

Globally, the query costs are estimated accurately by the cost model. With the SD card,

the estimated query cost is on average 94% accurate in the four experiments, while the

estimated query cost is 96% accurate with the SSD. The real query costs are in general

slightly higher than the estimated costs. One explanation is that TRIFL* uses large

granularity I/Os in the clustered index area, which may slightly increase the number of

retrieved data pages in comparison with the exact number of data pages required by a

query. Also, we obtained similar accuracy levels of the cost model with the HDD storage

but for conciseness we omit the detailed results.

3.4.8 Summary of the experimental results

We experimentally evaluated in Section 3.4 the proposed method to index trajectory flows.

In this context, the index workload consists in both queries and massive data insertions.

We discussed in Section 3.4.2 the insert and query performance of TRIFL* in comparison

to three state of the art index methods. The I/O insert performance of TRIFL* proved

excellent and robust with the type of insertions (i.e., timely or deferred). This is due
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to the way TRIFL* buffers the updates (which amortizes the cost of individual updates)

and appends them to the index structure (which precludes costly random writes). At

the same time, TRIFL* also offers good I/O query performance compared with the other

tested methods. TRIFL* manages to maintain high query efficiency through periodic

index reorganizations. Moreover, the performance difference between TRIFL* and the

competing methods becomes even more prominent when analyzing the types of the I/Os.

Most of the I/Os engendered by insertions and queries in TRIFL* are large granularity

I/Os, which are cost-effective in flash and further improve the index efficiency.

We then evaluated in Section 3.4.3 the global index performance, i.e., the index through-

put, using workloads with various insert/query ratios. Without surprise, based on the

very good insert and query performance and its self-tuning mechanism, TRIFL* offers

much better throughput than the competing methods for both insert-oriented and query-

oriented workloads on all the tested storage devices. The throughput of TRIFL* is in

general one order of magnitude higher than the throughput of the other tested methods.

In fact, compared with TRIFL* these methods can offer competitive performance only for

particular workloads and storage devices. For example, the LSM-tree has good perfor-

mance with insert-oriented workloads on the SD card, while the FD-tree works well with

query-oriented workloads on SSD.

The large number of partitions of a trajectory index being concomitantly accessed by

updates and queries may require an amount of cache proportional to the number of indexes,

which may not be always available. In Section 3.4.5 we analyzed the robustness of the

index performance with the cache size. Thanks to its cost model that adapts the spatial

partitioning to the workload and the cache size, TRIFL* shows robust performance with

a throughput that remains competitive even with small cache sizes.

We confirmed the performance scalability of TRIFL* with both large network size and

high data density in comparison with the other methods in Section 3.4.4. The results

show that only the temporal data density affects the insert and query performance, while

the network size has marginal impact on the performance of the tested methods.

In the first part of Section 3.4.6, we experimentally evaluated the importance of the spatial

partitioning in the overall index performance. The experimental results show that the

spatial partitioning is necessary since it improves the performance of all the tested methods

even with workloads containing a relative small number of queries. Then, we evaluated

in the second part of Section 3.4.6 the importance of the proposed temporal partitioning

in TRIFL*. By periodically creating new index components over time, TRIFL* manages

to maintain a near-optimal index throughput regardless of the continuous increase in the

indexed data volume.

Finally, we validated the proposed cost model used to estimate the insert, merge and query

costs in Section 3.4.7. The obtained empirical results are very close to the values computed
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with the cost model. This allows TRIFL* to adapt smoothly its structure to any changes

in the workload.

3.4.9 Experimental evaluation with a real dataset

Although real trajectory datasets are becoming more and more available, we preferred

to evaluate the proposed index framework with synthetic datasets. The reason is that

available real datasets are still not representative enough in space and time. That is,

real datasets typically contain data from a limited number of users with a high degree of

spatial overlapping among trajectories and a low degree of temporal concurrency between

trajectories. This explains the fact that most of the works on trajectory indexing still

prefer synthetic datasets to real datasets since, ironically, the synthetic datasets are more

representative of real use-cases (i.e., trajectories cover the entire space and present a high

degree of concurrency between the MOs) and are also parametrically adjustable.

Nevertheless, we evaluate in this section the proposed index in comparison with the chosen

alternative methods with a real dataset. The dataset was collected by Microsoft Research

in the GeoLife project [124] and is available online (research.microsoft.com). This dataset

contains trajectories from 182 users collected over a period of 5 years from 04/2007 to

08/2012. Geolife data was recorded in many cities located in China, USA and Europe.

However, the majority of the data was created in Beijing, China. In our tests, we ex-

tracted data from Geolife dataset so that it can be comparable with the above presented

experiments. We selected all the trajectories recorded in the Beijing region within a pe-

riod of 3 years from 08/2009 to 08/2012, which represents a dataset containing 4.5 million

trajectory units. Although the amount of units is similar with our synthetic datasets,

there are two major differences between the real dataset and the synthetic datasets. First,

given the low number of tracked users, the trajectories in the real dataset are sparse in

the time dimension. Second, the trajectories correspond to different kinds of movement

(e.g., vehicles, bicycles, walks) and are represented in the two-dimensional space. Hence,

we kept all the kinds of trajectories and indexed the data using the free movement model.

To this end, we used an adaptive grid (see Section 3.1.2) to partition the 2D space for the

real dataset instead of a graph partitioning as with the synthetic dataset. However, the

resulted index structure has 400 partitions, which is similar to the number of partitions

used with the synthetic dataset.

Based on this real dataset, we generated an insertion workload containing only timely

insertions to simulate a continuous real-time tracking of the users. We also generated a

query workload with queries having similar properties as in the synthetic datasets. How-

ever, since the real dataset contains free trajectories, we only consider 2D and NN queries

and no path queries with this dataset. As in Section 3.4, we generated workloads having

insert/query ratios varying from 1 to 10000, 1 corresponding to a query intensive workload
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and 10000 corresponding to an insert intensive workload. Also, the cache size was fixed to

the default size of 10MB.

Figure 3.21 presents the insertion time (left) and the query time (right) with different

indexing methods on the SD card and the SSD. Regarding the insert performance, TRIFL

and TRIFL* show in general (much) lower insertion time than their competitors on both

the SD card and the SSD. The B+-tree has also good insert performance on the SSD due

to the workload cache locality (i.e., timely insertions) and the small cost of random writes

on the SSD. However, the insert performance of the B+-tree is poor on the SD card. Also,

the FD-tree and the LSM-tree have large insertion costs in comparison with TRIFL and

TRIFL*.

Regarding the query costs, TRIFL* offers by far the best performance on both storage

devices. TRIFL and FD-tree come next having better query execution time than the B+-

tree and the LSM-tree. The good query performance of TRIFL* is explained by the use

of large granularity I/Os and by the high degree of the node filling factor of the BAO+-

trees. The FD-tree also uses large granularity I/Os to process the queries but to a smaller

extent than TRIFL*. Besides, the FD-tree and the B+-tree are penalized by small node

filling factor, which is particularly pronounced with timely insertions. TRIFL also has a

very good node filing factor as TRIFL*, but the lack of large granularity IOs in the query

processing makes it less efficient than TRIFL*. Finally,the LSM-tree exhibitsthe lowest

query performance on both the SDcard and the SSD because it has to search in multiple

components in each partition index.

Overall, TRIFL proves to have the best insert performance, but not the best query per-

formance. By contrast, TRIFL* trades insert performance to obtain significant gains in

query performance.

Figure 3.22 shows the relative throughput of the tested methods with the real dataset

at different i/q ratios. For better readability of these graphs, we take the throughput of

the B+-tree as a base line, and show for each method the ratio between its throughput

and the throughput of the B+-tree. The first general observation is that the throughput

of each method increases with the increase of the i/q ratio. This is normal since an

insert operation is much cheaper than a query. The second general observation is that

TRIFL* offers the best throughput no matter the values of the testing parameters. This

is as expected since TRIFL* has both excellent query and insert performance as discussed

above. TRIFL delivers comparable throughput values with TRIFL* only for workloads

having large i/q ratios, i.e., for insert-oriented workloads. This indicates the importance

of the tuning process to achieve good performance in general with various i/q ratios. The

FD-tree has throughput values comparable to TRIFL* only on the SSD device and low

i/q ratios. By contrast, the LSM-tree offers the worst performance on the SSD and on the

SD card with low i/q ratios. The performance of the B+-tree is comparable to that of the



3.4. Experimental evaluation 61

Figure 3.21: Insertion (left) and query (right) time for the tested methods on the SD card
and SSD at i/q ratio of 1000

Figure 3.22: Relative throughput for the tested methods on the SD card and the SSD at
different i/q ratios and timely insertions

FD-tree and the LSM-tree. The B+-tree manages to be more efficient than the FD-tree

and the LSM-tree on the SSD and for the highest i/q ratio.

Globally, the results with the real dataset confirm the performance trends with the syn-

thetic dataset and the timely insertions (see Sections 3.4.2 and 3.4.3). The main difference

between the two sets of results is that the absolute throughput values of all the tested

methods are larger with the real dataset. The explanation is that the trajectories in the

real dataset are much sparser in both space and time, which significantly increases the

query selectivity and therefore, decreases the query costs for all the tested methods. At

the same time, the insert performance of all the methods is generally the same with the

real and the synthetic datasets.
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3.5 Discussion

In the light of the above experimental results, we analyze in this section the reasons that

make TRIFL framework appropriate for any kind of flash storage and also more efficient

at indexing trajectory flows in flash than the other tested methods.

TRIFL is designed to reconcile the requirements of trajectory indexing with the charac-

teristics of flash storage (see Section 3.2.1). The existing access methods either consider

the specificity of trajectory indexing or the characteristics of flash storage. Since these

requirements can be conflicting, they can only be addressed efficiently if considered to-

gether. To this end, TRIFL uses adapted low level storage structures, i.e., BAO+-trees

and TIIs. These structures are specifically devised to conform to all the design principles

listed in Section 3.2.1. In particular, with respect to the flash storage design principles,

the main role of these structures is to transform the random writes engendered by the

updates into sequential writes as described in Section 3.2.2. Therefore, TRIFL deliber-

ately trades query performance in order to avoid the costly random writes in flash and

improve the insert performance (conform to P1). Consequently, supporting large gran-

ularity writes becomes possible since all the updates in TRIFL are initially appended

(logged) to the index structure. Thus, the obtained benefit is twofold since first, the RWs

are transformed in SWs(conform to P3), and second, the obtained SWs are committed

with large I/Os(conform to P4). In addition, supporting the large granularity reads is

the consequence of an index reorganization operation, which is the merge between the

BAO+-trees and the TIIs. The merge produces clustered partitions, which in turn allows

retrieving data in large, consecutive blocks and improves the query performance(conform

to P5). Finally, given their small hot-data buffer requirements, the BAO+-tree and TII

structures allow for better buffer cache utilization(conform to P2), which in the context of

trajectory indexing significantly improves the index performance, again, by reducing the

costly random reads and writes. In conclusion, the proposed BAO+-tree and TII structures

constitute the foundation of TRIFL and play an essential role in the index performance

since these structures permit to transform the random writes into sequential writes, reduce

the index cache footprint and open the way for employing large granularity I/Os.

The experimental results confirm that both the reduction of the random writes and the

large granularity I/Os play an important role in the index performance. The B+-tree

generates many random writes and cannot employ large I/Os in our framework (see Figure

3.9 and 3.10). Compared with TRIFL, the performance gap is the largest (see Figure 3.12)

with the deferred, insert oriented workloads (since more random I/Os are generated in this

setting). This also applies to the FD-tree, which has similar insert performance (i.e., many

random writes) to the B+-tree. However, the FD-tree has much better query performance

than the B+-tree since it uses large I/Os in the query processing. Hence, the FD-tree

offers much better throughput with query oriented workloads on both the SD card and
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the SSD. In comparison with the FD-tree, the LSM-tree has the opposite behavior. The

LSM-tree has very good insert performance since it uses large I/Os and does not generate

any random write. However, the LSM-tree has very poor query performance. Therefore,

the LSM-tree offers its best performance with the insert oriented workloads since the insert

performance is the most relevant in this case.

Overall, all these methods are less efficient than TRIFL in both reducing the number

of random writes and in using large granularity I/Os. The number of random writes

is extremely low with TRIFL, while most of the I/Os are large granularity I/Os (see

Figure 3.9 and 3.10). Therefore, given a storage device, the higher the random write cost

is and the higher the throughput with large granularity I/Os is, the better the relative

performance of TRIFL will be in comparison to the other tested methods. Also, for all

devices, the speedup of TRIFL is much more pronounced with the deferred insert-oriented

workload since more random writes are generated in this case by the FD-tree and the

B+-tree. Moreover, TRIFL’s performance is more robust to cache size variations than the

competing methods (see Figure 3.16).

3.6 Conclusion

The advent of NAND flash storage, which is becoming the preferred storage medium in

mobile devices, sensors, personal computers, and high-end servers, raises new challenges

regarding the data storage and indexing. In this thesis we addressed the problem of in-

dexing trajectory data flows in flash storage. To this end, we introduced first a global

framework called TRIFL for indexing range and NN queries over free and constrained

trajectory flows. Then, we endowed TRIFL with a new indexing structure designed for

flash storage. The indexing structure of TRIFL is generic with respect to the main char-

acteristics of flash memory such as the asymmetric-read-write performance and the fast

large-granularity I/Os, which makes TRIFL adapted for both basic storage devices such

as the SD cards and powerful devices such as the SSDs. Also, TRIFL is supplied with an

online self-tuning algorithm that allows it to be adaptable with respect to the performance

specifications of the flash storage and the index workload. Moreover, TRIFL achieves good

performance with relatively low memory requirements, which makes the index appropri-

ate for many application scenarios. The experimental evaluation of TRIFL in comparison

with three representative index structures shows that TRIFL is very efficient and generic,

since it offers in general a much larger throughput than its competitors on an SD card, on

an SSD and even on an HDD.

TRIFL is designed for flash storage but the experimental results showed that TRIFL

also has excellent performance on HDD. The reasons are twofold. First, part of the design

principles of TRIFL concern the characteristics of trajectory data and are orthogonal to the
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type of employed storage. Second, magnetic disk storage shares common features with flash

storage, e.g., increased performance of large granularity I/Os (although not due to the same

technical reasons; on HDD a large granularity I/O corresponds to number of sequential

I/Os, which minimizes the arm movements and hence increases the performance). At the

same time, magnetic disks have other characteristics that are not shared by flash storage

such as the symmetric read-write performance. As future work we plan to investigate if the

TRIFL framework can be further improved for magnetic disks and therefore be generalized

for both flash and magnetic disk storage.
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Chapter 4

State of the Art

In the part II of this thesis, we address the problem related to privacy in personal location

data of participatory sensing systems that is carried at two Chapters (i.e., this Chapter

and the next one). This Chapter introduces the context as well as the motivations of this

topic. At first we introduce the motivation and the requirements in the Section 4.1. Then,

we present the related work in the Section 4.2.

4.1 General context

There is an increasing interest in mobile participatory sensing for urban monitoring, which

appears to be a better alternative to traditional infrastructure-based sensing to cope with

the high installation and maintenance costs, as well as the coverage limitation. Many

projects have been conducted recently around the world - or are still ongoing - in the area

of environmental participatory sensing, among which Citi-Sense in Oslo, CamMobSens

in Cambridge, MetroSense in Dartmouth, and OpenSense in Switzerland, to cite but

a few1. For a recent review, refer to [85]. Also, many applications that exploit the

sensing features of smart-phones are already available. Examples include community based

traffic monitoring (e.g., INRIX, Waze or Navigon2), or noise mapping [28]. In addition,

the emerging lightweight low-cost sensors are changing the paradigm of environmental

monitoring, according to the US Environmental Protection Agency, which proposes a

toolbox3 for citizen sensing of air quality.

In these scenarios, the citizens act as mobile probes and contribute to spatial aggregate

statistics, which in turn, benefit to the whole community, e.g. in dynamic traffic navigation

or air quality mapping and alerts. Various statistics are of interest: basic count and den-

sity, average of reported measures by location and time, or more complex geo-statistical

1For a recent review, refer to the European COST Action EuNetAir: http://www.eunetair.it
2INRIX: http://inrix.com, Waze: http://www.waze.com and Navigon: http://navigon.com
3http://www.epa.gov/heasd/airsensortoolbox/
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operations such as spatial interpolation [74]. Unfortunately, most current mobile participa-

tory sensing systems (MPSS) require users to reveal their locations to trusted monitoring

servers. This raises serious privacy concerns and prevents a wide adoption of the system

since, by knowing the user location traces, an attacker can easily identify the participants

and infer their personal habits, activities, health-related information or any other sensitive

personal data [47], [26]. Several works consider the MPSS problem such as [18], [27], [28],

[92], [110], [81]. However, most approaches require trusting a proxy server [27], [110], [81]

while others are too costly [18], [28], or sacrifice the accuracy for privacy [92].

Hence, providing a high-quality MPSS, while protecting the users’ privacy, is still a chal-

lenge. Recently, the emergence of personal secure devices has opened new perspectives in

personal data protection. Be it a secure portable token [8], [111] communicating with the

user smartphone or plugged inside it (e.g., Google Vault4), a tamper-resistant hardware

security module securing the on-board computer of a vehicle [30], or the secure TrustZone

CPU [12], [108] of the ARM cortex-A series equipping most of mobile devices today, all

such secure devices offer tangible, hardware-based security guarantees. Their secure data

processing capability can be employed in a distributed, privacy-by-design architecture,

providing an alternative to the traditional server-centric architecture.

This part presents PAMPAS, a Privacy-Aware Mobile Participatory Sensing system for

efficient mobile distributed query processing in the context of MPSS. PAMPAS provides

high-level user privacy and satisfies the MPSS real-time constraints by ensuring acceptable

communication and computation costs. These features give users strong incentives for

participation, in addition to the benefits they get from MPSS applications [2], [39].

In PAMPAS, all participants have a mobile device enhanced with secure hardware (i.e.,

any of the types described above), called a secure probe (SP). SPs act as probes for the

target phenomenon, perform distributed query processing, and share aggregates or other

type of derived data with the users. The secure hardware prevents users from accessing

other users’ data during the distributed computation. Secure probes exchange data in

encrypted form with help from a supporting server infrastructure (SSI). To provide real-

time results, PAMPAS employs an efficient parallel location-based aggregation protocol

which partitions the probes according to their geographic distribution. The construction

and the maintenance of these partitions aim at reducing and balancing the workloads on

worker SPs. To avoid leaking private information about these partitions to SSI, PAMPAS

uses a privacy-aware protocol for adaptive spatial partitioning of secure probes.

We implemented and validated PAMPAS using representative secure hardware platforms.

We used two applications for experiments, traffic and noise monitoring, with two synthetic

mobility datasets representing a small and a medium-size city. Using these applications, we

compared PAMPAS with a state-of-the-art secure aggregation protocol described in [111].

4http://www.cnet.com/news/googles-project-vault-is-a-security-chip-disguised-as-an-micro-sd-card/
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The experimental results show that PAMPAS outperforms this protocol in terms of latency

and scalability. Also, the security analysis demonstrates that PAMPAS avoids the leakage

of any individual private data.

4.2 Related work

4.2.1 Traditional systems

Traditional system architectures used in MPSS such as [27], [100], [110] rely on a powerful

centralized server to collect data from mobile participants, process it, and publish the

result. The works in [27], [110] are some instances that use a server-centric architecture

to monitor the users’ environment conditions or traffic network. For example, [27] uses

the sensors in the mobile devices of the volunteers to gather noise levels, which is sent

to a central server for building the noise pollution map. In [110], the cars periodically

send their locations to a centralized server that computes the global traffic density. Many

commercial systems, such as INRIX, WAZE and Navigon, are based on similar solutions.

This server-centric model is straightforward and easy to deploy, run or maintain. However,

this basic approach also raises serious privacy concerns and prevents a wide adoption of the

system since, by knowing the user locations, an attacker can easily identify the participants

and infer their personal habits and activities [47], [26].

4.2.2 Privacy-aware approaches

Many recent works deal with the privacy issue in participatory sensing [22], and an impor-

tant part focus on the traffic monitoring use-cases or environment monitoring systems [18],

[48], [92] [23], [37],[103], [28], [60], [90]. They can be grouped in three classes, i.e., based on

a server-centric architecture, on cryptographic protocols or secure hardware approaches.

4.2.2.1 Server-centric approaches

Virtual Trip Lines (VTLs). The model proposed in [48] deal with the privacy issue by

distributing the traffic monitoring service implementation across several specialized servers

and by providing a spatio-temporal cloaking of the users under the VTLs. This system was

designed based on the ideas of virtual trip lines (VTLs) and associate cloaking techniques

which means the grid of geographic makers in this systems indicates where the vehicles

should provide their location updates. Indeed, VTLs is composed by a set of entities such

as probe vehicles, ID proxy server, VTL generator and traffic monitoring service servers

(VTL servers)(see Figure 4.1). Each component in VTL system takes responsibility of

All figures in this section are taken from the cited references with the permissions of the authors.
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Figure 4.1: The architecture of VTL

specific task. For example, ID proxy servers authenticate each client to make sure all their

received data are sent from authorized vehicles before encrypting and forwarding all these

data to VTL servers via secure links. VTL generator determines the position of VTLs,

store them and distribute to probes when received the requests. Lastly, VTL servers

obtain all the encrypted updates from probes but don’t have any knowledge about vehicle

identities. VTL servers do the statistic based on these data. To this end, by distributing

the services of system into many components VTLs system could protect again any single-

component attacks. Although the attack of a single system component prevents linking

the identity and location of the users, choosing privacy-insensitive locations for VTLs is

tricky and limits the traffic information to a part of the road network. Also, the problem

of multi-component attack (or collusion) remains, as well as the high cost of building such

a complex system distributed over several components.

Spot Me if you can (SpotMe). SpotMe [92] is also trying to deal with the problem

of traffic monitoring with the high privacy constraint. SpotMe [92] proposes a different

approach consisting in mixing the real user’s location with fake locations before posting

them to a central server with the help of a small software (i.e., around 30KB) on user’s

side. Then, the server estimates the aggregated user locations by using the probability

theory. By this way, the real locations of user are blurred among their fake locations and

thus Spotme doesn’t need to trust to servers. However, the traffic estimation errors can
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be important (around 20%), while the number of observed spatial units cannot exceed a

few hundreds. Furthermore, SpotMe involves higher communication costs because of the

large number of fake locations, while linkability may still a problem for users that send

many consecutive location updates, which limits the usability of this approach to sporadic

updates.

AnonySense. Indeed, AnonySense using the participating users to collect the data and

proposed a system composed by many entities such as mobile nodes (MNs), registration

authority (RA), task services (TS), report service (RS), application (App), access point

(AP) and mix network (MIX). Each component takes responsibility to a specific role.

Since, any single malicious entity in this system can’t infer much information from system.

In other word, AnonySense protects quite well any kinds of single-component attack.

However, the assumption of there is no collusion of many components in this system to

invade user’s privacy is unrealistic. Second, building such infrastructure is costly.

Poolview. Also designing a system based on participatory sensing, Poolview [37] tackles

the problems of user-privacy by applying user’s data perturbation algorithm together with

noise-based solution. However, this system need to trade off between user’s privacy and

the accuracy of the system. The higher required privacy level, the higher error ratio.

Furthermore, no matter what the algorithms applied for user’s perturbation, there’s no

guarantee that user’s data is always protected.

PriSense. Shi et al. [103] proposed a people-centric urban sensing system to tackle

the problems of aggregation statistics. Using people-centric to obtain the sensed data,

PriSense inherits all of the advantages of this architecture such as widespread, low cost,

user-mobility and etc. In the architecture of Prisense, they classified the system into

two main components: powerful aggregation severs (ASs) and participanting individuals

(Nodes). The nodes check the queries from their connected AS via one-hop downlinks and

contribute their data to this AS if they are relevant. To be more secure, PriSense also

provides pairs of public/private keys between ASs and nodes. Each AS needs to compute

its aggregate data before doing the final aggregation between ASs. Final result is sent

back to the querier through a service provider. This system shows to be very secure but it

still shares the common shortcoming of server-centric architecture, that is to trust a server

or group of servers.

By employing a fully decentralized, user-centric architecture, PAMPAS avoids all the above

listed problems, since all the computations are delegated to the participants. Moreover,

the trust is enforced by using cheap but highly secure, tamper-resistant hardware at the

user side (see Section 5.1 in Chapter 5).
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4.2.2.2 Cryptographic approaches

Another way to protect the users’ privacy is to use secure cryptographic protocols [18], [28],

[60], [90]. Such solutions can offer formal guarantees on location privacy and accountability

to protect against users trying to upload large amounts of fake samples. Typically, the

cryptographic solutions are based on homomorphic encryption schemes allowing a central-

server [60], [90] or the users [18] to aggregate the samples directly on the cyphertext. We

present below some recent studies in this trend.

Haze. Haze in [18] introduced a general approach in order to generate traffic-statistics

using user-centric architecture. Haze consists three phases: Setup, data upload and aggre-

gation. The general ideas of Haze are to gather information from authentication users (in

data upload period), encrypt these data by using the key generated in the setup period.

Lastly, Aggregation process will be delegated to a list of selected authorized users. Once

final aggregate results are obtained, it is published by the service provider. However, this

approach also reveals some shortcoming. At first, there is no guarantee that the users are

not malicious. Secondly, the results show that it’s quite costly and thus it’s hard to be

applied in our context with the real-time constraints and continuous with a large number

of participants.

NoiseTubePrime. Drosatos et al. [28] proposed a system called NoiseTubePrime in

order to monitor the noise pollution using cloud computing technique and homomorphic

encryption. The general architecture of NoiseTubePrime is shown in Figure 4.2. Con-

cretely, participants in this system obtain data using their sensor integrated in their mo-

bile devices. These sensed data have to be encrypted before delivering to NoiseTubePrime

Agencies (i.e., which is built on top of cloud system architecture) in order to calculate the

statistic results without descrypt these data using homomorphic encryption technique.

This work shows to archive a high level of privacy as the computing entities don’t have

any information of participant while it also takes advantages of distributed computing

resources via could computing systems. However, similar to any other homomorphic sys-

tems, NoiseTubePrime also shares some shortcomings that are presented later on.

PrivMobileSensing. Another protocol for mobile sensing that supports sum, min ag-

gregates using the homomorphic encryption in combination with a keyed-hash message

authentication code (HMAC) to guarantee that server can not infer anything accept the

final aggregate statistics. This work [60] is quite similar to the work proposed in Popa et

al. that is presented in the next paragraph, thus it shares the same drawbacks.

PrivStats. Popa et al. [90] guarantee an approach for aggregation statistics without

leakage any user information. Also using homomorphic technique but Popa el al. still keeps

server-centric architecture (see Figure 4.3). The authors designed the solution based on the

combination between cryptographic and accountability protocol. This solution prevents

any attack from both server’s side and user’s side to infer user’s information or to bias the
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Figure 4.2: The general architecture of NoiseTubePrime

Figure 4.3: The architecture of PrivStats

aggregate result. The upload messages have to be encrypted and follow the accountability

checking process before arrive to server. The server then does the aggregation based on

the cipher texts of the uploads by using homomorphic encryption scheme.

However, the cryptographic methods have to face two major limitations. First, homo-

morphic encryption only allows the computation of basic aggregate functions (e.g., count,

average, sum, standard deviation), while more advanced functions require fully homomor-

phic encryption schemes, which are not computational feasible today. Second, even with

the basic aggregate functions, the cryptographic protocols can incur a (very) large com-

putation and communication cost. Hence, the existing works typically limit the size of the

monitored space (e.g., the number of roads) and the monitoring pace. Therefore, such so-

lutions cannot meet the scalability and the real-time requirements of a MPSS at the same

time, and are not generic w.r.t. the type of aggregate function. Moreover, depending on

the encryption protocol, the accuracy of the aggregate result may also be impacted since

only a (low) number of discrete range values can be computed with such protocols [18],

[28], [60], [90].
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Figure 4.4: The protocol of METAP

4.2.3 Secure hardware approaches

Recent works have also proposed the use of secure hardware at the user-side [8], [111],

which has been proposed independently from the context of participatory sensing. The

trust in such a distributed architecture in which all computation is done by user devices

arises from two sources:

� The decentralization, i.e., there is no central-server to be trusted or to be exposed

to attacks having a large benefit/cost ratio.

� The (tamper-resistant) secure hardware at the user-side, which protects the devices

against physical attacks (even from the device holder).

METAP. In [8], Allard et al. propose METAP, a generic privacy-preserving data pub-

lishing protocol in the context of an architecture composed of low power secure devices

and a powerful but un-trusted server in order to release sanitized data to third parties.

In particular, METAP proposed an user-centric architecture by using secure hardware

devices (i.e., secure tokens) integrated on participating individuals (i.e., participants).

The overview of this proposed approach is shown in Figure 4.4. Instead of using servers,

METAP delegated the processing workload to a group of participating individuals having

a secure device. However, this data publishing protocol does not consider the case of

spatio-temporal sensed values and cannot be used in participatory sensing aggregation.

Secure protocol. To et al. [111] propose a similar architecture, but consider the problem

of executing basic SQL queries over a distributed database without revealing any sensitive

information to central servers. The proposed secure aggregation protocol is generic and
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can be used to perform many types of computations within the user-centric architecture.

Concretely, To et al. designed a basic and secure mechanisms in order to compute the

queries and share data between participants and servers. The detail of this protocol is

shown in Figure 4.5. The system is composed by two main entities Trusted Data Servers

(TDSs) and Supporting Server Infrastructure (SSI) in order to execute the queries from

the queriers. At first, the queriers could send their queries to SSI so that participating

TDSs could download and compute the aggregate data. During the computation process,

TDSs could interchange the computed data or intermediate result via SSI. Since, all of the

calculation are executed in parallel on TDSs’ side, the main roles of SSI in this model are

only for communication and temporary storage. All of data exchanged or temporary stored

in SSI has to be encrypted to avoid any effort of SSI to read or infer user’s information.

The final aggregate result is sent back to the querier through the SSI. The authors also

assumed that TDSs only answer the authorized queries which means the final results will

not reveal any user’s sensitive information. In detail, the authors proposed four kinds of

protocols (i.e., Generic query evaluation, secure aggregation, noise-based and Equi-depth

histogram-based protocols) which are both mainly contain 3 main phases: collection phase,

aggregation phase and filter phase (see Figure 4.5. First, the SII collects the related tuples

sent by the TDSs in the collection period. Each tuple (or fake tuple) is encrypted using non-

deterministic encryption so that the SSI cannot gain any knowledge from these updates.

All the TDSs share a secret key to encrypt/decrypt the updates. Note that, although an

TDS can decrypt the updates, a user is not allowed to access the decrypted data in her

SP and that the tamper-resistant hardware protects the transiting data also from the user

herself. At the end of the collection period, the SSI triggers the aggregation period. In this

phase, only a (small) subset of TDSs are involved. The SSI shuffles the collected samples

and partitions the sample set such that the number of updates in a partition can fit the

RAM resources of an TDS (otherwise, the persistent Flash storage of the SP has to be used

incurring a much higher computation cost). Then, each sample partition is sent to an TDS,

which decrypts the data and computes a partial aggregate result for the received updates.

The encrypted partial aggregate results are sent back to the SSI, which re-shuffles and

re-partitions them. The process repeats until the final aggregate result is obtained. Note

that at each iteration, the number of TDSs participating in the computation decreases

with the remaining number of samples to be aggregated. In particular, in the last round,

a single TDS is selected to produce the final aggregate result. Finally, the filtering period

consists in eliminating the not related result and delivering the result to queries.

However, considered in our context, the generic protocol proposed in [111] incurs high

computation and communication costs, especially with a large number of users or aggre-

gate groups. There are three reasons for that: (i) since a worker probe can aggregate

only samples belonging to the same aggregate groups, the computation can require many

iterations; (ii) the number of aggregate groups processed by a probe in an iteration can
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Figure 4.5: The querying protocol

exceed its available RAM size, which highly increases the computation cost; (iii) in case

of holistic aggregate functions (e.g., median or top-k), all the samples in an aggregate

group have to be known by the processing probe, thus the aggregation phase cannot be

parallelized, which greatly affects the scalability of the system.

PAMPAS shares a similar architecture with the above mentioned works. However, the

existing aggregation protocols are not adapted to the mobile participatory sensing compu-

tations. In particular, the high dynamicity of the participants, the continuous nature of the

computation and the complexity of the aggregate statistics, make the existing protocols

inefficient and not scalable to be used in our system.

A centralized solution based on secure hardware could also be devised using recent pro-

posals to ensure shielded application execution over untrusted servers. For example,

Haven [14] extends the hardware level protection features provided by the Intel SGX

architecture from code snippets to the entire OS. But there are limitations: this solution

slows down the computation substantially; the entire security architecture depends on

the chip manufacturer’s ability to protect the secret keys; programmers will miss certain

features, such as process creation, that are not supported.



Chapter 5

PAMPAS

5.1 System overview

This section presents the system architecture of PAMPAS, the threat model in our system,

and the data and computation model of the system. Based on these components, we derive

the requirements for the PAMPAS protocols.

5.1.1 System architecture

PAMPAS relies on a hybrid architecture combining secure elements at the user side (secure

probes – SP) and a supporting server infrastructure (SSI) that enables secure exchange of

messages between the mobile users (see Figure 5.1). SPs and SSI jointly run two protocols

to exchange sensed sample updates, continuously compute the spatially aggregated results,

and periodically partition SPs according to their location. This architecture fully protects

the users’ privacy w.r.t. the SSI.

Compared to a purely decentralized peer-to-peer (P2P) architecture, this hybrid architec-

ture has the salient advantage of not consuming any resources from the participants to

maintain the P2P overlay, which is important given the low resources and availability of

the user devices. In addition, it exchanges messages between SPs in O(1) hops as opposed

to the typical O(logN) hops in P2P networks.

Secure Probe (SP). Each user holds a secure portable device, which can be implemented

by any type of (tamper-resistant) secure devices (see Figure 5.2) flourishing today and de-

scribed in Section 4.1 in Chapter 4. Whatever its commercial name and form factor, a

secure device, called secure probe (SP) hereafter, embeds at least a secure microcontroller

(MCU) (e.g., a smart card chip) for computation connected to a large NAND Flash mem-

ory (e.g., an SD card) for data storage. An SP plays three roles: (i) a mobile probe,

(ii) a processing node, and (iii) a query issuer. Indeed, the SP sends encrypted samples
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Figure 5.1: System architecture

Figure 5.2: Examples of secure tokens

(containing spatiotemporal sensed measures) to SSI, participates in the data aggregation,

and receives the final results from other SPs with the help of SSI. Given their high-level of

security, SPs are considered trusted in our system. However, this feature comes at a price.

The MCU usually has a low power CPU and a tiny RAM (a few tens of KB). Also, in

some cases, SPs may be battery powered. In addition, SPs have low availability since they

can be connected/disconnected as required by the users. Therefore, all the computation

and communication with the SPs have to be highly optimized.

Supporting Server Infrastructure (SSI). Different from the typical server-centric

architecture, the SSI in our system acts only as a coordinator for exchanging messages

between the SPs and for temporary storage purposes. Since the SSI is not trusted, all the

temporary results stored in the SSI are encrypted using non-deterministic encryption.

In conclusion, the security and privacy in PAMPAS arise from the combination of secure

hardware with a high degree of distribution of the architecture (i.e., all computations are

executed by some of the SPs). The challenge is then to be able to continuously compute

any type of aggregate functions in real-time in this user-centric architecture given the low

resources of the SPs.

5.1.2 Threat model

The attackers in PAMPAS could be either users or the owners of SSI. Their goal is to collect

private user information (e.g., location or sensing data). Using this private information,
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attackers can determine the user identities and learn their activities and behaviors. Our

goal is to ensure that users cannot read the raw data reported by other users. The SSI must

not be able to read the user raw data, and, in addition, must not be able to infer personal

user information from aggregated data even if it uses external background information.

Even though the users are untrusted, we assume that all the SPs are trusted, which

is reasonable considering that the tamper-resistance of the MCU provides a high level of

protection against physical and side-channel attacks, and in particular for the data residing

in RAM since the RAM memory is located inside the MCU. We also assume that the

hardware manufacturer is trusted and protects the secrets embedded in SPs. In addition,

all the persistently stored data in the NAND Flash is cryptographically protected.

Furthermore, we assume an honest-but-curious threat model for SSI (i.e., the SSI obeys

the protocol it is supposed to do, but may try to infer anything it can from the data or

behaviors is sees). Considering a malicious SSI (i.e., the server tampers with the protocol

is of little interest, since a malicious SSI can be easily detected (e.g., the SPs that aggregate

the data verify if their own samples are present in the data sent by the server) leading to

critical financial/legal consequences for the service.

Finally, we assume that the communication between SPs and SSI is anonymous, e.g., by

using a proxy forwarder or an anonymization network (e.g., Tor) We assume such systems

are able to hide the packet origin from an adversary, so that privacy cannot be compromised

by a malicious server searching to recognize the origin of the uploaded messages. Let us

emphasize that IP anonymity is not enough to protect the user privacy in MPSS because

identity information could be determined from the location and sensing data.

5.1.3 Data and computation models

Data model. PAMPAS is designed to be generic with respect to the type of computation

required by participatory sensing applications. In most cases, such applications require

the aggregation of geo-localized and time-stamped sensed values collected by the sensing

devices of the participants. Therefore, a participant’s device periodically generates an

update in the form sample = (location, time, value), which is encrypted and sent to the

SSI. PAMPAS does not impose any restriction on the generation frequency of samples,

which may depend on the application sample generation policy. However, the system

should be efficient and scalable for a large number of participants and a high generation

frequency of samples. Also, the participants’ privacy should be fully protected independent

of the number and spatiotemporal distribution of the samples. Furthermore, PAMPAS

considers two types of locations corresponding to the two typical types of movements

of users: (i) free movements in the two-dimensional space, i.e., location = (x, y); (ii)

movements constrained by a transportation network (e.g., road or railroad network), i.e.,

location = (rid, pos), where rid is the road identifier and pos is the relative position on
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Figure 5.3: Supported spatial-temporal aggregates in PAMPAS

the road. Finally, the value corresponds to the sensed measure (e.g., traffic speed, noise

level, etc.).

Query model. Given a stream of samples and an aggregate function, PAMPAS pro-

duces a spatiotemporal aggregation of the sample stream such as the stream-SQL-like [51]

query formulation in Figure 5.3. The aggregation is temporal since the result is computed

continuously over time as long as it is required or whenever the number of participants

exceeds some predefined threshold. In this way, the spatiotemporal evolution of the mea-

sure of interest is monitored over time. To this end, PAMPAS divides the stream using a

sliding time window (see Figure 5.3) and computes an aggregate result based on all the

samples generated in the time window. The final aggregation result is a spatial function

representing the evolution in space of the observed measure in the respective time window.

For instance, the result can be the noise heat-map in the covering area of a city or the

average travel time in a road network. As with the duration of observation, we do not

impose any restrictions regarding the extent of the observed space.

Spatial units. As shown in the above query, spatial aggregates are based on some discrete

referential space, i.e., a finite set of spatial units. Without loss of generality, we consider

two types of referential spaces corresponding to the two types of users’ movements. In the

case of free movement, we consider a uniform grid and each grid cell corresponds to a spatial

unit. The size of the units is determined based on the application requirements, space

size, number of participants, etc. In the case of constrained movement by a transportation

network, we consider that a spatial unit corresponds to a network (road) segment, i.e., the

network path connecting two adjacent network nodes (e.g., the road segment between two

intersections). In both cases, the number of spatial units can be large (e.g., hundreds of

thousands). The COUNT in the query model is optional and is required in the aggregation

protocol to check the probes partitioning.

Aggregate functions. PAMPAS can compute most types of aggregate statistics required

by participatory sensing applications. Practically, our system can compute any type of

function having reasonable time and space complexity to be computed in real-time given

the relative low CPU power and little RAM of the SP. For illustrative purpose, we consider

three classes of functions in this part:

� (i) Typical algebraic functions: count, sum, average, standard deviation. Such ag-
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gregate functions are the most popular in the works related to participatory sensing

[18], [28], [90]. These functions allow for example to compute the average travel time

or the traffic density (count the number of cars) in a road network.

� (ii) Specific functions: inverse distance weighting (IDW). Applications may require

specific aggregate functions. For instance, an application monitoring the noise pollu-

tion in the city could use the IDW function to compute, from the inputted samples,

a heat-map of the noise level in the entire space [74].

� (iii) Holistic functions: median, percentile, top-k. Such functions are also frequently

used in statistical computations. Their particularity is that the computation of the

result requires accessing the entire sample set and cannot be achieved incrementally

by accessing only subsets of samples as with the previous two classes of functions.

An important observation is that the cryptographic solutions cannot be applied for specific

or holistic functions (see Section 4.2 in Chapter 4). Also, the holistic functions cannot be

computed efficiently in a distributed architecture by the secure protocol proposed in [111]

(as shown in Section 5.5).

5.1.4 Protocol requirements

In the light of the above description of the proposed user-centric architecture, the PAM-

PAS protocols have to deal with the following challenges: (i) Privacy : By keeping all the

sensitive data in the SPs, the adopted user-centric architecture matches this requirement

in contrast with a server-centric architecture. In short, the computation protocol should

not reveal to the SSI any additional information about the participants’ paths besides what

the SSI can infer from the aggregate result. (ii) Generality : the protocols should be able

to compute any type of function over the spatiotemporal sensed measures by the mobile

users and covering a large observation space. This is different from the works based on

cryptographic approaches in which, typically, only basic computation (e.g., simple aggre-

gates like sum, average) can be achieved and only in specific locations over limited periods

of time. (iii) Efficiency : the protocols should be highly efficient to be able to continu-

ously compute the aggregate results in real-time with very limited resources. Indeed, for

economic and security reasons, the SPs used for data processing have low resources and

limited availability. Hence, it is necessary to minimize the computation and communica-

tion costs of the PAMPAS protocols. (iv) Scalability : the protocols should allow PAMPAS

to scale to a large number of participants (e.g., up to millions of users), high sampling

frequencies, and very large regions. (v) Accuracy : PAMPAS should continuously reflect

the sensed measures with good precision. In other words, protecting the users’ privacy

should not impact the accuracy of the aggregate result computed by the protocols.
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Figure 5.4: Workflow representation of the global protocol in PAMPAS

5.2 Global aggregation protocol

The global privacy-preserving protocol in PAMPAS consists in three phases that are re-

peatedly executed in pipeline (see Figure 5.4). First, the SSI collects all the sensing

updates sent by the participants for a period equal to the sliding time window (i.e., the

collection period). Each update is encrypted using non-deterministic encryption so that

the SSI cannot gain any knowledge from these updates. All the SPs share a secret key1

to encrypt/decrypt the updates. Note that, although an SP can decrypt the updates, a

user is not allowed to access the decrypted data in her SP and that the tamper-resistant

hardware protects the transiting data also from the user herself. Therefore, as for the SSI,

the users have access only to the final results and not to the raw data.

At the end of the collection period, the SSI triggers the processing period. In this phase,

only a small subset of SPs, which are randomly selected by the SSI, are involved. The

SSI partitions the collected samples such that the number of updates in a partition can

fit the RAM resources of an SP (otherwise, the persistent Flash storage of the SP has

to be used incurring a much higher computation cost). Then, each sample partition is

sent to an SP, which computes a partial aggregate result for the received updates. The

encrypted results are sent back to the SSI. Finally, the delivery period consists of delivering

the current partial aggregate results to the queriers. Each querier needs to perform the

final aggregation of these partial encrypted results.

Algorithms 1 and 2 give the detailed description of the operations executed by the SSI

and the SPs respectively. In the following, we denote by Ek and nEk the symmetric

deterministic and non-deterministic encryption with the key k, and by E−1k and nE−1k the

opposite decryption operations.

To address the performance limitations of the existing protocols [111] (see Section 4.2 in

Chapter 4), the aggregation protocol in PAMPAS groups the participants based on their

location, which permits processing together the generated samples in a group by a single

1To increase security, the secret key is renewed periodically. The key is generated randomly by a
randomly chosen SP.
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Algorithm 1: PAMPAS protocol on the SSI-side

1 collection period():
2 /* Receive encrypted updates from SPs */
3 while (true) do
4 message = (Ek(Gi), nEk(sample))

store(message)→ list[Ek(Gi)][currentT imeWindow]

5 processing period():
6 foreach i in {Ek(Gi)} do
7 /* feed in parallel the randomly selected SPs */

randomly select SPi ∈ Ek(Gi)
8 while message← list[Ek(Gi)][lastT imeWindow] do
9 send(message, SPi)

10 foreach i in {Ek(Gi)} do
11 /*Receive the final results from worker SPs*/

12 enc resultfinali = (Ek(Gi), nEk(result))

13 delivery period():
14 foreach i in {Ek(Gi)} do
15 /*Push resulti to all requesting SPs*/

16 multicast(enc resultfinali , {SPk})

Algorithm 2: PAMPAS protocol on the SP-side

1 collection period(): /* for all SPs */
2 /* Generate and send the sensing update: update(Gi, sample) */
3 message = (Ek(Gi), nEk(sample)) send(message, SSI)

4 /* Send a fake sample to the SSI with probability P fakeGi
*/

5 if rand(0, 100) >= P fakeGi
then

6 fake message = (Ek(Gi), nEk(fake sample)) send(fake message, SSI)

7 processing period(): /* only for the selected SPs, one for each Gi */
8 while message = receive(SSI) do

9 sample = nE−1k (message)
10 result = result⊕ sample

11 enc resultfinali = (Ek(Gi), nEk(result))

12 send(enc resultfinali , SSI)

13 delivery period(): /* for all SPs */
14 /* Pull the results for required {Gi} from the SSI */
15 foreach i in {Ek(Gi)} do
16 send request(Ek(Gi), SSI)

17 resultfinali = nE−1k (receive(SSI))
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SP. To this end, the users also send the deterministically encrypted value of the spatial

unit they are currently located in, in addition to the non-deterministically encrypted value

of the sample, i.e., message = (Ek(groupID), nEk(sample)) (see Algorithm 1, line 4 and

Algorithm 2, line 3). Consequently, the SSI can group the messages based on the encrypted

unit number and then send each group of samples to a different SP for aggregation (see lines

7-9 in Algorithms 1 and 2). By doing so, the advantage is manifold. First, the processing

period is guaranteed to terminate in a single iteration, since each involved SP produces

directly the aggregation result corresponding to a spatial unit. This greatly improves

both the computation and the communication cost of the aggregation process. Second,

data processing by an SP is also efficient since only one aggregate is computed, which

greatly reduces the RAM requirements and avoids/reduces the usage of the persistent

storage. Third, the final aggregate result is also partitioned and the queriers can demand

the results only for specific spatial units, which further improves the communication cost.

However, despite all these benefits, the above approach has one fundamental shortcoming

both originating from the skewed spatial distribution of the participants. Although the

exact location of the updates and the unit ID are hidden, the SSI knows the number

of participants in each spatial unit. If the SSI has access to side information about the

spatial distribution of the users (e.g., global traffic density information), it may use this

information to infer the (approximate) location of the participants and compromise their

privacy.

5.3 Probe partitioning protocol

To solve the privacy problems that could appear due to the skewed spatial distribution of

the participants, PAMPAS continuously partitions the set of participants based on their

current location and the spatial units of the query. Similar to the global aggregation

protocol, this privacy-aware partitioning protocol is executed by SPs. The idea is to group

SPs located in adjacent spatial units such that the number of SPs in the resulted groups is

approximately the same. Therefore, a group Gi will cover several spatial units and include

all the SPs in these units.

The probe partitioning has to be recomputed periodically to keep the groups balanced since

the users’ distribution in space changes over time. Moreover, the groups should contain

users located in closely situated spatial units to maximize the lifetime of a partitioning.

The challenge is to implement a partitioning algorithm that can be executed periodically at

SPs because the typical spatial partitioning algorithms are much too costly to be considered

in our context (i.e., limited-resources SPs).

Our algorithm is based on the following idea. We use a space-filling curve to index the

spatial units of the application query. A space-filling curve has the property to map
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Algorithm 3: Checking probe partitioning (SP-side)

1 check probe partitioning():/* one randomly selected SP */
2 /* Pull all the results from the SSI */
3 foreach i in {Ek(Gi)} do
4 send request(Ek(Gi), SSI)

5 enc resultfinali = receive(SSI)

6 allCounts[Gi][]← E−1k (enc resultfinali )
7 update localy stored counts for spatial units /* also required to compute

the probability to generate fake samples */
8 compute weights[Gi] = SUM(allCounts[Gi][])

9 compute standard deviation(weights)
10 if standard deviation(weights) < threshold then
11 send for broadcast(nEk(allCounts), SSI)

12 else
13 execute probes repartitioning()

Figure 5.5: Hilbert indexing of spatial units

a multidimensional space to a one-dimensional space such that, for two objects that are

close in the original space, there is a high probability that they will be close in the mapped

target space [13]. Then, we sort the spatial units on the space-filing curve index. Once

sorted, an approximate balanced grouping can be checked and computed in O(G) space

complexity and O(N ) time complexity, where N is the number of spatial units and G the

number of probes groups.

Indexing the spatial units. Several space-filling curves have been proposed [13]. The

most prominent ones include the snake-like curve [13], Peano curve [35], Gray code [31],
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[32], Hilbert curve [34], [50] or z-ordering curve [66], [78], [77], [79]. However, the compar-

ative tests in [1], [50], [33] show that the Hilbert and z-ordering are outstanding among

these choices for spatial data. Consequently, in our system, we use Hilbert curves [34],

[50], but other types of space-filling curves can be used as well to index the spatial units

considered by the participatory sensing application (e.g., z-curves). In the case of free

movement, the indexing is straightforward since the space is already partitioned with a

uniform grid (see Figure 5.5 left). Then, we cover the grid cells with the Hilbert curve

corresponding to the grid granularity and label each cell with the obtained Hilbert index.

In the case of constrained movement, the indexing requires two steps. First, we cover the

transportation network with a uniform grid (see Figure 5.5 right). The grid granularity is

chosen such that the number of network segments intersecting with a grid cell is low for

most of the cells. Then, the grid cells are indexed with a Hilbert curve and each network

segment is labeled with the Hilbert index of the cell containing the segment center. In

case several segments are contained by a cell, the segments are sorted by the x-coordinate

and the y-coordinate of their centers and labeled accordingly. Once the spatial units are

indexed, they are sorted on the index value and the sorted unit vector is broadcasted to

all the participants to be used in the probe partitioning phase.

Checking and repartitioning the probe grouping. Periodically, our system verifies

if the current probes partitioning is still balanced with respect to the number of probes

in each group. The verification frequency depends on the dynamicity of users in space.

In PAMPAS, the checking and repartitioning processes can be executed often (i.e., every

few seconds) due to their low cost. When a partitioning checking is triggered, the system

computes a count aggregate in addition to the application aggregate function (see Figure

5.3), which gives the actual number of users (SPs) in all the spatial units. The count

aggregate result is then pushed to an SP randomly chosen by the SSI . The checker SP

decrypts the results and updates the weights of the sorted spatial unit vector (lines 4-

7 in Algorithm 3). This operation has O(N ) complexity assuming that a small index

containing the partitions frontiers is kept in memory by the SP (which requires only G

Flash addresses to be kept in RAM). At the same time, the SP computes in memory the

count by group (since the groups are sent one by one by the SSI, line 8 in Algorithm 3)

and compares the counts. If the balancing of the current probes partitioning is within

the predefined limits, the checker SP sends the current values to all the other SPs (i.e.,

exchanged encrypted through SSI), which update the weights of the spatial units with the

new count values. Otherwise, the checker SP computes a new partitioning.

Once the sorted vector of spatial units is updated with the new weight values, the probe

repartitioning can be efficiently computed in O(N ) and O(G) time and space complexity

respectively (see Algorithm 4). The algorithm consists in reading the weights in the order

of the Hilbert index and determining the partition borders. To set the partition borders
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Algorithm 4: Repartitioning process (SP-side)

1 PROBE REPARTITIONING():/* one randomly selected SP */
2 compute QIcomp and QIcomm for current G

3 while true do
4 /* adjust the number of groups G */
5 if QIcomp > QIcomm then

6 tG = 2 ∗G
7 else
8 tG = G/2

9 /* repartition for tG */
10 avgGroupWeight = SUM(allCounts[])/tG
11 currentGroupWeight = 0
12 for i = 0 to NUM SPATIAL UNITS − 1 do
13 currentGroupWeight+ = allCounts[i]
14 if currentGroupWeight ≈ avgGroupWeight then
15 newPartitionMilestones[].add(i)
16 currentGroupWeight = 0

17 /* check if the new partitioning for tG is better than for G*/
18 compute tQIcomp and tQIcomm for tG

19 if tQIcomp + tQIcomm < QIcomp +QIcomm then

20 G = tG; QIcomp = tQIcomp
21 QIcomm = tQIcomm

22 else
23 break

24 message = allCounts[]||newPartitionMilestones[]
25 send for broadcast(nEk(message), SSI)

we use a greedy algorithm, which adds spatial units to a group as long as the total weight

of the group is lower than a threshold value (lines 12-16 in Algorithm 4). The threshold is

computed as the ratio between the total number of probes and the number of groups (line

10 in Algorithm 4), and represents the average number of users per group. The partitioning

result is a list of G milestone indicating the group borders in the sorted index of spatial

units (line 16 in Algorithm 4). The result is then encrypted and delivered, through SSI, to

all users (lines 24-25 in Algorithm 4), which update their partitioning data and generate

new samples accordingly starting from the next computation window.

The proposed probes partitioning algorithm has low complexity and can be efficiently

executed even with the low resources of an SP. However, the partitioning algorithm cannot

guarantee a certain degree of balancing of the partition weights. Yet, the partitioning

balancing is required to avoid leaking any information regarding the spatial distribution

of users. To deal with this problem, the SPs generate fake samples in all the probe groups
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having a number of users lower than the maximum size group. Therefore, in the collection

period of each computing time window, an SP sends probabilistically a dummy sample in

addition to the real sample. The probability to send a fake sample is proportional with the

difference between the maximum size group and the number of users in the SP’s group, and

inverse proportional with the number of users in the group. The same approach is used to

hide the number of spatial units in each group. At the end of the aggregation phase, each

aggregating SP adds to the result a number of fake values equal to the difference between

the maximum number of units in the groups and the number of units in the current group.

In this way, all the partial aggregate results received by the SSI have the same size and

the SSI cannot infer the number of cells in any group.

Choosing the Number of Probe Groups. The cost of the aggregation protocol is

composed of the computation cost at the SP side and the communication cost between

the SSI and the SP. The number of probes groups impacts both the computation and the

communication costs. Specifically, the computation cost decreases with the increase in the

number of groups and attains the minimum value when the number of groups is equal to

the number of spatial cells, i.e., an SP is used to aggregate the samples for each spatial unit.

But increasing the number of groups leads to a higher imbalance in the groups’ weights,

which in turn requires injecting more fake samples and enlarges the communication cost.

Therefore, modifying the number of groups has opposite effect on the computation and

the communication cost.

QIcomp = Maxi=1,G[Comp timei] − Maxj=1,#spatialUnits[Comp timej ] (1)

QIcomm =
size(sample)

bandwidth

G∑
i=1

{Maxj=1,G[Countj(probes)]− Counti(probes)}+

size(sample)

bandwidth

G∑
i=1

{Maxj=1,G[Countj(spatialUnits)]− Counti(spatialUnits)} (2)

PAMPAS computes two quality indicators to measure the impact of the number of groups

on the computation and communication costs, i.e., QIcomp and QIcomm, as defined by

Formulas (1) and (2). QIcomp estimates the degradation of the computation time at the

SP side generated by the fact that several spatial cell aggregates are delegated to one SP

instead of using one SP for each cell. Estimating the computation time is fairly simple

since the time is typically linear with the number of samples to be processed by the

SP, assuming that the aggregation can be entirely processed in RAM. However, the cost

model can be extended to the case in which it is required to access the secondary storage.
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QIcomm estimates the degradation of the communication cost caused by the imbalance

of the partitions. The first term indicates the overhead incurred by the fake samples

generated to balance the probes groups, while the second term measures the overhead of

generating fake results to balance the number of aggregates in each group.

Each time an SP computes the probes partitioning, it also computes the values of QIcomp

and QIcomm (line 2 in Algorithm 4). If QIcomp > QIcomm, the SP multiplies by two the

number of groups and re-partitions the probes. If QIcomp < QIcomm the SP divides by

two the number of groups and re-partitions the probes (lines 5-8 in Algorithm 4). The

SP continues to adjust the number of groups until QIcomp +QIcomm has minimum value

(lines 19-24 in Algorithm 4), meaning that the aggregation cost is near optimal. Thus, this

process allows adapting the number of groups to the number and the spatial distribution

of the probes.

5.4 Security analysis

The SSI does not have the encryption key, so it cannot access the transiting data it sees.

In addition, the non-deterministic encryption protects the data against frequency-based

attacks. The SSI may also try to buy an SP and pass for a user to gain access to the

encryption key. However, this would be useless since the tamper-resistance of an SP

protects the secret, the data and the code execution against physical attacks. Therefore,

in this case, the SSI would gain access only to the final aggregate result. The same would

happen if the SSI colludes with the querier, i.e., a user or an application having access to

the aggregation result. Finally, since the samples are communicated through anonymizers,

the SSI cannot identify the senders or link consecutive messages from the same user.

Another option for the SSI would be to infer some information from the deterministically

encrypted group id values. Nevertheless, the SSI cannot perform a frequency-base attack

using the encrypted group id, since all the groups contain approximately the same number

of messages. Therefore, the SSI cannot infer the corresponding (approximate) location of a

group or the topological neighborhood of the groups (which would be the first step to attack

the users’ privacy). Hence, the only knowledge the SSI acquires is the number of groups

and its evolution over time, which does not endanger the users’ privacy. Note that even

if the SSI has somehow access to the full partitioning information and the corresponding

encrypted id, a user is still hidden under the corresponding partition area and within the

crowd in the same group (let us recall that the messages are sent anonymously so it is

hard for the server to link the messages coming from the same user). Hence, the protocols

are secure and fully protect the privacy of the users.
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Figure 5.6: Aggregation maps for two applications: noise monitoring (left) and traffic
monitoring (right)

5.5 Experimental evaluation

The goals of our experimental evaluation are twofold: (i) compare the execution time

and scalability of PAMPAS with those of a state-of-the-art protocol described in [111];

(ii) quantify the cost and scalability of our partitioning protocol. We implemented and

validated PAMPAS through emulations using a development board which has a hardware

configuration representative for secure hardware platforms. As applications for our ex-

periments, we used traffic monitoring and noise monitoring with two synthetic datasets

representing a small and a medium-size city. Figure 5.6 illustrates our graphic interface for

these applications; it shows the aggregate results for the noise heat-map and the average

travel time for the road network. A demo of our prototype was presented in [113] using a

traffic monitoring scenario.

5.5.1 Experimental setting

Hardware platform. Our experimental evaluation uses two types of hardware, a PC

and a development board. The PC (3.1 GHz i5-2400, 8GB RAM, running Windows 7)

plays the role of the SSI and also displays the aggregate results in a graphical form. The

board plays the role of an SP, and it is equipped with an MCU with a 32-bit RISC CPU at

120MHz, a crypto-coprocessor implementing AES and SHA in hardware, 128KB of static

RAM and 1MB of NOR Flash to store the software stack. It also includes a smartcard

chip hosting the cryptographic credentials (i.e., the secrete encryption keys) and an SD

card reader allowing for a large storage capacity. We use a commodity SD card (Samsung

SDHC Essential Class 10 of 32GB) as secondary Flash storage. The PC and the SP

board communicate over a 100Mbit Ethernet connection. Importantly, our implementation

limits the RAM consumption to only 30KB to validate the proposed protocols with less
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powerful secure devices. To emulate multiple SPs, we execute sequentially on the board

the aggregate computations and communications for all the worker SPs and measure the

”parallel” execution time as the maximum aggregation time in the execution sequence.

The experimental results were also validated [113] using several secure tokens with the

same HW configuration as the board.

Baseline system. To underline the importance of the optimizations in PAMPAS, we

implemented the secure protocol proposed in [111] and took it as the baseline. This

protocol can be applied without modification to aggregate the samples collected in each

time window. Note that in [111], two more protocols are proposed that are even more

expensive than the secure protocol if considered in our context.

Datasets and aggregate functions. We created synthetic datasets to test the efficiency

and scalability of PAMPAS. We used the well-known Brinkhoff generator [17] to gener-

ate mobility traces on two real road networks of the cities of Oldenburg (Germany) and

Stockton (San Joaquin County, CA). Oldenburg is a small size network having 7035 road

segments, while Stockton is an average size road network having 24123 segments. Depend-

ing on the network size, we generated traces corresponding to a medium and large number

of users. With Oldenburg, the medium and large datasets contain 47 thousand and 270

thousand users respectively. With Stockton, the medium and large datasets contain 200

thousand and 1.35 million users respectively. The spatial distribution of the traces follows

the network spatial density.

To show the generality of PAMPAS, we selected three aggregate functions, i.e., aver-

age, IDW [74] and median, corresponding to the three aggregate types described in Sec-

tion 5.1.3. We associate the average and median aggregates with the traffic monitoring

application, i.e., compute the average travel time and the median speed for each road seg-

ment in a road network. Hence, these two scenarios consider the constrained movement

type. The IDW aggregate is associated to the noise-level monitoring application and a

free movement type. In this case, we use the same generated mobility traces, but consider

them in the 2D space instead of the network space. Also, we use a 64x64 grid (i.e., 4096

spatial units) to partition the 2D space for the free movement scenario. The speed sample

values are directly generated by the moving objects generator, while the noise values are

generated by us randomly and proportionally to the number of probes in the spatial unit.

5.5.2 Performance evaluation

Execution time. Figure 5.7 shows the aggregation time for the three functions for both

protocols with 200,000 probes in Stockton. The aggregation time is global, i.e., it includes

both the computation and communication time. The results indicate that PAMPAS is

very efficient since it requires only a few seconds to compute the aggregate results for

all the tested functions. On the other hand, the baseline protocol is much more costly
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Figure 5.7: Aggregation time

Figure 5.8: Scalability of the PAMPAS and baseline protocols with average function (top)
and median function (bottom)

(especially for complex aggregate functions) leading to aggregation times up to three orders

of magnitude higher than PAMPAS. These results demonstrate that PAMPAS achieves

the goal of working in real-time (e.g., the drivers can see the traffic conditions in real-time).

Scalability. We further test the scalability of the protocols with different number of

probes, spatial units, and aggregate functions. Figure 5.8 shows the aggregation time

for the two protocols for the average (top graph) and median (bottom graph) functions

with medium and large number of users on both road networks. The results confirm that

only PAMPAS is scalable w.r.t. all the varying input parameters. In the worst case, the

computation time attains 14 seconds to compute the median speed for 1.3 million samples

covering 24,000 spatial units.
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Figure 5.9: The partitioning costs (top) and the partitioning imbalance factor (bottom)
with different number of partitions

The baseline protocol does not scale with the number of samples and especially with the

number of spatial units. Practically, the baseline can provide real-time aggregation only for

a small number of spatial units (i.e., 7000 in Oldenburg) and basic aggregate functions (e.g.,

average). The very limited RAM resources of the SPs and the impossibility to efficiently

parallelize the aggregate computation make the baseline inadequate for the requirements

of participatory sensing applications.

Cost and scalability of partitioning protocol. Figure 5.9 (top) presents the parti-

tioning computation time for both Oldenburg and Stockton networks. A new partitioning

can be computed in a few seconds by an SP. This means that the checking and probes

re-partitioning can be executed frequently, which allows PAMPAS to adapt to even fast

changes in the spatial distribution of the probes. Most of the partitioning cost resides

in reading and writing the partitioning data to the secondary Flash storage. This also

explains the increase of the partitioning time with the number of partitions, since in this

case the I/O operations are executed at a smaller granularity, which is more costly.

Figure 5.9 (bottom) indicates that the partitioning imbalance factor, i.e., the ratio between

the maximum and the average partition size, increases with the number of partitions. The

imbalance factor is an important indicator in PAMPAS since the higher the imbalance,

the higher the number of fake injected samples and, therefore, the communication cost.

Figure 5.10 shows the impact of the number of partitions on the global aggregation time

as well as on the computation and communication cost, which compose the total time. As
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Figure 5.10: Communication and computation costs with different number of partitions

expected, the computation time decreases with the increase of the number of partitions

since the amount of work done by the aggregation SPs also decreases. Conversely, the com-

munication time increases with more partitions since more fake samples are injected into

the system as explained above. Globally, the near-optimal aggregation time is obtained

with a number of partitions that minimizes the cumulated degradation of the computation

and communication costs as discussed in Section 5.3.

Discussion. It is worth mentioning that the aggregation time can be greatly improved

by increasing the processing power and the communication bandwidth of the SSI. For

example, increasing the server bandwidth from 100Mbit to 1 GBit, makes the maximum

aggregation time (i.e., median function with the large Stockton dataset) to drop from

14 seconds to less than 7 seconds. Also, in some scenarios, pushing the computation in

the user devices may be problematic (e.g., battery powered devices, other applications

running at the same time in the device). However, PAMPAS minimizes this type of

problem due to its high efficiency. For instance, in our tests, a user participating in the

system for one hour, has a probability between 10.6% and 26.6% to participate once to an

aggregate computation assuming that aggregates results are produces every 10 seconds,

and a probability between 0.004% and 0.02% to do a repartitioning assuming that the

probes partitioning is checked every 1 minute. In all cases, the computation is done in a

few seconds at most and requires only modest resources.
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5.6 Conclusion

This part proposes PAMPAS, a privacy-aware mobile participatory sensing system based

on a distributed architecture and personal secure hardware. This combination allows

PAMPAS to achieve the same level of privacy as cryptographic solutions without having to

sacrifice generality, scalability, and accuracy. The proposed aggregation solution is, to the

best of our knowledge, the first proposal of a distributed protocol that is secure, efficient,

and scalable and that fits both the strict hardware constraints of secure personal devices

and the real-time constraints of participatory sensing applications. The experimental

evaluation based on representative hardware for secure platforms validates the proposed

solution.
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Chapter 6

The General Context of the KISS

Project

The work in this thesis is strongly related to the ANR KISS (Keep your personal Infor-

mation Safe and Secure) project. Therefore, in this Chapter, we present an overview of

the KISS project [3] and describe our contributions in this project.

6.1 Overview of the KISS project

An increasing amount of personal data is automatically gathered and stored on servers

by administrations, hospitals, insurance companies, etc. Smart appliances surrounding

individuals also accumulate spatio-temporal sensitive information (e.g., healthcare mon-

itoring, geolocation) on servers. Meanwhile, an increasing amount of digitized personal

data is sent to citizens (salary forms, insurance forms, invoices, phone call sheets, banking

statements, etc), who themselves often count on service providers to reliably store this

data and make it available through the Cloud. However, these benefits must be weighed

against privacy risks incurred by centralizing data on servers. Indeed, there are many

examples of privacy violations arising from negligence, abusive use or attacks, and even

the most secured servers are not spared.

The KISS project draws a radically different vision of the management of personal data.

It builds upon the emergence of new portable and secure devices known as secure tokens

(e.g., mass storage SIM cards, secure USB sticks, smart sensors) combining the security

of smart cards and the storage capacity of NAND Flash chips. The idea promoted in

KISS is to embed, in such devices, software components capable of acquiring, storing and

managing securely personal data. These software components form a full-fledged Personal

Data Server (PDS) which can remain under holder’s control. However, our approach does

not sum up to a simple secure repository of personal data. The ambition is threefold. The

99
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first objective is to allow the development of new, powerful, user-centric applications thus

requiring a well organized, structured and queryable representation of user’s data. Second,

KISS wants to provide the data holder with a friendly control over the sharing conditions

related to her data and to provide the data recipient with certified information related

to their provenance. Third, to give sense to this vision, PDSs must provide traditional

database services like durability, query facilities, transactions and must be able to inter-

operate with external data sources.

Compared to an approach where all personal data is gathered on traditional servers, the

benefit provided by PDS is manifold: (1) the PDS holder becomes his own Storage Provider

thereby precluding abusive usages from external service providers, (2) secure tokens pro-

vides tangible elements of trust (i.e., tamper-resistance, holder’s ownership) which cannot

be provided by any traditional server, (3) privacy principles can be enforced for the data

externalized by the holder provided the recipient of this data is another PDS and (4) the

holder’s data remains available in disconnected mode.

Converting the Personal Data Server vision into reality introduces however several scien-

tific challenges. First, the secure token, central element of the approach, exhibits strong

hardware constraints (e.g., little RAM, NAND Flash storage). Traditional core database

techniques (storage and indexing, query and transaction processing) need then to be fully

revisited to design an embedded database engine that provides acceptable performance

whatever the form of the embedded data (regular or spatio-temporal) and of the queries

(SQL-like, key-value like, spatio-temporal). Second, the PDS approach aims at helping

individuals to better protect their privacy. Hence, a unified data model must be provided

to organize their personal space and to express how data is shared and protected at high

abstraction level. Third, the traditional functions provided by a central server must be

re-established in a rather atypical distributed environment combining a large number of

highly secure but low power secure tokens with a powerful but unsecured server infras-

tructure, all this without sacrificing data privacy.

6.2 Thesis’ contributions in KISS

This section presents first the architecture of the embedded part of the Personal Data

Server framework, i.e., the software components running on each secure token to manage

the personal data of a single individual. Then, we sketch the thesis’ contributions in this

global architecture.

Figure 6.1 pictures the embedded architecture of a PDS. We detail it below in a bottom-up

way.

Raw access layer : this layer manages the physical images of all objects belonging to the

digital space of an individual. Physical images are managed differently depending on the
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Figure 6.1: KISS architecture and our contributions

medium used to store them. Files stored locally (e.g., documents hosted by the secure

token to make them available even in disconnected mode) are stored in an on-board Flash

memory. These files are managed through a traditional file system, built on top of an

FTL. Fine grain objects like tuples of a relational database are much more challenging

to manage because NAND Flash and FTL badly accommodate fine-grain insert/updates.

Hence, fine-grain objects are managed through ad-hoc structures called Log Containers [10]

which bypass the FTL firmware. So, on-board Flash memory can be physically made of

two separate devices or be logically split in a raw partition and an FTL partition. Remote

files are links to files physically stored outside of the secure token by a storage supporting

service, typically in the Cloud.

Data model layer : This layer provides a structure and the associated query facilities to the

raw data. The objective is to give the user a mean to organize his digital space in a unified

way. This unified model may mix objects of various forms, namely: files, relational tables

and tuples, spatio-temporal data (e.g., sensed geolocalized data) and key-values lists. The

data model may allow the user to associate user-defined tags to the objects and to define

virtual objects by means of logical expressions over existing objects of the user’s digital

space (e.g., a relational view, a folder grouping files sharing similar tags, etc).

Control layer : the objective of this layer is to define and enforce user-defined access control

rules. The target of these rules can be any object (regular or virtual) of the digital space.

The rules can be associated to users, to roles or to groups of individuals sharing same

characteristics (friends, people belonging to the same community, working to the same
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company, etc). Subjects can then be abstracted by logical expressions expressed over a set

of credentials managed by a Context manager. For each individual, credentials take the

form of objects of his digital space which are certified by their issuers and the integrity of

which is protected by the secure token of the holder.

Other components can be seen as Core applications on top of the other layers. Recovery

implements the tasks required to restore a consistent Personal Data Server in case of

crash/loss of a Secure Token. It is a charge of (1) exporting local updates to an external

supporting service, named Event Logger, by sending a message containing those updates

to himself and (2) downloading and replaying locally all events logged beforehand to

recover a crash. External Data Manager performs the tasks required (1) to export/publish

objects (and metadata) from the local digital space to the Cloud and (2) to import objects

published by others from the Cloud to the local digital space. Anonymizer and Query

manager allow the PDS to participate to the distributed computation of a global query

or of an anonymized release. Finally, Administration implements the task linked to the

administration of the PDS.

Communication manager : this manager takes in charge all communications with the out-

side world. It sends requests to the Communication supporting service to anonymously

send/receive new messages to be delivered by/to this PDS and encrypt/decrypt them.

Applications will communicate with the embedded PDS through a standardized API (e.g.,

SQL/ODBC/JDBC-like) in order to implement specific services. Typically, while the data

model and control layers allow the user to get a global unified view of his digital space and

to fix basic user-defined privacy policies on this view, applications can provide on their

own more specialized services to structure and protect part of this digital space (e.g., a

tool dedicated to build picture albums, tag them and define sharing policies).

In Figure 6.1, we highlighted our contributions in the KISS architecture. Specifically, these

contributions are detailed in this thesis as following:

� A spatio-temporal storage and indexing method adapted to the constraints of Flash

storage, i.e., TRIFL, was presented in Chapter 3.

� A secure protocol allowing users to share sensing spatio-temporal data and to dis-

tributively and securely compute in real time spatio-temporal aggregates, i.e., PAM-

PAS, was introduced in Chapter 5. In addition, based on PAMPAS, we implemented

an application for privacy preserving traffic monitoring (PPTM), which is presented

in Chapter 7.

� An extension of the relational data model of the PDS to permit the storage and

querying of spatio-temporal data in the secure token. To this end, we implemented

spatio-temporal data types and related operations, which are tightly integrated with
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the classical relational data types and operations. The spatio-temporal model is

detailed in Chapter 8.
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Chapter 7

PPTM: Privacy-Aware

Participatory Traffic Monitoring

Using Mobile Secure Probes

Privacy became one of the main concerns in location-based services in general and in

community-based traffic monitoring in particular. This Chapter we present an adaptation

of our PAMPAS in a real-application, Traffic Monitoring using Mobile secure probes. This

work was implemented in the real token devices and evaluated with the generated dataset

together with a large real network map. The experimental results show that our work

satisfy the real-time constraints and totally match the privacy requirements. Without

loss the generality, this work confirms that PAMPAS could be applied in any kinds of

participatory sensing applications that use secure probes.

7.1 Introduction

Monitoring traffic has become a fundamental concern in the transportation domain for

both professionals and users. Accurate and global traffic information is essential to avoid

heavy congestions and therefore, reduce travel times, accidents, fuel consumption and

pollution. Many works deal with the problem of traffic monitoring such as [36], [48], [92],

[110] to name but a few. In particular, using vehicles as probes for traffic monitoring

is now common (mostly based on mobile applications), due to the better coverage at

lower costs than using road-side infrastructure. A typical participatory traffic monitoring

(PTM) system collects, aggregates and disseminates the localized traffic volume and speed

information. However, most current PTM solutions require users to reveal their locations

to trusted monitoring servers. This raises serious privacy concerns and prevents a wide

adoption of the system since, by knowing the user locations, an attacker can easily identify
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the participants and infer their personal habits and activities [48].

Several approaches have been proposed to solve the PTM problem. In [110], the authors

propose the VTrack system having a typical centralized architecture. In VTrack, the cars

periodically send their locations to a centralized server that computes the global traffic

density, while the privacy issue is not considered. Many commercial systems, such as Waze,

INRIX and Navigon, are based on similar solutions. The virtual trip lines (VTLs) proposed

in [48] deal with the privacy issue by distributing the PTM service implementation across

several specialized servers and by providing a spatio-temporal cloaking of the users under

the VTLs. Although the attack of a single system component prevents linking the identity

and location of the users, choosing privacy-insensitive locations for VTLs is tricky and

limits the traffic information to a part of the road network. Also, the problem of multi-

component attack (or collusion) remains, as well as the high cost of building such a complex

system distributed over several components. SpotMe [92] proposes a different approach

consisting in mixing the real user’s location with fake locations before posting them to

a central server. Then, the server estimates the aggregated user locations by using the

probability theory. However, the traffic estimation errors can be important (around 20%).

Also, SpotMe involves higher communication costs because of the large number of fake

locations, while linkability may still be a problem for users that send many consecutive

location updates.

Hence, providing a high quality PTM service, while protecting the users’ privacy, is still

a challenge. Recently, the works in [8], [111] propose a user-centric architecture based

on a secure device also called secure portable token. The main idea is to transfer the

computation process at the users’ side. Therefore, there is no need to trust any central

server. In this model, the server is only used for communication and temporary storage of

encrypted intermediary results. However, these works were designed for privacy-preserving

data publishing or privacy-preserving query execution, and do not account for the real-

time constraint or the continuous nature of the computations in a PTM system. In this

Chapter, we introduce PPTM, a Privacy-aware Participatory Traffic Monitoring system,

adopting a user-centric architecture. We first describe our system foundations. Then, we

present the demonstration scenarios.

7.2 System design and secure protocols

7.2.1 System architecture

To tackle the challenges of PPTM, we propose a combined hardware and software solution.

Figure 7.1 shows the general architecture of our system. In particular, the system consists

of two types of hardware components: the personal secure tokens (ST) at the user-side and

one supporting server infrastructure (SSI). The software stack implements three privacy
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Figure 7.1: System architecture

preserving protocols required to securely send the location updates, to compute the traffic

aggregation results, and to partition the road network.

Secure tokens: Any user (here a driver) using our system holds a secure portable to-

ken, which can be implemented by any type of tamper-resistant devices flourishing today,

e.g., Mobile Security Card1 (Giesecke & Devrient), Personal Portable Security Device2

(Gemalto and Lexar), Multimedia SIM card or Secure Portable Token [111]. Whatever

its commercial name and form factor, a tamper-resistant device, called secure token (ST)

hereafter, embeds a secure microcontroller (e.g., a smart card chip) connected to a large

NAND Flash memory (e.g., a SD card) and can communicate with a host through a USB,

Bluetooth or Ethernet port. In our system, an ST plays three roles: (i) a mobile probe,

(ii) a processing node, and (iii) a querier. Indeed, the ST sends encrypted location updates

to the SSI, participates in the data aggregation, and receives the final results. Given their

high level of security, the STs are considered trusted in our system.

Supporting server infrastructure (SSI): Different from the typical server-centric architec-

ture, the SSI in our system is only used for exchanging messages between the STs and

for temporary storage purposes. However, all the temporary results stored in the SSI are

encrypted using non-deterministic encryption, since the SSI is not trusted. We assume

the server obeys to the protocol it is supposed to do, but may try to infer anything it can

from the data or behaviors it sees (i.e., an honest-but-curious or weakly-malicious threat

model).

1http://www.gi-de.com/en/products and solutions/products/ strong authentication/Mobile-Security-
Card-31488.jsp

2”Smart Guardian” http://cardps.com/product/gemalto-smart-guardian or ”Smart Enterprise
Guardian” http://cardps.com/product/gemalto-smart-enterprise-guardian
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7.2.2 System requirements

A PPTM system based on this user-centric architecture has to deal with the following

challenges:

� Efficiency : the system should be highly efficient to be able to continuously compute

the traffic density in real-time with very limited resources. Indeed, for economic and

security reasons, the STs used for data processing have low resources (see Section

7.3.1.1). Hence, it is necessary to minimize the computation and communication

costs of the PPTM protocols.

� Scalability : the system should scale to a large number of participants (e.g., up to

millions of vehicles) to be applicable to very large networks and dense traffic.

� Security : the system should protect the users’ privacy. By keeping all the sensitive

data in the STs, the adopted user-centric architecture matches this requirement in

contrast with a server-centric architecture.

� Accuracy : PPTM should continuously reflect the status of the traffic with good pre-

cision. In other words, protecting the users’ privacy should not impact the accuracy

of the traffic computation.

7.2.3 Privacy preserving protocols

Our PPTM system implements three privacy preserving protocols. First, each vehicle

participating in the system periodically sends location updates to the SSI. Each update is

encrypted using non-deterministic encryption so that the SSI cannot gain any knowledge

from the updates. All the STs share a secret key to encrypt/decrypt the updates. Note

that, although an ST can decrypt the updates, a user is not allowed to access the decrypted

data in her ST and that the tamper-resistant Hardware (HW) protects the transiting

data also from the user herself. Then, the remaining two protocols concern the network

partitioning and the traffic aggregation, which are both processed at the user-side.

To overcome the problem of large computation and communication costs and to achieve

the traffic aggregation result in real-time in spite of the limited resources of the STs, we

divide the network map into many parts. Then, the aggregation is calculated in parallel for

each part of the map by different STs. By doing so, the communication and computation

costs will decrease by a factor equal to the number of partitions. Moreover, to avoid any

information leakage to the SSI, the partitions have to be balanced with respect to the

number of vehicles in each partition. This also guarantees an upper bound for the amount

work of done by an ST in the aggregation phase and for the computation duration of

the aggregation phase. Therefore, the partitioning process is triggered periodically in our

system, following the spatio-temporal evolution of the traffic in the road network.
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As with the partitioning, the aggregation phase is also done at the user-side. In contrast

with the partitioning, the aggregation is processed in parallel by many STs, such that each

ST computes the traffic aggregates for a specific partition. This limits the communicated

and processed data to/by an ST to the updates in a partition. The output of this process

is the encrypted data about the traffic volume or the average speed for all the roads in a

partition. We divide the aggregation phase into three periods as following:

- Collection period : in this phase, the SSI collects all the encrypted update messages from

the participant STs. Each message contains an additional field representing the cyphered

value of the partition, but using deterministic encryption so that the SSI can classify the

messages according to their partition.

- Processing period : The SSI randomly selects an ST per partition and sends it all the

updates related to the respective partition. The ST decrypts the messages and computes

the aggregation before encrypting the results and sending it back to the SSI.

- Delivery period : Once it received all the partial results from the aggregation STs, the

SSI delivers the global result to all the users. To improve the communication costs, our

system also implements an incremental computation of the aggregation traffic map.

7.3 Demonstration

In this demonstration, we present an application of our PAMPAS in a real scenario, i.e.,

Traffic Monitoring using Mobile secure probes called PPTM. The main aims of our demon-

stration are to provide the audiences many point of views of PPTM in order to show them

how PAMPAS can be used to collect data, aggregate the traffic density as well as how

PAMPAS partition the network in PPTM by offering three different scenarios with two

running modes (i.e., normal mode and step-by-step mode).

7.3.1 Demonstration platform

7.3.1.1 The hardware platform

In our demonstration we use two kinds of devices. A PC plays the role of the SSI and

also displays the demonstration graphical interfaces (see next section). The second kind of

device are the secure tokens (see Figure 7.2). Our secure tokens are produced by the ZED

company and have an architecture representative for STs. In particular, these devices are

equipped with a microcontroller with a 32-bit RISC CPU clocked at 120MHz, a crypto-

coprocessor implementing AES and SHA in hardware, 128KB of static RAM and 1MB of

NOR Flash to store the software stack. The ST also includes a smartcard chip hosting the

cryptographic material and a microSD card reader allowing for a large storage capacity.
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Figure 7.2: Secure token

Figure 7.3: User-side graphical interface

The ST comunicates with a host either through a USB port or the Bluetooth protocol.

We use four STs in the demonstration.

7.3.1.2 The graphical interface

The demonstration is based on two interfaces: a user-side interface (see Figure 7.3) and a

server-side interface (which is similar to the user-side interface). The former reveals the

information processing on the STs, while the latter reflects the information that can be

seen by the SSI. In both interfaces, we try to show the audience our protocol in a didactic

way, by supporting two kinds of running modes: ”step-by-step” mode and ”run” mode.

The audience can also pause the process or move to next step of the demonstration.

In Figure 7.3, we show two panels of the user-side interface. In the first panel (called

”information panel”, see the left part of Figure 7.3), we detail all the information related to

the user’s ST over the time. In particular, we indicate the status information of the user’s
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device in the top-left corner. The statistics related to the computation and communication

costs are shown in the top-right corner of this panel. We also propose a tracing window in

the lower part of this panel in order to print all the processed information in the user’s ST.

The interface provides four buttons to deal with the running modes (i.e., run, step-by-step,

pause and next). Furthermore, in order to better illustrate the partitioning and the traffic

aggregation to the audience, the interface also offers a ”Graphics” panel. In this panel, we

show on a map the information about the user as well as the aggregation information of

the current partition. This panel also displays the information about the traffic volume or

the average speed of vehicles in the current partition by using a colored heat map (see the

right part of Figure 7.3). We use four colors (red, orange, yellow and green) to indicate

the current traffic status on a road: very dense, dense, normal or sparse respectively (the

gray color corresponds to the roads outside the current partition).

The graphical interface at the server-side shows the detail of the operations executed by the

SSI as well as global statistics of the secure protocols. The aim of this interface is twofold:

(i) to show how our system works in parallel as well as the costs of the protocols; (ii) to

demonstrate how secure our method is w.r.t. the SSI. The interface allows changing the

network map by selecting a new map file and also launching the partitioning algorithm

in order to demonstrate the partitioning process. The overall costs of our aggregation

protocol for a time window is also displayed in the interface. A tracing window and

control buttons with the same functions as in the user-side interface are equally present.

The only difference is that we trace the messages that are exchanged between the STs and

that transit in the SSI. However, since all the messages are encrypted, the printed contents

are only cipher texts

7.3.2 Demonstration scenarios

In this section, we detail three main scenarios of this implementation.

7.3.2.1 Location updates

This scenario corresponds to the collection period and details the updates at both the user-

side and the server-side. In this scenario, we demonstrate the subscription of four tokens

that represent for four distinct users. After subscribing to the system, these users send

update messages to the SSI. The content of the messages are printed in the information

panel in the user interface, while the graphic panel shows the user’s current location on

the map. At the server-side, the cipher text of the update messages is printed in the

tracing window together with several statistics of the update protocol (i.e. execution

time, transfer time, etc.). Furthermore, in the test, we allow the audience to run this

scenario in step-by-step mode in order to see each snapshots of the collection period.
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7.3.2.2 Secure aggregation protocol

The purpose of our second scenario is to show in detail the way our system calculates the

traffic density and delivers the results. In this scenario we run the calculation processes

on four different secure tokens acting as four different users located in different network

partitions. First, the SSI groups the messages by the partition cipher-text value, then

she sends the data to four users in parallel. The trace messages are shown in the tracing

window of the interface at the server-side. The overall costs are also recorded in the top-

right corner of this panel. Meanwhile, the information at the user-side for the four users

are shown in the corresponding interfaces. In each of these interfaces, the tracing window

shows the current status of the user’s ST, while the time consumption and the size of the

sent/received data are shown in the top-right corner. Similar to the previous scenario, we

also allow the audience to execute the program in the step-by-step mode and see snapshots

at any point in the execution. Once the process is finished, the final results are reported

both in the tracing window, and on a heat map in the graphic panel, to display the traffic

volume in the partitions. Note that the demonstration scenarios use simulated traffic data

for a large number of users (i.e., up to millions of users) and not only for the four STs.

7.3.2.3 Road network partitioning

The last scenario demonstrates the network partitioning process. Concretely, we use one

secure token in order to compute repartitioning process. At first, aggregate results of the

entire network are sent to this secure device by the server (i.e., SSI). Then, repartitioning

process will be launched in this device. Information related to repartitioning (i.e., messages

sent and received) is also shown on both tracing windows of ST and SSI as the further

explanations for the audiences. Finally, the overall costs and final results of this process

are shown clearly in ST’s graphic interface. While, on SSI’s side, only the cipher texts

are printed, since those are all information could be seen by SSI. We also validated this

scenario with different kinds of network maps and datasets (i.e., traffic distributions).

7.3.3 Demonstration results

The objective of this demonstration is to convince the audiences about the following im-

portant characteristics of our system:

Privacy and accuracy : As could be seen in these scenarios, any efforts to read participant

information from SSI is prevented. Information shown in the ST’s interface is to illustrate

what happen in secure devices and will not be seen even by the owners of secure devices.

Additionally, participants (i.e., STs) could detect easily if the SSI drops too many messages

in order to bias the final aggregate results. The explanation is that, participant could know
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in advance approximately the amount of messages he should receive from SSI. For this

reason, accuracy is also guaranteed in our system.

Real-time execution: even though the system runs in an environment having very lim-

ited resources, the demonstration shows that the aggregation process could be obtained

in a very short time (i.e. milliseconds to a few seconds), which satisfies the real-time

constraints.

Scalability : the further demonstrations with large datasets (i.e. up to millions of users)

shows that our system is scalable with respect to all sizes of networks.

7.4 Experimental results

7.4.1 Demonstration settings

Target query. In this demonstration we mainly focus on counting number of vehicles

in each road segment. However, any other functions such as calculating average speed,

max, min speed or median function could be applied as well. The following query explains

detail our target.

SELECT Count(*) – could be AVG(speed) or any function

FROM LocationStream

[WINDOW x seconds SLIDE x seconds]

GROUP BY Road Id

Input Data. Without loss the realistic, we create synthetic datasets to evaluate our

systems. We used the well-known Brinkoff generator [17] to generate testing data on

Stockton (i.e., a real road network at San Joaquin Country, CA covering nearly 200Km2).

The dataset contains 1 million of different users and around 110 000 users at the same

time send update to server continuously over 1000 time units. These upload messages

from users were generated and stored on the server. In order to simulate the system at

the run-time, we first pick data at a certain time unit t (e.g., 100th time unit), and select

all the update messages belong to the interval (t, t+ 1) (i.e., the messages that come from

around 110 000 users). These messages, then, are considered as the real messages obtained

from the real-users at running time.

7.4.2 Results

In this section, we show the results of our demonstration which is related to the time

consuming of all the duration in our system (i.e., collection period, aggregation period
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and re-partition period). The following table details the costs of these duration.

Collection
Update generation 0.48 ms

Transfer time 0.51 ms

Aggregation
Processing time 0.58 s

Communication time 0.194 s

Re-Partition
Processing time 4.2 s

Communication time 1.7 s

Table 7.1: System performance

Collection period. In order to measure the time consuming for the collection period,

we run the application on four different secure tokens that act as four different vehicles

moving on the road and generating the upload messages. The results in the collection

rows in the table 7.1 are obtained by measuring the time consuming for both generating

upload message and transfer time on these four tokens over 10 times and calculate the

average value and the largest values were reported on the table. As expected, the total

time spends for the collection period is very small (i.e., around 1 ms). The explanation

is that the collection periods are done in parallel by all participants. Each of participant

only need to generate one message and send it to server in encrypted form.

Aggregation period. In aggregation period, instead of computing all the partitions we

selected four largest partitions and calculate the aggregation. The longest time among

four results is selected and reported at the final result. We also repeated the test with

more than 10 times over different partitions and calculate the average time consume for

this period. The result on table 7.1 shows that total time for this period is smaller than 1

second. This means we could have an online-traffic monitoring offering the data updated

in real-time (i.e., every 1 second).

Re-partition period. Finally, table 7.1 also shows the time consuming for the re-

partition process. Even though the total time spends for this process is less than 6 seconds,

re-partition could be loaded very several minutes, since it doesn’t make sense to launch

this process too frequent (i.e., the changes of vehicle distribution on the network is not

enough to re-partition). An example of partitioned network (Stockton) is shown in Fig-

ure 7.4. In this example, the algorithm is applied to re-partition network into 100 groups

which were marked by 9 distinct colors.
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Figure 7.4: An example of partitioned network

7.5 Conclusions

In this Chapter, we propose an efficient, privacy-preserving solution for online traffic mon-

itoring by applying our PAMPAS protocol (see Chapter 5) in the context of traffic mon-

itoring. Our system implements a user-centric architecture that matches the security,

real-time and scalability requirements of the online traffic monitoring systems.
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Chapter 8

Management of Spatio-temporal

Data Streams in Embedded

Systems

In this Chapter, we present and detail our implementation of an extension of an embed-

ded relational database engine (i.e., PlugDB [82]) to deal with spatio-temporal data. This

extension consists in new data types and new operators allowing to locally manage spatio-

temporal data in conjunction with the classical data types and operations in the relational

model. In particular, we introduce the context in section 8.1. After that, we discuss some

related work and background knowledge in sections 8.2 and 8.3 respectively, while the

scenarios and queries are presented in section 8.4. In section 8.5 describes our implemen-

tation and analyses experimental results of this work. Finally, section 8.6 concludes this

Chapter.

8.1 Introduction

8.1.1 Motivation

As discussed in the previous Chapters, integrating mobile technology and positioning de-

vices has led to producing large amounts of spatio-temporal (ST) data every day on the

user mobile devices. The generated ST streams are meaningful for many applications

such as traffic analysis, customized insurance (pay-as-you-drive), reconstructing the cir-

cumstances of an accident in road safety, mobility and population exposure analysis, etc.

ST streams may be saved for legal reasons, e.g. to provide an evidence for the insurance,

or for individual use, e.g. experience sharing, individual gas consumption monitoring or

eco-driving. However, as the best of our knowledge, there is no solution adapted to the
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context of mobile devices.

Therefore, it’s reasonable to manage the personal ST data and location traces locally. In

this Chapter, we address this issue by promoting the use of a trusted Personal Data Server

(PDS) for personal data protection, including location data. Many works on embedded

databases have been conducted [91], [15], but dealing with the very constraint requirements

of embedded devices such as RAM or Flash technology is still a unsolved problem for

Spatio-temporal data. Consequently, the requires designing a suitable spatio-temporal

data model for the PDS constrained environment. Designing such a data model consists

typically in the definition of a set of embedded data types and the definition of basic

operators on those data types. These aspects are also developed in this Chapter. Note

that, the term PDS used in this Chapter is similar to secure token (ST) in previous

Chapters.

8.1.2 Requirements

Our main contribution is to extend the relational database engine embedded in the PDS

with ST data stream management capabilities. The main obstacles are the particular

features of ST data streams (i.e., big size, high frequency) which are hard to manage in

the context of PDS environment. To deal with such complex data, the system should

support many kinds of new data types. However, in this Chapter, we present only a few

representative data types. The design is based on an algebra for moving objects proposed in

a previous work [94], [43], [44], [45]. In addition, since most of the application scenarios are

based on constrained moving objects (i.e., objects that move in a transportation network),

we focus on this type of movement in this work. Hence, in this Chapter we focus on the

implementation of two fundamental data types, i.e., MGPoint and GLine, and some of the

related operations. The remaining part of the algebra should be implemented later.

8.1.3 Contributions

The main objectives of this work are:

Implement new data types. We extended the new data types of spatio-temporal data that

allow to describe a moving position and a trajectory in a road network. For example, we

can use MGPoint to represent the position in time of a car on the road or use GLine to

illustrate the trip of a car. However, these ST data types (i.e., MGPoint and GLine) are

both complex and large size data types. The size of an MGPoint object depends on the

length in time and in space of the trajectory of the moving object. Therefore, an instance

of these data types may require many sectors in NAND Flash to store. Hence, loading such

a data object in NAND Flash may cost many I/Os. In addition, since large data objects

may be stored fragmented on Flash, this may also increase the cost of the object retrieval.
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To reduce the access time to Flash, we propose to store continuously these data objects in

Flash by using a new dedicated data structure adapted for storing spatio-temporal data.

The proposed data structure (called STOB, i.e, Spatio-Temporal Object) consists in two

parts. The first part is used to store object description information and has a fixed size

similar to the classical DBMS data types. The second part has a variable size and is used

to store continuously in NAND Flash the real data. The detail of this implementation is

discussed in Section 8.3.2.

Implement new operations. The size of processed data is large in comparison with the

RAM memory of a PDS device. Thus, for handling new operations (e.g., Trajectory

and MCount) that take extended ST data types as the input data, we have to divide

the input data into many small parts (called packages) and then evaluate the operation

results package by package. In this way, the main memory consumption can be limited.

The downside is that this approach may take much time for processing the result because

the number of accesses to NAND Flash can be high. Alternatively, we propose another

approach that allows evaluating the operations directly on the streams generated by the

input objects when they are retrieved from Flash. These two solutions for operation

processing using buffered evaluation or stream evaluation are presented in Section 8.3.2.

8.1.4 Outline

This rest of this Chapter is structured as follows. We first present related work and

background knowledge related to this context in Sections 8.2 and 8.3. The scenarios and

queries implemented in this Chapter are discussed in Section 8.4. Section 8.5 details our

work related to implementation as well as the experimental results. Finally, we conclude

this Chapter in Section 8.6.

8.2 Related work

Our work in this part is concerned to Spatio-temporal databases which have been studied

for more than decades such as [43], [44], [45]. Indeed, Spatio-temporal databases are

the combination of spatial databases which tackle problems of data in two dimensions

space and temporal databases dealing with the changes of data in time. Concretely, the

study in [42] gave the definitions of spatial database system where most of the aspects

of this database were solved. This provided spatial data types, query language, data

representation as well as spatial indexing and spatial join methods. Following this work,

Guiting et al. then defined in [43] a abstract model where base types, spatial and temporal

data types were defined as well as some operations. While [44] and [45] completed this

framework by modeling the networks and providing data types for static and moving

objects. This framework proposed a set of basic data types and complex types that could
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be built from these basic data types. Since, it’s still a challenge to adapt this work to

specific environment such as PDS, this work follows the set of abstract data types (ADTs)

and collection of operations proposed in [43] and [44] (called algebra) and apply this algebra

in the context of embedded environment.

8.3 Background knowledge

In this section, we present some background knowledge about data types and operations

that we selected to implement in our system. In particular, we chose GPoint, GLine

and MGPoint that are used to define respectively a position in the road network, a line

in network and a position in network varying in time. Actually, these data types are

initialized in [43], [44]. We also introduce the new operations to apply on MGPoint (i.e.,

Trajectory), on GLine (i.e., MCount) and an aggregate operation on the number data type

(i.e., MSum).

8.3.1 Data types

We introduce in this section three basic spatio-temporal data types that are required to

store a location in the road network (GPoint), a trajectory (or route) in the network

(GLine) and a spatio-temporal trajectory (i.e., the evolution in time of the position of a

moving object) of a vehicle (MGPoint).

8.3.1.1 GLine

GLine is a set of disjoint route intervals used to store a line in the network space [5], [44].

Let N = N1...Nk be the set of networks present in database. GLine data type is defined

by following formula:

Dgline = {(i, gl)|1 ≤ i ≤ k ∧ gl ∈ Reg(Ni)} (8.3.1)

Where gl is a gline identifier and Reg is the set of all possible regions of a network Ni

Figure 8.1 gives a simple example of gline data. This gline instance contains 4 road

intervals (red lines). Each of intervals has 2 positions: pos1 and pos2 which belong to the

same road.

Figure 8.1 gives a simple example of gline data depicted as the red polyline. This gline in-

stance contains 4 road intervals (red lines). Each of the intervals has 2 positions: pos1 and

pos2 which belong to the same road. Therefore, a GLine is a sequence of disjoint route in-

tervals, i.e., gl =< (rid1, pos1, pos2, side), (rid2, pos1, pos2, side) . . . (ridn, pos1, pos2, side) >,
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Figure 8.1: An example of GLine

where ridi is a road identifier and side indicates the side of the road that can be up or

down.

8.3.1.2 GPoint

GPoint data type is usually used to represent information of a position on network. Let

N = N1...Nk be the set of networks present in database. GPoint data type is defined as:

Dgpoint = {(i, gp)|1 ≤ i ≤ k ∧ gp ∈ (Loc(Ni) ∪ ⊥)} (8.3.2)

An instance of gpoint is defined as a couple of two values. The first is the identifier of

network which position belongs to, and the second is the network location. A network

location is defined as gp = (rid, pos, side), where rid is a road identifier, pos is the relative

position on the road and side is the side of the road. Loc is set of locations in network Ni

and ⊥ for empty set.

An Example of gpoint is shown in Figure 8.2 where the position belongs to road 1 and is

on the downside.

8.3.1.3 MGPoint

The MGPoint data type is used to describe the position of a moving object that contin-

uously varies in time [43]. In general, a moving value data type can be defined as:

Amoving(α) = {f |f : Ainstant → Aα is a partial function ∧ Γ(f) is finite} (8.3.3)

Here, the moving data type is defined as all fvalues that belong to a partial function

from time to α with a special condition ”Γ(f) is finite” to indicate that the number of
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Figure 8.2: A position in network

Figure 8.3: An example of Mgpoint unit

continuous components of this function is finite. α can be a typical data type (e.g., integer,

float) or it can be a complex data type (e.g., GPoint, GLine).

MGPoint is the abbreviation of moving(GPoint). This special data type can be used

to store network position varying in time. In practice, MGPoint is defined as an ar-

ray of MGPoint-units. An MGPoint unit is presented in Figure 8.3 and is defined as

unitMGPoint = (ridi, pos1, pos2, side, t1, t2). As above, ridi indicates the road, pos1 and

pos2 are two relative positions on the road measured at two consecutive time instants t1

and t2. The length of an MGPoint object is the number of GPoint units of the object.

8.3.2 Operations

In this section, we introduce three basic operations over the extended data types. Specifi-

cally, Trajectory computes the spatial projection of the spatio-temporal trace of a moving

object, MCount aggregates a GLine object into the number of roads contained in the
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GLine object, and MSum is a typical relational aggregate can be applied in many kinds

of data types.

8.3.2.1 Trajectory

Trajectory is an operation which receives only one MGPoint value as the input and returns

a GLine value.

Trajectory(MGPoint) −→ GLine (8.3.4)

Since trajectory returns the network path of a trip and MGPoint is an array of MGPoint

units, the operation trajectory must be applied to MGPoint unit by unit. This operation

takes a unit of MGPoint value and eliminates time intervals information from this unit

value to obtain a gLine unit.

8.3.2.2 MCount

We also support another operation called MCount which takes GLine as an input param-

eter. Given a GLine value, MCount operation counts the number of roads in this input

parameter. The detail of the output and input of this operation is described as follow:

MCount(GLine) −→ Number (8.3.5)

8.3.2.3 MSum

MSum is a basic aggregate function which receives a number-data column and returns

the aggregate sum value of this column.

MSum(Col identifier) −→ Number (8.3.6)

8.4 Application scenarios and queries

To illustrate the use of spatio-temporal embedded data management, we consider typical

queries related to the location dependent scenarios. The PDS ensures that GPS traces are

safely stored for multi-purpose usage (e.g. Pay-As-You-Drive (PAYD), insurance or Toll

pricing, trip share...).

More precisely, let’s consider Bob, a driver who wants to benefit from the PAYD schema

for both his insurance and toll payment, while protecting his personal data. Bob uses

a PDS combined with a location-aware mobile device. The system records all his GPS
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traces on the PDS. Once a month, he sends the minimal aggregated information to both

the insurance and the toll service provider for billing. However, the insurance company

and the Toll service provider can challenge Bob to provide his exact location Moreover,

Bob selects his touristic trips and publishes them on OpenStreetMap or chooses to share

them with his friend Alice. The insurance should verify the data correctness in case of

dispute or fraud suspicion directly or via a trustworthy authority.

Such queries and computations require that the embedded DBMS in the PDS is capable

of managing spatio-temporal data, whence the necessity of an adapted spatio-temporal

data model, query language and access methods. Based on this, we propose a benchmark

comprising a typical database schema and queries. We use an extended relational model.

We manage to distinguish traditional relations (using conventional data types) from the

spatial and spatio-temporal relations (using the extended data types defined in the previous

section).

The database schema is as the following:

Vehicle ( VehicleId: int

VehicleType: int

VehicleNum: char (20)

VehicleDesc: char (50)

trip: mgpoint

)

ForbiddenRoad ( VehicleType: int

Sections: gline

)

Road ( Rid: int

Name: char (50)

Fee: int

)

The first relation reports the trips of a driver, defined as a Moving GPoint. The second

illustrates the use of GLine (sections refers to the part of the road that is forbidden for a

given type of vehicle). The third relation is a lookup table describing the fee by road (e.g.

used by the insurance or the toll service provider).

The purpose of this benchmark is to evaluate the implementation of the new data types

and their basic functions. It does not target the set operations like selection and join,
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which will necessitate further optimization techniques, such as tailored indexes. Indexing

spatio-temporal data will be addressed in the future work.

Hence, we devise some following types of queries:

� Projection on attributes of the extended types, but without any function

� Projection involving a single function on the spatio-temporal data, which returns

numerical results

� Projection involving a single function on the spatio-temporal data, that returns

spatio-temporal results

� Projection involving a combination of functions on the spatio-temporal data.

� Projection involving an aggregate function.

Question 1: How has the car (id: 4) travelled?

SELECT Trip

FROM Vehicle

WHERE VehicleId

Question 2: What is the journey of the car number 3456?

SELECT Trajectory(Trip)

FROM Vehicle

WHERE VehicleNum = 3456

Trajectory is an operation that returns a GLine value for a given MGPoint parameter

(Trip).

Question 3: How many roads don’t allow car (type = 1)?

SELECT MCount(Sections)

FROM ForbiddenRoad

WHERE VehicleType = 1

This query uses MCount function, which returns the number of road ids composing a

given GLine parameter (the paying road section).

The above query uses a combination of functions: MCount and Trajectory.
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Question 4: How many roads has the car number 3456 travelled?

SELECT
MCount(MCount(Sections))

FROM Vehicle

WHERE VehicleId = 3456

Question 5: How much does a vehicle have to pay if it travels all over the roads of network?

SELECT MSum(Fee)

FROM Road

This query used an aggregate function MSum to calculate the total fee from table road.

In summary, we have some different kind of queries that can be used to solve some different

needs of applications when retrieving data from PDSs. Based on these kind of queries, we

designed a set of queries that are used for testing our implementation. These queries are

used in Section 8.5 for testing. The detail of these queries could be found in Section 8.7.

8.5 Implementation and experimental results

8.5.1 System architecture

Our Secured Personal Tokens (SPTs) or Secure Personal Devices (PDSs) can be appeared

in many form of devices: smart phones, USB sticks, or smart card. In all cases, the

architecture of our system always includes hardware and software parts (see Figure 8.4)

[115].

Hardware environment

The hardware characteristics of PDSs are slightly difference between PDSs and may be

changed in future, it’s depended on the version and the cost of devices. PDSs could be a

mobile phone, a smart badge, a smart device in a vehicle, a USB stick or some other kind of

personal devices and in each of case PDSs can have some different characteristics in shape,

size, cost and hardware configuration. However, in general all PDSs have a microcontroller

which includes a 32-bit Reduced Instruction Set Computer (RISC) microprocessor, RAM

(around 64KB), internal NOR FLASH (about 1MB), various communication modules in

order to communicate with outside components (e.g., USB 2.0, Bluetooth, 802.11, SPI...)

and some other peripheral modules. Specially, this microprocessor is connected to a very

large NAND FLASH storage (GBs of NAND Flash) allows PDSs to store much data [9],

[7]. Nevertheless, having limited resources and using external memory for storing data in

PDSs bring us many challenges.
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Figure 8.4: System architecture

First of all, small capacity of RAM memory is able to slow down the system when process-

ing or dealing with new type of large data such as: Moving GPoint (MGPoint) or GLine

data. The limited capacity of RAM doesn’t allow us to load all instances of these kinds

of data into main memory. Hence, it consumes more time for all of the processing these

data.

Secondly, throughputs between external storage and microprocessor are limited and slow

(compare to internal memory). Storing data incoherently in NAND Flash may increase

the number of accesses and take more time when retrieving data. Besides, accessing to

NAND Flash memory many times not only delays throughput but also makes harmful to

NAND Flash because the number of read/write times from/to NAND Flash is also limited.

Software environment

The software of system contains three small parts: application, DBMS and operating

system (OS). However, application level is user level while operating system manages and

monitors hardware devices both of them are not related to our studies. Therefore, in this
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section we only focus on DBMS module.

DBMS is a software package that controls the creation, management and use of database

in PDS. DBMS itself has many modules, each of modules has specific task. For example,

DBMS manages hardware resources such as RAM, Nor Flash, Nand Flash... by using

HwApi module. And NetDBMS is a TCP/IP communication module that allows DBMS

to connect to other devices for sharing data.

On server’s side, there is another application for communication with PDS devices. In

particular, we used JDBC (Java Database connectivity) module which acts as a server

to take data from PDS. JDBC is also a software package that also has inside TCP/IP

or JNI bridge module to enable connections to DBMS for creating database, sending or

receiving data. Moreover, JDBC uses some application programming interfaces (API)

which are provided by DBMS. Thus, it can provide methods for creating, querying and

updating database in DBMS. And, these methods can be used by some testing modules

inside JDBC.

To reduce query processing that may consume much time and memory usage of PDSs, all

the SQL queries are pre-compiled into Query Execution Plan form (QEP) before sending

to DBMS. QEP is an order set of operations that are used to describe the meaning of

SQL queries. This plan can describe exactly how a SQL query will be executed. In our

system, we use QEP to perform all the SQL queries. And, QEPGen and QEPGenerator

are two versions of QEP compiler that are used to transfer queries from SQL format to

QEP string.

8.5.2 Implementation

In the previous Chapters, we discuss about the demands to extend the current DBMS

and some briefs about new kind of data types and operations as well as the solutions for

the very constraint system. This Chapter presents detail about system architecture, our

solutions and implementation.

8.5.2.1 Overview

Here we recalled the definition of DBMS, JDBC and QEP compiler. However, we don’t

present detail about these modules. The detail descriptions of these modules can be found

our technical report [112].

� DBMS, a software package, is downloaded in PDSs and used for controls database in

PDSs. DBMS plays the role to monitor PDSs hardware resources, receive requests

from servers (JDBC), execute the requests then send feedback to servers.
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� JDBC (Java database connectivity) is also a java software package but can be placed

in servers. It uses TCP/IP communication to connect to DBMS for sending require-

ments and receiving information from PDSs.

� QEP compiler is a compiler used to pre-compiler all the queries in SQL to QEP

code (Query Execute Plan code). QEPGen and QEPGenerator are two versions of

QEP compiler that we used in our implementation. QEPGenerator is the old version

while the other is the new one.

Implementation of our extensions is a work related to not only DBMS but also JDBC and

QEP compiler (see Figure 8.5). Because queries used between servers and PDSs should

be in QEP code (Query Execution Plan code) to reduce the CPU and memory resources

in PDSs. Therefore, adding new queries for new data types and operations, we have to

have new QEPs code. In addition, new keywords used for new data types and operations

must be defined in QEP compiler level. In other side, DBMS and JDBC have to have new

functions to handle new data types and operations.

Figure 8.5 shows the general view of how our system works. First of all, SQL queries

and file description of database relational schema must be compiled into QEP string by

our QEP compiler (QEPGen or QEPGenerator). The output of QEP compiler (in QEP

format) is a queries.java file and schema.src file. Queries.java, a file in java, contains

all SQL query prototypes (in QEP format) that we want to use for our system. While

schema.src is a set of QEPs string that is used to define database model.

Once received queries.java and schema.src, they should be integrated into JDBC project.

Based on all the QEPs string provided by queries.java and schema.src, JDBC can compose

queries (in QEP) then send them to DBMS for creating database, getting data from DBMS

or modifying data in DBMS. Receiving the requirements (in QEP) from JDBC, DBMS

executes the queries then sends feedback to JDBC by TCP/IP communication.

To add new data types and new operations, we have to make some modifications from

both QEP compiler, JDBC and DBMS. The steps in red color in Figure 8.5 are all the

steps we have to modify so that the system can understand new kind of data types and

operations. In particular, these steps are:

QEP compiler level :

1. Modify parser.lex in order to recognize new kind of data type and operation key-

words.

2. Explain semantic meaning of new operations and data types by changing parser.y

3. Describe database relational schema (in SQL) in schema.sql

4. List all the queries (in SQL) that may be used in our system in queries.sql
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Figure 8.5: The overview of implementation process

5. Design new QEPs code for new operators

6. Modify QEPGen (or QEPGenerator) so that QEP compiler can build and generate

QEP code for the new queries (recognize new queries, build queries plan (tree) in

memory, generate QEPs code)

DBMS level :
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8. Design new structure and new/get/set methods for new data types

9. Make some small changes in DBMS and DBEngine module in order to understand

new QEPs code

10. Implement new operator functions to handle new operator in DBOpLib module (add

new handle functions: parse, open, next, close)

JDBC level :

11. Update the new QEPs (new data types and operations) code for JDBC

12. Build new testing program for testing new kind of data types and operations

13. Compose new function for receiving and handling new kind of data types

8.5.2.2 The storage model

As we discussed in previous section, MGPoint and GLine are large size data types which

length is variable. They also have an intrinsic semantic that should be captured by the

data structure. In this section, we describe the physical implementation for GLine and

MGPoint. In order to cope with the length variability, the data are split into small units.

Thus, a GLine is an array of road intervals while an MGPoint is an array of MGPoint

units (i.e. UGPoint).

GLine:

GLine record {

rints: DBArray of record { //set of intervals

rid: int //road id

side: {up, down, none} //side

pos1: real; //interval positions

pos2: real;

};

}

The units’ structure of these data types can be described by following figure (see Fig-

ure 8.6):

Referring to the above structures of GLine and MGPoint unit, we need 21 bytes to store

a unit of GLine (4 bytes for storing rid, 1 byte for side and 16 bytes for the two relative

positions), and 37 bytes for a unit of MGPoint (see Figure 8.7).
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MGPoint Unit :

UGPoint record {

rid: int //road id

side: {up, down, none} //side

t1: instant; //time interval

t2: instant;

pos1: real; //interval positions

pos2: real;

}

MGPoint :

MGPoint record {

ugps: UGPoint [LENGTH]; //set of UGPoints

}

Figure 8.6: Data units of MGPoint and GLine

To implement a collection (here an array of units), different alternatives exist. It could

be a chained list or a contiguous array. The contiguous storage is more suitable to Flash

memory. At this end, we define a new data structure called STOB.

STOB (Spatio-temporal Object) is a collection of binary data that is stored in a single

entity. This structure can be used to store images, audio files, etc. A STOB is composed

of two parts. The first part is a metadata, called STOB descriptor. And the second is

used to store actual data, called STOB data1.

STOB descriptor contains 3 fields (Figure 8.7): head field, size field and hash field.

Head field has 4 bytes and indicates the physical address of STOB data in Flash memory.

Size field (4 bytes) gives the length of STOB data. And, hash field (8 bytes) is reserved

1This storage model can apply to any Binary Long Object (BLOB).
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Figure 8.7: STOB descriptor

Figure 8.8: STOB data

for future use. This field could be used for storing hash number to retrieve a STOB data.

STOB data is a long variables length data units stored contiguously (Figure 8.8). STOB

descriptors and STOB data are stored separately in the Flash memory. For retrieving

actual data, first we have to read the STOB descriptor to get metadata and then based

on this metadata we can access the STOB data.

8.5.2.3 The processing model

Processing a large size data in the PDS poses a problem since the small capacity of RAM

memory prevents loading them. Thus, a solution for handling the new functions, such as

Trajectory and MCount operations, consists in processing them in pipeline. Hence, the

data are loaded and processed unit by unit, instead of entirely.

Another problem comes from the fact that the temporary results may be too large to

be stored in main memory. In addition, the buffer size of TCP/IP packet (between the

application level and the DBMS) is also limited. To cope with this problem, we divide the

input data into many small parts (up to 256 bytes) and then evaluate the operation results

by portion, which limits the main memory consumption. We divide the implementation

into two classes: stream-based and buffer-based implementations.

Buffer based implementation (see Figure 8.9): In this solution, the DBMS keeps a (large

size) temporary segment in NAND Flash to buffer intermediate results of the operation.

This solution can take a longer time at the beginning of the operation processing, but

once the temporary data is stored on Flash, the consumed time to respond to the server

is constant.

Stream data (see Figure 8.10): For some operations, the results can be processed in stream

and buffering the intermediate results in these cases is unnecessary. The DBMS reads a

few small packages, it computes a part of the result and then sends back the results to the

output. This process is repeated until the entire input data are consumed.
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Figure 8.9: Buffer data

Figure 8.10: Stream data

8.5.3 Evaluation

8.5.3.1 Test case descriptions

In this section, we present the performance tests of our system and then compare result

performance of buffer and streaming techniques that was described in previous sections.

All of our test cases were run and simulated on Visual studio 2008 and Eclipse installed

on an Intel core i5 3.1 GHz machine having 2 GB of Ram running windows XP (Virtual

Machine)

The characteristic of system performance, which we aim at, is the response time of the

system. Our goal is to reduce the consuming time as small as possible. On the DBMS side,

the consuming time comes from CPU processing time and I/O accessing time. Because

most of queries are simple or don’t usually take too much execution operation. Secondly,

CPU power is quite good compare to the Flash accessing time. Thus, time consumes

for CPU processing is more less than time used for I/O accessing. Otherwise, the I/O
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accessing time is not only depending on amount of data read/write form/to flash memory

but also the number of times access to flash memory. However, in our implementation, we

access directly to Flash without using Flash Transfer Layer (FTL) library. Each time we

access to Flash memory, amount of data transmitted between Flash and main memory is

one sector (512 bytes). Therefore, in our case, the number of I/O accesses determines the

performance of system. Because of these reasons, in our performance tests we will focus

on both the correctness of the implementation and the performance of system based on

the number of times accessing to I/O.

In particular, we divide the set of queries used in our schema into 5 groups that are shown

at the end of Section 8.4. The cases are also classified into 5 levels depending on the tested

functions and the input data as follows

� Level 1 (small size of input data and single function):

– Input data: the content of data and the size of data are fixed. The number of

units for MGPoint and GLine data is up to 20 units

– Tested function: queries are divided into groups and each of group is tested

independently.

� Level 2 (medium size of input data, single function):

– Input data: the content of data and the size for special data (MGPoint and

GLine) are generated randomly. However, in this level, the upper bound of the

number of units is 200 units

– Tested function: queries are divided into groups and each of group is tested

independently.

� Level 3 (large size of input data, single function):

– Input data: the content of data and the size for special data (MGPoint and

GLine) are generated randomly. The lower bound and the upper bound of the

number of units are 200 units and 1000 units respectively.

– Tested function: queries are divided into groups and each of group is tested

independently.

� Level 4 (medium size of input data, multiple functions)

– Input data: the content of data and the size for special data (MGPoint and

GLine) are generated randomly. However, in this level, the upper bound of the

number of units is 200 units

– Tested function: all the queries are tested at the same time



136 8. Management of Spatio-temporal Data Streams in Embedded Systems

� Level 5 (large/very large size of input data, multiple functions)

– Input data: the content of data and the size for special data (MGPoint and

GLine) are generated randomly.

* Large size of data: 200 ÷ 1000 units

* Very large size of data: 1000 ÷ 3000 units

– Tested function: all the queries are tested at the same time.

Level 1, level 4 and a part of level 2 are used to check the correctness of the implementation

while level 3, level 5 and a part of level 2 are used for the system performance measure.

In all cases of our tests the number of tuples in each table that contains special data is

always 20 tuples.

Although input data is generated randomly, the methods to generate data have some

rules so that it can automatically generate the data with strict constraints. The reasons

for these data constraints are come from the fact that all our operations which apply on

special data are limited operations. In trajectory operation, we don’t support ability to

concatenate many parts of a same road and sort output result (in GLine). Therefore, the

MGPoint data that we used for testing is non-overlap, sorted by both road id and time

and continuous in time. Furthermore, the GLine data used for MCount operation is also

sorted by road id.

Finally, in our current tests we only focus on inserting and reading. Deleting and updating

performance are not tested. These functions will be tested in near future when we are

implementing indexing techniques for our system.

8.5.3.2 Results

Insertion. To see the different between inserting with and without special data type, we

divide the queries in our schema into 3 kinds of insert queries. One is inserting without

any special data type (Query 3). The others are inserting with MGPoint (Query 1) and

GLine (Query 2) data type.

Q1 (MGPoint): INSERT INTO Vehicle

VALUES (vehicleId, vehicleType, vehicleNum, vehicleDesc, Trip)

Q2 (GLine): INSERT INTO ForbiddenRoad

VALUES (vehicleType, sections)

Q3 (Basic types): INSERT INTO Road

VALUES (rid, name, fee)

Figure 8.11 shows information about the time DBMS accesses to memory for inserting

data in three levels, while Figure 8.12 indicates the type of accessing to memory (including:
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Figure 8.11: Number of I/O accesses in insert query

Figure 8.12: Number of I/O accesses (level 3)

NOR write, NOR erase and NAND write) in level 3 (large size of input data).

Selection. The below figures show the comparison of number I/O accesses of following

set of queries between levels of performance tests. This information indicates the relation

between the I/O access and the query types.

There are five queries (Q1 to Q5) which stand for five groups of queries (see Section 8.7).

Because in our current implement we don’t implement any indexing methods yet, we only

report queries that have no where clause. We also compare the different in performance

between stream and buffer techniques by using two couples of queries which are exactly

the same in SQL but have different QEP codes. One is streaming and buffer trajectory

QEP code, while another using buffer and stream nested operations QEP code as follows:

Query 1 is used to obtain data from DBMS. It gets many kinds of data including number

(vehicleId, vehicleType, vehicleNum), character (vehicleDesc) and specially MGPoint data
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Q1: SELECT Trip, vehicleId, vehicleType, vehicleNum, vehicleDesc

FROM Vehicle

Q2a: SELECT Trajectory (Trip), VehicleId, VehicleType, VehicleNum, VehicleDesc

FROM Vehicle

Q2b: SELECT Trajectory (Trip), VehicleId, VehicleType, VehicleNum, VehicleDesc

FROM Vehicle

Q3: SELECT MCount (sections), VehicleType

FROM ForbiddenRoad

Q4a:
SELECT MCount (Trajectory (Trip)), VehicleId, VehicleType, VehicleNum,
VehicleDesc

FROM Vehicle

Q4b:
SELECT MCount (Trajectory (Trip)), VehicleId, VehicleType, VehicleNum,
VehicleDesc

FROM Vehicle

Q5: SELECT MSum (fee)

FROM road

Trajectory operation:

Q2a: ”# s 1 1 2 r0 0 4 # ” /* Stream trajectory */

Q2b: ”# t 1 1 2 r0 0 4 # ” /* buffer trajectory */

Nested operation:

Q4a: ”# s 1 1 2 r0 0 4 # ” /* Stream trajectory */

”# i 0 0 1 1 r1 0 4 # ” /* Stream MCount */

Q4b: ”# t 1 1 2 r0 0 4 # ” /* Buffer trajectory */

”# i 0 0 1 1 r1 0 4 # ” /* Stream MCount */

(Trip). Query 2 (Q2) is tested to see the difference in the number of I/O access when buffer

and stream trajectory operation are executed. Query 3 (Q3) and Query 5 (Q5) represent

for MCount and MSum operations respectively. Nested operations are also covered by

query 4 (Q4) where MCount and trajectory are nested together. To see the difference

between stream and buffer used in nested operations, we also compare the results of them

by using a couple of query (Q4a and Q4b).

The data that we used for testing is generated randomly depend on the level of tests as we

presented at the beginning of this section. In level 1 amount of data is small, while the data

in level 2 and 3 are quite large. In particular, the average number of units per MGPoint

in level 2 and 3 are 95.5 and 614.7 respectively. Other information about date, time and

ID are generated randomly. The bar charts below shows more detail about number of I/O

accessing.
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Figure 8.13: Number of I/O accesses of queries

The Figure 8.13 shows information about the number of I/O accesses of the set of queries.

The x axis is the number of accesses and the y axis is the kind of queries. Each of queries,

we tested in all of three levels (blue, red and green). The highest number of I/O accesses

is 10758 times coming from Q4b which has nested operations (stream MCount and buffer

trajectory). The detail about the kind of I/O accessing can be clearly seen in Figure 8.14,

8.15 and 8.16. In these figures we classify the I/O access into four kinds of access: NAND

read, NAND write, NOR erase and NOR write. For example, the number I/O accesses in

Q4b in Figure 8.14 are more than 100 times including 39 times reading from NAND and

just 12 times writing to NAND.

From the charts, we can clearly see the different in number of I/O accesses between stream

trajectory and buffer trajectory. When the input data is small (Figure 8.14), they are not

very different (39 times versus 102 times) but both of them are the same (39 times) in

NAND read. However, when the data is large (Figure 8.15 and 8.16), the cost for buffer

trajectory is much higher than the cost for stream trajectory. Furthermore, while stream

trajectory only reads NAND Flash, buffer trajectory has to read/write to both NAND

and NOR memory.

One more thing that can be inferred from these charts is the cost for buffer nested op-

erations (see Q4b in Figure 8.16) in case the input data is large. Its cost is very high

(over 10 thousand accessing times) and three times higher than those with stream nested

operations (using stream technique for both MCount and Trajectory operation).
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Figure 8.14: Number of I/O accesses of set of queries

8.6 Conclusion

This section has focused on the support of spatio-temporal data in the context of the

PDS. We have presented the abstract data model, and pointed out the problems of its

implementations due to the specificities of the underlying architecture. Then, we proposed

some solutions to deal with its storage and its manipulation. This approach can be easily

extended to other BLOBs.

The next steps will be the experimental validation of this model. As mentioned before,

this section only addresses the basic data storage and operations (i.e. primitives). The

higher level set operators, e.g. spatio-temporal selection, k-NN, etc., are also complex and

costly, especially in the context of the PDS. Their optimization is mainly based on the

access method. So, we will also study the problem of spatio-temporal data indexing in the

context of the PDS.

8.7 Appendix

We detail five groups of queries that are used in our implementation as following. These

queries are designed with respect to the scheme presented in Section 8.4.

Group 1 :

Q1 : SELECT Trip FROM vehicle
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Figure 8.15: Number of I/O accesses of set of queries

Q2 : SELECT Trip FROM vehicle WHERE VehicleId = 4

Q3 : SELECT Trip, VehicleId, VehicleType, VehicleNum, VehicleDesc FROM vehicle

Q4 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc, Trip FROM vehicle

Q5 : SELECT VehicleId, Trip, VehicleType, VehicleNum, VehicleDesc FROM vehicle

Q6 : SELECT Trip, VehicleId, VehicleType, VehicleNum, VehicleDesc FROM vehicle

WHERE VehicleId = 4

Q7 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc, Trip FROM vehicle

WHERE VehicleId = 4

Q8 : SELECT VehicleId, Trip, VehicleType, VehicleNum, VehicleDesc FROM vehicle

WHERE VehicleId = 4

Group 2 :

Q9 : SELECT Trajectory (Trip) FROM vehicle

Q10 : SELECT Trajectory (Trip) FROM vehicle WHERE VehicleNumber = 3456

Q11 : SELECT Trajectory (Trip), VehicleId, VehicleType, VehicleNum, VehicleDesc

FROM vehicle

Q12 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc, Trajectory (Trip)

FROM vehicle

Q13 : SELECT VehicleId, Trajectory (Trip), VehicleType, VehicleNum, VehicleDesc

FROM vehicle
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Figure 8.16: Number of I/O accesses of set of queries

Q14 : SELECT Trajectory (Trip), VehicleId, VehicleType, VehicleNum, VehicleDesc

FROM vehicle WHERE VehicleId = 4

Q15 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc, Trajectory (Trip)

FROM vehicle WHERE VehicleId = 4

Q16 : SELECT VehicleId, Trajectory (Trip), VehicleType, VehicleNum, VehicleDesc

FROM vehicle WHERE VehicleId = 4

Group 3 :

Q17 : SELECT MCount (sections) FROM ForbiddenRoad

Q18 : SELECT MCount (sections) FROM ForbiddenRoad WHERE VehicleType = 1

Q19 : SELECT MCount (sections), VehicleType FROM ForbiddenRoad

Q20 : SELECT VehicleType, MCount (sections) FROM ForbiddenRoad

Q21 : SELECT MCount (sections), VehicleType

FROM ForbiddenRoad WHERE VehicleType = 1

Q22 : SELECT VehicleType, MCount (sections)

FROM ForbiddenRoad WHERE VehicleType = 1

Group 4 :

Q23 : SELECT MCount (Trajectory (Trip)) FROM vehicle

Q24 : SELECT MCount (Trajectory (Trip)) FROM vehicle WHERE VehicleId = 3456

Q25 : SELECT MCount (Trajectory (Trip)), VehicleId, VehicleType, VehicleNum,
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VehicleDesc FROM vehicle

Q26 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc,

MCount (Trajectory(Trip)) FROM vehicle

Q27 : SELECT VehicleId, MCount (Trajectory (Trip)), VehicleType, VehicleNum,

VehicleDesc FROM vehicle

Q28 : SELECT MCount (Trajectory (Trip)), VehicleId, VehicleType, VehicleNum,

VehicleDesc FROM vehicle WHERE VehicleId = 3456

Q29 : SELECT VehicleId, VehicleType, VehicleNum, VehicleDesc,

MCount (Trajectory(Trip)) FROM vehicle WHERE VehicleId = 3456

Q30 : SELECT VehicleId, MCount (Trajectory (Trip)), VehicleType, VehicleNum,

VehicleDesc FROM vehicle WHERE VehicleId = 3456

Group 5 :

Q31 : SELECT MSum (fee) FROM road

Q32 : SELECT MSum (fee) FROM road WHERE id = 1
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Chapter 9

Conclusion

9.1 Summary of thesis’ contributions

The tight integration of (secure) mobile computing, wireless communication and sensors

in small, portable devices has lead to an unprecedented production and consumption of

personal mobility data. These data are of great value for many applications and businesses,

and hold the promise of allowing society a more sustainable development (e.g., in areas

such as smart cities or smart home) through a better usage and understanding of the

data. However, many challenges, in particular related to data management, still need to

be solved before transforming this vision into reality. This thesis focuses on two such

challenges. The first challenge concerns the efficient management of large amounts of

spatio-temporal data flows on specific storage devices. The second challenge is related to

personal mobile data aggregation which preserves the users’ privacy. Specifically, there

are three main contributions in this thesis as following:

� We have proposed TRIFL, an efficient and generic TRajectory Index for FLash.

The change in storage environment from traditional magnetic disk to flash storage,

due to the advantages of flash memory such as high performance, low power con-

sumption and shock resistance, has brought new constraints (e.g., erase-before-write

mechanism, asymmetric read/write, fast large granularity IO and etc.) and therefore

indexing techniques need to be reconsidered. Among these changes, we introduced

TRIFL dedicated for trajectory object. TRIFL is built based on an Append-Only

B+-Tree (BAO+-Tree) and Time Interval Index (TII) structures combined with an

intelligent buffer management technique (Hot-buffer). These ideas allow TRIFL

to reconcile the features of trajectory objects and flash environment and therefore

achieve much better performance in both Flash and magnetic storage compared to

its competitors. Moreover, we also offered a self-turning machine for TRIFL that

allows adapting the index structure to the different types of workloads as well as the
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specific characteristics of storage devices.

� We have proposed PAMPAS, a Privacy-Aware Mobile PArticipatory Sensing sys-

tem based on secure mobile probes. Mobile participatory sensing has been applied

in many applications ranging from environmental monitoring to traffic monitoring.

However, its success depends on finding a solution for querying large numbers of

users which protects users location privacy and works in real-time. Due to these rea-

sons, we pursued and proposed PAMPAS, a privacy-aware mobile distributed system

for efficient data aggregation in mobile participatory sensing. The main ideas be-

hind are to use secure hardware solutions incorporate a secure-centric privacy-aware

protocol and therefore aggregation processes are delegated to a list of secure devices

and executed in parallel without any privacy leakage. Furthermore, we also offer

an embedded partitioning algorithm and aggregate algorithms that give PAMPAS

further strength in order to be easily applied in any real-time and large scalability

participatory sensing system.

� We implemented a prototype in the context of the secure Personal Data Server. This

prototype has two major components, which are embedded in a secure portable

token. The first component is an extension of an embedded relational database

engine (i.e., PlugDB [82]) to deal with spatio-temporal data. This extension consists

in new data types and new operators allowing to locally manage spatio-temporal

data in conjunction with the classical data types and operations in the relational

model. The second component is a secure global aggregation protocol based on

PAMPAS and applied to the context of traffic monitoring using secure devices. We

call this component PPTM (Privacy-aware Participatory Traffic Monitoring). The

implementation of PPTM can be executed in many secure tokens in parallel and

shows the feasibility of doing privacy-preserving participatory sensing using secure

mobile devices.

9.2 Perspective work

As smart objects become more and more popular nowadays, managing personal data in

such devices as well as caring also the advantages of their security (i.e., secure processing

and also secure storage of cryptographic material) has become an important research topic

during the last decade. For this reason, there are many research directions that could be

developed following the work in this thesis such as spatio-temporal personal data servers,

distributed computation on top of secure devices infrastructure or privacy-preserving in

participatory sensing systems with secure devices (e.g., Trustzone supported devices [12],

[108]). However, we believe that the following research directions are particularly promis-

ing:
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- Efficient stream data management for smart objects. The advent of smart objects and

Internet of Things has a strong impact on several aspects of people’s daily life in terms

of data acquisition. For instance, smart meters are used to monitoring, billing, regulating

and even saving the electrical, gas or water consumption with the help of high quality

and real-time sensors. Similarly, quantified-self applications uses related personal physical

data in order to improve the one’s health and well-being by tracking different external

factors (e.g., consumed food, air quality, temperature or surrounding noise) or internal

states (e.g., heart pulse, breath rate or oxygen levels) [65], [102], [119]. In many cases,

personal information and sensing data are collected locally on the smart devices before

reporting or sharing the information to a central server or a Personal Cloud. As a result,

stream data management in smart objects is of prime importance. In this context, several

problems have to be taken into account. Firstly, there are considerable differences in the

hardware resources between smart devices (e.g., a smart meter using a smart card versus

an application running using Trustzone in a smartphone) and therefore, an embedded

database engine needs to be adapted to each specific scenario. Secondly, in order to

avoid flooding the network bandwidth and given the requirements of the above mentioned

applications, the data recorded by the devices is not necessary sent in real-time. Instead,

it could be sent in batch daily or after longer time durations. To this end, the stream of

recorded data needs to be stored locally in smart devices at least for some period of time.

Keeping the data locally in smart objects has also the prominent advantage of increasing

the security due to the data distribution. Therefore, we need to design and implement

embedded database engines that allow to efficiently buffer, store and query streams of

sensed data in smart devices.

- Data compression/aggregation/degradation/aging/cleaning techniques. Given the large

amounts of data generated and shared by the users, there is a high risk of waste of re-

sources and large maintenance costs incurred by data transfer and storage. Locally man-

aging data in the smart devices comes as a smart solution. However, dealing with large

amounts of data in constrained environments is still challenging. Complementary to study-

ing efficient data management techniques in smart objects, we also need to consider the

problem of embedded data compression. For instance, the precision needed by an appli-

cation often decreases as the data gets older, leading to study embedded data compres-

sion/aggregation/degradation/aging techniques to minimize the data volume (and thereby

the privacy risk) while preserving the usages on the data. Also, indexing could be selec-

tively applied to the data as they are queried, in the same spirit as Database Cracking [49],

[46] or Data Virtualization principles in order to concentrate the resources on the useful

part of the data.

- Gossip-like computation protocols in the PAMPAS architecture. Currently, the proposed

PAMPAS system is built on the assumption that the secure tokens can preclude all the



150 9. Conclusion

attacks coming from the token holder. This is a reasonable assumption given the tamper-

resistance protection of the secure MCU and the fact that the NAND Flash persistent

storage is cryptographically protected. However, with sufficient effort and time, any secu-

rity can be broken, i.e., a laboratory attack. In PAMPAS, if a secure token is compromised,

the attacker can gain access to the secret information protected by the token (e.g., the

encryption key used to encrypt the data that is exchanged between the users). In this

case, the attacker could collude with the SSI to gain access to all the raw sensed data, and

completely compromise the privacy of the other users.

In order to minimize the risks of a laboratory attack, we plan to use a Gossip-like proto-

col [54] in PAMPAS. Concretely, the improvements in our protocol are twofold: (1) We

eliminate the collection phase (in which the SSI gathers encrypted samples from users)

and we only use the SSI for broadcasting aggregate results which do not contain any per-

sonal sensitive information. (2) We aggregate the information based on a Gossip-based

computation protocol. This Gossip approach requires all secure probes (SPs) to partici-

pate to the aggregation processes. SPs need to send their samples randomly to other SPs

in their partitions and compute partial aggregate results once they receive samples from

other SPs. Consequently, partial aggregate results are propagated within partitions and

final aggregate results should be obtained after a number of rounds at all SPs [54]. Finally,

these final results are broadcast to the other participants in different partitions via SSI.

Globally, higher privacy guarantees are achieved by trading off the efficiency of PAMPAS.

Compared to our original architecture, applying a Gossip-based computation protocol in-

curs higher communication and computation costs and therefore execution time to finish

the data aggregation is longer than in the original PAMPAS protocol. The explanations

for this are as following. First, the computation process based on Gossip requires approx-

imately n = log(users) rounds instead of one. Second, the samples and the partial results

are propagated randomly between the users during these rounds and therefore this leads to

a larger communication cost. However, with the Gossip-based protocol, there is no shared

secret key used to encrypt all the exchanged data. In the Gossip-based protocol, all the

communications between the users are point-to-point and can be secured using a typical

asymmetric, public/private key encryption. Hence, in the unlikely event of a secure token

being compromised, the attacker can only gain access at most to the data that transits

that token (i.e., a few raw data and some partial aggregate data). This makes the Gossip-

based protocol a better candidate for scenarios in which stronger security guarantees are

required.
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