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Abstract

Very Low-Mass stars (M dwarfs) are an important source of information for probing the low
mass end of the main sequence, down to the hydrogen burning limit. They are the dominant
stellar component of the Galaxy and make up the majority of baryonic matter in the Galaxy.
Moreover, an increasing number of M dwarfs are now known to host exoplanets, including
super-Earth exoplanets. The determination of accurate fundamental parameters for M dwarfs
has therefore relevant implications for both stellar and Galactic astronomy as well as plane-
tology. Despite their large number in the Galaxy, M dwarfs remain elusive objects and the
modelling of their photosphere has long remained a challenge (molecular opacities, dust cloud
formation). The description of these stars therefore need a strong empirical basis, or validation.
In particular, the effect of metallicity on the physics of cool atmospheres are still poorly known,
even for early-type M-dwarfs.

The goal of this thesis is to determine the fundamental stellar parameters of these low-
mass dwarfs (M dwarfs) and to test recent model atmospheres. In particular this works aims
to validate the BT-Settl model atmospheres, to understand the onset of dust formation in cool
stellar atmospheres and to update the current knowledge about the relationship between spectral
type and effective temperature (Teff) of M dwarfs.

The first part of this study sets out to improve the understanding of onset of the dust forma-
tion in cool stellar atmospheres. We perform a χ2 minimization by comparing well calibrated
optical and infrared (IR) spectra with recent cool star model synthetic spectra, leading to the
determination of the physical stellar parameters Teff , radius and log g for each of the compo-
nent of the triple sysytem LHS 1070 (Rajpurohit et al. 2012b,a). This study is then extended by
validating BT-Settl model atmospheres, updating the M-dwarf Teff - spectral type relation, and
finding the atmospheric parameters of a sample of M-dwarfs. We also present the relationship
between effective temperature, spectral type and colours for the M-dwarfs (Rajpurohit et al.
2013).

The second part of this study deals with the analysis of high resolution spectroscopy for
M subdwarfs. This study shows that the observational and modelling efforts are required to
fully understand the physics in the cool subdwarf atmosphere and to investigate the effect of
metallicity in particular for the lower metallicity. This study presents the UVES/VLT high
resolution spectra of 21 M subdwarfs. Our atlas covers the optical region from 6400 Å up to the
near infrared at 8900 Å. We show spectral details of cool atmospheres at very high resolution
(R∽ 40 000) and compare the observed with synthetic spectra computed from the recent BT-
Settl atmosphere models, to disentangle their stellar parameters and to determine their precise
metallicity.

This work should initiate further research: in particular we want to verify that the near-IR
spectral energy distribution will yield results that are consistent with the optical. The exten-
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sion of this study to the near-IR will generate the first complete atlas of overall M-dwarfs and
subdwarfs spectra for which parameters (Teff , log g and Fe/H) have been determined from this
work.
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Chapter 1

Motivation

M dwarfs are an important part of the low mass stars, which are the most numerous and domi-
nant stellar component of the Galaxy and make up the majority of baryonic matter in the Galaxy
(Gould et al. 1996; Mera et al. 1996; Henry 1998). These low-mass objects are found to dom-
inate the solar neighborhood, as well as more distant field samples and open clusters, with the
peak in their luminosity function occurring around MV ∽ 12 and MK ∽ 7 (e.g., Dahn et al. 1986;
Luyten 1968; Leggett & Hawkins 1988). Their main-sequence lifetimes are much greater than
the current estimated age of the Universe (Laughlin et al. 1997). Therefore, the observation and
the study of M dwarfs can be used to trace the structure and evolution of the Milky Way. Our
understanding of the Galaxy relies upon the description of the stars composing this faint com-
ponent, including the determination of their chemical composition. Indeed M-dwarfs have been
employed in several Galactic studies, dealing with Galactic disk kinematics (Hawley et al. 1996;
Gizis et al. 2002; Lépine et al. 2003a; Bochanski et al. 2005, 2007b, 2010), the structure and the
component of the Galaxy (Reid & Gizis 1997; Kerber et al. 2001; Woolf & West 2012) and the
initial stellar mass function (Covey et al. 2008; Bochanski et al. 2010). Moreover, an increas-
ing number of M dwarfs are now known to host exoplanets, including super-Earth exoplanets
(Butler et al. 2004; Bonfils et al. 2012). There are some fundamental and preliminary studies
which have been done on M dwarfs, including classifying their spectral type (Kirkpatrick et al.
1991; Reid et al. 1995; Kirkpatrick et al. 1999; Martín et al. 1999; Cruz & Reid 2002), mea-
suring radial velocity (Bochanski et al. 2007a), estimating metallicity (Gizis 1997; Lépine et al.
2003a; Woolf & Wallerstein 2006; Lépine et al. 2007; Bean et al. 2006a; Rojas-Ayala et al.
2010; Bonfils et al. 2005) and studying magnetic activity (Reid et al. 1995; Hawley et al. 1996;
Gizis 1997; West et al. 2004, 2011). The low mass M dwarfs display a wide range of internal
and atmospheric stellar characteristics, including the onset of complete convection in the stellar
interior, and the formation of dust, with the subsequent depletion of metals onto dust grains in
the stellar atmosphere(Allard et al. 2012a). As progressively cooler stellar and substellar ob-
jects are being discovered by various photometric and spectroscopic surveys, the presence of
first molecules and then condensed particulates greatly complicates the understanding of their
physical properties. In M dwarfs later than M6 the outermost temperatures fall below the con-
densation temperatures of silicate grains, which leads to the formation of dust clouds (see e.g.,
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Tsuji et al. 1996b,a; Allard et al. 1997; Ruiz 1997; Allard et al. 1998). The presence of a wide
variety of molecular absorber and numerous condensates greatly complicates the accurate mod-
eling of these cool stellar atmospheres.

Despite the large number of very low mass stars in the Galaxy, little is known about them,
because it is difficult (i) to get a homogeneous sample with respect to the age and metallicity,
owing to their intrinsic faintness, (ii) to disentangle the parameter space (Teff , log g and metal-
licity). Indeed, a number of studies have shown that when using broad band photometry or low
resolution spectra a change in temperature or gravity can compensate for a change in metal-
licity. Thus high and low-resolution spectroscopic observations of M dwarfs stars are crucial
for understanding stellar astrophysics for stars at the bottom end of the main sequence. They
are also very important to study the process of planet formation across the H-R diagram as M
dwarfs are the most favorable stars for planet detection. An atlas of high-resolution spectra both
in the optical and in the near-IR range for very low mass stars will also be critical for the mod-
eling of chemical abundances and for probing the physical processes that occur in the complex
atmospheres of M dwarfs.

In order to identify and quantify the low mass dwarf stars, transition objects and brown
dwarfs we need to determine accurately their stellar parameters such as mass, luminosity, sur-
face gravity, radius, effective temperature and atmospheric chemical composition. At present
the physical properties of these low mass M dwarfs are not particularly well understood. For
example the effective temperature scale of the M dwarfs is controversial, yet it is crucial for
a proper understanding of their locus in the Hertzsprung-Russel (H-R) diagram. In particular,
the temperature scale is needed to identify the long-sought "brown-dwarfs". The controversy
has arisen because the complex spectra are difficult to model reliably. The construction of an
effective temperature scale for the M dwarfs has been attempted in recent years by compar-
ing the spectra of these objects with synthetic spectra generated by atmospheric models. It is
found that the models fit the observed spectral energy distribution (SEDs) and colours fairly
well overall, and an effective temperature sequence is indeed derivable from the data fits (Ra-
jpurohit et al. 2012b, 2013). However, as Teff decreases from early to late spectral types, some
molecular bands that comprise most of the low-resolution spectral features of these cool objects
first increase and then decrease in strength owing to dust formation (both through depletion
from the gas phase and from green house effects). The molecular line lists used in the models
are not fully satisfactory, which could effect the predicted temperature scale. The measurement
of the chemical compositions of M dwarfs is still limited, despite the ease of obtaining very
high quality spectra for them. Today, the factor limiting the determination of accurate chemical
compositions for M dwarfs is the lack of a technique reliable enough to interpret the complex
spectra of these stars. Modern techniques of analysis applied to high resolution and high signal-
to-noise ratio spectra of solar-type stars consistently yield chemical abundances with internal
precisions of 10%. The application of these methods to M dwarfs is complicated by the effects
of significant molecule formation and the resulting opacity produced in the photospheres of
these stars.
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Over the last decade, stellar models for very low mass (VLM) stars have made great progress.
Indeed, the PHOENIX model atmospheres synthetic energy distribution improved greatly on
that from earlier studies (Allard & Hauschildt 1995a; Hauschildt et al. 1999), as do more re-
cent models by Allard et al. (2001, 2011, 2012a); Witte et al. (2011); Rajpurohit et al. (2012b).
However, they still have to use some incomplete or approximate input physical parameters
such as uncertain collisional damping constants for some atomic lines, molecular bands and for
missing line list of opacity source. The comparison between M-dwarf spectra and atmospheric
model spectra will bring constraints on the physics of these cool objects. The scientific aim of
this study is to investigate the effects of the physical parameters (effective temperature, mass,
luminosity, gravity, metallicity, radius) on the spectra and on the behavior of the molecular
structures. In particular, chemical abundance is a poorly known parameter, yet is essential in
order to understand the physics at different ages of the Galaxy. One approach to studying the
physics at the low end of the main sequence is to compare observed spectra with synthetic spec-
tra from various authors and modeling techniques. The appropriate physical parameters can be
determined by using spectral synthesis, including χ2 minimization and other "best fit" criteria.

This thesis describes the results of several projects aimed at characterizing the properties of
the very low mass stars, with particular emphasis on M dwarfs and subdwarfs. The layout of
this thesis is as follows:

In Chapter 2, we give a general introduction to M dwarfs and subdwarfs. This chapter makes
it clear why the study of very low mass stars is important. In chapter 3, we describe in detail
the model atmospheres used for the current study. In chapter 4, we confront different model
atmospheres described in chapter 3 by directly comparing their predictions with observation on
the triple system LHS1070 (Rajpurohit et al. 2012b). In chapter 5, we estimate the effective
temperature scale of M dwarfs by comparing a sample of M dwarf spectra (at both medium
and low resolution) and broad band photometry with the spectra computed by the recent BT-
Settl model atmosphere. We compare the new Teff scale with those which we have found in
the literature and thus establish a revised Teff scale for M dwarfs (Rajpurohit et al. 2013). In
Chapter 6, we compare the high resolution optical spectra of subdwarfs with the predictions of
the BT-Settl model atmosphere. We estimate the Teff for M subdwarfs using the results of high
resolution optical spectroscopy. Because of the high resolution of our spectra, we can perform
a detailed comparison of lines profile of individual elements such as Fe I, Ca II, Ti I, Na I, K
I and are able to determine accurate metallicities for the entire M subdwarf spectral sequence,
which can later be linked to their kinematical properties. Chapter 7 gives the conclusion of this
study, together with future prospectives.
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Chapter 2

The Basics Properties of M-dwarfs

2.1 Introduction to M-dwarfs

Within less than two decades the study of low-mass stars and brown dwarfs has bloomed into
one of the most active fields in astronomy. The low-mass end of the main sequence from
M, L, T and Y dwarfs includes objects spanning several orders of magnitude in temperature,
from 4000 K down to room temperature, and nearly fills the entire temperature gap between
the coolest stars and our Solar System’s giant planets. Stars known as red-dwarfs and red
subdwarfs are main sequence stars, a classification typically meant to include all main sequence
objects of spectral subtype K5 to M9. Their masses range from 0.08M⊙ ≤ M⊙ ≤ 0.8M⊙, based
on their estimated metallicity (Chabrier et al. 2000). Despite their intrinsic faintness, M-dwarfs
constitute a large fraction of the detectable baryonic matter in the Galaxy. They are the dominant
stellar component in the Galaxy, comprising ∽ 70% of all stars (Chabrier 2003) and nearly half
the stellar mass of the Galaxy which make the lower end of the Hertzsprung-Russel diagram
very important. These stars are found in any population, from young metal-rich M-dwarfs in
open clusters (Reid 1993; Leggett et al. 1994) to the several billion years old metal-poor dwarfs
in the galactic halo (Green & Margon 1994) as well as in globular clusters (Cool et al. 1996;
Renzini et al. 1996). Such low mass stars are an important probe for our Galaxy; as they
carry fundamental information regarding stellar physics and about the structure, formation and
dynamics of the Galaxy. The M-dwarfs span very long life time in the universe. Some have
lifetime much greater than the estimated age of the universe, which makes them an important
fossil record of Galactic history of great value in probing the structure and evolution of the
Milky Way.

Recent improvements in kinematic modelling and magnetic activity analysis have provided
enhanced statistical age estimates for populations of low-mass dwarfs (West et al. 2006). When
coupled with information about metallicity, these ages can provide valuable insight into the
history of the chemical evolution of the Milky Way. Their huge number in the Galaxy makes
M-dwarfs very important in the study of various process such as the formation and evolution
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of stars. Because of their ubiquity, cool dwarfs may represent the largest population of stars
which have orbiting planets, especially low-mass planets in their respective habitable zones,
which with relatively tight orbits for a cool dwarf system. In addition, the fact that the exis-
tence of brown dwarfs or planets has been discovered and confirmed around M-dwarfs (Butler
et al. 2004; Bonfils et al. 2012) plays an important role in understanding the formation of brown
dwarfs and planets. M-dwarfs are also very important to derive various quantities such as Initial
mass function (IMF), and the present day mass function. These frequently used functions are
derived by using the luminosity. However, the historic deficiency of data for M-dwarfs was
primarily due to their intrinsic faintness, a consequence of their low mass. The situation has
been radically altered in the last decade, as deep surveys covering large areas of the sky have
been carried out. Projects such as the Solan Digital Sky surveys (SDSS, York et al. 2000),
the Two-Micron All Sky Surveys (2MASS, Skrutskie et al. 2006) and the Deep Near-Infrared
Survey of the Southern Sky (DENIS, Epchtein et al. 1999) can trace their root back to photo-
graphic surveys. An important by-product of recent transit surveys has been the discovery of
many eclipsing binaries with M-dwarf components (e.g., Coughlin et al. 2011; Harrison et al.
2012; Birkby et al. 2012). These systems have traditionally been the most favourable for deter-
mining the basic properties of late-type stars, including their masses, radius, temperature, and
luminosity. Unfortunately, most newly discovered systems tend to be faint, so the problem for
accurate determinations continues to be that of carrying out accurate spectroscopy.

In general, it is necessary to obtain the spectra of low mass M-dwarf candidates selected
by using photometry or a study of proper motions in order to confirm their spectral types; this
limits the temperature and mass of a suitable candidate. Low resolution spectra are normally
preferred for the initial followup of candidates, since they are adequate for the measurement
of broad molecular absorption bands of late-type M-dwarfs, while also providing the high-
est signal-to-noise ratios. Most of the well observed M-dwarfs are relatively nearby and their
observed trigonometric parallaxes are therefore quite reliable, so that accurate absolute lumi-
nosities are known. Methods have been derived to find their mass, their location and density in
the Galaxy, their age (involving effective temperature), bolometric corrections, absolute visual
magnitude and several colour indices for them have been established. However, the measure-
ment of the chemical compositions of M-dwarfs is still limited, as it require lot of telescope
time to obtain very high quality spectra for them. The current factor limiting the determination
of accurate chemical compositions for M-dwarfs is the lack of a accurate atmosphere models
reliable enough to interpret the complex spectra of these stars.

2.2 A Survey of the Properties of M-dwarfs

Determining the fundamental properties of M-dwarfs, is a challenge from both observational
and theoretical perspectives. Empirical values for M-dwarfs masses, luminosities, temperatures
and radii can be extracted by studying the orbits of M-dwarf binaries (Leinert et al. 2000). How-
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ever, the intrinsic faintness of these systems makes their observation challenging and analysis
of known binaries reveals systematic variations in inferred temperatures or radii. Theoretical
constraints on M-dwarf atmospheric parameters have similarly been difficult to obtain. Ac-
curate modelling of the deep convective zones in M-dwarf interiors and of the formation of
the molecules and grains that dominate M dwarf atmospheres (Tsuji et al. 1996b; Allard et al.
2000) requires significant computational resources as well as an extensive database of oscillator
strengths and opacities obtained from laboratory experiments.

2.2.1 Physical properties

The theory of the evolution of low mass stars is mainly based on a detailed study of the variation
with time of bolometric luminosity, effective temperature, radius and angular momentum, for a
given stellar mass. Theoretical models of stellar interiors and atmospheres have made predic-
tions for the temporal evolution of the first three parameters, while other structure (e.g., winds,
disk) may produce loss of angular momentum. The thin radiative skin above the convective
region in an M-dwarf determines the surface boundary conditions for the entire temperature
structure of the fully convective photosphere and interior. The temperature of M-dwarfs ranges
from 4000 to 2300 K and the surface gravity, ranging from ∽ 4.5 - 5.5, allows the forma-
tion of various molecules. At these low temperature the structure of M-dwarfs is affected by
atomic and molecular opacity and convection. The atmosphere thus become more sensitive to
the strong opacity due to molecules such as TiO, H2O, so that this molecular opacity eventu-
ally becomes the main source of absorption. With their complex description of atmospheric
physics and chemistry the observations have now reached a high level of sophistication, while
the theoretical model side has fallen behind. In particular, precise observational calibrations
of the basics physical properties of M-dwarfs, such as their mass, age, radius, luminosity or
surface gravity is still missing. Unfortunately the degeneracy in the age-temperature relation
for M-dwarfs makes it difficult to make an unambiguous determination of their physical prop-
erties. Direct size measurements of low-mass stars represent vital tests of theoretical models of
stellar evolution, structure, and atmospheres. As seen in the results of Berger (2006), notable
disagreements exist between interferometrically determined radii and those calculated in low-
mass stellar models such as those of Chabrier & Baraffe (1997) and Siess & Livio (1997) in the
sense that interferometrically obtained values for the stellar diameters are systematically larger
by more than 10% than those predicted from models. Developments on both the observational
and theoretical fronts are thus essential in order to obtain meaningful and important estimates
of the physical properties of M-dwarfs (see the review from Allard et al. 1997, 2012a; Chabrier
et al. 2000).

2.2.2 Photometric Properties

SDSS, 2MASS and DENIS have had great success in discovering M-dwarfs. If the images
are deep enough and an appropriate combination of filters is used, it is actually easier to iden-
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tify cool M-dwarfs than many other classes of astronomical objects, because of the distinctive
nature of their spectral energy distribution (SED), which is due to the presence of strong molec-
ular absorption bands. The colours of M-dwarfs provide insight into the processes operating
in their atmospheres. Because of their intrinsic faintness, moderate- to high-resolution spec-
troscopy may not be performed on all of the cool M-dwarfs which have been discovered by
these surveys. Thus, analyses of cool M dwarf colours could be essential in providing infor-
mation on their physical properties. As is well known, the chemical composition of the stellar
photosphere (or its metallicity) affects the stellar energy distribution. Systematic trends have
also been identified in colour-colour diagrams using the known correlation between kinematic
population and metallicity. Alternatively, the location of a star in a colour-colour diagram can
be used as a metallicity indicator: the metal-poor subdwarfs stars are usually sub-luminous in
such a diagram (fig. 2.1).

The reason for this behaviour is that the decreased metallicity leads to a decreased atmo-
spheric opacity. This effect means that a star of fixed mass ‘moves‘ in the H-R diagram to a
position of higher Teff and higher luminosity. For very cool M-dwarfs, broadband photometry
at near-IR wavelengths is primarily detecting the strong molecular bands of H2O, CH4, CO,
and H2. Broadband photometry at optical wavelengths (λ ≤ 1µm) measures very different spec-
trophotometric features. Despite the faintness of cool dwarfs, the multicolour photometry of
M-dwarfs has proven to be sufficient for the determination of the normal colours, bolometric
corrections, and Teff for them. Optical and near infrared photometry can be useful as a diag-
nostic tool for finding the potential candidate of very low mass stars, but it is not possible to
disentangle the parameters when addressing different populations of very low mass stars..

2.2.3 Spectroscopic properties

The H-R diagram is the most important map in stellar astronomy. It provides a relatively
straightforward method for separating different stellar luminosity classes. The theoretical study
of stars is usually divided into separate parts dealing with stellar interiors and stellar atmo-
spheres. Although they are interesting objects in their own right, M-dwarfs have a wider po-
tential which at present is largely unrealized, because investigation of their properties is largely
hampered by the complex lines and bands of diatomic and triatomic molecules which appear in
their observed spectra. The effects of temperature and of reduced gravity modify the chemical
and physical properties of their atmospheric layers, producing the peculiar spectroscopic fea-
tures that have been identified in the optical spectra of M-dwarfs. In an M-dwarf atmosphere
most of the hydrogen is locked into H2 and most of the carbon into CO. With decreasing tem-
perature, M dwarf spectra show an increase in abundances of diatomic and triatomic molecules
which contributes to the optical and the near-infrared spectra (such as SiH, CaH, CaOH, TiO,
VO, CrH, FeH, OH, H2O, CO). The TiO bands in the optical region and the H2O bands in the
infrared have complex and extensive band structures, leaving no window for the true continuum
and creating a pseudo-continuum which allows observation of only the strongest (often reso-
nance) atomic lines such as those from Ca II, Na I and K I (Allard 1990a; Allard & Hauschildt
1995a).
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Figure 2.1 – Loci of cool stars classified as M dwarfs, subdwarfs (sdM), extreme subdwarfs
(esdM) and ultrasubdwarfs (usdM) in the SDSS g-r/r-i colour-colour space by Lépine (2009).

The spectral transition from low-mass M dwarfs to the latest type brown dwarfs is notewor-
thy for demonstrating how a considerable transformation of the spectral features can be due to
a small change in the effective temperature. The spectral transition is characterized by i) the
condensation onto seeds of strong opacity-causing molecules such as CaH, TiO and VO, which
govern the entire visual to near-infrared part (0.4-1.2 µm) of the spectral energy distribution
(hereafter SED); ii) a ’veiling’ due to Rayleigh and Mie scattering from sub-micron to micron-
sized aerosols; iii) a weakening of the infrared water vapour bands owing to oxygen-rich grain
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Figure 2.2 – The optical to red SED of M-dwarfs from M0 to M8, observed at Siding Spring
Observatory (SSO) at a spectral resolution of 1.4 Å. The atomic and molecular features are
clearly visible. The chromospheric emission fills the Na I D transition for the latest-type M-
dwarfs displayed here, while M8 has a flatter spectrum because of dust scattering.

condensation and to the greenhouse (or blanketing effect) caused by silicate dust; iv) methane
and ammonia band formation in T and Y dwarfs; v) water vapour condensation in Y dwarfs
(Teff ≤ 500 K). Condensation begins to occur in M dwarfs with Teff ≤ 3000 K. In T dwarfs and
brown dwarfs the visual to red part of the SED is dominated by the wings of the Na I D and 0.77
µm K I alkali doublets, which form out to as much as 2000 Å from the line centre (Allard et al.
2007a). The SED of those dwarfs is therefore dominated by molecular opacities and resonance
atomic transitions under pressure (∽3 bars) broadening conditions, leaving no window for the
continuum (Allard 1990a; Allard et al. 1997, 2012a).
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Despite their extreme faintness (10−2−10−5L⊙) in V bandpass, M-dwarfs yield spectroscopic
features which can still provide us with information about basic atmospheric properties such as
luminosity, metallicity and temperature. For example i) The CaOH bands around 0.54-0.556
µm in dwarfs later than M3 are a very good temperature indicator and a good discriminant
between M-dwarfs and backgrounds red giant stars (Gizis 1997; Reid & Gizis 2005; Martin
et al. 1996). ii) An atomic spectral feature such as that of Ca I (6162 Å) can possibly be used to
distinguish subdwarfs from dwarfs. iii) Hydride bands such as those of CaH at 6380 Å and 6880
Å decreases in strength with decreasing temperature, whereas the NaI doublet at 8183 Å and
8195 Å is relatively strong for earlier type M-dwarfs but relatively weaker for later type. iv) The
KI doublet at 7665 Å and 7699 Å is very strong and is useful for making gravity determination.
v) The saturation of the TiO band strength in M-dwarfs later than M5 and the introduction of the
VO to TiO band strength index is now used to classify M-dwarfs and substellar candidates later
than M5 (Henry et al. 1994; Kirkpatrick et al. 1995; Martin et al. 1996). Figure 2.2 shows the
optical to red SED of M-dwarfs from M0 to M9.5, observed at Siding Spring Observatory (SSO)
at a spectral resolution of 1.4 Å (Rajpurohit et al. 2013). Molecular band spectra are much more
complex than atomic spectra and dominate the spectral regions in which they are located. TiO
has an especially distributed and complex spectrum and it dominates M dwarf spectra in the
spectral regions traditionally used to determine the chemical compositions of solar-type stars.
This can be seen in fig. 2.2, where the M dwarf spectra show a significant deviation, primarily
due to TiO absorption, from the predominantly smooth continuum spectra of earlier type stars.

Figures 2.3 to 2.6 shows the IR spectra of M-dwarfs (Cushing et al. 2005). It can be seen
that the dominant near infrared features are due to photospheric absorption by water vapour,
FeH, neutral metals, carbon monoxide, and OH. The absorption lines of neutral metals, as
well as the bands of water and CO, become stronger with decreasing temperature. In the optical
region, metal-poor stars show strong features relative to the strength of the molecular TiO bands.
However, in the infrared regime the dominant molecular features are due to water, and this
single metal species will not show the same level of decrease as the double metal TiO. The
atomic spectral lines such as those of Fe I, Ca I, Na I, K I, Si I, Mg I, Al II, along with some
hydride bands such as those of FeH, can be seen in the J-band spectra with equivalent widths
of 2-2.5 Å and 1.52 Å, respectively; but most of these features weaken in the spectra of mid-to
late-type M-dwarfs. The H band is the most difficult wavelength range in which to identify
features in the spectra of early M-dwarfs, because it contains many relatively weak absorption
features which defy definite identification. Only a few doublets and triplets of Mg, Si, Al, and
K are clearly evident, with the possible exception of OH (1.689 µm). H2O bands define the
shape of the J and H band peaks. Water absorption is most obvious in the J-band at 1.33 µm and
strengthens through the later M-dwarf types. The K-band spectra of early M-dwarfs also exhibit
atomic features due to Ca, Mg, Al, Si, Na, Ti, and Fe and also shows strong CO bands. These
spectral features all weaken with decreasing temperature. H2O absorption bands also appear on
either side of the K-band at a spectral type of ∽ M4 and strengthen through the M, L, and T
sequences.
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Figure 2.3 – z-band spectra sequence of M-dwarfs (Cushing et al. 2005). The most prominent
molecular and atomic features are indicated.

2.3 Stellar Parameters of M-dwarfs

2.3.1 Effective Temperature

An effective temperature measurement for a low-mass star or brown dwarf is important to deter-
mine flux or luminosity which then can be used to confirm whether a given object is hot or cool.
The empirical temperature scale for cool stars is generally well established and temperatures
are now known with reasonable precision for stars covering the range of spectral type from A to
M. The M dwarf temperature scale has been a subject of some interest for several decades now,
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Figure 2.4 – J-band spectra sequence of M-dwarfs (Cushing et al. 2005). The most prominent
molecular and atomic features are indicated.

especially since the development of detectors with suitable sensitivity in the infrared spectral
region has made it possible to obtain the relevant observational data. Empirical temperatures for
metal-deficient and metal rich stars had been virtually non-existent, but recently the infra-red
flux method (IRFM) has been applied by Casagrande et al. (2008) to a sample of M-dwarfs,
providing approximate Teff values for them. Empirical measurement of M dwarf temperature
can be obtained by the information extracted from the orbits of M dwarf binaries. As shown
by the results of Irwin et al. (2011) and Kraus et al. (2011), radii and temperatures of low-
mass stars obtained from eclipsing binaries are systematically larger and cooler (respectively)
for given mass. This is mainly due to the intrinsic faintness of these low-luminosity systems,
and the analyses of known binaries reveal systematic offsets in inferred temperatures and radii
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Figure 2.5 – H-band spectra sequence of M-dwarfs (Cushing et al. 2005). The most prominent
molecular and atomic features are indicated.

that correlate with both orbital period and magnetic activity. Strong magnetic field can prevent
convection, thus giving larger radii for a given Teff or lower Teff for a given radius (Casagrande
et al. 2008). The presence of numerous large spots at the surface can thus lower the Teff of the
star.

Significant advances have also been made in atmospheric modelling for cool stars, by incor-
porating improved metal-line and molecular line source of opacity in the models. The effective
temperature of cool M-dwarfs can be estimated from their spectral type and from the fitting of
observed spectral lines to the synthetic spectra predicted using a model atmosphere. Synthetic
photometry generated using the model atmosphere show good agreement with the empirical
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Figure 2.6 – K-band spectra sequence of M-dwarfs (Cushing et al. 2005). The most prominent
molecular and atomic features are indicated.

temperature scales and now allows us to extend the temperature calibrations confidently to stars
over the full range of parameter space. As an important first step, a conversion between spectral
type and temperature is required.

The resulting scale may give results which differ significantly from an accurate conversion
rule, but in the absence of a robust determination of the temperature scale at young star ages
(e.g., from eclipsing binaries), this scale offers a reasonable way of interpreting spectral types
and luminosities in terms of star masses and ages within current evolutionary models. The de-
termination of M dwarf effective temperatures has been refined considerably since the work of
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Veeder (1974); Pettersen (1980); Bessell (1991). They fitted blackbody curves through broad-
band colours and the points of an assumed observed continuum. Tsuji et al. (1996b) provided,
good Teff values using IRFM. Casagrande et al. (2008) provided a modified IRFM Teff for
dwarfs, including M-dwarf. The Teff scale of M-dwarfs can be developed by using a set of
evolutionary models. Luhman (1999) initially adopted a Teff which is based on the NextGen
and AMES-Dusty evolutionary models of (Baraffe et al. 1998a) and (Chabrier et al. 2000), re-
spectively. Luhman et al. (2003) then adjusted this Teff scale further, so that the sequences of
IC 348 and Taurus at ≤M9 were parallel to those model isochrones on the Hertzsprung-Russell
diagram. Their Teff conversion is likely to be inaccurate at some level, as it falls between the
scales for dwarfs and giants. However, even the current empirical methods (Berriman et al.
1992; Jones et al. 1994) still assume that nearly pure thermal radiation escapes from an M-
dwarf atmospheres at some wavelength. Such an assumption is reliable only for optically thick
layers of a non-convective atmosphere but models strongly suggest that M dwarf atmospheres
are convective out to optical depths as low as τ ∽ 10−3. The photospheric structure of an M
dwarf is much more sensitive to opacity caused by TiO and H2O. Thanks to the large improve-
ment in knowledge about the source of atomic and molecular line opacities, particularly for
TiO (which dominate the optical spectral range) and for H2O (which dominates in near-infrared
range), as well as to revised estimates of solar abundances (Asplund et al. 2009; Caffau et al.
2011), there now appears to be much improvement in the Teff scales obtain using a given model
atmosphere over entire spectral sequence of M dwarfs (Rajpurohit et al. 2013).

2.3.2 Gravity

The problem of gravity is to be determined with sufficient precision since a small error in log
g causes a large error is radius or age. Although the infrared spectra of late-type M-dwarfs
are strongly affected by the presence of water bands, many atomic features can be resolved by
careful observations. Some of the atomic features have proved to be fairly sensitive to changes
in effective temperature and metallicity. We still lack, however, any direct measurements for the
age of low mass stars, for which age becomes an important parameter. For example a 0.2M⊙
object takes 0.2 Gyr to reach the main sequence, a 0.1M⊙ object takes 1 Gyr whereas a 0.075M⊙
object takes 2.5 Gyrs (Burrows et al. 1997; Baraffe et al. 1997, 1998a). A reliable measure of
age for low mass star is therefore vital for locating them on a Hertzsprung-Russell diagram. Not
only Teff and metallicity but also surface gravity is sensitive to age. If we can measure surface
gravity accurately then in principle we can distinguish between young cooling brown dwarfs
and old late-type M-dwarfs with similar colours (Viti & Jones 1999). Gravity-sensitive spectral
features due to Na I, K I, H2O complicate the measurement of spectral types but also provide
valuable constraints on the ages of late-type dwarfs. In particular, these features offer a means
of confirming the youth, of candidate low-mass members of young clusters and associations.
The prominent CaH molecular absorption bands in M dwarf optical spectra are often used as
gravity indicators. Typically, M dwarf spectra are collected with lower resolution because of
their intrinsic faintness and so require broad 30-50Å-wide indices. Early surveys for M-dwarfs
and young brown dwarfs used optical spectroscopy of Na I, K I, CaH, and VO for this purpose
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(Luhman et al. 1997; Shkolnik et al. 2009); similar features were soon recognized at near-IR
wavelengths as well (Luhman et al. 1998). Figure 2.7 show the effect of gravity and the pressure
broadening of the Na I doublet. The variation of gravity sensitive lines with star age has been
examined by Viti & Jones (1999).

Figure 2.7 – BT-Settl models for an effective temperature of 3500 K and varying log g = 4.5
(black), 5.0 (blue), 5.5 (red). The effect of gravity and the pressure broadening of the Na I
doublet is clearly visible.

2.3.3 Metallicity

The chemical analysis of M-dwarfs is notoriously difficult, owing to the complex molecular
spectra of their cool atmospheres (Mould 1976a; Gustafsson 1989). Mould (1976a) was the
first to explore systematically the strength of M dwarf spectral features as a function of metal-
licity, constructing a grid of synthetic model atmospheres that included molecular opacities and
spanned a temperature of 4200-3000 K and a metallicities of [Fe/H]=-2.0 - 0.0 dex. This study
gave rough estimates of metallicity for M-dwarfs and established several foundation for subse-
quent investigations of M-dwarfs dealing with, for example, the metallicity sensitivity of TiO
absorption and the gravity sensitivity of CaH absorption. Substantial progress in metallicity
estimation for M-dwarfs has been made recently, using both photometry and spectroscopy al-
though, the faintness characterizing the M-dwarfs has limited the number of high-resolution,
high signal-to-noise studies. Insufficient resolution and the presence of dominant molecular
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features in the spectrum make it difficult to derive the accurate atomic line strengths needed
to make reliable metallicity estimates. Metallicities have been derived via photometric calibra-
tions. Photometric techniques are based on the higher optical opacity present in metal-rich stars,
which shifts visible light into the infrared (e.g. Delfosse et al. 2000; Bonfils et al. 2005) ana-
lyzed V and K band photometry for 20 wide M-dwarf binary companion to FGK-dwarfs whose
metallicities could be determined reliably via standard spectroscopic techniques. Assuming that
both binary components inherit the same metallicity from their parent molecular cloud material,
Bonfils et al. (2005) assigned the metallicity measurements for each primary stars to its M-dwarf
secondary and so derived iso-metallicity contours in the MV vs. V-Ks colour-magnitude plane.

Bonfils et al. (2005) first calibrated this relationship using spectroscopic metallicities derived
for metal-poor early-M-type dwarfs by Woolf & Wallerstein (2005); later groups modified this
work and addressed its limitations (Johnson & Apps 2009; Schlaufman & Laughlin 2010).
Photometric techniques have generally been limited by the requirement for a sufficiently high
absolute magnitudes of the targets, although the new technique presented in Johnson et al.
(2011) depends on colour alone. Empirical spectroscopic techniques have also been developed,
which rely on calibrations using the strength of specific optical (Woolf & Wallerstein 2006) or
near-infrared K-band (Rojas-Ayala et al. 2010) features. Rojas-Ayala et al. (2010) used NaI,
CaI, and H2O spectral features to model metallicity, and calibrated their model using M dwarf
companions to FGK stars, with an uncertainty of ±0.15 dex. Bean et al. (2006a) analyzed
optical spectra with R ≥ 50 000 and signal-to-noise ratios between 200 and 400 of three stars.
They used the methods developed in Bean et al. (2006b) making a fitting to their synthetic
spectra for 16 atomic lines in the spectral intervals 8326 Å to 8427 Å and 8660 Å to 8693 Å,
as well as for the TiO band-head at 7088 Å. They simultaneously determined Teff ,metallicity,
broadening parameters and continuum normalization factor from the spectral data. Bean et al.
(2006b) used data from five wide binary stars with FGK primaries and M-dwarfs secondaries
to evaluate their methods.

2.4 M-subdwarfs

The metal-poor stars of the thick disk and spheroid provide an invaluable record of Galactic
history. The main-sequence FGK subdwarfs have proven to be an important source of informa-
tion on these populations (e.g., Carney et al. 1994). The much cooler and fainter M subdwarfs
offer an important alternative tracer group. Indeed, in addition to the possibility of observing
the proper motion of nearby M subdwarfs, it is now feasible to obtain photometry for the M
subdwarfs in globular clusters and also spectra for M-dwarfs and M subdwarfs at distances of a
few kiloparsecs above the galactic plane with a telescope of 10-meter class (Reid & Gizis 1997).
Using these M-dwarfs as probes of Galactic structure, however, requires a good understanding
of their properties in order to derive accurate metallicities and luminosities for them.

Cool M-type subdwarfs (sdMs) appear less luminous than their solar-metallicity counter-
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parts because their atmospheres are deficient in metals (Baraffe et al. 1997). The search for M
subdwarfs is hampered not only by the fact that metal-poor stars are both rare and intrinsically
faint but also because late-type M subdwarfs do not show exceptionally red colours typical of
ultracool M dwarfs and brown dwarfs (Lépine et al. 2003a). They appear less luminous because
their atmosphere is deficient in metals (Baraffe et al. 1997). Owing to their lower metallicity
and intrinsic faintness, M subdwarfs lie below their solar-metallicity counterpart in the H-R dia-
gram. Subdwarfs are typically very old (10 Gyr or more) and probably belong to the old Galactic
populations: old disk, thick disk and spheroid, as shown by their spectroscopic features, their
kinematic properties and their ages (Digby et al. 2003; Lépine et al. 2003a; Burgasser et al.
2003). They also exhibit high proper motions and high heliocentric velocities (Gizis 1997).
As the low-mass subdwarfs, with their extremely long nuclear burning lifetimes, were presum-
ably formed early in the Galaxy’s history, they are important tracers of Galactic structure and
of chemical enrichment history. In addition, detailed studies of their complex spectral energy
distributions give new insights into the role of metallicity in the opacity structure, chemistry
and evolution of cool atmospheres, and information about the fundamental issues of spectral
classification and temperature vs luminosity scales. (Gizis 1997) proposed a first classification
of M subdwarfs (sdM) and extreme subdwarfs (esdM), based on TiO and CaH band strengths in
low resolution optical spectra. Lépine et al. (2007) has recently revised that classification and
has proposed a new classification for the most metal-poor stars, the ultra subdwarfs (usdM). Jao
et al. (2008) compared model grids with the optical spectra to characterize the spectral energy
distribution of subdwarfs using the three parameters temperature, gravity, and metallicity. They
thus gave an alternative classification scheme for subdwarfs. Despite the rather large number
of them in the Galaxy, very little is known about them because their intrinsic faintness makes it
difficult to get a homogeneous sample of unique age and metallicity. Moreover, the atmospheric
parameters and the mass-luminosity relation for sdMs stars have long remained uncertain be-
cause of the lack of very low-mass stellar models. Despite the availability of low mass model
atmosphere and synthetic spectra, it has still proven difficult to separate the effects of reduced
metallicity from those of increased gravity or reduced effective temperature, since these fac-
tors all affects the pressure structure of the photosphere in similar way (Allard 1990a; Allard &
Hauschildt 1995a).

Cool subdwarfs have low metallicity, and therefore their opacities are different from those
of dwarfs. With decreasing temperature, sdMs spectra show an increase in the abundances of
diatomic and triatomic molecules in the optical and in the near-infrared (e.g SiH, CaH, CaOH,
TiO, VO, CrH, FeH, OH, H2O, CO). TiO dominates the opacity sources in the optical region,
while the H2O bands in the infrared have complex and extensive band structures. This leaves no
window for the true continuum and creates a pseudo-continuum that only permits observation
of the strongest, often resonance, atomic lines (Allard 1990a; Allard & Hauschildt 1995a).
However, owing to low metallicity, the TiO bands are less strong, and so the pseudo-continuum
is brighter as a result (fig. 2.8) . This increases the contrast with the other opacity sources such
as hydride bands and with atomic lines from atoms subjected the higher pressures of the deeper
layers from which they emit their radiation.

Atmospheric models show that metallicity variations in cool and ultra-cool stars have dra-
matic effects on their optical spectra (Allard & Hauschildt 1995a). This is useful because low-
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Figure 2.8 – Synthetic spectra for stars having Teff = 3500 K and log g = 5.0 (Jao et al. 2008).
The red, green, and blue lines represent different metallicities, 0.0, -2.0, and -4.0. Note that the
relative amounts of blue and red fluxes tend toward bluer objects at lower metallicities.

resolution spectroscopy is sufficient for measuring both effective temperature and metallicity
effects. Metallicity effects on the physics of cool atmospheres have been studied both from
models and from SED (Allard 1990a; Leggett et al. 1996, 1998; Burgasser 2002). The M subd-
warfs in binary and multiple systems for which the metallicity of the hotter primary is known as
well as clusters with VLM stars of the same age and metallicity, both offer more promise as test
of metal poor evolutionary and atmosphere models. The primary effects of metallicity are the
strengthening of hydride bands (OH, FeH), the appearance of pressure induced absorptions by
H2 around 2 µm relative to double metal (TiO,VO) bands and the broadening of atomic lines.
We therefore see these molecular bands in more details than for M-dwarfs and under more ex-
treme gas pressure conditions. This can reveal the inaccuracy or incompleteness of the opacity
sources used in the model. This difficulty, combined with a lack of accurate line lists for molec-
ular hydride absorption bands, has hampered efforts to obtain the atmospheric parameters of
observed M subdwarfs by using spectral synthesis. Subdwarfs were generally identified from
optical and proper motion catalogues and from photographics plates at different epochs (Scholz
et al. 2000; Lépine et al. 2003a; Lodieu et al. 2005). Several surveys have been conducted to
search for subdwarfs over a wide temperature range, including hot, intermediate and cool com-
ponents. The range of metallicity of subdwarfs, extreme-subdwarfs and ultra-subdwarfs span
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approximately -0.5 and -1.0, -1.0 and -1.5 and below -1.5 dex, respectively (Gizis 1997; Woolf
et al. 2009). M-type subdwarfs have typically Teff below ∽3500-4000 K (depending on the
metallicity Baraffe et al. (1997); Woolf et al. (2009)) and should display high gravity (log g ∽
5.5) although some variations is seen amongst low-metallicity spectra (Jao et al. 2008).
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Chapter 3

A Model Atmosphere For Low Mass Stars

3.1 Introduction

When we examine the spectrum of a star we are measuring information about the frequency
distribution of its radiation field. We observe the broad expanses of the spectrum in which the
frequency distribution is relatively smooth, the continuum, and, in addition, many narrower
features, spectral lines and/or bands, which give relatively sharp peaks superposed on the back-
ground continuum. The former regions arise from the emission and absorption of photons by
atoms in various process involving transitions to free states, either from an initially bound state
(photo-ionization) or free states (free-free transitions). The complete spectrum implicitly con-
tains an enormous amount of information about the physical state of the atmosphere of the star.
It will be our primary goal to recover this information, although drawing reliable inferences
from all this physical information provided by observations is by no means an easy task. The
relevant data are often difficult to acquire, since frequently the observed spectra are just the end
product of the interactions within complicated physical structures. For example, in any given
spectrum the radiation we observe originates from a wide range of levels in the atmosphere,
deep layers contribute to the relatively transparent continua while higher layers contributes to
the more opaque lines.

The rate of discovery of low-mass stars has accelerated in recent years. It is thus now
possible to investigate the formation and early evolution of stars in a previously unexplored
mass regime. Determining the physical properties of low-mass stars is important for our un-
derstanding not only of planet formation but also of circum-stellar disks, of dust formation in
cool atmospheres, and of the initial mass function. The direct measurement of mass and/or
radius for low-mass stars is possible only for certain rare binary systems. Determining other
physical properties such as effective temperature and surface gravity from bolometric lumi-
nosity estimates requires a precise distance measurement and also assumptions about age (to
determine effective temperature), mass and radius (to infer a value for the surface gravity from
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evolutionary models) (Rice et al. 2010; Rajpurohit et al. 2012b). Although radius is not ex-
pected to vary very much for objects older than a few 100 Myr, the reliance on evolutionary
models is problematic, since they are poorly calibrated for stars with a young age. Commonly
used conversions from spectral type to effective temperature (e.g., Golimowski et al. (2004)
for field objects and Luhman et al. (2003) for young M dwarfs) rely on model isochrones and
on a monotonic relationship between spectral type and effective temperature, which might not
represent accurately the complicated formation and evolution of low-mass objects (eg., Stassun
et al. 2006). Evolutionary models also require atmospheric models to provide boundary con-
ditions. Thus, synthetic spectra from such atmosphere models potentially offer a more direct
method of inferring physical properties by means of a comparison with observed spectra. Ad-
vances in spectroscopy and photometry, especially at infrared wavelengths, promise to give a
wealth of new data on low-mass stars. Making parallel improvements in models of cool stellar
atmospheres is thus very important if the full potential of these data is to be realized.

Some of the most important challenges to the modelling of stellar atmospheres and spectro-
scopic properties arise in describing high temperature molecular opacities and cloud formation.
Early M dwarfs shows the onset of the formation of water vapours at Teff around 2000-3900 K.
Dust aerosols form in the upper atmospheric layers of late-type M dwarfs (Teff ≤ to 2900 K). At
the hydrogen-burning limit, the peculiar spectral distribution (Kirkpatrick et al. 1993b) suggests
that all signs of the TiO bands disappear from the optical spectrum, leaving only atomic lines
and perhaps VO bands (Kirkpatrick et al. 1995), CaH, CaOH, and/or FeH bands. As the effec-
tive temperature drops for stars in the brown dwarf regime, methane (CH4) features begin to
appear (Tsuji 1995; Allard et al. 1996; Marley et al. 1996) and corundum (Al2O3), perovskite
(CaTiO3), iron, enstatite (MgSiO3) and forsterite (Mg2SiO4) clouds may form, enhancing the
carbon/oxygen abundance ratio and profoundly modifying the thermal structure and opacity of
the photosphere (Sharp & Huebner 1990; Fegley & Lodders 1996). The chemistry of cool dwarf
atmospheres is, therefore, a complex nonlinear problem requiring a detailed knowledge of the
concentration of atoms and molecules. This prevents the straightforward derivation of quanti-
ties such as excitation temperatures and metallicities from line strength ratios which is possible
for hotter stars. The most reliable way to estimate effective temperatures and metallicities of
low-mass stars, and also to identify substellar brown dwarfs is by making a direct comparison
of observed and model spectra.

3.2 Historical Overview

Theoretical work on the atmosphere of M dwarfs has progressed along lines parallel to those
followed in the study of other classes of stars. Advances in the atmospheric modelling of cool
stars are hampered by (a) incomplete molecular opacity data bases and (b) the inability to handle
convection process rigorously. Even if these problems are addressed reasonably well, further
problems arise in describing the effects of photospheric grain formation, chromospheres and
magnetic fields, as well as departures from local thermodynamic equilibrium and spatial vari-
ations in atmospheric structure due to starspots, which influence cloud formation and general
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weather patterns. The earliest work by Mould (1975) and Mould (1976a) was aimed solely at
constructing models of the photosphere, in which the only relevant energy fluxes were consid-
ered to be thermal (radiative plus convective). Later models have become increasingly sophis-
ticated as improvements in opacity calculations in the equation of state used, and due to the
revised solar abundances and progress in completeness and quality of molecular line lists. As a
result, spectrophotometric data on M dwarfs can now be fitted rather well by current models.

The interior and evolutionary models of M dwarfs can be constrained systematically by
carrying the integrations inward and constructing credible models of the stars. In this regard,
the M dwarfs are in a somewhat unique position because they bracket the mass range in which
the main-sequence stars are believed to be completely convective. Slight errors in the assumed
surface parameters and in modelling techniques can lead to large uncertainties in the predicted
interior structure. The study of M dwarfs may allow one to check the constitutive thermal
physics which enter into the study of all stars. The combination of high gravity and low Teff

in M dwarfs ensures that molecular formation occurs. The number density of molecules (eg.,
H2) becomes a significant fraction of the atomic number density (eg., H), or even exceeds it at
certain levels in the atmosphere. Historically, model atmospheres for M dwarfs have evolved in
the direction of attempting to give an increasingly realistic treatment of the double complexi-
ties of molecule formation and of optically thin convection. Dust may form even in the coolest
star if no chromosphere is present. Molecules and dust have an especially serious effects on
the opacities, increasing them by a factor of up to 105 relative to purely atomic values. The
earliest thermal model atmosphere for M dwarfs (Tsuji 1966) ignored convection altogether
but included the opacities due to H2O, H2, and CO. Vardya (1966) treated convection, using
the mixing-length formalism of Henyey et al. (1965), and derived thermal models in which the
molecular equilibrium of 160 species (including TiO, CaH, MgH) were subsequently evalu-
ated. Radiative fluxes from the models were found to fit R-I colours well, but predicted colours
at shorter and longer wavelengths became increasingly poor, presumably because of the lack of
major sources of line opacity. A better treatment of H2O line opacity made it possible to obtain
more realistic emergent flux distributions from his models.

Auman (1969) applied his extensive H2O opacity calculations to cool stars and devised a
method of replacing the effect of a large number of closely spaced lines by a representative
mean opacity. This was an important step forward in modelling the thermal photospheres of
cool dwarfs. Auman (1969) found that in the M dwarfs (despite the strong TiO bands in M
dwarf spectra), H2O is the dominant source of opacity at Teff ≤ 2500 K. In the presence of
H2O, the surface temperature falls below the values which would occur without H2O; this oc-
curs because the H2O spectrum reaches its maximum on the red side of the Planck peak in these
stars. Metal abundances in M dwarfs may differ from solar ones by a factor of 2 to 3 (Mould
1978) and produce atmospheric temperature variation of several hundred degrees. Lack of TiO
in these models makes Auman (1969) predicted colours less accurate in the visible region.
Mould (1975, 1976b) was the first to produce an extensive grid of convective M dwarf model
atmospheres for Teff between 4750 and 3000 K. The models effectively combined the ATLAS
code (Kurucz 1970) with a treatment of TiO band model opacities and chemical equilibrium
by Tsuji (1966, 1973), of H2O opacities by Auman (1969), together with a mixing-length treat-
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ment of convection (Böhm-Vitense 1958). Mould (1976b) obtained emergent spectra which
could be fitted rather well to RIJHKL filter data for several M dwarfs. In particular the strong
TiO bands and H2O bands appear prominently in the emergent fluxes from the Mould (1976b)
model. Mould & Hyland (1976) exploited information contained in many bandpasses, dis-
tributed across a broad spectral range, to derive Teff values for 20 M dwarfs with an precision
of ± 100 K at 4000 K and ± 200 K at 2850 K. These represent substantial improvements in
accuracy compared with the Teff values obtained by fitting a single observed colour (R-I) to the
predicted colour of the model.

Over the last two decades, a tremendous improvement in the model atmospheres for low
mass stars has been achieved. The work of Allard (1990a) and (Kui 1991) finally broke the
3000 K barrier in Teff by applying the model codes of Wehrse (1972). Wehrse (1972) had
treated the more extreme atmospheric conditions of cool white dwarfs (Teff ∽ 7000 K). Apart
from the dominant opacity sources such as TiO and H2O, both the authors included a number of
important molecular bands which are important in low-metallicity subdwarfs, such as those of
hydrides (CaH, MgH, SiH, OH, CH), as well as those VO (Keenan & Schroeder 1952) and CO
which give the characteristic molecular bands in the red and infrared regime, respectively, and
which act as sensitive temperature indicators (Henry et al. 1994; Kirkpatrick et al. 1995; Martin
et al. 1996). The new Teff sequence for M dwarfs (Kirkpatrick et al. 1993b) used the model grid
from Allard (1990a) that casts new light on traditional results based on blackbody methods. This
new Teff sequences for M dwarfs is 500-K higher at a given luminosity and shifted the predicted
positions of the late-type dwarfs in the HR diagram from cooling tracks to the blue side of the
theoretical lower main sequences (Dantona & Mazzitelli 1985; Burrows et al. 1989, 1993). This
made it more likely that field late-type M dwarfs were hydrogen-burning stars rather than young,
contracting, substellar brown dwarfs. By introducing the laboratory oscillator strengths for the
TiO bands, Allard et al. (1994a) resolved most of the remaining discrepancies in the optical
model spectra that had been pointed out by Kirkpatrick et al. (1993a); Gustafsson & Jorgensen
(1994) and Jones et al. (1994). Failing to allow for the presence of the correct absorbers the
success with the thermal models there are still some problems concerning the modelling of cool
photospheres. Missing absorbers (in particular at very low temperatures) may lead to grossly
incorrect calculated opacities. The oscillator strengths of some important bands are also still
poorly known.

3.3 Model Construction

Late type dwarfs have been particularly difficult to model, mainly because i) cool stars have
complicated equations of state, with large number of composite particles (including dust at low
temperatures), ii) The absorption is dominated by a very large numbers of lines, in particular
molecular bands (plus dust at very low temperatures), iii) the strong wavelength dependence
of opacities may lead to difficulties in finding the stratification structure which fulfills the en-
ergy equation, in particular by using temperature correction methods which use weighted mean
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opacities, iv) very accurate modelling is required if an important absorber such as H2O which
has a great influence upon the stratification reacts sensibly to stratification changes, v) gravity-
sensitive feature are very hard to find at low temperatures, vi) since all elements are coupled
with each other via the molecules and grains in the state equation, a consistent set of element
abundances has to be determined instead of carrying out an element by element analysis, viii)
treatment of convection by a mixing-length method is required. The extension of computing
capacities made it possible to pass from an analytical treatment of the transfer equation using
moments of the radiation field (Allard 1990a) to a line-by-line opacity sampling in spherical
symmetry (Allard et al. 1994a, 1997; Hauschildt et al. 1999) and more recently to a study of
3D radiation transfer (Seelmann et al. 2010). These steps have made it possible to model the
complex atmosphere of M dwarfs. In parallel with these development detailed hydrodynami-
cal simulation have been developed to give a realistic representation of the granulation and its
resulting induced line shifts for the sun and sun-like stars (see e.g. the review by Freytag et al.
2010)

The photosphere is the part of the atmosphere which is responsible for the SED. It is easy
to model the photosphere by ignoring the magnetic fields, using radiative transfer models and
radiation hydrodynamical (RHD) simulation. With the exception of the ultraviolet and visual
spectral range for flaring stars and their resulting emission lines, it is a good approximation to
ignore magnetic field when modelling the neutral photosphere (from which most of the emitted
flux emerges) when dealing with low mass stars and brown dwarfs. Classical model atmo-
spheres differ from one another in their construction philosophy, which varied according to the
period of their initial development. The code by Tsuji (1965, 2002), the ATLAS code by Ku-
rucz (1973) and the MARCS code by Gustafsson et al. (1975, 2008) put most of their efforts
into limiting memory requirements and reducing computing time. The PHOENIX code (Allard
et al. 1994a, 2001, 2012a) on the other hand, to distinguish itself from its predecessors, took the
approach of computing the opacities during the model execution. This involves computing the
opacities for billions of atomic and molecular transitions on-the-fly, together with a selection of
the most important spectral lines. This approach makes PHOENIX much slower than former
codes, but allows it gives a more consistent account of important physical phenomena, such as
those involving a modification of local elemental abundances throughout the atmosphere (due
to diffusion and cloud formation).

The traditional assumptions of plane-parallel stratification in homogenous layers, of station-
ary hydrostatic equilibrium, of mixing-length convection and of local thermodynamic equilib-
rium (LTE) have been relaxed step-by-step. Asplund et al. (1999, 2000) developed 3D simu-
lations with proper hydrodynamics and with radiation fields taken into account for solar-type
stars. Freytag et al. (2002, 2012) and Allard et al. (2013) developed a full star-in-a-box models
for supergiants and sun like stars. These simulations show a striking agreement with obser-
vations of solar granulation and spectral line profiles for solar type stars. They clearly demon-
strate the qualitative difference between traditional 1D models and reality; while the temperature
structure in the upper layers of the 1D models is determined by radiative cooling and heating,
the radiative heating in real late-type stars is balanced to a significant extent by the expansion



28 3. A Model Atmosphere For LowMass Stars

cooling of upwelling gas. Achieving consistent treatment of radiative transfer in models for
late-type stars without using the assumption of LTE is complicated because of the great number
of atomic and molecular species affecting the radiation field; the wealth of levels and transitions
in these species and the lack of basic data for these transitions-not the least of which is the lack
of cross sections for atomic and molecular collisions with electrons and hydrogen atoms.

3.4 Molecular Opacities in M dwarfs

The SED in M dwarfs are entirely governed by molecular absorption bands that leave no win-
dow for the true continuum in the emergent flux. Russell (1934) and de Jager & Neven (1957)
showed that most of the molecules play an important role in cool star atmospheres. Since the
structure of the cool M dwarfs atmosphere is extremely sensitive to opacity sources which ab-
sorb on the Wien (or blue) side of the energy distribution, it is important to consider carefully
all major molecular bands and atomic opacities. The TiO band is the primary source of opacity
in M dwarf spectra in the optical region, while H2O is an important source of opacity in the
low temperature regime in the near infrared. Allard et al. (1994b) showed how important H2O
is for total opacities in the lower temperature regime, and how critically the description of this
effect depends on the computational techniques used (e.g., the use of opacity sampling (OS),
or SM, the wavelength resolution used and the coverage of the model spectrum). They did this
by comparing Rosseland mean opacities from various authors, sources and techniques. These
models were than tested my Leggett et al. (1996) by comparing them with the low resolution
spectra and photometry of M dwarfs later on Leinert et al. (1998) compared the low resolution
spectra of M dwarfs with the pure gas phase NextGen model atmospheres (Allard et al. 1997;
Hauschildt et al. 1999). Leinert et al. (1998); Leggett et al. (1998, 2000) used the AMES-Dusty
models Allard et al. (2001) which assume insufficient gravitational settling assumed, meaning
that the dust is distributed according to the chemical equilibrium predictions.

The TiO line list by Plez (1992); Jorgensen (1994a) led to M-dwarf models which were great
improvements upon previous models based on an SM treatment of opacities (Mould 1975; Kui
1991; Allard & Hauschildt 1995a). Each TiO line list applied in an OS treatment of the opacities
leads to better agreement with the observed optical absolute magnitude of M dwarfs (see e.g.
Brett 1995a,b; Chabrier et al. 1996). The list of the line positions and relative band strengths of
TiO lines given by Plez (1992) and by (Jorgensen 1994a) is large step forward for an accurate
high resolution spectral syntheses analysis of M dwarfs. Leinert et al. (1998) compared the
low resolution spectra with the pure gas phase NextGen model atmospheres (Allard et al. 1997;
Hauschildt et al. 1999)

The most recent improvement in the models was the inclusion of an improved TiO line list
by Plez (1998). Based on these new data, the total TiO opacity effect is much reduced and
also the typical line spacing of TiO transitions is much larger than that previously assumed.
This invalidates the use of the SM technique for this molecule and has potentially sweeping
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consequence for the study of atmospheric parameters, since TiO is even more important than
H2O. Brett (1994) has computed new M dwarf model atmospheres, expanding on the work of
Kui (1991), which included water lines derived from the data of Ludwig (1971) as well as the
earlier TiO line list of Plez (1992). Allard et al. (1994a) used the preliminary H2O line list
by Miller and Tennyson to evaluate the effects of a sufficiently line-by-line treatment of water
opacities. Since this list is preliminary and does not yet extend to high quantum number J,
it misses important sets of weak lines at the minima of the water opacity profile (at 1.2,1.6
and possible 2.2 µm). This leads to far too much flux emerging at those wavelengths in the
synthetic spectra of M dwarfs. Impressive progress has also been made in the study of molecular
absorption, of which little was known 30 years ago (see Jorgensen 1994b, for reviews). The lists
are based on laboratory measurements of wavelengths and gf values with simple theoretical
extensions, or are the result of more extensive quantum-mechanical ab-initio calculations. Even
if the absorption cross-sections are not yet always of satisfactory quality, the existence of these
lists makes it possible to calculate models for, e.g., M and C stars that are realistic enough to
give results which compare reasonably well with observations. Very extensive line lists have
thus been calculated for most diatomic and poly-atomic molecules that contribute to opacity
effects in stellar atmospheres.

The model of Allard et al. (2012a, 2013) included a pure ab initio list of more than 6.2
million H2O transitions. More realistic model atmospheres and synthetic spectra for low-mass
stars, brown dwarfs and extra solar planets, using line-by-line or opacity sampling techniques,
have been made possible owing to the development of accurate opacities values often calculated
ab initio. The improvement has been especially remarkable in the case of the water vapour line
list. Nevertheless the model atmospheres have failed to reproduce the strength of the water
bands that shape the low resolution infrared SED of M dwarfs. The discrepancies in the model
synthetic spectra were therefore believed to be due to an inaccurate or incomplete description of
molecular opacities. In particular water vapour was suspected because the discrepancies were
observed at infrared and wavelengths in the relative brightness of the flux peaks between water
vapour bands. Fig. 3.1 show the comparison of the infrared spectra of M8 dwarfs VB10 (Allard
et al. 2012b) with the synthetic spectra published since 1999. From figure 3.1 it is clear that
the estimates of the water vapour opacity profile, which shapes this part of the spectrum, have
strongly changed over time along with the improvement of computational capacities and with
better knowledge of the interaction potential surface. More recently Allard et al. (2012b, 2013)
added to the list of TiO transitions developed by Plez (1998) and BT2 water vapor line list, thus
completing the evolution to a full line-by-line treatment of the major molecular opacities in M
dwarfs and making it possible to reproduce the observations reasonably well for the optical and
near-IR spectrum of cool M dwarfs (Rajpurohit et al. 2012b, 2013).
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Figure 3.1 – Fig. 1 of the review article by Allard et al. (2012a). The near-infrared SED of
VB10 is compared with the synthetic spectra (Teff = 2800 K, log g = 5.0, [M/H] = 0.0) from
diverse model grids published through the years. All models (except the NextGen / UCL case)
underestimate the flux in the K bandpass by 0.1 to 0.2 dex

3.5 Convective energy transport

Stars become fully convective throughout their interior and convection reaches furthest out in
optically thin regions of the photosphere in M3 and in later dwarfs which have a Teff below
3200 K (Allard 1990a; Allard et al. 1997; Chabrier et al. 2000). In most of the classical model
atmosphere the convective energy transfer is treated using the Mixing Length Theory (MLT).
This technique is scarcely adequate and modifications of it have been attempted by Ludwig
et al. (2002) and Ludwig et al. (2006) by comparing the PHOENIX thermal structure obtained



3.5. Convective energy transport 31

using the MLT with that of RHD simulations. Kandel (1967a,b) found that the density inver-
sion predicted in some earlier models might be attributed to deficiencies in the standard MLT
formalism for treating convection (in which the MLT parameter α = L/Hp is kept constant with
depth). Kandel (1967a,b) therefore devised a modified MLT formalism in which the parameter
α is allowed to vary with depth in such a way that the density inversion is eliminated. In recent
years it has become apparent that the presence of a density inversion in a model may have little
or nothing to do with errors in the MLT. Ludwig et al. (2002) and Ludwig et al. (2006) showed
that the MLT could reproduce the horizontally averaged thermal structure of the hydro simula-
tions when proper values of the MLT parameter are used. These values have been estimated for
M dwarfs to vary with surface gravity from α = 1.8 to 2.2 (2.5 to 3.0 for the photosphere).

The BT-Settl models of Allard et al. (2012a) use the mass and surface gravity dependent pre-
scription of Ludwig et al. (1999) for hotter stars, together with an average values of α prescribed
by (Ludwig et al. 2002, 2006) for M dwarfs. They also use the micro-turbulence velocities from
the radiation hydrodynamical simulations of (Freytag et al. 2010), and the velocity field from
the RHD simulations of Ludwig et al. (2006) and Freytag et al. (2010) in order to calibrate
the scale height of overshoot, which becomes important for the formation of thick clouds in L
dwarfs but is otherwise negligible for the SED of low-mass stars and brown dwarfs. Freytag
et al. (2010) have indeed addressed the issue of mixing and diffusion in low-mass atmospheres
by two dimensional (2D) RHD simulations, using the PHOENIX gas opacities in a multi-group
opacity scheme, and including forsterite with geometric cross-sections. These simulations as-
sume efficient nucleation, using initial monomer densities estimated from the total available
density of silicon (the least abundant element in the solar composition involved in forsterite).
They found that gravity waves form at the internal convective-radiative boundary and play a
decisive role in cloud formation, while at around Teff ≈ 2200 K the cloud layers become thick
enough to initiate cloud convection, which dominates in the mixing process.

Dark spots exist on the surface of certain M dwarfs, especially those which rotate faster than
a critical velocity ∽ 5 km/s (Noyes et al. 1984; Marilli et al. 1986). The activity-age correlation
has been observed by West et al. (2011) when rotation rate of star is coupled with star age. The
magnetic spot are cooler than the photosphere at least by several hundred degrees (ensuring
quite different equilibria in the spot atmosphere than outside). The spot areas may be ≥ 10
percent of the disk area. The problem of energy transport through the star in the presence of such
a gross inhomogeneity is one of great interest, part of the normal energy flux may be trapped
beneath the surface, reducing the bolometric luminosity of the star. The surface activity in the
M dwarfs has been observed to exhibit general characteristics that contrast with solar-type stars.
While, as in solar-type stars, M dwarfs show little or no activity when the rotation rates reaches
below a certain threshold (∽ 5 km/s Marcy & Chen 1992). By analogy with the Sun, spots and
active region on M dwarfs are believed to be magnetic origin. Magnetic field of many kilogauss
may exist on the surface of M dwarfs shows that M dwarfs are therefore more active than solar-
type stars. This indicates that some change in the magnetic field generation and/or magnetic
field of kilogauss strength certainly interfere with convective flow patterns in M dwarfs interact
with the stellar atmosphere. Modelling an M dwarf chromosphere is a complex problem owing
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to the complexity of the radiative transfer calculation in such cool, dense environment. Several
attempt has been tried to model the M dwarfs chromosphere using hydrogen Balmer emission
line observations (Cram & Mullan 1985). Ca II observation has also used to model M dwarfs
chromosphere (Giampapa et al. 1982). But all these attempt were unsuccessful at fitting both
Ca II and hydrogen Balmer lines in their quiescent and and flare observations. Currently there
is no model who can predict all the major chromospheric activity observed in active M dwarfs
atmosphere. Systematic development of hydrodynamical studies of chromosphere activity is
still in progress to truly understand the cool dwarfs photosphere. The model atmospheres used
here are only radial models which do not account for surface homogeneity. The models would
therefore under-predict the Teff and radius as a function of the contrast in temperature of the
spots to the rest of the surface, and of the surface coverage of spots.

3.6 Dust Grain and Atmospheric composition in M dwarfs

The presence of dust in the circumstellar envelopes of M giants and supergiants is a common
phenomenon but the location in the atmospheric structure of this dusty material is not known.
In view of the presence of high densities, with correspondingly efficient formation rates, the
star’s photosphere would be a favourable place for the condensation of matter into solid parti-
cles. The surface temperatures of late M type stars of low mass and high luminosity are below
the condensation temperature of various grains (e.g Al2O3, ZrO2), so condensation clearly must
be included in the calculations as indicated by the work of Sharp & Huebner (1990). The im-
portance of condensation in the atmosphere of late-type M dwarfs and brown dwarfs has been
confirmed by Tsuji et al. (1996a,b) who found large concentrations of such condensates in their
model atmospheres. The M dwarf model atmosphere of Brett (1995b) and Allard et al. (1996)
does not include the condensation of molecules into grains. In an M dwarf a Teff value below
3000 K gives rise to cloud formation (involving iron, magnesium silicates or graphite grains) in
the atmosphere, causing a strong variation in opacity with effective temperature. The effect on
the temperature profile depends strongly on the particle size and on the vertical distribution of
grains. The effect of condensation on the spectral distribution and atmosphere of cool dwarfs
is to produce a gradual depletion of the gas phase abundance of titanium, iron, vanadium , and
oxygen. The optical SED become more transparent if the opacity of the grains is ignored, which
causes the TiO, VO, FeH, and metal-line opacities to decline with decreasing effective temper-
ature of a star. The dusty model of (Tsuji et al. 1996b) was the first model atmosphere for
M dwarfs and brown dwarfs which included not only grain formation but also grain opacities.
Tsuji et al. (1996b) showed that including corundum, iron, and enstatite opacities by assuming
arbitrary spherical grain sizes could heat the photospheric layers and change the overall struc-
ture of the atmosphere. This leads to the formation of weaker molecular spectral features than
for models without grain opacities. This results in the predicted SED of late-type M dwarfs
moving towards the red, which can reproduce the infrared broadband fluxes of the latest-type
M dwarfs. A Teff of 2600 K and below is sufficiently low to give rise to sufficient silicate dust
formation in the photospheric layers to affect the spectral properties of late type M dwarfs.
These grains produce a ‘veiling‘ in the optical spectral region by dust scattering and also an
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important greenhouse effect (redistribution of flux to the infrared) which strongly influence the
infrared spectral properties. Tsuji et al. (1999); Allard et al. (2001) treated the dust formation
in the low-mass stars in pure Chemical Equilibrium (hereafter CE). CE yields the formation of
condensates from zirconium dioxide and silicates (Mg2SiO4) to refractory ceramics (CaTiO3,
Al2O3), salts (CsCl, RbCl, NaCl), and ices (H2O, NH3 , NH4 SH4 ). The models studied how
these processes depend on the temperature of the atmosphere for stars of M through T and Y
spectral types (Allard et al. 2001; Lodders & Fegley 2006). Helling et al. (2008a,b); Allard
et al. (2012a) explored the properties of the formation of the dust clouds in low-mass stars by
determining the radial distribution and average size of the grains.

Stars begin their life when an ordinary dense cloud of interstellar matter becomes unstable
and begins to collapse. The elemental abundance within such a cloud of matter determines
the composition of the stellar atmosphere which results from the collapse. The composition
of a star is also a function of Teff (which is determined by radiation either due to internal heat
from nuclear fusion and contraction or from irradiation by a parent star), and to a lesser extent
of surface gravity. Scaled solar abundances have been generally used for all elements relative
to hydrogen. Additionally, some allowance has been made for the enrichment of α-process
elements (C, O, Ne, Mg, Si, S, Ar, Ca, and Ti) because of the production of star-forming gas by
the explosion of a supernova. The spectral energy distribution of M dwarfs is mainly diminished
by the presence of oxides such as TiO and VO in the optical region and by water vapour and
CO in the infrared region. This shows the importance of elemental oxygen abundances in their
atmosphere. The revised solar abundances, based on RHD simulations and spectral synthesis
analysis of the solar photosphere, due to Asplund et al. (2009) and Caffau et al. (2011) give an
oxygen reduction of -0.11-0.19 dex compared with the previously used abundances of Grevesse
et al. (1993). Different model atmosphere use different solar abundances; for example the BT-
Settl model by Allard et al. (2012a) is based on the Asplund et al. (2009) solar abundance
values, while DRIFT models by Helling et al. (2008b) use the Grevesse et al. (1993) solar
abundances. The MARCS model by Gustafsson et al. (2008) uses the values of Grevesse et al.
(2007). Fig. 3.2 shows the effect of using solar oxygen abundance estimates and compares the
Casagrande et al. (2008) Teff and metallicity estimates with the Baraffe et al. (1998a) NextGen
isochrones (assuming an age of 5 Gyrs), using model atmospheres from various authors. The
higher oxygen abundance causes models to appear too blue as compared with models based
on the Asplund et al. (2009) values. The MARCS models of Gustafsson et al. (2008) based
on the Grevesse et al. (2007) values on the contrary show a systematically increasing excess
in J - Ks with decreasing Teff . The models are most sensitive to the choice of solar oxygen
abundances for M dwarfs with Teff around 3300 K, i.e. at the onset of water vapour formation
in the atmosphere. Fig. 3.3 shows the same comparison as Fig. 3.2 in the brown-dwarf regime.
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Figure 3.2 – Fig. 2 of the article by Allard et al. (2013). Estimated Teff and metallicity for M
dwarfs by Casagrande et al. (2008) on the left, and brown dwarfs by Golimowski et al. (2004)
and Vrba et al. (2004) on the right are compared to the NextGen isochrones for 5 Gyrs Baraffe
et al. (1998a) using model atmosphere of various co-authors (see Allard et al. 2012a, 2013, for
more detail)
.

3.7 Current Model Atmospheres for Low Mass stars

In the following I describe the different model atmospheres for low mass stars which are used
in this study.
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Figure 3.3 – Fig. 3 of the article by Allard et al. (2013). This is the same as Fig. 2 but extends
into the brown dwarf regime for an age of 3 Gyrs. The region below 2900 K is dominated by
dust formation (see Allard et al. 2012a, 2013, for more details)

3.7.1 BT-Dusty and BT-Settl

The new BT models (Allard et al. 2011) make a great step towards the quantitative understand-
ing of the spectral properties of cool objects and propose for the first time a transition from the
stellar to the substellar regime, dealing with their spectroscopic and photometric properties (J,
H, and K) and with the effective temperature scale as observationally quantified by Vrba et al.
(2004); Golimowski et al. (2004); Casagrande et al. (2008).

The notation BT stands for the Barber and Tennyson so-called BT2 water vapour line list
(Barber et al. 2006). The new models are provided in several versions, addressing different
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limiting treatment of the cloud physics which prevails in late M dwarf atmospheres (below
2600K). The BT-Dusty and BT-Cond models refer to an equilibrium treatment of dust formation
where dust opacities (assuming spherical grains with interstellar grain size distribution) are
ignored in the Cond models, as in the earlier AMES-Dusty and AMES-Cond models (Allard
et al. 2001). The BT-Dusty and BT-Cond models reproduce the colour properties of the 2001
AMES Dusty and Cond models, with minor differences relating to updated opacities (H2O, TiO,
VO and most of the hydrides, the alkali line profiles, methane, CO2, and CIA to mention the
most important changes) in the 2011 PHOENIX (see below) version. The BT-Settl models on
the other hand include the gravitational settling of dust, which was ignored in the Dusty models,
and which involves a cloud model. The cloud model used in the BT-Settl models is based
on Rossow (1978) and accounts for nucleation, condensation, supersaturation, gravitational
settling or sedimentation; it also gives a treatment of advective mixing derived from radiation
hydrodynamic simulations (Freytag et al. 2012). The grains are still considered to be spherical
but the grain size (a unique or mean value per atmospheric layer) is determined by comparison
of the different timescales and thus varies with depth to reach a few times the interstellar values
at the cloud base for the effective temperatures discussed in chapter 4. We note that in this
context, the BT-Settl models do not treat dust in equilibrium with the gas phase, as is done
in the case of the Dusty and Cond models. In the new models it is the background gas phase
opacities which are adjusted to the depletion of elements from the gas phase caused by grain
growth. This allows the BT-Settl models to account for the cooling history of the gas.

These model atmospheres are computed using the PHOENIX radiative transfer code (Allard
1990a; Allard & Hauschildt 1995a) assuming hydrostatic equilibrium and treating convection
by using the Mixing Length Theory and the values prescribed by the results of radiation hydro-
dynamics (Ludwig et al. 2002, 2006). Spherically symmetric radiative transfer is treated, with
departure from LTE for all elements up to iron, taking micro-turbulence velocities from radi-
ation hydrodynamic simulations (Freytag et al. 2012). The latest solar abundances by Caffau
et al. (2011) are used, equilibrium chemistry is assumed for the gas species. A database is used
which includes the latest opacities as well as thermochemical data for atomic and molecular
transitions and monochromatic dust condensate refractory indexes. Grains are assumed to be
spherical and non-porous, and their Rayleigh to Mie reflective and absorptive properties are
considered. The treatment of the diffusive properties of grains is based on 2-D radiation hydro-
dynamic simulations, including forsterite cloud formation in order to account for the feedback
effects of cloud formation on the mixing processes in these atmospheres (Freytag et al. 2010).

Compared to previous models by Allard et al. (2001), the current version of the BT-Settl
model atmosphere uses the BT2 water vapour line list computed by Barber et al. (2006), and
line list for TiO, VO, CaH by Plez (1998), for MgH by Skory et al. (2003a), and Weck et al.
(2003), FeH and CrH by Chowdhury et al. (2006) and Dulick et al. (2003), NH3 by Yurchenko
et al. (2011), for CO2 by Tashkun et al. (2004), and for H2 Collision Induced Absorption (CIA)
by Borysow et al. (2001) and Abel et al. (2011), to mention the most important. It uses the
CO line list by Goorvitch & Chackerian (1994a,c). Detailed profiles for the alkali lines are also
used (Allard et al. 2007a).

We used extended model grids of the BT-Dusty and BT-Settl synthetic spectra which are
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available online (http//phoenix.ens-lyon.fr/simulator). We have used CIFIST2011 version of
the BT-Settl models. The synthetic spectra generated by CIFIST2011 models are provided over
the entire spectral range of interest at a spectral resolution of 0.001Å. These models have not
been used before to study M dwarfs. Rajpurohit et al. (2012b, 2013) have compared first time
the recent BT-Settl model atmosphere grid to M dwarfs of the main sequence and L-type brown
dwarfs. In chapter 6 we present first time the comparison of BT-Settl model atmosphere with
the high resolution spectra of M subdwarfs to explore the metallicity effects.

3.7.2 MARCS

The MARCS code (Gustafsson et al. 2008) assumes hydrostatic equilibrium, Local Thermody-
namic Equilibrium (LTE), chemical equilibrium, homogeneous plane-parallel stratification, and
the conservation of the total flux (radiative plus convective, with the convective flux being com-
puted using the local mixing length recipe). The radiation field used in generating the model is
calculated by assuming absorption from atoms and molecules by opacity sampling at approx-
imately 100 000 wavelength points over the wavelength range 1300 Å–20 µm. For details on
the data on absorption by atomic species and by the 15 molecular species, see Gustafsson et al.
(2008).

The code used for calculating the synthetic spectra is the BSYN v. 7.12 code which is
based on routines from the MARCS code. The atomic line list used in Gustafsson et al. (2008)
calculations is compiled using the VALD I database (Kupka & Ryabchikova 1999) and updated
accordingly. The molecular line lists include those for CO, SiO, TiO, ZrO, VO, OH, H2O, CN,
C2, NH, CH, AlH, SiH, CaH (see references in Gustafsson et al. 2008), for MgH (Skory et al.
2003b), for FeH (Dulick et al. 2003) and for CrH (Burrows et al. 2002). Up-to-date dissociation
energies and partition functions are used. The synthetic spectra were calculated in plane parallel
symmetry. A constant micro-turbulence velocity of 2 km s−1 is assumed. Important differences
from the BT models are due to the use of different opacities and to the fact that MARCS is a pure
gas phase model with no formation of dust. Synthetic spectra are calculated for the wavelength
region of 0.50 − 2.53 µm, with a resolution of R = 600, 000. Önehag et al. (2012) compared
the high-resolution spectra of M dwarfs with the MARCS model. Their studies is restricted to
hotter M dwarf (≥ 3000K) as MARCS model doesn’t include any dust formation which is the
case for cooler M dwarfs below 3000K (Allard et al. 2012a).

3.7.3 DRIFT

The DRIFT-PHOENIX model atmosphere code has been developed by Dehn et al. (2007);
Helling et al. (2008a,b); Witte et al. (2009). The code yields a consistent dust cloud structure,
with corresponding opacities. It gives an altitude-dependent depletion and redistribution of gas
phase abundances. These features have a feedback effect on both the thermodynamical struc-
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tures and the radiation field. This feedback means that an iterative solution procedures required.
This determination of stationary atmospheric and dust cloud properties and yields the respective
synthetic spectra. The dust formation which takes place via the formation of seed particles and
their subsequent growth or evaporation is considered. The DRIFT model considers only the
seven most important solids (TiO2, Al2O3, Fe, SiO2, MgO, MgSiO3, Mg2SiO4) composed of
six different elements. The growth of the grains is governed by the supersaturation ratio of the
gas and is triggered by the actual collision rates between grains and gas molecules. It depends
on the grain surface. The model thus does not enforce a phase equilibrium requirement. The
local number and size of the dust grains, as well as their mean composition throughout the at-
mosphere, are natural results given by the model. DRIFT models also include the mixing by
convection and overshooting by assuming an exponential decrease in the mass exchange fre-
quency in the radiative zone (Woitke & Helling 2004). The model code DRIFT-PHOENIX has
been discussed in more detail by Witte et al. (2009). The most important difference from the BT
models is the treatment of the dust opacity, which is done manually by adjusting the assumed
amount of dust. The synthetic spectra are provided over the entire spectral range of interest at a
spectral resolution of 0.05Å. Previous tests of DRIFT-PHOENIX on observations have been pre-
sented by Helling et al. (2008b); Schmidt et al. (2008) and Neuhäuser et al. (2009). Witte et al.
(2009) used the corresponding synthetic spectra generated from DRIFT-PHOENIX to fit dwarf
spectra and gave a more general analysis of dust and atmosphere properties over the parameter
space.
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Chapter 4

The very low mass multiple system LHS

1070. A testbed for model atmospheres for

the lower end of the main sequence

4.1 Introduction

LHS 1070 (other common name GJ 2005) is a low mass multiple system of cool dwarfs discov-
ered by Leinert et al. (1994), with visual magnitude 15. It is a high proper motion star located
at a distance of 7.72±0.15 pc from the Sun (Costa et al. 2005). With its velocity component
perpendicular to the galactic plane of 36 ± 3 km s−1 (Basri & Marcy 1995), it is considered a
member of the old disk population with a probable age of several Gyrs (Leinert et al. 2001).
Leinert et al. (1994) discovered a pair of cool, very low-mass stars as close companions to
LHS 1070, turning the system into a nearby triple system. The spectral type for the A, B, and C
component was found to be M5.5-M6, M8.5, and M9-M9.5 (Leinert et al. 2000). A fourth com-
ponent was suspected very close to the primary by Henry et al. (1999) from HST Fine Guidance
observations but this detection is no longer considered real (T. Henry, private communication).
Components A, B, and C were the faintest stars within 10 pc from the Sun for which dynamical
determinations of mass appeared possible.

The mass range spanned by the components of LHS 1070 makes it a valuable system for
understanding the formation of dust in the cool atmospheres and the processes that occur at
the star/brown dwarf transition. LHS 1070 is therefore a testbed to validate and define further
developments of the atmospheric models at the lower end of the main sequence. One approach
to study the physics at the low end of the main sequence is to compare observed spectra with
synthetic spectra from various model atmosphere. The determination of the physical parameters
(effective temperature, gravity, metallicity, radius) is obtained by spectral synthesis, i.e. χ2

minimization.



40
4. The very low mass multiple system LHS 1070. A testbed for model atmospheres for the

lower end of the main sequence

In this chapter we present the spectral analysis of the component A, B and C of LHS 1070.
We have determined their physical parameters by comparing the well calibrated HST/NICMOS
spectra in the optical and in near-IR with synthetic spectra computed from recent stellar atmo-
sphere models: BT-Dusty and BT-Settl (Allard et al. 2010), MARCS (Gustafsson et al. 2008),
and DRIFT (Witte et al. 2009). This work aims to determine the fundamental stellar parameters
of LHS 1070 and to test recent model atmospheres.

4.2 Observations and data reduction

We used optical photometry and spectroscopy, described in Leinert et al. (2000) as well as new
input in the IR which are described below.

4.2.1 Photometry

The J, H, K, and L’ photometry are described for the 3 component in Leggett et al. (1998).
M-band photometry was obtained with the UIST instrument on UKIRT on November 9, 2002,
as well as N-band photometry with the MAX camera (Robberto & Herbst 1998) on the same
telescope on August 27, 1996. The brightnesses of the individual components were then derived
from the brightness ratios obtained with NACO (Rousset et al. 2003; Lenzen et al. 2003) for J,
H, K on December 12, 2003, for L’ and M on December 6, 2001. The MAX observations in
N-band yielded separate brightnesses only for component A and the sum B+C of the other two
components.

The M band data were obtained in the Mauna Kea Observatory near-IR System (λcentral =

4.7µm, 50%-width= 0.23µm) in service mode. Aperture photometry was applied to the pipeline-
reduced data. The N band photometry used a standard filter (λcentral = 10.47µm, 5%-width
= 4.65µm). After the standard processing steps (bad pixel correction, combination of indi-
vidual chop cycles after shift-and-add) aperture photometry a was performed. The absolute
calibration at 10.4 µm relied on the HR 6464 spectrophotometric standard model, produced by
P. Hammersley using the procedure described in Hammersley et al. (1998), and made available
on the ISO web page for ISO standards. HR 6464 has the same spectral type M0III as the stan-
dard HR 400 actually observed, and the flux ratio of the two was determined from their fluxes
in the IRAS 12 µm band. Strictly speaking, the result is a narrow-band (0.25 µm) brightness
at 10.4 µm under the assumption of an M0III type spectrum. The spectral slopes in this wave-
length region are smooth and all are representing Rayleigh-Jeans tail emission. Uncertainties
resulting from the difference in spectral type between M0III and our object therefore are not
important. To be conservative, errors of ± 5 mJy, ± 4 mJy, and ± 3mJy are taken for the fluxes
of the combined system, of component A, and the sum of components B and C, respectively.
The NACO observations were used in determining the relative brightnesses of the three compo-
nents of LHS 1070, because of the superior spatial resolution of this instrument. After standard
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reduction (flat fielding, bad pixel correction), aperture photometry was applied. The NACO
bandpasses closely match the MKO near-IR system for the J, H, K, L’ bands. The main differ-
ence is in the M band (4.8 µm for NACO versus 4.7 µm at Mauna Kea, 20% width of 0.64 µm
for NACO versus 50% width of 0.23 µm at Mauna Kea). In this wavelength range, the slopes of
the component spectra are very similar. Therefore the NACO-measured brightness ratios were
applied to extract the component brightnesses from the MKO near-IR based total brightnesses.

LHS 1070 was observed with ISOCAM (Cesarsky et al. 1996) on the ISO satellite in the
LW2 (6.7 µm) and LW3 (14.3 µm) filters on November 28, 1996 (PI H. Zinnecker). Near-IR
narrow and medium-band photometry from 0.90 µm to 2.15 µm was obtained with the NIC1
and NIC2 cameras of the HST NICMOS instrument on Jan. 2, 1998. On each frame the system
was clearly resolved, and it was possible to obtain separate photometric measurements for the
three stars. Before performing aperture photometry for a given star, the images of the other two
objects was removed by subtracting a scaled PSF template, constructed from component A and
shifted to the known coordinates of the stars. An aperture correction, taken from the NICMOS
Data Handbook, was applied, and photometric calibration was performed via multiplying by a
conversion factor between the counts and Fν as stated in the Handbook. The results are given in
Table 4.1.

4.2.2 Spectroscopic observations

Near-IR spectra of the individual components of LHS 1070 were taken with grisms G096, G141
and G206 and the NIC3 camera of the HST NICMOS instrument on January 2, 1998 for the J,
H, and K bands. In a first step, four spectra were removed for each grism the short wavelength
and long wavelength ends. For grism G096 this left the range of 0.80-1.085 µm or 0.8-1.15
µm, depending on the local noise level. Similarly, G141 covered the range of 1.10-1.60 µm or
1.10-1.85 µm. G206 ranged from 1.65 µm to 2.45 µm. For each wavelength pixel, all spec-
tra covering that wavelength were averaged using a weighted average, where the weights came
from the formal uncertainties of the spectra (typically from 2% to 5%). The reduction was based
on the NICMOSlook IDL-based data reduction package. For the extraction of the spectra, the
’no weighting’ option was used. The result for the A component was slightly scaled (by a few
percent) to fit the NICMOS photometry. The extraction procedure also gave the combined spec-
trum of components B and C (separated only 0.4” on the detector), which was decomposed into
the spectra of the individual components on basis of the brightness ratio as a function of wave-
length as determined from the narrow- and medium band photometry. The spectral resolution
of the NICMOS spectra is R = λ/∆λ = 200.

Higher resolution spectra with R = 400, 1500, and 1400 in the J, H, and K bands, respec-
tively, were taken with the VLT NACO instrument (Rousset et al. 2003; Lenzen et al. 2003) on
telescope UT4 of the VLT for the individual components of LHS 1070. The camera/grism/filter
settings were S27/Grism4/J, S54/Grism3/H, and S27/Grism3/K, respectively. The slit width
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was 86 milli-arcsec in all three bands. After subtracting the sky from the raw data, a flat nor-
malized along the dispersion direction was applied. The spectra were then traced and extracted.
Finally, the individual exposures were averaged. This procedure was also applied to the telluric
standards. All telluric standards are of spectral type G2V, which allows a proper modeling of
their intrinsic spectrum with that of the Sun. The Solar spectrum was constructed using the
data and scripts provided by Maiolino et al. (1996). Wavelength calibration was obtained by arc
lamp exposures. The additional effort to guarantee the absolute flux calibration was not taken,
so only the relative shape of the spectrum was determined in each band. For each component,
a scaling factor for each band was applied to bring the spectra to the absolute level as resulting
from the NICMOS observations. The errors, taken as the formal uncertainties of the averaging
process, typically range from 5-10%. The number of pixels per resolution element in the J, H,
and K band is about 3, 1.5, and 3. Because of the missing independent absolute calibration, the
NACO spectra are used primarily for the study of spectral features. However, comparison with
the NICMOS spectra, like in Figure 4.1, gives confidence also in their spectral shape.

Spectra for the system from 2.5 µm to 11.7 µm were obtained with the ISOPHOT-S spec-
trometer on board the ISO satellite on November 23, 1996 (PI: T. Tsuji) with an exposure
time of 4096 s. ISOPHOT-S was the spectroscopic sub-instrument of ISOPHOT (Lemke et al.
1996). It had an entrance aperture of 24"x24", covering simultaneously the 2.5 to 4.9 and 5.9
to 11.7µm ranges. The spectral resolution of both channels ranged between 65 and 130. The
ISOPHOT-S observations were processed using the Phot Interactive Analysis (PIA)
V10.0 (Gabriel et al. 1997) following the standard data reduction scheme. The measurements
were further reduced following our self-developed processing scheme (Kóspál et al. submitted),
correcting for the slight off-centre positioning of the source.

4.2.3 Spectroscopic features

Figure 4.2 shows the optical spectra of all the three components, with expected atomic and
molecular features in the optical range between 5000 to 8500 Å. The most important lines are
molecular bands of TiO, CaH and VO, and atomic lines like CaII, NaI and KI. The TiO bands
get weaker toward lower temperature, from component A to C, due to condensation into dust
species. The hydride bands such as CaH at 6380 Å and 6880 Å,decreases in strength with de-
creasing temperature. The KI doublet at 7665 Å and 7699 Å is very strong and is useful for
gravity determination. The NaI doublet at 8183 Å and 8195 Å is strong in all the components,
whereas CaI at 6103 Å ≈ is weak at all temperatures.

Figure 4.3 and 4.4 shows the near-IR spectra obtained with NICMOS on HST for all the
three component as well as the thermal infrared spectrum of the unresolved system A+B+C
taken from ISOPHOT on ISO . Photometric results are superimposed on these spectra.
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Figure 4.1 – Comparison between NICMOS and NACO spectra of three different components.

Figure 4.5 to 4.7 shows the NACO spectra obtained at the VLT of the three individual
components in the J, H, and K band for components A, B, and C. The main expected features
are also indicated. The Paschen Beta and CaI lines can be seen in the J-band spectra with
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Figure 4.2 – Optical Spectra of all the components of LHS 1070 system obtained with the Faint
Object Spectrograph (FOS) on HST. The atomic and molecular features visible in all three
components are shown in the upper panel.

"equivalent widths" of 2-2.5 Å and 1.5-2 Å, respectively. The H-band spectra contain many
relatively weak absorption features, which defy definite identifications, with possible exception
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Figure 4.3 – Near-IR spectra (solid line) and photometry (solid circles) obtained with NICMOS
on HST for components A (upper), B (middle), and C (bottom).
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Figure 4.4 – The ISOPHOT thermal infrared spectra of the unresolved system.

of Mg (1.711 µm), OH (1.689 µm), and Al (1.675 µm). H2O bands define the shape of the J
and H band peaks. Water absorption is most obvious in the J-band at 1.33 µm and strengthens
through the later types: the flux ratio between the peak and the minimum of the absorption
band increases from 1.09 ± 0.01 for component A to 1.30± 0.01 and 1.39 ± 0.01 for the cooler
components. The K-band spectra of the three components show strong CO bands and more or
less pronounced atomic features. The NaI lines weaken from the hotter component A to the
cooler components B and C as dust forms.

4.3 Physical Parameters Determination

The first analysis of LHS 1070 by spectral synthesis was made by Leinert et al. (1998) using the
FOS spectra and the pure gas phase NextGen model atmospheres (Allard et al. 1997; Hauschildt
et al. 1999). But the quality of the fits, even for the A component was disappointing, especially
below 0.72 µm, and the Teff of the B and C components were strongly overestimated (2700 K)
mainly due to the absence of dust formation in the model. Leinert et al. (2000) have therefore
used the AMES-Dusty models (Allard et al. 2001) to re-analyze the LHS 1070 system. However
if the quality of the fits and precision of the Teff for the B and C components were clearly
improved, this was still clearly not the case of the M dwarf primary. The stellar parameters
obtained with the assumption of a distance of 8.8 pc are summarized:

• Component A: Teff =2950 K, log g=5.3±0.2, [M/H]=0.0

• Component B: Teff =2400 K, log g=5.5±0.5, [M/H]=0.0

• Component C: Teff =2300 K, log g=5.5±0.5, [M/H]=0.0
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Figure 4.5 – VLT (NACO) spectra of all the component in J band with atomic and molecular
lines indicated.
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Figure 4.6 – VLT (NACO) spectra of all the component in H band with atomic and molecular
lines indicated.
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Figure 4.7 – VLT (NACO) spectra of all the component in K band with atomic and molecular
lines indicated.
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In the following, we derive the stellar parameters using more recent atmosphere models
and spectroscopic informations covering both the optical and IR ranges. Metallicity and grav-
ity are determined from peculiar spectral features, whereas effective temperature and radius
are constrained from the overall shape of the spectra, following the different steps : (i) a first
χ2 minimization is performed on the overall spectra considering effective temperature, radius,
metallicity, and gravity as free parameters. It gives a first guess for the parameter space of each
component; (ii) we looked for peculiar spectral features that are mainly sensitive to metallicity
(see Sect.4.3.3) or gravity (see Sect. 4.3.4) to refine these two parameters; (iii) we fixed these
parameters to perform another χ2 minimization and derive effective temperature and radius (see
Sect. 4.3.5.). At each step we checked that the resulting value is not sensitive to changes on the
value of the other parameters. Age is estimated from kinematics and rotation. Before entering
the details of our study, we also summarize our results in Table 4.2. Note that these values have
been obtained by assuming a revised distance of 7.72 pc (Costa et al. 2005) whereas Leinert
et al. (2000) used the higher value of 8.8 pc. For the current study we have used three different
model atmosphere as explained in chapter 3.

4.3.1 Atmosphere models

We explored these different model atmosphere grids with parameter described as follows:

BT-Dusty and BT-Settl grid:

• Teff from 2000 K to 3000 K with 100 K step, as expected for mid-M to L dwarfs,

• log g = 5.0 and 5.5 dex ,

• [Fe/H] = -1.0, -0.5, 0, +0.3, and +0.5 dex.

MARCS grid :

• Teff from 2550 K to 3100 K with 100 K step (lower temperatures are not available),

• log g = 5.0 and 5.5 dex,

• [M/H] from -0.5 to 0.25 dex with 0.25 dex step.

DRIFT grid :

• Teff from 2200 K to 3100 K with 100 K step,

• log g = 5.0 and 5.5 dex,

• [M/H] from -0.5 to 0.5 with 0.5 dex step.
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4.3.2 Spectral Type

A well-defined spectral classification for the M dwarfs helps in the calibration of the temper-
ature of the late type stars and for the definition of the end of the main sequence on the HR
diagram. We have derived spectral indices and spectral types for all three components. For the
early M-dwarf, i.e. the primary, we used the classification scheme based on the TiO and CaH
band-strengths, as defined by Reid et al. (1995). For the late M-dwarfs, we also used the PC3

index defined by Lépine et al. (2003a); Hawley et al. (2002); Martín et al. (1999). We have
computed the spectral index H2O-K in the near-IR K-band defined by Covey et al. (2010) and
used the spectral-type vs. index relation from Rojas-Ayala et al. (2010). The spectral indices
and corresponding spectral types are given in Table 4.3. The obtained spectral classification for
components B and C is one subclass higher as compared to Leinert et al. (2000). The spectral
types obtained in the K-band differs from the optical indices by up to two sub-classes showing
inconsistency on the spectral type versus spectral index relations defined from the optical and
near-IR spectra. Here we adopt the spectral type obtained from optical spectral indices.

4.3.3 Metallicity

In order to estimate the metallicity of the system, we looked for special features in the spectra
that are mainly sensitive to the metallicity. The main indicator of metallicity is the VO absorp-
tion band at 7300-7600 Å. It is well reproduced at solar metallicity for all components, and
shown in fig. 4.8 for the primary with the BT-Settl model. We checked that the same metallicity
is found when changing the other parameters. This solar metallicity can also be inferred from
the NaI, CaI, and H2O features in the K-band of the primary using the calibration determined
by Rojas-Ayala et al. (2010). In the following, we adopt this [M/H] = 0 dex value.

4.3.4 Gravity

The surface gravity can be estimated by analyzing the width of atomic lines such as the K I and
Na I D doublets, as well as the relative strength of metal hydrides bands such as those of CaH.
The K I doublet at 7665 Å and 7699 Å is a particular useful gravity discriminant for M stars.
Figure 4.9 shows the gravity effects on the strength and pressure broadening of the K I lines
as modeled by the PHOENIX BT-atmosphere models. The overall line strength (central depth
and equivalent width) increases with gravity as the decreasing ionization ratio due to the higher
electron pressure leaves more neutral potassium in the deeper atmosphere. The width of the
damping wings in addition increases due to the stronger pressure broadening, mainly by H2 , He
and H I collisions. Figure 4.10 shows the determination of gravity for the component A from the
K I doublet using the BT-Settl, MARCS, and DRIFT models. The determined log g values are
given in Table 4.2. The best agreement is obtained with log g = 5.0 dex for all the atmospheric
models. This value is confirmed by the CaH molecular bands (Fig. 4.11). We checked that the
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Figure 4.8 – The VO band observed in the component A (red ) are compared to the BT-Settl
model at 2900 K, log g= 5.5, R⊙ = 0.134 at different metallicity (different colors)

Figure 4.9 – BT-Settl and BT-Dusty models for an effective temperature of 2900 K and varying
log g. The effect of gravity and the pressure broadening of the KI doublet is clearly visible.
The details of the dust treatment only cause negligible differences at this Teff

same metallicity is found when changing the other parameters. For comparison, the gravities
inferred from the masses found from the orbits of the system (Seifahrt et al. 2008) are also
listed, which are also in good agreement with the values found by fitting.
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Figure 4.10 – K I doublet as observed for the primary (black) compared to the BT-Dusty (red),
BT-Settl (green), DRIFT (blue), and MARCS (brown) models with log g = 5.0.

4.3.5 Effective Temperature and Radius

We performed a second χ2 minimization by adopting the metallicity and gravity derived in
Sects. 4.3.3 and 4.3.4 and refined the effective temperature and the radius by comparing the
overall shape of the observed and synthetic spectra. As opposed to the studies mentioned pre-
viously in which the best fit was found by trial and error, in this study we derive the effective
temperature and radius by performing a χ2 minimization technique. For this purpose, our ap-
proach was to first convolve the synthetic spectrum with a Gaussian kernel using equation 7.1
at the observed resolution and then interpolate the outcome with the observation. For each of
the observed spectra we have calculated the χ2 using the equation 7.2 explained in Apendix.
We have excluded the spectral region below 4500 Å due to the low signal-to-noise ratio of the
observed spectra. The number of data points used for the χ2 computation is thus 1487 in the
optical and 204 in the near-IR. In a second step, a χ2 map has been obtained for each component
in the optical and in the near-IR as a function of temperature and radius. Such a map is shown
in Fig. 4.12 for the primary using the BT-Dusty model. The minimum χ2 value is given on the
left part of the color bar. The parameter space which gives an acceptable solution around the
minimum χ2 valley is within the white contour, defined by visual inspection. We have identi-
fied on the contour maps the possible solutions in the optical and near-IR. The adopted values
of effective temperature and radius are the common intersection between the solutions found in
the optical and near-IR χ2 map. The χ2 value at this significance level is indicated along the
white contour. Error bars are derived from this contour.

The solutions were finally inspected by comparing it with the observed spectra. The same
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Figure 4.11 – CaH molecular band as observed for the primary (black) compared to the BT-Settl
model at 2900 K, log g= 5.0 (red) and log g=5.5 (green), R⊙ = 0.134 at solar metallicity.

procedure has been used with BT-Settl, MARCS and DRIFT model grids. Differences of 100
K to 200 K in the Teff determination (see Table 4.2) are found for the B and C components
depending on the model used, whereas all models agree on the effective temperature of the
primary.

4.3.6 Age and mass

With its high velocity component of W = 43 kms−1 perpendicular to the galactic plane based on
Basri & Marcy (1995), LHS1070 has been considered as part of the old disk population with
an age of several Gyrs. Reiners et al. (2007b) refined this estimate to about 1 Gyr based on
measured rotation velocities of its components using a modified Skumanich braking law (Sku-
manich 1972). They do not exclude however that the braking law may also have to be changed
in its absolute time scale, which could increase this estimate.

By an orbital fit, Leinert et al. (2001) have computed the combined mass of the components
B and C and showed that their mass is very close to the hydrogen burning minimum mass, in
good agreement with the masses of 0.080 to 0.083 M and 0.079 to 0.080 M derived by Leinert
et al. (2000) from theoretical mass-luminosity relations (Baraffe et al. 1998a; Chabrier et al.
2000). Seifahrt et al. (2008) constrained the combined mass of B and C to MB + MC = 0.157
± 0.009 M which is higher than Leinert et al. (2001) because of the refined distance by Costa
et al. (2005). Recently, an improved fit for the orbit of LHS 1070 B and C around each other,
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Figure 4.12 – Top: χ2 map computed for component A using the optical spectrum and the BT-
Settl model. All values inside the white contour also give an acceptable fit (checked by eye).
Bottom: same using the IR spectrum. We consider both χ2 maps to define the best model that
satisfies both optical and IR observations: Teff =2900 K and r = 0.134 R⊙.

and an estimate for the orbit of B and C around A have been performed. The masses of the three
components are found to be MA = 0.13 to 0.16 M⊙ , MB = 0.077 ± 0.005 M⊙ , and MC = 0.071 ±
0.004 M⊙ (Köhler et al. 2012). Here, the values for the primary are uncertain, because the wide
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Figure 4.13 – Optical spectra of all three components. Black: observed spectra. Green: best fit
BT-Settl model. Blue: best fit DRIFT model. Brown: best fit MARCS model. The parameters
that give the best fit are given in Table 4.2

orbit of this triple system has not yet been determined with sufficient accuracy. Finally, Seifahrt
et al. (2008) have not measured individual masses for the B and C components, but using the
mass ratio MC /MB = 0.923 from Köhler et al. (2012), their masses for A, B, C become 0.115 ±
0.01, 0.082 ± 0.01 and 0.075 ±0.01 M .

The interpolations of the NextGen (Baraffe et al. 1998a) isochrone for the primary, and of
the AMES-Dusty (Chabrier et al. 2000) isochrone for the B and C components, assuming an
age of 1 Gyr for the dynamical masses of Seifahrt et al. (2008) are shown in Table 4.2. For
masses above the hydrogen burning limit these values do not change much for larger ages,
since in the stellar regime small evolution effects are seen after the age of 1 Gyr. No evolution
models have yet been calculated using the BT-Settl models. However, only negligible changes
are expected with the revision of the evolution calculations. Such revision of the interior and
evolution models is currently being prepared (I. Baraffe,Exceter, priv. comm.).
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Figure 4.14 – Same as Fig. 4.13 in the IR.

4.4 Results

Figures 4.13 and 4.14 show the best fit model superimposed to the observed optical (FOS) and
near-IR (NICMOS) spectra for all the three components using the BT-Settl, BT-Dusty, MARCS,
and DRIFT models. Note that the observed NICMOS spectra of all three components plunge
down away from the model predictions below 0.85 µm (see Fig. 4.14), whereas the observed
FOS spectra are correctly represented by the models in the same wavelength range (see Fig.
4.13). This deviation is due to difficulties with the NICMOS data at the very edge of the wave-
length range.

The FOS spectral distribution is better reproduced by the models for the primary than for
the cooler components B and C. The revised opacities and oxygen abundance (among other
elements) used in the current BT-Settl models allow a significant improvement compared to the
AMES-Dusty and NextGen models used in previous analysis (Leinert et al. 1998, 2000). The
slope of the spectra is now reproduced over the complete FOS spectral distribution, and the
strength of molecular bands is reproduced on average quite well. However some problems re-
main which are probably due to uncertain and missing opacity sources. Hence, the MgH feature
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at around 5200 Å is too strong in all the models while the CaOH band at 5500 Å is missing in
all models. The NaI doublet at around 5900 Å is far too strong in the models as well as the CaH
band at 7000 Å. Largest discrepancies are found around 6000-6400 Å for all models. The TiO
bands around 7055 Å as well as the CaH band around 6900 Å are too strong in all the models.
The VO band around 7334 Å is also visible and is quite well matched by the BT-Settl model.
The BT-Settl models also differ from the DRIFT models by the strength of atomic lines which
are deeper in the DRIFT models.

In the near-IR NICMOS range, the BT-Settl models fit slightly better the primary than the
DRIFT models. The MARCS model overestimates the flux over most of the spectral range
above 1.3 µm while the DRIFT model shows a slightly different shape of the H band peak
which is shared by the BT-Settl models in the case of the B and C components. But all the
models appear over luminous in the J and H bands in the case of the B and C components for
the selected radius and effective temperature. This is also apparent in fig. 4.15 to 4.20 which
shows the comparison of high resolution near-IR spectra (NACO) with the best fit of all the four
models. The change in the NaI and CaI strength as the temperature decreases (K-band) is quite
well reproduced by the BT-Settl, BT-Dusty and DRIFT models.

Figure 4.15 – Black: J band NACO spectra of all three components. Comparison with model
predictions. Green: best fit BT-Settl model. Red: best fit BT-Dusty model. Blue: best fit DRIFT
model. Brown: best fit MARCS model

As an additional check on the effective temperature determination, we also compared the
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Figure 4.16 – Same as fig 4.15 for H band

Figure 4.17 – Same as fig 4.15 for K band
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Figure 4.18 – The comparison of the BT-Dusty (red) and BT-Settl (green) models together with
the observations for all the three components in J band.

Figure 4.19 – Same as fig 4.18 for H band
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Figure 4.20 – Same as fig 4.18 for K band

spectrum of the unresolved system in the 3-14 µm range with the BT-Dusty, BT-Settl and DRIFT
models (MARCS models are not available in this wavelength range). The synthetic spectra of
the unresolved system are computed by adding the individual best fit synthetic spectra. The
comparison is shown in fig. 4.21, where the ISOPHOT spectrum is in black, the BT-Dusty
model in red, the BT-Settl model in green, and the DRIFT model in blue. Star symbols indi-
cates the photometry obtained in the IR bands. The overall agreement is good except for the
observed spectrum above 8.7 µm, where it gets quite noisy.

Relatively small differences distinguish the MARCS, DRIFT and BT models in the IR spec-
tral range for the primary. In the case of the B and C components, the MARCS models suffer
clearly of the lack of dust grain scattering which tends to flatten out or veil the spectral fea-
tures in this spectra range. This effect is observed in the DRIFT, BT-Settl and BT-Dusty models
which include dust formation. Differences in the cloud model approaches explain the differ-
ences between the DRIFT, BT-Dusty and BT-Settl models. The DRIFT models appear as dusty
as the 2001 AMES-Dusty models with similar effective temperatures and surface gravities for
B and C than derived by Leinert et al. (2000). The BT models tend to attribute slightly hotter
effective temperatures (+100 K) and lower gravities (-0.5 dex) to these objects, while the dust-
free MARCS models would attribute them the highest values (+200 K). But judging from the
overall fits obtained to the NICMOS spectra it appears that neither of the models are yet dusty
enough to explain the IR spectral distribution of B and C. Indeed the over-luminosity of the
models in the J band could be attributed to missing or to weak veiling by dust scattering.
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The Köhler et al. (2012) mass estimate for the primary requires a 150 to 300 K higher
effective temperature and up to 30% larger radius than using the revised Seifahrt et al. (2008)
mass, resulting in an over-prediction of the luminosity of up to one magnitude. In the case
of the B and C components, the Köhler et al. (2012) mass estimates correspond to effective
temperatures which are 100 to 200 K cooler than obtained in this study using the DRIFT models,
and in correspondingly larger discrepancies with the BT-Settl fits. On the other hand, the results
obtained in this paper for all three components are consistent with the isochrone interpolation
for the revised Seifahrt et al. (2008) masses of the A, B and C components of LHS 1070 (see
Table 4.2), and there is no evidence that the components may have been influenced by their
binary nature.

Figure 4.21 – Black: ISOPHOT thermal IR spectra of the unresolved system, with photometric
measurements over plotted (stars). Red: best fit BT-Dusty model. Green: best fit BT-Settl
model. Blue: best fit DRIFT model.

4.5 Discussion and Conclusion

This chapter presents the results from the spectral synthesis analysis for the LHS 1070 triple
system. This system has been extensively observed from the optical to the IR, and dynamical
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masses have been determined (Leinert et al. 2001; Seifahrt et al. 2008). Therefore, it con-
stitutes a testbed of model atmospheres of low-mass stars. The components are classified as
M5.5, M9.5, and L0 dwarfs, and their atmopshere lie in a temperature range where dust starts to
form. Using a χ2 square minimization technique, we have determined the physical parameters
Teff , log g , metallicity and radius for all the three components of the LHS 1070 system by
comparing them with the synthetic spectra computed with the most recent atmospheric models:
BT-Dusty, BT-Settl, MARCS, and DRIFT. A solar metallicity is derived from all three models.
The derived gravity differs by 0.5 dex depending on the model used but still agrees within the
uncertainties with the values derived from dynamical mass (Seifahrt et al. 2008). By assuming
an age of 1 Gyr, [M/H] = 0.0 and Teff = 2900K for component A, 2500K for component B
and 2400K for component C gives mass of 0.11M⊙, 0.09M⊙ and 0.08M⊙ using Baraffe et al.
(1998a) isochrones which is in agreement with (Seifahrt et al. 2008) mass. We found the same
value for Teff for the component A from all models while differences of 100 K and 200 K are
found for component B and C. Teff values found for component B and C are also 200 K higher
than the Leinert et al. (2000) findings.

The main cause of these differences resides on the dust treatment. The AMES-Cond/Dusty
models used by Leinert et al. (2000) only explored the limiting case of dust formation, con-
sidering dust formation in equilibrium with the gas phase whereas the BT-Settl model (Allard
et al. 2010) includes a cloud model where in each atmospheric layer: 1) start concentrations
of condensates are set to equilibrium values (nucleation is assumed efficient); 2) sedimentation
and condensation timescales by Rossow (1978) are compared to the mixing efficiency (Freytag
et al. 2010); 3) a gradual depletion occur as the solution progress from the bottom to the top of
the atmosphere; and 4) the gas phase is systematically refreshed iteratively with the cloud model
solution in each layer to account for the depletion of condensible elements from the gas phase
composition. MARCS models are pure gas phase models where no grain formation is consider
at all whereas the DRIFT model consider the dust cloud structure in which the seed grain size
proceed via seed particle or by evaporation. Moreover the molecular opacities assumed in the
MARCS model are different than the ones in the PHOENIX code used to compute the BT-Settl
and DRIFT atmosphere models.

The derived parameters for LHS 1070 components agree with those derived using evolution-
ary models and observed bolometric luminosities (Baraffe et al. 1998a; Chabrier et al. 2000).
However, we pointed out several discrepancies between the model atmospheres and the ob-
served spectra. In the optical, the TiO bands around 7055 Å, CaH band around 6900 Å are
recovered for all the components but we find that these bands are too strong in all the models.
This might be due to the treatment of the dust settling in the atmosphere of the cool objects
in the model. The VO band around 7334 Å is also visible and is quite well matched by the
BT-Settl model. The overall fit for the B and C component is better with BT-Settl than DRIFT
and MARCS model in the optical. The MgH feature at around 5200 Å is too strong in the all
the models while the CaOH at 5500 Å band is missing in all models. The NaI doublet at around
5900 Å is far too strong as well as the CaH band at 7000 Å.
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In the near-IR part the calculated fluxes are too high mainly in the J and H band. This
indicates an inaccuracy in the atmosphere structure (outer temperatures too low) due to un-
certainties in the oxygen composition of the star, to uncertainties in the treatment of the dust
grains, or less likely to uncertainties and incompleteness of opacities as effective temperature
decreases. The apparent weakness of NaI and CaI line in K band for all three components are
clearly visible. These variations are mainly caused by the changing cloud thickness, inhomo-
geneous cloud distribution or changing opacity properties of the clouds where the condensation
of dust could takes place. The recent development in the modeling of the atmosphere of very
low mass stars by Allard et al. (2010) by considering the main molecular opacities sampling
treatment in the BT2 water opacity line list (Barber et al. 2006), the revised solar opacity by
Asplund et al. (2009) and also by considering the cloud model which is the cause for supersatu-
ration and RHD mixing appears to be a breakthrough in the agreement of the modeled effective
temperature scales with the observation of the late M-type dwarf star.
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Table 4.1 – Photometric data. Fluxes Fλ are in log10(ergs cm−2 s−1Å−1).

Wavelength Filter1 Component A Component B Component C Components A+B+C
µm log10(Fλ) log10(Fλ) original notation

0.900 NIC1 F090M −13.347 ± 0.010 −14.122 ± 0.016 −14.289 ± 0.017 156 ± 2 mJy2

0.953 NIC1 F095N −13.213 ± 0.031 −13.870 ± 0.03 −14.056 ± 0.036 253 ± 8 mJy2

0.970 NIC1 F097N −13.251 ± 0.031 −13.943 ± 0.027 −14.092 ± 0.028 237 ± 7 mJy2

1.083 NIC1 F108N −13.229 ± 0.024 −13.831 ± 0.017 −13.953 ± 0.017 332 ± 7 mJy2

1.100 NIC1 F110M −13.292 ± 0.006 −13.887 ± 0.007 −14.037 ± 0.009 295 ± 2 mJy2

1.130 NIC3 F113N −13.267 ± 0.022 −13.809 ± 0.073 −13.965 ± 0.097 343 ± 15 mJy2

1.130 NIC1 F113N −13.249 ± 0.020 −13.796 ± 0.019 −13.962 ± 0.022 355 ± 7 mJy2

1.25 J −13.350 ± 0.017 −13.904 ± 0.028 −14.036 ± 0.028 −13.189 ± 0.012 9.14 ± 0.03 mag
1.450 NIC1 F145M −13.494 ± 0.005 −14.077 ± 0.005 −14.218 ± 0.005 326 ± 2 mJy2

1.640 NIC1 F165M −13.517 ± 0.004 −14.026 ± 0.004 −14.163 ± 0.004 419 ± 2 mJy2

1.65 H −13.535 ± −0.018 −14.061 ± 0.028 −14.195 ± 0.031 −13.367 ± 0.013 8.51 ± 0.03 mag
1.660 NIC3 F166N −13.492 ± 0.013 −13.930 ± 0.084 −14.130 ± 0.133 472 ± 29 mJy2

1.800 NIC2 F180M −13.677 ± 0.006 −14.197 ± 0.008 −14.333 ± 0.009 346 ± 2 mJy2

1.900 NIC1 F190N −13.751 ± 0.014 −14.276 ± 0.007 −14.415 ± 0.008 324 ± 4 mJy2

2.040 NIC2 F204M −13.833 ± 0.006 −14.343 ± 0.004 −14.474 ± 0.004 314 ± 2 mJy2

2.150 NIC2 F215N −13.825 ± 0.013 −14.273 ± 0.005 −14.400 ± 0.006 378 ± 5 mJy2

2.2 K −13.860 ± 0.018 −14.339 ± 0.018 −14.468 ± 0.024 −13.674 ± 0.014 8.14 ± 0.03 mag
2.300 NIC2 F222M −13.844 ± 0.004 −14.301 ± 0.003 −14.429 ± 0.003 378 ± 2 mJy2

2.375 NIC2 F237M −13.973 ± 0.005 −14.447 ± 0.003 −14.579 ± 0.003 317 ± 2 mJy2

3.8 L’ −14.604 ± 0.013 −14.990 ± 0.013 −15.097 ± 0.014 −14.377 ± 0.012 7.63 ± 0.06 mag
4.78 M −15.008 ± 0.019 −15.449 ± 0.028 −15.536 ± 0.041 −14.806 ± 0.017 7.72 ± 0.04 mag
6.7 LW2 −15.349 ± 0.019 70 ± 3 mJy

10.4 N −16.190 ± 0.053 −15.973 ± 0.035 38.4 ± 3 mJy
14.3 LW3 −16.555 ± 0.043 21 ± 2 mJy

1 M: medium-band filter (∆λ = 0.1 − 0.2µm), N: narrow-band filter (∆λ = 0.02 − 0.04µm)
2 these values are the sum of the values measured directly for the individual components
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Table 4.2 – Derived parameters for the LHS 1070 system. The uncertainties are drawn from
the χ2 maps and is 100 K for Teff . The metallicity is assumed to be [M/H] = 0 and log g = 5.0
to 5.5 (as explained in the text). The luminosity L is computed from the radius and effective
temperature.

Component A
Model Teff (K) log g (dex) Radius (R⊙ ) log(L) (ergs s−1)

BT-Dusty 2900 5.5 0.134±0.005 -2.93±0.090
BT-Settl 2900 5.0 0.134±0.005 -2.93±0.090
MARCS 2900 5.0 0.136±0.005 -2.92±0.090
DRIFT 2900 5.5 0.136±0.005 -2.92±0.031

Component B
Model Teff (K) log g (dex) Radius (R⊙ ) log(L) (ergs s−1)

BT-Dusty 2500 5.5 0.102±0.004 -3.43±0.105
BT-Settl 2500 5.0 0.102±0.004 -3.43±0.105
MARCS 2600 5.0 0.098±0.002 -3.39±0.086
DRIFT 2400 5.5 0.106±0.005 -3.46±0.044

Component C
Model Teff (K) log g (dex) Radius (R⊙ ) log(L) (ergs s−1)

BT-Dusty 2400 5.0 0.098±0.002 -3.53±0.090
BT-Settl 2400 5.0 0.098±0.002 -3.53±0.090
MARCS 2500 5.0 0.100±0.002 -3.44±0.090
DRIFT 2300 5.0 0.102±0.005 -3.57±0.034

Table 4.3 – Spectral indices values and derived spectral type computed from TiO and CaH
band-strengths for component A and from the PC3 index for components B and C.

Component A
TiO5 0.211 M5.5
CaH2 0.281 M5.5
CaH3 0.557 M6

Component B
PC3 2.305 M9.5

Component C
PC3 2.608 L0



67

Chapter 5

The effective temperature scale of M

dwarfs

5.1 Introduction

The Teff scale of M dwarfs remains to this day model dependent to some level. Many efforts
have been made to derive the effective temperature scale of M dwarfs. Due to the lack of very
reliable model atmosphere, indirect methods such as blackbody fitting techniques have histor-
ically been used to estimate the effective temperature. The Bessell (1991) Teff scale was based
on blackbody fits to the near-IR (JHKL) bands by Pettersen (1980) and Reid & Gilmore (1984).
The much cooler blackbody fits shown by Wing & Rinsland (1979) and Veeder (1974) were fits
to the optical. Their fitting line was a continuation of the empirical Teff relation for the hotter
stars through the Pettersen (1980) and Reid & Gilmore (1984) NIR fits for the cooler stars.
The work by Veeder (1974), Berriman & Reid (1987), Berriman et al. (1992), and Tinney et al.
(1993) also used the blackbody fitting technique to estimate the Teff . Tsuji et al. (1996a) pro-
vide good Teff using infrared flux method (IRFM). Casagrande et al. (2008) provide a modified
IRFM Teff for dwarfs including M dwarfs. These methods tend to underestimate Teff since the
blackbody carries little flux compared to the M dwarfs in the Rayleigh Jeans tail redwards of
2.5 µm. Temperatures derived from fitting to model spectra (Kirkpatrick et al. 1993b) are sys-
tematically ∼ 300 K warmer than those attained by empirical methods. This cooler Teff scale
for M dwarfs was corrected recently by Casagrande et al. (2012) bring it close to the Bessell
(1991, 1995) Teff scale.

Tinney & Reid (1998) determined an M dwarf Teff scale in the optical by ranking the objects
in order of TiO, VO, CrH, and FeH equivalent widths. Delfosse et al. (1999) pursued a similar
program in the NIR with H2O indices. Tokunaga & Kobayashi (1999) used a spectral colour
index based on moderate dispersion spectroscopy in the K band. Leggett et al. (1996) used
observed NIR low-resolution spectra and photometry for comparison with the AMES-Dusty
models (Allard et al. 2001). They found radii and effective temperatures that are consistent with
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the estimates based on photometric data from interior model or isochrone results. Leggett et al.
(1998, 2000) revised their results by comparing the SED and NIR colours of M dwarfs to the
same models. Their study provided for the first time a realistic temperature scale of M dwarfs.

In this chapter, we compare the revised BT-Settl synthetic spectra with the observed spectra
of 152 M dwarfs using spectral synthesis and χ2 minimization techniques, as well as colour-
colour diagrams to obtain the atmospheric parameters (effective temperature, surface gravity
and metallicity). We determine the revised effective temperature scale along the entire M
dwarfs’ spectral sequence and compare these results to those obtained by many authors.

5.2 Observations

Spectroscopic observations were carried out on the 3.6 mm New Technology Telescope (here-
after NTT) at La Silla Observatory (ESO, Chile) in November 2003 (Reylé et al. 2006). Op-
tical low-resolution spectra were obtained in the red imaging and low-dispersion spectroscopy
(RILD) observing mode with the ESO Multi Mode Instrument (hereafter EMMI) instrument.
The spectral dispersion of the grism were used was 0.28 nm/pix, with a wavelength range of
385-950 nm. An order-blocking filter to avoid the second-order overlap that occurs beyond 800
nm. Thus the effective wavelength coverage ranges from 520 to 950 nm. The slit was 1 arcsec
wide and the resulting resolution was 1 nm. The seeing varied from 0.5 to 1.5 arcsec. Exposure
time ranged from 15 s for the brightest to 120 s for the faintest dwarf (I = 15.3). The reduc-
tion of the spectra was done using the context long of MIDAS. Fluxes were calibrated with the
spectrophotometric standards LTT 2415 and Feige 110.

We use a sample of spectra for 97 M dwarfs along the entire spectral sequence. They are
presented in Reylé et al. (2006); Phan-Bao et al. (2005); Crifo et al. (2005); Martín et al. (2010).
The list of stars, their spectral types, and their optical and NIR photometry are given in Table 1.
We compiled the photometry using the Vizier catalog access through the Centre de Données as-
tronomiques de Strasbourg. It comes from the Naval Observatory Merged Astrometric Dataset
(NOMAD) catalog (Zacharias et al. 2005), the Deep Near-Infrared Survey (DENIS, Epchtein
1997), and the Two Micron All Sky Survey (2MASS, Skrutskie et al. 2006), Reid et al. (2004,
2007), Koen & Eyer (2002); Koen et al. (2010).

The observations of 55 additional M dwarfs at Siding Spring Observatory (hereafter SSO)
were carried out using the Double Beam Spectrograph (hereafter DBS),which uses a dichroic
beamsplitter to separate the blue (300–630 nm) and red (620–1000 nm) light. The blue camera
with a 300 l/mm grating provided a 2-pixel resolution of 0.4 nm, and the red camera with a 316
l/mm grating provided a 2-pixel resolution of 0.37 nm. The detectors were E2V 2048x512
13.5 micron/pixel CCDs. The observations were taken on Mar 27 2008. The spectropho-
tometric standards used were HD44007, HD45282, HD55496, HD184266, and HD187111
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from the Next Generation Spectral Library (NGSL, version 1)1 L745-46a and EG131 from
http://www.mso.anu.edu.au/∼bessell/FTP/Spectrophotometry/. The list of stars with their pho-
tometry are given in Tables 5.1 and 5.2

Spectral types for the NTT sample are obtained by visual comparison with a spectral tem-
plate of comparison stars, observed together with the target stars at NTT as explained in Reylé
et al. (2006). For comparison, we also derive spectral types using the classification scheme
based on the TiO and CaH bandstrength (Reid & Gizis 1997). However, no comparison stars
have been observed with the DBS at SSO. Thus, spectral types for the SSO sample are computed
from TiO and CaH bandstrength. Although the instrument is different, we allow the comparison
stars observed with EMMI on the NTT to be used as a final check. The results agree within 0.5
subclass.

5.3 Model atmospheres

For this study, we use the most recent BT-Settl models, which are partially published in a review
by Allard et al. (2012a) and described by Allard & Homeier (2012). The details of BT-Settl
model atmosphere is described in chapter 3.

5.4 Teff determination

We use a least-square minimization program described in chapter 4 to derive a revised effective
temperature scale of M dwarfs. The stars in our samples most probably belong to the thin disc of
our Galaxy (Reylé et al. 2002; Reylé & Robin 2004). Thus we determine the Teff of our targets
by assuming solar metallicity. This is a reasonable assumption, as can be seen in Fig. 5.1 and
5.2 where we compare our two samples to three 5 Gyrs isochrones with solar, [M/H]= -0.5 and
-1.0 dex. The samples are clearly compatible with solar metallicity.

Both theory and observation indicate that M dwarfs have log g = 5.0 ± 0.2 (Gizis 1996;
Casagrande et al. 2008) except for the latest type M dwarfs. We therefore restrict our analysis
to log g = 5.0 − 5.5 models. Each synthetic spectrum was convolved to the observed spectral
resolution; a scaling factor is applied to normalize the average flux to unity. We then compare
each of the observed spectra with all the synthetic spectra in the grid by taking the difference
between the flux values of the synthetic and observed spectra at each wavelength point. We
interpolated the model spectra on the wavelength grid of the observed spectra. The sum of the
squares of these differences is obtained for each model in the grid, and the best model for each
object is selected. The best models were finally inspected visually by comparing them with
the corresponding observed spectra. Due to the lower signal-to-noise ratio in the SSO 2.3 m

1http://archive.stsci.edu/prepds/stisngsl/index.html



70 5. The effective temperature scale ofM dwarfs

Figure 5.1 – Teff vs NIR colours for observed M dwarfs (open and filled circle) compared to the
values obtained with the 5 Gyrs isochrones from Baraffe et al. (1998b) at various metallicities.
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Figure 5.2 – colour-colour plot for observed M dwarfs (open and filled circle) compared to the
values obtained with the 5 Gyrs isochrones from Baraffe et al. (1998b) at various metallicities.
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spectra bluewards of 500 nm (see Fig. 5.4), especially for spectral types later than M4, we
excluded this region below 500 nm from the χ2 computation. We also checked the variation in
effective temperature of the best fit as a function of the spectral type of the observed dwarfs.
We found generally good agreement and conclude that our model-fitting procedure can be used
to estimate the effective temperature with an uncertainty of ∼100 K. The purpose of this fit is to
determine the effective temperature by fitting the overall shape of the optical spectra. No attempt
has been made to fit the individual atomic lines, such as the K I and Na I resonance doublets.
With the available resolution we cannot constrain the metallicity, high-resolution spectra would
be necessary (Rajpurohit et al. 2012a). In addition, we checked the influence of the spectral
resolution on our derived temperatures. We degraded the resolution of the spectra of SSO 2.3 m
down to 1 nm and redid the procedure. No systematic difference in Teff was found. The results
are summarized in Tables 5.1 and 5.2.

5.5 Comparison between models and observations

5.5.1 Spectroscopic confrontation

The optical spectrum of M dwarfs is dominated by molecular band absorption, leaving no win-
dow onto the continuum (Allard 1990b). The major opacity sources in the optical regions are
due to TiO and VO bands, as well as to MgH, CaH, FeH hydride bands and CAOH hydroxide
bands in late-type M dwarfs. In M dwarfs of spectral type later than M6, the outermost atmo-
spheric layers fall below the condensation temperature of silicates, giving rise to the formation
of dust clouds (Tsuji et al. 1996a,b, Allard et al. 1997).

We compared the two samples of M dwarfs with the most recent BT-Settl synthetic spectra
in Fig. 5.3 and 5.4 through the entire M dwarf spectral sequence. The synthetic spectra repro-
duce very well the slope of the observed spectra across the M dwarf regime. This is a drastic
improvement compared to previous comparisons of earlier models (e.g., Leggett et al. 1998).

However, some indications of missing opacities persist in the blue part of the late-type
M dwarf, such as the B’ 2Σ+<– X 2Σ+ system of MgH (Skory et al. 2003a), and TiO and
VO opacities around 8200 Å. Opacities are totally missing for the CaOH band at 5570 Å. The
missing hydride bands of AlH and NaH between 3800 and 4600 Å among others could be
responsible for the remaining discrepancies. We note that chromospheric emission fills the
Na I D transitions in the latest type M dwarfs displayed here.

We see in this spectral regime no signs of dust scattering or of the weakening of features due
to sedimentation onto grains until the M8 and later spectral types, where the spectrum becomes
flat due to the sedimentation of TiO and VO bands and to the veiling by dust scattering.
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Figure 5.3 – Optical to red SED of M dwarfs from M0 to M9.5 observed with the NTT at a
spectral resolution of 10.4 Å compared to the best fit BT-Settl synthetic spectra (red lines). The
models displayed have a surface gravity of log g = 5.0 to 5.5. Telluric features near 7600 Å
were ignored from the chi-square minimization.
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Figure 5.4 – Optical to red SED of M dwarfs from M1 to M8 observed with the SSO 2.3 m at
a spectral resolution of 1.4 Å compared to the best fitting (chi-square minimization) BT-Settl
synthetic spectra (red lines). The models displayed have a surface gravity of log g=5.0 to 5.5.
At blue wavelengths (< 5000Å) the instrumental noise dominates the late-type M dwarfs.

5.5.2 Photometric confrontation

The models can be validated by comparing published isochrones interpolated into the new BT-
Settl synthetic colour tables with observed photometry. We took the log g and Teff for the fixed
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Figure 5.5 – Optical and NIR colours obtained with the 5 Gyrs isochrones from Baraffe et al.
(1998b) at solar metallicity compared with the two observation samples (filled circles for the
NTT sample and open circle for the SSO 2.3 m spectra). Typical error bars are comparable or
smaller than the size of the symbols.

age of 5 Gyrs from Baraffe et al. (1998b) isochrones and calculated the colours of the star
according to the BT-Settl models. The models are compared to observations in colour-colour
diagrams in Fig. 5.5 for our two samples. The compiled photometry in the NTT sample is
less homogeneous and translates to a larger spread, in particular for colours including the V and
R band. This dispersion becomes dramatic for the coolest and faintest stars except for lowest
mass objects at very young ages. The isochrone reproduces the two samples over the entire M
dwarf spectral range in most colours. In particular, the models reproduce the V-band colours



76 5. The effective temperature scale ofM dwarfs

Figure 5.5 – Continued.

of M dwarfs, as illustrated by the V-I, V-J, and V-K colours. An increasing offset to the latest
types persists in the H-K and V-R colour indices. The observations also suggest a flattening and
possibly a rise in J-H and J-K to the latest types, which is not reproduced by the model. These
inadequacies at the coolest temperature could be linked to missing opacities.
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5.5.3 The Teff scale of M dwarfs

The effective temperature scale versus spectral type is shown in Fig. 5.6. The Teff scale de-
termined using the NTT sample (filled circles) is in agreement with the SSO sample (open
circles), but we found systematically 100 K higher Teff for SSO samples for spectral types later
than M5. The relation shows a saturation trend for spectral types later than M8. This illustrates
the fact that the optical spectrum no longer changes sensitively with Teff in this regime due to
dust formation.

Figure 5.6 – Spectral type - Teff relation obtained with the NTT sample (filled circles) and the
SSO 2.3 m sample (open circles) compared to relations by Bessell (1991), Gizis (1997), Leggett
et al. (1996), Leggett et al. (2000), Testi (2009), Boyajian et al. (2012) and Luhman (1999).

In the following we compare our scale to other works. Bessell (1991) determined the tem-
peratures by comparing blackbodies to the NIR photometry of their sample. They used the
temperature calibration of Wing & Rinsland (1979) and Veeder (1974). These calibrations were
identical between 2700 ≤ Teff ≤ 3500 K. Their scale agrees with the modern values for M dwarfs
earlier than M6, but becomes gradually too cool with later spectral types and too hot for earlier
M types.

Leggett et al. (1996) used the base grid by Allard & Hauschildt (1995b), which covers the
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range of parameters down to the coolest known M dwarfs, M subdwarfs, and brown dwarfs.
They obtained the Teff of M dwarfs by comparing the observed spectra to the synthetic spectra.
They performed their comparison independently at each of their four wavelength regions: red,
J, H, and K. The different wavelength regions gave consistent values of Teff within 300 K. Gizis
(1997) used the NextGen model atmosphere grid by Allard et al. (1997). These models include
more molecular lines from ab initio simulations (in particular for water vapor) than the previous
base model grid. Leggett et al. (2000) used the more modern AMES-Dusty model atmosphere
grid by Allard et al. (2001). They obtained a revised Teff scale which is 150-200 K cooler for
early Ms and 200 K hotter for late Ms than the scale presented in Fig. 5.6. Testi (2009) de-
termined the Teff by fitting the synthetic spectra to the observations. They used three classes
of models: the AMES-Dusty, AMES-Cond, and the BT-Settl models. With some individual
exceptions they found that the BT-Settl models were the most appropriate for M type and early
L-type dwarfs.

Boyajian et al. (2012) used the interferometric angular diameter, Hipparcos parallax and
new measurements of the star’s bolometric flux to compute the Teff of K0 to M4 main sequence
stars. We compared their Teff measurements with our findings. We have found good agreement
within 100 K between our Teff determination Boyajian et al. (2012).

Finally, for spectral types later than M0, Luhman et al. (2003) adopted the effective temper-
ature, which is based on the NextGen and AMES-Dusty evolutionary models of Baraffe et al.
(1998b) and Chabrier et al. (2000), respectively. They obtained the Teff by comparing the H-R
diagram from theoretical isochrones of Baraffe et al. (1998b) and Chabrier et al. (2000). For
M8 and M9, Luhman et al. (2003) adjusted the temperature scale from Luhman (1999), so that
spectral sequence falls parallel to the isochrones. Their Teff conversion is likely to be inaccu-
rate at some level, but as it falls between the scales for dwarfs and giants, the errors in Teff are
modest.

The different Teff scales are in agreement within 250-300 K. But the Gizis (1997) relation
shows the largest differences with the largest Teff values (up to 500 K). This is due to the incom-
pleteness of the TiO and water vapor line lists used in the NextGen model atmospheres. We
also note also how the Luhman et al. (2003) Teff scale is gradually overestimating Teff towards
the bottom of the main sequence for spectral types later than M4.

Teff versus colour relations are shown in Fig. 5.7 in various photometric bands. The pho-
tometry of our NTT sample (filled circles) is compiled from the literature, which causes a large
spread, particularly in the V and R band. The SSO 2.3 m sample (filled triangles) in comparison
is more uniform. Our relations are compared to the predictions from BT-Settl isochrones at 5
Gyrs. The relations show that the model is able to reproduce quite properly the colours of M
dwarfs, even in the V-band. There is a slight offset visible in the R band due to missing molecu-
lar opacities (see above). These relations are compared to previously published relations when
available.

Berriman et al. (1992) derive the Teff by matching the blackbody flux anchored at K band
(2.2 µm) to the total bolometric flux, including both the spectroscopic and photometric ob-
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served data points. They estimated the uncertainties in Teff to be ± 4%. Leggett et al. (1996)
used the synthetic I-K and I-J colours to estimate Teff . Leggett et al. (1996) used synthetic
broadband colours from the preliminary version of AMES-Dusty model produced by Allard
et al. (1994a). They used the V-K, I-K, J-H, and H-K colours assuming logg = 5.0 and solar
metallicity,finding a hotter Teff scale (by on average 130 K) than that of Berriman et al. (1992).
More recently, Casagrande et al. (2008) used the PHOENIX Cond-GAIA model atmosphere grid
(P. H. Hauschildt, unpublished) to determine the atmospheric parameters of their sample of 343
nearby M dwarfs with high-quality optical and NIR photometry. These models are similar to
those published by Allard et al. (2001), with the exception that they were computed by solving
the radiative transfer in spherical symmetry.

The authors determined the Teff using a version of the multiple optical-infrared method
(IRFM) generalized to M dwarfs, and elaborated by Blackwell & Shallis (1977) and Blackwell
et al. (1979, 1980). Figure 5.7 shows that the Casagrande et al. (2008) Teff scale is systemati-
cally, and progressively with decreasing Teff , cooler than the BT-Settl isochrones. Given that a
large number of stars are common with Casagrande et al. (2008) sample, we did a star-by-star
comparison of the Teff determination. The values are given in Tables 5.1 and 5.2. The compari-
son confirms the systematic offset in the temperature scale. For cooler stars with Teff ≤ 3000 K,
the Teff determinations diverge by 100 to 300 K. This is due, among other things, to the use of
the Grevesse et al. (1993) solar elemental abundances (see Allard et al. 2012 for a comparison of
the different solar elemental abundance determinations and their effects on model atmospheres).

5.6 Conclusion

We have compared a revised version of the BT-Settl model atmospheres (Allard et al. 2012a)
to the observed NTT and SSO 2.3 m spectra and colours. The use of revised TiO line list is
very important and provides a more accurate description of the TiO bands in the M dwarfs. The
systematic discrepancy between the delta and epsilon bands found by Reiners (2005), which
seriously affected the effective temperature determination, is largely alleviated by using the
Plez (1998) and B. Plez (private communication) TiO line list although discrepancies remain
for the coolest stars. The BT-Settl models reproduce the SED and observed colours across the
M dwarfs’ spectral regime in unprecedented quality, as well as the colours. The V band is
also well reproduced by the models. Discrepancies remain in the strength of some molecular
absorption bands while other absorption bands are missing, in particular in the blue spectral
range.

Effective temperatures were determined by using a least-square minimization routine, which
gives accurate temperatures within 100 K uncertainty. We compared our temperature colour to
relations using multi-wavelength photometry with the predictions from BT-Settl isochrones,
assuming an age of 5 Gyrs. In general, the BT-Settl isochrones are in good agreement with
the observed colours, even at temperatures below 2800 K affected by dust treatment in the BT-
Settl models. We found that the Casagrande et al. (2008) Teff scale is systematically cooler than
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Figure 5.7 – coloured Teff plots in different bands from the NTT sample (filled circles) and the
SSO 2.3 m sample (open circles). Spectral types are also indicated. The predictions from BT-
Settl (solid line), NextGen (dotted line), and AMES-Dusty (dash-dotted) for solar metallicities
are over plotted. Theoretical masses in solar mass are indicated. Predictions from other authors
are shown for comparison when available.

the BT-Settl isochrones due, among other things, to the Grevesse et al. (1993) solar elemental
abundances adopted in the GAIA-Cond model atmosphere grid used for that work. In contrast
the Luhman et al. (2003) Teff scale is progressively too hot towards the bottom of the main
sequence. This study enable us to improve the BT-Settl models. New interior and evolution
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Figure 5.7 – Continued.

models based on the BT-Settl models are currently being prepared.

We provide and compare temperature versus colour relations in the optical and infrared,
which match well the BT-Settl isochrones and can be further used for large photometric datasets.
We determined the effective temperature scale for the M dwarfs in our samples. It extended
down to the latest type of M dwarfs, where the dust cloud begins to form in their atmosphere.
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Figure 5.7 – Continued.
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Table 5.1 – Observable and physical quantities for our sample of stars observed at NTT with EMMI.

Name Spectral Type Teff Teff
b log g V R I J H K

(K) (K) (cms−2)
Gl143.1a K7 3900 — 5.0 10.03 9.15 — — — —
LHS141 M0 3900 — 5.0 10.15 9.35 8.38 7.36 6.76 6.58
LHS3833a M0.5 3800 — 5.0 10.06 9.33 — — — —
HD42581a M1 3700 — 5.0 8.12 7.16 6.12 — — —
LHS14a M1.5 3600 — 5.0 10.04 9.09 7.99 — — —
LHS65a M1.5 3600 3567 5.0 10.86 10.31 10.64 — — —
L127-33 M2 3500 — 5.0 14.19 14.04 12.41 11.17 10.58 10.32
NLTT10708 M2 3500 — 5.0 11.16 10.31 9.17 7.86 7.28 6.98
LP831-68 M2 3500 — 5.0 11.02 10.02 8.80 7.61 6.95 6.69
NLTT83-11 M2 3500 — 5.0 12.90 12.25 11.00 9.68 9.01 8.78
APMPMJ0541-5349 M2 3500 — 5.0 13.30 12.84 11.77 10.64 10.17 9.89
LHS1656 M2.5 3400 — 5.0 13.30 12.44 10.75 9.52 8.94 8.65
LP763-82 M2.5 3400 — 5.0 12.19 11.25 9.86 8.55 7.97 7.69
LP849-55 M2.5 3400 — 5.0 13.32 13.25 11.48 9.97 9.36 9.14
LHS5090 M3 3300 — 5.0 — 14.97 12.85 11.58 11.04 10.84
LHS3800 M3 3300 — 5.0 — — 12.23 10.93 10.39 10.15
LHS3842 M3 3300 — 5.0 13.80 12.95 11.30 9.88 9.29 9.04
LHS1293 M3 3300 — 5.0 13.65 12.66 11.36 9.94 9.35 9.07
LP994-114 M3 3300 — 5.0 — 11.59 10.36 9.00 8.37 8.15
LTT9783 M3 3300 — 5.0 — 12.11 10.56 9.17 8.59 8.34
LP715-39 M3 3300 3161 5.0 12.65 11.53 10.09 8.67 8.11 7.82
LHS1208a M3 3300 — 5.0 9.85 8.97 — — — —
LEHPM4417 M3 3300 — 5.0 13.73 13.06 11.37 10.09 9.43 9.20

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Table 5.1 Continued.

Name Spectral Type Teff Teff
b log g V R I J H K

(K) (K) (cms−2)
LP831-45 M3.5 3200 3125 5.0 12.54 11.51 9.90 8.49 7.88 7.62
2MASSJ04060688-0534444 M3.5 3200 — 5.0 13.29 12.28 — 9.13 8.55 8.30
LP834-32 M3.5 3200 3108 5.0 12.38 11.24 9.74 8.24 7.65 7.41
LHS502a M3.5 3200 — 5.0 11.49 10.43 9.11 — — —
LEHPM 1175 M3.5 3200 — 5.0 — 13.08 11.51 10.01 9.47 9.17
LEHPM1839 M3.5 3200 — 5.0 — 13.32 12.11 10.55 9.95 9.71
L130-37 M3.5 3200 — 5.0 13.04 11.97 10.37 8.94 8.34 8.01
LEHPM6577 M3.5 3200 — 5.0 — 13.03 11.79 10.34 9.73 9.47
L225-57 M4 3200 — 5.0 — 11.70 9.79 8.23 7.61 7.31
LP942-107 M4 3200 3052 5.0 13.93 12.73 11.13 9.63 9.08 8.77
LP772-8 M4 3200 — 5.0 14.11 13.43 11.52 10.05 9.48 9.20
LP1033-31 M4 3200 — 5.0 — 12.12 10.54 9.10 8.46 8.21
L166-3 M4 3200 — 5.0 — 12.76 11.33 9.83 9.28 9.00
LP877-72 M4 3200 — 5.0 — 11.— 10.22 8.86 8.24 8.00
LP878-73 M4 3200 — 5.0 14.55 14.22 12.63 10.86 10.27 10.00
LP987-47 M4 3200 — 5.0 — — 10.82 9.41 8.78 8.55
LP832-7 M4 3200 — 5.0 14.09 13.45 — 9.87 9.24 8.98
LHS183 M4 3200 — 5.0 12.79 11.51 — 8.57 8.00 7.75
LHS1471 M4 3200 — 5.0 — 13.22 11.56 9.94 9.37 9.08
APMPMJ2101-4125 M4 3200 — 5.0 — 13.34 11.47 9.96 9.38 9.09
APMPMJ2101-4907 M4 3200 — 5.0 — — 10.52 9.12 8.48 8.19
LEHPM3260 M4 3200 — 5.0 — 12.53 10.60 9.13 8.54 8.19
LEHPM3866 M4 3200 — 5.0 — — 11.82 10.21 9.58 9.29
LEHPM5810 M4 3200 — 5.0 — 13.58 11.66 9.91 9.33 9.05
LHS5045 M4.5 3100 — 5.0 — — 10.78 9.17 8.60 8.24

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Table 5.1 Continued.

Name Spectral Type Teff Teff
b log g V R I J H K

(K) (K) (cms−2)
LP940-20 M4.5 3100 — 5.0 — 14.87 12.65 10.92 10.32 10.01
L170-14A M4.5 3100 — 5.0 — 12.86 11.50 9.76 9.13 8.88
LHS1201 M4.5 3100 — 5.0 17.55 15.52 12.90 11.12 10.52 10.25
LHS1524 M4.5 3100 — 5.0 — 14.45 12.65 10.98 10.45 10.17
LTT1732 M4.5 3100 — 5.0 — 13.19 11.27 9.69 9.11 8.80
LP889-37 M4.5 3100 2923 5.0 14.52 13.21 11.46 9.77 9.16 8.82
LHS5094 M4.5 3100 — 5.0 14.02 12.72 10.97 9.30 8.72 8.41
LP655-43 M4.5 3100 2924 5.0 14.44 13.14 11.41 9.73 9.14 8.82
LHS138a M4.5 3100 — 5.0 12.07 10.70 8.94 — — —
APMPMJ1932-4834 M4.5 3100 — 5.0 — 14.38 12.37 10.63 10.02 9.72
2MASSJ23522756-3609128 M4.5 3100 — 5.0 — 17.27 — 13.09 12.57 12.28
LEHPM640 M4.5 3100 — 5.0 17.74 14.26 12.30 10.76 10.14 9.90
LEHPM1853 M4.5 3100 — 5.0 — 12.77 11.03 9.46 8.85 8.61
LEHPM3115 M4.5 3100 — 5.0 — 13.94 12.10 10.49 9.92 9.63
LEHPM4771 M4.5 3100 — 5.0 17.74 13.79 11.29 9.54 8.95 8.63
LEHPM4861 M4.5 3100 — 5.0 — 13.28 11.75 10.13 9.60 9.34
L291-115 M5 2900 — 5.0 15.88 14.90 12.26 10.44 9.83 9.54
LP904-51 M5 2900 — 5.0 — 15.32 12.84 11.04 10.44 10.16
LHS168 M5 2900 — 5.0 13.78 12.60 — 8.77 8.21 7.83
LP829-41 M5.5 2800 — 5.0 16.10 15.95 13.21 11.31 10.76 10.40
LP941-57 M5.5 2800 — 5.0 — 14.88 12.98 11.06 10.47 10.13
LHS546 M5.5 2800 — 5.0 14.69 — — 9.15 8.50 8.18
LP714-37 M5.5 2800 — 5.5 16.26 15.02 12.99 11.01 10.37 9.92

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Table 5.1 Continued.

Name Spectral Type Teff Teff
b log g V R I J H K

(K) (K) (cms−2)
LHS1326 M6 2800 — 5.5 15.61 14.49 — 9.84 9.25 8.93
2MASSJ12363959-1722170 M6 2800 — 5.0 17.56 15.86 13.91 11.67 11.09 10.71
2MASSJ21481595-1401059 M6.5 2700 — 5.0 — 20.20 17.15 14.68 14.11 13.65
2MASSJ05181131-3101519 M6.5 2700 — 5.0 17.74 16.85 14.17 11.88 11.23 10.90
LP788-1 M6.5 2700 — 5.0 — 16.66 13.36 11.07 10.47 10.07
APMPMJ1251-2121 M6.5 2700 — 5.0 — 16.65 13.78 11.16 10.55 10.13
APMPMJ2330-4737 M7 2700 — 5.0 — — 13.70 11.23 10.64 10.28
LP789-23 M7 2700 — 5.0 — 17.90 14.55 12.04 11.39 10.99
LHS292 M7 2700 — 5.5 15.60 14.40 11.25 8.86 8.26 7.93
2MASSJ03144011-0450316 M7.5 2600 — 5.0 — 19.43 — 12.64 12.00 11.60
LHS1604 M7.5 2600 — 5.0 18.02 16.52 13.75 11.30 10.61 10.23
LP714-37 M7.5 2600 — 5.5 16.26 15.52 12.99 11.01 10.37 9.92
LP655-48 M7.5 2600 2250 5.0 17.86 15.95 13.35 10.66 9.99 9.54
LP851-346 M7.5 2600 — 5.5 — 16.79 13.77 10.93 10.29 9.88
LHS1367 M8 2600 — 5.0 — 17.34 14.18 11.62 10.95 10.54
2MASSJ05022640-0453583 M8 2600 — 5.0 — 20.39 17.35 14.52 13.95 13.58
LHS132 M8 2600 — 5.0 — 17.14 13.83 11.13 10.48 10.07
2MASSJ22062280-2047058 M8 2600 — 5.0 — 18.93 15.09 12.37 11.69 11.31
2MASSJ22264440-7503425 M8 2600 — 5.0 — 18.95 15.20 12.35 11.70 11.25
2MASSJ04103617-1459269 M8.5 2500 — 5.5 — — 16.68 13.94 13.24 12.81
2MASSJ05084947-1647167 M8.5 2500 — 5.5 — — 16.46 13.69 12.96 12.53
2MASSJ04362788-4114465 M8.5 2500 — 5.5 — 19.96 16.04 13.10 12.43 12.05
2MASSJ10481463-3956062 M9 2500 — 5.5 — 15.93 12.67 9.54 8.90 8.45
2MASSJ20450238-6332066 M9.5 2500 — 5.5 — 19.24 16.05 12.62 11.81 11.21
2MASSJ09532126-1014205 M9.5 2500 — 5.5 — 19.58 16.82 13.47 12.64 12.14

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Table 5.2 – Observable and physical quantities for our sample of stars observed at SSO.

Name Spectral Type Teff Teff
b log g V R I J H K

(K) (K) (cms−2)
HIP49986 M1.5 3700 3445 5.0 9.07 8.21 7.08 5.89 5.26 5.01
HIP82256 M1.5 3700 3470 5.0 11.38 10.39 9.24 8.04 7.48 7.22
HIP56528 M1.5 3600 3472 5.0 9.81 8.85 7.66 6.47 5.86 5.62
NLTT19190 M1.5 3600 3456 5.0 11.49 10.57 9.34 8.11 7.47 7.20
NLTT42523 M2 3600 3444 5.0 12.08 11.06 9.81 8.60 8.01 7.80
HIP80229 M2 3600 3486 5.0 11.91 10.90 9.65 8.48 7.87 7.64
LP725-25 M2 3600 3476 5.0 11.76 10.82 9.59 8.36 7.68 7.44
HIP61413 M2 3500 3454 5.0 11.49 10.48 9.17 7.99 7.37 7.15
LP853-34 M2 3500 3339 5.0 12.32 11.31 9.99 8.69 8.10 7.83
LP859-11 M2 3500 3433 5.0 12.00 10.97 9.69 8.49 7.88 7.63
LP788-49 M2 3500 3356 5.0 11.81 10.85 9.55 8.30 7.74 7.49
HIP42762 M2 3500 3302 5.0 11.75 10.76 9.42 8.12 7.49 7.28
HIP51317 M2 3500 3403 5.0 9.67 8.67 7.34 6.18 5.60 5.31
HIP60559 M2 3500 3382 5.0 11.30 10.29 8.99 7.73 7.25 6.95
HIP47103 M2 3500 3319 5.0 10.87 9.89 8.58 7.34 6.74 6.47
HIP93206 M2.5 3500 3366 5.0 11.23 10.18 8.80 7.52 6.93 6.70
LP834-3 M2.5 3500 — 5.0 — — — — — —
HIP84521 M2.5 3500 3345 5.0 11.57 10.53 9.22 7.93 7.39 7.11
HIP91430 M2.5 3500 3352 5.0 11.32 10.26 8.92 7.66 7.06 6.85
HIP50341 M2.5 3500 3314 5.0 11.02 10.01 8.62 7.32 6.71 6.45
LP672-2 M2.5 3400 — 5.0 12.58 11.54 10.12 8.80 8.14 7.93
NLTT24892 M2.5 3400 3244 5.0 12.52 11.47 10.05 8.73 8.118 7.84
NLTT34577 M2.5 3400 3254 5.0 12.44 11.40 9.99 8.64 8.00 7.80
LP670-17 M3 3400 3226 5.0 12.14 11.08 9.63 8.28 7.68 7.39
HIP59406 M3 3400 3226 5.0 11.75 10.69 9.25 7.89 7.36 7.04
HIP74190 M3 3400 3258 5.0 11.55 10.48 9.05 7.72 7.13 6.86

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Table 5.2 Continued.
Name Spectral Type Teff Teff

b log g V R I J H K
(K) (K) (cms−2)

NLTT46868 M3.5 3400 3221 5.0 12.23 11.08 9.61 8.26 7.73 7.44
HIP62452 M4 3300 3095 5.0 11.46 10.31 8.71 7.19 6.67 6.36
NLTT25488 M4 3200 2986 5.0 15.66 14.46 12.73 11.09 10.52 10.21
NLTT29087 M4 3200 2971 5.0 14.79 13.57 11.84 10.22 9.62 9.35
NLTT29790 M4 3200 2987 5.0 14.73 13.54 11.85 10.22 9.64 9.34
LP734-32 M4 3200 3024 5.0 12.15 10.99 9.35 7.77 7.14 6.86
LP739-2 M4 3100 2939 5.0 14.44 13.18 11.40 9.73 9.17 8.89
LP735-29 M4 3100 2940 5.0 14.18 12.95 11.18 9.52 8.97 8.67
GJ1123 M4 3100 — 5.0 13.14 11.90 10.10 8.33 7.77 7.45
GJ1128 M4 3100 — 5.0 12.66 11.40 9.61 7.95 7.38 7.04
NLTT35266 M4.5 3100 2942 5.0 15.15 13.88 12.05 10.41 9.94 9.66
NLTT41951 M4.5 3100 5.0 15.06 13.77 11.99 10.36 9.80 9.51
NLTT21329 M4.5 3000 2949 5.0 13.75 12.38 10.42 8.60 8.07 7.73
LP732-35 M5 3100 2901 5.0 14.10 12.78 10.94 9.36 8.76 8.49
NLTT18930 M5 3100 2903 5.0 15.34 13.93 12.03 10.31 9.76 9.44
2MASS J14221943-7023371 M5 3000 — 5.0 — — — — — —
NLTT22503 M5 3000 2785 5.0 13.66 12.32 10.39 8.50 7.92 7.60
NLTT28797 M5 3000 2826 5.0 15.62 14.24 12.32 10.54 9.99 9.64
NLTT30693 M5.5 3000 2785 5.5 15.32 13.86 11.85 9.95 9.36 9.00
LHS288 M5.5 3000 2770 5.0 13.87 12.42 10.31 8.48 8.05 7.73
GJ551 M5.5 2900 — 5.0 3.63 2.08 5.36 4.83 4.38 —
LHS2502 M6 2900 2468 5.5 19.36 17.54 15.33 12.75 12.07 11.79
NLTT20726 M6.5 2800 2464 5.0 16.11 14.24 11.85 9.44 8.84 8.44
GJ406 M6.5 2800 — 5.5 13.57 11.81 9.51 7.08 6.48 6.08
LHS2351 M7 2800 2346 5.5 19.22 17.39 14.91 12.33 11.72 11.33
SCR J1546-5534 M7.5 2700 — 5.5 — — — — — —
GJ752b M8 2700 — 5.5 5.01 — — 9.91 9.23 8.76
GJ644c M7 2700 — 5.5 16.90 14.78 12.24 9.78 9.20 8.82
LHS2397a M8 2700 — 5.5 19.66 17.42 14.86 11.93 11.23 10.73

a Saturation in NIR bands.
b Teff from Casagrande et al. (2008).
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Chapter 6

High resolution spectroscopy of M

subdwarfs: Effective temperature and

metallicity

6.1 Introduction

M subdwarfs are metal poor, low-luminosity dwarfs. Very few are known and as a result the
bottom of the main sequence is very poorly constrained for metal poor stars. Making spectro-
scopic studies of sdM at high resolution has proven to be a difficult task. In the low-temperature
regime occupied by these stars, the optical spectrum is covered by a forest of molecular lines,
hiding or blending with most of the atomic lines used in spectral analysis. However, over the last
decade, stellar atmosphere models of very low mass stars have made great progresses exploring
metallicity effects (Allard et al. 2011, 2012a). One of the most important recent improvement
is the revision of the solar abundances (Asplund et al. 2009; Caffau et al. 2011)

Rapid progress in the investigation of cool atmospheres is expected thanks to the advent
of 10 m class telescopes that allow high resolution spectroscopy of these faint targets. In high
resolution spectra, several features are available to constrain several atmospheric parameters
simultaneously. Thus, the determination of gravity from the pressure broadened wings can
be expected to be much more accurate than by comparing colour ratios from low resolution
spectra. Particularly for ultra-cool atmospheres, it is necessary to achieve a very good fit for
all important absorbers in order to determine atmospheric properties, because the chemical
complexity of these atmospheres reacts very sensitively to changes in the amount of any of its
constituents. Descriptions of these stars therefore need validations by comparisons with high
resolution spectroscopic observations.

Measuring metallicities for M dwarfs is also challenging. With decreasing temperature,
the spectra show increasingly abundant diatomic and triatomic molecules (TiO, VO, H2O, CO,
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FeH, CrH). The TiO and H2O bands have complex and extensive absorption band structures,
creating a pseudo-continuum, letting through only the strongest, often resonance, atomic lines.
However, recent advances in model atmospheres for low-mass dwarf stars have boosted the
number of studies which derive accurate metallicities for M dwarfs. Metallicities have recently
been obtained using high resolution spectra to measure equivalent widths of atomic lines in
spectral regions less dominated by discrete molecular bands (Woolf & Wallerstein 2005; Woolf
et al. 2009; Bean et al. 2006a,b). Metallicities have also been obtained by observing visual
binaries that contain both an M-dwarf and a solar-type star. Assuming that they share a common
metallicity that reflects the composition of the molecular cloud in which they were formed, the
metallicity is measured on the much better understood spectrum of the solar-type star in order
to infer the metallicity of the M dwarf (Bonfils et al. 2005; Bean et al. 2006a,b). These results,
together with the abundances obtained from M-dwarf high resolution spectra, are combined
to calibrate M-dwarf metallicities using photometry or molecular indices (Bonfils et al. 2005;
Woolf et al. 2009; Casagrande et al. 2008). Metal poor stars are rare in the solar neighborhood
and the current sample of local subdwarfs is very limited. High resolution spectra of M dwarfs
were shown by Tinney & Reid (1998) over the full optical range but such observations are not
available for the M subdwarfs over the whole temperature sequence.

In this chapter we present the first high resolution optical atlas of stars covering the whole
sdM, esdM and usdM sequence. It consists of 21 sdM, esdM, and usdM at high resolution. Us-
ing the most recent PHOENIX BT-Settl stellar model atmosphere we have performed a detailed
comparison with our observed spectra using a χ2 minimization technique. In this study we com-
pare the model spectra with the high resolution spectra of M subdwarf at subsolar metallicities
and we assign effective temperatures to M subdwarfs. We derive metallicities based on the best
fit of synthetic spectra to the observed spectra and perform a detailed comparison of lines profile
of individual elements such as Fe I, Ca II, Ti I, Na.

6.2 A high resolution spectral atlas of M subdwarfs

High resolution spectra are a very important tool to understand the physics of stars. The identi-
fication of atomic and molecular absorptions features in the spectra of M subdwarfs is important
as they can be used to constrained the stellar parameters Teff , log g, [Fe/H]. The determination
of gravity and its effect on the pressure dependent wings of the saturated atomic absorption lines
(predominantly of the alkali elements) is expected to be much more accurate than comparing
colour ratios from low resolution spectra (Reiners et al. 2007a). We present a high resolution
spectral atlas of 21 very low mass objects over the entire M subdwarf spectral range, including
extreme and ultra subdwarfs. The name, spectral type, and near-infared photometry of these
objects are given in Table 6.1. The photometry comes from the Two Micron All Sky Survey
(2MASS, Skrutskie et al. 2006). The spectral indices are found in the literature.
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6.2.1 Observation and data reduction

The observation were carried out in visitor mode during April and September 2011 with the
optical spectrometer UVES (Dekker et al. 2000) on the Very Large Telescope (VLT) at the
European Southern Observatory (ESO) in Paranal, Chile. In total 21 targets were observed
during period 87. UVES was operated in dichroic mode using red arm with non-standard setting
centered at 830 nm. This setting covers the wavelength range 6400 Å-9000 Å, which contains
various atomic lines like Fe I, Ti I, K II, Na I and Ca II and is very useful for the spectral
synthesis analysis. Between the two CCDs of the red arm, the spectra have a gap from 8200Å
to 8370Å. The Na doublet at 8190Å lies just blueward of the gap. The spectra were taken at a
slit width of 1.0" yielding a resolving power of R = λ/∆λ = 40 000. The signal to noise ratio
(SNR) varies over the wavelength region according to the object’s spectral energy distribution
and detector efficiency. It reaches 30 in most of the spectral region so that the dense molecular
and atomic absorption features are well discernible from noise. Data were reduced using the
ESO based pipeline called REFLEX for UVES data.

The spectra are shown in Fig. 6.1 for the sdM sequence, and in Fig. 6.2 for the esdM
and usdM targets. The spectra shown have not been corrected for terrestrial absorption by O3

and H2O. The O3 features are quite regular and straightforward to disentangle from features
in the stars themselves. This is not true for H2O absorption, which is complex and irregular.
We therefore show in the upper panels the spectrum of the reference star EG 21 where telluric
absorptions appear. The main molecular and atomic features expected in the M subdwarfs are
labelled in Fig.6.1 and Fig. 6.2

6.2.2 Molecular features

The optical spectra are dominated by molecular absorption bands from metal oxide species
such as titanium oxide (TiO), vanadium oxide (VO), hydrides like CaH and H2O. They are the
most important opacity sources. However, due to the low metallicity of subdwarfs, they are
TiO depleted. The primary effects are the strengthening of hydride bands and collision induced
absorption (CIA) by H2, and the broadening of atomic lines. Unlike TiO, which produces
distinctive band heads degraded on the red, VO produces more diffuse absorption. CaH hydride
bands are important opacity source but decrease in relative strength and become saturated with
decreasing temperature.

6.2.3 Atomic lines

All the observed M subdwarfs show strong alkali lines in the observed wavelength range. They
are massively pressure broadened. Atomic features such as Ca II, K I, Rb I, Na I, Ti I, Mg I
are visible throughout M subdwarfs spectral sequence. Na I, K I, Ca II, Ti I, and Mg I lines
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Figure 6.1 – UVES spectra over the sdM spectral sequence.The spectra are scaled to normalize
the average flux to unity. The spectrum of the standard star EG 21 shows the location of telluric
atmospheric features.
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Figure 6.1 – Continued.

are prominent in almost all of the spectra; however their measurement is made difficult by the
presence of atmospheric absorptions.
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Figure 6.1 – Continued.

The Na I lines at 8183 Å and 8194Å are clearly visible in all the observed spectra and
become broadened as one goes from hotter to cooler M subdwarfs. In our setting they appear
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Figure 6.2 – Same as Fig. 6.1 for esdM and usdM stars.

just at the red end of the lower chip of the blue arm. The K I line are very narrow for early type
but become very wide and smooth in late type subdwarfs. The K I resonance lines at 7665Å
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Figure 6.2 – Continued.

and 7698 Å governs the spectral shape of cool subdwarfs spectra. The equivalent width of these
K I lines are of several hundred angstroms. The ionized Ca II triplet lines at 8498 Å, 8542 Å,
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Figure 6.2 – Continued.

8662 Å are very strong in all the observed spectra. Their detailed study by Mallik (1997) shows
that their strengths depend on stellar parameters like luminosity, temperature and metallicity.
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They are ideal candidates to study their sensitivity to various stellar parameters in cool stars.
Although the Ca II triplet lines have lower levels populated radiatively and are not collisions
controlled, they have been identified as very good luminosity probes Mallik (1997). They are
relatively free from blends and are not contaminated much by telluric lines. On the contrary,
the Na I lines at 8183 Å, 8195 Å, which have also been used as luminosity probes in cool stars,
have several atmospheric absorption lines in their vicinity (Alloin & Bica 1989; Zhou 1991).

6.3 Model atmospheres

In this study, we use the most recent BT-Settl models partially published in a review by Al-
lard et al. (2012a). These model atmospheres are computed with the PHOENIX multi-purpose
atmosphere code version 15.5 (Hauschildt et al. 1997; Allard et al. 2001) solving the radiative
transfer in 1D spherical symmetry, with the classical assumptions: hydrostatic equilibrium, con-
vection using the mixing length theory, chemical equilibrium, and a sampling treatment of the
opacities. The models use a mixing length as derived by the radiation hydrodynamic hereafter
RHD) simulations of (Ludwig et al. 2002, 2006) and (Freytag et al. 2012) and a radius as deter-
mined by the (Baraffe et al. 1998a) interior models as a function of the atmospheric parameters
(Teff , log g, [Fe/H]).

Relative to previous models by Allard et al. (2001), the current version of the BT-Settl model
atmosphere is using the BT2 water vapor line list computed by Barber et al. (2006), TiO, VO,
CaH line lists by Plez (1998), MgH by (Weck et al. 2003, Story et al. 2003), FeH and CrH by
(Dulick et al. 2003, Chowdhury et al. 2006), NH3 by Yurchenko et al. (2011), CO2 (Tashkun
et al. 2004), and H2 CIA by Borysow et al. (2001) and Abel et al. (2011), to mention the most
important. We use the CO line list by Goorvitch & Chackerian (1994b,d). Detailed profiles for
the alkali lines are also used (Allard et al. 2007b). The reference solar elemental abundances
used in this version of the BT-Settl models are those defined by Caffau et al. (2011).

In general, the Unsold (1968) approximation is used for the atomic damping constants with
a correction factor to the widths of 2.5 for the non-hydrogenic atoms (Valenti & Piskunov 1996).
More accurate broadening data for neutral hydrogen collisions by Barklem et al. (2000) have
been included for several important atomic transitions such as the alkali, Ca I and Ca II res-
onance lines. For molecular lines, we have adopted average values (e. g. 〈γHIT

6 (T0, P0
1)〉H2O =

0.08 Pgas [cm−1atm−1] for water vapor lines) from the HITRAN database (Rothman et al. 2009),
which are scaled to the local gas pressure and temperature

γ6(T ) = 〈γHIT
6 (T0, P0)〉

(

296 K

T

)0.5 (

P

1 atm

)

, (6.1)

with a single temperature exponent of 0.5, to be compared to values ranging mainly from 0.3 to
0.6 for water transitions studied by Gamache et al. (1996). The HITRAN database gives widths

1Standard temperature 296 K and pressure 1 atm



6.3. Model atmospheres 101

for broadening in air, but Bailey & Kedziora-Chudczer (2012) find that these agree in general
within 10 – 20% with those for broadening by a solar composition hydrogen-helium mixture.

The BT-Settl grid extends from Teff = 300 to 7000 K at a stem of 100 K, log g = 2.5 to 5.5 at
a step of 0.5 dex and [M/H]= -2.5 to 0.0 at a step of 0.5 dex accounting for alpha enhancement
of 0.2 dex below [M/H]= -0.5 and 0.4 dex below [M/H] = -1.0. We interpolated the grid at
every 0.1 dex in log g and metallicity. For more detail of BT-Sett model atmosphere see (Allard
et al. 2012a; Rajpurohit et al. 2012b). The synthetic colours and spectra are distributed with a
spectral resolution of around R=100000 via the PHOENIX web simulator2.

Fig. 6.3 shows BT-Settl synthetic spectra varying Teff and [Fe/H]. It shows that the oxide
bands that dominate in M dwarfs spectra are weaker in the subdwarfs where the hydrides bands
dominate(Jao et al. 2008). They have complex and extensive band structures leaving no window
for the true continuum and creating pseudo continuum that only let through the strongest, often
resonance atomic lines (Allard 1990a; Allard & Hauschildt 1995a). However because of the
lower metallicity of subdwarfs, the TiO bands are less strong, and the pseudo-continuum is
brighter. This increases the contrast to the other opacities such as hydride bands and atomic lines
which feel the higher pressures of the deeper layers where they emerge from. We see therefore
these molecular bands with more details and under more extreme gas pressure conditions than
for M dwarfs.

Figure 6.3 – BT-Settl synthetic spectra from 4000 K to 3000 K. The black, red, and blue lines
represent [Fe/H] = 0.0, -1.0, and -2.0, respectively.

2http://phoenix.ens-lyon.fr/simulator
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6.4 Comparison with model atmospheres

We perform a comparison between observed and synthetic spectra computed from the BT Settl
model to derive the physical parameters of our sample. Furthermore, the comparison with
observed spectra is very crucial to reveal the inaccuracy or incompleteness of the opacities used
in the model. Fig. 6.4 and 6.5 shows the comparison of the best fit model for sdM1 and esdM3.5
stars.

Figure 6.4 – UVES spectra of the sdM1 star LHS 158 (black) compared to the best fit BT-Settl
synthetic spectra (red).

6.4.1 Molecular bands

The spectra are in good general agreement, and able to reproduce the specific strengths of the
TiO band heads at 6600 Å, 6700 Å, 7050 Å, 7680 Å, 8859 Å, and VO bands at 7000 Å, 7430 Å,



6.4. Comparison with model atmospheres 103

Figure 6.5 – Same as Fig. 6.4 for the esdM3.5 star LHS 1032.

7852 Å. The excellent match between model and observation over entire subdwarfs sequence
shows that the high frequency patterns visible at this spectral resolution is the structure of the
absorption band and not noise.

6.4.2 Atomic lines

The models predict rather well the shape of the Na I doublet at 8194 Å and 8183 Å but their
strength is not very well fitted. In the sdM3.0 and later and in esdM, the observed lines are
broader and shallower than those predicted by the models. The qualitative behaviour of the K I
doublet at 7665 Å and 7698 Å is well reproduced by the models, especially the strong pressure
broadening wings in the early sdM and esdM. In the sdM0, the cores of the observed K lines
are still visible as relatively narrow absorption minima embedded in wings extending a few tens
to hundred Å. This broader absorption component becomes saturated in sdM7 spectrum. The
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models also show this effect but are not able to reproduce it perfectly. This could be an indica-
tion (i) that the models do not yet produce correct densities of the neutral alkali metals in the
uppermost part of the atmosphere, since the central parts of the lines form in the highest layers
of the atmosphere, especially in the early sdM and esdM where alkali metals are not depleted
strongly (Johnas et al. 2007), or (ii) that the depth of atomic lines can only be reproduced when
accounting for a magnetic field and Zeeman broadening (C. Deen, private communication). The
models reproduce the strength and wings of Ca II triplet lines at 8498 Å, 8542 Å, 8662 Å very
well. We also have a good fit to the Ti I lines. They are located between 8400 Å to 9700 Å
and belong to low energy transition that appears to be visible in such cool atmospheres (see
also Reiners & Basri 2006b). Absorption lines of Rb appear in spectra later then sdM7.0. They
become stronger and wider towards lower temperature. Given the fact that they are embedded
in pseudo-continua that are not always a good fit to the data, the behavior of the two Rb lines at
7800 Å and 7948 Å is very well reproduced by the models.

6.4.3 Stellar parameters determination

The analysis using synthetic spectra requires the specification of several inputs parameters:
effective temperature, surface gravity and the overall metallicity [Fe/H] compared to Sun. As
opposed to previous studies in which the best fit was found by trial and error, in this paper we
derive the effective temperature by performing a χ2 minimization technique. For this purpose,
our approach was to first convolve the synthetic spectrum with a Gaussian kernel using equation
7.1 at the observed resolution and then interpolate the outcome with the observation. For each of
the observed spectra we then calculated the χ2 by comparing the observed spectra with the grid
of synthetic spectra in the wavelength range 6400Å to 9000Å using equation 7.3 as explained
in Apendix. The sum were calculated over the entire spectral range excluding the spectral
region between 6860 to 6960 Å, 7550 to 7650 Å, and 8200 to 8430 Å, due to presence of
atmospheric absorption. In the first step, we let all the stellar parameters (Teff , [Fe/H], log g)
go free. In order to determine Teff we compare the observed high-resolution line profiles of
various temperature sensitive species to synthetic spectra. Specifically, we examine the the
highly temperature-sensitive triple-headed band of titanium oxide (TiO) at 6600Å, 6700Å and
7100Å. This TiO system is highly sensitive to Teff (increasing in strength with decreasing
Teff ) and rather insensitive to variations in gravity. At a given Teff , the band strengths change
only slightly even for a large, 1 dex change in gravity (in the log g 4.5-5.5 range expected for
low-mass). At a given gravity, however, they vary significantly over only 100 K changes in Teff

(specifically, the band heads at 6600Å, 6700Å and 7100Å). This TiO system is thus an excellent
temperature indicator.

In second step, a χ2 map has been obtained for each of the observed spectra as function of
temperature and metallicity (Rice et al. 2010). The error bar are derived from standard deviation
by taking 5 % from the minimum χ2 value. The acceptable parameters were finally inspected by
comparing it with the observed spectra. The same procedure has been used for all the observed
spectra. We found generally good agreement with BT-settl model and conclude that model
fitting procedure can be used to estimate the Teff with an uncertainty better than ∼100 K. We
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tested the sensitivity of the TiO lines to surface gravity and did not find any significant effect
in the parameter space and wavelength range relevant to this study. The surface gravity can
be determined by analyzing the width of gravity sensitive atomic lines such as K I and Na I
doublets (see Fig. 6.6) as well as relative strength of metal hydride bands such as CaH. The
K I doublet at 7665 Å, 7699 Å and Na I lines at 8183 Å and 8194Å is a particular useful
gravity discriminant for M dwarfs and subdwarfs. The overall line strength (central depth and
equivalent width) increases with gravity as the decreasing ionization ratio due to higher electron
pressure leaves more neutral alkali lines in the deeper atmosphere. The width of the damping
wings in addition increases due to the stronger pressure broadening, mainly by H2, He and H I
collision.

Figure 6.6 – BT-Settl synthetic spectra with Teff of 3500 K and varying log g =4.5 (black), 5.0
(blue), 5.5 (red). The effect of gravity and pressure broadening on the sodium doublet is clearly
visible.

For the metallicity determination we fit the synthetic spectra using the same procedure ex-
plained above but on restricted regions where molecular absorptions are less and atomic lines
appear clearly. Our first criterion is that the lines must have fractionally small amount of TiO
line blending. This necessitate the use of fairly strong lines. The second criterion is that they
must also be strong enough in a solar spectrum for the purpose of determining astrophysical
values of log gf. Most of the lines we select occupy a short spectral interval from 8440 Å to
8900 Å. In our analysis we also include the new lines of elemental species such as Ca II triplet
and Ti lines. In addition to the atomic lines we have also used TiO bandhead around 7088 Å in
the analysis of the metallicity determination. The line list used for the metallicity determination
are given in Table 6.2.
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The best fit parameters (Teff , log g, [Fe/H]) are given in Table 6.3. Fig. 6.7 shows the com-
parison of the best fit model with the observed spectra of the sdM1 star LHS 158. The spectral
region used to determine metallicity is shown only.

Figure 6.7 – UVES spectrum of the sdM1 star LHS 158 (black) and the best fit BT Settl synthetic
spectrum (red). The spectral region used to determine metallicity is shown only. The atomic
features used are highlighted.

6.5 Discussion

The effective temperature versus near-infrared colours are shown in Fig. 6.8. The expected
relations from evolution models (Baraffe et al. 1998a) assuming an age of 10 Gyrs, and varying
metallicities, are also superimposed. The colours stand for different metallicities. The plot
shows discrepancies between the models and our observations. It shows that the metallicities
determined from the high resolution spectral features are inconsistent with those we would
infer from near-infrared colours. This inconsistency may be due to uncertainties in the CIA
opacities or due to outdated model interiors. It shows that braodband colours are not sufficient
to determine the parameters of M subdwarfs.
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The effective temperature versus spectral type relation is shown in Fig. 6.9. The relation
determined using UVES sample is compared to the Teff scale of M dwarfs determined by Ra-
jpurohit et al. (2013). Teff of subdwarfs dwarfs is 200-300 K higher than Teff of M dwarfs for
the same spectra type except for hot temperature.

This is expected since the TiO bands are depleted with decreasing metallicity, and as a
result the pseudo-continuum is brighter and the flux is emitted from the hot deeper layer. A
comparison to the earlier work from Gizis (1997) is also shown. Gizis (1997) determined the
temperature by comparing the low resolution optical spectra of a sample of sdM and esdM with
the NextGen model atmosphere grid by Allard et al. (1997). The Teff scales are in agreement
within 100 K. This difference is due to the incompleteness of the TiO and water vapor line lists
used in the NextGen model atmospheres compared to the new BT-Settl models. Furthermore
this work allows us to extend the relation to the coolest M subdwarfs.

We compile from the literature the spectral indices TiO5, CaH2, and CaH3, computed from
TiO and CaH band strengths on low resolution spectra (see table 6.1). Fig 6.10 shows the
CaH2+CaH3 versus TiO5 . Lépine et al. (2003b) showed that such a diagram is useful to
discriminate between the different object classes, sdM, esdM, and usdM. Our metallicity deter-
minations are labelled in the diagram. It shows that the metallicity is, as expected, getting lower
from sdM to usdM stars.

We also derive the ζ parameter as defined by Lépine et al. (2007). This ζ parameter is a
combination of the TiO5, CaH2 and CaH3 spectral indices. Woolf et al. (2009) used a sample
of M dwarfs and subdwarfs with known metallicity to derive a correlation between ζ and the
metallicity, and showed that it can be used as a metallicity indicator. Lépine et al. (2013) also
gave a correlation on a sample of M dwarfs having metallicity determinations from Neves et al.
(2012); Rojas-Ayala et al. (2012). We plot the metallicity of our stars versus ζ (Fig. 6.11) and
superimposed these correlations. We also defined a similar correlation using our sample

[Fe/H] = 1.19ζ − 1.75

Contrarily to our correlation computed only on a M subdwarfs sample, Woolf et al. (2009) sam-
ple contains many M dwarfs which deviate the relation towards the higher metallicity. There-
fore, this work can contribute to refine the relation for subdwarfs.

6.6 Conclusion

We present a high resolution optical spectral atlas for a sample of 21 M subdwarfs. We de-
scribe various atomic and molecular features that appear in the spectra and their evolution with
decreasing effective temperature and metallicity. We use the most recent BT-Settl model at-
mospheres, with revised solar abundances, to determine the scaled solar abundances of the
subdwarfs. We compare the synthetic spectra produced by the BT-Settl the model atmosphere
with observed spectra of subdwarf and derive their fundamental stellar parameter. The accuracy
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Figure 6.8 – Effective temperature versus near infrared colours of our sample of subdwarfs.
The different colours stand for different metallicities: [Fe/H] = −0.5 to −0.7 dex (red), [Fe/H]
= −1.0 to −1.2 dex (green), [Fe/H] = −1.3 to −1.6 dex (blue), [Fe/H] = −1.7 dex (brown). The
lines are from evolution models from (Baraffe et al. 1998a) at different metallicities (red: −0.5
dex, green: −1.0 dex, blue: −1.5 dex, brown: −2.0 dex) assuming an age of 10 Gyrs.

of the atmospheric models involved in the metallicity determination can be inferred by look-
ing at the fit to the individual atomic and molecular lines. Working with these high resolution
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Figure 6.9 – Effective temperature of subdwarfs versus spectral type relation from our sample
(filled symbols) compared to the one from Gizis (1997) (open symbols) and to the M dwarfs
Teff scale from Rajpurohit et al. (2013) (filled circles).

spectra allowed us to disentangle the atmospheric parameters (effective temperature, gravity,
metallicity), which is not possible when using braodband photometry.

We determine an effective temperature versus spectral type relation of M-subdwarfs and
compare it to the previous study from Gizis (1997). Our relation is in agreement within 100
K, and extend to the cooler spectral sequence. This work will also contribute to calibrate the
relation between metallicity and photometric colours and molecular band strengths. With such a
calibration, it will be possible to estimate the metallicity of large sample of subdwarfs, allowing
meaningful statistical analysis to be performed.
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Table 6.1 – Spectral types, near-infrared photometry, and spectral indices of our sample. The reference for spectral indices measurement
are given.

Name α δ SpT J H K TiO5 CaH2 CaH3 Ref.
LHS 72 23 43 13 −24 09 52 sdK4 9.61 9.04 8.82 – – – –
LHS 73 23 43 15 −24 10 47 sdK7 10.11 9.59 9.37 0.972 0.862 0.927 a

G 18-37 22 14 55 +05 42 35 esdK7 12.72 12.20 12.02 – – – –
APMPM J2126-4454 21 26 23 −44 53 40 sdM0 12.65 12.11 11.92 – – – –
LHS 300 11 11 13 −41 05 32 sdM0 10.48 10.01 9.80 1.031 0.886 0.943 a

LHS 401 15 39 39 −55 09 10 sdM0.5 10.15 9.60 9.41 0.997 0.911 0.958 a

LHS 158 02 42 02 −44 30 58 sdM1 10.43 9.94 9.73 0.732 0.639 0.829 a

LHS 320 12 02 33 +08 25 38 sdM2 10.29 9.75 9.46 0.620 0.512 0.751 b

LHS 406 15 43 18 −20 15 33 sdM2 9.78 9.23 9.02 0.686 0.576 0.789 a

LHS 161 02 52 46 +01 55 44 esdM2 11.71 11.20 11.00 0.889 0.689 0.817 a

LP 771-87 03 07 34 −17 36 41 usdM2 15.99 15.29 14.99 – – – –
LHS 541 23 17 05 −13 51 06 sdM3 13.03 12.56 12.41 0.795 0.538 0.701 c

LHS 272 09 43 46 −17 47 06 sdM3 9.62 9.12 8.87 0.862 0.527 0.736 c

LP 707-15 01 09 54 −10 12 12 esdM3 12.94 12.40 12.16 – – – –
LSR 1755+1648 17 55 33 +16 48 53 sdM3.5 11.35 10.89 10.63 0.486 0.419 0.664 d

LHS 375 14 31 38 −25 25 33 esdM4 12.15 11.67 11.51 0.879 0.414 0.583 a

LHS 1032 00 11 09 +04 20 18 usdM4.5 14.34 13.81 13.76 0.900 0.350 0.540 c

SSSPM J0500-5406 05 00 16 −54 06 39 esdM6.5 14.44 14.12 13.97 0.755 0.220 0.331 c

LHS 377 14 39 00 +18 39 38 sdM7 13.19 12.73 12.48 0.620 0.340 0.540 d

APMPM J0559-2903 05 58 58 −29 03 26 esdM7 14.89 14.45 14.46 0.604 0.217 0.331 c

SSSPM J1013-1356 10 13 07 −13 56 20 sdM9.5 14.62 14.38 14.40 0.248 0.114 0.204 e

(a) Jao et al. (2008) – (b) Gizis (1997) – (c) Lépine et al. (2007) – – (d) Lépine et al. (2003b) – (e) Scholz et al. (2004)
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Table 6.2 – Atomic line data.

Wavelength
Å

Ca II
8498.02
8542.09
8662.14

Fe I
8514.07
8515.10
8582.10
8621.60
8668.62
8674.74
8757.18
8763.96
8824.22
8838.42
8866.93

Ti
8611.91
8684.23
8692.32
8734.71
8766.68
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Table 6.3 – Stellar Parameters of the observed targets.

Target Spectral Type Teff log g [Fe/H]
LHS 72 sdK4 3900 ±23 4.5±0.13 -1.4± 0.27
LHS 73 sdK7 3800 ±39 4.5±0.13 -1.4±0.19
G 18-37 esdK7 3800 ±78 4.5±0.15 -1.3±0.44

APMPM J2126-4454 sdM0 3700 ±49 4.5 ±0.19 -1.3±0.23
LHS 300 sdM0 3800 ±39 4.5±0.17 -1.4±0.24
LHS 401 sdM0.5 3800 ±26 4.5±0.17 -1.4±0.28
LHS 158 sdM1 3600 ±48 4.5±0.17 -1.0±0.3
LHS 320 sdM2 3600 ±59 4.6±0.23 -0.6±0.31
LHS 406 sdM2 3600 ±40 4.7±0.24 -0.6±0.24
LHS 161 esdM2 3700 ±77 4.8±0.30 -1.2±0.36

LP 771-87 usdM2 3600 ±95 4.8±0.31 -1.4±0.52
LHS 541 sdM3 3500 ±76 5.1±0.31 -1.0±0.39
LHS 272 sdM3 3500 ±66 5.2±0.30 -0.7±0.37

LP 707-15 esdM3 3500 ±68 5.5±0.29 -0.5±0.36
LSR J1755+1648 sdM3.5 3400 ±52 5.1±0.31 -0.5±0.33

LHS 375 sdM4 3500 ±79 5.5±0.32 -1.1±0.31
LHS 1032 esdM4.5 3300 ±63 4.5±0.32 -1.7±0.25

SSSPM J0500-5406 esdM6.5 3200±51 5.4±0.31 -1.6±0.16
LHS 377 sdM7 3100 ±32 5.3±0.25 -1.0±0.16

APMPM 0559-2903 esdM7 3200 ±68 5.4±0.34 -1.7±0.25
SSPM J1013-1356 sdM9.5 3000 ±0 5.5±0.05 -1.1±0.16
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Figure 6.11 – ζ parameter defined by Lépine et al. (2007) vs metallicity diagram. The dots show
are sample and the solid black line is the linear-square regression. Other relations from Woolf
et al. (2009); Neves et al. (2012); Rojas-Ayala et al. (2012) are superimposed.
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Chapter 7

Conclusion and future perspectives

The research contained in this dissertation is primarily focused on the determination of fun-
damental stellar parameter for M dwarf and subdwarfs based on an analysis of both high and
low resolution spectroscopy, and it also set out to test different model atmospheres. I first de-
scribed the spectral analysis of the LHS1070 triple system by comparing the observed spectra
with those predicted by different model atmosphere (BT-Dusty, BT-Settl, DRIFT, MARCS). I
have determined the physical parameters Teff , log g , metallicity and radius for all the three
components of the LHS 1070. A solar metallicity is derived from all three models. The derived
gravity differs by 0.5 dex depending on the model used but still agrees within the uncertainties
with the values derived from dynamical mass (Seifahrt et al. 2008). We found the same value for
Teff for the component A from all models, while differences of 100 K and 200 K are found for
component B and C. Teff values found for component B and C are also 200 K higher than those
found by Leinert et al. (2000). The main cause of these differences resides in the treatment of
dust. Thus the comparison between M-dwarf spectra with different model atmosphere spectra
will bring constraints on the physics of these cool objects, in particular on the dust treatment
and cloud formation in their atmosphere.

In the second part I have compared the spectra produced by a revised version of the BT-Settl
model atmospheres (Allard & Homeier 2012) with the observed NTT and SSO 2.3 m spectra
and colours. This study shows that the use of revised TiO line list is very important and provides
a more accurate description of the TiO bands in the M dwarfs. The systematic discrepancy
between the delta and epsilon bands found by Reiners (2005), which seriously affected the
effective temperature determination, is largely alleviated by using the Plez (1998) and B. Plez
(private communication) TiO line list although discrepancies remain for the coolest stars. The
BT-Settl models reproduce the SED and observed colours across the M dwarfs’ spectral regime
in unprecedented quality, as well as the colours. The V band is also well reproduced by the
models. Discrepancies remain in the strength of some molecular absorption bands while other
absorption bands are missing, in particular in the blue spectral region.

We compared our temperature-colour relation to relations using multi-wavelength photom-
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etry with the predictions from BT-Settl isochrones, assuming an age of 5 Gyrs. In general, the
BT-Settl isochrones are in good agreement with the observed colours, even at temperatures be-
low 2800 K affected by dust treatment in the BT-Settl models. We found that the Casagrande
et al. (2008) Teff scale is systematically cooler than the BT-Settl isochrones due, among other
things, to the use of the Grevesse et al. (1993) solar elemental abundances adopted in the GAIA-
Cond model atmosphere grid used for that work. In contrast the Luhman et al. (2003) Teff scale
is progressively too hot towards the bottom of the main sequence. We provide and compare
temperature versus colour relations in the optical and infrared, which match well the BT-Settl
isochrones and can be further used for large photometric datasets. We determined the effective
temperature scale for the M dwarfs in our samples; it extended down to the latest type of M
dwarfs, where the dust cloud begins to form in their atmosphere.

In the last part of this thesis I described the effect of metallicity on the spectra of metal-
poor M-subdwarfs. We have determine the [Fe/H] abundance for the first time over an entire
M-subdwarf spectral sequence based on a careful spectroscopic analysis of 21 high resolution
UVES spectra. We have determined an effective temperature versus spectral type relation for
M-subdwarfs and have compared it to the previous study of Gizis (1997). The Teff scale are in
agreement within 100 K. This work will also contribute to knowledge of the relation between
metallicity and photometric colours and molecular band strengths. With such a calibration, it
will be possible to estimate the metallicity of a large sample of subdwarfs, allowing meaningful
statistical analyses to be performed.

The future perspective of this is study is to determine atmospheric parameters in a precise
way. The optical and NIR data is very important simultaneously so that the variability does not
include further uncertainty in the estimations of stellar parameter of M dwarfs. This is only pos-
sible with the instrument like XSHOOTER that offers this capability. Furthermore, such work
will provide an unprecedented atlas over the whole SED of the M-subdwarf sequence. We will
use synthetic narrow and intermediate band filters to better determine the pseudo-continuum
which is necessary for line-by-line analysis. A detailed comparison of the equivalent widths
of the atomic lines in the optical, in the J-band flux peak , and in the CO bands at 2.3 µm be-
tween models and observations will be performed to study the effect of metallicity using these
features. Besides the overall spectral shape, metallicity sensitive lines such as Fe I, Na I and
gravity sensitive lines like Ca I, K I and H-band water bands will be studied and compared. In
order to get self-consistent parameters from synthetic spectra one need the combined optical
and infrared. Do models predict the same stellar parameters in the Optical and Infrared? How
do the models fit the full SED? Do the iron abundances agree when studying different spectral
regimes? These important questions can be only addressed by studying in detail large spectral
coverages at medium resolution over entire SED.
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Apendix

Method and steps of Analysis: In first step, for a given observed spectrum, the model spectra
were smoothed to the appropriate resolution using the Gaussian function kernel (equation 7.1)
and resampled on the same wavelength grid as the observational data and the spectra were
normalized to unit area for scaling.

G =
1

√
(2πσ1)

e
− x2

2σ2
1 (7.1)

where σ1 factor that determines how many points to use for the gaussian kernel. The exact
number of points used depends on the value of σ2 and the range of "x" values as well, but it will
be roughly equal to 2(σ1)(σ2). Here σ2 is width of gaussian, in same units as "x".

A well-fitting χ2 methods results in predicted values close to the observed data values. In
second step, the comparison of atmosphere model to the observed spectra were performed using
the χ2 statistics. For each observed spectrum, we extracted the model spectra with minimum
value of χ2 using the procedure describe below. The χ2 statistics describes the goodness-of-fit
of the data to the model. If the observed number in each of the k bins are F(λi), and the expected
values from the model are M(λi), then this statistics is given by the following equations:

χ2 =

k
∑

i=1

(

F(λi) − M[p](λi)

σi

)2

(7.2)

χ2 =

k
∑

i=1

(F(λi) − M[p](λi))2

M[p](λi)
(7.3)

Here, F(λi) are the flux of observed spectrum and M(λi) is the flux of model spectrum for a
model parameter P = [Teff , radius, [Fe/H], log g] for equation 7.2 where as for equation 7.3
M(λi) is the flux of model spectrum for a model parameter P = [Teff [Fe/H], log g]. The uncer-
tainty σ are the error in the flux as a function of wavelength in observations. This both form
was chosen because equation 7.2 put much emphasis on the highest signal-to-noise continuum
region while the equation 7.3 places much emphasis on the strongest absorptions. To avoid



120 Apendix

problems with low signal-to-noise ratios and/or poor telluric correction, only spectral regions
outside the worse telluric absorption windows were used for all the steps described above.

In the third step a χ2 map has been obtained for each of the individual stars to ensure that
we end up in a global minimum when converging to a solution for the best fit. This is similar
procedure as adopted by Rice et al. (2010). The "best"’ values is always the minimum χ2 chosen
which is then cross checked by visual inspection. The error bar are derived from standard
deviation by taking 5 % from the minimum χ2 value. The acceptable parameters were finally
inspected by comparing it with the observed spectra.
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